
--------- - ------- - --- Series/1 - - - ----------_ .-
Event Driven Executive
Language Programming Guide

Version 6.0

Library Guide and
Common Index

SC34-0938

Language
Reference

SC34-0937

Operation
Guide

SC34-0944

Problem
Determination
Guide

SC34-0941

Installation and
System Generation
Guide

SC34-0936

Communications
Guide

SC34-0935

Event Driven
Language
Programming Guide

SC34-0943

Customization
Guide

SC34-0942

SC34-0943-0

Operator Commands
and
Utilities Reference

SC34-0940

Messages and
Codes

SC34-0939

APPC
Programming Guide
and Reference

SC34-0960

Internal
Design

LY34-0364

--------- -------- - ---- - - ----------_.-

o

o

Series/1

Event Driven Executive
Language Programming Guide

Version 6.0

Event Driven
language
Programming Guide

SC34-0943

SC34-0943-0

First Edition (October 1987)

Use this publication only for the purposes stated in the section entitled "About This Book."

Changes are made periodically to the information herein; any such changes will be reported in subsequent
revisions or Technical Newsletters.

This material may contain reference to, or information about, IBM products (machines and programs),
programming, or services that are not announced in your country. Such references or information must not
be construed to mean that IBM intends to announce such IBM products, programming, or services in your
country.

Publications are not stocked at the address given below. Requests for copies of IBM pUblications should be
made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers' comments
is provided at the back of this pUblication. If the form has been removed, address your comments to IBM
Corporation, Information Development, Department 28B (5414), P. O. Box 1328, Boca Raton, Florida
33429-1328. IBM may use or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1987

o

C Summary of Changes for Version 6.0

o

This document contains the following changes.

3151 Display Terminal

• Chapter 8,"Reading Data from and Writing to Screens," has been updated to
include the 3151 display everywhere a reference to the 3161 appears.

• Appendix B, "Interrupt Processing" has been updated to include the 3151
display everywhere a reference to the 3161 appears.

• Appendix C, "Static Screens and Device Considerations" has been updated to
include the 3151 display everywhere a reference to the 3161 appears.

$INST AL Utility Enhancements

• Chapter 1, "Getting Started" has been updated to include the new option for
$INSTAL (Option 12) on the Session Manager Option Menu screen.

• Chapter 4, "Compiling a Program" has been updated to include the new option
for $INST AL (Option 12) on the Session Manager Option Menu screen.

System Partition Statements

• References to the SYSTEM statement have been replaced by the appropriate
system partition statements: SYSPARTS, SYSPARMS, SYSCOMM, or
SYSEND.

Miscellaneous Changes

• Numerous editorial and usability changes have been made throughout the book.

Summary of Changes for Version 6.0 iii

c

o
iv SC34-0943

C Contents

Chapter 1. Getting Started 1-1
Designing a Program 1-1
Coding the Program 1-2

Starting the Program 1-3
Defining Your Data 1-3
Retrieving Data 1-3
Processing the Data 1-4
Obtaining the Results 1-4
Ending the Program 1-5

Entering the Source Program into a Data Set 1-6
Compiling Your Source Program 1-11

Checking Your Compiler Listing 1-16
Creating a Load Module 1-17
Running Your Program 1-20

Chapter 2. Writing a Source Program 2-1
Beginning the Program 2-1

Defining the Primary Task 2-1
Identifying Data Sets to be Used in Your Program 2-2

Reserving Storage 2-2
Reserving Storage for Integers 2-3
Defining Floating-Point Values 2-4
Defining Character Strings 2-4
Assigning a Value to a Symbol 2-5
Defining an Input/Output Area 2-6

Reading Data into a Data Area 2-7
Reading Data from Disk or Diskette 2-7
Reading Data from Tape 2-8
Reading from a Terminal 2-8

Moving Data 2-10
Converting Data 2-11

Converting to an EBCDIC Character String 2-11
Converting to Binary 2-12
Converting from Floating Point to Integer 2-14
Converting from Integer to Floating Point 2-14
Checking for Conversion Errors 2-15

Manipulating Data 2-16
Manipulating Integer Data 2-16
Manipulating Floating-Point Data 2-21
Manipulating Logical Data 2-24

Writing Data from a Data Area 2-28
Writing Data to Disk or Diskette 2-28
Writing Data to Tape 2-29
Writing to a Terminal 2-29

Controlling Program Logic 2-30
Relational Operators 2-30
The IF Instruction 2-31

c The Program Loop 2-32
Branching to Another Location 2-34

Ending the Program 2-35

Chapter 3. Entering a Source Program 3-1

Contents V

Loading the Editor 3-1
Creating a New Data Set 3-2
Saving Your Data Set 3-4 o
Modifying an Existing Data Set 3-5

Changing a Line 3 -5
Inserting a Line 3-6
Deleting a Line 3-7
Moving Lines 3-9

Chapter 4. Compiling a Program 4-1
Allocating Data Sets 4-1
Running the Compilation 4-4

Checking Your Compiler Listing and Correcting Errors 4-7
Rerunning the Compilation 4-9

Chapter 5. Preparing an Object Module for Execution 5-1
Link Editing a Single Object Module 5-1
Link Editing More Than One Object Module 5-4

Using N oninteractive Mode 5-9
Prefinding Data Sets and Overlays 5-10

Chapter 6. Executing a Program 6-1
Executing a Program with the Session Manager 6-1

Specifying Data Sets 6-3
Submitting a Program from Another Program 6-5

Chapter 7. Finding and Fixing Errors 7-1
Determining Logic Errors in a Program 7-1

Creating and Running the Program 7-2 o
Debugging and Fixing the Program 7-3
Displaying Unmapped Storage 7-9

Using Return Codes to Diagnose Problems 7-14
Diagnosing Errors with ACCA Devices 7-15

Task Error Exit Routines 7-16
The System-Supplied Task Error Exit Routine ($$EDXIT) 7-16

Chapter 8. Reading Data from and Writing to Screens 8-1
When to Use Roll Screens 8-1
When to Use Static Screens 8-2
Differences Between Static Screens and Roll Screens 8-2
Reading and Writing One Line at a Time 8-3

Reserving Storage for the Data 8-3
Reading a Data Item 8-3
Writing (Displaying) a Data Item 8-4
Example 8-4

Two Ways to Use Static Screens 8~5

Coding the Screen within a Program 8-6
Defining a Screen as Static 8-6
Getting Exclusive Access to the Terminal 8-7
Erasing the Screen 8-7
Reserving Storage 8-7
Prompting the Operator for a Data Item 8-7
Positioning the Cursor 8-7
Waiting for a Response 8-8 o
Reading a Data Item 8-8
Writing a Data Item 8-8

vi SC34-0943

c

c

Example 8-9
Transferring an Entire Screen Image at Once 8-10

Defining Protected and Unprotected Fields 8-11
Defining the Screen 8-11
Erasing the Screen 8-11
Constructing a Screen Image 8-12
Reading a Series of Data Items 8-12
Releasing the Terminal 8-12
Example 8-13

Writing the Screen Image to a Data Set 8-15
Creating a Screen 8-16
Defining the Screen as Static 8-17
Reading the Screen Image into a Buffer 8-18
Getting Exclusive Access to the Terminal 8-18
Displaying the Screen and Positioning the Cursor 8-19
Reserving Storage for Data 8-19
Waiting for a Response 8-19
Reading a Data Item 8-20
Writing a Data Item 8-20
Link Editing the Program 8-21
Example 8-22

Designing Device-Independent Static Screens 8-24
Designing Static Screens 8-24
Compatibility Limitation 8-25
Coding for Device Independence 8-26
Using the $IMAGE Subroutines for Device Independence 8-28

Reading and Writing to a 3101, 3151, 3161, 3163, or 3164 8-31
Characteristics of the Terminal 8-32
Design Considerations 8-33
Defining the Format of the Screen 8-35
Enqueuing the Screen 8-35
Changing the Attribute Byte 8-36
Erasing the Screen 8-36
Protecting the First Field 8-36
Creating Unprotected Fields 8-37
Creating Protected Fields 8-37
Writing a Nondisplay Field 8-37
Reading a Data Item 8-37
Writing a Blinking Field 8-38
Erasing an Individual Field 8-38
Blanking a Blinking Field 8-38
Writing More Than One Data Item 8-38
Prompting the Operator for Data 8-39
Changing the Attribute Byte to a Protected Blank 8-39
Displaying a Nondisplay Field 8-40
Creating a New Unprotected Field 8-40
Reading Modified Data 8-40
Erasing to the End of the Screen 8-42
Reading All Unprotected Data 8-43
Writing a Data Item 8-43
Reading a Data Item 8-43
Data Stream Considerations 8-43
Example 8-44

Chapter 9. Designing Programs 9-1
What Is a Task? 9-1

Contents vii

viii SC34-0943

Initiating a Task 9-2
What Is a Program? 9-2
Creating a Single-Task Program 9-3
Creating a Multitask Program 9-5

Synchronizing Tasks 9-6
Defining and Calling Subroutines 9-6

Defining a Subroutine 9-7
Calling a Subroutine 9-8

Reusing Storage using Overlays 9-9
Using Overlay Segments 9-10
Overlay Programs 9-12

Using Large Amounts of Storage (Unmapped Storage) 9-13
What Is Unmapped Storage? 9-13
Setting up Unmapped Storage 9-14
Obtaining Unmapped Storage 9-14
Using an Unmapped Storage Area 9-15
Releasing Unmapped Storage 9-15
Example 9-16

Chapter 10. Performing Data Management from a Program
Allocating, Deleting, Opening, and Renaming a Data Set

When to Use $DISKUT3 10-2
Allocating a Data Set 10-2
Allocating a Data Set with Extents 10-4
Opening a Data Set 10-6
Deleting a Data Set 10-7
Releasing Unused Space in a Data Set 10-8
Renaming a Data Set 10-9
Setting End-of-Data on a Data Set 10-10
Performing More Than One Operation at Once 10-12

Opening a Data Set (DSOPEN) 10-14
DSOPEN Example 10-16
Coding for Volume Independence 10-20

Setting Logical End of File (SETEOD) 10-21
Finding the Device Type (EXTRACT) 10-24

Chapter 11. Reading and Writing to Tape 11-1
What Is a Standard-Label Tape? 11-1
What Is a Nonlabeled Tape? 11-1
Processing Standard-Label Tapes 11-2

Reading a Standard-Label Tape 11-2
Writing a Standard-Label Tape 11-3
Closing Standard-Label Tapes 11-4
Bypassing Labels 11-4

10-1
10-1

Processing a Tape Containing More than One Data Set 11-5
Reading a Multivolume Data Set 11-6

Processing Nonlabeled Tapes 11-7
Defining a Nonlabeled Tape 11-8
Initializing a Nonlabeled Tape 11-9
Reading a Nonlabeled Tape 11-10
Writing a Nonlabeled Tape 11-10

Adding Records to a Tape File (UPDATE) 11-11

o

o

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-1 0
Loading Other Programs 12-2
Finding Other Programs 12-4

Starting Other Tasks 12-4

c Sharing Resources with the ENQ/DEQ Instructions 12-6
Synchronizing Tasks in Other Partitions 12-8
Moving Data Across Partitions 12-10
Reading Data across Partitions 12-12

Chapter 13. Communicating with Other Programs (Virtual Terminals) 13-1
Defining Virtual Terminals 13-1
Loading from a Virtual Terminal 13-2
Interprogram Dialogue 13-2
Sample Program 13-3

Chapter 14. Designing and Coding Sensor 1/0 Programs 14-1
What is Digital Input/Output? 14-1
What is Analog Input/Output? 14-1
What are Sensor-Based I/O Assignments? 14-3
Coding Sensor-Based Instructions 14-3

Providing Addressability (IODEF) 14-4
Specifying I/O Operations (SBIO) 14-7

Chapter 15. Designing and Coding Graphic Programs 15-1
Graphics Instructions 15-1
The Plot Control Block 15-2
Example 15-3

Chapter 16. Controlling Spooling from a Program 16-1

(~;
What Is Spooling? 16-1
Spooling the Output of a Program 16-1

The Spool-Control Record 16-1
Executing the Example 16-3

Printing Output That Has Been Spooled 16-6
Stopping Spooling 16-7
Determining Whether Spooling Is Active 16-7
Preventing Spooling 16-8
Separating Program Output into Several Spool Jobs 16-8
Programming Considerations 16-9

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-1
Creating a Data Set for Source Messages 17-1

Coding Messages with Variable Fields 17-2
Sample Source Message Data Set 17-4

Formatting and Storing Source Messages (using $MSGUT1) 17-4
Retrieving Messages 17-6

Defining the Location of a Message Data Set 17-6
The MESSAGE instruction 17-7
The GETVALUE, QUESTION, and READ TEXT Instructions 17-8

Sample Program 17-9

Chapter 18. Queue Processing 18-1
Defining a Queue 18-1
Putting Data into a Queue 18-1
Retrieving Data from a Queue 18-2

C"
, ,

Example 18-2

Chapter 19. Writing Reentrant Code 19-1
When to Use Reentrant Code 19-1

Contents ix

Coding Guidelines 19-1
Examples 19-3

Example 1 19-3
Example 2 19-6

o
Chapter 20. Accessing $SYSCOM through a Program 20-1

Sample Program A 20-1
Sample Program B 20-2

Appendix A. Tape Labels A-I

Appendix B. Interrupt Processing B-1
Interrupt Keys B-1

The Attention Key B-1
Program Function (PF) Keys B-1
Enter Key B-2

Instructions that Process Interrupts B-2
The READTEXT and GETV AL UE Instructions B-2
The WAIT KEY Instruction B-2
The ATTNLIST Instruction B-3

Advance Input B-3

Appendix C. Static Screens and Device Considerations C-l
Defining Logical Screens C-I

Using TERMINAL to Define a Logical Screen C-l
Using IOCB and ENQT to Define a Logical Screen C-2
Structure of the IOCB C-3

$IMAGE Subroutines C-3
$IMOPEN Subroutine C-5
$IMDEFN Subroutine C-7
$IMPROT Subroutine C-8
$IMDATA Subroutine C-IO
Screen Image Buffer Sizes C-12
Example of Using $IMAGE Subroutines C-I3

$UNPACK and $PACK Subroutines C-I5
$UNP ACK Subroutine C-15
$P ACK Subroutine C-16

Index X-I

o
X SC34-0943

o

About This Book

Audience

This book contains an introduction to the Event Driven Language. It does not
contain a description of all Event Driven Language instructions. For a description
of all Event Driven Language instructions, refer to the Language Reference.

Chapters 1 through 8 of this book are intended for the application programmer who
is coding in the Event Driven Language for the first time. Readers should be
familiar with basic data processing terminology and concepts, such as input, output,
and data sets.

Chapters 9 through 20 are intended for application programmers who need
information about such advanced topics as multitasking, data management from a
program, communicating with other programs, writing reentrant programs, and
writing graphics or sensor I/O programs.

How This Book is Organized
This book contains twenty chapters and three appendixes:

• Chapter 1, "Getting Started" describes the steps necessary to develop and run a
simple Event Driven Language (EDL) program.

• Chapter 2, "Writing a Source Program" tells how to use EDL instructions to do
such things as read data, write data, convert data, and manipulate data.

• Chapter 3, "Entering a Source Program" tells how to use the full-screen editor
to enter and modify a source program.

• Chapter 4, "Compiling a Program" shows how to use the Event Driven
Language compiler to translate a source program to object code.

• Chapter 5, "Preparing an Object Module for Execution" shows how to use the
linkage editor to prepare an object program for execution.

• Chapter 6, "Executing a Program" describes how to run a program that has
been compiled and link-edited.

• Chapter 7, "Finding and Fixing Errors" describes a tool you can use to
diagnose program logic errors and exception conditions.

• Chapter 8, "Reading Data from and Writing to Screens" on page 8-1 shows
how to read and write data from display terminals. The chapter defines roll
screens and static screens and describes how to write programs that interact with
the operator.

• Chapter 9, "Designing Programs" defines what a program and a task are and
describes multitasking, subroutines, program overlays, segment overlays, and
unmapped storage.

About This Book xi

• Chapter 10, "Performing Data Management from a Program" describes various
ways to do data management from a program. The chapter describes how to
allocate, delete, rename, and open a data set. In addition, the chapter shows
how to set the logical end of file, add records to a tape data set, and find the
device type from a program.

• Chapter 11, "Reading and Writing to Tape" tells how to read to and write from
a magnetic tape data set.

• Chapter 12, "Communicating with Another Program (Cross-Partition Services)"
shows how programs can interact with each other, either within the same
partition or between partitions.

• Chapter 13, "Communicating with Other Programs (Virtual Terminals)" shows
how one program can load another program and how the programs can interact
with each other.

• Chapter 14, "Designing and Coding Sensor I/O Programs" describes digital and
analog input/output and shows how to read and write to sensor I/O devices.

• Chapter 15, "Designing and Coding Graphic Programs" shows how to code the
instructions that produce graphic messages and draw curves on a display
terminal.

• Chapter 16, "Controlling Spooling from a Program" describes how a program
can control printed output.

• Chapter 17, "Creating, Storing, and Retrieving Program Messages" shows how
to save storage or coding time by creating messages than can be used by more
than one program.

• Chapter 18, "Queue Processing" shows how to create queues, store data in
queues, and retrieve data from queues.

• Chapter 19, "Writing Reentrant Code" shows how to design and write EDL
programs that are reentrant.

• Chapter 20, "Accessing $SYSCOM through a Program" provides sample EDL
programs that access the system common data area ($SYSCOM).

• Appendix A, "Tape Labels" shows the layout of tape labels.

• Appendix B, "Interrupt Processing" on page B-1 describes the interrupts that
occur when a program interacts with a terminal.

• Appendix C, "Static Screens and Device Considerations" provides reference
information on defining logical screens, $IMAGE subroutines, and the
$UNP ACK and $PACK subroutines.

Aids in Using This Book

xii SC34-0943

This book contains the following aids to using the information it presents:

• A table of contents that lists the major headings in the book.

• In example screens where you must answer a system request, the sample
responses appear highlighted in red.

• An index of the topics covered in this book.

o

o

o

c

c)

o

Using the Enter and Attention Keys
This book uses the term "enter key" to mean the key that indicates that you have
completed input to a screen and want the system to process the data you keyed in.
It uses the term "attention key" to mean the key that indicates that you want to
direct keyboard input to the operating system supervisor. If your keyboard does not
have these keys, use the corresponding keys on your keyboard.

A Guide to the Library
Refer to the Library Guide and Common Index for information on the design and
structure of the Event Driven Executive library, for a bibliography of related
publications, for a glossary of terms and abbreviations, and for an index to the
entire library.

Contacting IBM about Problems
You can infonn IBM of any inaccuracies or problems you find when using this book
by completing and mailing the Reader's Comment Form provided in the back of this
book.

If you have a problem with the IBM Series/1 Event Driven Executive, refer to the
IBM Series/1 Software Service Guide, GC34-0099.

About This Book xiii

o

o
xiv SC34-0943

Getting Started

C' Chapter 1. Getting Started

o

This chapter is intended for ,people who have never coded an Event Driven
Language (EDL) program. It describes the steps necessary to develop and run a
simple program on the Series/I. If you are familiar with EDL and the EDX
operating system, skip this chapter and go to Chapter 2.

Specifically, this chapter shows you how to design, code, enter, compile, link edit,
and execute an EDL program. Using a simple example program, we will show you
all these steps. You may want to enter and run this program on your Series/1 to
gain hands-on experience.

All of the major steps in the development and execution of an EDL program are
covered in greater detail later in this book. The following chart describes these steps
and shows you where the material is covered:

Write the source program (Chapter 2)

Enter the source program (Chapter 3)

Compile the source program (Chapter 4)

Link edit the program (Chapter 5)

Run the program (Chapter 6)

Find and fix errors (Chapter 7).

Designing a Program

Write a source program that does such
things as read data, manipulate data,
and write data.

Enter the source program by using the
session manager to build a data set.

Compile your source program.

Produce an executable load module.

Cause your program to run or
"execute. "

Use the $DEBUG utility or a task
error exit routine to help you locate
and correct any problems in your
program.

The first step in the development of any program is the design of the program. You
must be able to describe what you want the program to accomplish.

Typically, a program reads some data, processes the data, and writes the results.
The sample program we have chosen does all of these things. The program requests
that an operator enter a number at the terminal. That number is added to a storage
area ten times, and the results are displayed on the terminal screen.

Here are some questions you should ask when you plan a program. We have shown
how we answered those questions in our sample program.

Chapter 1. Getting Started 1-1

Getting Started

Questions

Where is the data coming
from and what form will it
take?

What do you want to do
with the data and in what
order do you want to
process the data?

Where do you print or
record the results?

In Our Program

The data is a number that
the operator enters at the
terminal.

The number that is entered
from the terminal will be
added 10 times to a storage
area that you define.

The results are displayed on
the terminal screen.

In the next section, we will show you how to implement this design in an EDL
program.

Coding the Program

1-2 SC34-0943

On the next few pages, we will show you how the design of this program was
implemented. We will build the program step by step. We will not describe every
possible operand of the instructions we use. (The Language Reference fully describes
the operands for every EDL instruction.)

The instructions and statements that make up a program are called the source
program. They have the following general format:

I label operation operands

where these terms have the following meanings:

label

operation

operands

The name you assign an instruction or statement. You can use this
name in your program to refer to that specific instruction or statement.
In most cases, the label is optional. Labels must begin in column 1;
must begin with a letter or one of the special characters $, #, or @;
and must be 1 to 8 characters long.

The name of the instruction or statement you are coding. The
operation can begin in column 2 and cannot extend beyond column 71.

The data that is required to do an operation, or information on how
the system is to perform the operation.

To continue a line of code on the next line, place any nonblank character in column
72 and continue the next line in column 16.

o

(
-~

, \

)

J

o

o

Getting Started

Starting the Program
Any EDL program begins with the PROGRAM statement.

A PROGRAM statement defines the address or label of the first instruction to be
executed. The PROGRAM statement also defines the name of the primary task of
the program. (EDL programs may consist of multiple tasks. In our sample
program, the primary task is the only task of the program.)

Our program statement looks like this:

ADDlc:) PROGRAM STPGM

ADDIO is the task name of the primary (and only) task.

STPGM is the label of the first instruction to be executed.

Defining Your Data

Retrieving Data

The program needs two data areas: one to hold the input and one to hold the
results of the process. Use the DATA statement to reserve storage for data.

ADDlc:)

COUNT
SUM

PROGRAM
•
•
•

DATA
DATA

STPGM

F'C:)'
F'C:)'

These DATA statements indicate that the reserved areas are type F (for fullword)
and that the initial value of the areas is O. In the Series/I, a "fullword" contains two
bytes (16 bits).

Since DATA statements do not cause any action to occur, place them either before
the first instruction or after the last instruction.

The next step is to get input data into the program. In this program, we use a
GETVALUE instruction to get the data.

ADDlc:)
STPGM

COUNT
SUM

PROGRAM
GETVALUE
•
•
•

DATA
DATA

STPGM
COUNT,'ENTER NUMBER: I

F'C:)'
F'C:)'

When the GETVALUE instruction executes, the message "ENTER NUMBER: "
appears on the terminal screen. When someone enters a number and presses the
ENTER key, the system stores the number in the data area called COUNT.

Chapter 1. Getting Started 1-3

Getting Started

Processing the Data
This program is going to add the number that is entered from the terminal to the 0,
contents of storage area SUM. You need an ADD instruction to perform the
addition. The number is going to be added to COUNT ten times. So the ADD
instruction is placed inside a DO loop, which consists of a DO instruction and an
ENDDO instruction. The DO instruction indicates how many times the instructions
(in this case, an ADD instruction) are to be executed.

ADDlG
STPGM
LOOP

COUNT
SUM

PROGRAM STPGM
GETVALUE COUNT, 'ENTER NUMBER: '
DO lG,TIMES

ADD SUM,COUNT
ENDDO
•
•
•

DATA
DATA

F'G'
F'G'

Obtaining the Results

1-4 SC34-0943

At this point, the program includes instructions to read the data and process the
data. To print the results, you use two instructions: PRINTEXT and PRINTNUM.

ADDlG PROGRAM STPGM
STPGM GETVALUE COUNT, 'ENTER NUMBER: I

LOOP DO lG,TIMES

COUNT
SUM

ADD SUM,COUNT
ENDDO
PRINTEXT '@RESULT='
PRINTNUM SUM
•
•
•

DATA
DATA

F'G'
FIG I

The PRINTEXT instruction will print "RESULT =" on the terminal screen. The
"@" symbol will cause "RESULT =" to be printed on a new line on the terminal
screen. The PRINTNUM instruction will print the results of the process, which are
stored in the SUM data area.

C' J

J

o

c

o

Getting Started

Ending the Program
The program needs three more statements to be complete. The PROGSTOP
statement stops the program execution and releases the storage allocated to the
program. You code PROGSTOP after the last executable instruction in the
program. The ENDPROG statement ends the program. The END statement
signals the compiler that the program has no more source statements.

All EDL programs must end with the ENDPROG and END statements.

The completed program looks like this:

ADDlO
STPGM
LOOP

COUNT
SUM

PROGRAM STPGM
GETVALUE COUNT,'ENTER NUMBER: I

DO lO,TIMES
ADD SUM,COUNT

ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

'@RESULT='
SUM

F'O '
F'O '

The next step is to enter your program into a data set. We will show you how to
use the session manager to enter the source program. The session manager provides
a series of menus to help you enter a source program. This section shows you how
to enter our sample program. For more information on entering a source program,
see Chapter 3, "Entering a Source Program."

Chapter 1. Getting Started 1-5

Getting Started

Entering the Source Program into a Data Set

1-6 SC34-0943

All the steps for entering the source program into a data set are listed below. If you
want to actually enter the sample source program, follow the numbered steps.

To load the session manager on your terminal:

1 Press the attention key.

2 Type $L $SMMAIN.

3 Press the enter key.

When you press the enter key, the logon screen appears:

ENTER 1~4 CHAR USER 10 ==>
(ENTER LOGOFF TO EXIT)

ALTERNATESESS ION MENU=;:>
(OPtiONAL)

To begin a session:

1 Type a unique user identification (called a user ID). The user id can be 1 to 4
characters long. This chapter uses ABeD as the user ID.

2 Press the enter key.

ENTER 1:"4 CHAR USER 10 ==> ABeD
(ENTERtOGOFF TO·· EXIT)

ALTERNATESESSION.MENU==>
(OPTIONAL)

o

o

o

Getting Started

The Primary Option Menu appears on the screen. To enter a source program into a
data set, select option 1 (TEXT EDITING).

1 Type 1 on the SELECT OPTION line.

2 Press the enter key.

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU ---'----'-----.---------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

SELECT OPTION ==> 1

1 - TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTILITY
7 - EXEC $JOBUTIL PROC
8 - COMMUNICATION UTILITIES
9 - DIAGNOSTIC AIDS

10:00:00
10/24/82

ABCD

10 - BACKGROUND JOB. CONTROL UTILITIES

The $FSEDIT PRIMARY OPTION MENU appears on the screen. Use option 2
(EDIT) to create a new data set.

1 Type 2 on the OPTION line.

2 Press the enter key.

$FSEDIT PRIMARY OPTION MENU -,..--~--..,----- ... --------,..---.--~-;..-_STATUS = INIT
PRESS PF3 TO EXIT

OPTION ===> 2

OATASETNAME·=========>
VOLUMENAME:::==:::======>

(CURRENTLY IN· WORK ••. FILE)

Chapter 1. Getting Started 1-7

Getting Started

1-8 SC34-0943

Your data set then appears. This is where you will type the source program.

To enter the source program:

1 Type the first line of code.

2 Press the enter key to cause a blank entry line to appear.

3 Type the next line of code.

4 Press the enter key.

5 Repeat steps 3 and 4 until you have entered the entire source program.

6 When you finish entering the source program, move the cursor to the
COMMAND INPUT line and type M (for "menu").

7 Press the enter key.

o

o

c

C:

0"'"
" ,

Getting Started

The $FSEDIT PRIMARY OPTION MENU appears again.

The next step is to write the data set to a volume. When you write the data set, you
copy the data set from the temporary data set that $FSEDIT has been using. The
data set name we have chosen is ADDIO and the volume name is EDX002. Select
option 4 (WRITE) to write the data set to a volume.

1 Type 4 on the OPTION line.

2 Type ADDIO on the DATASET NAME line.

3 Type EDX002 on the VOLUME NAME line.

4 Press the enter key.

$FSEDIT PRIMARY OPTION MENU ----------------- ... ---~-------STATUS = MODIFIED
PRESSPF3 TO EXIT

OPTION ===> 4

DATASET ,NAME =========> ADDle
VOLUMENAME·==",=======> EDX992

(CtJRRENTLY IN WORK DATASET)

A prompt appears on the bottom of the screen. Type Y and press the enter key.

Chapter 1. Getting Started 1-9

Getting Started

1-10 SC34-0943

A message appears on the bottom of the screen. This message means that your
source program is 12 lines long and has been written to volume EDX002.

Now that you have entered and written the source program to a data set, return to
the Session Manager Primary Option Menu.

1 Type 8 on the OPTION line.

2 Press the enter key.

o

o

c

o

Getting Started

Compiling Your Source Program
Now that you have coded and entered the source program into a data set, the next
step is to compile it into object code. Object code is code that the computer can
read. To compile the source program, use $EDXASM, the EDX compiler. This
section shows you how to compile the sample program. For more information on
compiling a source program, see Chapter 4, "Compiling a Program."

Before you actually begin to compile, you must allocate a data set to hold the output
(the object code). Start by selecting option 3 (DATA MANAGEMENT).

1 Type 3 on the SELECT OPTION line.

2 Press the enter key.

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU --------~-------------"'-
ENTER/SELECT PARAMETERS: PRESS PF3 TO EXIT

SELECTOPTION==> 3

l-TEXT EDITING
2-·PROGRAMPREPARATlON
3-·DATAMANAGEMENT
4 ."- TERMINAL UTILITIES
5- GRAPHICS UTILITIES
6.-· .. EXEC PROGRAM/UTILlTY
T - EXEC $JOBuTIL .• PROC
8 .• ·COMMUNICATIONUTIUTIES
9 ~OIAGNOSTICAIDS

ie-BACKGROUND JOB· CONTROL<Un LITIES

H): 42: 07
10/24/82

ABCD

Chapter 1. Getting Started 1-11

Getting Started

1-12 SC34-0943

The Data Management Option Menu appears on the screen. To allocate your object
code data set, select option 1 ($DISKUTl).

1 Type 1 on the SELECT OPTION line.

2 Press the enter key.

$~MMo~ •. · ·.S~~~lO~MA~A~.9~DAtAMANAGEMENt.···.·(jPtI(jN.MENU';;'~7"":7- tr ... j.;~?~H{%+H
ENJERISE~gCT .•.. PARAMETERS: PRESSPF3TO.· RETURN

SELECTOPTION:;:~> 1

r "" •••. ·.·$Dl§~.~'fl.(P+SI«E1r~) •• A.~~OCAtE~ •••• L1§T·D.IR~CJORY}
2.· .. :.$PIS~U12 .. ·.(PI~K(ETTE) .. ··DpMP1~rST.DATASETSJ
3i·•. $POPYUT1. (DISK(ETTE).·qOPYOAT~SE1sIyqLUMES)
4 ~$COMPRES{DlSK(EJJE)COMPRESSAVOLUME)
S..$CQPX . (DISK(ETTEJCQP'(OATASETS/VOLUMES)
6 •. -$01\501.. (DISKfEITEYSURFACEJNITIALTZATION)
7 ... $INIJOSK (DISK(ETT~J INITIALIZE/VERIFY)
8·· ~$MOVEVOL (COpy DTSK VOLUME TO.MULTI-DISKETTES)
9-.$TAMUTI ... (TN~EXED ACCESS METHOD. UTILITY PROGRAM)

19 ~.··$rAPEUTl .. (J~PE·.~LLOCATE, ...• CHANGE,COPY)
H. -'$HXYTI ...••... (H7EXCH~M~E. ·D.AT A$ETUTILITy)
12 - .$INSTAL (INSTALL/UPDATE ASOFJWA.RFPACKAGE)

o

o

c

o

Getting Started

The $DISKUTI utility prompts you for the command and for information about the
data set you want to create. Use the AL (allocate) command. Call the data set that
will hold the object code ADDOBJ. Allocate a 25-record data set and use the
default data type.

1 Type AL on the COMMAND (?) line.

2 Press the enter key.

3 Type ADDOBJ on the MEMBER NAME line.

4 Press the enter key.

5 Type 25 next to the HOW MANY RECORDS? prompt.

6 Press the enter key.

7 Type Y next to the DEFAULT TYPE = DATA - OK (YjN)? prompt.

8 Press the enter key.

LOADING.DIKUTl nnP, hh:mm: 55, LP=xxxx t

$DISKUTl-DATASETMANAGEMENTUTIUTY I

USING VOLUME EDX002

COMMAND(? J: AL
M~MBERNAME :ADDOBJ
HOW MANY RECORDS? 25
DEFAULT TYBE = DATA ·-OK. (YIN}?·· Y
ADDOBJ· •... CREATED

A message appears telling you that the ADDOBJ data set has been created. Enter
the EN (end) command to return to the Data Management Option Menu screen.

1 Type EN next to the COMMAND (?) prompt.

2 Press the enter key.

The next step is to return to the Session Manager Primary Option Menu to compile
your program. To return to that menu, press the PF3 key.

Chapter 1. Getting Started 1-13

Getting Started

1-14 SC34-0943

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREPARATION) to prepare to compile your program.

1 Type 2 on the SELECT OPTION line.

2 Press the enter key.

r -TEXT EDITING
2-PROGRAMPREPARATION
3-0ATA MANAGEMENT
4 - TERMINAL UTI LITIES
5- GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTI LITY
7 -EXEC $JOaUTIlPROC
8 - COMMUNICATIONUTIUTIES
9- DIAGNOSTIC AIDS

10 - BACKGROUNDJ OBCONTRO L UTI L ITl ES

The Program Preparation Option Menu appears on your screen. To compile the
source program, select option I ($EDXASM COMPILER).

1 Type 1 on the SELECT OPTION line.

2 Press the enter key.

()

o

c

C'
, .-\

')

o

Getting Started

The $EDXASM Parameter Input Menu appears on your screen. You must enter the
name of your source program (data set ADDIO on volume EDX002) and your
object output (data set ADDOBJ on volume EDX002).

1 Type ADDIO,EDX002 next to SOURCE INPUT (NAME,VOLUME).

2 Type ADDOBJ,EDX002 next to OBJECT OUTPUT (NAME,VOLUME).

3 Press the enter key.

$SMM0201: SESSION MANAGER $EDXASM PARAMETER INPUT MENU-------------------;.--
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SOURCE INPUT (NAME, VOLUME) ==> ADDI9, EDXE)(;)2

OBJECT OUTPUT (NAME,VOLUME) ==> ADDOBJ,EDX992

OPTIONAL PARAMETERS==>
(SELECT FROM THE LIST BELOW)

FOREGROUND OR BACKGROUND (F/B).· ==>
(DEFAULT IS FOREGROUND)

AVAILABLE PARAMETERS: ABBREV IAT ION: DESCRIPTION:
NOLIST
LIST TERMINAL~NAME
ERRORS·TERMINAL-NAME
CONTROL. DATA SET ,VOLUME
OVERLAY #

DEFAULT PARAMETERS:

NO
LI TERMINAL-NAME
ER TERMINAL-NAME
CO ·DATA'SET,VOLUME
OV #

Llst··$sYSPHTR CONTROL$EDXL,ASMUa .OVERLAY··6

USED TO SUPPRESS LISTING
USE LIST * FOR THIS TERMINAL
USE ERRORS * FOR THIS TERMINAL
$EDXASM .• LANGUAGECONTROL· DATASET
#ISNUMB~ROFAREASFROMI T06

$EDXASM then compiles the source program into object code and puts the object
code into data set ADDOBJ. This data set is used as input in the next step,
"Creating a Load Module."

The information listed under DEFAULT PARAMETERS means that the compiler
will print a listing of the program on the system printer, $SYSPRTR.

Chapter 1. Getting Started 1-15

Getting Started

As the compilation runs, the following appears on your screen.

If the screen fills up before displaying PRESS ENTER KEY TO RETURN, press
the enter key.

A completion code of -1 means that your program compiled successfully. Any
completion code other than -1 means the program did not compile successfully.

Checking Your Compiler Listing

1-16 SC34-0943

The compiler prints a listing that consists of statistics, source code statements and
object code, undefined or external symbols, and a completion code.

If you do not receive a completion code of - 1, check your listing for errors, fix
them in your source data set, and compile the program again. For information on
fixing compiler errors, see "Checking Your Compiler Listing and Correcting Errors."

If you receive a completion code of - 1:

1 Press the enter key to return to the $EDXASM Parameter Input Menu.

2 Press the PF3 key to return to the Program Preparation Option Menu.

o

o

o

o

Getting Started

Creating a Load Module
The last step is creating a load module. A load module is a program that is ready to
run or "execute" on the system. In this example, we use the linkage editor,
$EDXLINK, to create the load module. $EDXLINK LINKAGE EDITOR is
option 7 on the Program Preparation Option Menu.

1 Type 7 on the SELECT OPTION line.

2 Press the enter key.

$SMM02 SESSION MANAGER PROGRAM PREPARATION OPTION MENU---------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

SELECT OPTION ==> 7

1 - $EDXASM COMPILER
2 -$EDXASM/$EDXLINK
3 -$SlASM ASSEMBLER
4 - $COBOL COM PI LER
5- $FORT FORTRAN COMPILER
6. - $PLL COMPIL~R/$EDXLINK
7.- $EDXLINK LINKAGE EOPOR
8-:$XPSLINK LINKAGE EDITOR FOR SUPERVISORS
9 ... $UPDATE

10 - $UPOATEH(HOST)
11 - $PREFIND
12 - $PASCAL COMPILER/$EDXLINK
13 -$EOXASM/$XPSLINKFOR SUPERVISORS
14 "-$MSGUn·. MESSAGE .. SOURCE PROCESSING UTILITY

Chapter 1. Getting Started 1-17

Getting Started

1-18 SC34-0943

The $EDXLINK Parameter Input Menu appears on your screen. Enter an asterisk
(*) n;xtl~okEXECd1!TION PARM to indicate that you want the system to prompt 0",[",
you lor III age e ltor statements.

1 Type an asterisk on the EXECUTION PARM line.

2 Press the enter key.

$EDXLINK displays the following screen:

Next, enter an INCLUDE statement to indicate which object module to use.
(Remember, the object module is ADDOBJ.) Then, enter a LINK statement to
indicate the name of the output data set. When you enter the name of this data set
(in this case, ADDPGM), the system allocates the data set.

o

o

Getting Started

1 Type INCLUDE ADDOBJ,EDX002 next to STMT (?).

2 Press the enter key.

1 Type LINK ADDPGM,EDX002 next to STMT (?).

2 Press the enter key.

A completion code of -1 means that the link edit completed successfully. If you do
not receive a completion code of - 1, check your listing for errors, fix them, and link
edit the program again. After the system indicates that the link edit is successful,
return to the Primary Option Menu to execute your program by doing the following.

1 Type EN next to STMT (?).

2 Press the enter key.

3 Press the PF3 key to return to the Program Preparation Option Menu.

4 Press the PF3 key again.

Chapter 1. Getting Started 1-19

Getting Started

Running Your Program

1-20 SC34-0943

To run (or execute) your program, select option 6 (EXEC PROGRAM/UTILITY).

1 Type 6 on the SELECT OPTION line.

2 Press the enter key.

The Execute Program/Utility menu appears. You must enter the program name
(ADDPGM) and volume (EDX002). Then, type asterisks (*) next to the data sets
not used.

o

o

c

o

o

1 Type ADDPGM,EDX002 next to PROGRAM/UTILITY
(NAME,VOLUME).

Getting Started

2 Type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3
fields.

3 Press the enter key.

$SMM06 SESSION MANAGER EXECUTE PROGRAM/UTILITY---.. ------------- .. ----- ... ~- .. -
ENTER/SELECT· PARAMETERS: PRESS PF3 TO RETURN

PROGRAM/uTILlTY.(NAME .VOLUME) ==> ADDPGM, EDX992
DYNAMIC STORAGE (OPTIONAL) ==>

PARAMETERS =l==>

DATA SEll (NAME,VOLUME I *=051 NOTUSED)=:::::>*
DATASET 2 (NAME,VOLUME / * = 052 NOT USED) ===> *
DATASET 3 (NAME, VOLUME I * = DS3NOT USED) ===> *

FOREGROUND ORBACKGROI.)ND ·(f/B) .=~>
(DEFAUL I IS FOREGROUND)

NOTE::···JFA ·.QATASET .(D$~ •• OS2.· .•. 0RDS3) ... IS·~OTUSEDt
AN\ASTERISK (".). MUSTBEENTEREDJN THE DATASEt fIELD.

The following text appears on the terminal:

Chapter 1. Getting Started 1-21

Getting Started

1-22 SC34-0943

The program displays ENTER NUMBER on the screen and waits for you to enter a
~umber. (Remember that "ENTER NUMBER" was coded on the GETVALUE 0

1

,

Instruction.)

1 Type 5 next to ENTER NUMBER.

2 Press the enter key.

The program displays the results of the processing. The program:

1 Stored the number you entered (5) in an area called COUNT.

2 Added the value of COUNT to the value of SUM, which was initialized to O.

3 Added the two values 10 times.

4 Displayed the result (RESULT = 50) on the terminal screen.

The PRINTEXT instruction displayed RESULT =. The PRINTNUM instruction
displayed the value of SUM (50).

()

o

Writing a Source Program

C Chapter 2. Writing a Source Program

o

This chapter tells how to use the EDL instructions to handle the basic functions of
the language: reading and writing data, data conversions, and data manipulation
(such as moving, adding, and subtracting).

This chapter discusses the following topics:

• Beginning the program

• Reserving storage

• Reading data into a data area

• Moving data

• Converting data

• Manipulating data

• Writing data from a data area

• Controlling program logic

• Ending the program.

All the instructions are discussed in detail in the Language Reference. This chapter
discusses only a subset of the the instructions and lists them by function.

Beginning the Program
The first statement in every EDL program must be a PROGRAM statement. The
PROGRAM statement defines several things about the program to the Event Driven
Executive, only two of which are discussed in this section.

Defining the Primary Task
Two important functions of the PROGRAM statement are to define the "primary
task" and provide the label of the first "executable instruction."

The primary task is the first task the system starts when you load the program.

An executable instruction causes some action to take place. For example,
instructions that read, write, move, or perform arithmetic operations are executable
instructions.

The following example shows a program with task name T ASKl. Its first executable
instruction is at location STARTl.

TASK! PROGRAM START!

Chapter 2. Writing a Source Program 2-1

Writing a Source Program

Identifying Data Sets to be Used in Your Program
Another important function of the PROGRAM statement is to identify the data sets
that a program Will use.

The DS = keyword operand of the PROGRAM statement allows you to identify up
to nine data sets that the program can use. A keyword operand usually contains an
equal (=) sign. The "keyword" to the left of the equal sign identifies what
information you are supplying. The keyword operand must appear, of course,
exactly as the system expects it. For example, if you code the DS = operand as
SD =, the system would not recognize it. You can code keyword operands in any
order.

When you specify data set names in the PROGRAM statement, the system opens
the data sets when you load the program. When the program executes, all data sets
must already exist. One way to allocate data sets is with the$DISKUTl utility. If a
program uses one data set and the data set resides on the IPL volume, the
PROGRAM statement might look like this:

UPDATE PROGRAM STARTl,DS=TRANS

This program uses data set TRANS on the IPL volume.

If a program uses more than one data set and the data sets all reside on the IPL
volume, the DS = operand would contain one set of parentheses as follows:

UPDATE PROGRAM STARTl,DS=(TRANS,MASTIN,MASTOUT)

The program uses data sets TRANS, MASTIN, and MASTOUT on the IPL
volume.

If the data resides on a volume other than the IPL volume, two sets of parentheses
are required. For example:

TASKl PROGRAM STARTl,DS=(DATAl,MYVOL),MASTER)

The program uses data set DATAl on volume MYVOL and data set MASTER on
the IPL volume.

Reserving Storage

2-2 SC34-0943

This section shows how to reserve storage for arithmetic values or character strings.

EDL allows you to define arithmetic values in two ways: as "integer" data or as
"floating-point" data. Integer data consists of positive and negative numbers with
no decimal points. Floating-point data consists of positive and negative numbers
that can have decimal points.

For example, you can define the number 7 as either a floating-point number or an
integer. To define the number 7.5, however, you must define it as a floating-point
number.

o

o

c

Cc'\

I

o

Writing a Source Program

Reserving Storage for Integers
To reserve storage for an integer, you can use either the DATA or DC statement.
The following DATA statement, for example, defines a storage area for a 2-byte
signed integer.

SUM DATA F'O'

SUM is the name or label of the storage area. This type of storage area is often
called a variable. The F defines a fullword (two bytes) and 10 1 assigns an initial
value of zero to the area.

To set up more than one I-word area in one statement, you can use the duplication
factor. The statement:

FITABLE DATA 15F '0'

reserves fifteen I-word areas and assigns a zero to each.

You can use the areas called SUM and FITABLE in data manipulation instructions
such as ADD and SUBTRACT.

Assigning an Initial Value
To assign an initial value, enclose the value in apostrophes as follows:

FIM DATA F' 5280 '

The storage area called FIM will contain the decimal value 5280 throughout the
execution of your program, unless you change it.

You can also assign a hexadecimal value to a storage area. For example:

XFIM DATA X' 14AO '

XFIM contains the hexadecimal value '14AO I (decimal 5280).

Defining a Halfword or Doubleword Data Area
You can also define a halfword (I-byte) or doubleword (4-byte) data area. The
following statements reserve storage for halfword integers:

MSIX
SHVAR

DATA H'-6 1

DATA H'O'

MSIX contains the value - 6.

To reserve a doubleword of storage, define a data area as follows:

QTRMIL DATA 01 250000 1

LNGVAR DATA 0 1 0 1

QTRMIL occupies a doubleword of storage and contains an initial value 250 000
(decimal).

Chapter 2. Writing a Source Program 2-3

Writing a Source Program

Defining Floating-Point Values
To define floating-point values, you can use either the DATA or DC statement. 0---,
How large the npmber is determines how you define the storage. If the number falls
between 10-76 and 1076 and contains fewer than seven significant digits, you can
define a single-precision floating-point data area. Each single-precision
floating-point number requires 4 bytes of storage.

The following DATA statement defines a storage area for a single-precision
floating-point number.

NETPAY DATA E'000.00'

NETPA Y is the name of the storage area. The E defines a floating-point data area
and assigns it an initial value of zero.

To set up more than one floating-point data area, you can use the duplication factor.
The statement

NPTAB DATA 12E'000.00'

reserves storage for twelve 4-byte floating-point data areas and assigns an initial
value of zero to each.

Assigning an Initial Value
To assign an initial value to a floating point data area, enclose the value in
apostrophes as follows:

PI DATA E'3.14159'

PI contains the decimal value 3.14159.

You can also assign an initial value to a floating-point data area in exponent (E)
notation as follows:

PI DATA E'.314159E1'
PI2 DATA E'314.159E-2'

Defining an Extended-Precision Data Area
If a floating-point number requires more than 6 and fewer than 15 significant digits,
you must use extended-precision floating point. Each extended-precision
floating-point number requires 8 bytes of storage.

The following DATA statements define storage areas for extended-precision
floating-point numbers:

MSMNT DATA L'0.000'
MYCELLS DATA L'15063842E12'

Defining Character Strings

2-4 SC34-0943

To define character strings, you can use either the DATA or DC statement. The
following DATA statement defines a storage area for a 6-byte character string:

NAME DATA C'TILTON'

NAME is the name or label of the storage area. The length of the storage area is
the number of characters inside the apostrophes. o

o

Writing a Source Program

If you want an area containing blanks, you can use the duplication factor:

BLNKS DATA 10C ' I

BLNKS contains ten blanks.

To set up an area that contains a character string followed by blanks, define the
storage area as follows:

DOLCON DATA CL41$$'

DOLCON contains two dollar signs ($$) followed by two blanks.

Assigning a Value to a Symbol
The EQU statement assigns a value to a symbol. You can use the symbol (the label
on the EQU statement) as an operand in other instructions wherever symbols are
allowed. You must define a label before you use that label as an operand in the
EQU statement.

F or example, you cannot code:

ABLE EQU BAKER

unless you have defined BAKER previously.

The following example assigns the word value X I 0002 I to A.

A EQU 2

If you refer to the equated value by its label, the system assumes you are referring to
a storage location. For example, if you use A in the following instruction:

MOVE B,A

the system moves the word at address 0002 to B.

If, however, you want to use the equated value as the number 2, you must precede
the label with a plus sign (+) as follows:

MOVE B,+A

This instruction moves 2 to B.

The next example assigns the word value of A to B.

B EQU A

The following example shows how you can use the equated symbols in a program.
An explanation of the numbered items follows the example.

I
I ~

C

MOVE C,A
MOVE C,+A
MOVE C,+B
MOVE C,+A,(l,BYTE)
•
•
•
EQU 2
EQU A
DATA F

Chapter 2. Writing a Source Program 2-5

Writing a Source Program

II Move the contents of address 0002 to C.

II Move X I 0002 I to C.

II Move X I 0002 I to C.

lEI Move the leftmost byte of the word value X I 0002 I (in this case, X I 00 I) to C.

II Define A with a word value of X I 0002 I •

II Assign B the value of A (X 10002 I).

Defining an Input/Output Area
To define an area to read into or to write from, you must know where the data is
corning from or where it is going.

If you are reading or writing data from tape, disk, or diskette, you can define an
input/output area with a BUFFER statement, a DATA statement, or a DC
statement.

If you are reading or writing data from a terminal, you can define an input/output
area with a TEXT statement, a DATA statement, or a DC statement.

If you use either a DATA statement or a DC statement, however, you must precede
the storage area with a word (2 bytes) containing the length and count. (Refer to
the Language Reference for information on how the system constructs a storage area

o

defined by a TEXT statement.) i~)
,"-,

Defining a BUFFER Statement
A BUFFER statement defines a data storage area. When you read or write records
to disk, diskette, or tape, you can use the BUFFER statement to define the buffer.
To define a 256-byte buffer, use the BUFFER statement as follows:

RDAREA BUFFER 256,BYTES

RDAREA is the name of the buffer.

A buffer contains an index, the length of the storage area, and the data storage area.
The index and the length occupy one word (2 bytes) each. Therefore, a 256-byte
buffer actually occupies 260 bytes of storage. For more information on the structure
of a buffer, refer to the Language Reference.

Defining a TEXT Statement

2-6 SC34-0943

Use the TEXT statement to define a message or storage area. Use the TEXT
statement in conjunction with the PRINTEXT or READTEXT instructions. The
PRINTEXT instruction prints the message or storage area on a terminal. The
READTEXT instruction reads a character string from a terminal into the storage
area defined by the TEXT statement.

When you code a TEXT statement, the system creates an area that contains the
length (the size of the storage area), the count (the actual number of characters in
the storage area), and the message or storage area. The length and count occupy 0
one byte each. Therefore, a 24-character message, for example, requires 26 bytes of . .
storage. The maximum length of a TEXT statement is 254 bytes.

c

C~", ,'I

o

Writing a Source Program

The following example creates the message ENTER YOUR NAME:

LABEL2 PRINTEXT MSGl
•
•
•

MSGl TEXT I ENTER YOUR NAME: I

The PRINTEXT instruction that references MSGl, the name of the TEXT
statement, causes the message to appear on the terminal.

To define a storage area for data that you will read from a terminal, code the
following:

ADDRESS TEXT LENGTH=30

A READTEXT instruction can read data from a terminal into the storage area by
referencing ADDRESS, the name of the TEXT statement. If the response entered
from the terminal is greater than 30 characters, the system truncates the response
after reading 30 bytes.

Reading Data into a Data Area
When you read data into a data area, the instruction you use depends on the kind of
data and where it is coming from.

If the data resides on disk, diskette, or tape, use the READ instruction. If the data
is coming from a terminal, use either the READTEXT or GETVALUE instruction.
If the data is alphanumeric, use READTEXT. If the data consists of one
floating-point number or one or more integers, use GETV ALUE.

Reading Data from Disk or Diskette
You can read disk or diskette data sets either sequentially or directly. You always
read a multiple of 256 bytes. An "EDX record" contains 256 bytes.

The READ instruction reads a record from one of the data sets you specify in the
PROGRAM statement. The following READ instruction reads a record
sequentially from the third data set defined on the PROGRAM statement.

READ DS3,DISKBUFF,1,0,ERROR=RDERROR,END=NOTFOUND
•
•
•

DISKBUFF BUFFER 256,BYTES

The system reads one record (indicated by 1 in the third operand) sequentially
(indicated by 0 in the fourth operand) into DISKBUFF. If no more records exist on
the data set, the program branches to NOTFOUND. If an I/O error occurs, the
program branches to RDERROR. Otherwise, the system places the data in the
256-byte buffer DISKBUFF.

Chapter 2. Writing a Source Program 2-7

Writing a Source Program

To read a data set directly, code the fourth operand with an integer greater than
zero as follows:

READ DS2,BUFR,1,52,ERROR=RDERR,END=ALLOVER
•
•
•

BUFR BUFFER 512,BYTES

The system reads the 52nd record (indicated by 52 in the fourth operand) into
BUFR. If the data set does not contain 52 records, the program branches to
ALLOVER. If an I/O error occurs, the program branches to RDERR. Otherwise,
the system places one record (indicated by 1 in the third operand) into the 512-byte
buffer BUFR.

Reading Data from Tape
You can read tape data sets sequentially only. A tape READ retrieves a record
from 18 to 32767 bytes long.

The following READ instruction reads a record from a tape.

READ DSl,BUFF,1,327,END=END1,ERROR=ERR,WAIT=YES
•
•
•

BUFF BUFFER 327,BYTES

The system reads one record (indicated by 1 in the third operand). The size of the
record is 327 bytes (indicated by 327 in the fourth operand). If no more records
exist on the data set, control transfers to END 1. If an error occurs, control transfers
to ERR. The system waits for the operation to complete before continuing
(WAIT = YES). The buffer BUFF is 327 bytes long.

The following READ instruction reads 2 records into buffer BUFF2.

READ DS1,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES
•
•
•

BUFF2 BUFFER 654,BYTES

The system reads two records (indicated by 2 in the third operand). The size of each
record is 327 bytes (indicated by 327 in the fourth operand). If no more records
exists on the data set, control transfers to END 1. If an error occurs, control
transfers to ERR. The system waits for the operation to complete before continuing
(WAIT = YES). The buffer BUFF2 is 654 bytes long.

Reading from a Terminal

2-8 SC34-0943

To read data that an operator enters on a terminal, you can use either the
READTEXT or GETV ALUE instruction. The READTEXT instruction allows you
to read alphanumeric data (alphabetic characters, numbers, and special characters).
With the GETV ALUE instruction, you can read numbers (both integer and
floating-point) only.

o

o

c

o

Writing a Source Program

Reading Alphanumeric Data
To read an alphanumeric data item into a storage area, use the READTEXT
instruction as follows:

READTEXT COUNTY, 1 ENTER YOUR COUNTY: ',SKIP=l,MODE=LINE
•
•
•

COUNTY TEXT LENGTH=20

The instruction displays the prompt ENTER YOUR COUNTY: and the system
waits for a response. When the operator enters a name and presses the enter key,
the system stores the text string in an area called COUNTY.

The operand SKIP = 1 causes the system to skip one line before displaying the
prompt. The operand MODE = LINE allows blanks in the response.

For more information on reading alphanumeric data from terminals, see
Chapter 8, "Reading Data from and Writing to Screens."

Reading Numeric Data
The GETV ALUE instruction allows you to read either a single floating-point value
or more than one integer from a terminal. The following instruction reads a
floating-point number:

GETVALUE BASAL, 1 ENTER YOUR BASE SALARY: 1
TYPE=F,FORMAT=(6,2,F)

•
•
•

BASAL DATA E'0.00 1

C

The instruction prompts the operator? waits for a response, reads the response, and
stores the number in BASAL. You must have defined BASAL as a floating-point
variable. The operand TYPE = F means that the number will be a single-precision
floating-point number.

The operand FORMAT = (6,2,F) says that the number will occupy six positions on
the screen (including the decimal point), that the number will contain two digits to
the right of the decimal point, and that the number will be an "F -type" number such
as 325.78.

To read more than one integer, code a third operand on the instruction as follows:

GETVALUE HEIGHTS, 1 ENTER FIVE HEIGHTS (IN INCHES): 1,5

The instruction assumes that you have defined HEIGHTS as follows:

HEIGHTS DATA 5F '01

Chapter 2. Writing a Source Program 2-9

Writing a Source Program

Moving Data

2-10 SC34-0943

You can move data from one place in storage to another with the MOVE
instruction. Unless you specify otherwise, the system moves one word (two bytes).
F or example, the instruction

MOVE OLDDATA,NEWDATA
•
•
•

OLDDATA DATA FI 01

NEWDATA DATA FI 01

moves the word at NEWDATA to OLDDATA. Note that whatever OLDDATA
contained before the instruction was executed has been overlaid by the data in
NEWDATA.

To move more than one word, you must code a third operand. For example, the
following instruction moves 12 words from NEWNAME to OLDNAME:

MOVE OLDNAME,NEWNAME,12
•
•
•

OLDNAME DATA FI 01

NEWNAME DATA FI 01

To move bytes, code the third operand as follows:

MOVE OLDADDR,NEWADDR,(15,BYTE)
•
•
•

OLDADDR TEXT LENGTH=15
NEWADDR TEXT LENGTH=15

This instruction moves the 15 bytes at NEWADDR to OLDADDR. To move
doublewords, code the third operand as follows:

MOVE OLDDESC,NEWDESC,(10,DWORD)
•
•
•

OLDDESC DATA 10D I 01

NEWDESC DATA 10D I 01

This instruction moves the 10 doublewords at NEWDESC to OLDDESC. To move
floating-point values, you must specify FLOAT (for single-precision) or DFLOAT
(for extended-precision).

TEMPS
MSMNTS

MOVE TEMPS,MSMNTS,(4,FLOAT)
•
•
•

DATA 4E 1 0.0 1

DATA 4E 1 0.0 1

o

The instruction moves the four single-precision floating-point values at MSMNTS to 0
TEMPS.-··

c

c;

0_-,,,
- -,

Writing a Source Program

Converting Data
EDL allows you to do two types of conversion, from binary to an EBCDIC
character string and from an EBCDIC character string to binary. The CONVTB
instruction converts from binary to an EBCDIC character string, while the
CONVTD instruction converts from an EBCDIC character string to binary.

Converting to an EBCDIC Character String
If a number has been stored as a binary number, you must convert it to an EBCDIC
character string if, for example, you want to display the number with the
PRINTEXT instruction.

A binary number is any variable you have defined as single-precision integer,
double-precision integer, single-precision floating point, extended-precision floating
point, or hexadecimal.

You must convert any of the following data items before you can display them:

NUMI DATA FI 01

NUM2 DATA 0101

PI DATA E10.0 1

FINMEAS DATA L1 0.0 1

XTRAS DATA XI 01

To convert a single-precision integer to an EBCDIC character string, code the
CONVTB instruction as follows:

CONVTB TEXTl,NUMl,PREC=S,FORMAT=(5,0,I)
•
•
•

TEXTI TEXT
NUMI DATA

LENGTH=5
F I 0 1

The instruction converts the single-precision integer (indicated by PREC = S) in
NUMI and stores the result in TEXTl. The FORMAT operand says that you want
the converted output to be 5 digits long, contain 0 digits to the right of the decimal
point, and be an integer (I).

To convert a double-precision integer, code the CONVTB instruction as follows:

CONVTB TEXT2,NUM2,PREC=D,FORMAT=(8,0,I)
•
•
•

TEXT2 TEXT
NUM2 DATA

LENGTH=8
0 1 0 1

The instruction converts the double-precision integer (indicated by PREC = D) in
NUM2 and stores the result of the conversion in TEXT2. The FORMAT operand
says that you want the converted output to be 8 digits long, contain 0 digits to the
right of the decimal point, and be an integer (I).

Chapter 2. Writing a Source Program 2-11

Writing a Source Program

To convert a single-precision floating-point variable:

CONVTB TEXT3,PI,PREC=F,FORMAT=(15,4,F)
•
•
•

TEXT3 TEXT LENGTH=16
PI DATA E1 0.0000 1

The instruction converts the single-precision floating-point variable (indicated by
PREC = F) in PI and stores the result of the conversion in TEXT3. The FORMAT
operand says that you want the converted output to be 15 digits long, contain 4
digits to the right of the decimal point, and be a floating-point value (F).

To convert an extended-precision floating-point variable:

TEXT4
OP

CONVTB TEXT4,OP,PREC=L,FORMAT=(17,3,E)
•
•
•

TEXT
DATA

LENGTH=24
L

The instruction converts the extended-precision floating-point variable (indicated by
PREC = L) in OP and puts the result of the conversion in TEXT4. The FORMAT
operand says that you want the converted output to be 17 digits long, contain 3
digits to the right of the decimal point, and be expressed in exponent notation (E).

Converting to Binary

2-12 SC34-0943

If you read a number with the READTEXT instruction, you must convert it to
binary before you can add, subtract, multiply, or divide.

The CONVTD instruction converts a character string to a binary number. You can
convert a character string that contains a number to a single-precision integer, a
double-precision integer, single-precision floating point, or extended-precision
floating point.

To convert a single-precision integer to binary:

CONVTD BINUMl,NUMl,PREC=S,FORMAT=(5,0,I)
•
•
•

BINUMI DATA
NUMI TEXT

F I 0 1

LENGTH=5

The instruction converts the EBCDIC character string in NUMI and stores the
result in BINUMI, a single-precision integer variable (indicated by PREC = S).

The FORMAT operand says that the data to be converted is 5 digits long, contains
o digits to the right of the decimal point, and is an integer (I).

0

o

o

o

Writing a Source Program

To convert a a number that is greater than 32767, you must convert it to a
double-precision integer as follows:

CONVTD BINUM2,NUM2,PREC=D,FORMAT=(9,0,I)
•
•
•

BINUM2 DATA
NUM2 TEXT

0 1 0 1

LENGTH=9

The instruction converts the EBCDIC character string in NUM2 and puts the result
in BINUM2, a double-precision integer variable (indicated by PREC = D).

The FORMAT operand says that the data to be converted is 9 digits long, contains
o digits to the right of the decimal point, and is an integer(I).

To convert to a single-precision floating point number, code the instruction as
follows:

CONVTD AVTEMP,TEMP,PREC=F,FORMAT=(B,2,F)
•
•
•

AVTEMP DATA
TEMP TEXT

E1 0.0 1

LENGTH=9

The instruction converts the EBCDIC character string in TEMP and stores the result
in AVTEMP, a single-precision floating-point variable (indicated by PREC = F).

The FORMAT operand says that t1;t.e data to be converted is 8 digits long, contains
2 digits to the right of the decimal point, and is a floating-point number (F).

To convert to an extended-precision floating point number, code the instruction as
follows:

CONVTD AVCOST,COST,PREC=L,FORMAT=(15,3,E)
•
•
•

AVCOST DATA
COST TEXT

L1 0.00 1

LENGTH=20

The instruction converts the EBCDIC character string in COST and stores the result
in AVCOST, an extended-precision floating-point variable (indicated by PREC = L).

The FORMAT operand says that the data to be converted is 15 digits long, contains
3 digits to the right of the decimal point, and is expressed in exponent notation (E).

Chapter 2. Writing a Source Program 2-13

Writing a Source Program

Converting from Floating Point to Integer
If you want to manipulate data, both operands in the operation must be either
floating point or integer.

To convert a single-precision floating-point number to integer, code the FPCONV
instruction as follows:

FPCONV INTNUM,FPNUM,PREC=SF
•
•
•

INTNUM DATA
FPNUM DATA

FIE)I
EIE).E)I

The instruction converts the single-precision floating-point number in FPNUM and
stores the result in INTNUM, a single-precision integer variable. The PREC
operand indicates that INTNUM is a single-precision integer (S) and that FPNUM
is a single-precision floating-point number (F).

To convert an extended-precision floating-point number to double-precision integer,
code the FPCONV instruction as follows:

FPCONV INTDBL,FPEXT,PREC=DL
•
•
•

INTDBL DATA
FPEXT DATA

DIE)I
LIE).E)I

The instruction converts the extended-precision floating-point number in FPEXT
and puts the result in INTDBL, a double-precision integer variable. The PREC
operand indicates that INTDBL is a double-precision integer (D) and that FPEXT is
an extended-precision floating-point number (L).

Note: When you convert from floating point to integer, remember that the system
truncates all data to the right of the decimal point.

Converting from Integer to Floating Point

2-14 SC34-0943

To convert a single-precision integer to floating-point, code the FPCONV instruction
as follows:

FPCONV FPNUM,INTNUM,PREC=FS
•
•
•

INTNUM DATA
FPNUM DATA

FIE)I
EIE).E)I

The instruction converts the single-precision integer INTNUM and stores the result
in FPNUM, a single-precision floating-point variable. The first letter in the PREC
operand (F) indicates that FPNUM is a single-precision floating-point variable. The
second letter (S) indicates that INTNUM is a single-precision integer.

o

o

C

en,
,I

o

To convert a double-precision integer to floating-point:

FPCONV
•
•
•

INTDBL DATA
FPEXT DATA

FPEXT,INTDBL,PREC=LD

0 1 0 1

LIO.O I

Writing a Source Program

The instruction converts the double-precision integer INTDBL and stores the result
in FPEXT, an extended-precision floating-point variable. The first letter in the
PREC operand (L) indicates that FPEXT is an extended-precision floating-point
variable. The second letter (D) indicates that INTDBL is a double-precision integer.

Checking for Conversion Errors
Each time you execute an instruction that converts data, the system expects the data
to be numeric. If the conversion is successful, the value -1 appears in the first word
of the task control block (TCB) of the program or task issuing the instruction. (The
label of the TCB is the label of your program or task.) If you try to convert a
character other than a number, a conversion error occurs and the value -1 is not
stored as the return code.

If, for example, a program prompts an operator for a number and he or she enters a
letter, the system places a return code in the task code word indicating a conversion
error. Your program can check the return code for a conversion error and print an
error message. Notice that you must test the return code before executing any other
instruction because the system may overlay the task code word with the return code
of the next instruction.

The following program shows how to check for a conversion error:

BEGIN PROGRAM START
•
•
•

CONVTD
ERRTEST MOVE

IF
ENDIF
•
•
•

BINUMl,NUMl,PREC=S,FORMAT=(5,0,I)
TASKRC,BEGIN
(TASKRC,NE,-l),GOTO,CHECK

CHECK PRINTEXT ICONVERSION ERRORI,SKIP=l
PRINTNUM TASKRC
GOTO END
•
•
•

END PROGSTOP
TASKRC DATA
BINUMI DATA
NUMI TEXT

ENDPROG
END

FIO I
FIO I
LENGTH=5

The instructions at label ERRTEST compare the return code of the CONVTD
instruction with the successful return code (-1). If NUMI contains a nonnumeric
character, the system branches to CHECK.

Chapter 2. Writing a Source Program 2-15

Writing a Source Program

Manipulating Data
The data manipulation instructions perform arithmetic operations on single- or
double-precision integers and single- or extended-precision floating-point numbers.
You can also manipUlate two bit-strings with logical instructions such as
inclusive-OR and exclusive-OR.

Manipulating Integer Data

Adding Integers

2-16 SC34-0943

The instructions that manipulate integers add, subtract, multiply, or divide two
integers. If two numbers are floating-point numbers, you must use floating-point
instructions.

If one number is a floating-point number and the other is an integer, use the
FPCONV instruction to convert one of the numbers to match the form of the other.

The instructions have the following general form:

operation operandl,operand2

The flow of data is from operand2 to operandi.

The ADD instruction adds the data in operand2 to the data in operandi and stores
the results in operandi.

The SUBTRACT instruction subtracts the data in operandi from the data in
operandi and stores the results in operandi.

The DIVIDE and MULTIPLY instructions multiply or divide the data in operandi
by the data in operand2 and store the results in operandi.

The ADD instruction adds two integers. If A and B are integers, you can add A to
B with the following instruction:

ADD B,A

The result of the addition replaces B. The value in A remains unchanged.

To add two integers without altering the first operand, use the RESULT operand as
follows:

ADD OLDSUM,SCORE,RESULT=NEWSUM

The instruction adds SCORE to OLD SUM and stores the result in NEWSUM. The
values in SCORE and OLD SUM remain unchanged.

Adding Double-Precision Integers:

Unless you specify otherwise, EDL assumes that the integers are single-precision
(I-word) integers. To add two double-precision (2-word) integers, specify the PREC
operand as follows:

ADD TOTPOP,LOCPOP,PREC=DD

The operand PREC=DD says that both TOTPOP and LOCPOP are
double-precision integers.

o

o

c)

o

Writing a Source Program

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

ADD TOWN2,TOWNl,RESULT=TOTPOP,PREC=D

The operand PREC = D says that TOWN2 and TOT POP are double-precision
integers. The absence of the second letter (D or S) on the PREC operand means
that TOWNI is a single-precision integer.

Adding Consecutive Integers:

To add more than one set of integers, you can specify the number of integers you
want to add. For example:

ADD NEWTOTS,OLDTOTS,lO

The instruction adds the I-word integer at OLDTOTS to NEWTOTS. Then the
instruction adds the word in OLDTOTS + 2 to the word at NEWTOTS + 2. The
instruction continues to add until it adds the word at OLDTOTS + 18 to the word at
NEWTOTS + 18. This instruction, then, adds the 10 consecutive words at
OLDTOTS to the 10 consecutive words at NEWTOTS. You can specify up to.
32767 consecutive additions.

Subtracting Integers
The SUBTRACT instruction subtracts one integer from another. If QUERY and
ANSWER are integers, you can subtract ANSWER from QUERY with the
following instruction:

SUBTRACT QUERY,ANSWER

The result of the subtraction replaces QUERY. The value in ANSWER remains
unchanged.

To subtract two integers without altering the first operand, use the RESULT
operand as follows:

SUBTRACT SALES,COSTS,RESULT=PROFITS

The instruction subtracts COSTS from SALES and stores the result in PROFITS.
The values in SALES and COSTS remain unchanged.

Subtracting Double-Precision Integers:

Unless you specify otherwise, EDL assumes that the integers are single-precision
(I-word) integers. To subtract two double-precision (2-word) integers, specify the
PREC operand as follows:

SUBTRACT GROSS,DEDUCT,RESULT=NET,PREC=DD

The instruction subtracts DEDUCT from GROSS and stores the result in NET.
The operand PREC = DD says that GROSS, DEDUCT, and NET are all
double-precision integers.

Chapter 2. Writing a Source Program 2-17

Writing a Source Program

Multiplying Integers

2-18 SC34-0943

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

SUBTRACT ATTEND,MALES,RESULT=FEMALES,PREC=D

The instruction subtracts MALES from ATTEND and stores the result in
FEMALES. The operand PREC=D says that ATTEND and FEMALES are
double-precision integers. The absence of the second letter (D or S) on the PREC
operand means that MALES is a single-precision integer.

Subtracting Consecutive Integers:

To subtract more than one set of integers, you can specify the number of integers
you want to subtract. For example:

SUBTRACT NEWTOTS,OLDTOTS,6

The instruction subtracts the I-word integer at OLDTOTS from NEWTOTS. Then
the instruction subtracts the word in OLDTOTS + 2 from the word at
NEWTOTS + 2. The instruction continues to subtract until it subtracts the word at
OLDTOTS + 10 from the word at NEWTOTS + 10. This instruction, then, subtracts
the 6 consecutive words at OLDTOTS from the 6 consecutive words at NEWTOTS.
You can specify up to 32767 consecutive subtractions.

The MUL TIPL Y instruction multiplies one integer by another.

If M and N are single-precision integers, you can multiply M by N as follows:

MULTIPLY M,N

The result of the multiplication replaces M.

You can also multiply an integer by a constant. The following instruction multiplies
FEET by the constant 12:

MULTIPLY FEET,12

The result of the multiplication replaces FEET.

To multiply two integers without altering the first operand, use the RESULT
operand as follows:

MULTIPLY BOXES,WEIGHT,RESULT=TOTWGT

The instruction multiplies BOXES by WEIGHT and stores the result in TOTWGT.
The values in BOXES and WEIGHT do not change.

Multiplying Double-Precision Integers:

Unless you specify otherwise, EDL assumes that integers are single-precision
(I-word) integers. To multiply two double-precision (2-word) integers, specify the
PREC operand as follows:

MULTIPLY LENGTH,WIDTH,RESULT=TOTAREA,PREC=DD

o

o

c

Dividing Integers

o

Writing a Source Program

The instruction multiplies LENGTH by WIDTH and stores the result in
TOT AREA. The operand PREC = DD says that LENGTH, WIDTH, and
TOT AREA are all double-precision integers.

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

MULTIPLY ATTEND,GAMES,RESULT=TOTATT,PREC=D

The instruction multiplies ATTEND by GAMES and stores the result in TOTATT.
The operand PREC = D says that ATTEND and TOT ATT are double-precision
integers. The absence of the second letter (D or S) on the PREe operand means
that GAMES is a single-precision integer.

Multiplying Consecutive Integers:

To multiply more than one set of integers, you can specify the number of integers
you want to multiply. For example:

MULTIPLY SALARIES,RATES,400

The instruction multiplies the I-word integer at RATES by SALARIES and stores
the result in SALARIES. Then the instruction multiplies the word at RATES + 2 by
the word at SALARIES + 2. The instruction continues to multiply until it multiplies
the word at RATES + 798 by the word at SALARIES + 798. This instruction, then,
multiplies the 400 consecutive words at RATES by the 400 consecutive words at
SALARIES. You can specify up to 32767 consecutive multiplications.

The DIVIDE instruction divides one integer by another. The system stores the
remainder in the first word of the task control block (TCB).

If P and Q are single-precision integers, you can divide P by Q as follows:

DIVIDE P,Q

The result of the division replaces P.

You can also divide an integer by a constant. The following instruction divides
FEET by the constant 3:

DIVIDE FEET,3

The result of the division replaces FEET.

To divide two integers without altering the first operand, use the RESULT operand
as follows:

DIVIDE TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and stores the result in BOXWGT.
The values in TOTWGT and BOXES do not change.

Chapter 2. Writing a Source Program 2-19

Writing a Source Program

2-20 SC34-0943

Dividing Double-Precision Integers:

Unless you specify otherwise, EDL assumes that integers are single-precision
(I-word) integers. To divide double-precision (2-word) integers, specify the PREC
operand as follows:

DIVIDE TOTSAL,NOEMPS,RESULT=AVESAL,PREC=DD

The instruction divides TOT SAL by NOEMPS and stores the result in A VESAL.
The operand PREC = DD says that TOTSAL, NOEMPS, and A VESAL are all
double-precision integers.

If only one of the operands is a double-precision integer, it must be the first
operand. In addition, if you specify the RESULT operand, it must be a
double-precision variable. For example:

DIVIDE TOTATT,GAMES,RESULT=AVEATT,PREC=D

The instruction divides TOTATT by GAMES and stores the result in AVEATT.
The operand PREC = D says that TOT ATT and A VEATT are double-precision
integers. The absence of the second letter (D or S) on the PREC operand means
that GAMES is a single-precision integer.

Dividing Consecutive Integers:

To divide more than one set of integers, you can specify the number of integers you
want to divide. For example:

DIVIDE SALARIES,RATES,108

The instruction divides the I-word integer at SALARIES by RATES. Then the
instruction divides the word in SALARIES + 2 by the word at RATES + 2. The
instruction continues to divide until it divides the word at SALARIES + 198 by the
word at RATES + 198. This instruction, then, divides the 100 consecutive words at
SALARIES by the 100 consecutive words at RATES. You can specify up to 32767
consecutive divisions.

Accessing the Remainder:

One way to access the remainder is to use the TCBGET instruction as in the
following example:

DIVIDE SALARIES,RATES
TCBGET REMAIN,$TCBCO
•
•
•

REMAIN DATA F'O'

The instruction puts the first word of the task control block, containing the
remainder, into REMAIN.

o

o

o

c)

o

Writing a Source Program

Manipulating Floating-Point Data
EDL allows you to add, subtract, multiply, and divide floating-point numbers.
Floating-point numbers are positive and negative numbers that can have decimal
points.

To use floating-point instructions, you must:

• Have the hardware floating-point feature installed on your system.

• Include floating-point support in the supervisor when it is generated.

• Specify FLOAT=YES on both the PROGRAM and TASK statements
whenever you use floating-point instructions in any task within a program.

• Define the variables you are manipulating as floating-point variables.

Adding Floating-Point Data
The F ADD instruction adds two floating-point numbers. If A and Bare
floating-point numbers, you can add A to B with the following instruction:

FADD B,A

The result of the addition replaces B. The value in A remains unchanged.

To add two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FADD WAGES,OVTIME,RESULT=NETPAY

The instruction adds OVTIME to WAGES and stores the result in NETP A Y. The
values in WAGES and OVTIME remain unchanged.

Adding Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that the floating-point numbers are
single-precision (2-word) floating-point numbers. To add two extended-precision
(4-word) floating-point numbers, specify the PREC operand as follows:

FADD TOTSAL,PRESAL,PREC=LL

The operand PREC=LL says that both TOT SAL and PRE SAL are
extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the
PREC operand must reflect the precision. In the following example:

FADD MSMNT1,MSMNT2,RESULT=MSMTS,PREC=LFL

the operand PREC = LFL says that MSMNTI and MSMTS are extended-precision
floating-point numbers and MSMNT2 is a single-precision floating-point number.

Chapter 2. Writing a Source Program 2-21

Writing a Source Program

Subtracting Floating-Point Numbers
The FSUB instruction subtracts one floating-point number from another. If
OCTEMP and NOVTEMP are floating-point numbers, you can subtract
NOVTEMP from OCTEMP with the following instruction:

FSUB OCTEMP,NOVTEMP

The result of the subtraction replaces OCTEMP. The value in NOVTEMP remains
unchanged.

To subtract two floating-point numbers without altering the first operand, use the
RESUL T operand as follows:

FSUB SAL,DEDUCS,RESULT=NET

The instruction subtracts DEDUCS from SAL and stores the result in NET. The
values in SAL and DEDUCS remain unchanged.

Subtracting Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that the floating-point numbers are
single-precision (2-word) floating-point numbers. To subtract two
extended-precision (4-word) floating-point numbers, specify the PREC operand as
follows:

FSUB TOTSAL,TOTDUCS,RESULT=TOTNP,PREC=LLL

The instruction subtracts TOTDUCS from TOT SAL and stores the result in
TOTNP. The operand PREC=LLL says that TOTSAL, TOTDUCS, and TOTNP
are all extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the
PREC operand should reflect the precision. In the following example:

FSUB GROSS,TAXES,RESULT=NET,PREC=FLF

the instruction subtracts TAXES from GROSS and stores the result in NET. The
operand PREC = FLF says that GROSS and NET are single-precision and that
TAXES is an extended-precision floating-point number.

Multiplying Floating-Point Numbers

2-22 SC34-0943

The FMUL T instruction multiplies one floating-point number by another.

If M and N are single-precision floating-point numbers, you can multiply M by N as
follows:

FMULT M,N

The result of the multiplication replaces M.

You can also multiply a floating-point number by an integer constant. The
following instruction multiplies FEET by the integer constant 12:

FMULT FEET,12

The result of the multiplication replaces FEET.

o

o

o

o

Writing a Source Program

To multiply two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FMULT LENGTH,WIDTH,RESULT=AREA

The instruction multiplies LENGTH by WIDTH and stores the result in AREA.
The values in LENGTH and WIDTH do not change.

Multiplying Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that floating-point numbers are
single-precision (2-word) floating-point numbers. To multiply two
extended-precision (4-word) floating-point numbers, specify the PREC operand as
follows:

FMULT PI,DIAM,RESULT=CIRCUM,PREC=LLL

The instruction multiplies PI by DIAM and stores the result in CIRCUM. The
operand PREC = LLL says that PI, DIAM, and CIRCUM are all extended-precision
floating-point numbers.

If only one of the operands is a double-precision floating-point number, the PREC
operand must reflect the precision. In the following example:

FMULT BASEAREA,HEIGHT,RESULT=VOLUME,PREC=LFL

the instruction multiplies BASEAREA by HEIGHT and stores the result in
VOLUME. The operand PREC=LFL says that BASEAREA and VOLUME are
extended-precision floating-point numbers and that HEIGHT is a single-precision
floating-point number.

Dividing Floating-Point Numbers
The FDIVD instruction divides one floating-point number by another. The system
stores the remainder in the first word of the task control block (TCB).

If P and Q are single-precision floating-point numbers, you can divide P by Q as
follows:

FDIVD P,Q

The result of the division replaces P.

You can also divide a floating-point number by a constant. The following
instruction divides FEET by the integer constant 3:

FDIVD FEET,3

The result of the division replaces FEET.

To divide two floating-point numbers without altering the first operand, use the
RESULT operand as follows:

FDIVD TOTWGT,BOXES,RESULT=BOXWGT

The instruction divides TOTWGT by BOXES and stores the result in BOXWGT.
The values in TOTWGT and BOXES do not change.

Chapter 2. Writing a Source Program 2-23

Writing a Source Program

Dividing Extended-Precision Floating-Point Numbers:

Unless you specify otherwise, EDL assumes that floating-point numbers are
single-precision (2-word) floating-point numbers. To divide two extended-precision
(4-word) floating-point numbers, specify the PREC operand as follows:

FDIVD CUBICFT,BASEAREA,RESULT=HEIGHT,PREC=LLL

The instruction divides CUBICFT by BASEAREA and stores the result in
HEIGHT. The operand PREC = LLL says that CUBICFT, BASEAREA, and
HEIGHT are all extended-precision floating-point numbers.

If only one of the operands is an extended-precision floating-point number, the
PREC operand must reflect the precision. In the following example:

FDIVD TOTSAL,NOEMPS,RESULT=AVESAL,PREC=LFL

the instruction divides TOT SAL by NOEMPS and stores the result in AVESAL.
The operand PREC = LFL says that TOT SAL and A VESAL are extended-precision
floating-point numbers and that NOEMPS is a single-precision floating-point
number.

Manipulating Logical Data
The instructions that manipulate logical data make a bit-by-bit comparison of two
bit strings. The result of the comparison depends on the instruction.

The Exclusive-OR Instruction

2-24 SC34-0943

The exclusive-OR instruction (EOR) compares two bit strings and produces a third
bit string, called the resulting field.

The instruction compares the two bit strings one bit at a time. If the bits are the
same, the instruction sets a bit in the resulting field to O. If the bits are not the
same, the instruction sets a bit in the resulting field to 1.

If the bit strings are identical, the resulting field contains all Os. If one or more bits
differ, the resulting field contains a mixture of Os and Is.

The following example compares PHI to CHI and stores the result in PHI. CHI
remains unchanged.

EOR PHI,CHI

The following table shows PHI and CHI before and after the instruction executes.

Data Item Hex Binary

PHI (before) 049C 00000100 1001 1100

CHI (before) 56AB 0101 0110 1010 1011

PHI (after) 5237 0101 0010 0011 0111

o

o

c

0 '''·
" "'

Writing a Source Program

Data Item Hex Binary

CHI (after) 56AB 0101 0110 1010 1011

To compare a variable to a constant, code operand2 as follows:

EaR MU,X 1 5280 1

The following table shows MU before and after the instruction executes.

Data Item Hex Binary

MU (before) FOFO 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000

MU (after) A270 1010 0010 0111 0000

To compare two bit strings without altering the first operand, use the RESULT
operand as follows:

EaR SIGMA,DELTA,RESULT=THETA

The instruction compares SIGMA and DELTA and stores the resulting field in
THETA. SIGMA and DELTA do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are
one-word (2-byte) variables. To compare a single byte or more than two bytes,
specify the number of consecutive units (bytes, words, or doublewords) that you
want to compare. For example:

EaR MASKl,MASK2,(3,BYTE),RESULT=MASK3
•
•
•

MASKl DATA X1 l2A4E6 1

MASK2 DATA XI 0l0l 1

MASK3 DATA XI 000000 1

The instruction compares three bytes at MASK1 with the first byte at MASK2 and
stores the result in MASK3. After the instruction executes in this example, MASK3
contains X I 13A5E7 I •

The Inclusive-OR Instruction
The inclusive-OR instruction (lOR) compares two bit strings and produces a third
bit string, called the resulting field.

The instruction compares the two bit strings one bit at a time. If either or both bits
are 1, the instruction sets a bit in the resulting field to 1. If neither bit is 1, the
instruction sets a bit in the resulting field to O.

Chapter 2. Writing a Source Program 2-25

Writing a Source Program

2-26 SC34-0943

The following example compares ETA to RHO and stores the result in ETA. RHO
is unchanged.

lOR ETA, RHO

The following table shows ETA and RHO before and after the instruction executes.

Data Item Hex Binary

ETA (before) 049C 0000 0100 1001 1100

RHO (before) 56AB 0101 0110 1010 1011

ETA (after) 56BF 0101 0110 1011 1111

RHO (after) 56AB 0101 0110 1010 1011

To compare a variable to a constant, code operand2 as follows:

IOR XI,X 15280 I

The following table shows XI before and after the instruction executes.

Data Item Hex Binary

XI (before) FOFO 1111 0000 1111 0000

constant 5280 0101 0010 1000 0000

XI (after) F2FO 1111 0010 1111 0000

To compare two bit strings without altering the first operand, use the RESULT
operand as follows:

lOR OPERl,OPER2,RESULT=TESTl

The instruction compares OPER1 and OPER2 and stores the resulting field in
TESTl. OPER1 and OPER2 do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are
one-word (2-byte) variables. To compare a single byte or more than two bytes,
specify the number of consecutive units (bytes, words, or doublewords) that you
want to compare. For example:

lOR MASKl,MASK2,(4,DWORD),RESULT=MASK3

The instruction compares the first doubleword at MASK2 with the four doublewords
at MASK1 and stores the resulting field in MASK3.

o

o

o

c)

o

Writing a Source Program

The AND Instruction
The AND instruction (AND) compares two bit strings and produces a third bit
string, called the resulting field.

The instruction compares the two bit strings one bit at a time. If both bits are 1, the
instruction sets a bit in the resulting field to 1. If either or both bits are 0, the
instruction sets a bit in the resulting field to O.

The following example compares BETA to THETA and stores the result in BETA.

AND BETA, THETA

The following table shows BET A both before and after the instruction executes.

Data Item Hex Binary

BETA (before) 049C 0000 0100 1001 1100

THETA 56AB 0101 0110 1010 1011

BETA (after) 0488 0000 0100 1000 1000

To compare a variable to a constant, code operand2 as follows:

AND LAMBDA, X 1 5280 1

The following table shows LAMBDA both before and after the instruction executes.

Data Item Hex Binary

LAMBDA FOFO 1111 0000 1111 0000
(before)
constant 5280 0101 0010 1000 0000

LAMBDA 5080 0101 0000 1000 0000
(after)

To compare two bit strings without altering the first operand, use the RESULT
operand as follows:

AND OPERl,OPER2,RESULT=TESTl

The instruction compares OPERI and OPER2 and stores the resulting field in
TESTI. OPERI and OPER2 do not change.

Unless you specify otherwise, EDL assumes that the bit strings you specify are
one-word (2-byte) variables. To compare a single byte or more than two bytes,
specify the number of consecutive units (bytes, words, or doublewords) that you
want to compare. For example:

AND OPERl,OPER2,(2,WORD),RESULT=TESTl

The instruction compares the first word at OPER2 with the two words at OPERI
and stores the resulting field in TESTI.

Chapter 2. Writing a Source Program 2-27

Writing a Source Program

Writing Data from a Data Area
When you write data from a data area, the instruction you use depends on the kind
of data and where you write it.

To write data to disk, diskette, or tape, use the WRITE instruction. To write data
to a terminal, use either the PRINTEXT or PRINTNUM instruction. If the data is
alphanumeric, use PRINTEXT. If the data consists of either one floating-point
number or one or more integers, use PRINTNUM.

Writing Data to Disk or Diskette

2-28 SC34-0943

You can write disk or diskette data sets either sequentially or directly. You always
write 256 bytes, an "EDX record."

The following WRITE instruction writes a record sequentially:

WRITE DS3,DISKBUFF,1,O,ERROR=WRITERR
•
•
•

DISKBUFF BUFFER 256,BYTES

The instruction writes a record to the third data set defined on the PROGRAM
statement (DS3). The system writes one record (indicated by 1 in the third operand)
sequentially (indicated by 0 in the fourth operand) into DISKBUFF. If an I/O error
occurs, the program branches to WRITERR. Otherwise, the system writes the
256-byte buffer DISKBUFF to the data set.

The following WRITE instruction writes a record directly:

WRITE DS5,BUFR,1,RECNO,ERROR=BADWRIT
•
•
•

BUFR BUFFER 256,BYTES
RECNO DATA F

The instruction writes a record to the fifth data set defined on the PROGRAM
statement (DS5). The system writes one record (indicated by 1 in the third operand)
directly (indicated by the presence of the label RECNO in the fourth operand) into
BUFR. The contents of RECNO indicate which record the system will write. For
example, if RECNO contains 150, the system writes the 150th record.

If an I/O error occurs, the program branches to BADWRIT. Otherwise, the system
writes BUFR to the data set.

o

o

c

o

Writing a Source Program

Writing Data to Tape
You can write tape data sets sequentially only. A tape WRITE writes a record from
18 to 32767 bytes long.

The following WRITE instruction writes a record to a tape:

WRITE DSl,BUFF,1,328,ERROR=ERR,WAIT=YES
•
•
•

BUFF BUFFER 328,BYTES

The system writes one record (indicated by I in the third operand). The size of the
record is 328 bytes (indicated by 328 in the fourth operand). If an error occurs,
control transfers to ERR. The system waits for the write operation to complete
before continuing execution (W AIT = YES).

The following WRITE instruction writes two records from buffer BUFF2:

WRITE DSl,BUFF2,2,328,ERROR=ERR,WAIT=YES
•
•
•

BUFF2 BUFFER 656,BYTES

The system writes two records (indicated by 2 in the third operand). The size of
each record is 328 bytes (indicated by 328 in the fourth operand). If an error occurs,
control transfers to ERR. The system waits for the operation to complete before
continuing (WAIT = YES).

Writing to a Terminal
Two of the instructions that write data to a terminal are the PRINTEXT and
PRINTNUM instructions. The PRINTEXT instruction allows you to write
alphanumeric data (alphabetic characters, numbers, and special characters). With
the PRINTNUM instruction, you can write numbers (both integer and
floating-point) only.

Writing Alphanumeric Data
To write alphanumeric data to a terminal, use the PRINTEXT instruction as
follows:

PRINTEXT DESC,SKIP=3
•
•
•

DESC TEXT 'NOW IS THE TIME FOR ALL GOOD MEN'

The instruction writes (or displays) the 25 alphanumeric characters in DESC. The
operand SKIP = 3 causes the system to skip three lines before displaying DESC.

For information on writing alphanumeric data to screens, see Chapter 8, "Reading
Data from and Writing to Screens."

Chapter 2. Writing a Source Program 2-29

Writing a Source Program

Writing Numeric Data
The PRINTNUM ibstruction allows you to write either a single floating-point value 0
or more than one integer to a terminal. The following instruction writes a'
floating-point number:

PRINTNUM BASAL,TYPE=F,FORMAT=(6,2,F)

The instruction writes the number contained in the variable BASAL. The operand
TYPE = F means that BASAL is a single-precision floating-point number. The
operand FORMAT = (6,2,F) tells the system to display the number in 6 positions on
the screen (including the decimal point), to display 2 digits to the right of the
decimal point, and to display it as an "F-type" number such as 436.32.

To write more than one integer, code a second operand on the instruction as follows:

PRINTNUM WEIGHTS,7

The instruction displays the 7 one-word values starting at location WEIGHTS. The
instruction assumes that you have defined WEIGHTS as follows:

WEIGHTS DATA 7F ' 01

Controlling Program Logic
This section discusses the EDL instructions used to control the logic or execution of
instructions. The following instructions are the primary means of controlling
program logic:

• DO-initializes a loop

• END DO-ends a loop

• IF-tests a condition

• ELSE-specifies the action for a false condition

• ENDIF-ends an IF-ELSE structure

• GOTO-branches to another location.

Relational Operators
The IF and DO statements involve the use of the following relational operators:

• EQ-equal

• NE-not equal

• GT-greater than

• L T -less than

• GE-greater than or equal

• LE-Iess than or equal.

2-30 SC34-0943

o

o

o

The IF Instruction

Writing a Source Program

The IF instruction allows you to compare two areas of storage. You can compare
data in two ways: arithmetically or logically.

When you compare data arithmetically, the system interprets each number as a
positive or negative value. The system, for example, interprets X' OFFF' as 4095. It
interprets X' FFFD', however, as - 3. Although X' FFFD' seems to be a larger
hexadecimal number than X' OFFF' , the system recognizes X' FFFD' as a negative
number and X' OFFF' as a positive number. X' FFFD' is a negative number to the
system because the leftmost bit is "on."

When you compare data logically, the system compares the data byte-by-byte. The
system interprets X' FFFF' as 2 bytes with all bits "on."

Comparing Data Arithmetically
The form of the arithmetic comparison is:

IF (datal,operator,data2,w;dth)

If datal has the relationship indicated by operator to data2, the next sequential
/instruction executes. Width indicates the length of the data to be compared and
must be BYTE, WORD (the default), DWORD, FLOAT, or DFLOAT.

The true portion of the IF-ELSE-ENDIF structure is usually an arithmetic
comparison. For example:

IF (A,EQ,B,WORD)
PRINTNUM A

ELSE
PRINTNUM B

ENDIF

ELSE is an optional part of the structure. The instructions following it are called the
false part of the structure. Therefore, in the preceding example, the instruction
following the ELSE instruction executes if A is not equal to B. If ELSE is not
coded and the condition is false, control passes to the instruction following the
ENDIF.

You can test more than two conditions in a single IF statement.

IF (ALPHA,LT,BETA),AND,(GAMMA,NE,DELTA)

If ALPHA is less than BETA and GAMMA is not equal to DELTA, the next
sequential instruction executes.

You can also execute the next sequential instruction if either test produces a true
condition.

IF (PI,GE,PSI),OR,(CHI,NE,OMEGA)

If PI is greater than or equal to PSI or CHI is not equal to OMEGA, the next
sequential instruction executes.

Chapter 2. Writing a Source Program 2-31

Writing a Source Program

To compare a variable to a constant, code the constant as data2 as follows:

IF (FEET,EQ,5280)

If FEET equals 5280 (decimal), the next sequential instruction executes.

Comparing Data Logically
The form of the logical comparison is:

IF (data1,operator,data2,w;dth)

If datal has the relationship indicated by operator to data2, the next sequential
instruction executes. Width indicates the number of bytes to be compared and must
be an integer.

F or example:

IF (A,GE,B,4)
PRINTNUM A
PRINTEXT SKIP=l

ELSE
PRINTNUM B
PRINTEXT SKIP=l

ENDIF

If the 4 bytes in A are greater than or equal to the 4 bytes in B, the "true" portion
of the structure executes. If the 4 bytes in A are not greater than or equal to the 4
bytes in B, the "false" portion of the structure executes.

The instructions between the IF instruction and the ELSE statement constitute the
"true" portion of the IF-ELSE-ENDIF structure. The instructions following the
ELSE statement constitute the "false" part of the structure. ELSE is an optional
part of the structure.

If the ELSE instruction is not coded and the condition is false, control passes to the
instruction following the ENDIF.

The Program Loop

The Simple DO

2-32 SC34-0943

The DO instruction allows you to execute the same code repetitively. The DO
instruction starts a DO loop and the ENDDO instruction ends the loop. The loop
consists of the instructions between the DO and ENDDO. The following sections
show the different forms of the DO loop.

The loop executes a specified number of times.

DO 100, TIMES
GETVALUE PSI,PROMPT3
ADD COUNT,PSI

ENDDO

The GETVALUE and ADD instructions execute 100 times.

o

o

o

C:·~'· I

o

The DO UNTIL

The DO WHILE

Writing a Source Program

The loop executes until the condition occurs. The loop always executes at least once
and is known as a "trailing" decision loop.

DO UNTIL,(COEO,GT,lOOO,FLOAT)
GETVALUE OMICRON,OMPRMPT
FSUB COEO,OMICRON

ENOOO

The GETVALUE and FSUB instructions execute until CDED is greater than 1000.

The loop executes as long as the condition exists and is know as a "leading" decision
loop.

DO WHILE,(B,NE,C)
GETVALUE B,'ENTER B'
GETVALUE C,'ENTER C1

ENOOO

The GETV AL UE instructions execute as long as B does not equal C.

The Nested DO Loop
A DO loop can contain other DO loops. For example:

DO UNTIL,(ALPHA,LT,BETA,OFLOAT),OR,(#l,EQ,lOOO)
GETVALUE ALPHA,'ENTER ALPHA ' ,TYPE=L,FORMAT=(12,3,E)
GETVALUE BETA,'ENTER BETA ' ,TYPE=L,FORMAT=(12,3,E)
MOVE #l,BETA,(l,OFLOAT)
DO lO,TIMES

FAOO GAMMA,ALPHA,PREC=LLL
ENOOO

ENOOO

The FADD statement contained in the inner DO executes 10 times for each
execution of the outer DO.

Chapter 2. Writing a Source Program 2-33

Writing a Source Program

The Nested IF Instruction
A DO loop can also contain IF statements. For example:

READTEXT CHAR, 'ENTER A CHARACTER'
GETVALUE A,'ENTER A'
GETVALUE B,'ENTER B'
DO WHILE,(A,GT,B)

IF (CHAR,EQ,C'A',BYTE)
DO 40,TIMES
•
•
•

ENDDO
ELSE

•
•
•

ENDIF
GETVALUE A,'ENTER A'
GETVALUE B,'ENTER 8'

ENDDO

The outer DO loop executes as long as A is greater than B. The inner DO loop
executes 40 times if CHAR equals the letter A.

Branching to Another Location
The GOTO instruction allows you to transfer control to another location within a

o

program. For example, the following instruction transfers control to the instruction r-"~\

at label LOCI: U

2-34 SC34-0943

GOTO LOCI

To branch to an address defined by a label, enclose the label in parentheses as
follows:

GOTO (CALC)

This instruction branches to the address contained in CALC. You must define
CALC as an address variable as in the following DATA statement:

CALC DATA A(RTN01)

To branch to a location that is based on the contents of a variable, code the GOTO
statement like this:

GOTO (ERR,LI,L2),I

The instruction branches to LI if I equals 1, to L2 if I equals 2, and to ERR for any
other value of I.

o

c

o

Writing a Source Program

Referring to a Storage (Program) Location
You can use the EQU statement to refer to the next available storage location in a
program. You can use it to generate labels in your program. For example:

CALLA EQU *
MOVE C,+A, (l,BYTE)
•
•
•

GOTO CALLA

Ending the Program
Ending a program requires three statements: PROGSTOP, ENDPROG, and END.

The PROGSTOP statement ends the program and releases any storage that it used.
It also signals the end of the executable instructions.

The ENDPROG statement follows the statements that define storage areas and
precedes the END statement.

The END statement follows the ENDPROG statement. It tells the compiler that the
program contains no more statements.

The following example shows the position of the three statements and the general
structure of a program.

PRINT
START

FIELD!

PROGRAM
EQU
•
•
•

PROGSTOP
DATA
•
•
•

ENDPROG
END

START
*

Fle l

Chapter 2. Writing a Source Program 2-35

o

o
2-36 SC34-0943

Entering a Source Program

C Chapter 3. Entering a Source Program

o

After you code a source program, you must enter it into a data set. The data set
can be on either disk, diskette, or tape.

This chapter shows how to use the text editor called the $FSEDIT utility. The
chapter describes the commands you need to enter a new source program or change
an existing source program. For a complete list of $FSEDIT commands, refer to the
Operator Commands and Utilities Reference.

loading the Editor
You can load the editor in one of two ways. You can load it directly using the $L
command. Or, you can load it using the session manager.

This chapter discusses how to load the editor with the session manager. For
information on how to load $FSEDIT with the $L command, refer to the Operator
Commands and Utilities Reference.

As you learned in Chapter 1 of this book, you load the session manager by pressing
the attention key, typing $L $SMMAIN, and pressing the enter key.

At this point, enter a one- to four-character ID and press the enter key.

The Session Manager Primary Option Menu appears. From this menu, select option
1 (TEXT EDITING).

The session manager displays the $FSEDIT Primary Option Menu.

Chapter 3. Entering a Source Program 3-1

Entering a Source Program

Creating a New Data Set

3-2 SC34-0943

The session manager allocates data sets automatically when you log on. One of
these data sets, a work data set used by $FSEDIT, is named $SMExxxx, where xxxx
is the ID you entered when you logged on to the session manager. For example, if
you entered ABeD when you iogged on, the work data set is $SMEABCD.

Use option 2 (EDIT) to type your source program into the work data set.

DATASETNAME==;:======>
VOLUMENAME:;i====:::====>

HOST.DATASET·========>

1 ---.., BROWSE
2-.,:--EDIJ
3-~.,~REAO· (HOST /NArIVE)
4.~ .. ~~ .. WRrrE(HOST/NAnVE)
S··;..,.,-"'SUBMIT
6-:'-;..PRINT
T-~-;.MERGE
B ... ~--;.; END

HELP

An empty data set appears on your screen. The name of the data set and the
volume on which it resides are shown at the top of the screen.

The cursor is located at the first input line. After you finish typing text on this line,
press the enter key.

o

,~
U

o

c

o

Entering a Source Program

The following example shows how the screen looks after you enter the first line of a
source program. (yVe have used the source program described in Chapter 1 of this
book.) The editor automatically numbers each line and presents a new blank line.

EDIT --- $SMEABCD, EDX003
COMMAND INPUT ===>

0(1089)-------------------------- COLUMNS 001 072
SCROLL ==> HALF

***** ***** TOP OF DATA ***
00010 ADD10 PROGRAM STPGM

***** **** BOTTOM OF DATA ***

Continue to type each line of your source program. When you finish, press the enter
key on a blank line.

EDIT ---$SMEABCD , EDX003
COMMAND INPUT ===>

12(1089) ------------------------ COL'UMNS 001 072
SCROLL ==> HALF

***** ***** TOP OF DATA ***
+00010 ADD10
+00020STPGM
+00030 LOOP
+00040
+00050
+00060
+00070
+00080
+00090 COUNi
+00100 SUM
+00110
+00120

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT, 'ENTER NUMBER: I

10, TIMES
SUM,COUNT

I@RESULT='
SUM

***** ***** BOTTOM OF ····DATA******'#**'#****

Chapter 3. Entering a Source Program 3-3

Entering a Source Program

Saving Your Data Set

3-4 SC34-0943

The next step is to save your data set. Return to the $FSEDIT Primary Option
Menu by typing M (for "menu") on the COMMAND INPUT line.

Select option 4 (WRITE) to save the data set. Type the name next on the
DATASET NAME line. (In this example, we named the data set ADDI0.) Type
the volume on the VOLUME NAME line. (In this example, the volume is
EDX002.) Then press the enter key.

Next, the system prompts you as follows:

Type Y and press the enter key.

Then you see a message on your screen indicating that the data set has been written
to the volume. In the example shown above, the following message would appear:

This message means that the source program is 12 records long and has been written
to volume EDX002.

o

o

o

c

o

Entering a Source Program

Modifying an Existing Data Set

Changing a Line

You have seen how to enter a source program into a new data set. You can also
modify an existing data set.

You must first read the data set you want to modify into the work data set. Select
option 3 (READ) from the $FSEDIT Primary Options Menu. On the menu, you
specify which data set you want to read.

Next, you select option 2 (EDIT) to modify the data set.

The data set appears on your screen.

(
EDIT --- ADD10 , EDX(:)02
COMMAND INPUT===>

'\
12(1(:)89J~""----"'-.'-"'--"'-----"---'- COLUMNS (:)01 (:)72

SCROLL::::> HALF
*****.***** TOP·OFDATA***
(:)0010 ADD10
(:)0(:)20 STPGM
00030 LOOP
09940
00050
0096(:)
00070
00080
00090.COUNT
0010eSUM
00110
(:)0120

PROGRAM
GETVALUE
DO

ADD
END DO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

SJPGM
COUNT, I ENTER NUMBER: I
10, TIMES
SUM,COUNT

FIOI
FlO'

***** ***** .BOTTOM OF ··DATA**j(*******************'it***j(oJ;********************.****

To change a line, move the cursor to the line and type in the correction. For
example, suppose you wanted to change 10 to 15 in the DO instruction. Move the
cursor to the 0 and type a 5.

Or, suppose you wanted to delete the = character in the PRINTEXT instruction.
Move the cursor to the = character and press the delete key.

Chapter 3. Entering a Source Program 3-5

Entering a Source Program

Inserting a Line

3-6 SC34-0943

You can insert a new line into your data set. You insert a line by typing an I in the
line number after which you want to insert.

For example, suppose you want to insert another instruction before PROGSTOP.
Type the I as follows:

*** ** .** ** * . BOTTOM··· OF .. DATA· '* ******* ** *** *********** ************"ldj";*************

After you press the enter key, your data set looks like this:

tDIT-"..;.ADD10 tEDX002
COMMAND INPUT·.==:::>

00080
00090 COUNT
00100 SUM
00110
00120
****if***** .. BOTTOM Of DATA .**l~****::J,t.**;*****~!r*:***1(.,**:***;**jl<****';'**'*M':/I'1<i~**:*.~d;*:'lI<:**"1Ic

You could now enter your new line of text at the position of the cursor. After you
press enter, the editor assigns a line number to your new line of text. A new blank
input line also appears. You can continue to insert lines or you can press the enter
key again to indicate that you have finished inserting.

o

o

o

Deleting a Line

o

o

Entering a Source Program

You can delete a line or series of lines from your data set.

To delete a single line, enter a D in the line number you want deleted and press the
enter key.

EDIT --- ADDl0 ,EDX002
COMMAND INPUT ===>

l3(1089)------------------------ COLUMNS 001 072
SCROLL ==> HALF

***** ***** TOP OF DATA ***
00010 ADD10
00020 STPGM
00030 LOOP
00040
00050
00060
00070

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM

STPGM
COUNT, I ENTER NUMBER; I

10, TIMES
SUM,COUNT

'@RESULT=I
SUM

D00S0 *********Delete this line**********************
00090 PROGSTOP
00100 COUNT DATA F10'
00110 SUM DATA F' 0 I
00120 ENDPROG
00130 END
***** ***** BOTTOM OF DATA **

After you press the enter key, the editor deletes the line.

EDIT --- ADD10 • EDX002
COMMAND INPUT ===>

12(1089)------------------------ COLUMNS 001 072
SCROLL ==> HALF

***** ***** TOP OF DATA *****************************~*******************~*c****
000teADD10
00020STPGM
00030.LOOP
00040
00050
00060
00070
00090
091e0·COUNT
90 no SUM
00120
90130

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINT EXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT~'ENTERNUMBER: I

10,TlMES
SUM,COUNT

'@RESULT='
SUM

Fle l.

**********SOTTOMOFDATA.**

Chapter 3. Entering a Source Program 3-7

Entering a Source Program

3-8 SC34-0943

You can also delete more than one line.

For example, suppose you want to delete lines 80 through 120 in the following
program. Type DD in line 80 and another DD in line 120.

After you press the enter key, your program looks like this:

The editor deletes the lines.

o

o

o

Moving Lines

o

o

o

Entering a Source Program

You can move a line or series of lines from one part of your data set to another.
For example, suppose you want to move lines 110 through 130. First type MM in
both 110 and 130. If you want to move these lines after line 10, place an A (for
"after") on line 10 and press the enter key.

When you press the enter key, the editor moves the lines to the position after line 10.

After you make changes to your data set, return to the $FSEDIT Primary Options
Menu. Return to that menu by typing M (for "menu") on the COMMAND INPUT
line. To save the changes, select option 4 and press the enter key.

You have seen how you can change lines in your programs. You have also seen how
to insert and delete lines and move a series of lines. The session manager was used
to load $FSEDIT and to allocate the necessary data sets. The next chapter explains
how to compile your programs using $EDXASM, the EDX compiler.

Chapter 3. Entering a Source Program 3-9

o

o

o
3-10 SC34-0943

Compiling a Program

C Chapter 4. Compiling a Program

c)

o

After you design, code, and enter your source program into a data set, you have to
compile the source program into an object module. This chapter shows you how to
compile your source program using the Event Driven Language Compiler,
$EDXASM.

The chapter also shows a step-by-step example of compiling a source program that
contains some syntax errors. The chapter then shows how to correct the errors so
that the compilation is successful.

You can load $EDXASM in one of three ways. You can load $EDXASM directly
using the $L command. You can use the $JOBUTIL utility to load $EDXASM.
Or, you can run your compilation under control of the session manager.

This chapter describes how to compile a program using the session manager.

For information on using the $L command or the $JOBUTIL utility, refer to the
Operator Commands and Utilities Reference.

Allocating Data Sets
When you use $EDXASM under control of the session manager, you must provide
two data sets. The first data set is the actual source program to be compiled. You
must have entered the source program on a disk, diskette, or tape data set.
Chapter 3, "Entering a Source Program" describes how to use the $FSEDIT utility
to enter your source programs.

The output of the compiler is a data set that contains an object module. You can
allocate this data set by selecting option 3 (DATA MANAGEMENT) from the
Session Manager Primary Option Menu.

Note: This example assumes that you logged on to the Session Manager with an ID
of ABCD.

Chapter 4. Compiling a Program 4-1

Compiling a Program

4-2 SC34-0943

The Data Management Option Menu appears on the screen. To allocate your object
code data set, select option I ($DISKUTl).

The session manager loads the $DISKUTI utility and prompts for the command you
want to use.

Notice the USING VOLUME EDX002 message. Unless you change volumes,
$DISKUTI allocates your data set on EDX002.

o

o

c

o

Compiling a Program

When you do not want to use the default volume, change the default volume to
MYVOL, using the following CV command:

USING VOLUME EDX002

COMMAND (?):CV MYVOL

The system responds with:

l.· ·.USING V. 0. L. U.ME MYVOL

COMMAND (?):. ;.;.)
~--~--------~--~~~--~~------------~

Use the AL command to allocate your data set.

The system then prompts you for the name of the data set. In this example, the data
set name is OBJECT.

Next, the system prompts for the number of records you want to allocate. A 25- to
50-record data set should be large enough for most programs. This example defines
a 25-record data set.

Chapter 4. Compiling a Program 4-3

Compiling a Program

Finally, the system prompts for the type of information to be contained in the data
set. The default is DATA. Because this data set will contain data, enter a Y.

The system responds with:

Once the data set has been created, enter an EN (for "end") to return to the Data
Management Option Menu screen.

Return to the Session Manager Primary Option Menu to begin the compilation by
pressing the PF3 key.

Running the Compilation

4-4 SC34-0943

Once you have allocated the data set to hold the output, you are ready to begin
compiling the source program. The following is a listing of the source program to
be compiled:

STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT,'ENTER NUMBER: I

10, TIMES
SUM,COUNT

I RESULT= I

SUM

F'O '
F'O '

This program is similar to the examples we used in Chapter I and Chapter 3 of this
book. However, we have included two errors in this source program.

o

o

o

o

Compiling a Program

From the Session Manager Primary Option Menu, select option 2 (PROGRAM
PREP ARATION) to begin the compile step.

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU ----------------------------
ENTER/SELECT PARAMETERS : PRESS PF3 TO EXIT

SELECT OPTION ==> 2

1 -TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT
4 - TERMINAL UTILITIES
5 - GRAPHICS UTILITIES
6 - EXEC PROGRAM/UTI LITY
7 - EXEC $JOBUTlLPROC
8 - COMMUNICATION UTILITIES
9- DIAGNOSTIC AIDS

19:48:07
10/24/82
ABCD

H)- BACKGROUND JOB CONTROL UTILITIES

The Program Preparation Option Menu appears on your screen. To compile the
program, select option I ($EDXASM COMPILER).

$SMM02. SESSION MANAGER PROGRAM PREPARATION<OPTIONMENU-.... --.. ,..--"'7,.-----,;.
ENTER/SELECT PARAMETERS: PRESSPF3. TO ·RETURN

SELECT OPTION ==> 1

The $EDXASM Parameter Input Menu appears on your screen. Enter the name of
your source input (in this example, ADDIO on volume EDX002). Also enter the
name of your object output (in this example, data set OBJECT on volume
MYVOL).

Chapter 4. Compiling a Program 4-5

Compiling a Program

4-6 SC34-0943

You could enter something on the OPTIONAL PARAMETERS line if you want to
change one of the parameters listed on the DEFAULT PARAMETERS line. In this 0'
example, we are using the defaults.

c

o

c

o

Compiling a Program

Checking Your Compiler Listing and Correcting Errors
The output of the compiler prints on your printer. The listing consists of statistics,
source code statements and object code, undefined or external symbols, and a
completion code.

The following is an example of the output listing generated by the compile example
being run.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10.EDX002
WORK DATA SET - WORK1,MYVOL
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 19:56:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

4 STATEMENTS FLAGGED

LOC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10
PAGE 1

,EDX002 (5719

PROGRAM STPGM
08 *** TASK NAME NOT SPECIFIED $EDXL 12

0000 802C 0000 OOOA 0001 OEOE STPGM GETVALUE COUNT, I ENTER NUMBER: I

OOOA C5D5 E3C5 0940 D5E4 D4C2
0014 C5D5 7A48

08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0018 809C 0024 OOOA LOOP DO 10, TIMES
001E 0032 0040 0000 ADD SUM,COUNT

08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED $EDXL 3
0024 0090 0000 0001 ENDDO
002A 8026 0808 D9C5 E2E4 D3E3 PRINTEXT I RESULT= I

0034 7E40 PRINTNUM SUM
003C 0022 FFFF PROGSTOP

COUNT DATA F'O'
08 *** INVALID OR UNDEFINED OPERATION CODE $EDXL 11

8040 0000 SUM DATA F'O'
0042 ENDPROG
0042 END

EXTERNAL/UNDEFINED SYMBOLS

COUNT UNDEFINED

COMPLETION CODE = 8

This example shows that the compile did not run successfully. The completion code
expected is a-I. The completion code received is an 8.

Chapter 4. Compiling a Program 4-7

Compiling a Program

4-8 SC34-0943

The listing shows the compilation errors. They are:

• 08 *** TASK NAME NOT SPECIFIED

• 08 *** ONE OR MORE UNDEFINED LABELS WERE REFERENCED

• 08 *** INVALID OR UNDEFINED OPERATION CODE

To fix these errors, you must understand what caused them. Look the errors up in
Messages and Codes.

The first message, 08 *** TASK NAME NOT SPECIFIED, is a result of not having
a task name coded on the PROGRAM statement.

The second message, 08 *** ONE OR MORE UNDEFINED LABELS WERE
REFERENCED, means that one of the labels referenced in the instruction has not
been defined to the program. If you check the listing for undefined symbols, you
will see that COUNT is undefined.

The third message, 08 *** INVALID OR UNDEFINED OPERATION CODE,
means that something is wrong with the COUNT definition statement. If you check
the statement, you will see that the label, COUNT, starts in column two. The label
must start in column one.

After isolating the errors, you must go back to the source data set and correct them.
Use $FSEDIT as explained in "Modifying an Existing Data Set" on page 3-5 to
make the corrections. After you make the corrections, the source data set looks as
follows:

PROG1
STPGM
LOOP

COUNT
SUM

PROGRAM
GETVALUE
DO

ADD
ENDDO
PRINTEXT
PRINTNUM
PROGSTOP
DATA
DATA
ENDPROG
END

STPGM
COUNT,'ENTER NUMBER: I

10, TIMES
SUM,COUNT

'@RESULT='
SUM

F' 0 1

F'e '

o

c

c

o

Compiling a Program

Rerunning the Compilation
To rerun the compilation, return to the Session Manager Primary Option Menu and
select option 2 (PROGRAM PREPARATION).

$SMMPRIM: SESSION MANAGER PRIMARY OPTION MENU ---------------------.,'"'-----
ENTER/SELECT PARAMETERS: PRESS PF3TO EXIT

SELECTOPTION~~> 2

1 - TEXT EDITING
2 - PROGRAM PREPARATION
3 - DATA MANAGEMENT
4 - TERMINAL UTILITIES
5 ~ GRAPHICS UTILITIES
6 -·EXE:C PROGRAM/UTILITY
7 ~EXEC$J{jBUtIL PROC
8-COMMUNICATION UTILITIES
9 - ·DIAGNOSTIC AIDS

20:(32:07
10/24/82

ABCD

10", BACKGROUND·JOB CONTROL UTILITIES

The Program Preparation Option Menu appears on your screen. Select option 1
($EDXASM COMPILER).

MANj~GER PROGRAM PREPARATION OPTION MENU--,;;--,;;:",-,;;--;,;-,;;,;;;..;.;--
PRESSPF~TO

Chapter 4. Compiling a Program 4-9

Compiling a Program

4-10 SC34-0943

The $EDXASM Parameter Input Menu appears on your screen. Again, enter the
name of your source input (in this example, ADD 1 0). Also enter the name of your
object output (in this example, data set OBJECT on volume MYVOL). o

o

c

C·

o

Compiling a Program

The following is an example of the output listing generated by the compiler.

EDX ASSEMBLER STATISTICS

SOURCE INPUT - ADD10,EDX002
WORK DATA SET - $SM1ABCD,EDX002
OBJECT MODULE - OBJECT,MYVOL
DATE: 10/24/82 AT 20:06:18
ASSEMBLY TIME: 4 SECONDS
STATEMENTS PROCESSED - 12

NO STATEMENTS FLAGGED

LOC +0 +2 +4 +6 +8 SOURCE STATEMENT

0000 0008 0709 0607 D9C1 0440 PROG1 PROGRAM

0034 802C 0074 003E 0001 0E0E STPGM GETVALUE
003E C5D5 E3C5 0940 D5E4 D4C2
0048 C5D9 7A40
004C 809C 0058 000A LOOP DO
0052 0032 0076 0074 ADD
0058 0090 0000 0001 ENDDO
005E 8026 0808 D9C5 E2E4 D3E3 PRINTEXT
0068 7E40
006A 0028 0076 0001 PRINTNUM
0070 0022 FFFF PROGSTOP
0074 0000 COUNT DATA
0076 0000 SUM DATA
0078 0000 0000 0000 0234 0000 ENDPROG

00FA 0000 0000 0000 0000 0000
010E 0000
0110 END

EXTERNAL/UNDEFINED SYMBOLS

COMPLETION CODE = -1

SVC WXTRN
SUPEXIT WXTRN
SETBUSY WXTRN

ADD10 ,EDX002 (5719

STPGM

COUNT,'ENTER NUMBER: I

10, TIMES
SUM,COUNT

'RESULT='

SUM

F'O'
F'0 1

The -1 completion code tells you that the compile was successful. The next step is
to link edit the object module into program data that can be executed. See the next
chapter, Chapter 5, "Preparing an Object Module for Execution," for details.

Chapter 4. Compiling a Program 4-11

o

Ir'\
V

o
4-12 SC34-0943

Preparing an Object Module for Execution

c! Chapter 5. Preparing an Object Module for Execution

o

So far in this book, you have learned how to code and enter a source program into a
data set. You have also learned how to compile the source program.

The next step is to prepare your object modules for execution. In this chapter, we
will show you how to use the linkage editor $EDXLINK to prepare your object
modules to run on an EDX system. $EDXLINK links together any separately
assembled object modules that make up your program. $EDXLINK also produces a
load module that is ready for execution.

In this chapter, we will show you how to prepare a single object module for
execution. We will also show you an example of link editing more than one object
module.

You can load $EDXLINK in one of three ways. You can load $EDXLINK directly
using the $L command. You can use the $JOBUTIL utility to load $EDXLINK, or
use $EDXLINK under control of the session manager.

This chapter describes how to use $EDXLINK under control of the session manager.
For information on using the $L command or the $JOBUTIL utility, refer to the
Operator Commands and Utilities Reference.

Link Editing a Single Object Module
This section shows how to link edit a single object module.

$EDXLINK LINKAGE EDITOR is option 7 of the Session Manager Program
Preparation Option menu.

Chapter 5. Preparing an Object Module for Execution 5-1

Preparing an Object Module for Execution

5-2 SC34-0943

When you select option 7 and press the enter key, the $EDXLINK Parameter Input
Menu appears on your screen.

You can run $EDXLINK in interactive mode. If you choose interactive mode, the
system prompts you for information about the object module you want to link edit.
To choose interactive mode, enter an asterisk (*) on the EXECUTION PARM line.

$EDXLINK then displays the following screen:

$EDXLINK prompts you for a control statement. Control statements are the
instructions $EDXLINK uses to convert the object modules into load modules.

o

o

o

Preparing an Object Module for Execution

When using interactive mode, you enter the control statements one at a time. (As
you will see later in this chapter, you can write the control statements to a link
control data set for execution in noninteractive mode.)

To link edit a single object module, use the INCLUDE and LINK statements. (You
will learn about some of the other control statements later in this chapter.)

The INCLUDE statement indicates which object module to use. (Remember that
the object module is the output from $EDXASM, the compiler.) In this example,
the object module is OBJECT. This is the only module name you enter next to the
INCLUDE statement.

LOADING $JOBUTIL nnP t hh:mm:ss, LP= xxxx, PART= yy
REMARK
$EDXLINK *
JOB - $EDXLINK -STARTED AT 10:27:16 eejee/ee

JOB $EDXLINK ($SMPe2e7) USERID=ABCD
LOADING$EDXLINK MPthh:mm:ss, LP=xxxx. PART= yy

$EDXLINK - EDX LINKAGE EDITOR

$EDXLI NK I NTERACTI Vt: MODE
DEFAULT VOLUME =EDX002

STMF(?): INCLUDE OBJECT,MYVOL

Use the LINK statement to name the data set that is the output of $EDXLINK.
When you enter the name of this data set, $EDXLINK allocates it. In the following
example, the data set is named ADDPGM. It will reside on volume EDX002. The
word REPLACE means to replace the program if it already exists on volume
EDX002. The END statement signals $EDXLINK that the program contains no
further source statements.

Chapter 5. Preparing an Object Module for Execution 5-3

Preparing an Object Module for Execution

The system produces a data set (ADDPGM) that can now be executed on the
system. In this example, we link edited only one object module (OBJECT). The
next section shows how to link edit more than one object module.

If the system indicates (by returning a -1 completion code) that the link edit was
successful, return to the Primary Option Menu to execute your program. For
information on how to execute your program see Chapter 6, "Executing a
Program."

Link Editing More Than One Object Module

5-4 SC34-0943

This section shows how to specify that a load module consists of more than one
object module. If you divide a large program into modules, those modules can be
compiled separately. If you need to make a change to one of the modules, you need
to recompile only that module. When you are ready to run the program, you can
link edit the individual modules.

You might also have a function that is common to many of your programs. By
making this function a separate module, you could include it wherever needed in
your programs.

This section shows how to use both interactive and noninteractive mode to link edit
the modules. All examples show $EDXLINK being used under control of the
session manager.

As you learned earlier in this chapter, $EDXLINK LINKAGE EDITOR is option 7
of the Session Manager Program Preparation Option menu.

o

o

o

Preparing an Object Module for Execution

When you select option 7, the $EDXLINK Parameter Input Menu appears on your
screen.

$SMM0207: SESSION MANAGER $EDXLINK PARAMETER INPUT MENU-------------------
ENTER/SELECT PARAMETERS: PRESS PF3 TO RETURN

EXECUTION PARM ==> *

ENTER A CONTROL DATA SET NAME,VOLUME OR
AN ASTERISK (*) FOR INTERACTIVE MODE.

OUTPUT DEVICE (DEFAULTS TO $SYSPRTR) ==>

FOREGROUND OR BACKGROUND (F/B) ==>
(DEFAULT IS FOREGROUND)

Including Individual Object Modules
With the INCLUDE statement, you indicate which object modules to use. If the
modules reside on the same volume, you can list them on one INCLUDE statement.
In the example shown below, the first INCLUDE statement includes four object
modules from volume EDX003. The second INCLUDE statement includes two
object modules from volume MYVOL.

LOADING$JOBUTIL nnP, hh:mm:ss, LP= xxxx, PART= '1Y
REMARK
$EDXLINK. *
***JOB-·$EOXLINK.-STARTED.AT07:27:16 00/00/00 ***

JOB $EDXLlNK ($SMP0207) USERID=ABCD
LOADING $EDXLINK nnP,hh:mm:ss. LP= xxxx, PART::: YY

$EDXLINK. - ·.·EDX· LINKAGEEDlTOR

$EbXLINKINfERACTIVE ·.MQOE
DEFAULT VQLUME . = .. EDX002

INCLUDE OBJ12,OBJ13,OBJ14,OBJ15,EDX003

After you enter the first INCLUDE statement, $EDXLINK prompts you for
another statement. Enter the second INCLUDE statement.

Chapter 5. Preparing an Object Module for Execution 5-5

Preparing an Object Module for Execution

5-6 SC34-0943

The LINK statement tells the linkage editor what to call the load module and where
to put it. In this example, the output object data set will be named PGMl. It will
reside on volume EDX003. The word REPLACE means to replace the program if
it already exists on volume EDX003. The END statement signals $EDXLINK that
the program contains no further source statements.

Once you enter these statements, $EDXLINK produces a load module (PGMI) that
is ready for execution. PGMI consists of six object modules: OBJ12, OBJ13,
OBJI4, OBJ15, SQRT, and STDEV.

()

o

o

Preparing an Object Module for Execution

Including Overlay Segments
Your program may include overlay segments. (Overlay segments are described in
detail in "Reusing Storage using Overlays" on page 9-9.) You use the OVERLAY
statement to identify these segments to $EDXLINK.

For example, suppose you had a program made up of a resident segment and two
overlays. Assume the name of the resident segment is TESTROOT and the overlays
are named TESTSUB 1 and TESTSUB2. Your control statements would look like
this:

$EDXLINK INTERACTIVE MODE
DEFAULTVOLUME: EDX002

STMT(?)~ INCLUDE TESTROOT,EDX003

STML (?) : OVERLAY

stML{?):

$EDXLiNK·EXECUTION.STARTED
TEST.. .. .,EDX003STORED
PROGRAM. DATA SET SIZE .::
COMPLETION. CODE = ~1

$EOXl..INK· ..• E.NDED AT 94;05:35

The first INCLUDE statement identifies the resident (or root) portion of the
program. The INCLUDE statement following the first OVERLAY statement
identifies the first overlay segment. The INCLUDE statement following the second
OVERLAY statement identifies the second overlay segment.

The LINK statement identifies the object output data set.

Chapter 5. Preparing an Object Module for Execution 5-7

Preparing an Object Module for Execution

Using. the Autocall Feature

5-8 SC34-0943

You can use the AUTOCALL control statement to load the autocall feature. You
can include up to three autocall data set names on the AUTOCALL statement.
Autocall data sets contain a list of object module names and volumes, along with
their entry points. Use the autocall option to include modules not explicitly included
with the INCLUDE statement.

You need to use autocall data sets if, for example, you are link editing a program
that uses $IMAGE subroutines. Some instructions, such as GETEDIT and
PUTEDIT, also require that you link edit with the autocall option.

The following is an example of an autocall data set.

PGMl,EDX003 ENTER
PGM2,EDX40 START
PGM3,MYVOL CALC
**END

PGMl, PGM2, and PGM3 are object modules on EDX003, EDX40, and MYVOL.
ENTER, START, and CALC are the entry points for the modules. The module
names must begin in column one and end with an **END statement.

Enter the AUTOCALL statement just before the LINK statement. This example
specifies two autocall data sets: the system-supplied autocall data set ($AUTO on
volume ASMLIB) and data set MY AUTO on volume MYVOL.

If you specify more than one AUTOCALL statement, the linkage editor uses the last
one.

Suppose you wanted to add an AUTOCALL statement to the previous example.
You would enter it like this:

o

o

o

Preparing an Object Module for Execution

The system would respond as follows:

The linkage editor also prints, on the system printer, the names of the object
modules it included. For example:

INCLUDE $IMOPEN ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $IMGEN ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $GPLIST ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $GEER ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $GEAC ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $IMDTYPE,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $$RETURN,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL
INCLUDE $UNPACK ,ASMLIB FROM $AUTO ,ASMLIB VIA AUTOCALL

Using Noninteractive Mode
Using noninteractive mode means that you do not have to enter control statements
each time you link edit a program.

When you use noninteractive mode, you must enter the name of a primary control
data set on the $EDXLINK Parameter Input Menu. The primary control data set
contains the control statements to be used by $EDXLINK.

You can create the primary control data set using $FSEDIT. Then enter control
statements into the data set.

The following is an example of a primary control data set. Control statements must
begin in column 1. This data set includes comment statements. A comment
statement begins with an asterisk (*).

* PLOT PROGRAM INCLUDES
*
INCLUDE PLOTXY,MYVOL
INCLUDE PLOTXX,MYVOL
INCLUDE PLOTYY,MYVOL
INCLUDE PLOTYX,MYVOL
*
* PERFORM AUTOCALL PROCESSING USING:
*
AUTOCALL MYAUTO,MYVOL $AUTO,ASMLIB
*
* PERFORM THE LINK
*
LINK PLOT,MYVOL REPLACE END

Chapter 5. Preparing an Object Module for Execution 5-9

Preparing an Object Module for Execution

After entering these statements into the data set, specify the name of this data set
next to "EXECUTIO~ PARM" on thle $EDXLINK Parameter Input Menu. In this 0"
example, the data set IS LINKl on vo ume EDX003.

The primary control data set can also refer to a secondary control data set. The
secondary control data set contains additional control statements. These control
statements can be common control statements that are used frequently for many
different link edits. You use the COPY control statement to refer to these secondary
data sets. For example:

INCLUDE ASMOBJ,EDX003
COpy CTRL,EDX40
LINK PGM3,EDX40 REPLACE END

The linkage editor includes object module ASMOBJ on volume EDX003, copies
additional control statements from data set CTRL on volume EDX40, gives the load
module the name PGM3, and puts it on volume EDX40.

For more information on specifying primary and secondary control statement data
sets, refer to the Operator Commands and Utilities Reference.

Prefinding Data Sets and Overlays

5-10 SC34-0943

You can locate data sets and overlay programs before you load a program by using
the $PREFIND utility. You can improve program performance by using
$PREFIND.

You should use $PREFIND if:

• The program uses a large number of data sets.

• The program loads several overlay programs.

• You load the program frequently.

For information on how to use the $PREFIND utility, refer to the Operator
Commands and Utilities Reference.

o

o

Executing a Program

C' Chapter 6. Executing a Program

o

After you have compiled and link edited a program, you are ready to run (or
execute) it.

This chapter shows how to execute a program. You can execute a program in any
of the following ways:

• You can load the program with the $L operator command.

• You can use the $JOBUTIL utility.

• You can use the session manager.

• You can submit the program from another program.

• You can use the $SUBMIT utility.

This chapter describes how to use the session manager to execute a program and
how to submit a program from another program. For information on how to use
the $L operator command or the $JOBUTIL utility or the $SUBMIT utility, refer to
the Operator Commands and Utilities Reference.

Executing a Program with the Session Manager
To execute your program, select option 6 (EXEC PROGRAM/UTILITY) on the
Primary Option Menu.

Chapter 6. Executing a Program 6-1

Executing a Program

6-2 SC34-0943

The Execute Program/Utility menu appears. Enter the program name (ADDPGM)
and volume (EDX:002) next to PROGRAM/UTILITY (NAME,VOLUME). Then
type an asterisk in the DATA SET 1, DATA SET 2, and DATA SET 3 fields and
press the enter key.

Putting asterisks in the DATA SET fields means either of two things. Either the
program does not use any data sets or the program specifies the data sets with the
DS operand. For example, the PROGRAM for program ADDPGM might look like
this:

BEGIN PROGRAM ST

or this:

BEGIN PROGRAM ST,DS=((MASTER,EDX003),(UPDATES,MYVOL),(NEWMAST,EDX40»

If you want the program to execute in the background, enter B next to
FOREGROUND OR BACKGROUND (F /B). Otherwise, the system executes the
program in the foreground.

After you press the enter key, the following screen appears on the terminal:

o

o

c)

o

Specifying Data Sets
You can specify data sets in any of these ways:

1 In the DS = operand of a PROGRAM instruction

2 In the DS = operand of a LOAD instruction

3 With the $L operator command

4 During execution of some system utility programs

5 On the Execute Program/Utility menu

6 With the DS command of the $JOBUTIL utility.

You identify a data set by specifying:

1 The data set name (dsname)

Executing a Program

2 An optional volume label (volume) which specifies the volume on which the
data set resides.

The format for a data set specification is:

dsname,volume

Volume is optional. If you omit volume, the system assumes that the data set resides
on the volume from which you performed an IPL. Definitions of dsname and
volume are:

dsname

volume

An alphanumeric character string of eight characters. When you specify
fewer than eight characters, the system adds blanks to the right to
complete the string.

An alphanumeric character string of six characters. To locate the
volume, the appropriate TAPE or DISK statement must be in the system
I/O definition. You must initialize the disk or diskette with the
$INITDSK utility and tapes with the $TAPEUTI utility. When you
specify fewer than six characters, the system adds blanks to the right to
complete the string.

Chapter 6. Executing a Program 6-3

Executing a Program

6-4 SC34-0943

To specify up to three data sets on the Execute Program/Utility menu, enter the data
set name and volume as in the following example:

The PROGRAM statement for program ADDPGM might look like this:

BEGIN PROGRAM ST,DS=(??,??,??)

If a program requires fewer than three data sets, enter an asterisk (*) next to the
data set(s) not used.

o

o

o

o

o

Executing a Program

Submitting a Program from Another Program
A program can submit one or more programs to the EDX job processor. The job
queue processor executes the programs independently of the program that submitted
them.

The following example shows how one program can submit programs CALC on
volume EDX003 and UPDATE on volume MYVOL. The explanation for each
numbered step appears on the next page.

I

BEGIN PROGRAM START
START EQU *

SUB END

•
•
•
LOAD $SUBMITP,SUBPARMl,LOGMSG=NO,EVENT=SUBEND
WAIT SUBEND
IF (SUBEND,NE,-l)

PRINTEXT 'ERROR LOADING CALC',SKIP=l
ENDIF
•
•
•
LOAD $SUBMITP,SUBPARM2,LOGMSG=NO,EVENT=SUBEND
WAIT SUBEND
IF (SUBEND,NE,-l)

PRINTEXT 'ERROR LOADING UPDATE',SKIP=l
ENDIF
•
•
•
PROGSTOP
ECB

SUBPARMI EQU *
DATA CISJ I
DATA X' OOO2 1

DATA CL8 IJOBOl '
DATA CL6 IEDX40 '
DATA A(JOBNO)

SUBPARM2 EQU *
DATA CISJ 1

DATA X' OOO2 1

DATA CL8 1 JOB02 1

DATA CL6 I EDX40 '
DATA A(JOBNO)

1m JOBNO DATA F'O'
ENDPROG
END

Chapter 6. Executing a Program 6-5

Executing a Program

6-6 SC34-0943

o Submit a job to the job queue. Point to a parameter list called SUBPARMl,
and identify the event to be posted when the job has been submitted
(EVENT = SUBEND).

II Wait for the job to be submitted to the job queue,

II Test for successful completion (-1) of the submit.

lEI Submit a job to the job queue. Point to a parameter list called SUBPARM2,
and identify the event to be posted when the job has been submitted
(EVENT = SUBEND).

II Specify that the job is to be submitted (SJ).

II Specify the priority of the job (0002).

fJ Identify the name of the data set that contains the job stream processor
commands (JOBOl).

II Specify the volume that contains JOBOI (EDX40).

II Specify the address of the field in which the system will put the job number
(JOBNO).

1m Reserve storage for the system to put the job number.

The data set called JOBOl contains job stream processor commands. It might look
like the following:

JOB JOB01
PROGRAM CALC,EDX003
EXEC
EOJ

The PROGRAM command refers to a program called CALC on volume EDX003.

The data set called JOB02 contains job stream processor commands. It might look
like the following:

JOB JOB02
PROGRAM UPDATE,MYVOL
EXEC
EOJ

The PROGRAM command refers to a program called UPDATE on volume
MYVOL.

o

o

o

o

C'~'
,'I

o

Finding and Fixing Errors

Chapter 7. Finding and Fixing Errors

Up to this point, you have written, compiled, and link edited your program.
However, the program may not run as you expect it to. Steps may be out of
sequence or the program may come up with the wrong answers. In other words, you
have problems with your program's logic.

The program also may not run to a successful conclusion. An exception condition
may occur that interrupts the execution of a program.

The $DEBUG utility assists you in determining logic errors. The task error exit
routine is one of the tools you can use to diagnose exception conditions.

Determining Logic Errors in a Program
This section tells you how to locate and fix logic errors in your program by using the
$DEBUG utility. $DEBUG can work from terminals; you do not have to use the
console. $DEBUG has commands that allow you to:

• Stop execution at one or more specific places in a program. The places where
you choose to stop a program are called breakpoints.

• Set up a trace routine. A trace routine allows you to step through program
instructions one at a time. You must specify one or more parts of the program
you wish to trace (called a trace range). Each time the program executes an
instruction within any of the specified trace ranges, the terminal displays a
message identifying the task name and the instruction address just executed.
You can stop program execution after each instruction executes within a trace
range.

• List additional registers and storage location contents while the program is
stopped at a breakpoint or at an instruction within a trace range.

• Change the contents of storage locations, registers, data, or instructions.

• Restart program execution. You can restart execution at the breakpoint or trace
range address where it is currently stopped or you may specify another
instruction address.

Chapter 7. Finding and Fixing Errors 7-1

Finding and Fixing Errors

Creating and Running the Program
This section shows an EDL program that has a logic error in it. It shows briefly
how to enter, compile, link edit, and run (execute) the program.

Perform the following steps using the session manager. Give the program the name
ADDIO. If you have any problems, see Chapter 3, "Entering a Source Program."

1 Enter the following program on your terminal exactly as shown.

ADDl0 PROGRAM STPGM
STPGM GETVALUE COUNT, I ENTER NUMBER: I

LOOP DO 10,TIMES
ADD COUNT,SUM

ENDDO
PRINTEXT I RESULT= I

PRINTNUM SUM
PROGSTOP

COUNT DATA F'O'
SUM DATA F'O'

ENDPROG
END

This program is supposed to take a number entered on a terminal and add it
to itself 10 times. For example, if you enter the number 10, you should get
the response: RESULT = 100. However, because of a program logic error,
you will not get the expected answer when you run the program.

o

2 Now compile the program. If you have any problems, see 0

7-2 SC34-0943

Chapter 4, "Compiling a Program." Save the compiler listing. You will need
it when you run $DEBUG.

3 Next, link edit your program. If you have any problems, see
Chapter 5, "Preparing an Object Module for Execution."

4 Run the program. If you have any problems, see Chapter 6, "Executing a
Program."

When the prompt ENTER NUMBER appears, enter the number 10.

Because this program has a logic error, the answer returned is O. The expected result
was 100.

o

o

Finding and Fixing Errors

Debugging and Fixing the Program

Loading $DEBUG

This section describes how to use $DEBUG to find and correct a logic error.

To start debugging the program, do the following:

1 End the session manager. You cannot run $DEBUG while the session
manager is active. One way to load $DEBUG is with the $L operator
command.

2 Enter the following:

I > $l $DEBUG I
~~~~ ______ ~ ______________________________________________ ~J 

The following message appears, telling you that $DEBUG is being loaded. 

LOADING·$DEBUG nnP. hh:mm:ss, LP= xxxx, PART= y 

3 Then $DEBUG asks for the name of the program to be debugged. Respond 
as follows: 

l~~P_R_OG_R~A_M_(_NA_M~E~'V~O_L_UM_E~)_:_A~DD~l_a~'E_D_x_aa~2~ __ ~ __________________________ ~J 

4 The utility then prompts for a partition number and a terminal name: 

PARTITION .(DEFAULT···ISCURRENIPARTITION): 
TERMINAL 'NAME {DEFAULT ISCURRENTrERMINAL) : 

If you press enter after each of the prompts, the system uses the current 
partition and terminal. 

$DEBUG then displays the following information: 

Chapter 7. Finding and Fixing Errors 7-3 



Finding and Fixing Errors 

These messages tell you: 

• The load point (LP = BDOO) of the program 
• The partition where $DEBUG loaded the program (PART = 1) 
• That $DEBUG set a breakpoint and stopped the program at address 0034, 

which is the first executabie instruction. 

Note that you can also enter HELP to see a list of the available $DEBUG 
commands. 

SOEBUG Commands 

7-4 SC34-0943 

Both $DEBUG and the program have been loaded into partition 1. The program 
has stopped and $DEBUG is waiting for a command. To see a list of the $DEBUG 
commands: 

1 Press the attention key. 

2 Enter HELP. 

The list of $DEBUG commands appears on the screen. 

o 

o 



C"··· ' i 

o 

o 

Finding and Fixing Errors 

Use the $DEBUG commands to: 

• List $DEBUG commands (HELP). 
• Display the current status of each task (WHERE). 
• Display storage or register contents (LIST). 
• Change storage or register contents (PATCH). 
• Change the base address (QUALIFY). 
• Set breakpoints and trace ranges (AT). 
• Remove breakpoints and trace ranges (OFF). 
• Restart a stopped task (GO). 
• Start a task waiting for an event or process interrupt (POST). 
• Direct output to another terminal (PRINT). 
• List breakpoints and trace ranges (BP). 
• Restart a stopped task at a different instruction (GOTO). 
• Close a spool job that was created by $DEBUG (CLOSE). 
• End $DEBUG (END). 

You can enter any of the commands by pressing the attention key and entering the 
command name. $DEBUG then prompts for the command parameters. For 
example, if you want to set a breakpoint, enter the AT command. $DEBUG then 
prompts for the parameters as shown below. 

> AT 
OPTION (*/ADDR/TASK/ALL) : ADDR 
BREAKPOINT ADDRESS: 4C 
LIST/NOLIST: LIST 
OPTION(*/ADDR/R0 •.. R7/#1/#2/IAR/TCODE/UNMAP): #1 
LENGTH: 1 
MODE(X/F/D/A/C): X 
STOP/NOSTOP:STOP 

1 BREAKPOINT(S) SET 

This command sets a breakpoint at address 4C. It requests that $DEBUG print the 
contents of register 1 (one word) in hexadecimal. STOP tells $DEBUG to stop at 
addre~s 4C. 

For detailed syntax descriptions, refer to each individual command in the Operator 
Commands and Utilities Reference. 

You can also enter a command and its parameters without going through the 
prompts. For example: 

l~~>_··.~A_T_A_D_D_R_4_C~L_···_#~1_1_··~X~S_· ____________ ~ ____ ~~ ____________ ~ ______ ~j 

gives you the same results. 

Chapter 7. Finding and Fixing Errors 7-5 



Finding and Fixing Errors 

Finding the Errors 

7-6 SC34-0943 

Now that you have loaded $DEBUG, specified your program name, and reviewed 
the $DEBUG commands, you are ready to start finding the logic errors in your 
program. You should have a listing of the program before you start. Then follow 
these steps: 

1 Use the AT command to set a breakpoint to stop the program after the 
GETVALUE executes (address 004C). Respond to the prompts as follows: 

The breakpoint to stop after the GETVALUE instruction executes is now set. 

2 Enter a GO command and, when prompted, enter the number 10. 

Program execution has stopped at the instruction labeled LOOP. The 
GETV AL UE instruction has executed. 

To check to see if the program read the data correctly, use the LIST command 
to display data field COUNT at address 0074. 

3 Enter a LIST command and respond as follows: 

The LIST command shows that 0074 contains 10, the correct input. This 
indicates proper logic to this point. 

The next set of instructions is the DO loop. Set another breakpoint to stop 
the program after execution of the DO loop at address 005E. 

o 

o 



0··'··1. 
, .. 

Fixing the Problem 

o 

Finding and Fixing Errors 

4 Enter an AT command and respond as follows: 

> AT 
OPTION(*/ADDR/TASK/ALL): ADDR 
BREAKPOINT ADDR: aaSE 
LIST/NOLIST: NOLIST 
STOP/NOSTOP~ STOP 

1 BREAKPOINT(S) SET 

The breakpoint to stop after the DO loop instructions executes is now set. 

5 Enter a GO command and the following occurs: 

> GO 
I BREAKPOINT(S) ACTIVATED 

ADDle STOPPED AT eeSE 

At this point, the data field SUM at address 0076 should contain the number 
100. 

To check to see if the data field SUM contains the proper number, use the 
LIST command to display data field SUM at address 0076. 

6 Enter a LIST command and respond as follows: 

The LIST command shows that this field contains zero. This means that the 
DO loop or the ADD instruction in the DO loop is incorrect. If you examine 
these instructions, you will see that the DO loop is correct. However, The 
ADD instruction has a logic error. In order to receive the proper answer, the 
COUNT field should be added to the SUM field. The operands are 
backwards. The DO loop executes the ADD instruction 10 times but is 
adding SUM to COUNT, causing the SUM field to remain O. 

To verify that this is the problem without having to recompile and link edit the 
program, you can use the PATCH command of $DEBUG for a temporary fix. This 
fix is good only for one execution of the program. PATCH only fixes the copy of 
the program loaded by $DEBUG. It does not fix the program on your volume. 
Once you have verified that the fix is correct, you can then change the program on 
your volume. 

Chapter 7. Finding and Fixing Errors 7-7 



Finding and Fixing Errors 

7-8 SC34-0943 

To verify that the problem is the ADD instruction, do the following: 

1 Find address 0052 on your compiler listing. This line contains the ADD 
instruction. The entire line looks like this: 

8052 8032 0074 0076 ADD COUNT, SUiyj 

The address of the instruction is 0052. The operation code (0032) does not 
change. The next two words, 0074 and 0076, are the addresses of data fields 
COUNT and SUM. 

To fix the logic error, change the instruction to look as follows: 

0052 0032 0076 0074 

2 Enter a PATCH command and respond to the prompts as follows: 

> PATCH 
OPTION (* /ADDRlR0 >; .. R7/ #1l1f2/IAR/TCOD E/UNMAP}: 
ADDRESS: 9954 
LENGTH: ,2 
MOOE(X/F 10 IA/C} : 
NOW IS 
0054 ,A',,·,., 00740076' 

DATA:' 9976 9974 

N~W' ••• QATA 
0054AIG076~0741 

YES/NO/CONTINUE: YES 

The program is now patched. When it executes, it will add COUNT to SUM 
to arrive at the expected result. You can test the change by reexecuting the 
program. 

To reexecute the program, you have to know two things: the address where 
the program is currently stopped (005E) and the address of the first executable 
instruction (0034). Then you can use the GOTO command to restart the 
program at the first executable instruction. 

3 Enter a GOTO command as shown: 

4 The program is now at the beginning. To test it, set all the breakpoints off so 
that the program will run to completion. 

Enter the following: 

0 "" '\ 

o 



c 

C" , I 
, ,1/ 

o 

Ending $DEBUG 

Finding and Fixing Errors 

5 Now enter a GO 'command and respond to the prompts as follows: 

> GO 
ENTER NUMBER: 10 
RESULTS= 100 
ADDl0 ENDED AT 00:27:56 

This time you received the expected result of 100. You have verified that the 
logic error was the ADD instruction. 

Now that you have found and fixed the logic error in your program, use the END 
command to terminate $DEBUG. Enter the following: 

When $DEBUG ends, your program remains in storage with all of its tasks active 
and operating if it has not already ended. In our example, however, the program 
has ended. 

To make the fix permanent, change your source program (see Chapter 3, "Entering 
a Source Program"), recompile it (see Chapter 4, "Compiling a Program"), and 
link edit your object code module (see Chapter 5, "Preparing an Object Module for 
Execution"). 

Displaying Unmapped Storage 
If you write a program that uses unmapped storage, you may want to display 
portions of unmapped storage. Displaying unmapped storage may be necessary to 
determine whether or not a program is processing correctly. 

This section shows how to display a portion of unmapped storage. The program 
example used in this section is shown in "Sample Program" on page 7-12. 

The program moves mortality rates to the unmapped storage areas. To find out if 
the rates are being moved properly, you can display an unmapped storage area as 
follows: 

1 Load $DEBUG and specify your program name: 

The following message appears, telling you that the system is loading 
$DEBUG. 

Chapter 7. Finding and Fixing Errors 7-9 



Finding and Fixing Errors 

7-10 SC34-0943 

2 When $DEBUG asks for the name of the program to be debugged, respond as 
follows: 

3 The utility then prompts for a partition number and a terminal name: 

If you press enter after each of the prompts, the system uses the current 
partition and terminal. 

4 Use the AT command to set a breakpoint to stop the program after the 
END IF statement that follows the two MOVE instructions that move the 
rates to the unmapped storage area (address 152). Respond to the prompts as 
follows: 

5 Enter a GO command. 

Program execution has stopped at the ENDIF statement. One of the MOVE 
instructions has executed. 

6 To see if the program moved data correctly, first find the number of the 
unmapped storage area. CNTRYC (address 02AE) contains the number of 
the unmapped storage area obtained with the SWAP instruction. 

o 

.rr~\ 

U 

o 



o 

Finding and Fixing Errors 

The SWAP instruction obtained unmapped storage area number 3. 

Then display storage in unmapped storage area number 3, using the LIST 
command as follows: 

> LIST 
OPTION.(*/ADDR/R0 ..• R7/#1/#2/1AR/TCQDE/UNMAP):. UNMAP 
STORSLK,ADQRES$(0. TO .. CANCELLI$T): 0484 
SWAP#:3 
DISPLACEMENT: 9 
LENGTH: 20 
MODE(X/F/D/A/C): C 

0000 C'00010002000300030004 1 

This LIST command shows the contents of the unmapped storage area. It 
contains five sets of four-digit numbers that could be mortality rates. Check 
the input data to determine if the program moved them properly. 

Chapter 7. Finding and Fixing Errors 7-11 



Finding and Fixing Errors 

Sample Program 

LOC +0 +2 +4 +6 +8 SOURCE STATEMENT ADD10 ,EDX002 
0000 0008 D7D9 D6C7 D9C1 D440 INSURE PROGRAM ST,DS=((ACTTAB,EDX40),(ACTOUT,EDX40)) 

00B8 
00B8 
00C2 
00C8 
00CE 
0004 
00DE 
00E6 
00EC 
00F2 
00FC 
0100 
010A 
0110 
0llA 
0124 
012A 
0130 
0136 
013E 
0146 
014A 
0152 
0152 
0156 
0156 
015C 
0162 
0168 
0172 
017A 
0184 
018A 
0192 
019C 
01A2 
01A8 
01AE 
01B2 
01B2 

• 
• 
• 

00B9 04B4 0000 0000 0101 
805C 02A8 0001 
035C 0000 04C0 
809C 00EC 000A 
00B9 04B4 02A8 01E4 0300 
8158 0000 4000 0320 
8032 02A8 0001 
0090 0000 0001 
8020 04FA 0001 0000 220E 
0032 0156 
00B1 02AE 04FA 0002 0080 
035C 0000 04C0 
00B9 04B4 02AE 01E4 0300 
00B1 02AC 04FC 0002 0080 
035C 0002 02AC 
8338 0002 0004 
0F32 0000 0002 
00A3 0502 02A6 014A 
015B 0000 04FE 0004 
00A0 0152 
015B 0190 04FE 0004 

00A0 00F2 

805C 02A8 0001 
035C 0000 04C0 
809C 01A8 000A 
00B9 04B4 02A8 01E4 0300 
045B 02B4 0000 0190 
8020 02B4 0002 0000 3110 
0072 01B2 0274 
045B 02B4 0190 0190 
8020 02B4 0002 0000 3110 
0074 01B2 0274 
8032 02A8 0001 
0090 OOOO 0001 
00A0 02A2 

8026 2A2A 7C5C 5C40 C1C3 
• 
• 
• 

7 -12 SC34-0943 

ST 

READ 

STOP 

EOFILE 

COpy 
EQU 
GETSTG 
MOVE 
MOVE 
DO 

SWAP 
MOVE 
ADD 

ENDDO 
READ 

CONVTD 
MOVE 
SWAP 
CONVTD 
MOVE 
MUll 
ADD 
IF 

MOVE 
ELSE 

MOVE 
ENDIF 
GO TO 
EQU 
MOVE 
MOVE 
DO 

SWAP 
MOVE 
WRITE 

MOVE 
WRITE 

STOREQU 
* 
HOLD,TYPE=ALL 
USANO,l 
#l,HOLD+$STORMAP 
10 

HOLD,USANQ,ERROR=SWAPERR 
(+MENTBL,#l) ,C 1 

I, (800,BYTE) 
USANO,l 

DS1,MORTAL,1,END=STOP 

CNTRYC,CNTRY,PREC=S,FORMAT=(2,0,I) 
#l,HOLD+$STORMAP 
HOLD,CNTRYC,ERROR=SWAPERR 
AGEC,AGE,PREC=S,FORMAT=(2,0,I) 
#2,AGEC 
#2,4 
#1,#2 
(SEX,EQ,ONE,BYTE) 

(+MENTBL,#1),RATE,(4,BYTES) 

(+WMNTBL,#1),RATE,(4,BYTES) 

READ 
* 
USANO,l 
#l,HOLD+$STORMAP 
10 

HOLD,USANO,ERROR=SWAPERR 
OUTAREA,(+MENTBL,#1),(400,BYTES) 
DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR 

OUTAREA,(+WMNTBL,#1),(400,BYTES) 
DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR 

ADD USANO,l 
ENDDO 
GOTO END 

EQU * 
PRINTEXT I@** ACTUARIAL FILE HAS EXCEEDED 

o 



Finding and Fixing Errors 

01E0 00A0 02A2 GO TO END 

C 
01E4 SWAPERR EQU * 
01E4 005C 02AA 05FA MOVE TASKRC,INSURE 
01EA 80A2 02AA 021A IF (TASKRC, EQ, 1) 
01F2 8026 2423 7C5C 5C40 C9D5 PRINTEXT I@** INVALID UNMAPPED STORAGE 

• 
• 
• 

021A ENDIF 
021A 802A 02AA 0002 0244 IF (TASKRC,EQ,2) 
0222 8026 1E1D 7C5C 5C40 E2E6 PRINTEXT I@** SWAP AREA NOT INITIALIZED I 

• 
• 
• 

0244 ENDIF 
0244 80A2 02AA 0064 0270 IF (TASKRC,EQ,100) 
024C 8026 201F 7C5C 5C40 D5D6 PRINTEXT I@** NO UNMAPPED STORAGE SUPPORT I 

• 
• 
• 

0270 ENDIF 
0270 00A0 02A2 GOTO END 
0274 WRERR EQU * 
0274 8026 2626 7C5C 5C40 C4C9 PRINTEXT I@** DISK WRITE ERROR ON ACTUARIAL •.. 

• 
• 
• 

029E 00A0 02A2 GOTO END 

CI 02A2 END EQU * 
02A2 0022 FFFF PROGSTOP 
02A6 F1 ONE DATA C1 1 

02A7 
02A8 0000 USANO DATA FI01 

02AA 0000 TASKRC DATA FI01 

02AC 0000 AGEC DATA FI01 

02AE 0000 CNTRYC DATA FI01 

02B0 0000 0200 0000 0000 0000 OUTAREA BUFFER 512,BYTES 
02BA 0000 0000 0000 0000 0000 
04AE 0000 0000 0000 
04B4 0000 C1C1 0000 0000 0000 HOLD STORBLK TWOKBLK=1,MAX=10 

• 
• 
• 

0000 MENTBL EQU 0 
0000 WMNTBL EQU MENTBL+300 
04F6 0000 0100 0000 0000 0000 MORTAL BUFFER 256,BYTES 
0500 0000 0000 0000 0000 0000 
04FA CNTRY EQU MORTAL 
04FC AGE EQU MORTAL+2 
04FE RATE EQU MORTAL+4 
0502 SEX EQU MORTAL+8 
05FA 0000 0000 0000 0234 0000 ENDPROG 
0692 END 

0 ""' 

Chapter 7. Finding and Fixing Errors 7-13 



Finding and Fixing Errors 

Using Return Codes to Diagnose Problems 

7 -14 SC34-0943 

This section describes how to use the return codes to diagnose problems. 

IvIany EDL instructions return a code to indicate whether or not they execute 
successfully. Each time EDX executes one of these instructions, it stores a code, 
called a return code, in the first two words, called task code words, of the task 
control block (TCB). You can access the TCB by referencing the task name. 

In the following example, the instructions at label ERRTEST compare the return 
code of the READTEXT instruction with the successful return code (-1). 

BEGIN PROGRAM START 
• 
• 
• 

READTEXT NAME, 'ENTER NAME: ',SKIP=4,MODE=LINE 
ERRTEST MOVE TASKRC,BEGIN 

IF (TASKRC,NE,-l),GOTO,CHECK 
ENDIF 
• 
• 
• 

CHECK PRINTEXT 'ERROR IN READING NAME',SKIP=l 
PRINTNUM TASKRC 
GOTO END 
• 
• 
• 

END PROGSTOP 
TASKRC DATA F'G' 

ENDPROG 
END 

You must test the return code before executing any other instruction because the 
system may overlay the task code word with the return code of the next instruction. 

o 

If", 
V 

o 



o 

Finding and Fixing Errors 

Diagnosing Errors with ACCA Devices 
To diagnose an error that occurs after you read or write to an ACCA device, you 
can use the following instructions to obtain the return code and three cycle steal 
sta tus words. 

TEST PROGRAM START,TERMERR=TERROR 
• 
• 
• 

COpy CCBEQU 
• 
• 
• 

TCBGET RETCD,$TCBCO 
TCBGET #l,$TCBCCB 

I TERROR 

MOVE CCS,($CCBSTWO,#l),3,FKEY=O 

RETCD 
CCS 

• 
• 
• 

DATA 
DATA 
• 
• 
• 

F'O ' 
3F 'O' 

II Obtain the return code from the first word of the TCB. 

fJ Obtain the address of the CCB (terminal control block). 

II Move the three cycle steal status words to CCS. 

If the return code is not - I, the task code word contains the following information: 

Bit Description 

o Unused 

I - 8 ISB of last operation (I/O 
complete) 

9 Unused 

10 1 if error reported as attention 
interrupt 

11 1 if a write or control operation 
(I/O complete) 

12 Read operation (I/O complete) 

13 -15 Condition code + 1 after I/O start 
or condition code after I/O 
complete 

Refer to the appropriate hardware description manual for a description of the cycle 
steal status words and the interrupt status byte (ISB) condition codes. 

Chapter 7. Finding and Fixing Errors 7 -15 



Finding and Fixing Errors 

Task Error Exit Routines 
This section describes the facilities provided by the system when an exception occurs. 
These are the supervisor facility and the system-supplied task error exit routine. 

When an exception occurs, the supervisor takes certain actions. What action it takes 
depends on whether or not you have coded a task error exit routine in your 
program. If your program does not have a task error exit routine, the supervisor 
simply writes a program check message on $SYSLOG and terminates the program. 
If your program has a task error exit routine, either the one supplied by the system 
or your own, the supervisor does the following: 

1 Stores the hardware status at the time of the exception in a block of storage 
designated by the task. 

2 Passes control to the task at its task error exit entry point. 

At this point, the task error exit routine gains control. The next section discusses 
only the system-supplied routine. However, remember that, if necessary, you can 
substitute your own routine. (For information on writing your own task error exit 
routine, refer to the Customization Guide.) 

Notes: 

1. A task error exit routine is a part of the task it serves. The supervisor passes 
control to it at the task level; it is not a subroutine of the supervisor's error 
handler. 

2. The registers (including the EDL software registers, #1 and #2) used by the error 
exit routine are those normally used by the task. 

3. To resume executing the task following corrective action by task error exit, 
branch (if in Series/1 instruction mode) or GOTO (if in EDL mode) the 
appropriate location. 

4. If the error exit is unable to recover from the exception, it should issue a 
PROGSTOP instruction. 

The System-Supplied Task Error Exit Routine ($$EDXIT) 

7-16 SC34-0943 

A task error exit routine named $$EDXIT is available on volume ASMLIB. This 
routine: 

• Captures relevant data from the program header, task control block, and 
hardware status area when an exception occurs 

• Formats and prints this data on $SYSLOG and $SYSPRTR 

• Displays an error message on the loading terminal. 

o 

o 



Using $$EDXIT 

" C,";' 

C'l 

o 

Finding and Fixing Errors 

To use the supplied routine, you must: 

• Code $$EDXIT as the value of the ERRXIT keyword parameter of each 
PROGRAM and TASK statement in your program. For example: 

AB PROGRAM .... ,ERRXIT=$$EDXIT 
• 
• 
• 

CD TASK .... ,ERRXIT=$$EDXIT 

• Declare the label $$EDXIT to be an EXTRN. 

EXTRN $$EDXIT 

The task error exit routine is included in the autocalliist $AUTO on volume 
ASMLIB. It is included automatically when you link edit any program that 
references $$EDXIT. A separate INCLUDE statement is not required for $$EDXIT 
in the LNKCTRL data set. All you need to do is code $AUTO,ASMLIB as the 
autocall data set on the AUTOCALL statement of $EDXLINK. 

The following example shows what $$EDXIT prints on $SYSLOG and $SYSPRTR. 
It shows that a program check has occurred in an application program named 
PCHECK. The numbers to the left of both columns correspond to the explanations 
that follow the example. For additional information on interpreting program check 
messages refer to the Problem Determination Guide. 

***************************************** 
* WARNING!! AN EXCEPTION HAS OCCURRED!! * 
***************************************** 

I 
PROGRAM NAME PCHECK m PSW = 8002 
PROGRAM VOLUME EDXWRK IAR = 3124 
PROGRAM LOAD POINT 0000 AKR = 0440 
ADDRESS OF ACTIVE TCB 016C LSR = 00D0 
ADDRESS OF CCB 1802 R0 (WORK REGISTER) = 0096 
NUMBER OF DATA SETS 1 I Rl (EDL INSTR ADDR) = 00E7 
NUMBER OF OVERLAYS 0 R2 (EDL TCB ADDR) = 016C 

II $TCBADS 0004 R3 (EDL OPI ADDR) = 00E7 
ADDRESS OF FAILURE R4 (EDL OP2 ADDR) = 00B2 

fJ (REL. TO PGM LOAD POINT = 00E7 m R5 (EDL COMMAND) = 0000 
DUMP OF FAIL ADDRESS R6 (WORK REGISTER) = 0000 

II 00E6: 0000 0028 0028 3635 R7 (WORK REGISTER) = 0000 
$TCBCO = -1 DEC; FFFF HEX #1 = 0000 
$TCB02 = o DEC; 0000 HEX #2 = 0000 

PSW ANALYSIS: 

SPECIFICATION CHECK 
TRANSLATOR ENABLED 

Chapter 7. Finding and Fixing Errors 7-17 



Finding and Fixing Errors 

7-18 SC34-0943 

Explanation: 

II The PROGRAM NAME field identifies the name of the active program. 

II The PROGRAM VOLUME field identifies the name of the volume where the 
program resides. 

II The PROGRAM LOAD POINT field contains the address at which the program 
was loaded for execution. 

II The ADDRESS OF ACTIVE TCB field contains the address of the active task 
control block (TCB) when the exception occurred. 

1.1 The ADDRESS OF CCB field contains the address of the terminal control block 
for the terminal that loaded the program. 

II The $TCBADS field contains the address space where the program is loaded if 
not doing cross-partition move or the target address space if doing a cross-partition 
move. 

B The ADDRESS OF FAILURE field contains the address of the instruction that 
caused the program check. 

II The DUMP OF FAIL ADDRESS field shows the location and content of the 
instruction that was executing when the failure occurred. 

D The PSW field indicates the type of exception that occurred. 

1m The Rl field usually points to the EDL instruction address. 

m The Rl field usually contains the EDL TCB address. 

m The R5 field usually contains the operation code of the EDL instruction that 
was being executed. 

The following message appears on the loading terminal when the program check 
occurs: 

Notes: 

1. If you are executing either a combination of EDL instructions and Series/1 
instructions or all Series/1 instructions, the registers may not contain this 
information. 

2. You can restart the program by writing your own error exit routine to reload it. 

$$EDXIT provides you with information about the program, task, and hardware 
status when an exception occurs. You can extend the capabilities of $$EDXIT so 
that it will also evaluate the information and make an appropriate response. For 
more information on writing your own task error exit routine, refer to the 
Customization Guide. 

o 

o 



0 ", 
" 

c 

o 

Reading Data from and Writing to Screens 

Chapter 8. Reading Data from and Writing to Screens 

The Event Driven Executive allows you to read from and write to a screen that 
appears on a terminal. A person at a terminal can supply data to a program and the 
program can display information on the terminal screen. EDX allows you to use 
two types of screens: roll screens and static screens. 

This chapter describes: 

• When to use roll screens 

• When to use static screens 

• Differences between static screens and roll screens 

• Reading from and writing to roll screens 

• Reading from and writing to static screens 

• Designing device-independent static screens 

• Reading from and writing to a 3101, 3151, 3161, 3163, or 3164 Display terminal. 

Note: The procedures for a 3151, 3161, 3163, or 3164 terminal may differ from the 
procedures for a 3101 terminal. The notations to the examples explain the 
differences in the procedures. However, the procedures in this chapter that describe 
the 3101 terminal also apply to the 3151, 3161, 3163, and 3164 terminals running in 
3101 emulation mode. 

This chapter shows how to write a program to read five data items from a screen 
and write them back to the screen. The chapter shows how to use each kind of 
screen (roll and static). 

You can generally code terminal programs using either roll or static screens. 
However, each screen offers distinct advantages for certain types of programs. 

When to Use Roll Screens 
A roll screen is similar to a typewriter. The system reads or writes data line-by-line, 
starting with line 0 at the top of the screen and ending with line 23 at the bottom of 
the screen. You can use roll screens to read or write a single data item. 

A program that uses roll screens usually prompts the operator for data, waits for an 
operator response, and checks the validity of the input data. Roll screens are best 
suited for application programs in which: 

• A simple question-and-answer dialogue occurs between program and operator. 

• A single line is sufficient for each response. 

• An incorrect response requires only a reprompt. 

• You want to use a minimum of processor storage. 

In addition, the terminal may support roll screens only. 

Chapter 8. Reading Data from and Writing to Screens 8-1 



Reading Data from and Writing to Screens 

Roll screen dialogue is relatively easy to code and requires little program 
preparation. You can code prompts in a tree structure where the choice of the next 
prompt depends on the reply to past prompts. 

You can print more than one line of text to introduce a prompt. For example, you 
might want to offer the choice of several programs to be loaded, each of which may 
choose to continue the dialogue at the same terminal. You can also display more 
than one line of text in a program reply. 

When to Use Static Screens 
A static screen represents a page of information. The system reads or writes an 
entire screen at once. A static screen allows a terminal operator to modify an entire 
screen image before entering the data. You can use static screens to read or write 
several data items at one time. 

Programming for static screens involves managing the entire screen as a series of 
protected and unprotected fields. A protected field is an area that contains an 
operator prompt or an input field name. It is protected from being accidentally 
changed by the operator. An unprotected field is an area that is to be filled in by the 
operator .. 

Static screens are best suited for programs in which: 

• The dialogue involves a series of full screens. 
• More than one line of response may be required. 
• You need to determine cursor position or manipulate the cursor. 
• You need to write protected fields. 
• You need attribute characters such as blinking and nondisplay. 
• The unprotected fields may be scattered across the screen and interspersed with 

the protected fields. 
• Many related data fields are to be entered at one time. 
• Medium to large amounts of data accompany each prompt, operator response, 

or program reply. 

You can manage static screens most easily by using the $IMAGE utility to define 
your screens. $IMAGE places the screens on direct access storage. The program 
then can read them into processor storage. $IMAGE subroutines and terminal I/O 
statements allow you to read the screen into the application program, display it at 
the terminal, position the cursor, scatter read or write unprotected fields, and wait 
for a response. 

Differences Between Static Screens and Roll Screens 

8-2 SC34-0943 

Static screens differ from roll screens in the following ways: 

• Forms-control operations that would cause a page-eject for roll screens simply 
wrap around to the top for static screens. 

• On static screens, the system performs no automatic erasure. 

o 

o 



o 

Reading Data from and Writing to Screens 

• Input operations directed to static screens normally are executed immediately. 
This allows the program to read selected fields from the screen after the operator 
modifies the entire display. A program can issue the WAIT KEY instruction to 
wait for the operator to respond. The operator can signal the program with the 
program function (PF) keys. 

• To allow convenient operator/program interaction, QUESTION, READTEXT, 
and GETVALUE instructions which include prompt messages are executed as if 
they were directed to a roll screen (automatic task suspension for input). 

• On static screens, the "at sign" character @ is a data character. On roll screens, 
it indicates a new line. 

Reading and Writing One Line at a Time 
Reading and writing a single line from a terminal screen involves reading the data 
item from a roll screen and writing or displaying the data item on the screen. 

To read and write to a roll screen: 

1. Reserve storage for data. 
2. Read a data item. 
3. Write a data item. 

Reserving Storage for the Data 
To reserve storage for a data item that you will read, you must know its maximum 
length. To reserve storage for a text string of 30 characters, use the TEXT statement 
as follows: 

NAME TEXT LENGTH=3G 

The name of the storage is NAME. The next section describes how to put a data 
item into NAME. 

Reading a Data Item 
To read a data item from a roll screen, you can use either the READTEXT or 
GETV AL UE instruction. The READ TEXT instruction allows you to read a text 
string. The GETVALUE instruction allows you to read one or more numbers. 

To read a data item into a storage area, use the READTEXT instruction as follows: 

READTEXT NAME,'NAME: ' ,SKIP=l,MODE=LINE 

The instruction displays the prompt NAME: and the system waits for a response. 
When the operator enters a name and presses the enter key, the system stores the 
text string in an area called NAME. 

The operand SKIP = 1 causes the system to skip one line before displaying the 
prompt. The operand MODE = LINE allows blanks in the response. Since most 
names contain at least one blank, you must code MODE = LINE to read the entire 
name. 

Chapter 8. Reading Data from and Writing to Screens 8-3 



Reading Data from and Writing to Screens 

Writing (Displaying) a Data Item 

Example 

8-4 SC34-0943 

Writing (or displaying) a data item involves transferring the data item from storage 
to the terminal screen. You can use either the PRINTNUM or PRINTEXT 
instruction to transfer data to the terminal screen. The PRINTNUM instruction 
transfers one or more numbers. The PRINTEXT instruction transfers a text string. 

To display the data item called NAME, use the PRINTEXT instruction as follows: 

PRINTEXT NAME,SKIP=3 

The operand SKIP = 3 causes the system to skip three lines before displaying 
NAME. 

Prompt the operator for five data items: name, address, city, state, and zip code. 
Then display the five data items. Read from and write to the terminal that loaded 
the program. 

0 TEST PROGRAM BEG 
BEG EQU * 

I READTEXT NAME, , NAME: ',SKIP=1,MODE=LINE 
READTEXT ADDR, ' ADDRESS: ',MODE=LINE 
READTEXT CITY, , CITY:',MODE=LINE 
READTEXT ST, ' STATE: ' 
READTEXT ZIP, I ZIP: ' 

I PRINTEXT NAME,SKIP=3 
PRINTEXT ADDR,SKIP=1 
PRINTEXT CITY,SKIP=1 

B PRINTEXT ST,SPACES=1 
PRINTEXT ZIP,SPACES=2 
PROGSTOP 

NAME TEXT LENGTH=30 
ADDR TEXT LENGTH=30 
CITY TEXT LENGTH=30 
ST TEXT LENGTH=2 
ZIP TEXT LENGTH=5 

ENDPROG 
END 

o Begin the program and execute the instruction at label BEG. 

fJ Prompt the operator for the name and read the operator's response. Allow 
spaces in the name (MODE = LINE), skip one line (SKIP = 1), and store the 
response in NAME. 

II Prompt the operator for the address and read the operator's response. Allow 
spaces in the name (MODE = LINE) and store the response in ADDRESS. Because 
the program writes to a roll screen, the prompt appears one line below the prompt 
for name. 

II Display the data item in NAME. Skip three lines before displaying (SKIP = 3). 

II Display the data item in ADDR. Skip to the beginning of the next line before 
displaying (SKIP = 1). 

B Display the data item in ST. Leave one blank space to the right before 
displaying (SPACES = 1). 

o 

0 

o 



o 

Reading Data from and Writing to Screens 

Executing the Example 
If you entered, compiled, link edited, and loaded the example, the system would 
issue a prompt for each data item. After entering each data item, press the enter 
key. After you enter the last data item (zip code) and press enter, the system 
displays the data items. 

After you enter all five data items, the screen might look like this: 

NAME:ROSE PETERSON 
ADDRESS:11 CYPRESS CREEK RD. 

CITY: SALINA 
STATE:KA 

ZIP:45367 

When you press the enter key, the program displays the name and address as 
follows: 

t 
ROSE PETERSON 

..•... 11 CYPRESS CREEK RO. 
SALINA KA 45367 

Note: Even though CITY is 30 characters long, the system displays only the actual 
length of the data. 

Two Ways to Use Static Screens 
Reading and writing an entire screen at once involves using static screens. The 
Event Driven Executive provides two methods to define static screens. 

The first method requires that the format of the screen be defined within the 
program. Any change to the screen requires a change to the program. 

In addition, programs that use this method are usually not device independent. In 
other words, a program that contains instructions that define a static screen may 
execute successfully on a 4978, 4979, or 4980 terminal and not execute on a 3101, 
3151, 3161, 3163, or 3164 terminal. 

The sections called "Coding the Screen within a Program" on page 8-6 and 
"Transferring an Entire Screen Image at Once" on page 8-10 describe the first 
method. 

The second method for defining screens involves defining the screen with the 
$IMAGE utility and saving it in a data set. This method allows more than one 
program to use the same screen. In addition, a change to the screen does not 
necessarily require a change to each program that uses it. 

Finally, you can write programs that are device independent; they execute 
successfully on 4978,4979,4980,3101,3151,3161,3163, or 3164 terminals. For 
information on designing static screens that you can use on these terminals, see 
"Designing Device-Independent Static Screens" on page 8-24. 

Chapter 8. Reading Data from and Writing to Screens 8-5 



Reading Data from and Writing to Screens 

The section called "Writing the Screen Image to a Data Set" on page 8-15 describes 
the second method. 

For more information on coding static screens, see Appendix C, "Static Screens and 
Device Considerations." 

Coding the Screen within a Program 
This section describes reading data from and writing data to a static screen. 
Instructions in the program create the static screen. 

For more information on static screens, see Appendix C, "Static Screens and Device 
Considerations. " 

This section describes one way to code a static screen within a program. For 
another way to define a screen within a program, see "Transferring an Entire Screen 
Image at Once" on page 8-10. 

This section focuses on a sample program, describing the instructions in the same 
sequence that they appear in the program. 

The sample program: 

1 Defines the screen as static 

2 Gets exclusive access to the terminal 

3 Erases the screen 

4 Reserves storage for data 

5 Prompts the operator for a data item 

6 Positions the cursor 

7 Waits for a response 

8 Reads a data item 

9 Writes a data item. 

Defining a Screen as Static 

8-6 SC34-0943 

To define a screen as a static screen, use the IOCB statement as follows: 

TERM IOCB SCREEN=STATIC 

This statement defines the loading terminal as a static screen. The label TERM 
defines the name you will use in other instructions in the program. 

For information on defining logical screens, see Appendix C, "Static Screens and 
Device Considerations." 

·0 

() 

o 



o 

o 

Reading Data from and Writing to Screens 

Getting Exclusive Access to the Terminal 
Before you can use a terminal as a static screen, you must get exclusive access to it. 
Use the ENQT instruction as follows: 

ENQT TERM 

The operand TERM is the name you used to define the terminal in an IOCB 
instruction. 

Erasing the Screen 
Before you code instructions that prompt the operator for data, you should erase the 
screen. To erase the screen, use the ERASE instruction as follows: 

ERASE MODE=SCREEN,TYPE=ALL,LINE=0 

The operand LINE=O tells the system to begin erasing on line 0 (the first line) of 
the screen. The operand MODE = SCREEN causes the system to erase to the end of 
the screen. The operand TYPE = ALL allows the system to erase both protected and 
unprotected data. 

Reserving Storage 
To reserve storage for a data item that you read, you must know its maximum 
length. To reserve storage for a text string of 30 characters, use the TEXT statement 
as follows: 

NAME TEXT LENGTH=30 

The name of the storage is NAME. The READTEXT instruction transfers the data 
item containing the name into this area of storage. 

Prompting the Operator for a Data Item 
One way you can display information on a static screen is by issuing PRINTEXT 
instructions. For example, to prompt the operator for a name, use the PRINTEXT 
instruction as follows: 

PRINTEXT 'NAME: ',LINE=l,PROTECT=YES 

The instruction displays the prompt NAME. The operand LINE = 1 causes the 
system to display the prompt on the second line of the screen. (The lines on a screen 
are numbered 0-23 and the columns are numbered 0-79.) The operand 
PROTECT = YES causes the prompt NAME: to be protected. A protected field 
cannot be changed by the operator. 

Positioning the Cursor 
If you use PRINTEXT instructions to prompt the operator for several data items, 
you would probably want to position the cursor after the first prompt. To position 
the cursor, you need two instructions: a PRINTEXT instruction and a 
TERMCTRL instruction: 

PRINTEXT LINE=1~SPACES=13 

TERMCTRL DISPLAY 

Chapter 8. Reading Data from and Writing to Screens 8-7 



Reading Data from and Writing to Screens 

The operands LINE = 1 and SPACES = 13 cause the system to position the cursor on 
the fourteenth space of line 1 (the second line). (The lines of a screen are numbered 
o through 23.) 0 
Since the PRINTEXT instruction actually accumulates output in the system buffer, 
the TERMCTRL instruction is required to cause the cursor to be positioned. 

Waiting for a Response 
After you issue all the prompts, you must wait for the operator to respond. To wait 
for a response, use the WAIT instruction as follows: 

WAIT KEY 

The operand KEY means that the program will wait until the operator presses either 
the enter key or one of the Program Function (PF) keys. 

Reading a Data Item 
Reading a data item involves issuing a READTEXT instruction for each data item 
you want to read. The READTEXT instruction might look like this: 

READTEXT NAME,LINE=1,SPACES=13,MODE=LINE 

The instruction reads the data item into the storage area called NAME. The 
operands LINE = 1 and SPACES = 13 cause the system to look for the data starting 
in the fourteenth position of the second line of the screen. The operand 
MODE = LINE allows the data to contain blanks. 

Writing a Data Item 

8-8 SC34-0943 

Writing a data item means transferring a data item from a storage area to the screen. 
A PRINTEXT instruction might look like this: 

PRINTEXT NAME,LINE=ll 

The instruction writes the data item from the storage area called NAME. The 
operand LINE = 11 causes the system to display the data starting in the first position 
of the twelfth line of the screen. 

If you want to display another data item on the next line, you can use the SKIP 
operand as follows: 

PRINTEXT ADDR,SKIP=l 

The SKIP = 1 causes the system to skip to the first position of the next line. 

To leave spaces between one data item and another, use the SPACES operand as 
follows: 

PRINTEXT CITY,SPACES=2 

The SPACES = 2 operand causes the system to leave two blanks between the 
previous data item and CITY. 

o 



Example 

o 

o 

Reading Data from and Writing to Screens 

Prompt the operator for five data items: name, address, city, state, and zip code. 
Then display the five data items. 

II 
m 

TEST 
TERM 
BEG 

NAME 
ADDR 
CITY 
ST 
ZIP 

PROGRAM BEG 
IOCB SCREEN=STATIC 
ENQT TERM 
ERASE MODE=SCREEN,TYPE=ALL,LINE=0 
PRINTEXT' NAME: ',LINE=l,PROTECT=YES 
PRINTEXT' ADDRESS: ',SKIP=l,PROTECT=YES 
PRINTEXT' CITY: ',SKIP=l,PROTECT=YES 
PRINTEXT' STATE:',SKIP=l,PROTECT=YES 
PRINTEXT ' ZIP:' ,SKIP=l,PROTECT=YES 
PRINTEXT LINE=1,SPACES=13 
TERMCTRL DISPLAY 
WAIT KEY 
READTEXT NAME,LINE=1,SPACES=13,MODE=LINE 
READTEXT ADDR,LINE=2,SPACES=13,MODE=LINE 
READTEXT CITY,LINE=3,SPACES=13,MODE=LINE 
READTEXT ST,LINE=4,SPACES=13 
READTEXT ZIP,LINE=5,SPACES=13 
PRINTEXT NAME,LINE=ll 
PRINTEXT ADDR,SKIP=l 
PRINTEXT CITY,SKIP=l 
PRINTEXT ST,SPACES=l 
PRINTEXT ZIP,SPACES=2 
TERMCTRL DISPLAY 
DEQT 
PROGSTOP 
TEXT 
TEXT 
TEXT 
TEXT 
TEXT 
ENDPROG 
END 

LENGTH=30 
LENGTH=30 
LENGTH=30 
LENGTH=2 
LENGTH=5 

II Begin the program and execute the instruction at label BEG. 

fJ Define the screen as static. 

II Get exclusive use of the terminal. 

II Erase the screen. Erase the entire screen (MODE = SCREEN), including 
protected and unprotected fields (TYPE = ALL), and begin on the first line of the 
screen (LINE = 0). 

II Prompt the operator for name. Display the prompt on the second line of the 
screen (LINE = I) and prevent the operator from overlaying the prompt 
(PROTECT = YES). 

II Prompt the 'operator for address. Display the prompt one line below the 
previous prompt (SKIP = 1) and prevent the operator from overlaying the prompt 
(PROTECT = YES). 

fJ Position the cursor on the fourteenth space (SPACES = 13) of the second line of 
the screen (LINE = 1). 

Chapter 8. Reading Data from and Writing to Screens 8-9 



Reading Data from and Writing to Screens 

iii Cause the cursor to be positioned (the previous PRINTEXT instruction 
accumulates output in the system buffer). 

D Wait for the operator to respond to the prompts. Resume execution when the 
operator presses either the enter key or one of the Program Function keys. 

II Read the first data item. Look for the data in the fourteenth space 
(SP ACES = 13) of the second line of the screen (LINE = 1) and allow blanks in the 
data (MODE = LINE). 

m Read the second data item (address). Look for the data in the fourteenth space 
(SPACES = 13) of the third line of the screen (LINE = 2) and allow blanks in the 
data (MODE = LINE). 

lEI Display the data item NAME. Begin displaying the data on the first position 
of the twelfth line of the screen (LINE = 11). 

m Display the data item ADDR. Begin displaying the data on the first position 
of the next line (SKIP = 1). (In this example, ADDR would appear on the thirteenth 
line of the screen.) 

m Display the data item ST. Begin displaying the data after leaving one space 
(SPACES = 1). (In this example, data item ST would appear one space to the right 
of data item CITY.) 

III Cause the data in ZIP to be displayed. (The data in ZIP remains in the system 
buffer until you issue this instruction or end the program with a PROGSTOP.) 

Em Relinquish exclusive use of the terminal. 

Transferring an Entire Screen Image at Once 

8-10 SC34-0943 

This section describes a technique for transferring an entire screen to the display in 
one I/O operation. 

This section shows how to: 

1 Define protected and unprotected fields. 

2 Define the screen. 

3 Erase the screen. 

4 Construct a screen image. 

5 Read a series of data items. 

6 Release the terminal. 

o 



o 

o 

o 

Reading Data from and Writing to Screens 

Defining Protected and Unprotected Fields 
The format of a 4978, 4979, or 4980 screen is defined as each character is written to 
the terminal. Fields are defined as follows: 

• Each character or group of characters written with PROTECT = YES defines a 
protected field. 

• Each character or group of characters written without PROTECT = YES defines 
an unprotected field. 

• Null characters (X I 00 I) can never be protected, so both protected and 
unprotected fields can be defined by writing data containing interspersed nulls 
with PROTECT = YES. 

Once the fields of a screen have been defined, the 4978, 4979, or 4980 knows 
internally whether each of the 1920 positions on the screen is protected or 
unprotected; this is transparent to the user. 

On the 4978, 4979, or 4980 there are two ways to write and read unprotected fields. 
The first is to read/write all the unprotected fields with one input/output operation. 
All the unprotected fields can be filled with data by one "scatter write" operation 
(PRINTEXT MODE = LINE). The unprotected fields can be read using one 
"gather read" operation (READTEXT MODE = LINE). The other way is to read 
or write individual fields by specifying screen coordinates (the LINE = and 
SPACES = parameters). 

Defining the Screen 
To define a screen as static, use the IOCB statement as follows: 

SCREEN IOCB SCREEN=STATIC,BOTM=ll, C 
BUFFER=BUFF,RIGHTM=959 

This statement defines the loading terminal as a static screen. The label SCREEN is 
the name you will use in other instructions in the program. The operand 
BOTM = 11 defines the last usable line on the page as line eleven (the twelfth line). 
The operand RIGHTM = 959 defines the last usable character position on the screen 
as the 959th position. The number 959 is the size of the buffer (BUFF is 960 bytes 
long) minus one. 

Erasing the Screen 
Before you code instructions that prompt the operator for data, you should erase the 
screen. Use the ERASE instruction as follows: 

ERASE TYPE=ALL,LINE=0 

The operand TYPE = ALL tells the system to erase both protected and unprotected 
data. The operand LINE = 0 tells the system to begin erasing on line 0 (the first 
line) of the screen. 

Chapter 8. Reading Data from and Writing to Screens 8-11 



Reading Data from and Writing to Screens 

Constructing a Screen Image 
To construct a screen image that minimizes screen flicker, you can concatenate a 
series of protected fields. The following instructions display an array of integers on 
the first six lines of the screen (lines 0 - 5). 

I 
DO 96,INOEX=1 

PRINTEXT 'FIELD!,PROTECT=YES 
PUTEOIT FORMAT1,VALS,((I)),PROTECT=YES 
PRINTEXT • ',PROTECT=YES 
PRINTEXT NULLS,PROTECT=YES 

ENOOO 
PRINTEXT LINE=8 

II Begin a DO loop to construct the screen image. The screen image consists of 96 
protected fields of the form FIELDxx, where xx is a sequential field number, each 
followed by one protected blank and two unprotected data positions. 

fJ Put the literal FIELD in the buffer. 

II Convert the sequence number to two EBCDIC characters and write it to the 
buffer. 

II Insert a protected separation character. 

II Define the data position with two null characters. Null characters generate 
unprotected fields. The operand PROTECT = YES is necessary to preserve 
concatenation. (You can concatenate a series of fields only if the fields are all 
protected (PROTECT = YES) or all unprotected (PROTECT = NO).) 

II Write the concatenated line to the screen. (Any line control character causes the 
system to display the concatenated fields.) 

Reading a Series of Data Items 
To read a series of data items, use the READTEXT instruction as follows: 

REAOTEXT VALS,MOOE=LINE,LINE=6 

The instruction does a "gather read," reading all the values beginning on line 6 (the 
seventh line) of the screen into VALS. The operand MODE = LINE indicates the 
gather read. 

Releasing the Terminal 

8-12 SC34-0943 

To release the terminal, use the DEQT instruction: 

OEQT 

The instruction releases the buffer designated in the IOCB statement and restores the 
configuration to that defined by the TERMINAL statement. 

o 

o 

o 



Example 

C) 

0 

Reading Data from and Writing to Screens 

Line-oriented input/output instructions provide a straightforward way to construct 
and read data from static screens. However, when individual data fields on the 
4978, 4979, or 4980 are accessed frequently, excessive screen flicker can result. This 
problem can be eliminated by transferring an entire screen image to the display with 
one I/O operation. The following program shows this technique. 

The program accesses the top six lines of a static screen and initially formats the 
screen with a sequence of protected fields. An array of integers is displayed on lines 
0-5 of the screen and a pause is executed to allow the operator to enter a new set 
of values in corresponding positions of lines 6 - 11. The new values are then 
displayed on lines 0 - 5 of the screen. 

In this program, terminal I/O operations are performed through concatenation of 
TEXT strings. If the application requires more complex formatting of the screen 
image, or if input of more than 254 bytes at a time is necessary, then direct access to 
the buffer is appropriate. See the PRINTEXT and READTEXT instructions in the 
Language Reference for details. 

DISPLAY PROGRAM BEGIN 
II SCREEN roCB SCREEN=STATIC,BOTM=ll, C 

BUFFER=BUFF,RIGHTM=959 
DATA F'01 

BUFF BUFFER 960,BYTES 
DATA X' 0202 1 

NULLS DATA X' 00El0 1 

NUMS DATA 48F '01 

VALS TEXT LENGTH=254 
BEGIN ENQT SCREEN 

ERASE TYPE=ALL, LINE=0 
DO 96,INDEX=I 

PRINTEXT 'FIELD',PROTECT=YES 
PUTEDIT FORMATl,VALS,((I)),PROTECT=YES 
PRINTEXT I I, PROTECT=YES 
PRINTEXT NULLS,PROTECT=YES 
ENDDO 

II PRINTEXT LINE=0 
WRITE PUTEDIT FORMATl,VALS,((NUMS,48)), C 

ACTION=STG 
III PRINTEXT VALS,MODE=LINE,LINE=0 

PRINTEXT LI NE=6, SPACES=8 

I TRANSFER 

TERMCTRL DISPLAY 
WAIT KEY 
GOTO (TRANSFER,QUIT),DISPLAY+2 
READTEXT VALS,MODE=LINE,LINE=6 
GETEDIT FORMATl,VALS,((NUMS,48)), C 

ACTION=STG 

I ERASE LINE=6,MODE=SCREEN,TYPE=DATA 
GOTO WRITE 

QUIT DEQT 
PROGSTOP 

FORMATI FORMAT (I2) 
ENDPROG 
END 

II Define the static screen with the terminal I/O buffer to be in the application 
program at BUFF, with a length of 960 bytes (half of the 4979 display screen). 

Chapter 8. Reading Data from and Writing to Screens 8-13 



Reading Data from and Writing to Screens 

8-14 SC34-0943 

fJ Allocate storage for the buffer. Note that in this program the buffer is never 
accessed directly; the space is merely allocated here for use by the supervisor. 

II and fJ Define a TEXT message consisting of two null characters (EBCDIC 
code X 100 1). 

II and 1:1 Define the array of integers (initially zero) and the TEXT buffer that 
will be used for output of the data in EBCDIC form. 

II and fJ Acquire the terminal, erase all data and establish the screen position for 
the first I/O operation. Since several text strings will be concatenated to form the 
first output line, the screen position must be established in advance. 

II Begin a DO loop to construct the initial screen image. This will consist of 96 
protected fields of the form FIELDxx, where xx is a sequential field number, each 
followed by one protected blank and two unprotected data positions. Note the 
conditions required for forming a concatenated line: the protect mode of the 
PRINTEXT instructions must not change (either all PROTECT = YES or all 
PROTECT = NO), and no intervening forms control operations can be executed. 
The TERMCTRL DISPLA Y instruction prints the contents of the terminal buffer. 

II Write "FIELD" to the buffer. 

II!I Convert the sequence number to two EBCDIC characters and write it to the 
buffer. 

m Write a protected separation character. 

m Write the two null characters to define the data positions. Null characters 
always generate unprotected positions on the screen; however, PROTECT = YES is 
required here in order to maintain concatenation. 

m Write the concatenated line to the display. Any convenient line control 
operation or the DEQT instruction will accomplish this. 

m Convert the integer array to two-character EBCDIC values and store the 
resulting line in the TEXT buffer V ALS. 

m Write the values into successive unprotected positions of the display beginning 
at LINE = O,SPACES = O. This "scatter write" operation is defined by 
MODE = LINE; without MODE = LINE the protected fields of the display would be 
overwritten. 

III Define the cursor to be at the first unprotected position. 

m Display the cursor at its defined position. 

1m Wait for the operator to press an interrupt key. 

OJ Go to QUIT if PFI was pressed. Go to TRANSFER if the ENTER key or 
any key other than PF 1 was pressed. 

o 

o 

o 



o 

o 

Reading Data from and Writing to Screens 

HI Read the updated values entered by the operator in lines 6 -11. 
MODE = LINE indicates a "scatter read." 

HI Convert the EBCDIC representations to binary and store the binary values in 
the array NUMS. 

m Erase the unprotected (data) fields in lines 6 - 11 of the screen. 

HI Repeat beginning at the label WRITE. 

Ell Release the terminal. The buffer designated in the IOCB will be released and 
the screen configuration restored to that defined by the TERMINAL statement. 

Writing the Screen Image to a Data Set 
This section shows how to create a screen image and use it in a program. The 
approach assumes that you want to write a program that can execute on different 
terminals. 

For information on writing terminal-independent static screens, see "Designing 
Device-Independent Static Screens" on page 8-24. For more information on writing 
a screen image to a data set, see Appendix C, "Static Screens and Device 
Considerations." 

Writing a screen to a data set and using it in a program requires that you do the 
following things: 

1 Create the screen. 

2 Define the screen as static. 

3 Read the screen into a buffer. 

4 Get exclusive access to the terminal. 

5 Display the screen and position the cursor. 

6 Reserve storage for data. 

7 Wait for a response. 

8 Read a data item. 

9 Write a data item. 

10 Link edit the program. 

Chapter 8. Reading Data from and Writing to Screens 8-15 



Reading Data from and Writing to Screens 

Creating a Screen 
To create a screen image, use the $IMAGE utility as follows: 

8-16 SC34-0943 

1 From the session manager, select option 4 (TERMINAL UTILITIES) from 
the primary option menu. 

2 Then select option 4 ($IMAGE). This option loads the $IMAGE utility. 

3 Define a null character when the COMMAND(?) prompt appears by entering: 

You will use the null character to define unprotected fields. Unprotected fields 
are the fields in which the operator will enter data. 

4 Define the screen dimensions as 24 by 80 (full screen) by entering: 

5 Enter the command EDIT. A blank screen appears. 

6 Press the PF 1 key to enter define protected fields mode. While in define 
protected fields mode, you can define the screen. 

7 Enter the text for your screen image. Enter the fixed part of the screen exactly 
as you want it to appear on the screen. The fixed fields are called protected 
fields. Use the null character (#) to define the unprotected data fields. 

An example of how the screen might look follows: 

8 Press the enter key after you complete the design of your screen image. The 
enter key takes you out of define mode. 

9 Press the PF3 key to return to the $IMAGE command mode. 

0" 
... '111:.) 

o 



o 

10 

Reading Data from and Writing to Screens 

Save your new screen image in data set AP08CSCR on volume EDX002 by 
entering: 

l~. ______ s_A_V_E~A_P_08_C_S~CR~,_E~DX_O_O_2 ____ ~ __ ~~~~~~~~~ __ ~ ____ ~~ 

11 In response to the message: 

SHOULD THE3.lXX INFORMATION .. BE SAVED (Y/N)? 

reply N if you want to save only a 4978/4979/4980 screen image. Reply Y to 
this message if you are using the ATTR command of $IMAGE to define a 
31xx screen image. Refer to the Operator Commands and Utilities Reference 
for details on the ATTR command of $IMAGE. 

Note: A 31xx screen image is used for a 3101,3151,3161,3163, or 3164 
terminal in block mode. 

12 After the system saves the screen, use the EN command to end the $IMAGE 
utility. 

For more information on creating a screen image, refer to the Language Reference. 

Defining the Screen as Static 
To define a screen as static, use the IOCB statement as follows: 

TERM IDCB SCREEN=STA TI C, X 
BUFFER=IOBUF, X 
OVFLINE=YES, X 
LEFTM=0, X 
RIGHTM=79, X 
TOPM=0, X 
BOTM=23 

This statement defines the loading terminal as a static screen. The label TERM 
defines the name you will use in other instructions in the program. The BUFFER 
operand identifies IOBUF as the buffer that will be associated with the screen. The 
OVFLINE operand tells the system to continue a line that exceeds the right margin 
on the next line. The next four operands (LEFTM, RIGHTM, TOPM, and BOTM) 
define the static screen as the entire physical screen (lines 0 - 23 and columns 0 -79). 

Note: Remember that to continue a line, the continued line must begin in column 
16. 

For information on defining logical screens, see Appendix C, "Static Screens and 
Device Considerations." 

Chapter 8. Reading Data from and Writing to Screens 8-17 



Reading Data from and Writing to Screens 

Readi~g the Screen Image into a Buffer 
To read the screen you have created, you need to do the following things: 

1 Code the name and volume of the screen in a TEXT statement: 

DSNAME TEXT I AP08CSCR,EDX002I 

This TEXT statement refers to data set AP08CSCR on volume EDX002. This 
data set contains the screen you saved when you used the $IMAGE utility. 

2 Reserve storage for the screen with a BUFFER statement: 

DISKBFR BUFFER l024,BYTES 

The amount of storage you reserve depends on how many bytes $IMAGE 
used to store the screen image. For example, if $IMAGE used 900 bytes to 
store a screen image, use 1024 bytes (the next highest 256-byte increment). See 
"Coding for Device Independence" on page 8-26 for more information about 
calculating additional buffer requirements for $IMAGE for the 3101,3151, 
3161, 3163 and 3164 terminals. 

3 Specify the type of image data set you have created or specify four blank 
characters for the data stream of the terminal type: 

TERMTYPE DATA C· 

The type of image data set refers to the way you stored the data set. The 
system always saves a 4978/4979/4980 screen image. You may, however, 
choose that the system also save 31xx screen information. 

Note: A 31xx screen image is used for a 3101,3151,3161,3163, or 3164 
terminal in block mode. 

4 Use the CALL instruction to read the screen: 

CALL $IMOPEN,(DSNAME),(DISKBFR),(TERMTYPE) 

The $IMOPEN subroutine reads the screen from the data set defined by 
DSNAME and puts the screen into DISKBFR. TERMTYPE refers to the 
DATA statement that defines the type of image data set. 

Getting Exclusive Access to the Terminal 

8-18 SC34-0943 

Before you can use a terminal as a static screen, you must get exclusive access to it. 
Use the ENQT instruction as follows: 

ENQT TERM 

The operand TERM is the name you used to define the terminal in the IOCB 
instruction. 

o 

o 

o 



c 

o 

Reading Data from and Writing to Screens 

Displaying the Screen and Positioning the Cursor 
Displaying the screen and positioning the cursor involves three instructions. 

The first instruction, the CALL $IMPROT instruction, prepares the protected fields 
for display: 

CALL $IMPROT,(DISKBFR),(FTABLE) 

The presence of the third operand (in this case, FTABLE) causes the instruction to 
construct what is called a field table. Afield table shows the location and length of 
each unprotected field on the screen. Define the field table as follows: 

FTABLE BUFFER 15,WORDS 

The field table requires 3 words for each unprotected field. 

The second instruction positions the cursor after the first prompt: 

PRINTEXT LINE=1,SPACES=9 

Finally, the third instruction displays the screen: 

TERMCTRL DISPLAY 

Reserving Storage for Data 
To reserve storage for a data item that you read, you must know its maximum 
length. To reserve storage for a text string of 5 characters, use the TEXT statement 
as follows: 

ZIP TEXT LENGTH=5 

The name of the storage is ZIP. This storage area will eventually contain five bytes 
of data in our example (the zip code). 

Waiting for a Response 
After you issue the prompts, you must wait for the operator to respond. To wait for 
a response, use the WAIT instruction as follows: 

WAIT KEY 

The operand KEY means that the program will wait until the operator presses either 
the enter key or one of the Program Function (PF) keys. 

Chapter 8. Reading Data from and Writing to Screens 8-19 



Reading Data from and Writing to Screens 

Reading a Data Item 
Reading a data item involves reading all unprotected data from the screen. Use the 
READTEXT instruction as in the following example: 

READTEXT IOBUF,MODE=LINE,LINE=O,SPACES=O 

The instruction reads all unprotected data into the buffer called IOBUF. The 
operands LINE = 0 and SPACES = 0 cause the system to look for the data starting in 
the first position of the screen. MODE = LINE allows for blanks in the input data. 

To move each data item into its own storage area, use the following instructions: 

MOVEA #l,IOBUF 
MOVE NAME,(O,#1),(30,BYTE) 

The MOVEA instruction moves the address of IOBUF which contains the 
unprotected fields. The MOVE instruction moves the 30 bytes at the start of the 
buffer to NAME. 

For each additional field, increment register 1 to the next field in IOBUF and move 
the field to its data area: 

ADD #1,FTABLE+4 
MOVE ADDR,(O,#1),(30,BYTE) 

The ADD instructions adds the size of the first field (NAME) to register 1. The 
MOVE instruction moves the 30 bytes at IOBUF + 30 to ADDR. 

o 

Writing a Data Item 0" .1" 

Writing a data item means transferring a data item from a storage area to the screen. 

8-20 SC34-0943 

A PRINTEXT instruction might look like this: 

PRINTEXT NAME,LINE=ll 

The instruction writes the data item from the storage area called NAME. The 
operand LINE = 11 causes the system to display the data starting in the first position 
of the twelfth line of the screen. 

If you wanted to display another data item on the next line, you could use the SKIP 
operand: 

PRINTEXT CITY,SKIP=l 

The SKIP = 1 causes the system to skip to the first position of the next line before 
displaying the data item CITY. 

To display another data item on the same line, you could use the SPACES operand: 

PRINTEXT ST,SPACES=l 

SPACES = 1 causes the system to skip one space on the same line before displaying 
the data item ST. 

o 



o 

Reading Data from and Writing to Screens 

Link Editing the Program 
Using the $IMAGE subroutines ($IMOPEN, $IMDEFN, $IMPROT, and 
$IMDATA) means that you must do one more thing when you link edit the 
program. You must reference the $IMAGE subroutines you have used. An 
EXTRN statement must be coded for each subroutine name your program 
references. 

You must supply the linkage editor, $EDXLINK, the following "control 
statements": 

AUTOCALL $AUTO,ASMLIB 
INCLUDE ASMOBJ,EDX002 
LINK AP08C,EDX40 REPLACE END 

The first control statement refers to a library of IBM-supplied routines. Unless you 
have moved the library, you can code this statement as you see it here. 

The second control statement refers to where you put the output of the compiler. 

The third control statement says to put the output of the link edit on volume 
EDX40, call it AP08C, and replace it if it already exists. END tells $EDXLINK not 
to expect any other control statements. 

You can either create a data set containing these control statements or enter the 
statements "interactively" each time you execute $EDXLINK. 

For more information on link editing, see Chapter 5, "Preparing an Object Module 
for Execution." 

Chapter 8. Reading Data from and Writing to Screens 8-21 



Reading Data from and Writing to Screens 

Example 
Prompt the operator for name, address, city, state, and zip code. Then display the 0,," 
five data items. Use the screen AP08CSCR on volume EDX002 (already defined 
with the $IMAGE utility). 

I TEST PROGRAM BEG 
EXTRN $IMOPEN,$IMDEFN,$IMPROT,$IMDATA 

TERM IOCB SCREEN=STATIC, C 
BUFFER=IOBUF,OVFLINE=YES,LEFTM=O, C 
RIGHTM=79,TOPM=O,BOTM=23 

I. 

BEG CALL $IMOPEN, (DSNAME),(DISKBFR), (TERMTYPE) 
MOVE CODE,TEST+2 
IF CODE,NE,-l 

PRINTEXT IOPEN ERROR CODE = I,SKIP=l 
PRINTNUM CODE 
GO TO END 

ENDIF 
ENOT TERM 
CALL $IMPROT, (DISKBFR), (FTABLE) 
PRINTEXT LINE=1,SPACES=9 
TERMCTRL DISPLAY 
WAIT KEY 
READTEXT IOBUF,MODE=LINE,LINE=O,SPACES=O 
MOVEA #1, IOBUF 
MOVE NAME,(O,#1),(30,BYTE) 
ADD #1,FTABLE+4 
MOVE ADDR,(O,#1),(30,BYTE) 
ADD #1,FTABLE+1O 
MOVE CITY,(O,#1),(30,BYTE) 

0 ADD #1,FTABLE+16 
MOVE ST,(O,#1),(2,BYTE) 
ADD #1,FTABLE+22 
MOVE ZIP,(O,#1),(5,BYTE) 

It PRINTEXT NAME, LINE=l1 
PRINTEXT ADDR,SKIP=l 
PRINTEXT CITY,SKIP=l 

1m PRINTEXT ST,SPACES=l 
PRINTEXT ZIP,SPACES=2 
DEOT 

END PROGSTOP 

I 
DSNAME TEXT IAP08CSCR,EDXOO2 1 

DISKBFR BUFFER 1024,BYTES 
TERMTYPE DATA C4978 1 

FTABlE BUFFER 15,WORDS 
IOBUF BUFFER 1920,BYTES 
CODE DC FIO I 

NAME TEXT LENGTH=30 
ADDR TEXT LENGTH=30 
CITY TEXT LENGTH=30 
ST TEXT LENGTH=2 
ZIP TEXT LENGTH=5 

ENDPROG 
END 

0 

8-22 SC34-0943 



o 

C\· U 

o 

Reading Data from and Writing to Screens 

II Begin the program and execute the instruction at label BEG. 

fJ Define as external references the $IMAGE subroutines that the program uses. 
The linkage editor resolves these external references when you use the autocall 
option. 

IJ Define the screen as static. 

lEI Read the screen from the data set defined by DSNAME. Put the screen in the 
buffer defined by DISKBFR. 

g Move the return code that resulted from the $IMOPEN subroutine to CODE. 

m If the return code that resulted from the $IMOPEN subroutine does not indicate 
"successful completion," display an error message and end the program. 

ID Get exclusive use of the terminal. 

iii Prepare the protected fields for display. 

II Position the cursor on the tenth space (SPACES = 9) of the second line of the 
screen (LINE = 1). 

1m Display the screen. 

m Wait for the operator to respond to the prompts. Resume execution when the 
operator presses either the enter key or one of the Program Function keys. 

m Read all unprotected data. Look for the data in the first space (SPACES =0) 
of the first line of the screen (LINE = 0) and allow blanks in the data 
(MODE = LINE). 

m Move the address of the buffer (lOBUF) that contains the unprotected data 
into register 1. 

m Move the first 30 characters from the buffer to NAME. 

m Increment register 1 to point to the next data item (address). 

1m Display the data item NAME. Begin displaying the data on the first position 
of the twelfth line of the screen (LINE = 11). 

m Display the data item ADDR. Begin displaying the data on the first position 
of the next line (SKIP = 1). (In this example, ADDR would appear on the thirteenth 
line of the screen.) 

1m Display the data item ST. Begin displaying the data after leaving one space 
(SPACES = 1). (In this example, data item ST would appear one space to the right 
of data item CITY.) 

m Point to the data set (AP08CSCR on volume EDX002) that contains the screen 
created with the $IMAGE utility. 

Chapter 8. Reading Data from and Writing to Screens 8-23 



Reading Data from and Writing to Screens 

Em Reserve storage for the screen. (Except for screens much larger than the one in 
this example, 1024 bytes is enough storage.) 

HI Define the type of image data set to be read. C 1 4978 1 allows you to write the 
screen to a 4978, 4979, 4980, 3101, 3151, 3161, 3163, or 3164 terminal, regardless of 
what screen image was saved on disk. C ' 3101 1 allows you to write the screen to a 
3101 terminal if you saved the 31xx screen image. C 13161 1 allows you to write the 
screen to a 3151/3161 if you saved the 31xx screen image. C ' 3163 1 allows you to 
write the screen to a 3163 if you saved the 31xx screen image. C 13164 1 allows you 
to write the screen to a 3164 if you saved the 31xx screen image. If you code CI 
I, you can write the screen to whatever terminal has been enqueued. 

m Reserve storage for the field table. 

m Reserve storage for the unprotected data. 

Designing Device-Independent Static Screens 
The following sections mention both the $IMAGE utility and the $IMAGE 
subroutines. For a complete description of the $IMAGE utility, refer to the 
Operator Commands and Utilities Reference. For descriptions of the $IMAGE 
subroutines, see "$IMAGE Subroutines" on page C-3. 

Designing Static Screens 

8-24 SC34-0943 

This section describes how to design terminal independent static screens and 
discusses a limitation in compatibility between the terminal types. 

The $IMAGE utility and subroutines treat an unprotected field as a string of 
unprotected characters. Unprotected characters are denoted as null characters. If 
the $IMAGE null character were the "percent sign" character, (%), then an 
unprotected field, eight characters long, could be defined as: 

ENTER NAME HERE ==> %%%%%%%% 

If you do not place attribute characters around an unprotected field, $IMAGE 
automatically inserts the default attribute in 31xx screen images for the 3101, 3151, 
3161, 3163, and 3164 terminals~ Refer to the Operator Commands and Utilities 
Reference for information on the characteristics of the default attribute. If you do 
not want to define unique attributes (such as blinking), you can design screens for 
the 4978, 4979, or 4980 and use them on 3101, 3151, 3161, 3163, and 3164 terminals 
with default attributes. 

o 

o 

o 



C" , I 

o 

Reading Data from and Writing to Screens 

You can also design 31xx screens with unique attribute characters. In this case, a 
31xx screen image is created by $IMAGE as well as a 4978/4979/4980 image. The 
31xx information is ignored for display on the 4978, 4979, or 4980. If the "pound 
sign" character ,(#), were defined as the blinking attribute, both fields in the 
previous example could be made to blink as follows: 

#ENTER NAME HERE ==> #%%%%%%%@ 

On a 3101,3151,3161,3163, or 3164, a blinking, protected attribute byte would 
replace the first pound sign and a blinking, unprotected attribute byte would replace 
the second pound sign. The pound sign does not change the protect status of the 
field, merely its display properties; the "null" character determines whether the field 
is protected or unprotected. The screen could be reset to nonblinking by placing the 
default attribute (in this case, @) at the end of the protected field. 

Compatibility Limitation 
This scheme has a limitation because an attribute byte is displayed as a protected 
blank. This character, the attribute byte, which precedes a field (protected or 
unprotected) is always displayed as a blank on a 3101,3151,3161,3163, or 3164 
terminal, even if a protected (nonblank) character appears on a 4978, 4979, or 4980. 
For example, the following screen is designed to display the month, day, and year as 
MM/DD/YY: 

%%/%%/%% 

On a 4978, 4979, or 4980, the date would appear as: 

10/30/80 

On a 3101, 3151, 3161, 3163, or 3164, however, the date would appear as: 

10 30 80 

The slash characters on the 4978, 4979, or 4980 are replaced by attribute bytes on 
the 3101, 3151, 3161, 3163, and 3164. Therefore, screens designed for the 4978, 
4979, or 4980 do not have to be changed for use on the 3101, 3151, 3161, 3163, and 
3164. However, you have to alter them if you do not want protected characters to 
disappear when displayed on a 3101, 3151, 3161, 3163, or 3164. 

Chapter 8. Reading Data from and Writing to Screens 8-25 



Reading Data from and Writing to Screens 

Coding for Device Independence 

8-26 SC34-0943 

To achieve static screen device independence between the 4978, 4979, or 4980 
Display Terminal and the 3101, 3151, 3161, 3163, and 3164 Display Terminal, you 
must use functionally equivalent terminal instructions on the terminals. The 
following considerations show one approach which provides some device 
independence. 

• Use the 4978/4979/4980 screen images produced by $IMAGE for 4978,4979, 
4980 and 3101,3151,3161,3163,3164 compatible applications. 

• Specify an image type of C 14978 1 on calls to $IMOPEN. 

• Specify FTAB on calls to $IMPROT. The FTAB buffer is initialized to describe 
each unprotected field on the screen and requires three words per entry. 

• Use calls to $IMDATA to "scatter write"the unprotected data to either type 
terminal. 

PRINTEXT MODE = LINE does not produce a scatter write operation on the 
3101,3151,3161,3163, or 3164 (as it does on the 4978,4979, or 4980). A call 
to $IMDA T A, specifying the FT AB produced by the prior call to $IMPROT 
and the user buffer, performs the scatter write operation on the 4978, 4979, or 
4980 and simulates the scatter write on the 3101, 3151, 3161, 3163, or 3164. 

$IMDAT A can be used to write either default unprotected data from the screen 
image or user data contained in a user buffer. 

• For "gather read" operations use: 

READTEXT MODE=LINE,TVPE=DATA,LINE=O,SPACES=O 

Read operations from the 3101 running in block mode start with the first data 
field encountered, beginning with the upper left corner and continuing to the end 
of the screen. Specifying LINE = O,SP ACES = 0 makes the READ TEXT from 
the 4978, 4979, or 4980 functionally equivalent to the 3101 running in block 
mode. 

On the 3151,3161,3163, and 3164 terminals, if the first position of the screen is 
unprotected, unpredictable results will occur when reading the screen. To 
achieve static screen independence, ensure that the first character position on the 
screen is protected from operator input. The first character should be either an 
attribute character or a protected data character on the 3151, 3161, 3163, or 
3164, never a null character. 

In addition, the 3101 prefixes each field transmitted with three bytes of control 
information; this results in a 3101 data stream. The 3151 and 3161 prefixes each 
field transmitted with four bytes of control information; this results in a 3161 
data stream. The 3163 and 3164 prefix each field transmitted with six bytes of 
control information; this results in a 3164 data stream. Although EDX removes 
this control information, the user buffer must be large enough to contain the 
entire data stream that is transmitted. 

o 

o 



c 

o 

o 

Reading Data from and Writing to Screens 

• Using care, individual fields can be changed with: 

PRINTEXT MODE=LINE,LINE= ,SPACES= 

When issued to a 3101,3151,3161, 3163, or 3164, the PRINTEXT 
instruction first writes an attribute byte, followed by the text data. The data 
field thus appears displaced one position to the right when compared to the 
result of a PRINTEXT issued to the 4978, 4979, or 4980. 

To suppress the writing of an attribute byte to the screen, use: 

TERMCTRL SET,ATTR=NO 

prior to the PRINTEXT(s). After the last PRINTEXT, code TERMCTRL 
SET,ATTR=YES. The 4978, 4979, and 4980 ignore these TERMCTRL 
instructions. 

Be careful to ensure that the data being sent to the 3101, 3151, 3161, 3163, 
or 3164 does not extend beyond one data field; if it does, it will overlay and 
eliminate existing attribute characters. Once the screen attributes are 
changed, the FTAB no longer represents the screen and $IMDAT A 
operations will produce undesired results. 

Writing protected nulls to create additional unprotected 4978, 4979, or 4980 
fields is not supported for the 3101, 3151, 3161, 3163, or 3164 running in 
block mode. Avoid this practice. 

• Avoid the combination of "count" and TYPE = DATA in the ERASE 
instruction. On the 3101, 3151, 3161, 3163, or 3164, the erase starts at the 
current cursor position and continues to the end of screen; the count operand is 
ignored. 

• Avoid the combinations of TYPE = DATA,MODE = LINE and 
TYPE = DATA,MODE = FIELD in the ERASE instruction. Although these 
combinations work as anticipated on the 4978, 4979, or 4980, the 3101, 3151, 
3161,3163, and 3164 force the MODE = parameter to SCREEN. 

• Avoid the combination of "count," TYPE=ALL and MODE=FIELD in the 
ERASE instruction. The 3101, 3151, 3161, 3163, and 3164 force 
MODE = FIELD to MODE = LINE. The operation ends when the count 
reaches zero or the current line ends, whichever occurs first. 

• To erase unprotected fields that do not end at end-of-line or end-of-screen, use 
one of the following techniques: 

Use a PRINTEXT instruction with LINE and SPACES parameters to write 
blank characters to each individual field, being careful not to change or 
eliminate 3101,3151,3161,3163, or 3164 attribute bytes. 

Note: If the screen attributes are changed or eliminated, then the screen 
format will no longer match the FTAB and the data will not be directed to 
the correct locations on the screen. To re-establish the screen, call 
$IMPROT before calling $IMDAT A. 

Use READTEXT TYPE = DATA to read all unprotected data from the 
screen into a user buffer. Next, blank out (or change) the appropriate fields 
in the buffer. Then use the "USER" buffer features of $IMDAT A to 
rewrite the unprotected data. 

Chapter 8. Reading Data from and Writing to Screens 8-27 



Reading Data from and Writing to Screens 

Using the $IMAGE Subroutines for Device Independence 
This section presents a way to write terminal-independent applications that use static (') 
screens. Using this method, the $IMAGE utility creates screen images and stores , 
them on disk or diskette. Later, your application program can display and use the 
images by calling system-provided subroutines. Collectively these subroutines are 
called the "$IMAGE subroutines." See "$IMAGE Subroutines" on page C-3 for 
individual descriptions of each subroutine. 

This section describes the basic steps in an application program which displays and 
processes a static screen (with a size of 24 lines and 80 characters per line): 

• Retrieve the screen 

• Display the protected data 

• Display and retrieve the unprotected data. 

Retrieving the Screen Format 
The first step is to retrieve the screen image by calling $IMOPEN. The type 
operand of $IMOPEN specifies the type of image to be retrieved. If the type 
operand is set to blanks, the image retrieved corresponds to the type of terminal 
upon which the program is running, if that image was saved. If a particular screen 
image is needed but unavailable, the 4978/4979/4980 format is retrieved and 
converted dynamically. For example: 

CALL $IMOPEN,(DSNAME),(FORMAT),(TERMTYPE) 

DSNAME TEXT 
FORMAT BUFFER 
TERMTYPE DATA 

LENGTH=15 
n,BYTES 
CL4 1 

format data set name 
format buffer 
adapt to running terminal 

Displaying the Protected Data 

8-28 SC34-0943 

The screen format itself (the protected data) can be displayed with a call to 
$IMPROT. 

CALL $IMPROT,(FORMAT),(FTAB) 

FTAB BUFFER n,WORDS field table 

The field table (FTAB) is required for the 3101, 3151, 3161, 3163, and 3164 
terminals. For a description of the field table, see "$IMPROT Subroutine" on 
page C-8. 

o 



o 

CI~ 

."" 

o 

Reading Data from and Writing to Screens 

Displaying the Unprotected Data 
At this point many applications generate and then display some data in the 
unprotected fields. On a 4978, 4979, or 4980 you can use PRINTEXT 
MODE = LINE to perform a scatter write operation. However, since this is not 
supported on a 3101,3151,3161,3163, or 3164, you should use $IMDATA to 
perform the scatter write operation and thus preserve device independence. 

$IMDATA writes all the unprotected fields in a screen image. You must call 
$IMDATA if any of your unprotected fields have the right justify or must enter 
characteristics. When directing data to the 3101, 3151, 3161, 3163, or 3164, the field 
table generated by $IMPROT must be used. To write default unprotected data, use 
the buffer containing the screen image or specify a user buffer containing the 
application-provided data. 

When $IMDATA is used with a user buffer, the application program must: 

• Set the characters "USER" in the first four positions of the buffer 

• Set the message length, excluding "USER", in the buffer index word (buffer - 4). 

MOVE USERDATA,CUSER,DWORD set up user message 
MOVE DATAlEN,8 set message length 
MOVE USERDATA+4,MESSAGE,(8,BYTES) get message 
CAll $IMDATA,(USERDATA),(FTAB) 
• 
• 
• 

USERDATA BUFFER 
MESSAGE DATA 
CUSER DATA 

Retrieving the Unprotected Data 

12,BYTES,INDEX=DATAlEN 
Cl8 1 HI THEREI 
Cl4 1 USER I 

for user data 
data 

After the operator has entered data, all the data in the unprotected fields can be read 
by a single statement. The 4978,4979,4980, 3101, 3151, 3161, 3163, and 3164 
support a "gather read" using READTEXT MODE = LINE. 

READTEXT SCRNDATA,MODE=lINE 
• 
• 
• 

SCRNDATA BUFFER n,BYTES 

There are a number of considerations when using a READ TEXT with 
MODE = LINE and a buffer from a 3101 screen. A READTEXT instruction issued 
to the 3101 always reads from the beginning of the screen, regardless of the cursor 
position specified by LINE and SPACES. The 3101 has only three read options: 
read the entire screen (TYPE = ALL), read all the unprotected fields 
(TYPE = DATA), or read only the modified unprotected data 
(TYPE = MODDATA). (For more information on 3101 read options, see "Reading 
Modified Data on the 3101" on page 8-42). 

Chapter 8. Reading Data from and Writing to Screens 8-29 



Reading Data from and Writing to Screens 

The data will be read and concatenated into the buffer. But the buffer must be large 
enough to accommodate the data. On the 3101, the buffer must accommodate the O~'\"I' 
data plus three bytes (TYPE = DATA and TYPE = ALL) or four bytes ,III,) 

(TYPE = MODDATA) per unprotected field. On the 3151, 3161, 3163, and 3164 
terminals, the buffer must be large enough to accommodate the data plus four bytes 
(TYPE = MODDATA) per unprotected field. On the 3151 and 3161, the buffer must 
accommodate the data plus four bytes (TYPE = DATA and TYPE = ALL) per 
unprotected field. On 3163 and 3164, the buffer must accommodate the data plus 
six bytes (TYPE = DATA and TYPE = ALL) per unprotected field. This extra data 
includes escape sequences and attribute bytes which are edited out of the buffer 
before presentation to the application program (as long as the default of 
STREAM = NO is in effect). 

Although the 4978, 4979, and 4980 terminals have the capability to read a specific 
unprotected field, the 3101, 3151, 3161, 3163 and 3164 do not. To perform a similar 
operation, the application can read all the unprotected data and then use the field 
table lengths to displace into the buffer and arrive at the desired data field. 

Suppressing Attribute Bytes 

8-30 SC34-0943 

The 4978,4979,4980,3101,3151,3161,3163, and 3164 terminals can do a 
PRINTEXT with LINE and SPACES to a specific screen coordinate. However, 
issuing this instruction on the 3101, 3151, 3161, 3163, or 3164 affects subsequent I/O 
to the screen. When a PRINTEXT is issued without a previous TERMCTRL 
SET ,ATTR = NO, the terminal support inserts an attribute byte. This attribute byte 
appears as a protected blank at the screen coordinate specified by LINE and 
SPACES, and the data follows. Normally, this displaces the data one byte to the 
right, and therefore the data writes over the next attribute byte (which usually 0 
describes a protected field). 

For example, assume the screen coordinate 5,5 (LINE = 5,SPACES = 5) contains a 
ten-byte unprotected field which the application wants to fill with ten Xs. If a 
PRINTEXT LINE = 5,SP ACES = 5 of ten Xs is issued with no previous 
TERMCTRL SET,ATTR=NO, then an attribute byte is added and written at 
location 5,5 and the tenth X overwrites the next attribute byte for the following 
protected field. This leaves the screen with one large unprotected field instead of a 
10 byte unprotected field followed by a protected field. 

A subsequent READTEXT of the unprotected data will result in much more data 
being returned to the application than expected. In addition, the returned data 
stream might contain escape sequences and attribute bytes which on a subsequent 
PRINTEXT from the same buffer will cause the cursor to act unpredictably. Also, 
the data will be written incorrectly on the screen. 

To avoid such problems, a TERMCTRL SET,ATTR=NO should always be issued 
before a PRINTEXT with LINE and SPACES. A TERMCTRL SET,ATTR=YES 
should follow the PRINTEXT. 

o 



o 

C) 

0'.·,,1 
" , 

Reading Data from and Writing to Screens 

Converting 4978 Screens 
Many 4978-based applications can be converted to run on the 3101,3151, 3161, 
3163, or 3164. In some cases, it is sufficient to convert uses of PRINTEXT 
MODE = LINE to calls to $IMDAT A. If the application uses READTEXT to 
specify screen coordinates with LINE and SPACES, the technique described above 
in "Suppressing Attribute Bytes" can be used. 

Some screens may require changes because the attribute bytes are displayed as 
protected blanks on the 3101, 3151, 3161, 3163, and 3164. See the "Compatibility 
Limitation" on page 8-25. 

Reading and Writing to a 3101, 3151, 3161, 3163, or 3164 
This section describes how to read data from and write data to a 3101, 3151, 3161, 
3163, or 3164 Display Terminal. It describes the characteristics of these terminals 
and some things you should know when you design programs that use these 
terminals. 

This section focuses on a sample program, describing the instructions in the same 
sequence that they appear in the program. The sample program uses a 3101 
terminal, the TERMCTRL instruction to set attribute bytes, and EBCDIC escape 
sequences to control data transmission. Wherever similarities exist, notations for the 
3151, 3161, 3163, and 3164 terminals have been made. The sample program, which 
appears at the end of this chapter: 

1 Defines the format of the screen 

2 Enqueues the screen 

3 Change the attribute byte 

4 Erases the screen 

5 Protects the first field 

6 Creates unprotected fields 

7 Creates protected fields 

8 Writes a nondisp1ay field 

9 Reads a data item 

10 Writes a blinking field 

Chapter 8. Reading Data from and Writing to Screens 8-31 



Reading Data from and Writing to Screens 

11 Erases an individual field 

12 Blanks a blinking field 

13 Writes more than one data item 

14 Prompts the operator for data 

15 Changes the attribute byte to a protected blank 

16 Displays a nondisplay field 

17 Creates a new unprotected field 

18 Reads modified data 

19 Forces the modified data tag on 

20 Reads modified data 

21 Erases to the end of the screen 

22 Reads all unprotected data 

23 Reads a data item. 

Characteristics of the Terminal 

Attribute Characters 

Transmitting Data 

8-32 SC34-0943 

The 3101, 3151, 3161, 3163, and 3164 terminals use attribute characters (or bytes) to 
define fields on the screen. An attribute byte defines the start of each field and the 
properties of the field (such as high/low intensity, underline, or blink). Each 
attribute byte appears as a protected blank on the screen. 

The collection of attribute characters, special sequences required by the terminal, and 
user data is called a data stream. Any invalid (unprintable) characters encountered 
in the data stream will cause the terminal to beep. This condition might occur, for 

, instance, if you try to display a non-EBCDIC disk or diskette record. The message 
"HOST PROGRAM WRONG" is issued if any invalid (unprintable) characters are 
encountered in the 3151,3161,3163, or 3164 data stream. 

On a static screen, the application program must determine where the output data is 
positioned, relative to the first position of the screen. When you issue a 
READTEXT instruction on a 3101, the system reads the data from the beginning of 
the screen. Whether you read all the data, unprotected data, or modified data 
depends on how you code the TYPE operand of the READTEXT instruction. See 
"Coding for Device Independence" on page 8-26 for more information about using 
the READTEXT instruction on the 3151, 3161, 3163, and 3164 terminals. 

o 

o 



c 

o 

Reading Data from and Writing to Screens 

In response to a read request, the 3101, 3151, 3161, 3163, and 3164 terminals 
transmit the attribute characters that precede the input field. To suppress the 
attribute characters from the data stream, EDX removes these special characters and 
left-justifies the data. 

An application program can have complete control of the input/output data 
transmitted. To do this, the program must build the complete data stream, either in 
EBCDIC or ASCII codes. The basic terminal I/O support simply handles the 
transmission of the data stream. 

Refer to the description of the TERMCTRL SET,STREAM = YES/NO instruction 
and the XLA TE parameter of PRINTEXT /READTEXT instructions in the 
Language Reference when this mode of data transmission is desired. 

Design Considerations 
The following list contains items you should consider when designing a static screen 
a pplica tion. 

• Each of the 3101, 3151, 3161, 3163 and 3164 terminals uses a different data 
stream to tell the terminal to do something. A data stream is a collection of 
special characters, commands, and data transmitted in a single operation. 

• A simple PRINTEXT of "HI THERE" results in a data stream appropriate for 
the terminal that is running. 

On the 3101: 
On the 3151/3161: 
On the 3163/3164: 

ESC.Y.ROW.COL.ESC.3.ATTR.HI THERE 
ESC.Y.ROW.COL.ESC.3.PAl.PA2.HI THERE 
ESC.Y.ROW.COL.ESC.3.PAl.PA2.PA3.PA4.HI THERE 

where ESC.Y is a set cursor address command followed by row and column 
position, and ESC.3 is a start-of-field sequence followed by <;me or more 
attribute bytes defining the field. 

• An attribute byte defines how data will appear on the screen. It occupies one 
character position on the screen and appears as a protected blank. Note that a 
start-of-field sequence containing multiple attribute bytes will require only one 
character position on the screen. 

• Special attribute characteristics supported by the 3101 are high intensity, low 
intensity, blinking field, and nondisplay. The 3151, 3161, 3163, and 3164 
terminals support these special attributes with the TERMCTRL instruction, in 
addition to other attributes through the $IMAGE utility. Refer to the IBM 
3151 ASCII Display Station Reference Manual, GAI8-2634, IBM 3161/3163 
ASCII Display Station Description, GA18-2310 and the IBM 3164 ASCII Color 
Display Station Description, GA18-2317 for a listing of all the attributes 
available for your terminal. 

Chapter 8. Reading Data from and Writing to Screens 8-33 



Reading Data from and Writing to Screens 

• Use the TERMCTRL SET,ATTR= instruction or the ATTR command of 
$IMAGE to set the attribute bytes for the 3101. Use the ATTR command of 
$IMAGE to set attribute bytes for the 3151, 3161, 3163, and 3164 terminals. 

• If an attribute is not required on the 3101, code a TERMCTRL 
SET,ATTR=NO before coding a PRINTEXT to a specific location. 

• Unprotected static screen read operations for a block mode 3101 terminal start 
with the first data field encountered and continue to the end of the screen. The 
first data field encountered is in the upper left corner (row 1, column 1). The 
first data field for the 3151, 3161, 3163, and 3164 terminals in block mode, 
however, may be wrapped. In other words, the data field beginning in the upper 
left corner is considered by the terminal to be the last or part of the last 
unprotected field in the screen for all read operations. The 3151, 3161, 3163, 
and 3164 terminal read operations read data from this field into the buffer 
following all other unprotected fields in the screen. Applications performing 
read operations should always, therefore, compensate for wrapped fields when 
reading from the 3151, 3161, 3163, and 3164 block mode terminals. 

To prevent the wrapping of unprotected fields, design screen images so that the 
first character position is either a protected character or an attribute character, 
never an unprotected character. 

• Escape sequences take up space in the buffer. Therefore, it takes more than 
1920 bytes to read a complete screen. Data streams for the 3151, 3161, 3163, 
and 3164 require more space than those for the 3101. The 3151 and 3161 
require one additional byte per field and the 3163 and 3164 require three 
additional bytes per field. Ensure that the buffer is larger enough to hold all the 
data. 

o 

• The terminal type and the TERMCTRL SET ATTR= and STREAM = 0 

8-34 SC34-0943 

parameters determine the number of bytes required in the buffer. For example, 
a PRINTEXT instruction could require a buffer length equal to the data length 
plus ten times the number of fields. A READTEXT instruction could require a 
buffer length equal to the data length plus six times the number of fields when 
TYPE=ALL and TYPE = DATA. 

The following table lists the number of bytes needed in the buffer, in addition to 
the data length. 

Instruction 3101 3151/3161 3163/3164 

PRINTEXT 7 x # of 8 x # of 10 x # of 
fields fields fields 

READTEXT 3 x # of 4 x # of 6 x # of 
fields fields fields 

Figure 8-1. Additional Buffer Requirements 

A READTEXT instruction requires a buffer length equal to the data length plus 
four times the number of fields when TYPE = MODDATA. 

o 



() 

o 

Reading Data from and Writing to Screens 

• A READTEXT TYPE = DATA reads all unprotected data. If 
MODE = WORD, fields are separated by blanks. If MODE = LINE, fields are 
conca tena ted. 

• AWAIT KEY prior to a READTEXT TYPE = MODDAT A should be satisfied 
with a PF key and not the SEND key. If MODE = WORD, fields are separated 
by blanks. If MODE = LINE, fields are concatenated. 

• A READ TEXT without a prompt transmits data from the beginning of the 
screen, regardless of the cursor position. 

• After the SEND key is pressed, an RDCURSOR returns as the cursor position 
the first position of the next line. If a PF key is pressed, it does not move the 
cursor. 

Defining the Format of the Screen 
A screen format is a representation of the protected fields on a screen. References to 
the 3101 Display Terminal in this section mean a 3101 model 2x operating in block 
mode as used in the sample program. 

Like the 4978,4979, or 4980, the format of a 3101,3151,3161,3163, or 3164 screen 
is defined by how the data is written, either protected or unprotected. However, on 
the 3101,3151,3161,3163, and 3164, the field definitions are not transparent to the 
user because attribute bytes separate protected and unprotected fields. 

• An attribute byte defines the start of each field and the properties of the field. 

• Each field continues until another attribute byte is encountered. 

• Each attribute byte occupies one character position on the screen and is 
displayed as a protected blank preceding the field. 

• Attribute bytes are like any other character on the screen in that they can be 
overwritten by data or another attribute byte. When an attribute byte is 
overwritten, the screen format can change. 

On a 3101, 3151, 3161, 3163, and 3164, you cannot do a scatter write with a 
PRINTEXT instruction; however, you can specify scr:een coordinates on output 
(PRINTEXT LINE = ,SPACES = ). You can do a gather read by specifying 
READTEXT MODE = LINE. However, the input of a specific field (by means of 
READTEXT LINE = ,SPACES =) always executes as though LINE = 0 and 
SPACES=O had been coded. 

As a result of these differences, writing terminal independent code using the 
READTEXT /PRINTEXT instructions can be difficult. However, you can use 
$IMAGE to perform terminal independent input/output. 

Enqueuing the Screen 
The sample program must enqueue the 3101 to change the function to static screen. 
The screen size is forced to 24 x 80 and a CCB buffer is used. The CCB buffer size 
is terminal dependent; the 3101 requires 203 bytes, the 3151 and 3161 require 201 
bytes, and the 3163 and 3164 require 200 bytes. 

IOCB1 10CB SCREEN=STATIC 
• 
• 
• 

ENQT lOCB1 

Chapter 8. Reading Data from and Writing to Screens 8-35 



Reading Data from and Writing to Screens 

Changing the Attribute Byte 
On the 3101,the default attribute is high intensity. After it is changed, the sample 
program always restores the default attribute to high intensity. 

TERMCTRL SET,ATTR=LOW 

Erasing the Screen 
Erasing the screen defaults the count to 1920 for the 3101 used in the sample 
program. 

ERASE TYPE=ALL 

Protecting the First Field 

8-36 SC34-0943 

In the sample- program, the first field defined is a protected field at 0,0. This ensures 
that the whole screen will be formatted and that no unformatted data areas will be 
returned on whole screen reads, whether the read is TYPE = ALL, TYPE = DATA or 
TYPE = MODDATA. 

Printing the null character (defined in the DATA statement ATTRBUTE) with 
STREAM = NO in effect with LINE/SPACES causes EDX to: 

• Generate the set cursor address sequence to the LINE/SPACES specified 

• Generate the start field sequence, including the current attribute which will 
create or cause an attribute at LINE/SPACES to be rewritten. 

The 3101 data stream is shown below; the attribute byte is shown as "#". 

ESC.Y.ROW.COL.ESC.3.#.X'00' 

The null data is required to force the start field sequence; however, a null character 
is ignored by the 31 ° 1. 

DATA X'0101' 
ATTRBUTE DATA X'0000' 

• 
• 
• 

DUMMY TEXT STATEMENT CNT=l LGTH=l 
NULL TO FORCE ATTRIBUTE TO WRITE 

PRINTEXT ATTRBUTE,LINE=0,SPACES=0,PROTECT=YES 
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE 

The code shown above would apply also for the 3151,3161,3163, and 3164 
terminals, if the following data streams are used: 

On the 3151/3161: ESC.Y.ROW.COL.ESC.3 .. C.X'00' 
On the 3163/3164: ESC.Y.ROW.COL.ESC.3._#.!.@.X'00' 

where _ represents a blank. 

o 

o 



c 

o 

Reading Data from and Writing to Screens 

Creating Unprotected Fields 
To create unprotected fields on the screen ("holes" in which the operator can enter 
data), the sample program starts each field with an unprotected attribute byte and 
ends it with a protected attribute byte. 

PRINTEXT ATTRBUTE,LINE=4,SPACES=29 
• 
• 
• 

TERMCTRL SET,ATTR=LOW 
PRINTEXT ATTRBUTE,LINE=4,SPACES=34,PROTECT=YES 

Creating Protected Fields 
The next step is to create protected field descriptions. This could be done with 
ATTR = NO since the screen is already defined as protected in these areas. The 
sample program, however, uses a standard PRINTEXT to write a protected attribute 
byte at LINE/SPACES, followed by the literal data. 

PRINTEXT HEADl,LINE=1,SPACES=28,PROTECT=YES 
PRINTEXT I ENTER A NUMBER ' ,LINE=4,SPACES=2,PROTECT=YES 

Writing a Nondisplay Field 
The sample program uses a field description which is not initially displayed on the 
screen. To create a nondisplay field, set the attribute to blank. 

NONDISP TERMCTRL SET,ATTR=BLANK 
PRINTEXT 'ENTER ANOTHER NUMBER ' ,LINE=12,SPACES=2,PROTECT=YES 
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE 

Reading a Data Item 
Two EDL instructions that have an implied wait are: 

• READTEXT with prompt 

• GETVALUE with prompt. 

The LINE and SPACES parameters of these instructions specify the position of the 
attribute byte of the unprotected prompt field. Printing a null prompt field positions 
the attribute byte and cursor differently than for a prompt which is data. For 
example: 

Normal GETVALUE = #prompt#_ 
Null prompt GETVALUE = #_ 

NULPRMPT TEXT LENGTH=8 USED ON IMPLIED WAIT INSTRUCTIONS 
• 
• 
• 

GETVAL GETVALUE FIELDINO,NULPRMPT,LINE=4,SPACES=29 

Chapter 8. Reading Data from and Writing to Screens 8-37 



Reading Data from and Writing to Screens 

Writing a Blinking Field 
The sample program also uses a protected blinking field. 

BLINK TERMCTRL SET,ATTR=BLINK 
PRINTEXT 'FIELDI MUST BE EVEN ',LINE=2,SPACES=5,PROTECT=YES 
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE 

Erasing an Individual Field 
The sample program erases individual fields using the erase end-of-field/end-of-line 
function. To do this, an ESC.! is sent as data. The field to be erased is specified by 
LINE/SPACES, and the current attribute byte is rewritten followed by the ESC.!. 
The data stream on the 3101 follows: 

ESC.Y.ROW.COL.ESC.3.#.ESC.I 

DATA 
ERASEFLD DATA 

• 
• 
• 

X' 0202 1 

X' 27C9 1 

ERASE END OF FIELD 
ESC.I 

ERASEF PRINTEXT ERASEFLD,LINE=4,SPACES=29 

To erase a field, do an ERASE with a count value equal to the field length + 1 and 
TYPE = ALL. The + 1 is for the unprotected attribute. 

ERASEF2 ERASE 5,TYPE=ALL,LINE=4,SPACES=29 ERASE FLDI 

Blanking a Blinking Field 
Once an even number is entered, the blinking field is blanked out by changing the 
attribute byte to nondisplay. 

TERMCTRL SET,ATTR=BLANK 
PRINTEXT ATTRBUTE,LINE=2,SPACES=5,PROTECT=YES 

Writing More Than One Data Item 

8-38 SC34-0943 

In the sample program using a 3101, a horizontal tab character is inserted between 
fields to simulate a scatter write. This is done using PUTEDIT; however, you could 
also use the CONCAT instruction or indexed moves. The 3101 data stream is 
shown below. XI 05 1 represents an EBCDIC horizintal tab character. 

ESC.Y.ROW.COL.ESC.3.#.DATAl.HT.DATA2 

TAB 
DATA 
DATA 
• 
• 
• 

X'OIOl ' 
X' 0500 ' 

HORIZONTAL TAB 
TAB TO NEXT FIELD 

SCATTER PUTEDIT FORMATl,TEXTOUT,(AS,TAB,BS),LINE=6,SPACES=29 
• 
• 
• 

FORMATI FORMAT (A15,Al,A15),PUT 
TEXTOUT TEXT LENGTH=31 SIZE OF DATA STREAM 

o 

o 



o 

0 

o 

Reading Data from and Writing to Screens 

Prompting the Operator for Data 
The sample program uses a standard QUESTION instruction. 

QUEST QUESTION 'WANT TO SEE MORE ?I ,NO=ENDIT,LINE=lO,SPACES=5 

An invalid response to a QUESTION (anything other than Y or N) is handled by 
the supervisor, which reissues the read. This results in a string of two new fields: a 
question mark and a response field. 

#PROMPT#?#?#?#?# 

Changing the Attribute Byte to a Protected Blank 
To clear this string of fields, you could overwrite them with a protected field of 
blanks. Instead, the sample program finds each field and changes the attribute to 
blank protected. 

RDCURSOR LINE,SPACES FIND CURSOR 
PRINTEXT LINE=LINE,SPACES=SPACES 
TERMCTRL DISPLAY FORCE SOFT CURSOR ADDRESS 

* TO BE UPDATED 
DO UNTIL,(SPACES,EQ,5),AND,(LINE,EQ,lO) 

A backtab command is sent as data to position the cursor in the first position of the 
unprotected field preceding the current cursor address. SET,ATTR = NO is used to 
prevent EDX from generating the attribute byte and preceding start field sequence. 
The 3101 data stream follows: 

BACKTAB 
* 

* 

ESC.2 

DATA X'0202 1 

DATA X'27F2 1 

• 
• 
• 
TERMCTRL SET,ATTR=NO 
PRINTEXT BACKTAB 
RDCURSOR LINE,SPACES 

BACK TAB TO FIRST CHARACTER 
POSITION OF NONPROTECTED FIELD 

FIND NONPROTECTED FIELD CURSOR 
IS IN 

SUB SPACES,l ADJUST TO ATTRIBUTE BYTE 
TERMCTRL SET,ATTR=BLANK PREPARE TO BLANK IT 
PRINTEXT ATTRBUTE,LINE=LINE,SPACES=SPACES,PROTECT=YES 

ENDDO 

Chapter 8. Reading Data from and Writing to Screens 8-39 



Reading Data from and Writing to Screens 

Displaying a Nondisplay Field 
Now the sample program displays the nondisplay field previously discussed (ENTER 
ANOTHER NUMBER). The attribute that is currently blank protected is rewritten 
to low protected. 

LIGHT TERMCTRL SET,ATTR=LOW 
PRINTEXT ATTRBUTE,LINE=12,SPACES=2,PROTECT=YES 

Creating a New Unprotected Field 
Next the sample program creates a new unprotected field with the cursor in place; 
this is useful for data entry. To create an unprotected field on demand with the 
cursor in place, write the end-of-field attribute first and then the start of field 
attribute. 

CREATEU TERMCTRL SET,ATTR=LOW 
PRINTEXT ATTRBUTE,LINE=12,SPACES=34,PROTECT=YES 
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE 
PRINTEXT ATTRBUTE,LINE=12,SPACES=29 
WAIT KEY 

Reading Modified Data 

8-40 SC34-0943 

A read of modified data has several implications: 

• A field is modified by entering data or erasing the field. The modified data tag 
(MDT) in the attribute byte is turned on by the 3101, 3151, 3161, 3163, and 
3164 terminals. 

• The modified data tag could be on when the attribute byte is written. $IMAGE 
provides this capability. 

• Group 2, switch 4 on the 3101 enables the SEND key to function as the SEND 
LINE key. When the SEND key is pressed, the data that is on the same line as 
the cursor is sent. The type of data that is sent depends on the type of read in 
effect, namely all data, unprotected or modified. 

• Once a modified field is sent to the Series/l through the SEND key or a read 
buffer, the modified data tag in the attribute byte is turned off. 

At this point during the sample program execution, another number (FIELD4 data) 
has been entered and the SEND key has been pressed. The cursor was probably on 
the same line as FIELD4; if it was, FIELD4 data was sent to satisfy the WAIT 
KEY and the modified data tag was turned off. A subsequent READTEXT of 
TYPE = MODDAT A would not return FIELD4 unless the cursor were moved to a 
line not containing modified fields, or a PF key were used to satisfy the WAIT 
KEY. 

To read only the fields in which numbers were entered, the sample program rewrites 
the attribute bytes for those two fields with the modified data tags on. Before the 
modified fields are read, there is an intervening write, so the program locks the 
keyboard. 

TERMCTRL LOCK 
TERMCTRL SET,ATTR=NO TO WRITE MDT ON ATTRIBUTE 

o 



c 

o 

Reading Data from and Writing to Screens 

Forcing the Modified Data Tag On 
A start field sequence with an unprotected, high intensity attribute (with MDT on) is 
written as data. The 3101 data stream follows: 

ESC.Y.ROW.COL.ESC.3.E 

DATA 
SETMOD DATA 

DATA 
• 
• 
• 

X'0303 1 

X' 27F3 1 

X' C500 ' 

TO FORCE MODIFIED DATA TAG ON 
START FIELD SEQUENCE 
ATTRIBUTE=HIGH,UNPROTECTED,MDT ON 

PRINTEXT SETMOD,LINE=12,SPACES=29 
PRINTEXT SETMOD,LINE=4,SPACES=29 

The data streams for the 3151,3161,3163 and 3164 are longer because more 
parameters are needed to indicate the attribute: 

On the 3151/3161: ESC.Y.ROW.COL.ESC.3.(.A 

DATA 
SETMOD DATA 

DATA 
• 
• 
• 

X'0404 1 

X' 27F3 1 

X' 4DC1 1 

TO FORCE MODIFIED DATA TAG ON 
START FIELD SEQUENCE 
ATTRIBUTE=HIGH,UNPROTECTED,MDT ON 

On the 3163/3164: ESC.Y.ROW.COL.ESC.3.(.!.$.@ 

DATA 
SETMOD DATA 

DATA 
• 
• 
• 

X'0606 1 

X I 27F3 I 

X '4D5A5B7C' 

TO FORCE MODIFIED DATA TAG ON 
START FIELD SEQUENCE 
ATTRIBUTE=HIGH,UNPROTECTED,MDT ON 

Now the sample program issues a READTEXT with TYPE = MODDATA; this 
reads all the modified data on the screen, in this case two fields. 

READMOD READTEXT MTEXT,TYPE=MODDATA,MODE=LINE 
IF (MTEXT,NE,MTEXT+4,4) PSEUDO TESTING 
• 
• 
• 

MTEXT TEXT LENGTH=8 READ OF MODDATA: STREAM 
* LENGTH = DATA + (4*NOFLDS) 16 

Chapter 8. Reading Data from and Writing to Screens 8-41 



Reading Data from and Writing to Screens 

Reading Modified Data on the 3101 
On the 3101, 3151, 3161, 3163, and 3164, an unprotected field is considered to be a 
modified field when: 

• Any character within the field is changed by the operator 

• Certain ERASE instructions are executed 

• The modified data tag (MDT) in the attribute byte is on. 

The modified data tags are reset when the data is read by a READ TEXT 
TYPE = MODDATA instruction or transmitted by pressing the SEND key. To 
return a protected field using READ TEXT TYPE = MODDAT A, design the field 
with the modified data tag set on in the attribute byte. 

To read all the modified fields from a screen, the operator must position the cursor 
on a protected line which does not contain any modified fields. If the cursor is not 
on such a line and the operator presses the enter key to satisfy a WAIT KEY 
instruction, the MDTs on that line are reset. A subsequent READTEXT would 
therefore not return to the program the modified data on that line. If a PF key 
instead of the SEND key is used to satisfy the WAIT KEY, the MDTs are not 
changed. 

The IOCB BUFFER = parameter or the CCB buffer must be large enough to 
contain the received 3101,3151,3161,3163, or 3164 data stream prior to the editing 
of the ESC sequences. If the CCB buffer is not large enough, use the IOCB buffer. 

Erasing to the End of the Screen ~ 
To prepare to erase the remaining fields, the sample program positions the cursor to ~J 

8-42 SC34-0943 

the second field. 

PRINTEXT LINE=6,SPACES=29 
TERMCTRL DISPLAY 

U sing ERASE with TYPE = DATA, all the unprotected fields from the current 
cursor position to the end of screen are erased. The count value is not used and 
mode is forced to screen. 

ERASUNP ERASE TYPE=DATA ERASE REMAINING UNPROTECT FIELDS 

o 



o 

o 

0".'" 
" 

Reading Data from and Writing to Screens 

Reading All Unprotected Data 
The sample program uses GETEDIT to get all the unprotected fields under format 
control. You could also use a READTEXT without a prompt; this would read all 
the unprotected data from the start of the screen. 

GETALL GETEDIT FORMAT2,TEXTAMT,(N01,ALPH1,ALPH2,N02) 
• 
• 
• 

TEXTAMT TEXT 
* 
FORMAT2 FORMAT 

Writing a Data Item 

LENGTH=38 GETEDIT STREAM LENGTH = 
DATA + (3*NOFLDS) = 58 

(I4,A15,A15,I4),GET 

The sample program uses a standard PRINTNUM to write to LINE/SPACES. 

PRINTNUM N01,FORMAT=(5,8,I),LINE=18,PROTECT=YES 

Reading a Data Item 
To do a read from LINE/SPACES, a prompt field is required. The null prompt text 
statement (NULPRMPT) is used. 

TERMCTRL SET,ATTR=HIGH 
READTEXT TEXTIN,NULPRMPT,LINE=23,SPACES=78 

Data Stream Considerations 
Applications that generate complex data streams for the 3151,3161,3163, and 3164 
terminals running in block mode (or 3101 emulation block mode) should provide 
their own pacing support. Repeated writing of large data streams containing 
multiple escape sequences may cause the terminal's internal buffer to be overrun. 
This results in truncation of the data stream. A sufficient delay should occur 
between terminal output operations which involve this type of data stream. 

Chapter 8. Reading Data from and Writing to Screens 8-43 



Reading Data from and Writing to Screens 

Example 

8-44 SC34-0943 

SAMPLE 
IOCB1 

PROGRAM START 
IOCB SCREEN=STATIC 

******************************************************************* 
* 
* 

THIS PROGRAM USES A 3101 TERMINAL TO ILLUSTRATE* 
EBCDIC ESC SEQUENCES AND DATA STREAMS VIA PRINTEXT* 

******************************************************************* 

m 
m 

DATA 
ERASEFLD DATA 

DATA 
SETMOD DATA 

DATA 
DATA 

ATTRBUTE DATA 
DATA 

BACKTAB DATA 

X'0202 1 

X' 27C9 1 

X'0303 1 

X' 27F3 1 

X'C500 1 

X'0101 1 

X'0000 1 

X' 0202 1 

X' 27F2 1 

DATA X'0101 1 

TAB DATA X'0500 1 

NULPRMPT TEXT LENGTH=0 
START EQU * 

ENQT IOCB1 
TERMCTRL SET,ATTR=LOW 
ERASE TYPE=ALL 
PRINTEXT ATTRBUTE,LINE=0,SPACES=0,PROTECT=YES 

TERMCTRL SET,ATTR=HIGH 
PRINTEXT ATTRBUTE,LINE=4,SPACES=29 
PRINTEXT ATTRBUTE,LINE=6,SPACES=29 
PRINTEXT ATTRBUTE,LINE=8,SPACES=29 
TERMCTRL SET,ATTR=LOW 
PRINTEXT ATTRBUTE,LINE=4,SPACES=34,PROTECT=YES 
PRINTEXT ATTRBUTE,LINE=6,SPACES=45,PROTECT=YES 
PRINTEXT ATTRBUTE,LINE=8,SPACES=45,PROTECT=YES 
PRINTEXT HEAD1,LINE=1,SPACES=20,PROTECT=YES 
PRINTEXT 'ENTER A NUMBER ' ,LINE=4,SPACES=2, 

PROTECT=YES 
PRINTEXT 'THIS IS FIELD2 1 ,LINE=6,SPACES=9, 

PROTECT=YES 
PRINTEXT 'THIS IS FIELD3 1 ,LINE=8,SPACES=9, 

PROTECT=YES 
III NONDISP TERMCTRL SET ,ATTR=BLANK 

PRINTEXT I ENTER ANOTHER NUMBER ' ,LINE=12,SPACES=2, 
PROTECT=YES 

o 

C 

C 

C 

C 

o 



c 

o 

o 

Reading Data from and Writing to Screens 

II Define a dummy TEXT statement with length of 2 and count of 2. 

EI Erase end of field sequence. 

D Define a dummy TEXT statement with length of 3 and count of 3. 

II Start field sequence. 

II Set ATTR=HIGH, unprotected, with modified data tag on. 

m Define a dummy TEXT statement with length of I and count of 1. 

fJ Null (to force attribute to write). 

II Define a dummy TEXT statement with length of 2 and count of 2. 

D Back tab to first character position of unprotected field. 

II Define a dummy TEXT statement with length of 1 and count of I. 

m Horizontal tab to next field. 

m Used on implied wait instructions. 

m Start screen with protected field at 0,0. 

III Set intensity to high. 

m Set the start of unprotected field. 

HI Set the intensity to low. Now set the end of unprotected fields. 

m Create protected literals as new fields. This could be done with ATTR = NO as 
screen is protected. 

m Nondisplay this literal field at this time. 

Chapter 8. Reading Data from and Writing to Screens 8-45 



Reading Data from and Writing to Screens 

8-46 SC34-0943 

* 
* 

GETVAL 

IDBLINK 

IERASEF 

TERMCTRL 
NORMAL 
NULL 
GETVALUE 
DIVIDE 
IF 
TERMCTRL 
PRINTEXT 

TERMCTRL 
PRINTEXT 
GOTO 
ELSE 

SET,ATTR=HIGH 
GETVALUE = #PROMPT#_ 
PROMPT GETVALUE = #_ 
FIELDINO,NULPRMPT,LINE=4,SPACES=29 
FIELDINO,2,RESULT=DUMMY 
(SAMPLE,NE,0) 
SET ,ATTR=BLINK 
IFIELDI MUST BE EVEN I,LINE=2,SPACES=5, 
PROTECT=YES 
SET,ATTR=HIGH 
ERASEFLD,LINE=4,SPACES=29 
GETVAL 

TERMCTRL SET,ATTR=BLANK 
PRINTEXT ATTRBUTE,LINE=2,SPACES=5,PROTECT=YES 
TERMCTRL SET,ATTR=HIGH RESTORE ATTRIBUTE 
* * 

Ell SCATTER PUTEDIT FORMATl,TEXTOUT,(AS,TAB,BS),LINE=6, 
SPACES=2 

fDQUEST 

* 
* 
* 

Em LIGHT 

ENDIF 
* 
QUESTION 

* 
* 
* 
RDCURSOR 
PRINTEXT 
TERMCTRL 
DO 
TERMCTRL 
PRINTEXT 
RDCURSOR 
SUB 
TERMCTRL 
PRINTEXT 
ENDDO 
TERMCTRL 
PRINTEXT 
PRINTEXT 

1m CREATEU TERMCTRL 
PRINTEXT 

III TERMCTRL 
PRINTEXT 
WAIT 

IWANT TO SEE MORE ?1,NO=ENDIT,LINE=10, 
SPACES=5 

QUESTION AND INVALID RESPONSES CAN YIELD 
#PROMPT#?#?#?#?#_ 
NEED TO FIND ALL ATTRIBUTES 1#1 AND CLEAR 
LINE,SPACES FIND CURSOR 
LINE=LINE,SPACES=SPACES 
DISPLAY 
UNTIL,(SPACES,EQ,5),AND,(LINE,EQ,10) 
SET,ATTR=NO 
BACKTAB 
LINE,SPACES 
SPACES,l 
SET,ATTR=BLANK 
ATTRBUTE,LINE=LINE,SPACES=SPACES,PROTECT=YES 

SET,ATTR=LOW 
ATTRBUTE,LINE=12,SPACES=2,PROTECT=YES 
ION A WAIT KEY NOW I,LINE=13,SPACES=9, 

PROTECT=YES 
SET,ATTR=LOW 
ATTRBUTE,LINE=12,SPACES=34,PROTECT=YES 
SET,ATTR=HIGH 
ATTRBUTE,LINE=12,SPACES=29 
KEY 

C 

C 

C 

C 

o 



o 

o 

o 

Reading Data from and Writing to Screens 

1m Restore attribute. 

m Create new protected blinking field. 

Em Restore attribute. 

&! Going to erase an individual field using erase. 

m Blank out blinking field by going nondisplay. 

m Do scatter write by inserting tab character. 

m Going to do standard question. 

fa Force soft cursor address to be updated. 

Ell Find unprotected field cursor is in. 

m Adjust to attribute byte. 

II Prepare to blank it. 

m Light up nondisplay field4 prompt. 

1m Create new unprotected field with cursor in place. 

HI Restore attribute. 

Chapter 8. Reading Data from and Writing to Screens 8-47 



Reading Data from and Writing to Screens 

8-48 SC34-0943 

I 
READMOD 

m 

II ERASEF2 

m ERASEUNP 

GETALL 

ENDIT 

FORMAT1 
IDTEXTOUT 

LINE 
SPACES 
FIELD1NO 
HEAD1 

ImMTEXT 
DATABFR 
AS 
BS 

mTEXTAMT 
FORMAT2 
N01 
N02 
ALPH1 
ALPH2 
CAGAIN 
TEXTIN 
DUMMY 

TERMCTRL 
TERMCTRL 
PRINTEXT 
PRINTEXT 
TERMCTRL 
READTEXT 
IF 
TERMCTRL 
PRINTEXT 

TERMCTRL 
ERASE 
PRINTEXT 
TERMCTRL 
ERASE 
TERMCTRL 
GOTO 
ENDIF 
TERMCTRL 
GETEDIT 
TERMCTRL 
PRINTEXT 
TERMCTRL 
PRINTNUM 
PRINTEXT 
PRINTEXT 
PRINTNUM 
TERMCTRL 
EQU 
TERMCTRL 
PRINTEXT 

TERMCTRL 
READTEXT 
IF 
PROGSTOP 
FORMAT 
TEXT 
DATA 
DATA 
DATA 
TEXT 
TEXT 
DATA 
EQU 
EQU 
TEXT 
FORMAT 
DATA 
DATA 
TEXT 
TEXT 
DATA 
TEXT 
DATA 
ENDPROG 
END 

LOCK 
SET,ATTR=NO 
SETMOD,LINE=12,SPACES=29 
SETMOD,LINE=4,SPACES=29 
SET,ATTR=YES RESTORE 
MTEXT,TYPE=MODDATA,MODE=LI~E 

(MTEXT,NE,MTEXT+4,4) 
SET ,ATTR=BLINK 
'FLD4 MUST = FLD1 ',LINE=13,SPACES=9, C 
PROTECT=YES 

SET,ATTR=HIGH 
5,TYPE=ALL,LINE=4,SPACES=29 
LINE=6,SPACES=29 
DISPLAY 
TYPE=DATA 
UNLOCK 
GETVAL 

UNLOCK 
FORMAT2,TEXTAMT,(N01,ALPH1,ALPH2,N02) 
SET ,ATTR=BLINK 
lyOU ENTERED: ',LINE=16,PROTECT=YES 
SET,ATTR=HIGH 
N01,FORMAT=(5,0,1),LINE=18,PROTECT=YES 
ALPH1,LINE=19,PROTECT=YES 
ALPH2,LINE=20,PROTECT=YES 
N02,FORMAT=(5,0,1),LINE=21,PROTECT=YES 
DISPLAY 
* 
SET,ATTR=LOW 
'IF YOU WANT TO SEE IT AGAIN ENTER I 'AGAIN ' I, C 
LINE=23,SPACES=5,PROTECT=YES 
SET,ATTR=HIGH 
TEXTIN,NULPRMPT,LINE=23,SPACES=70 
(TEXTIN,EQ,CAGAIN,5),GOTO,START 
LOGMSG=NO 
(A15,A1,A15),PUT 
LENGTH=31 
F' 0

1 

F' 0
1 

F' 0 1 

1*** 3101 SAMPLE PROGRAM ***1 
LENGTH=8 
C'AAAAAAAAAAAAAAABBBBBBBBBBBBBBB' 
DATABFR 
AS+15 
LENGTH=38 
(14,A15,A15,14),GET 

F' 0 1 

LENGTH=15 
LENGTH=15 
C' AGAIN I 

I I, LENGTH=5 
F' 0 1 

o 

o 

o 



o 

c 

o 

Reading Data from and Writing to Screens 

m Lock the key board. 

m To write MDT on attribute. 

m Pseudo testing. Read these two fields with TYPE = MODDATA. 

m Restore. 

III Erase FLD 1. 

m Erase remaining unprotected fields. 

1m Finally a READTEXT to line and space. 

m Size of data stream. 

1m Read of Moddata LGTH= DATA + (4*NOFLDS). 

m Getedit stream LGTH= DATA + (3*NOFLDS). 

Chapter 8. Reading Data from and Writing to Screens 8-49 



o 

8-50 , SC34-0943 



o 

C'· "I 
'/ 

O~·· "i' 

Designing Programs 

Chapter 9. Designing Programs 

This chapter discusses designing EDL programs. 

All of the programs shown so far have had one thing in common: they are all short, 
self-contained groups of instructions that perform a simple function without 
interacting with any other program. 

This chapter: 

What Is a Task? 

• Defines the terms program and task and describes how to create a program that 
consists of more than one task 

• Describes how to use the same group of instructions from more than one 
program 

• Shows how to use the same storage more than once for different parts of a 
program (overlays) 

• Shows how to improve performance by using storage as a buffer area. 

A task is a unit of work that you form by combining instructions. In its simplest 
form, a task consists of a TASK statement, instructions, and an ENDT ASK 
statement. 

Each task runs independently, competing equally with other tasks for system 
resources. 

When you code a task, you assign a priority to the task. A priority is a number that 
determines the rank of the task. The supervisor uses priority to determine which 
task receives system resources. The highest priority is 1 and the lowest is 510. 

In the following example, TASKOI is the name of a task. STARTOI is the label on 
the first instruction to be executed, and 140 is the priority of the task. 

TASK01 TASK START01,140 
• 
• 
• 
ENDTASK 

The supervisor places each task in one of five states: 

State 

Inactive 

Waiting 

Ready 

Active 

Executing 

Description 

Task is detached or is not yet attached 

Task is waiting for the occurrence of an event or the availability of a 
resource 

Task is ready but is not the highest priority task 

Task is attached and is the highest priority task on its level 

Task is using the processor. 

Chapter 9. Designing Programs 9-1 



Designing Programs 

Initiating a Task 

Only one task can be active on each of four machine hardware levels. (The 
supervisor executes on hardware level 1; application programs usually execute on 
hardware level 2 or 3.) 

The active task in each hardware level is the ready task that has the highest priority 
and is not waiting for an event or a resource. 

You can initiate a task either by loading or attaching it. The system places the 
primary task in the ready state when you load the program. You can initiate a 
secondary task with the A TT ACH statement if the task is not already active and you 
do either of the following: 

• You write a program that consists of a primary task and a secondary task. 

• You link edit a primary task with another task. (You must code an EXTRN 
statement in the primary task and an ENTRY statement in the secondary task.) 

You return a task to the inactive state when you execute either a DETACH 
instruction or ENDTASK instruction. The DETACH instruction suspends the task 
and allows it to be attached again. 

Only one copy of a task may be active at a time. A task in processor storage 
remains until you execute an ENDPROG statement in the associated primary task. 

What Is a Program? 

9-2 SC34-0943 

A program is a disk- or diskette-resident collection of one or more tasks that can be 
loaded into storage for execution. Although program and task are sometimes used 
synonymously (when a program contains a single task), the basic executable unit is 
the task; a program is the unit that the system loads into storage. 

You can divide a program into two or more tasks if, for example, you need to 
synchronize execution between the tasks. Another reason to divide a program into 
tasks is to have more than one task active at the same time. 

The name of a program is the name of the data set in which the program resides. A 
program can be brought into storage either by a terminal operator, a program, or a 
supervisor program such as the job stream processor. It can be loaded more than 
once, either in the same partition or in a different partition. 

o 

o 

o 



o 

o 

Designing Programs 

Creating a Single-Task Program 
Most applications consist of a single task in a single program. The program 
contains no execution overlay. The task competes for system resources with other 
tasks currently in the system. 

The following example shows the structure of a single-task program: 

BEGIN PROGRAM START 
• 
• 
• 
PROGSTOP 
ENDPROG 
END 

In this example, BEGIN is the name of the task, and START is the label of the first 
instruction to be executed. 

Note that even though the TASK statement is not required in a simple program, the 
program still consists of a single task. 

Figure 9-1 on page 9-4 is an example of a single-task program structure. 

Chapter 9. Designing Programs 9-3 



Designing Programs 

o 

UPDATE 

1. GET CUSTOMER NAME FROM TERMINAL (OPERATOR INPUT) 

2. SEARCH CUSTOMER FILE FOR NAME 

3. READ CUSTOMER RECORD 

4. DISPLAY CUSTOMER RECORD ON TERMINAL 

5. ACCEPT UPDATE FROM TERMINAL (OPERATOR INPUT) o 
6. WRITE UPDATED RECORD TO CUSTOMER FILE 

7. GO BACK TO STEP 1 IF MORE RECORDS TO UPDATE 

8. ELSE, END UPDATE PROGRAM 

Figure 9-1. Single-Task Application Example 

o 
9-4 SC34-0943 



c 

o 

Designing Programs 

Creating a Multitask Program 
A multi task program contains more than one task. For example: 

BEGIN PROGRAM START 
• 
• 
• 
ATTACH CALC 
• 
• 
• 
PROGSTOP 

CALC TASK 
instructions 
ENDTASK 
ENDPROG 
END 

Note that the PROGRAM and PROGSTOP statements define a task called the 
primary task. The TASK and ENDT ASK statements define a secondary task, loaded 
by the ATTACH instruction. 

Figure 9-2 illustrates multitasking in a single program. When you load the program, 
the system loads PROGA, called the primary task. The other tasks shown in 
PROGA start when an active task issues a command (such as an ATTACH 
instruction) that tells the tasks to begin. 

PROGA 

TASKX 

TASKY 

TASKZ 

Program made up of multiple tasks 

• Concurrent (asynchronous) execution 
of tasks within a program 

• Tasks compete for system resources 
with all other tasks currently in system 

BG1138 

Figure 9-2. Multitask Program Structure 

Once in execution, all tasks within a program compete with one another and with all 
other tasks active in the system. The supervisor considers each task as a discrete 
unit of work and assigns processor time based on task priority, regardless of whether 
a task is the primary task of a program. All tasks compete for resources based on 
assigned priorities. 

If a primary task ends before the secondary task, the secondary task runs to 
completion. 

Chapter 9. Designing Programs 9-5 



Designing Programs 

Synchronizing Tasks 
You can synchronize tasks with the WAIT and POST instructions or with the 0' .. ', 
DETACH and ATTACH instructions. If you use the WAIT and POST instructions, 
the waiting task must contain an event control block (ECB) that can be posted by 
the POST instruction. Execution then continues in the waiting task at the first 
instruction after the WAIT instruction. A task can also wait for the operator to 
press a Program Function (PF) key, for a time interval to occur, or for a program to 
finish execution. 

While waiting to be posted, the task enters a waiting state. The task also enters a 
waiting state if it is waiting for a read or write operation to occur or if it has 
executed a DETACH instruction. 

You can use the DETACH and ATTACH instruction to synchronize tasks the same 
way you use the WAIT and POST instruction, with the following differences: 

• The attached task becomes enqueued to the currently active terminal for the task 
that issued the ATTACH instruction. 

• The system provides the ECB. 

• You cannot use the ATTACH and DETACH instructions from within 
subroutines. 

Defining and Calling Subroutines 

9-6 SC34-0943 

In a program, certain functions may need to be repeated at different points in a 
program. For example, you do not need to code the same sequence of instructions r~ 

each time your program needs to perform a given arithmetic function. You can ~J 
code the instructions once and define them as a subroutine. You can than enter and 
execute that subroutine from as many points in your program as needed. You can 
also use the subroutine in another program by including it at link-edit time. 

The following instructions provide the means for defining and calling subroutines: 

CALL 

RETURN 

SUBROUT 

EXTRN 

ENTRY 

Transfers control to a subroutine 

Returns control from the subroutine to the calling program 

Defines the entry point and parameters of a subroutine 

Defines an external reference 

Defines a program entry point. 

o 



o 

o 

o 

Designing Programs 

Defining a Subroutine 
Use SUBROUT to define the entry point of a subroutine. You can specify up to 
five parameters as arguments in the subroutine. The subroutine must include a 
RETURN instruction to provide linkage back to the calling task. You can have 
nested subroutines, and a maximum of 99 subroutines are permitted per program. If 
you assemble your subroutine as an object module that can be link edited, you must 
code an ENTRY statement for the subroutine entry point name. 

You can call a subroutine from more than one task. When called, the subroutine 
executes as part of the calling task. Because subroutines are not reentrant, you 
should ensure serial use of the subroutine with the ENQ and DEQ instructions. 

Note: Do not code a TASK statement within a subroutine. 

The syntax of the SUBROUT instruction is as follows: 

label SUBROUT name,parl, ... ,par5 

Required: name 
Defaults: none 
Indexable: none 

Code the name operand with the symbolic name of the subroutine to be referred to 
by other instructions. The label field is optional. Do not confuse the label field with 
the subroutine name you specify in the name operand. 

Passing Parameters in a Subroutine (Example) 
Parl through par5 are the parameter names to be passed to the subroutine when it is 
entered. These names must be unique to the whole program. All parameters defined 
outside the subroutine are known within the subroutine. Thus, you need to define 
only parameters that may vary with each call to a subroutine. 

For instance, assume two calls are made to the same subroutine. The first call 
passes parameters A and C and the second CALL passes parameters Band C. 
Because C is common to both, you need not define it in the SUBROUT instruction. 

In the following example, a program calls subroutine CHKBUFF, passing two 
parameters. The first (BUFFLEN) is a variable containing the maximum allowable 
buffer count. The second (BUFFEND) is the address of the instruction to be 
executed if the buffer is full. 

MAX 

SUBROUT CHKBUFF,BUFFLEN,BUFFEND 
• 
• 
• 

SUBTRACT BUFFLEN,l 
IF (BUFFLEN,GE,MAX) 

GOTO (BUFFEND) 
ENDIF 
ADD BUFFLEN,l 
RETURN 
• 
• 
• 

DATA F'256' 

Chapter 9. Designing Programs 9-7 



Designing Programs 

Calling a Subroutine 
Use the CALL instruction to execute your subroutine. 

If the called subroutine is a separate object module to be link edited with your 
program, then you must code an EXTRN statement for the subroutine name in the 
calling program. 

The syntax of the CALL instruction is as follows: 

1 abel CALL 

Required: name 
Defaults: none 
Indexable: none 

name,parl, ... ,par5,Pl=, ... ,P6= 

The name operand is the name of the subroutine to be executed. 

Par 1 through par5 are the parameters associated with the subroutine. You can pass 
up to five single-precision integers, labels of single-precision integers, or null 
parameters to the subroutine. The actual constant or the value at the named 
location moves to the corresponding subroutine parameter. 

If you enclose the parameter name in parentheses, the address of the variable passes 
to the subroutine. The address can be the label of the first word of any type of data 
item or data array. Within the subroutine, you must move the passed address of the 
data item into index registers #1 or #2 to reference the data item. If the parameter 
name enclosed in parentheses is a symbol defined by an EQU instruction, the system 
passes the value of the symbol. 

If the parameter to be passed is the value of a symbol defined by an EQU 
instruction, it can also be preceded by a plus (+) sign. This causes the value of the 
EQU to be passed to the subroutine. If not preceded by a +, the EQU is assumed 
to represent an address and the data at that address is passed as the parameter. 

Subroutine Call Examples 

9-8 SC34-0943 

The following example passes the value 5 to the subroutine PROG: 

CALL PROG,5 

The following example passes the value 5 and the null parameter 0 to the subroutine 
CALC: 

CALL CALC,5, 

The following example passes the contents of PARMI, the address of PARM2, and 
the value of the EQU symbol FIVE: 

CALL SUBROUT,PARMl,(PARM2),+FIVE 

0 11 

""CJ' 

o 



o 

o 

Designing Programs 

Calling a Subroutine Passing Integer Parameters (Example) 
The following example shows a program that passes integers to a subroutine: 

SUBEXAMP 
START 

C2 

INTEGERA 
INTEGERB 
SUMI 
SUM2 
SUBI 
Al 

PROGRAM 
CALL 
• 
• 
• 

CALL 
• 
• 
• 

PROGSTOP 
DATA 
DATA 
DATA 
DATA 
SUBROUT 
ADD 
RETURN 
ENDPROG 
END 

START 
CALC,50,SUMI 

CALC,SUMI,SUM2 

F'10 1 

F'15 1 

F I 0 1 

F' 0 1 

CALC,XVAL,YVAL 
INTEGERA,XVAL,RESULT=YVAL 

In the first CALL, the first parameter (the integer value 50) corresponds to the first 
parameter defined in the subroutine (XVAL). Program location SUMl corresponds 
to the second parameter (YVAL). When the ADD instruction executes, the system 
substitutes 50 for XV AL and location SUMl for YV AL. After the ADD 
instruction, SUMl equals 60, the sum of INTEGERA and 50. 

The second call causes 70, the sum of SUM land INTEGERA, to be put in location 
SUM2. Because INTEGERA does not change, you do not need to pass it as a 
parameter. 

Reusing Storage using Overlays 
You can reuse a single storage area allocated to a program by using overlays. EDL 
provides two kinds of overlays: overlay segments and overlay programs. 

An overlay segment is a self-contained portion of a program that is called and 
executed as a synchronous task. The program that calls the overlay segment need 
not be in storage while the overlay segment is executing. Overlay segments perform 
a specific function and generally execute only once. 

An overlay program is a self-contained portion of a program that is loaded and 
executed as an asynchronous task. Overlay programs require a main control program 
that controls the execution of up to nine overlay programs. 

Chapter 9. Designing Programs 9-9 



Designing Programs 

Using Overlay Segments 

9-10 SC34-0943 

Figure 9-3 shows the structure of an application program that is split into a root 
segment and three overlay segments. 

APPLICATION PROGRAM 

Root segment 

Overlay area manager 

I I 
Overlay Overlay Overlay 
segment 1 segment 2 segment 3 

BG1139 

Figure 9-3. Application Overlay Segments 

When you load the main program, the loader reserves enough space for the root 
segment, the overlay area manager, the overlay control table, and the largest overlay 
segment as shown in Figure 9-4. 

SERIES/1 STORAGE 

Root (resident) segment 

$OVLMGR 
Overlay manager 

$OVLCT 
Overlay control table 

Overlay area 
(large enough to contain 
segment 2) 

Available storage 

BG1140 

Figure 9-4. Overlay Segments in Series/l Storage 

o 

o 



o 

c 

Designing Programs 

The following example shows a root segment and three overlay segments: 

BEGIN PROGRAM 
EXTRN 
• 
• 
• 

START 
CALC,UPDATE,WRITE 

CALL CALC 
• 
• 
• 

CALL UPDATE 
• 
• 
• 

CALL WRITE 
• 
• 
• 

PROGSTOP 
ENDPROG 
END 

****************************************************************** 

* OVERLAY SEGMENT 1 * 
****************************************************************** 

SUBROUT CALC 
ENTRY CALC 

instructions 
RETURN 
END 

****************************************************************** 

* OVERLAY SEGMENT 2 * 
****************************************************************** 

SUBROUT UPDATE 
ENTRY UPDATE 

instructions 
RETURN 
END 

****************************************************************** 

* OVERLAY SEGMENT 3 * 
****************************************************************** 

SUBROUT 
ENTRY 

WRITE 
WRITE 

instructions 
RETURN 
END 

Each of the overlay segments is a subroutine that you can compile separately. 

Chapter 9. Designing Programs 9-11 



Designing Programs 

Creating an Overlay Structure 
To create an overlay structure, use the linkage editor $EDXLINK. The linkage 
editor allows you to combine the overlay segments you link edited separately into a 
program segment overlay structure. $EDXLINK automatically includes an overlay 
manager with the root segment, along with an overlay area equal to the largest 
overlay segment. A CALL (or transfer of control) to a module within an overlay 
segment triggers the overlay area manager to load the overlay segment into the 
overlay area and transfer control to it. Overlay segments execute as synchronous 
tasks. An overlay segment cannot call another overlay segment. 

Overlay segments are specified in the OVERLAY statement of $EDXLINK which is 
discussed in detail in Chapter 5, "Preparing an Object Module for Execution." 

Overlay Programs 

9-12 SC34-0943 

An overlay program is a program in which certain control sections can use the same 
storage location at different times during execution. Overlay programs execute 
concurrently as asynchronous tasks with other programs and are specified in the 
PROGRAM statement in the main program. 

With overlay programs, the main program loads the overlay programs. The loader 
allocates the overlay area for overlay programs at main program load time. The 
overlay area is equal to the largest overlay program listed in the main program 
header. 

In Figure 9-5, the application is split into separate programs. PHASEl, the primary 
program, loads the overlay programs (PHASE2, PHASE3, and PHASE4) as 
requested. 

PHASE1 
application 
program 

PHASE1 

PHASE2 

PHASE3 

PHASE4 

BG1141 

Figure 9-5. EDL Overlay Programs 

o 

o 

o 



o 

o 

Designing Programs 

When PHASE! is loaded, the loader recognizes that overlay programs are 
referenced. The loader looks at each overlay program and reserves enough storage 
to hold PHASE! plus the largest overlay program (PHASE3) as shown in 
Figure 9-6. 

Space for PHASE1 { 
plus overlay area 
reserved when 
PHASE1 is loaded 

Series/1 storage 

Supervisor 

PHASE1 
------------------------

(Overlay area) 

(Available 
storage) 

} 

Overlay area large 
enough for PHASE3, 
the largest overlay 
program 

BG1142 

Figure 9-6. EDL Overlay Programs in Series/1 Storage 

As each overlay program completes execution, PHASE! loads the next overlay 
program, until all required programs have run. When PHASE! terminates, the 
system releases the storage reserved for PHASE! and its overlay programs. Refer to 
the Language Reference for information on coding the PROGRAM statement for 
overlays. 

Using Large Amounts of Storage (Unmapped Storage) 
Unmapped storage allows you to write a program that uses large amounts of 
storage. Unmapped storage allows you to store large amounts of data and retrieve 
data faster than you could retrieve it from disk or diskette. This section describes 
setting up, obtaining, accessing, and releasing unmapped storage. 

What Is Unmapped Storage? 
Unmapped storage is physical storage that has not been reserved by the SYSPARTS 
statement during system initialization. 

Chapter 9. Designing Programs 9-13 



Designing Programs 

Setting up Unmapped Storage 
Use the STORBLK statement to define the size and number of the unmapped 
storage areas a program will use. The TWOKBLK operand defines the size of each 
unmapped storage area. For example, if you need unmapped storage areas to 
accommodate 6000 bytes of data, code TWOKBLK = 3 (6K = 6144 bytes). The 
maximum size of an unmapped storage area is 63,488 bytes (TWOKBLK = 31). 

The MAX operand defines the number of unmapped storage areas. For example, if 
you need ten unmapped storage areas, code MAX= 10. 

In the following example, HOLD defines 16 (MAX = 16) 2K-byte areas of unmapped 
storage. 

HOLD STORBLK TWOKBLK=1,MAX=16 

The STORBLK statement also sets up a mapped storage area the same size as the 
unmapped storage area. 

Obtaining Unmapped Storage 

9-14 SC34-0943 

Use the GETSTG instruction to obtain the mapped and unmapped storage areas 
you defined in the STORBLK statement. For example: 

GETSTG HOLD,TYPE=ALL 

This instruction obtains the mapped and unmapped storage that you defined in the 
STORBLK statement with the label HOLD. The size of the area depends on the 
TWOKBLK operand of the STORBLK statement. The operand TYPE = ALL tells 
the system to obtain the unmapped and mapped storage areas. The number of 
unmapped storage areas the system obtains depends on the MAX parameter of the 
STORBLK statement. 

If you want to obtain only one unmapped storage area, code the GETSTG 
instruction as follows: 

GETSTG HOLD,TYPE=NEXT 

The instruction causes the system to obtain an unmapped storage area that you 
defined in the STORBLK statement with the label HOLD. The size of the area 
depends on the TWOKBLK operand of the STORBLK statement. The system 
obtains one unmapped storage area. For example, if you specified MAX = 24 on the 
STORBLK statement and the system had already obtained fifteen unmapped storage 
areas, the system would obtain the sixteenth one. 

0'·" 
, , 

C,"" .i 
..; 

o 



o 

() 

c 

Designing Programs 

Using an Unmapped Storage Area 
You can use an unmapped storage area just like you would use any other storage 
area. For example, you can move data into the area or perform calculations on data 
within the area. 

The SWAP instruction allows you to use an unmapped storage area. For example: 

SWAP HOLD,USANO 

The instruction allows you to access the unmapped storage area defined by the 
STORBLK statement at label HOLD. The operand USANO refers to the label of a 
DATA statement that defines the number of the unmapped storage area you want to 
access. For example, if USANO contains "5," the SWAP instruction allows the 
program to access the fifth unmapped storage area. 

You can also code the number of the unmapped storage area you want to use: 

SWAP HOLD,10 

This instruction allows you to use the tenth unmapped storage area defined by the 
STORBLK statement at label HOLD. Until you execute another SWAP instruction, 
you can use only the tenth unmapped storage area. 

Notes: 

1. You can use only one unmapped storage area at a time. 

2. While you are using an unmapped storage area, you cannot use the mapped 
storage area. 

Releasing Unmapped Storage 
Use the FREESTG instruction to release any unmapped storage area that you 
obtained with the GETSTG instruction. For example: 

FREESTG HOLD,TYPE=ALL 

This instruction releases the unmapped storage areas defined by the STORBLK 
statement at label HOLD. The operand TYPE = ALL causes the instruction to 
release all of the storage areas. For example, if the STORBLK statement specifies 
MAX = 16, this instruction causes all sixteen unmapped storage areas and the 
mapped storage area to be released. 

Chapter 9. Designing Programs 9-15 



Designing Programs 

Example 
The following example uses ten unmapped storage areas to create a table of actuarial (~ 
data. The table for ea

l 
ch of the ten crounbtriehs consistsdof four-digithmortality rdates. i·e." 

The program accumu ates 100 rates lor ot men an women. T e unmappe 
storage the program uses is determined by the country number. 

The input records have the following format: 

Country number 2 bytes 
Age 2 bytes 
Death rate 4 bytes 
Sex code 1 byte 

The program: 

INSURE PROGRAM ST,DS=((ACTTAB,EDX40},(ACTOUT,EDX40» 
COPY STOREQU 

ST GETSTG HOLD,TYPE=ALL 
MOVE USANO,1 
MOVE #1,HOLD+$STORMAP 
DO 1O 

SWAP HOLD,USANO,ERROR=SWAPERR 
MOVE (+MENTBL,#1) ,C' ., (800,BYTE) 
ADD USANO,1 

ENDDO 
READ READ DS1,MORTAL,1,END=STOP 

CONVTD CNTRYC,CNTRY,PREC=S,FORMAT=(2,0,I) 
MOVE #1,HOLD+$STORMAP 
SWAP HOLD,CNTRYC,ERROR=SWAPERR 
CONVTD AGEC,AGE,PREC=S,FORMAT=(2,0,I) 0 MOVE #2,AGEC 
MULT #2,4 
ADD #1,#2 
IF (SEX,EQ,ONE,BYTE) 

MOVE (+MENTBL,#1),RATE,(4,BYTES) 
ELSE 

MOVE (+WMNTBL,#1),RATE,(4,BYTES) 
ENDIF 
GOTO READ 

STOP MOVE USANO,1 
MOVE #1,HOLD+$STORMAP 
DO 10 

SWAP HOLD,USANO,ERROR=SWAPERR 
MOVE OUTAREA,(+MENTBL,#1),(400,BYTES) 
WRITE DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR 
MOVE OUTAREA,(+WMNTBL,#1),(400,BYTES) 
WRITE DS2,OUTAREA,2,0,END=EOFILE,ERROR=WRERR 
ADD USANO,1 

ENDDO 
GOTO END 

o 
9-16 SC34-0943 



c 

c 

o 

Designing Programs 

o Copy the storage control block equates into the program. 

EI Obtain the mapped and unmapped storage (one 2K-byte mapped storage area 
and ten 2K-byte unmapped storage areas) specified in the STORBLK statement with 
the label HOLD. 

II Initialize USANO to l. 

II Move the address of the mapped storage area to register 1. 

IJ Begin a loop to initialize all ten unmapped storage areas to blanks. 

II Access an unmapped storage area. 

fJ Move blanks to the first 800 positions of the unmapped storage area. 

II Add 1 to USANO so that the SWAP instruction accesses the next unmapped 
storage area. 

1.1 Read an input record from data set ACTT AB on volume EDX40 into the buffer 
with the label MORTAL. 

1m Convert the country number in the input record to binary and put the result in 
CNTRYC. 

m Move the address of the mapped storage area into register 1. 

If) Use the country number (in CNTRYC) to access the appropriate unmapped 
storage area. 

III Convert the age in the input record to binary and put the result in AGEC. 

III Move the age (in AGEC) into register 2. 

II Multiply the age by 4 to arrive at the proper offset into the table. 

III Add the offset to the address of the mapped storage area. 

m Test the sex code for 1 (1 = men). 

1m Move the mortality rate into the appropriate slot in the MENTBL (the men's 
mortality rate table). 

m Initialize USANO to 1. 

Em Move the address of the mapped storage area to register 1. 

m Begin a loop to write records from the unmapped storage areas. 

m Access an unmapped storage area. 

m Move a man's mortality rate table to OUTAREA. 

Chapter 9. Designing Programs 9-17 



Designing Programs 

9-18 SC34-0943 

OJ Write an output record to data set ACTOUT on volume EDX40 from the 
buffer with the label OUTAREA. 

ED Move a woman's mortality rate table to OUTAREA. 

Em Write an output record to data set ACTOUT on volume EDX40 from the 
buffer with the label OUTAREA. 

ED Add 1 to USANO so that the SW AP instruction accesses the next 

EOFILE EQU * 
PRINTEXT I@** ACTUARIAL FILE HAS EXCEEDED DISK SPACE ' 
GOTO END 

SWAPERR EQU * 
MOVE TASKRC, INSURE 
IF (TASKRC, EQ, 1) 

PRINTEXT I@** INVALID UNMAPPED STORAGE NUMBER ' 
ENDIF 
IF (TASKRC, EQ ,2) 

PRINTEXT I@** SWAP AREA NOT INITIALIZED I 
ENDIF 
IF (TASKRC,EQ,100) 

PRINTEXT I@** NO UNMAPPED STORAGE SUPPORT I 
ENDIF 
GOTO END 

WRERR EQU * 
PRINTEXT I@** DISK WRITE ERROR ON ACTUARIAL DATA SET ' 
GOTO END 

END EQU * 
PROGSTOP 

ONE DATA Fill 
USANO DATA F'O' 
TASKRC DATA F'O' 
AGEC DATA F'O' 
CNTRYC DATA F'O' 
OUTAREA BUFFER 512,BYTES 

II HOLD STORBLK TWOKBLK=1,MAX=10 
MENTBL EQU 0 
WMNTBL EQU MENTBL+300 
MORTAL BUFFER 256,BYTES 
CNTRY EQU MORTAL 
AGE EQU MORTAL+2 
RATE EQU MORTAL+4 
SEX EQU MORTAL+8 

ENDPROG 
END 

II Set up a 2K-byte mapped storage area and ten 2K-byte unmapped storage 
areas. 

(~ .,; 

o 



Performing Data Management from a Program 

o Chapter 10. Performing Data Management from a Program 

o 

This section describes ways to accomplish data management from a program. 
Topics discussed are: 

• Alloca ting, deleting, opening, and renaming a data set 
• Opening a data set 
• Setting logical end of file 
• Finding the device type. 

To perform other data management functions from an application program such as 
allocating, deleting, and renaming volumes, see Chapter 13, "Communicating with 
Other Programs (Virtual Terminals)." 

Allocating, Deleting, Opening, and Renaming a Data Set 
The $DISKUT3 program enables you to perform the following data management 
operations from a program: 

• Allocate a data set 
• Allocate a data set with extents 
• Open a da tCJ, set 
• Delete a data set 
• Release unused space in a data set 
• Rename a data set 
• Set the end-of-data indicator in a data set. 

$DISKUT3 allows you to open and set the end-of-data indicator on disk, diskette, 
or tape data sets. You can perform the other operations (allocating, deleting, 
releasing unused space, and renaming) on disk or diskette data sets only. 

For more information on $DISKUT3, including a list of return codes, refer to the 
Language Reference. 

Chapter 10. Performing Data Management from a Program 10-1 



Performing Data Management from a Program 

When to Use $DISKUT3 
You might use $DISKUT3 for any of the following reasons: 

• Your program requires more than nine data sets. 
• You do not know, at the time you load a program, whether or not the program 

will need a data set. 
• You need to perform several data management functions in one program. 
• You want the processor storage that $DISKUT3 requires to be available when 

$DISKUT3 finishes executing. 

To use $DISKUT3, you should be aware of the following factors: 

• $DISKUT3 requires about 6.25K bytes of processor storage. 

• If you need only to open a data set, $DISKUT3 will be slower than DSOPEN. 

• You need to perform error recovery if the system cannot load $DISKUT3. 

Allocating a Data Set 

10-2 SC34-0943 

The following example shows how to allocate a data set from an application 
program. An explanation of the numbered items follows the program. 

TASK PROGRAM GO 
GO EQU * 

• 
• 
• 
LOAD 
WAIT 
• 
• 
• 
PROGSTOP 

DSK3EVNT ECB 0 

$DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
DSK3EVNT 

LISTPTRI DC A(LISTl) 
LISTI DC A(REQUESTl) 

DC F I 0 1 

REQUEST 1 DC FI21 
DC A(DSX) 
DC 0 1 50 1 

DC Fill 
DSCB DS#=DSX,DSNAME=DATA4 
COPY DSCBEQU 
ENDPROG 
END 



o 

o 

o 

Performing Data Management from a Program 

II Load $DISKUT3 to allocate data set DAT A4. Specify the address (LISTPTRl) 
of the list of requests (in this case, a single request). Identify the event 
(EVENT = DSK3EVNT) to be posted when $DISKUT3 completes. 

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LIST!. 

II Point to the specific allocate request. 

m Indicate the end of the list of requests. 

IJ Request an allocate (2). 

II Point to the DSCB for the data set to be allocated. (The allocate function 
requires that the data set being allocated be defined by a DSCB.) 

D Indicate that 50 records are to be allocated. 

1m Indicate that the data set type is data. 

m Define a DSCB for the data set to be allocated. 

lEI Copy the DSCB equates into the program. 

If you attempt to allocate a data set that already exists, $DISKUT3 considers the 
operation successful if the type and size of the data set that already exists matches 
the type and size of the data set that you are allocating. 

Chapter 10. Performing Data Management from a Program 10-3 



Performing Data Management from a Program 

Allocating a Data Set with Extents 
The following example shows how to allocate a data set with extents from an 
application program. An explanation of the numbered items follows the program. 

TASK PROGRAM 
GO EQU 

• 
• 
• 

II LOAD 
WAIT 
• 
• 
• 

DSK3EVNT ECB 
LISTPTR1 DC 
LIST1 DC 

DC 
REQUESTI DC 

DC 
DC 
DC 
DC 
DC 
DSCB 
COPY 
ENDPROG 
END 

10-4 SC34-0943 

GO 
* 

$DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
DSK3EVNT 

o 
A(LIST1) 
A(REQUEST1) 
F'O' 
F' 8

1 

A(DSX) 
D' 1000 ' 
Fill 

4F ' 0' 
F' 100 ' 
DS#=DSX,DSNAME=DATA45 
DSCBEQU 

o 

o 

o 



o 

o 

o 

Performing Data Management from a Program 

II Load $DISKUT3 to allocate data set DATA45. Specify the address 
(LISTPTR1) of the list of requests (in this case, a single request). Identify the event 
(EVENT = DSK3EVNT) to be posted when $DISKUT3 completes. 

D Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LISTl. 

II Point to the specific allocate request. 

m Indicate the end of the list of requests. 

fJ Request an allocate with data set extents (8). 

II Point to the DSCB for the data set to be allocated. (The allocate function 
requires that the data set being allocated be defined by a DSCB.) 

m Indicate that the size of the primary data set is 1000 records. 

1m Indicate that the data set type is data (You can only allocate data-type data 
sets with this request.) 

m Allocate four words of zeroes. These fields are reserved. 

m Indicate that the size of each extent is to be 100 records. 

m Define a DSCB for the data set to be allocated. 

m Copy the DSCB equates into the program. 

If you attempt to allocate a data set that already exists, $DISKUT3 considers the 
operation successful if the type and size of the data set that already exists matches 
the type and size of the data set that you are allocating. 

Chapter 10. Performing Data Management from a Program 10-5 



Performing Data Management from a Program 

Opening a Data Set 

10-6 SC34-0943 

If you have defined a data set with a DSCB, you need to open the data set from 
your application program. 

The following example shows how to open a data set from an application program. 
An explanation of the numbered items follows the program. 

I 

TASK PROGRAM GO 
GO EQU * 

• 
• 
• 
LOAD 
WAIT 
• 
• 
• 

DSK3EVNT ECB 0 

$DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
DSK3EVNT 

LISTPTRI DC A(LISTl) 
LISTI DC A(REQUESTl) 

DC FIOI 
REQUESTI DC Fill 

DC A(DSY) 
DC DIOI 
DC F 1_11 
DSCB DS#=DSY,DSNAME=DATA4 
COpy DSCBEQU 
ENDPROG 
END 

o Load $DISKUT3 to open data set DATA4. Specify the address (LISTPTRl) of 
the list of requests (in this case, a single request). Identify the event 
(EVENT = DSK3EVNT) to be posted when $DISKUT3 completes. 

fJ Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LISTl. 

II Point to the specific open request. 

II Indicate the end of the list of requests. 

IJ Request an open (1). 

II Point to the DSCB for the data set to be opened. 

m This doubleword is not used for an open request. 

1m Tell $DISKUT3 to return the type of the data set being opened (0 for 
undefined, 1 for data, 3 for program). 

o 

o 



o 

Performing Data Management from a Program 

m Define a DSCB for the data set to be opened. 

m Copy the DSCB equates into the program. 

Deleting a Data Set 
The following example shows how to delete a data set (with or without extents) from 
an application program. An explanation of the numbered items follows the 
program. 

TASK PROGRAM GO,DS=((MASTER,EDX002),(UPDATE,EDX003)) 
GO EQU * 

• 
• 

LOAD $DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
WAIT DSK3EVNT 
• 
• 
• 

DSK3EVNT ECB 0 
LISTPTRI DC A(LISTl) 
LISTI DC A(REQUESTl) 

DC FIOI 
REQUESTI DC FI41 

DC A(DS2) 
DC DIOI 
DC FI-Il 
COpy DSCBEQU 
ENDPROG 
END 

II Load $DISKUT3 to delete data set UPDATE on volume EDX003. Specify the 
address (LISTPTRI) of the list of requests (in this case, a single request). Identify 
the event (EVENT = DSK3EVNT) to be posted when $DISKUT3 completes. 

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LIST!. 

II Point to the specific delete request. 

1m Indicate the end of the list of requests. 

FJ Request a delete (4). 

m Point to the DSCB for the data set to be deleted (UPDATE on volume 
(EDX003). 

m This doubleword is not used for a delete request. 

Chapter 10. Performing Data Management from a Program 10-7 



Performing Data Management from a Program 

1m Tell $DISKUT3 to return the type of the data set being deleted (0 for 
undefined, 1 for data, 3 for program). 

m Copy the DSCB equates into the program. 

If you try to delete a data set that does not exist, $DISKUT3 considers the 
operation to be successful. 

Releasing Unused Space in a Data Set 

10-8 SC34-0943 

The following example shows how to release unused space in a data set from an 
application program. An explanation of the numbered items follows the program. 

I 

TASK PROGRAM GO 
GO EQU * 

• 
• 
• 
LOAD 
WAIT 
• 
• 
• 

$DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
DSK3EVNT 

DSK3EVNT ECB 0 
LISTPTRI DC A(LISTl) 
LISTI DC A(REQUESTl) 

DC F I 0 1 

REQUESTI DC F I 5 1 

DC A(DSX) 
DC D 1100 1 

DC F 1_11 
DSCB DS#=DSX,DSNAME=TRANS 
COPY DSCBEQU 
ENDPROG 
END 

II Load $DISKUT3 to release space on data set TRANS. Specify the address 
(LISTPTRl) of the list of requests (in this case, a single request). Identify the event 
(EVENT = DSK3EVNT) to be posted when $DISKUT3 completes. 

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LISTI. 

1:1 Point to the specific release request. 

II Indicate the end of the list of requests. 

fJ Request a release (5). 

iii Point to the DSCB for the data set on which space to be released (TRANS). 

o 



o 

c 

o 

Performing Data Management from a Program 

m Indicate the number of records you want the data set to contain. (This number 
must be greater than zero and less than the current number of records.) 

1m Tell $DISKUT3 to return the type of the data set on which space is being 
released (0 for undefined, 1 for data, 3 for program). 

m Define a DSCB for the data set on which to release unused space. 

m Copy the DSCB equates into the program. 

Renaming a Data Set 
The following example shows how to rename a data set from an application 
program. An explanation of the numbered items follows the program. 

TASK PROGRAM GO,DS=«MASTER,EDX003)) 
GO EQU * 

• 
• 
• 
LOAD $DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
WAIT DSK3EVNT 
• 
• 
• 

DSK3EVNT ECB 0 
LISTPTRI DC A(LISTl) 
LISTI DC A(REQUESTl) 

DC FIOI 
REQUESTI DC FI 31 

DC A(DSl) 
DC FIOI 
DC A(NEWNAME) 
DC F 1-11 
COpy DSCBEQU 

NEWNAME DC CL8 1 NEWMAST I 

ENDPROG 
END 

II Load $DISKUT3 to rename data set MASTER. Specify the address 
(LISTPTRI) of the list of requests (in this case, a single request). Identify the event 
(EVENT = DSK3EVNT) to be posted when $DISKUT3 completes. 

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

IJ Set the initial state of the event control block to zero. 

lEI Point to the list of requests at LIST!. 

II Point to the specific rename request. 

Chapter 10. Performing Data Management from a Program 10-9 



Performing Data Management from a Program 

m Indicate the end of the list of requests. 

IJ Request a rename (3). 

II Point to the DSCB for the data set to be renamed (MASTER on volume 
EDX003). 

D This word is not used for a rename request. 

Em Point to the new data set name. 

m Tell $DISKUT3 to return the type of the data set being renamed (0 for 
undefined, 1 for data, 3 for program). 

lEI Copy the DSCB equates into the program. 

III Define the new name for the data set. 

Setting End-of-Data on a Data Set 

10-10 SC34-0943 

If you define a data set with a DSCB, you need to set the end-of-data indicator from 
your application program. 

The following example shows how to set the end-of-data indicator on a data set 
from an application program. An explanation of the numbered items follows the 
program. 

TASK 
GO 

PROGRAM GO,DS=((MASTER,EDX883)) 
EQU * 
• 
• 
• 
LOAD $DISKUT3,LISTPTRI,EVENT=DSK3EVNT 
WAIT DSK3EVNT 
• 
• 
• 

DSK3EVNT ECB 8 
LISTPTRI DC A(LISTl) 
LISTI DC A(REQUESTl) 

DC F'8' 
REQUESTI DC F'6' 

DC A(DSl) 
DC D'8' 
DC F' -I' 
COpy DSCBEQU 
ENDPROG 
END 

o 

o 

o 



o 

C··ItI\, 
'I 

0 ',1 
' .. ,'''' 

Performing Data Management from a Program 

II Loa,d $DISKUT3 to set the end-of-data indicator on data set MASTER. 
Specify the address (LISTPTRl) of the list of requests (in this case, a single request). 
Identify the event (EVENT = DSK3EVNT) to be posted when $DISKUT3 
completes. 

II Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LISTl. 

II Point to the specific end-of-data request. 

II Indicate the end of the list of requests. 

IJ Request end-of-data (6). 

iii Point to the DSCB for the data set on which to set the end-of-data indicator 
(MASTER on volume EDX003). 

m Indicate that the last record is full. (If the last record is not yet full, this field 
would contain the number of bytes in the last record.) 

1m Tell $DISKUT3 to return the type of the data set on which the end-of-data 
indicator is being set (0 for undefined, 1 for data, 3 for program). 

III Copy the DSCB equates into the program. 

Chapter 10. Performing Data Management from a Program 10-11 



Performing Data Management from a Program 

Performing More Than One Operation at Once 

10-12 SC34-0943 

$DISKUT3 allows you to perform more than one operation during the execution of 0 
a program. For example, you can delete two data sets and allocate a third without =~ 
loading $D ISK UT3 more than once. 

The following example shows how to delete two data sets and allocate one data set. 
An explanation of the numbered items follows the program. 

IJ 

TASK PROGRAM GO,DS=((MASTER,EDX003),(UPDATE,EDX002)) 
GO EQU * 

• 
• 
• 
LOAD 
WAIT 
• 
• 
• 

$DISKUT3,LISTPTRl,EVENT=DSK3EVNT 
DSK3EVNT 

OSK3EVNT ECB 0 
LISTPTRI DC A(LISTl) 
LISTI DC A(REQUEST1) 

DC A(REQUEST2) 
DC A(REQUEST3) 
DC FIOI 

REQUEST1 DC FI41 
DC A(DS1) 
DC DIOI 
DC F 1_11 

REQUEST2 DC FI41 
DC A(DS2) 
DC DIOI 
DC F 1_11 

REQUEST3 DC FI21 
DC A(DSA) 
DC 01300 1 
DC Fill 
COpy DSCBEQU 
DSCB DS#=OSA,DSNAME=NEWMAST,VOLSER=EDX003 
ENDPROG 
END 

o 



o 

o 

o 

Performing Data Management from a Program 

II Load $DISKUT3 to delete the data sets MASTER and UPDATE and to 
allocate data set NEWMAST. Specify the address (LISTPTRl) of the list of 
requests (in this case, a single request). Identify the event (EVENT = DSK3EVNT) 
to be posted when $DISKUT3 completes. 

fJ Wait for the system to indicate the end of $DISKUT3 by posting DSK3EVNT. 

II Set the initial state of the event control block to zero. 

II Point to the list of requests at LISTl. 

II Point to the request to delete data set MASTER. 

II Point to the request to delete data set UPDATE. 

II Point to the request to allocate data set NEWMAST. 

iii Indicate the end of the list of requests. 

III Request a delete (4). 

1m Point to the DSCB for the first data set to be deleted (MASTER on volume 
EDX003). 

m This doubleword is not used for delete requests. 

lEI Tell $DISKUT3 to return the type of the data set being deleted (0 for 
undefined, 1 for data, 3 for program). 

III Request a delete (4). 

OJ Point to the DSCB for the second data set to be deleted (UPDATE on volume 
EDX002). 

III Request an allocate (2). 

III Point to the DSCB for the data set to be allocated (NEWMAST). 

m Allocate 300 records. 

1m Indicate that the data set type is data. 

m Copy the DSCB equates into the program. 

Em Define a DSCB for the data set being allocated (NEWMAST on volume 
EDX003). 

Chapter 10. Performing Data Management from a Program 10-13 



Performing Data Management from a Program 

Opening a Data Set (DSOPEN) 

Error Exits 

10-14 SC34-0943 

You can open a disk, diskette, or tape data set from a program with the DSOPEN 
copy code. DSOPEN does the same thing that the system does when you specify a 
data set in the PROGRAM statement and load the program with either the $L 
operator command or the LOAD instruction. 

Note: Only one DSCB can be open to a tape at a time. If you open a tape data set, 
you must close the data set before you can open another tape data set. 

You might use DSOPEN for any of the following reasons: 

• Your program requires more than nine data sets. 

• You do not know, at the time you load a program, whether or not the program 
will need a data set. 

• You need to open a data set and do not want to load $DISKUT3 (the system 
does not need to load DSOPEN). 

• The processor storage that $DISKUT3 requires is not available (DSOPEN 
requires about 1.5K bytes and $DISKUT3 requires about 6.25K bytes). 

DSOPEN performs the following functions: 

• Verifies that the specified volume is online 
• Verifies that the specified data set is in the volume 
• Initializes the DSCB. 

To use DSOPEN, you must first copy the source code into your program by coding: 

COpy TCBEQU 
COpy PROGEQU 
COpy DDBEQU 
COpy DSCBEQU 
COPY DSOPEN 

Note: You must code the equates in the order given. 

During execution, load DSOPEN with the CALL instruction as follows: 

CALL DSOPEN,(dscb) 

If an error occurs while DSOPEN executes, the system transfers control to one of 
several error exit routines. You must define these routines in your program and 
move their addresses to labels that are contained in DSOPEN before you call 
DSOPEN. The routines cannot be subroutines. 

o 

o 

o 



c 

C
·~, , 

o 

Performing Data Management from a Program 

The labels and their meanings are as follows: 

Label Description 

$DSNFND Data set name not found in directory. If DSOPEN cannot find the 
data set, then it does not fill in the DSCB. 

$DSBVOL Volume not found in disk directory. The system sets the DDB pointer 
in the DSCB to 0 ($DSCBVDE does not equal 0). 

$DSIOERR Read error occurred while DSOPEN was searching the directory. For 
additional information, refer to the READ instruction return codes in 
the Language Reference. 

$$EXIT The address of an EDL instruction which receives control after 
DSOPEN has completed. $$EXIT must be zero to open the device 
directory ($DSCBNAM is $$EDXVOL). $$EXIT must be zero to 
open the volume directory ($DSCBNAM is $$EDXLIB or $$). 

$DSDCEA Address of an area for DSOPEN to store the directory control entry 
(DCE). This label contains a 0 if this area does not exist. 

If you define an error exit routine as a word of zeroes or move a zero to one of the 
labels, DSOPEN transfers control to the next sequential instruction after the CALL 
instruction. 

In the following example the instruction causes control to return to the next 
sequential instruction if DSOPEN cannot find the data set: 

MOVE $DSNFND,LIBEXIT 
• 
• 
• 

LIBEXIT DATA F'01 

The following instruction causes control to return to the next sequential instruction 
if DSOPEN cannot the volume: 

MOVE $DSBVOL,0 

DSOPEN Considerations 
Note the following considerations when using DSOPEN: 

• You must have a 256-byte work area labeled DISKBUFR in your program as 
follows: 

DISKBUFR DC 128F '01 

• The DSCB to be opened can be DSI-DS9 or a DSCB defined in your program 
with the DSCB statement. The DSCB must be initialized with a six-character 
volume name in $DSCBVOL and an eight-character data set name in 
$DSCBNAM. 

• If you specify the volume name as six blanks, DSOPEN searches the IPL volume 
for the data set. 

Chapter 10. Performing Data Management from a Program 10-15 



Performing Data Management from a Program 

• After DSOPEN completes, #1 contains the number of the directory record 
containing the member entry and #2 contains the displacement within 
DISKBUFR to the member entry. 

• The fields $DSCBEND and $DSCBEDB contain the next available logical 
record data, if any, placed in the directory by SETEOD. 

• You can open only one data set on any tape volume at a time. 

DSOPEN Example 

10-16 SC34-0943 

The following example shows how to open a data set when the data set is not known 
when the program is loaded. ProgramMAINPGM, the primary task, prompts the 
operator for the data set name and volume and calls secondary task OPENPGM. If 
the operator does not enter the volume name, the program uses the IPL volume. 

I :~:::GM ~ READDS 

PROGRAM START,MAIN=YES 
EXTRN OPENPGM 
MOVEA #l,DSl 
READTEXT RESPONSE,'@@ENTER DSNAME,VOLUME - I 

IF (RESPONSE-l,EQ,X '00 1 ,BYTE),THEN 

I 
I 

DSONLY 

GOTO READDS 
ENDIF 
MOVE ($DSCBVOL,#1),IPLVOL,(6,BYTE) 
MOVE WHERE,0 
FIND C' ,',RESPONSE,15,WHERE,DSONLY 
MOVE #2,WHERE 
MOVE ($DSCBVOL,#1),(1,#2),(6,BYTE) 
MOVE (0,#2),BLANK8,(8,BYTE) 
MOVE ($DSCBNAM,#1),RESPONSE,(8,BYTE) 
CALL OPENPGM,(DSl) 
MOVE CODE,DSI 
IF (CODE,NE,-l),THEN 

PRINTEXT '@ERROR DURING DSOPEN. RETURN CODE = I 

PRINTNUM CODE 
ELSE 
• 
• 
• 

ENDIF 
PROGSTOP 
COPY DSCBEQU 

CODE DC F'0 1 

IPLVOL EQU * 
BLANK8 DC CL8 1 

WHERE DC F'01 

RESPONSE TEXT I ',LENGTH=15 
DSCB DS#=DSl,DSNAME=DUMMY 
ENDPROG 
END 

() 

o 



o 

o 

Performing Data Management from a Program 

II Begin the program at START and identify this task as the primary task 
(MAIN = YES). 

EI Identify as an external entry the subroutine that this task will call. 

II Place the address of the DSCB in register 1. 

II Prompt the operator for the data set name. When the operator responds, the 
system places the response in RESPONSE. 

II Test for a null entry. RESPONSE - 1 contains the length of the operator's 
response. 

II Initialize the volume field (DSCBVOL) of the DSCB to blanks. 

II Initialize the comma locator to zero. 

II Find a comma in the operator's response. If no comma exists, branch to 
DSONLY. 

IJ Move the position of the comma to register 2. 

1m Move the volume name to the volume field (DSCBVOL) of the DSCB. 

m Blank the volume name and the comma preceding it. 

lEI Move the data set name to the data set name field (DSCBNAM) of the DSCB. 

m Call the routine that opens the data set. Pass the address of the DSCB (pointed 
to by DS 1) to the subroutine. 

III Move the return code into CODE. 

m If the return code does not indicate successful completion ( - I), print an error 
message and the return code. 

III Process the data set with READ/WRITE instructions. ($DSCBEND contains 
the number of records in the data set.) 

m Cause the DSCB equates to be copied into the program. 

1m Reserve storage for the subroutine return code. 

1m Set up a default value for the IPL volume. 

f1I Reserve storage for an index to be used in locating the comma. 

Ell Reserve storage for the operator's response. 

m Generate a data set control block (DSCB). Give the data set name field 
(DSCBNAM) the temporary name DUMMY. 

Program OPENPGM consists of a subroutine and error exit routines for DSOPEN. 
The subroutine calls DSOPEN. 

Chapter 10. Performing Data Management from a Program 10-17 



Performing Data Management from a Program 

10-18 SC34-0943 

OPENPGM PROGRAM MAIN=NO 
ENTRY OPENPGM 
SUBROUT OPENPGM,ADSN 
MOVE SAVEl,#1 
t40VE SAVE2,#2 
MOVE #l,ADSN 
MOVE (0,#1) ,-1 
MOVEA $DSNFND, LIBEXIT 
MOVEA $DSBVOL, VOLEXIT 
MOVEA $DSIOERR, IOEXIT 
CALL DSOPEN,ADSN 
GO TO RETURN 

I LIBEXIT EQU * 
MOVE #1,ADSN 
MOVE (0,#1),1 
PRINTEXT '@DATA SET NOT FOUND DURING DSOPEN@' 
GOTO RETURN 

I VOLEXIT EQU * 
MOVE #l,ADSN 
MOVE (0,#1) ,2 
PRINTEXT '@VOLUME NOT FOUND DURING DSOPEN@' 
GOTO RETURN 

I IOEXIT EQU * 
MOVE #l,ADSN 
MOVE (0,#1),3 
PRINTEXT '@ERROR ENCOUNTERED DURING DSOPEN@' 
GO TO RETURN 

RETURN MOVE #1,SAVEl 
MOVE #2,SAVE2 
RETURN 
COPY TCBEQU 
COpy PROGEQU 
COPY DDBEQU 
COpy DSCBEQU 
COpy DSOPEN 

DISKBUFR DC l28F '0' 
SAVEl DC F'O ' 
SAVE2 DC F'O ' 

END 

II Identify the name of the subroutine as OPENPGM. Specify that it is not the 
main program (MAIN = NO). 

fJ Identify the name of the subroutine as an entry. (In conjunction with the 
EXTRN statement in the main program, this statement allows the linkage editor to 
resolve external references.) 

II Define a subroutine with the name OPENPGM. Define a parameter (ADSN) 
that is passed by the calling program. 

II Save index register 1. 

IJ Save index register 2. 

II Move the parameter that was passed from the calling program (the address of 
the DSCB) to register 1. 

0 

0 

o 



o 

o 

o 

Performing Data Management from a Program 

fJ Initialize the return code to indicate successful completion (-1). 

If] Move the address of the data-set-not-found routine to the proper error exit 
within DSOPEN. 

D Move the address of the invalid-volume routine to the proper error exit within 
DSOPEN. 

1m Move the address of the I/O error routine to the proper error exit within 
DSOPEN. 

m Call DSOPEN, passing the address of the DSCB. 

If) Indicate the beginning of the data-set-not-found exit routine. 

m Move the address of the DSCB to register 1. 

m Move a 1 to the first word of the DSCB, indicating data set not found. 

II Indicate the beginning of the invalid-volume exit routine. 

III Move the address of the DSCB to register 1. 

II Move a 2 to the first word of the DSCB, indicating an invalid volume. 

1m Indicate the beginning of the I/O error exit routine. 

III Move the address of the DSCB to register 1. 

m Move a 3 to the first word of the DSCB, indicating an I/O error. 

m Restore index register 1. 

m Restore index register 2. 

m Return to the calling program. 

ED Cause the TCB equates to be copied into the program. 

m Cause the PROGRAM equates to be copied into the program. 

HI Cause the DDB equates to be copied into the program. 

m Cause the DSCB equates to be copied into the program. 

HI Cause the DSOPEN equates to be copied into the program. 

m Reserve a 256-byte area for DSOPEN. (This area must have the label 
DISKBUFR.) 

1m Reserve an area in which to save register 1. 

m Reserve an area in which to save register 2. 

Chapter 10. Performing Data Management from a Program 10-19 



Performing Data Management from a Program 

Coding for Volume Independence 

10-20 SC34-0943 

You may code your applications so that they are independent of the volume in 
which they reside. To achieve volume independence, place all programs and data 
sets in a single volume on any system and specify the characters ## in the volume 
name field of any DS = operand or PGMS = operand of the PRO~RAM statement. 
(For information on the PROGRAM statement, refer to the Language Reference.) 

You can also insert the volume name from which your program was loaded into any 
DSCB you have coded in your program. If you insert the volume name into a 
DSCB, you must do so before loading $DISKUT3 or calling in DSOPEN. The 
volume name, a six-byte field, is located in the $PRGVOL field of the program 
header. 

The following example shows a routine that retrieves the volume name and loads 
DSOPEN to open the data set JOURNAL, located in the same volume from which 
the program was loaded. 

ENTER 

COpy TCBEQU 
COpy PROGEQU 
COpy DDBEQU 
COpy DSCBEQU 
COPY DSOPEN 
• 
• 
• 

TCBGET TCBADDR 
MOVE #l,TCBADDR 
MOVE #2, ($TCBPLP,#l) 
MOVEA #l,INDS 
MOVE ($DSCBVOL,#1),($PRGVOL,#2),(6,BYTE) 
CALL DSOPEN,(INDS) 
• 
• 
• 

I DSCB 
: DISKBUFR DC 
• TCBADDR DC 

DS#=INDS,DSNAME=JOURNAL 
12BF 'G' 
F'G ' 

o Get the address of the task control block (TCB). 

fJ Move the address of the TCB into register 1. 

II Move the address of the program header into register 2. 

II Move the address of the data set control block (DSCB) into register 1. 

II Move the volume into the DSCB. 

II Call DSOPEN, passing the DSCB as a parameter. 

IJ Define the DSCB. 

II Define a work area for DSOPEN. 

m Define an area for the TCB address. 

o 

o 

o 



c 

o 

o 

Performing Data Management from a Program 

Setting Logical End of File (SETEOD) 
The copy code routine SETEOD allows you to indicate the logical end of file on 
disk. If your program does not use SETEOD when creating or overwriting a file, 
the READ end-of-data exception will occur at either the physical or logical end that 
was set by some previous use of the data set. 

The relative record number of the last full physical record is placed in the $$FPMF 
field of the directory member entry (DME). 

Notes: 

1. If the $DSCBEDB field is zero, the $$FPMF field is set to the next record 
pointer field ($DSCBNEX) minus one. 

2. If the $DSCBEDB field is not zero, the $$FPMF field is set to the $DSCBNEX 
minus two. 

If the last physical record is partially filled, the number of bytes contained in this 
record is placed in the $$FPMD of the DME. Otherwise, a zero is placed in this 
field. (This is done by copying the $DSCBEDB field of the DSCB directly into the 
DME.) (Further information on the DME can be found in the Internal Design.) 

If the next record pointer field ($DSCBNEX) in the DSCB is 1 when SETEOD is 
executed, the DME is set to indicate that the data set is empty and $DSCBEND is 
set to X I FFFF I indicating that the data set is empty. If $DSCBEOD is zero, the 
data set is unused. 

SETEOD can be used before, during, or after any READ or WRITE operation. It 
does not inhibit fl,lrther I/O and can be used more than once. The only requirement 
is that the DSCB passed as input must have been previously opened. 

The POINT instruction modifies the $DSCBNEX field. If SETEOD is used after a 
POINT instruction, the new value of $DSCBNEX is used by SETEOD. 

SETEOD requires that the DSOPEN copy code, PROGEQU, TCBEQU, DDBEQU, 
and DSCBEQU be copied in your program. 

To use SETEOD, copy the source code into your program and allocate a work data 
set as follows: 

COpy TCBEQU 
COpy PROGEQU 
COpy DDBEQU 
COpy DSCBEQU 
COpy DSOPEN 
COPY SETEOD 

DISKBUFR DC 128F '0 1 WORK AREA FOR DSOPEN 

Chapter 10. Performing Data Management from a Program 10-21 



Performing Data Management from a Program 

10-22 SC34-0943 

Load SETEOD as a subroutine through the Event Driven Language CALL 
statement, passing the DSCB and an I/O error exit routine pointer as parameters. 

CALL SETEOD,(DSl),(IOERROR) 

where: 

DSI 

IOERROR 

Names a previously opened DSCB 

Names the routine in the application program to which control is 
passed if an I/O error occurs 

The following program writes a record three times and then sets the logical end of 
file. If an I/O error occurs, the system prints the message "I/O ERROR 
OCCURRED" and then prints a return code. 

SET PROGRAM START,DS=((ANY,EDXOO3)) 
PRINT OFF 
COpy TCBEQU 
COpy PROGEQU 
COpy DDBEQU 
COpy DSCBEQU 
COpy DSOPEN 
COpy SETEOD 
PRINT ON 

START EQU * 
MOVE BUFF,DATA,(256,BYTES) 
DO 3, TIMES 
WRITE DSl,BUFF,l,ERROR=IOERROR 
ENDDO 
CALL SETEOD,(DSl),(IOERROR) 
PROGSTOP 

IOERROR EQU * 
TCBGET RC,$TCBCO 
PRINTEXT 11/0 ERROR OCCURRED I ,SKIP=l 
PRINTEXT I ERROR RETURN CODE=' 
PRINTNUM RC,SKIP=l 
PROGSTOP 

DATA DC 256C 'A' 
DISKBUFR DC l28F 'O' 
BUFF BUFFER 256,BYTES 
RC DATA F'O' 

ENDPROG 
END 

o 

0 

o 



o 

o 

o 

Performing Data Management from a Program 

II Copy the TCB equates into the program. 

fJ Copy the PROGRAM equates into the program. 

II Copy the DDB equates into the program. 

II Copy the DSCB equates into the program. 

II Copy the DSOPEN routine into the program. 

m Copy the SETEOD routine into the program. 

II Indicate the beginning of the executable instructions. 

m Move 256 bytes of data into the buffer area. 

II Indicate the beginning of a DO loop. 

1m Write I record to the data set ANYon volume EDX003 from the buffer with 
the label BUFF. 

m End the loop. 

m Call the subroutine SETEOD to set the end of data on the data set ANYon 
volume EDX003. If an error occurs transfer control to IOERROR. 

m End program execution. 

m Indicate the beginning of the error routine. 

m Obtain the return code from the first word of the task control block (TCB) and 
place it in RC. 

1m Print the message "I/O ERROR OCCURRED." 

m Print the message "ERROR RETURN CODE=." 

1m Print the return code. The return code indicates the type of I/O error the 
system encountered. 

III End program execution. 

m Define a 256-byte storage area labeled DATA. 

m Reserve a 256-byte work area for DSOPEN. This area must be labeled 
DISKBUFR. (This is a requirement for DSOPEN.) 

m Define a 256-byte storage area labeled BUFF. 

m Reserve a data area for RC (the I/O error return code). 

Chapter 10. Performing Data Management from a Program 10-23 



Performing Data Management from a Program 

Finding the Device Type (EXTRACT) 

10-24 SC34-0943 

The inline copy code routine EXTRACT determines the device type from the device 
descriptor block. This routine is provided for applications that are sensitive to 
device type. For example, an application may need to allocate a data set unless the 
data set were to reside on a tape. Before attempting to execute instructions that 
would not execute successfully, the EXTRACT routine can be used to determine the 
device type. 

To use EXTRACT, you must copy the source code into your program. The routine 
requires the address of a DSCB in #1 and returns the device type in #1. 

MOVEA #1,DS1 
COPY EXTRACT 
IF (#1,EQ,X'3186'),GOTO,TAPEDS 

In this example, X' 3186' is the device ID of an IBM 4969 Magnetic Tape. 

To get a list of the device IDs on your system, use the LD command of the 
$IOTEST utility. 

o 

o 

o 



o 

o 

Reading and Writing to Tape 

Chapter 11. Reading and Writing to Tape 

This chapter describes the tape facilities you can use when using tape as part of your 
EDL program. 

For information on how to allocate tape data sets, copy data sets from one medium 
to another, and change tape attributes, refer to the $TAPEUTI utility in the 
Operator Commands and Utilities Reference or the Operation Guide. 

For more information on how to access magnetic tape data sets, refer to the 
Language Reference. 

For information on data set naming conventions, see "Specifying Data Sets" on 
page 6-3. 

What Is a Standard-Label Tape? 
A standard-label tape consists of data sets separated by SO-character label records 
and tapemarks. 

A label record is a record that the system writes on a tape to do such things as 
identify the volume, indicate the beginning of a data set, and indicate the end of a 
data set. 

Standard label tapes contain a volume label (VOLI) and a header label (HDRI) 
before each data set and a trailer label (EOFI) after each data set. For the contents 
of the labels, see Appendix A, "Tape Labels." 

A tapemark is a control character that the system writes on a tape. The hardware 
uses tapemarks to recognize such things as the beginning or end of a data set. 

You would use standard-label tapes to maintain data security or to control an 
extensive library of tapes. 

What Is a Nonlabeled Tape? 
A nonlabeled tape consists of data sets separated only by tapemarks. Nonlabeled 
tapes allow you to read tapes that have unknown record length or an unknown 
label. You would use nonlabeled tapes if you do not need to maintain strict data 
security or if you use only a small number of tapes. 

Chapter 11. Reading and Writing to Tape 11-1 



Reading and Writing to Tape 

Processing Standard-Label Tapes 
This section describes how to: 

• Read a standard-label tape 

• Write a standard-label tape 

• Close a standard-label tape 

• Bypass standard labels 

• Process a tape containing more than one data set. 

Reading a Standard-Label Tape 
The READ instructions allows you to retrieve a record from 18 to 32767 bytes long. 

In the following example: 

TASK04 PROGRAM START,DS=(UPDATES,(MASTER,56390)) 
• 
• 
• 
READ DS2,BUFF,1,120,END=NMRCDS,ERROR=OOPS,WAIT=YES 
• 
• 
• 

BUFF DATA 

the system reads one record (indicated by 1 in the third operand) from the second 
file listed on the PROGRAM statement (data set MASTER on volume serial 56390) 
into BUFF. (The term volume serial means the same as the term volume.) 

The size of the record is 120 bytes (indicated by 120 in the fourth operand). If no 
more records exist on the data set, control transfers to NMRCDS. If an error 
occurs, control transfers to OOPS. The system waits (WAIT = YES) for the read 
operation to complete before executing the next sequential instruction. 

The following READ instruction reads 2 records into BUFF2. BUFF2 must be 654 
bytes long. 

TASK37 PROGRAM BEGIN,DS=((UPDATES,73499),(MASTER,56390)) 
• 
• 
• 
READ DS1,BUFF2,2,327,END=END1,ERROR=ERR,WAIT=YES 
• 
• 
• 

BUFF2 DATA 327F '0 1 

The system reads two records (indicated by 2 in the third operand) from the first 
data set (UPDATES on volume serial 73499) listed on the PROGRAM statement. 
The size of the record is 327 bytes (indicated by 327 in the fourth operand). If no 
more records exists on the data set, control transfers to END!. If an error occurs, 

() 

control transfers to ERR. The system waits (WAIT = YES) for the read operation to 0 
complete before executing the next sequential instruction. . ... 

11-2 SC34-0943 



o 

CI 

o 

Reading and Writing to Tape 

Writing a Standard-Label Tape 
The WRITE instruction allows you to write a record from 18 to 32767 bytes long. 

In the following example: 

TASK04 PROGRAM START,DS=(UPDATES,(MASTOUT,00032)) 
• 
• 
• 

WRITE DS2,BUFF,1,120,ERROR=GOOF,WAIT=YES 
• 
• 
• 

BUFF DATA 60F ' 0 1 

the system writes one record (indicated by 1 in the third operand) to the second file 
listed on the PROGRAM statement (data set MASTOUT on volume serial 00032) 
from BUFF. The size of the record is 120 bytes (indicated by 120 in the fourth 
operand). If an error occurs, control transfers to GOOF. The system waits 
(WAIT = YES) for the write operation to complete before executing the next 
sequential instruction. 

The following WRITE instruction writes 2 records from BUFF2. BUFF2 must be 
656 bytes long. 

TASK74 PROGRAM BEGIN,DS=((DATES,28345),(MASTER,56390)) 
• 
• 
• 

WRITE DS1,BUFF2,2,328,ERROR=ERROR,WAIT=YES 
• 
• 
• 

BUFF2 DATA 328F '0 1 

The system writes two records (indicated by 2 in the third operand) to the first data 
set (DATES on volume serial 28345) listed on the PROGRAM statement. The size 
of the record is 328 bytes (indicated by 328 in the fourth operand). If an error 
occurs, control transfers to ERROR. The system waits (WAIT = YES) for the read 
operation to complete before executing the next sequential instruction. 

Note: To write an uneven number of bytes to a 4969 Tape Unit, you must have the 
latest Engineering Changes installed on the device. 

Chapter 11. Reading and Writing to Tape 11-3 



Reading and Writing to Tape 

Closing Standard-Label Tapes 
Whether you read or write a standard-label tape, you should close the tape data set 
when you finish reading or writing. Closing a tape data set causes the system to 
write trailer labels. Use the CONTROL instruction to close a tape data set as 
follows: 

TASK98 PROGRAM BEGIN,DS=((DATES,28345},(MASTER,56390}} 
• 
• 
• 

CONTROL DSl,CLSOFF 
• 
• 
• 

The system closes the first data set (DATES on volume serial 28345) listed on the 
PROGRAM statement. CLSOFF causes the system to rewind the tape and set the 
tape drive offline. 

For information on other ways to close a tape, refer to the Language Reference. 

Bypassing Labels 

11-4 SC34-0943 

If you want to bypass the labels on a standard-label tape, you must have defined a 
tape drive as BLP during system generation or changed the label processing attribute 
with the $TAPEUTI utility. For information on defining a BLP drive, refer to the 
Installation and System Generation Guide. 

The following sample program shows how to bypass standard labels. 

II PROG8 PROGRAM START,DS=((XYZ,TAPE0l» 
START EQU * 

I READ DSl,BUFFER,l,80,ERROR=ERRl 
READ DSl,BUFFER,l,80,ERROR=ERRl 
CONTROL DSl, FSF 

LOOP EQU * 
II READ DSl,BUFFER,l,50,ERROR=ERR2,END=ALLDONE 

GOTO LOOP 
ALLDONE EQU * 

II READ DSl,BUFFER,l,80,ERROR=ERRl 
ENDIT EQU * 

PROGSTOP 
ERRl EQU * 

PRINTEXT '@LABEL ERROR - RC= I 

PRINTNUM DSl 
GOTO ENDlT 

ERR2 EQU * 
PRINTEXT '@READ ERROR - RC= I 

PRINTNUM DSl 
QUESTION '@DO YOU WANT TO CONTINUE? I C 

YES=LOOP,NO=ENDIT 
BUFFER DATA 40F ' 01 

ENDPROG 
END 

o 

o 

o 



o 

o 

o 

Reading and Writing to Tape 

II Identify the tape as data set XYZ on tape ID TAPEOI. The system ignores the 
data set name but you must supply it. 

II Read the first of the standard label records (the VOLI label) into BUFFER. 
(You can insert instructions after this instruction to process the label.) 

II Read the second of the standard label records (the HDRl label) into BUFFER. 
(You can insert instructions after this instruction to process the label.) 

II Forward space the file one tapemark. This instruction causes the system to skip 
any remaining blocks in the header and position itself at the first record of the file. 

1:1 Process the data. This instruction reads a 50-character record (indicated by 50 
in the third operand) into BUFFER. If an error occurs, control transfers to ERR2. 
If no more records exist on the data set, control transfers to ALLDONE. 

II Read the trailer label (the EOFl label) into BUFFER. You can insert 
instructions after this instruction to process the label. 

Processing a Tape Containing More than One Data Set 
To process a tape that contains more than one data set, use the $VARYON operator 
command to position the tape to the data set you want to read. For example, to 
position a tape at address 4C to the fourth data set, issue the following command: 

The system responds as follows: 

TAPEOI is the ID that was assigned to the tape drive at system generation. 

After you use the $VARYON operator command, you can process the data set as 
you would any other tape data set. 

Chapter 11. Reading and Writing to Tape 11-5 



Reading and Writing to Tape 

Reading a Multivolume Data Set 

11-6 SC34-0943 

To read a multivolume data set, you must add instructions to your program to 
process the data set. The following program reads a multivolume data set. 

II PROGX PROGRAM START ,DS=?? 
START EQU * II READ DS1,BUFFER,l,80,ERROR=ERR1,END=CHKEND 

ENDIT 

CHKEND 

ERRDSN 

ERRVOL 

ERRIO 

ERRMSG 

MSG1 
MSG2 
MSG3 
ERR1 

BUFFER 

• 
• 
• 
GOTO 
EQU 
PROGSTOP 

START 
* 

EQU * 
CONTROL DSl,CLSOFF 
IF (DSl,EQ,33) 
PRINTEXT '@EOV ENCOUNTERED - ENTER VOL1 OF NEXT VOLUME@' 
READTEXT NEWVOL 
MOVEA #1,DS1 
MOVE ($DSCBVOL,#1),NEWVOL,(3,WORD) 
MOVEA $DSNFND,ERRDSN 
MOVEA $DSBVOL,ERRVOL 
MOVEA $DSIOERR,ERRIO 
QUESTION '@REPLY Y WHEN NEXT VOLUME MOUNTED AND ONLINE@', 

NO=ENDIT 
CALL DSOPEN,(DSl) 
GOTO START 
ENDIF 
GOTO ENDIT 
EQU * 
MOVEA MSGX,MSG1 
GOTO ERRMSG 
EQU * 
MOVEA MSGX,MSG2 
GOTO ERRMSG 
EQU * 
MOVEA MSGX,MSG3 
EQU * 
PRINTEXT '@DSOPEN ERROR _@I 
PRINTEXT MSG1,Pl=MSGX 
PRINTEXT SKIP=l 
GOTO ENDIT 
TEXT 'DATA SET NOT FOUND ' 
TEXT 'VOLUME NOT FOUND ' 
TEXT 11/0 ERROR I 
EQU * 
PRINTEXT '@READ ERROR - RC=' 
PRINTNUM DSl 
GOTO ENDIT 
DATA 40F '0' 

NEWVOL TEXT 
REPLY TEXT LENGTH=2 

DSOPEN 
DSCBEQU 
PROGEQU 
DDBEQU 
128F '0' 

80 BYTE BUFFER 
HOLDS NEW VOLUME # 

COPY 
COpy 
COpy 
COpy 

DISKBUFR DC 
ENDPROG 
END 

o 

C 

o 

o 



o 

o 

Reading and Writing to Tape 

II Cause the system to issue a prompt for the data set name and volume of the 
input data set. 

II Read an 80-character record into BUFFER. If an error occurs transfer control 
to ERR1. If no more records exist, transfer control to CHKEND. 

11 Close the input data set, rewind the tape, and set the tape drive offline. 

II Test for a return code of 33, indicating that the system found an end-of-volume 
label. 

II Prompt the operator for the volume serial of the next tape. 

II Read the volume serial into NEWVOL. 

fJ Move the address of the DSCB for the data set into software register 1. 

iii Move the volume serial into the $DSCBVOL field of the DSCB. 

D Set the DSOPEN error exits in this instruction and in the next two instructions. 

1m Prompt the operator for a response when he/she has mounted the tape. 

m Call the DSOPEN routine to open the next volume of the data set. 

m Resume processing the data. 

Processing Nonlabeled Tapes 
This section describes how to: 

• Define a nonlabeled tape 

• Initialize a nonlabeled tape 

• Read a nonlabeled tape 

• Write a nonlabeled tape. 

Chapter 11. Reading and Writing to Tape 11-7 



Reading and Writing to Tape 

Defining a Nonlabeled Tape 

11-8 SC34-0943 

To read and write from a nonlabeled tape, you must define the drive as nonlabeled. 
If the tape drive hasn't already been defined as nonlabeled, you must: 

1 Vary the tape drive offline. 

2 Change the label processing attribute to nonlabeled using the $TAPEUTI 
utility. 

3 Vary the tape drive online. 

To vary the tape drive offline, use the $VARYOFF operator command as follows: 

The command varies offline the tape drive at address 4C. TAPEOI is the ID that 
was assigned during system generation. 

The following example shows how to use the $TAPEUTI utility to change the label 
processing attribute: 

This example changes tape TAPEOI to nonlabeled 800 bytes per inch. 

To vary the tape drive online, use the $VARYON operator command as follows: 

o 

The command varies online the tape drive at address 48. TAPEOI is the ID that was 0 
assigned during system generation. 



o 

C,·· I 

o 

Reading and Writing to Tape 

Initializing a Nonlabeled Tape 
To initialize a nonlabeled tape, you must: 

1 Vary the tape drive offline. 

2 Initialize the tape. 

3 Vary the tape drive online. 

To vary the tape drive offline, use the $VARYOFF operator command as follows: 

l > $VARYOFF 4C 
.. TAPE01 OFFLINE 

The command varies offline the tape drive at address 4C. TAPEOI is the ID that 
was assigned during system generation. 

To initialize the tape, use the $TAPEUTI utility as follows: 

To vary the tape drive online, use the $VARYON operator command as follows: 

The command varies online the tape drive at address 4C. TAPEOI is the ID that 
was assigned during system generation. 

Chapter 11. Reading and Writing to Tape 11-9 



Reading and Writing to Tape 

Reading a Nonlabeled Tape 
The READ instructions allows you to retrieve a record from a nonlabeled tape. The c· . 
records can be from 18 to 32767 bytes long.;:::) 

In the following example: 

TASK04 PROGRAM START,DS=(UPDATES,(MASTER,TAPE01)) 
• 
• 
• 

READ DS2,BUFFER,1,80,END=NOMORE,ERROR=ERROR,WAIT=YES 
• 
• 
• 

BUFFER DATA 60F'O' 

the system reads one record (indicated by 1 in the third operand) from the second 
file listed on the PROGRAM statement (data set MASTER on tape ID TAPEOl) 
into BUFFER. The size of the record is 80 bytes (indicated by 80 in the fourth 
operand). If no more records exist on the data set, control transfers to NOMORE. 
If an error occurs, control transfers to ERROR. The system waits (WAIT = YES) 
for the read operation to complete before executing the next sequential instruction. 

Writing a Nonlabeled Tape 

11-10 SC34-0943 

The WRITE instruction allows you to write a nonlabeled record from 18 to 32767 
bytes long. 

In the following example: 

TASK04 PROGRAM START,DS=(UPDATES,(MASTOUT,TAPE01)) 
• 
• 
• 

WRITE DS2,BUFF,1,120,ERROR=GOOF,WAIT=YES 
• 
• 
• 

BUFF DATA 60F'O' 

the system writes one record (indicated by 1 in the third operand) to the second file 
listed on the PROGRAM statement (data set MASTOUT on tape ID TAPEOl) 
from BUFF. The size of the record is 120 bytes (indicated by 120 in the fourth 
operand). If an error occurs, control transfers to GOOF. The system waits 
(W AIT = YES) for the write operation to complete before executing the next 
sequential instruction. 

o 

o 



o 

o 

o 

Reading and Writing to Tape 

Adding Records to a Tape File (UPDATE) 
The copy code routine UPDTAPE allows you to add records to an existing (or new) 
tape file. The records added are placed after existing records on the file. On 
standard label tapes, the routine updates the block count counters in the EOFI label. 

To use UPDTAPE, you must copy the source code into your program by coding: 

COpy UPDTAPE 

You load UPDT APE as a subroutine through the CALL instruction, passing the 
DSCB as a parameter. 

CALL UPDTAPE,(DSl) 

where DSI is a previously opened DSCB. 

After the CALL, you must check the return code in the first word of the DSCB for 
the tape motion return codes. A - I return code indicates that the tape is positioned 
correctly for writing records. 

Chapter 11. Reading and Writing to Tape 11-11 



Reading and Writing to Tape 

11-12 SC34-0943 

The following example adds 1000 records to a tape data set. The program prompts 
the operator for the data set name and volume. 

II UPDTAP PROGRAM START,DS=((TAPEDS,??)) 

I 

START EQU * 
CALL UPDTAPE,(DS1) 
IF (DSl,NE,-l) 

PRINTEXT I@ERROR - UPDTAPE RC =1 
PRINTNUM DSI 
PRINTEXT SKIP=l 
GOTO ENDIT 

ENDIF 
DO l000,TIMES 

WRITE DSl,BUFF,ERROR=ERR 
ADD BUFFNUM,l 

ENDDO 
ENDIT EQU * 

ERR 

IF (DSl,EQ,-l) 
PRINTEXT I@TAPE UPDATED SUCCESSFULLY@' 
CONTROL DSl,CLSRU 
IF (DSl,NE,-l) 

PRINTEXT I@CLOSE ERROR - RC =1 
PRINTNUM DSI 
PRINTEXT SKIP=l 

ENDIF 
ENDIF 
PROGSTOP 
EQU 
PRINTEXT 
PRINTNUM 
PRINTEXT 
GOTO 

* 
I @WRITE ERROR -
DSI 
SKIP=l 

RC =1 

BUFF DC 
BUFFNUM DC 

ENDIT 
l27X IFFFF I 
Fill 

DSCBEQU 
TDBEQU 
DDBEQU 
UPDTAPE 

COpy 
COpy 
COpy 
COPY 
ENDPROG 
END 

II Cause the system to prompt for the name and volume of the tape data set. 

II Call the subroutine, passing the DSCB as a parameter. 

II Check the return code from the subroutine. 

II Add 1000 records to the tape data set. 

II Write a record to the data set from buffer BUFF. If an error occurs, branch to 
ERR. 

o 

o 



c 

o 

Communicating with Another Program (Cross-Partition Services) 

Chapter 12. Communicating with Another Program 
(Cross-Partition Services) 

To communicate with another program, you can use cross-partition services. 
Cross-partition services require synchronization logic in your programs but no 
additional storage in the supervisor. 

Communication is possible between two programs within the same partition and 
between programs in different partitions. Cross-partition services permit 
asynchronous but coordinated execution of application programs running in different 
partitions. 

Use these services when interrelated programs and tasks in your application cannot 
be accommodated in a single partition. 

When your task is attached, its TCB ($TCBADS) is updated to contain the number 
of the address space in which it is executing. The address space value (the partitio:n 
number minus one) is also known as the hardware address key. This key, along with 
an address you supply, is used to calculate the target address used in cross- partition 
services. For some functions, you put the address key of the target partition in 
$TCBADS. 

The following sections contain examples of the different uses of the cross-partition 
services. 

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-1 



Communicating with Another Program (Cross-Partition Services) 

Loading Other Programs 
In the following example, PROGA loads PROGB into partition 2 and passes the 
parameters at PROGASWI to it. When PROGB terminates, the supervisor posts 
the ECB at ENDWAIT, signaling PROGA that PROGB has ended. 

In this example, the system queues the program loaded (PROGB) to the terminal 
that is enqueued by the loading program (PROGA). 

$TCBADS is not modified by the LOAD instruction. PROGA, the loading 
program, looks like this: 

H PROGA PROGRAM START, 1 ,MAIN=YES 
ATLIS ATTNLIST (CA,PROGASTP) 
PROGASTP EQU * 

II MOVE #l,PROGASWl 
II MOVE (O,#l),l,TKEY=l 

I 
START 

ENDATTN 
EQU * 
TCBGET PROGAKEY,$TCBADS 
LOAD PROGB,PROGASWl,EVENT=ENDWAIT,LOGMSG=YES,PAR T=2 
IF (PROGA,EQ,-l),THEN 

WAIT ENDWAIT 
ELSE 

PRINTEXT ILOAD FAILEDI,SKIP=l 
ENDIF 
PROGSTOP 

ENDWAIT ECB 
PROGASWI DATA A(PROGASWl) 
PROGAKEY DATA FIO I 

ENDPROG 
END 

Notes on PROGA are as follows: 

II Define the primary task (MAIN = YES). Assign priority 1 to the task. 

fJ Define an attention-interrupt-handling routine. When the operator enters "CA" 
and presses the attention key, branch to PROGASTP. 

II Move PROGASWI into register 1. (When this instruction executes, 
PROGASWI contains the address of CANCELSW in PROGB.) 

II Move 1 to address (0,#1). Indicate the address key of the loaded program 
(TKEY= 1). Address (0,#1) points to the address of CANCELSW. In PROGB, the 
IF instruction finds that CANCELSW contains a 1 and passes control to the label 
STOP. 

II Put PROGA's address key into PROGAKEY. 

o 

II Load PROGB, passing the parameters beginning at label PROGASWl. Identify 
the event to be posted when PROGB completes (EVENT = ENDW AIT), indicate 
that the PROGRAM LOADED message is to appear on the terminal, and load the 
program into partition 2 (PART= 2). 0 
fJ If PROGB loads successfully, wait for PROGB to post the event ENDW AlT. 

12-2 SC34-0943 



o 

o 

Communicating with Another Program (Cross-Partition Services) 

The following program, PROGB, is the program being loaded. 

When the operator presses the attention key and enters "CA," the 
attention-interrupt-handling routine at label CANCEL in PROGA begins executing. 

II PROGB 
START 

PROGRAM START,509,PARM=2 
EQU * 

fJ 

I. LOOP 

STOP 

PRINTEXT ITO CANCEL HIT> CAl ,SKIP=l 
PRINTEXT SKIP=l 
MOVEA PROGAWRK,CANCELSW 
MOVE #l,$PARMl 
MOVE (O,#l),PROGAWRK,TKEY=$PARM2 
IF (CANCELSW,EQ,l),GOTO,STOP 
GOTO LOOP 
EQU * 
PROGSTOP -l,LOGMSG=NO 

PROGAWRK DATA FIOI 
CANCELSW DATA FIOI 

ENDPROG 
END 

II Specify the length of the parameter list that PROGB receives from PROGA 
(P ARM = 2). The system recognizes each word in the parameter list by the label 
$PARMx, where "x" indicates the position of the word in the list. $PARMI refers 
to the first word in the list (PROGASWI) and $P ARM2 refers to the second word 
in the list (PROGAKEY). 

fJ Display a prompt that tells the operator how to cancel PROGB. 

II Move the address of CANCELSW into PROGA WRK. 

II Move the first parameter (the address of PRO GAS WI) into software register 1. 

1:1 Move the contents of PROGA WRK to the address (0,#1) in PROGA. The 
TKEY operand of the MOVE instruction supplies the address key of PROGA. 

m Loop until the operator cancels the program. 

fJ Post the loading program (PROGA) with a - I. Suppress the PROGRAM 
ENDED message (LOGMSG = NO). 

Note: When you execute a LOAD instruction for any type of program, the default 
terminal address or the currently active terminal address of the program issuing the 
LOAD is placed in the program header of the loaded program. This address is 
taken from $PRGCCB in the issuing program's program header and placed into 
$PRGCCB of the loaded program's program header. This address is a CCB 
address. 

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-3 



Communicating with Another Program (Cross-Partition Services) 

Finding Other Programs 
The following example uses the WHERES instruction to find another program and 
return the address key and the load point of a program. 

II 

I PROGB 
AD ORB 

~ KEYB 

WHERES 
• 
• 
• 
DATA 
DATA 
DATA 

PROGB,ADDRB,KEY=KEYB 

C'PROGB 
F'O' 
F'O' 

II Find program PROGB. Put the load point address in ADDRB and the address 
key in KEYB. 

fJ Define the program to be found (the name you give the program when you 
link-edit it). 

II Define storage for the load-point address. 

II Define storage for the address key. 

Starting Other Tasks 

12-4 SC34-0943 

You can start a task in another partition with the ATTACH instruction. 

In the following example, PROGA starts (or "attaches") the task labeled 
TASKADDR in PROGB. 

PROGA PROGRAM START 

H COpy PROGEQU 
COpy TCBEQU 

START EQU * 

R WHERES PROGB,ADDRB,KEY=KEYB 
IF (PROGA,EQ,O) ,THEN 

PRINTEXT 'PROGRAM NOT FOUND ' ,SKIP=1 
GOTO DONE 

ENDIF 

I 
TCBGET SAVEKEY,$TCBADS 
TCBPUT KEYB,$TCBADS 
ADD ADDRB,X ' 34 1 ,RESULT=TASKADDR 
ATTACH *,P1=TASKADDR 
TCBPUT SAVEKEY,$TCBADS 
• 
• 
• 

DONE PROGSTOP 
SAVEKEY DATA F'O' 

1m PROGB DATA C'PROGB 
ADDRB DATA F'O' 
KEYB DATA F'O' 

ENDPROG 
END 

o 

o 

0 



c 

o 

o 

Communicating with Another Program (Cross-Partition Services) 

II Copy the PROGRAM equates into the program. 

fJ Copy the task control block (TCB) equates into the program. 

II Find the load-point address and address key of PROGB. Place the load-point 
address of PROGB into ADDRB and the address key of the program into KEYB. 

II If the WHERES instruction returns a zero, indicating an error, print an error 
message and end the program. 

II Save PROGA's address key in SA VEKEY. 

1'1 Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

fJ Add X' 34' to the load point of PROGB. Put the result of the addition in 
TASKADDR. (PROGA assumes that PROGB defines the task to be attached 
immediately after the PROGRAM statement. The PROGRAM statement generates 
52 bytes (X' 34') of code.) 

II Attach the task. Assume that the address of the task to be attached is contained 
in TASKADDR (calculated by the ADD instruction). 

II Restore PROGA's address key from SA VEKEY. 

II Indicate the name of the program to be found. (The name of the program is 
the name assigned to it when the program was link edited.) 

The following program contains task NEXT that PROGA attaches. This program 
must be in storage when PROGA issues the WHERES instruction. 

PROGB PROGRAM START 
II TASKADDR TASK NEXT 
fJ NEXT ENQT $SYSPRTR 

I 
START 

PRINTEXT '@SUBTASK IS ATTACHED' 
• 
• 
• 

DEQT 
ENDTASK 
EQU * 
PRINTEXT '@PROGB STARTED' 
WAIT KEY 
• 
• 
• 

PROGSTOP 
ENDPROG 
END 

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-5 



Communicating with Another Program (Cross-Partition Services) 

II Define a task with the name TASKADDR. 

D Enqueue the system printer ($SYSPRTR). 

II Print the message PROGB STARTED. 

II Wait for the operator to press the enter key. (The example assumes that the 
operator will not press the enter key until the task labeled T ASKADDR in PROGB 
has executed.) 

Note: When you issue an ATTACH instruction, the system stores the address of the 
terminal from which the main task was loaded in the $TCBCCB field of the attached 
task. In this way, the same terminal is active for both tasks. 

Sharing Resources with the ENQ/DEQ Instructions 

12-6 SC34-0943 

You can share serially-reusable resources with programs in other partitions by using 
the ENQ and DEQ instructions. 

In the following example, SQROOT is a subroutine that has been link edited by 
several other programs. The subroutine is serially reusable because only one 
program can use the subroutine at a time. PROGA attempts to enqueue the queue 
control block (QCB) in PROGB. PROGA must enqueue the QCB before it can call 
the subroutine labeled SQROOT. 

H 
I 

PROGA PROGRAM START 

START 

COpy TCBEQU 
EXTRN SQROOT 
EQU * 
WHERES PROGB,ADDRB,KEY=KEYB 
IF (PROGA,EQ,G),THEN 

PRINTEXT 'PROGRAM NOT FOUND',SKIP=l 
GOTO DONE 

ENDIF 
TCBGET SAVEKEY,$TCBADS 
TCBPUT KEYB,$TCBADS 
ADD ADDRB,X'34' ,RESULT=PROGBQCB 
ENQ *,BUSY=CANTHAVE,Pl=PROGBQCB 
CALL SQROOT 
MOVE PRGBQCB,PROGBQCB 
DEQ *,Pl=PRGBQCB 
TCBPUT SAVEKEY,$TCBADS 
GO TO DONE 

CANTHAVE EQU * 

DONE 
SAVEKEY 

PRINTEXT '@RESOURCE BUSY' 
TCBPUT SAVEKEY,$TCBADS 

• 
• 
• 

PROGSTOP 
DATA F'G' 

mPROGB DATA C'PROGB 
ADDRB DATA F'G' 
KEYB DATA F'G' 

ENDPROG 
END 

o 

0 



c 

o 

Communicating with Another Program (Cross-Partition Services) 

II Copy the task control block (TCB) equates into the program. 

FJ Identify the subroutine as an external entry (to be resolved at link-edit time). 

II Find the load-point address and address key of PROGB. Place the load-point 
address of PROGB into ADDRB and the address key of the program into KEYB. 

II If the WHERES instruction returns a zero, indicating an error, print an error 
message and end the program. 

11 Save PROGA's address key in SA VEKEY. 

m Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

fJ Add X '34' to the load point of PROGB. Put the result of the addition in 
PROGBQCB. PROGA assumes that PROGB defines the queue control block 
(QCB) immediately after the PROGRAM statement. The PROGRAM statement 
generates 52 bytes (X' 34') of code. 

II Enqueue the subroutine. Assume that the address of the task to be attached is 
contained in PROGBQCB (calculated by the ADD instruction). 

IJ Call the SQROOT subroutine. 

1m Move the contents of PROGBQCB to PRGBQCB. 

m Dequeue the queue control block (PRGBQCB). 

lEI Restore PROGA's address key from SA VEKEY . 

. m Indicate the name of the program to be found. (The name of the program is 
the name assigned to it when the program was link edited.) 

The subroutine link edited with PROGA looks like: 

SUBROUT SQROOT 
ENTRY SQROOT 
PRINTEXT '@SUBROUTINE HAS BEGUN' 
• 
• 
• 

RETURN 
END 

PROGB could look like this: 

II 

PROGB 
QCBl 
START 

PROGRAM START 
QCB 
EQU * 
WAIT KEY 
PROGSTOP 
ENDPROG 
END 

II Wait for an operator to press the enter key. (The program contains the QCB 
and should remain active while other programs in the system are using the SQROOT 
subroutine. ) 

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-7 



Communicating with Another Program (Cross-Partition Services) 

Synchronizing Tasks in Other Partitions 

12-8 SC34-0943 

You can synchronize two or more tasks in different partitions with the WAIT and 
POST instructions. The following programs show how to issue a POST instruction 
to a program in another partition. 

The first program, PROGA, finds the second program, PROGB, finds its event 
control block (ECB), and posts the ECB. In this example, PROGB must be loaded 
before PROGA. 

PROGA assumes that PROGB contains an ECB immediately following the 
PROGRAM statement. 

PROGA PROGRAM START 
II COpy TCBEQU 

START EQU * 

R WHERES PROGB,ADDRB,KEY=KEYB 
IF (PROGA,EQ,G),THEN 
PRINTEXT 'PROGRAM NOT FOUND' 
GO TO DONE 
ENDIF 

I 
TCBGET SAVEKEY,$TCBADS 
TCBPUT KEYB,$TCBADS 
ADD ADDRB,X'34',RESULT=PGMBECB 
POST *,-l,Pl=PGMBECB 
MOVE SAVEKEY,$TCBADS 

DONE PROGSTOP 
D PROGB DATA C'XP12B 

SAVEKEY DATA F'G' 
ADDRB DATA F'G' 
KEYB DATA F'G' 

ENDPROG 
END 

0 

o 



o 

o 

Communicating with Another Program (Cross-Partition Services) 

II Copy the task control block (TCB) equates into the program. 

II Find the program defined at PROGB, put the address of the program in 
ADDRB, and put the address key of the program in KEYB. 

II If the WHERES instruction returns a zero, print an error message and end the 
program. 

II Save PROGA's address key in SA VEKEY. 

1:1 Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

II Add XI 34 1 to the load point address returned by the WHERES instruction. Put 
the results of the addition in PGMBECB. PROGA assumes that PROGB defines an 
ECB immediately after the PROGRAM statement. The PROGRAM statement 
generates 52 bytes (X 1341) of code. 

IJ Post the ECB with a -1. The operand PI =PGMBECB allows the ECB to be 
calculated by the ADD instruction. 

II Restore PROGA's address key from SA VEKEY. 

II Indicate the name of the program to be found. The name of the program is the 
name assigned to it when the program was link edited. 

The following program shows how PROGB receives the POST from PROGA. This 
program must be in storage when PROGA issues the WHERES instruction. 

H PROGB PROGRAM START 
ECBl ECB 
START EQU * 

II WAIT ECBl 
• 
• 
• 
PROGSTOP 
ENDPROG 
END 

II Identify the label at which to start executing (START). 

II Define an event control block (ECB). The program defines the ECB here 
because it will always be 52 bytes (X 1341) from the program load point. 

II Wait for PROGA to post the program. 

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-9 



Communicating with Another Program (Cross-Partition Services) 

Moving Data Across Partitions o 

12-10 SC34-0943 

You can also move data across partitions. The following programs show how to 
move data to a program in another partition. The first program, PROGA, finds the 
second program, PROGB, stores its address key, and moves data to the dynamic 
storage area of PROGB. In this example, PROGB must be loaded before PROGA. 

I 
I 

PROGA PROGRAM START 
COPY PROGEQU 
COpy TCBEQU 

START EQU * 
WHERES PROGB,ADDRB,KEY=KEYB 
IF (PROGA,EQ,G),THEN 

PRINTEXT I PROGRAM NOT FOUND I 
GO TO DONE 

ENDIF 
READTEXT MSG,I@ENTER UP TO 3G CHARACTERSI,MODE=LINE 
MOVE #2,ADDRB 
MOVE PROGBBUF,($PRGSTG,#2),FKEY=KEYB 
TCBGET SAVEKEY,$TCBADS 
TCBPUT KEYB,$TCBADS 
MOVE #2,PROGBBUF 
MOVE (G,#2),MSG,(3G,BYTE),TKEY=KEYB 
TCBPUT SAVEKEY,$TCBADS 

DONE PROGSTOP 
MSG TEXT LENGTH=3G 
PROGBBUF DATA FIG I 

m PROGB DATA C I PROGB 
SAVEKEY DATA FIG I 
ADDRB DATA FIGI 
KEYB DATA FIGI 

ENDPROG 
END 

II Copy the PROGRAM equates into the program. 

II Copy the task control block (TCB) equates into the program. 

II Find the program defined at PROGB, put the address of the program in 
ADDRB, and put the address key of the program in KEYB. 

II If the WHERES instruction returns a zero, print an error message and end the 
program. 

II Prompt the operator for data and place the operator's response in MSG. 

II Move the address of PROGB in register 2. 

B Move the address of PROGB's dynamic storage area to PROGBBUF. Indicate 
PROGB's address key (FKEY = KEYB). PROGB has STORAGE = 256 on its 
PROGRAM statement. This operand causes the system to acquire a 256-by.te area 
of storage when it loads PROGB. The address of this area is in PROGB's program 0 .. '\ 
header (at $PRGSTG). 

II Save PROGA's address key in SAVEKEY. 



o 

CI 

o 

Communicating with Another Program (Cross-Partition Services) 

IJ Move PROGB's address key to the address key field ($TCBADS) of the TCB. 

1m Move the address of PROGB's dynamic storage area to register 2. 

m Move the data that the operator entered (M~G) into PROGB's dynamic 
storage area. Move 30 bytes and indicate the address key of the program to which 
the data is being moved (TKEY=KEYB). 

m Restore PROGA's address key from SA VEKEY. Note that $TCBADS is 
immediately restored to its original value. Doing so avoids unpredictable results. 

m Indicate the name of the program to be found. The name of the program is the 
name assigned to it when the program was link edited. 

The following program shows how PROGB receives the data from PROGA. The 
program must be in storage when PROGA issues the WHERES instruction. 

0 PROGB PROGRAM START,STORAGE=256 
START EQU * 

fJ • 
• 
• 

I MOVE #l,$STORAGE 
MOVE MSG2,(0,#l),(30,BYTE) 
PRINTEXT I@THE DATA THAT WAS PASSED WAS I 
PRINTEXT MSG2 
PROGSTOP 

MSG2 TEXT LENGTH=30 
ENDPROG 
END 

o Identify the label at which to start executing (START). Specify 256 bytes of 
dynamic storage. (Even though the program requires only 30 bytes, the system 
rounds up to a multiple of 256.) 

fJ Insert instructions here to wait for PROGA to send data. 

II Move the address of the dynamic storage area (contained in $STORAGE) to 
register 1. 

II Move 30 bytes from the dynamic storage area to MSG2. 

II Print the data. 

$TCBADS is used to calculate the partition and address to/from which data will be 
transferred. 

Chapter 12. Communicating with AnotherProgram (Cross-Partition Services) 12-11 



Communicating with Another Program (Cross-Partition Services) 

Reading Data across Partitions 

12-12 SC34-0943 

You can read data across partitions with the READ instruction. 

In the following example, program PROGA reads data and passes it to a buffer in 
program PROGB. PROGA assumes that PROGB is in another partition. 

I PROGA PROGRAM START,DS=ACCOUNTS 
COPY PROGEQU 
COpy TCBEQU 

START EQU * 

R WHERES PROGB,ADDRB,KEY=KEYB 
IF (PROGA,EQ,G),THEN 

PRINTEXT I PROGRAM NOT FOUNDI,SKIP=l 
GOTO DONE 

ENDIF 
MOVE #2,ADDRB 
MOVE PROGBBUF,($PRGSTG,#2),FKEY=KEYB 
TCBGET SAVEKEY,$TCBADS 

TCBPUT KEYB,$TCBADS 
READ DSl,*,P2=PROGBBUF 
TCBPUT SAVEKEY,$TCBADS 

DONE PROGSTOP 
SAVEKEY DATA FIG I 

mPROGB DATA CIPROGB 
ADDRB DATA FIG I 
KEYB DATA FIG I 

ENDPROG 
END 

II Define data set ACCOUNTS on the IPL volume. 

D Copy the PROGRAM equates into the program. 

IJ Copy the task control block (TCB) equates into the program. 

II Find the load-point address and address key of PROGB. Place the load-point 
address of PROGB into ADDRB and the address key of the program into KEYB. 

II If the WHERES instruction returns a zero, indicating an error, print an error 
message and end the program. 

II Move the address key of PROGB into software register 2. 

fJ Move the address of PROGB's dynamic storage area into PROGBBUF in 
PROGA. The STORAGE = operand on the PROGRAM statement of PROGB 
causes the system to acquire a 256-byte storage area when it loads the program. The 
address of this storage area is in PROGB's program header (at $PRGSTG). 

m Save PROGA's address key in SA VEKEY. 

m Moves PROGB's address key to the address key field ($TCBADS) of the TCB. 

1m Read one record from the data set ACCOUNTS into PROGBBUF. Because 
PROGBBUF is the label of the P2 = operand on the READ instruction, the system 
uses the contents of PROGBBUF as the location where the data is to be stored. 

o 

0 

o 



o 

o 

Communicating with Another Program (Cross-Partition S~rvices) 

m Restore PROGA's address key from SA VEKEY. 

lEI Indicate the name of the program to be found. (The name of the program is 
the name you give the program when you link edit it.) 

The following program shows how PROGB receives the data from PROGA. The 
program must be in storage when PROGA issues the WHERES instruction. 

II PROGB PROGRAM START, STORAGE=256 

I 
START EQU * 

OUTPUT 

• 
• 
• 
MOVE #l,$STORAGE 
MOVE OUTPUT,(O,#1),(50,BYTE) 
PRINTEXT I@THE DATA RECEIVED FROM PROGA IS .1 

PRINTEXT OUTPUT,SKIP=l 
TEXT LENGTH=50 
ENDPROG 
END 

II Identify the label at which to start executing (START). Specify 256 bytes of 
dynamic storage. (Even though the program requires only 50 bytes, the system 
rounds up to a multiple of 256.) 

fJ Move the address of the dynamic storage area (contained in $STORAGE) to 
software register 1. 

II Move 50 bytes of data from the dynamic storage area into OUTPUT. 

II Print a message. 

II Print the data. 

Chapter 12. Communicating with Another Program (Cross-Partition Services) 12-13 



o 
12-14 SC34-0943 



o 

o 

Communicating with Other Programs (Virtual Terminals) 

Chapter 13. Communicating with Other Programs (Virtual 
Terminals) 

A virtual terminal is a logical EDX device that simulates the actions of a physical 
terminal. An EDL application program can acquire control of, or enqueue, a virtual 
terminal just as it would an actual terminal. By using virtual terminals, programs 
can communicate with each other as if they were terminal devices. One program 
(the primary) loads another program (the secondary) and takes on the role of an 
operator entering data at a physical terminal. 

The secondary program can be an application program or a system utility, such as 
$COPYUTI. You can use virtual terminals, for example, to provide simplified 
menus for running system utilities. An operator could load a virtual terminal 
program, select a utility to run, and allow the program to pass predefined 
parameters to the utility. 

Virtual terminals simulate roll screen devices. The terminals communicate through 
EDL terminal I/O instructions contained in the virtual terminal programs. The 
programs use a set of virtual terminal return codes to synchronize communication. 

For example, an EDL program, the primary program, loads a system utility such as 
$COPYUTI. The program cannot distinguish between connecti'on to a real terminal 
or a virtual terminal. The program uses the READTEXT instruction to read the 
prompts from the utility. Then it uses the PRINTEXT instruction to send replies to 
the utility. 

Defining Virtual Terminals 
To define a virtual terminal connection during system generation, you must: 

• Define two TERMINAL configuration statements. 

• Include the supervisor module 10SVIRT. 

For information on how to define TERMINAL statements and include IOSVIRT, 
refer to the Installation and System Generation Guide. 

You can find out if your system has virtual terminals by using the LA command of 
the $TERMUTI utility. If your system has virtual terminals, $TERMUTI lists the 
virtual terminals as follows: 

NAME 

CDRVTA 
CDRVTB 

• 
• 
• 

ADDR TYPE 

** VIRT 
** VIRT 

PART HARDCOPY ON-LINE 

1 YES CONNECTED CDRVTB SYNC=YES 
1 YES CONNECTED CDRVTA 

The output from $TERMUTI indicates that CDRVTA is the primary program 
(SYNC = YES). 

Chapter 13. Communicating with Other Programs (Virtual Terminals) 13-1 



Communicating with Other Programs (Virtual Terminals) 

The DEVICE and ADDRESS parameters of the TERMINAL statement define the 
terminals as virtual terminals. The two TERMINAL statements must reference each 
other, as shown below. 

CDRVTA 
CDRVTB 

TERMINAL DEVICE=VIRT,ADDRESS=CDRVTB,SYNC=YES 
TERMINAL DEVICE=VIRT,ADDRESS=CDRVTA 

The SYNC parameter of terminal CDRVTA designates it as the terminal to which 
synchronization events will be posted. The synchronization between virtual 
terminals is discussed in "Interprogram Dialogue." 

Loading from a Virtual Terminal 
When an EDX program is loaded from a real terminal, that terminal becomes its 
"primary" communication port. When one program loads another, the current 
terminal of the first program is "passed" and becomes the primary terminal of the 
second. It is this convention that allows a new program to establish a virtual 
terminal as the primary port for the loaded program. For example: 

• 
• 
• 

ENQT 
LOAD 
ENQT 
• 
• 
• 

PRIM lOCB 
SEC IOCB 

SEC 
$TERMUT1,LOGMSG=NO,EVENT=ENDWAIT 
PRIM 

CDRVTA 
CDRVTB 

After this sequence, $TERMUTI has CDRVTB (the "other" end of the channel) as 
its primary port, and the loading program has CDRVTA ("this" end of the channel) 
as its current port. 

Interprogram Dialogue 

13-2 SC34-0943 

Once the connection between the two communicating programs has been established, 
you can use the PRINTEXT, READTEXT, PRINTNUM and GETVALUE 
instructions to send and receive data. You can generate attention interrupts with the 
TERMCTRL instruction. (Refer to the Language Reference for information on the 
TERMCTRL instruction.) The usual conventions with respect to output buffering 
and advance input apply. 

To use virtual terminals, you must know something about communications protocol 
(such as knowing when a program is ready for input or has ended). You can use 
the task code word to find out this information. 

0'''''·' , " 

o 

o 



c 

C) 

o 

Communicating with Other Programs (Virtual Terminals) 

Sample Program 
The following sample program uses virtual terminals to process the prompt/reply 
sequence of the $INITDSK utility. The program initializes volume EDX003. 

The replies to $INITDSK prompts begin at label REPLIES + 2. (The six bytes in 
each TEXT statement is preceded by two length/count bytes.) 

Each reply is 8 bytes long (six bytes of text plus two length/count bytes). The 
program issues a READTEXT until $INITDSK prompts for input. Then the 
program issues a PRINTEXT to send the reply to the $INITDSK prompt. After 
$INITDSK ends, the program prints a completion message to the terminal. 

INIT PROGRAM BEGIN 
A IOCB CDRVTA SYNC TERMINAL 
B IOCB CDRVTB 
DEND ECB 
BEGIN EQU * 

ENQT B 
LOAD $INITDSK,LOGMSG=NO,EVENT=DEND 
ENQT A GET SYNC TERMINAL 
MOVEA #1, REPLI ES+2 
DO 6, TIMES REPLY TO PROMPTS 

DO UNTIL, (RETCODE,EQ,8) BREAK CODE 
READTEXT LINE,MODE=LINE LOOP FOR PROMPT MSGS 
MOVE RETCODE,INIT SAVE RETURN CODE 

ENDDO 
PRINTEXT (O,#1) SEND REPLY 
ADD #1,8 NEXT REPLY 

ENDDO 
READTEXT LINE,MODE=LINE PGM END MSG 
WAIT DEND WAIT FOR END EVENT 
DEQT 
PRINTEXT 'EDX003 INITIALIZED' 
PROGSTOP 

RETCODE DATA F'0' RETURN CODE 
LINE TEXT LENGTH=80 
REPLI ES EQU * 

TEXT 'IV COMMAND? 
TEXT 'EDX003' VOLUME? 
TEXT 'Y CONTINUE? 
TEXT '60 NBR OF DATA SETS? 
TEXT 'N VERIFY? 
TEXT 'EN COMMAND? 
ENDPROG 
END 

Chapter 13. Communicating with Other Programs (Virtual Terminals) 13-3 



o 

o 
13-4 SC34-0943 



o 

0, 
' I.Of.,·' 

Designing and Coding Sensor 1/0 Programs 

Chapter 14. Designing and Coding Sensor 1/0 Programs 

This chapter provides the information you need to code a sensor I/O application 
program. Topics covered include: 

• Sensor I/O devices 

• Symbolic I/O assignments 

• Sensor I/O instructions. 

The chapter also provides several examples. 

What is Digital Input/Output? 
A unit of digital sensor I/O is a physical group of sixteen contiguous points. The 
entire group of sixteen points is accessed as a unit on the I/O instruction level. 
Programming support allows logical access down to the single point level. 

Digital input (DI) is usually used to acquire information from instruments which 
present binary encoded output or to monitor contact/switch status (open/closed). 
Digital output (DO) is used to control electrically-operated devices through closing 
relay contacts, such as pulsing stepping motors. 

Process interrupt (PI) is a special form of digital input. If a point of digital input 
changes state, and then changes state again, without an intervening READ operation 
from the program, the status change will be undetected. With process interrupt, a 
point changing from the off state to on generates a hardware interrupt that is then 
routed through software support to an interrupt-servicing application program that 
can respond to the external event that caused the interrupt. Process interrupt is 
often used for monitoring critical or alarm conditions that must be serviced quickly, 
the occurrence of which must not go undetected. 

What is Analog Input/Output? 
A physical unit of analog input (AI) can be a group of eight points or sixteen points, 
depending on the type. Analog output (AO) ~s installed in groups of two points. 
Each point of analog input or analog output is accessed separately . 

. Analog input is used to monitor devices that produce output voltages proportional 
to the physical variable or process being measured. Examples include laboratory 
instruments, strain gauges, temperature sensors, or other nondigitizing instruments. 
Digital input was described as monitoring an on/off status; only two conditions were 
possible. With analog input, the information is carried in the amplitude of the 
voltage sensed rather than in its presence or absence. 

The starter supervisor contains no support for sensor I/O. You must perform a 
tailored system generation to include the required support modules in your own 
supervisor. 

Chapter 14. Designing and Coding Sensor I/O Programs 14-1 



Designing and Coding Sensor 1/0 Programs 

Series/1 

Supervisor 
with 
sensor I/O 
support 

Figure 14-1 shows how sensor devices are connected to a Series/1 through the 4982 
sensor I/O unit. The devices (DI, DO, PI, AO, and AI) attach to a controller, which 
in turn attaches to the Series/I. The sensor I/O attachment (controller), and each of 
the devices attaching to it, have unique hardware addresses. In this figure, the 
physical connections are there, and the hardware addresses are assigned (wired in), 
but the starter supervisor in storage lacks the support necessary to operate the 
devices. 

Sensor I/O 
attachment 

Address 68 

Digital output 
group address 70 

Digital output 
group address 71 

Digital input 
group address 72 

BG1143 

Figure 14-1. Sensor Device Connections 

14-2 SC34-0943 

Building a tailored supervisor involves the assembly of a series of system 
configuration statements that reflect the I/O configuration you wish to support. For 
more information on system configuration statements, refer to the Installation and 
System Generation Guide. When programs reference these devices, they use symbolic 
references, rather than actual addresses. The I/O definition statement (lODE F) 
establishes the logical link between the addresses defined in the supervisor, and the 
symbols used to read from and write to the devices at those addresses from an 
application program. 

All sensor-based input/output operations are performed by executing a sensor-based 
I/O (SBIO) instruction. The type of operation is determined by the type of device 
referenced in the instruction. For more information on the SBIO statement, refer to 
the Language Reference. The symbolic reference to a logical device in the SBIO 
statement is linked to the definition in the 10DEF statement, which relates that 
device to the hardware address specified by the system configuration statement at 
system generation time. 

o 

() 

o 



o 

o 

Designing and Coding Sensor 1/0 Programs 

What are Sensor-Based 1/0 Assignments? 
The sensor-based I/O instruction (SBIO) refers to the I/O devices using a 3-or 
4-character name. The first two characters identify the type of device: AI, DI, PI, 
AO, and DO for analog input, digital input, process interrupt, analog output, and 
digital output, respectively. The next one or two characters are the identification for 
the device, a number between 1 and 99. For example, if you have three analog input 
terminals, you may identify them as All, AI2, and AB. Before the application 
program is compiled, the sensor-based I/O definition statement (IODEF) assigns the 
actual physical addresses. All SBIO instructions are independent of the physical 
location of the sensor I/O points. 

The assignment of sensor I/O symbolic addresses is described under "Providing 
Addressability (IODEF)" on page 14-4. Figure 14-2 shows the relationship between 
sensor-based I/O instructions, definition statements, and configuration statements. 

Sensor-based 
I/O execution 
instruction 
(S810) 

CCx 

Specifies 
the action 

CC can be: 
AI 
AD 
01 
DO 

x can be: 
1-99 

,-

Sensor-based 
I/O definition 
instruction 
(IODEF) 

CCx 

Specifies 
the physical 
location 

Specifies 
logical 
device 

... , 

Figure 14-2. Sensor-Based Symbolic I/O Assignment 

Coding Sensor-Based Instructions 

Sensor-based 
configuration 
statement 
(SENSORIO) 

Describes 
the physical 
device 

BG1144 

This section describes the instructions used in sensor-based I/O applications. The 
following instructions are defined: 

• IODEF - provides addressability by specifying physical location 

• SBIO - specifies the I/O operation to be performed 

• SPECPIRT - allows control to be returned to the supervisor from a special 
process-interrupt routine. 

Chapter 14. Designing and Coding Sensor I/O Programs 14-3 



Designing and Coding Sensor I/O Programs 

Providing Addressability (IODEF) 

Examples 

14-4 SC34-0943 

Use the IODEF instruction to provide addressability for the sensor-based I/O 
facilities which are referenced symbolically in an application program. The specific 
form used varies with the type of I/O being performed. 

Group all 10DEF statements of the same form (AI, AO, DI, DO, or PI) together in 
the program and place them ahead of the SBIO instructions that reference them. 

All 10DEF statements must be in the same assembly module as the TASK or 
ENDPROG statement. For high level languages, see the appropriate manual for 
instructions on how to accomplish this. If the SBIO instructions are to be in a 
separate module, you can provide addressability using ENTRY/EXTRN statements. 

Each 10DEF statement creates an SBIOCB control block. The contents of the 
SBIOCB is described in the Internal Design. 

The 10DEF statement generates a location into/from which data is read/written. 
You must create a separate 10DEF for each task; different tasks cannot use the 
same 10DEF statement. 

Refer to the Language Reference for the syntax of PI, DO, DI AO, and AI. 

The following 10DEF instructions define two process interrupts, a digital output 
group, a digital output group as external sync, a digital input group, an analog input 
point, and an analog output point. 

IODEF PIl,ADDRESS=48,BIT=2 
IODEF PI2,ADDRESS=49,BIT=15 
IODEF DOl,TVPE=GROUP,ADDRESS=4B 
IODEF D02,TVPE=EXTSVNC,ADDRESS=4A 
IODEF DIl,TVPE=GROUP,ADDRESS=49 
IODEF AIl,ADDRESS=72,POINT=1,RANGE=50MV,lCOR=VES 
IODEF A02,ADDRESS=75,POINT=1 

The SBIO instruction references the digital and analog I/O points as described under 
the SBIO instruction. Process interrupts are referenced by the POST and WAIT 
instructions and are described under the respective instruction. Further examples of 
10DEF statements are shown following the SBIO instruction. 

o 

o 

o 



o 

o 

Designing and Coding Sensor 1/0 Programs 

SPECPI - Process Interrupt User Routine 
The SPECPI option of the IODEF statement defines a special process interrupt 
routine. The supervisor executes a routine written in Series/l assembler language 
when the defined interrupt occurs. The purpose is to provide the minimum delay 
before service of the interrupt, by bypassing the normal supervisor interrupt 
servicing. Multiple special process-interrupt routines are allowed in a program. 

TYPE = BIT The system gives control to the specified routine when an 
interrupt occurs on the specified bit. On return to the supervisor, 
the contents of register 1 (Rl) must be the same at entry to the 
user's routine and RO must contain either "0" or a POST code. 
In the latter case, R3 must contain 'the address of an ECB to be 
posted by the POST instruction. R 7 contains the supervisor 
return address upon entry. If the user routine is in partition 1, 
you can return to the supervisor with the BXS (R7) instruction. 
Otherwise, you must return with the SPECPIRT instruction. 
You can use SPECPIRT in partition 1. The value that is in R7 
upon entry may be used to return to the supervisor using BXS 
(R 7) only if the user routine is in partition I. 

TYPE = GROUP The system gives control to the specified routine you provide if 
an interrupt occurs on any bit in the PI group. The PI group is 
not read or reset; reading or resetting the PI group is the 
responsibility of your routine. Control returns to the supervisor 
with a branch to the entry point SUPEXIT. You must include 
the module $EDXATSR with your program to use SUPEXIT. If 
the routine processes the interrupt on level 0, it can issue a 
Series/I hardware exit level instruction (LEX) instead of 
returning to SUPEXIT. Issuing the LEX instruction greatly 
improves performance. 

Note: To use TYPE = GROUP, you must be familiar with the operation of the 
Series/I process interrupt feature. Your routine must contain all instructions 
necessary to read and reset the process-interrupt group to which it refers. 

Chapter 14. Designing and Coding Sensor I/O Programs 14-5 



Designing and Coding Sensor I/O Programs 

Using the Special Process-Interrupt Bit 

IODEF PI2,ADDRESS=48,BIT=3,TYPE=BIT,SPECPI=FASTPII 

FASTPIl EQU * 

II MVW Rl,SAVERl 
• 
• 
• 

I 
MVA PI2,R3 
MVWI 3,RO 
MVW SAVERl,Rl 
SPECPIRT 

II Save RI. 

fJ Put the address of PI2 in R3. 

II Posting code in RO. 

II Restore Rl. 

II Return to supervisor. 

In the following example, control is given to the user at label F ASTPI2. o 
IODEF PI6,ADDRESS=49,TYPE=GROUP,SPECPI=FASTPI2 

FASTPI2 EQU * 

o 
14-6 SC34-0943 



c 

o 

o 

Designing and Coding Sensor 1/0 Programs 

Specifying 1/0 Operations (S810) 
The SBIO instruction provides communication using analog and digital I/O. 
Options allow you to: 

• Index using a previously defined BUFFER statement. 

• Update a buffer address in the SBIO instruction after each operation. 

• Use a short form of the instruction, omitting loc (data location) to imply a data 
address within the SBIOCB. 

Options available with digital input and output provide PULSE output and the 
manipulation of portions of a group with the BITS = (u,v) keyword parameter. 

SBIO instructions are independent of hardware addresses. The actual operation 
performed is determined by the definition of the sensor address in the referenced 
10DEF statement. 

The 10DEF statement generates a location into/from which data is read/written. 
You must create a separate 10DEF for each task; different tasks cannot use the 
same 10DEF statement. 

A sensor based input/output control block (SBIOCB) is inserted into an application 
program for each referenced sensor I/O device. The SBIOCB, containing a data I/O 
area and an event control block (ECB), supplies information to the supervisor. 
When an SBIO instruction executes, the supervisor either stores data (for AI and DI 
operations) or fetches data (for AO and DO operations) from a location in the 10~B 
with the label of the referenced I/O point (for example, All, D12, D033, AOl). An 
application program can reference these locations the same way any other variable is 
referenced, allowing you to use the short form of the SBIO instruction (for example, 
SBIO DIl), and subsequently reference DIl in other instructions. You can equate a 
more descriptive label to the symbolic names (for example SWITCH EQU DIl5), 
but the SBIO instruction must use the symbolic name as described above. 

Each control block also contains an ECB to be used by those operations which 
require the supervisor to service an interrupt and "post" an operation complete. 
These include analog input (AI), process interrupt (PI), and digital I/O with external 
sync (DI/DO). For process interrupt, the label on the ECB is the same as the 
symbolic I/O point (for example Pix). For analog and digital I/O, the label is the 
same as the symbolic I/O point with the suffi~ "END" (for example DlxEND). 

Chapter 14. Designing and Coding Sensor I/O Programs 14-7 



Designing and Coding Sensor 1/0 Programs 

Reading Analog Input (example) 
This example shows SBIO instructions and IODEF statements to read analog input. 

TASK PROGRAM GO 
IODEF AIl,ADDRESS=72,POINT=5 

SBIO All 
SBIO All ,DAT 
SBIO AIl,BUF,INDEX 
SBIO AIl,(BUF,#l) 
SBIO AIl,BUF,2,SEQ=YES 
SBIO AIl,BUF,2 

SBIO 
or 

AIl,BUF,2,SEQ=NO 

o Data into location All. 

fJ Data into location DAT. 

II All into next location of BUF. 

II All into location (BUF, #1). 

II Read 2 sequential AI points into next 2 locations of BUF. 

II Read the same point 2 times and put information in 2. 

fJ Locations of BUF. 

Writing Analog Output (example) 

14-8 SC34-0943 

This example shows SBIO instructions and IODEF statements to write analog 
output. 

I 
IODEF AOl,ADDRESS=63 
SBIO AOI 
SBIO AOl,DATA 
SBIO AOl, 1000 
SBIO AOl,(0,#1) 
SBIO AOl,BUF,INDEX 

o Set AOI to value in AOI. 

fJ Set AOI to value in DATA. 

II Set AOI to 1000 

II Set AOI to value in (0,#1) 

II Set AOI to value in next location of BUF. 

o 

() 

o 



c 

o 

Designing and Coding Sensor 1/0 Programs 

Reading Digital Input (example) 
This example shows SBIO instructions and IODEF statements to read digital input. 

IODEF Dl1,TYPE=GROUP,ADDRESS=49 
IODEF DI2,TYPE=SUBGROUP,ADDRESS=48,BITS=(7,3) 
IODEF DI3,TYPE=EXTSYNC,ADDRESS=62 
SBI0 DIl 
SBI0 DIl,DATA 
SBIO DIl, (0,#1) 
SBI0 Dl1,BUF,INDEX 
5BI0 Dl1,BDAT,BIT5=(3,5) 
5BIO D12 
SBIO DI2,DAT2 
5BI0 DI2,D,BITS=(0,3) 
SBI0 DI2,E,BITS=(0,1) 
5BI0 DI2,F,BIT5=(2,1),L5B=7 
SBI0 DI3,G,128 

II Data into location DIl. 

II DIl into location DATA. 

II DIl into location (0,#1). 

II DIl into next location of BUF. 

II Bits 3 to 7 of DIl into BDAT. 

II Bits 7 to 9 of D12 into D12. 

IJ Bits 7 to 9 of D12 into DAT2. 

1m Bits 7 to 9 of D12 into D. 

IJ Bit 7 of D12 into E. 

1:1 Bit 9 ofD12 into location F bit 7. 

ED Read 128 words into G using external sync. 

Writing Digital Output (example) 
This example shows SBIO instructions and IODEF statements to write digital 
output. 

10DEF D03,TYPE=GROUP,ADDRE55=4B 
10DEF D012,TYPE=5UBGROUP,ADDRE55=4A,BIT5=(5,4) 
10DEF D013,TYPE=EXTSYNC,ADDRE55=4F 
5BI0 D03 
5BI0 D03,DODATA 
5BI0 D03,1023 
5BI0 D03,(DATA,#1) 
SBI0 D03,7,BIT5=(3,3) 
5BI0 D012,15 
5BI0 D012,X,BIT5=(0,4) 
5BI0 D012,1,BIT5=(8,1) 
5BI0 D013,Y,88 

Chapter 14. Designing and Coding Sensor I/O Programs 14-9 



Designing and Coding Sensor I/O Programs 

II Value of location D03 to D03. 

fJ Value of DODATA to D03. 

n Spt no':t tA 1 fl2':t 1:1 ""L..L.J -' .... V.1.v..J. 

II Value at (DATA,#I) to D03. 

II Set bits 3 to 5 of D03 to 7. 

1'1 Set bits 5 to 8 of DOI2 to 15. 

fJ Set bits 5 to 8 of DOI2 to value in X. 

m Set bit 5 of DOl2 to 1. 

IJ Write 80 locations of "Y" to D013 external sync. 

Pulse Digital Output (example) 
This example shows pulse digital output. 

10DEF D013,TYPE=SUBGROUP,B1TS=(3,1) 
10DEF D014,TYPE=SUBGROUP,B1TS=(7,4) 

SB10 D013,(PULSE,UP) 
SB10 D014,(PULSE,DOWN) 

II Pulse D013 bit 3 to on and then off. 

fJ Pulse DOl4 bits 7 to 10 off and then on. 

Returning from the Process-Interrupt Routine (SPECPIRT) 

14-10 SC34-0943 

Use the SPECPIR T instruction to return control to the supervisor from a special 
process interrupt (SPECPI) routine. If the user routine is in partition 1, a branch 
instruction is used to return. Return from another partition requires execution of a 
Series/l assembler SELB instruction after registers RO and R3 are saved in the level 
block to be selected. SPECPIR T is used only for TYPE = BIT SPECPI routines. 
See the description of IODEF (SPECPI) for additional information. 

label SPECP1RT 

-Required: none 
Defaults: none 
1ndexable: none 

o 

o 



o 

o 

o 

Designing and Coding Sensor 1/0 Programs 

Analog Input Sample 
This program takes 256 samples from analog input address All at a sampling rate of 
10 points/second. Set the run light on in the lab at the start of the run and turn it 
off at the end. The run light is connected to bit 3 of group D02. 

TKNAME 

I 
START 

I 
fJ BUFR 

PROGRAM 
IODEF 
10DEF 

SBIO 
DO 
STIMER 
SBIO 

ENDDO 
SB10 

BUFFER 

II Turn on run light. 

• 
• 
• 

START 
D02,TYPE=GROUP,ADDRESS=87 
A11,ADDRESS=83 

D02, 1 ,BITS=(3, 1) 
256, TIMES 
100 
AIl,BUFR,1NDEX 

WAIT TIMER 

D02,0,B1TS=(3,1) 

256 

fJ Set up for 256 points. 

II Set timer for 100 MS. 

II Read All with automatic indexing into the buffer BUFR. and then wait for the 
timer to expire. 

II End of loop. 

II Turn off run light. 

fJ 256 word buffer. 

The program begins by writing a 1 into bit 3 of digital output group D02. A DO 
loop initializes for 256 cycles. At this point, a software timer is set up for 100 
milliseconds to provide sampling at 10 points/second. The analog data is read into 
BUFR using the SBIO instruction with automatic indexing. After the data is read, 
the program waits for the timer to expire before returning for the next sample. 
When all the data is collected, the run light is turned off by writing a 0 into bit 3 of 
D02. 

Chapter 14. Designing and Coding Sensor I/O Programs 14-11 



Designing and Coding Sensor I/O Programs 

Analog Input With Buffering To Disk 
This program takes analog data readings at equal time intervals. The number of 0'.," 
data points and the time interval in milliseconds are read in from the operator's 
terminal. The program will allow from 10 to 10,000 data points to be taken at time 
intervals between 10 milliseconds and 10 seconds (10,000 msec). The data collection 
is initiated by a process interrupt start signal. The program is ended by using the 
keyboard function "AB." Also, a second keyboard function, "NP," is used to print 
a status switch. The switch will be equal to zero if the start signal has not been 
received or equal to the number of data points to be read if the start signal has been 
received and data collection has begun. 

TITLE ISAMPLE ANALOG DATA ACQUISITION PROGRAM I 
READATA PROGRAM BEGIN,DS=?? 

ATTNLIST (AB,ABORT,NP,SWPRNT) 
D ABORT MOVE SWITCH, 1 

ENDATTN 
SWPRNT PRINTEXT TXTlO 

fJ PRINTNUM SWITCH 
PRINTEXT SKIP=l 
ENDATTN 
IODEF AIl,ADDRESS=91,POINT=0 
IODEF PIl,ADDRESS=94,BIT=15 

* EXPERIMENT INITIALIZATION 
BEGIN PRINTEXT TXTI 

I GETVALUE RUNUM,TXT2 
GETINT GETVALUE INTVL,TXT3 

IF (INTVL,LT,10),OR,(INTVL,GT,10000),GOTO,GETINT 
g GETPTS GETVALUE NPTS,TXT4 

IF (NPTS,LT,10),OR,(NPTS,GT,10000),GOTO,GETPTS m WRITE DSl,RUNUM 
RESET SWITCH 

o 
D End the experiment. 

fJ Print experiment switch. 

II Request run identifier. 

II Request time interval. 

g Request number of points. 

m Run parameters in first sector. 

o 
14-12 SC34-0943 



c 

o 

Designing and Coding Sensor 1/0 Programs 

PRINTEXT TXT9 
WAIT PI1,RESET 
MOVE SWITCH,NPTS 
DO NPTS 
STIMER INTVL 
SBIO AI1,BUFFER,INOEX 
IF (BUFINOEX,EQ,128),GOTO,ATTACH 
IF (BUFINOEX,NE,256),GOT~,TWAIT 
MOVE BUFINOEX,0 
ADD POINTCNT,256 

ATTACH IF (OISK,NE,-l),GOTO,STOP 
ATTACH OISKTASK 

TWAIT WAIT TIMER 
IF (SWITCH,EQ,l),GOTO,STOP 

ENOLOOP ENOOO 
IF (BUFINOEX,EQ,0),OR,(BUFINOEX,EQ,128),GOTO,STOP 
WAIT OSl 
ADD POINTCNT,BUFINOEX 
ATTACH OISKTASK 

STOP WAIT OSl 
ENQT 
PRINTEXT TXT6 
PRINTNUM POINTCNT 
PRINTEXT TXT? 
OEQT 
PROGSTOP 

IJ Print ready message. 

II Wait for start signal. 

D Set switch to NPTS. 

1m Begin the data acquisition portion of the program. Perform the loop the 
number of times set in step 3. 

m Time interval set above. 

m Read a data point. 

m First buffer full? 

m No, is second full? 

m Yes, reset buffer index. 

III Increment data counter. 

m Is disk task attached? 

1m Start the disk output task. 

m Wait for end of time interval. 

Em Test for "end." 

Chapter 14. Designing and Coding Sensor I/O Programs 14-13 



Designing and Coding Sensor 1/0 Programs 

14-14 SC34-0943 

m Wait for disk write. 

m Update data counter. 

ED Start last disk output. 

m Wait for last output operation. 

m Get control of terminal. 

HI Print terminating message. 

fBI Release terminal. 

The following is the data recording task. It is attached by the data acquisition task 
each time that 128 words of data have been read. One portion of the buffer will be 
transferred to disk while data is being read into the other portion of the buffer. The 
task runs on level 3 at a lower priority than the data acquisition task in order to 
maximize timing accuracy. 

DISKTASK TASK DISK1,300,EVENT=DISK 
DISK1 WRITE DS1,BUFFER1,ERROR=DISKERR 

II DETACH -1 
WRITE DS1,BUFFER2,ERROR=DISKERR 

fJ DETACH -1 
GO TO DISK1 

I DISKERR MOVE ERROR,DISKTASK 
ENQT 
PRINTEXT TXT5 

1:1 PRINTNUM ERROR 
PRINTEXT SKIP=l 

I DEQT 
ENDTASK 1 

TXTl TEXT '@SAMPLE ANALOG DATA ACQUISITION PROGRAM@' 
TXT2 TEXT '@ENTER RUN NUMBER I 

TXT3 TEXT '@ENTER INTERVAL IN MS (10-10000) I 

TXT4 TEXT '@ENTER NO. OF POINTS (10-10000) I 

TXT5 TEXT '@DISK ERROR I 

TXT6 TEXT '@RUN ENDED AFTER I 

TXT7 TEXT I POINTS@' 
TXT9 TEXT '@READY FOR PI SIGNAL TO BEGIN TAKING DATA@' 
TXT10 TEXT '@EXPERIMENT SWITCH = I 

II Successful completion. 

fJ Successful completion. 

II Save error code. 

II Get control of terminal. 

1:1 Print disk error message. 

m Release terminal. 

B Detach with code = 1. 

o 

~. 
V 

o 



c 

o 

I 
POINTCNT DATA Fle l 
SWITCH DATA Fle l 
RUNUM DATA Fle l 

~ INTVL DATA Fle l 
NPTS DATA Fle l 
ERROR DATA Fle l 

Designing and Coding Sensor 1/0 Programs 

I', BUFFER BUFFER 256,INDEX=BUFINDEX 
BUFFERl EQU BUFFER 
BUFFER2 EQU BUFFER+256 

ENDPROG 
END 

II Number of points taken. 

If) Set to "1" for "end." 

II Run identifier. 

lEI Time interval. 

II Number of points to take. 

II Data buffers. 

II First 128 words. 

II Second 128 words. 

Digital Input and Averaging 
This example illustrates the programming of a simple time-averaging application. 
The program reads digital input group DIl every time a process interrupt occurs on 
PI2. One complete scan is 128 data points. Each scan is added to a 
double-precision averaging buffer. The number of scans is read from the terminal as 
an initialization parameter. Also, the program asks whether to reset the averaging 
buffer before starting to scan. The maximum' number of scans must be less than 
1000. 

Chapter 14. Designing and Coding Sensor I/O Programs 14-15 



Designing and Coding Sensor 1/0 Programs 

II START GETVALUE NSCAN,TXTI 
IF (NSCAN,GE,1000),GOTO,ERROR 

0 RESET PI2 
QUESTION TXT2,NO=BEGIN 
MOVE ABUFR,0,256 

BEGIN DO NSCAN 
DO 128 
WAIT PI2 
RESET PI2 
SBIO OIl, BUFR, INDEX 
ENDDO 

IL ADDV ABUFR,BUFR,128,PREC=D 
MOVE 1,0 
ENDDO 
PRINTEXT TXT3 

• 
• 
• 

ERROR PRINTEXT TXT4 
m GOTO START 

TXTI TEXT '@NUMBER OF SCANS - I 

TXT2 TEXT I RESET AVERAGING BUFFER? I 

TXT3 TEXT I ALL SCANS COMPLETE@' 
NSCAN DATA F'0 1 

BUFR BUFFER 128,INDEX=1 
ABUFR BUFFER 256 
TXT4 TEXT I TOO MANY SCANS - RE-ENTER@' 

II Get number of scans. 0 
fJ Reset average buffer? 

V 

II Yes, reset it. 

II Set up for NSCANS. 

II Set up for 128 points. 

II Wait for interrupt. 

fJ Reset interrupt. 

II Read DIl (Indexing). 

III One scan is complete. Move the data to the averaging buffer. 

1m Reset buffer index. 

m Return for input. 

o 
14-16 SC34-0943 



o 

o 

o 

Designing and Coding Sensor 1/0 Programs 

In this example, the number of scans to be done is read from the terminal and 
checked against 1000. If it is greater than or equal, an error message is printed and 
the program returns for a new input parameter. The operator is asked if the 
averaging buffer is to be reset. If yes, the MOVE instruction sets the averaging 
buffer (ABUFR) to O. A loop is initialized for the number of scans desired. A 
second loop is set up for a single scan of 128 points. The program waits for an 
interrupt on PI2 and, when it occurs, resets the interrupt for the next point, reads the 
digital input DIl using automatic indexing into the buffer BUFR. When a scan is 
complete, the data is added to the ABUFR buffer. The buffer index, I, is reset to O. 
When all scans are complete, a message is printed. The output from the program is 
illustrated in the following example: 

NUMBER OF SCANS - 33 
RESET AVERAGING BUFFER? Y 
ALL SCANS COMPLETE 

Chapter 14. Designing and Coding Sensor I/O Programs 14-17 



o 

() 

o 
14-18 SC34-0943 



o 

o 

Designing and Coding Graphic Programs 

Chapter 15. Designing and Coding Graphic Programs 

The Event Driven Executive provides various graphic&-oriented tools that can assist 
you in the development of a graphics application. 

The graphics tools you can use are the EDL graphics instructions and the graphics 
utilities. This section describes the graphic instructions supported by the Event 
Driven Executive. The graphic utilities are described in the Operator Commands and 
Utilities Reference. 

Graphics Instructions 
Seven graphics instructions are provided by the Event Driven Executive. These 
graphics instructions, used with the terminal support described, can aid in the 
preparation of graphic messages, allow interactive input, and draw curves on a 
displa y terminal. 

These instructions are only valid for ASCII terminals that have a point-to-point 
vector graphics capability and are compatible with the coordinate conversion 
algorithm described in the Internal Design for graphics mode control characters. The 
function of the various ASCII control characters used by a terminal are described in 
the appropriate device manual. Such terminals can be connected to the Series/1 
through the #7850 Teletypewriter Adapter. 

You use the graphics instructions in the same manner as other Event Driven 
Language instructions, except that the supporting code is included in your program 
rather than in the supervisor. If you code all the instructions in a program, this code 
requires approximately 1500 bytes of storage. 

When using the graphics instructions described, detailed manipulation of terminal 
instructions and text messages is not required. 

All graphics instructions deal with ASCII data. Therefore, when you send an ASCII 
text string to the terminal, code the XLATE=NO parameter on the PRINTEXT 
instruction. 

Use of the graphics instructions requires that your object program be processed by 
the linkage editor, $EDXLINK, to include the graphics functions which are supplied 
as object modules. See Chapter 5, "Preparing an Object Module for Execution" for 
the description of the autocall option of $EDXLINK, and for information on the 
use of the "AUTO=$AUTO,ASMLIB" option of $EDXLINK. 

The following is a list of the graphics instructions provided by the Event Driven 
Executive. These instructions are described in detail in the Language Reference. 

• The CONCAT statement concatenates two text strings or a text string and a 
graphic control character. 

• The GIN instruction allows you to specify unscaled coordinates interactively, 
rings the bell, displays cross hairs, waits for the operator to position the cross 
hairs and key in any single character, returns the coordinates of the cross-hair 
cursor, and optionally returns the character entered by the user. 

Chapter 15. Designing and Coding Graphic Programs 15-1 



Designing and Coding Graphic Programs 

• The PLOTGIN instruction allows you to specify scaled coordinates, rings the 
bell, displays the cross hairs, and waits for the operator to position the cross 
hairs and key any character. 

• The SCREEN instruction converts x and y numbers representing a point on the 
screen of a terminal to the 4-character text string that will be interpreted by the 
terminal as the graphic address of the point. 

• The XYPLOT instruction is used to draw a curve on the display connecting 
points specified by arrays of x and y values. 

• The YTPLOT instruction draws a curve on the display connecting points equally 
spaced horizontally and having heights specified by an array of y values. Data 
values are scaled to screen addresses according to the plot control block, and 
points outside the range are placed on the boundary of the plot area. 

The Plot Control Block 

15-2 SC34-0943 

The plot control block is required by the PLOT GIN, XYPLOT, and YTPLOT 
instructions. 

The plot control block is 8 words of data defined by DATA statements which 
provide definition of size and position of the plot area on the screen and the data 
values associated with the edges of the plot area. Indirectly, the scale of the plot is 
specified. The format of a plot control block is: 

1 abel DATA F'xls' 
DATA F'xrs' 
DATA F'xlv' 
DATA F'xrv' 
DATA F'ybs' 
DATA F'yts' 
DATA F'ybv' 
DATA Fly tv' 

All 8 explicit values (no addresses) are required and have the following meaning: 

xis x screen location at left edge of plot area 

xrs x screen location at right edge of plot area 

xlv x data value plotted at left edge of plot 

xrv x data value plotted at right edge of plot 

ybs y screen location at bottom edge of plot 

yts y screen location at top edge of plot 

ybv y data value plotted at bottom edge of plot 

ytv y data value plotted at top edge of plot. 

o 

() 

o 



o Example 

o 

Designing and Coding Graphic Programs 

In the following example, the graphic control characters (GS, US, ESC, an so on) 
are assumed to have certain meanings for the terminal. A different terminal may 
require the use of different control characters to perform a similar function. 

The example shows the use of the graphics instructions described on the preceding 
pages. This program: 

• Prints a message 
• Plots a curve with axes 
• Puts the cross hairs on the screen 
• Waits for the user to position the cross hairs press a key and carriage return 
• Displays the character entered and x,y coordinates of the cross-hair position. 

You can then end the program or start it again. 

II 

II 
I 

m 

GTEST 
START 

TEXTl 
TEXT3 
TEXT4 
TEXT5 
TEXT6 

CHAR 
YDATA 

PROGRAM START 
EQU * 
PRINTEXT IGRAPHICS TEST PROGRAM PRESS ENTER @I 
READTEXT TEXTl 
CON CAT TEXTl,ESC,RESET 
CONeAT TEXTl,FF 
PRINTEXT TEXTl,XLATE=NO 
STIMER l000,WAIT 
CONCAT TEXTl,GS,RESET 
SCREEN TEXTl,520,300,CONCAT=YES 
CONCAT TEXTl,US 
PRINTEXT TEXTl,XLATE=NO 
PRINTEXT TEXT3 
YTPLOT YDATA,Xl,PCB,NPTS,l 
XYPLOT YAXISX,YAXISY,PCB,TWO 
XYPLOT XAXISX,XAXISY,PCB,TWO 
PLOTGIN X,Y,CHAR,PCB 
PRINTEXT TEXT4 
PRINTEXT CHAR,XLATE=NO 
PRINTEXT TEXT5 
PRINTNUM X,2 
QUESTION TEXT6,NO=START 
PROGSTOP 
TEXT 
TEXT 
TEXT 
TEXT 
TEXT 

LENGTH=30 
I X-AXIS LABEL I 
I@CHARACTER STRUCK WAS I 
I@X,Y COORDINATES =1 
I@END PROG (YIN)? I 

DATP XI020l 1 
DATk 
DATA 

F I 0 1 

F I 0 1 

DATA Fill 
DATA FI01 
DATA FI21 
DATA 
DATA 
DATA 
DATA 

F I 0 1 

Fill 
FI-21 
FI-li 

Chapter 15. Designing and Coding Graphic Programs 15-3 



Designing and Coding Graphic Programs 

15-4 SC34-0943 

Xl 
NPTS 
YAXISX 
YAXISY 

XAXISX 

XAXISY 
TWO 
PCB 

X 
Y 

DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 
DATA 

F' 0 1 

F' 8
1 

2F ' 0 1 

F'-5 1 

F' 0 1 

F'10 1 

2F ' 0 1 

F'21 
F'500 1 

F'1000 1 

F' 0
1 

F'10 1 

F'100 1 

F'600 1 

DATA F'-5 1 

DATA F'51 

DATA 
DATA 
ENDPROG 
END 

F' 0 1 

F' 0 1 

II Print the message "GRAPHICS TEST PROGRAM PRESS ENTER." 

fJ Reset the text string character count and put the ESC code into TEXTI. 

II Put the FF character into TEXTl. 

II Erase the screen and send the alpha cursor to the home position (upper left 
corner). 

II Delay for a second to allow the erase sequence to complete. 

II Reset the text string again and insert the graph mode character (GS) to the text 
string. 

B Form the 4 characters required to draw a dark vector to the screen address 
(520,300). The 4 characters represent the Hi Y, Lo Y, Hi X, and Lo X values. 

II Write an axis label at this position by returning to alpha mode (US). 

IJ Perform the full operation. Prevent conversion of data (XLATE = NO), as it is 
already in ASCII. 

1m Plot the data, YDATA (8 points). The plot area and coordinates are given by 
the 8 words at the label PCB. The plot area in screen addresses is 500 to 1000 in the 
x-direction (horizontal) and 100 to 600 in the y-direction (vertical). The 
corresponding plot area in the user's coordinates is 0 to 10 in the x-direction and -5 
to 5 in the y-direction. 

m Draw the X and Y axes with this and the next instruction. Each of these is 
simply a 2-point plot, from the origin to the end point. 

o 

o 



o 

o 

Designing and Coding Graphic Programs 

III Put the cross-hair cursor on the screen. The operator should position the 
cursor and enter a character. When the program receives the character, it converts 
the cursor position to the plot coordinates as specified at PCB, and stores the results 
at X and Y. 

m Print the results. 

lEI Ask if the operator wishes to end the program. 

X-axis label 

BG1145 

Figure 15-1. Graphics Program Output. This figure shows the result of the preceding 
program. 

Chapter 15. Designing and Coding Graphic Programs 15-5 



0"'"·' 
, ' 

o 

o 
15-6 SC34-0943 



Controlling Spooling from a Program 

o Chapter 16. Controlling Spooling from a Program 

o 

What Is Spooling? 
Spooling is the process of writing to disk or diskette an output listing that you 
eventually want to print or display. 

You might use spooling for any of the following reasons: 

• Your program writes more than one output listing to the same printer. 

• You want a program to finish processing more quickly. (Most programs can 
generate output faster than the printer can print it.) 

• You want to delay printing an output listing until some time after a program has 
executed. 

• You want more than one copy of an output listing. 

• Two or more programs write output listings to the same printer at the same 
time. 

Spooling the Output of a Program 
An application program can control the printing and handling of its spooled output 
with a spool-control record. 

The Spool-Control Record 
The spool-control record consists of a special print record. It must be the first item 
printed by the program after you enqueue the device. 

The spool-control record allows the application program to specify: 

• Whether or not the spool job should be held and not printed 

• Whether or not the spool job should be kept after printing 

• The type of forms to be used to print the output 

• The number of copies to be printed 

• The separator page heading to be printed 

• Whether forms alignment should be done. 

The spool-control record applies only to the spool job that follows it. Therefore, if a 
program creates more than one spool job, and is to control the printing and 
handling of each spool job, each spool job must have its own spool-control record. 

Note: The $S ALT operator command overrides the spool-control record. 

Chapter 16. Controlling Spooling from a Program 16-1 



Controlling Spooling from a Program 

The format of the spool-control record is as follows: 

Position Contents 

1-8 
9 
10-12 
13 
14 

15 
16 

17 
18-21 
22 
23-30 
31 
32 

***SPOOL 
,blank 
Number of copies to print (1-127) 
blank 
Whether spool job should be held 
(Y=yes, N=no) 
blank 
Whether spool job should be kept 
(Y=yes, N=no) 
blank 
Forms type 
blank 
Report identification 
blank 
Forms alignment (Y=yes, N=no) 

If you use the spool-control record, specify the fields exactly as shown. The fields 
with a YIN option default to N. If you enter a character other than a Y or N, the 
system uses the default. 

Note: Do not generate the spool-control record in an application program unless 
spooling has been activated. If spooling is not active, the line is printed as ordinary 
text to the printer (see "Determining Whether Spooling Is Active" on page 16-7 for 

o 

a description of how an application program can determine if the spooling facility is O~-'-' 
active). 

Example 

16-2 SC34-0943 

The following program uses the spool-control record to create 10 copies with report 
identification SPOOLPRG, to hold and keep the output in effect, specify forms type 
ABCD, and specify no forms alignment. The report printed consists of two 
messages. 

I 
SPOOL 
PRTR 
START 

PROGRAM START 
IOCB MPRTR 
EQU * 
ENQT PRTR 
PRINTEXT '***SPOOL 010 Y Y ABCD SPOOLPRG N' 
PRINTEXT '@MESSAGE 11 
PRINTEXT '@MESSAGE 21 
DEQT 
PROGSTOP 
ENDPROG 
END 

II Obtain exclusive use of the system printer. 

FJ Create a spool-control record. Specify the number of copies as 10 (010), that 
you want to hold and keep the output (Y Y), that the type of forms is ABCD, that 
the report identification is SPOOLPRG, and that you do not require forms 
alignment (N). 

II Create a line of output. 

o 



o 

o 

Controlling Spooling from a Program 

Executing the Example 
To execute the example, you must do the following: 

1 Make sure that your system includes the spooling facility. To use the spooling 
facility, you must include IOSPOOL at system generation time. (For 
information on how to include IOSPOOL in your supervisor, refer to the 
Installation and System Generation Guide.) 

2 Find out whether the device you want to use is a spool device. Use the 
$TERMUTI utility as follows: 

l > $L $TERMUTI 

The system responds: 

LOADING$TERMUTI nnP, hh :mm: 55, LP= XXXX, PART= yy 

*** TERMINAL CONFIGURATOR *** 

COMMAND . e?): 

Respond with the CT (Configure Terminal) command: 

l COMMAND (?): CT 

The system prompts for the terminal name. Respond with the terminal name 
as follows: 

l ENTER TERMfNALNi\ME: MPRTR 

The system then displays, one at a time, the parameters that define how the 
terminal operates. Since we are changing only the parameters, concerning 
whether or not the terminal is a "spoolable device," simply press enter until 
the system displays the SPOOLABLE prompt: 

Chapter 16. Controlling Spooling from a Program 16-3 



Controlling Spooling from a Program 

16-4 SC34-0943 

If the system displays "NOW IS N," the terminal is not a spoolable device. 
Change the parameter to Y. 

Continue pressing enter until the COMMAND prompt appears. Then end the 
utility: 

3 Tell the spool facility that a device is a spool device. Use the $SPLUTI utility 
as follows: 

t ~ $L $SPLUTI 

The system responds: 

If the restart option is Y, change it to N. Enter the RS command: 

The system responds: 

Enter N and press enter. 

o 

o 

o 



o 

o 

Controlling Spooling from a Program 

The system responds: 

DSNAME ... --VOLUME-MAXJOB$-MAXACTV-RESTRT':.GRP$-GRPSZ-SEP"-DEVICES-AUTO-FORM 

SPOOL EOX883 18 4 N 18 18e Y $SYSPRTR Y 

COMMANO·(?}: 

Respond with the CD (Change Spool Devices) command: 

l COMMAND (1): CD 

The system prompts for the terminal name. Respond with the terminal name 
as follows: 

l~ __ O_E~VI_C~E~N~AM~E~ .•. ·_(E_NT~E_R_B_L~AN~K_T~O~E_N~D_):~ .•• ·~MP~R~TR~~~~~~~~~~~~~~) 

The system then asks whether you want the spool job (the output of a 
program that generates spool output) to print as soon as the program 
completes. It also asks for the form number you want to use and whether you 
want to change another spool device. 

In this example, we are responding that we do not want the spool job to begin 
printing as soon as the program completes, that the forms code is ABCD, and 
that we do not want to change another spool device. 

Then end the utility: 

4 Load the spooling facility as follows: 

Note: Do not use the session manager to start the spool facility. 

Chapter 16. Controlling Spooling from a Program 16-5 



Controlling Spooling from a Program 

If the spooling facility was not included at system generation time, the system 
responds with return code 8. 

Otherwise, the system responds: 

5 Start the program that generat:~s the output that is to be spooled (in this case, 
program AP16A on volume EDX40). 

The system executes the program and places the output on the spool data set. 

Printing Output That Has Been Spooled 

16-6 SC34-0943 

To print output that has been spooled, use the $S operator command as follows: 

The system prompts you for the writer name. Respond with the name of the device 
on which you want the spool job displayed or printed: 

The system then prompts for the forms code. Respond with the one- to 
four-character forms code (in our example, ABeD): 

The system responds: 

and begins to print or display the spool job. 

o 

o 



o 

o 

o 

Controlling Spooling from a Program 

Stopping Spooling 
To stop spooling, use the $S operator command as follows: 

l > $S STOP 

Determining Whether Spooling Is Active 
An EDL application might be such that it should not be run unless spooling has 
been activated (or deactivated). Such an application can determine if spooling is 
active and use that information to instruct the operator to activate or deactivate 
spooling. An application program can also decide whether or not to print a 
spool-control record, depending on whether or not spooling is activated. 

The following EDL coding example shows how an application program can 
determine if the spooling facility has been activated: 

I 

MOVE #2,$CVTSPL,FKEY=0 
IF #2,NE,0 

MOVE #2,(+$IOSPSPM,#2),FKEY=0 
ENDIF 
IF #2,NE,0 
• 
• 
• 

ENDIF 
• 
• 
• 

COpy PROGEQU 
COpy $IOSPTBL 

II Move the address of the spool control table to register 2. 

fJ Test whether module IOSPOOL was included at system generation time. 

II If so, move the address of SPM to register 2. 

II Test whether spooling has been activated. 

II Copy the program equates to the program. 

II Copy the spool table equates to the program. 

High-level language programs can call this type of EDL subroutine to determine if 
spooling is active. 

Chapter 16. Controlling Spooling from a Program 16-7 



Controlling Spooling from a Program 

Preventing Spooling 
You can prevent a program from spooling its output by coding a parameter on the 
ENQT command. The parameter is coded as follows: 

ENQT SPOOL=NO 

This instruction causes the printer to be enqueued directly, when available, and 
prevents output spooling. The system ignores the SPOOL = parameter on an ENQT 
instruction if the device is not designated as a spool device or if spooling is not 
active. 

The default is ENQT SPOOL = YES. This allows output spooling. 

Note: ENQT SPOOL = NO without the BUSY = operand coded causes the program 
to wait if a spool writer is started to the device, even if the writer is temporarily 
stopped. The writer must be terminated to free the device. Refer to the Language 
Reference for additional information. 

Separating Program Output into Several Spool Jobs 

16-8 SC34-0943 

When spooled output is directed to one printer, spooling treats the spooled output 
from each task within a main program as a separate spool job. If there is a spool 
job open which belongs to the main task, and an overlay program generates spooled 
output, the system attaches this output to the main task's spool job. The system 
opens a spool job for an overlay program when a spool job for the main task does 
not exist. 

You can produce more than one spool job within a single task. To do so, code the 
DEQT instruction as follows after you create each spool job. 

DEQT CLOSE=YES 

Each time you issue this instruction, the spool job just created becomes ready for 
printing. A subsequent ENQT to the same printer indicates the start of a new spool 
job. 

The CLOSE = operand is ignored if coded on a DEQT to a device not designated as 
a spool device or if spooling is not active. 

Note: DEQT CLOSE = NO is the default. It causes any later output of the program 
directed to the same printer to be attached to the output already spooled. 

o 

() 

o 



0·: " 

o 

Controlling Spooling from a Program 

Programming Considerations 
After printing each spool job, the spool writer restores the default values established 
for the printer at system generation. Coding the PDEN, PMODE, LPI, and 
CHARSET operands on the TERMCTRL instruction does not change these 
defaults. You can spool a job using values for PDEN, PMODE, LPI, or CHARSET 
that differ from the default values by: 

• Changing the values for the PDEN, PMODE, LPI, or CHARSET operands on 
a TERMCTRL SET instruction inside the program being spooled 

• Using $TERMUTI to change the values for the PDEN, PMODE, LPI, or 
CHARSET operands before the spool writer is started. 

If you want to spool a job changing only the value for the LPI operand, you can run 
a program that changes this value on the TERMCTRL SET instruction before 
$SPOOL is loaded. 

Chapter 16. Controlling Spooling from a Program 16-9 



o 

o 

o 
16-10 SC34-0943 



o 

C, 
/1 

Creating, Storing, and Retrieving Program Messages 

Chapter 17. Creating, Storing, and Retrieving Program 
Messages 

When designing EDL programs, you can save storage space or coding time by 
placing prompt messages and other message text in a separate message data set. 
EDL instructions enable your program to retrieve the appropriate message text when 
the program executes. 

By storing messages in a data set, you can change the text of a message without 
having to alter and recompile each program that uses that message. 

You can store program messages in two ways. You can store them on disk or 
diskette. You can also store them as a module that you can link edit with a 
program. 

Creating and using your own program messages involves the following steps: 

1. Creating a data set for your source messages 
2. Entering your source messages 
3. Formatting and storing your source messages using the message utility, 

$MSGUT1 
4. Retrieving program messages using the CaMP statement and the MESSAGE, 

GETV ALUE, QUESTION or READTEXT instructions. 

The following sections describe how to create, store, and retrieve program messages. 

Creating a Data Set for Source Messages 
You create a data set for source messages with the text editor described in 
Chapter 3, "Entering a Source Program." You can create one or more source 
message data sets and can store them on any volume. Messages can be simple 
statements or questions, or they can include variable fields which are filled with 
parameters supplied by your program. 

To enter your source messages, observe the following rules: 

• Begin each message in column 1. 

• Precede each variable field with two less than symbols « <) and follow each 
variable field with two greater than symbols (> ». 

• End each message with the characters: /* 

• Begin and end comments with double slashes (/ /comment/ I). A comment must 
be associated with a message. 

• Use the at sign (@) to cause the message to skip to the next line. 

• Code source messages a maximum length of 253 bytes long. You can calculate 
the length of a message by adding one byte for each character in the text and 
one byte for each variable field. 

• Continue a message on a new line by coding any nonblank character in column 
72. Begin the continued line in the first column. 

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-1 



Creating, Storing, and Retrieving Program Messages 

The system identifies each message by its position in the source message data set. 
For example, the system assigns a message number of 3 to the third message in the 
source message data set. Once you format your source messages with the 
$MSGUTI utility, you should add any new messages you have to the end of the 
source message data set. If you no longer need a certain message, you should leave 
it in the source message data set or replace it with a new message to preserve the 
numbering scheme. 

Coding Messages with Variable Fields 

17-2 SC34-0943 

To construct a message that can return information supplied or generated by your 
program, you can code a message with one or more variable fields. When you 
execute your program, the system inserts the appropriate parameters in these 
variable fields and prints a complete message. For example, if you want to construct 
a message that tells a program operator how many records are in a particular data 
set on a particular volume, you could code the following: 

THERE ARE «SIZE>S> RECORDS IN «DATA SET NAME>T> ON «VOLUME>T>.j* 

The variable fields in the previous example are the number of records in the data set 
(SIZE), the data set name, and the volume name. The variable field names do not 
need to correspond with names in a program. 

Note: To print or display a message with variable fields, you must have included the 
FULLMSG module in your system during system generation. 

The variable fields are set off from the message text with two less than and two 
greater than symbols « < > ». The symbols should enclose a description of the 
field. The system treats the field description as a comment. You can include up to 
eight variable fields within a single message. 

As shown in the previous example, all variable fields must also contain a control 
character that describes the type of parameter your program will pass to the variable 
field. S is the control character in the field < < SIZE> S>; T is the control 
character in the field < < VOLUME> T >. The following is a list of valid control 
characters and their descriptions: 

C Character data. Specify a length for the data by coding a value from 1 to 253 
before the "C" (for example, < < NAME> 8C ». There is no default. 

T Text. No length is necessary. (The system derives the length from the TEXT 
statement.) 

H Hexadecimal data. The length is four EBCDIC characters. 

S Single-word integer. Specify a length for the data by coding a value from 1 to 
6 before the "S". The default is six EBCDIC characters. The valid range for a 
single-word integer value is from - 32768 to 32767. 

D Double-word integer. Specify a length for the data by coding a value from 1 
to 11 before the "D." The default is six EBCDIC characters. The valid range 
for a double-word integer value is from - 2147483648 to 2147483647. 

o 

o 

o 



o 

o 

Creating, Storing, and Retrieving Program Messages 

Your program passes parameters to a message in the order you specified the 
parameters in the instruction. The following example shows a message instruction 
with the parameter list operand (P ARMS = ): 

MSG PROGRAM START,DS=((MSGSET,EDX003)) 

ID 
SIZE 
DSNAME 
VOLUME 

• 
• 
• 

MESSAGE 
• 
• 
• 

COMP 
DC 
TEXT 
TEXT 

2,COMP=ID,PARMS=(DSNAME,VOLUME,SIZE) 

'SRCE ' ,DSl,TYPE=DSK 
F'100 1 

I DATA SET 11 
I EDX002 I 

The instruction will retrieve message number 2. The source message for message 
number 2 appears as follows: 

«DATA SET NAME>T> ON «VOLUME>T> IS ONLY «SIZE>S> RECORDS./* 

The system places the first parameter (DSNAME) in the first variable field, the 
second parameter (VOLUME) in the second field, and the third parameter (SIZE) in 
the third field. 

You may, however, want to alter or reword the message in the previous example. 
To change the order of the variable fields in your source message without changing 
the order of the parameter list in your program, you can code an additional number 
after the control character. This number, from 1 to 8, points to the parameter that 
the system should insert into the variable field. The number corresponds to the 
position of the parameter in the parameter list. For example, < < NAME> C3 > 
tells the system to retrieve the third parameter in a parameter list. 

In the following example, the order of the variable fields in message number 2 has 
been switched, but a number following the control character points to the correct 
parameter for the variable field: 

THERE ARE ONLY «SIZE>S3> RECORDS IN «DATA SET NAME>Tl> ON C 

«VOLUME>T2>./* 

"S3" points to the third parameter in the list (SIZE), "Tl" points to the first 
parameter in the list (DSNAME), and "T2" points to the second parameter in the 
list (VOLUME). 

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-3 



Creating, Storing, and Retrieving Program Messages 

Sample Source Message Data Set 
The following is sample of a source message data set. The data set is named 
SOURCE on volume EDX40. 

//THIS IS A COMMENT //+ 
DO YOU WANT TO ENTER A NUMBER? /* 
ENTER «TYPE OF VALUE>T> VALUE LESS THAN «VALUE>S>./* 
THE PROGRAM HAS PROCESSED THE INPUT DATA./* 
ENTER YOUR «FIRST/LAST/FULL NAME>10C>./* 
//THIS IS ANOTHER COMMENT. // + 
ALL INPUT DATA HAS BEEN RECEIVED./* 
THE VALUE YOU ENTERED IS: «VALUE>Sl> /* 
THE DATA YOU ENTERED IS: «DATA>T> /* 
THE DEVICE «ID>Hl> AT ADDRESS «DEVICE ADDRESS>H2> IS IN USE./* 
THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./* 

Formatting and Storing Source Messages (using $MSGUT1) 

17 -4 SC34-0943 

Once you have created a source message data set, you must use the message utility, 
$MSGUTI, to convert the source messages into a form the system can use. The 
utility copies the source messages, formats them, and stores the formatted messages 
in another data set or module that you specify. (Refer to the Operator Commands 
and Utilities Reference for a detailed explanation of how to use the message utility.) 

Each time you add new messages to the source message data set, you must reformat 
the data set with $MSGUTI. 

The $MSGUTI utility allows you to: 

• Format a source message data set and store the formatted messages on disk or 
diskette. 

• Format a source message data set as a module that you link edit with a 
program. Use this option for systems without disk or diskette storage or to 
improve performance. 

• Obtain a hard-copy listing of the messages contained in a specific source 
message data set. 

Before you load the $MSGUTI utility, you must allocate a work file. You can use 
the AL command of the $DISKUTI utility to allocate the work file. Allocate a 
data-type data set large enough to hold the source message data set (one record for 
every source message). 

When you load $MSGUTI, the utility prompts you for the name and volume of the 
work file as follows: 

Respond with the data set name and volume that you allocated with the $DISKUTI 
utility. 

o 

o 

o 



Example 1 

Example 2 

o 

Creating, Storing, and Retrieving Program Messages 

In the following example, $MSGUTI formats the source message data SOURCE 
shown in the previous section. The example uses the DSK option and stores the 
formatted messages in the data set MESSAGE on volume EDX40. 

COMMAND (?): DSK 
MESSAGE SOURCE DATASET (NAME,VOLUME): SOURCE,EDX49 
DISK RESIDENT DATA SET (NAME,VOLUME): MESSAGE,EDX49 
START OF DISK MESSAGE PROCESSING BEGINS 

When the utility finishes formatting and storing the messages, it returns the 
following message: 

DISK RESIDENT MESSAGES STORED IN MESSAGE,EDX40 

The following example uses the STG option and stores the module in data set MSG 
on volume EDX003. 

COMMAND J?): STG 
MESSAGE .sOURCE DATA SET (NAME,VOLUME): MSGSRC, EDX993 
SrORAGERESIDENT ·MODUL~ .. (NAME,VOLUME): MSG, EDX993 
STARTOFSrORAGE·· MESSAGE·· PROCESS ING 

When the utility finishes formatting and storing the messages, it returns the 
following message: 

$IQR .. AGER.ESIPENTMODULESTQRED.···.·.IN).MSG.EDX .... 09.·. 3.· .. 
'" . .. ···:.·.M .... · ...... "dO . .... " ... " .. :: ....... " ... , ...... : """ ... ". "., ............. , 

If the $MSGUTl utility encounters errors, it prints an error message on the system 
printer. 

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-5 



Creating, Storing, and Retrieving Program Messages 

Retrieving Messages 
To retrieve a message from storage and include it in your program, you must code a 
CaMP statement and anyone of the following instructions: MESSAGE, 
GETVALUE, QUESTION, and READTEXT. (Refer to the£anguage Reference 
for a full description of these instructions and how to code them to retrieve 
messages.) 

The system retrieves program messages from the data set or module that you created 
with $MSGUTI. If you stored your formatted messages on disk or diskette, you 
must code the name of the data set that contains the messages and the volume it 
resides on in the PROGRAM statement for your program. 

If you formatted the messages as a module, you must link edit your program with 
the module. 

Defining the Location of a Message Data Set 

17-6 SC34-0943 

The COMP statement defines the location of a message data set or the name you 
assigned the module when you used the STG option of the $MSGUTI utility. To 
retrieve a message, the MESSAGE, GETVALUE, QUESTION, and READ TEXT 
instructions must refer to the label of a CaMP statement. More than one 
instruction can refer to the same CaMP statement. You must code a separate 
statement, however, for each message data set your program uses. 

If your messages are in a module, you must code the name of the module. If your 
message data resides on disk or diskette, you must indicate the data set in the 
PROGRAM statement. You indicate the correct data set by specifying its position 
in the data set list. 

In addition to coding the location of the message data set, you must also code a 
4-character prefix. The system prints this prefix and the number of the message you 
retrieved if you specify (MSGID = YES) on the MESSAGE, GETV ALUE, 
QUESTION, or READTEXT instructions. 

The following example shows a CaMP statement that refers to the second data set 
on the PROGRAM statement. DS2 points to data set MESSAGE on volume 
EDX40. 

MESSAGE PROGRAM START,DS=(DATA,(MESSAGE,EDX40)) 
• 
• 
• 

PROGSTOP 
DISKMSG COMP I ERRS I ,DS2,TYPE=DSK 

The following example shows a CaMP statement that refers to a module that 
contains messages. 

MESSAGE PROGRAM START 
• 
• 
• 

PROGSTOP 
STGMSG COMP 'ERRS',MSG,TYPE=STG 

O~I ,. 

() 

0 -_ ... 



o 

o 

0·,:·' 
, " 

Creating, Storing, and Retrieving Program Messages 

The MESSAGE instruction 
The MESSAGE instruction retrieves a message from a data set on disk, diskette, or 
from a module. Then the instruction prints or displays the message. You must code 
the number of the message you want displayed or printed and the label of the 
COMP statement that gives the location of the message (COMP =). 

You can pass parameters to variable fields in a message by coding the parameters on 
the PARMS = operand of the instruction. If you code MSGID = YES, the system 
prints or displays the number of the message and the 4-character prefix you coded 
on the COMP statement in front of the message text. 

In the following example, the MESSAGE instruction retrieves the third message in a 
message data set and passes the parameter PART# to the message. The COMP 
statement defines the message data set as the first data set in the PROGRAM 
statement list. 

STOCK PROGRAM 
MESSAGE 

• 
• 
• 

PROGSTOP 

START,DS=(PARTS,DATA) 
3,COMP=PARTS,PARMS=PART#,MSGID=YES 

PARTS COMP 'PART',DSl,TYPE=DSK 
PART# DC F' 56 1 

In the following example, the MESSAGE instruction retrieves the second message in 
a module that has been link edited with the program and passes the message the 
parameter PART#. The COMP statement defines the message data set as module 
MSG. 

STOCK 

PARTS 
PART# 

PROGRAM 
MESSAGE 

• 
• 
• 

PROGSTOP 
COMP 
DC 

START 
2,COMP=PARTS,PARMS=PART#,MSGID=YES 

'PART',MSG,TYPE=STG 
F'43 1 

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-7 



Creating, Storing, and Retrieving Program Messages 

The GETVALUE, QUESTION, and READTEXT Instructions 
Instead of coding prompt messages on the GETV ALUE, QUESTION, and 0' "f' 

READ TEXT instructions, you can retrieve prompt messages from a message data 

17 -8 SC34-0943 

set or module. You code the number of the message you want to retrieve for the 
second operand of the GETVALUE and READ TEXT instructions and the first 
operand of the QUESTION instruction. In addition, you must code the label of the 
COMP statement that gives the location of the message (COMP =). 

You can pass parameters to variable fields in a message by coding the parameters on 
the P ARMS = operand of the instruction. By coding MSGID = YES, the system 
prints or displays the number of the message and the 4-character name you coded on 
the COMP statement at the front of the message text. 

In the following example, the GETVALUE instruction retrieves the fifth message 
from a module, called MSGTEXT, that has been link edited with your program. 
The instruction also passes the message the parameters VALUE and SIZE to the 
message. 

PROMPT 
VALUE 
SIZE 

GETVALUE 
• 
• 
• 

PROGSTOP 
COMP 
TEXT 
DC 

INPUT,5,COMP=PROMPT,PARMS=(VALUE,SIZE) 

'TASK',MSGTEXT,TYPE=STG 
IAN INTEGER ' 
F'75 1 

In the following example, the GETVALUE instruction retrieves the ninth message 
from a data set on disk or diskette. The instruction passes the message the 
parameters VALUE and SIZE. 

BEGIN 

PROMPT 
VALUE 
SIZE 

PROGRAM START,DS=MSGS 
• 
• 
• 

GETVALUE INPUT,9,COMP=PROMPT,PARMS=(VALUE,SIZE) 
• 
• 
• 

PROGSTOP 
COMP 
TEXT 
DC 

'TASK',DSl,TYPE=DSK 
IAN INTEGER ' 
F'75 1 

o 

o 



C 

C" 'I 

o 

Creating, Storing, and Retrieving Program Messages 

Sample Program 
The following sample program retrieves five program messages from a disk data set 
formatted in the previous section. (See "Example l" on page 17-5.) The name of 
the data set is MESSAGE and it resides on EDX4O. 

I MESSAGE PROGRAM START,DS=((MESSAGE,EDX40)) 
START QUESTION I,NO=NAME,SKIP=I,COMP=DISKMSG 

GETVALUE A,2,SKIP=I,COMP=DISKMSG,PARMS=(PI,P2) 
PRINTEXT '@THE NUMBER IS: I 

I PRINTNUM A,SKIP=I 
NAME READTEXT B,+MSG4,SKIP=I,COMP=DISKMSG,PARMS=TXT 

PRINTEXT '@THE DATA ENTERED IS: I 

I PRINTEXT B,SKIP=I 
MESSAGE +MSG6,COMP=DISKMSG,SKIP=2,PARMS=A, C 

MSGID=YES 
II MESSAGE +MSG7,COMP=DISKMSG,SKIP=2,PARMS=B, C 

MSGID=YES 
MESSAGE +MSG9,COMP=DISKMSG,SKIP=2,PARMS=B, C 

MSGID=YES 
PROGSTOP 

IJ MSG4 EQU 4 
MSG6 EQU 6 
MSG7 EQU 7 
MSG9 EQU 9 

II DISKMSG COMP 'SRCE',DSI,TYPE=DSK 
A DATA F'0 1 

B TEXT LENGTH=40 
PI TEXT IAN INTEGER ' 
P2 DATA F' 10 1 

TXT DATA CU0 I LAST NAME I 
ENDPROG 
END 

II Begin the program and identify the data set name and volume of the message 
data set (MESSAGE on volume EDX40). 

fJDisplay the prompt message DO YOU WANT TO ENTER A NUMBER? The 
first operand (1) identifies the message as the first message in the data set 
MESSAGE. The COMP= operand refers to a COMP statement labeled 
DISKMSG. If the operator enters Y, the next sequential instruction, the 
GETVALUE instruction, executes. If the operator enters N, control passes to the 
label NAME. 

II Use the second message in the message data set as a prompt message. The 
instruction retrieves the prompt message and inserts parameters PI and P2 into the 
message. The operator receives the prompt message ENTER AN INTEGER 
VALUE LESS THAN 10. 

II Print the number the operator enters. 

1.1 Retrieve the fourth message (because MSG 1 is equated to 4) from the message 
data set and inserts parameter TXT into the message. The operator receives the 
prompt message ENTER YOUR LAST NAME. 

II Print the name the operator enters. 

Chapter 17. Creating, Storing, and Retrieving Program Messages 17-9 



Creating, Storing, and Retrieving Program Messages 

17 -10 SC34-0943 

fJ Print or display the sixth message (because MSG6 is equated to 6) from the 
message data set. The COMP= operand refers to the COMP statement labelled 
DISKMSG. The instruction uses the integer value the operator entered as the 
parameter for the message. If the operator entered a 6, for example, the system 
would print or display:THE VALUE YOU ENTERED IS 6. 

II Print or display the seventh message (because MSG7 is equated to 7) from the 
message data set. The COMP= operand refers to the COMP statement labelled 
DISKMSG. The instruction uses the last name the operator entered as the 
parameter for the message. If the operator entered the name FRENCH, for 
example, the system would print or display: SRCE0007 THE DATA YOU 
ENTERED IS FRENCH. 

D Equate MSG4 to the fourth message in the message data set. 

1m Define the message data set as the first data set on the PROGRAM statement. 
Identify the data set as a disk- or diskette-resident data set (TYPE = DSK). SRCE is 
the prefix that would appear if you coded MSGID = YES on a QUESTION, 
PRINTEXT, GETVALUE, or READTEXT instruction. 

m Define a parameter (used by the first MESSAGE instruction). 

The program uses the following source message data set: 

//THIS IS A COMMENT //+ 
DO YOU WANT TO ENTER A NUMBER? /* 
ENTER «TYPE OF VALUE>T> VALUE LESS THAN «VALUE>S>./* 
THE PROGRAM HAS PROCESSED THE INPUT DATA./* 
ENTER YOUR «FIRST/LAST/FULL NAME>10C>./* 
//THIS IS ANOTHER COMMENT. // + 
ALL INPUT DATA HAS BEEN RECEIVED./* 
THE VALUE YOU ENTERED IS: «VALUE>Sl> /* 
THE DATA YOU ENTERED IS: «DATA>T> /* 
THE DEVICE «ID>Hl> AT ADDRESS «DEVICE ADDRESS>H2> IS IN USE./* 
THIS MESSAGE WILL BE CONTINUED @ ON THE NEXT LINE./* 

The program might produce output like the following: 

o 

o 



Queue Processing 

o Chapter 18. Queue Processing 

c 

o 

You can use the queue processing instructions of EDL to store and retrieve large 
amounts of data. You can retrieve data from a queue on either a first-in-first-out or 
last-in-first-out basis. 

Defining a Queue 
To define a queue, use the DEFINEQ statement. The following DEFINEQ 
statement defines a queue with ten queue elements. A queue element is either an 
address or data that you want to store. 

MSGQ DEFINEQ COUNT=10 

The queue called MSGQ can contain ten I-word addresses or I-word data items. 

If you want to store data items that are longer than one word, code the SIZE 
operand as follows: 

QUEUE DEFINEQ COUNT=15,SIZE=30 

The queue called QUEUE can contain 15 30-byte queue elements. 

Putting Data into a Queue 
To put data into a queue, use the NEXTQ instructions as follows: 

NEXTQ MSGQ,ADDR 
• 
• 
• 

ADDR DATA F'01 

The instruction puts ADDR into the queue called MSGQ. ADDR can contain 
either one word of data or an address. 

To put more than one word of data into a queue, use the FIRSTQ instructions to 
find the address of the first storage area into which data can be moved. 

FIRSTQ QUEUE,#l 
• 
• 
• 

QUEUE DEFINEQ COUNT=15,SIZE=20 

The instruction puts into register 1 the address of the first storage area into which 
you can move twenty bytes of data. 

You could use the following instructions to prompt the operator for data and store 
the response in QUEUE: 

READTEXT ELEMENT, I ENTER YOUR NAME: I 

MOVE (0,#1),ELEMENT,(20,BYTE) 

Chapter 18. Queue Processing 18-1 



Queue Processing 

The READTEXT instruction prompts the operator and places the response in 
ELEMENT. The MOVE instruction moves the response to the address retrieved by 
the FIRSTQ instruction. 

Retrieving Data from a Queue 

Example 

18-2 SC34-0943 

To retrieve data from a queue, use either the FIRSTQ or LASTQ instruction. 

Use the FIRSTQ instruction to retrieve the oldest entry from a queue. The 
following example 

FIRSTQ QUEUE,#2 

puts into register 2 the address of the oldest element in the queue called QUEUE. 

Use the LASTQ instruction to retrieve the newest entry from a queue. The 
following example 

LASTQ QUEUE,ADDR 

puts into ADDR the address of the oldest element in the queue called QUEUE. 

To transfer control if the queue becomes empty, code the EMPTY operand as 
follows: 

FIRSTQ QUEUE,ADDR,EMPTY=MT 
• 
• 
• 

MT EQU * 
• 
• 
• 

ADDR DATA F 

The instruction retrieves an element from the queue called QUEUE, puts the address 
of the element in ADDR, and causes a branch to MT if no more elements exist in 
the queue. 

The following example prompts the operator for 20 characters of data, stores the 
data in one queue, moves the addresses of the elements to another queue, and prints 
the elements on a first-in-first-out (FIFO) basis. 

() 

() 

o 



0 

o 

o 

Queue Processing 

QTEST PROGRAM START 
START EQU * 

DO 10, TIMES 

I 
FIRSTQ QUEUEl,#1 
READTEXT MSG,'ENTER UP TO 20 CHARACTERS: ' 
MOVE (0,#I),MSG,(20,BYTE) 
NEXTQ QUEUE2,#I,FULL=FULLQ 
ENDDO 
GOTO PRINT 

FULLQ EQU * 
PRINTEXT '@QUEUE2 FULL.' 

PRINT EQU * 
DO 10, TIMES 

I FIRSTQ QUEUEl,#I,EMPTY=DONE 
MOVE MSG,(0,#I),(20,BYTE) 
PRINTEXT MSG,SKIP=1 
NEXTQ QUEUEl, #1 
ENDDO 

DONE PROGSTOP IL QUEUE! DEFINEQ COUNT=10,SIZE=20 
o QUEUE2 DEFINEQ COUNT=10 

MSG TEXT LENGTH=20 
ENDPROG 
END 

D Put the address of the oldest element into register 1. 

fJ Prompt the operator for twenty characters of data. Put the prompt in MSG. 

II Move the operator's response into QUEUEI, to the address retrieved by the 
FIRSTQ instruction. 

II Store in QUEUE2 the address where the response was stored in QUEUEI. 

II Retrieve the oldest element from QUEUEI and put the address of the data into 
register 1. 

II Move twenty bytes from the address pointed to by register 1 to MSG. 

fJ Print the data, skipping a line between each data item (SKIP = 1). 

iii Put back into QUEUEI the element retrieved by the FIRSTQ instruction. 

D Define a queue large enough to accommodate ten 20-character data items. 

1m Define a queue large enough to accommodate ten I-word data items or 
addresses. 

Chapter 18. Queue Processing 18-3 



o 

o 

o 
18-4 SC34-0943 



o 

o 

o 

Writing Reentrant Code 

Chapter 19. Writing Reentrant Code 

Reentrant code is a group of instructions that can be executed simultaneously by 
more than one task in the same partition. Only one copy of the program that 
contains the reentrant instructions exists in storage at a given time. 

This chapter describes how to write reentrant EDL programs and subroutines and 
describes the following: 

• When to use reentrant code 

• Coding guidelines 

• Examples. 

When to Use Reentrant Code 
You should consider writing reentrant code when: 

• You don't want each task to have its own copy of the reentrant code. If the 
routine is called by several other tasks and occupies a large amount of processor 
storage, you may want to write reentrant code. 

• You don't want to enqueue the routine each time a task needs it. If a routine is 
called frequently, you may want to write reentrant code to avoid the problem 
that occurs when several tasks are waiting for a serially-reusable resource to 
become available. 

Coding Guidelines 
To write reentrant code, use the following guidelines: 

• Avoid self-modifying instructions such as the use of the parameter-naming 
operands PI, P2, and P3. 

• Place all program variables in a storage area unique to the task that is executing. 
You can map these variables adjacent to the task control block (TCB) and 
access them as a displacement from the TCB. 

You can obtain the TCB address with the TCBGET instruction as follows: 

TCBGET #1 

This instruction puts the address of the TCB in register 1. 

Notes: 

1. If you place the variables ahead of the TCB, avoid using the TeB generated 
by the ENDPROG statement because the compiler may put data between 
the mapped variables and the main task control block. 

2. If you place the variables after the TeB, ensure that all TCBs are the same 
length. Inconsistent use of the FLOAT operand of the TASK or 
PROGRAM statement can cause TeBs to be different lengths. 

Chapter 19. Writing Reentrant Code 19-1 



Writing Reentrant Code 

• Use only instructions that are reentrant. 

19-2 SC34-0943 

You can use the instructions that are not reentrant, however, by "protecting" 
them with the ENQ and DEQ instructions. For example, if you want to use a 
subroutine in reentrant code, a CALL to a subroutine might look like this: 

• 
• 
• 
ENQ SUB4QCB 
CALL SUB4, ... 
DEQ SUB4QCB 
• 
• 
• 

Note: Any code that you place between the ENQ and DEQ statements is 
serially reusable but not reentrant. 

The following instructions are not reentrant: 

CALL 
- CONCAT 

DO x,TIMES 
DSCB or any instruction that uses a DSCB: 

GIN 
LOAD $DISKUT3 
LOAD PGMx 
NOTE 
POINT 
READ 
WRITE 

GETEDIT 
GETVALUE with the FORMAT operand 
IODEF 
PLOTGIN 
PRINTNUM with the FORMAT operand 
PUTEDIT 
SCREEN 
SUB ROUT 
XPLOT 
YPLOT 

o 

o 

o 



o Examples 

Example 1 

() 

o 

Writing Reentrant Code 

This section contains two examples. 

Example 1 consists of a main task and two subtasks. The main task, containing the 
reentrant code, and the two subtasks all transfer control to the reentrant code. 

Example 2 shows how to make a nonreentrant routine into a reentrant routine. It 
also shows how to execute the reentrant routine from three tasks. 

The following example consists of a main task and two subtasks. The main task and 
the two sub tasks all transfer control to a group of reentrant instructions with the 
label RENTER. The reentrant instructions perform two additions and print the 
result. Each task prints the results on a different terminal. 

The next two pages contain the reentrant code and the main task. The two subtasks 
are contained on the two subsequent pages. 

TCB 
RENTER 

START 

LM 

PASSPARM 
ECB1 
ECB2 
PARM 

PROGRAM START 
ADD (0,#1),(2,#1),RESULT=(4,#1) 
ADD (0,#1),1 
PRINTEXT (10,#1) 
PRINTNUM (4,#1) 
GOTO (6,#1) 
LOAD TASK1,PASSPARM,EVENT=ECB1 
LOAD TASK2, PASSPARM, EVENT=ECB2 
MOVEA #l,PARM 
ENQT $SYSPRTR 
DO 100 
GOTO RENTER 
ENDDO 
DEQT 
WAIT ECB1 
WAIT ECB2 

PROGSTOP 
DC A(RENTER) 
ECB 0 
ECB 0 
DC Fill 
DC Fill 
DC FI 01 

DC A(LM) 
TEXT I@ANSWER FROM MAIN TASK = I 

ENDPROG 
END 

Chapter 19. Writing Reentrant Code 19-3 



Writing Reentrant Code 

19-4 SC34-0943 

II Begin the reentrant routine. Add the first two data areas in the parameter area 
and place the result in the third word of the parameter area. 

fJ Add 1 to the first word of the parameter area. 

II Print the message that begins at the fifth word of the parameter area. 

II Print the result of the ADD instructions. 

II Transfer control back to the task from which control was transferred. 

m Attach the first of the two subtasks (TASK1). Pass the address of the reentrant 
routine in PASSPARM. Identify ECB2 as the event to be posted when the task has 
completed. 

1.1 Attach the second of the two subtasks (T ASK2). 

II Move the address of PARM to register 1. PARM contains the numbers the 
reentrant instructions will add, a data area for the result, an address (to which the 
reentrant routine will branch), and a message used to display the result. 

II Get exclusive use of the system printer. 

1m Begin a DO loop. Execute the DO loop 100 times. 

m Transfer control to the reentrant routine. 

m End the DO loop. 

m Release exclusive use of the system printer. 

III Wait for TASKI to complete. 

III Wait for T ASK2 to complete. 

1m Define the address of the reentrant instructions as an address constant. 

m Define event control blocks for the two subtasks. 

1m Define the data areas to be added. The main task uses these data areas. 

1m Define the data area for the result of the ADD instruction. 

Em Define the address to which the reentrant routine transfers control. 

m Define the message to be printed. 

0'\ I I 

o 

o 



" C 

CI 

o 

Writing Reentrant Code 

I 
TCB PROGRAM START,PARM=l 
START MOVEA #1,PARM1 

ENQT $SYSPRTR 
DO 100 
GOTO ($PARM1) 

Ll ENDDO 
fD DEQT 

PROGSTOP 
ENDPROG 

I 
PARMI DC Fill 

DC F'21 
DC F' 01 
DC A(Ll) 
TEXT '@ANSWER FROM TASK1 = I 

END 
m TCB PROGRAM START,PARM=l 

START MOVEA #l,PARMI 
ENQT $SYSPRTR 
DO 100 
GOTO ($PARMI) 

Ll ENDDO 
DEQT 
PROGSTOP 
ENDPROG 

I 
PARMI DC Fill 

DC F' 51 
DC F' 01 
DC A(Ll) 
TEXT '@ANSWER FROM TASK2 = I 

END 

m Begin TASK1. Identify START as the first instruction to be executed and 
specify that one parameter will be passed to the program (P ARM = I). The 
parameter being passed is the address of the reentrant routine. 

m Move the address of PARMI to register 1. PARMI contains the numbers the 
reentrant instructions will add, a data area for the result, an address (to which the 
reentrant routine will branch), and a message used to display the result. 

m Get exclusive use of $SYSPR TR. 

m Begin a DO loop. Execute the DO loop IOO times. 

Em Transfer control to the reentrant routine. 

fD Release exclusive use of $SYSLOG. 

1m Define the data areas to be added. 

m Define the data area for the result of the ADD instruction. 

Chapter 19. Writing Reentrant Code 19-5 



Writing Reentrant Code 

Example 2 

1m Define the address to which the reentrant routine transfers control. 

m Define the message to be printed. 

III Begin T ASK2. Identify ST ART as the first instruction to be executed and 
specify that one parameter will be passed to the program (PARM = 1). The 
parameter being passed is the address of the reentrant routine. 

m Define the data areas for T ASK2. 

This example consists of three sections. The first section shows instructions that are 
not reentrant. The second section shows the same instructions made reentrant. The 
third section shows one way the reentrant instructions can be executed. 

The Nonreentrant Instructions 

19-6 SC34-0943 

The following instructions produce a random number, add it to itself ten times, and 
print the result. The DO loops and the PRINTEXT and PRINTNUM instructions 
make the program nonreentrant. 

PROGI PROGRAM STPGM 
COpy TCBEQU 

STPGM DO lO,TIMES 
MOVE COUNT,O 
MOVE SUM,O 
MOVE RNBRl,O 
MUL TIPLY RNDCON,RNBR2,RESULT=RNBRl,PREC=DSD 
SHIFTR RNBRl,6,RESULT=COUNT 
DO 10, TIMES 
ADD SUM,COUNT 

ENDDO 
II STIMER COUNT ,WAIT 

PRINTEXT '@A(TCB): I 

1m PRINTNUM PROGl+$TCBVER,MODE=HEX 
PRINTEXT COUNT: I 

m PRINTNUM COUNT 
PRINTEXT SUM: I 

IfJ PRINTNUM SUM 
ENDDO 

m TERMCTRL DISPLAY 
PROGSTOP 

RNDCON DATA 01 65539 1 

RNBRI DATA F'O ' 
RNBR2 DATA F'9999 1 

COUNT DATA F'O ' 
SUM DATA F'O ' 

ENDPROG 
END 

o 

0 

o 



o 

Writing Reentrant Code 

II Execute the loop 10 times. 

II Initialize COUNT to O. 

II Initialize SUM to O. 

II Initialize RNBRI to O. 

II Generate a random number, using the number 9999 as a "seed." Put the result 
in RNBRI. (PREC = DSD causes the result to be placed in a two-word (double 
precision) data area, the first word of which is RNBRI. The rightmost word of the 
result, however, is placed in the next word (RNBR2). The second time this 
instruction executes, the result is different because operand 2 (RNBR2) has 
changed.) 

Note: The instructions that generate the random numbers are used for illustrative 
purposes only. 

II Shift the result of the previous MULTIPLY instruction. Put the result in 
COUNT. This instruction takes the result of the MULTIPLY instruction and 
makes the number smaller. 

B Execute another loop ten times. 

iii Add COUNT to SUM. 

D Tell the system to wait the number of milliseconds contained in COUNT. 

1m Print the address of the TCB in hexadecimal (MODE = HEX). 

m Print the random number. 

m Print the result of the addition. 

m Display the data in the system buffer. 

Chapter 19. Writing Reentrant Code 19-7 



Writing Reentrant Code 

The Same Instructions Made Reentrant 
The following instructions do exactly the same thing as the previous nonreentrant 0' _ " 
instructions. They produce a random number, add it to itself ten times, and print ,. 
the result. The DO loops and the PRINTEXT and PRINTNUM instructions have 

19-8 SC34-0943 

been changed to make the instructions reentrant. 

PROGI 

STPGM 

II 
m 
m 

II 
m 
m PRTLINE 

RNDCON 

TWKAREA 
RNDSEED 

IJ TCBADDR 
RNBRI 
RNBR2 
COUNT 
SUM 
LCNTI 
LCNT2 

PROGRAM STPGM 
COpy TCBEQU 
TCBGET #l,$TCBVER 
MOVE (+LCNTl,#l),lG 
DO WHILE,((+LCNTl,#l),NE,G) 
SUBTRACT (+LCNTl,#l),l 
MOVE (+COUNT,#l),G 
MOVE (+SUM,#l),G 
MOVE (+RNBRl,#l),G 
MULTIPLY RNDCON,(+RNBR2,#1),RESULT=(+RNBRl,#1),PR EC=DSD 
SHIFTR (+RNBRl,#1),6,RESULT=(+COUNT,#1) 
MOVE (+LCNT2,#1),lG 
DO WHILE,((+LCNT2,#1),NE,G) 
SUBTRACT (+LCNTl,#l),l 
ADD (+SUM,#l),(+COUNT,#l) 

ENDDO 
STIMER (+COUNT,#l),WAIT 
ENQ PRTLINE 

PRINTEXT '@A(TCB): I 

PRINTNUM (+$TCBVER,#l),MODE=HEX 
PRINTEXT I COUNT: I 

PRINTNUM (+COUNT,#l) 
PRINTEXT I SUM: ' 

PRINTNUM (+SUM,#l) 
DEQ PRTLINE 

ENDDO 
TERMCTRL DISPLAY 

PROGSTOP 
QCB 
DATA 
ENDPROG 
DATA 
DATA 
DATA 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
END 

D'65539 1 

F'G ' 
F'9999 1 

4F'G ' 
* 
*-PROGI 
RNBRl+2 
RNBR2+2 
COUNT+2 
SUM+2 
LCNTl+2 

o 



c) 

C
~ 
'\ 
f 

o 

Writing Reentrant Code 

II Copy the task control block (TCB) equates into the program. 

fJ Put the address of the TCB in register 1. 

II Initialize the loop counter to 10. 

D Execute the loop ten times. 

II Subtract 1 from the loop counter. 

II Initialize COUNT to o. 

FJ Initialize SUM to O. 

II Initialize RNBR1 to O. 

m Generate a random number, using the number 9999 as a "seed." Put the result 
in RNBRI. (PREC=DSD causes the result to be placed in a 2-word (double 
precision) data area, the first word of which is RNBR1. The rightmost word of the 
result, however, is placed in the next word (RNBR2). The second time this 
instruction executes, the result is different because operand 2 (RNBR2) has 
changed.) 

Note: The instructions that generate the random numbers are used for illustrative 
purposes only. 

1m Shift the result of the previous MULTIPLY instruction. Put the result in 
COUNT. This instruction takes the result of the MULTIPLY instruction and 
makes the number smaller. 

m Initialize another loop counter. 

m Execute another loop ten times. 

III Subtract 1 from the loop counter. 

m Add COUNT to SUM. 

III Tell the system to wait the number of milliseconds contained in COUNT. 

Ell Gain exclusive control of the next six instructions. This instruction is necessary 
to avoid "interleaving" of output. Interleaving could occur if more than one task 
executed the six instructions at the same time. 

m Print the address of the TCB, COUNT, and SUM. 

1m Relinquish control of the resource (the six output instructions). 

Chapter 19. Writing Reentrant Code 19-9 



Writing Reentrant Code 

m Display the data in the system buffer. 

II Define a queue control block. 

m Point to the task control block. The ENDPROG statement generates a task 
control block. 

m Point to the area immediately preceding the task control block. TWKAREA 
minus TCBADDR produces a negative number. When the program loads the TCB 
address into register 1 and uses RNBRl, RNBR2, COUNT, SUM, LCNTI, or 
LCNT2 as a displacement, the result points to a variable with the unique storage 
area associated with the attaching task. The unique storage area must immediately 
precede the TCB. 

Executing a Reentrant Program 

19-10 SC34-0943 

The following instructions show how to execute the reentrant routine from three 
tasks. The reentrant routine begins at label STTSK. 

III 

PROG3 
STPGM 

TASK1 

TASK2 

TASK3 

RNBR1 
RNBR2 
COUNT 
SUM 
LCNT1 
LCNT2 
STTSK 

PROGRAM STPGM 
ATTACH TASK1 
ATTACH TASK2 
ATTACH TASK3 
WAIT EVENT1 
WAIT EVENT2 
WAIT EVENT3 
TERMCTRL DISPLAY 
PROGSTOP -1 
TASK STTSK,EVENT=EVENT1 
DATA F'G' 
DATA F'9999' 
DATA 4F'O' 
TASK STTSK,EVENT=EVENT2 
DATA F'G' 
DATA F'9999' 
DATA 4F'O' 
TASK STTSK,EVENT=EVENT3 
DATA F'G' 
DATA F'9999' 
DATA 4F'O' 
EQU *-TASK3 
EQU RNBR1+2 
EQU RNBR2+2 
EQU COUNT+2 
EQU SUM+2 
EQU LCNT1+2 
TCBGET #l,$TCBVER 

• 
• 
• 

ENDTASK 
ENDPROG 
END 

o 

0 

0 



C.·" " 

C 1 

" 

o 

Writing Reentrant Code 

II Attach the first task (TASKl). 

fJ Attach the second task (T ASK2). 

II Attach the third task (T ASK3). 

II Wait for the completion of the first task (TASKl). 

1:1 Wait for the completion of the second task (TASK2). 

II Wait for the completion of the third task (TASK3). 

fJ Display the contents of the buffer. 

II Define a task with the label T ASKl. The label of the first instruction to be 
executed is STTSK. Identify EVENTl as the event to be posted when the task 
completes. 

D Define data areas that are unique to T ASKl. 

1m Define a task with the label TASK2. The label of the first instruction to be 
executed is STTSK. Identify EVENT2 as the event to be posted when the task 
completes. 

m Define data areas that are unique to T ASK2. 

II Define a task with the label T ASK3. The label of the first instruction to be 
executed is STTSK. Identify EVENT3 as the event to be posted when the task 
completes. 

m Define data areas that are unique to TASK3. 

III Use equates to map the task data areas. 

m Begin the reentrant code. 

III End the reentrant code. 

Chapter 19. Writing Reentrant Code 19-11 



o 

o 

o 
19-12 SC34-0943 



Accessing $SYSCOM through a Program 

o Chapter 20. Accessing $SYSCOM through a Program 

o 

You can access the system common data area (known as $SYSCOM) through an 
EDL program. Programs in any partition can access $SYSCOM and use the 
common data area to store information. 

Before you can access $SYSCOM through a program, you must define $SYSCOM 
at system generation time. To do so, modify the $EDXDEF data set. For more 
information on how to do this, refer to the Installation and System Generation Guide. 

This chapter provides two sample EDL programs that access $SYSCOM. The 
chapter describes how $SYSCOM must be defined in the $EDXDEF data set in 
order for the sample programs to execute. 

Sample Program A 
An explanation of the numbered items follows the program. 

PROGA 
START 

SAVEADS 
ZERO 
PRINTER 
EVENTl 

PROGRAM 
MOVE 
TCBGET 
TCBPUT 
ENQ 
DEQ 
POST 
TCBPUT 
PROGSTOP 
DATA 
DATA 
EQU 
EQU 
ENDPROG 

END 

START 
#l,$SYSCOM,FKEY=G 
SAVEADS,$TCBADS 
ZERO,$TCBADS 
(PRINTER,#l) 
(PRINTER,#l) 
(EVENT1,#1) 
SAVEADS,$TCBADS 

FIG I 
FIG I 
G 
PRINTER+10 

Chapter 20. Accessing $SYSCOM through a Program 20-1 



Accessing $SYSCOM through a Program 

II Store the address of the data common area ($SYSCOM) in index register 1. 

fJ Save the current TCB address ($TCBADR). 

II Set the TCB address ($TCBADR) to zero for the QCB and ECB in $SYSCOM. 

II Obtain exclusive use of the resource PRINTER. (PRINTER is defined in the 
$EDXDEF data set.) 

II Release exclusive use of the resource PRINTER. (PRINTER is defined in the 
$EDXDEF data set.) 

II Post the ECB in the data common area called EVENTl. 

II Restore the TCB address ($TCBADR). 

In order for Program A to execute, define $SYSCOM in the $EDXDEF data set as 
follows: 

$SYSCOM CSECT 
PRINTER QCB 
EVENT1 ECB 

ENTRY $EDXPTCH 
$EDXPTCH DATA 128F ' El ' 

END 

Sample Program B 

20-2 SC34-0943 

An explanation of the numbered items follows the program. 

PROGB 
START 

BUF 
NAME 
STREET 
CITY 

PROGRAM 
MOVE 
MOVEA 
MOVE 
MOVE 
MOVE 
DATA 
EQU 
EQU 
EQU 
F'ROGSTOP 
ENDPROG 
END 

START 
#1,$SYSCOM,FKEY=El 
#2,BUF 
(NAME,#2), (NAME,#1), (2El,BYTES),FKEY=El 
(STREET,#2),(STREET,#1),(2El,BYTES),FKEY=El 
(CITY,#2),(CITY,#1),(2El,BYTES),FKEY=El 
6ElC I I 

El 
NAME+2El 
STREET+2El 

o 

o 

o 



c 

C'\ ,:~ 

o 

Accessing $SYSCOM through a Program 

II Move the address of the common area ($SYSCOM) to index register 1. 

fJ Move the address of BUF to index register 2. 

II Move NAME from the common area to the first 20 characters of BUF. 

II Move STREET from the common area to the second 20 characters of BUF. 

II Move CITY from the common area to the last 20 characters of BUF. 

II Define a 60-character area to receive the data items from the common area. 

fJ Map the structure of the common area. 

iii Map the structure of the common area. 

D Map the structure of the common area. 

In order for Program B to execute, define $SYSCOM in the $EDXDEF data set as 
follows: 

$SYSCOM CSECT 
NAME DATA 20C ' I 

STREET DATA 20C' I 

CITY DATA 20C ' I 

ENTRY $EDXPTCH 
$EDXPTCH DATA 128F '0 1 

END 

Chapter 20. Accessing $SYSCOM through a Program 20-3 



o 

o 

o 
20-4 SC34-0943 



Tape Labels 

o Appendix A. Tape Labels 

o 

o 

The following is the layout of the VOLl label: 

Field Name Bytes Initialized Contents 

Label identifier 3 VOL 
Volume label number 1 1 
Volume serial 6 XXXXXX 
Volume security 1 0 
Data file directory 10 blanks 
Reserved 10 blanks 
Reserved 10 VOL 
Owner name 10 NAME 
Reserved 29 blanks 

The following is the layout of the HDRI label: 

Field Name Bytes Initialized Contents 

Label identifier 3 HDR 
File label number 1 1 
File identifier (DSN) 17* Da ta set name 

(DSN) 
File serial number 6 XXXXXX 
Volume sequence 4 0001 
number 
File sequence number 4 OONN 
Generation number 4 blanks 
Generation version 2 blanks 
number 
Creation date 6 YYDDD 
Expiration date 6 YYDDD 
File security 1 0 
Block count 6 000000 
System code 13 IBMEDXl 
Reserved 7 blanks 

* EDX supports an 8-byte, nonblank data set name (DSN). EDX ignores the last 9 
bytes of the DSN. 

Appendix A. Tape Labels A-I 



o 

o 
A-2 SC34-0943 



Interrupt Processing 

o Appendix B. Interrupt Processing 

o 

Interrupt Keys 

Interrupts apply to the interaction between a program and a terminal operator. For 
example, a program can wait for an interrupt, such as an operator response to a 
prompt, or a terminal operator can cause an interrupt by pressing a Program 
Function key. 

When an interrupt occurs, if it is completing an outstanding operation, control is 
returned to the next sequential instruction if there are no errors. If the interrupt was 
unsolicited (caused by the attention key or a PF key), then either the system or user 
A TTNLIST begins executing as an asynchronous task competing for system 
resources. 

The keys that can cause interrupts are the attention key, Program Function (PF) 
keys, and the enter key. 

The Attention Key 
When the attention key is recognized, the greater than symbol (» is displayed and 
the operator can enter either a system function code (for example, $L) or a program 
function code defined in an ATTNLIST. 

If you have this terminal type Then this is your attention key 

4978/4979 The key marked ATTN 

Teletype The ESC (escape) key 

3101 Display Terminal The AL T and F8 key 

3151/3l6x Terminal The F8 key 

Note: The term 316x refers to the 3161, 3163 and 3164 terminals. 

Program Function (PF) Keys 
Any program function key on the 4978/4979,3101,3151 and 316x is recognized by 
the attention list code $PF (except for a PF key defined as the attention key). In 
addition, individual keys can be recognized separately by $PF1 to $PF254. You can 
provide separate entry points to the application code for particular keys, or a single 
entry point for all keys or a group of keys for rapid response. 

The order of the PF keys in the attention list is significant because it defines the 
entry points to the application code. For example: 

ATTNLIST ($PFl,ENTl,$PF5,ENT2,$PF,ENT3) 

causes the program to be entered at ENT3 for all PF keys except PF1 and PF5. 

On the 4978/4979, pressing the PF6 key causes the screen image to be printed on any 
designated hard-copy terminal (unless that terminal is a spool device and spool is 
loaded). This is not true for PF6 on the 3101. 

Appendix B. Interrupt Processing B-1 



Interrupt Processing 

Enter Key 

The 3101 keyboard has eight PF keys. EDX supports these keys when the 3101 is 
operated in both character and block mode. To use the PF keys on the 3101, hold 
down the ALT key (on the lower right-hand side of the keyboard) while you press 
the appropriate numeric key. 

The 3151/316x keyboards have 12 PF keys (labeled F1 through F12). EDX supports 
these keys in either character or block mode. 

The enter key indicates the end of typed input, for example, the end of the operator 
input for a READ TEXT instruction. You also use it in conjunction with the WAIT 
KEY instruction. 

If you have this terminal type Then this is your enter key 

4978/4979 The key marked ENTER 

3101 in block mode The Send key 

3101 in character mode The new line key 

3151/316x in block mode The Send key 

3151/316x in character mode The new line key 

Instructions that Process Interrupts 
Instructions that process interrupts are READTEXT, GETVALUE, WAIT KEY 
and ATTNLIST. 

The READTEXT and GETVALUE Instructions 
In many cases a program needs to wait for an interrupt, such as an operator 
response to a request for input. This program-wait capability is provided 
automatically by the READTEXT and GETVALUE instructions. These 
instructions have an "implied wait." They wait for the terminal operator to enter 
data and press the enter key. 

The WAIT KEY Instruction 

B-2 SC34-0943 

An application program can wait at any point for a 4978/4979 or 3101 terminal 
operator to press the enter or one of the PF keys. This is done by issuing the WAIT 
KEY instruction. 

When the enter or a PF key is pressed, the program resumes operation, and the key 
is identified to the program in the second task code word at taskname + 2. The code 
value for the enter key is O. The value for a PF key is the integer corresponding to 
the assigned function code; 1 for PFI, 2 for PF2, and so on. 

The PF keys do not initiate attention list processing during execution of the WAIT 
KEY instruction. They only cause the WAIT KEY instruction to terminate, 
allowing subsequent instructions to be executed. 

o 

o 

o 



o 

o 

o 

Interrupt Processing 

The ATTN LIST Instruction 

Advance Input 

The ATTNLIST instruction provides entry to interrupt processing routines. When a 
PF key is pressed, the A TTNLIST task for that key gets control if A TTNLIST was 
coded in the application program. If ATTNLIST was not coded, the system search 
for a PF key match fails and the message "FUNCTION NOT DEFINED" is 
displayed on the screen. Except for the 4978/4979 hard-copy print key (normally 
PF6), the 4978 attention key (normally PFO) and the 3101 attention key (normally 
PF8), the PF keys are always matched against user-written ATTNLIST(s) as 
described above. 

When the attention key on a terminal is pressed, the system prompts the operator for 
a command. This command is first matched against the system ATTNLIST and 
then against user-written ATTNLIST(s). 

If the command matches the system ATTNLIST, appropriate system action is taken 
(for example, $D or $L) unless the task is busy. If the command entered was $C, 
$V ARYON, or $V ARYOFF and this task is busy, the message" > NOT 
ACKNOWLEDGED" is displayed; when the task is completed, $C, $VARYON, or 
$VARYOFF is then executed. If the command entered was $P or $D and this task 
is busy, the command is ignored. 

If the command matches a user-written ATTNLIST, the corresponding ATTNLIST 
task gets control. The appropriate application program attention routine then runs 
under this task. If the attention key loaded the ATTNLIST and the task is already 
busy, the message" > NOT ACKNOWLEDGED" is displayed on the terminal. 

If there is no match against any ATTNLIST, the message "FUNCTION NOT 
DEFINED" is displayed. 

When the ATTNLIST task for a PF key gets control, the code for that key is placed 
in the second word of the ATTNLIST task control block. You can obtain the code 
for an interrupting key by coding the TCBGET instruction. 

As a terminal user, your interaction with an application or utility program is 
generally conducted through prompts which request you to enter data. Once you 
have become familiar with the dialogue sequence, however, prompting becomes less 
necessary. The READ TEXT and GETVALUE instructions include a conditional 
prompting option which enables you to enter data in advance and thereby inhibit the 
associated prompts. 

Advance input is accomplished by entering more data on a line than has been 
requested by the program. Subsequent input instructions specifying 
PROMPT = COND will read data from the remainder of the buffered line, and issue 
a prompt only when the pre-entered data has been exhausted. If you specify 
PROMPT = UNCOND with an input instruction, an associated prompt is issued and 
the system waits for input. The prompt causes, as does every output instruction, 
cancellation of any outstanding advance input. 

Appendix B. Interrupt Processing B-3 



o 

o 

o 
B-4 SC34-0943 



Static Screens and Device Considerations 

o Appendix C. Static Screens and Device Considerations 

o 

Defining Logical Screens 
A logical screen is a screen defined by margin settings, such as the TOPM, BOTM, 
LEFTM and RIGHTM parameters. Logical screens can be defined either during 
system generation (using the TERMINAL statement) or at the time an ENQT 
instruction is executed (using the IOCB statement). 

Using TERMINAL to Define a Logical Screen 
The following example of using ,the TERMINAL statement defines a static screen to 
be used for data entry and display. Programs can be loaded from the terminal, but 
the terminal I/O instructions issued will be interpreted for a static screen unless the 
configuration is changed to roll by an IOCB statement. This is a typical definition 
for a terminal to be used for data entry. 

TERM2 TERMINAL DEVICE=4979,ADDRESS=14,SCREEN=STATIC 

The next example shows a split screen configuration. The roll screen is the bottom 
12 lines of the screen; the top half can be used for other logical screens defined upon 
execution of ENQT. 

TERM3 TERMINAL DEVICE=4978,ADDRESS=24,TOPM=12,NHIST=6 

The next example defines a roll screen occupying the upper-right quadrant of the 
screen. In general, logical screens with less than an 80-character line size suffer some 
performance disadvantages (such as slower erasure) but can be useful for special 
applications. Note that NHIST is zero here because screen shifting will not be 
performed; a nonzero value for NHIST would merely cause the history area to be 
unused. 

TERM4 TERMINAL DEVICE=4979,ADDRESS=34,LEFTM=39, 
BOTM=l1,NHIST=O 

C 

The final example defines a static screen for the 3101 in block mode. The 3101, 
3151, 3161, 3163, and 3164 terminals can have only a single roll screen or static 
screen. The Multifunction Attachment is used to connect the terminal to the 
Series/I. 

TERM5 TERMINAL DEVICE=ACCA,ADDRESS=59,MODE=3101B, 
SCREEN=STATIC,LMODE=RS422,ADAPTER=MFA 

C 

Appendix C. Static Screens and Device Considerations C-l 



Static Screens and Device Considerations 

Using IOCB and ENQl to Define a Logical Screen 
Logical screens can also be defined by the ENQT instruction referencing an IOCB. 0"". 
The IOCB statement is used to define many of the "soft" characteristics of a 
terminal (such as margins, page size or line length) and to establish the connection 

c-2 SC34-0943 

between the ENQT and TERMINAL statements at execution time. Using an 
ENQT instruction which references an IOCB, you can modify the soft characteristics 
of a specific terminal defined by the TERMINAL statement. The IOCB statement 
and its operands are described fully in the Language Reference. 

In the following example, the IOCB labeled TOPHALF defines the top half of the 
screen (from which the program was loaded) as a static screen. If the terminal were 
defined as in TERM3 on the previous page, the program could have been loaded by 
entering $L program-name in the roll screen area (the bottom half of the screen). 
Since no terminal name is specified on the IOCB statement, the ENQT refers to the 
loading terminal. The program then might display tabular information on the static 
screen, execute DEQT and then end. The information displayed on the static screen 
part of the screen will remain on the screen while the terminal operator performs 
other operations using the roll screen. 

DISPLAY 
TOPHALF 
BEGIN 

PROGRAM 
IOCB 
ENQT 

BEGIN 
BOTM=ll,SCREEN=STATIC 
TOPHALF 

• 
• 
• 
DEQT 
PROGSTOP 
ENDPROG 
END 

The next example shows terminal access by using the symbolic name of the terminal. 
TERM!, TERM2, TERM3, and TERM4 have all been defined with TERMINAL 
configuration statements. The use of a static screen ensures that only physical line 0 
of each screen will be altered. (LINE = 0 for roll screens causes a page eject and 
erasure of information.) 

Note: On a 4979, unprotected fields should be of even length. 

NOTICE PROGRAM 
TERMX lOCB 
NAMETAB DATA 

BEGIN 
SCREEN=STATIC 
CL8 1 TERM11 

BEGIN 

DATA 
DATA 
DATA 
MOVEA 
DO 

CL8 1TERM2 1 
CL8 1TERM3 1 
CL8 1TERM4 1 
#l,NAMETAB 
4 

MOVE 
ENQT 
PRINTEXT 
DEQT 

TERMX,(O,#1),(8,BYTES) 
TERMX 
'SYSTEM ACTIVE ' ,LINE=O 

ADD 
ENDDO 
PROGSTOP 
ENDPROG 
END 

#1,8 

() 

o 



c 

0 

o 

Static Screens and Device Considerations 

Structure of the IOCB 
The structure of the IOCB is given in the following table. The structure may change 
with future versions of the Event Driven Executive. 

Field Name Byte(s) Contents 

Terminal name 0-7 EBCDIC, blank filled 

Flags 8 Bit 0 "off' indicates that the name is the only 
element of the IOCB. Further information on this 
field can be found in Internal Design. 

Top of working area 9 Equal to TOPM + NHIST 

Top margin 10 TOPM or zero 

Bottom margin 11 BOTM, or X I FF I if unspecified 

Left margin 12 LEFTM or zero 

Page size 13 Equal to X I 00 I if unspecified 

Line size 14-15 Equal to X I 7FFF I if unspecified 

Current line 16 Initialized to TOPM + NHIST 

Current indent 17 Initialized to left margin 

Buffer address 18-19 Zero if unspecified 

$IMAGE Subroutines 
You can create, save, and modify formatted screen images in disk and diskette data 
sets using the $IMAGE utility. The formatted screen subroutines retrieve and 
display these images. The $IMAGE subroutines provide support for any of the 
following: 

• 4978 terminals 
• 4979 terminals 
• 4980 terminals 
• 3101 terminals in block mode 
• 3161 terminals in block mode 
• 3151 terminals in block mode 
• 3163 terminals in block mode 
• 3164 terminals in block mode. 

You can also use screen images created on a 4978, 4979, or 4980 on any of the 
terminals listed above by calling subroutines described in this appendix. Refer to the 
$IMAGE description in the Operator Commands and Utilities Reference for 
information on creating or exchanging terminal screen images for various terminals. 

Appendix C. Static Screens and Device Considerations C-3 



-Static Screens and Device Considerations 

C-4 SC34-0943 

The $IMAGE subroutines perform screen formatting and input/output operations 
independent of the type of terminal upon which the application runs. The 
orientation is towards writing/reading all unprotected fields with one operation. In 
this context the data in unprotected fields is of primary concern. 

Static screen applications use the $IMOPEN, $IMDTYPE, $UNPACK, $IMGEN, 
$IMGEN49, $IMGEN31, $IMGEN3X, and $IMCON31 subroutine packages to 
process static screens defined using the $IMAGE utility. 

$IMDTYPE is required for all static screen applications. In addition, the 
$IMOPEN and $UNPACK subroutines are also required, plus one of the following: 

• $IMGEN to intermix 4978,3101,3151,3161,3163, or 3164 screen images and 
to display these images on a 4978,4979,4980, 3101, 3151, 3161, 3163, or 3164 
terminal. Special screen images can be displayed only on the same terminal 
type. 

• $HvlGEN3X to intermix both 3101 and 4978 images and to display those images 
on a 3101 terminal. 

• $IMGEN49 for 4978 images and to display those images on a 4978 or 4979 
terminal. 

• $IMGEN31 for 3101 images and to display those images on a 3101 terminal. 

If you wish to display 3101 images saved prior to EDX version 5.2 on a 3161,3163, 
or 3164 terminal, you can: 

1. use the $IMAGE EDIT and SAVE commands to convert the 3101 image to the 
new format or 

2. code "3101" for the type operand in the CALL $IMOPEN instruction and 
include $IMCON31 when linking your application program. 

During link-edit the $IMxxxx subroutines are included with your application 
through the use of the autocalllibrary. Normally $IMGEN is included. If you 
want one of the alternate ($IMGENxx) routines, explicitly INCLUDE that module. 

For formatted screen images presented on a 3101, storage requirements and internal 
conversion time is reduced when you select only subroutine support that processes 
3101 images. 

You must code an EXTRN statement for each subroutine name to which your 
program refers. You must also link-edit the subroutines with your application 
program. Specify $AUTO,ASMLIB as the autocalllibrary to include the screen 
formatting subroutines. See Chapter 5, "Preparing an Object Module for 
Execution" for details on the AUTOCALL feature of $EDXLINK. 

You call the formatted screen subroutines using the CALL instruction. The 
following section shows the CALL instruction syntax for each subroutine. Where an 
address argument is required by the subroutine, the label of the variable enclosed in 
parentheses causes the address of the variable to be passed (refer to the CALL 
instruction in the Language Reference). 

If an error occurs, the terminal I/O return code is in the second word of the task 
control block (TCB). These errors can come from instructions such as PRINTEXT, 
READTEXT, and TERMCTRL. 

o 

o 



o 

o 

o 

Static Screens and Device Considerations 

$IMOPEN Subroutine 
The $IMOPEN subroutine reads the formatted screen image from disk or diskette 
into your program buffer. You can also perform this operation by using the 
DSOPEN subroutine or defining the data set at program load time, and issuing the 
disk READ instruction. See the section "Screen Image Buffer Sizes" on page C-12 
for a description of buffer sizes. $IMOPEN updates the index word of the buffer 
with the number of actual bytes read. To refer to the index word, code buffer - 4. 

Users of EDX Version 5.2 and subsequent releases 
If you want to read images from disk or diskette using the DSOPEN subroutine 
instead of $IMOPEN and the images were saved prior to EDX Version 5.2, code the 
first 3 words of the buffer as follows: 

word 1: C I W 
word 2: CIA GI 

word 3: xxxx, where xxxx is the address in the buffer 
which stores the 31xx terminal format 

or 0000, if the 31xx terminal format is not used 

The $IMAGE screen is read in at BUFFER + 6. 

Note: To use $IMOPEN, you must code an EXTRN statement in your program. 
You must also link-edit the program with $EDXLINK and specify an autocall to 
$AUTO,ASMLIB. 

Syntax: 

label 

Required: 
Defaults: 
Indexable: 

Operands 

dsname 

buffer 

CALL 

dsname,buffer 
type = C'4978' 
none 

Description 

$IM 0 PEN,( dsname ),(buffer ),( type), 
P2=,P3=,P4= 

The label of a TEXT statement that contains the name of the screen 
image data set. You can include a volume label, separated from the 
data set name by a comma. 

The label of a BUFFER statement that defines the storage area into 
which the image data will be read. Allocate the storage in bytes, as in 
the following example: 

label BUFFER 1024,BYTES 

Appendix C. Static Screens and Device Considerations C-5 



Static Screens and Device Considerations 

C-6 SC34-0943 

type The label of a DATA statement that reserves a 4-byte area of storage 
and specifies the type of image data set to be read. The DATA 
statement must be on a full word boundary. Specify one of the 
following types: 

C '4978' The system reads an image data set for a 4978 terminal 
with a 4978/4979/4980 terminal format. This is the default 
terminal format. 

C ' 3101 ' The system reads an image data set for a 3101 terminal 
with a 31xx terminal format. 

C' 3151' The system reads an image data set for a 3151 terminal 

C'3161' The system reads an image data set for a 3161 terminal 
with a 31xx terminal format. 

C'3163' The system reads an image data set for a 3163 terminal 
with a 31xx terminal format. 

C'3164' The system reads an image data set for a 3164 terminal 
with a 31xx terminal format. 

C' 

Note: The 31xx terminal format is the format used for a 
3101,3151,3161,3163, or 3164 terminal. 

The system reads an image data set whose format 
corresponds with the type of terminal enqueued. If neither 
a 4978, 4979, 4980, 3101, 3151, 3161, 3163, or 3164 is 
enqueued (ENQT), the system assumes the default 4978 
image format. 

If you use this option, $IMOPEN will try to use the screen 
image that corresponds with the device. If that is not 
available, $IMOPEN will use a 4978/4979/4980 screen 
image. This is the default condition when you do not code 
this parameter. For example, if you are enqueued on a 
3151 or 3161 terminal, $IMOPEN will attempt to open a 
31xx screen image. If it does not exist, $IMOPEN will use 
the 4978/4979/4980 screen image. 

Px = Parameter naming operands. Refer to the CALL instruction and 
Chapter 1 in the Language Reference. 

The following is an example of $IMOPEN: 

CALL $IMOPEN,(IMGDS),(IMGBUFF),(IMGTYP) 
• 
• 
• 

IMGDS TEXT ' IMGDS ,MYVOL 1 

IMGBUFF BUFFER 1024,BYTES 
IMGTYP DATA C' 3101 1 

o 

o 

o 



o 

o 

o 

Static Screens and Device Considerations 

$IMOPEN Return Codes 
The following are the return codes from the $IMOPEN subroutine. The return 
codes are placed in the second word of the task control block (TCB) of the program 
or task calling the subroutine. The label of the TCB is the label of your program or 
task (taskname). Look at taskname + 2. 

Code Condition 

-1 Successful completion 

1 Disk I/O error 

2 Buffer too small for 3101, 3151, 3161, 3163, or 3164 terminal 
information (31xx screen image) 

3 Data set not found 

4 Incorrect header or data set length 

5 Input buffer too small 

6 Invalid volume name 

7 No 3101 image available 

8 Data set name longer than eight bytes 

$IMDEFN Subroutine 
The $IMDEFN subroutine creates an loeB for the formatted screen image. You 
can code the lOeB directly, but the use of $IMDEFN allows the image dimensions 
to be modified with the $IMAGE utility without requiring a change to the 
application program. $IMDEFN updates the lOeB to reflect OVFLINE = YES. 
Refer to the TERMINAL configuration statement in the Installation and System 
Generation Guide for a description of the OVFLINE parameter. 

Once you define an 10CB for the static screen, the program can then acquire that 
screen through ENQT. Once the screen has been acquired, the program can call the 
$IMPROT subroutine to display the image and the $IMDAT A subroutine to display 
the initial unprotected fields. 

Note: To use $IMDEFN, you must code an EXTRN statement in your program. 
You must also link-edit the program with $EDXLINK and specify an autocall to 
$AUTO,ASMLIB. 

Syntax: 

label 

Required: 
Defaults: 
Indexable: 

CALL 

iocb,buffer 

$IMDEFN ,(iocb ),(buffer), topm,leftm, 
P2=,P3=,P4=,P5= 

topm = O,leftm = 0 
none 

Appendix C. Static Screens and Device Considerations C-7 



Static Screens and Device Considerations 

Operands 

iocb 

buffer 

topm 

leftm 

Px= 

Description 

The label of an IOCB statement defining a static screen. The IOCB 
need not specify the TOPM, BOTM, LEFTM nor RIGHTM 
parameters; these are "filled in" by the subroutine. The following 
IOCB statement would normally suffice: 

label IOCB terminal,SCREEN=STATIC 

The label of an area containing the screen image in disk storage 
format. The format is described in the section "Screen Image Buffer 
Sizes" on page C-12. 

Indicates the screen position at which line 0 will appear. If its value is 
such that lines would be lost at the bottom of the screen, then it is 
forced to zero. This parameter must equal zero for all 3101, 3151, 
3161, 3163, or 3164 terminal applications. The default is also zero. 

Indicates the screen position at which the left edge of the image will 
appear. If its value is such that characters would be lost at the right 
edge of the screen, then it is forced to zero. This parameter must 
equal zero for all 3101, 3151, 3161, 3163, or 3164 terminal 
applications. The default is also zero. 

Parameter naming operands. Refer to the CALL instruction and 
Chapter 1 in the Language Reference. 

The following is an example of $IMDEFN: 

CALL $IMDEFN,(IMGIOCB),(IMGBUFF),O,O 
• 
• 
• 

ENQT IMGIOCB 
• 
• 
• 

PROGSTOP 
IMGIOCB IOCB SCREEN=STATIC 
IMGBUFF BUFFER l024,BYTES 

$IMPROT Subroutine 

C-8 SC34-0943 

The $IMPROT subroutine uses an image created by the $IMAGE utility to prepare 
the defined protected and blank unprotected fields for display. At the option of the 
calling program, a field table can be constructed. The field table gives the location 
(LINE and SPACES) and length of each unprotected field. 

Upon return from $IMPROT, your program can force the protected fields to be 
displayed by issuing a TERMCTRL DISPLAY. This is not required if a call to 
$IMDATA follows because $IMDATA forces the display of screen data. 

All or portions of the screen may be protected after $IMPROT executes. Because 
the operator cannot key data into protected fields, subsequent read instructions (such 
as QUESTION, GETV ALUE and READTEXT) should be directed to unprotected 
areas of the screen, or the protected areas should be erased. 

o 

o 



o 

o 

o 

Static Screens and Device Considerations 

Notes: 

1. To use $IMPROT, you must code an EXTRN statement in your program. You 
must also link-edit the program with $EDXLINK and specify an autocall to 
$AUTO,ASMLIB. 

2. Do not call both $IMPROT and $IMDATA by separate tasks to operate 
simultaneously. Problems will occur because both call the $IMDTYPE 
subroutine. 

Syntax: 

label 

Required: 
Defaults: 
Indexable: 

Operands 

buffer 

ftab 

Px= 

CALL $IMPROT , (buffer),(ftab ),P2 = ,P3 = 

buffer,ftab (see note) 
none 
none 

Description 

The label of an area containing the screen image in disk storage 
format. The format is described in the section "Screen Image Buffer 
Sizes" on page C-12. 

The label of a field table constructed by $IMPROT giving the location 
(lines, spaces) and size (characters) of each unprotected data field of 
the image. 

Note: The ftab operand is required only if the application executes on 
a 3101,3151,3161,3163, or 3164 terminal in block mode, or if a user 
buffer is used in $IMD AT A. 

Parameter naming operands. Refer to the CALL instruction and 
Chapter 1 in the Language Reference. 

The field table has the following form: 
label-4 number of fields label-2 number of words label line * FIELD 1 
(one word) 

spaces 
size 
spaces 
SIze 

• 
• 
• 

(one word) 
(one word) label + 6 line * FIELD 2 

label + 6(n-l) line * FIELD n 
spaces 
size 

Appendix C. Static Screens and Device Considerations C-9 



Static Screens and Device Considerations 

The field numbers correspond to the following ordering: left to right in the top line, 
left to right in the second line, and so on to the last field in the last line. Storage for 0" 'I" 

the field table should be allocated with a BUFFER statement specifying the desired 
number of words using the WORDS parameter. The buffer control word at label- 2 
will be used to limit the amount of field information stored, and the buffer index 
word at buffer - 4 is set with the number of fields for which information was stored, 
the total number of words being three times that value. If the field table is not 
desired, code zero for this parameter. 

The following is an example of $IMPROT: 

CALL $IMPROT,(IMGBUFF),(FTAB) 
PRINTEXT LINE=FTAB,SPACES=FTAB+2 POS I TI ON CURSOR 
READTEXT INPUT,LINE=FTAB,SPACES=FTAB+2 OPERATOR INPUT 

• 
• 
• 

IMGBUFF BUFFER 1024,BYTES 
FTAB BUFFER 128,WORDS 
INPUT TEXT LENGTH=20 

$IMPROT Return Codes 
The following are the return codes from the $IMPROT subroutine. The return 
codes are placed in the second word of the task control block (TCB) of the program 
or task calling the subroutine. The label of the TCB is the label of your program or 
task (taskname). Look at taskname + 2. 

Code Condition 

-1 Successful completion 

9 Invalid format in buffer 

10 Ftab truncated due to insufficient buffer size 

11 Error in building ftab from 31xx terminal format; partial ftab 
created 

12 Invalid terminal type 

$IMDATA Subroutine 

C-IO SC34-0943 

$IMDATA displays the initial data values for an image which is in disk storage 
format. Use $IMDATA: 

• To display the unprotected data associated with a screen image, if the content of 
the buffer is a screen format retrieved with $IMOPEN. 

• To "scatter write" the contents of a user buffer to the input fields of a displayed 
screen image. 

Note: You must call $IMDATA if any of your unprotected fields have the right 
justify or must enter characteristics. 

o 

o 



o 

0, 
'" 

Static Screens and Device Considerations 

If the buffer is retrieved with $IMOPEN, the buffer begins with either the characters 
"IMAG," or "IM31," and the buffer index (buffer-4) equals the data length 
excluding the characters "IMxx." 

You can specify a user buffer containing application-generated data. Set the first 
four bytes of the buffer to USER and set the buffer index (buffer - 4) to the data 
length excluding the characters USER. 

All or portions of the screen may be protected after $IMDA T A executes. Because 
the operator cannot key data into protected fields, subsequent read instructions (such 
as QUESTION, GETV ALUE and READTEXT) should be directed to unprotected 
areas of the screen, or the protected areas should be erased. 

Notes: 

l. To use $IMDATA,::'-you must code an EXTRN statement in your program. You 
must also link-edit the program with $EDXLINK and specify an a-utocall to 
$AUTO,ASMLIB. 

2. Do not call both $IMDATA and $IMPROT by separate tasks to operate 
simultaneously. Problems occur because both call the $IMDTYPE subroutine. 

Syntax: 

label 

Required: 
Defaults: 
Indexable: 

Operands 

buffer 

ftab 

CALL $IMDAT A,(buffer),(ftab ),P2 = ,P3 = 

buffer,ftab (see note) 
none 
none 

Description 

The label of an area containing the image in disk-storage format. 

The label of a field table constructed by $IMPROT giving the location 
(lines,spaces) and size (characters) of each unprotected data field of the 
image. 

Note: The ftab operand is required only if the application executes on 
a 3101, 3151, 3161, 3163, or 3164 terminal in block mode, or if a user 
buffer is used in $IMDATA. 

Px = Parameter naming operands. Refer to the CALL instruction and 
Chapter I in the Language Reference. 

The following is an example of $IMDA T A: 

CALL $IMDATA,(IMGBUFF),(FTAB) 
PRINTEXT LINE=FTAB,SPACES=FTAB+2 POSITION CURSOR 
• 
• 
• 

IMGBUFF BUFFER 
FTAB BUFFER 

1024,BYTES 
300,WORDS 

Appendix C. Static Screens and Device Considerations C-ll 



Static Screens and Device Considerations 

$IMDATA Return Codes 
The following are the return codes returned from the $IMDAT A subroutine. The 
return codes are returned in the second word of the task control block (TCB) of the 
program or task calling the subroutine. The label of the TCB is the label of your 
program or task (taskname). Look at taskname + 2. 

Code Condition 

-1 Successful completion 

9 Invalid format in buffer 

12 Invalid terminal type 

Screen Image Buffer Sizes 
Under normal circumstances, the size of the disk buffer can vary between 256 and 
3096 bytes. Because data compression is used in storing the images, many images 
will require only 512 bytes, and 1024 bytes will be adequate for typical applications 
using a 4978/4979/4980 image. 3101,3151, 3161, 3163 and, 3164 terminal data 
stream images (31xx screen images) are much larger. 

The $IMAGE utility tells you the required buffer sizes for the 4978, 4979, 4980, 
3101, 3151, 3161, 3163, and 3164 buffers. If your application program will run on' 
any type of terminal, use the largest of the buffer sizes. 

o 

The display subroutines normally write images to the terminal in line-by-line fashion. 
Performance can be improved by providing a terminal buffer large enough to C 
contain multiple lines. Since the display subroutines perform concatenated write . , 

C-12 SC34-0943 

operations whenever possible, using a larger buffer results in fewer such operations 
and, therefore, faster generation of the display image. 

For example, for a full screen image (24 x 80), a time versus space trade-off can be 
made by choosing a buffer size that is a multiple of 80 bytes (1 line), up to a 
maximum of 1920 bytes. A temporary buffer can be defined by coding the 
BUFFER = parameter, on the IOCB which is used to access the screen. This buffer 
should be unique and should not be confused with disk image buffer. 

o 



o 

o 

o 

Static Screens and Device Considerations 

Example of Using $IMAGE Subroutines 
The following program shows the $IMAGE subroutines in a general application 
program. Under direction of the terminal operator, this program displays on a 4978, 
4979,3101,3151,3161,3163, or 3164 terminal any image stored on disk. For each 
image, a field table (ftab) is constructed and used to modify initial data values. 

In this example, use of the field size from the field table is for illustrative purposes 
only. Each unprotected output operation is terminated by the beginning of the next 
protected field, unless MODE = LINE is coded. 

Additional examples on the use of the $IMAGE subroutines are in the appendix of 
the Language Reference. 

IMDISP PROGRAM BEGIN 
EXTRN $IMOPEN,$IMDEFN,$IMPROT,$IMDATA 

* 
* GET TERMINAL NAME FOR SCREEN PRINTOUT 
* 
BEGIN READTEXT IMAGE, 'TERMINAL: ' 
* 
* GET IMAGE DATA SET NAME 
* 

READTEXT DSNAME,'DATA SET: ',PROMPT=COND 
* 
* OPEN IMAGE DATA SET (4978 SCREEN IMAGE) 
* 

CALL $IMOPEN,(DSNAME),(DISKBFR) 
TCBGET CODE,$TCBC82 * SAVE RETURN CODE 
IF CODE,NE,-l * CHECK RETURN CODE FOR ERRORS 

PRINTEXT '@OPEN ERROR CODE' 
PRINTNUM CODE * PRINT ERROR CODE 
GO TO NEXT * ASK IF TRY AGAIN 

ENDIF 
* 
* CONSTRUCT IOCB 
* 

* 
* 
* 

CALL 
ENQT 
TERMCTRL 

$'IMDEFN, (IMAGE), (DISKBFR) ,8,8 
IMAGE * ACQUIRE STATIC SCREEN 
BLANK * BLANK SCREEN 

* WRITE PROTECTED FIELDS 
* AND BUILD FIELD TABLE 
* AT FTAB 

Appendix C. Static Screens and Device Considerations C-13 



Static Screens and Device Considerations 

* DISPLAY PROTECTED FIELD DATA ON 
* TERMINAL SCREEN 0 * 

CALL $IMPROT,(DISKBFR),(FTAB) 
* 
* DISPLAY DEFAULT DATA ON 
* TERMINAL SCREEN 
* 

CALL $IMDATA,(DISKBFR),(FTAB) 
* * SET CURSOR AT 1ST FIELD 

PRINTEXT LINE=FTAB,SPACES=FTAB+2 
TERMCTRL DISPLAY * UNBLANK SCREEN 
DEQT * RETURN TO THIS TERMINAL 
WAIT KEY * WAIT FOR OPERATOR 
ENQT IMAGE * BACK TO TARGET TERMINAL 
TERMCTRL BLANK * BLANK SCREEN 

* 
* DISPLAY liS IN DATA FIELDS 
* 

ENQT IMAGE * ACQUIRE STATIC SCREEN 
CALL $IMDATA,(REPBFR),(FTAB) 
DEQT 
WAIT KEY * ALLOW VIEWING TIME 
ENQT IMAGE * ACQUIRE STATIC SCREEN 
ERASE LINE=0,MODE=SCREEN,TYPE=ALL * ERASE 
DEQT * BACK TO ROLL SCREEN 

NEXT QUESTION 'ANOTHER IMAGE? ',YES=BEGIN 
PROGSTOP 

() DSNAME TEXT LENGTH=16 * DATA SET NAME 
* 
* BUILD A BUFFER OF liS FOR A SECOND DATA 
* FIELD DISPLAY 
* 
B1 DC F'72' * B1 AND B2 INDEX REPBFR 
B2 DC F'76' * THAT HIGHLIGHTS THE DATA 
REPBFR DC crUSER' * FIELDS FOR USER 

DC C'####################################' 
DC C'####################################' 

DISKBFR BUFFER 1064,BYTES * DISK BUFFER 
DC X'0808' * TEXT CONTROL FOR NAME 

IMAGE IOCB SCREEN=STA TI C * IOCB FOR IMAGE 
CODE DC F1 0' * RETURN CODE 
FTAB BUFFER 300 
LINE TEXT LENGTH=80 

ENDPROG 
END 

o 
C-14 SC34-0943 



o 

o 

Static Screens and Device Considerations 

$UNPACK and SPACK Subroutines 
The $UNPACK and $P ACK subroutines move and translate 
compressed/noncompressed byte strings. These subroutines are used internally by 
the $IMPROT and $IMDATA subroutines as well as by the $IMAGE utility. 
However, they can also be called directly by an application program. 

The program preparation needed for applications calling $UNPACK and $PACK is 
similar to that needed for the $IMAGE subroutines. An EXTRN statement is 
required in the application and the autocall to $AUTO,ASMLIB is required in the 
link-control data set (input to $EDXLINK). 

$UNPACK Subroutine 
This subroutine moves a series of compressed and noncompressed byte strings and 
translates the byte strings to noncompressed form. 

Syntax: 

label 

Required: 
Defaults: 
Indexable: 

Operands 

source 

dest 

Each F1 ... Fn is either: 

or 

CALL 

source,dest 
none 
none 

Description 

$UNP ACK,source,dest,P2 = ,P3 = 

The label of a fullword containing the address of a compressed byte 
string. (See Figure C-l for the compressed format.) At completion of 
the operation, this parameter is increased by the length of the 
compressed string. 

The label of a fullword containing the address at which the expanded 
string is to be placed. The length of the expanded string is placed in 
the byte preceding this location. The $UNPACK subroutine can, 
therefore, conveniently be used to move and expand a compressed byte 
string into a TEXT buffer. 

• • • Fn 

• • • en 

X'OO' 

( L is greater than zero and represents 
the length of chars ( e ) that follow) 

( L is less than zero and represents 
L repetitions of e ) 

Land e are one byte in length. BG0712 o Figure C-l. Compressed Data Format 

Appendix C. Static Screens and Device Considerations C-15 



Static Screens and Device Considerations 

The following example shows how to unpack the compressed protected data of a 
$IMAGE screen format. 

• 
• 
• 
MOVEA #l,OUTAREA POINT TO EXPAND BUFFER 
MOVEA CPOINTER,CBUF+12 POINT TO FIRST BYTE OF 

* COMPRESSED DATA 
MOVE LINECNT ,CBUF+4 INIT DO LOOP CTR 
MOVE MOVELNG,CBUF+6 INIT MOVE LENGTH CODE 
DO LINECNT 

CALL $UNPACK,CPOINTER,STRGPTR UNPACK COMPRESSED DATA 
MOVE (0,#1),STRING,(0,BYTE),P3=MOVELNG MOVE 

* UNPACKED DATA 
ADD #l,MOVELNG 

ENDDO 
• 
• 
• 

OUTAREA DATA CL1920 I I WILL CONTAIN ALL OF THE 
* UNPACKED DATA 
CPOINTER DATA AI 01 POINTER TO COMPRESSED DATA 
LINECNT DATA FI 01 NBR OF FORMAT LINES TO UNPACK 
STRGPTR DATA A(STRING) ADDR OF TEMP LOCATION TO 
* RECEIVE UNPACKED DATA 
STRING TEXT LENGTH=80 TEMP LOCATION TO RECEIVE 
* UNPACKED DATA 
CBUF BUFFER 1000,WORDS CONTAINS $IMAGE FORMAT 

WITH PACKED DATA 

SPACK Subroutine 

C-16 SC34-0943 

This subroutine moves a byte string and translates it to compressed form. 

Syntax: 

label CALL $P ACK,source,dest,P2 = ,P3 = 

Required: source,dest 
Defaults: none 
Indexable: none 

Operands Description 

source The label of a fullword containing the address of the string to be 
compressed. The length of the string is taken from the byte preceding 
this location, and the string could, therefore, be the contents of a 
TEXT buffer. 

dest The label of a fullword containing the address at which the compressed 
string is to be stored. At completion of the operation, this parameter 
is incremented by the length of the compressed string. 

0 

I~ 
V 

o 



o 

o 

o 

Index 

Special Characters 
$$EDXIT task error exit routine 

description 7-16 
output example 7-17 
using 7-17 

$DEBUG utility 
change 

storage 7-1 
commands 7-4 
description 7-1 
display 

unmapped storage 7-9 
ending 7-9 
finding errors 7-6 
list 

registers 7-1 
storage location 7-6 

loading 7-3 
patching a program 7-7 
restarting a program 7-1 
set 

breakpoints 7-5 
trace ranges 7 -1 

$DISKUTI utility 
allocating data set for compiler 4-1 
allocating object data set 1-13 

$DISKUT3 program 
allocate a data set with extents 10-4 
allocating a data set 10-2 
delete a data set with extents 10-7 
deleting a data set 10-7 
description 10-1 
opening a data set 10-6 
performing more than one operation 10-12 
releasing unused space 10-8 
renaming a data set 10-9 
setting end-of-data 10-10 

$EDXASM Event Driven Language compiler 
checking the listing 1-16 
correcting compiler errors 4-7 
description 4-1 
listing example 4-11 
overview 4-1 
parameter input menu 1-14 

$EDXLINK utility 
autocall feature 5-8 
control statements 5-3 

AUTOCALL 5-8 
INCLUDE 5-5 
LINK 5-6 
OVERLAY 5-7 

creating a load module 1-17 
creating overlay segments 9-12 

$EDXLINK utility (continued) 
link editing a single object module 5-1 
link editing more than one object module 5-4 
load using 

$L interactive 5-2 
$L noninteractive 5-9 

overview 5-1 
parameter input menu 1-18 
primary-control-statement data set 

example 5-9 
required for PUTEDIT 5-8 

$FSEDIT utility 
creating primary control data set 5-9 
overview 3-1 

$IMAGE utility 
create a screen C-3 
description C-3 
example C-13 
use for device independence 8-28 

$IMDA T A subroutine 
description C-lO 
example 8-29, C-ll, C-13 
return codes C-12 

$IMDEFN subroutine 
description C-7 
example C-8, C-13 

$IMOPEN subroutine 
description C-5 
example 8-28, C-6, C-13 
reading a screen image 8-18 
return codes C-7 

$IMPROT subroutine 
description C-8 
example 8-28, C-lO, C-13 
return codes C-I0 

$JOBUTIL utility 
submitting a program from a program 6-5, 6-6 

$MSGUTI utility 
examples 17-5 
format messages 17-4 
store messages 17-4 

$P ACK subroutine 
description C-16 

$PREFIND utility 
overview 5-10 

$SMM02 secondary option menu 1-11 
$SUBMITP program 

example 6-5 
sample job stream processor commands 6-6 
submitting a program from a program 6-5 

$SYSCOM system common data area 
accessing through a program 20-1 
sample programs 20-1 

Index X-I 



$T APEUTI utility 
change 

label processing attributes 11-8 
$UNPACK subroutine 

description C-15 
example C-16 

$VARYON - set device online 

A 

processing a tape containing more than one data 
set 11-5 

A/I 
See analog input 

A/O 
See analog output 

ACCA 
diagnosing errors 7 -15 

access $SYSCOM through a program 20-1 
add 

consecutive integers 2-17 
double-precision integers 2-16 
extended-precision floating point 2-21 
floating point 2-21 
integer data 2-16 
records to a tape file 11-11 

ADD instruction 
adding consecutive integers 2-17 
adding double-precision integers 2-16 
adding integer data 2-16 
coding example 2-16. 

advance input B-3 
AI 

See analog input 
allocate 

data set 
for compiler 4-1 
for object code 1-12 
from a program 10-2 
with extents 10-4 

alphanumeric data 
reading 2-9 
writing 2-29 

analog input 
description 14-1 
example 14-8 
10DEF statement 14-4 
sample 14-11, 14-12 
SBIO instruction 14-7 

analog output 
description 14-1 
10DEF statement 14-4 
SBIO instruction 14-7 

AND instruction 
comparing bit strings 2-27 

arithmetic 
comparison 2-31 
operations 2-16 

X-2 SC34-0943 

arithmetic (continued) 
values, defining 2-3, 2-4 

ASCII terminal 
used in graphics application 15-1 

assign 
sensor I/O addresses 14-3 

A TT ACH instruction 
synchronizing tasks 9-6 

attention key B-1 
ATTNLIST statement 

use in terminal support B-3 
attribute characters, 310 1 8-25, 8-32 
autocall feature 

example 5-8 
including task error exit routine 7-17 
loading 5-8 
with static screen program 8-21 

B 
background job, submitting 6-2 
binary 

converting to 2-12 
to EBCDIC 2-11 

blanks, defining 2-4 
blinking field 8-38 
branch 

to another location 2-34 
breakpoint and trace range 

settings 7-5 
buffer 

contents of 2-6 
defining 2-6 
index 2-6 

BUFFER statement 
coding 2-6 

bypassing standard labels, tape 

C 
CALL instruction 

11-4 

calling a subroutine 9-8 
loading an overlay segment 
overview 9-6 

9-12 

change 
attribute byte 8-39 
line of data set 3-5 
screen attribute 8-35 
storage locations 7-1 

character string 
converting to 2-11 
defining 2-4 

close 
standard-label tape 11-4 

code 
a program 1-2 
reentrant routine 19-1 

o 

o 

o 



c 

o 

o 

comparing bit-strings 
AND instruction 2-27 
exclusive-OR 2-24 
inclusive-OR 2-25 

comparing storage 
arithmetically 2-31 
logically 2-32 

compile 
a program 1-11, 4-1 

compiler . 
See $EDXASM Event Driven Language compIler 

compiler errors, correcting 4-7 
compressed byte string C-16 
CONCAT instruction 

overview 15-1 
continuation line 1-2 
CONTROL instruction 

closing a standard-label tape 11-4 
conventions, data set 6-3 
convert 

checking for conversion errors 2-15 
data 2-11 
floating point to integer 2-14 
integer to floating point 2-14 
source messages 17-4 
to binary 2-12 
to EBCDIC 2-11 
4978 screens 8-31 

CONVTB instruction 
converting to EBCDIC 2-11 

CONVTD instruction 
converting to binary 2-12 

create 
a screen using $IMAGE C-3 
data entry field 8-40 
data set for program messages 
load module 1-17 
source data set 3-2 
static screen 8-16 
unprotected fields 8-37 

cross-partition services 
finding a program 12-4 
introduction 12-1 
loading a program 12-2 
moving data across partitions 
reading data across partitions 
sharing resources 12-6 
starting a task 12-4 
synchronizing tasks 12-8 

17-1 

12-10 
12-12 

D 
D/I 

See digital input 
D/O 

See digital output 
data 

adding 2-16 
alphanumeric, reading 2-9 
alphanumeric, writing 2-29 
comparing 2-31 
converting 2-11 
defining 1-3 
logical 2-24 
manipulating 2-16 
manipulating floating point 2-21 
manipulating logical 2-24 
moving 2-10 
moving across partitions 12-10 
numeric, reading 2-9 
numeric, writing 2-30 
processing 1-4 
reading 

across partitions 12-12 
from a static screen 8-8 
from disk/diskette 2-7 
from tape 2-8 
from terminal 2-8 

retrieving 1-3 
writing 

to disk/diskette 2-28 
to static screen 8-8 
to tape 2-29 
to terminal 2-29 

data management from a program 10-1 
data set 

allocate 
for compiler 4-1 
from a program 10-2 
with $DISKUT3 10-1 
with extents 10-4 

creating 3-2 
delete 

from a program 10-7 
entering a program into 1-6 
format 6-3 
identifying in a program 2-2 
locating before loading a program 5-10 
modifying 3-5 
name, defined 6-3 
naming conventions 
open from a program 
release unused space 
rename from program 
saving 3-4 

6-3 
10-6 

10-8 
10-9 

saving screen image 8-15 
set end-of-data 10-10 
specifying 6-3 
volume, defined 6-3 

Index X-3 



data set control block (DSCB) 
allocating a data set from a program 10-2 
opening a data set from a program 10-6 

data set extents 
allocate data set with 10-4 
delete data set with 10-7 

DATA statement 
assigning an initial value 2-3 
character strings, defining 2-4 
defining a doubleword 2-3 
defining a halfword 2-3 
defining floating point 2-4 
duplication factor 2-3 
reading from static screen 8-20 
reserving storage for integers 2-3 
writing to static screen 8-20 

data storage area, coding 2-6 
DC statement 

defining character strings 2-4 
defining floating point 2-4 
reserving storage for integers 2-3 

debugging utility 
See $DEBUG utility 

decimal arithmetic operations 2-16 
define 

character strings 2-4 
data 1-3, 2-2 
floating-point values 2-4 
input/output area 2-6 
location of message data set 17-6 
primary task 2-1 
static screen 8-6 
subroutine 9-7 
TEXT statement 2-6 
virtual terminals 13-1 

definition statement format 2-2 
delete 

data set 
from a program 10-7 
with extents 10-7 

line from data set 3-7 
more than one line 3-8 

design 
a program 1-1 

DET ACH instruction 
synchronizing tasks 9-6 

device independence 
between 4978, 4979, or 4980 and 3101 8-24 
coding EDL instructions 8-26 
for static screens 8-24 
using the $IMAGE subroutines 8-28 

device type, finding 10-24 
DI 

See digital input 
digital input 

description 14-1 
example 14-9, 14-15 
IODEF statement 14-4 

X-4 SC34-0943 

digital input (continued) 
SBIO instruction 14-7 

digital output 
description 14-1 
example 14-9 
IODEF statement 14-4 
SBIO instruction 14-7 

directory member entry (DME) 
updated by SETEOD 10-21 

display 
protected data 8-28 

. unmapped storage 7-9 
unprotected data 8-28 

display screen 
reading data from 8-1 
writing data to 8-1 

divide 
accessing the remainder 2-20 
consecutive integers 2-20 
double-precision integers 2-20 
extended-precision floating point 2-24 
floating-point numbers 2-23 
integers 2-19 

DIVIDE instruction 
accessing the remainder 2-20 
dividing consecutive integers 2-20 
dividing double-precision integers 2-20 
dividing integers 2-19 

DO 
See digital output 

DO instruction 
DO UNTIL 2-33 
DO WHILE 2-33 
executing code repetitively 2-32 
nested DO loop 2-33 
nested IF instruction 2-34 
overview 2-30 
simple DO 2-32 

DSOPEN subroutine 
considerations 10-15 
description 10-14 
error exits 10-14 
example 10-16 

duplication factor 2-4 
dynamic data set extents 

allocate a data set with 10-2 
delete a data set with 10-7 

E 
EBCDIC 

converting to 2-11 
EBCDIC-to-binary conversion 2-12 
EDL programming 

basic functions 2-1 
coding 1-2 
compiling 1-11, 4-1 
correcting compiler errors 4-7 

o 

o 

o 



o 

o 

EDL programming (continued) 
creating a load module 1-17 
designing 1-1 
entering 1-6 
executing 1-20, 6-1 
running 1-20, 6-1 

EDX record, defined 2-7 
ELSE instruction 

overview 2-30 
end 

a program 1-5, 2-35 
end-of-file, indicating with SETEOD 10-21 
END statement 

overview 2-35 
ENDDO instruction 

overview 2-30 
ENDIF instruction 

overview 2-30 
ENDPROG statement 

overview 2-35 
ENQT instruction 

getting exclusive access to a terminal 8-18 
use with logical screens C-2 
use with static screen 8-7 

enqueue 
static screen 8-35 

enter 
advance input B-3 
program into a data set 1-6 

EOR instruction 
comparing bit strings 2-24 

EQ (equal) 2-30 
EQU statement 

coding 2-5 
coding example 2-5 
used to generate labels 2-35 

erase 
individual field 8-38 
static screen 8-7, 8-36 
to end of static screen 8-42 

ERASE instruction 
erasing a static screen 8-7, 8-36 
erasing an individual field 8-38 
erasing to end of static screen 8-42 

error codes 
See return codes 

error handling 
checking for conversion errors 2-15 
DSOPEN 10-14 
system-supplied 7-16 
task error exit 7-16 

errors 
compiler 4-7 
finding program 7 -1 

Event Driven Language (EDL) 
See ED L programming 

exclusive-OR operation 2-24 

executable instruction, defined 2-1 
execute 

program 
with session manager 1-20, 6-1 

exit 
error (DSOPEN) 10-14 

ex tended -precision 
floating-point arithmetic 2-21 

extents 
allocate data set with 10-4 
delete data set with 10-7 

EXTRACT copy code routine 10-24 

F 
F ADD instruction 

adding extended-precision floating point 2-21 
adding floating point 2-21 

FDIVD instruction 
dividing extended-precision floating point 2-24 
dividing floating point 2-23 

field table (FT AB) 

file 

$IMDA T A subroutine C-l1 
$IMPROT subroutine C-9 
format of C-9 

See data set 
find 

device type 10-24 
logic errors in a program 7-6 
program 12-4 

FIRSTQ instruction 
retrieving data from a queue 18-2 

floating-point 
addition 2-21 
assigning an initial value 2-4 
converting integer to 2-14 
converting to binary 2-13 
converting to EBCDIC 2-11 
converting to integer 2-14 
defined 2-2 
defining 2-4 
defining more than one data area 2-4 
extended-precision 2-4 
in exponential notation 2-4 
manipulating 2-21 
requirements to use instructions 2-21 
single-precision 2-4 

FMUL T instruction 
multiplying extended-precision floating point 2-23 
multiplying floating-point data 2-22 

formatted screen subroutines 
constructing an IOCB C-7 
display initial data values C-I0 
preparing fields for display C-8 
reading the image C-5 

FPCONV instruction 
converting from floating point to integer 2-14 

Index X-5 



FPCONV instruction (continued) 
converting from integer to floating point 2-14 

FREESTG instruction 
releasing unmapped storage 9-15 

FSUB instruction 
subtracting extended-precision floating point 2-22 
subtracting floating-point data 2-22 

full-screen text editor ($FSEDIT) 3-1 

G 
gather read operation 8-11, 8-26, 8-29 
GE (greater than or equal) 2-30 
GETSTG instruction 

obtaining unmapped storage 9-14 
GETV ALUE instruction 

processing interrupts B-2 
reading numeric data 2-9 
retrieving prompts from a data set 

GIN instruction 
coding description 15-1 
overview 15-1 

GO TO instruction 
overview 2-30 
transfer to another location 2-34 

graphics 
functions overview 15-1 
hardware considerations 15-1 
instructions 

CONCAT 15-1 
GIN 15-1 
PLOTGIN 15-1 
XYPLOT 15-2 
YTPLOT 15-2 

programming example 15-3 
requirements 15-1 

GT (greater than) 2-30 

H 
hexadecimal, defining 2-3 

identify 
data sets in a program 2-2 

IF instruction 
comparing areas of storage 2-31 
overview 2-30 

image, formatted screen 
See screen 

17-8 

INCLUDE control statement ($EDXLINK) 5-5 
inclusive-OR 2-25 
independence, volume 10-20 
index, part of standard buffer 2-6 
initial value, assigning 2-3 
initialize 

non labeled tape 11-9 

X-6 SC34-0943 

input 
area, defining 2-6 
reading from disk 2-7 
reading from diskette 2-7 
reading from tape 2-8 
reading from terminal 2-8 

input menu 
compiler 1-14 
linkage editor 1-18, 5-5 

input/output control block 
See IOCB instruction 

insert 
line in data set 3-6 

integer 
adding 2-16 
assigning an initial value 2-3 
converting floating-point to 2-14 
converting to binary 2-12 
converting to EBCDIC 2-11 
converting to floating-point 2-14 
defined 2-2 
doubleword, defining 2-3 
halfword, defining 2-3 
manipulating 2-16 
reserving storage for 2-3 

interactive debugging 7-1 
interrupt 

servicing 
instructions B-2 

interrupt keys 
attention key B-1 
enter key B-2 
program function (PF) keys B-1 

interrupt status byte (lSB) 
diagnosing errors from ACCA device 

IOCB instruction 
defining logical screen C-2 
defining static screen 8-17 
structure C-3 

IODEF statement 
function 14-3 
SPECPI process interrupt user routine 

lOR instruction 
comparing bit strings 2-25 

J 
job 

submit 
background 6-2 
from a program 6-2 

o 

7-15 

14-5 

o 



o 

o 

n 

K 
keyword operand 

definition of 2-2 

L 
label 

definition 1-2 
generating 2-35 

labels, tape A-I 
LE (less than or equal) 2-30 
LINK control statement ($EDXLINK) 5-6 
link-edit 

a program 1-17 
a single object module 5-1 
creating segment overlay structure 9-12 
program that uses $IMAGE subroutines 
required for GETEDIT 5-8 
static screen program 8-21 

linkage editor 
See $EDXLINK utility 

list 
registers 7-1 
storage location 7-6 

load 
programs 

from a program 12-2 
from a virtual terminal 
with the session manager 

l3-2 

session manager 1-6 
text editor 3-1 

LOAD instruction 

1-20, 6-1 

submitting a job from a program 6-5 
used with overlays 9-13 

load module 
creating 1-17,5-1 
executing 6-1 

locate 
data set before loading a program 5-10 
logic errors in a program 7-1 

logical comparison 
AND instruction 2-27 
exclusive-OR instruction 2-24 
IF instruction 2-32 
inclusive-OR instruction 2-25 

logical end-of-file on disk 10-21 
logical screen 

examples C-l, C-2 
using IOCB and ENQT to define C-2 
using TERMINAL to define C-l 

logon menu, session manager 1-6 
loops 2-32 
LT (less than) 2-30 

5-8 

M 
magnetic tape 

See tape 
manipulating data 2-16 
message 

defining 2-6 
MESSAGE instruction 

example 17 -7 
retrieving a message from a data set 17-7 

messages, program 
coding 17-2 
creating 

coding variable fields 17-2 
data set for 17-1 

define location of message text 17-6 
formatting 17-4 
retrieving 17-6 
sample program 17-9 
sample source message data set 17-4 
storing 17-4 

modified data 
reading from the 3101 8-42 
3101 considerations 8-40 
3101 example 8-41 
3151 example 8-41 
3151,3161,3163, and 3164 considerations 
3161 example 8-41 
3163/3164 example 8-41 

modified data tag 8-40 
modify 

existing data set 3-5 
move 

data 2-10 
data across partitions 12-10 
lines in a data set 3-9 

MOVE instruction 
moving data 2-10 
moving data across partitions 12-10 

multiply 
consecutive integers 2-19 
double-precision integers 2-18 
extended-precision floating point 2-23 
floating point 2-22 
integers 2-18 

MULTIPLY instruction 
multiplying consecutive integers 2-19 
multiplying double-precision integers 2-18 
multiplying integers 2-18 

8-40 

Index X-7 



N 
naming conventions, data set 6-3 
NE (not equal) 2-30 
NEXTQ instruction 

putting data into a queue 18-1 
noncompressed byte string C-15 
nondisplay field 8-37 
nonlabeled tapes 

defined 11-1 
defining 11-8 
initializing 11-9 
reading 11-10 
writing 11-10 

numbers, defining 2-3, 2-4 
numeric data, reading 2-9 
numeric data, writing 2-30 

o 
object code data set 1-11 
object module 

creating 4-1 
link editing 5-1, 5-4 

open 
data set 10-14 
data set from a program 10-6 

operand 
definition 1-2 

operation 
definition 1-2 

option menu 
data management 1-12 
program preparation 1-13 
text editing 1-7 

output 
area, defining 2-6 
compiler 4-11 
printing spooled output 16-6 
writing to a terminal 2-29 
writing to disk 2-28 
writing to diskette 2-28 
writing to tape 2-29 

overlay 
area 9-12 
creating 9-12 
defined 9-9 
example 9-11 
overlay program 

defined 9-9 
described 9-12 

overlay segment 
link editing 5-7 
structure 9-10 

specifying 9-12 
OVERLA Y control statement ($EDXLINK) 5-7 

X-8 SC34-0943 

p 
parameter passing 

to a subroutine 9-7 
passing parameters 

using virtual terminals 13-2 
patch 

program 7-7 
PF keys 

See program function (PF) keys 
PI 

See process interrupt 
plot control block (graphics) 15-2 
PLOTCB control block 15-2 
PLOTGIN instruction 

overview 15-1 
POST instruction 

synchronizing tasks 9-6 
synchronizing tasks in other partitions 12-8 

precision 
floating-point arithmetic 2-21 

preparing object modules for execution 
link editing 5-1 
link editing more than one object module 5-4 
predefining data sets 5-10 

primary-control-statement data set 5-9 
primary option menu, session manager 

defined 1-7 
primary program 13-1 
primary task 

defined 2-1 
PRINTEXT instruction 

positioning the cursor 8-7,8-19 
printing a message buffer 2-6 
prompting for data 8-7 
use in terminal support 

changing individual fields 8-27 
using on 3101 terminals 8 -30 

writing to a roll screen 8-4 
writing to a static screen 8-8 
writing to a terminal 2-29 

PRINTNUM instruction 
writing numeric data to a terminal 2-30 
writing to a terminal 2-29 

priority 
assigned to tasks 9-1 

process interrupt 
description 14-1 
IODEF statement 14-4 
user routine 14-5 

program 
beginning 1-3, 2-1 
communica tion 12-1 
compiling 1-14, 4-1 
concepts 9-1 
creating a multitask program 9-5 
data management from 10-1 
definition 9-2 
ending 1-5, 2-35 

o 

o 

o 



o 

o 

c 

program (continued) 
entering 1-6, 3-1 
execute 

with session manager 6-1 
finding 12-4 
load 

from a program 12-2 
from a virtual terminal 13-2 

logic, controlling 2-30 
modifying 3-5 
multi task 9-5 
name 9-5 
opening a data set 10-14 
overlay 9-12 
repetitive loops 2-32 
sequencing functions 2-30 
single-task 9-3 
source 1-5 
spooling output 16-1 
structure 9-2 
task error exit routine 7-17 

program function (PF) keys 
use in terminal support B-1 
use with attention lists B-3 

program messages 
See messages, program 

program preparation . 
See $EDXASM Event Driven Language complIer 

PROGRAM statement 
example 2-1 
identifying data sets 2-2 
simplest form 2-1 
specifying overlay program 9-12 
starting a program 1-3 

PROGSTOP instruction 
overview 2-35 

protected field 
defined 8-2 
displaying 8-28 
writing 8-37 

pulse digital output 14-10 

Q 
queue processing 

description 18-1 
example 18-2 
putting data into a queue 18-1 
retrieving data from a queue 18-2 

queue, job 6-5 

R 
read 

all unprotected fields 8-43 
alphanumeric data from a terminal 2-9 
analog input 14-8 
data 

across partItIOns 12-12 
from a screen 8-1 
from a terminal 2-8 
from disk 2-7 
from diskette 2-7 
from tape 2-8 
into data area 2-7 

data across partitions 12-12 
digital input 14-9 
directly 2-7 
from a roll screen 8-3 
from a static screen 8-8 
modified data 8-41 
multivolume tape data set 11-6 
nonlabeled tape 11-10 
one line from a terminal 8-3 
sequentially 2-7, 2-8 
standard-label tape 11-2 
tape 11-1 

READ instruction 
reading a multivolume tape data set 11-6 
reading a nonlabeled tape 11-10 
reading a standard-label tape 11-2 
reading data across partitions 12-12 

READTEXT instruction 
gather read operations 8-26 
processing interrupts B-2 
reading a character string 2-6 
reading data from a static screen 8-8, 8-20 
reading unprotected data 8-27, 8-29 
retrieving prompts from a data set 17-8 
using on 3101 terminals 8-30 

records 
defined 2-7 

reentrant code 
coding guidelines 19-1 
definition 19-1 
examples 19-3 
when to use 19-1 
writing 19-1 

relational statements 2-30 
release 

data set from a program 10-8 
rename 

data set from a program 10-9 
repetitive loops 2-32 
resources 

sharing 12-6 
restart 

a program 7-1 
retrieve 

data 1-3 

Index X-9 



retrieve (continued) 
data from a queue 18-2 
program messages 17-6 
screen format 8-28 
unprotected data 8-29 

return codes 
$IMDATA subroutine C-12 
$IMOPEN subroutine C-7 
$IMPROT subroutine C-I0 
defined 7 -14 
using to diagnose problems 7-14 

RETURN instruction 
overview 9-6 

roll screen 
defined 8-1 
displaying data 8-4 
example 8-4 
reading data 8-3 
writing data 8-4 

running programs 
methods 6-1 
with session manager 1-20 

s 
save 

data set 3-4 
SBIO instruction 

description 14-7 
function 14-3 

scatter write 
coding for device independence 8-26 
defined 8-11 
displaying unprotected data 8-29 
simulating 8-38 

screen 
format 

for the 3101 terminal 8-35 
for the 3151, 3161, 3163, 3164 terminals 8-35 
for 4978, 4979, or 4980 8-11 
retrieving 8-28 

images 
buffer sizes C-12 
retrieving and displaying 8-28 
using $IMAGE subroutines C-4 

reading 8-1 
roll screen 

See roll screen 
static screen 

See static screen 
writing 8-1 

SCREEN instruction 
coding description 15-2 
overview 15-2 

secondary-control-statement data set 5-10 
secondary program 13-1 
segment, overlay 

defined 9-9 

X-I0 SC34-0943 

segment, overlay (continued) 
link editing 5-7 

send 
data to virtual terminal 13-2 

sensor-based I/O 
assignments 14-3 
statement overview 14-3 

SENSORIO statement 
relationship with instructions 

sequencing instructions, program 
serially reusable resource (SRR) 

description 12-6 
session manager 

background option 6-2 
data management menu 1-12 
entering user ID 1-6 
executing a program 1-20, 6-1 

14-3 
2-30 

executing a program in the background 6-2 
loading 1-6 

set 

program preparation 1-14 
text editing menu 1-7 

breakpoint 7-5 
end-of-data from a program 10-10 

SETEOD subroutine 10-21 
sharing resources 12-6 
single-task program 9-3 
source program 

compiling 1-11 
creating a new data set 3-2 
defined 1-5 
entering into a data set 1-6, 3-1 
modifying 3-5 

changing a line 3-5 
deleting a line 3-7 
deleting more than one line 3-8 
inserting a line 3-6 
moving lines 3-9 

saving a data set 3-4 
spaces, defining 2-4 
specify 

data set 6-3 
SPEC PI process interrupt routine 14-5 
SPECPIR T instruction 

coding description 14-10 
function 14-3 

spooling 
controlling from a program 16-1 
description 16-1 
finding if spooling is active 16-7 
output into several jobs 16-8 
output of a program 16-1 
preventing spooling 16-8 
printing spooled output 16-6 
programming considerations 16-9 
reasons for using 16-1 
spool control record 

example 16-2 
format 16-2 

o 

o 

o 



o 

o 

o 

spooling (continued) 
spool control record (continued) 

functions 16-1 
stopping spooling 16-7 

standard labels, tape 
bypassing 11-4 
closing 11-4 
defined 11-1 
reading 11-2 
writing 11-3 

start 
task 9-2 
task from a program 12-4 

static screen 
blanking a blinking field 8-38 
change attribute byte 8-39 
changing attribute 8-35 
creating a screen 8-16 
creating data entry field 8-40 
creating unprotected fields 8-37 
defined 8-2 
defining a screen 8-17 
defining a static screen 8-6 
designing for device independence 8-24 
displaying a static screen 8-19 
enqueuing 8-35 
erasing individual fields 8-38 
erasing the screen 8-7, 8-36 
erasing to end of screen 8-42 
example 8-9, 8-22 
getting exclusive access 8-7, 8-18 
link editing a program 8-21 
positioning the cursor 8-7, 8-19 
prompting for data 8-7 
reading a screen image 8-18 
reading all unprotected fields 8-43 
reading data 8-20 
reading modified data 8-41 
sample program (4978, 4979, or 4980) 8-13 
scatter write 8-38 
two ways to define 8-5 
waiting for a response 8-8, 8-19 
writing blinking fields 8-38 
writing data 8-20 
writing nondisplay fields 8-37 
writing protected fields 8-37 
3101 sample program 8-44 

stop 
program 7-1 

storage 
comparing 2-31 
reading data into 2-7 
reserving 2-2 
unmapped 9-13 
writing data from 2-28 

STORBLK statement 
setting up unmapped storage 9-14 

store 
program messages 17-4 

strings, character 2-4 
submit 

program from a program 6-5 
SUBROUT statement 

overview 9-6 
subroutines 

$DISKUT3 10-1 
$IMAGE C-3 
calling 9-6, 9-8 
defining 9-7 
DSOPEN 10-14 
examples 9-8 
passing parameters 9-7 
program 9-6 
SETEOD 10-21 

subtract 
consecutive integers 2-18 
double-precision integers 2-17 
extended-precision floating point 2-22 
floating-point data 2-22 
integers 2-17 

SUBTRACT instruction 
subtracting consecutive integers 2-18 
subtracting double-precision integers 2-17 
subtracting integers 2-17 

supervisor 
states 9-1 

SW AP instruction 
accessing unmapped storage 9-15 

symbol 
assign a value to 2-5 

synchronizing tasks 12-8 

T 
tape 

adding records to a file 11-11 
labels 11-1, A-I 
nonlabeled 

defined 11-1 
defining 11-8 
initializing 11-9 
reading 11-10 
when to use 11-1 
writing 11-10 

processing a tape containing more than one data 
set 11-5 

reading a multivolume data set 11-6 
standard-label 

bypassing 11-4 
closing 11-4 
defined 11-1 
reading 11-2 
when to use 11-1 
writing 11-3 

tapemark 11-1 

Index X-II 



task 
basic executable unit 9-2 
concepts 9-1 
defining 2-1 
definition 9-1 
initiating 9-2 
multi task program 9-5 
overview 9-1 
primary task 9-5 
priority 9-1 
single-task program 9-3 
starting 9-2 
starting from a program 12-4 
states 9-1 
structure 9-1 
synchronizing 9-6, 12-8 

task code word 
accessing 7 -14 
defined 7-14 
diagnosing errors with ACCA devices 7-15 

task error exit routine 
description 7 -16 
example 7-17 
including in a program 7-17 
system-supplied 7-16 

TCBGET instruction 
accessing remainder of divide 2-20 

TERMCTRL instruction 
displaying a static screen 8-19 
positioning the cursor 8-7 
use on 3101 terminals 8-30 
use on 3151 terminals 8-30 
use on 3161 terminals 8-30 
use on 3163 terminals 8-30 
use on 3164 terminals 8-30 

terminal 
read 

alphanumeric data 2-9 
write 

alphanumeric data 2-29 
numeric data 2-30 

terminal I/O 
advance input B-3 
sample static screen program (4978, 4979, 

4980) 8-13 
TERMINAL statement 

defining virtual terminals 13-1 
text buffers, defining 2-6 
text editing utilities 

full-screen editor 3-1 
text messages, defining 2-6 
TEXT statement 

defining buffers 2-6 
defining messages 2-6 
structure 2-6 

trace 
program execution 7-1 

X-12 SC34-0943 

U 
unmapped storage 

accessing 9-15 
defined 9-13 
displaying 7-9 
example 9-16 
obtaining 9-14 
overview 9-13 
releasing 9-15 
setting up 9-14 

unprotected field 
defined 8-2 
displaying 8-28 
reading from static screen 8-20 
retrieving 8-29 

UPDT APE routine 11-11 

V 
variable fields in program messages 17-2 
vary 

processing a tape containing more than one data 
set 11-5 

virtual terminals 
defining 13-1 
definition of 13-1 
examples of use 13-1 
interprogram dialogue 13-2 
loading from a virtual terminal 13-2 
sample programs 13-3 

volume 
independence 10-20 

volume serial, tape 11-2 

w 
WAIT instruction 

synchronizing tasks 9-6 
synchronizing tasks in other partitions 12-8 
use of WAIT KEY in terminal support B-2 
waiting for operator response 8-8, 8-19, B-2 

WHERES instruction 
finding a program 12-4 

write 
alphanumeric data to a terminal 2-29 
analog output 14-8 
blinking field 8-38 
data to a screen 8-1 
digital output 14-9 
directly 2-28 
from a data area 2-28 
nondisplay field 8-37 
nonlabeled tape 11-10 
numeric data to a terminal 2-30 
protected fields 8-37 
sequentially 2-28, 2-29 
source data set 1-9 
standard-label tape 11-3 

o 

o 

o 



0·,'" 
\'1.1 

o 

write (continued) 
tape 11-1 
to disk 2-28 
to diskette 2-28 
to static screen 8-8, 8-20 
to tape 2-29 
to terminal 2-29 

WRITE instruction 
reentrant code 19-1 

X 

writing a nonlabeled tape 11-10 
writing a standard-label tape 11-3 
writing to disk 2-28 
writing to diskette 2-28 
writing to tape 2-29 

XYPLOT instruction 
overview 15-2 

y 
YTPLOT instruction 

coding description 15-2 
overview 15-2 

Numerics 
310 1 Display Terminal 

attribute characters 8-32 
changing the attribute byte 8-36 
compatibility limitation 8-25 
converting 4978 screens 8-31 
data stream 8-32 
defining screen format 8-35 
device independence 8-24 
erasing the screen 8-36 
PF key support B-2 
protecting the first field 8-36 
read data from a screen 8-31 
reading modified data 8-40, 8-42 
sample static screen program 8-44 
transmitting data from 8-32 
write data to a screen 8-31 

3151 Display Terminal 
additional buffer requirements 8-34 
attribute characters 8-32 
data stream 8-33 
PF key support B-2 
reading modified data 8-40 
write data to a screen 8-31 
3101 emulation mode 8-1 

3161 Display Terminal 
additional buffer requirements 8-34 
attribute characters 8-32 
data stream 8-33 
PF key support B-2 
read data from a screen 8-31 
reading modified data 8-40 

3161 Display Terminal (continued) 
write data to a screen 8-31 
3101 emulation mode 8-1 

3163 Display Terminal 
additional buffer requirements 8-34 
attribute characters 8-32 
data stream 8-33 
PF key support B-2 
read data from a screen 8-31 
reading modified data 8-40 
write data to a screen 8-31 
3101 emulation mode 8-1 

3164 Display Terminal 
additional buffer requirements 8-34 
attribute characters 8-32 
data stream 8-33 
PF key support B-2 
read data from a screen 8-31 
reading modified data 8-40 
write data to a screen 8-31 
3101 emulation mode 8-1 

4978 Display Station 
device independence 8-24 
static screen sample program 8-13 

4979 Display Station 
device independence 8-24 
static screen sample program 8-13 

Index X-13 



o 

o 



o 

o 

c 

--- ------ ----- ---- - ---- - -----------_.- Series/1 Event Driven Executive 

Publications Order Form 

Instructions: 

1. Complete the order form, supplying all of the 

requested information. (Please print or type.) 

2. If you are placing the order by phone, dial 

1-800-18M-2468. 

3. If you are mailing your order, fold the 

postage-paid order form as indicated, seal 

with tape, and mail. 

Ship to: 

Name: 

Address: 

City: 

State: Zip: 

Bill to: 

Customer number: 

Name: 

Address: 

City: 

State: Zip: 

Your Purchase Order No.: 

Phone: ( 

Signature: 

Date: 

Order: 

Description: 

Basic Books: 

?e.~()fth~fo.ll()vVjng~i~htb~~k$.('For 
indi'Jidual.copies,()t~et·.bv·t>o()I<·.·ri.IJmqer.) 

Advanced Program-to~Program Communica
tion Programming Guide and Reference 

Communications Guide 

Installation and System Generation Guide 

Language Reference 

Library Guide and Common Index 

Messages and Codes 

Operator Commands and Utilities 
Reference 

Problem Determination Guide 

Additional books and reference aids: 

Customization Guide 

Event Driven Executive Language 
Programming Guide 

Operation Guide 

Language Reference Summary 

Operator Commands and Utilities 
Reference Summary 

Conversion Charts Card 

Binders: 

Easel binder with 1 inch rings 

Easel binder with 2 inch rings 

Standard binder with 1 inch rings 

Standard binder with 1 1/2 inch rings 

Standard binder with 2 inch rings 

Order 
number Oty. 

SC34-0935 __ _ 

SC34-0936 __ _ 

SC34-0937 __ _ 

SC34-0938 __ _ 

SC34-0939 __ _ 

SC34-0940 __ _ 

SC34-0941 

SC34-0942 

SC34-0943 

SC34-0944 

SX34-0199 

SX34-0198 

SX34-0163 

SR30-0324 __ _ 

SR30-0327 __ _ 

SR30-0329 __ _ 

SR30-0330 __ _ 

SR30-0331 __ _ 

Diskette binder (Holds eight 8-inch diskettes.) SB30-0479 



Publications Order Form 

Fold and tape 

Fold and tape 

--------- - ------- - ---- - - ----------_.-
® 

Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

IBM Corporation 
1 Culver Road 
Dayton, New Jersey 08810 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

J 
') 

~ 0 
" 0 
c: 
):> 

0 
:::J 
<.0 

[ 
:::J 
en 
I 

I 
I 
I 
I 
I 
I 
I 

o 

o 



o 

~ 
c 
OJ 

E 
0-
::J 
0-
OJ 

C'l 
C 

'.j:3 

0 
Vl 

ro 
E 

"0 
OJ 
+-' 
ro 
E 
0 
+-' 
::J 
ro 

0 
..c 
+-' 
.~ 

Vl 

E 
OJ 

.0 
0 

0. 
OJ 
Vl 
::J 
ro 
u 
c 
ro 
u 
Vl 
OJ 

0. 
ro 
+-' 

CJ) 

OJ 
+-' 
0 

Z 

§ 
0 

"+-
Vl 

..c 
+-' 

ro 
OJ 
Vl 

0 
+-' 

OJ 
0-
ro 
+-' 

"0 
OJ 

E 
E 
::J 
C'l 
.... 
OJ 

..c 
+-' 
0 

0 
OJ 
> 

'.j:3 
'Vi 
C 
OJ 
Vl 

~ 
::J 
Vl 
Vl 
OJ 

0. 
OJ 
Vl 
::J 

OJ 
Vl 
ro 
OJ 

0::: 

IBM Series/! Event Driven Executive 
Language Programming Guide 

Order No. SC34-0943-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. You may use this form to communicate your comments about this publication, 
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 
Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies of 1Elt,! puhlications are not stocked at the location to which this form is addressed. 
Please direct allY requests j()r copies o/publications, or for assistance ill using your IBM system, to 
your IElt! representative or to the IBM branch office serving your locality. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the title page.) 



SC34-0943-0 
Printed in U.S.A. 

Reader's Comment Form 

Fold and tape 

Fold and tape 

---------- - ------- - ---- - - -----------,-
® 

Please Do Not Staple 

I "I 
BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Information Development, Department 28B 
5414 (Internal Zip) 

P.O. Box 1328 
Boca Raton, Florida 33429-9960 

1"11,"11"1"1 •• 1.11.1"1.1 •• 1.1".11 •• 11""1.1.1 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

I 
() 

S- O g 
11 
0 
c: 
~ 
0 
::J 
to 

c: 
::J 
(1) 

I 

I 
I 
I 
I 
I 
I 
I 

o 

o 



o 

~ 
c 
<ll 

E 
0-
:J 
CJ 
<ll 

en 
c 

'.j:j 

(; 
(/) 

co 
E 

"0 
<ll ...... 
co 
E 
0 ...... 
:J 
CO 

0 1 

~ ...... 
~ 
(/) 

E 
<ll 

.D 
0 

0. 
~ 
:J 
CO 
U 

C 
CO 
U 
(/) 

<ll 

0.. 
CO ...... 

C/) 

<ll ...... 
0 z 

o 

E 
(; 

'+-

.~ 
~ ...... 

co 
~ 
0 ...... 
<ll 
0.. 
co ...... 

"0 
<ll 

E 
E 
:J 
en ... 
<ll 
~ ...... 
0 

(; 
<ll 
> 
:~ 
c 
<ll 
(/) 

~ 
:J 
~ 
~ 
0.. 
<ll 
(/) 

:J 
<ll 
(/) 

CO 
<ll 

0:: 

IBM Series/l Event Driven Executive 
Language Programming Guide 

Order No. SC34-0943-0 

READER'S 
COMMENT 
FORM 

This manual is part of a library that serves as a ref,:rl'nce source for systems analysts, programmers, and 
operators of IBM systems. You may use this fornl ~) communicate your comments about this publication, 
its organization, or subject matter, with the understan'ding that IBM may use or distribute whatever 
information you supply in any way it believes appropriate without incurring any obligation to you. 
Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 

Note: Copies ofIBllf puhlications are not stocked at the location to which this form is addressed. 
Please direct allY requests j()r copies of publications, or for assistance ill using your IBM system, to 
your IBM represe1ltative or to the IBM branch office serving your locality. 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM 
office or representative will be happy to forward your comments or you may mail directly to the address 
in the Edition Notice on the back of the title page.) 



SC34-0943-0 
Printed in U.S.A. 

Reader's Comment Form 

Fold and tape 

Fold and tape 

--------- - ------- - ---- - - -----------,-
® 

Please Do Not Staple 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

International Business Machines Corporation 
Information Development, Department 28B 
5414 (Internal Zip) 

P.O. Box 1328 
Boca Raton, Florida 33429-9960 

11111 ••• 11111111111.11.1111.1111.1'1111 •• 1111 •• 1.1.1 

Please Do Not Staple 

Fold and tape 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

Fold and tape 

I 
() 

s. C g I ,j 

II 
0 
c: 
)::> 

"0 
::J 
IC 

c: 
::J 
CI> 

I 

I 
I 
I 
I 
I 
I 
I 

o 



--------- - ------- - ---- -- ----------_.-
® 

Printed in U.S.A. 

Program Number 
5719-XS6, 5719-XX7 

SC34-0943 -0 

File Number 
S1-20 


