
Program Product

SC27 -0433-5
File No. S370/4300-30

Network Communications
Control Facility

Customization
Program Number 5735-XX6

Release 2

--- ----'-- --------- - ---- - - --------___ 9-

Notice to Network Communications Control Facility (NCCF) Users

NCCF Release 1 Users:

NCCF Release 2 Users:

Sixth Edition (July 1982)

• If you are not migrating to Release 2, continue to use your current Release 1
book.

• If you are migrating to Release 2, use this book for planning for Release 2, but
continue to use your current book for NCCF Release 1 information.

When ordering additional Release 1 copies, use order number, ST27-0433-0

Use this book.

This is major revision of, and obsoletes, SC27-0433-4. This edition applies to the
Release 2 of the Network Communications Control Facility (NCCF), program
number 5735-XX6, an IBM program product. The program product described in
this manual, and a111icensed material available for it, are provided by IBM under
terms of the Agreement for IBM Licensed Programs. Your branch office can
advise you on ordering procedures.

Before using this publication in connection with the operation of IBM systems
consult your IBM representative to find out which editions are applicable and
current.

Copies of this and other IBM publications can be obtained through IBM branch
offices.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be
construed to mean that IBM intends to announce such IBM products,
programming, or services in your country.

A form for reader's c<Pnments has been provided at the back of this publication.
If the form has been removed, comments may be addressed to IBM Corporation,
Department E03, P.O. Box 12195; Research Triangle Park, North Carolina,
U.S.A. 27709. IBM may use or distribute any of the information you supply in
any way it believes appropriate without incurring any obligation whatever. You
may, of course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979, 1982

Preface

This manual describes the programming procedures for tailoring and modifying
the Network Communications Control Facility (NCCF). It is intended for the
system programmer who defines the mM-supplied NCCF program product and
decides in what ways the program can be customized to suit the individual
requirements of an installation.

How This Book Is Organized

Chapter 1, "Introduction," is a brief overview of NCCF customization and
describes the syntax rules that are observed throughout the manual.

Chapter 2, "Command Lists," describes how control statements, access method
commands, NCCF commands, user-written commands, and other command lists
can be coded into command lists that are invoked by name when required.

Chapter 3, "Service Facilities and Macro Instructions," describes the NCCF
service facilities and macro instructions that can be used in coding command
processors, exit routines, and subtasks. This chapter is a prerequisite to Chapters
4,5, and 6.

Chapter 4, "Command Processors," describes the service facilities and macro
instructions that can be used to code command processors. The operating
environment and control block considerations are discussed in detail.

Chapter 5, "Exit Routines," describes the location and uses of exit routines
throughout NCCF, as well as guidelines for user-coded exit routines. A sample
exit routine is included.

Chapter 6, "Subtasks," describes the procedures for coding a user-written
subtask. A sample subtask is shown.

Appendix A, "Command Summary," summarizes all commands available to
NCCF operators and the places from which the commands can be entered.

Appendix B, "NCCF Log and Hard-Copy Log," describes the JCL, formats, and
output of the online disk log, as well as the hard-copy log that records operator
transactions.

Appendix C, "NCCF Control Blocks," shows the formats of the control blocks
that are of concern to the NCCF user in customizing NCCF.

Appendix D is an example of a user-written command processor.

Appendix E contains two examples of user-written data services command
processors.

Appendix F is an example of a user-written full-screen command processor.

Appendix G is a glossary that defines terms and abbreviations applicable to
NCCF.

Preface iii

Prerequisite Publications

Readers should be familiar with the basic functions and capabilities of NCCF as
described in:

Network Communications Control Facility General Information, GC27-0429

In addition, the following publication explains the program structure of NCCF
and how the program is installed:

Network Communications Control Facility Installation, SC27-0430

The following publication describes NCCF operator commands:

Network Communications Control Facility Terminal Use, SC27-0432

Publications for Additional Information

Advanced Communications Function for VT AM (ACF /VT AM) programmers
may also find useful the information in:

ACF/VTAM Programming, ST27-0449 (formerly SC27-0449): ACF/VTAM
Version 1 Release 2

ACF/VTAM Programming, SC27-0449: ACF/VTAM Version 1 Release 3

ACF/VTAM Version 2 Programming, SC27-06ll

ACF/VTAME Programming, SC27-0442

Advanced Communications Function for TCAM (ACF /TCAM) programmers
may find useful information in:

ACF/TCAM Application Programming, SC30-3l3S: ACF/TCAMVersion 2

The following publications contain information on 3270 systems:

3271, 3272, 3275 Control Unit Description and Programmer's Guide,
GA23-0060

3274 Control Unit Description and Programmer's Guide, GA23-006l

3276 Control Unit Description and Programmer's Guide, GAl8-208l

Notes on Terms Used in This Manual

iv

Throughout this publication, unless otherwise noted, references to ACF /VT AM
include ACF /VT AM Version 1 Release 2, ACF /VT AM Version 1 Release 3,
ACF /VT AM Version 2, and ACF /VT AMB. References to ACF /TCAM
include ACF /TCAM Version 2, Releases 2, 3, and 4.

References to ACF /VT AM and ACF /TCAM cross-domain environments
presume the presence of the Multisystem Networking Facility or ACF /VT AM
Version 2. ACF systems can, of course, also operate with a single domain.

References to VSE in this manual refer to the DOS/VSE system control
programming with the VSE/ Advanced Functions program product.

Refer~nces to VSE/OCCF in this lUanual refer to the Virtu31 StQr~ge Extended
Operator Communications Control Facility program product.

The term network has at least two meanings. A public network is a network
established and operated by common carriers of telecommunication
Administrations for the specific purpose of providing circuit-switched,
packet-switched, and leased- circuit services to the public. A user application
network is a configuration of data processing products, such as processors,
controllers, and terminals, established and operated by users for the purpose of
data processing or information exchange, which may use transport services
offered by common carriers or telecommunication Administrations.

Network, as used in this publication, refers to a user application network.

Other terms used in this manual are defined in the glossary.

Preface v

Contents

Chapter 1. Introduction 1-1
Syntax Used to Describe Macro Instructions 1-1

Chapter 2. Command Lists 2-1
Introduction to Command Lists 2-1

What Is a Command List? 2-1
What Can Command Lists Help You Do? 2-1
Who Can Use Command Lists? 2-1

Naming and Filing Command Lists 2-2
Defining Command Lists to NCCF 2-2

Defining Command Lists in OS/VS 2-2
Defining Command Lists in VSE 2-2

Invoking Command Lists 2-3
Invoking a Command List from an Operator Terminal 2-3
Invoking a Command List from a User-Written Command Processor 2-3
Invoking a Command List from Another Command List 2-3
Invoking a Command List from an Access Method Message 2-4

Command Lists Running under the Primary POI Task 2-5
The Command List Language 2-6
Coding Guidelines 2-6
Variables 2-6

Parameters 2-7
Control Variables 2-8
User Variables 2-9

Command List Labels 2-9
Command List Statements 2-9

Null Statements 2-10
Comments 2-10
Commands 2-10
Assignment Statements 2-11
Control Statements 2-11

&BEGWRITE 2-12
& CONTROL 2-12
&EXIT 2-13
&GOTO 2-13
&IF 2-13
&PAUSE 2-15
&WRITE 2-16

Command List Built-In Functions 2-16
&CONCAT 2-16
&LENGTH 2-17
&SUBSTR 2-17
&NCCFID 2-18
&NCCFSTAT 2-18

How NCCF Analyzes a Command List 2-19
Sample Command Lists 2-21
Sample Conditional Command Lists 2-22

Sample 1 2-22
Sample 2 2-24
Sample 3 2-25

Chapter 3. Service Facilities and Macro Instructions 3-1
Service Facilities Guide 3-1

Main Vector Table Addressability 3-1
Control Block Considerations 3-4

DSICBS Macro Instruction 3-6
Service Work Block (SWB) 3-6
Task Vector Block (TVB) 3-7
Buffer Header (BUFHDR) 3-7
Example of BUFHDR Usage 3-9
Internal Function Request (IFR) 3-9
Control Block Header (CBH) 3-9
Parse Descriptor Block (PDB) 3-10

Getting and Freeing Storage 3-11
Getting, Freeing, and Locating a Control Block 3-12
Disk Services 3-12

Contents vii

viii

Presentation Services 3-13
DSIPSS 3-14
Message Queuing 3-15

Resource Location (ACF/VTAM Only) 3-16
Macro Reference 3-18

DSICBS Macro Instruction 3-18
DSICES Macro Instruction 3-19
DSIDATIM Macro Instruction 3-20
DSIDEL Macro Instruction 3-20
DSIDKS Macro Instruction 3-21
DSIFRE Macro Instruction 3-23
DSIGET Macro Instruction 3-24
DSIKVS Macro Instruction 3-26
DSILCS Macro Instruction 3-27
DSILOD Macro Instruction 3-29
DSIMBS Macro Instruction 3-30
DSIMDS Macro Instruction 3-33

Format 1: Start Message 3-33
Format 2: Message Text 3-33
Format 3: End Message 3-34

DSIMQS Macro Instruction 3-34
DSIOIS Macro Instruction 3-36
DSIPAS Macro Instruction 3-36
DSIPOS Macro Instruction 3-37
DSIPRS Macro Instruction 3-38
DSIPSS Macro Instruction 3-39
DSIRDS Macro Instruction (ACF/VTAM Only) 3-46
DSISSS Macro Instruction (ACF/VTAM Only) 3-47
DSIW AT Macro Instruction 3-49
DSIWCS Macro Instruction 3-50
DSIWLS Macro Instruction 3-50
Data Services Macro Instructions 3-51
DSIZCSMS Macro Instruction 3-51
DSIZVSMS Macro Instruction 3-53

Chapter 4. Command Processors 4-1
Operating Environment 4-2

Regular Command Processors 4-2
Immediate Command Processors 4-3
Both Regular and Immediate Command Processors 4-4
Command Processors Executed Under the Primary POI Task (PPT) 4-4
Command Processors Executed Under a Data Services Task (DST) 4-5

Control Block Considerations 4-6
Command Work Block (CWB) 4-6
System Command Entry (SCE) 4-9
Data Services Request Block (DSRB) 4-9

Invoking a Command Processor 4-11
Obtaining a Command Work Block (CWB) 4-11
Obtaining a Service Work Block (SWB) 4-11
Building a Command Buffer 4-12
Obtaining a Parse Descriptor Block (PDB) and Parsing the Command 4-12
Looking Up the Command Processor Address 4-12
Calling the Command Processor 4-12
Initial DSCP Invocation 4-13
Passing a Command to Another Subtask in the Same Domain 4-13
Forwarding a Command to Another Domain for Execution 4-13
Returning a Command to Another Domain for Output 4-15
Passing Commands to the Access Method 4-15

Output 4-15
Regular Commands 4-15
Immediate Commands 4-16
Completion of a VSAM I/O Request 4-16
Completion of a CNM I/O Request 4-17
Completion of Receipt of Unsolicited CNM Data 4-18

Full-Line Command Processor Considerations 4-19
NCCF Title-Line Processing 4-19
Coding Requirements 4-20

Full-Screen Command Processor Considerations 4-20
Types of Full-Screen Command Processors 4-20
Operations of a Full-Screen Command Processor 4-21

Asynchronous Full-Screen Command Processors 4-21
Asynchronous Full-Screen Command Processor Parameter List 4-21
Processing Asynchronous Full-Screen Input 4-22
Testing if NCCF Events have Occurred 4-22
Noninterruptible Command Processors 4-22
Ending an Asynchronous Full-Screen Command Processor 4-22
Canceling an Asynchronous Full-Screen Command Processor 4-22
For More Information 4-22

Synchronous Full-Screen Command Processors 4-23
Synchronous Full-Screen Command Processor Parameter List 4-23
Processing Synchronous Input 4-24
Establishing a Full-Screen Subroutine 4-24
Ending a Synchronous Full-Screen Command Processor 4-24

General Guidelines 4-24
Screen Formatting for the 3270 Data Stream 4-24
The Escape Key 4-25
The Reshow Option 4-25
The Reshow Key 4-25
Logging Full-Screen Input/Output 4-25
DSIPSS Return Code from a Full-Screen Command Processor 4-25

Chapter 5. Exit Routines 5-1
What Can NCCF Exit Routines Do? 5-1
Overview of NCCF Exit Routines 5-1

DSIEX01: Input from the Operator 5-4
DSIEX02: Output to the Operator 5-5
DSIEX03: Input Before Command Processing 5-5
DSIEX04: Log Output 5-6
DSIEX05: Before Output to the Access Method 5-6
DSIEX06: Solicited Message Input from the Access Method 5-6
DSIEX07: Before Cross-Domain Output 5-7
DSIEX08: Before Cross-Domain Input Processing 5-7
DSIEX09: Output to the System Console 5-7
DSIEX10: Input from the System Console 5-8
DSIEX11: Unsolicited Access Method Messages 5-8
DSIEX12: Logon Validation 5-8
DSIEX13: OST/NNT Message Receiver 5-9
DSIEX14: Before Logoff 5-9
DSIEX15: Before Logoff with MVX/OCCF or VSE/OCCF 5-9
XITDI: Data Services Task (DST) Initialization 5-10
XITCO: CNM Interface Output 5-10
XITCI: CNM Interface Input 5-10
XITVN: VSAM Empty Data Set 5-11
XITVI: VSAM Input 5-11
XITVO: VSAM Output 5-11
DSITRE: ACF /TCAM Read 5-11

Installation 5-13
Coding Guidelines 5-13
Input Parameters 5-14

Registers 5-14
Control Block Considerations 5-14
User Exit Parameter List (DSIUSE) 5-15
Service Work Block (SWB) 5-17

Output Parameters 5-17
Exit Routine Prototype 5-18
Sample User-Written Exit Routine 5-20

Chapter 6. Subtasks 6-1
Why Write Your Own Subtask? 6-1
Defining the Subtask to NCCF 6-1
Subtask Organization 6-1
Requirements 6-3

Coding Guidelines 6-3
Entry and Exit Linkage 6-3
Subtask Attachment 6-3
Indicating that the Subtask is Ready 6-4
Subtask Termination 6-5

Optional Facilities 6-5
LIST Command 6-5
Queued Storage Management 6-6

Contents ix

x

Reading the Subtask Initialization Deck 6-6
Logging Messages 6-7
Issuing Messages 6-7
Receiving Messages 6-7
Freeing DSIMQS Buffers 6-8
Command Processing 6-9

Control Block Considerations 6-9
Main Vector Table (MVT) 6-9
Task Vector Block (DSITVB) 6-11
Task Information Block (DSITIB) 6-13

Sample User-Written Subtask 6-14

Appendix A. Command Summary A-I

Appendix B. NCCF Log and Hard-Copy Log B-1
NCCF Log B-1
NCCF Hard-Copy Log B-5

Appendix C. NCCF Controls Block.s C-l
How to Read Data Maps C-l

Appendix D. Sample User-Written Command Processor D-l

Appendix E. Sample Data Services Command Processors E-l
DSITDSRD Command Processor E-l

Appendix F. Sample FuU-Screen Command Processor F-l

Appendix G. Glossary of Terms and Abbreviations G-l

Index X-I

Figures

2-1. Control Variables for Command Lists 2-8
2-2. Summary of Control Statements for Command Lists 2-11
2-3. Built-in Functions for Command Lists 2-16
2-4. How NCCF Analyzes a Command List 2-20
3-1. Summary of NCCF Macro Instructions 3-2
3-2. Overview of the Control Blocks Used by NCCF Service Routines 3-5
3-3. Buffer Header (BUFHDR) 3-8
3-4. Use of NCCF Macro Instructions for Communication from an 3-13
3-5. Examples of Using the DSIPSS Macro Instruction 3-15
3-6. Table Field Relationships 3-17
3-7. Search of the Span Name Table (DSISNT) 3-48
4-1. Example of Program Design for Data Services Requests 4-6
4-2. Command Processor Input Parameter Control Blocks 4-7
4-3. Example of DSCP Processing Logic 4-14
4-4. Effect of Command Processor Return Codes for Terminal-Originated Commands 4-16
4-5. Example of Full-Line Title-Line Output 4-20
4-6. Sample 3270 Data Stream 4-23
4-7. Interpreting the TVBRESET and TVBPNMOD Bits 4-26
5-1. NCCF Exit Routine Interfaces 5-2
5-2. Environment of NCCF Exit Routines 5-3
5-3. Message Formats for DSITRE: ACF/TCAM Read 5-12
5-4. Return Codes Set by Exit Routines 5-18
6-1. Subtask Organization 6-2
6-2. Subtask Input Parameter Control Blocks 6-4

Figures xi

Summary of Amendments (July 30, 1982) to SC27-0433-4 by Revision SC27-0433-5

NCCF changes have been made to the control blocks to support Network Logical
Data Manager (NLDM).

Changes have been made to the DSIPSS macro instruction and to the sections on
full-screen command processors to clarify synchronous and asynchronous
full-screen information.

A new exit routine, DSITRE: ACF ITCAM Read, has been added.

Various technical and editorial changes have beep made.

Summary of Amendments (March 18, 1982) to SC27-0433-4 by TNL SN31-0802

Information on using Terminal Access Facility commands in a command list has
been added to Chapter 2.

Appendix A has been revised.

Various technical corrections and clarifications have been made.

Summary of Amendments (April 30, 1981) to SC27-0433-3 by Revision SC27-0433-4

xii

The order and contents of several chapters have been changed as follows:

Chapter 4, "Command Lists," has been made Chapter 2.

The section of Chapter 2 titled "Service Facilities and Macro Instructions"
has been expanded and made Chapter 3.

The section of Chapter 2 describing command processors has been made
Chapter 4.

Chapter 3, "Exit Routines," has been extensively revised and made Chapter
5.

A new chapter, "Subtasks" has been added as Chapter 6.

The data areas in Appendix C have been updated.

This edition also incorporates various technical corrections and clarifications.

Chapter 1. Introduction

This manual discusses those Network Communications Control Facility (NCCF)
features - command lists t command processors, exit routines, and subtasks - that
allow an installation to customize NCCF to fit its own requirements.

• Command lists. Control statements, NCCF commands, access method
commands, user-written commands t and other command lists can be coded
into command lists, which are stored in a file during NCCF definition and
invoked by name for execution when required.

• Command processors. mM supplies a number of command processors as
part of NCCF. NCCF service facilities can be used in user-written
command processors. An installation can code its own command processors
in assembler language and define the command verbs as described in NCCF
Installation.

• Exit routines. The user can write programs to screen or edit messages and
data to and from NCCF at various points in the program.

• Subtasks. An installation can code its own subtask to provide central
control of a processor or of a resource.

In MVS t NCCF executes in a single address space. In OS/VSl, NCCF
executes in its own partition. In VSE, NCCF executes in its own partition or as
a subtask in a partition belonging to ACF /VT AM, A CF /VT AME, or the
Virtual Storage Extended/Operator Communication Control Facility
(VSE/OCCF). NCCF executes as a user program, in problem program state
and user key; command processors and exit routines execute as subroutines of
NCCF.

It is possible for code executing on behalf of one NCCF operator to affect the
code supporting another operator. To prevent such undesirable interaction and
possible impact on the security controls imposed on NCCF. operators, the
installation should control and assure that command processors or exit routines
refer only to those data areas described in this manual; coding should refer only
to the control blocks belonging to the operator issuing a request.

User command processors, exit routines, and command lists written for NCCF
Release 1 are source compatible with NCCF Release 2. Reassembly using the
current level of NCCF macro libraries is required.

The following chapters describe how to code command processors, exit routines,
and command lists, and each chapter contains examples of each type. The
systems programmer for an installation should decide the functions desired
beyond those supplied as part of NCCF, and plan accordingly.

Syntax Used to Describe Macro Instructions

Throughout this manual, the following rules or syntax apply:

Capital letters represent values that must be coded without change.
Brackets ([]), braces ({}), "or" bars (I), and elipses (...) should not be
coded.

Chapter 1. Introduction 1-1

1-2

Lowercase letters represent operands for which a value, address, or name
must be supplied.

Brackets ([]) enclose operands or symbols that are optional. If brackets
are not present, an item or· group of items must be coded. Optional
operands are those that may. be coded or omitted independently of other
operands. In some cases, the omission of an operand may cause the
corresponding feature or function to be omitted; in other cases, specific
vah. ~s are assigned by default when an operand is omitted.

An "or" bar (I) between operands or braces (U) enclosing operands
indicates that one operand from among those listed must be coded.

An underlined value represents the default of a particular operand. If such
an operand is omitted, NCCF uses the underlined value.

Chapter 2. Command Lists

This chapter describes NCCF command lists. It explains what command lists are,
why they are useful, and how to code them. Sample NCCF command lists are
shown at the end of the chapter.

Introduction to Command Lists

What Is a Command List?

A command list is a group of commands and special instructions with a name that
applies to the whole group. To run that group of commands and instructions, the
operator calls that command list by entering its name at a terminal, and all of the
commands and instructions are run automatically.

What Can Command Lists Help You Do?

Command lists can help simplify routine or repetitive tasks. With a command list,
an operator can get many different functions by typing just one name. A
command list also allows an operator to supply values for a complex command
without typing the command or understanding the command and the values in it.
Command lists can be written to process an access method message automatically,
with no operator action.

Here is an example of a command list called STATUS.

LIST STATUS=TASKS
LIST STATUS=SPAN
LIST STATUS=OPS
MSG SYSOP,ALL CHECKS ARE COMPLETED

By typing "STATUS," an operator displays the status of tasks, spans, and
operators, and sends a message to the system console operator.

The following command list, "CHECK" allows the operator to vary the LIST
commands issued:

LIST SCOPE=& 1
LIST TIMER=&2
LIST STATUS=&3

If the operator types "CHECK ALL,OPER2,SP ANS," the status of all spans, all
scope commands, and timer commands for operator OPER2 are displayed.

The simplest form of command list is a list containing NCCF commands to be run
in order. Control statements, variables, parameter, and assignment statements
may also be used in a command list. These provide even more functions and are
described later in the chapter. It is best to start with a simple command list first,
and then add additional functions as necessary.

Who Can Use Command Lists?

Once a command list has been created, any NCCF operator can use that
command list by entering the command list name. A command list may be
restricted to a group of operators by using the scope of commands facility
described in NCCF Installation.

Chapter 2. Command Lists 2-1

Naming and Filing Command Lists

The system programmer writes the command lists. They can be built prior to
starting NCCF or while NCCF is running, and are members or B books stored in
the file defined as DSICLD. The name of the command list is used as the member
or book name.

Note: If you plan to update or create command lists while NCCF is running, you
should define DSICLD without secondary extents. This prevents a member from
being filed in a new extent that NCCF cannot reference until it is closed and
restarted.

Defining Command Lists to NCCF

Defining Command Lists in OS/VS

Defining command lists to NCCF in OS/VS is required in certain circumstances
only.

If scope checking is desired, define the command list as follows:

clistname CMDMDL MOD=DSICCP

To call a command list from an access method message, the message identifier
must be defined to NCCF as the name of a command list using a CMDMDL
statement, as follows:

messageid CMDMDL MOD=DSICCP

For more information, see "Invoking a Command List from an Access Method
Message."

For more information on defining command lists to NCCF, refer to the section on
the CMDMDL statement in NCCF Installation.

Defining Command Lists in VSE

2-2

In VSE, a command list must be defined to NCCF in one of two ways. The
command list can be defined using a CMDMDL statement in the form:

clistname CMDMDL MOD=DSICCP

The command list can also be defined to NCCF by including as the first statement
in the command list the following command list definition statement:

[label] CLIST

The label is not examined by NCCF. If present, it must begin in column one.
"CLIST" begins in column 2 or later, and is preceded by at least one blank. (For
OS/VS, this VSE definition statement is not required, and will be ignored if
present.)

If scope checking is desired, define the command list as follows:

clistname CMDMDL MOD=DSICCP

Invoking Command Lists

To call a command list from an access method message, the message identifier
must be defined to NCCF as the name of a command list using a CMDMDL
statement, as follows:

messageid CMDMDL MOD=DSICCP

For more information, see "Invoking a Command List from an Access Method
Message."

For more information on defining command lists to NCCF, refer to the section on
the CMDMDL statement in NCCF Installation.

Invoking a Command List from an Operator Terminal

The operator can enter a command list name from the terminal in the same way as
a command and operands are entered. When the command list name is entered,
the command list begins processing. Message responses and other information are
sent to the operator, depending on the contents of the command list.

Invoking a Command List from a User-Written Command Processor

User-written command processors may call command lists. Command lists
initiated in this manner are queued until execution of the command in progress
and other stacked commands or command lists has been completed. See Chapter
4, "Command Processors," for information on how to write a command
processor.

Invoking a Command List from Another Command List

A command list referred to within a command list is executed completely before
execution of the calling command list continues. This process is called nesting.
NCCF allows up to 16 nested command lists. If you concatenate the DSICLD
command list data sets, file the calling command list and all its nested command
lists in the same data set.

Variables can be passed to a command list if the variable is defined in the
invoking command list, and if the value of the variable is not longer than 255
characters. Nested variables are allowed. If after one substitution, the value
generated is still a variable (preceded by &) substitution is performed again. For
example, if the ABC command list is defined as:

XYZ LINES,CLSTRS,TERMS,CDRMS,ACT,INACT,EVERY,&1,&2

and if the XYZ command is defined as:

D NET,&&8,&&9

Chapter 2. Command Lists 2-3

the following ACF /VT AM commands are generated for the following operator
input:

Input ACF/VTAM Command Output

ABC 1,5 D NET,LINES,ACT

ABC 4,7 D NET,CDRMS,EVERY

ABC 2,5 D NET,CLSTRS,ACT

ABC 3,6 D NET,TERMS,INACT

Invoking a Command List'rom an Access Method Message

2-4

A command list can be invoked by a message received by NCCF from
ACF/VTAM or ACF/TCAM.

Note: Messages from the Terminal Access Facility, or from other mM program
products that work with NCCF cannot invoke a command list.

The command list can be used to send a response to the message or to reword or
delete the message. If a command list is used to reword or to delete an access
method message, the original message is sent to the NCCF disk log, but not to the
operator's console or to the hard-copy log. The operator receives only those
messages issued by the command list.

When an access method message is used to call a command list, the message
identifier must be identified to NCCF as a command list, using the CMDMDL
statement.

Each word of a message (as separated by blanks and commas) is considered a
separate parameter when the command list is called. The first word of the
message after the message identifier is the first parameter. By using the
parameters, each word of the message may be indexed separately. This helps the
command list to reword or to respond to the message.

An access method message that requires a reply is preceded by by Lnn; nn
represents the reply number. In this case, the message identifer is still considered
the name of the command list. Lnn is the first parameter, and the first word of the
message is the second parameter.

Note: There are special considerations for unsolicited access method message.
These messages invoke command lists that run under the primary POI task (PPT)
rather than under the operator station task (OST). Certain commands cannot be
used in PPT command lists. See "Command Lists Running under the PPT" for
more information.

The following is an example of using a command list to reply to an ACF/VTAM
message:

Lnn IST284A OPTION TO RELOAD ncpnm AVAILABLE - REPLY 'YES'
OR 'NO' OR 'YES, LOADS TA=LINKSTANAME,

Lnn IST284A OPTION TOt RELOAD ncpnm AVAILABLE - REPLY 'YES'
OR 'NO' OR 'YES, LOADSTA=LINKSTANAME'

The message identifier is defined as a command list, using the CMDMDL
statement (see NCCF Installation):

IST284A CMDMDL MOD=DSICCP (OS/VS)

5C84A CMDMDL MOD=DSICCP (VSE)

When the message is received, it is prefixed by Lnn; nn represents the reply
number. The command list treats the Lnn as & 1 and the reply YES is sent to
ACF /VT AM by a command list.

For OS/VS, member IST284A contains the following:

REPLY & 1 , YES

For VSE, book DSI5C84A contains the following:

REPLY &1,YES

The VSE message identifier 5C84A must have the DSI prefix added to the book
name before the book is filed in the VSE source statement library.

In VSE, the DSI prefix must also be used to list a command list based on a
message identifier; for example:

LIST CLIST=DSI5C84A

Command Lists Running under the Primary POI Task

Most command lists run under the operator station task (OST). However, some
command lists are run under the primary POI task (PPT). Command lists run
under the PPT if they are:

• Called by an unsolicited access method message.

• Specified with an NCCFIC statement to execute as soon as NCCF is
initialized.

• Called with an AT or EVERY command that specifies PPT as an operand.
(PPT allows the command to be run even when the operator is not logged
on.)

The PPT command list is user-written and defined to NCCF in the same way as
any other command list. All output messages produced as a result of the
command list are sent to the authorized message receiver and logged under that
task. Messages originating under the PPT are flagged with a "P" in the seventh
character of the domain name field.

The following commands cannot be used in a command list executing under the
primary POI task:

AUTOWRAP
CANCEL
CLOSE
GO

INPUT
LOGOFF
MOVE
PAUSE

RESET
ROUTE
START
STOP

SWITCH

In addition, the:&PAUSE control statement, Term.lllal Access Facility commands,
and immediate commands cannot run under the PPT.

Chapter 2. Command Lists 2-5

The Command List Languag~

Coding Guidelines

Variables

2-6

Command lists ar~ written in asp~~jal command list l~ngu~ge. This command list
langlJage is q~scribed in tb~ following sections.

The following are some guidelines to k~ep in mind when coding conunand lists:

• The command list statement must be within the first 71 characters of an
SO-character record. Column 72 should be left blank. Columns 73.,.80 are
reserved for optional sequence numbers.

• Continuation of a command list statement ~o the next line is not allowed.

• The end of a command list is not indicated in any special manner. There is no
END statement. The command list ends when the last command list
statement is processed.

• A command list statement may contain any number of leading or trailing
blanks. Anywhere one blank may be used within a statement, any number of
blanks may be used.

• The suppression character (defined with the SUPPCHAR op~rand of the
NCCFID definition statement) may be coded to prevent a command or any
statement of a command list from appearing on the operator's screen,
hard-copy log, and NCCF log. If used, the suppression character must be
coded in columJ} one of the command list statement. In the example below, ?
has been defined as a suppression character:

?* COMMAND LIST UPDATED 2/5/80 BY OPERATOR IRENE
START DOMAIN=&1
PAUSE ENTER GO WHEN MESSAGE DSI809A ARRIVES FROM &1
?ROUTE &1,OPER1,123456

The first and last lines of the command will be suppressed.

A command list statement maY contain parameters or variables to be replaced by
actual values at execution time. A comman.d list variable is a symbol with an
ampersand (&) as the first character, foUowed by 1 to 11 alphanumeric
characters. There are three kinds of variables:

• Parameters

• Control variables,

• User variables

Parameters

Parameters are passed to a command list when the command list is invoked. Up
to 31 positional parameters may be passed. The parameters appear after the
command list name and are delimited by either a blank or a comma. A parameter
may be up to 255 characters; parameters longer than 255 characters are
truncated .. The following special characters may be used within a parameter if the
parameter is enclosed in single apostrophes: blank, period, equal sign, apostrophe,
comma. Text within single apostrophes is treated as a single operand. Two
commas in a row indicates a null parameter.

For example, assume that the command list FLAG is invoked as shown:

FLAG RED,BLUE WHITE '=',,'THE U.S. FLAG'

This command list has six parameters. The fourth parameter is an equal sign, the
fifth is null, and the sixth is a phrase: THE U.S. FLAG.

When the command list is invoked, each of the parameters is substituted in the
command list wherever there is an ampersand followed by a number from 1
through 31 (&n). The ampersand indicates substitution, while n indicates which of
the 31 positional parameters is substituted. The &n is deleted and replaced by the
parameter.

Consider the FLAG command list again. If one line in the command list read:

&6 IS &1, &3, AND &2

after substitution, this line would read:

THE U.S. FLAG IS RED, WHITE, AND BLUE

When the parameter is substituted, the text to the right of the &n is moved enough
to make room for the parameter. No spaces are added or deleted, and no other
characters are affected.

Parameters may be referenced as many times as necessary in any given line.
There are no restrictions about parameter sequence. In other words, &5 may be
referenced before &2. Substitution is from right to left for each command list line
and the right-most &n is treated first.

The maximum number of parameters allowed is 31. If an ampersand is followed
by a number other than 1 through 31, an error message results.

If the ALTER command list is defined as:

VARY NET,ACT,ID=&1
VARY NET,INACT,ID=&2

and the command list is invoked by this entry:

ALTER ABLE,BAKER

the commands executed are:

VARY NET,ACT,ID=ABLE
VARY NET,INACT,ID=BAKER

Chapter 2. Command Lists 2-7

Control Variables

2-8

Control variables are variables that are predefined by NCCF; their substitution
values are initialized and maintained by NCCF. The control variables are shown
in Figure 2-1.

Variable Value

&APPLID Application program identifier for the task under which the command list is
running (NCCF domain 10 appended with a 3-character alphanumeric value
assigned by NCCF).

&DATE The current date in the form mm/dd/yy.

&HCOPY Resource name for the hardcopy device started by this operator. (If there is
no hard-copy device for this operator, &HCOPY is nUll.)

&LU Resource name for this physical operator station.

&MSG"~I')D For command lists invoked from an ACF/VTAM message, the 5-character
ACFIVTAM module identifier. This module identifier is removed from the
message by NCCF before the command list is invoked.
&MSGMOD is valid only if the ACFIVTAM MSGMOD facility is in effect;
if this facility is not in effect, &MSGMOD is null.

&NCCFCNT Total number of domains with which this operator can establish a session.

&OPID This NCCF operator's identifier.

&PARMCNT Number of parameters specified by the invoker of the command list.

&PARMSTR Character string following the command that invoked this command list.
(If there are no parameters, &PARMSTR is null).

&RETCODE Return code from a command processor or another command list. The user
may set &RETCODE with the &EXIT control statement to any positive
value or to -1. &RETCODE may be tested to determine command list
processing.

All negative return codes are reserved for definition by NCCF. Return codes
-1, -2, and -3 may be useful for command lists. -1 may be set by the user
with the &EXIT control statement. -2 and -3 are set by NCCF, but the user
may test for them in a command list using &RETCODE.

-1 NCCF forces the termination of the executing command list and all
nested command lists.

-2 Invalid command; no command is executed, but the command list is
not terminated.

-3 Command is not in :the operator's scope of commands; no command is
executed, but the command list is not terminated.

&TASK Character string "PPT", "OST", or "NNT", depending on the task under
which the command list is running. &TASK allows the same command list
to run under any task (using conditional processing for PPT restrictions)'

&TIME The current time in the form hh : mm.

Figure 2-1. Control Variables for Command Lists

User Variables

Command List Labels

Command List Statements

User variables are any variables that are not parameters or control variables. A
user variable name is specified as an ampersand (&) followed by 1 to 11
alphanumeric characters. A-Z, 0-9, #, @, $ are valid alphanumeric characters.
The first character following the ampersand must be nonnumeric. For example,
examine the following sample variables:

Valid Invalid

&A &2ABC (&2 will be substituted as
a parameter)

&USERV ARNAME &INV ALIDV ARNAME (too long)
&@23456 &A % (invalid character)

User variables are initialized to null with a length of 0 if the first use does not
provide a value. The user can initialize a variable by using it on the left side of an
assignment statement (&USERPARM = 8) or by providing it as a variable on a
&P AUSE statement.

A label, if present, is the first nonblank in a command list record and consists of a
dash (-) followed by 1 to 11 alphanumeric characters (A-Z, 0-9, #, @, $). Any
command list statement except a comment line may have a label. The command
list statement follows the label and is separated from the label by at least one
blank. If a label is the only word on a command list statement, the statement is
assumed to be a null statement and may be used as the target of a &GOTO or
&BEGWRITE statement. Labels must be unique; if a duplicate label is
encountered, the command list is terminated. A label is not scanned for variable
substitution unless it is an operand on a &GOTO or &BEGWRITE control
statement.

Examine the following samples:

VALID:
-LABELl MSG READER,THIS IS CORRECT
-$IRENE MSG READER, THIS IS ALSO CORRECT
-NULL

INVALID:
-INVALIDLABEL MSG READER, THIS LABEL IS TOO LONG
-GLENN *LABELS ARE NOT ALLOWED ON COMMENT LINES
-&PRIS MSG READER, LABEL CANNOT BE SUBSTITUTED HERE
MSG READER, LABEL MUST BE FIRST NON-BLANK -LABELl

There are five types of command list statements:

• Null statement

• Comment

• Command

• Assignment statement

• Control statement

Chapter 2. Command Lists 2-9

Null Statements

Comments

Commands

2-10

A command list statement containing all blanks or only a label is a null statement.
If a label is present, the null statement may be the target of a &GOTO or
&BEGWRITE statement. Otherwise, the null statement is ignored.

A command list statement that contains an asterisk (*) as the first nonblank
character is treated as a comment. variable substitution is performed on
comments, so if the comments are written to the screen they can reference the
specific values of variables. (If you wish to write comments to the screen without
variable substitution, use &BEGWRITE NOSUB, discussed later in this chapter.)

Comments in command lists can be helpful for headings or simply as a way to
display information. For example, a command list coded entirely with comments
could be used to show the current network configuration to an operator. The
following command list uses comments as a heading prior to the actual display of
information requested by the command list:

* STATUS OF ALL LINES *

D NET,LINES,&1

NCCF commands and user-written commands defined as "regular" or "both"
may be issued in a command list. ACF IVTAM and ACF ITCAM commands
may be issued in a command list. In addition, a command list may invoke other
command lists. Immediate commands, the AGAIN command, and data services
commands are not allowed in a command list.

If the command list is invoked by an operator at a terminal or by a solicited access
method message, the commands that can be issued within the command list are
limited by the operator's span of control and scope of commands.

If the command list is executed under the PPT, no span or scope checking is done,
and certain commands cannot be issued. For more information, see "Command
Lists Executing under the PPT."

Asynchronous full-screen commands (DSIPSS TYPE=ASYP ANEL) should be
coded only as the last commands in a command list. For more information on
asynchronous commands, see the section in Chapter 4 titled "Full-Screen
Command Processor Considerations."

Terminal Access Facility commands may be used in a command list. BGNSESS
FLSCN and R TRNSESS commands will cause the command list to stop running
until the full-screen session is disconnected or ended. When the operator returns
to NCCF mode, the command list will continue.

For a quick reference of which commands can be used in command lists, see
AppendixA.

Assignment Statements

Control Statements

An assignment statement is a statement of the form

variable = expression

The equal sign (=) must be delimited by blanks.

expression may be one of the following:

A constant or variable

A built-in function (see "Command List Built-In Functions")

An arithmetic expression consisting of numbers and/or variables separated by
a plus (+) or minus (-) arithmetic operator. For example:

3+4
5-2

&PARMCNT+ 3
&3-&4-&USERVARNAME

8 +-4
2 - -&P2

Note that the arithmetic operators + and - must be delimited by blanks unless
they indicate a negative or positive number (-4, + 2). Thus, the expressions 4
- 2 and 4 - -2 are valid, but 4 -2 is invalid and will cause the command list to
terminate.

Control statements are used to control the processing sequence of a command list.
Control statements also allow the command list to send messages to the NCCF
operator and to receive input from the operator. Control statements are
processed by the command list processor. Figure 2-2 shows a summary of the
control statements in NCCF.

Control
Statement Operands Description

&BEGWRITE [SUB I NOSUB] [label] Causes subsequent lines to be written to the --- terminal until the specified label is reached.

&CONTROL [ALL I CMD I ERR] Controls the writing of command list state-
ments to the operator station.

&EXIT [number] Terminates command list processing.

&GOTO label Transfers control to the command list line
beginning with the specified label.

&IF logical expression &THEN If the logical expression is true, the com-
command list statement mand list statement will be executed.

[{ NOINPUT I }] Suspends the execution of a command list.
&PAUSE V ~RS va~iable [...]

Strmg vanable

&WRITE [text] Writes a message to the operator station.

Figure 2-2. Summary of Control Statements for Command Lists

Chapter 2. Command Lists 2~ 11

&BEGWRITE

&CONTROL

2-12

Each command list control statement begins with a control symbol in the form
& word. All operands and operations must be delimited by blanks. A control
statement must be coded on one line and cannot be continued on the following
line. Only one control statement can be coded on a line. If an error is detected in
a control statement, the control statement and an error message are written to the
operator's terminal; if the command list cannot recover from the error, command
list processing is terminated.

&BEGWRITE causes subsequent lines to be written to the terminal, until the
specified label is reached. Labels can be coded on lines being written out by
&BEGWRITE, and used later as targets of a &GOTO statement or another
&BEGWRITE statement.

Statement Operands

&BEGWRITE [SUB I NOSUB][label]

SUB
causes substitution of variables in lines written to the terminal. If there are
blanks before the first message character, the line is shifted left until the
first nonblank character is in column 1. If you want the blanks sent to the
screen, code a nonblank character in column 1.

NO SUB

label

suppresses substitution of variables in lines written to the terminal.
NOSUB is the default.

is a standard command list label that is used to indicate the point at which
no more lines are to be written to the terminal. The line on which label is
coded is not written to the terminal and is treated as the next command list
statement to be processed. label may be a variable that has been assigned a
value earlier in the command list. If label is not specified, one line will be
written to the terminal. If label cannot be found, the remainder of the
command list is written to the terminal, and the command list is terminated.

&CONTROL controls the writing of command list statement to the operator
station.

Statement Operands

&CONTROL [ALL I CMD I ERR]

ALL
specifies that all command list statements are to be written to the operator
station, after variable substitution and before execution. This includes:

• Comments

• Null statements

&:EXIT

&:GOTO

&:IF

CMD

ERR

• Control statements

• Assignment statements

• Commands

ALL is the default if &CONTROL is not specified.

specifies that only commands are to be written to the operator station, after
variable substitution and before execution. Other command list statements
are not displayed.

specifies that only command list statements in error and commands that
return a nonzero return code are to be written to the operator station, after
execution.

&EXIT terminates command list processing.

Statement Operands

&EXIT [number]

number
provides a return code to the caller of the command list (see &RETCODE,
in the section titled "Control List Variables"). If a number is not specified,
a zero return code is generated. Return code -1 causes this command list
and all nested command lists to terminate. Other negative return codes are
reserved for use by NCCF.

Note: Reaching the end of the file also terminates command list processing, and
generates a zero return code.

&GOTO transfers control to the command list statement beginning with a
specified label.

Statement Operands

&GOTO label

label
is a standard command list label. Label may be a variable that has been
assigned a value earlier in the command list.

&IF defines a logical expression and tests the truth of that expression. If the
expression is true, then the command list statement is executed. Otherwise, the
statement is ignored and the next sequential statement in the command list is
executed.

Chapter 2. Command Lists 2-13

2-14

Statement Operands

&IF logical expression &THEN command list statement

logical expression
is an expression of the form

expression logical-operator expression

where expression is anything that can appear on the right side of an
assignment statement, and logical-operator is one of the following logical
operators:

Logical Operator Meaning

= (or EQ) Equal

-. = (or NE) Not equal

< (or LT) Less than

> (or GT) Greater than

<= (or LE) Less than or equal

>= (or GE) Greater than or equal

-.> (or NG) Not greater than

-.< (or NL) Not less than

The logical operator must be separated from the two expressions by blanks.

&THEN
is a required keyword. It must be separated from the logical expression and
the command list statement by blanks.

command list statement
refers to any unlabeled command list statement. If the logical expression
specified after &IF is true, this statement is executed.

Note: In a statement of the form

~IF &variable1 = &variable2 ~THEN . . .

the variables are substituted prior to syntax checking. If either & variable 1 or
&variable2 has a null value, a syntax error results. To avoid this problem, prefix
both variables with the same character. For example:

~IF A~variable1 = A~variable2 &THEN . . .

&PAUSE

&P AUSE suspends the execution of the command list. A "P" is displayed in the
upper-right corner of the operator screen while the operaLL)r is in pause state. The
&WRITE or &BEGWRITE statement should be used prior to &PAUSE to tell the
operator the reason for the pause, and to describe the actions that should be taken
by the operator. Execution of the command list is resumed when a GO command
is received from the terminal or ended when a CANCEL command is received.
The GO command may also be used to provide input to the command list. For
more information on GO and CANCEL, see NCCF Terminal Use.

&PAUSE should not be coded in a command list executing under the primary POI
task. If &PAUSE is coded under the PPT, an error message is issued, the pause is
ignored, and processing continues with the next command list statement.

Note: If the CANCEL command is issued in a nested command list, all command
lists in the invoking chain are terminated.

Statement Operands

&PAUSE {NOINPUT }
V ARS variablel[...]
STRING variable

NOINPUT

VARS

specifies that no operands are permitted on the GO command. An error
message will be issued if any operands are encountered. (&PAUSE
NOINPUT is equivalent to the PAUSE command with no text.) This is the
default.

specifies that the operands on the GO command are t9 be assigned to
variable}, variable2, and so on. All operands are treated as positional. If
the number of operands on the GO command exceeds the number of
variables on &P A USE, the extra operands are discarded, an error message
is issued, and command list processing continues. If the number of
variables on &PAUSE exceeds the number of operands on the GO
command, the remaining variables are set to null. Two commas in a row on
the GO command results in one null variable. For example, if the GO
command is:

GO 1" 5

and the &PAUSE control statement is:

&PAUSE VARS &A,&B,&C

&A will be set to 1 and &C will be set to 5. &B will be null.

STRING
specifies that the entire operand string on the GO command is to be treated
as one operand and assigned to variable No quotes are needed; if quotes
are entered they will become part of the variable. If no operand is specified
on the GO command, variable is set to null.

Chapter 2. Command Lists 2-15

&WRITE

&WRITE writes a message to the operator station.

Statement Operands

&WRITE [text]

text
is a character string to be written to the terminal operator's screen after
variable substitution is performed. If no text is specified, a blank line is
written to the screen.

If there are blanks before the first message character, the line is shifted left
until the first nonblank character is in column 1. If you want the blanks
sent 4-" '-he screen, code a nonblank character in column 1. To send a single
quote or an apostrophe in a message, code two apostrophes. Also, if a
single quote has several blanks before it, these blanks are changed to one
blank.

Command List Built-In Functions

&CONCAT

2-16

Command list built-in functions are used to perform evaluations of expressions
and character strings. Built-in functions are features of the command list
language that provide capabilities otherwise unavailable to the user. Built-in
functions can be used only as an expression on the right side of an assignment
statement (see "Assignment Statements"), or as an expression in an &IF
statem "'nt. They cannot be part of an arithmetic expression. Figure 2-3 provides
a SUffin, try of the built-in command list functions in NCCF.

Function Operands

&CONCAT {variable I constant} {variable I constant}

&CONCAT concatenates the values of two parameters to form a new value. The
result must be a valid value for a variable. If the value of both parameters is null,
the result of &CONCAT is null. If the resulting value is greater than 255
characters, it is truncated to 255 characters.

Function Operands Description

&CONCAT variable} {V.,;able .} Concatenates the value of two operands to
constant constant form a new value.

&LENGTH variable I constant} Provides the length of the operands in
characters.

&SUBSTR variable i [j 1 Substitutes a part of a string of charac-
ters for the total character string.

&NCCFID {variable I constant} Provides the identifier of the domain
specified by the numeric operand.

&NCCFSTAT { variable I constant} Indicates the status of the specified
domain name.

Figure 2-3. Built-in Functions for Command Lists

&LENGTH

&SUBSTR

For example, assume you coded the following command list statements:

&A NCCFA
&B 001
&C &CONCAT &A &B

The variable &C would be set to NCCFAOOl.

Function Operands

&LENGTH {variable I constant}

&LENGTH provides the length of the parameter in characters. If the parameter is
null, the result of &LENGTH is zero.

For example, assume you coded the following command list statements:

&A = KEVIN
&C = &LENGTH &A

The variable &C would be set to 5.

Function Operands

&SUBSTR variable i [j]

&SUBSTR substitutes a part of an indicated string of characters as a real value
during command list statement execution. The string of characters to be used is
the value of variable starting at position i with lengthj. i andj may be either
constants or variables. If j is not specified or exceeds the number of characters
remaining, the remaining length is used. The value of i must be greater than zero;
the value of j must be zero or greater. If i exceeds the length of the variable or j is
zero, the value of the function is considered null. If either the variable or i are
null, the results will not be as expected.

For example,assume you coded the following command list statements:

&A NCCFA003
&B &SUBSTR &A 6
&C &SUBSTR &A 1 5
&D &SUBSTR &A 6 10

The variables &B and &D would be set to 003, and the variable &C would be set
to NCCFA.

Chapter 2. Command Lists 2~ 17

&NCCFID

&NCCFSTAT

2-18

Function Operands

&NCCFID {variable I constant}

&NCCFID provides the identifier of the domain specified by the parameter. The
value of the parameter must be a number in the range 1 to &NCCFCNT (see
"Control Variables"). &NCCFID serves as an index to the list of domains with
which the operator is authorized to establish a session. For an operator with
specific authority (as defined on the AUTH statement in the operator's profile)
this list is derived from the DOMAINS statement in the profile. For an operator
with global authority, this list is derived from the RRD NCCF definition
statements. Refer to NCCF Installation for more information on AUTH,
DOMAINS, and RRD definition statements.

To obtain the domain identifier of the domain in which the command list is
running, use & .SUBSTR &APPLID 1 j, where j is the length of the
application program ID (&APPLID) minus three. For example, user variable
&DOMID could be set to the name of the local domain by the following
statements:

&DOMID
&DOMID
&DOMID

&LENGTH &APPLID
&DOMID - 3
&SUBSTR &APPLID 1 &DOMID

In the example above, assume &APPLID = NCCFA001. In the first line,
&DOMID is set to 8. In the second line, the length of the three-digit NCCF
identifier 001 is subtracted from the length of &APPLID, setting &DOMID to 5.
in the third line, &DOMID is set to the part of &APPLID starting at position 1 for
a length of 5. This last statement results in setting &DOMID to the name of the
local domain, NCCFA.

Function Operand

&NCCFSTAT {variable I constant}

&NCCFSTAT indicates the status of the specified domain. The operand must be
a valid NCCF domain identifier of 1 to 5 characters. If the operator has a session
with the domain whose identifier is specified by the operand, &NCCFSTAT is set
to the characters "ACT". If the operator does not have a session with the
specified domain, &NCCFSTAT is set to the characters "INACT".

For example, assume you coded the following command list statement to
determine the status of domain NCCFA:

&A = &NCCFSTAT NCCFA

If NCCFA is active, &A is set to ACT. If NCCFA is not active, &A is set to
INACT.

How NCCF Analyzes a Command List

Command list statements are analyzed as shown in Figure 2-4. Each command
list statement is parsed into separate syntactic elements, using blanks and commas
as delimiters. Multiple blanks are considered as one delimiter; multiple commas
are treated as multiple delimiters. Labels are removed from the command list
statements. Each statement is scanned from right to left and substitution is
performed on one element at a time, according to the following rules:

• Substitution is not performed on a &P A USE statement or the &THEN clause
of an &IF statement (the &THEN clause is substituted only when it is to be
executed).

• Each element is scanned from right to left for an &. If an & is found, then it,
along with the rest of the element to the right, is taken as the name of a
variable and is replaced by the value of the variable. This substitution may
increase or decrease the length of the element.

• Variables for which a value cannot be found, are considered to be null.

• Command list control symbols and built-in functions are not substituted.

• If the first character to the right of the ampersand is numeric, the variable is
assumed to be a parameter.

• If a special character (nonalphanumeric) is encountered, it delimits the
variable name. (For example, if an element contains &A=&XYZ first &XYZ
is substituted, then &A is substituted.)

• The scan resumes at the next character to the left, and the search for an
ampersand continues. If another ampersand is found, it and the entire
syntactic element to the right, including the previous substitution are taken as
the name of a variable and replaced by its value. Note that the value
substituted is not scanned for an ampersand.

If the element is the target of an assignment statement, the scan stops on the
second character to preserve the variable name to be assigned a value. For
example:

&B =
&A&B 2

will set user variable &Al to 2.

• This process is repeated until all syntactic elements have been analyzed.

The statement is then analyzed to determine whether it is null, a comment, a
control statement, an assignment statement, or a command. No further
processing is done on null and comment statements.

Chapter 2. Command Lists 2-19

Read a command list

Parse the command list
statement into separate
syntactic elements.

Perform substitution for
the command list state
ment (see text description).

Write the statement to the
operator's terminal unless
writing has been limited
by &CONTRO L or the
statement contains a sup
pression character in
column 1.

Figure 2-4. How NCCF Analyzes a Command List

2-20

Exit

The !itatement is null.

The statement is a
comment.

The statement is a control
or assignment statement.

Issue an error message.

Parse and analyze the
command.

Process the control
statement.

If &CONTROL= ERR,
write the statement to
the operator's terminal.

Pass the command to the
appropriate NCCF or user
command processor.

Sample Command Lists

Control and assignment statements are checked for syntax errors and then
processed. If a syntax error is found, an error message is sent and the statement
in error is written to the operator's terminal. Severe errors cause the command list
to terminate. Some errors cause warning messages only; a default value will be
used or the command list statement will be ignored. Processing will continue. If
there are no major errors, the commands are parsed, analyzed, and then passed to
the appropriate NCCF or user command processor for processing. The command
processor return code is available as &RETCODE. &RETCODE is checked to
determine if the command statement should be written to the terminal.

After substitution, the command list statement is written to the terminal unless
either writing has been limited by &CONTROL or the statement contains a
suppression character in column 1.

The IOBUF command list allows the invoker to start and stop buffer and I/O
traces for a physical unit as follows:

F NET,&2TRACE,TYPE=IO,ID=&1
F NET,&2TRACE,TYPE=BUF,ID=&1

The following entry starts I/O and buffer traces for PU7:

IOBUF PU7

and generates the following commands:

F NET,TRACE,TYPE=IO,ID=PU7
F NET,TRACE,TYPE=BUF,ID=PU7

The following entry stops the I/O and buffer traces for PU7:

IOBUF PU7,NO

and generates the following commands:

F NET,NOTRACE,TYPE=IO,ID=PU7
F NET,NOTRACE,TYPE=BUF,ID=PU7

A command list can be used in a multiple-domain environment to aid the orderly
reinstatement of HOST2 after HOST3 has backed up HOST2's resources.

HOST1 HOST2 HOST3

I I
I

NCP1

!
NCP2

Chapter 2. Command Lists 2-21

The command list is entered as follows:

REINSTAT &1,&2,&3

&1 is the NCP to be reinstated (NCP2); &2 is the host that was performing
back-up (HOST3); &3 is the host that was backed up (HOST2). Thus, the
command entered from HOST2 is:

REINSTAT NCP2,HOST3,HOST2

The REINST AT command list is as follows:

ROUTE &2,V NET,REL,ID=&1,CDLINK=ACT
*ENTER GO TO CONTINUE WHEN READY
*OR ENTER CANCEL TO TERMINATE PROCESSING
PAUSE
ROUTE &2,V NET,ACT,ID=HST3CDRS
ROUTE HOST1,F NET,ID=HST3CDRS,CDRM=(&3,&2)
v NET ,ACT, ID=& 1
MSG ALL,REINSTATEMENT COMPLETE FOR NCP &1 and HOST &3
ROUTE HOST1,MSG ALL,REINSTATEMENT COMPLETE FOR NCP &1 AND

HOST &3
ROUTE HOST3,MSG ALL,REINSTATEMENT COMPLETE FOR NCP &1 AND

HOST &3

Sample Conditional Command Lists

Sample 1

Member or B book STOPCD contains the following command list statements:

&CONTROL CMD
* THIS COMMAND LIST STOPS ALL CROSS-DOMAIN SESSIONS FOR
* ONE OPERATOR

*
*
*

&1 = &NCCFCNT

INITIALIZE COUNT OF POSSIBLE
CROSS-DOMAIN SESSIONS

* IF ALL POSSIBLE SESSIONS
* CHECKED, EXIT

-LOOP &IF &1 = 0 &THEN &EXIT
* NAME OF DOMAIN

&ID &NCCFID &1
* STATUS OF DOMAIN

*
*
*
*
*
*

&STAT = &NCCFSTAT &ID
IF THE DOMAIN IS ACTIVE,
STOP THE DOMAIN

&IF &STAT = ACT &THEN STOP DOMAIN=&ID

SUBTRACT 1 FROM COUNT
&1 = &1 - 1

CONTINUE LOOP
&GOTO -LOOP

00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
00000010
00000011
00000012
00000013
00000014
00000015
00000016
00000017
00000018
00000019
00000020
00000021
00000022
00000023

The command list statements in Sample 1 (STOPCD) are explained below:

Statement
Number

1

2-6,8-9,11,13
15 -1 7 ,19,22

7

10

12

14

18

21

23

Explanation

Sets the &CON'fl{OL value to CMD; only commands are sent
to the operator's terminal screen.

Comment statements to explain what the command list is
doing.

Assignment statement to set user variable &1 to the value of
the NCCF control variable, &NCCFCNT. &1 now contains
the number of domains with which the operator can establish a
session. &1 will be used to control the number of times the
command list should loop.

Defines the label-LOOP. Tests the value of &1. If &1 is equal
to 0, the command list will exit (&EXlT). If &1 is not equal to
0, the command list will continue processing with the next
statement.

Sets the user variable &ID to the value of the built-in function
&NCCFID. &1 is used as the operand for the &NCCFID
function. &ID is set to domain name &1 as specified on the
DOMAINS definition statement.

Sets the user variable &STAT to the value of the built-in
function &NCCFSTAT. &ID is used as the operand for the
&NCCFSTAT function. The value of &STAT will be the
characters "ACT" if domain &ID is active, and "INACT" if
domain &ID is not active.

Tests the value of &STAT to determine if a STOP command
should be issued for that domain. If the value of &ST AT is
"ACT", the &THEN clause of the &IF statement will be
executed. If the value of &ST AT is not" ACT", no further
processing will be done on this statement.

Subtracts 1 from the value of &1. Statement 1 0 checks &1 to
decide if the command list should continue.

Transfers control to statement 10, where -LOOP is defined.
Processing continues with statement 10.

Chapter 2. Command Lists 2-23

When the STOP CD command list is executed, the operator will see the following
on the terminal screen:

STOPCD
STOP DOMAIN=domain1
STOP DOMAIN=domain2

STOP DOMAIN=domainn
DSI013I COMMAND LIST STOPCD COMPLETE

Sample 2

2-24

Member or B book NOWEVERY contains the following command list
statements:

* TO ISSUE A COMMAND NOW AND EVERY HH:MM MINUTES,
* ISSUE: NOWEVERY HH:MM,COlvJ.. • .vlAND

00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
00000010
00000011
00000012
00000013
00000014

* &CONTROL ERR
&LENP1 = &LENGTH &1
&STARTP2 = &LENP1 + 2
&LENPARMSTR = &LENGTH &PARMSTR
&LENCMD = &LENPARMSTR - &LENP1 - 1
&CMD = &SUBSTR &PARMSTR &STARTP2 &LENCMD

* ISSUE COMMAND NOW
&CMD

* ISSUE COMMAND EVERY HH:MM, AS SPECIFIED
EVERY &PARMSTR
&EXIT

The command list statements in Sample 2 (NOWEVERY) are described below:

Statement
Number

1-2,10,12

3

4

5

6

Explanation

Comment statements to explain what the command list is
doing.

Blank statement; this statement will be sent to the terminal as
a blank line.

Sets the &CONTROL value to ERR. From this point on in the
command list, only error statements are sent to the operator's
terminal screen.

Assignment statement that uses the &LENGTH built-in
function to set the user variable &LENP 1 to the length of the
first parameter entered on the command list invocation
(hh:mm).

Assignment statement that sets the user variable
&STARTP2 to the value of the user variable &LENP1 plus
2. &ST AR TP2 will be used to obtain the entire character
string of the command parameter on the command list
invocation.

Sample 3

CLIST
&CONTROL CMD

Statement
Number Explanation

7

8

9

11

13

14

Uses the built-in function &LENGTH to set the user variable
&LENP ARMSTR to the length of the parameters entered on
the command list invocation (&PARMSTR).

Sets the user variable &LENCMD to the value of
&LENP ARMSTR (see statement 7) minus &LENP 1 (length of
first parameter) minus 1.

Uses the built-in function &SUBSTR to isolate a section of the
&PARMSTR NCCF variable. &CMD is set to the part of
&PARMSTR starting at position &STARTP2 (see statement 6)
for a length of &LENCMD (see statement 8). &CMD now
represents the command entered on the command list
invocation.

Executes the command specified by &CMD (see statement 9).

Issues the EVERY command using the NCCF variable
&P ARMSTR as the operand for the command.

Causes the command list to terminate. This statement is
optional for this command list. If the &EXIT is omitted, the
command list terminates after statement 13 because an
end-of-file is reached.

When the NOWEVERY command list is executed, the operator will see the
following on the terminal screen:

NOWEVERY HH:MM,COMMAND
TO ISSUE A COMMAND NOW AND EVERY HH:MM MINUTES,
ISSUE: NOWEVERY HH:MM,Command

Since &CONTROL ERR is specified, no more statements will appear at the
operator's terminal unless errors are detected.

Member or B·book VLOGON contains the following command list statements:

&IF A&1 = A? &THEN &BEGWRITE -TEXT

00000001
00000002
00000003
00000004
00000005
00000006
00000007
00000008
00000009
00000010
00000011
00000012
00000013
00000014
00000015

* THIS CLIST GENERATES A VARY ACTIVATE COMMAND ACCORDING TO
* 3 PARAMETERS PASSED. EACH PARAMETER HAS A DEFAULT AND
* DOES NOT HAVE TO BE SPECIFIED.
* PARAMETERS:
* &1 = NAME OF ID TO BE ACTIVATED; DEFAULT IS NCPNAME
* &2 = NAME OF CONTROLLER APPLICATION; DEFAULT IS SNAPPL
* &3 = TYPE OF ACTIVATION--COLD OR WARM; DEFAULT IS WARM
* FOR EXAMPLE:
* VLOGON
* VLOGON IDNAME,CONTROLAPPL,COLD
* VLOGON IDNAME"WARM

*

Chapter 2. Command Lists 2-25

-TEXT

-LAB 1

-LAB2

-CMD

2-26

&IF A&l = A? &THEN &EXIT 00000016
&IF &LENGTH &1 NE 0 &THEN &GOTO -LAB 1 00000017
&1 = NCPNAME 00000018
&IF &LENGTH &2 NE 0 &THEN &GOTO -LAB2 00000019
&2 = SNAAPPL 00000020
&IF &LENGTH &3 NE 0 &THEN &GOTO -CMD 00000021
&3 = WARM 00000022
V NET,ACT,ID=&1,LOGON=&2,&3 00000023

The command list statements in Sample 3 (VLOGON) are described below:

Statement
Number

1

2

3

4-15

16

17

18

Explanation

VSE CLIST statement to define this command list to NCCF.
In VSE, the CLIST statement is required if a CMDMDL
statement does not exist for this command list. In OS/VS, the
CLIST statement is not required and will be ignored.

Sets the &CONTROL value to CMD; only commands will be
sent to the operator's terminal screen.

Tests the first parameter (&1) on the command list invocation.
"A" is used as part of the variable name tested to ensure that a
syntax error will not result if no & 1 parameter is entered. If & 1
is a question mark (?) the &THEN clause is executed. This is a
"help" function coded into the command list. &BEGWRITE
writes out statements 4-15 at the operator's terminal and
statement 16 causes the command list to terminate. If & 1 is
not a question mark, the command list continues processing
with statement 4.

Comment statements to explain what the command list will do.
These comments will be written to the screen only if statement
3 is true.

Defines the label -TEXT which is used as an operand on the
&BEGWRITE control statement (see statement 2). This
statement tests to see if the first parameter is a question mark
(?). If it is, the command list terminates. If not, the command
list continues processing with statement 17.

Tests whether the first parameter (&1) was supplied on the
command list invocation. If it was supplied, processing
continues with statement 19; if not, processing continues with
statement 18.

Sets the first parameter (&1) to the default value, NCPNAME,
if & 1 was not supplied on the command list invocation.

Statement
Number Explanation

19

20

21

22

23

Defines the label-LAB1 and tests whether the second
parameter (&2) was supplied on the command list. If it was
supplied, processing continues with statement 21; if not,
processing continues with statement 20.

Sets the second parameter (&2) to the default value, SNAPPL,
if &2 was not supplied on the command list invocation.

Defines the label -LAB2 and tests whether the third parameter
(&3) was supplied on the command list. If it was supplied,
processing continues with statement 23; if not, processing
continues with statement 22.

Sets the third parameter (&3) to the default value, WARM, if
&3 was not supplied on the command list invocation.

Defines the label -CMD. The symbols & 1, &2, and &3 are
replaced with their values in the command "V NET
ACT,ID=&1,LOGON=&2,&3". After value substitution, the
command is displayed on the operator's terminal and executed.
The command list terminates after this statement because an
end-of-file is reached.

If the VLOGON command list is executed with an ID of IRENE and a controller
application of NCCF2 specified, the operator will see the following on the
terminal screen:

VLOGON IRENE,NCCF2
-CMD V NET,ACT,ID=IRENE,LOGON=NCCF2,WARM
DSI013I COMMAND LIST VLOGON COMPLETE
output from the ACF/VTAM VARY command would appear here.

When the VLOGON command list is executed with a question mark (?) as the
first parameter, the operator will see the following on the terminal screen:

VLOGON ?

Statements 4-15 from the command list will appear here

DSI013I COMMAND LIST VLOGON COMPLETE

The VLOGON statement will appear exactly as it is specified on the command list
invocation.

Chapter 2. Command Lists 2-27

Chapter 3. Service Facilities and Macro Instructions

Se"ice Facilities Guide

This chapter describes the NCCF service facilities and macro instructions that
may be used when coding your own command processors, exit routines, and
subtasks. The chapter is divided into two parts, a guide explaining some of the
service facilities available and how to use them effectively, and a reference section
listing the macro instructions that invoke the NCCF service facilities. You should
become familiar with this chapter before reading Chapters 4, 5, and 6.

NCCF provides service facilities for user-written command processors, exit
routines, and subtasks. User-written programs that use these service facilities may
need to have addressability to the main vector table for NCCF (MVT) and must
use the DSICBS macro instruction (see below) to get a copy of the DSECT for
the service routine vector list (SVL), and other control blocks that are needed.
Figure 3-1 is an overview of the NCCF macro instructions and describes which
control block fields must be initialized by the user and which macro instructions
require.addressibility to the MVT.

Main Vector Table Addressability

To establish addressability to the main vector table (MVT), code the following:

For a command processor:

USING
L
USING
L
USING
L
USING

DSICWB,1
register,CWBTIB
DSITIB,register
register,TIBTVB
DSITVB,register
register, TVBMVT
DSIMVT,register

For an exit routine:

USING DSIUSE, 1
L register,USERTVB
USING DSITVB,register
L register , TVBMVT
USING DSIMVT,register

For a subtask:

LR register, 1
USING DSITVB,register
L register,TVBMVT
USING DSIMVT,register

Chapter 3. Service Facilities and Macro Instructions 3-1

Control Block Control Block MVT
Macro Input Fields Fields Set by Addressability
Name Function User Input NCCF Output User Must Set NCCF Required

DSICBS Includes control blocks Control block name Control block is None None No
during compilation. included (optionally

listed).

DSICES Analyzes a command. Address of parse Address of entry in None None Yes
descriptor block (PDB) system command
or command buffer table (SCT)

DSIDATIM Obtains and formats Output area and format Time and date. None None Yes
date and time. desired

DSIDEL Deletes a user-specified Module name Module is deleted. None None No (OSNS)
module. Yes (VSE)

DSIDKS
CONN Obtains a buffer; File name Buffer is obtained; None HDRBLENG, Yes

connects subtask to a subtask is connected HDRMLENG,
file. to file. HDRTDISP

FIND Finds a book or member Book or member name Book or member is None HDRMLENG, Yes
and reads first record. found; record is read. HDRTDISP

READ Reads a record into Book or member name Record is read, or None HDRMLENG, Yes
buffer obtained by end-of-data is HDRTDISP
CONN. indicated.

DISC Frees a buffer; File name Buffer is freed. None None Yes
disconnects subtask
from a file.

DSIFRE Releases storage Address and amount of Storage is freed. None None No if Q=NO
obtained by DSIGET. storage Yes if Q=YES

DSIGET Obtains storage. Address and amount of Storage is obtained. None None No if Q=NO

storage Yes if Q=YES

DSIKVS Determines whether an Command and keyword Authorization return None None Yes
operator is authorized or value to be checked code
to use a given keyword
or value.

DSILCS
CWB Obtains a command Address of area to .Address of CWB CWBTI B (after CWB header, Yes

work block (CWB). return CWB address CWB is address of
obtained) next CWB.

Frees a command Address of CWB CWB is freed. None None Yes
work block (CWB).

SWB Obtains service work Address of area to Address of SWB SWBTIB (after SWB header, Yes
block (SWB). return SWB address SWB is address, of

obtained) next SWB

Frees service work Address of SWB SWB is freed. None None Yes
block (SWB).

TVB Finds task vector block Address of TVB where Address of TVB that None Address of Yes
(TVB) for a given search is to begin; LU matches specified TVB
subtask. name, or operator I D, input.

or next active operator
station task, hardcopy
task or NCCF-to-NCCF
task

DSILOD Loads a user-specified .Address of B LD L list. Module is loaded . None None No (OSNS):
module. Yes (VSE)

Figure 3-1 (Part 1 of 3). Summary of NCCF Macro Instructions

3-2

Control Block Control Block MVT
Macro Input Fields ~~Ids Set by Addressability
Name Function User Input NCCF Output User Must Set NCCF Required

DSIMBS
SIZE Calculates message Message number, Length of message None HDRMLENG Yes

length. message inserts (length of

message)

BFR Builds a message. Address of area where Message is built. A" BUFHDR HDRMLENG Yes
message is to be fields except
returned HDRMLENG

DSIMDS Generates NCCF Number and text of Message is added in None None No
message definition message message definition
module. module.

DSIMQS Queues a message to Address of buffer with Message is queued All BUFHDR HDRSENDR Yes
a task. message in it, task I D of and then sent to fields

destination display screen or
hard-copy log.

DSIOIS Searches operator Operator identification Bit position of None None Yes
identification table operator identifica-
(OIT)' tion in OIT (also

used as input to
DSISSS Macro
instruction)

DSIPAS Searches for aliases for Address of parse descrip- Alias value or None None Yes
command parameters. tor block (PDB) and entered value or

number of the entry in it blanks

DSIPOS Posts completion of an Address of event control Event control block None None No
event. block (ECB) and comple- is posted.

tion code to be put in
ECB

DSIPRS Builds a parse descrip- Address of storage in PDB is built. PDB header, All PDB fields Yes
tor block (PDB). which PDB is to be indicating except header,

.built length (to PDBCMDA,
avoid overlay) PDB flags

DSIPSS Writes a message to the Address of data to be Message is written. A" BUFHDR HDRMLENG Yes
display screen or sends sent, name of fields modified
input to NCCF-to- destination including
NCCF task (NNT). HDRMLENG

DSIRDS* Searches authorization LU name to be located Position ot entry in None None Yes

and resource table in ART ART
(ART); optionally marks
entry as active or
inactive.

DSISSS* Searches span name Bit position to be Address of first None None Yes

table (SNT). checked in SNT (value entry in SNT with
obtained from DSIOIS) operator bit set to 1
and address of entry in
SNT where search is to
begin

DSIWAT Waits for completion of Name of event control None None None No (OS/VS)

an event. block (ECS) or address Yes (VSE)

of ECB list

DSIWCS Writes a message to the Address of buffer Message is written. HDRMLENG, None Yes

system operator's with message in it HDRTDISP

console.

DSIWLS Writes a message on the Address of buffer con- Message is written. All BUFHDR None Yes

NCCF log and hard- taining record to be fields

copy log. logged

Figure 3-1 (part 2 of 3). Summary of NCCF Macro Instructions

Chapter 3. Service Facilities and Macro Instructions 3-3

Control Block Control Block MVT
Macro Input Fields Fields Set by Addressability
Name Function User Input NCCF Output User Must Set NCCF Required

DSIZCSMS Requests CN· -lta Address of SWB and Requested CNM data None None No
across the CNM DShB; input buffer is returned.
interface. address and length; RU

address and length; dest-
ination name; target
name

DSIZVSMS Requests VS AM Address 'v f SWB and Appropriate VSAM All BUFHDR None No
services for a DSCP. DSRB; type of VSAM function is fields

request; type of access; performed.
VS AM key address and
length; address of user
work buffer.

*ACF/VTAM only_

Figure 3-1 (Part 3 of 3). Summary of NCCF Macro b ctiODS

Control Block Considerations

3-4

Figure 3-2 is an overview of the control blocks used by the NCCF service
routines. You should become familiar with. the NCCF control blocks described in
Appendix C before beginning design of your command processor, exit routine, or
subtask. In addition, the following chapters each contain detailed descriptions of
the control block fields needed for the particular task. The service work block
(SWB) and task vector block (TVB) are particularly important. The complete
NCCF control block structure is described in NCCF Logic.

Some l ~ the more important control blocks are described in detail in this chapter
and in tae following chapters in this book.

Chapter 3:

DSISWB Is the parmameter list for most of the NCCF service routines.

BUFHDR Is the standard NCCF buffer header.

DSIIFR Maps an internal fuction request which is a formatted buffer that is
transmitted to a subtask's message queue using the DSIMQS macro
instruction.

DSICBH Is the:.'control block header for most of the NCCF control blocks.

DSIPDB Is use.dlo analyzes input to NCCF.

Chapter 4:

DSICWB Is thepa,rameter list for a command processor.

DSISCE Containsinformation about the command.

DSIDSRB Is used.for communication between the data services task (DST) and a
data services command processor (DSCP).

Chapter 5:

DSIUSE Is the parameter list for an exit routine.

DSIMVT
DSIOIT

~--------~~~ ~-----r--------~

t-------t\ DSISNT

, DSISVL

DSIART

~ DSITVB ~~
t---~~ DSITVB

((1\ DSITVB

J / V ---t r'\ DSITVB

~~ 7~ 0

~---------------------,~----~

~
0

(0

~
I

DSICWB

DSISWB =w-Buffer (with
header)

DSIPD~

Figure 3·2. Overview of the Control Blocks Used by NCCF Service Routines

Chapter 3. Service Facilities and Macro Instructions 3-5

DSICBS Macro Instruction

Service Work Block (SWB)

3-6

Chapter 6:

DSIMVT Is the main control block for information throughout NCCF.

DSITVB Represents potential and active NCCF subtasks and subtask
parameters.

DSITm Stores information about an active subtask.

The DSICBSmacro instruction is used to gain access to the control blocks needed
by your command processor, exit routine, or subtask. In order to use the NCCF
service facilities, you need access to the DSISVL and DSISWB. You probably
also want tQjnclude DSITm to obtain a buffer header. The other control blocks
are optional depending on the type of program you are writing and the service
facilities you need. See Figure 3-1 under "User Input" and "Control Block Fields
User MustSet'~ for a guideline. In addition, for a command processor, include
DSICWB; for an exit routine, include DSIUSE; for a subtask, include DSITVB.

The DSICBS macro might be coded as follows in a command processor:

DSICBS 'DS:ICWB,DSISVL,DSISWB,DSIMVT,DSIPDB,DSITVB,DEFER=ALL

DEFER allows you to specify exactly where the control blocks should be
expandedin:your"program. DEFER=ALL specifies that all subsequent DSICBS
macro instmctionsare not to be expanded until DSICBS DEFER = INCLUDE is
encountered.

The service workblock (SWB) contains equates for most of the service routine
return codes returned in register 15 (DSILCS return code equates are in
DSIMVT). DSISWB is also used asa parameter list for most of the NCCF service
routines. The 'parameter list passed to the command processor (CWB) or to the
exit routine (USE) contains the address of an SWB that can be used by the
invoked routine. If this SWB is being used for some other purpose, such as a work
area, the control block location services macro DSILCS should be used to request
another SWB. The DSll..CS macro might be coded as follows:

DSILCS CBADDR=(R2),SWB=GET

If you obtain another SWB with the DSILCS macro, be sure to initialize the
SWBTmfield of the DSISWB with the address of the caller's DSITm before you
request NCCF services.

When the program no longer requires the SWB obtained with the DSll..CS macro,
you,mustJree.tbis,DSISWB. To free the DSISWBinthe example above, you
would code:

DSILCS' CBADDR=(R2),SWB=FREE

Note: If you use an SWB as a work area, be careful not to overlay the SWBTm
or SWBCBH'fields because these fields are not reinitialized by NCCF. If you
must change either of these fields, reinitialize them before returning control to
NCCF.

Task VeetorSIOCk.. (TVB)

Buffer . Header (BtlFHDR)

There is one task vector block (TVD):,for each subtask in NCCF. The TVB
co.ntains information about the status of the. subtask. Certain service routines,
Sllchas,DSIPSS, use the TVB tostore.-'Control information that is important for
processing their code. The task information block (TIB) is an extension of the
TVBandrepresents an active task~;

The TVB contains pointers to the MVT and the TIB. From these control blocks,
you-can obtain the. addresses of other important control blocks.

The buffer header (BUFHDR) portion of the task information block (DSrrm) is
shown in Figure 3-3. The BUFHDR DSECT is included in the DSITIB DSECT;
it must be included in every message: or command buffer and must precede all text
in the buffer. The fields are described below and must be initialized as shown in
Figure 3;;, 1 under "Control Block. Input Fields User Must Set."

Field

HDRMLENG

HDRBLENG

HDRIND

HDRMTYPE

HDRTDISP

HDRTSTMP

HDRDOMID

Description

Indicates the lengthin bytes of the text data in the buffer as a
number between:O and 32,767.

Contains the actual length of the entire buffer: header, plus
text, plus unused space. If the buffer is to be released with
DSIFRE, this length is used. The length may be up to 32,767
bytes.

Is used by NCCF'in certain situations, in general it should be
set to zero.

Contains a character that indicates the current usage of the
buffer. It may also indicate the origin of the command. If the
buffer is written out using the DSIPSS macro, this field is
displayed and logged. The values for this field are defined in
the BUFHDR expansion and are described in Appendix C of
this manual.

Is the offset ·from the start of the buffer header to the first byte
of text.

Contains the time that the command was received, in the
packed decimal form X' hhmmssOC' where hh is the hour of the
day from 00 to 23,.mm is the minutes of the hour from 00 to
59, ss is the seconds of the minute from 00 to 59, and OC is a
packed decimal· sign. See the DSIDATIM macro instruction.

Shows the identifier of the domain that originated the message.
This field is displayed and logged. The domain identifier for
the NCCF under which a particular program is running is
shown in the MVTCURAN field of DSIMVT.

Chapter 3. Service Facilities and Macro Instructions 3-7

3-8

0(0)

4 (4)

8 (8)

12 (C)

20 (14)

24 (18)

28 (lC)

Standard Buffer Header

HDRMLENG * HDRBLENG *
Message Length Total Length of Buffer

HDRTDISP
* HDRIND HDRMTYPE *

Reserved Message Type
Displacement to the First Charac-
ter of the Text from Start of Header

HDRTSTMP
Time Stamp Field

HDRDOMID
Domain Identification

----------~-----

HDRPID HDRPSTAT
HDRPMSG

POI Header POI Status
Message Sequence Number

ID Fields

*Must be initialized by user before write operation.

Message Command Extension (used by DSIMQS Macro)

HDRNEXTM
Chain Field

HDRSENDR
Operator I D of Sending Subtask

} HDRPDI

Figure 3.3. Buffer.iHeader (BUFHDR)

Field

HDRPOI

Message
command
extension

HDRNEXTM

HDRSENDR

Text

Description

Is a reserved field.

Is an extension to the BUFHDR that is used when a buffer
is transferred from one subtask to another. It is built by
the DSIMQS macro when creating a buffer for the
destination task. Other buffers do not need these fields.

Is an internal NCCF field that is used to chain buffers
together.

Contains the originator's operator ID, which is the contents of
the sender's TVBOPID field.

Can start anywhere after HDRPOI in a standard buffer or
after HDRSENDR in a buffer with a message command
extension. Use HDRTDISP to locate the start of text.

Example of BUFHDR. Usage

Internal Function Request (IFR)

Control Block Header (CBH)

The DSIDKS macro uses the buffer header to read a disk data set, which is
blocked according to a user-specified blocking factor. The disk services module
DSIDRS prefixes the physical read buffer with a BUFHDR. When the first record
is requested, a disk read is done for the first block. Then HDRTDISP is adjusted
to index the first logical record; and HDRMLENG is set to reflect the logical
record length. When the DSIDKS macro is issued for a subsequent logical record,
HDRTDISP is adjusted to index to the next logical record, until the block is
exhausted. Then another disk read is done, and the process starts again from the
first logical record in the block.

The internal function request (IFR) is a formatted buffer that is transmitted to a
subtask's message queue using the DSIMQS macro instruction. An IFR has
HDRMTYPE specified as I HDRMTYPE=X'C9'; symbol HDRTYPEI). Bc"ause
an IFR is transferred by DSIMQS, it always contains a message command
extension when it is received. (When building an IFR, the extension is optional).
If a command processor receives control with a command buffer and
HDRMTYPE=HDRTYPEI, it is assumed that there is a command extension and
anIFR.

The IFRCODE is 2 bytes, specified as X'0003', X'0008', or X'OOOB'. All other
values are reserved for NCCF use. Code 3 indicates that the remainder of the
buffer is a command to be executed. Code 8 only applies to an OST or NNT; it is
user-defined and the IFR is passed to DSrnXI3, the message receiver exit
routine. Code B indicates that the command is input from a full-screen panel.
The HDRTDISP field in an IFRshould contain the displacement to the
IFRCODE. For IFR codes 3 and B, NCCF modifies HDRTDISP and
HDRMLENG so that all commands appear the same to the command processor;
the command verb is followed by the operands. The IFR section is logically
removed. HDRTDISP contains the offset to the command verb.

The NCCF control block header (CBH) is a 4-byte header that identifies all
NCCF control blocks (except BUFHDR and IFR).

Field

CBmn

CBHTYPE

Description

Is a I-byte field that identifies the control block type. The
DSICBHDSECT defines the permissible values.

Is a I-bytefield~ The task information block (Tm) and task
vector block (TVB) each contain an identifier for the type of
subtask that the block represents. Values allowed are PPT,
OST, NNT, BCT, TCT, and optional subtask. The DSn..CS
macro instruction also uses this byte in management of CWBs
and SWBs.1n all other cases, this byte is reserved and should
be set to zero.

Chapter 3~ Service Facilities and Macro Instructions 3-9

Parse Descriptor Block (PDB)

3-10

Field

CBHLENG

Description

Is a halfword that contains the length of the control block. It
represents the length that is preallocated or the length that is
obtained by the DSIGET macro instruction. For example, a
PDB has a fixed size portion and a variable number of entries.
CBHLENG for a PDB contains the length of both parts.

The fieldsofthePDB are described below.

Field

PDBCBH

PDBCMDA

PDBBUFA

PDBIMMED

Description

Identifies the storage as a PDB and gives its size. Since PDBs
are of no fixed length, this length is important. Mos.t PDBs in
NCCF are 160 bytes, which allows for the fixed portion of the
PDB plus 37 entries. If the 160-byte PDB is overrun, DSIPRS
issues an 8 return code.

Points to the entry in the system command entry (DSISCE)
for the verb in the buffer (the verb that caused this command
processor to be called). This entry is used as a parameter by
the DSIPAS (parameter alias services) and DSIKVS
(KEYCLASS and VALCLASS lookup services) macros.

Contains the address of the command buffer, as does
CWBBUF (described earlier).

Is a flag that indicates whether the command processor is
regular or immediate. When the PDBIMMED bit is on, the
command processor is executing as an immediate command
processor, as a subroutine of the receive (terminal input) exit
(in OS/VS, under an JRB). A command processor can only be
immediate if it is running under an operator station task (OST)
or a cross-domain task (NNT). The user defines whether a
command is regular or immediate on the CMDMDL definition
card with the TYPE operand (see NCCF Installation).

When the first bit in PDMIMMED is off, the command
processor is executing as a regular command processor or as a
data services command processor under the control of the
subtask mainline. (PRB in OS/VS). The DISPSS
TYPE=OUTPUT macro should be used to write to the
terminal. However, command processors running under a data
services task (DST) may not use the DSIPSS macro. The
1J~IM\J~macro snOUlU Oti ~tiUI.U ~~llU L~AL LV (I. ~\;iI..u..IUU"'" .l.U.I.

the appropriate subtask(such as the request originator or the
receiver of authorized messages).

A queued DSIGET request must code the EXIT-NO operand
when operating as a regular command processor.

.• ~

Field

PDBNOENT

PDB Syntactical
Element Entries

PDBLENG

PDBTYPE

PDBDISP

Getting and·Freeing Storage

Description

Is the number of syntactical element entries in the PDB,
including the verb and all operands. The delimiters used for
this command's parse are blank, comma, period, and equal
sign.

Each syntactical element creates one entry in
this portion of the PDB. The verb is always the
first entry. The number of syntactical element entries is in
PDBNOENT. Each entry contains the length, the delimiter, and
the offset from the beginning of the buffer.

Contains the length of the particular syntactical element. It
does not include the length of the delimeter. When two
delimiters (except blanks) occur sequentially, the value of the
length is zero; two delimiters separated by a blank or blanks
also create a zero length entry. The offset is set to point to the
second delimiter. The standard NCCF parsing delimiters are
the blank, comma, period, and equal sign.

Contains the delimiter character that separates this element
from the succeeding one. When a command processor is given
control, the delimiters used in parsing the command are blank,
comma, period, and equal sign. The end of the record is
treated as if it is delimited by a blank.

Multiple blanks are treated as one blank and blanks preceding
a syntactical element are ignored. For example,
'bbbverbboperandl,bbboperand2', creates an entry for the
verb first, ignoring the preceding blanks, an entry for
operandI, delimited by a comma, and one for operand2
delimited by a blank.

Contains the offset from the start of the buffer to the first
character of the nth syntactical element; for example, element
addr(n) = PDBBUFA + PDBDISP(n).

DSIGET is used to obtain storage and DSIFRE is used to free that storage after
use.

DSIGET LV=4096,A=(REG2),BNDRY=PAGE

This example specifies that 4096 bytes of storage are to be obtained and the
address placed in the the fullword pointed to by register 2.

DSIGETmay also be used to queue the obtained storage to the user's task vector
block (TVB). This allows NCCF to free the storage at logoff in the case of
abnormal termination. An example to obtain this queued storage is:

DSIGET LV=2032,A=(REG2),BNDRY=PAGE,REENT=YES,LISTA=(REG3),
Q=YES TASKA=MYTVB,EXIT=YES

Chapter 3. Service Facilities and Macro Instructions 3-11

This macro specifies that 2032 bytes of storage are to be obtained and the address
placedin the. fullword pointed to by register 2. The storage is to be aligned on a
pageboundry.Since the first 16 bytes of the page are used by NCCF in Q=YES,
only 2032 bytes were requested, 16 less than the page size. (Page size is 2048
bytes for OS!VSl and VSE, 4096 bytes for MVS.) REENT= YES (OS/VS
only), specifies that the reentrant form of DSIGET is to be used. In this example,
the storage is to be· queued to the TVB (Q=YES) specified by the symbolic name
MYTVB (TASKA=MYTVB). LISTA=(REG3) specifies that register 3 contains
the address of a . 14-byte area in dynamic storage which DSIGET uses to obtain
the queued storage. EXIT= YES must be coded if the storage request is from
DSIEX01,DSmX02 (if TVBINXIT flag is on), or an immediate command.

Getting, Freeing, and Locating a Control Block

Disk Services

3-12

DSILCS is used to get and free a DSISWB or a DSICWB. This macro instruction
may also be used to locate a DSITVB.

The following example obtains a DSISWB and places the address of the DSISWB
in the SWBAREA:

DSILCS CBADDR=SWBAREA,SWB=GET

A register that points to SWBAREA may also be specified. To free the storage,
use SWB=FREE instead of SWB=GET.

To obtain a DSICWB, use the same process used for a DSISWB, substituting
CWB=GET for SWB=GET.

DSILCS may also be used.to locate a DSITVB by operator identification or LU
name, to locate the next active DSITVB for a specific task type, and to locate the
DSITVB forthe authorized message receiver.

Disk services retrieves data from NCCF partition data sets (OS/VS) or the source
statement library (VSE). DSIDKS then locates a specified book or member and
reads the records in that book or member. DSIDKS is used to obtain storage for
the disk .service area and initialize the data services block (DSIDSB) and the
buffer header of the input buffer.

Here is a series of examples using DSIDKS:

DSIDKS
DSIDKS
DSIDKS
DSIDKS
DSIDKS

SWB=(REG2),DSBWORD=DISKADDR,TYPE=CONN,NAME=DSIPRF
SWB=(REG2),DSBWORD=DISKADDR,TYPE=FIND,NAME=MEMNAME
SWB=(REG2),DSBWORD=DISKADDR,TYPE=READ
SWB=(REG2),DSBWORD=DISKADDR,TYPE=READ
SWB=(REG2),DSBWORD=DISKADDR,TYPE=DISC,NAME=DSIPRF

In the examples above, DSIDKS initializes the disk service control blocks and
input buffer, and returns the address of the DSIDSB in DISKADDR. DSIPRF is
the NCCF definition name to be used. DSIDKS then finds the member or book
nameMEMNAME, and reads the first record. The next two sequential records
are also read. When the three records have been read, DSIDKS frees the control
blocks and the input buffer.

Presentation Services

Messages can be sent by NCCF using several different macro instructions:
DSIPSS, DSIMQS, DSIWCS, and DSIWLS. DSIPSS is used to control screen
formats, organize the data for a specific device, and send the data. Another form
of DSIPSS is used to send a command to an NCCF in another domain. DSIMQS
is used to send messages to the operator. DSIWCS sends a message to the system
operator console, and DSIWLS sends a message to the NCCF log and the
operator's hard-copy log. Figure 3-4 shows how these macro instructions are used
for communication from an NCCF operator's OST. DSIPSS and DSIMQS are
described in greater detail below.

Terminal for This
Operator Station

DSIPSS

System
Operator's
Console

NCCF Log or
Hard-Copy Log
for This Operator
Station

ACF/TCAM Version 2
Operator Control or
ACF/VTAM POI

ACF/TCIWI
Version 2 or
ACF/VTAM
Commands

DSIMQS

Another Subtask
in this Domain

Domain Boundary

I
I
I
I
I
I

DSIPSS I TYPE= OUTPUT I IMMED

I
I
I
I
I
I
I
I

Figure 3-4. Use of NCCF Macro Instructions for Communication from an Operator Station Task

Chapter 3. Service Facilities and Macro Instructions 3-13

DSIPSS

3-14

Several different types of presentation services are available through the DSIPSS
macro instruction. The NCCF screen modes are described in greater detail in
NCCF Terminal Use. They include the following:

Standard NCCF Mode
Messages sent to the NCCF screen consist of a 12-byte prefix, followed by
68 bytes of data. The prefix includes a I-character code for the entry type
and a domain name field indicating the domain that generated the message.
If the message exceeds 68 bytes, it is broken between words and the
message is continued· on the next screen line, indented 12 characters.

Full-Line Mode
Messages sent to the NCCF screen appear as 80 bytes of data with no
prefix; messages longer than 80 bytes are truncated. Except for this
difference, the full-line screen appears the same as the standard NCCF
screen. The messages appear in a line-by-line protocol. Full-line mode
supports application programs such as NPDA, a separately orderable IBM
program product, that use full-line, 80-byte output.

From a subtask other than an OST, full-screen title-line output is
supported, allowing full-line messages to be displayed with title headings.
(See "Full-Line Command Processor Considerations" in Chapter 4.)

Full-Screen Mode
Application-built 3270 data streams containing commands, orders, and data
are sent to the NCCF screen. In this way, information can be presented
with a full screen of data. (See "Full-Screen Command Processor
Considerations" in Chapter 4).

For synchronous full-screen mode, 3270 data streams built by a command
processor are sent to the terminal. Any input causes a command to be
scheduled. The CLEAR key is used to escape from full-screen mode.

For asynchronous full-screen mode, full-screen input and output can be
processed asynchronously, allowing a command processor to obtain input
without scheduling a command and to issue a series of requests and
responses without interrupting processing. The asynchronous full-screen
command processor may process an event control block (ECB) list of
multiple events while waiting for operator input. The escape from
asynchronous full-screen mode is user-coded.

Use the chart shown in Figure 3-5 as a guide to help you code the DSIPSS macro
instruction to obtain the type of output you desire. Other coding combinations
are also possible.

To send a command to an NNT, the DSIPSS TYPE=XSEND macro is used. To
return data to the OST from the NNT, DSIPSS TYPE=OUTPUT is used. This
data may be messages that the OST places on the operator's screen or commands
to be executed by the OST.

Message Queuing

DSIPSS Function Format of DSIPSS Macro Instruction

Standard NCCF mode DSIPSS SWB=(R2),TYPE=OUTPUT,OPTIONS=MSG,BFR=(R3)

or or

NNT-to-OST DSIPSS SWB=(R2),TYPE=OUTPUT,OPTIONS=SEG,BFR=(R3)

commun ication

Full-line mode:
First line DSIPSS SWB=(R2),TYPE=OUTPUT,OPTIONS=F IRST,BFR=(R3)

Middle line DSIPSS SWB=(R2),TYPE=OUTPUT,OPTIONS=MIDDLE,BFR=(R3)

Last line DSIPSS SWB=(R2),TYPE=OUTPUT,OPTIONS=LAST,BFR=(R3)

Only line DSIPSS SWB=(R2),TYPE=OUTPUT,OPTIONS=ONLY,BFR=(R3)

Determine display DSIPSS SWB=(R2),TYPE=SCRSIZE,SIZE=SIZEAREA
screen size.

Determine output DSIPSS SWB=(R2),TYPE=WINDOW,SIZE=SIZEAREA

area size.

Send a single line DSIPSS SWB=(R2),TYPE=IMMED,BFR=(R3)

to the immediate
message area.

Send from an OST DSIPSS SWB=(R2),TYPE=XSEND,APPLlD=APPLNAME,BFR=(R3)
to an NNT in
another domain.

Send a formatted DSIPSS SWB=(R2),TYPE=PANEL,PANEL=PARMLIST

3270 data stream
synchronously.
Optionally,
receive input.

Send a formatted DSIPSS SWB=(R2),TYPE=ASYPANEL,PANEL=PARMLIST

3270 data stream
and receive input
asynchronously.

Test if the OST DSIPSS SWB=(R2),TYPE=TESTWAIT

has work pending.

Wait in a command DSIPSS SWB=(R2) ,TYPE=PSSWAIT,ECB LlST=ECBPARM

processor for NCCF
and command
processor events.

Figure 3-5. Examples of Using the DSIPSS Macro Instruction

DSIMQS is used to queue a user-supplied message to the message queue of a
subtask's DSITVB in the same domain. The message may be sent to either the
operator's screen or to the hard-copy log. Here is an example of DSIMQS:

DSIMQS SWB=(REG2),BFR=BUFADDR,TASKID=MYTASK

In the example above, the message buffer pointed to by BUF ADDR is to be
queued to the subtask with the subtask identification of MYT ASK.

The subtask identifiers can be found by checking the TVBOPID field of DSITVB.
TVBOPID is initialized with the following:

• For an OST or an NNT, the DOMAINID operand of the NCCFID definition
statement appended with the identifier of the operator.

Chapter 3. Service Facilities and Macro Instructions 3-15

• For a PPT, the PPT APPL name, which is the NCCFID appended with the
characters PPT.

• For a DST, the TSKID operand of the TASK definition statement for the data
services task.

• For an HCT, the LU name of the hard-copy device.

• For an optional subtask, the user initializes this field.

If AUTHRCV==YES is coded instead of TASKID, the message is sent to the
authorized message receiver specified by the AUTH definition statement. If there
is no authorized message receiver, the message is sent to the system console.

The message buffer must have a properly initialized buffer header (BUFHDR),
including the message command extension. Buffers that are formatted as internal
function requests (IFRs) are not displayed. Instead, they cause the receiving
subtask to take the action requested by the IFR. Refer to the sections "Buffer
Header (BUFHDR)"
and "Internal Function Request (IFR)" for more information.

Resource Location (ACF/VTAM Only)

3-16

The DSIRDS macro instruction is used in ACF /VTAM systems to locate an entry
address for the resource in the authorizaton and resource table, DSIAR T.
DSIRDS might be specified as follows:

DSIRDS SWB=(REG2),LUNAME=LUADDR,ARTPOS=ENTRYADR

For this example, the DSIART entry address for the resource pointed to by
LUADDR will be returned in ENTRY ADR. The resource will be marked as
active.

Figure 3-6 shows the relationships between the operator identification table
(DSIOIT), the span name table (DSISNT), and the authorization and resource
table (DSIAR T). The relative position of an entry in the operator identification
table is represented by the bit position of each entry in the span name table (n
bits). The relative position of an entry in the span name table is represented by
the bit position of each entry in the authorization and resource table (m bits).

For example, if a user wishes to find whether a particular operator is authorized to
issue commands for a particular resource, follow this procedure:

• Use the DSIOIS macro instruction to find the position of the operator's
identification in the DSIOIT table. The identification is put in the fullword
area 1l0inted to by the OPID operand of the macro instruction. The relative
pOSition is·returned to the fullword area pointed to by the OITPOS operand.

• Use the DSISSS macro instruction to search DSISNT for the bit position that
corresponds to the location of the operator identification entry in DSIOIT.
The bit position is specified by the OITPOS operand of the macro instruction.
Itisbest to begin the search atthe beginning of the span name table~ (The
DSISNTaddress is found in the NCCF main vector table, DSIMVT; see
NCCF Logic.) The address of the first sp~n entry that corresponds with a bit
s~ttol is returried to.t4efullword·areaspecified by theSNTADDR operand
of the macro ins.truction. Because it is the address of the entry and not its

DSIART ~ m Bits DSISNT n Bits
,. ...

\

DSIOIT Flag Bytes

'W r
SPAN1 1010101010101 LU1 01100011

- SPAN2 1101101100011 LU2 01101101
SPAN3 0010011101100 LU3 11001100
SPAN4 00 11 011 0111 01 LU4 00110010

-~ -- - - -
111101101110:3 FOP:n I~ ::-=J

[00101101

Figure 3-6. Table Field Relationships

relative position that is returned, the starting address should be stored in
another area to be used in any calculations that may be required to establish
the entry's position.

• Create a mask .byte to check the bit position of the authorization and resource
table DSIART that corresponds to the span name table entry position.

• Use the DSIRDS macro instruction to find the address of the specific entry for
the resource. The address of the entry is returned to a fullword area specified
by the ARTPOS operand of the macro instruction. The resource name is
specified on the LUNAME operand.

• Use the mask byte to check whether the corresponding bit is set to 1.

In the example shown in Figure 3-6, the DSIOIS macro can be used to determine
the position of the identification OPID2 in DSIOIT. Position 2 is returned to the
area specified by OITPOS. DSISSS can then be used to check bit position 2 in
DSISNT. The first span name with a 1 in that position is SP AN2. The address of
that entry is returned to the area specified by SNTADDR. Using the starting
address and the address returned, and dividing the difference by the length of the
DSISNT entries (found in DSIMVT), the relative position of SPAN2 can be
calcualted. A mask byte can then be prepared to test the bit position
corresponding to SP AN2 in DSIART. The DSIRDS macro instruction can then
be used to find the address of the resource name in DSIAR T. If LU2 is specified
in the area pointed to by the LUNAME operand, it is the second entry in
DSIART. The mask byte can then be used at that location, showing that the
operator whose identification is OPID2 can issue commands for LU2. If a match
is not found, DSISSS can be invoked again to find another span. The starting
address specified for the SNT ADDR operand should be the address of the entry
immediately following SPAN2. This process can be repeated until a span is found
or the end of the table is reached.

Chapter 3. Service Facilities and Macro Instructions 3-17

Macro Reference

DSICBS Macro Instruction

This section explains how to code NCCF macros to request various service
facilities. NCCF uses registers 0, 1, 14, and 15 for macro instruction expansion;
the user should avoid these registers when using NCCF macro instructions.
NCCF expects register 13 to point to a standard 72-byte save area.

The DSICBS macro instruction is used to include the NCCF control blocks that
are necessary for particular functions, such as a user-written command processor.
The macro instruction ensures that a control block is included only once, that any
necessary inner control blocks are included, and that all definitions for inner
control blocks precede the definition of the outer control block. DSICBS also con
trols the format, and printing or suppression, of DSECTs for the control blocks.

Name Operation Operands

[name] DSICBS

[

[Cbname, ...] ~~CT=~{JYES I NO}]

THESE
,DEFER:::; ~;LUD [,PRINT= {YES I NO}]

cbname
specifies the.name of an NCCF control block (starting with DSI) to be
included. Names must be separated by commas. cbname may not be used
with DEFER=INCLUDE. Valid control block names are those in
Appendix C.

EJECT
specifies that EJECT statements are performed between each control block
expansion and after the last expansion.

DEFER = ALL
specifies that all subsequent DSICBS macro instructions are not expanded
until a DSICBS DEFER = INCLUDE is encountered.

DEFER = THESE
specifies that these. control block expansions are delayed until a DSICBS
DEFER=INCLUDE is encountered.

DEFER = INCLUDE
specifies that any deferred control block expansions are to be expanded at
this point in the program.

DEFER=NO
specifies that the control block or blocks are to be expanded immediately.

PRINT=YES
specifies that the control block expansion is to be printed.

PRINT=NO
specifies that the control block expansion is not to be printed.

DSICES Macro Instruction

The DSICES macro instruction uses the specified buffer or a parse descriptor
block (PDB) name to locate a system command entry (D.sISCE) that corresponds
to the verb. The routine can also use a module name to locate a particular module
in the system command table. The routine returns the address of the DSISCE
entry to the area specified by the SCTADDR operand.

Name Operation Operands

[name] DSICES SWB={(register) I symbolic name}

~
BFR={(register) I symbolic name}!

SWD

BFR

PDD

' PDB={(register) I symbolic name}

MODNAME= modulename
,SCTADDR={(register) I symbolic name}

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

is a register containing the address, or the symbolic name of a fullword area
that contains the address of the buffer that contains the verb to be
analyzed. Note: This buffer must have a properly initialized BUFHDR.

is a register containing the address of a completed parse descriptor block to
be used as input or the symbolic name of a fullword area containing the
address of that PDB.

MODNAME
specifies the module name to be located in the system command table. The
modulename may be specified as the field containing the module name or as
the module name itself. If you specify the module name itself, this name
must be enclosed in single apostrophes.

SCTADDR
is a register containing the address of a user-provided fullword area, or the
symbolic name of that area, where the address of the mime or verb in the
system command entry that corresponds to the verb or module name will be
returned. This area is mapped by the DSISCE DSECT shown in Appendix
C.

The return codes for the command analysis routine are found in register 15. They
are as follows:

o A regular command was found in the system command table; the address
was returned.

4 The command found can be processed as either a regular or immediate
command; the address was returned.

Chapter 3. Service Facilities and Macro Instructions 3-19

8 An immediate command was found in the system command table; the
address was returned.

12 No match was found for the input verb; no address was returned.

20 The command found is incompatible with the task type invoking the
routine; the address was returned.

DSIDATIM Macro Instnlction

DSIDEL Macro Instnlction

3-20

The DSIDATIMmacro instruction obtains and formats the time and date and
places·them.in an output area. This macro instruction can be used, for example,
to show the date and time on a message.

Name Operation Operands

[name] jIDATIM AREA={(register) I symbolic name}

,FORMAT = {EBCDIC I BINARY}

AREA
is a register containing the address of, or the symbolic name of, an area into
which the date and time are returned. The area does not have a buffer
header.

FORMAT
s <!cifies the format of the output. EBCDIC returns the date and time in 17
bytes, formatted as follows:

'mm/dd/yy hh:mm:ss'

BINARY returns the date and time in 8 bytes as follows:

x'OOyydddChhmmssOC'

yy is the year and ddd is the Julian date. hh is hours, mm is minutes, and ss
is seconds. If no value is specified, EBCDIC is assumed. Note: A VSE
installation may change the date format during system definition.

The DSIDEL macro instruction is used to delete user-defined modules. The user
specifies the name or address of the module to be deleted.

Name Operation Operands

[name] DSIDEL {EP=modulename I EPLOC=address}

EP=modulename
specifies the name of the module to be deleted.

DSIDKS Macro Instruction

EPLOC=address
specifies the address of an 8-byte field containing the module name to be
deleted. The module name should be left-justified and padded with blanks.

The return codes for DSIDEL are in register 15, as follows:

Zero Module has been deleted.

Nonzero Attempt to delete module was unsuccessful.

The DSIDKS macro instruction obtains storage for the disk service area, initialize
the disk service block (DSB) and the buffer header of the input buffer, locate a
book or member specified by the file name, and read the records in that book or
member upon request. Users must have a copy of the DSECT for DSIDSB, the
NCCF disk services block (see Appendix C).

For more information on DSIDKS, see "Disk Services" earlier in this chapter.

Name Operation Operands

[name] DSIDKS SWB={(register) I symbolic name}

SWB

,DSBWORD={(register) I symbolic name}

{
CONN}

! ,TYPE= FIND
DISC

,TYPE = READ

,NAME= {(registe~) }{
symbolic name)

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

DSBWORD
is a register containing the address of a user-provided fullword area or the
symbolic name of that area. When the routine completes processing for
TYPE=CONN, this area contains the address of the disk service area that
has been obtained and initialized. For other disk service requests, this disk
service area address must be returned to the service routines.

TYPE = CONN
specifies that the service routine is to obtain storage for and initialize the
disk service control blocks and input buffer. The address of the disk service
block (DSB) is returned in the area specified by the DSBWORD operand.
The DSIDKS macro must be issued with this option before any other
options may be chosen.

Chapter 3. Service Facilities and Macro Instructions 3-21

TYPE = FIND
specifies that the service routine is to determine whether the book or
member specified by the NAME operand is in the appropriate NCCF
library and read the first record if it is found. When the routine has
completed processing, the address of the input area containing a buffer
header and the record is in the DSB field DSBBUFF. This option can only
be issued after the CONN option has been issued.

TVPE=DISC
specifies that the service routine is to free the control blocks and input
buffer used by the disk service routines.

NAME
for TYPE=CONN and TYPE=DISC, is a register containing the address
of an 8-character user area or the symbolic name of that area. The area
should contain the caller's NCCF definition name (left-justified and
padded with blanks): for example, DSIPRF or DSIPARM. (See NCCF
Installation.) For TYPE = FIND, NAME is a register containing the address
of an 8-character user area that contains the name of the book or member
to be read, or is the symbolic name of that user-area.

TYPE = READ
specifies that the service routine is to read the next sequential record in the
book or member or return an end-of-data indication if there are no more
records in the book or member. This option can only be issued after the
FIND option has been issued.

The return codes from DSIDKS (types CONN and DISC) are found in register
15. They are as follows:

CONN 0 Disk service area obtained and initialized successfully.
4 NCCF definition name specified was not found in the data

control table.
12 No storage was available for a disk service area.

DISC 0 The control blocks and buffer were freed successfully.
The control block identifier specified was invalid and no
storage was freed.

20

The return codes from DSIDKS (types FIND and READ) are found in register
15. They are as follows:

FIND 0
4

8

12

READ 0
4
8

12

The book or member was found, and the first record was read.
The book or member was not found in the source statement
library or the specified library.
The book or member was found but an 110 error occurred
on the first read.
The specified NCCF definition name has not been opened.

The record was read successfully.
An end of data was reached.
An 110 error occurred during reading.
The reading of this record is prohibited; an 110 error may
have occurred, end of data may have been reached, or the
caller did not issue TYPE=FIND first.

DSIFRE Macro Instruction

The DSIFRE macro instruction frees storage that was obtained using the DSIGET
macro instruction. Optionally, DSIFRE dequeues the storage buffer from the
user's task vector block (TVB). Registers 2 through 12 may be used for register
notation. DSIFRE is intended to allow the user to free the buffer from the TVB
chain. DSIFRE macro always generates a reentrant code.

For more information on DSIFRE, see "Getting and Freeing Storage" earlier in
this chapter.

Name Operation Operands

[name] DSIFRE HE I R}]

E

R

LV

A

SP

,LV = {n I (register)}

,A={(register) I symbolic name}

[,SP={(register) I number}]

[,LIST A= {(register) I symbolic name}]

[,Q={YES I NO}l

[,TASKA={(register) I symbolic name}]

[,EXIT={YES I NO}]

specifies the element form of FREEMAIN (OS/VS only). This value must
not be coded if Q= YES is specified.

specifies the register form of FREEMAIN (OS/VS only). This value must
not be coded if Q = YES is specified.

is the number of bytes, or is a register containing the number of bytes, of
storage to be freed.

is a register containing the address of the storage to be freed, or is the
symbolic name of the fullword area containing the address of the storage to
be freed.

specifies the subpool number (MVS only) from which the storage is to be
freed, or specifies a register loaded with the subpool number. 0 through
127 are acceptable values, and 0 is the default value.

LISTA
is a register containing the address of a 14-byte area in the user's dynamic
storage or is the symbolic name of that area. The value must be on a

Chapter 3. Service Facilities and Macro Instructions 3-23

DSIGET Macro Instruction

3-24

Q

fullword boundary. DSIFRE builds a parameter list in that area to pass to
DSIQFM, which frees the storage and de queues it from the user's task
vector block (TVB). This parameter is required if Q=YES is specified.

specifies whether the storage is to be dequeued from the user's TVB. If
Q= YES is specified, LISTA, T ASKA, and EXIT must also be specified,
and register 13 must point to a 72-byte save area. NO is the assumed
value.

TASKA

EXIT

is a register containing the address of the task vector block (TVB), or is the
symbolic name of that TVB, from which the storage is dequeued. This
operand is required if Q = YES is specified.

YES· specifies that the storage release request is from DSrnXO 1, DSrnX02,
or an immediate command processor. NCCF has an exit queue and a
NCCF mainline queue, and the EXIT specification prevents queuing
problems. NO is the assumed value. EXIT is required if Q= YES is
specified.

The return codes for DSIFRE are in register 15:

o Storage was successfully freed (and dequeued, if specified).

4 Storage was found on the queue and was de queued but was not freed
(FREEVIS or FREEMAIN failure).

20 Storage was not found on the queue.

The DSIGET macro instruction obtains storage. Optionally, DSIGET can be used
to queue the obtained storage to the user's task vector block (TVB). Registers 2
through 12 may be used for register notation. DSIGET is intended to allow the
user to queue storage on the TVB chain so that, if abnormal termination occurs,
NCCF can free the storage at logoff.

For more information on DSIGET, see "Getting and Freeing Storage" earlier in
this chapter.

Name Operation

[name] DSIGET

Operands

LV={n I (register)}
,A={(register)1 symbolic name}
[,SP=Hregister) I symbolic name}]
[,REENT={YES I NO}]
r.,BNDRY={PAGE.1 DBLWD}]
[,LISTA= {(register) I symbolic name 11
r,Q={YESI NO}]
[,TASKA==;= { (register)I·symbolic. name n
[~Exr:r= {YES I NOB

LV

A

SP

is the number of bytes, or is a register containing the number of bytes, of
storage to be obtained.

is a register containing the address of the fullword, or is the symbolic name
of the fullword, into which the address of the obtained storage is returned.

specifies the subpool number (MVS only) from which the storage is to be
obtained, or specifies a register loaded with the subpool number. 0 through
127 are acceptable values and 0 is the default value.

REENT
For OS/VS, REENT=YES must be coded. For VSE, this operand is not
required, and is ignored if present. REENT specifies whether the reentrant
form of DSIGET is used.

BNDRY = PAGE
specifies that the obtained storage is to be aligned on a page boundary.

BNDRY= DBLWD
specifies that the obtained storage is to be aligned on a doubleword
boundary.

LISTA

Q

is a register containing the address of a 14-byte area in the user's dynamic
storage, or is the symbolic name of that area. The value must be on a
fullword boundary. DSIGET builds a parameter list in that area to pass to
DSIQGM, which obtains the storage and queues it to the user's task vector
block (TVB). This parameter is required if Q=YES and REENT=YES are
specified.

specifies whether the obtained storage is to be queued to the user's TVB. If
Q=YES is specified, REENT=YES, LISTA, TASKA, and EXIT must also
be specified, and register 13 must point to a 72-byte save area. For
OS/VS, REENT=YES must be specified if Q=YES is coded. NO is the
assumed value.

TASKA

EXIT

is a register containing the address of the task vector block (TVB), or is the
symbolic name of the TVB to which the obtained storage is queued. This
operand is required if Q= YES is specified.

YES specifies that the storage request is from DSIEXO 1, DSIEX02, or an
immediate command processor and Q= YES was specified. NCCF has an
exit queue and an NCCF mainline queue, and the EXIT specification
prevents queuing problems. NO is the assumed value.

Chapter 3. Service Facilities and Macro Instructions 3-25

DSIKVS Macro Instruction

3-26

The return codes for DSIGET are in register 15:

o Storage was successfully obtained.

4 No storage was obtained.

8 GETVIS or GETMAIN was issued by a program running in real mode.

12 No storage was available, or the length specified was less than zero, or no
continuous area of storage of the size requested was available.

The DSIKVS macro instruction is used in a command processor to determine if a
particular keyword or a particular keyword and its scope value are in the
operator's command scope. A return code is shown in register 15 indicating
whether the operator who issued the command has been authorized to issue it
with the particular keyword or value or both.

Name Operation Operands

[name] DSIKVS SWB= {(register) I symbolic name}

SWB

CMD

{
CMD={(r~gister) I symbolic name} }
SCTADDR={(register) I symbolic name}
,KEYWORD=Hregister) I symbolic name}
[,V ALUE={(register) I symbolic name}]

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

is a register containing the address of an 8-byte field or the symbolic name
of an 8-byte field that contains the command name left-justified and
padded with blanks. Either CMD or SCT ADDR must be specified.

SCTADDR
is a register containing the address of a fullword field or the symbolic name
of a fullword field that contains the SCT entry address for the command
that is to be checked. Either CMD or SCTADDR must be specified.

KEYWORD
is a register containing the address of an 8-byte field or the symbolic name
of an 8-byte field that contains the keyword left-justified and padded with
blanks. This operand is required.

VALUE
is a register containing the address of an 8-byte field or the symbolic name
of an 8-byte field that contains the value left-justified and padded with
blanks. VALUE is an optional keyword that is specified when V ALCLASS
checking is desired.

Note: If both KEYWORD and VALUE are specified, KEYWORD is scope
checked before VALUE. If KEYWORD results in a nonzero return code,
VALUE will not be checked.

DSILCS Macro Instruction

The return codes for the KEY CLASS and V ALCLASS lookup service routine are
found in register 15. They are as follows:

o The specified keyword and value are in the operator's scope of commands.

4 The specified keyword was not in this operator's scope of commands.

8 The specified value was not in this operator's scope of commands.

12 A required parameter was missing or an invalid parameter was specified in
the macro instruction.

16 No storage is available.

The DSILCS macro instruction:

• Gets a service work block (SWB) for the caller and places the address of that
SWB in a fullword area specified by the CBADDR operand.

• Frees an SWB after use.

• Gets a command work block (CWB) for the caller and places the address of
that CWB in a fullword area specified by the CBADDR operand.

• Frees a CWB after use.

• Locates a task vector block (TVB) by operator identification.

• Locates a task vector block (TVB) by LU name.

• Locates (from a specified starting position) the next active TVB for an
NCCF-NCCF task, a hard-copy task, an operator station task, or an optional
task.

• Locates a task vector block for an operator designated as a receiver of
authorization messages by the AUTH statement of a profile definition.

For more information on DSILCS, see "Getting, Freeing, and Locating a Control
Block" earlier in this chapter.

Name

[name]

Operation Operands

DSILCS CBADDR={(register) I symbolic name}
CWB={GET I FREE}
SWB={GET I FREE}
TVB={(register) I symbolic name}

I LU={ (register) I symbolic name} l
' OPID={(register) I symbolic name}

AUTHRCV = YES

NEXT=I~~~l NNT
OPT

Chapter 3. Service Facilities and Macro Instructions 3-27

3-28

CBADDR
is a register containing the address of user-provided fullword area or the
symbolic name of that area. The specified SWB, CWB, or TVB address is
returned to this area (for the GET option).

CWB=GET
specifies that the caller needs a command work block. The address of the
CWB is returned to the area specified by the CBADDR operand. The user
must initialize the CWBTIB field with the address of his Tffi.

CWB=FREE
specifies that the caller wishes to free the command work block whose
address is found in the area specified by the CBADDR operand.

SWB = GET
specifies that the caller needs a service work block. The address of an SWB
is returned to the area specified by the CBADDR operand. The user must
initialize the SWBTffi field with the address of his Tffi.

SWB=FREE

TVB

LV

OPID

specifies that the caller wishes to free the service work block whose address
is found in the area specified by the CBADDR operand.

is a register containing the address of the task vector block where the
routine begins the search for the TVB specified by LU, OPID, NEXT, or
AUTHRCV. The symbolic name of an area containing the address of this
TVB may also be supplied. The address of the beginning of this TVB chain
is found in the main vector table, DSIMVT. The TVB address found is
placed in the area specified by CBADDR after the routine has completed
processing. Note: The routine searches from the address specified to the end
of the TVB chain; it does not loop to the beginning of the TVB chain.

is a register containing the address of an 8-byte LU name field or the
symbolic name of the 8-byte LU name field. This name is used to find a
TVB with a matching LU name.

is a register containing the address of an 8-byte operator identification field
or the symbolic name of the 8-byte operator identification field. This name
is used to find a TVB with a matching operator identification.

AVTHRCV
specifies that the routine is to search for the first TVB for an operator
authorized to receive messages related to successful and unsuccessful
logons and lost station messages. (See the discussions of the AUTH
statement and of unsolicited message routing in NCCF Installation.)

DSILOD Macro Instruction

NEXT==OST
specifies that the TVB associated with the next active operator station task
is to be located.

NEXT == HCT
specifies that the TVB associated with the next active hard-copy log task is
to be located.

NEXT==NNT
specifies that the TVB associated with the next active NCCF-to-NCCF
task is to be located.

NEXT==OPT
specifies that the TVB associated with the next optional task is to be
located.

Return codes for the control block location routine are found in register 15. They
are as follows:

o Successful; the address was returned, or the control block was freed.

4 No TVBs of the type specified were found.

8 End of the TVB chain, if TVB was specified.

8 No storage was available, if SWB==GET or CWB==GET was specified.

8 Defective control block, if SWB==FREE or CWB==FREE was specified.

The DSILOD macro instruction is used to load user-defined modules. The user
specifies the name or address of the module to be loaded and the address of a
BLDL list.

Name Operation Operands

[name] DSILOD {EP==modulename},LISTA=={ (register) . }
EPLOC == address symbolic name

[,DCB ==address]

EP==modulename
specifies the name of the module to be loaded.

EPLOC ==address
specifies the address of an 8-byte field containing the modulename to be
loaded. The modulename should be left-justified and padded with blanks.

LISTA
is a register containing the address of a 62-byte area in the user's dynamic
storage or is the symbolic name of that area. The value must be on a
fullword boundary. DSILOD uses this area as a BLDL list.

Chapter 3. Service Facilities and Macro Instructions 3-29

DCB
optionally specifies the address of the DCB for a partitioned data set to be
searched for the module.

The return codes for DSILOD are in register 15, as follows:

Zero Module has been loaded.

Nonzero BLDL could not locate the module.

If the module is successfully loaded, register 0 contains the load point address of
the module. Register 1 contains the authority code in the high-order byte and the
module length in the low-order three bytes.

DSIMBS MacrD Instruction

3-30

The DSlMBS macro instruction can be used to determine the size of the buffer
required to accomodate the message to be edited. The routine can then be used to
edit an NCCF or user-supplied message into a buffer provided by the caller.
Callers may supply variable fields to be inserted into NCCF messages or supply
unique messages of their own with varying positional fields. A total of nine
positional parameters may be replaced with user substitutions. DSIMBS may also
be used to pass to NCCF the address of a message table generated with the
DSIMDS macro instruction.

Name Operation Operands

[name] DSlMBS SWB= {(register) I symbolic name}

SWB

,MID = I ~~~ister) I
symbolic name
*equate~ame

[

,P 1 = (text'lngth[,padlng'Side'fillD]

:P9 = (text,lngth[,padlng,side,fillD

,MSGA= (pdbladdr,pdb2addr)

{

,BFR= {(register) I symbolic name} }

,MSGSIZE= {(register) I symbolic name}

[,MSGTBL={(register) I symbolic name}]

is a register containing the address of a service work block (SWB) or the
symbolic name of a user area that contains the address an SWB.

MID
specifies the identification of the NCCF message that is to be edited for the
caller. The message may be specified by the message number (nnn), in a
register, in a user area specified by symbolic name, or by the equate name
preceded by an asterisk. (For example, if MSG999 BQU 999, you could
specify MID = *MSG999.)

MSGA= (pdb laddr,pdb2addr)

BFR

pdb 1 addr is a register containi~ the address of the parse descriptor block
(PDB) or the symbolic name of a fullword area that contains the address of
the PDB that contains the addresses and lengths of the variable fields to be
substituted into the message text. pdb2addr is a register containing the
address of the parse descriptor block (PDB) or the symbolic name of a
fullword area that contains the address of the PDB that contains the
message skeleton to be edited. This is not an NCCF message; it is supplied
by the user.

Because the variable field information is contained in pdbladdr, the Pl. .. P9
operands cannot be used if MSGA is specified.

is a register containing the address of the user area where the edited
message is to be returned or the symbolic name of a fullword area that
contains the address of the user area. Note: This buffer must have a
properly initialized BUFHDR, except for the HDRMLENG field, which is
initialized by DSIMBS.

MSGSIZE
is a register containing the address of a user-provided fullword area or the
symbolic name of that area. This operand should only be used to request
the service routine to determine the size of the buffer needed for the
message to be edited. When the routine has completed processing, the
required size is returned in this area.

Pl .•. P9
are used only in combination with the MID operand. They specify the
positional fields in an NCCF message that are to be replaced by
user-supplied text. The first two values, text and Ingth must be specified;
the others are optional.

text
is a register containing the address of the variable text, or the symbolic
name of the area that contains the text that is to be substituted into the
edited NCCF message.

Ingtb
is the length of the variable text that is to be substituted into the edited
NCCF message~ The maximum length is 255 characters specified in
character formator a binary value in a register or in a user area specified by
symbolic name.

Chapter 3. Service Facilities and Macro Instructions 3-31

3-32

padlng
is the total length of the variable field to be padded with fill characters.
This length must be equal to or less than the length specified by the lngth
operand. The maximum size is 255 characters specified in character format
or a binary value in a register or in a user area specified by symbolic name.

side
may be specified as L for left-fill or R for right-fill. The default is right-fill.

fill
is the character to be used as the fill character for the area to be padded.
The default fill character is a blank (hex 40).

MSGTBL
is a register containing the address of a user-defined message table or the
symbolic name of a fullword that contains the address of the message table.
The table must be generated using the DSIMDS macro instruction.

Return codes for the DSIMBM macro instruction are found in register 15. They
are as follows:

o Successful: (1) The edited message is in the provided buffer and the
length of the message is stored in the message length field of the buffer
header, or (2) the size of the message buffer required has been calculated
and stored in the area specified by MSGSIZE.

4 The edited message is in the provided buffer, but the message skeleton
contained a parameter for which the caller did not supply text. The
message contains the characters &n where n may be from 1 to 9.

8 Unsuccessful: The buffer overflowed, and the message has been
truncated. The size of the truncated message has been stored in the
message length field of the buffer header.

12 The message number specified could not be found in the NCCF message
module, DSIMDM. NCCF message DSIOOOA is edited into the caller's
buffer. If the buffer size only was requested, the size of message
DSIOOOA is returned.

16 The caller did not supply a buffer address.

20 Combined conditions 4 and 8 occurred.

24 Combined conditions 8 and 12 occurred.

28 A validity check failed on the user message definition module. The
address passed in the MSGTBL operand does not point to a message
definition module that was created with the DSIMDS macro instruction.

DSIMDS Macro Instruction

Format 1: Start Message

Format 2: Message Text

The DSIMDS macro instruction generates an NCCF message definition module
(DSIMDM) that contains all messages issued by NCCF. It can also be used to
generate a user-defined message module to contain messages issued by the user in
exit routines, command processors, and command lists. After a message
definition module has been defined, it must be link-edited into the NCCF load
library.

Three forms of the DSIMDS macro instruction are required to generate a message
definition module. These forms are described below and must be coded in the
sequence shown.

Name Operation Operands

[name] DSIMDS prefix, TYPE = START

name

prefix

is required to start the message definition module. name becomes the
CSECT name· for the module.

Note: DSIMDM must be specified for name if the NCCF message
definition module is being defined or modified.

is a required positional operand that becomes the prefix for the messages in
the module. prefix must be DSI for the NCCF message module.

TYPE = START
specifies the beginning of generation for the message definition module.

Name Operation Operands

[name] DSIMDS xxx,'message text &&n'c,TYPE={A I I}

xxx
is the message number to be given to the message. It may be any number
from 001 through 899; for user-originated messages, numbers 900 through
999 should be used.

Chapter 3. Service Facilities and Macro Instructions 3-33

Format 3: End Message

Note: When coding your own message CSECT, you must code a message
000 to be issued when an invalid message number is specified. The
user-coded message 000 should have one insert containing the invalid
message number~ You may want to use wording similar to NCCF's message
DSIOOOI:

DSIOOOI NCCF MESSAGE xxx ISSUED BUT DOES
NOT EXIST - CALL IGNORED.

message text

&&n

is the text of the message to be added or changed.

signifies that variable information is to be substituted at this position in the
message. && 1 through &&9 may be specified.

TYPE=A
specifies that the message is to be an action message (one for which an
appropriate action must be taken).

TVPE=I

Name

specifies that the message is for information only. No specific action need
be taken.

Operation Operands

DS~S TYPE = END

TYPE = END
specifies the end of the message defintion module. This is the last
statement specified.

DSIMQS Macro Instruction

3-34

The DSIMQS macro instruction queues a user-supplied message to the message
queue of a task's task vector block (TVB). This message appears on the
operator's screen or hard-copy log, depending upon which identification is
specified. Buffers that·are·formatted as internal function requests (IFRs) are not
displayed; they cause the receiving subtask to take the action requested by the
IFR.

For more information on DSIMQS, see "Message Queuing" earlier in this chapter.

Name Operation Operands

[name] DSIMQS SWB={(register) I symbolic name}

SWB

BFR

,BFR= { (register) I symbolic name}

{

TASKID:={(register) I symbolic name}}

AUTHRCV={YES I NO}

is a register containing the address of a service work block (SWB) or the
symbolic name ofa fullword area that contains the address of an SWB.

is a register containing the address of a buffer or the symbolic name of a
fullword area containing the address of a buffer. Note: This buffer must
have a properly initialized B UFHDR.

TASKID
is a register containing the address of a user-provided8-byte area or the
symbolic name of that area. The area should contain the 8-character
operator identification of the task for which the message is to be queued. If
TASKID is specified, AUTHRCV should not be specified.

AUTHRCV
specifies that the first operator designated as the receiver of authorization
messages (by the AUTH statement of profile definition) is to receive the
message. If no operator is authorized, the message is queued for the system
console. (See the discussions of the AUTH statement and of unsolicited
message routing in NCCF Installation.)

The return codes for the message queuing service routine are found in register 15.
They are as follows:

o Successful completion.

4 The format of the buffer that was passed was invalid.

8 The task identification that was passed could not be found.

12 A buffer could.not be obtained.

Chapter 3. Service Facilities and Macro Instructions 3-35

DSIOIS Macro Instruction

DSIPAS Macro Instruction

3-36

The DSIOIS macro instruction locates the specified operator identification in the
DSIOIT table and returns the relative position of the entry to a user-provided
fullword area.

Name Operation Operands

[name] DSIOIS SWB= {(register) I symbolic name}

SWB

OPID

,OPID= {(register) I symbolic name}

,OITPOS= {(register) I symbolic name}

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

is a register containing the address of an 8-byte (left-justified) operator
identification field or the symbolic name of that field.

OITPOS
is a register containing the address of a fullword area or the symbolic name
of that area. When the routine has located the specified operator
identification in DSIOIT, that entry's relative position is returned to this
1 llword area. For example, the third entry results in a fullword 3 being
returned.

The return codes for the DSIOIM routine are found in register 15. They are as
follows:

o Successful; the position of the entry has been returned.

4 Unsuccessful; the entry could not be found in DSIOIT.

The DSIP AS macro instruction receives a command operand as input and
searches the system command table (DSISCT) to determine whether the operand
is an alias for an NCCF operand. If it is an alias, the regular NCCF value is
returned to a user-provided area. If it is not an alias, the input value itself is
returned to the user area. If the value is invalid, blanks are returned to the input
area.

Name Operation Operands

[name] DSIPAS SWB= {(register) I symbolic name}

,PDB= {(pdbname,entrynumber)}

,OUT= {(register) I symbolic name}

DSIPOS Macro Instruction

SWB
is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

PDB=pdbname
is a register containing the address of a fullword area or is the symbolic
name of a fullword area that contains the address of that area. The area
should contain the name of the parse descriptor block to be used as input.

PDB= entrynumber

OUT

(1) is the number of a register containing the entry number; or (2) is the
symbolic name of an area containing the entry number of the field in the
parse descriptor block that is to be examined; or (3) is an entry number in
character form specified in single quotation marks. For example, the third
entry is specified as '3'.

is a register containing the address of a user-provided 8-byte area to which
the NCCF equivalent of the input operand is returned if found, or the
symbolic name of that user area.

The return codes for the parameter alias service routine are found in register 15.
They are as follows:

o A regular NCCF opreand value was returned.

4 No equivalent was found; the same operand is returned.

8 Invalid operand; blanks are returned.

The DSIPOS macro instruction indicates completion of an event by posting an
event control block (ECB).

Name Operation Operands

[name] DSIPOS ecbaddress[,compcode]

ecbaddress
is a register from 1 through 12 containing the address of the ECB (an
aligned fullword), or the symbolic name of the ECB. If a register is
specified, it must be coded in parentheses.

compcode
is the value of the completion code to be placed in the ECB (0 through
16,777,215), or a register (0, 2 through 12) containing the value. If a
register is specified, it must be coded in parentheses. If no value is
specified, 0 is assumed.

Note: These operands are positional and must be specified in the indicated order.

Chapter 3. Service Facilities and Macro Instructions 3-37

DSIPRS Macro Instruction

The DSIPRS macro instruction uses an input buffer with an initialized buffer
header to determine the size of the parse table that must be built to accommodate
the data contained in the buffer. The routine may then be invoked again to build
the parse table in a user-provided area. DSIPRS then delimits the segments of the
data contained in the buffer and puts the number of segments found and the
indicators to these segments in the table. See the description of the parse
descriptor block (PDB) later in this chapter.

The following delimiters are recognized:

b

=

Name Operation Operands

[name] DSIPRS SWB= {(register) I symbolic name}

SWB

BFR

,BFR= {(register) I symbolic name}

,{PDBSIZE= {(register) I symbolic namel }

PDB= {(register) I symbolic name}

[,FIRST = {YES I NO }]
[,DELIM= ('Dt', 'D2', ... 'Dn')]

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

is a register containing the address of the buffer that is to be used for input
or the symbolic name of a fullword area that contains the address of that
buffer. Note: This buffer must have a properly initialized BUFHDR.

PDBSIZE
is a register containing the address of a fullword area, or the symbolic name
of that area, to which the size of the parse table is to be returned.

DSIPSS Macro Instruction

PDD
is a register containing the address of a fullword area or the symbolic name
of that area, where the parse table is to be built. The parse table must
include a user-initialized DSICBH header (see Appendix C) containing
control block identification and length before the data can be parsed.

FIRST
is an optional parameter that indicates whether the first word of the buffer
can be delimited only by a blank (YES) or by any delimiter (NO).

DELIM
is an optional parameter that allows the user to specify delimiters to be used
instead of the NCCF defaults. NCCF default delimiters are blank, comma,
period, equal sign. Blank is always considered a delimiter, ever if the user
specifies his own delimiters.

The return codes for the parsing service routine are found in register 15. They are
as follows:

o The correct size of the table was found or the command was parsed
successfully and the table was built.

4 The command was parsed, but there was no data in the buffer received
and only the buffer address and number of entries (0) in the table could
be returned.

8 The parse table size was too small for the command; a partial table was
built, and the number of entries was set to the number that the table
could hold. The size should be increased.

12 Unpaired apostrophes were found.

100 No PDB was passed.

The DSIPSS macro instruction invokes the appropriate presentation service
routine, DSIPSI-DSIPS15. These modules are an interface between NCCF and
various devices. They control the screen formats, organize the data into a specific
form for each device, and send the data.

For more information on the DSIPSS macro instruction, see "Presentation
Services" earlier in this chapter.

Chapter 3. Service Facilities and Macro Instructions 3-39

3-40

Name Operation Operands

[name] DSIPSS SWB= {(register) I symbolic name}
[,APPLID= {(register) I symbolic name}]

SWB

,TYPE =

OUTPUT
IMMED
XSEND
SCRSIZE
WINDOW
PANEL
ASYPANEL
CANCEL
PSSWAIT
TESTWAIT

[,ECBLIST = {(register) I symbolic name}]

[,BFR= {(register) I symbolic name}]

,OPTIONS =

MSG
SEG
FIRST
MIDDLE
LAST
ONLY

[,SIZE= {(register) I symbolic name}]

[,PANEL= {(register) I symbolic name}]

is a register containing the address of a service work block (SWB) or the
symbolic name of a user area that contains the address of an SWB. This
operand is required.

APPLID
is a register containing the address of an 8-byte area, or the symbolic name
of an 8-byte area, that contains the name (left-justified and padded with
blanks) of the application program to which the data is to be sent. This
name should be the same as the name specified on the START command
when a session is started. APPLID is specified only when TYPE=XSEND.

TYPE = OUTPUT
specifies that the routine is to send a message to the operator's terminal.
This option should not be used by immediate command processors or user
exit routines DSIEXOl, DSIEX02, or DSIEX03. The maximum message
length allowed (before truncation occurs) is 37,767 characters. Upon
completion of the macro, the length of the text in the HDRMLENG field of
the BUFHDR is set to the length of the data after any trailing blanks have
been truncated.

TYPE=IMMED
specifies that the routine is to send a message to the operator station's
immediate message area. The maximum message length allowed before
truncation occurs is 71 characters. This option can be used only with
immediate command processors or in the DSIEXO 1 exit routine. When this
operand is specified, no message header information is sent to the display
screen. TYPE=IMMED terminates full-screen mode and causes
subsequent terminal input to be treated as commands.

TYPE=XSEND
specifies that the routine is to send data to another NCCF with which a
session exists. The maximum length allowed before truncation occurs is
256 characters.

TYPE=SCRSIZE
specifies that the routine is to return the screen size in row-column fO'111at.

TYPE = WINDOW
requests information on the output area size of the standard NCCF screen.
This option is valid only from an operator station task (OST). (Under any
other task, the request is considered null; register 15 contains a return code
of zero, but no function is performed.) Three output area sizes are
returned:

• Minimum

• Current

• Maximum

The minimum window size may be used to produce screens that are
independent of the current window size. The current window shows what
screen size is currently in effect. The maximum window size is useful for
calculating the maximum storage needed to produce full-line panels.

Note: TYPE = WINDOW applies only to command processors that use
DSIPSS in standard NCCF mode. In full-line mode, the screen is
automatically changed to single line input. When standard NCCF mode is
reentered, the input area is set to the size indicated by the INPUT
command.

TYPE = PANEL
specifies that the issuing routine is to format the screen using synchronous
full-screen mode, as opposed to the standard NCCF mode. This option is
allowed only from an operator station task (OST). When requesting
output, the issuer will build a 3270 data stream; when requesting input, the
issuer will receive the untranslated 3270 data stream.

The first operator input received for TYPE=P ANEL is used to satisfy a
first panel request for input. NCCF treats subsequent terminal input as
commands. The operator should enter one request and then wait for a new
screen panel before entering data.

Chapter 3. Service Facilities and Macro Instructions 3-41

3-42

For more information on synchronous full-screen mode, see the section
titled "Full-Screen Command Processor Considerations" in Chapter 4. For
more information on the 3270 data stream, refer to the appropriate 3270
manual.

TYPE = ASYPANEL
specifies that the issuing routine is to format the screen using asynchronous
full-screen processing through the posting of event control blocks (ECBs).

While the asynchronous full-screen command processor is running, input to
the NCCF terminal is treated as input to the command processor and not as
a direct input to NCCF. To allow the next input to be treated as a
command, issue TYPE=OUTPUT or TYPE=IMMED.

For more information on asynchronous full-screen mode, see the section
titled "Full-Screen Command Processor Considerations" in Chapter 4.
TYPE=ASYPANEL is allowed only from an operator station task (OST).

TYPE = CANCEL
cancels pending asynchronous full-screen input after the receive from the
terminal has been issued. This option is used when changing the
characteristics of the asynchronous full-screen processor, such as the ECB
address or the panel address. TYPE=CANCEL is allowed only from an
operator station task. This option can be invoked whether or not a DSIPSS
TYPE = ASYP ANEL is active or the input from TYPE=ASYP ANEL has
been posted as complete.

After TYPE=CANCEL is issued, no further input is received from the
terminal until TYPE=OUTPUT, TYPE=IMMED, TYPE=PANEL or
TYPE=ASYP ANEL is issued.

TYPE=PSSW AIT
specifies that a command is to wait for both a list of its own events and a
list of NCCF events that should be allowed to interrupt the command
events. TYPE=PSSW AIT is allowed only from an operator station task.
This option should be used with TYPE=ASYP ANEL.

Note: Use the DSIWAT macro instruction if you do not want the
command to wait for the completion of NCCF events.

TYPE=TESTW AIT
allows a command processor to test whether an NCCF event has occurred
that should interrupt the asynchronous full-screen command processor.
TYPE = TESTW AIT is allowed only from an operator station task. This
option can be used before a DSIPSS TYPE=ASYP ANEL is issued to
determine if the asynchronous full-screen panel input/output should be
attempted. If DSIPSS TYPE=PSSW AIT is used to wait for NCCF events,
this option can prevent unnecessary screen input/output by allowing testing
before panel input/output is requested.

ECBLIST
for TYPE=PSSW AIT is a register containing the address of an ECB list or
the symbolic name of an ECB list. An ECB list is a list of addresses of
user-defined event control blocks that will be copied and combined with an
NCCF ECB list. NCCF waits on this combined list; when one of the

BFR

events associated with this list is posted, control is returned to the next
sequential instruction. The input ECB list is made up of fullword ECB
addresses. The last address in the list must have the first bit set on to
specify that this is the last entry.

is a register containing the address of a user-provided buffer or the
symbolic name of a fullword area that contains the address of the buffer.
This buffer should contain the data that is to be processed. Note: This
buffer must have a properly initialized B UFHDR.

OPTIONS=MSG
specifies that the data to be sent is a complete message.

OPTIONS=SEG
specifies that the data to be sent is only a segment of a message. When this
operand is specified, no message header information is sent to the screen.

OPTIONS = FIRST
specifies that the data to be sent is to start at the top of the screen, with full
SO-byte line width.

OPTIONS = MIDDLE
specifies that the data to be sent is a continuation line.

OPTIONS = LAST
specifies the end of a screen of data. The screen is locked until the operator
signals for the screen to be refreshed.

OPTIONS = ONLY
specifies that one full line is to be written at the top of the screen with the
rest of the screen left blank.

Note: For OPTIONS FIRST, MIDDLE, LAST, or ONL Y, a command processor
that is invoked by an operator station task is always out of full line mode.

SIZE
for TYPE=SCRSIZE is a register containing the address of a user-provided
4-byte area or the symbolic name of a fullword area that contains the
address of a 4-byte area to contain the size of the display screen, in
row-column format. For example, a 1920-character screen is defined as
X'OOlS0050', since the screen is 24 rows (X'OOlS') by SO characters
(X'0050').

For TYPE = WINDOW, SIZE is a register containing the address of a
12-byte area or the symbolic name of a 12-byte area in which the window
sizes are returned in binary. The format of the area is shown below:

Minimum Current Maximum
Window Size Window Size Window Size

Rows I Columns Rows I Columns Rows I Columns

o 2 4 6 8 A C

Chapter 3. Service Facilities and Macro Instructions 3-43

3-44

PANEL
for TYPE=P ANEL is a register containing the address of a 16-byte
parameter list or the symbolic name of a full word area that contains the
address of a 16-byte parameter list. This parameter list contains a
command verb, an output area address, an output length, and an input
length. The parameter list is formatted as follows:

Command Verb Output Area Output Input
Length Length

o 8 C E 10

If full-screen output is requested, the output area contains the address of a
3270 data stream containing a 3270 command, WCC, and data. The
O~~yut length field indicates the length in bytes of the 3270 data stream.
The command verb and the input length fields are not used.

To read full-screen input from a terminal, the command verb area contains
a valid command to be executed when input is available. The input length
field indicates the maximum input data to be expected by NCCF. The
command is executed with the 3270 data. Because NCCF does not
translate or modify the 3270 data, the parse descriptor block (DSIPDB)
may not contain meaningful data. No input buffer is passed to NCCF;
NCCF supplies the input buffer.

Note: A sample full-screen command processor is shown in Appendix F.

For TYPE = ASYP ANEL, PANEL is a register containing the address of a
20-byte parameter list or the symbolic name of a 20-byte parameter list. The
parameter list is formatted as follows:

ECB Output User Input Output Input Data
Address Data Stream Area Address Length Area Length

Address Length Address

o 4 8 C E 10 14

If asynchronous full-screen output is requested, the output data stream address
field contains the address of a 3270 data stream including a 3270 command,
WCC, and orders to be written to the terminal. The command must be coded
using remote EBCDIC values. The .output length field indicates the length, in
bytes, of the 3270 data stream (32,767 bytes maximum). The ECB address, input
area length, user input area address, and data length address fields are not used if
only output is requested.

To read asynchronous full-screen input from a terminal, the ECB address area
contains the address of an event control block to be posted when the
asynchronous input is received. The user input area address contains the address
of a user area into which the address contains the address of a user area into
which the full-screen panel data is read. (If the length of the data being read is
greater than the user input area, the data will be truncated.) The input area
length field indicates the length of the input data area in bytes (32,767 bytes
maximum)~ The·data length address field contains the address of a halfword field
that is set to the amount of data actually read when the ECB is posted.

Note: For more information on full-screen processing, see "Full-Screen
Command Processor Considerations" in Chapter 4. For more information on the
3270 data stream, refer to the appropriate 3270 publications.

The return codes for the presentation service routine are found in register 15.
They are as follows:

o Successful completion. H running under a full-screen processor, see the
section titled "DSIPSS Output from a Full-Screen Command Processor"
for more information. For TYPE-PSSWAIT, a user ECB has been
posted. Check the ECB list to determine which event has completed.

4 For TYPE-XSEND, no RPL was found and no data was sent.

8 Parameter error. There is an error in the formatting of the message
buffer header. For TYPE-XSEND, the session is not active and no data
is sent. For TYPE==P ANEL, the input or output length is invalid, that is,
greater than 32,767 bytes (X'7FFF'). For TYPE-ASYPANEL, the
parameter list is inconsistent. H the output buffer is specified, its length
must also be specified. H the input ECB is specified, the input area
address, input area length, and the data length address of the returned
length must be specified.

12 There is not enough storage available in NCCF to complete the request.
No output will be sent, and the input command processor will not be
scheduled.

16 DSIPSS TYPE==OUTPUT was issued for an immediate command or in
an IRB system exit routine. Use DSIPSS TYPE-IMMED or DSIMQS
instead. Too many OPTIONS==MIDDLE were specified, and the screen
is full. This OPTIONS==MIDDLE is treated as an OPTIONS==LAST. If
another MIDDLE is issued, it will be treated as an OPTIONS==FIRST.
The screen will wrap around, and return code 24 will be issued.

20 No terminal session exists. For TYPE==PANEL, the panel request came
from a task other than an operator station task (OST). No output will be
sent, and the input command processor will not be scheduled. For
TYPE == ASYP ANEL, the panel request came from a task other than an
OST. No input will be received. For TYPE==CANCEL, the panel
request came from a task other than an OST.

24 OPTIONS=FIRST, MIDDLE, LAST, or ONLY was specified in the
incorrect order.

28 For OPTIONS==FIRST, MIDDLE, LAST, or ONLY, user exit DSIEX02
specified that full-line output was to be deleted. The output was not
written to the screen. Note that this return code does not indicate a
severe error.

32 For TYPE==PANEL, no input command processor is scheduled. The
operator requested escape to NCCF mode by selecting option 1 when
prompted by message DSI81 7 A. See the section titled "DSIPSS Return
Codes from a Full-Screen Command Processor" for more information.

Chapter 3. Service Facilities and Macro Instructions 3-45

36 For TYPE = PANEL or TYPE=ASYP ANEL, a temporary error
occurred. The contents of the screen have been modified. Reformat the
screen using an Erase/Write or Erase/Write Alternate 3270 command.
Then retry the request.

40 For TYPE=PANEL; ASYP ANEL, or CANCEL a permanent
input/output error occcured. Do not retry the request. No output will
be sent, and no input processor will be scheduled. For
TYPE=ASYP ANEL, no input will be received. For TYPE=CANCEL,
NCCF is unable to restart normal terminal activity.

44 For TYPE=P ANEL, no input is scheduled, because the operator
requested reset by selecting option 3 when prompted by message
DSI817 A. See the section titled "DSIPSS Output from a Full-Screen
Command Processor" for more information.

48 For TYPE=ASYPANEL, no input/ output is scheduled because the
command processor issued a second DSIPSS TYPE=ASYP ANEL before
the previous request had completed.

56 For TYPE=PSSWAIT or TYPE=TESTWAIT, at least one NCCF ECB
was posted.

The ECB post codes for PSS TYPE=ASYP ANEL are found in the event control
block if one was specified. They are as follows:

o Successful completion. The requested data is available.

12 There is not enough storage available in NCCF to complete the request.
The output data was sent, but the input data is not available.

36 A temporary error occurred during a full-screen read. Retry the request.
The output data was sent, but the input data is not available.

40 A permanent error occurred during a full-screen read. Do not retry the
request. The output data was sent, but the input data is not available.

52 The requested input was canceled using DSIPSS TYPE=CANCEL. You
should not retry the request immediately. The output data was sent, but
the input data is not available.

DSIRDS Macro Instructioll{A,CFIVTAM Only)

3-46

The.DSIRDSmacro instruction locates the specified resource in the authorization
and resource table, DSIAR T, and returns the address of the DSIAR T entry to a
user-provided fullword area.

For more information on DSIRDS, see "Resource Location" earlier in this
chapter.

Name Operation Operands

[name] DSIRDS SWB= {(register) I symbolic name}

SWB

,LUNAME= {(register) I symbolic name}

,ARTPOS= {(register) I symbolic name}

[,STATUS= {ACT I INACT}]

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area that contains the address of an SWB.

LUNAME
is a register containing the address of a user-provided area or the symbolic
name of that area. The area should contain the 8-byte (left-justified)
LUNAME that is to be located in the authorization and resource table,
DSIART.

ARTPOS
is a register containing the address of a fullword area or the symbolic name
of that area. When the routine has located the specified entry in DSIART,
that entry's address in the table is returned to this area.

STATUS
specifies whether the LUNAME entry in DSIART is to be marked as active
(ACT) or inactive (INACT).

The return codes for the DSIRDM routine are found in register 15. They are as
follows:

o Successful; the entry was found and its address returned.

20 Unsuccessful; the specified entry was not found in DSIAR T, or the entry
is inactive.

DSISSS Macro Instruction (ACF/VTAM Only)

The DSISSS macro instruction checks a specified bit position (as shown in Figure
3-7) in the span name table (DSISNT) and returns the address to a user-provided
fullword area of the first entry whose corresponding bit is set to 1.

Name Operation Operands

[name] DSISSS SWB= {(register) I symbolic name}

,OITPOS= {(register) I symbolic name}

,SNTADDR= {(register) I symbolic name}

Chapter 3. Service Facilities and Macro Instructions 3-47

3-48

SWB
is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword area containing the address of an SWB.

OITPOS
is a register containing the address of a user-provided fullword area or the
symbolic name of that area. This area should contain the bit position to be
checked (for the first bit set to 1) in DSISNT. Note: The bit positions in
the span name table correspond to entry positions in the operator identification
table DSIOIT; for example, the first bit corresponds to the first entry in
DSIOIT.

SNTADDR
is a register containing the address of a user-provided fullword area, or the
symbolic name of that area. On input to the DSISSM routine, this area
should contain the address of the entry in the span name table where the
search is to begin. When the routine has completed processing, this area
contains the address of the first entry that the search encountered whose
corresponding operator bit was set to 1. Note: The starting address
specified in SNTADDR may also be stored elsewhere in case relative location
calculations are necessary for searching the authorization and resource table
(DSIART).

The return codes for the DSISSM routine are found in register 15. They are as
follows:

o Successful; an entry was found and its address returned.

12 Unsuccessful; no entry was found; the address originally submitted is still
in the area specified by SNT ADDR.

Address where the

operand on input

Address of first
entry whose bit is set
to 1 --- found in
SNTADDR on output SPANn

Bit position to be
checked-specified by
the OITPOS operand

0101010101 011

111001011001100

Figure 3·7. Search of the Spau Name Table (DSISNT)

DSIWA.T Macro Instruction

The DSIW AT macro instruction causes an NCCF subtask to wait for completion
of an event.

Name Operation Operands

[name] DSIWAT { ECB= {(register) I symbolic name} }

EeD

ECBLIST = {(register) I symbolic name}

[,DPR= {(register) I address}]

is the symbolic name of an aligned fullword to be used as an event control
block (ECB), or the address in a register (1 through 12) of an aligned
fullword.

ECDLIST

DPR

is the symbolic name of a contiguous list of fullword addresses of ECBs, or
a register containing the address of the list. The last entry in the list of
ECB addresses has the high-order bit (bit 0) set to 1 to indicate the end of
the list.

is the address of the NCCF dispatcher (DSIDPR; VSE only). If this
operand is not specified, the address in main vector table field MVTPRAD
is used.. Addressability to the main vector table (MVT) is required.

The following example shows how DSIW AT can be coded.

ECBl
ECB2
LISTAREA

ECB3
ECB4

DSIWAT ECBLIST=LISTAREA

DC F'O'
DC F'O'
DC A(ECBl)
DC A(ECB2)
DC A(ECB3)
DC A(ECB4+X'80000000')

DC F'O'
DC F'O'

Execution resumes when anyone ECB is posted. The DSIPOS macro instruction
is used to set bit 1 of the ECB to 1. A completion code can also be set in the
low-order 3 bytes of the ECB. The VSE supervisor POST macro instruction can
also be used to post an ECB. POST sets bit 0 in the second byte of the ECB to 1.

Chapter 3. Service Facilities and Macro Instructions 349

DSIWCS Macro Instruction

The DSIWCS macro instruction writes a message to the system operator console.
If the message exceeds 121 characters, it is truncated. The message must have the
NCCF buffer header prefixed to it.

Name Operation Operands

[name] DSIWCS SWB= {(register) I symbolic name}

SWB

BFR

,BFR= {(register) I symbolic name}

is the name of a fullword that contains the address of the service work
block (SWB) or is a register containing the address of the SWB.

is the symbolic name of a fullword that contains the address of a buffer
with the message in it or is a register containing the buffer address. Note:
This buffer must have a properly initialized BUFHDR.

DSIWLS Macro Instruction

3-50

The DSIWLS macro instruction sends messages to the NCCF log and the
operator's hard-copy device.

Name Operation Operands

[name] DSIWLS SWB= {(register) I symbolic name}

SWB

BFR

,BFR= {(register) I symbolic name}

is a register containing the address of a service work block (SWB) or the
symbolic name of a user area that contains the address of an SWB.

is a register containing the address of a user-provided input buffer or the
symbolic name of a fullword area that contains the address of an input
buffer. This buffer should contain the record that is to be logged. Note:
This buffer must have a properly initialized BUFHDR.

The DSIWLM service routine's return 'codes are found in register 15. They are as
follows:

o SuccesSful.

4 No storage is available for logging.

12 The operation was successful but there is no active HCT for this task.

Data Services Macro Instructions

NCCF data services macro instructions allow the recording and retrieval of data
from the VSAM data base. NCCF data services are useci only as part of a data
services command processor. Data services require the data services subtask, as
defined in NCCF Installation. Note: DSIZCSMS requires a background in SNA
request/response units (RUs), as described in Systems Network Architecture
Reference Summary, GA27-3136. DSIZVSMS requires background in the virtual
sequential access method (VSAM), as described in OS/VS VSAM Programmer's
Guide, GC26-3838, or Using VSE/VSAM Commands and Macros, SC24-5144.

DSIZCSMS Macro Instruction

The DSIZCSMS macro instruction embeds the caller's network services RU
(REQMS) in a Forward RU that is passed to the SSCP over the access method's
CNM interface. The SSCP then sends the embedded RU to the specified
destination.

Name Operation Operands

[name] DSIZCSMS SWB= {(register) I symbolic name}

SWB

DSRB

,DSRB= {(register) I symbolic name}

,INPUT = {(register) I symbolic name}

,LENGTH= {(register) I symbolic name}

,RU= {(register) I symbolic name}

,RULENG= {(register) I symbolic name}

,DEST= {(register) I symbolic name}

[,TARGET= {(register) I symbolic name}]

[,TYPE=CHAIN]

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword user area that contains the address of an SWB.

is a register containing the address of a data services request block (DSRB)
or the symbolic name of a fullword user area that contains the address of a
DSRB.

INPUT
is a register or the name of a fullword storage location containing the
address of a user input buffer. This buffer is used to construct a 28-byte
Forward RU to be sent to the specified DEST. This buffer must contain a
buffer header followed by text; it also holds the Deliver RU that is returned
by the access method.

Chapter 3. Service Facilities and Macro Instructions 3-51

3-52

LENGTII

RU

isa register or the name of a fullword user'area that contains the length in
binary of the input buffer.

is a register or the name of a fullword storage location containing the
address of a user area. That area is an RU that is to be embedded within
the Forward RU.

RULENG

DEST

is a register or the name of a fullword user area that contains the length in
binary of the embedded RUbuffer.

is a register containing the address, or the symbolic name of a fullword user
area" tcontains the address, of the network destination to which the
embedded RU is sent. DEST must be 8 characters long, left~justified and
padded with blanks if necessary.

TARGET
is a register containing the address, or the symbolic name of a fullword user
area that contains the address, of the network component that is the object
of the embedded RU. TARGET must be 8 characters long, left-justified
and padded with blanks if necessary.

TYPE = CHAIN
indicates that the data services request block (DSRB) has received data and
~ ould remain in use to accept further RUs associated with the specific
request. If TYPE=CHAIN is specified, the SWB and DSRB operands are
required; all other operands are invalid. This operand is invalid with an
unsolicited DSRB.

The major return codes for the DSIZCSMS macro instruction in register 15 are:

o The requested function was performed.

4 The requested function could not be performed.

8 The input buffer was too small.

12 An error was found in parameter specification.

16 The program was not executing under a data services task.

The minor return codes for DSIZCSMS are found in register 0:

o The function was successful.

4 SWB was invalid.

8 DSRB was invalid.

12 The DSRB that was passed was in use.

16 An unsolicited DSRB was passed.

20 An invalid operator ID was specified in the DSRB.

24 Reserved.

28 There was insufficient NCCF storage to process the request.

32 The CNM interface is inactive.

36 The request was rejected by the access method.

40 A user exit routine rejected the request.

44 Data truncation occurred during the user exit routine processing.

Further information may be found under "Completion of a CNM I/O Request"
later in this chapter.

DSIZVSMS Macro Instruction

The DSIZVSMS macro instruction provides access to VSAM services which
perform I/O to the specified problem determination file or data set. The
operands allow access for data recording, data retrieval, and data deletion.

Name Operation Operands

[name] DSIZVSMS SWB= {(register) I symbolic name}

SWB

,DSRB= {(register) I symbolic name}

1
GET ! PUT

,FUNC= POINT
ENDREQ
ERASE

,KEY = {(register) I symbolic name}

[,KEYLEN = {(register) I symbolic name}]

SEQ I DIR I SKP
ARDILRD

,OPTION = FWD I BWD
NUP I NSP I UPD
KEQIKGE
FKSIGEN

[,DATAREA= {(register) I symbolic name}]

is a register containing the address of a service work block (SWB) or the
symbolic name of a fullword that contains the address of an SWB. An
SWB contains a save area, work area, and Tm address data. The caller
must initialize the SWBTffi field in the SWB with a valid Tm address.

Chapter 3. Service Facilities and Macro Instructions 3-53

3-54

DSRB
is a register containing the address of a data services request block (DSRB)
or the symbolic name of a fullword that contains the address of a DSRB.
The DSRB contains request information such as RPL, ACB, ECB, and
fields used by the DST VSAM service routine for VSAM I/O.

FUNC

KEY

describes the VSAM request macro to be issued. See the appropriate
VSAM programming manual for a description of the VSAM request
macros.

is a register containing the address or the name of a fullword that contains
the VSAM key to be used for access to the requested data.

KEYLEN
is a register or the name of a fullword containing the length in bytes of the
key pointed to by KEY. This parameter is required only if OPTION=GEN
is specified.

OPTION
specifies the type of access to the file through requests defined by the RPL.
Options are arranged in groups; only one option may be specified within
each group. This operand has no defaults; therefore, on initial use one
option from each group must be specified to set up the RPL. This operand
is not valid when FUNC=ERASE or FUNC=ENDREQ is specified.

Note: See the appropriate VSAM programming guide for descriptions and details
on how to specify FUNC and OPTION fields.

DATAREA
is a register containing the address, or the name of a user work buffer. The
buffer must be large enough to contain the maximum size record in the file
or data set and is used by VSAM in the processing of records. This buffer
must contain an initialized buffer header (BUFHDR, described later in this
chapter under "Control Block Considerations") followed by text.

The return codes for VSAM I/O services are shown below. The minor return
codes provide additional information about the condition indicated in the major
return codes:

Register 15 == major return code Register 0 = minor return code

o Successful completion. 0 Successful completion.

16 A user exit routine rejected the request.

24 Data truncation occured during
substitution of data in a user exit
routine.

28 A user exit returned an invalid
return code.

4 Manipulative macro instruction
instruction error occurred
during processing.

8 An error occurred in the EXEC
form of a manipulative macro
instruction; a parameter was
not in the list.

12 Unsuccessful completion.

See the explanation of RPL feedback
codes in the appropriate VSAM

programming guide.

4 The specified DSRB was invalid
or in use.

8 An ACB was unavailable or was
not open.

20 The VSAM 110 request was invalid or
there was an 110 scheduling error.

16 The macro instruction was
issued while not executing
under a DST.

24 Control block storage could not be
obtained.

For major return codes 4 and 8, the high-order byte of register 15 contains a
character that indicates which VSAM manipulative macro instruction failed (for
example, M=MODCB). Further information about VSAM 1/0 requests may be
found under "Completion of a VSAM 110 Request" in Chapter 4.

Chapter 3. Service Facilities and Macro Instructions 3-55

Chapter 4. Command Processors

NCCF allows the user to tailor, modify, or extend the NCCF program. Command
processors can be used to process input commands received from operator
stations, other command processors, or access method messages. These command
processors are invoked by user-defined verbs that are filed during NCCF
definition (see NCCF Installation). If an ACF/VTAM or ACF/TCAM message
number is included in the definition of user-defined verbs, and a command
processor is written having that phase or load module name, the command
processor is invoked when NCCF receives the message. User-written command
processors must be reentrant, written in assembler language, assembled, and
link-edited into phases or load modules under the name specified by the MOD
operand of the CMDMDL statement.

NCCF provides service facilities that may be used when writing command
processors. These facilities and the macro instructions that call them are discussed
in Chapter 3. Users who intend to write command processors should also become
familiar with the control blocks described in Appendix C before beginning design.
NCCF service facilities require an understanding of the service work block
(SWB) and the task vector block (TVB), in particular. "Control Block
Considerations" later in this chapter also discusses control blocks and fields of
interest to the coder of command processors.

Appendix D is an example of a user-written command processor; Appendix E
contains two examples of data services command processors; Appendix F is an
example of a full-screen command processor.

The following guidelines must be followed in coding command processors:

• Make all command processors reentrant.

• Save registers at entry and restore them before returning control.

• Do not rely upon the contents of registers 0 and 2 through 12 for constant
values. Register assignments may vary from task to task or from one program
release to another.

• Do not use registers 0, 1, 14, or 15, as they are used by NCCF for macro
instruction expansion.

• Register 13 should always point to a standard 72-byte save area.

• Avoid wait states. The DSIW AT macro instruction must not be issued in any
immediate command processor.

• No error handling macro instructions (STAB, STXIT) should be used that
could override similar specifications being issued by or on behalf of the task.

• Do not return control to any location in the NCCF program other than that
specified by register 14.

• If a command processor is designed to handle more than one verb, carefully
determine which command is meant.

Chapter 4. Command Processors 4-1

Operating Environment

• Do not use names that begin with the fourth, fifth, and sixth letters of NCCF
control blocks. For example, do not use the names SWBAREA and
CWBLIST as these names may already be defined in DSISWB and DSICWB,
respectively. Do not use names that begin with DSI.

Standard CALL and RETURN sequences transfer control to and from
user-written command processors; registers should be restored using standard
linkage conventions. Upon entry to the command processor, the registers contain
the following information:

Register

1

13

14

15

0,2-12

Contents

The address of the NCCF command processor parameter list (the
command work block DSICWB)

A save area address

The return address of the NCCF program

The entry address of the command processor

Unspecified information

DSICWB contains a user save area, the address of the command buffer, the
address of a service work block (SWB) to be used when invoking NCCF service
routines, and the address of a parse descriptor block (PRS). The command buffer
is described in Chapter 3, under "Buffer Header (BUFHDR)"

When NCCF regains control, it expects to find registers 0 through 14 unchanged
and a return code in register 15.

Return codes are documented in Figure 4-4 later in this chapter.

Regular Command Processors

4-2

Regular commands run under the subtask mainline routine (under the PRB in
OS/VS). Output to the operator's terminal is sent using the DSIPSS macro with
the TYPE=OUTPUT operand. A regular command may execute under an OST,
NNT,orPPT.

A regular command processor receives control when one of the mainline event
control blocks (ECBs) is posted indicating work to be done. While this command
processor is operating, no other event completion is recognized. Regular
command processors may be interrupted by system or access method exit routines
(not user exit routines). The RESET command causes a regular command
processor to stop executing by setting the TVBRESET flag. A regular command
processor should periodically examine this flag and, if the flag is on, terminate
itself prematurely. It is recommended that this be done within program loops.

Regular command processors are invoked because a command is received from
any of the following sources:

• Terminal input

• A command in a command list

• A message from another subtask

• A message from another domain

A regular command processor may also be dispatched by an access method
message. The command processor can determine the origin of the command that
invokes it by checking the HDRMTYPE field, described below under "Buffer
Header." The actual values are shown in the description of the task information
block (DSITm) in Appendix C.

Command processors dispatched by an access method message are the same as
other command processors except that the verb is an ACF/VTAM or
ACF/TCAM message number. The command processor writer must know the
exact wording of the message and where the resource name exists syntactically
(which PDB element would contain the resource name).

When an ACF /VTAM message requiring a reply is received, the first PDB
syntactic element contains the reply ID, not the verb. The verb is the second
element because ACF/VTAM sends the message that way. The first syntactic
element, Lnn or Pnn (where nn is a 2-digit number), is 3 bytes long and is
followed by a blank delimiter. The second syntactic element is 7 characters long
in OS/VS and starts with the characters 1ST, followed by three numeric
characters, followed by an A. In VSE, the ACF /VT AM message number starts
with a 5, followed by a letter from A to K, followed by two numeric characters,
followed by an A.

If an ACF/VTAM or ACF/TCAM message does not require a reply, the message
number (as above) occurs first and there is no reply ID.

Note: If the ACF /VT AM MSGMOD facility is in effect, the 5-character module
identifier is removed and saved in the TIBMMD field of DSITffi.

Immediate Command Processors

An immediate command processor performs its work as soon as the command is
entered by the operator, regardless of any other command currently running. For
example, the RESET command halts an executing regular command. GO and
CANCEL control command lists (all command lists are regular commands).
AUTO WRAP , CLEAR key, and no-data-enter control the display screen. An
immediate command may execute under an OST or NNT.

While an immediate command processor is running, the subtask cannot be
interrupted, as only one interrupt-originated (IRB) exit runs at a time. Regular
commands can be preempted by immediate commands. Immediate commands are
executed serially.

Chapter 4. Command Processors 4-3

Immediate command processors are called as·subroutines of the NCCF·receive
exit routine (DSIRCV). While immediate command processors are serialized for
one subtask, multiple receive exits (hence mUltiple immediate commands) can be
executing simultaneously (especially in a multiprocessor system). Therefore,
immediate command processor modules must be coded as reentrant. The
Compare and Swap instruction should be used for referring to or modifying fields
shared across subtasks.

If the queue option is used (Q=YES) with the DSIGET and DSIFRE macro
instructions in an immediate command processor, EXIT = YES must also be coded.

When presenting data to the display screen,· DSIPSS must have the
TYPE=IMMED operand specified. Output is limited to one line of 71 characters,
on the line immediately preceding the input area. If more than 71 characters of
data are required (and not required immediately), DSIMQS may be used to queue
the data "J the subtask mainline processor. The data is displayed when the
current command processor, if any, completes processing and returns control to
the mainline processor.

Both Regular and Immediate Command Processors

A "both" command processor can run as an immediate command processor, but
can also be included in a command list, called by a message number, and received
from another NCCF for execution in this domain. This command processor must
check the PDBIMMED flag and process differently depending on whether the
command processor is running as an immediate or as a regular command
processor. See "Parse Descriptor Block" in Chapter 3.

Command Processors Executed Under the Primary POI Task (PPT)

For the following conditions, a command processor is executed under the PPT:

• Commands entered in response to an access method message received under
the PPT.

• AT and EVERY commands that specify PPT as an operand.

• A command or command list, specified with an NCCFIC statement, that
executes as soon as NCCF is initialized.

• System operator MSG and REPL Y commands.

There are several restrictions when a command processor is executed under the
primary POI task (PPT):

• Inimediate commands are not allowed.

Because no terminal is allocated to the PPT, DSIPSS, issued under the PPT,
writes a message to the authorized receiver. If there is no authorized message
receiver, the message is sent to the system console operator.

• The task information block (TID) for the PPT is different from the TIB for
the OST or NNT. For all task types, the CBHTYPE fields of the TVB and
the TID indicate the subtask (see the DSICBH control block in Appendix C).

Command Processors Executed Under a Data Services Task (DST)

A command processor executed under a DST may cause itself to be reentered
after it completes processing. This feature is helpful for requesting retrieval of
multiple records from a data base or for invoking a command when a record is
retrieved.

A command processor for execution under a DST must be defined to NCCF on a
CMDMDL statement as a data services command processor (DSCP) type D or
RD (see NCCF Installation). DSCPs are passed a data services request block
(DSRB; see Appendix C) that contains information about the progress of the data
services request. The address of the DSRB is passed to the DSCP in the
CWBDSRB field, described below under "Command Work Block." The
following restrictions apply to a DSCP:

• Command lists, immediate commands, and regular commands may not be
invoked. Only commands defined as D or RD are allowed.

• There is no terminal associated with a DST, so the DSIPSS macro instruction
may not be used. If DSIPSS is issued, a code of 20 is returned.

The task information block for the DST differs from the Tm for other subtasks in
having the DSITID extension. This extension is not contiguous with the Tm as in
other subtasks; its address is in the TmOSEXT field.

Figure 4-1 shows one way in which data services requests can be structured. This
design includes:

•

•

•

A "front-end" regular command processor. that checks command syntax
and operands. This command processor builds a command buffer (IFR code
3) and issues the DSIMQS macro instruction to pass the command to the
DSCP.

The DSCP e executes the command and interacts with the VSAM data base
(DSIZVSMS macro instruction), the CNM interface (DSIZCSMS macro
instruction), or both. The DSCP can then accumulate messages and data for
the originating subtask. If the programmer wants to have individual messages
displayed on the screen of the originating subtask, the DSCP issues DSIMQS
to send the data directly to the terminal.

If the programmer wants to have the DSCP's data formatted with full-line and
full-screen presentation services, a presentation services command processor
(PSCP) can be coded e. The PSCP accumulates data from the DSCP in a
buffer. When the PSCP has enough data for a full screen at the originating
subtask, it issues DSIPSS to send the data. If in full-line mode, the PSCP
must issue DSIPSS OPTION ==LAST before returning control to NCCF or an
error condition occurs. The DSCP formats its data in a buffer with an IFR
code 3 and uses the DSIMQS macro instruction to send the data to the PSCP.

Chapter 4. Command Processors 4-5

Command
Entered from
Terminal

Send Full Screen
of Data

OST

User-Written
Regular Command
Processor, for
Syntax and
Operand Checking

Presentation
Services
Command
Processor

DST

DSIZCSMS,
DSIZVSMS,

Data
Base

Figure 4-1. Example of Program Design for Data Services Requests

An operator may have any number of pending DST requests. Active DST
requests may be listed using the LIST DST command and purged using the
PURGE DST command.

Control Block Considerations

The control blocks that are passed to a command processor are shown in Figure
4-2. The control blocks described below are of particular importance to a
command processor. You should also be familiar with these control blocks
described in Chapter 3: SWB, BUFHDR, IFR, and PDB. In the control block
discussions that follow, the sequence of fields may not directly correspond to the
field sequence in the actual DSECT. Appendix C contains the control block
listings.

Command Work Block (CWB)

4-6

The command work block (CWB) contains the command processor parameters, a
save area, and a work area. Its fields are described below.

Field

CWBCBH

CWBSAVEA

Description

Is the standard NCCF control block header (DSICBH). It
shows the type and length of the CWB, and contains a byte
used by DSILCM (locate and control blocks) to indicate
whether the control block is currently in use. This byte is only
set when a CWB is obtained with the DSILCS macro. It
should not be modified by the user.

Is a 72-byte save area that may be used for the command
processor.

Register 1

~CWB

~ TIB

I I
CWBBUF

CWBPDB

CWBSAVEA

CWBTIB

CWBSWB

CWBADATD

CWBDSRB

....,~--r---.,
~ I I

TIBTVB

t TVB

I I

TVBTIB

TVBMVT

MVT

1 J

~ MVTSVL

SVL

I I

-

~ -

,

0

..
po

PDB

SCE

PDBCMDA
.
po

PDBBUFA

PDBLEN PDBTYPE PDBDISP

5
2
4
6
3

~,

b

b
=
b

,~

30
36
39
44
51

L Displacement of entry
in buffer

i..o-- Type of delimiter

- Length of each element of command

ROUTE

DSIRTP

ROUTE D2, LIST STA TUS=OPS ~:J
..

I ' . I BUFHDR

I'
24 ~, 30 • 103

i
HDRMLENG=24
HDRBLENG=104
HDRMTYPE='*'
HDRDOMID='DOM1
HDRTSTMP=X'1314150C'
HDRTDISP=30

SWB

.. I

DSRB (DSCP only)

I I
Note: The control block header
(CBH) appears at the beginning
of the CWB, OSRB, MVT, POB,
SVL, TI B, and TVB.

Figure 4-2. Command Processor Input Parameter Control Blocks

Chapter 4. Command Processors 4-7

Field

CWBPARMS

CWBBUF

CWBPDB

CWBSWB

CWBNEXT

CWBTm

CWBADATD

CWBDSRB

4-8

Description

Is a command processor parameter area. Its subfields are:
CWBBUF, CWBPDB, and CWBSWB.

Points to a buffer containing an NCCF buffer header
(BUFHDR) and the command text.

Contains a pointer to a parse descriptor block (DSIPDB),
which is described below. The PDB contains parse
information for the command pointed to by CWBBUP. If a
special type of parse is required, the PDB may be reused by the
command processor.

Points to a service work block (SWB) that the command
processor may use or pass as a parameter to NCCF service
macros or modules. NCCF service macros build parameter
lists in the SWB for the service modules. The SWB also
contains a Tm pointer, a 256-word area, and a 72-byte save
area for use by the service routine. SWBs may be reused,
without reinitialization (service routines or macros only need
the CBH and the Tm address).

Is a reserved field.

Contains the address of the task information block (Tm) for
the subtask. The Tm and the task vector block (TVB), which
is pointed to by the Tm field TmTVB, contain all the
information relating to the subtask under which the command
is running, such as the operator ID, the task type, and the task
status. The TVB in turn points to the main vector table
(MVT), which contains information of a global nature, such as
the domain name, the status of NCCF, (CLOSE NORMAL
has been issued, for example), pointers to the other global
tables, and to the other subtasks. One pointer contains the
address of the service vector list (SVL), which contains all the
addresses of the service routines (except the address of
presentation services). NCCF service macros expand to refer
to both the MVT and the SVL. NCCF requires a USING
statement for DSIMVT (the DSECT for the MVT) prior to
coding most NCCF macros (see Chapter 3, "Main Vector
Table Addressability")

Is a 256-byte work area for the command processor. If more
storage is required, the command processor must obtain it with
the DSIGET macro and release it with the DSIFRE macro.
Command processors must free any storage obtained.

Is used only by data services command processors (DSCPs).
The data services task (DST) initializes this field with the
address of the data services request block (DSRB). This field
should contain zero for all other command processor types.

System Command Entry (SCE)

The PDBCMDA field inthe parse descriptor block contains the address of the
system command entry (SCE), which contains information about the command.
The DSICES macro instruction uses the SCE to find the command processor for a
verb or to find the verb itself (if the search is by module name). The address of
the SCE is also used as input to the DSIP AS macro instruction, described in
Chapter 2.

Field

SCEVERB

SCELNAME

SCECADDR

Data Services Request Block (DSRB)

Description

Contains the command verb; it is I-to-8 bytes, left-justified
and padded with blanks.

Contains the load module or phase name of the command
processor to be called for the verb.

Contains the address of the command processor's entry point.

The data services request block (DSRB) is the method of communication between
the NCCF data services task (DST) and a data services command processor
(DSCP). It contains information for the DSCP and work space for the I/O
routines. The fields described below are those of interest to a DSCP programmer.

Field

DSRBCBH

DSRBNXTV

DSRBVECB

DSRBVRPL

DSRBCUSB

DSRBFLG

DSRBTYPE

Description

Is a standard NCCF control block header.

Contains the address of the next DSRB in the chain; this field
is reserved for DST use.

Is reserved for DST use as an event control block (ECB) when
requesting VSAM I/O.

Contains the address of the RPL that the DST uses for VSAM
I/O. This field is reserved for DST use.

Contains the address of an NCCF buffer used by the CNM
interface for unsolicited data. This field is only used when the
DSRB function code (DSRBFNCD) indicates that unsolicited
data has been received. The buffer contains a BUFHDR and
the data length is in the HDRMLENG field of BUFHDR.

Contains the flag settings described below. The bits may be
examined but not changed.

1 indicates that the DSRB is for unsolicited CNM data; 0
indicates that the DSRB is for VSAM or CNM solicited data
traffic.

Chapter 4. Command Processors 4-9

Field

DSRBACTV

DSRBINUS

DSRBRSMV

DSRBRADD

DSRBOID

DSRBTIB

DSRBUSER

DSRBVACB

DSRBVDAD

DSRBUBUF

DSRBPRID

DSRBINPT

4-10

Description

1 indicates that there is an active transaction using this DSRB.
A transaction is defined as a request from the time of its first
arrival at the DSCP to the last exit of the DSCP. When a
transaction ends, the DSRB is available for reassignment to
another transaction, for the same or another user.

1 indicates that either the VSAM or CNM interface service
routine has an active request using this DSRB. DSRBINUS
should not be on when DSRBACTV is off.

Is a reserved field.

Is reserved for DST use.

Is an 8-byte field containing the ID of the operator that
initiated the transaction.

Contains the address of the DST task information block (TIB).

Is a field available for user purposes. If this field is used for a
storage address, the DST does not free the storage. However,
storage may be allocated using the DSIGET Q= YES option
and the storage may be freed as with any subtask using
Q=YES. If not freed, the storage remains allocated until the
subtask terminates.

Contains the address of the VSAM ACB used for disk I/O.
This field is reserved for DST use.

Is the field in which the VSAM service routines keep the data
buffer address while a request is being processed. The buffer
must have a BUFHDR that is filled in. For a VSAM GET or a
CNM input request, HDRMLENG contains the length of the
data actually retrieved. Data is truncated, in the event of
overflow.

Contains the address of the original command that was sent to
the DST. This field is unchanged during the data services
transaction. This buffer contains a BUFHDR and the
HDRMCEXT extension. It also has an X'0003' IFRCODE
and HDRTYPEI (see "Internal Function Request in Chapter
3).

Is a halfword field that contains a correlation identifier for use
by the CNM interface.

Is the address of the CNM interface input buffer.

Field

DSRBRCMA
and
DSRBRCMI

DSRBFNCD

DSRBFNRM

DSRBFUNS

DSRBFSOL

DSRBFVSM

Invoking a Command Processor

Description

Are fields that contain the return codes for a completed
request. They are set after the request is completed but before
the DSCP is reinvoked for request completion. The major
return code (DSRBRCMA) value is further explained by the
minor return code (DSRBRCMI). The symbolic values of the
return codes are in the DSIDSRB DSECT. The values are
discussed later in this chapter under "Output."

Is a I-byte field that contains a function code indicating the
reason that the command processor was called.

Indicates that this is the first invocation of the command
processor, as the result of a message received from another
subtask.

Indicates that the command processor was called to handle
unsolicited CNM data.

Indicates that the data was requested from the CNM interface.

Indicates that a VSAM 110 request has completed.

The following are required to invoke a command processor:

• ACWB

• AnSWB

• A command buffer

• APDB

• A save area

• Registers 1, 13, 14, and 15

Obtaining a Command Work Block (CWB)

A command processor requires a .command work block (CWB) for use as a
parameter list, a save area, and a work area.

A CWB may be preallocated (and reused) or may be obtained by issuing the
DSILCS macro. Before calling the command processor, the Till address must be
stored in the CWBTm field.

Obtaining a Service Work Block (SWB)

The invoker of a command processor must provide an SWB. The SWB may be
preallocated, obtained with the DSILCS macro, or may be one the invoker was
passed. This control block must also have its SWBTm field pointing to the TIB.
The SWB address must be stored in CWBSWB.

Chapter 4. Command Processors 4-11

Building a Comtnand Buffer

Each command is invoked with a command buffer containing a verb and optional
operands. The verb is prefixed with the buffer header (BUFHDR). Each
BUr HDR field must be initialized except the message command extension
HDRMCEXT. The address of this command buffer is stored in CWBBUF. For
details on the buffer header, see Chapter 3.

Obtaining a Parse Descriptor Bloc.'· (PDB) and Parsing the Command

The invoker must obtain storage for a PDB to parse the command for the
command processor to be called. The size of the storage for the PDB may be
obtained by issuing the DSIPRS macro with the PDBSIZE option. The usual
sizeis 160 bytes. After the storage is obtained (from preallocated storage or with
DSIGET), the address is stored in the CWBPDB field. The control block header
(CBH) is built and the first byte is set to the value defined by symbol CBHPDB.
The second ~ J te is zeroed and the PDB length is stored in, the third and fourth
bytes prior to invoking the DSIPRS macro. Issuing DSIPRS fills in the PDB
including the PDBBUFA pointer to the command buffer, the parse elements, and
the number of parse elements. For details on the parse descriptor block, see
Chapter 3.

Looking Up the Command Processor Address

After the command is parsed, the command must be found in the NCCF system
command table (DSISCT). The command may be looked up in one of three
ways:

Wi 1 the parsed command in the PDB

Without prior parsing

By command processor module name (the module name is known but the verb
name may change, as in a synonym)

The DSICES macro invokes the command search routine (DSICAI) to locate the
appropriate position in the SCT. The position is returned in an area passed on the
DSICES macro as the SCTADDR parameter. This address points to an SCT
entry (SCE). The SCE address must be stored in the PDBCMDA field. The area
returned is mapped by DSISCE.

When the DSICES macro returns to the caller, the return code indicates whether
the command is immediate, regular, or both. The caller must set the PDBIMMED
flag according to the DSICES return codes and the invoker's environment (if
running under control of the receive exit routine as an immediate command
processor and the return code was "immediate" or "both").

Calling the Command Processor

4-12

Register 1 must point to the CWB (which now in turn points to the PDB, SWB,
TIB, and the command buffer). Register 13 must point to a save area (where it is
probably already set, because a save area is required for the service macros).
Register 15 must contain the command processor's entry point address (found in
DSISCE) and register 14 must have the return point address. The command
processor entry point address is stored in the SCECADDR field of the SCE entry
pointed to by the PDBCMDA field.

Initial DSCP Invocation

When a DST initially invokes a data services command processor (DSCP), the
DST passes the address of a DSRB in the CWBDSRB field, as described earlier in
this chapter. The DSRBFNCD field is set to 1 (DSRBFNRM) and the fields
described under "Data Services Request Block" are also set. If the DSCP issues a
data services request (DSIZVSMS or DSIZCSMS macro instruction) that is
accepted, the same DSCP is reentered after the request has been completed.
Figure 4-3 shows an example of the processing logic for a DSCP.

Passing a Command to Another Subtask in the Same Domain

NCCF data services often require passing a command to another subtask (for
example, from an OST or NNT to the DST). For passing commands from one
subtask to another in the same domain, an internal function request (IFR;
described in Chapter 3) is placed in front of the data. The HDRMTYPE field is
set to HDRTYPEI and the IFRCODE is set to X'0003' in the text area of the
buffer (IFRCODE=IRFCODCR). HDRTDISP must be set to the displacement
of IFRCODE. A command and its operands follow IFRCODE. The
HDRMLENG field is set to the length of the command and its operands plus 2
bytes for the IFR. The DSIMQS macro instruction is issued to transfer the IFR to
the destination subtask, as described under the DSIMQS macro instruction in this
chapter.

The receiving subtask removes the IFR by setting HDRTDISP to the command
verb and subtracting the length of the IFR (2) from HDRMLENG. HDRMTYPE
remains HDRTYPEI. The address of the BUFHDR plus the HDRTDISP value
equals the location of the command text.

The HDRSENDR field of BUFHDR contains the operator ID of the sender of the
buffer. To return error messages or data to the originating sub task, a message
may be built and sent with DSIMQS using HDRSENDR as the destination.

For any buffer that is not an IFR (HDRMTYPE=HDRYPTEI), the destination
subtask message receiver issues DSIPSS TYPE=OUTPUT to display the message
on the operator's screen. Another method of returning data to an originating
subtask is to build an IFR and issue DSIMQS to schedule a presentation services
command processor (PSCP) in the originating subtask. The PSCP receives
control in the same manner as the original command processor.

Forwarding a Command to Another Domain for Execution

A command can be forwarded to another domain for execution in two ways:

Build a buffer, PDB, and CWB and call the ROUTE command, or

Build a buffer as explained earlier and issue the DSIPSS macro with
TYPE=XSEND to transmit the command to the NNT (NCCF-to-NCCF)
task in the other domain. The command is executed in the NNT as if it were
entered from a terminal in that domain.

Data can be returned to an originating domain by issuing DSIPSS
TYPE=OUTPUT for any HDRMTYPE except HDRTYPEX.

Chapter 4. Command Processors 4-13

Decode

Yes

Issue
DSIZCSMS

Yes

No

DSIMBS

Build Error
Message

DSIMQS

Queue
Message

Initialize

Check DSRB

No

No

Save

CNMI

Yes

Save
"End-ot-Chain"

No

"Not Done"

Issue
DSIZVSMS
PUT

Write to Disk

Figure 4-3. Example of DSCP Processing Logic

4-14

Issue
DSIZCSMS

DSIMBS

Build Message
"Data on Data
Base"

DSIMQS

Enqueue
Message

Returning a Command to Another Domain for Output

For standard NCCF mode, an NNT issues DSIPSS TYPE=OUTPUT (for any
HDRMTYPE except HDR TYPEX) to return a message for output to an OST in
another domain. If data formatting (for example, a full-screen display) is
required, the NNT builds a buffer with HDRMTYPE=HDRTYPEX and a
command in the buffer text. The command verb identifies a user-defined
presentation services command processor (PSCP). The verb must be 8 or fewer
characters long, delimited from the rest of the buffer by a blank, and defined in
the receiving domain. When the OST's cross-domain message receiver receives
the command buffer, the OST calls the PSCP for the command. The PSCP is
invoked as described under "Invoking a Command Processor" earlier in this
chapter.

Passing Commands to the Access Method

Output

Regular Commands

To pass a command buffer to ACF /VTAM while executing under an OST, NNT,
or PPT, the user builds a command buffer as described under "Buffer Header" in
Chapter 3. The user calls the ffiM-supplied command processor, which is either
DSIVTP if it is an ACF /VTAM VARY, MODIFY, or DISPLAY command, or
DSIREP for a REPL Y command.

A similar procedure applies to ACF/TCAM operator commands. The user builds
a buffer header and then calls DSITOCP, which passes the command to
ACF /TCAM for execution.

As shown in Figure 4-4, command processor return codes depend on the
operating environment.

Regular command return codes have meaning in only two situations:

When returning from a command processor invoked due to terminal input

When one command processor returns to another command processor (a
command processor used as a subroutine) .

The return codes are defined in the following categories:

RC = 0: command processor completed successfully

RC > 0: command processor did not complete successfully

RC < 0: special conditions defined by NCCF

For terminal-originated regular commands, see events 4, 5, and 6 in Figure 4-4
for the meanings of the return code categories. For a command processor used as
a subroutine, the specific return codes may be defined as required within the
categories.

Chapter 4. Command Processors 4-15

Event Ready Immediate Unlock Command
Indicator Message Area Keyboard Input Area
A B C 0

1- Immediate command completion N/A Erase If a regular command Erase
with return code = 0 is not running, unlock

the keyboard, else
leave locked

2- Immediate command completion N/A Remains as is Same as 1C Remains as is
with return code> 0

3- Immediate command completion N/A Remains as is Same as 1 C Erase
with return code (0

4- Regular command completion Set? ? ? on N/A Unlock keyboard Erase
with return code =0 0

5- Regular command completion Set? ? ? on N/A Unlock keyboard Remains as is
with return code> 0

6- Regular command completion Set? ? ? on N/A Unlock keyboard Depends on Value:
with return code (0 -1 Remains as is

-2 Remains as is
-3 Remains as is
-4 Last regular com-

mand is written

to command
input area

Figure 4-4. Effect of Command Processor Return Codes for Terminal-Originated Commands

Immediate Commands

Immediate commands have three types of return codes. As with regular
commands, specific return codes are not defined. (All immediate commands
originate with terminal input.)

RC < 0: command is successful- the input area is erased but not the
immediate message area.

RC = 0: command is successful - both the input area and the immediate
message area are erased.

RC > 0: command is unsuccessful- neither the input area nor the immediate
message area is erased.

The immediate return codes are shown in Events 1, 2, and 3 of Figure 4-4.

Completion of a VSAM I/O Request

4-16

After a DSIZVSMS macro instruction completes processing, NCCF initializes the
DSRB and sets the following fields:

DSRBVRPL contains the address of the VSAM RPL that was used for the
I/O.

• DSRBVACB contains the address of the VSAM ACB for the DST.

• DSRBVDAD contains the address of the VSAM I/O buffer, with a standard
BUFHDR. For GET requests, the BUFHDR HDRMLENG field indicates
the length of the data read. HDRTDISP contains the offset to the data.

• DSRBVKEY contains the address of the key in the DSRBVDAD buffer.

• DSRBVKLN contains the key length.

• DSRBVRTP indicates the type of request just completed:

1. DSRBVGET (VSAM GET)
2. DSRBVPUT (VSAM PUT)
3. DSRBVPNT (VSAM POINT)
4. DSRBVERS (VSAM ERASE)
5. DSRBVNRQ (VSAM ENDREQ)

The return codes on reentry to the DSCP are as follows:

DSRBRCMA DSRBRCMI Explanation

00 00 Successful completion.

00 16 User exit processing of VSAM input has
rejected the :nput. HDRMLENG has been set
to zero.

00

00

08

12

Completion of a CNM I/O Request

24

28

VSAMRPL
feedback

VSAMRPL
feedback

Data truncated because user exit returned
data longer than NCCF buffer on RC = USERSW
(see the description of DSIUSE in Appendix C).
HDRMLENG set to truncated length.

Invalid return code from user exit.

VSAM logical error, indicated in
DSRBRCMI. See VSAM manuals.

VSAM physical error, indicated in
DSRBRCMI. See VSAM manuals.

When a DSIZCSMS macro instruction completes processing, the DSRB indicates
the completion. A Deliver RU has been received at the CNM interface.
DSRBINPT contains the address of the buffer that contains the Deliver RU or
negative response. The return codes on reentry to the DSCP are as follows:

DSRBRCMA DSRBRCMI Explanation

00 00 Successful completion.

00 04 Negative response was received. DSRBINPT
contains the address of the negative response.

00 08 There was not enough NCCF storage to
process the requ~st.

Chapter 4. Command Processors 4-17

DSRBRCMA DSRBRCMI Explanation

00 16 The user exit rejected the Deliver RU.
The DSCP sets HDRMLENG to zero.

00 20 The data has been truncated. The length
of the Deliver RU was greater than the
buffer. HDRMLENG is set to the truncated
length.

00 24 The data was truncated after the user exit
returned with a return code of USERSW AP (see
DSIUSE in Appendix C). The DSCP sets
HDRMLENG to the truncated length.

00 28 The access method rejected the request.

Completion 0/ Receipt 0/ Unsolicited CNM Data

4-18

The command processor that is defined as the unsolicited input DSCP receives
control when the network presents an unsolicited Deliver RU. (This DSCP is
defined with the UNSOL operand of the DSTINIT definition statement as
described in NCCF Installation.) When this command processor receives control:

• DSRBUBUF contains zero because there is no command.

• DSRBCUSB contains the address of the buffer containing the unsolicited
Deliver RU. The RU starts at the offset specified in HDRTDISP and the RU
length is in HDRMLENG.

The return codes on reentry to the DSCP are as follows:

DSRBRCMA

00

00

00

00

DSRBRCMI Explanation

00 Successful completion.

16 The user exit rejected the Deliver RU.
HDRMLENG has been set to zero.

20 Data truncation has occurred. The length
of the Deliver RU was greater than the buffer.
HDRMLENG is set to the truncated length.

24 Data truncation occurred after the user
exit returned with a return code of USERSW AP.

HDRMLENG is set to the truncated length.

Full-Line Command Processor Considerations

NCCF Title-Line Processing

Full-line presentation services can be used to send a full screen of 80-byte
messages to the operator from a subtask other than an OST, such as from an
NCCF-to-NCCF task (NNT). This full-screen facility, known as title-line
output, allows you to send a number of messages, one right after another, and
have them presented on the screen in a tabular format, with optional title lines.

Figure 4-5 shows an example of title-line output. The message lines are displayed
below fixed title lines. The data lines will wrap around until all the data is
displayed, but the title lines will stay at the top of the screen.

To use title-line output, format and send the message buffer as follows:

1. Set the HDRMTYPE field to HDRTYPEL ('=').

2. If you want to use title lines, mark the title line or lines by setting the bits in
HDRIND to title label (HDRLNLBL). There can be from 1 to 5 title lines (1
to 4 lines if the first title line have data in columns 70 to 80).

Note: If the first title line has data in columns 70 to 80, a maximum of 4 title
lines may be used).

If you do not wish to have title lines, omit this step.

3. Mark the data lines by setting the bits in HDRIND to data line
(HDRLNDAT).

4. Mark the last line of data by s~tting the bits in HDRIND to datal end
(HDRLNEND).

5. From an NNT, issue DSIPSS TYPE = OUTPUT using OPTIONS=MSG for
each line sent. From a subtask other than NNT, issue the DSIMQS macro to
the OST that is to receive the output.

At the operator station task, NCCF groups all the full-line buffers until a buffer
marked as data end (HDRLNEND) is received. The title lines or, if no title lines
are present, the first message line, is sent to the top of the screen, directly under
the NCCF title line. Each data line is then shown one at a time. When the
bottom of the screen is reached, the screen is locked, unless AUTO WRAP FULL
has been specified. When the screen is cleared, the title lines (if present) are
repositioned at the top of the screen, followed by the next data lines. This process
continues until all the messages have been shown.

Chapter 4. Command Processors 4-19

NETWORK COMMUNICATIONS CONTROL FACILITY mrn/dd/yy hh:mm:ss
(NCCFI)

NCP LINE PU/CLUSTER LU/TERMINAL TYPE LOCATION

NCPA 3705 MACH. ROOM
NCPA AOI SDLC SATTELLITE
NCPA AOI AOIA 3274 ANCHORAGE
NCPA AOI AOIA AOIAOI 3278 ANCHORAGE
NCPA AOI AOIA AOIA02 3278 ANCHORAGE
NCPA AOI AOIA AOIA03 3278 ANCHORAGE
NCPA AOI AOIB 3274 NOME
NCPA AOI AOIB AOIBOI 3278 NOME
NCPA AOI AOIB AOIB02 3278 NOME
NCPA AOI AOIB AOIB03 3278 NOME

• • • • • •
• • • • • •
• • • • • •

Figure 4-5. Example of FuU-Line Title-Line Output

Coding Requirements

If possible, NCCF uses screen columns 70 to 80 of the first data line for the
domain identifier. If the first line contains nonblank characters in these columns,
NCCF will generate a blank line and add the domain identifier to this line. In
title-line output, this extra line is treated as a title line.

At least one character must be in each buffer record sent to the screen. If you
wish to print a blank line, place a blank character (X'40') in the buffer. NCCF
supports full-line messages up to 80 characters. Any data line longer than 80
characters is truncated.

Full-Screen Command Processor Considerations

A full-screen command processor displays a full screen of data to the NCCF
operator. This screen of data is sent using the DSlPSS macro instruction under an
operator station task (OST).

Types 0/ Full-Screen Command Processors

4-20

There are two types of full-screen command processors: asynchronous and
synchronous.

An asynchronous full-screen command processor allows several full screens to be
displayed in sequence before returning to standard NCCF mode. Once a
full-screen mode has been started, further terminal input is treated as input to the
asynchronous full-screen processor until this command processor is ended. An
asynchronous command processor can control when NCCF messages and
command~ are able to interrupt full-screen pr()cessing.

A synchronous full-screen command processor shows a full-screen panel and
waits for operator input. After the operator responds to the full-screen panel,
further input is considered as NCCF input and standard NCCF mode is resumed.
To maintain full-screen mode, another full-screen panel can be sent to the
operator.

Operations 01 a Full-Screen Command Processor

A full-screen command processor is executed as a regular command processor
under the operator station task (OST) (see "Operating Environment"). On initial
entry, a full-screen processor issues the DSIGET macro instruction, which obtains
storage to keep track of the full-screen process. (This allows the full-screen
processor to resume control after an interruption.) The full-screen command
processor then uses a series of DSIPSS macro instructions to prompt the operator
to enter full-screen data. The input and output data streams are 3270 data
streams that NCCF does not modify.

Asynchronous Full-Screen Command Processors

For asynchronous full-screen command processors, a full screen of data is sent to
the NCCF display terminal using the DSIPSS macro instruction with
TYPE = ASYP ANEL. The data from an asynchronous full-screen panel is read
directly by NCCF into the user's buffer area, and an event control block (ECB) is
posted when the data has been read. After the ECB is posted, the command can
process the input and issue more full-screen panels. While the asynchronous
full-screen command processor is running, input to the NCCF terminal is treated
as input to the command processor and not as a direct input to NCCF.

Asynchronous Full-Screen Command Processor Parameter List

When the asynchronous command processor is invoked, it reads and writes to the
terminal using DSIPSS TYPE=ASYP ANEL. A 20-byte parameter list pointed to
by the PANEL operand of DSIPSS. The format of this list is shown below:

ECB Output User Input Output Input Data

Address Data Stream Area Address Length Area Length

Address Length Address

Bytes (Hex) 0 4 8 C E 10 14

Jf asynchronous full-screen output is requested, the output data stream address
field contains the address of a 3270 data stream including a command, WCC, and
data orders to be written to the terminal. The output length field indicates the
length, in bytes, of the 3270 data stream (32,767 bytes maximum). The ECB
address, input area length, user input area address, and data length address are
not used if only output is requested.

To read asynchronous full-screen input from the terminal, the ECB address area
contains the address of an event control block to be posted when the
asynchronous input is received. The user input area address contains the address
of a user area into which a full-screen panel data is read. (If the length of the
data being read is greater than the user input area, the data is truncated.) The
input area length field indicates the length of the input data area in bytes (32,767
bytes maximum). The data length address field contains the address of a
halfword field that is set to the amount of data actually read when the ECB is
posted.

Chapter 4. Command Processors 4-21

Processing Asynchronous Full-Screen Input

The DSIPSS macro with TYPE=PSSW AIT allows the full-screen command
processor to wait on both its own list of events and on a list of NCCF events that
should be allowed to interrupt the command processor (such as important
messages). The command processor is able to test the return code after the wait
to determine if its own ECB or one of NCCF's ECBs has been posted. If the
return code shows that an NCCF event had completed, the command may return
to NCCF to allow the processing of the event to occur. If the panel ECB is
posted, the command processor can process the input in the buffer. In this
manner, the command processor has complete control of the screen format and
can return to NCCF after saving the screen status so processing can resume later.

Testing if NCCF Events have Occurred

The DSIPSS macro with the TYPE = TESTW AIT allows the command processor
to test if an NCCF event has already been posted. This option is useful to do
before issuing DSIPSS TYPE=ASYPANEL to avoid doing input or output when
a NCCF command is already posted. This option allows early detection of
interruptions and allows return to NCCF with a minimum of screen interruptions.

Noninterruptible Command Processors

If a noninterruptible asynchronous full-screen command processor is desired, the
command processor can wait on its own list of ECBs and not use
TYPE=PSSWAIT. This allows the command processor to ignore any NCCF
interruptions. In this case, it is strongly recommended that the command
processor include the OST termination ECB, which is located in the TVBTECB
field of the DSITVB (see Appendix C). This field allows the command processor
to be notified of any major condition in which the command processor should
clean up and exit.

Ending an Asynchronous Full-Screen Command Processor

When the full-screen command processor has completed, the DSIPSS macro with
TYPE=OUTPUT or TYPE=IMMED should be issued to restore standard NCCF
mode. Input to the terminal is now treated as input to NCCF rather than as input
to the command processor.

Canceling an Asynchronous Full-Screen Command Processor

For More Information

4-22

The DSIPSS macro with TYPE = CANCEL allows the coder to change
characteristics of the asynchronous full-screen command processor, such as the
input area length or the ECB address, without returning control to standard
NCCF mode. TYPE=CANCEL can be issued whether or not a DSIPSS
TYPE=ASYPANEL is active or the input from TYPE=ASYPANEL has been
posted as complete. This is sometimes necessary since there is no way to
guarantee that the operator will ever enter data to any given panel.

See the section titled "General Guidelines" later in this chapter.

Synchronous Full-Screen Command Processors

For synchronous full-screen command processors, a full screen of data is sent to
the NCCF display terminal using the DSIPSS macro instruction with
TYPE = PANEL. The full screen of data is displayed. After the operator
responds to this full-screen panel, either another full-screen panel is sent or
further operator input is considered as NCCF input and standard NCCF mode is
required.

Synchronous Full-Screen Command Processor Parameter List

When the synchronous command processor is invoked, it reads and writes to the
screen using DSIPSS TYPE = PANEL. A 16-byte parameter list pointed to by the
PANEL operand of DSIPSS. The format of this parameter list is shown below:

Bytes (hex)
o

8

C

10

Command Verb

Output Area Address

Output Length II nput Length

The command verb is a verb that is defined as a regular, both, or RD command
processor in the NCCF CMDMDL definition statement. The verb is 1 to 8
characters, padded to the right with blanks. When the input length is zero, the
command verb is not required; bytes 0-7 of the parameter list are ignored and
considered reserved.

The output area address is the address of a 3270 data stream conforming to
ACF/VTAM requirements for 3270 record-mode data, and including a command
code, WCC, orders and data. (See Figure 4-6.)

The output length is the number of bytes in the 3270 data stream. For read-only
requests, the output length is set to zero. The maximum output length is 32,767
bytes (X'7FFF').

The input length is the maximum input data to be expected by NCCF. Data
exceeding this length is truncated. NCCF acquires and later frees the required
amount of virtual storage. If storage is not available, the DSIPSS PANEL request
fails with a return code of 12 (PSMNOSTG). To write to a terminal without
reading input and without scheduling a command to process input, set the input
length to O. The maximum input length is 32,767 bytes (X'7FFF').

DC
DC
DC
DC
DC
DC
DC

X'FS'
X'C3'
X'I14040'
X' 1DFO'
C'ENTER DATA'
X' 1D40'
X' 13'

Figure 4-6. Sample 3270 Data Stream

ERASE/WRITE COMMAND CODE
WCC=RESET KEYBOARD AND MDTS
SBA ROW 1 COLUMN 1
START FIELD--PROTECTED, LOW
MESSAGE TEXT
START FIELD--UNPROTECTED, LOW
INSERT CURSOR IN UNPROTECTED AREA

Chapter 4. Command Processors 4-23

Processing Synchronous Input

The input data for a full-screen processor is different from the input data for
standard NCCF commands. The format of the full':"screen input buffer is shown
below:

I BUFHDR 1 Command
Verb

13270 Data

The full-screen command receives the same input as any other command: register
1 points to a CWB, which in turn points to the Tffi, SWB, the command buffer,
and a PDB containing parse data relevant to the buffer. Since the 3270 data in
the command is not translated or edited in any way, the parse data may not be
meaningful. The 3270 data stream contains the AID byte, buffer addresses, SBA
characters, and data.

Establishing a Full-Screen Subroutine
~-

Since a synchronous full-screen command processing must return to standard
NCCF mode to process any commands, it is recommended that a subroutine be
used to handle full-screen input and outpll;t. The subroutine can then suspend the
full-screen command processor without informing the main screen processor. To
do this, save the registers at the time of entry into the subroutine. Next, restore
the registers that the command processor was originally called with and return to
the OST. When the command is redriven because of the data entered at the
terminal, reestablish the environment that was saved when the input/output
subroutine was entered and return to the requester of the input. You may also
want to have the reshow command processed by this full-screen subroutine.
Appendix F shows an example of a full-screen command processor subroutine.

Ending a Synchronous Full-Screen Command Processor

General Guidelines

When the synchronous full-screen command processor has completed and is about
to exit for the last time, it is recommended that the DSIPSS macro with
TYPE-OUTPUT or TYPE-IMMED be issued to automatically restore the
standard NCCF panel. If this is not done, the operator must press the CLEAR
key to return to the standard NCCF panel.

The following guidelines should be followed for both asynchronous and
synchronous full-screen command processors.

Screen Formatting for the 3270 Data Stream

4-24

Since the full-screen command processor is responsible for the 3270 data stream,
the processor should do one of the following:

• Issue the DSIPSS macro with TYPE-SCRSIZE to find the presentation space
dimensions. If the input data is larger than 24 by 80 bytes, issue the 3270
Erase/Write Alternate command.

• Issue the 3720 Erase/Write command and use the default 24 by 80 byte
screen size.

The Escape Key

The Reshow Option

The Reshow Key

Note: When writing data to a full-screen processor, avoid sequences of a read
followed by another read. This combination leaves the 3270 Input Inhibited
indicator set, and the operator has to press the RESET key before entering
data. It is better to follow the first read with a write/read where the output
data is a WCC that unlocks the keyboard and, optionally, resets the Modified
Data tags.

In synchronous full-screen command processors, the operator may temporarily
suspend full-screen processing and escape to standard NCCF by pressing the
CLEAR key and requesting options 1 or 3 of the DSI817 A options menu (see
NCCF Terminal Use). Synchronous full-screen command processors should
define a key to allow the operator to perform this escape function.

After suspending full-screen processing using the escape key, the operator may
wish to resume to full-screen processing again. It is recommended that every
full-screen processor define a command option to reconstruct the last full-screen
panel and continue processing from where the full-screen process was interrupted.

A full-screen command processor should define a key, such as the PA2 key, to
redisplay the last screen shown during full-screen processing. The reshow key
might be necessary if there are two full-screen processors running alternately. In
this case, it is possible for data from both of the processors to be written to the
same screen panel. A reshow key helps the operator avoid this problem. The
reshow key is useful if the operator has errors in the input data and wishes to
erase the data and start over, or if the operator accidentally hits the ERASE
INPUT key and erases good data. The full-screen command processor refreshes
the screen in response to the reshow key.

Logging Full-Screen Input/Output

NCCF does not automatically log full-screen input and output. However, it is
recommended that a full-screen application program use the DSIWLS macro
instruction to log pertinent data.

DSIPSS Return Code from a Full-Screen Command Processor

The possible return codes to a full-screen command processor from DSIPSS are
described under the DSIPSS macro instruction. A nonzero return code shows that
no input command is scheduled. Any cleanup required should be done before
returning to NCCF. For synchronous full-screen command processors, the
TVBRESET and TVBPNMOD fields in DSITVB can help interpret several of the
DSIPSS return codes (see Figure 4-7). The TVBRESET bit is set on by the
RESET NORMAL command or by option 3 or the DSI817 A options menu. The
TVBPNMOD bit is set on if the full-screen command processor is interrupted by
either the CLEAR key or an event that causes NCCF to reformat the screen in
standard NCCF mode. Whenever a command processor builds a data stream for
panel mode, the TVBPNMOD bit should be tested.

Note: If you write a full-screen command proces ... or that gets control in the OST
from a cross-domain message, set the TVBPNMOD bit on before exiting. This
ensures that TVBPNMOD is set for full-screen commands issued from a terminal.

Chapter 4. Command Processors 4-25

Return
Code TVBRESET TVBPNMOD Meaning

0 OFF OFF I nput data was scheduled. Processing continues.

0 OFF ON Input data was scheduled. The screen was
modified after processing completed.

0 ON OFF Input data was scheduled; a reset was subse-
quently requested. The input command will be
executed. Delay the reset until the input com-
mand is running. Since TVBRESET may be
off by that time, it is recommended that
another bit be set, indicating the reset. The
screen has not yet been modified.

0 ON ON Input data was scheduled; a reset was subse-
quently requested. The input command will
be executed. Delay the reset until the input
command is running. Since TVBRESET may
be off by that time, it is recommended that
another bit is set, indicating the reset. The
screen has been modified.

32 OFF ON Operator requested escape to standard NCCF
mode (option 1 of OSI817A). The command
processor should exit to NCCF and expect the
operator to request a redisplay of the panel
later. Input has not been scheduled.

32 ON ON Operator requested escape to standard NCCF
mode (option 1 of OSI817 A). The command
has been reset. The full-screen command
processor should exit to NCCF and expect
the operator to request a redisplay of the
panel later. Input has not been scheduled.

44 ON ON No input data was scheduled, because the
operator requested a reset (option 3 of
OSI817 Al.

Figure 4-7. Interpreting the TVBRESET and TVBPNMOD Bits

4-26

Chapter S. Exit Routines

This chapter describes the exit routines available in NCCF. It includes a summary
of the exit routines and instructions for coding and installing them. A sample
user-written exit routine is shown at the end of the chapter.

NCCF provides service facilities that may be used by user-written exit routines.
These facilities and the macro instructions that can them are discussed in detail in
Chapter 3.

What Can NCCF Exit Routines Do?

NCCF exit routines allow the user to edit data flowing to or from NCCF. The
exit routine can be used to:

• Change commands or messages

• Delete unnecessary messages

• Summarize NCCF events or data

• Handle a specific event in a way different from NCCF processing

• Count or summarize specified information automatically

• Automate processes based on information from the access method

Each exit routine is designed to handle a particular type of event. When such an
event occurs, NCCF passes control to the appropriate exit routine for processing,
and then control is returned to NCCF. Unlike a command processor which is
invoked to perform a particular service or to handle a specific message, an exit
routine is used to screen all messages that fall into one of the exit routine
categories. Exit routines are particularly helpful when they handle an event that
occurs frequently.

Exit routines must be reentrant, written in assembler language, assembled, and
link-edited into phases or load modules specified as DSIEXnn or the name on the
XIT -- operand of DSTINIT. (See "Installation" later in this chapter.)

It is not necessary for you to code all of the exit routines available. If you do not
code an exit routine, NCCF uses a default exit routine and no processing changes
are made.

Overview of NCCF Exit Routines

This section describes each of the NCCF exit routines in detail, including coding
requirements and examples of use. Figure 5-1 shows the interfaces between the
exit routines and NCCF, the CNM interface, and the access method. Figure 5-2
shows the subtask environment of each of the exit routines. NCCF modules
associated with specific exit routines are described in NCCF Logic.

There are two types of exit routines: NCCF exit routines (DSIEXOI to
DSIEX 15), and data services task exit routines (XIT --). Data services task exit
routines are invoked by the NCCF data services task (DST). DST exit routines
are also defined differently than the NCCF exit routines (see "Installation" later
in this chapter).

Chapter 5. Exit Routines 5-1

EX12 EX07

I-r Before ~ Logon Cross-Domain
Validation Output Access NCCF in

Method Another
EX01 EX08 Domain

Before

r+ Cross-Domain
~ Input from Input

the Operator Processing

EX03

NCCF Access Before
EX05 Operator Method Command
Before

Console Processing
Output to ~

EX02 Access

Output to Method .. the Operator
or Hard-Copy EX06
Log Solicited Access

Message Input • Method

from Access Operator
EX13 Interface Method

1+ OST/NNT
Message EX11

Receiver Unsol icited
Access r.

EX14/EX15 Method
NCCF Messages

Before
Logoff

TRE ~ ACF/
After ACF/TCAM TCAM

EX10
Input

Read

from
System

f-+ Console EX04

System EX09 ~
Disk

Console Output Before Logging

f4- to the Logging
System
Console Data Services Task (DST)

XITDI XITCO XITCI XITVN XITVI XITVO

VSAM
CNM CNM Empty

'DST Interface Interface Data VSAM VSAM
Initial ization Output Input Set Input Output

~ t t ~
CNM Interface

Access Method VSAM

SSCP

Figure 5-1. NCCF Exit Routine Interfaces

5-2

.. --
--

NCCF Access
Operator Method
Console

-...

--

NCCF Access
Operator Method
Console

-~
Under HCT

Under Main task

EX10

Input from

EX12

Logon
Validation

EX01

Input from
the Operator

EX02

Output to
the Operator

EX13

OST/NNT Message
Receiver

EX14/EX15

Before
Logoff

EX13

OST/NNT Message
Receiver

EX02

Output to the
Operator or
Hard-Copy Log

System --.
Console

System Console'

Figure 5-2. Environment of NCCF Exit Routines

Under OST or NN T

EX07

Before ... -Output Access NCCF in
Method Another

EX08 Domain

Before Any --Processing for Input

EX03

Before Command EX05
Processing

Before Output ... -to Access Method

EX06
Access

Solicited Message - Method

Input from
...

Operator

Access Method Interface

NCCF

Under PPT

EX03

Before Command EX05
Processing .

Before Output ..
to Access Method

EX11 Access

- Method
Unsolicited Access - Operator

NCCF Method Messages Interface

Under DST

Data Services Task IDST)

XITDI XITCO XITCI XITVN XITVI XITVO

CNM CNM VSAM

DST Interface Interface Empty VSAM VSAM

Initial ization Output Input Data Set Input Output

t t t +
CNM Interface

VSAM
Access Method SSCP

Under Any Subtask

System
EX09

Console ..- Output to the
System Console

EX04

~ Disk
Before Logging
Logging

Chapter 5_ Exit Routines 5-3

The chart below summarizes the exit routines in NCCF. Each of the exit routines
are then discussed in detail.

Exit Description Subtask Environment

DSIEX01 Input from the operator OST, NNT
DSIEX02 Output to the operator OST, NNT, HCT
DSIEX03 Input before command processing OST, NNT, PPT
DSIEX04 Log output Any subtask
DSIEX05 Before output to the access method OST, NNT, PPT
DSIEX06 Solicited message input from the OST, NNT

access method
DSIEX07 Before cross-domain output OST, NNT
DSIEX08 Before cross-domain input processing OST, NNT
DSIEX09 Output to the system console Any subtask
DSIEX10 Input from the system console Main task
DSIEX11 Unsolicited access method messages PPT
DSIEX12 Logon validation OST, NNT
DSIEX13 OST/NNT message receiver OST, NNT, PPT
DSIEX14 Before logoff OST, NNT
DSIEX15 Before VSE logoff OST, NNT
XITDI DST initialization DST
XITCO CNM interface output DST
XITCI CNM interface input DST
XITVN VSAM empty data set DST
XITVI VSAM input DST
XITVO VSAM output DST
DSITRE After ACF/TCAM read TCT

DSIEXOl: Input from the Operator

5-4

Description: DSIEXOI is invoked from the NCCF receive exit routine (DSIRCV)
for standard NCCF mode input from the operator terminal or from a
cross-domain session. When input is routed to a terminal in another domain
(OST-to-NNT), DSIEXOI is invoked under the NCCF-to-NCCF task (NNT).

The DSIEXO 1 exit routine is executed after device-dependent processing occUrs
but before syntax or command verbs are analyzed. The message has not yet been
logged.

DSIEXOI executes asynchronously, and may interrupt NCCF processing of
regular commands.

Example of Use: DSIEXO 1 might be used to call a command list with a program
function key to handle input data from the operator (see "Sample User-Written
Exit Routine" later in this chapter).

Coding Requirements: In DSIEXOl, messages may be sent to the immediate
message area of the operator's screen only. If DSIPSS is used, only
TYPE=IMMED is allowed.

Avoid coding a WAIT in this exit routine. Do not use any disk services macros in
this exit routine.

DSIEX02: Output to the Operator

Description: DSIEX02 is invoked for standard NCCF output to an operator
terminal (DSIPSS TYPE=OUTPUT, DSIPSS TYPE=IMMED). This exit routine
is executed before device-dependent output is inserted. The data has not yet been
logged.

DSIEX02 may executes asynchronously, and may interrupt NCCF processing of
regular commands. DSIEX02 executes asynchronously if it is invoked with
DSIPSS TYPE=IMMED, from DSIEXOl, or from the NCCF receive exit routine,
DSIRCV.

DSIEX02 may also be invoked under the hard-copy task (HCT). In this case, the
exit is synchronous and can not be interrupted by other network events. You can
determine if the exit routine is running under the H CT by checking the
CBHTYPE field of DSITm or DSITVB for a value of X'03' (see the mapping of
DSICBH in Appendix C).

Example of Use: Since the message has been formatted but not yet logged,
DSIEX02 can be used to examine the message type and the message text. A
substitute message may be supplied, or the message may be deleted entirely.

It is possible to use DSIEX02 to log a message but not display it on the screen.
DSIEX02 can issue DSIWLS to log the message and then issue return code 4 to
stop processing before the message is displayed.

Coding Requirements: This exit routine should check the TVBINXIT bit in
DSITVB to determine for which DSIPSS option the exit was invoked. If the bit is
not on, the exit was invoked for DSIPSS TYPE=OUTPUT. If the bit is on, the
exit was invoked for DSIPSS TYPE=IMMED and all restrictions on DSIEXOI
apply to this exit routine.

Do not use the DSIPSS macro when coding this exit routine. If a message is
required, use DSIMQS to queue the message to the subtask. The message receiver
will call DSIEX13 and then write the message to the operator's terminal output
area.

DSIEX02 does not receive a parse descriptor block (PDB) because NCCF does
not check the syntax of messages being sent to a terminal. If you wish to parse
the messages in DSIEX02, use the DSIGET macro to obtain storage, then format
a PDB control block header in the first 4 bytes, and issue the DSIPRS macro
instruction to parse the output buffer. Use the DSIFRE macro to free the storage.

DSIEX03: Input Be/ore Command Processing

Description: DSIEX03 is invoked when NCCF is about to execute a command that
was not directly received from a terminal. This exit routine is similar to
DSIEXOl, but it is for internally generated commands, such as a command:

• In a command list

• Received from another subtask

• Representing an ACF/VTAM or ACF/TCAM message

Chapter 5. Exit Routines 5-5

DSIEX04: Log Output

• Starting the hard-copy log at logon

• Used as the NCCF initial command

Before execution, commands are passed to either DSIEXOlor DSIEX03, but not
to both.

Example of Use: DSIEX03 can be used for special command checking, such as
counting the number of times a certain command is entered.

Coding Requirements: There are no special coding requirements for DSIEX03.

Description: DSIEX04 is invoked during the logging process. It applies to
messages logged on both disk and hard-copy. This exit routine is within log
services but is executed before the message is reformatted and sent to the log.

Example of Use: DSIEX04 may be used to edit information sent to the disk or
hard-copy logs. Certain messages may be sent to one log and not the other, or not
logged at all.

Coding Requirements: Do not use the DSIWCS, DSIWLS, or DSIPSS macros in
this exit.

DSIEX04 is not restricted to a particular subtask, but can run under any subtask
that issues the DSIWLS macro instruction. For this reason, be sure that any
service facilities you request are supported by the task under which you are
running. For example, VSAM services may only be used under the data services
task.

DSIEX04 does not receive a parse descriptor block (PDB) because NCCF does
not check the syntax of messages being sent to a log. If you wish to parse the
messages in DSIEX04, use the DSIGET macro to obtain storage, then format a
PDB control block header in the first 4 bytes, and issue the DSIPRS macro
instruction to parse the output buffer. Use the DSIFRE macro to free the storage.

DSIEX05: Before Output to the A.ccess Method

Description: DSIEX05 invoked when a command is about to be passed to
ACF ITCAM or ACF IVTAM. Any domain qualifiers have been removed, and
all span checking has been completed.

Example of Use: You might use DSIEX05 to check if an operator has the authority
to issue a specific command.

Coding Requirements: There are no special coding requirements for DSIEX05.

DSIEX06: Solicited Message Input from the Access Method

5-6

Description: DSIEX06 is invoked when a solicited ACF IVTAM or ACF ITCAM
message is received (solicited messages are messages generated in response to an
operator command). No processing has been done on the message yet, and the
message has not been logged.

Example of Use: DSIEX06 could be used to change the message number or text of
an access method message, or to process access method messages in a special way.

Coding Requirements: There are no special coding requirements for DSIEX06.

DSIEX07: Before Cross-Domain Output

Description: DSIEX07 is invoked before output is sent to a cross-domain operator
station task in another NCCF (DSIPSS TYPE=XSEND). The output has not yet
been formatted and transmitted.

Example of Use: DSIEX07 might be used to monitor cross-domain traffic over the
network.

Coding Requirements: Do not use DSIPSS TYPE=XSEND in this exit routine.
Avoid issuing commands that route a commmand to another domain, such as
ROUTE, DISPLAY, or VARY. (These commands may be queued for exeCUhJn
by building an IFR type 3 and issuing the DSIMQS macro instruction, if desired.)

DSIEX07 does not receive a PDB; the cross-domain NCCF will parse the
messages after they are received. If you wish to parse the messages in DSIEX07,
you may use the DSIGET macro instruction to obtain storage, then format a PDB
control block header in the first 4 bytes, and issue the DSIPRS macro to parse the
output buffer. Use the DSIFRE macro instruction to free the storage.

DSIEX08: Before Cross-Domain Input Processing

Description: DSIEX08 is invoked when input is received from a cross-domain
operator station task in another domain. This exit routine handles responses from
previously sent messages. DSIEX08 is not invoked if the input from the other
domain is a command; in this case, DSIEX03 is used. No processing has been
done on the message yet, and the message has not been logged.

Example of Use: You might code DSIEX08 to check whether the OST subtask is
in a pause state when message DSI809A prompts the user for cross-domain logon
data. If so, DSIEX08 could post the GO-CANCEL ECB to simulate an operator
entering the GO command.

Coding Requirements: There are no special coding requirements for DSIEX08.

DSIEX09: Output to the System Console

Description: DSIEX09 is invoked when a message is written to the system console
operator using the DSIWCS macro. The message has not been formatted for
transmission.

Example of Use: This exit routine may be used to edit messages sent to the system
console.

Coding Requirements: Do not use the DSIWCS or DSIMQS macros in DSIEX09.
If you need to send a message to the system console from this exit routine, use
system macros.

Chapter 5. Exit Routines 5-7

DSIEX09 does not receive a PDB. If you wish to parse the messages in
DSIEX09, use the DSIGET macro to obtain storage, then format a PDB control
block header in the first 4 bytes, and issue the DSIPRS macro to parse the output
buffer. Use the DSIFRE macro to free the storage.

DSIEXI0: Input/rom the System Console

Description: DSIEXI0 is invoked when input is received from the system console
operator. The exit is invoked after the complete message is available,but before it
is interpreted for execution. The message has not been logged.

Example of Use: You could use DSIEX 1 0 to allow the system console operator to
enter command abbreviations and synonyms. These could then be expanded in
the exit routine.

Coding Requirements: DSIEXIO is called from the NCCF main task, not from a
subtask.

DSIEXI0 does not receive a PDB. If you wish to parse the messages in
DSIEXIO, use the DSIGET macro to obtain storage, then format a PDB control
block header in the first 4 bytes, and issue the DSIPRS macro to parse the output
buffer. Use the DSIFRE macro to free the storage.

DSIEXll: Unsolicited Access Method Messages

Description: DSIEXll is invoked from the primary POI receiver for unsolicited
messages from ACF IVTAM or ACF ITCAM. This exit routine is invoked before
the command verb or the resource name is analyzed. The message has not been
logged.

Example of Use: One use of DSIEXII is to handle all unsolicited messages in a
special way, different from normal NCCF processing. DSIEXII might issue a
DSIMQS macro instruction to make a copy of the message buffer before it was
processed by NCCF. Or, if you wanted unsolicited messages to be sent to all
operators, DSIEXII might transform the messages into MSG ALL commands.

Coding Requirements: If DSIEXll calls a command or a command list, the
command restrictions for the PPT apply (Appendix A shows which commands can
run under the PPT).

DSIEX12: Logon Validation

5-8

Description: DSIEX12 is invoked at the completion of the logon process. The
logon has been accepted by NCCF. If the exit routine issues a return code of
zero, the logon will proceed. If specified, the user's hardcopy log is started and
the NCCF initial command is executed. If the return code is nonzero, the
operator is logged off.

Example of Use: DSIEX 12 might be used to do additional checking on user
authorization, do user environment customization, or send messages to other
operators.

Coding Requirements: There are no special coding requirements for DSIEX12.

DSIEX13: OST / NNT Message Receiver

DSIEX14: Before Logoff

Description: DSIEX13 is invoked within the message receiver for
subtask-to-subtask communication. This exit routine is invoked when either a
message buffer or an internal function request (IFR) type 8 is received through
the DSIMQS macro.

A message buffer is any buffer that does not have a HDRMTYPE of "I" (internal
function request). When DSIEX13 returns, these buffers are written to the
operator terminal with DSIPSS TYPE=OUTPUT, unless return code 4 is issued.
The messages are logged after exit routine DSIEX02 is invoked.

IFR type 8 is an internal function request reserved for definition by the user. An
IFR type 8 is not written to the operator terminal.

Example of Use: If you wish to initiate a pser function with a buffer, you might
choose to use IFR type 8 in conjunction with DSIEX 13. IFR type 8 could be
further subdivided by providing a unique value in the first two bytes of each IFR
type 8 buffer.

Coding Requirements: There are no special coding requirements for DSIEX13.

Description: DSIEX 14 is invoked when an OST or NNT subtask is about to
terminate normally (not abend). This exit routine may be invoked for several
reasons, including:

LOGOFF is entered at the operator's terminal.

• Subtask LOSTERM exit is driven (ACF/VTAM).

• The subtask is posted to terminate.

The subtask cannot communicate with the operator's terminal at this point;
however, it is possible to issue the DSIWCS macro to write to the system console
and the DSIWLS macro to write entries to the log.

Example of Use: DSIEX 14 could be coded to save accounting information, free
user-obtained storage, or update tables.

Coding Requirements: DSIEX 14 does not receive an input buffer or PDB because
there is no buffer associated with logoff processing. The return code from this
exit routine is ignored.

DSIEX15: Before Logoff with MVX/OCCF or VSE/OCCF

Description: DSIEX15 is only invoked if NCCF is running as a subtask of
MVS/OCCF, or VSE/OCCF, separately orderable IBM program products.
DSIEX15 is provided with MVS/OCCF and VSE/OCCF, so the user does not
code this exit routine.

DSIEX15 is invoked during primary session termination processing. This exit
routine is called immediately before DSIEX14 and is passed the same parameters.
DSIEX 15 is invoked after the logoff has been accepted but before cleanup of the

Chapter 5. Exit Routines 5-9

work area. The exit routine notifies MVS/OCCF or VSE!OCCF when the
subtask through which it is communicating with NCCF has been terminated.

Example of Use: This exit routine is used by VSE/OCCF only.

Coding Requirements: DSIEX 15 should not be coded by the user.

XITDI: Data Services Task (DST) Initialization

Description: XITDI is invoked for each statement read by the DST during
initialization. When end-of-file is reached, this exit routine is entered with two
DSIUSE fields, USERMSG and USERPDB, set to zero to indicate that there is no
more data.

Example of Use: XITDI can be added to the DST initialization deck to provide
user init~')1ization values to this exit routine. After processing this statement, the
exit routine can prevent the DST from scanning the statement by setting return
code 4, USERDROP.

Coding Requirements: When invoked for an end-of-file situation, A nonzero return
code in register 15 indicates to the DST that it should terminate.

XITDI is restricted to the service facilities available to DST subtasks.

Note: If all initialization data is to be processed by the exit routine specified as
XITDI, the user must specify the DST initialization statement that specifies
XITDI as the first statement in the DST initialization member.

XITCO: CNM Interface Output

Description: XITCO is invoked by the data services task (DST) prior to a request
for CNM interface output.

Example of Use: This exit routine allows the user to modify the request for CNM
data (Forward RU).

Coding Requirements: The exit routine is restricted to the service facilities available
to DST subtasks.

If a substitute buffer is specified with return code 8 and register 0, the data must
be a valid SNA request unit (RU).

XITCI: CNM Inter/ace Input

5-10

Description: XITCI is invoked by the DST after CNM data is received.

Example of Use: This exit routine allows the user to modify CMN interface input
data (Deliver R U).

Coding Requirements: The exit routine is restricted to the service facilities available
to DST subtasks.

Any output from this exit routine must be in the form of a valid SNA request unit
(RU).

XlTVN: VSAM Empty Data Set

XlTVI: VSAM I"put

XlTVO: VSAM Output

Description: XITVN is invoked if the DST encounters a VSAM open failure
because of an empty data set or file.

Example of Use: This exit routine allows the user to supply a record to be placed
into the empty data set. For NPDA and the NCCF VSAM log, each of which run
under a DST, an XITVN exit routine is supplied with the program product. You
should code this exit routine if you wish to run your own VSAM DST.

Coding Requirements: If you are using the NPDA or NCCF VSAM log DST, you
should not code this exit routine.

The exit routine should return with return code 8, and register 0 pointing to a
buffer containing the record that will be used to initialize the VSAM data set or
file. A return code other than 8 will cause the DST to terminate.

The exit routine is restricted to the service facilities available to DST subtasks.

Description: XITVI is invoked by the DST after a VSAM GET macro has been
issued. The record has been read from the VSAM data base but has not yet been
passed to the requesting data services command processor.

Example of Use: This exit routine allows the user to modify the record after it has
been retrieved from a VSAM data set or file, and before the data is passed to the
data services command processor.

Coding Requirements: The exit routine is restricted to the service facilities available
to DST subtasks.

Description: XITVO is invoked by the DST immediately before the record is
written to the VSAM data base.

Example of Use: This exit routine allows the user to modify the record before it
has been written to the VSAM data set or file.

Coding Requirements: The exit routine is restricted to the service facilities available
to DST subtasks.

DSITRE: ACF/TCAM Read

Description: This exit routine is called after the check for read completion and
before passing the data to NCCF subtasks for processing.

Emmpleo/ Use: This exit routine allows the user to modify an ACF ITCAM
record within NCCF, if the user does not choose to do it in a message handler.
For example, either status messages received from BSC devices (such as
intervention required)'can be discarded (using theUSERDROP code from
DSIUSE) or alogoffcan be forced by substituting a buffer with a logoff
command (usingUSERSWAP code from DSIUSE).

Chapter 5. Exit Routines 5-11

5-12

Coding Requirements: Care must be used when inspecting or modifying the buffer.
Five types of messages are received from ACF ITCAM:

Screen-size request

• Cross-domain data

• Operator data

• Terminal data

• Logon request

See Figure 5-3. All five messages begin with the standard NCCF header
(BUFHDR). Only the HDRMLENG, HDRBLENG and HDRTDISP fields are
valid. HDRTDISP is the displacement from the start of the buffer to the
beginning of the ACF ITCAM message. HDRMLENG contains the length of the
ACF ITCAM message.

Screen Size Requested

BUFHDR Origin ID '333333C4E2C9E2E2' X

Cross Domain Data

BUFHDR Origin ID DSIXTH BUFHDR with data

Operator Data

BUFHDR Origin ID IEDnnnx or IEADnnnx (TCAM Message)

Terminal Data/Logon Requests

BUFHDR POS Origin ID Data (

Figure 5-3. Message Formats for DSITRE: ACF ITCAM Read

Installation

Coding Guidelines

All ACF ITCAM messages begin with a I-byte position value followed by an
8-byte origin ID. The data following the origin ID varies by data type.

For screen-size requests, an 8-byte constant ('333333C4E2C9E2E2'X) is
followed by an IFRSS (see DSIIFR).

For cross-domain data, it is an XTH control block followed by a NCCF header
and data (see DSIXTH).

For operator data, it is an ACF ITCAM network message number in the lEDnnnx
or lEAnnnx, followed by the message text. lED and lEA are component ids, nnn
is the message number, and x is the action code (A, I, or E).

Terminal data and logon requests have no special format.

Exit routines should be written in assembler language, assembled, and link-edited
into phases or load modules. These phases or load modules are made available to
NCCF by being included in the NCCF library during installation. Only one
phase or load module is permitted for each exit routine, and conditional selection
at exit time is not allowed.

Exit routines DSIEXOI through DSlEXI5 are loaded at NCCF start time by their
assigned names. DST user exits (XIT --) are defined to the data services task by
the XITxx operands of the DSTINIT statement. Each DST may have different
user exit routines. When the DST is started, it loads the exit routines.

If you do not code one of the exit routines, NCCF supplies a default exit routine
and processing continues normally. The following message is issued each time
NCCF uses a default exit routine:

DSI090I LOAD FAILED FOR NCCF MODULE exitname

This message is for your information only; processing will not be affected. If you
wish to avoid receiving this message, code any unused exit routines as follows:

exitname CSECT
SR 15,15
BR 14
END

Then, link-edit this code into the NCCF load library.

If you intend to write exit routines, you should be familiar with the NCCF service
facilities and macro instructions described in Chapter 3.

The following guidelines should be followed in coding exit routines:

• Make all exit routines reentrant.

Save registers at entry to the exit routine and restore them before returning
control to NCCF.

• Avoid wait states. The DSIW AT macro instruction must not be issued in exits
DSIEXOI and DSlEX02.

Chapter 5. Exit Routines 5-13

Input Parameters

Registers

• Do not rely on the contents of registers 0 and 2 through 12 for constant
values. Register assignments may vary from exit to exit or from one program
release to another.

• NCCF uses registers 0, 1, 14, and 15 for macro instruction expansion.

• Register 13 should always point to a standard 72-byte save area.

• Do not return control to any location in the NCCF program other than that
specified by register 14.

• If you are rewording a full-line message, do not change the HDRMTYPE or
HDRIND fields in the NCCF buffer header. If you are deleting a full-line
message, delete each section of the message on successive exit routine calls.
Be careful notto delete a CONTROL, LABEL, or END line unless you are
deleting the whole message. You can tell if a message is a full-line message by
checking the HDRMTYPE field of the NCCF buffer header (BUFHDR
section of DSITm). HDRTYPEJ, HDRTYPEK, and HDRTYPEL are
full-line messages. For information on user-written full-line messages, see the
section titled "Full-Line Command Processor Considerations."

Standard CALL and RETURN sequences transfer control to and from exit
routines. Upon entry to the exit routine, registers contain the following
information:

Register

1

13

14

15

0,2--12

Contents

Address of the user exit parameter list (DSIUSE). This
parameter list is described in detail later .

Address of a standard 72-byte NCCF save area used to store the
caller's registers.

Return address of the NCCF program.

Entry address of the exit routine.

Unspecified.

Control Block Considerations

5-14

If you use NCCF service facilities in an exit routine, you must include some
control block DSECTs in the exit routine. This can be done using the DSICBS
macro instruction (see Chapter 3). The control blocks needed depend on what
services your exit toutine invokes; however, you will want to include at least
DSIMVT, DSIUSE;and DSISWB. DSIUSE DSISWB are described below.

User Exit Parameter List (nSIUSE)

The user exit parameter list (DSIUSE) contains addresses for the following: the
buffer containing the message, the LU name associated with the message, the
operator identification, and control blocks DSISWB, DSITVB, and DSIPDB. An
extension to DSIUSE is present for DSIEX12 and the DST exit routines involved
with input/output (XITCO, XITCI, XITVN, XITVI, XITVO). For DSIEX12,
the password, hard-copy printer name, and profile name are given. For the DST
exit routines, the address of DSIDSRB is given. Refer to Appendix C for the
location of each of these fields.

Field

USERCBH

USERMSG

USERLU

USEROPID

Description

Is a standard NCCF control block header. The second byte
USERCODE, indicates what exit routine is being invoked.

Points to a buffer in standard NCCF buffer format, consisting
of a buffer header (BUFHDR) followed by text. For
input-type exists, device-dependencies have been removed.
For input from an operator terminal, substitution for the
AGAIN command has not occurred. This buffer should not be
changed, but may be referenced. In exit routines DSIEX14,
DSIEX15, XITDI for end-of-file, and XITVN, this field is set
to zero.

In DSlEX04, the buffer is in the format set up by the caller. It
has not yet been reformatted for the NCCF log.

Points to an 8-byte area that contains the logical unit name
related to the subtask in control, as follows:

For an OST, the node name of the operator's terminal.

For an NNT, the APPL name of the OST that issued the
START DOMAIN command (NCCFID DOMAINID
appended with 3-digit number).

For a PPT, the NCCFID DOMAINID parameter appended
with the characters "PPT".

For an HCT, the node name of the hardcopy printer.

For a DST, the name from the TSKID operand of the TASK
definition statement.

If the main task is in control, this 8-byte area contains the
characters "SYSOP".

Points to an 8-byte area that contains a name related to the
subtask in control, as follows:

For an OST or NNT, the operator's identifier.

Chapter 5. Exit Routines 5-15

Field

USERSWB

USERTVB

USERPDB

USERLGON

USERPSWD

USERRCPY

USERPROF

USEDSRB

5-16

Description

For a PPT, the NCCFID DOMAINID parameter appended
with the characters "PPT".

For an RCT, the address of the node name of the hardcopy
printer.

If the main task is in control, this 8-byte area contains the
characters "SYSOP".

Points to a service work block (SWB) that may be used by the
exit routine to request services from NCCF or as a work area.
If necessary, another SWB may be obtained by using the
DSILCS macro (see the description of SWB below).

Points to the task vector block (TVB). The TVB contains
information about the subtask under which the exit routine
was invoked. The TVB is also used to obtain the addresses of
the Till, MVT, and SVL (through the MVT).

Points to a parse descriptor block (PDB) or contains O. The
PDB contains parse data relating to the buffer pointed to by
USERMSG. For exit routines DSIEX02, DSIEX04,
DSIEX07, DSIEX09, DSIEX10, DSIEX14, DSIEX15,
DSITRE, and XITDI for end-of-file, this field contains 0; A
PDB is not available when calling these exit routines.

Extension for DSIEX12 and the DST exit routines. If present,
this extension contains the following fields:

For DSIEX12 only, contains the password entered by the
operator during logon. If OPTIONS VERIFY ==MINIMAL is
specified, this field contains blanks. For exit routines other
than DSIEX 12, this field is not initialized.

For DSIEX12 only, contains the name of the hard-copy
printer used by the operator for this session. If no hard-copy is
used or if OPTIONS VERIFY = MINIMAL is specified, this
field contains blanks. For exit routines other than DSIEX12,
this field is not initialized.

For DSIEX 12 only, contains the name of the profile used for
this session. If OPTIONS VERIFY = MINIMAL is specified,
this field contains blanks. For exit routines other than
DSIEX 12, this field is not initialized.

For DST exit routines XITVN, XITVI, XITVO, XITCI, and
XITCO, points to the DSRB associated with the DST
input/ output request. For other exit routines this field is not
initialized.

Service Work Block (SWB)

Output Parameters

The service work block (SWB) contains the parameter list for most of the NCCF
service facilities that are used in an exit routine. The U'~ERSWB field of DSIUSE
points to a SWB that can by used to request these service facilities. Remember
that all exit routines that use NCCF service facilities must have address ability to
the main vector table (MVT). See Chapter 3 for more information.

If you decide to use the SWB pointed to by DSIUSE as a work area, you can
obtain another SWB with the DSILCS macro instruction when requesting NCCF
services. The DSILCS macro might be coded as follows:

DSILCS CBADDR=(R2),SWB=GET

If you use the DSILCS macro instruction to obtain another DSISWB, be sure to
initialize the SWBTIB field of the SWB with the address of the caller's Till before
you request NCCF services.

When the exit routine no longer requires the SWB obtained using DSILCS, the
SWB should be freed. To free the SWB in the example above, you would code:

DSILCS CBADDR=(R2),SWB=FREE

Note: If you use an SWB as a work area, be careful not to overlay the SWBTm
or SWBCBH fields because these fields are not reinitialized by NCCF. If you
must change either of these fields, reinitialize them before returning control to
NCCF.

When an exit routine returns control to NCCF, the register contents should be as
follows:

Register

o

1-14

15

Contents

Unchanged, unless return code 8 is received in register 15.

Unchanged.

A return code (see Figure 5-4 for a list of valid return codes).
The return code is not examined by DSIEXI4.

The parameter list should be unchanged with the exception of the work area.

Chapter 5. Exit Routines 5-17

Exit Return
Routine Code Symbol Meaning

All but 0 USERASIS Use the message as presented to the exit routine.
DSIEX14 For DSIEX12, allow the logon.

4 USERDROP Delete the message; do not process it further. For
DSIEX12, reject the logon.

All but 8 USERSWAP A message has been substituted for the message
DSIEX12 presented to the exit routine. The address of buffer
and containing the new message is in register O. When
DSIEX14 using this return code, follow these restrictions:

• The message cannot be longer than the data
portion of the original buffer. You can calculate
the length of the buffer area by subtracting
HDRTDISP from HDRBLENG in the BUFHDR
section of DSITI B.

• To ensure that the user buffer will be freed,
either (1) build the buffer in the SWBPLIST or
SWBDATD fields of DSISWB or (2) acquire the
buffer at logon in DSIEX12 by using user fields
such asTIBUFLD, TVBUFLD, or MVTUFLD
and free the buffer with DSIEX14 during logoff.

DSIEX04 12 USER LOG Write the message to the disk log only.
Only

16 USERLOGR Write the substituted message to the disk log only.
The address of the buffer containing the new message
is in register O.

20 USERHCL Write the message to the hard-copy log only.

24 USERHCLR Write the substituted message to the hard-copy log
only. The address of the buffer containing the new
message is in register O.

Figure 5-4. Return Codes Set by Exit Routines

Exit Routine Prototype

DSIEXNN

5-18

CSECT

The following shows the basic structure of an exit routine, including entry,
obtaining an SWB freeing the SWB, and exit linkage. This exit routine may be
used as a prototype for writing your own exit routines.

DSICBS DEFER=ALL INCLUDE CONTROL BLOCKS
DSICBS DSITIB,DSITVB,DSIMVT,DSISWB,DSIPDB,DSIUSE,DSISVL
STM 14,12,12(13) SAVE REGISTERS
LR 10,15 SAVE BASE REGISTER
USING DSIEXNN,10 REG 10 IS THE BASE
USING DSIUSE,l REG 1 POINTS TO DSIUSE
L 11,USERSWB LOAD REG 11 WITH SWB ADDRESS
USING DSISWB,ll BASE SWB
LA 2,SWBSAVEA GET ADDRESS IF SAVE AREA
ST 2,8(,13) SAVE REG 2
ST 13,4(,2) SAVE REG 13
LR 1 3 , 2 REG 1 3 CONTAINS SAVE AREA ADDR
LR 9,1 MOVE DSIUSE ADDRESS
DROP 1 DROP ORIGINAL BASE
USING DSIUSE,9 REG 9 POINTS TO DSIUSE
L 12,USERPDB LOAD REG 12 WITH PDB ADDR
USING DSIPDB,12 BASE THE PDB

L 8,USERTVB ADDRESS THE TVB
USING DSITVB,8 BASE THE TVB
L 7,TVBMVT GET THE ADDRESS OF THE MVT
USING DSIMVT,7 BASE THE MVT

* *
*
*

NOW OBTAIN ANOTHER SWB IN ORDER TO ISSUE NCCF SERVICE MACROS *
* ***

DSILCS CBADDR=WORKADDR,SWB=GET GET A NEW SWB
SPACE 1

* NOTE: SEE DSISWB DSECT AT THE END OF THE LISTING
SPACE 1
LTR 15,15 TEST DSILCS RETURN CODE
BNZ ABEND GO AND ABEND IF OUT OF STORAGE
L 5,WORKADDR POINT TO NEW SWB
L 4,TVBTIB PUT THE TIB ADDRESS IN REG 4
ST 4,SWBTIB-DSISWB(,5) STORE THE TIB AD DR IN THE NEW SWB

*
*
*
*

NOW REGISTER 5 POINTS TO THE NEW SWB. THIS SWB SHOULD BE USED
FOR ALL SERVICE MACROS IN THIS EXIT.

*
*
*
*

* PUT YOUR USER EXIT CODE HERE *
* *
*
*
*

*
*
*

* *
*
*

NOW THE NEW SWB MUST BE RELEASED BEFORE EXITING. *
*

RETURN EQU *

DSILCS CBADDR=(5),SWB=FREE NOW FREE THE GOTTEN SWB
LTR 15,15 TEST IF DSILCS WAS SUCCESSFUL
BNZ ABEND ABEND IF FAILED TO FREE SWB
SPACE 1

* PICK THE EXIT LINKAGE DESIRED FROM THE THREE BELOW:
* TO PROCESS THE BUFFER ASIS FROM HERE ON, RETURN FROM HERE
ASIS LA 15,USERASIS SET AN ASIS RETURN CODE

L 13,4(,13) RESTORE CALLER'S SAVE AREA ADDR
L 14,12(,13) RESTORE CALLER'S REGISTER 14
LM 0,12,20(13) RESTORE CALLER'S REGISTERS 0-15
BR 14 RETURN TO CALLER
SPACE 1

* TO STOP FURTHER PROCESSING ON THIS BUFFER, RETURN FROM HERE
SET A DROP RETURN CODE DROP LA 15,USERDROP

L 13,4(,13)
L 14,12(,13)
LM 0, 12,20(13)
BR 14
SPACE 1

* TO SWAP A BUFFER FOR THE
SWAP LA 15,USERSWAP

ABEND

L O,SWAPBFR
L 13,4(,13)
L 14,12(,13)
LM 1 , 1 2 , 24 (1 3)
BR 14
SPACE 1
EQU *
ABEND 4000

RESTORE CALLER'S SAVE AREA ADDR
RESTORE CALLER'S REGISTER 14
RESTORE CALLER'S REGISTERS 0-15
RETURN TO CALLER

BUFFER PASSED, RETURN FROM HERE
SET A SWAP RETURN CODE
POINT TO THE SWAP BUFFER
RESTORE CALLER'S SAVE AREA AD DR
RESTORE CALLER'S REGISTER 14
RESTORE CALLER'S REGISTERS 1-15
RETURN TO CALLER

ABEND 4000-4095 RESERVED FOR USER
* IN VSE, USE THE DSIABN MACRO.

SPACE 1
DSICBS DEFER=INCLUDE,PRINT=YES,EJECT=YES

DSISWB DSECT , EXTEND THE SWB DEFINITION
ORG SWBADATD POINT TO 256 BYTE WORK AREA

WORKAREA DS OCL256 WORKAREA IS 256 BYTES LONG

Chapter 5. Exit Routines 5-19

WORKADDR DS A
SWAPBFR DS A

SPACE 1
DSIEXNN CSECT,

END DSIEXNN

ADDRESS OF NEW SWB SAVED HERE
ADDRESS OF SUBSTITUTION BUFFER

RESUME CSECT
END OF THE USER EXIT

Sample User-Written Exit Routine

5-20

The following is an example of a user-written exit routine. This DSIEXO 1 exit
routine allows an operator to enter data and press a program function (PF) key
that the exit routine interprets and uses to call a command list. The command lists
are then defined with names such as $A, $B, and so forth. For example, if an
operator enters TASKS and presses PF3, the exit routine changes the percent
(0/0) sign (for the PF) to $, and 3 to C and instructs NCCF to ue the original
command in the buffer. The SC then causes NCCF to call command list $C,
which can perform the function the user wishes at this point. This exit routine
requires inclusion of the following NCCF control blocks: DSICBH, DSIMVT,
DSIPDB, DSISWB, DSITffi, DSITVB, and DSIUSE.

TITLE 'DSIEX01 - NCCF TERMINAL INPUT USER EXIT ROUTINE'

* * * DSIEX01 - NCCF USER EXIT FOR TERMINAL INPUT *

* * * THIS USER EXIT ROUTINE CHECKS TO SEE IF A 3270 PF OR PA KEY WAS *
* DEPRESSED. IF IT WAS, THE VERB IN THE BUFFER WILL START WITH A '%'. *
* THESE VERBS (COMMANDS) ARE ASSUMED TO BE CLISTS OR COMMANDS *
* STARTING WITH THE' , (X'5B') CHARACTER. PF KEYS ARE TRANSLATED *
* TO A (PF1) TO X (PF24). PA KEYS ARE TRANSLATED TO 1 (PA1) TO *
* 3 (PA3). *
* * * INPUT: Rl DSIUSE ADDRESS

SAVEAREA ADDRESS
RETURN ADDRESS
ENTRY ADDRESS

OUTPUT: REGS SAME AS INPUT EXCEPT *
R15 0 IF OK *
R15 = 0 IF UNSUPPORTED *

KEY WAS PRESSED *
* R13
* R14
* R15
* * ***
DSIEX01 CSECT

DSICBS DSITIB,DSIPDB,DSISWB,DSIUSE,DSIMVT,DSISVL,DSITVB, *
DEFER=ALL INCLUDE CONTROL BLOCKS AT END

STM 14,12,12(13) SAVE REGISTERS
LR 1 0 , 1 5 SET BASE ADDRESS
USING DSIEX01,10
LR 7,1 MOVE USER EXIT PARAMETER LIST ADDRESS
USING DSIUSE,7
L 11,USERSWB LOAD SWB REG WITH SWB ADDRESS
USING DSISWB,11
LA 2,SWBSAVEA GET ADDRESS OF SAVEAREA
ST 2, 8(13)
ST 13, 4(2)
LR 13,2 R13 CONTAINS SAVEAREA ADDRESS
L 12,USERPDB LOAD PDB REG WITH PDB ADDRESS
USING DSIPDB,12

**
*NOW LOOK AT DATA IN THE INPUT BUFFER
**

CLI PDBNOENT+l,X'OO' DATA IN INPUT BUFFER?
BE RETURN IF NOT, GET OUT
LA 3,PDBTABLE GET PDB ENTRY FOR CMD VERB
USING PDBENTRY,3
CLI PDBLENG,X'02' IS LENGTH = 2?
BNE RETURN IF NOT, PFK NOT PRESSED SO LEAVE
L 5,PDBBUFA ADDRESS OF COMMAND BUFFER
AH 5,PDBDISP ADD DISPLACEMENT TO VERB

* R5 NOW HAS ADDRESS OF CMD VERB
**
*CHECK IF PF/PA KEY WAS USED TO ENTER THIS COMMAND
**

CLI O(5),C'%' IF %, IT WAS ENTER KEY WITH DATA
BNE RETURN BRANCH IF ENTER KEY WITH DATA

**
*PF KEY WAS USED
**
* PFl - PF24 MAP TO COMMANDS/CLISTS NAMED A- X, PA1-PA3 TO 1- 3
**

TR 1 (1 ,5), TRANTAB TRANSLATE AID
MVI O(5),C" CONVERT % TO
CLI 1(5),C'*' IS AID INVALID?
BNE RETURN NO

* UNSUPPORTED AID BYTE

*
*

*
*
* ERRRET

RETURN

L 5,USERMSG POINT TO BUFFER
USING BUFHDR,5 COVER BUFFER HDR
MVI HDRMTYPE,HDRTYPEU MAKE A USER MSG
MVC HDRTDISP,DISPLACE
MVC HDRTEXT(L'AIDMSG),AIDMSG
MVC HDRMLENG,MSGLENG
L 2,USERTVB POINT TO THE TVB
L 2,TVBMVT-DSITVB(,2) POINT TO THE MVT
USING DSIMVT,2

DSICLS SWB=GET,CBADDR=MYSWBPTR

LTR 15,15 WAS SWB GOTTEN?
BNZ RETURN NO - RETURN WITHOUT MSG
L 15,MYSWBPTR ADDRESS MY SWB
MVC SWBTIB-DSISWB(,15),SWBTIB COPY THE TIB ADDRESS TO MY SWB

DSIPSS TYPE=IMMED,BFR=(5),SWB=MYSWBPTR

DSILCS SWB=FREE,CBADDR=MYSWBPTR

L 13,4(13) ERROR RETURN
LM 14,12, 12(13)
LA 15,4 RC = DELETE THE MESSAGE/COMMAND
BR 14
EQU * GOOD RETURN
L 13,4(13)
LM 14,12,12(13)
SR 15,15 RC CONTINUE THE PROCESS
BR 14

Chapter 5. Exit Routines 5-21

5-22

* TRANTAB

*

EQU
DC
DC
DC
DC
DC
DC
DC
DC

*-X'4C'
C'VWX*'
16C'*'
11C'*' ,C'13*2*'
10C'*' ,C'JKL***'
64C'*'
C'*MNOPQRSTV******'
32C'*'
C'*ABCDEFHI'

DISPLACE DC AL2(HDRTEXT-BUFHDR)

X'4C'-X'4F'
X'50'-X'SF'
X'60'-X'6F'
X'70'-X'7F'
X'80'-X'BF'
X'CO'-X'CF'
X'DO'-X'EF'
X'FO'-X'F9'

AIDMSG DC C'USR001I NOT SUPPORTED FOR COMMAND ENTRY'
MSGLENG DC AL2(*-AIDMSG)

DSICBS DEFER=INCLUDE,PRINT=NO
DSISWB DSECT, RESUME SWB. REDEFINE WORKAREA.

ORG SWBADATD
MYSWBPTR DS A POINTER TO MY SWB
DSIEXOl CSECT, RESUME CSECT

END DSIEXOl

Chapter 6. Subtasks

This chapter describes the rules and requirements for writing optional NCCF
subtasks. It also describes the control block fields that are of use when coding
a subtask. A sample user-written subtask is shown at the end of the chapter.

NCCF provides service facilities that may be used by user-written subtasks.
These facilities and the macro instructions that call them are discussed in detail
in Chapter 3.

Why Write Your Own Subtask?

Each of the subtasks in NCCF handles a separate function: The OST and NNT
control an operator's terminal and cross-domain session. The PPT processes
system operator commands, unsolicited access method commands, and
timer-initiated commands. The DST provides support to gather, record, and
manage data. The RCT controls the hard-copy device. In ACF ITCAM, the
TCT acts as the interface between NCCF and the ACF ITCAM application
message handler.

You can write your own subtask to provide additional customization of NCCF.
For example, you might write a subtask to centralize a process that would be
used by several different subtasks, such as access to a data base. You might
also write a subtask to process certain types of data or one network
management function. The subtask that you write is attached and started by
NCCF as an optional subtask.

Defining the Subtask to NCCF

SubtaskOrganization

The subtask must be link-edited and stored in an NCCF load library under the
name specified on the MOD operand of the TASK definition statement.

You should use the TASK definition statement to define your subtask to NCCF.
For example, the following definition statement

TASK MOD=USERMOD,TSKID=USERTASK,MEM=USERMEM,PRI=9,INIT=Y

indicates that the subtask is in module USERMOD, and has a SUB TASK
identification of USERTASK. The dispatching priority is 9, the lowest priority,
and the subtask is to be started during NCCF initialization. For a DST, MEM
is used as the member name of DSIP ARM for additional initialization
information. The subtask you write can use the MEM parameter for other
functions, for example as DD name, a member name, or an operator identifier.
For more information on MEM, see "Reading the Subtask Initialization Deck"
later in this chapter.

NCCF subtasks are normally divided into three parts: initialization, process,
and termination. See Figure 6-1 for an overview. Initialization sets up the
processing environment, process performs the sUbtask functions, and termination
cleans up and exits.

Chapter 6. Subtasks 6-1

6-2

Message

Enter Subtask

Intialization

Issue DSIWAT
Macro on the
ECB List

Process the Data

User-Defi ned
Processing

Figure 6-1. Subtask Organization

Release
Resources

Termination 3et
TVBTERM=1

The basic initialization and termination procedures are standard for all subtasks,
and must be followed when you write your optional subtask (See
"Requirements," below).

The process section of a subtask usually begins with a DSIW AT (WAIT) macro
on an event control block (ECB) list. The contents of the ECB list vary
according to the function to be performed; however, all subtask ECB lists must
contain the termination ECB, TVBTECB.

In OS/VS, all ECBs are posted using the X'40000000' bit. Both DSIPOS and
OS/VS system POST macros use the same bit. In VSE, the DSIPOS macro
uses the X'40000000' bit while the VSE system POST macro uses the
X'0000800' bit to indicate that the event has been posted. Subtasks running

(

Requirements

Coding Guidelines

Entry and Exit Linkage

Subtask Attachment

under VSE should check for the presence of both bits. It is recommended that
NCCF subtasks use DSIPOS rather than the system POST macro to post ECBs.

It is the responsibility of the subtask to determine which ECB(s) are posted and
take the appropriate action. Before reissuing the DSIW A T macro, the BCBs
must be set to zero.

This section describes those features that must be provided by a user-written
subtask.

When writing subtasks, you should be familiar with the NCCF service facilities
and macro instructions described in Chapter 3.

The following guidelines should be followed in coding subtasks:

• Make all subtasks reentrant.

• Save registers at entry to the subtask and restore them before returning
control to NCCF.

• NCCF uses registers 0, 1, 14, and 15 for macro instruction expansion.

• Register 13 should always point to a standard 72-byte save area.

• Do not return control to any location in the NCCF program other than that
specified by register 14.

When a subtask is attached, the following register contents are provided:

Register 1
Register 13
Register 14
Register 15

Address of task vector block for subtask
Save area address
Return address
Subtask entry point address

The control blocks at entry to an optional subtask are shown in Figure 6-2.
From the task vector block (DSITVB) you can obtain the addresses of the task
information block (DSITIB) and the main vector table (DSIMVT), which are
used by the subtask. DSITIB is pointed to by the TVBTffi and the DSIMVT is
pointed to by the TVBMVT in the DSITVB. These control blocks are
described in detail at the end of this chapter. The TVBTCB field of DSITVB
points to the OS/VS task control block or to the VSE NCCF pseudo TCB
(See NCCF Logic).

NCCF provides two types of attaches: normal and cleanup. A normal attach is
caused by issuing a START TASK command or by specifying INIT = Y on the
TASK definition statement. The TVBTERM bit in DSITVB is set to zero.

Chapter 6. Subtasks 6-3

DSITVB
Register 1 -) I ---

r-- TVBTIB

DSIMVT

TVBMVT - I I
~ MVTSVL

DSITIB

l
1..+ I I DSISVL

TIBTVB ~

Figure 6-2. Subtask Input Parameter Control Blocks

When a subtask terminates normally, this bit is set to one by the subtask,
indicating that the resources allocated by the subtask have been released and
now the resources allocated by the main task are to be released.

A cleanup reattach occurs after a subtask has terminated abnormally. The
NCCF main task sets the TVBTERM biVto one, and the subtask is reattached.
When the subtask gains control, it should free all resources, and then exit
normally.

Indicating that the Subtask is Ready

6-4

A subtask must indicate that it is ready to operate. After the subtask is
initialized and before it starts processing, the subtask must enter a value into the
TVBOPID field of the DSITVB. This value is chosen by the subtask, and must
be unique in the TVB chain. The most frequently used method is to copy the
contents of TVBLUNAM, which is the value of the TSKlD operand of the
TASK definition statement, into TVBOPID. You may also use a hard-coded
value, or another method.

For OS/VS, you should ensure that the TVBOPID value is unique by using the
OS/VS ENQ macro and DSILCS, as follows:

1. Issue the ENQ macro:

ENQ (MVTNCCFQ,MVTTVBRN,E,18,STEP)

Note: Be sure you have address ability to the MVT before issuing this macro (see
Chapter 3).

Subtask Termination

Optional Facilities

LIST Command

The ENQ macro prevents other subtasks from changing operator identifiers
in the chain.

2. Issue the DSILCS macro, supplying the correct operand values:

DSILCS CBADDR=narne,TVB=MVTTVB,OPID=narne

The DSILCS macro will attempt to locate a DSITVB containing the
specified operator identifier. If the return code is 0, the name cannot be
used in TVBOPID because it is already in use. If the return code is 8, the
name is unique; place the subtask identifier into TVBOPID and set the
TVBACTV bit to 1.

3. Dequeue the TVB chain by issuing:

DEQ (MVTNCCFQ , MVTTVBRN , 1 8 , STEP)

For VSE, issue the DSILCS macro instruction as shown in step 2, above. The
ENQ and DEQ macros are not required.

Include the TVBTECB field of DSITVB in the subtask ECB list for each
subtask you write. When an NCCF CLOSE NORMAL command is issued, and
after all NCCF operators have logged off, the main task posts the TVBTECB
bit of the subtask to indicate that subtask termination is requested. When the
subtask finds the TVBTECB bit posted, it should:

• Release all resources.
• Set TVBOPID to blanks.
• Set TVBACTV to zero.
• Set TVBTERM to one.
• Reload the registers originally passed, and return to the address specified in

register 14.

This section describes optional facilities that you may wish to provide in a
user-written subtask.

The LIST command may be used to display the status of the subtask from an
operator's terminal. For optional subtasks, first a header line is displayed by
the LIST command processor. Then the contents of TVBOPID and
TVBLUNAM are displayed, along with the subtask type (OPT) and the status
of the subtask as determined by the following DSITVB bit fields: TVBRCVRY
(in recovery), TVBLGOFF (stopping), TVBACTV (active), TVBLGON
(starting), or none of the above (not active). The search order of the bits is the
order shown.

Chapter 6. Subtasks 6-5

The subtask may also create its own status display. The subtask must create its
own display when the status changes. Follow these guidelines when creating a
status display:

1. NCCF will not print your status display if any of the following are true:

The buffer pointer in TIBOSLST is zero.

The TVBTIB field of the DSITVB is zero.

The TVBTERM bit is set.

The TVBACTV bit is zero.

2. The subtask is responsible for keeping the buffer containing status
information current. When updating status, set the DSITm buffer pointer
TmOSLST to zero until the buffer is ready to be displayed.

Queued Storage Management
The DSIGET Q= YES facility is provided to ensure that storage is freed in case
of an abnormal termination by recording storage requests. The storage blocks
are chained together from one of two queues: TVBEXITQ (if EXIT=YES), and
TVBTASKQ (if EXIT=NO). During normal subtask termination, any DSIGET
storage remaining should be freed using DSIFRE. To release the storage:

• Check the queue anchor (TVBTASKQ or TVBEXITQ). If the field is zero,
there is no storage to be released.

If the queue anchor is not zero, obtain the storage address from this field.

• Add 16 to address.

• Issue DSIFRE Q = YES specifying the computed address and the size of the
storage. The size may be specified as zero (LV =0).

• Continue to check the queue anchor until no storage is left to be released.

For an example of this process, see the section titled "Sample User-Written
Subtask."

Reading the Subtask Initialization Deck

6-6

You may wish to use the value of the MEM keyword of the TASK definition
statement as the 1-to-8 character name of the user-defined initialization data set
B book or member name in DSIP ARM. This value is found in the

Logging Messages

Issuing Messages

Jleceiving Messages

TVBMEMNM field of DSITVB. The subtask is responsible for processing the
contents of this book or member. The subtask should issue the following
commands to use NCCF disk services to read DSIPARM:

DSIDKS TYPE=CONN,NAME=DSIPARM to connect the subtask to
NCCF disk services.

DSIDKS TYPE=FIND,NAME=TVBMEMNM address to find the
DSIP ARM member and read the first record.

DSIDKS TYPE=READ until the end-of-file return code is returned.

DSIDKS TYPE=DISC to disconnect from NCCF disk services.

If the DSIP ARM member or book name is not used by the subtask,
TVBME~fNM may be used for other purposes, depending on how the MEM
keyword of the TASK statement is specified. For example, you may decide to
use this field as the DD name to be opened by the subtask, or to specify a
default operator to receive messages.

You may use the DSIWLS macro to write messages to the NCCF disk log from
the subtask. See Chapter 3 for more information on DSIWLS. Hardcopy
logging may not be started for user-written subtasks.

When a subtask starts, it should use the DSIMQS macro to send success or
failure messages to the operator who started the subtask. The operator
identifier is passed to the subtask in the TmMSGNM field of DSITm. If the
subtask was started by the main task, TmMSGNM contains zeros. Once the
subtask is operating, further messages are sent to the operator specified by the
subtask, which may vary depending on whom you want to receive the messages.

All messages must use standard NCCF buffer format, consisting of a properly
initialized buffer header (BUFHDR) including the extension, followed by the
message text. The buffer header is described in Chapter 3.

The subtask may be coded to receive messages from other subtasks (or from
itself) that are sent using the DSIMQS macro.

All of the buffers transfered from one subtask to another with DSIMQS have
the same buffer format. The buffer extension contains a queuing pointer field
and the operator identifier (TVBOPID) of the sender, which may be used to
return data or messages to the sender.

Your subtask may process buffers of any format. The value in the
HDRMTYPE field of the buffer header indicates the format and contents of the
buffer. When the HDRMTYPE field is set to the character "I" (HDRTYPEI),
the buffer is an internal function request (IFR). For an IFR, the two bytes
following the HDRMCEXT tell the format of the rest of the buffer.

Chapter 6. Subtasks 6-7

*
REMOVE
MSGDEQ

REVERSE

Freeing DSIMQS Buffers

6-8

IFRCODE=3 indicates that the remainder of the buffer is a command (see
"Command Processing" later in this chapter.) IFRCODE=8 is reserved for you
to define. (The only NCCF subtasks coded to handle IFRTYPE=8 are the
OST and the NNT; the IFR is passed to the DSIEX13 exit routine for these
two subtasks.)

Because the DSIMQS macro is used to transmit messages to many different
subtasks, care must be taken when receiving message buffers. The DSIMQS
macro will handle situations such as main line interruption, simultaneous
processing in separate subtasks, and parallel processing in multiprocessor
environments. To maintain reliability in situations suc}l as these, the subtask
should follow these rules when receiving messages: '

• Wait until the TVBMECB (DISMQS event contr&i block) has been posted

•

•

Make sure that all previously received buffers have been processed.

Set TVBMECB to zero.

• Use the assembler Compare and Swap instruction (CS) to obtain the queue
of buffers from TVBMPUBQ and place zeros in TVBMPUBQ.

• Reverse the order of the queue to first-in-first-out (FIFO).

• Store the address of the queue of buffers in TVBMPRIQ.

In assembler language, this process would be (assume registers named A, B, and
C):

DSIWAT [ECB LIST INCLUDES
TM TVBMECB,X'40'
BNO elsewhere
CLC TVBMPRIQ,=F'O'
BNZ some-processing

XC TVBMECB,TVBMECB
SLR B,B
L A, TVBMPUBQ
CS A,B,TVBMPUBQ
BNE MSGDEQ
USING BUFHDR,A
L C,HDRNEXTM
ST B,HDRNEXTM
LR B,A
LTR A,C
BNZ REVERSE
ST B,TVBMPRIQ

TVBMECB]
IS THE DSIMQS ECB POSTED
BRANCH IF NOT POSTED
IS PRIVATE ANCHOR EMPTY
BRANCH IF BUFFERS ARE STILL ANCHORED
RETURN TO 'REMOVE' WHEN TVBMPRIQ=O
ZERO THE ECB
ZERO SWAP REGISTER
LOAD THE COMPARAND REGISTER
CS ZERO ONTO THE QUEUE
RETRY IF TVBMPUBQ CHANGED
REG A NOW POINTS TO TOP BUFFER
REVERSE .. .

THE .. .
QUEUE ...

ORDER. TEST FOR END OF QUEUE.
BRANCH IF NOT END OF QUEUE
BASE FIFO QUEUE FROM PRIVATE ANCHOR

Buffers transferred with DSIMQS are obtained with DSIGET Q-NO. When
your subtask frees these buffers, use DSIFRE Q=NO. During subtask
termination,after the TVBOPID field is set to blanks and TVBACTV is set to
zeros, the TVBMPUBQ and TVBMPRIQ . should be checked for buffers. If a
queue is found, the buffers should be processed and freed.

Command Processing

In order to execute commands in your subtask, the command processor has to
be designed to run in your optional subtask environment. NCCF command
processors are designed to run under NCCF subtasks such as OST, NNT, PPT
or DST. You may want to avoid coding a command processor by handling
processing with a subroutine. If you want to define commands with CMDMDL
statements so that you may use DSICES or DSIP AS macro instructions, the
command processor must be defined as TYPE=D or TYPE=RD. Command
lists, immediate commands, and regular commands may not be invoked within
the subtask.

If an IFR type 3 is received through the DSIMQS macro, the buffer contains a
command. To process the buffer, follow this procedure:

1. Add 2 to the HDRTDISP value, and subtract 2 from the HDRMLENG
value. This moves the displacement past the IFR so that all commands
appear the same to the command processor.

2. Issue the DSIGET macro to obtain a parse descriptor block (PDB), if
necessary.

3. Issue the DSIPRS macro to parse the buffer

4. Issue the DSILCS macro to obtain a command work block (CWB)

5. Issue the DSICES macro to look up the command in the NCCF command
table.

The command can now be called. When the command returns, issue the
DSILCS macro to free the DSICWB, and the DSIFRE macro to free the PDB.

Control Block Considerations

The following control block fields are useful when writing a subtask.

Note: In the control block discussions that follow, the sequence of fields may not
directly correspond to the field sequence in the actual DSECT. Appendix C
contains the control block listings.

Main Vector Table (MVT)

The main vector table is the main control block for information throughout
NCCF. There is one DSIMVT for each NCCF. From a subtask, the DSIMVT
can be located through a pointer in the TVB (TVBMVT).

Field

MVTCBH

MVTDPRAD

MVTSVL

Description

Is a standard NCCF control block header

(VSE only) Points to the NCCF VSE dispatcher
(DSIDPR). This field should be referenced by NCCF
service macros only.

Contains the address of the service vector list (DSISVL)
which contains the addresses of the NCCF service
routines.

Chapter 6. Subtasks 6-9

6-10

Field

MVTTVB

MVTNCCFQ

MVTTVBRN

MVTCLOSE

MVTDRTRY

MVTMRC

MVTTCNT

MVTMLGON

MVTCDSES

MVTCURAP

MVTCUPAL

MVTCURAN

MVTGMSG

MVTTOD

MVTUFLD

MVTGFMGl

Description

Contains the address of the first TVB in the TVB chain.

(OS/VS only) Is the QNAME value for the ENQ and
DEQ macros.

(OS/VS only) Is the RNAME value for the ENQ and
DEQ macros.

Is a flag bit indicating that the CLOSE NORMAL
command has been issued. When this bit is on, no more
subtasks are attached and logons are not accepted.

Shows the number of times an input/output operation is to
be retried before it is considered a permanent error.

Contains the MAXABEND definition statement which
shows the number of times an operator station task (OST)
may abnormally terminate (abend) and be reinstated.

Contains the number of TVBs in the TVB chain.

Contains the value from MAXLOGON definition
statement which specifies the maximum number of times
invalid logon information is processed before the session
with that terminal ends.

Contains the value from the CDMNSESS definition
statement which specifies the maximum number of OSTs
in other domains that may have sessions at one time with
this NCCF. This is the number of TVBs created for
NCCF-to-NCCF tasks in the TVB chain.

Contains the value from the NCCFID definition statement
DOMAINID operand, as follows:

(1 byte) Shows the length of the NCCFID DOMAINID
(1-5 characters).

(8 bytes) Contains the NCCFID DOMAINID padded with
blanks.

Points to a buffer containing message DSI073A
COMMAND PROCESSOR UNABLE TO BUILD
RESPONSE MESSAGE.

Shows the system time-of-day clock when NCCF was
started

Is for customer definition and use.

Points to a Write-to-Operator parameter list containing
message DSI124I STORAGE REQUEST FAILED FOR
NCCF. The message may be used by any WTO macro
wi.th MF = E~ No additional storage is required. The
routing code is (2,11); the descriptor code is 11.

Field

MVTGFMG2

MVTMETH

MVTTPROC

Task Vector Block (DSITVB)

Description

Points to a Write-to-Operator parameter list containing
message DSI125I CRITICAL STORAGE SHORTAGE
FOR NCCF. The message may be used by any WTO
macro with MF=E. No additional storage is required.
The routing code is (2,11); the descriptor code is 11.

Indicates whether the access method is ACF /VT AM (V)
or ACF/TCAM (T).

(ACF /TCAM only) Contains the value of the
ACF/TCAM TPROCESS name (See MVTCURAN).

The task vector block is used by NCCF to represent a subtask. When NCCF is
started, one TVB is acquired for each subtask. The TVBs are chained together
through the TVBNEXT field, and the beginning of the chain is pointed to by
MVTTVB.

Field

TVBCBH

TVBNEXT

TVBTm

TVBTCB

TVBMVT

TVBTECB

TVBMECB

TVBMPUBQ

TVBMPRIQ

Description

Is a standard NCCF control block header. It contains a
CBHTYPE byte used to indicate the subtask type, as
follows:

X'OO' PPT
X'OI' NNT
X'02' OST
X'03' HCT
X'04' TCT
X'05' Optional subtask

To distinguish between different types of optional
subtasks, examine the TVBMODNM field.

Points to the next TVB on the TVB chain. The TVB
chain is anchored from MVTTVB.

Points to the Tm for the subtask.

Contains the OS/VS task control block (TCB) address or
the NCCF VSE pseudo-TCB address for the subtask.

Points to the DSIMVT.

Is the event control block (ECB) used to notify the
subtask that shutdown is requested as soon as possible.
This ECB should be included in every subtask ECB list.
A subtask may use this ECB to cause itself to shutdown.

Is the ECB used to notify the subtask that a message or a
queue of messages has been sent using the DSIMQS
macro.

Contains the queue of buffers containing the message sent
to the subtask using the DSIMQS macro.

May be defined by the subtask.

Chapter 6. Subtasks 6-11

6-12

The following bit fields are used by the subtask. Some of these flag bits are
defined by the subtask; others are defined by the main task.

Field

TVBINDl

TVB'rERM

TVBIND2

TVBVCLOS

TVBIND3

TVBACTV

TVBLGON

TVB~GOFF

TVBRESET

TVBRCVAI

TVBINXIT

TVBTCODE

TVBMTCOD

TVBPTeOD

TVBNTeOD

TVBReUSE

TVBLUNAM

Description

1 indicates that normal subtask termination has occurred.
The subtask has released all resources. This bit must be
supported by the subtask.

If the bit is set on by the main task before attaching the
subtask, it indicates to the subtask that is has been
attached for cleanup. The subtask is to release all
resources and return control to the main task with this bit
still set.

May be defined by the subtask.

1 indicates that the subtask is active. This bit is set by the
subtask. While this bit is Oll, messages may be sent to the
subtask using the DSIMQS macro.

1 indicates that the subtask is starting.

1 indicates that the subtask is shutting down upon request.

1 indicates that regular commands should stop processing
immediately. If your subtask does not run under a
command processor, you may redefine this flag.

This flag bit may be defined by the subtask. For an OST
or NNT, 1 indicates that RECEIVE ANY for
cross-domain sessions has been issued.

1 indicates that an IRB exit ro-utine is running. This bit is
required in VSE.

Used for problem analysis. When a subtask terminates,
these fields may be set to indicates the reason for the
termination, as follows:

Indicates the module that decided to terminate the subtask
(for values, see the DSITVB constants shown in Appendix
e).

Indicates that the subtask is about to terminate because
TVBTEeB was posted.

Is a unique number that indicates where in each module
the decision to terminate was made.

May be defined by the subtask. For an ReT, this field is
used to track how many subtasks are currently using the
hardcopy subtask.

Is the value specified in the TSKID operand of the TASK
definition statement. This field is initialized before the
subtask is attached.

Field

TVBOPID

TVBUFLD

TVBEXITQ

TVBTASKQ

TVBMODNM

TVBMEMNM

Task In/ormation Block (DSITIB)

Description

Is the unique subtask identifier. This name may be the
same as TVBLUNAM. It is set up by the subtask when
initialization is complete.

Is a user field that may be defined by the subtask..

Is a queue of storage obtained in an IRB exit routine
(DSIGET Q= YES ,EXIT = YES).

Is a queue of storage obtained under mainline processing
(DSIGET Q=YES,EXIT=NO).

Is the name of the module to be attached as a subtask as
specified in the MOD parameter of the TASK definition
statement. This field may be used to determine the type
of an optional subtask.

Is initialized with the MEM parameter of the TASK
definition statement. It may be the name of the member
or B book of the DSIP ARM data set that contains the
initialization parameters for an optional subtask.

The task information block is used by NCCF to keep information about an
attached subtask. DSITm is acquired and freed by the main task. The fields
described below are those of interest to an optional subtask:

Field

TmCBH

TmTVB

TmACB

TmEXLST

TIBELT

TffiAPID

TffiAPWD

Description

Is a standard NCCF control block header. The CBHTYPE
field is the same as the CBHTYPE for TVB.

Points Points to the DSITVB. The address of DSIMVT can
be obtained from DSITVB; DSIMVT can be used to locate
all other NCCF control blocks.

May be defined by the subtask. For NCCF subtasks, this
field points to an ACF/VTAM ACB.

May be defined by the subtask. For NCCF subtasks, this
field is used to locate the ACF /VT AM EXLST.

It is recommended that this field be used to point to the
NCCF subtask ECB list.

May be defined by the subtask. For NCCF subtasks, this
field contains the ACF /VT AM application program name
for the subtask.

May be defined by the subtask. For NCCF subtasks, this
field contains the ACF /VT AM password.

Chapter 6. Subtasks 6-13

Field

TmAREAl

TIBUFLD

TmTIFFY

TmOSEXT

TIBOSLST

TIBXECB

TmSAVES
and
TIBSAVEE

TmNDATD
and
TmEDATD

TIBMSGNM

Description

May be defined by the subtask. For NCCF subtasks, this
field is used to point to other control blocks such as eWBs,
SWBs, or PDBs.

May be defined by the subtask. This field is not referenced
or changed by NCCF.

May be defined by the subtask. This field is used by OST
and NNT only.

May be used to point to an optional subtask extension to
DSITIB. The optional subtask is responsible for freeing any
storage pointed to by this area.

Is used by the LIST command processor to display the
status of an optional subtask.

May be defined by the subtask. NCCF uses this field as an
ECB for cross-domain communication in OST and NNT.

Are both 72-byte save areas for the subtask to use.

Are both 256-byte scratch areas for the subtask to use.

Is the operator identifier of the subtask that issued the
START TASK command. If the subtask was started
automatically (INIT= YES), the field contains zeros.

Sample User-Written Subtask

6-14

The following is an example of a user-written subtask. This subtask is not
executable as shown; it is provided as an example only.

~'e

*MODULE NAME: SUBTASK

"':DESCRIPTIVE NAME: SKELETON NCCF SUBTASK HODULE

,,':FUNCTION: TO DEMONSTRATE NCCF SUBTASK PROCEDURES.
~'.
*REGISTER CONVENTIONS: SEE REGISTER EQUATES.
i'e

,,':t-'lODULE TYPE: MAIN PROGRAM, TO BE ATTACHED BY NCCF.
,,': LANGUAGE: ASSEt-'1BLER
* MODULE SIZE: SEE ESD IN LISTING
* ATTRIBUTES: REENTRANT

,;':ENTRY POINT: SUBTASK
* PURPOSE: TO DO NCCF
-'. LINKAGE:

SUBTASK FUNCTION.

"... INPUT:
* REGISTERS: Rl=TVB ADDRESS

R13=SAVE AREA ADDRESS
R14=RETURN ADDRESS
R15=ADDR OF ENTRY POINT

i'e OTHER: TVB FIELDS:
i'e TIB ADDRESS

MVT ADDRESS

'SUBTASK'

TVBTIB
TVBMVT
TVBTERM
TVBLUNAM

NORMAL/CLEANUP ATTACH FLAG
SUBTASK RESOURCE NAME

i':

~',

i':

"':EXIT NORMAL:

TIB FIELDS:
TIBMSGNM :
TIBTVB

MVT FIELDS:
MVTTVB
MVTNCCFQ
MVTTVBRN
~1VTSVL

OPID OF STARTING OPERATOR OR ZERO
POINTER TO TVB

TVB CHAIN POINTER
NCCF ENQ/DEQ QNAME
TVB CHAIN ENQ/DEQ RNA HE
POINTER TO THE SVL (USED BY NCCF MACROS)

* PURPOSE: NORMAL END OF SUBTASK.
* LINKAGE: RETURN TO CALLER
,,': OUTPUT:
,;': REGISTERS:
* UNCHANGED REGISTERS: ALL REGISTERS EXCEPT R15
* OUTPUT REGISTERS: R15 CONTAINS A RETURN CODE O.
* OTHER: TVB AND TIB ARE INTACT.

"':EXIT ERROR: NONE
i':

,;':CONTROL BLOCKS:
* NCCF CONTROL BLOCKS: DSICBH
* DSIMVT
* DSISVL
* DSISWB
* DSITIB
* DSITVB
* INTERNAL CONTROL BLOCKS: DATD, THE TIB WORK AREA DSECT.
~':

;':

;',

i':

i':

-;':

i',

i'.

i':

-;':

i':

;':

i':

i':

i',

i':

Chapter 6. Subtasks 6-15

';'(HACROS ISSUED:
* SYSTEH HACROS: DEQ
* ENQ
* NCCF HACROS: DSICBS
* DSIFRE
,,'(DSILCS
,,'(DSHmS
,,'(DSIHQS
,,'(DSIWAT

"'(~1ESSAGES ISSUED:
* DSI068I USER &1 ALREADY LOGGED ON.

6-16

SUBTASK CSECT,
DSICBS DSITVB,DSITIB,DSIMVT,DSISVL,DEFER=ALL

.... TASKINIT:
i': FUNCTION IS TO HANDLE SUBTASK INITIALIZATION. *

PERFORM ENTRY LINKAGE. *
INITIALIZE THE ECB-S AND ECBLIST. *
ISSUE DSILCS TO GET AN SWB. *
IF UNSUCCESSFUL *

i': THEN *
SET THE TVB TERMINATION BIT. ..':

ENDIF. *
CLEAR THE ERROR MESSAGE FLAG. ..':
IF THE SUBTASK IS NOT TERMINATING .. ':

THEN *
ISSUE ENQ TO LOCK THE TVB CHAIN. *

i': ISSUE DSILCS TO SCAN FOR THIS SUBTASK-S NAME. ..':
IF THE NAME WAS FOUND .. ':

i': THEN (THERE IS A DUPLICATE) *
SET AN ERROR MESSAGE FLAG. --::

ELSE (THE NAME IS UNIQUE) *
MOVE THE SUBTASK NAt-IE TO THE OPERATOR ID FIELD. ..':

i': SET THE ACTIVE SUBTASK FLAG. *
ENDIF (THE NAME WAS FOUND). *

i': ISSUE DEQ TO UNLOCK THE TVB CHAIN. *
i': ELSE (THE SUBTASK IS TERMINATING, DO NOTHING). ..':

ENDIF (THE SUBTASK IS NOT TERMINATING). *
IF THE ERROR MESSAGE FLAG WAS SET *

THEN *
ISSUE DSIMBS TO BUILD MESSAGE DSI068I, USER IS .. ':

ALREADY LOGGED ON. ..':
ISSUE DSIHQS TO SEND THE HESSAGE TO THE OPERATOR .. ':

i': WHO STARTED THIS SUBTASK. *
i': IF THE DSIHQS FAILED *

THEN *
ISSUE DSH1QS TO SEND THE MESSAGE TO THE .. ':

AUTHORIZED RECEIVER. *
ELSE (THE MESSAGE WAS SUCCESSFULLY SENT). *

ENDIF (DSIHQS FAILED). *
"l~ ELSE (ERROR MESSAGE FLAG WAS NOT SET). *

ENDIF (ERROR MESSAGE FLAG WAS SET). ..':
END TASKINIT. *

Chapter 6. Subtasks 6-17

SUBTASK CSECT,
USING ~'~ ,R15
B PROLOG
DC C'SUBTASK &SYSDATE'
DROP R15

PROLOG STM R14,R12,12(R13)
BALR R12,O

PSTART DS OH
USING PSTART,R12
LR TVBPTR,R01
USING DSITVB,TVBPTR
L TIBPTR,TVBTIB
USING DSITIB,TIBPTR
LA R10,TIBNDATD
USING DATD,R10
LR R14,R13
LA R13,TIBSAVES
ST R14,SAVAREA+4(,R13)
ST R13,SAVAREA+8(,R14)
ST TVBPTR,SAVAREA(,R13)

L MVTPTR , TVB~lVT
USING DSHIVT , HVTPTR

* INITITALIZE THE ECB LIST

SLR R02,R02
ST R02,TVBTECB
ST R02,TVBHECB
ST R02,USERECB

LA R02,TVBTECB
ST R02,ECBLIST
LA R02,TVBMECB
ST R02,ECBLIST+4
LA R02,USERECB
0 R02,ENDOLIST
ST R02,ECBLIST+8

6-18

BASE THE TVB

SAVE INPUT PARAHETER
BASE THE TIB
POINT TO NORHAL PROC WORK AREA
BASE SUBTASK WORK AREA
SAVE CALLER-S REG 13
POINT TO l"lY SAVEAREA
POINT NINE TO CALLER-S
POINT CALLER-S TO HINE
TVB AD DR IN 1ST WORD OF t-1Y S. A.

BASE THE HVT

ZERO WORK REG
ZERO TERt-lINATION ECB
ZERO MESSAGE RECEIVER ECB
ZERO USER ECB

INITIALI ZE ...

THE ...

ECBLIST
NARK AS END OF ECBLIST

.'.
"

NOSWB

ENDSWB

DSILCS CBADDR=TIBNPSWB,SWB=GET GET AN SWB

LTR R15,R15
BNZ NOSWB
L R02,TIBNPSWB
USING DSISWB,R02
ST TIBPTR,SWBTIB
DROP R02
B ENDSWB

01 TVBIND1,TVBTERM

DS OH

TM TVBIND1,TVBTERM
BNZ ENDINIT

WAS ONE GOTTEN?
NO, BRING DOWN THE SUBTASK
SET THE TIB ADDRESS IN THE SWB
BASE THE SWB
STORE THE TIB ADDRESS
DROP SW.B COVER
CONTINUE

TERHINATE THE SUBTASK

END OF SWB INITIALIZATION

IF THE SUBTASK IS NOT TERHINATING
BRANCH IF TERHINATING

*------> LOCK THE TVB CHAIN WHILE ADDING THIS SUBTASK ID

DUPNAME

UNIQUE

UNLOCK

MVC ENQWORK(ENQLN),ENQLIST MOVE LIST FORM TO WORK AREA
ENQ (MVTNCCFQ,MVTTVBRN,E,18,STEP),MF=(E,ENQWORK)

SLR ERMSGNO,ERMSGNO CLEAR THE ERROR MSG NUt-lEER
DSILCS OPID=TVBLUNAH, SEARCH FOR THIS SUBTASK-S NAME ·lc

TVB=MVTTVB, STARTING AT THE TOP OF THE CHAIN ",:
CBADDR=DUPTVB PUT THE ADDRESS HERE

LTR R15,R15 IF A TVB WAS FOUND, THAT IS BAD
BNZ UNIQUE BRANCH IF UNIQUE

DS OH OTHERWISE
LA ERMSGNO,68 USER ALREADY USING THIS NAME
B UNLOCK UNLOCK TVB CHAIN AND EXIT

DS OH
MVC TVBOPID,TVBLUNAM PUT THE USERID IN TVB
01 TVBIND3,~VBACTV MARK TVB AS ACTIVE
DS OR

*------> UNLOCK THE TVB CHAIN
MVC ENQWORK(DEQLN),DEQLIST COPY THE DEQ PARMLIST
DEQ (MVTNCCFQ,MVTTVBRN,18,STEP),MF=(E,ENQWORK)

Chapter 6. Subtasks 6-19

~':------> IF AN ERROR WAS DETECTED WHILE LOCKED, PUT A HESSAGE OUT NOW
LTR ERHSGNO,ERMSGNO WAS AN ERROR DETECTED?
BZ ENDINIT NO, CONTINUE
01 TVBIND1,TVBTERM TERMINATE THE SUBTASK
LA R02,BUFFER POINT TO ERROR HSG BUFFER
USING BUFHDR,R02 SET TE~IPORARY BASE
LA R14,L'BUFFER GET THE BUFFER LENGTH
STH R14,HDRBLENG SET THE BUFFER LENGTH
HVI HDRHTYPE , HDRTYPEU SET BUFFER TYPE = USER ~ISG

LA R14,BUFHDRND-BUFHDR GET OFFSET TO TEXT
STH R14,HDRTDISP SET TEXT DISPLACEHENT

DSIHBS HID=068,BFR=(R02),SWB=TIBNPSWB BUILD HSG DSI068I

DSIMQS TASKID=TIBMSGNH,BFR=(R02),SWB=TIBNPSWB SEND TO OPER

LTR R15,R15
BZ ENDINIT

WAS THE STARTING OPERATOR THERE?
YES, CONTINUE TERMINATING

DSIHQS AUTHRCV=YES,BFR=(R02),SWB=TIBNPSWB SEND IT TO AUTHRCV

DROP R02 DROP BUFHDR COVER
ENDINIT DS OH

6-20

* ECBPROCR: *
* FUNCTION IS TO WAIT ON THE ECB-S AND SERVICE THOSE *
* THAT ARE POSTED. *
.. 'c DO WHILE THE TVB TERHINATION BIT IS NOT SET. ..'(
* ISSUE DSIWAT TO WAIT ON THE ECB LIST. *
.. 'c IF THE TVB TERHINATION ECB IS POSTED '!(

.. '(THEN .. '(
* SET THE TVB TERMINATION BIT. *
.. '(ENDIF (TERMINATION ECB POSTED)." '!(

* IF THE DSIMQS HESSAGE ECB IS POSTED *
.. 'c THEN .. '(
.. 'c CALL HSGPROCR TO INSURE THE TVB PRIVATE QUEUE .. '(
.. '(IS CLEAR. ..'(
.. 'c CLEAR THE TVB MESSAGE ECB. ..'(
.. 'c DEQUEUE THE ~IESSAGE BUFFER QUEUE FROM THE .. '(
.. '(TVB MESSAGE PUBLIC QUEUE WITH COMPARE .. 'c

* AND SWAP. *
* REVERSE THE ORDER OF THE DEQUEUED CHAIN OF *
* BUFFERS FROM LIFO TO FIFO. *
* ANCHOR THE FIFO QUEUE ON THE TVB PRIVATE *
.. '(~1ESSAGE QUEUE. ..'(
* CALL HSGPROCR TO PROCESS THE PRIVATE QUEUE. *
* ENDIF (THE MESSAGE ECB IS POSTED). *
* IF THE USER ECB IS POSTED *
.. '(THEN ,'(
* DO USER PROCESSING. *
* ENDIF (THE USER ECB IS POSTED). *
* ENDDO (WHILE TVB TERMINATION BIT IS NOT SET). *
.. '(END ECBPROCR. ,'(

ECBPROCR DS
B

OH
LOOPTEST

LOOPTOP DS OH
DSIWAT ECBLIST=ECBLIST

TESTTERM TM
BNO
01
B

TVBTECB,TIBECBPO
TESTHQS
TVBIND1,TVBTERM
LOOPTEST

LOOP UNTIL SHUTDOWN

WAIT FOR SOMETHING TO DO

IF TERMINATION IS POSTED
NO, TEST FOR HESSAGE RECEIVED
TERHINATE THE SUBTASK
GO TO THE BOTTOM OF THE LOOP

Chapter 6. Subtasks 6-21

TESTHQS

REHOVE
MSGDEQ

REVERSE

TM TVBHECB,TIBECBPO
BNO TESTUSER
BAL R14,HSGPROCR
XC TVBHECB,TVBHECB
SLR ROO,ROO
L R02,TVBMPUBQ
CS R02,ROO,TVBHPUBQ
BNE HSGDEQ
USING BUFHDR,R02
L R01,HDRNEXTH
ST ROO,HDRNEXTH
LR ROO,R02
LTR R02,ROl
BNZ REVERSE
ST ROO,TVBHPRIQ
DROP R02
BAL R14,MSGPROCR

TESTUSER TM
BNO
XC

USERECB,TIBECBPO
LOOPTEST
USERECB,USERECB

--;'c TEST FOR TERMINATION REQUESTED

LOOPTEST TM
BZ

6-22

TVBIND1, TVBTERt-l
LOOPTOP

IF DSIHQS INPUT ECB IS POSTED
NO, SEE IF USER ECB IS POSTED
CALL MSGPROCR
ZERO THE ECB
ZERO SWAP REGISTER
LOAD THE COMPARAND REGISTER
CS ZERO ONTO THE QUEUE
RETRY IF TVBHPUBQ CHANGED
REG R02 NOW POINTS TO TOP BUFFER
REVERSE ...

THE ...
QUEUE ...

ORDER. TEST FOR END OF QUEUE.
BRANCH IF NOT END OF QUEUE
POINT PRIVATE ANCHOR AT FIFO QUE
DROP BUFHDR COVER
CALL MSGPROCR TO CLEAN QUEUE

IF USERECB IS POSTED
NO, RESTART LOOP
CLEAR THE POSTED ECB

IS THE SUBTASK TERMINATING?
NO, LOOP TO TOP AND WAIT

#'c

* TASKTERM: *
* FUNCTION IS TO CLEAN UP AND PREPARE TO RETURN TO THE *
* MAIN TASK. *
* LOCK THE TVB CHAIN. *
* BLANK THE TVB USERID FIELD AND ACTIVE SUBTASK FLAG. *
* UNLOCK THE TVB CHAIN. *
.. '~ CALL MSGPROCR ROUTINE TO PURGE MSGS ON THE .. '~
* PRIVATE QUEUE. *
* DEQUEUE ALL MESSAGES ON THE PUBLIC MESSAGE QUEUE *
.. ~ WITH COMPARE AND SWAP. ..~

.. ~ ANCHOR THE MESSAGES ON THE PRIVATE BUFFER QUEUE. ..'~

.. ~ CALL MSGPROCR ROUTINE TO PURGE MSGS ON THE .. '~
* PRIVATE QUEUE. *
.. '~ ISSUE DSIFRE FOR ALL EXIT QUEUED STORAGE. '1:

* ISSUE DSIFRE FOR ALL TASK QUEUED STORAGE. *
.. ': SET THE RETURN CODE FOR THE MAIN TASK INTO REG 15. ..~

.. ~ END TASKTERM. ..'~

'1:------> LOCK THE TVBCHAIN
MVC ENQWORK(ENQLN),ENQLIST
ENQ (MVTNCCFQ,MVTTVBRN,E,18,STEP),MF=(E,ENQWORK)

MVC TVBOPID,BLANKS
NI TVBIND3,TVBACTV

*------> UNLOCK THE TVBCHAIN
MVC ENQWORK(DEQLN),DEQLIST

BLANK OUT USERID
INDICATE TVB NOT ACTIVE

DEQ (MVTNCCFQ,MVTTVBRN,18,STEP),MF=(E,ENQWORK)

BAL
TERMMSG SLR

L
CS
BNE
ST
BAL

RI4,MSGPROCR
ROO,ROO
R02,TVBMPUBQ
R02,ROO,TVBMPUBQ
TER~mSG

R02,TVBMPRIQ
RI4,MSGPROCR

CALL MSGPROCR TO CLEAN QUEUE
CLEAR REG FOR COMP & SWAP

DEQ ALL MSG BUFFERS
IF SOMETHING CHANGED, RETRY IT
SAVE THE BUFFER STRING.
CALL NSGPROCR TO CLEAN QUEUE

OC TIBNPSWB,TIBNPSWB IF AN SWB WAS GOTTEN
BZ FREEQSTG
DSILCS CBADDR=TIBNPSWB,SWB=FREE FREE THE SWB

XC TIBNPSWB,TIBNPSWB CLEAR THE SWB POINTER

Chapter 6. Subtasks 6-23

*-----> FREE ALL EXIT QUEUED STORAGE
FREEQSTG DS OH

. B FREEXITl
FREEXIT DS OH

LA R02,16
AL R02,TVBEXITQ
DSIFRE A=(R02),

LV=O,
SP=O,
EXIT=YES,
TASKA=(TVBPTR),
LISTA=FRELST,
Q=YES

FREEXITl DS
OC
BNZ

OH
TVBEXITQ,TVBEXITQ
FREEXIT

"i'~- - - -->

FREETSK

FREE ALL TASK QUEUED
B FREETSKl
DS OH
LA R02,16
AL R02,TVBTASKQ
DSIFRE A=(R02),

LV=O,
SP=O,
EXIT=NO,
TASKA=(TVBPTR),
LISTA=FRELST,
Q=YES

STORAGE

FREETSK1 DS
OC
BNE

OH
TVBTASKQ,TVBTASKQ
FREETSK

-;'r

6-24

EXIT THE SUBTASK

L
SR
L
LM
BR

R13,SAVAREA+4(,R13)
R15,R15
R14, 12 (,R13)
ROO,R12,20(R13)
R14

TEST FOR ZERO QUEUE
QUEUE NOT ZERO
BLOCK ADDRESS STARTS AT 16 PAST

THE QUEUE ANCHOR VALUE
FREE BLOCK ADDRESSED BY R02
DSIFRE KNOWS THE LENGTH
DSIFRE KNOWS THE SUBPOOL
STORAGE GOTTEN IN AN IRB EXIT
TVB POINTER
DSIFRE WORKAREA
FREE QUEUED STORAGE

IS THERE ANYTHING ON THE QUEUE?
YES, LOOP UNTIL ZERO

TEST FOR ZERO QUEUE
QUEUE NOT ZERO
BLOCK ADDRESS STARTS AT 16 PAST

THE QUEUE ANCHOR VALUE

",;'r

"'if:

FREE BLOCK ADDRESSED BY R02 *
DSIFRE KNOWS THE LENGTH *
DSIFRE KNOWS THE SUB POOL "i'~

STORAGE GOTTEN IN MAIN LINE CODE *
TVB POINTER *
DSIFRE WORKAREA *
FREE QUEUED STORAGE

IS THERE ANYTHING ON THE QUEUE?
YES, LOOP UNTIL ZERO

RESTORE SAVEAREA ADDR
SET A ZERO RETURN CODE
RETURN TO THE OPERATING SYSTEM

",;'r

* MSGPROCR: SUBROUTINE. *
* FUNCTION IS TO PROCESS MESSAGE BUFFERS SENT VIA DSIMQS *
* AND FREEMAIN THE BUFFERS. *
.. '~ SAVE THE CALLER-S REGISTERS. 'It:

.. '~ DO WHILE THERE ARE NESSAGES ON THE PRIVATE QUEUE. 'It:

.. '~ IF THE SUBTASK IS NOT TERMINATING 'It:

.. '~ THEN "t:

,,'~ DO YOUR THING WITH THE BUFFER HERE. 'I':

* ELSE (TERMINATING, DO NOT PROCESS). *
.. '~ ENDIF. 'It:

.. '~ ISSUE DSIFRE TO FREEMAIN THE MESSAGE BUFFER. 'It:

.. '~ ENDDO (DO WHILE NESSAGES EXIST). 'It:

* RESTORE THE CALLER-S REGISTERS. *
* RETURN TO CALLER. *
.. '~ END MSGPROCR. ..'~

MSGPROCR DS OH
STM R14,R01,SUBRSAVE SAVE REGS

*------> DO WHILE THERE ARE QUEUED MSGS
B MSGLOOPl

MSGLOOP DS OH
TM TVBIND1,TVBTERM
BO MSGFREE

IS THE SUBTASK TERMINATING?
YES, ONLY FREE THE BUFFER

.. '~ IF YOU WANT TO DO SOMETHING WITH THE MESSAGE BUFFER, DO IT HERE! .. '~
* NOTE: THE TOP BUFFER ON THE QUEUE IS LOCATED BY TVBMPRIQ. *

MSGFREE L R02,TVBMPRIQ POINT TO THE FIRST BUFFER
L R08,HDRNEXTH-BUFHDR(,R02) ANCHOR THE NEXT MESSAGE
ST R08,TVBMPRIQ
LH R09,HDRBLENG-BUFHDR(,R02) GET THE BUFFER LENGTH
DSIFRE R,A=(R02), FREE BUFFER SENT VIA DSIMQS *

LV=(R09), LENGTH FROM BUFHDR IS IN R09 *
SP=O DSIMQS BUFFERS ARE IN SUBPOOL 0

MSGLOOPl OC TVBMPRIQ,TVBHPRIQ
BNZ MSGLOOP

LM R14,R01,SUBRSAVE
BR R14

*------> END MSGPROCR

IS ANYTHING LEFT ON THE QUEUE
YES, LOOP UNTIL DONE

RESTORE REGS
RETURN TO CALLER

Chapter 6. Sub tasks 6-25

DS OF
ENDOLIST DC XL4'80000000' END OF ECBLIST FLAG

BLANKS DC CL8' 8 BLANKS
ENQLIST ENQ (, , , ,) ,HF=L LIST FORM ENQ
ENQLN EQU -.'''-ENQLIST LENGTH OF LIST FORH ENQ
DEQLIST DEQ (",),HF=L LIST FORM DEQ
DEQLN EQU -.'" -DEQLI ST LENGTH OF LIST FORM DEQ

SAVAREA EQU 0 OFFSET TO SAVEAREA

-;'(REGISTER EQUATES

ROO EQU 00 EQUATES FOR REGISTERS 0-15
ROI EQU 01
R02 EQU 02
R03 EQU 03
R04 EQU 04
R05 EQU 05
R06 EQU 06
R07 EQU 07
R08 EQU 08
R09 EQU 09
RIO EQU 10
Rll EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
TVBPTR EQU R03
MVTPTR EQU R04
TIBPTR EQU R05
ERMSGNO EQU R06

6-26

DATD DSECT
USERECB DS F
ECBLIST DS 3A
BUFFER DS OCL132
ENQWORK DS CL12
FRELST DS CL14
DUPTVB DS A
SUBRSAVE DS 4A

SUBTASK CSECT
DSICBS DEFER=INCLUDE

SUBTASK CSECT
END SUBTASK

USER ECB (USE NOT SHOWN HERE)
ECB LIST FOR THIS SUBTASK
ERROR ~1ESSAGE BUFFER
ENQ/DEQ WORK AREA (WORD BOUNDARY)
DSIFRE WORK AREA (WORD BOUNDARY)
WORD FOR TVB SEARCH
MSGPROCR SAVEAREA FOR R14-ROl

Chapter 6. Sub tasks 6-27

Appendix A. Command Summary

This appendix summarizes all of the commands related to NCCF. The first
chart shows commands related to NCCF under ACF/VTAM and
ACF/VTAME. The second chart shows commands related to NCCF under
ACF/TCAM. Commands are listed in alphabetical order.

The second column indicates whether the command is regular (R), immediate
(1), both regular and immediate (B), regular and data services (RD), or not
applicable for the command type(N).

The third column indicates· whether or not the command can be restricted by
span of control.

The next five columns indicate the places from which the command may be
issued. The column headings are as follows:

Terminal.

Command list.

System console.

Command processor.

PPT

The operator may issue the command at the
physical operator station.

The command may be used in a command list.

The command may be entered from the system
console to NCCF.

The command may be issued by a command
processor to NCCF.

The command may be executed under the primary
POI task.

The numbers in the columns refer to the notes that follow the table.

Appendix A. Command Summary A~l

ACF !VT AM and NCCF Command Summary

Issued From

'tI 'tI
0 ii c

Eo!!
c

co co c E E I SPAN 's CD 0
E 1;; 1;; ! E U to-

Command Type Applies ~ 8::J ~8 8£ Q,.
Q,.

AGAIN 1 NO YES NO NO NO NO
AT R 2 YES YES NO NO YES
AUTOWRAP B NO YES YES NO NO NO
BGNSESS* R NO YES YES NO YES NO
CANCEL B NO YES YES NO NO NO

. CLEAR key B NO YES YES NO NO NO
clistname R 2 YES YES NO YES YES
CLOSE B NO YES YES YES YES NO
DISPLAY (ACF/VTAM) R YES YES YES 3 YES YES
ENDSESS* R NO YES YES NO YES NO
EVERY R 2 YES YES NO NO YES
GO B NO YES YES NO NO NO
HALT (ACF/VTAM) N NO NO NO 3 NO NO
INPUT R NO YES YES NO NO YES
LIST R NO YES YES NO YES NO
LlSTSESS* R NO YES YES NO YES NO
LOGOFF R NO YES NO NO NO NO
LOGOF F (ACF /VT AM) N NO 6 NO NO NO NO
LOGON (ACF /VT AM) N NO 7 NO NO NO NO
MODIFY (ACF/VTAM) R YES YES YES 3 YES NO
MOVE R NO YES YES NO YES NO
MSG R NO YES YES YES YES YES

no data enter B NO YES YES NO NO NO
PURGE R 2 YES YES YES NO YES
REPLY (ACF/VTAM) R NO YES YES 8 YES NO
RESET B NO YES YES NO YES NO
ROUTE R NO YES YES NO YES NO
RTRNSESS* R NO YES YES NO YES NO
SENDSESS* R NO YES YES NO YES NO
START (ACFIVTAM) N NO NO NO 3 NO NO
START R 9 YES YES NO YES NO
STOP R 9 YES YES NO YES NO
SWITCH RD NO YES YES NO YES NO
user command 11 NO 12 12 NO YES 12
VARY (ACFIVTAM) R YES YES YES 3 YES YES

* Applies only to the Terminal Access Facility.

A-2

ACF ITCAM and NCCF Command Summary

SPAN
Command Type Applies

AGAIN 1 NO
ALTER (ACF/TCAM)* R NO
AT R NO
AUTO (ACF/TCAM)* R NO
AUTOWRAP B NO
BGNSESS** R NO
CANCEL B NO
CLEAR key B NO
clistname R NO
CLOSE B NO
CLOSE (ACF/TCAM) R NO
COM (ACF/TCAM)* R NO
COMMAND (ACF/TCAM)* R NO
CONTACT (ACFITCAM)* R NO
DATA (ACF/TCAM)* R NO
DISPLAY (ACF/TCAM) R NO
ENDSESS** R NO
EVERY R NO
GO B NO
HALT (ACF/TCAM) N NO
HOLD (ACF/TCAM) R NO
INIT R NO
INITS (ACF/TCAM) N NO
INPUT R NO
LIST R NO
LlSTSESS** R NO
LOGOFF R NO
MANUAL (ACF/TCAM)* R NO
MODIFY (ACF/TCAM) R NO
MOVE R NO
MSG R NO
NET (ACF/TCAM)* R NO
NETWORK (ACF/TCAM)* R NO
no data enter I NO
OFFLN (ACF/TCAM)* R NO
ONLN (ACFITCAM)* R NO
PAUSE R NO
PIUT (ACF/TCAM)* R NO
PURGE R NO
QUEUE (ACF/TCAM)* R NO
RELEASE (ACFITCAM) R NO
RESEND (ACF/TCAM)* R NO
RESET B NO
ROUTE R NO
RTRNSESS** R NO
SEND (ACF/TCAM)* R NO
SENDSESS** R NO
SETSa (ACF/TCAM)* R NO
SHUTDOWN R NO
START R NO
START (ACF/TCAM) R NO
STOP R NO
STOP (ACFITCAM)* R NO
SWITCH RD NO
TERM R NO
TERMS (ACFITCAM)* N NO
UNITS (ACF/TCAM)* R NO
user command 11 NO
VARY (ACF/TCAM) R NO

*Applies to extended operator control.
**Applies only to the Terminal Access Facility.

ii c
.~
Q)

I-

YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
4
YES
YES
5
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
NO
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
YES
10
YES
12
YES

Issued From

"CI] 0 c e.!! ftI

~ ~ e
Q) 2 e
~8 I-

8:S S.t Do.
Do.

NO NO NO NO
YES 3 YES YES
YES NO NO YES
YES 3 YES YES
YES NO NO NO
YES NO YES NO
YES NO NO NO
YES NO NO NO
YES NO YES YES
YES YES YES NO
YES 3 YES YES
YES 3 YES YES
YES 3 YES YES
YES 3 YES YES
YES 3 YES YES
YES 3 YES YES
YES NO YES NO
YES NO NO YES
NO NO NO NO
4 3,4 4 NO
YES 3 YES YES
YES NO YES NO
NO NO NO NO
YES NO NO YES
YES NO YES NO
YES NO YES NO
NO NO NO NO
YES 3 YES YES
YES 3 YES NO
YES NO YES NO
YES YES YES YES
YES 3 YES YES
YES 3 YES YES
NO NO NO NO
YES 3 YES YES
YES 3 YES YES
YES NO YES NO
YES 3 YES YES
YES YES NO YES
YES

I
3 YES YES

YES 3 YES YES
YES 3 YES YES
YES NO YES NO
YES NO YES NO
YES NO YES NO
YES 3 YES YES
YES NO YES NO
YES 3 YES YES
YES NO YES NO
YES NO YES NO
YES 3 YES YES
YES NO YES NO
YES 3 YES YES
YES NO YES NO
YES NO YES NO
NO NO NO NO
YES 3 YES YES
12 NO YES 12
YES 3 YES YES

Appendix A. Command Summary A-3

A-4

Notes:

1. Only regular and RD commands may be repeated.

2. The generated commands are checked; the original command is not.

3. Goes directly to the access method, not to NCCF.

4. Terminates ACF/TCAM, which causes NCCF to abend.

5. Establishes an SNA session between the terminal and the device message
handler (ACF /TCAM).

6. Data is entered from the terminal, but is received by the access method and
becomes available to NCCF only through the facilities of the LOGON exit
routine (ACF /VTAM).

7. Data is entered from the terminal but is received by ACF/VTAM and
results in entry to the NCCF LOSTERM exit routine.

8. Goes either directly to ACF/VTAM or to NCCF.

9. Applies to STARTI STOPf RESOURCEt only.
{SPAN f

10. Breaks the SNA session between the SNA device and the device message
handler (ACF/TCAM).

11. Defined by user as R, J, B, D, or RD.

12. Depends on user definition.

Appendix B. NCCF Log and Hard-Copy Log

NCCF Log

NCCF Hard-Copy Log

NCCF provides a means of recording on a disk all messages and commands that
are received or sent. The write-log routine (DSIWLM) records the information
in the order that is received.

Two VSAM disk log data sets may be defined, a required primary data set and
an optional secondary data set. The NCCF disk log is maintained on the
primary VSAM file, which is opened for output at initialization. The user must
have INIT=Y in the DSTINIT statement for DSILOG, or must issue START
T ASK=DSILOG to initiate logging. When the end of the primary file is
reached, logging is automatically switched to a secondary file, if one has been
defined. The user can also control switching from one disk log data set to the
other by means of the SWITCH command. (See NCCF Terminal Use for more
details on this action.) When logging is switched, the primary file is closed and
may be printed in batch mode while NCCF continues logging on the secondary
file. The file may be printed using the NCCF utility program (DSIPRT), system
utilities, or user-written programs. If the end of the secondary file is reached
before the primary file is printed, logging stops.

If 110 errors occur, logging is terminated and the authorized operator is
notified. If the user is currently logging on the primary data set, and the
secondary is specified, NCCF automatically switches to the secondary data set.
If the user is logging on the secondary data set, or no secondary is specified, the
data set is closed and logging terminates. During NCCF execution, if storage is
not available for logging routines, records are not sent to the log. The
authorized operator is notified of the storage shortage.

For information on how to format and print the NCCF log, see Appendix B of
NCCF Installation.

Figure B-1 shows the format of each disk record in the log. An example of the
printed NCCF log is shown in Figure B-2.

The NCCF hard-copy log is printed by the hard-copy log task (DSrnCT).
Entries are printed in the sequence that the hard-copy task receives them. Each
entry is preceded by the task identification associated with the message (the
operator identification for operator station tasks). Figure B-3 shows an
example of the hard-copy log.

Appendix B. NCCF Log and Hard-Copy Log B-1

Date Time User Key Displace- Error .\\I1essage LUNAME Time

Field

o 4 8

Bytes (Hex)

ment of Indicator Type
Message
Text

10' 12

I
.tS No error (X'40')

N Header or trailer
record (X'D5')

13

Figure 8-1. NCCF Log File Record Format

B-2

from TVB Stamp on
Message

14 16 20

'\
Immediate message

- Message generated by
NCCF

* Command input from a
terminal

/J Solicited message from
ACF/VTAM

+ IBM-written non-NCCF
command-generated
message

> Reply required

NCCF-generated full-line
message

" IBM-written non-NCCF
full-line message
user-written full-line
message

C Message or command gen-
erated during CLIST
processing

E External (non-NCCF)
message

M Message from an MSG
command

Q Unsolicited message

S Message text substituted
by a user exit

T Solicited message from
ACF/TCAM

U Message generated by the
user

Z Message generated by the
data services task (DST)

Domain
ID

,
(

Operator Messa ge
ID Text

J
30 l

.... v
Up to 255 bytes

The last two bytes may
indicate:

% Message was sent to autho
rised receiver

P Message originated at the
PPT

P% Message originated at the
PPT and is not related to
a specific operator

~
'g

~
~

a
~ g
I\)

5.
~
t;
o

't:I
'<

~
tp
w

FRED

NETWORK COMMUNICATIONS CONTROL FACILITY PRINT LOG UTILITY -)9/18/80

09/18/80 PARIS

DSIMN

PARIS

DSIMN

P
P
P

P
P
P
P
P

P
P
P
P
P

%

%

N 10 37 29 NETWORK COMMUNICATIONS CONTROL FACILITY DISK LOC
10 37 31 - DSI5461 DSILOG : PRIMARY VSAM DATA SET IS NOW ACTIVE
10 37 46 Z DSI5561 DSILOG : VSAM DATASET 'CLOSE' COMPLETED, DDNAME

CODE = '00', ACB ERROR FIELD = '00'
10:37:49 * LOGOFF
10:37:51 - DSI081 I OPERATOR FRED
10:38:51 - DSI0201 OPERATOR FRED

PROFILE(VTAMSTAR),HCL(
10:38:52 - DSI0201 OPERATOR FRED

PROFILE(VTAMSTAR),HCL(
10 39 13 * AUTOWRAP
10 39 14 ! DSI0821 AUTOWRAP STARTED

LOGGED OFF TERMINAL L3270D
LOGGED ON FROM TERMINAL L3270D

)
LOGGED ON FROM TERMINAL L3270D

)

'NCCFSEC ' RETURN

USING

USING

10 40 Oil * AT 10:41, ID=FRED1,MSG FRED, PLEASE START CROSS DOMAIN SESSION TO DOMAIN C~IMN.
10 40 10 - DSI201 I TIMER REQUEST SCHEDULED FOR EXECUTION - ID=FREDl
10 40 45 * MSG ALL,THIS IS OPERATOR FRED LOGGED ON.

10 40 46 M DSI0391 MSG FROM FRED : THIS IS OPERATOR FRED LOG8ED ON.
10 40 48 - DSIOOl I MESSAGE SENT TO ALL
10 40 48 M DSI0391 MSG FROM FRED : THIS IS OPERATOR FRED LOGGED ON.
10 40 57 * L S=OPS
10 41 01 - OPERATOR: FRED TERM: L3270D STATUS: ACTIVE
10 41 01 - END OF STATUS DISPLAY
10 41 00 - DSI2081 TIME EXPIRATION - 10= FRED1 - CMD= MSG FR~D,PLEASE START CROSS DOMAIN

SESSION TO DOMAIN DSIMN.
10:41:01 - DSI001 I MESSAGE SENT TO FRED
10:41:01 M DSI0391 MSG FROM FRED : PLEASE START CROSS DOMAIN SESSIGN TO DOMAIN DSIMN.
10:41:19 * Sf ART DOMAIN=DSIMN
10:41:21 - DSI0331 DSIMN SESSION STARTING FOR FRED
10:42:50 - DSI809A PLEASE ROUTE OPID,PASSWORD; PROFILE,HA~DCOPY, INITIAL CMD
10:47:55 - DSI8101 NCCF ACF/VTAM READY
10:48:03 - DSI0201 OPERATOR FRED LOGGED ON FROM TERMINAL PARISOOO USING

PROF I LE(VTAMPLUS), HCL()
10:49:44 * EVERY 5,PPT,LIST STATUS=OPS
10:49:48 - DSI201 I TIMER REQUEST SCHEDULED FOR EXECUTION - ID=SYS00001
10:50:27 * L TIMER=ALL
10:50:34 - DISPLAY OF OUTSTANDING TIMER REQUESTS
10:50:34 - 000 TIMER ELEMENT(S) FOUND FOR FRED
10:50:34 - END OF DISPLAY
10:51:23 * AT 10:55, ID=FRED2,DISPLAY NET, ID=FPU3276
10:51:25 - DSI201 I TIMER REQUEST SCHEDULED FOR EXECUTION - ID=FRED2
10:51:32 * L TIMER=ALL
10:51:34 - DISPLAY OF OUTSTANDING TIMER REQUESTS
10:51:34 - TYPE: AT TIME: 10:55 ID: FRED2
10:51:34 - COMMAND: DISPLAY NET,ID=FPU3276
10:51:34 - 001 TIMER ELEMENT(S) FOUND FOR FRED
10:51:34 - END OF DISPLAY
10:51:43 * L TIMER=ALL,OP=PPT
10:51:45 - DISPLAY OF OUTSTANDING TIMER REQUESTS
10:51:45 - TYPE: EVERY TIME: 10:54 ID: SYS00001 PPT INTERVAL: 00:05
10:51:45 - COMMAND: LIST STATUS=OPS
10:51:45 - 001 TIMER ELEMENT(S) FOUND FOR PPT
10:51:45 - END OF DISPLAY
10:53:10 * ROUTE DSIMN,AT 10:56, ID=DSIMNAT,L S=OPS
10:53:19 * AT 10:56, ID=DSIMNAT,L S=OPS
10;53:24 - DSI201 I TIMER REQUEST SCHEDULED FOR EXECUTION - ID=DSIMNAT
10:53:24 - DS1810~ NCCF ACF/VTAM READY

Figure 8-2 (part 1 of 2). Example of NCCF Log

f NETWORK COMMUNICATIONS CONTROL FACILITY PRINT LOG UTILITY 09/18/80

FRED

BVD

PARIS P%
P%
P%

DSIMN

PARIS
P

P

%

END OF PRINT FOR NCCF LOG

10:54:49 - DSI2081 TIME EXPIRATION - ID= SYS00001 - CMD= LIST STATUS=OPS
10:54:49 - OPERATOR: FRED TERM: L327QD STATUS: ACTIVE
10:54:51 - END OF STATUS DISPLAY
10:55:00 - DSI2081 TIME EXPIRATION - ID= FRED2
10:55:04 IST0971 DISPLAY ACCEPTED

- CMD= DISPLAY NET, ID=FPU3276

10:55:09 IST0751 VTAM DISPLAY - NODE TYPE= PHYSICAL UNIT
10:55~09 I ST486 I NAME = FPU3276 , STATUS = NEVAC
10:55:09 IST081 I LINE NAME= FSDLC26 , LINE GROUP= FGROUP20 , MAJNOD= NCP6C75
10:55:09 IST6541 I/O TRACE= OFF ,BUFFER TRACE= OFF
10:55:09 IST3141 END
10:57:02 - DSI2081 TIME EXFIRATION - ID= DSIMNAT - CMD= L S=OPS
10:57:09 - OPERATOR: PETE TERM: L3270A STATUS: ACTIVE
10:57:09 - END OF STATUS DISPLAY
10:57:29 * PURGE TIMER=ALL,OP=PPT
10:57:34 - DSI2051 001 TIMER ELEMENTS PURGED - OP= PARISPPT
10:58:08 * PURGE TIMER=ALL
10:58:11 - DSI2051 000 TIMER ELEMENTS PURGED - OP= FRED
10:58:34 * LOGOFF
10:58:35 - DSI081 I OPERATOR FRED
11:00:25 - DSI0201 OPERATOR BVD

PROFILE(PROFAUTH),HCL(
11:00:25 - DSI0201 OPERATOR BVD

PROFILE(PROFAUTH),HCL(
11:01:45 * SWITCH DSILOG,S

LOGGED O~F TERMINAL L3270D
LOGGED ON FROM TERMINAL L3270D

)
LOGGED ON FROM TERMINAL L3270D

)

USING

USING

Figure B-2 (Part 2 of 2). Example of NCCF Log

2

89/23/88 89:15:08

*
*

H

*
* T

* T

* C
C

* C
C

*
* c
* c
*
*
*

*
*
*
*

M

* H

*
H

*
*

*

89: 15 :88
09: 15:08

09: 15:08

09:15: 14
09:15: 14
09: 15:28
09: 15:29
09: 15 :29
09: 15:42

89: 15: 42

89: 15:42
09: 16:84
09: 16:84
09:17:39
09: 17:48
89:17:56
89: 17: 56

89: 18: 14
89: 18: 1S
89: 18: 1S
89: 18:21
89: 18:21
09:18:21
09: 18: 27
09:27:26
89:27:27
09:34: 13
09: 34: 15
89:35:28
09:35:28
09:36:02
09:36:03
09:36:11
89:36:11
89:36: 12
09:36: 12
09:36: 12
09:36: 12
09 :36: 12
09:36: 12
09:36: 13
09:36: 13
89:37:81
89:37:82
89:37:82
89:37:82
09:37:02
89:37:(,)2
89:38: 14
89:38: 14

89:38:14

09:38:14

09:39:49
09:39:50
09:40:21
09:40:22
09:40:37
09:40:37
09:48:52
09:48:55
89:40:55
89:48:55
09:48:55
09:48:55
89:41:83
89:42:83

09:42:86
89:42:86
89 :42: 18
09:42: 18
09:42:11
89:42:25
09:42:26
09:42:26
09:42:46
09:42:4~
09:42:54
09:42:55
89:43:05
89:43:86
09:44:29
89:44:29
09:44:30
09:44:30

DSIM2
DSI/12

DSIM2

DSI/12
Dn/12
DSI/12
DSI/12
DSI/12
DSI/12

DSI/12

DSI/12
DSI/12
DSI/12
DSIM2
DSI/12
DSI/12
DSI/12

DS1M2
DSIM2
DSIM2
DSIM2
DSI/12
DSI/12
DSI/12
DSI/12
DSI/12
DSI/12
DSIM2
DSI/12
DSI/12
DSI/12
DSI/12
DSI/12
DSIM2
DSI/12
DSI/12
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
1)SIM2
DSIM2
DSIM2
DSIM2
DSlM2
DSIM2

DSIM2

DSIM2

DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSlM2
DSIM2
DSIM2
DSIM2
DSIM2

DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSH12
DSIM2
DSIM2
DSIM2
DSIM2
DSIM2
DSIH2
DSIH2
DSIM2
DSIH2
DSIH2

PETE
PETE

PETE

PETE
PETE
PETE
PETE
PETE
PETE

PETE

PETE
PETE
PETE
PETE
PETE
PETE
PETE

PETE
PETE
F'ETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
P£T£
PETE
PETE
PETE
FRED
FRED

FRED

PETE

FRED
FRED
PETE
PETE
FRED
FRED
FRED
FRED
FRED
FRED
FRED
FRED
PETE
PETE

f'ETE
PETE
FRED
PETE
FRED
PETE
PETE
FRED
FRED
FRED
FRED
FRED
PETE

PETE
PETE

L3284A

Figure B·3. Example of Hard-COpy Log

DSI833l L3284A SESSION STARTING FOR PETE
DSI8201 OPERATOR PETE LOGGED ON FROM TERMINAL L3278A USING
PROFILEITCAMSTAR).HCLIL3284A)
DSI828r OPERATOR PETE LOGGED ON FROM TERMINAL L3278A USING
PROFILE(TCAMSTAR).HCLIL3284A)
AUTOWRAP
DSI8821 AUTOWRAP STARTED
L S=OPS
OPERATOR: PETE TERM: L3278A STATUS: ACTIVE
END OF STATUS DISPLAY
DSI2881 TIME EXPIRATION - ID= SYS08e81 - CMD= MSG ALL.THIS IS FROM NCCFIC
EVERY 5(PPT)(--------------EV5P
DSI0391 MSG FROM DSIM2PPT: THIS IS FROM NCCFIC EVERY
5(PPT)(--------------EV5P
DSI881I MESSAGE SENT TO ALL
PURGE TIMER=ALL.OP=PPT
DSI285I 804 TIMER ELEMENTS PURGED - OP= DSIM2PPT
D TP.ACT.NTCAM2
IED836I NTCAM2 ACTIVE~FGROUP20.806
D TP.TERM.L3270A
IED0331 L3210A STATUSm SNGLTRM DPTFLDS SCNDARY INTENSE= NO
IN-SEW=0e8'. OUT-SEW=0045
DOMAINS
PARIS DOMAlN IS INACTIV~. TO START REPLY'GD START
TO CONTINUE ON REPLY'GO·.
GO
DSIMN DOMAIN IS INACTIVE. fO START ~EPLY'GO START
TO CONTINUE ON REPLY'GD'.
GO
ASSIGN 87654321 + 4567 - 321 + -34
** 87654321 + 4567 - 32i + -34 - 87658533
DOMAIN
THE DOMAIN NAME IS DSIM2
AT 9:37.ID=AT937.L S=OPT
DSI201I TIMER REQUEST SCHEDULED FOR EXECUTION - ID=AT937
EVERY 5.PPT.REQMS FPU3276
DSI2011 TIMER REQUEST SCHEDULED FOR EXECUTION - ID=SYS00803
LIST TIMER=ALL,OP=ALL
DISPLAY OF OUTSTANDING TIMER REQUESTS
TYPE: AT TIME: 09:37 ID: AT937

COMMAND: L S-OPT
OF': PETE

TYPE: EVERY TIME: 09:4i ID: SYSe8883 PPT INTERVAL: 00:85
COMMAND: REQMS FPU3276
op: f'f'T,IPETEI

882 TIMER ELEMENTIS) FOUND FOR ALL
END OF DISPLAY
DSI20Bl riME EXPIRATION - ID= AT937 - CMD= L S=OPT
NAME: DS1LOG rASKNAM~: DSILOG STATUS: ACTIVE
NAME: BNHDSERV TASKNAME: BNHDSERV SlATUS: ACTIVE
NAME: BNHLNPDA TASKNAMl: BNHLNPDA SlATUS: ACTIVE
NAME: BNHEDCBA TASKNAME: BNHEDCBA STATUS: ACTIVE
END OF STATUS DISPLAY
DSl8331 L3284A SESSION STARTING FOR FRED
DSI020I OPERATOR FRED LOGGED ON FROM TERMINAL L3278C USING
PROFILEITCAMPROFI.HCLIL3284A I
DSI164I PROFILE TCAMPROF SPECIFIES FEATURES NOT SUPPORTED - PARAMETERS
IGNORED.
Dsr828r OPERATOR FRED LOGGED ON FROM TERMINAL L3270C USING
PROFILEITCAMPROF).HCLIL3284A
EVERY '0.REQMS FPU3274
DSI201I rIMER REQUEST SCHEDULED FOR EXECUTION - ID=SYS80004
AT 9:42,ID=PETE1 .MSG SYSOP. PLEASE DISABLE CHANNEL 8C',
DSI201I TIMER REQUEST SCHEDULED FOR EXECUTION - ID=PETE1
LIST TIMER=ALL,OP=PETE
DSI213I ACCESS NOT AUTHORIZED: OP NOT IN OPERATOR'S SCOPE
LIST TIMER=ALL
DISPLAY OF OUTSTANDING TIMER REQUESTS
TYPE: EVERY TIME: 09:49 ID: SYS80884 INTERVAL: 00:18

COMMA~D: REQMS FPU3274
881 TIMER ELEMENTIS) FOUND FOR FRED
END OF DISPLAY
DSI288r TIME EXPIRATION - ID= SYS80903 - CMD= REQMS FPU3276
DSI208I TIME EXPIRATION - ID= PETE' - CMD= MSG SYSOP.PLEASE DISABLE
CHANNEL 0Ci.
DSI839I MSG FROM PETE : PLEASE DISABLE CHANNEL 0Cl.
DSI0811 MESSAGE SENT ro SYSOP
MSG PETE. ARE YOU USING THE 3705-6 0C0?
DSI039I MSG FROM FRED : ARE YOU USING THE 3705-6 eC0?
DSIe8'I MESSAGE SENT TO PETE
MSG FRED. YES I AM
DSI081I MESSAGE SENT TO FRED
DSI839I MSG FROM PETE YES I AM
PURGE TIMER=ALL
DSI285I 081 TIMER ELEMENTS PURGED - 01"= FRED
LOGOFF
DSI881I' OPERATOR FRED LOGGED OFF TERMINAL L3270C
DSI881I OPERATOR FRED LOGGED OFF TERMINAL L3278C
DSIe56I L3284A SESSION STOPPING FOR FRED
LOGOFF
DSI881I OPERATOR PETE LOGGED OFF TERMINAL L3270A
DSI856I L32'4A SESSION STOPPING FOR PETE
DSI104I ***** END OF NCCF HARDCOPY LOG ****"

Appendix B. NCCF Log and Hard~opy Log B-S

Appendix C. NCCF Controls Blocks

This appendix describes some of the control blocks used by NCCF command
processors and service routines. The complete description of all NCCF control
blocks is in NCCF Logic, LY38-3010.

How to Read Data Maps

The data map descriptions in this manual consist of four sections:

• A reference list precedes the diagram of the data area. This list may
contain some or all of the following items:

DSIname:

BOUNDARY:

LENGTH:

POINTED TO BY:

INCLUDED BLOCKS:

NOTE:

Functional description

Byte, halfword, fullword, or doubleword

Decimal and hexadecimal value in bytes

Control blocks that contain pointers to this data
area

Control blocks embedded within this data area

Additional information

• A diagram of the control block follows the reference list. This diagram
shows the offsets, type, length, name, and description of each field in the
control block. The offsets are the decimal and hexadecimal displacements
of the fields. The type indicator tells whether the field is a pointer,
character string, bit string, or the first field of a structure. The length of
each field is shown in bytes. Variable-length fields are shown with a length
of zero. These variable-length fields contain appendages that may end on a
boundary other than the one specified. Most of the control block fields
contain the name of the field and a description of the function of the field.

• A cross-reference list immediately follows the data map diagram. This list
contains, in alphabetic order, the symbolic names of the fields that define
storage in the control block. Each field name is followed by its decimal and
hexadecimal displacement within the control block. Bit names are followed
by a decimal displacement and a hexadecimal value representation.

• A list of constant fields in the control block, if any, follows the alphabetic
cross-reference list. The constants are listed by name, value, and meaning.
The constant values may be in decimal, hexadecimal (X), binary (B), or
character representations. A constant or group of constants that define
values for a particular field in the control block is identified with a
subheading that specifies the primary field name.

Appendix C. NCCF Control Blocks C-l

CBH

CBH

DSICBH:

BOUNDARY:
,LENGTH:
LOCATION:

OFFSETS

o

0

1

2

MAPS THE CONTROL BLOCK HEADER WHICH APPEARS AS THE
FIRST FIELD IN MOST NCCF CONTROL BLOCKS
DOUBL Et.JORD
4 BYTES
THE FIRST FIELD IN MOST NCCF CONTROL BLOCKS

LENGTH NAME DESCRIPTION

(0) STRUCTURE 4 DSICBH CONTROL BLOCK HEADER

(0) BITSTRING 1 CBHID CONTROL BLOCK 10 (UNIQUE FOR
EACH CONTROL BLOCK)

(1) BITSTRING 1 CBHTYPE CONTROL BLOCK TYPE (APPLIES
TO DSITVB AND DSITIB ONLY

(2) SIGNED 2 CBHLENG CONTROL BLOCK LENGTH
(INCLUDING THIS HEADER).
LENGTH BASED ON CBHID AND
CBHTYPE FIELDS.

CROSS REFERENCE

CBHID
CBHLENG
CBHTYPE
DSICBH

C-2

o (0)
2 (2)
1 (1)
o (0)

CBH

Constants in OSICBH

NAME VALUE MEANING

Masks For Setti ng and Test; ng CBHIO Fi eld (Bit 8)

CBHMVT X'Fl' MVT CTL BLK 10 VALUE
CBHTVB X'F2' TVB CTL BLK 10 VALUE
CBHTIB X'F3' TIB CTL BLK 10 VALUE
CBHTIO X'F4' TIO CTL BLK 10 VALUE
CBHSNT X'Cl' SNT CTL BLK 10 VALUE
CBHART X'C2' ART CTL BLK 10 VALUE
CBHOQT X'C3' DQT CTL BLK 10 VALUE
CBHSCT X'C4' SCT CTL BLK 10 VALUE
CBHOIT X'CS' OIT CTL BLK 10 VALUE
CBHOOT X'C6' ODT CTL BLK 10 VALUE
CBHSVL· X'C8' SVL CTL BlK 10 VALUE
CBHCL~B X'C9' CWB CTL BLK ID VALUE
CBHSLJB X'D!' SWB CTL BLK 10 VALUE
CBHDSB X'02' DSB CTL BLK ID VALUE
CBHOCT X'D3' DCT eTL BLK 10 VALUE
CBHSCB X'D4' SCB CTL ELK ID VALUE
CBHPDB X'DS' PDB eTL BLK 10 VALUE
CBHNAT X'D6' NAT CTl BLK 10 VALUE
CBHSAT X'D7' SAT CTl BlK 10 VALUE
CBHCLB X'DS' ClB CTL BLK 10 VALUE
CBHUSE X'09' USE CTl BlK 10 VALUE
CBHSSB X'E2' SSB CTL BLK 10 VALUE
CBHOSRB X'E3' OSRB CTl BLK

ID VALUE
CRHTIQ X'E4' TIQ CBH 10
CBHNDT X'ES' NDT CTL BlK VALUE
CBHNr'lB X'E6' N~1B CTl BLK

ID VALUE
CBHSWA X'E7' SWB CTL BLK

ID VALUE
CBHCOB X'E8' CDB CTL BLK
CBHLUTSK X'4A' lU TASK BLOCK 10
CBHGRTTB X'4C' GLOBAL CNM ROUTING

TABLE
CBHCDtHO X'40' CDRM-TO-NCCFIO

TABLE

Constants for Setting/Testing CHBTYPE Field (Bit 8)

CBHPPT X'OO' OSIPPT CTl BLK
TYPE VALUE

CBHNNT X'D!' OSINNT CTl BlK
TYPE VALUE

CBHOST X'02' DSI05T CTL BLK
TYPE VALUE·

CBHHCT X'03' OSIHCT CTl BLK
TYPE VALUE

CBHTCT X'04' OSITCT CTL BlK VALUE
CBHOPTSK X'05' OPTIONAL TASK CTL

BLK TYPE VALUE
CBHMNT X' 06' MAIN TASK CTl

BLK TYPE VALUE
CBHACT X'OO' OSISWB/CWB CTl BLK

TYPE VALUE
CBHINACT X'FF' OSISWB/CWB CTL BLK

TYPE VALUE
CBHTIQS X'E2' SEND TYPE TIQ
CBHTIQR X'D9' RECEIVE TYPE TIQ
CBHTIQL X'D3' LOGON TYPE TIQ
CBHTIQO X'D6' OP QUEUE TYPE TIQ
CBHTIQX X'E7' CROSS DOMAIN TIQ
CBHTIQC X'C3' CSMI TYPE TIQ
CBHCDADD X'Cl' ADDITIONAL COB
CBHCDMN X'D4' MAIN CLB
CBHLUSSB X'E2' lU TASK LUSSB ELK
CBHLUTVT X'E3' LU TASK LUTVT ELK

Appendix C. NCCF Control Blocks C-3

CWB

Cl~B

DSICWB: MAPS THE COMMAND WORK BLOCK
BOUNDARY: DOUBLEWORD
IENG~ 364 BYTES (X'16C')
POINTED TO BY: TIB (TIBNCCWB) NORMAL COMMAND

(TIBICCWB) IMMEDIATE COMMAND
(TIBMRCCWB) RECEIVED COMMAND

MVT (MVTlCWB) FIRST CWB ON CHAIN
INCLUDED BLOCKS: CBH (CWBCBH)

OFFSETS TYPE LENGTH NA~'E

o (0) STRUCTURE 364 DSICWB

o (0) CHARACTER 4 Cl~BCBH

4 (4) A-ADDRESS 72 Cl,mSAVEA

76 (4C) CHARACTER 12 CWBPARMS

76 (4C) A-ADDRESS 4 CL~BBUF

80 (50) A-ADDRESS 4 CWBPDB

84 (54) A-ADDRESS 4 CL~BS~"B

88 (58) A-ADDRESS 4 CL~BNEXT

92 (5C) A-ADDRESS

96 (60) CHARACTER 256 CWBADATD

352 (160) A-ADDRESS 4 CWBDSRB

356 (164) A-ADDRESS 4

360 (168) A-ADDRESS 4

DESCRIPTION

COMMAND WORK BLOCK

CONTROL BLOCK HEADER

SAVEAREA USED TO CALL A
SERVICE ROUTINE OR ANOTHER
COMMAND PROCESSOR

COMAND PROCESSOR PARAMETERS

POINTER TO COMMAND BUFFER

POINTER TO PARSED COMMAND

POINTER TO SWB FOR USE BY THE
con~lAND PROCESSOR

ADDR OF NEXT CWB ON THE CHAIN

ADDR OF CALLERS TIB

AUTOMATIC WORKAREA

POINTER TO THE DSRB

RESERVED

RESERVED
===

LOGON AUTHORIZATION WORKING STORAGE

96 (60) STRUCTURE 256 CWBLAPRM

96 (60) CHARACTER 8 CWBLAUSR

104 (68) A-ADDRESS

108 (6C) A-ADDRESS 8 Cl·JBLASPN

116 (74) A-ADDRESS 4 C~"BLADOM

120 (78) SIGNED 4 Cl<JBLASCT

124 (7C) SIGNED 4 CL,JBlt\OIT

128 (80) SIGNED 2 C~'JBLADCT
130 (82) CHAR.:\CTER 1 CLI.!BLAFLG

1 ..• Cl~B LAUTH
. 1 CL.JB LAGS L

131 (83) CHARACTER 8 Cl:JBLAHCY
139 (8B) CHARACTER 8 Cl.JBLAPRF
147 (93) CHARACTER 205 CL,JBLAL.JRK

0 (0) STRUCTURE 8 CWBLASTO

C-4

LOGON ATHORIZATION PARM LIST

USER ID IF LOGON IS
AUTHORIZED

PTR TO 1ST PIECE OF WORKING
STORAGE

PTRS TO SPAN/ISPAN SKELETONS

PTR TO DOMAINS SKELETON

SPAN/ISPAN SKELETON COUNT

OIT ENTRY INDEX NUMBER

DOMAINS SKELETON COUNT
INDICATOR FLAGS
AUTH YES INDICATED
GLOBAL AUTHORITY
HARDCOPY LUNAME
PRO FI L E NA~1E
REMAINING WORK AREA
LAC STORAGE BLOCK HEADER

OFFSETS TYPE LENGTH NAME

o (0) A-ADDRESS 4 CWBLACHN

4
o

o

4
6
o

o
4

(4) SIGNED
(0) STRUCTURE

(0) A-ADDRESS

(4) SIGNED
(6) SIGNED
(0) STRUCTURE

(0) A-ADDRESS

(4) CHARACTER

CROSS REFERENCE

Ct.JBADATD 96 (60)
C~JBBUF 76 (4C)
CL:JBCBH 0 (0)
CWBDSRB 352(160)
CLJBLACHN 0 (0)
Cl~BLADCH 0 (0)
Cl:JBL ADCT 128 (80)
CL:JBLADEN 0 (0)
CWBLADNt<1 4 (4)
CWBLAD01'1 116 (74)
CL:JBlAFLG 130 (82)
CL'JBLAGBL 130 X'40'
Ct-mLAHCY 131 (83)
CL"IIB L AL EN 4 (4)
CL.JBLAOIT 124 (7C)
CL~BlAPRF 139 (8B)
Cl>JBLAPRM 96 (60)

4 C~JBLALEN
8 CWBLASEN

4 CL.JBLASCH

2 CWBLASIN
2

12 Cl~BLADEN

4 CWBlADCH

8 CWBlADNM

Cl.JDLASCH 0
CUBLASCT 120
Cl~B l AS EN 0
CWDLASIN 4
CWBLASPN 108
CL:JBlASTG 104
CL.JBLAS TO 0
ClJl3lAUSR 96
Cl,JB LAUTH 130
Cl.JBLAURK 147
Cl,~BNEXT 88
CL:JBPARMS 76
CL:JBPDB 80
CL~BSAVEA 4
Cl<lBSL:JB 84
CWBTIB 92
DSICL~B 0

(0)
(78)

(0)
(4)

(6C)
(68)

(0)
(60)
X'80'
(93)
(58)
(4C)
(50)

(4)
(54)
(SC)

(0)

Constants in DSICl.JB

NAME VALUE

DESCRIPTION

NEXT PIECE OF STORAGE

LENGTH OF STORAGE PIECE
SPAN/ISPAN SKELETON ENTRY

PTR TO NEXT ENTRY OF SAME
TYPE

SNT INDEX VALUE
ALIGNNENT
DOMAINS SKELETONS ENTRY

PTR TO NEXT DOMAINS SKELETON

DO~lAIN NAME

MEANING

ACF/VTAM Command Processor--DSIVTP Constants and Return Codes
(Fullword)

VTPGOOD

VTPBAD

VTPABORT

o
8

12

COMMAND EXECUTED
SUCCESSFULLY
COMMAND FAILED-
ERROR MSG ISSUED
COMMAND FAILED-
NO ERROR MSG ISSUED

START Command Processor--DSISRP Constants and Return Codes
(Fullword)

SRPGOOD

SRPBAD

o

8

CO~lMAND EXECUTED
SUCCESSFULLY
COMMAND FAILED-
ERROR MSG ISSUED

ROUTE Command Processor--DSIRTP Constants and Return Codes
(Fu11word)

RTPGOOD

RTPBAD

o
8

COMMAND EXECUTED
SUCCESSFULLY
COMMAND FAILED-
ERROR MSG ISSUED

CWB

Appendix C. NCCF Control Blocks C-S

DSB

MD.
DSIDSB: MAPS THE DATA SERVICE BLOCK USED BY NCCF DATA

SET SERVICE ROUTINES
BOUNDARY: DaUB '. _.JORD
i.E N G i H : 50 BY T E S (x ' 32 t)

POINTED TO BY: SWB (DKSDSB)
CLB (ClBDSB)

INCLUDED BLOCKS: CBH (DSBCBH)

OFFSETS TYPE LENGTH NAME

o (0) STRUCTURE 50 DsrDSB

o

4

8

12

16

20

20

24

25
26

28

32

36

44
46

48

(0) CHARACTER

(4) A-ADDRESS

(8) A-ADDRESS

(C) A-ADDRESS

(10) A-ADDRESS

(14) CHARACTER

(14) SIGNED

(18) UNSIGNED

(19) CHARACTER
(lA) "NSIGNED

(IC) CHARACTER

(20) SIGNED

(24) CHARACTER

(2C) SIGNED
(2E) SIGNED

(30) BITSTRING
1 ... ,
• .L. ••

.. 1.

CROSS REFERENCE

DSBBLOCK 20 (14)
DSBBUFF 12 (C)
DSBCBH 0 (0)
DSBCUREC 32 (20)
DSBEOD 48 X'20'
DSBFILE 8 (8)
DSBFLGS 48 (30)
DSBFND 48 X'40'
DSBIOERR 48 X'80'
DSBIOSZ 44 (2C)
DSBLOGRC 26 (IA)
DSBlOGRE 24 (18)
DSBMEMBR 36 (24)
DSBNEXT 4 (4)
DSBREC 16 (10)
DSBRECNT 46 (2E)
DSBTTR 20 (14)
DSIDSB 0 (0)

C-6

4 DSBCBH

4 DSBNEXT

4 DSBFILE

4 DSBREC

12 DSBBLOCK

4 DSBTTR

1 DSBLOGRE

1
2 DSBLOGRC

4

4 DSBCUREC

8 DSB~1E~1BR

2 DSBIOSZ
2 DSBRECNT

2 DSBFLGS
DSBIOERR
""',...",... .. ,'"
L.i.:Ji.)(nL-'

DSBEOD

DESCRIPTICN

DATA SERVICE BLOCK

CONTROL BLOCK HEADER

CHAIN PTR TO NEXT DSB

ADDR OF THE DCB/DTF

ADDR OF I/O BUFFER

ADDR OF LOGICAL RECORD

VSE ADDR OF LAST RECORD READ

OS/VS REl BLOCK ADDR OF LAST
RECORD

OS/VS LOGICAL RECORD FOR
BLOCKED RECORDS
RESERVED
SAVE AREA FOR lOG RECORD
COUNT

RESERVED

CURRENT PHYSICAL RECORD IN
BUFFER

DATA SET MEMBER NAME

110 BUFFER SIZE
LOGICAL RECORD COUNT IN
CALLERS BUFFER TO PROCESS

INDICATOR FLAGS
1/0 ERROK ON READ OPERATION
"-'·~I.~n r. ,...""","" "'''1 ~""
j ''::'II~IL..I' .-·VUI11.I 1 j'V'::;

END OF DATA SET ON THIS
MEMBER

DSRB

DSIDSRB: MAPS THE DATA SERVICES REQUEST BLOCK FOR THE DATA
SERVICES TASK

BOUNDARY: DOUBlEWORD
LENGTH: 163 BYTES (X'A3')
POINTED TO BY: CWB (CWBDSRB)

TID (TIDDSRB) ANCHOR FOR CHAIN
SWB (Slo,lBCSDRB)

INCLUDED BLOCKS: CBH (DSRBCBH)

OFFSETS LENGTH NAt'lE

o (0) STRUCTURE 163 DSIDSRB

o (0) CHARACTER 1 DSRBCBH

4 (4) A-ADDRESS 4 DSRBNXTV

8 (8) A-ADDRESS 4 DSRBVECB

12 (C) A-ADDRESS 4 DSRBVRPL

16 (10) A-ADDRESS 4 DSRBCUSB

20 (14) A-ADDRESS 4

24 (18) A-ADDRESS 4

28 (IC) A-ADDRESS 4

32 (20) A-ADDRESS 4

36 (24) BITSTRING 2 DSRBFLG
1 ... DSRBTYPE
.1 .. DSRBACTV

.. 1 . DSRBINUS

... 1 DSRBVRDV

1 ... DSRBVRSM
.1 .. DSRBCRSM
.. 1 . DSRBVSA~1
... 1 DSRBCNNI

38 (26) SIGNED 2

DESCRIPTION

DATA SERVICES REQUEST BLOCK

NCCF CTL BLK HDR

ADDR OF NEXT DSRB IN THE
CHAIN

VSAM ECB

ADDR OF VSAM RPL

ADDR PREALLOCATED CSMI
UNSOLICITED RESPONSE BUFFER

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

INDICATOR FLAGS
1 = UNSOLICITED 0 = SOLICITED
1 = IN USE BY A DSCP 0 =
AVAILABLE
1 = IN USE BY CSMI/VSAM 0 =
AVAILABLE FOR CS~lI/VSAM
1 = VSAM REDRIVE OPERATION 0
= VSA~l NORMAL OPERATION
VSM1 NOT FIRST T I ~l E S t~ I T C H
CS~lI NOT FIRST TIl"1E SL~ITCH
LAST f'lACRO ~JAS DSIZVSMS
LAS T f'1 A C R 0 WA S DSIZCSf'lS
RESERVED

40 (28) A-ADDRESS

44 (2C) SIGNED

48 (30) SIGNED

52 (34) A-ADDRESS

56 (38) A-ADDRESS

60 (3C) CHARACTER

60 (3C) CHARACTER

68 (44) A-ADDRESS

4 DSRBTIB

4

4

4

4

103 DSRBLOCK

8 DSRBRSNV

4 DSRBRADD

ADDR OF TIB OF DATA SERVICES
TASK

RESERVED

RESERVED

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

CODE ZEROED OUT DURING CLEAN
UP

RESUME VERB (COMMAND
PROCESSOR)

ADDR OF RESUME COMMAND
PROCESSOR

DSRB

Appendix C. NCCF Control Blocks C-7

PSRB

OFFSETS

72

80

84

88

92

96

100
102

104

104

105

108

112
113
114

116

120
,,,

124

128
130

132

136

140
142

144

148

152

156
157
158

(48) CHARACTER

(50) A-ADDRESS

(54) A-ADDRESS

(58) A-ADDRESS

(5C) A-ADDRESS

(60) A-ADDRESS

(64) SIGNED
(66) SIGNED

(68) UNSIGNED

(68) BITSTRING
1 ...
· 1 ..
· .1.
· .• 1

1 .•.
· 1 .•
· . 1 .
· .. 1

(69) BITSTRING
1 ...
.1 ..
• . 1 .
· .. 1

1 ..•
· 1 ..

(6C) SIGNED

(70) CHARACTER
(71) CHARACTER
(72) SIGNED

(74) SIGNED

(78) UNSIGNED
1""7A' ""AnA""Tr-~
" • ~" ". Ir-\I,,.,,,, , ... ,"

(7C) A-ADDRESS

(80) SIGNED
(82) SIGNED

(84) SIGNED

(88) A-ADDRESS

(SC) SIGNED
(SE) SIGNED

(90) SIGNED

(94) SIGNED

(9S) SIGNED

(9C) CHARACTER
(90) CHARACTER
(9E) CHARACTER

LENGTH NAME

S DSRBOID

4 DSRBDSCP

4 DSRBUSER

4 DSRBVACB

4 DSRBVDAD

4 DSRBVKEY

2 DSRBVDLN
2 DSRBVKLN

4 DSRBVOPT

1 DSRVOPT1
DSRVSEQ
DSRVDIR
DSRVSKP
DSRVARD
DSRVLRD
DSRVFL~D
DSRVBUD
DSRVNUP

1 DSRVOPT2
DSRVNSP
DSRVUPD
DSRVKEQ
DSRVKGE
DSRVFKS
DSRVGEN

4

1
1 DSRBVRTP
2

4 DSRBVRCT

2 DSRBCCOR

4 DSRBUBUF

2 DSRBBUFL
2 DSRBPRID

4

4 DSRBINPT

2 DSRBILEN
2

4 DSRBRC~lA

4 DSRBRCMI

4 DSRBDSRC

1 DSRBFNCD
1
3 DSRBREQN

161 (AI) CHARACTER 2 DSRBSTEP

C-8

DESCRIPTION

OPERATOR ID THAT INVOKED PSCP

ADDR OF ORIGINAL DSCP

USER FIELD

ADDR OF VSAM ACB

ADDR VSAM USER DATA AREA

ADDR OF VSAM KEY

LENGTH OF VSAM USER DATA AREA
LENGTH OF VSAM KEY

VSAM OPTION INDICATORS

SEQUENTIAL ACCESS
DIRECT ACCESS
SKIP SEQUENTIAL ACCESS
USER ARGUt'1ENT
LAST RECORD
FORWARD PROCESSING
BACKWARD PROCESSING
RECORD NOT TO BE UPDATED

REMEMBER POSITION
UPDATE RECORD
KEY = FOR ARGUMENT
KEY GREATER THAN OR EQUAL TO
FULL KEY FOR ARGUMENT
GENERIC KEY FOR ARGUMENT

RESERVED

RESERVED
VSAM REQUEST TYPE
RESERVED

VSAM LOGICAL ERROR RETRY
COUt~TER

NEG RESPONSE CORRELATION
VALUE
nr-t" nt'.-n
", ",.

ADDR OF INPUT BUFFER QUEUED
BY DSCP

LENGTH OF DSCP INPUT BUFFER
USER CORRELATION VALUE

RESERVED

ADDR OF CSMI INPUT BUFFER

LENGTH OF CSMI INPUT BUFFER
RESERVED

MAJOR RETURN CODE VALUE

MINOR RETURN CODE VALUE

VSE I/O COMPLETE RETURN CODE

DSRB FUNCTION INDICATION CODE
RESERVED
REQUEST SERIAL NO PACKED
STEP SERIAL NO IN PACKED

DSRB

CROSS REFERENCE

DSIDSRB 0 (0)
DSRBACTV 36 X'40'
DSRBBUFL 128 (80)
DSRBCBH 0 (0)
DSRBCCOR 120 (78)
DSRBCNr'lI 36 X'Ol'
DSRBCRSM 36 X'04'
DSRBCUSB 16 (10)
DSRBDSCP 80 (SO)
DSRBDSRC 1S2 (98)
DSRBFlG 36 (24)
DSRBFNCD lS6 (9C)
DSROIlEN 140 (8C)
DSRBINPT 136 (88)
DSRBINUS 36 X'20'
DSRBlOCK 60 (3C)
DSRONXTV 4 (4)
DSRBOID 72 (48)
DSRBPRID 130 (82)
DSRBRADD 68 (44)
DSRBRCMA 144 (90)
DSRBRCMI 148 (94)
DSRBREQN 158 (9E)
DSRORSNV 60 (3C)
DSRBSTEP 161 (AI)
DSRBTIB 40 (28)
DSRBTYPE 36 X'80'
DSRBUBUF 124 (7C)
DSRBUSER 84 (S4)
DSRBVACB 88 (58)
DSRBVDAD 92 (5C)
DSRBVDLN 100 (64)
DSRBVECB 8 (8)
DSRBVKEY 96 (60)
DSRBVKLN 102 (66)
DSRBVOPT 104 (63)
DSRBVRCT 116 (74)
DSRBVRDV 36 X'lO'
DSRBVRPl 12 (C)
DSRBVRS~1 36 X'08'
DSRBVRTP 113 (71)
DSRBVSM1 36 X'02'
DSRVARD 104 X'lO'
DSRVBt~D 104 X'02'
DSRVDIR 104 X'40'
DSRVFKS 105 X' 08'
DSRVFLt!D 104 X'04'
DSRVGEN 105 X'04'
DSRVKEQ 105 X'20'
DSRVKGE 105 X'10'
DSRVLRD 104 X'OS'
DSRVNSP 105 X'80'
DSRVNUP 104 X'01'
DSRVOPTI 104 (68)
DSRVOPT2 105 (69)
DSRVSEQ 104 X'80'
DSRVSKP 104 X'20'
DSRVUPD 105 X'40'

Appendix C. NCCF Control Blocks C-9

DSRB

Constants in DSIDSRB

NAME VAI.UE MEANING

DSRBFNCD With Possible Values that Can Be Assigned to the Code
(Halfword)

DSRBFNRM 1 FIRST INVOCATION
OF DSCP

DSRBFUNS 2 UNSOLICITED DATA
PASSED TO DSCP

DSRBFSOL 3 SOLICITED DATA
PASSED TO DSCP

DSRBFVSM 4 VSAM I/O OPERATION
HAS COMPLETED

Constants For Setting and Testing DSRB Minor Return Codes
(Fullword)

(minor return code field sett i ngs are those defined by VSAM)

DSRCGOOD 0 REQUESTED FUNCTION
PERFOR~'ED

DSRCNGRP 4 NEGATIVE RESPONSE
WAS RECEIVED

DSRCSTOR 8 INSUFFICIENT NCCF
STORAGE TO PROCESS
REQUEST

DSRCUNSL 12 NO UNSOLICITED DSRB
l.JAS AVAILABLE

DSRCNOEX 16 USER EXIT REJECTED
THIS REQUEST

DSRCTRNC 20 DATA TRUNCATION
OCCURRED DUE TO
INSUFFICENT INPUT
BUFFER LENGTH

DSRCEXTR 24 DATA TRUNCATION
OCCURRED (USER EXIT
SUBSTITUTION)

DSRCAREJ 28 ACCESS NETHOD
REJECTED REQUEST

DSRCLOSE 32 CNMI CLOSED DUE TO
UNRECOVERABLE ERROR

Constants For Setting and Testing DSRBVRTP (Bit 8)

DSRVGET
DSRVPUT
DSRVPNT
DSRVERS
DSRVNRQ

X'Ol'
X'02'
X'03'
X'04'
X'OS'

GET REQUEST
PUT REQUEST
POINT REQUEST
ERASE REQUEST
ENDREQ REQUEST

Constants For Setting and Testing DSRB Major Fields (Fullword)

DSRBVSUC o SUCCESSFUL
CONPLETION

The Minor Return Code Settings For DSRCVLOG and DSRCVPHS
are defined by VSAM

DSRCVLOG

DSRCVPHS

8

12

VSAM CHECK MACRO
LOGICAL ERROR
VSAM CHECK MACRO
PHYSICAL ERROR

pConstants For Setting and Testing DSRBTYPE (Bit 1)

DSRBTSOL
DSRBTUNS

B'O'
B'l'

SOLICITED DSRB
UNSOLICITED DSRB

Constants For Setting and Testing DSRBACTV (Bit 1)

C-IO

DSRBAUSE
DSRBAVAL

B'l'
B'O'

DSRB IN USE BY DSCP
DSRB AVAILABLE
FOR USE

IFR

DSIIFR: MAPS THE INTERNAL FUNCTION REQUEST PARAMETER LIST
BOUNDARY: FULLWORD
LENGTH: 2 BYTES + VARIABLE PARAMETERS
POINTED TO BY: TIB (TIOPSIFR) PSS IFR
NOTE: OVERLAYS HDRMSG FIELD IN DSITIB

OFFSETS LENGTH NAME

o (0) STRUCTURE 2 DSIIFR

0 (0) SIGNED 2 IFRCODE
2 (2) CHARACTER 0 IFRPARMS
2 (2) STRUCTURE 19 IFRXDOM

2 (2) BITSTRING 1 IFRIND
1 ... · ... IFRXFREE
. 1 .. · ... IFRXQTR
. . 1. · ... IFRXQTP

3 (3) BITSTRING 3
6 (6) SIGNED 2 I FRX~'L EN

8 (8) A-ADDRESS 4 IFRXQCHN

12 (C) CHARACTER 8 IFRXTNAT

20 (14) CHARACTER 1 IFRXTEXT

DESCRIPTION

INTERNAL FUNCTION REQUEST

SEE CODE VALUES
VARIABLE PARAMETERS
XDOMAIN BUFFERS AND XTERM
CLEANUP IFR REQUEST
INDICATORS
1 = FREEMAIN THIS BUFFER
1 = TER~iSESS REQUEST ON QUEUE
1 = TERMSESS IN PROGRESS
ALIGNNENT
DOMAIN MESSAGE LENGTH

QUEUE CHAIN PTR FOR sca QUEUE

PRIMARY DOMAIN APPLID (FROM A
DSINAT ENTRY)

TEXT
--

2
2

(2) STRUCTURE
(2) SIGNED

10 IFRLGN
2 IFRLGTYP

XTERM PARAMETERS
LOGON TYPE 1 = LOGON, 2 =
SABOTEUR

4 (4) CHARACTER 8 IFRlGlUN LUNAME
===

2
2

10

12

16

20

24

28

(2) STRUCTURE
(2) CHARACTER
(A) SIGNED

(C) A-ADDRESS

(10) A-ADDRESS

(14) A-ADDRESS

(18) A-ADDRESS

(lC) CHARACTER

26 IFRn~R
8 IFRH~DST
2 IFRH·JDLN

4 IFRTWDAD

4 IFRTWRPL

4 IFRTL.JTVB

4

o IFRTWTXT

TCAM WRITE REQUEST
DESTINATION NAME
DATA LENGTH

DATA ADDRESS NOTE: IF THIS
FIELD IS 0, THE DATA IS
ASSUMED TO BE CONTIGUOUS,
I.E. AT IFRTL~TXT

RPL ADDRESS

TVB ADDRESS

RESERVED

DATA, IF CONTIGUOUS WITH
WRITE REQUEST

IFR

Appendix C. NCCF Control Blodes C-ll

IFR

OFFSETS LENGTH NAME DESCRIPTION

---~----------------------------------- ---------------------

2
2

4

8

(2) STRUCTURE
(2) A-ADDRESS

(4) A-ADDRESS

(8) A-ADDRESS

10 IFRTRCSM
2

4 IFRTRRPL

4 IFRTRTVB

CSMI READ REQUEST
RESERVE

RPL ADDRESS

TVB ADDRESS
-------------------------~---------------------------- --

28

28

36

44

48

52

56

56
58

(lC) STRUCTURE

(lC) CHARACTER

(24) CHARACTER

(2C) A-ADDRESS

(30) A-ADDRESS

(34) A-ADDRESS

(38) CHARACTER

(38) SIGNED
(3A) SIGNED

32 IFRSS

8 IFRSSCHR

8 IFRSSTRM

4 IFRSSECB

4 IFRSSTVB

4 IFRSSPTR

4 IFRSSDAT

2 IFRSSROW
2 IFRSSCOL

SCREEN SIZE REQUEST

SET TO '333333'X DSISS

DEVICE

ADDRESS OF ECB

ADDRESS OF TVB

POINTER TO SCREEN MATRX SIZE
AREA IN REQUESTORS TIB

SCREEN SIZE DATA

ROW COUNT
COL COUNT

--

28

28

36
37
41

(IC) STRUCTURE

(lC) CHARACTER

(24) CHARACTER
(25) SIGNED
(29) CHARACTER

13 IFRCtoJ

8 IFRCt.JCHR

1 IFRCWBLK
4 I FRCL.JCI 0
o I FRCL~DAT

CSMI WRITE DATA

SET TO '333333'X FWDRQ

SET TO BLANK
CORRELATION 10
DATA --

o
o
2.

(0) STRUCTURE

(0) SIGNED
\c:.J ;).1.Uf'tI:U

4 IFRSSRC

2 IFRSSTRW
~ .lr-K;:);:)I~L

MATRIX DSECT

ROW COUNT
~UL \,;uuri I

4 (4) CHARACTER 0 IFRSSEND END OF DSECT
--

2 (2) STRUCTURE 38 IFRTIME
2 (2) CHARACTER 8 IFRTITVB TVBOPID OF TASK UNDER WHICH

REQUEST WILL BE RUN
10 (A) CHARACTER 8 IFRTINAM NANE OF ELEMENT
18 (12) CHARACTER 8 IFRTIPOP OPID TO PURGE FOR
26 (lA) CHARACTER 8 IFRTITIM TU1E AS ENTERED
34 (22) SIGNED 2 IFRTIMIM # MINUTES--EVERY COMMAND

36 (24) BITSTRING 1 IFRTIIND FLAG BYTE
1 ..• IFRTIAT AT- TINE INDICATOR
· 1 .. IFRTIEV EVERY TIME INDICATOR
· .1 IFRTIPR PURGE- TIME INDICATOR
· .. 1 IFRTINXD NEXT DAY INDICATOR

1111 ALIGNNENT
37 (25) BITSTRING 1 ALIGNMENT
38 (26) SIGNED 2 IFRTICR FOR IFRCODCR

--~----------------------------------
40 (28) CHARACTER 0 IFRTITXT CONMAND TEXT AREA

C-12

IFR

OFFSETS TYPE LENGTH NAME DESCRIPTION

2 (2) STRUCTURE 12 IFRLP LIST/PURGE MAPPING
2 (2) UNSIGNED 1 IFRLPTYP TYPE CODE (SEE CONSTANTS)
3 (3) CHARACTER 8 IFRLPOP AFFECTED OPERATOR ID

11 (B) CHARACTER 3 IFRlPNUM REQUEST NUM, PACKED, PURGE
ONLY

2 (2) STRUCTURE 10 IFRCR CROSS TASK QUEUE COMMAND
2 (2) CHARACTER 8 IFRCRVB COMMAND VERB PADDED TO 8

CHARS
10 (A) CHARACTER 2 IFRCRBLK 2 BLANK DELIMITER WORD

BOUNDARY

12 (C) CHARACTER o I FRCRPfv1S COMMAND PARAMETERS

CROSS REFERENCE

DSIIFR 0 (0) IFRTWR 2 (2)
IFRCODE 0 (0) IFRTWRPL 16 (10)
IFRCR 2 (2) IFRTWTVB 20 (14)
IFRCRBLK 10 (A) IFRTWTXT 28 (Ie)
IFRCRPMS 12 (C) I FRXDO~" 2 (2)
IFRCRVB 2 (2) IFRXFREE 2 X'80'
I FRCI~ 28 (lC) I FRXi'1L EN 6 (6)
IFRCWBLK 36 (24) IFRXQCHN 8 (8)
IFRCWCHR 23 (IC) IFRXQTP 2 X'20'
IFRCWCID 37 (25) IFRXQTR 2 X'40'
IFRCWDAT 41 (29) IFRXTEXT 20 (14)
IFRIND 2 (2) IFRXTNAT 12 (e)
IFRLGLUN 4 (4)
IFRlGN 2 (2)
IFRLGTYP 2 (2)
IFRLP 2 (2)
IFRlPNUM 11 (B)
IFRLPOP 3 (3)
IFRLPTYP 2 (2)
IFRPARMS 2 (2)
IFRSS 28 (IC)
IFRSSCHR 28 (IC)
IFRSSCOL 58 (3A)
IFRSSDAT 56 (38)
IFRSSECB 44 C2C)
IFRSSEND 4 (4)
IFRSSPTR 52 (34)
IFRSSRC 0 (0)
IFRSSROW 56 (38)
IFRSSTCL 2 (2)
IFRSSTRM 36 (24)
IFRSSTRW 0 (0)
IFRSSTVB 48 (30)
IFRTIAT 36 X'80'
IFRTICR 38 (26)
IFRTIEV 36 X'40'
IFRTIIND 36 (24)
IFRTIME 2 (2)
IFRTIMIM 34 (22)
IFRTINAM 10 (A)
IFRTINXD 36 X'IO'
IFRTIPOP 18 (12)
IFRTIPR 36 X'20'
IFRTITIM 26 (lA)
IFRTITVB 2 (2)
IFRTITXT 40 (28)
IFRTRCSM 2 (2)
IFRTRRPL 4 (4)
IFRTRTVB 8 (8)
IFRTWDAD 12 (C)
IFRTWDLN 10 (A)
IFRTWDST 2 (2)

Appendix C. NCCF Control Blocks C-13

IFR

Constants ;n DSIIFR

LABEL VALUE MEANING

(Byte)

IFRCODXT 1 XTERM CLEANUP
REQUEST

IFRCODLG 2 LOGON REQUEST
IFRCODCR 3 CROSS-TASK QUEUE

CO~if"'f'ND
IFRCODTW 4 TCAM l.JRITE IFR
IFRCODSS 5 SCREEN SIZE REQUEST
IFRCODTR 6 CSMI READ ELEMENT
IFRCODCW 7 CSi'lI L~RITE\ ELE~1ENT
IFRCODUS 8 USER IFR DRIVES

EX013
IFRCODTP 9 TeAN PURGE I/O

REQUEST
IFRCODTT .1.0 TeAM TERMINATE I/O

REQUEST
IFRCODPN 11 SCREEN COMt·1AND IFR
IFRCODTI 12 TIMER REQUEST
IFRCODTC 14 TeAn RESETSR

(CANCEL)
IFRCODLP 15 LIST/PURGE IMMEDIATE

DST REQUEST
IFRCODLW 16 L~RITE TO LOG

INDICATOR

CHalfword)

IFRSSRD 24 DEFAULT ROW COUNT
IFRSSCD 80 DEFAULT COLUMN COUNT

Type Codes in IFRLPTYP (Byte)

IFRlPlST 1 IFRLPTYP=LIST
IFRLPPUR 2 IFRLPTYP=PURGE

C-14

lOGDS

DSIlOGDS: MAPS THE NCCF DISK LOG
BOUNDARY: FULLWORD
IENGT~ 48 BYTES (X'30') + CALLERS TEXT RECORD
INCLUDED BLOCKS: NONE

OFFSETS

o

o
o
4

4
7

8

16
18
19

20

28

32

32
39

(0) STRUCTURE

(0) CHARACTER

(0) SIGNED

(4) SIGHED

(4) CHARACTER
(7) UNSIGNED

(8) CHARACTER

(10) SIGNED
(12) CHARACTER
(13) CHARACTER

(14) CHARACTER

(IC) SIGNED

(20) CHARACTER

(20) CHARACTER
(27) CHARACTER

LENGTH NAME

48 DSILOGDS

16 LOGKEY

4 LOGKEYDT

4 LOGKEYTM

3
1 LOGUNIQ

8 LOGKEYEX

2 LOGDISP
1 LOGIND
1 LOGi'lTYPE

8 LOGLUNAM

4 LOGTIME

8 LOGDOMID

7
1 LOGAUTHP

40 (28) CHARACTER' 8 LOGOPID

48 (30) CHARACTER o lOGTEXT

CROSS REFERENCE

DSILOGDS 0 (0)
LOGAUTHP 39 (27)
lOGDISP 16 (10)
L OGDO~lI D 32 (20)
lOGIND 18 (12)
LOGKEY 0 (0)
LOGKEYDT 0 (a)
LOGKEYEX 8 (8)
lOGKEYTf'l 4 (4)
lOGLUHA~l 20 (14)
lOGNTYPE 19 (13)
LOGOPID 40 (28)
LOGTEXT 48 (30)
LOGTI~lE 28 (IC)
LOGUNIQ 7 (7)

DESCRIPTION

FORMAT OF LOG RECORD

KEY OF THE RECORD

DATE: FORMAT = OOYYDDDC

TIME: FORMAT = HHMMSSOC

PLACE HOLDER
OC UNLESS A DUPLICATE TIME
DATE STAMP HAS BEEN OBTAINED

USER KEY FIELD

DISPLACEMENT OF MESSAGE TEXT
RECORD INDICATOR
t'lESSAGE TYPE

LUNAt-1E FROfvl TVB

TIME FROM CALLER'S BFR HEADER
(FORMAT: HHMMSSOC)

DOt'IAIN ID

PLACE HOLDER
% FOR MSG FOR AUTH OPERATOR

OPERATOR ID

CALLERS TEXT RECORD

LOGOS

Appendix C. NCCF Control Blocks C-lS

MVT

MVT

DSIMVT: MAPS THE MAIN VECTOR TABLE
BOUNDARY: DOUBLEWORD
LENGTH: 2248 BYTES X'8C8'
POINTED TO BY: TVB (TVBMVT)
INCLUDED BLOCKS: CBH (MVTCBH)

SL:JB (MVTSWBM)

OFFSETS LENGTH NAME

C-f6

o
o

4

8

12

16

20

24

28

32

36

40

44

48

52

56

56

56
58

60

64

64

64
66

68

72

76

76

84

(0) STRUCTURE 2248 DSIMVT

(0) CHARACTER

(4) CHARACTER

(8) A-ADDRESS

(C) A-ADDRESS

(10) A-ADDRESS

(14) A-ADDRESS

(18) A-ADDRESS

(lC) A-ADDRESS

(20) A-ADDRESS

(24) A-ADDRESS

(28) A-ADDRESS

(2C) A-ADDRESS

(30) A-ADDRESS

(34) A-ADDRESS

(33) BITSTRING

(38) SIGNED

(38) SIGNED
(3A) SIGNED

(3C) A-ADDRESS

(40) BITSTRING

(40) SIGNED

(40) SIGNED
(42) SIGNED

(44) A-ADDRESS

(48) A-ADDRESS

(4C) CHARACTER

(4C) CHARACTER

(54) CHARACTER

4 MVTCBH

4 MVTVER

4 f>WTDPRAD

4 MVTSNT

4 MVTOIT

4 MVTART

4 MVTDQT

4 MVTDDT

4 f'WTSCT

4 NVTCDNID

4 ft1VTGRTTB

4

4

4 MVTSVL

8 MVTCWBQ

4 MVTCBOTH

2 MVTCLIMT
2 MVTCCOUN

4 MVTLCL.JB

8 I"'VTSWBQ

4 MVTSBOTH

2 MVTSlIMT
2 MVTSCOUN

4 MVTLSWB

4 MVTTVB

8 f'1VTNOSPQ

8 MVTNCCFQ

18 MVTTVBRN

DESCRIPTION

MAIN VECTOR TABLE

NCCF CTL BLK HDR

NCCF VERSION INFORMATION

ADDR OF DSIDPR (VSE ONLY)

ADDR OF SPAN NAME TABLE

ADDR OPERATOR ID TABLE

ADDR OF AUTH ROUTING TABLE

ADDR DOMAIN QUALIFICATION
TABLE

ADDR DOMAIN DEFINITION TABLE

ADDR SYSTEM COMMAND TABLE

ADDR OF CDRMNAME-TO-NCCFID
TALBE

ADDR OF GLOBAL CNM ROUTING
TABLE

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

ADDR SERVICE-RTN VECTOR lIST

CWB CHAIN INFO

COUNT CONTROL FIELDS

CONTROL BLOCK COUNT LIMIT
CONTROL BLOCK CURRENT COUNT

ADDR OF 1ST CWB ON THE CHAIN

SWB CHAIN INFO

COUNT CONTROL FIELDS

CONTROL BLOCK COUNT LIMIT
CONTROL BLOCK CURRENT COUNT

ADDR OF 1ST SWB ON THE CHAIN

TVB CHAIN HEADER

QNAME FOR ENQ ON THE TVB
CHAIN

QNAME FOR ENQ ON THE TVB
CHAIN

RHAME FOR EHQ ON THE TVB
CHAIN

OFFSETS

102 (66) SIGNED

104 (68) A-ADDRESS

108 (6C) A-ADDRESS

112 (70) A-ADDRESS

116 (74) A-ADDRESS

120 (78) A-ADDRESS

124 (7C) A-ADDRESS

128 (80) A-ADDRESS

132 (84) A-ADDRESS

136 (88) A-ADDRESS

140 (8C) A-ADDRESS

144 (90) A-ADDRESS

148 (94) A-ADDRESS

152 (98) A-ADDRESS

156 (9C) A-ADDRESS

160 (AO) A-ADDRESS

164 (A4) A-ADDRESS

168 (A8) A-ADDRESS

172 (AC) A-ADDRESS

176 (BO) A-ADDRESS

180 (B4) A-ADDRESS

184 (B8) A-ADDRESS

188 (BC) A-ADDRESS

192 (CO) A-ADDRESS

196 (C4) CHARACTER
1 ...
· 1 ..
· . 1 .
· .. 1

1 ..•
.1 ..
.. 1 .

LENGTH NAME

2 MVTSCMAX

4 MVTBPDCT

4

4 MVTEXOI

4 MVTEX02

4 MVTEX03

4 MVTEX04

4 MVTEX05

4 MVTEX06

4 MVTEX07

4 MVTEX08

4 MVTEX09

4 ~lVTEXI0

4 MVTEXll
\.

4 ~1VTEX12

4 ~lVTEX13

4 ~lVTEX14

4 MVTEXlS

4

4

4

4

4

1 MVTIND
MVTIHIT
~lVTTERI"1
~lVTCLOSE
NVTTPEND
NVTSHTDH
~lVTl4RMST
MVTl4LOPN

DESCRIPTION

MAXIMUM SCOPECLASS VALUE

BPAM DSIDCT CHAIN HEADER

RESERVED FOR FUTURE USE

ADDR NCCF MESSAGE CSECT

USER OST INPUT EXIT RTN
(DSIEXOl)

USER OST OUTPUT EXIT RTN
(DSIEX02)

USER CMD INVOCATION EXIT RTN
(DSIEX03)

USER LOG SERVICE EXIT RTN
(DSIEX04)

USER POI OUTPUT EXIT RTN
(DSIEXOS)

USER POI INPUT EXIT RTN
(DSIEX06)

USER NNT OUTPUT EXIT RTN
(DSIEX07)

USER NHT INPUT EXIT RTN
(DSIEX08)

USER SYSTEM CONSOLE OUTPUT
EXIT RTN (DSIEX09)

USER SYSTEM CONSOLE INPUT
EXIT RTN (DSIEX10)

USER PPT INPUT EXIT RTN
(DSIEX11)

OPERATOR LOGON EXIT RTN
(DSIEX12)

MESSAGE RECEIVER EXIT RTN
(DSIEX13)

OST TERMINATION EXIT RTN
(DSIEX14)

VSE ONLY TASK TERMINATION

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

RESERVED CRITICAL FIELD

INDICATOR FLAGS
1 = NCCF INIT IN PROGRESS
1 = NCCF TERM IN PROGRESS
1 = NCCF CLOSE ISSUED
1 = TPEND HAS BEEN ENTERED
1 = NCCF IS IN SHUTDOWN MODE
1 = NCCF IN WARM START MODE
1 = NCCF LOG IS ACTIVE

MVT

Appendix C. NCCF Control Blocks C-17

MVT

OFFSETS

197

198

200

202

204

208

212

216

220
222

224

226

228

230

232

234

236

236
237
245

245
246
254

. . .. • .. 1
(C5) CHARACTER

(C6) SIGNED

(C8) SIGNED

eCA) SIGNED

(CC) SIGNED

(DO) A-ADDRESS

(D4) A-ADDRESS

(D8) A-ADDRESS

(DC) SIGNED
(DE) SIGNED

(EO) SIGNED

(E2) SIGNED

(E4) SIGNED

(E6) SIGNED

(E8) SIGNED

(EA) SIGNED

(EC) CHARACTER

(EC) UNSIGNED
(ED) CHARACTER
(FS) CHARACTER

(F5) UNSIGNED
(F6) CHARACTER
(FE) CHARACTER

LENGTH NAME

MVTRCF
1 MVTSPCHR

2 MVTOCNT

2 MVTPRFCT

2 MVTDRTRY

4 MVTPRID

4 f"lVT~'NTLE

4 MVTCMPRG

4

2 MVTMRC
2 ~lVTTCNT

2 MVTSCNT

2 MVTSNTLN

2 MVTRCNT

2 MVTARTLN

2 MVTMLGON

2 MVTCDSES

9 MVTCURAP

1 MVTCURAL
8 ~lVTCURAN
9 MVTCURPW

1 MVTCURPL
8 MVTCURPN
2

DESCRIPTION

1 = RACF LOGON PROC
00 = NO SUPPRESS CHAR OTHER =
SUPPRESS CHAR
MAX NUMBER OF ENTRIES IN
DSI0IT

MAX NUMBER OF PROFILES
DEFINED
MAX DEVICE RETRY COUNT

CURRENT DSM PRID VALUE

MAIN TASK LOGON EXIT ADDRESS

POINTER TO TCAM PURGE I/O
PARM'iETER LIST

RESERVED

MAX SUBTASK REINSTATE COUNT
MAX NUMBER OF TVBS FOR THIS
NCCF

COUNT OF ENTRIES IN DSISNT
(SPAN COUNT)
LENGTH OF EACH ENTRY IN
DSISNT

COUNT OF ENTRIES IN DSIART
(RESOURCE COUNT)
LENGTH OF EACH ENTRY IN
DSIART

MAX NO OF REENTRY OF LOGON
PARMS FOR AN ATTEMPTED LOGON
PROCESS
MAX NO CROSS-DOMAIN SESSIONS
ALLOWED FOR THIS NCCF

CURRENT DOMAIN VTAM APPLID
(NNT)

CURRENT DOMAIN APPLID LENGTH
VTA~l APPLID NAtvlE
CURRENT DOMAIN VTAM PASSWD
(NNT)
CURRENT DOMAIN PASSWD LENGTH
VT AM PASSl.JORD
ALIGNMENT

256 (100) A-ADDRESS

260 (1~4) A-ADDRESS

264 (108) A-ADDRESS

268 (lOC) BITSTRING

276 (114) SIGNED

280 (118) A-ADDRESS

284 (11C) A-ADDRESS

288 (120) A-ADDRESS

292 (124) A-ADDRESS

C-18

4 MVTSWB

4 MVTACB

4 MVTGMSG

8 MVTTOD

4

4 MVTUFLD

4

4 MVTLAC

4 MVTGFMGl

ADDR OF SWB USED BY DSIMNT

ADDR OF ACB USED BY DSIMNT

ADDR OF SPECIAL ERROR MESSAGE

TOD CLOCK AT NCCF START

RESERVED

NCCF USER FIELD

RESERVED

ADDR OF LOGON AUTH MODULE

WTOLIST MSGI FOR GETMAIN
FAILURE

;/'

QfFSETS

296 (12S) SIGNED

300 (12C) A-ADDRESS

304 (130) A-ADDRESS

30S (134) SIGNED

312 (138) A-ADDRESS

316 (13C) SIGNED

31S (13E) CHARACTER
319 (13F) CHARACTER

320 (140) CHARACTER

328 (148) A-ADDRESS

332 (14C) CHARACTER

332 (14C) BITSTRING
333 (14D) UNSIGNED
334 (14E) SIGNED

336 (150) A-ADDRESS

340 (154) A-ADDRESS

344 (153) SIGNED

344 (158) BITSTRING
345 (159) UNSIGNED

348 (15C) A-ADDRESS

LENGTH NAME

4 MVTGFAIL

4 MVTGFMG2

4 MVTPOOL

4 MVTTASKC

4 MVTLOGGR

2 MVTTVBSZ

1 MVTMETH
1 MVTSNALV

8 MVTTPROC

4 MVTTLGNQ

2 MVTTSVC

1 MVTTSVCO
1 f>1VTTSVCN
2

4 ~'VTCTVB

4 MVTNDT

4 MVTEXTRN

1 MVTDELAY
1 ~lVTQREQ

4 MVTCCL

DESCRIPTION

GETMAIN FAILURE COUNT

WTOLIST MSG2 FOR GETMAIN
FAILURE

STORAGE POOL INDEX ADDRESS

TASK COUNT FOR ACF/TCAM ID

LOGGER BUFFER PTR

TOTAL AREA GOTTEN FOR ALL
TVBS
ACCESS METHO~ IN USE
SNA LEVEL IN USE

TCAM AMH TPROCESS NAME

TCAM LOGON QUEUE

NCCF USER SVC

SVC OP CODE
SVC NUMBER HEX
RESERVED

ADDR OF TCT TVB

ADDR OF NCCF DOMAIN TABLE

EXTERNAL INFO

OPEN/CLOSE DELAY
EXTERNAL QUEUE REQUEST

ADDR OF DSICCL
--
THE FOLLOWING FIELDS SUPPORT MNT REWRITE

352 (160) A-ADDRESS

356 (164) CHARACTER

356 (164) CHARACTER
357 (165) CHARACTER
365 (16D) CHARACTER

368 (170) A-ADDRESS

372 (174) CHARACTER

372 (174) SIGNED

376 (178) SIGNED

380 (17C) SIGNED

384 (180) SIGNED

388 (184) SIGNED

392 (188) A-ADDRESS

396 (laC) SIGNED

400 (190) A-ADDRESS

4 MVTSFXP

9 ~1VTAPID

1 MVTAPLEN
8 ~lVTSTNAM
3

4 l"1VTSFXAD

20 MVTCBL

4 MVTACBL

4 MVTRPLL

4 MVTNIBL

4 MVTEXLL

4 MVTSCBL

4 t'lVT Eca L S

4 ~'VTECBLN

4 MVTSFXTB

SUFFIX TABLE ADDR

APID NAME

APID LENGTH
NAME
RESERVED

SUFFIX ENTRY ADDR

API CB LENGTHS

ACB LENGTH

RPL LENGTH

NIB LENGTH

EX LIST LENGTH

SCB LENGTH

ECB LIST ADDR

ECB LIST LENGTH

APID SUFFIX TAB ADDR

MVT

Appendix C. NCCF Control Blocks C-19

MVT

OFFSETS LENGTH NAME DESCRIPTION

404 (194) SIGNED 4 I"lVTSFXLN APID SUFFIX TAB LENGTH

408 (198) CHARACTER 20 MVTECBG GLOBAL ECBS

408 (198) SIGNED 4 t'lVTECBT TERMINATE ECB

412 (19C) SIGNED 4 MVT ECBl~ l~TOR ECB

416 (lAO) SIGNED 4 MVTSFECB STOP FORCE ECB

420 (lA4) SIGNED 4 ~1VTECBD DETATCH ECB

424 (IA8) SIGNED 4 MVTECBA ATTACH ECB

428 (lAC) A-ADDRESS 4 MVTTVBM MAIN TASK TVB ADDR

432 (lBO) CHARACTER 64 ~1VTBlDlL BLDL LIST AREA
==============================='==========~~========== ======================

ENTRIES IN THE FOLLOWING TABLES ARE ORDERED AND ACCESSED BY TASK
TYPE VALUES AS DEFINED IN DSICBH. THEY ARE FILLED IN OR
CALCULATED BY THE MAIN TASK.

496 (lFO) CHARACTER 28 MVTRPLCT COUNT OF RPLS BY TASK

496 (lFO) SIGNED 4 MVTRPLP PPT

500 (IF4) SIGNED 4 1"1VTRPLN NNT

504 (IFS) SIGNED 4 ~lVTRP L S OST

508 (lFC) SIGNED 4 ~lVTRPLH HCT

512 (200) SIGNED 4 t"lVTRPL T TCT

516 (204) SIGNED 4 ~1VTRPLO OPT

520 (208) SIGNED 4 MVTRPUl ~lNT

524 (20C) CHARACTER 28 MVTNIBCT COUNT OF NIB BY TASK

524 (20C) SIGNED 4 f"lVTNIBP PPT

528 (210) SIGNED 4 t-1VTNIBN NNT

532 (214) SIGNED 4 1"1VTNIBS OST

536 (218) SIGNED 4 MVTNIBH HCT

540 (21C) SIGNED 4 NVTNIBT TCT

544 (220) SIGNED 4 NVTNIBO OPT

548 (224) SIGNED 4 NVTNIBM MNT

552 (228) CHARACTER 28 MVTSCBCT S CBS

552 (228) SIGNED 4 MVTSCBP PPT

556 (22C) SIGNED 4 MVTSCBN NNT

560 (230) SIGNED 4 ~'VTSCBS OST

564 (234) SIGNED 4 MVTSCBH HCT

568 (238) SIGNED 4 t-1VTSCBT TCT

572 (23C) SIGNED 4 MVTSCBO OPT

C-20

OFFSETS LENGTH NAME

576 (240) SIGNED 4 MVTSCBM

580 (244) CHARACTER 28 MVTTOTLT

580 (244) SIGNED 4 \"lVTTOTP

DESCRIPTION

MNT

TOTAL CONTROL BLOCK STORAGE
BY TASK

PPT
_.---

584 (248) SIGNED 4 f"lVTTOTN NNT

588 (24C) SIGNED 4 f-1VTTOTS OST

592 (250) SIGNED 4 MVTTOTH HCT

596 (254) SIGNED 4 ftlVTTOTT TCT

600 (258) SIGNED 4 MVTTOTO OPT

604 (25C) SIGNED 4 MVTTOTM MNT

608 (260) CHARACTER 28 MVTTIBLT COUNT OF TIB LENGTH BY TASK

608 (260) SIGNED 4 MVTTIBP PPT

612 (264) SIGNED 4 MVTTIBN NNT

616 (268) SIGNED 4 MVTTIBS OST

620 (26C) SIGNED 4 r-1VTTIBH HCT

624 (270) SIGNED 4 MVTTIBT TCT

628 (274) SIGNED 4 f'lVTTIBO OPT

632 (278) SIGNED 4 f'lVTTIBM f'1NT

636 (27C) CHARACTER 1 MVTABlOK ABEND LOCK FOR DSIMAB
637 (27D) CHARACTER 139 MVTUXBUF DSIEX10 BUFFER
637 (27D) BITSTRING 4 I'1VTUXNBL \,,1LENG AND BLENG
641 (281) BITSTRING 4 MVTUXTDS TDISP
645 (285) CHARACTER 16 PADDING WORDS
661 (295) CHARACTER 115 MVTWTORA l'JTOR REPLY AREA

776 (308) CHARACTER 28 MVTUXPLS DSIEXI0 DSIUSE PLIST

776 (308) BITSTRING 4 MVTUXCBL CBH HDR AND LENGTH

780 (30C) A-ADDRESS 4 t-1VTUXBFA PTR TO MSG BUFFER

784 (310) A-ADDRESS 4 MVTUXLUN PTR TO SYSOP LUNAME

788 (314) A-ADDRESS 4 MVTUXOID PTR TO SYSOP OPID

792 (318) A-ADDRESS 4 NVTUXSl~B PTR TO SWB

796 (31C) A-ADDRESS 4 MVTUXTVB PTR TO TVB

800 (320) A-ADDRESS 4 MVTUXPDB PTR TO PDB

804 (324) CHARACTER 72 MVTMSVAI MAIN TASK SAVE 1

876 (36C) CHARACTER 72 MVTMSVA2 MAIN TASK SAVE 2

948 (3B4) CHARACTER 72 MVTMSVA3 MAIN TASK SAVE 3

1020 (3FC) CHARACTER 200 MVTMTWKA MAIN TASK WORK AREA

1220 (4C4) CHARACTER 136 MVTMSGPL MSG PARM LIST AREA

1356 (54C) CHARACTER 24 MVTMNTTP MAIN TASK MNT TERM PARM LIST

MVT

Appendix C. NCCF Control Blocks C-21

MVT

OFFSETS

1356
1365
1373

(54C) CHARACTER
(555) CHAPt\CTER
(55D) CHJ..'''ACTER

1376 (560) A-ADDRESS

1380 (564) SIGNED

1384 (568) CHARACTER

1384 (568) A-ADDRESS

1388 (56C) SIGNED

1392 (570) SIGNED

LENGTH NAME

9 MVTMNTPU
8 MVTMNTLU
3 MVTMNTPD

4 MVTMNTSW

4

12 MVTCPRGL

4 tlVTTCTVB

4 MVTCECBM

4 ~tVTCECBT

1396 (574) CHARACTER 600 MVTSWBM

1996 (7CC) SIGNED 4 M~ INSV

2000 (7DO) SIGNED 4 ~1Vn'lAJSV

2004 (7D4) CHARACTER 156 MVTMSGBF

DESCRIPTION

PU NAME
LU NAt-1E
PADDING

MNT SWB ADDR

RESERVED

TCAM TVB PURGE LIST

TVB TO PURGE

TCAM ECB NNT WAIT

TCAM ECB TCT WAIT

WTOR REPLY ARES

R15 SAVE FOR GENCB FAILURE

RO SAVE FOR GENCS FAILURE

MNT L.JCS MSG BFR --
FOR TIMER-INITIATED COMMANDS

2160 (870) CHARACTER

2160
2161
2162
2163

(870J :HARACTER
(871) CHARACTER
(872) CHARACTER
(873) CHARACTER

2164 (874) CHARACTER

2172 (87C) CHARACTER

4 MVTBTIME

1 MVTBTMHH
1 ~1VT B Ti1MM
1 MVTBTMSS
1 MVTBTMOC

8 MVTBSTCK

8 MVTPOPT

BASE TIME VALUE (PACKED)

(HH) HOURS
(MM) MINUTS
(SS) SECONDS
(OC) TENTHS/SIGN

BASE TIME-STCK FORMAT

POPTIME-STCK FORMAT --
ADDRESS LIST OF MAIN TASK MODULES

2180 (884) CHARACTER 4

2184 (888) A-ADDRESS 4 MVTMIN02

2188 (SSC) A-ADDRESS 4 MVTMTE

2192 (890) A-ADDRESS 4 MVTr-1l"1P

2196 (894) A-ADDRESS 4 MVTNAB

2200 (898) A-ADDRESS 4 NVTMCB

2204 (89C) A-ADDRESS 4· MVT~llG

2208 (8AO) A-ADDRESS 4 MVTMRP

2212 (SA4) A-ADDRESS 4 MVTMlT

2216 (8A8) A-ADDRESS 4 MVTMTP

2~20 (SAC) A-ADDRESS 4 MVTMEX

C-22

RESERVED

ADDR OF MNT INIT STG2

ADDR OF MNT TERMINATION PROC

ADDR OF MNT MSG PROC

ADDR OF MNT ABEND PROC

ADDR OF MHT BlD CTl SLKS PRoe

ADDR OF MNT lOGON EXIT PROC

ADDR OF MNT RPL EXIT
PROo)D705709

ADDR OF MNT LOST TERM EXIT
PROC

ADDR OF MNT TPEND EXIT PROC

ADDR OF MNT END OF TASK EXIT
PROC

OFFSETS LENGTH NAME

2224 (8BO) A-ADDRESS 4 MVTMNS

2228 (8B4) A-ADDRESS 4 MVTMST

2232 (8B8) A-ADDRESS 16

DESCRIPTION

ADDR OF MNT NET SRVS EXIT
PROC

ADDR OF MNT SUBTASK SERVICES
PROC

RESERVED

MVT

Appendix C. NCCF Control Blocks C-23

MVT

CROSS REFERENCE

OSIMVT 0 (0) MVTIND 196 (C4) MVTSCBN 556(22C)
MVTABLOK 636(27C) r-lVTINIT 196 X'80' MVTSCBO 572(23C)
NVTACB 260(104) MVTlAC 288(120) MVTSCBP 552(228)
MVTACBL 372(174) MVTLCWB 60 (3C) MVTSCBS 560(230)
MVTAPIO 356(164) MVTlOGGR 312(138) MVTSCBT 568(238)
MVTAPLEN 356(164) MVTLSWB 68 (44) r't1VTSCMAX 102 (66)
MVTART 20 (14) MVTt'1AB 2196(894) MVTSCNT 224 (EO)
MVTARTlN 230 (E6) MVTMAJSV 2000<-700) MVTSCOUN 66 (42)
MVTBLDlL 432(1BO) MVTMCB 2200(898) MVTSCT 32 (20)
MVTBPOCT 104 (68) MVTMCC 112 (70) r1VTSFECB 416(lAO)
MVTBSTCK 2164(874) MVTMETH 318(13E) MVTSFX~O 368(170)
~1VTBTIME 2160(870) MVTMEX 2220(8AC) t'1VTSFXLN 404(194)
MVTBTMHH 2160(870) l'1VTMINSV 1996(7CC) MVTSFXP 352(160)
MVTBTMMM 2161(871) MVTMIN02 2184(888) MVTSFXTB 400(190)
MVTBTMSS 2162(872) MVTMlG 2204(S9C) MVTSHTON 196 X'08'
MVTBTMOC 2163(873) MVTl'lLGON 232 (E8) MVTSlIMT 64 (40)
MVTCBH 0 (0) MVTMlT 2212(8A4) MVTSNALV 319(13F)
MVTCBL 372(174) MVTM~1P 2192(890) 1'1VTSNT 12 (C)
MVTCBOTH 56 (38) MVTMNS 2224(8BO) MVTSNTLN 226 (E2)
f1VTCCL 34S(15C) MVTMNTLE 208 (00) MVTSPCHR 197 (CS)
MVTCCOUN 58 (3A) MVTNNTlU 1365(555) MVTSTNAM 357(165)
MVTCDNID 36 (24) MVTMNTPD 1373(550) MVTSVl 52 (34)
MVTCDSES 234 (EA) MVTI"1NTPU 1356(54C) MVTSWB 256(100)
MVTCECBM 1388(56C) MVTI"1NTSW 1376(560) I"lVTSWBM 1396(574)
MVTCECBT 1392(570) MVT~'NTTP 1356(54C) 1"1VTSWBQ 64 (40)
1"1VTCLIMT 56 (38) MVTMRC 220 (DC) l'lVTTASKC 308(134)
MVTCLOSE 196 X'20' MVTNRP 2208(8AO) ~lVTTCNT 222 (DE)
MVTCMPRG 212 (D4) MVTNSGBF 2004(704) MVTTCTVB 138(t (568)
NVTCPRGL 1384(568) MVTf'lSGPL 1220(4C4) MVTTERM 196 X'40'
~1VTCTVB 336(150) MVTi>lST 2228(8B4) MVTTIBH 620(26C)
MVTCURAL 236 (EC) MVTNSVA1 804(324) MVTTIBLT 608(260)
MVTCURAN 237 (ED) MVTMSVA2 876(36C) MVTTIBM 632(278)
MVTCURAP 236 (EC) MVTMSVA3 948(3B4) MVTTIBN 612(264)
MVTCURPL 245 (F5) MVTMTE 2188{88C) MVTTIBO 628(274)
MVTCURPN 246 (F6) MVTMTP 2216(SA8) MVTTIBP 608(260)
MVTCURPW 245 (F5) MVT~1TWKA lO20(3FC) MVTTIBS 616(268)
MVTCWBQ 56 (38) MVTNCCFQ 76 (4C) MVTTIBT 624(270)
,.lVTOOT 28 (IC) MVTNDT 340(154) I"1VTTlGNQ 328(148)
l'iVTOELAY 344(158) MVTNIBCT 524(20C) MVTTOD 268(lOC)
MVTOPRAO 8 (8) MVTNIBH 536(218) l'WTTOTH 592(250)
MVTDQT 24 (18) MVTNIBL 380(17C) MVTTOTLT 580(244)
MVTORTRY 202 (CA) l'WTNIBM 548(224) f'lVTTOTM 604(25C)
MVTECBA 424(lA8) MVTNIBN 528(210) MVTTOTN 584(248)
MVTECBD 420(lA4) MVTNIBO 544(220) MVTTOTO 600(258)
MVTECBG 408(198) MVTNIBP 524(20C) MVTTOTP 580(244)
MVTECBLN 396(18C) NVTNIBS 532(214) MVTTOTS 588{24C)
NVTECBLS 392(188) J't1VTNIBT 540{21C) MVTTOTT 596(254)
MVTECBT 408(198) MVTNOSPQ 76 (4C) MVTTPEND 196 X'10'
MVTECBW 412(19C) MVTOCNT 198 (C6) MVTTPROC 320(140)
MVTEXLl 384(180) MVTOIT 16 (10) MVTTSVC 332{14C)
NVTEXTRN 344(158) MVTPOOl 304(130) f'WTTSVCN 333(140)
MVTEX01 116 (74) MVTPOPT 2172(87C) MVTTSVCO 332(14C)
MVTEX02 120 (78) f'tlVTPRFCT 200 (CS) t'1VTTVB 72 (4S)
MVTEX03 124 (7C) ft1VTPRIO 204 (CC) MVTTVBM 42S(lAC)
MVTEX04 128 (SO) MVTQREQ 345(159) 1"1VTTVBRN 84 (54)
MVTEX05 132 (84) MVTRCF 196 X 101 ' MVTTVBSZ 316(13C)
MVTEX06 136 (S8) MVTRCNT 228 (E4) MVTUFLD 280(11S)
MVTEX07 140 (8C) MVTRPLCT 496(lFO) 1'1VTUXBFA 780(30C)
MVTEX08 144 (90) MVTRPLH 50S{1FC) ~1VTUXBUF 637(270)
MVTEX09 148 (94) MVTRPLL 376(178) MVTUXCBL 776(308)
f>1VTEX10 152 (98) MVTRPlM 520(208) MVTUXLUN 784(310)
MVTEX11 156 (9C) MVTRPLN 500(1F4) MVTUXI"1BL 637(270)
MVTEX12 160 (AO) MVTRPlO 516(204) MVTUXOIO 788(314)
MVTEX13 164 (A4) MVTRPlP 496(1FO) MVTUXPOB 800(320)
MVTEX14 168 (A8) MVTRPLS 504(lF8) MVTUXPLS 776(308)
MVTEX15 172 (AC) MVTRPLT 512(200) ~1VTUXSWB 792(318)
f't1VTGFAIl 296(128) MVTSBOTH 64 (40) f'1VTUXTOS 641(281)
MVTGFMG1 292(124) MVTSCBCT 552(228) ~lVTUXTVB 796(31C)
MVTGFMG2 300(12C) f't1VTSCBH 564(234) MVTVER 4 (4)
MVTGMSG 264(108) MVTSCBL 388(184) MVTWLOPN 196 X'02'
MVTGRTRN 176 (BO) MVTSCBM 576(240) MVTWRMST 196 X'04'
MVTGRTTB 40 (28) MVTWTORA 661(295)

C-24

Constants in DSIMVT

NAME VALUE MEANING

Masks For Setting and Testing MVTIND Flags (Bit 1)

MVTON
MVTOFF

B'l'
B'O'

FUNCTION IS ACTIVE
FUNCTION IS
NOT ACTIVE

ACF/TCAM Trigger Characters--Read Only (Bit 64)

MVTOPCHR

MVTSSCHR
MVTFWCHR

X'3333333333333333'

X'333333C4E2C9E2E2'
X'333333C6E6C4D9D3'

Masks For Setting and Testing MVTMETH (Char 1)

MVTVT A~l
MVTTCAM

'V'
'T'

TCAM OPCTL CHARACTER
STRING--READ ONLY
SCREEN SIZE
CS~lI FORWARD

ACF/VT AM f'1ETHOD
ACF/TCAM METHOD

Constants For Setting and Testing DSILCM Fields (Fullword)

LCMCASE1 1 CONTROL BLOCK IS
TVB WITH OPID

LCMCASE2 2 CONTROL BLOCK IS
TVB WITH LU

LCMCASE3 3 CONTROL BLOCK IS
NEXT TVa

LCMCASE4 4 CONTROL BLOCK IS SWB
LCMCASE5 5 CONTROL BLOCK IS CWB
LCMCASE6 6 AUTHORIZATION

LOCATION REQUEST
LCMCASE7 7 FIND NEXT OPT.TASK
LC~1CASE3 8 FIND TCT TVB
LC~lCASE9 9 FIND PPT TVB
LCMFREE 1 FREE A CL.JB/SWB
LC~'GET 0 L 0 CAT E A C ~~ B / S W B
LCMGOOD 0 CONTROL BLOCK FOUND
LCtlINACT 4 TASK LOCATED IS

INACTIVE
LCMBAD 8 NOT FOUND--

UNSUCCESSFUL

MVT

Appendix C. NCCF Control Blocks C-2S

POB

PDB

DSIPDB:

BOUNDARY:

MAPS THE PARSE DESCRIPTOR BLOCK USED TO ANALYZE ALL
INPUT TO NCCF
DOUBLEL~ORD

ITNGT~
POINTED TO

20 BYTES (X' 14')
BY: CLB (CLBPSPDB) FROM &PAUSE CONTROL STATEMENT

(CLBGOPDB) FROM GO COMMAND
(CLBAPDB) ALTERNATE PDB

CWE (Ct~BPDB)
I'tVT U1VTUXPDB)
SWB (PSOPTAB)

(RDMPDB) PDB INPUT
(PAMPDB) INPUT PDB
(PAMENTRY) PDB ENTRY

TIB (TIBNCPDB) NORMAL COMMAND
(TIBMRPDB) MESSAGE RECEIVED AND RECEIVED
(TIBICPDB) IMMEDIATE COMMAND
(TIBAGPDB) AGAIN PROCESSING

USE (USERPDB) PDB PASSED TO USER EXIT

COMMAND

INCLUDED BLOCKS: CBH (PDBCBH)

OFFSETS LENGTH NAME DESCRIPTION

o (0) STRUCTURE 16 DSIPDB PARSE DESCRIPTOR BLOCK

o (0) CHARACTER 16 PDBHDR OVERALL PDB HEADER

o (0) CHARACTER 4 PDnCBH CONTROL BLOCK HEADER

4 (4) A-ADDRESS 4 PDBCl"lDA ADDR OF COMMAND ROUTINE

8 (8) A-ADDRESS 4 PDBBUFA ADDR OF INPUT BUFFER

12 (C) CHARACTER 1 PDBFLAGS INDICATOR FLAGS
1 PDBIM~lED 1 =I~li"EDIAT E CO~lMAND O=REGULAR

13 (D) CHARACTER
14 (E:' e.T~IJE:n , ... , v..L"t,,-V

16 (10) CHARACTER

16
17
18

(10) CHARACTER
(11) UNSIGNED
(12) SIGNED

CROSS REFERENCE

DSIPDB 0 (0)
PDBBUFA 8 (8)
PDBCBH 0 (0)
PDBCMDA 4 (4)
PDBDISP 18 (12)
PDBENTRY 16 (10)
PDBFLAGS 12 (C)
PDBHDR 0 (0)
PDB If'i~1ED 12 X'80'
PDBLENG 117 (11)
PDBNOENT 1~ (E)
PDBTYPE 16 (10)

C-26

1 ., Dt\t'I un ~"'T c;. I VL'111Jl..11'

o PDBENTRY

1 PDBTYPE
1 PDBLENG
2 PDBDISP

COf'li"AND
FOR FUTURE USE/ALIGNMENT
LII HAn ~n n~ r-l.ITnTr-l' TU Til ... ,. ,'"
11UII.lJl..i'Io. UI-- l..1' I I\..L &:.J .L I' Ifl.l.J rUD

fo1UL TIPLE ENTRIES

TYPE OF ENTRY (BY DELIMITER)
LENGTH OF THIS ENTRY
DISPLACEMENT TO BEGINNING OF
CHARACTER STRING IN THE
CO~'i'1AND

SCE

DSISCE: MAPS THE SYSTEM CONNMAND ELEMENT USED TO IDENTIFY
NCCF COMMAND PROCESSORS, USER-WRITTEN COMMAND
PROCESSORS, AND USER-WRITTEN COMMAND LISTS

BOUNDARY: DOUBLEWORD
LENGTH: 20 BYTES (X'14')
INCLUDED BLOCKS: CBH (DSICBH)

OFFSETS TYPE LENGTH NAME

o (0) STRUCTURE 20 DSISCE

o (0) CHARACTER

8 (8) CHARACTER

16 (10) A-ADDRESS

CROSS REFERENCE

DSISCE
SCECADDR
SCELNAt-1E
SCEVERB

o (0)
16 (10)

8 (8)
o (0)

8 SCEVERB

8 SCELNAME

4 SCECADDR

DESCRIPTION

SYSTEM COMMAND ELEMENT

COMMAND VERB

LOAD MODUL E NA~lE

ADDR OF THE COMMAND PROCESSOR

SCE

Appendix C. NCCF Control Blocks C-27

SWB

Sl~B

DSISWB: MAPS THE SERVICE ROUTINE WORK BLOCK USED BY NCCF
SERVICE ROUTINES

BOUNDARY: DOUBLEWORD
LENGTH: 600 BYTES (X'258')
POINTED TO BY: CLB (CLBSWB)

CWB (Ct"BSWB)
MVT (MVTlSWB) FIRST SWB ON CHAIN

(MVTSWB) SWB USED BY DSIMNT
(MVTMNTSW) MNT SWB ADDRESS
(MVTUXSWB)

NMB (NMBSWBA) NETWORK MANAGEMENT SERVICES SWB
TIB (TIBEXSWB) EXIT PROCESSING

(TIBNPSWB) NORMAL PROCESSING
(TIOPSSWB) PSS SWB
(TINXNNSW)
(MMPPLSWB)

USE (USERSWB) IN USER EXIT
INCLUDED BLOCKS: CBH (SWBCBH)

Q~FSETS LENGTH NAME

o (0) STRUCTURE 600 DSISWB

o (0) CHARACTER 4 SL\lBCBH

4 (4) A-ADDRESS 72 SL\lBSAVEA

76 (4C) A-ADDRESS 4 SWBNEXT

80 (50) A-ADDRESS 4 SWBTIB

84 (54) CHARACTER 256 SWBADATD

340 (154) CHARACTER 256 SL~BPLIST

596 (254) A-ADDRESS 4

DESCRIPTION

SERVICE ROUTINE WORK BLOCK

CONTROL BLOCK HEADER

STANDARD SAVE AREA (18 ITEMS,
EACH FIXED 31)

ADDR OF NEXT SWB ON CHAIN

ADDR OF CALLER'S TIB

AUTOMATIC WORK AREA

PARAMETER LIST OVERLAY AREA

RESERVED --
DISK SERVICES INVOCATION PARAMETER LIST

340 (154) STRUCTURE

340 (154) A-ADDRESS

344 (158) A-ADDRESS

348 (15C) BITSTRING
1
. 1

349 (150) BITSTRING
350 (15E) CHARACTER

C-28

12 DKSPARM

4 DKSDSB

4 DKSIDPTR

1 DKSOPT
DKSDCB
DKSTTR

1 DKSREQ
2 DKSRESV

DISK SERVICES PARM LIST

ADDR OF DATA SERVICES BLOCK
(DSIDSB)

ADDR OF A DCT ENTRY OR A DATA
SET ID NAME OR NAME OF MEMBER

OPTION INDICATORS
l=A OCT ADDR WAS SUPPLIED
l=TTR SUPPLIED ON READ
REQUEST
REQUEST CODE
FOR FUTURE USE/ALIGNMENT

OFFSETS LENGTH NAME DESCRIPTION

--
MESSAGE BUILD INVOCATION PARAMETER LIST

340 (154) STRUCTURE

340 (154) A-ADDRESS

344 (158) SIGNED

348 (15C) A-ADDRESS

352 (160) CHARACTER

352 (160) CHARACTER
1

. 1

.. 1.

356 (164) CHARACTER

356 (164) CHARACTER

356 (164) A-ADDRESS

360 (163) UNSIGNED
361 (169) UNSIGNED

362 (16A) CHARACTER
363 (16B) CHARACTER

1

92 ~1BSPARM

4 MBSMSGA

4 MBSMIDA

4 MBSBFRA

4 ~1BSFLAGS

1 MBSOPTS
MBSSKELA

~1BSSIZE

MBSTBIND

72 MBSTABLE

8 MBSENTRY

4 MBSTXTAD

1 ~lBSTXTlN
1 MBSPADLN

1 f'1BSFILL
1 NBSPNFLG

MBSlEFT

MESSAGE BUILD PARM LIST

ADDR OF SUPPLIED MSG SKELETON

MSGID VALUE (IN BINARY)

BUFFER ADDR FOR EDITED TEXT

INDICATORS

OPTION INDICATORS
O=MSGID SUPPLIED l=SKELETON
ADDR SUPPLIED
O=(SIZE=NO) SPECIFIED
l=(SIZE=ONLY) SPECFIED
O=USE NCCF MSG TABLE
l=CALLERS MSG TABLE

TEXT BUCKETS, 9 ENTRIES MAX

VARIABLE TEXT INFO

ADDR OF VARIABLE TEXT

LENGTH OF VARIABLE TEXT
TOTAL FIELD LENGTH IF PADDING
IS REQUESTED
FILL CHARACTER
BUCKET FLAGS
O=RIGHT FILL l=LEFT FILL

428 (lAC) A-ADDRESS 4 MSSUi'lSGT ADDR OF USERS MSG TABLE

===

COMMAND ANALASIS INVOCATION PARAMETER LIST

340 (154) STRUCTURE 17 CAIPARM

340 (154) A-ADDRESS 4 CAIC~1ND

344 (158) A-ADDRESS 4 CAICPROC

348 e15C) CHARACTER 8 CAINAME

356 (164) BITSTRING 1 CAIIND
1 CAIPARSD

CAl SERVICES PARM LIST

ADDR OF INPUT COMMAND

ADDR OF CMD PROC FOR THE
INPUT CO~;t'1AND OR 0 FOR
INVALID c~m

LOAD MODULE NAME TO BE FOUND

INDICATORS
l=COMMAND HAS BEEN PARSED

===
PARSE INVOCATION PARAMETER LIST

340 (154) STRUCTURE 13 PSOPARM

340 (154) A-ADDRESS 4 PSOCNND

344 (158) A-ADDRESS 4 PSOPTAB

348 el5C) A-ADDRESS 4 PSODELCT

352 (160) CHARACTER 1 PSOIND

PARSE SERVICES PARM LIST

ADDR OF INPUT COMMAND

ADDR OF LOCATION IN WHICH
PARSE TABLE IS TO BE BUILT OR
PDB REQUIRED LENGTH
(R.ETURN ED)

COUNT OF DELIMITERS TO BE
USED

OPTION INDICATORS

SWB

Appendix C. NCCF Control Blocks C-29

SWB

OFFSETS TYPE

1 .•• · ...

.1 .• · ...
· . 1 . · ...

353 (161) CHARACTER

LENGTH NAME

PSOOPTN

PSOFIRST

PSOSUB
0 PSODELIM

DESCRIPTION

l=CALCULATE PDB REQUIRED
LENGTH FOR INPUT COMMAND
(PSOCMND) O=PARSE THE INPUT
CO~1NAND
O=CONTINUATION CARD l=FIRST
WORD ENDS IN BLANK
QUOTES TAKE PRECEDENCE
ARRAY OF DELIMITERS TO BE
USED --

RECEIVE PROCESSING PARAMETER LIST

340 (154) STRUCTURE 81 RCVPARM

340 (154) A-ADDRESS 72 RCVSAV

412 (19C) A-ADDRESS

416 (lAO) A-ADDRESS 4 RCVBUF

420 (IA4) BITSTRING 1 RCVIND
1 . .• RCVASY

RECEIVE PROCESSING PARM LIST

SAVE AREA (18 ITEMS, EACH
FIXED 31)

RPL ADDR

I/O BUFFER ADDR

OPTION INDICATORS
O=ASYNCHRONOU5 OPERATION
l=SYNCHRONOUS OPERATION

--
PRESENTATION SERVICES PARAMETER LIST

340 (154) STRUCTURE

340 (154) A-ADDRESS

344 (158) A-ADDRESS

348 (15C) A-ADDRESS

352 (160) A-ADDRESS

356 (164) A-ADDRESS

360 (168) A-ADDRESS

364 (16C) BITSTRING
1 ...
· 1 .•
· . 1 .
· .. 1

1 ...
.1 ..
· . 1 .
· .. 1

365 (16D) BITSTRING

C-30

1 ...
.1 ..
.. 11 1111

26 PSMPARM

4 PS~nYPE

4 PSI"1l\REA

4 P5~'RP L

4 P5MAPPL

4 PStrlDOM

4 PSr"lRID

1 PSMOPT
P5~'ERASE
PS~1SEG
PSMREST
PS~1REDY
PSMNREDY
PSNFULL
PSF1FRST
PSl"1LAST

1 PSMOPT2
PS~1CNDLN
PS~lWINDW

PRESENTATION SERVICES PARM
LIST

REQUEST TYPE INDICATOR

ADDR OF CALLER'S DATA

ADDR OF CALLER'S RPL

ADDR OF 8-BYTE APPL NAME
FIELD

ADDR OF 8-BYTE DOMAIN ID

ADDR OF 3-BYTE REPLY 10

OPTION INDICATORS
l=ERASE OPTION
1 =5 EG~lENT OPT ION
l=KEYBOARD RESTORE OPTION
I=SEND READY MSG OPTION
l=ERASE READY MSG OPTION
l=FULL PROCESSING
l=FIRST OR ONLY
I=LAST OR ONLY
ADDITIONAL OPTIONS
COMMANDLINE OPTIONS
WIN D Ol~ R E QUE S T
RESERVED

OFFSETS LENGTH NAME DESCRIPTION

--
OPERATOR IDENTIFICATION SERVICES PARAMETER LIST

340 (154) STRUCTURE 12 OIMPARM OIS PARM LIST

340 (154) A-ADDRESS 4 OIMSNT ADDR OF SNT POS (INPUT)

344 (158) A-ADDRESS 4 OIMOPID ADDR OF OPERATOR ID (INPUT)

348 (15C) A-ADDRESS 4 OIMENT ADDR OF POS NUMBER (OUTPUT) --
ROUTING DETERMINATION SERVICES PARAMETER LIST

340 (154) STRUCTURE 28 RDMPARM RDS PARM LIST

340 (154) A-ADDRESS 4 RDMPDB ADDR OF PDB (INPUT)

344 (158) A-ADDRESS 4 RDMPOS ADDR OF POSITION NUM (INPUT)
--~--------------------348 (15C) A-ADDRESS

352 (160) A-ADDRESS

356 (164) A-ADDRESS

360 (168) CHARACTER
1 ...
. 1
.. 1.
... 1 1111

361 (169) CHARACTER

364 (16C) A-ADDRESS

4 RDMENT

4 RDMLNAF"lE

4 RDr-1STADD

1 RDMIND
RDt-1ACT
RDMINACT
RDMlOCAL

3

4 RDt-mOM

ADDR OF ADDR OR POS (OUTPUT)

ADDR OF LU NAME (INPUT)

ADDR OF START ADDRESS (INPUT)

FLAG INDICATORS FOR RDM
ACTIVATE ART ENTRY
INACTIVATE ART ENTRY
ONLY SEARCH THE LOCAL
RESERVED
RESERVED

IF XDOM RESOURCE, ADDR OF
DOMAIN NAME --

SPAN SEARCH SERVICES PARAMETER LIST

340 (154) STRUCTURE 2 0 SS~lPAR~l

340 (154) A-ADDRESS 4 SSMPOS

344 (158) A-ADDRESS 4 SSMSNTAD

348 (15C) A-ADDRESS 4 SSMSPNME

352 (160) A-ADDRESS 4 SSF"lBIT

356 (164) A-ADDRESS 4 SSMVAL

SSS PARM LIST

ADDR OF SPAN POS NUMBER
(INPUT)

ADDR SNT ADDR (INPUT)

ADDR OF SPAN NAME (INPUT)

ADDR OF BIT POS (INPUT)

ADDR OF TVB --
MESSAGE QUEING SERVICES PARAMETER LIST

340 (154) STRUCTURE 24 MQSPARM

340 (154) A-ADDRESS 4 MQSl"lADR

344 (158) A-ADDRESS 4 MQSTADR

348 (15C) A-ADDRESS 4 MQSOADR

MQS SERVICES PARM LIST

ADDR OF MESSAGE BUFFER

ADDR OF RECEIVER'S TVB

ADDR OF RECEIVER'S OPERATOR
ID

---352 (160) BITSTRING
353 (161) BITSTRING

1 ...
. 1 .•

1 MQSBFLG
1 MQSMFLG

MQSMlTO
MQSt-1LC

INDICATORS
TYPE INDICATORS
MlWTO=ON
CONTROL=ON

SWB

Appendix C. NCCF Control Blocks C-31

SWB

OFFSETS

· . 1 .
· .. 1 .•..
· . .. 1 ...
· III

354 (162) CHARACTER

356 (164) A-ADDRESS

360 (168) A-ADDRESS

LENGTH NAME

MQSMLL
MQSMLD
MQSMlDE

2 MQSRESV

4 MQSSADR

4 MQSLADR

DESCRIPTION

lABEL=ON
DATA=ON
DATAEND=ON
RESERVED
ALIGNMENT

ADDR OF SENDER ID

ADDR OF BUFFER LENGTH
--
PARAMETER ALIAS PARAMETER LIST

340 (154) STRUCTURE 12 PAMPARM

340 (154) A-ADDRESS 4 PANPDB

344 (158) SIGNED 4 PAMENTRY

348 (15C) A-ADDRESS 4 PAI"10UT

PAM SERVICES PARM LIST

ADDR OF INPUT PDB

POSITION OF PDB ENTRY TO BE
CKED

ADDRESS OF AN 8-BYTE OUTPUT
AREA TO CONTAIN THE REGULAR
OPERAND, OR BLANKS

---~----------- ---------------------

WRITE TO lOG PARAMETER LIST

340 (154) STRUCTURE 8 WLSPARM WLM SERVICES PARM LIST

340 (154) A-ADDRESS 4 WLSHCr ADDR OF HCr TVB

344 (158) A-ADDRESS 4 WLSBFR ADDR OF RECORD TO BE LOGGED
--
WRITE TO CONSOLE PARAMETER LIST

340 (154) STRUCTURE 4 WCMPARM WCM SERVICES PARM LIST

340 (154) A-ADDRESS 4 WCMMADR ADDR OF MESSAGE TEXT
===

CNMI SERVICES PARAMETER LIST

340 (154) STRUCTURE

340 (154) A-ADDRESS

344 (158) A-ADDRESS

348 (15C) A-ADDRESS

352 (160) A-ADDRESS

356 (164) A-ADDRESS

360 (168) A-ADDRESS

364 (16C) A-ADDRESS

368 (170) A-ADDRESS

372 (174) BITSTRING
1 . •. . •.•
· 1 .•

373 (175) BITSTRING

C-32

36 SWBCSPRM

4 SWBCSDRB

4 SL-JBCSIPT

4 SWBCSILN

4 SWBCSRU

4 SWBCSRLN

4 SL.JBCSDST

4 SWBCSTAR

4 SWBCSRSM

1 SWBCSTYP

3

SWBCSCHN
SWBCSRUO

CNMI SERVICES PARM LIST

ADDR OF DSRB

ADDR OF USER INPUT BFR

ADDR OF USER INPUT BUFFER
LENGTH

ADDR OF RU TO IMBED IN FOWARD
RU

ADDR OF RU BUFFER LENGTH

ADDR OF DEST NAME

ADDR OF TARGET NAME

ADDR OF RESUME VERB (COMMAND
PROCESSOR)

TYPE PARAMETER
CHAIN OPTION
RU OPTION
RESERVED

OFFSETS LENGTH NAME DESCRIPTION

--
VSAM SERVICES PARAMETER LIST

340 (154) STRUCTURE

340 (154) A-ADDRESS

344 (158) A-ADDRESS

348 (15C) SIGNED

352 (160) A-ADDRESS

356 (164) A-ADDRESS

360 (168) SIGNED

364 (16C) UNSIGNED

364 (16C) BITSTRING

1 ...
· 1 ..
· . 1 .
· .. 1

1 ..•
· 1 ..
· . 1 .
• .. 1

365 (160) BITSTRING
1 ..•
.1 ..
· .1.
· .. 1

1 ...
· 1 ..

366 (16E) BITSTRING

368 (170) CHARACTER

29 SWBVPARM

4 SWBVDSRB

4 SWBVKEY

4 SWBVKLN

4 SWBVRESM

4 SWBVDAD

4 SWBVDLN

4 SL.JBVOPT

1 SWBVOPT1

Sl.JBVSEQ
SL~BVDIR
Sl~BVSKP
SL·j8 VARD
Sl.JBVLRD
Sl.JBVFL'JD
Sl.JBVBLoJD
SL.JBVNUP

1 Sl~BVOPT2

2

Sl'JBVNSP
S~JBVUPD
SWBVKEQ
SLJBVKGE
St~BVFKS
SL.JBVGEN

1 Sl:JBVRTP

VSAM SERVICES PARM LIST

ADDR OF DSRB

ADDR OF VSAM KEY

LENGTH OF VSAM KEY

ADDR OF RESUME VERB

ADDR OF USER DATA AREA

LENGTH OF USER DATA AREA

VSAM OPTION INDICATORS

ADDR OF RESUME VERB (COMMAND
PROCESSOR)
SEQUENTIIAL ACCESS
DIRECT ACCESS
SKIP SEQUENTIAL ACCESS
USERS ARGUnENT
LAST RECORD
FORWARD PROCESSING
BACKWARD PROCESSING
RECORD NOT UPDATED

REMEMBER POSITION
UPDATE RECORD
KEY = FOR ARGUMENT
KEY GREATER THAN OF EQUAL TO
FULL KEY FOR ARGUMENT
GENERIC KEY FOR ARGUMENT
RESERVED

VSAM REQUEST TYPE INQICATOR
(SEE CONSTANTS ---------------------------------_._---

NETWORK SERVICES INVOCATION PARAMETER LIST

340 (154) STRUCTURE 228 SWBNM

340 (154) CHARACTER

340 (154) A-ADDRESS

344 (158) A-ADDRESS

348 (15C) A-ADDRESS
349 (150) CHARACTER

352 (160) CHARACTER

12 Sl.JBNf'tlIN

4 SWBNMCID

1 SWBNMTYP
3

16 SWBNMR

368 (170) CHARACTER 200 SWBHMWA

/

NETWORK SERVICES PARM LIST

INPUT PARAMETER LIST

BUFFER ADDR FOR FORWARD

RETURN ADDR FOR CORRELATION
10

REQUEST CODE
RESERVED

ADDITIONAL RETURN INFO

ADDITIONAL WORK AREA FOR
NETWORK MANAGEMENT SERVICES

SWB

Appendix C. NCCF Control Blocks C-33

SWB

OFFSETS LENGTH NAME DESCRIPTION

--
VSAM OPEN SERVICES PARAMETER LIST

340 (154) STRUCTURE 8 S~JBVSOPL VSAM OPEN SERVICES PARM LIST

340 (154) A-ADDRESS 4 SWBVSACB POINTER TO ACB

344 (158) A-ADDRESS 4 SWBVSl~RK WORK AREA --
SCOPE KEYWORD/VALUE SUPPORT PARAMETER LIST

340 (154) STRUCTURE 28 SWBSCPRM

340 (154) A-ADDRESS 4 St.>JBSCSCT

344 (158) CHARACTER 8 SWBSCCMD

352 (160) CHARACTER 8 SWBSCKEY

360 (168) CHARACTER

SCOPE PARAMETER LIST FOR
DSIKVM

SCTENTRY POINTER

COMMAND IF PTR NOT AVAILABLE

KEYWORD FOR AUTHORZATION

VALUE FOR AUTHORIZATION
===

CLIST DICTIONARY SERVICES PARAMETER LIST

340 (154) STRUCTURE 25 SLo,lBCD

340 (154) A-ADDRESS 4 SWBCDCLB

344 (158) A-ADDRESS 4 SL~BCDSYM

348 (15C) A-ADDRESS 4 Sl.JBCDVAL

352 (160) A-ADDRESS 4 SL~BCDS T

356 (164) A-ADDRESS 4 SL~BCDVLN

360 (168) A-ADDRESS 4 S~JBCDSLN

364 (16C) A-ADDRESS 1 Sl.JBCDTYP

C-34

CLIST DICTIONARt PLIST

ADDR OF CLB

ADDR OF SYf'lBOL

ADDR OF AREA FOR VALUE (DEF +
CHG) OR ADDR OF WORD FOR PTR
TO VALUE (SUB+ ANA)

ADDR OF BYTE FOR SYMBOL TYPE

ADDR OF WORD FOR VALUE LENGTH

ADDR OF WORD FOR SYMBOL
LENGTH

REQUEST TYPE CODE

SWB

CROSS REFERENCE

CAICMND 340(154) PSMRPL 348(15C) SWBRDFUN 340(154)
CArCPROC 344(15S) PSMSEG 364 X'40' SWBRDSFN 344(158)
CAIIND 356(164) PSMTYPE 340(154) SWBSAVEA 4 (4)
CAINAME 348(15C) PSM~.JI NOW 365 X'40' SL>JBSCCMD 344(158)
CAIPARM 340(154) PSOCMND 340(154) SWBSCKEY 352(160)
CAIPARSD 356 X'SO' PSODELCT 348(15C) SWBSCPRM 340(154)
DKSDCB 348 X'80' PSODELIM 353(161) SWBSCSCT 340(154)
DKSDSB 340(154) PSOFIRST 352 X'40' St.JBSCVAl 360(168)
DKSIDPTR 344(158) PSOIND 352(160) S~.JB T I B 80 (50)
DKSOPT 348(15C) PSOOPTN 352 X'80' SWBVARD 364 X'10'
DKSPARM 340(154) PSOPARM 340(154) St~BVBWD 364 X'02'
DKSREQ 349(15D) PSOPTAB 344(158) SWBVDAD 356(164)
DKSRESV 350(15E) PSOSUB 352 X'20' SWBVDIR 364 X'40'
DKSTTR 348 X'40' RCVASY 420 X'80' SWBVDLN 360(168)
DSISWB 0 (0) RCVBUF 416(1AO) SL~BVDSRB 340 (15(t>
MBSBFRA 34S(15C) RCVIND 420(1A4) SWBVFKS 365 X'08'
MBSENTRY 356(164) RCVPARM 340(154) SWBVFWD 364 X'04'
MBSFILL 362(16A) RCVRPL 412(19C) SWBVGEN 365 X'04'
MBSFLAGS 352(160) RCVSAV 340(154) SWBVKEQ 365 X'20'
MBSLEFT 363 X'SO' RDMACT 360 X'SO' SWBVKEY 344(15S)
MBSMIDA 344(158) RDr-mOM 364(16C) SWBVKGE 365 X'10'
MBSMSGA 340(154) RDMENT 34S(15C) SWBVKLN 34S(15C)
MBSOPTS 352(160) RDt>1INACT 360 X'40' Sl.JBVLRD 364 X'OS'
MBSPADLN 361(169) RDMIND 360(168) SWBVNSP 365 X'80'
MBSPARM 340(154) ROt>1L NAME 352(160) SL·JOVNUP 364 X'01'
MBSPNFLG 363(16B) RDMLOCAL 360 X'20' SWBVOPT 364(16C)
MBSSIZE 352 X'40' RDf'1PARM 340(154) SWBVOPT1 364(16C)
~1BSSKELA 352 X'80' RDMPDB 340(154) S~.JB VOPT2 365(16D)
MBSTABLE 356(164) RDMPOS 344(158) SWBVPARM 340(154)
MBSTBIND 352 X'20' RDr'1STADD 356(164) SWBVRESM 352(160)
MBSTXTAD 356(164) 55MB!T 352(160) SWBVRTP 368(170)
MBSTXTLN 360(168) SSft1PARft1 340(154) SWBVSACB 340(154)
MBSUf>1SGT 428(lAC) SSMPOS 340(154) SWBVSEQ 364 X'80'
MQSBFLG 352(160) SSt-1SNTAD 344(158) SL.JBVSKP 364 X'20'
MQSLADR 360(168) SSMSPNME 348(15C) SWBVSOPL 340(154)
MQSMADR 340(154) SSMVAL 356(164) SWBVSWRK 344(158)
MQSMFLG 353(161) SWBADATD 84 (54) SL.JBVUPD 365 X'40'
MQSMLC 353 X'40' SL~BCBH 0 (0) loJ Cf'1M A DR 340(154)
MQSMlD 353 X'10' SWBCD 340(154) L.JCMPARM 340(154)
MQSMLDE 353 X'OS' SWBCDCLB 340(154) WLSBFR 344(158)
MQSMLL 353 X'20' SWBCDSLN 360(168) WlSHCT 340(154)
MQSMLTO 353 X'80' SWBCDST 352(160) WLSPARM 340(154)
MQSOADR 348(15C) SWBCDSYM 344(158)
MQSPARM 340(154) SWBCDTYP 364(16C)
MQSRESV 354(162) S~~BCDVAL 348(15C)
MQSSADR 356(164) SWBCDVLN 356(164)
MQSTADR 344(158) SWBCSCHN 372 X'80'
O:It-1ENT 348(15C) SWBCSDRB 340(154)
O:IMOPID 344(158) SWBCSDST 360(168)
OIMPARM 340(154) S~JBCSILN 34S(15C)
OIMSNT 340(154) SWBCSIPT 344(158)
PAr-'ENTRY 344(158) SL.JBCSPRM 340(154)
PAMOUT 34S(15C) S~.JBCSRLN 356(164)
PAMPARM 340(154) SWBCSRSM 368(170)
PAMPDB 340(154) SL.JBCSRU 352(160)
PSMAPPL 352(160) SWBCSRUO 372 X'40'
PSMAREA 344(158) SL-JBCS TAR 364(16C)
PSf'1CMDlN 365 X'80' S~.JBCS TYP 372(174)
PSMDO~i 356(164) SWBNEXT 76 (4C)
PSMERASE 364 X'80' SWBNM 340(154)
PSMFRST 364 X'02' SWBNMBFR 340(154)
PSMFULL 364 X'04' SL.JBNr-1CI D 344(158)
PSMLAST 364 X'Ol' SWBNMIN 340(154)
PSMNREDY 364 X'OS' SWBN~1R 352(160)
PSMOPT 364(16C) SWBNMTYP 348(15C)
PSMOPT2 365(16D) SWBNMWA 368(170)
PSMPARt>1 340(154) SWBPLIST 340(154)
PSMREDY 364 X'10' SL.JBRD 340(154)
PSMREST 364 X'20' SWBRDAPT 352(160)
PSt"1RID 360(168) SWBRDCPN 348(15C)

Appendix C. NCCF Control Blocks C-35

SWB

Constants in DSISWB

NAME VALUE MEANING

Constants For Setting and Testing DKSREQ (Bit 8)

DKSOPEN X'Ol' REQUEST FOR OPEN
DKSCLOS X'02' REQUEST FOR CLOSE
DKSCONN X'03' REQUEST FOR

CONNECTION
DKSFIND X'04' REQUEST FOR FIND
DKSREAD X'os' REQUEST FOR READ

OPERATION
DKSDISC X'06' REQUEST FOR

DISCONNECTION

Constants For Setting and Testing DKS Return Codes (Fullword)

DKSGOOD 0 OPERATION REQUEST
SUCCESSFUL

DKSNTFND 4 DATA SET NAME NOT
FOUND OR f'lENB ER
NOT FOUND IN PDS

DKSEOD 4 END OF DATA
DKSIOERR 8 I/O ERROR
DKSFAIL 8 OPEN/CLOSE FAILURE
DKSRDNTP 12 DATA SET IS NOT

OPENED OR READ
IS NOT PERMITTED

DKSNOSTG 12 NO STORAGE AVAILABLE
AVAILABLE

DKSNOBUF 16 NO DISK BUFFER ADDR
DKSINVLD 20 INVALID CTL BLK ID
DKSINVRC 24 INVALID REQUEST CODE

Constants For Setting and Testing MBS Return Codes (Fullword)

MBSGOOD 0 1"1SG BUILD WAS
SUCCESSFUL

MBSTXTNA 4
MBSTRUNC 8 MSG TEXT HAS BEEN

TRUNCATED
MBSNTFND 12 MSG TXT COULD NOT

BE FOUND
MBSNOBUF 16
I"1BSTRTNA 20 VAR TEXT NOT

AVAILABLE AND
TEXT IS TOO LONG

MBSTRNFD 24 MSGID NOT FOUND IN
1"1 S G DEI FIN I T ION
MODULE AND BUFFER
IS TOO SMALL FOR
FOR 1"1 S G D S I 0 0 0

MBSINVAD 28 INVALID REQUEST

Command Analysis Return Code Values CHalfword)

CAIGOOD 0 REGULAR COMMAND
LOCATED

CAIBOTH 4 IMMED/REG COMMAND
LOCATED

CAIMMED 8 IMMEDIATE COMMAND
LOCATED

CAIBAD 12 NO COMMAND FOUND--
UNSUCCESSFUL

CAISCBAD 16 SCOPECLASS ERROR
CAIINVLD 20 COMMAND INCOMPATIBLE

Parse Return Code Values (Halfword)

PSOGOOD 0 CMD PARSED OR
SIZE FOUND

PSONULL 4 COMMAND NOT

C-36

PSOSMALL

PSOQUOTE

PSONOPDB

8

12

100

PARSED--NO DATA
PARSE TABLE TOO
SMALL FOR COMMAND
UNPAIRED
APOSTROPHES
NO PDB WAS PASSED

Constants For Setting and Testing PSM Option Code Byte 1 (Bit 8)

PSMERAS X'80' SET ERASE OPTION ON
PSMNERAS X'OO' SET ERASE OPTION OFF
PSMSEGMT X'40' SET S EG~lENT

OPTION ON
PSMMSG X'OO'
PSI"1RES X'20' SET KEYBOARD

RESTORE ON
PSMNRES X' 00' SET KEYBOARD

RESTORE OFF
PSMRED X'10' SET READY MSG ON

PSMNRED X' 08' SET READY MSG OFF
PSMNOOP X'OO' DON'T CHANGE

READY MESSAGE
PSMFRSTF X'06' FULL--FIRST
PSrr:rUDF X'Oft' FUL L --~1I DDL E
PSI"'LASTF X'OS' FULL--LAST
PSNONLYF X'07' FULL--ONLY

Constants For Setting and Testing PSM Option Code Byte 2 (Bit 8)

PSMCMDLF X'80' COMMAND LINE OPTION

Constants For Setting and Testing PSM Return Codes (Fullword)

PSMGOOD
PSMNOSND
PSl"lINVDl
PS~1NOSTG
PSl"lFSERR
PSI"lDUMI1Y

PSMSEQER

PSMUEDEL

PS~1NOINP

PSf'1RETRY

PSMIOERR

PSMRESET

PSMBUSY

PSMCANCL

PSMPOSTN

0
4
8
12
16
20

24

28

32

36

40

44

48

52

56

SYNAD Return Code Values (Fullword)

SYNOK o

SUCCESSFUL
DATA WAS NOT SENT
DATA LENGTH INVALID
STORAGE UNAVAILABLE
FILLED SCREEN ERROR
PSM FUNCTION NOT
SUPPORTED
ERROR IN SEQUENCE
OF FORMATTED
DISPLAY REQUEST
USER EXIT DELETED
THIS MESSAGE
SCREEN INPUT
CANCELED,
NO RESUME COMMAND
l~ILL BE SCHEDULED
ERROR DURING
SCREEN I/O. USER
SHOULD RETRY REQUEST
PER r'l f\ N EN T I/O
ERROR DURING
SCREEN I/O REQUEST
SCREEN INPUT RESET
NORMAL; NO RESUME
COI"1i'lAND l.JI L L BE
SCHEDULED
REQUEST INVALID
SINCE PREVIOUS
ASYPANEL HAS NOT
BEEN POSTED
COMPLETE, OR RESET
WITH TYPE=CANCEL
INPUT REQUEST ENDED
DUE TO TYPE=CANCEL
AT LEAST ONE NCCF
ECB HAS BEEN POSTED

REQUEST OK

SWB

Appendix C. NCCF Control Blocks . C-37

$WB

SYNRETRY 4 RETRY REQUEST
SYNTMALF 8 TEMPORARY

MALFUNCTION
SYNABORT 12 PERMANENT ERROR--

ABORT SUB TASK
SYNNVTAM 16 NOT A VTAM COMMAND

SENDCMD ONLY
SYNOTACT 20 NOT ACTIVATED
SYNOAUTH 24 NO AUTHORIZATION

FOR OPNDST ACQUIRE
OR SIMLOGON

SYNRESET 28 RECEIVE RESET
RESETSR

Operator Identification Services Return Codes (Fullword)

OIMGOOD 0 REQUEST SUCCESSFUL
OIMBAD 4 REQUEST UNSUCCESSFUL

Routing Services Return Code Values (fullword)

RDMASAME 0 AUTHORIZED FOR
SAME DOMAIN

RDMNSAME 4 NOT AUTHORIZED FOR
SAME DOMAIN

RDMCROSS 8 CRO SS- DOl"1A I N
SESSION ACTIVE

RDMNCROS 12 CROSS-DOMAIN
SESSION NOT ACTIVE

RDMNOTBL 16 NO ART OR DQT
TABLES EXIST

RDMFAILD 20 NO AUTHORIZATION

Span Search Services Return Code Values (Halfword)

SSMACT
SSr1INACT

55MBAD

o
4

12

Message Queueing Return Code Values (Halfword)

MQSGOOD
SWBr-~QSER
MQSNFND

MQSNBFR
MQSTERM

o
4
8

12
16

Message Queueing Indicator Values (Bit 8)

MQSBYES
MQSBNO
MQSAUTH

MQSTCT
MQSLVAR
MQSEXT
MQSPPT
MQSON

B'OOOOOOOO'
B'00000001'
B'00000010'

B'00000100'
B'00001000'
B'00010000'
B'00100000'
B' 1 '

Parameter Alias Return Code Values (Halfword)

PAMGOOD

PAf'1SAME

PAMBAD

o
4

8

Write to Log Return Code Values (Halfword)

e-3S

WLSGOOD
WLSNOSTG

o
4

SPAN FOUND--ACTIVE
SPAN FOUND-
INACTIVE
SPAN NOT FOUND

MSG SEND OK
BUFFER SPEFICATION
OPERATOR 1D NOT
FOUND
BUFFER OBTAIN FAILED
NCCF IN TERMINATION

BUFFER NOT PROVIDED
USE BUFFER PASSED
RECEIVER OF
AUTHORIZED MSGS
QUEUE TO TCT
QUEUE TO LU NAME
EXTERNAL INVOCATION
QUEUE TO PPT
TURN FUNCTION ON

REGULAR PARAMETER
LOCATED
NO PARAMETER FOUND
SUCCESSFUL
NO PARAMETER FOUND
UNSUCCESSFUL

SUCCESSFUL
NO STORAGE AVAIL

WLSFAIL
WLSHCLNA

WLSIOERR

WLSEOFCL

8
12

16

20

OPEN FAILURE
HARDCOPY LOG FAILED
QUEUE MANAGEMENT
SERVICES FAILED
PERMANENT I/O ERROR
ON LOG FILE
OPEN FAILURE AFTER
CLOSING lOG DATA
SET AT END OF EXTENT

Write to Console Return Code Values (Halfword)

WCMGOOD
WLSNOSWB

o
8

SUCCESSFUL
NO SWB OBTAINED FOR
CALL TO USER EXIT 09

Cits Constants For Testing and Setting Return Codes (Fullword)

DCL CITSGOOD
DCL CITSFAIL

o
4

CITS FUNCTION DONE
CITS FUNCTION
FAILED

VSAM Services Request Indicators For SWBVRTP (Bit 8)

St.JBVGET X'01' GET REQUEST
SL,JBVPUT X'02' PUT REQUEST
Sl~B V PHT X'03' POINT REQUEST
St,JBVERS X'04' ERASE REQUEST
DCl SvJI3VNRQ X'OS' ENDREQ REQUEST

NMS Return Codes (Fullword)

SL.JBN~1SUC 0 N~1S SUCCESSFUL
SL~BNMIHV 4 INVALID CALL
SWBN~1REJ 8 ACCESS METHOD

REJECTED REQUEST
SWBNMNOS 12 INSUFFICIENT

STORAGE

Constants For Type Codes (Bit 8)

SL.JBNt'10PN X'01' TYPE = OPEN
Sl~BNMRDY X'03' TYPE = READY
S [,-1 B N~' Fl:JD X'04' TYPE = FORt~ARD
SL~BNi'1CLS X'02' TYPE = CLOSE
SL·mN~1SND X'OS' TYPE = SEND

Constants For Setting and Testins VSAM Open Services (Fullword)

SL~BVPERR 8

CNMI Services Routine Return Codes--Major

St.JBCGOOD 0
SWBCFAIL 4
SWBCNpUT 8

SWBCNMAC 12

SWBCNTSK 16

SWBCNFNC 24

CNMI Services Routine Return Codes--Minor

St·JBNOSL.JB 4
SvJBBADRB 8
SWBNUSRB 12

SWBNSLRB 16

INCORRECT PARAMETER
SPECIFICATION

(REG 15)

SUCCESSFUL
UNSUCCESSFUL
INPUT BUFFER TOO
SMALL TO BUILD RU IN
INVALID MACRO
SPECIFICATION
NOT RUNNING UNDER
DATA SERVICES TASK
FUNCTION NOT
SUPPORTED

(REG 0)

INVALID SWB
INVALID DSRB
DSRB PASSED WAS
IN USE
UNSOLICITED DSRB
PASSED

SWB

Appendix C. NCCF Control Blocks C-39

SWB

SWBNOPID 20 INVALID OPERATOR ID
IN DSRB

SWBNOVRB 24 UNDEFINED RESUME
VERB

SWBNOSTR 28 INSUFFICIENT NCCF
STORAGE TO
PROCESS REQUEST

SWBCNACT 32 CNMI IS INACTIVE
SWBCAREJ 36 ACCESS METHOD

REJECTED REQUEST
SWBCEXIT 40 USER EXIT

REJECTED REQUEST
SWBCTRNC 44 D.~ T A TRUNCAT I ON

OCCURRED DURING
USER EXIT

Constants For DSIKVS Return Codes (Bit 8)

SWBSCGD 0 KEYWORD & VALUE OK
SWBSCKWD 4 K EYL~RD NOT IN

OPERATOR'S SCOPE
SWBSCNVL 8 VALUE NOT IN

OPERATOR'S SCOPE
SL~BSCPAR 9 NCCF INTERNAL

USE ONL Y
SWBSCINV 12 INVALID PARAMETER

PASSED

Constants For Command List Dictionary Request Type Codes (Bit 8)

SWBCDSUB
SWBCDANA
SL~BCDDEF
ShlBCDCHG
SWBCDTRM

X'01'
X'02'
X'03'
X'04'
X'OS'

TYPE=SUBSTITUTE
TYPE=ANALYZE
TYPE=DEFINE
TYPE=CHANGE
TYPE=TERMINATE

Command List Dictionary Symbol Type Codes (Bit 8)

(Must be the Same as in DSICDE)

SL~BCDCS
St~BCDCV
SWBCDUV
SL~BCDFCN
SL~BCDLBL

X'01'
X'02'
X'03'
X'04'
X'OS'

CONTROL SYMBOL
CONTROL VARIABLE
USER VARIABLE
BUILT-IN FUNCTION
LABEL

Return Codes From Dictionary Service Module (Fullword)

SL~BCDSUC
Sl~BCDINV
SLoJBCDDUP

SL·JBCDNOS
SL·lBCDSNO
SL~BCDL EX

0
4
8

12
16
20

CDS SUCCESSFUL
INVALID SYMBOL
SYt-1BOl ALREADY
DEFINED
INSUFFICIENT STORAGE
SHOULD NOT OCCUR
VALUELN LIMIT
EXCEEDED

Function Codes For Command List Control Symbols (Byte)

SWBCDCTL
Sl~BCDEXT
St;JBCDL~RT
Sl~BCDBt.JT
SL~BCDGO
SLo,lBCDI F
SL.JBCDPS
SWBCDTHN

1
2
3
4
5
6
7
8

&CONTROL FUNCTION
&EXIT FUNCTION
&WRITE FUNCTION
&BEGWRITE FUNCTION
&GOTO FUNCTION
&IF FUNCTION
&PAUSE FUNCTION
&THEN FUNCTION

Function Codes For Command List Built-in Function Symbols (Byte)

C-40

SWBCDCON
S~JBCDL TH
SL~BCDNID
SWBCDNST

1
2
3
4

&CONCAT FUNCTION
&LENGTH FUNCTION
&NCCFID FUNCTION
&NCCFSTAT FUNCTION

SWBCDSTR 5 &SUBSTR FUNCTION

Function Codes For Command List Control Variables (Byte)

SWBCDAPP 1 APPlID OF TASK
SWBCDHCY 2 HARDCOPY NAME
SWBCDLU 3 OPERATOR STATION

NAME
SWBCDNCT 4- NUMBER DOMAINS
SWBCDOID 5 OPERATOR'S USERID
SWBCDPCT 6 NUMBER PARAMETERS

ON ClIST INVOCATION
SWBCDPST 7 CHARACTER STRING

ON ClIST INVOCATION
S~.JBCDRC 8 RETURN CODE FROM

COMMAND PROCESSOR
OR COMMAND LIST

SWBCDTSK <] TASK TYPE: PPT, OST,
OR NNT

SWBCDMMD 10 MSGMOD V.l\LUE OR NULL
SWBCDTIM 11 5 CHARACTER TIME:

HH:MM
SWBCDDAT 12 8 CHARACTER DATE:

MM/DD/YY

Values for Setting and Testing Routing Definition Return Codes

S~~BRDFOK
SWBRDFND
SWBRDFDP
SWBRDFNS
SWBRDFIP
S~.JBRDFNA
SWBRDFIN

o
4-
8
12
16
20
252

Values for Setting and Testing LUS Return Code

SWBLUSIN 252

SUCCESS
NOT UNDER DST
DUPLICATE DEFINIT
NO STOR.I\GE
INVALID FUNC/SUBF
LU TASK IN.A.CTIVE
INVAL ID M.I\CRO
INVOCATION

INVALID MACRO
INVOCATION

SWB

Appendix C. NCCF Control Blocks C-41

TIB

TIB

DSITIB: MAPS THE TASK INFORMATION BLOCK FOR NCCF
BOUNDARY: DOUBLEWORD
LENGTH: 860 BYTES (X'35C') + VARIABLE LENGTH DATA
POINTED TO BY: TVB (TVBTIB)

CLB (CLBTIB)
CWB (CWBTIB) CALLERS TIB
DSRB (DSRBTIB) TIB OF DATA SERVICES TASK
SWB (SWBTIB) CALLERS TIB
TVB (TVBTIB)

INCLUDED BLOCKS: CBH (TIBCBH)
CWB (TIOCWB1,TIOCWB2,TIOCWB3,TIPCWB)
DSB (TIODSB,TIPDSB)
SWB (TIOSWBI,TIOSWBN,TIHSWBI,TIHSWBN,TIPSWBI,TIPSWBN)
BUFHDR (TIOPSHDR,TIOIMHDR,TIOI2HDR,TIOI3HDR,TIORCHDR,

TIOSHDR,TIOIHDR,TI02HDR,TIPROCHDR,TIPSCHDR)

OFFSETS LENGTH NAME DESCRIPTION

o (0) STRUCTURE 860 DSITIB

o (0) CHARACTER 4 TIBCBH

4 (4) A-ADDRESS 4 TIBTVB

8 (8) A-ADDRESS 4 TIBACB

12 (C) A-ADDRESS 4 TIBEXLST

16 (10) A-ADDRESS 4 TIBELT

20 (14) CHARACTER 9 TIBAPID

TASK INFORMATION BLOCK

NCCF CONTROL BLOCK HEADER

ADDR OF THE TVB FOR THIS TIB

ADDR OF ACF/VTAM ACB FOR THIS
TASK

ADDR OF ACF/VTAM EXLST

ADDR OF THE ECBLIST IN THIS
TIB

ACF/VTAM APPLID FOR THIS TASK

20 (14) UNSIGNED 1 TIBAPIDL ACF/VTAM APPLID LENGTH
21 (15) CHARACTER 3 TIBAPIDN ACF/VTAM APPLID FOR THIS TASK
29 (ID) CHARACTER 9 TIBAPWD ACF/VTAM PASSWORD FOR THIS

TASK
29 (ID) UNSIGNED 1 TIBAPWDL ACF/VTAM PASSWORD LENGTH
30 (1 E) CHARACTER 8 TIBAPWDN ACF/VTAM PASS~.JORD FOR THIS

TASK
38 (26) CHARACTER 62 TIBAREAl SUBTASK DEPENDENT AREA
38 (26) SIGNED 2 TIBPOICT CURRENT POI-HDR ID COUNT

VALUE
38 (26) UNSIGNED 2 TIBTSEQ LAST SEQUENCE

NUMBER--ACF/TCAM
-------------"--

40 (28) A-ADDRESS

44 (2C) A-ADDRESS

48 (30) A-ADDRESS

52 (34) A-ADDRESS

56 (38) A-ADDRESS

60 (3C) A-ADDRESS

64 (40) A-ADDRESS

4 TIBPSSPT

4 TIBNCCWB

4 TIBICCL,JB

4 TIBMRCWB

4 TIBEXSl.JB

4 TIBNPSWB

4 TIBNCPDB

ADDR DSIPSM WORK SPACE (SEE
TIOPSS)

NORMAL COMMAND CWB ADDR

IMMED COMMAND CWB ADDR

RCVCMD CWB ADDR

SWB ADDR FOR EXIT PROCESSING

SWB ADDR FOR NORMAL
PROCESSING

NORMAL COM~AND PDB ADDR

68 (44) A-ADDRESS 4 TIBMRPDB MSGRCV & RCVCMD PDB ADDR
---------~-----~~---~

72 (48) A-ADDRESS 4 TIBICPDB IMMED COMMAND PDn ADDR

C42

OFFSETS LENGTH NAME

76 (4C) A-ADDRESS 4 TIBAGPDB

80 (50) A-ADDRESS 4 TIBNCBFR

84 (54) A-ADDRESS 4 TIBICBFR

88 (58) A-ADDRESS 4 TIBAGBFR

92 (5C) A-ADDRESS 4 TIBSEND

96 (60) A-ADDRESS 4 TIBRECV

100 (64) A-ADDRESS 4 TIBUFLD

104 (68) A-ADDRESS 4 TIBTAFFY

108 (6C) A-ADDRESS 4

112 (70) CHARACTER 12 TIBAREA2

112 (70) A-ADDRESS 4 TIBCLBQ

112 (70) A-ADDRESS 4 TIBOSEXT

116 (74) SIGNED 4 TIBCLECB

116 (74) A-ADDRESS 4 TIBOSLST

120 (78) SIGNED 4 TIBXECB

124 (7C) CHARACTER 72 TIBSAVES

196 (C4) CHARACTER 72 TIBSAVEE

268 (lOC) CHARACTER 256 TIBNDATD

524 (20C) CHARACTER 256 TIBEDATD

780 (30C) CHARACTER

780 (30C) A-ADDRESS

784 (310) A-ADDRESS

788 (314) CHARACTER

796 (31C) SIGNED

800 (320) A-ADDRESS

804 (324) SIGNED

808 (328) A-ADDRESS

812 (32C) A-ADDRESS

816 (330) CHARACTER

824 (338) CHARACTER
1
.111 1111

825 (339) CHARACTER
830 (33E) CHARACTER

16 TIBINT

4 TIBINTI

4 TIBINT2

8 TIBMSGNM

4 TIBRETCD

4 TIBSCTSK

4 TIBCIECB

4 TIBCLBWK

4 TIBLOGBF

8 TIBTINAM

1 TIBFLGS
TIECCL

5 TIBMMD
2

DESCRIPTION

AGAIN PROCESSING PDB ADDR

NORMAL CMD BUFFER ADDR

IMMED CMD BUFFER ADDR

AGAIN PROCESSING CMD BUFFER
ADDR

ADDR OF PSS SEND ROUTINE

ADDR OF RECEIVE ROUTINE

NCCF USER FIELD

POINTER TO STORAGE

RESERVED

SUBTASK DEPENDENT AREA 2

DSIClB QUEUE HEADER

ADDR OF "OPTIONAL SUBTASK"
EXTENTION

CLIST ECB

ADDR OF OPTIONAL SUBTASK LIST
CMD BUFFERS

SECONDARY XDOMAIN ECB

STANDARD SAVE AREA

EXIT SAVE ARE.A.

NORMAL PRoe OST AUTO WORK
AREA

EXIT PRoe OST AUTO WORK AREA

RESERVED

RESERVED

RESERVED

RESERVED

CMD PROC RETURN VALUE

SCOPEING ACTIVE IF NOT 0

COMMAND INPUT ECB

(PRIVATE) ClB WORK QUEUE

POIHTER TO LOGGER OUTPUT
BUFFER

NCCF-GENERATED TIMER ID

FLAG BYTE
ClIST COMMAND
RESERVED
MSG~OD IDENTIFIER
RESERVED--AL IGNi'ENT

TIS

Appendix C,. NCCF Control Blocks C~3

TIB

OFFSETS

832 (340) A-ADDRESS

836 (344) A-ADDRESS

860 (35C) CHARACTER

LENGTH NAME

4 TIBLOGBE

24

o TIBEXTEN

DESCRIPTION

POINTER TO LOGGER OUTPUT
BUFFER WHEN NOT IN EXIT

RESERVED--CRITICAL

BEGINING OF UNIQUE EXTENSION --
OST EXTENSION

860 (35C) STRUCTURE 6972 TIBOST

860 (35e) CHARACTER

860 (3SC) A-ADDRESS

864 (360) A-ADDRESS

868 (364) A-ADDRESS

872 (368) A-ADDRESS

876 (36C) A-ADDRESS

880 (370) A-ADDRESS

884 (374) CHARACTER

884 (374) A-ADDRESS

888 (378) A-ADDRESS

892 (37C) CHARACTER

892 (37C) A-ADDRESS
1

924 (39C) SIGNED

928 (3AO) SIGNED

932 (3A4) SIGNED

936 (SA8) SIGNED

940 (3AC) SIGNED

944 (3BO) SIGNED

948 (3B4) CHARACTER

9S6 (3BC) A-ADDRESS

960 (3CO) A-ADDRESS

964 (3C4) SIGNED
966 (3C6) SIGNED

24 TIORPLCT

4 TIOORRPL

4 TIOOSRPL

4 TIORCRPL

4 TIOSCRPL

4 TIORARPL

4 TIORSRPL

8 TIONIBCT

4 TIOOSNIB

4 TIOCDNIB

32 TIOELT

4 TIOELTP
TIOELTLA

4 TIORCECB

4

4 TIORAECB

4 TIOPAECB

4 TIOLOECB

4 TIOQSECB

8 TIOPROFL

4 TIOSAUTH

4 TIONAUTH

2 TIOSCNT
2 TIONCNT

968 (3C8) CHARACTER 146 TIOIBUF1

968 (3C8) CHARACTER 24 TIOIIHDR

C44

OST EXTENSION

OST TASK RPLS

ADDR OF OPER RECEIVE ACF/VTAM
RPL

ADDR OF OPER SEND ACF/VTAM
RPL

ADDR OF POI REC-CMD ACF/VTAM
RPL

ADDR OF POI SEND-CMD ACF/VTAM
RPL

ADDR OF NNT RECEIVE ANY
ACF/VTAM RPL

ADDR OF NNT REQ SESSION
ACF/VTAM RPL

OST TASK NIBS

ADDR OF OPERATOR STATION NIB

ADDR OF CROSS-DOMAIN SESS NIB

ECB LIST USED FOR EXEC
CONTROL (8 ELT ENTRIES, 4
CHARACTERS EACH)

POINTER TO THE ECB
LAST ECB FLAG

RECEIVE CMD ECB

RESERVED

RECEIVE ANY ECB

PAUSE ECB

LOGON ECB

OUTPUT QUEUE ECB

ISTATUS PROFILE NAME

ADDR OF SPAN AUTH TABLE

ADDR OF NCCF-NCCF AUTH TABLE

COUNT OF SAT ENTRIES
COUNT OF NAT ENTRIES

OST INPUT BUFFER 1

STANDARD BUFFER HEADER

OFFSETS

992 (3EO) CHARACTER

1008 (3FO) CHARACTER

1028
1034
1114

(404) CHARACTER
(40A) CHARACTER
(4SA) SIGNED

LENGTH NAME

16

20 TIOIIXTH

6 TIOIICTL
80 TIOIIBDY

2 TIOOITSV

1116 (45C) CHARACTER 146 TIOIBUF2

1116 (45C) CHARACTER 24 TIOI2HDR

1140 (474) CHARACTER 16

115S (484) CHARACTER 20 TIOI2XTH

1176 (498) CHARACTER 6 TIOI2CTL
1182 (49E) CHARACTER 80 TIOI2BDY
1262 (4EE) BITSTRING 1 TIOFLGS

1 ... TIOSVRVR

. 1 TIOSVCTl

.. 11 1111
1263 (4EF) CHARACTER 1

DESCRIPTION

RESERVED--EXPANSION

IMBEDDED XTH

DEV CTL CHARS
BUFFER BODY
OIT INDEX FOR THIS OPERATOR

OST INPUT BUFFER 2

STANDARD BUFFER

RESERVED--EXPANSION

IMBEDDED XTH

DEVICE CONTROL CHARACTERS
BUFFER BODY
TID INDIC.~ TOR SAVE AREA
SAVE AREA FOR TVBAUTH
INDICATOR
SAVE AREA FOR TVBNAUTH
INDICATR
RESERVED
ALIGNMENT

TIB

1264 (4FO) CHARACTER 146 TIOIBUF3

1264 (4FO) CHARACTER

12S3 (508) CHARACTER

1304 (518) CHARACTER

1324
1330
1410

(52C) CH.~RACTER
(532) CHARACTER
(582) CHARACTER

24 TIOI3HDR

16

20 TIOI3XTH

6 TIOI3CTL
SO TIOI3BDY

2

1412 (584) CHARACTER 156 TIORCBUF

1412 (584) CHARACTER 24 TIORCHDR

1436 (S9C) CHARACTER 132 TIORCBDY

1568 (620) CHARACTER ISS

1756 (6DC) A-ADDRESS

1760 (SEQ) A-ADDRESS

1764 (6E4) A-ADDRESS

1768 (6ES) A-ADDRESS

1772 (SEC) SIGNED
1774 (6EE) SIGNED

1776 (6FO) A-ADDRESS

1780 (6F4) A-ADDRESS

1784 (6F8) A-ADDRESS

1788 (6FC) A-ADDRESS

1792 (700) A-ADDRESS

1796 (704) A-ADDRESS

4 TIOI1PTR

4 TIOI2PTR

4 TIOI3PTR

4 TIORFPTR

2 TIODBLEN
2

4 TIORABUF

4 TIOACEE

4 TIOFLQ

4

4

4

OST INPUT BUFFER 3

STANDARD BUFFER HEADER

RESERVED--EXPANSION

IMBEDDED XTH

DEVICE CONTROL CHARACTERS
BUFFER BODY
ALIGt-;~1ENT

POI REC-CMD BUFFER

STANDARD BUFFER HEADER

BUFFER BODY

RESERVED

FIRST DYNAMIC BUFFER

SECOND DYNAMIC BUFFER

THIRD DYNAMIC BUFFER

REFRESH DYNAMIC BUFFER

DYNAMIC BUFFER LENGTH
RESERVED

ADDR OF NNT RECEIVE ANY
BUFFER

POINTER TO RACF ACEE

FULL LINE QUEUE ANCHOR

RESERVED

RESERVED

RESERVED

Appendix C. NCCF Control Blocks C-45

TIS

OFFSETS LENGTH NAME

1800 (708) A-ADDRESS 4

1804 (70C) CHARACTER 2736 TIOPSSSP

4540 (1IBC) CHARACTER 364 TIOCWB1

4904 (1328) CHARACTER 364 TIOCWB2

5268 (1494) CHARACTER 364 TIOCWB3

5632 (1600) CHARACTER 600 TIOSWBI

6232 (1858) CHARACTER 600 TIOSWBN

6832 (lABO) CHARACTER 160 TIOPDB1

6992 (lB50) CHARACTER 160 .IOPDB2

7152 (lBFO) CHARACTER 160 TIOPDB3

7312 (lC90) CHARACTER 160 TIOPDB4

7472 (ID30) CHARACTER 360

DESCRIPTION

RESERVED

DSIPSM INFO BLOCK (TIOPSS)

A DSICt~B

ANOTHER DSICWB

ONE MORE DSICWB

DEFAULT (FIRST-IN-CHAIN)
IM~'ED DSISWB

DEFAULT (FIRST-IN-CHAIN)
NORMAL DSISWB

A DSIPDB

ANOTHER DSIPDB

ONE MORE DSIPDB

AND STILL ANOTHER DSIPDB

RESERVED --
DSIHCT TIB EXTENSION

860 (35C) STRUCTURE 2330 TIBHCT

860 (3SC) CHARACTER

860 (35C) A-ADDRESS

864 (360) A-ADDRESS

868 (364) CHARACTER

868 (364) A-ADDRESS

872 (368) CHARACTER

872 (368) A-ADDRESS
1

884 (374) CHARACTER

884 (374) SIGNED

888 (378) A-ADDRESS

892 (37C) CHARACTER

8 TIHRPLCT

4 TIHSRPL

4 TIHCLRPL

4 TIHNIBCT

4 TIHNIB

12 TIHELT

4 TIHELTP
TIHELTLA

8 TIHHTI

4 TIHHECB

4 TIHHINQ

8 TIHDCHAR

900 (384) CHARACTER 540 TIHOBUFI

900 (384) A-ADDRESS 4 TIHOINXT

904 (388) CHARACTER 24 TIHOIHDR

928 (3AO) CHARACTER 512 TIHOIBDY

1440 (SAO) CHARACTER 540 TIHOBUF2

1440 (SAO) A-ADDRESS 4 TIH02NXT

1444 (5A4) CHARACTER 24 TIH02HDR

C-46

HCT EXTENTION

HCT TASK RPLS

ADDR OF HCT SEND ACF/VTAM RPL

ADDR OF CLSDST ACF/VTAM RPL

HeT TASK NIBS

ADDR OF ACF/VTAM NIB

ECB LIST USED FOR EXEC
CONTROL (3 ELT ENTRIES OF 4
CHARS EACH)

POINTER TO THE ECB
LAST ECB FLAG

HARDCPY TRANSFER INFORMATION

HARDCPY ECB

HARDCPY INPUT QUEUE

DEVICE CHARACTERISTICS

HCT OUTPUT BUFFER 1

CHAIN PTR TO NEXT BUFFER

STANDARD BUFFER HEADER

BUFFER BODY

HeT OUTPUT BUFFER 2

CHAIN PTR TO NEXT BUFFER

STANDARD BUFFER HEADER

OFFSETS TYPE LENGTH NAME

1468 (SBC) CHARACTER S12 TIH02BDY

1980 (7BC) SIGNED 4 TIHRVECB

1984 (7CO) CHARACTER 600 TIHSWBI

2S84 (A18) CHARACTER 600 TIHSWBN

3184
318S
3186

(C70) CHARACTER
(C71) CHARACTER
(C72) CHARACTER

1 TIHRPLRC
1 TIHRPLFB
4 TIHRPLSN

DESCRIPTION

BUFFER BODY

RECEIVE ECB

DEFAULT (FIC) IMMED DSISWB

DEFAULT (FIC) NORMAL DSISWB

RPLRTNCD SAVE AREA
RPLFDB2 SAVE AREA
RPL SENSE SAVE AREA --

DSI?PT TIB EXTENTION

860 (3SC) STRUCTURE 2444 TIBPPT

860 (3SC) CHARACTER

860 (35C) A-ADDRESS

864 (360) A-ADDRESS

868 (364) CHARACTER

868 (364) CHARACTER

868 (364) A-ADDRESS
1

892 (37C) SIGNED

8 TIPRPLCT

4 TIPRCRPL

4 TIPSCRPL

o TIPNIBCT

24 TI?ELT

4 TIPELTP
TIPELTLA

4 TIPRCECB

896 (380) CHARACTER lS6 TIPRCBUF

896 (380) CHARACTER 24 TIPRCHDR

920 (398) CHARACTER 132 TIPRCBDY

10S2 (41C) CHARACTER 116

PPT EXTENTION

PPT TASK RPLS

ADDR OF POI REC-CMD ACF/VTAM
RPL

ADDR OF POI SEND-CMD ACF/VTAM
RPL

PPT TASK NIBS

ECB LIST USED FOR EXEC
CONTROL (6 ELT ENTRIES OF 4
CHARS EACH)

POINTER TO THE ECB
LAST ECB FLAG

RECEIVE CMD ECB

POI REC-CMD BUFFER

STANDARD BUFFER HEADER

BUFFER BODY

RESERVED
------------------------~--

1168 (490) CHARACTER 364 TIPCWB

'lS32 (SFC) CHARACTER 160 TIPPDB

1692 (69C) CHARACTER 600 TIPSWBI

2292 (SF4) CHARACTER 600 TIPSWBN

2892 (B4C) CHARACTER

2924 (B6C) A-ADDRESS

2928 (B70) SIGNED
2930 (B72) SIGNED

2932 (B74) SIGNED

32 TIPTIlNK

4 TIPNCPTR

2
2 TIPNCLEN

4 TIPCORNX

2936 (B78) CHARACTER 200 TIPCOREL

2936 (B78) CHARACTER

2936 (B78) BITSTRING
2938 (B7A) CHARACTER

10 TIPCOREN

2 TIPCORSQ
8 TIPCORIG

DSICWB FOR PPT

DSIPDB FOR DSIPPT

DEFAULT (FIC) IMMED DSISWB

DEFAULT (FIC) NORMAL DSISWB

TIMER LIFEBOAT LINKAGE

NORMAL CMD DYNAMIC BFR

RESERVED
NORMAL CMD BFR LENGTH

INDEX OF LAST TIPCOREL ENTRY:
USE C 5 LOGIC

SOLICITED MSG CORRELATION
TABLE

TIPCOREL ENTRY OVERLAY

SENDCMD SEQUENCE NUMBER
ORIGINATOR I.D.

TIS

Appendix C. NCCF Control Blocks C-47

TIB

OFFSETS LENGTH NAME DESCRIPTION

3136 (C40) A-ADDRESS 4 TIPTIMRQ ADDR TIMER REQEST QUEUE

3140 (C44) SIGNED 4 TIPTMECB SERVICE TIMER ELEMENT ECB

3144 (C48) SIGNED 4 TIPTIWK OUTSTANDING TIMER UNIT VALUE

3148 (C4C) CHARACTER 156 TIPNCBFR PPT NORMAL CMD BUFFER

3148 (C4C) CHARACTER 24 TIPNCHDR STANDARD BUFFER HEADER

3172 (C64) CHARACTER 132 TIPNCBDY BUFFER BODY --
DSITCT TIB EXTENSION

860 (35C) STRUCTURE 4000 TIBTCT TCT EXTENSION

860 (35C) CHARACTER 4000 4000 BYTE EXTENSION

860 (35C) CHARACTER o TICEND END OF EXTENSION --
DSIMNT TIB EXTENTION

860 (35C) STRUCTURE 1984 TIBTIM

860 (35C) CHARACTER

860 (35C) A-ADDRESS

864 (360) A-ADDRESS

868 (364) A-ADDRESS

872 (368) A-ADDRESS

876 (36C) CHARACTER

876 (36C) A-ADDRESS

880 (370) A-ADDRESS

884 (374) A-ADDRESS

888 (378) A-ADDRESS

960 (3CO) CHARACTER

960 (3CO) CHARACTER
969 (3C9) CHARACTER
977 (301) CHARACTER

980 (304) A-ADDRESS

16 TIMRPLCT

4 TIMRPLX

4 TIMRPLM

4 TIMRPLXR

4 TIMRPLXS

8 TIMNIBCT

4 TIMNIBX

4 TIMNIBM

4 TINXACB

72 TIMXSVA

24 TIMXNNPL

9 TIMXNNPU
8 Tlft1XNNLU
3 TIMXNNPD

4 TIMXNNSW

984 (3D8) CHARACTER 151 TIMMSBUF
1135 (46F) CHARACTER 5

1140 (474) CHARACTER

1148 (47C) SIGNED

1152 (480) CHARACTER
1161 (489) CHARACTER

1164 (48C) CHARACTER

1260 (4EC) CHARACTER

1260 (4EC) CHARACTER

C-48

8 TIMSVLUN

4 TIMERCOD

9 TIMDOMID
3

96 TIMLGSPS

16 TIMDEVCH

1

MNT TIB EXTENTION

MNT TASK RPLS

EXITS RPL ADDR

MAIN TASK RPL ADDR

CROSS-DOMAIN RECEIVE RPL

CROSS-DOMAIN SEND RPL

MNT TASK NIBS

EXITS NIB ADDR

MAIN TASK NIB ADDR

EXIT ACB ADDR

EXITS SAVE AREA (18 ITEMS OF
FIXED 31 EACH)

EXIT NNT TERM PARM LIST

PU NAME
LU N."ME
PADDING

SWB ADDR

EXIT MESSAGE BUFFER
RESERVED

SAVE LU NAME

ENTRY REASON CODE

DOMAIN 10
RESERVED

LOGON EXIT SESSION PARMS

DEVICE CHARACTERISTICS

SPACER

OFFSETS

1261 (4ED) CHARACTER
1262 (4EE) CHARACTER

1276 (4FC) SIGNED

1280 (500) SIGNED

LENGTH NAME

1 TIMDEVTP
1 TIMDEVMD

4 TIMGETSA

4 TIMSVR14

1284 (504) CHARACTER 136 TIMMSGPL

1420 (58C) CHARACTER 200 TIMXWKA

1620 (654) CHARACTER 20 TIMXRBUF

1640 (668) SIGNED 4 TIMX~1RTY

1644 (66C) CHARACTER 600 TIMSWBX

2244 (8C4) CHARACTER 600 TIMSWBXL

DESCRIPTION

DEVICE TYPE
MODEL TYPE

GETMAIN SAVE AREA

EXIT REG14 SAVER

EXIT DSIMMP MSG P-LIST

EXITS WORK AREA

CROSS-DOMAIN EXIT BUFFER

MACRO RETRY COUNT

EXIT SL~B

LOGON EXIT SL.JB
===

o (0) STRUCTURE 4 TIBELTE AN ELT ENTRY

o (0) A-ADDRESS 4 TIBEPTR ADDR OF AN ECB
1 TIBELAST l=LAST ENTRY IN THE LIST --

o (0) STRUCTURE

o (0) SIGNED

o (0) BITSTRING
1
. 1

1 (1) A-ADDRESS

4 TIBBLKE

4 TIBECB

1 TIBECBF
TIBECBWT
TIBECBPO

3 TIBECBB

TIXBLK MAP

AN ECB

ECB FLAGS
W.~IT INDICATOR
POST INDICATOR
ECB BODY --

STANDARD NCCF BUFFER HEADER

o

o
2

4

4

5
6

8

12

20

20

20
21
22
22

24

(0) STRUCTURE

(0) SIGNED
(2) SIGNED

(4) BITSTRING

(4) BITSTRING

11
(5) CHARACTER
(6) SIGNED

(8) SIGNED

(C) CHARACTER

(14) CHARACTER

(14) A-ADDRESS

(14) BITSTRING
(15) BITSTRING
(16) SIGNED
(16) UNSIGNED

(18) CHARACTER

24 BUFHDR

2 HDRMLENG
2 HDRBLENG

1 HDRIND

1 HDRNMPOS

HDRLNTYP

1 HDRMTYPE
2 HDRTDISP

4 HDRTSTMP

8 HDRDOMID

4 HDRPOI

4 HDRWLHCT

1 HDRPID
1 HDRPSTAT
2 HDR?~'SG
2 HDRCORID

o HDRTEXT

BUFFER HEADER

MESSAGE LENGTH
LENGTH OF BUFFER IN USE

HEADER INDICATORS

USED TO SAVE NM POST CODE FOR
DELAYED DST POST
MULTILINE TYPE (SEE
CONSTANTS)
MESSAGE TYPE
DISPLACEMENT TO 1ST TEXT
LOCATION FROM BEGINNING OF
THIS HEADER

TIME STA~iP FIELD

DO~1AIN ID

HDR USED FOR POI COMMANDS

HCT TVB ADDR FOR LOGGING SVCS

POI HDR ID
POI STATUS FIELDS
UNIQUE MSG NUMBER FIELD
DELIVER RU CORRELATION ID

NON MESSAGE COMMAND TEXT

TIB

Appendix C. NCCF Control Blocks C-49

TIS

OFFSETS lENGTH NAME DESCRIPTION

--
MESSAGE COMMAND EXTENSION

24 (18) STRUCTURE 12 HDRMCEXT MSG CMD INFORMATION

24 (18) A-ADDRESS 4 HDRNEXTM NEXT MSG ON QUEUE

28 (IC) CHARACTER 8 HDRSENDR OPERATOR ID OF SENDER

36 (24) CHARACTER 0 HDRMSG MESSAGE-CMD TEXT --

o
o
1
3
3
5
6

8
9

11
13
21
23
31

(0) STRUCTURE

(0) CHARACTER
(1) CHARACTER
(3) CHARACTER
(3) CHARACTER
(5) CHARACTER
(6) CHARACTER

(8) CHARACTER
(9) CHARACTER
(B) CHARACTER
(D) CHARACTER

(15) CHARACTER
(17) CHARACTER
(IF) CH.~RACTER

36 HDRMAR

1 MARMTYPE
2
8 MARMTIME
2 MARMHH
1 MARMCI
2 MAR~'MM

1 MARMC2
2 MARMSS
2
8 MARMDOM
2
8 MARMOPID
5

MARGIN DATA OF PRINT LINE

TYPE OF MESSAGE
BLANKS
HH:~1M:SS
HOURS
FIRST COLON
MINUTES

SECOND COLON
SECONDS
BLANKS
DOMAIN ID
BLANKS
OPERATOR ID
MORE BLANKS --

DSIOST TIB EXTENTION

o (0) STRUCTURE 2736 TIOPSS

o (0) CHARACTER 1036 TIOOWBUF

o (0) A-ADDRESS 4 TIOOWBGN

4 (4) A-ADDRESS 4 TrOOL~END

8 (8) SIGNED 4 TIOOWLEN

12 (C) CHARACTER 1024 TIOOWBDY

1036 (40C) CHARACTER 432 TIOMSAVE

1468 (SBC) CHARACTER 432 TIOESAVE

1900 (76C) A-ADDRESS 4 TIOOWNXT

1904 (770) A-ADDRESS 4 TIOOWAVl

1908 (774) CHARACTER 536 TIOPSSND

1908 (774) CHARACTER 24 TIOPSHDR

1932 (78C) CHARACTER 512 TIOPSBDY

2444 (93C) A-ADDRESS 4 TIOCFMAT

2448 (990) CHARACTER 8 TIONFMAT

C-50

PRESENTATION SERVICES INFO
(POINTED TO BY TIBPSSPT)

PSS OUTPUT WORK BUFFER

ADDRESS OF BEGINNING OF
BUFFER

ADDR END OF BUFFER

LENGTH OF BUFFER

BUFFER BODY

RESERVED

SAVE AREA ARRAY (6 ITEMS OF
72 BYTES EACH)

ADDR OF NEXT BLOCK OF DATA TO
BE SENT

ADDR OF NEXT AVAILABLE
LOCATION IN TIOOWBDY

PSM OUTPUT SEND BUFFER

STANDARD BUFFER HEADER

BUFFER BODY

ADDR OF CURRENT DEVICE FORMAT

NAME OF NEW DEVICE FORMAT

OFFSETS LENGTH NAME

2456
2458
2459

(998) SIGNED
(99A) UNSIGNED
(99B) UNSIGNED

2460 C99C) CHARACTER

2460 (99C) SIGNED

2468 (9A4) CHARACTER

2468 (9A4) SIGNED
2470 (9A6) SIGNED

2472 (9A8) SIGNED

2476 (9AC) SIGNED

2480 (9BO) A-ADDRESS

2484 (9B4) A-ADDRESS

2488 (9B8) A-ADDRESS

2492 (9BC) CHARACTER

1 ...
· 1 ..

· . 1.
· .. 1

1 ...

.1 ..

.. 1.

... 1
2493 (9BD) CHARACTER

1 ...
· 1 ..

· . 1 .

· .. 1

1 ...

.1 ..

2494 (9BE) CHARACTER
2495 (9BF) UNSIGNED

2496
2497
2493
2499

2500
2501
2502
2503

2504
2505
2506

(9CO) UNSIGNED
(9Cl) UNSIGNED
(9C2) UNSIGNED
(9C3) UNSIGNED

(9C4) UNSIGNED
(9C5) UNSIGNED
(9C6) UNSIGNED
(9C7) UNSIGNED

(9C8) UNSIGNED
(9C9) UNSIGNED
(9CA) CHARACTER

2 TIOSLCNT
1 TIOSlINP
1 TIOr'iARlN

8 TIODCHAR

2 TIOMAXRU

4 T-IOSCREN

2 TIOROWCT
2 TIOCOlCT

4 TIOWRECB

4 TIOSDECB

4 TIORSPHD

4 TIORSPTR

4 TIOINADR

1 TIOPSIND

TIOAL.JRAP
TIOSCNUL

TIOFSTLN
TIOSCNRF

TIONEWFM

TIOIMSND

TIOFSENT

TIOSCNlK
1 TIOPSIN2

TIOEt.JA
TIOPSOFM

TIOPSMFl

TIOCMDSD

TIOC~mGO

TIOFWRAP

1 TIOSNDLK
1 TIOSTROW

1 TIOSTCOl
1 TIOIt'iROW
1 TIOIMCOl
1 TIORYROW

1 TIORYCOl
1 TIOSlROW
1 TIOSlCOl
1 TIOCDROW

1 TIOCDCOL
1 TIOCLINP
2

DESCRIPTION

CURRENT SCREEN LINE COUNT
INPUT LINE COUNT
SCREEN MARGIN LENGTH

OST DEVICE CHARACTERISTICS

MAX RU SIZE OUTBOUND

DEVICE SCREEN CHARACTERISTICS

MAX ROWS ON SCREEN
MAX COLUMNS ON SCREEN

WRAP ECB

SEND ECB

ADDR OF RESPONSE MSG QUEUE

ADDR OF RESPONSE MSG
POCESSING POINTER

ADDR OF INPUT DATA AREA

PRESENTATION SERVICES
INDICATORS
l=AUTOWRAP IS ACTIVE
l=SCREEN UNLOCK (RESET
OPERATION FIELD ON NEXT SEND)
l=FIRST LINE OF A MSG BLOCK
l=SCREEN REFRESH (REFRESH
CURRENT FOR~1AT)
1=REPLACE NEW FORMAT ON NEXT
SEND
l=IMMEDIATE MSG WAITING TO BE
SENT
l=FORMAT SENT (SCREEN HAS
BEEN REFRESHED)
l=SCREEN IS LOCKED
MORE PRESENTATION SERVICES
INDICATORS
l=ERASE/WRITE ALT REQUIRED
l=OUTPUT PROCESSING IN
FULL-LINE MODE
l=HOLD BUFFER IN FULL-LINE
MODE
l=OUTPUT TO INPUT LINE
o =NORfl1A L OUTPUT
l=CMD REFRESH ACTIVE
O=REFRESH NOT ACTIVE
l=FULL-LINE AUTOWRAP O=NO
FULL-LINE AUTOWRAP
SEND LOCK (SEND IN PROG)
SCREEN TIMER ROW ADDRESS

SCREEN TIMER COLUMN ADDRESS
IMMED MSG AREA ROW ADDRESS
IMMED MSG AREA COLUMN ADDRESS
READY MSG ROW ADDRESS

READY MSG COLUMN ADDRESS
SCREEN LOCK IND ROW ADDRESS
SCREEN LOCK IND COL ADDRESS
COMMAND AREA ROW ADDRESS

COMMAND AREA COLUMN ADDRESS
CURRENT INPUT L-NE COUNT
FOR FUTURE USE/ALIGNMENT

TIB

Appendix C. NCCF Control Blocks C-Sl

TIB

OFFSETS LENGTH NAME

2508 (9CC) A-ADDRESS 4 TIOFTTBL

2512 (9DO) CHARACTER 104 TIOIMBUF

2512 (9DO) CHARACTER

2536 (9E8) CHARACTER

2616 (A38) SIGNED

2620 (A3C) A-ADDRESS

2624 (A40) SIGNED

2628 (A44) A-ADDRESS

2632 (A48) A-ADDRESS

2636 CA4C) A-ADDRESS

2640 (ASO) SIGNED
2642 (AS2) SIGNED

2644 (AS4) A-ADDRESS

2648 (ASS) A-ADDRESS

2652 CASC) CHARACTER

24 TIOIMHDR

SO TIOIMBDY

4 TIOPSFLC

4 TIOPSIFR

4 TIOPSIFL

4 TIOPSSWB

4 TIOAPECB

4 TIOAPBUF

2 TIOAPBLN
2 TIOAPTLN

4 TIOAPPTR

4 TIOAPRLN

84

DESCRIPTION

PTR TO FMT TABLE FOR THIS
SESSION

IM~'ED MSG BUFFER

STANDARD BUFFER HEADER

TEXT AREA

OUTPUT LINE COUNTER FOR
FULL-LINE ~10DE

PSS IFR POINTER

PSS IFR LENGTH

PSS SWB

ASYPANEL ECB PTR

ASYPANEL INPUT BUFFER

ASYPANEL BUFFER LENGTH
TEMPORARY BUFFER LENGTH

TEMPORARY PANEL POINTER

RETURNED LENGTH POINTER

RESERVED
===
SCOPECLASS FLAGS EXTENTION

o (0) STRUCTURE

o (0) CHARACiER

o TIBSCO

o

TASK SCOPE FLAGS (POINTED TO
BY TIBSCTSK)

LENGTH IS VARIABLE
===
STRUCTURE TO MAP DSI~1MP MTM MESSAGE PROCESSOR PARM LIST WHICH
WILL COVER MVTMSGPL AND TIMMSGPL PARMAMETER LIST AREAS

C-S2

o

o

72

76

so
84
87

88

92

96

100

104

108

(0) STRUCTURE 137 MMPPARML

(0) A-ADDRESS

(4S) A-ADDRESS

(4C) A-ADDRESS

(50) A-ADDRESS

(54) CH.~RACT ER
(57) CHARACTER

(58) A-ADDRESS

(SC) A-ADDRESS

(60) A-ADDRESS

(64) A-ADDRESS

(68) A-ADDRESS

(6C) A-ADDRESS

72 NMPPLSAV

4 M~'PPLSWB

4 MMPPLBUF

4 MMPPLPOP

3 MMPPLPID
1 M~iPPLRVl

4 MMPPLVAI

4 NMPPLVA2

4 MMPPLVA3

4 MMPPLVA4

4 MMPPLVAS

4 ~i~'PP L VA6

DSIMMP PARM LIST

SAVE AREA (18 ITEMS OF FIXED
31 EACH)

SL~B ADDRESS

MSG BUFFER ADDRESS

OPERATOR ID ADDR FOR QUEUEING

MESSAGE ID
RESERVED

MSG VARIABLE 1 ADDRESS

MSG VARIABLE 2 ADDRESS

MSG VARIABLE 3 ADDRESS

MSG VARIABLE 4 ADDRESS

MSG VARIABLE 5 ADDRESS

MSG VARIABLE 6 ADDRESS

TIS

OFFSETS TYPE LENGTH NAME DESCRIPTION

112 (70) A-ADDRESS 4 MMPPlVA7 MSG VARIABLE 7 ADDRESS

116 (74) A-ADDRESS 4 MMPPLVA8 MSG VARIABLE 8 ADDRES~

120 (78) A-ADDRESS 4 MMPPlVA9 MSG VARIABLE 9 ADDRESS

124 (7C) UNSIGNED 1 MMPPlVL1 MSG VARIABLE 1 LENGTH
125 (7D) UNSIGNED 1 MMPPLVL2 MSG VARIABLE 2 LENGTH
126 (7 E) UNSIGNED 1 MMPPLVL3 MSG VARIABLE 3 LENGTH
127 (7F) UNSIGNED 1 t<iMPPLVL4 MSG VARIABLE 4 LENGTH

128
129
130
131

132
133

134

(80) UNSIGNED
(81) UNSIGNED
(82) UNSIGNED
(83) UNSIGNED

(84) UNSIGNED
(85) CHARACTER

1 ...
.1 ..
.. 1 .
... 1

1111
(86) CHARACTER

1 MMPPLVL5
1 MMPPLVL6
1 NMPPLVL7
1 M~1PPL VL8

1 M~jPP L VL 9
1 MNPPLFLG

~j~jPPLMBS
M~lPPLWCS
M~jpPL QOP
MMPPLQAR

MMPPLRV2
3 MMPPLRV3

MSG VARIABLE 5 LENGTH
~'SG VARIABLE 6 LENGTH
MSG VARIABLE 7 LENGTH
MSG VARIABLE 8 LENGTH

MSG VARIABLE 9 LENGTH
MSG REQUEST TYPE FLAG
I=Bll!lD MSG
l=WRITE MSG TO SYS OP
l=QUEUE TO OPER ID
I=QUEUE TO AUTHORIZED
RECEIVER
RESERVED
RESERVED

Appendix C. NCCF Control Blocks C-53

TIB

CROSS REFERENCE

BUFHDR 0 (0) TIBAPWO 29 (10) TIHElTP 872(368)
DSITIS 0 (0) TI BAPl~Dl 29 (lD) TIHHECB 884(374)
HDRSlENG 2 ,c:.J TIPAPWDN 30 (IE) TIHHINQ 888(378)
HDRCORIO 22 (16) TIBAREAl 38 (26) TIHHTI 884(374)
HDRDONIO 12 (e) TIBAREA2 112 (70) TIHNIB 868(364)
HDRIND 4 (4) TIBBlKE 0 (0) TIHNIBCT 868(364)
HDRLNTYP 4 X'CO' TIBCBH 0 (0) TIHOBUFI 900(384)
HDRMAR 0 (0) TIBeCL 824 X'80' TIHOBUF2 1440(SAO)
HDRMCEXT 24 (18) TIBCI'=CS 804(324) TIHOIBDY 928(3AO)
HDRMLENG 0 (0) TIBCLB~ 112 (70) TIHOIHDR 904(388)
HDRMSG 36 (24) TIBCLBL~K 808(328) TIHOINXT 900(384)
HDRMTYPE 5 (5) TIBClECB 116 (74) TIH02BDY 1468(SBC)
HDRNEXTM 24 (18) TIBECB 0 (0) TIH02HDR 1444(5A4)
HDRNMPOS 4 (4) TIBECBB 1 (1) TIH02NXT 1440(5AO)
HDRPID 20 (14) TIBECBF 0 (0) TIHRPLCT 860(35C)
HDRPMSG 22 (16) TIBECBPO o X'40' TIHRPlFB 3185(C71)
HDRPOI 20 (14) TIBECBWT o X'80' TIHRPlRC 3184(C70)
HDR?STAT 21 (15) TIBEDATD 524(20C) TIHRPLSN 3186(C72)
HDRSENDR 28 (lC) TIBELAST o X'80' TIHRVECB 1980(7BC)
HDRTDISP 6 (6) TIBELT 16 (10) TIHSRPL 860(3SC)
HDRTEXT 24 (18) TIBELTE 0 (0) TIHSWBI 1984(7CO)
HDRTSTMP 8 (8) TIBEPTR 0 (0) TIHSWBN 2S84(A18)
HDRWLHCT 20 (14) TIBEXlST 12 (C) TIMDEVCH 1260(4EC)
MARMCI S (5) TIBEXSWB 56 (38) TIMDEVi'iD 1262(4EE)
MARMC2 8 (8) TIBEXTEN 860(35C) TU1DEVTP 1261(4ED)
MARMDOM 13 (D) TIBFlGS 824(338) TIMDOMID 1152(480)
MARMHH 3 (3) TIBHCT 860(3SC) TIMERCOD 1148(47C)
MARM~1M 6 (6) TIBICBFR 84 (S4) TIMGETSA 1276(4FC)
M.A.RjriOPID 23 (17) TI BICCt~B 48 (30) TIMLGSPS 1164(48C)
MAR~1SS 9 (9) TIBICPDB 72 (48) TIM~1SBUF 984(3D8)
MARMTIME - (3) TIBINT 780(30C) TIM~1SGPL 1284(S04)
MARMTYPE 0 (0) TIBINTI 780(30C) TIMNIBCT 876(36C)
Mi'1PPARMl 0 (0) TIBINT2 784(310) Tn'NIBM 880(370)
~ii!1P P L BUF 76 (4C) TIBL"GBE 832(340) TIMNIBX 876(36C)
MMPPLFLG 133 (85) T I B L L:B F 812(32C) TU1RPlCT 860(35C)
MMPPLMBS 133 X'80' T IBM~~J 825(339) TIMRPLM 864(360)
M~1PPLPID 84 (54) TIB~1RCWB 52 (34) T I~1RP LX 860(35C)
MMPPLPOP 80 (SO) TIUjRPDB 68 (44) TIMRPLXR 868(364)
raMPPLQAR 133 X' 10' TIBMSGNM 788(314) TIMRPLXS 872(368)
~'MPPLQOP 133 X'20' TIBNCBFR 80 (50) TIMSVLUN 1140(474)
MMPPLRVI 87 (57) TIBNCCl~B 44 (2C) TIMSVR14 1280(500)
M~PPLRV2 133 X' 0 F' TIBNCPDB 64 (40) TIMSL~BX 1644(66C)
MMPPLRV3 134 (86) TIBNDATD 268(10C) TIMSWBXL 2244(8C4)
Mi'lPPLSAV 0 (0) TIBNPSWB 60 (3C) TIMXACB 884(374)
MrlPPLSWB 72 (48) TIBOSEXT 112 (70) TIMXMRTY 1640(668)
Mt'iPPLVAl 88 (58) TIBOSLST 116 (74) TI~1XNNlU 969(3C9)
MriPPLVA2 92 (5C) TISOST 860(35C) TU1XNNPD 977(3Dl)
MMPPLVA3 96 (60) TIBPOICT 38 (26) TIMXNNPL 960(3CO)
M~1PPL VA4 100 (64) TIBPPT 860(35C) TIMXNNPU 960(3CO)
MMPPLVA5 104 (68) TIBPSSPT 40 (28) TIMXNNSW 980(3D4)
MMPPLVA6 108 (6C) TIBRECV 96 (60) TIMXRBUF 1620(654)
MMPPLVA7 112 (70) TIBRETCD 796(31C) TINXSVA 888(378)
MMPPLVA8 116 (74) TIBSAVEE 196 (C4) TniXL~KA 1420(58C)
MMPPLVA9 120 (78) TIBSAVES 124 (7C) TIOACEE 1780(6F4)
MMPPLVl1 124 (7C) TIBSCO 0 (0) TIOAPBlN 2640(A50)
M~jPPLVl2 125 (7D) TIBSCTSK 800(320) TIOAPBUF 2636(A4C)
Mi>1PPL VL3 126 (7 E) TIBSEND 92 (5C) TIOAPECB 2632(A48)
MMPPlVL4 127 (7 F) TIBTAFFY 104 (68) TrOAPPTR 2644(A54)
MMPPLVL5 128 (80) TIBTCT 860(35C) TIOAPRLN 2648(A58)
MMPPLVL6 129 (81) TIBTIM 860(35C) TIOAPTLN 2642(A52)
MMPPLVl7 130 (82) TIBTINAM 816(330) TIOAWRAP 2492 X'80'
M~'PPl Vl8 131 (83) TIBTSEQ 38 (26) TIOCDCOl 2504(9C8)
MMPPlVl9 132 (84) TrBTVB 4 (4) TIOCDNIB 888(378)
MMPPlWCS 133 X'40' TIBUFLD 100 (64) TIOCDROW 2503(9C7)
TIBAeB 8 (8) TIBXECB 120 (78) TIOCFMAT 2444(9SC)
TIBAGBFR 88 (58) TICEND 860(35C) TIOClINP 250S(9C9)
TIBAGPDB 76 (4C) TIHCLRPL 864(360) TIOCMDGO 2493 X'08'
TIBAPID 20 (14) TIHDCHAR 892(37e) TIOC~1DSD 2493 X'10'
TIBAPIDL 20 (14) TIHELT 872(368) TIOCOLCT 2470(9A6)
TISAPIDN 21 (IS) TIHELTlA 872 X'80' TIOCWB1 454(11BC)

C-54

CROSS REFERENCE

TIOCWB2 490(1328)
TIOCWB3 526(1494)
TIODBLEN 1772(6EC)
TIODCHAR 2460(99C)
TIOELT 892(37C)
TIOELTLA 892 X'80'
TIOELTP 892(37C)
TIOESAVE 1468(5BC)
TIOEWA 2493 X'80'

- TIOFLGS 1262(4EE)
TIOFLQ 1784(6F8)
TIOFSENT 2492 X'02'
TIOFSTLN 2492 X'20'
TIOFTTBL 250S(9CC)
TIOFWRAP 2493 X'04'
TIOIBUF1 968C3C8)
TIOIBUF2 1116(45C)
TIOIBUF3 1264(4FO)
TIOIMBDY 2536(9ES)
TIOIMBUF 2512(9DO)
TIOIMCOL 2498(9C2)
TIOIMHDR 2512(9DO)
TIOIMROW 2497(9C1)
TIOIMSND 2492 X'04'
TIOINADR 2488(9B8)
TIOI1BDY 1034C40A)
TIOI1CTL 1028(404)
TIOI1HDR 968(3C8)
TIOI1PTR 1756(6DC)
TIOI1XTH l008(3FO)
TIOI2BDY 1182(49E)
TIOI2CTL 1176(498)
TIOI2HDR 1116(45C)
TIOI2PTR 1760(6EO)
TIOI2XTH 1156(484)
TIOI3BDY 1330(532)
TIOI3CTL 1324(52C)
TIOI3HDR 1264(4FO)
TIOI3PTR 1764(6E4)
TIOI3XTH 1304(518)
TIOLOECB 940(3AC)
TIOMARLN 2459(993)
TIOMAXRU 2460(99C)
TIOMSAVE 1036(40C)
TIONAUTH 960(3CO)
TIONCNT 966(3C6)
TIONEWFM 2492 X'08'
TIONFMAT 2448(990)
TIONIBCT 884(374)
TIOOITSV 1114(45A)
TIOORRPL 860(35C)
TIOOSNIB 884(374)
TIOOSRPL 864(360)
TIOOWAVL 1904(770)
TIOOWBDY 12 (C)
TIOOWBGN 0 (0)
TIOOWBUF 0 (0)
TIOOWEND 4 (4)
TIOOWLEN 8 (8)
TIOOWNXT 1900(76C)
TIOPAECB 936(3A8)
TIOPDBI 683(1ABO)
TIOPDB2 699(1B50)
TIOPDB3 715(lBFO)
TIOPDB4 731CIC90)
TIOPROFL 948(3B4)
TIOPSBDY 1932C78C)
TIOPSFLC 2616(A38)
TIOPSHDR 1908(774)
TIOPSIFL 2624(A40)

TIOPSIFR
TIOPSIND
TIOPSIN2
TIOPSt1FL
TIOPSOFM
TIOPSS
TIOPSSND
TIOPSSSP
TIOPSSWB
TIOQSECB
TIORABUF
TIORAECB
TIORARPL
TIORCBDY
TIORCBUF
TIORCECB
TIORCHDR
TIORCRPL
TIORFPTR
TIOROWCT
TIORPLCT
TIORSPHD
TIORSPTR
TIORSRPL
TIORYCOL
TIORYROL·J
TIOSAUTH
TIOSCNLK
TIOSCNRF
TIOSCHT
TIOSCHUL
TIOSCREN
TIOSCRPL
TIOSDECB
TIOSLCNT
TIOSLCOL
TIOSLINP
TIOSLROW
TIOSNDLK
TIOSTCOL
TIOSTROW
TIOSVCTL
TIOSVRVR
TIOSWBI
TIOSL~BN
TIOWRECB
TIPCOREL
TIPCOREN
TIPCORIG
TIPCORNX
TIPCORSQ
TIPCWB
TIPELT
TIPELTLA
TIPELTP
TIPNCBDY
TIPNCBFR
TIPNCHDR
TIPNCLEN
TIPNCPTR
TIPNIBCT
TIPPDB
TIPRCBDY
TIPRCBUF
TIPRCECB
TIPRCHDR
TIPRCRPL
TIPRPLCT
TIPSCRPL
TIPSWBI

2620CA3C)
2492(9BC)
2493(9BD)
2493 X'20'
2493 X'40'

o (0)
1908(774)
1804C70C)
2628CA44)

944(3BO)
1776(6FO)

932C3A4)
876(36C)

1436(59C)
1412(584)

924(39C)
1412(584)

868(364)
1768C6E8)
2468(9A4)
860C35C)

2480(9BO)
2484(9B4)

880(370)
2500(9C4)
2499(9C3)

956(3BC)
2492 X'01'
2492 X'10'

964(3C4)
2492 X'40'
246S(9A4)
872(368)

2476(9AC)
2456(998)
2502(9C6)
245S(99A)
2501C9C5)
2494(9BE)
2496(9CO)
2495(9BF)
1262 X'40'
1262 X'80'
563(1600)
623(1858)
2472(9AS)
2936(B78)
2936CB78)
2938(B7A)
2932(B74)
2936(B78)
1168(490)
868(364)
868 X'80'
868(364)

3172(C64)
3148(C4C)
3148(C4C)
2930(B72)
2924(B6C)
868(364)

1532(SFC)
920(398)
896(380)
892(37C)
896(380)
860C35C)
860(35C)
864(360)

1692(69C)

TIPSWBN 2292(8F4)
TIPTILNK 2892(B4C)
TIPTIMRQ 3136(C40)
TIPTIWK 3144(C4S)
TIPTMECB 3140CC44)

TIB

Appendix C. NCCF Control Blocks C-55

TIB

Constants in DSITIB

NAME VALUE MEANING
.. _------------- -\';ons'tan'ts Tor nUKI'1I H't:, ueTl neo vaJ.ues ,,\,;nar J. J

HDRTYPEA 'T' SOLICITED MSG FROM
ACF/TCAM

HDRTYPEB ' ? ' SUPPRESSION CHAR
HDRTYPEC 'C' CMD/MSG FROM CLIST
HDRTYPED ' ! ' IM~'EDIATE CMD MSG
HDRTYPEE 'E' EXTERNAL NON-NCCF

MESSAGE
HDRTYPEF 'F' VSAM RECORD
HDRTYPEG 'G' CSMI RECORD
HDRTYPEI ' I ' INTERNAL FUNCTION

REQUEST
HDRTYPEJ ' , , NCCF-GENERATED

FULL-LINE MESSAGE
HDRTYPEK '''' IBM-WRITTEN NON-NCCF

GENERATED FULL-LINE
~1ESSAGE

HDRTYPEL ' =' USER-J..JRITTEN
FULL-LINE MESSAGE

HDRTYPEM 'M' MESSAGE FROrrl
~lESSAGE CO~1~lAND

HDRTYPEN ,-, NCCF~GENERATED MSG
HDRTYPEP 'P' MSG FROM COl'lNAND OR

CL 1ST UNDER PPT
HDRTYPEQ 'Q' UNSOLICITED MESSAGE

FROM ACF/VT AM
HDRTYPER 'R' RESPONSE TO ACF/VTAM
HDRTYPES ' S' MSG TEXT SUBSTITUTED

BY USER EXIT
HDRTYPET '*' COMMAND INPUT FROM

TERl"lINAL
HDRTYPEU 'u' RESERVED FOR USER

IN USER EXIT OR IN
COMMAND PROCESSOR

HDRTYPEV ' , SOLICITED MESSAGE
FROM ACF/VT AM

HDRTYPEW ,+, NON-NCCF IBM-WRITTEN
COMMAND PROCESSOR
GENERATED MESSAGE

HDRTYPEX 'X' CROSS DONAIN
(NNT-TO-OST) CMD

HDRTYPEY ,> ' REPL Y REQUIRED
HDRTYPEZ 'Z' DST-GENERATED MSG

Values for Testing HDRLNTYP, Indicating Multiline Type (Bit 2)

(HDRMTYPE=HORTYPEJ, HORTYPEK, HORTYPEL Only)

HDRLNCTL
HDRLNLBL
HDRLNDAT
HDRLNEND
HDRLNCTL

B'll'
B'lO'
B'OO'
B'Ol'
B'll'

CONTROL LINE
LABEL LINE
OATA LINE
OATA/END LINE
CONTROL LINE

Masks for Setting and Testing OSITIB Flags (Bit 1)

TIBON
TIBOFF

B'l'
B'O'

FUNCTION IS ACTIVE
FUNCTION NOT ACTIVE

Constants for Setting and Testing OSITIB Fields (Fullword)

C-56

TIBZERO

TIOSCBCT
TIHSCBCT
TIPSCBCT
TIr-1SCBCT

o
4
2
1
o

FOR 0 POINTER VALUE
SETTINGS
NUMBER OF OST SCBS
NUMBER OF HeT SCBS
NUMBER OF PPT SCBS
NUt-lBER OF MNT SCBS

Tva

TVB

DSITVB: MAPS THE TASK VECTOR BLOCK FOR NCCF
BOUNDARY: DOUBLEWORD
IENGT~ 144 BYTES (X'90')
POINTED TO BY: IFR (IFRTWTVB,IFRTRTVB,IFRSSTVB)

TIB (TIBTVB)
(HDRWLHCT) HCT TCB FOR LOGGING SERVICES

MVT (MVTTVB) CHAIN HEADER
(MVTCTVB) TCT TVB
(MVTTCTVB) TVB TO PURGE
(~1VTUXTVB)

SSB (SSBTVBD) LUNAME DONNER
(SSBTVBO) OBJECT TVB FOR START/MOVE
(SSBTVBI) INIT TVB FOR START/MOVE

SWB (SSt'iVAL)
(MQSTADR) RECEIVER'S TVB
(WLSHCT) HCT TVB

USE (USERTVB) SESSION TVB
INCLUDED BLOCKS: CBH (TVBCBH)

OFFSETS

o (0) STRUCTURE

o (0) CHARACTER

4 (4) A-ADDRESS

8 (8) A-ADDRESS

12 (C) A-ADDRESS

16 (10) A-ADDRESS

20 (14) SIGNED

24 (18) SIGNED

28 (IC) A-ADDRESS

32 (20) SIGNED

36 (24) A-ADDRESS

40 (28) A-ADDRESS

44 (2C) A-ADDRESS

48 (30) CHARACTER
1 ..•
· 1 .•
· .1.
· .. 1

1 ...
· 1 ..
· .1.
· .. 1

49 (31) CHARACTER
1 .••
· 1 ..
· • 1 .
· .. 1

LENGTH NAME

144 DSITVB

4 TVBCBH

4 TVBNEXT

4 TVBTIB

4 TVBTCB

4 TVBNVT

4 TVBECB

4 TVBTECB

4 TVBEXMSG

4 TVBf\lECB

4 TVBMPRIQ

4 TVB~1PUBQ

4 TVBHCTVB

1 TVBIND1
TVBREIN
TVBREDP
TVBTERM
TVBDETCH
TVBATTCH
TVBCLSD
TVBLABT
TVBSTART

1 TVBIND2
TVBSTOr
TVBBYAP
TVBCNRM
TVBCIMD

DESCRIPTION

TASK VECTOR BLOCK

NCCF CONTROL BLOCK HEADER

ADDR OF NEXT TVB IN THE CHAIN

ADDR OF THE TIB FOR THIS TASK

ADDR OF SYSTEM TCB FOR THE
TASK

ADDR OF NCCF MAIN VECTOR
TABLE

Eca USED BY DSIMNT FOR THE
TASK

TERMINATION ECB--INDICATES
EOT PROCESSING WHEN POSTED

PTR TO AN EXCEPTION MSG TO BE
HANDLED BY DSIMNT

MESSAGE ECB--INDICATES MSG IN
PROCESSING WHEN POSTED

PRIVATE MESSAGE QUEUE

PUBLIC MESSAGE QUEUE

ADDR OF HCT TVB FOR THIS TASK

INDICATOR FLAGS
l=TASK REINSTATEMENT REQUEST
l=TASK REDISPATCH REQUEST
l=TASK TERMINATION IN PROG
l=TASK IS TO BE DETACHED
l=TASK IS TO BE ATTACHED
l=ClSDST PASS REQUESTED
l=LOGON ABORT
l=START CMD ISSUED FOR TASK
INDICATOR FLAGS
l=STOP CMD ISSUED FOR TASK
l=BYPASS AUTH PROCESSING
l=ClOSE NORMAL ISSUED BY TASK
l=ClOSE IMMEDAITE ISSUED FOR
TASK

Appendix C. NCCF Control Blocks C-S7

TVB

OFFSETS TYPE

50

51

52

54
54
55

56

60

68

76

80

81

84

88

92

96

104

112

112

116

1 ...
, ·

· .1 .
· •. 1

(32) CHARACTER
1 ...
· 1 .•
· .1 .
· .. 1

1 ...
· 1 ..
· . 1 .
· .. 1

(33) CHARACTER
1 •..
. 1 ..
· . 1 .
· .. 1

1 ...
· 1 ..
· . 1 .

· .. 1

(34) SIGNED

(36) SIGNED
(36) CHARACTER
(37) UNSIGNED

1 . .•

(38) SIGNED

(3C) CHARACTER

(44) CHARACTER

(4C) A-ADDRESS

(50) BITSTRING

(51) UNSIGNED

(54) A-ADDRESS

(58) SIGNED

(5C) A-ADDRESS

(60) CHARACTER

(68) CHARACTER

(70) CHARACTER

(70) CHARACTER

(74) BITSTRING

LENGTH NAME

TVBVCLOS
T"nun"r

I Y UI IV V '-

TVBCDNP

1 TVBIND3
TVBACTV
TVBLGON
TVBlGOFF
TVBAUTH
TVBRESET
TVBNAUTH
TVBRCVAI
TVBINXIT

1 TVBIND4
TVBPAUSE
TVBRCVRY
TVBNL.JDVC
TVBERIMM

TVBLGN
TVBETXR
TVBSIl'lRQ

TVBSTOPF

2 TVBERCT

2 TVBTCODE
1 TVBMTCOD
1 TVBNTCOD

TVBPTCOD

4 TVBHCUSE

8 TVBLUNAM

8 TVBOPID

4 TVBUFLD

1 TVBINUSE

3

4 TVBEXITQ

4 TVBTASKQ

4 TVBSSB

8 TVBMODNM

8 TVBMEMNM

4

1 TVBATPRI

4 TVBSTAT

116 (74) BITSTRING 4 TVBZSTAT

116 (74) BITSTRING 1 TVBZIND1
1 TVBZPUP

C-58

DESCRIPTION

l=ACF/VTAM CLOSE ACB IS
REQUIRED
, -~ .. n" ""'''-41''\, T"'~IIr-" r-n"'" TA~II'
..... -·,'vv\,.. VII..., oI.v....,...,~.., I VI' I"v"

l=CLOSE DUMP ISSUED FOR TASK
RESERVED
INDICATOR FLAGS
l=TASK IS ACTIVE
l=LOGON IN PROCESS
l=LOGOFF IN PROGRESS
l=OPID IS AUTHORIZED
l=ATTN IND (RESET) FIELDED
l=NO AUTH CHKNG NEC
l=RCV ANY HAS BEEN ISSUED
l=PROCESSING IN AN EXIT
INDICATOR FLAGS
l=PAUSE HAS BEEN ISSUED
l=RECOVERY IN PROGRESS
1=NEW DEVICE ASSIGNED
l=ERASE IMMEDIATE MSG AREA
AFTER NEXT INPUT
l=MAINTASK LOGON EXIT ENTERED
1=MAINTASK ETXR ENTERED
l=SIMLOGON REQUIRED FOR START
OR fo1OVE COr-li'lAND
l=TVB STOP FORCE INDICATOR

ERROR RETRY COUNT FOR THIS
TASK
TER~HNATION CODE
MODULE INDICATOR
INCIDENT INDICATOR
TERMECB INDICATOR

COUNT OF SESSIONS TO (THIS)
HCT

ACF/VTAM LU NA~1E

OPERATOR ID USING THIS OST

NCCF USER FIELD

IN USE BY START/STOP/MOVE CMD
PROCESSOR WHEN SET
RESERVED

EXIT QUEUE STORAGE ANCHOR

TASK QUEUE STORAGE ANCHOR

ADDRESS OF SIMlOGON SERVICES
BLOCK

OPTIONAL TASK LOAD MODULE
NAME

OPTIONAL TASK INIT PARAMITERS
f'1ENBER NAME

OPTIONAL TASK ATTACH PRIORITY

ADDITIONAL TASK FLAGS

ADDITIONAL TASK FLAGS

DSM STATUS FLAGS
PRIMARY VSAM DATA SET UPDATE

OFFSETS

.1 ..

· .1.

· .. 1

1 ..•
· 1 .•

· .1.
· .. 1

117 (75) BITSTRING
1 ...

· 1 ..

· .1.

lIS (76) BITSTRING
119 (77) BITSTRING

120 (7S) A-ADDRESS

124 (7C) CHARACTER

132 (S4) A-ADDRESS

132 (84) A-ADDRESS

136 (8S) A-ADDRESS

140 (SC) A-ADDRESS

140 (SC) A-ADDRESS

LENGTH NAME

TVBZPIT

TVBZSUP

TVBZSIT

TVBZCACT
TVBXACM

TVBNOSP
TVBPNMOD

1 TVBZIND2
TVBPANEL

TVBASYIN

TVBUNPOS

1 TVnZIND3
1 TVBZIND4

4 TVBTASKC

8 TVBAPID

4 TVBTOPQ

4 TVBRDECB

4 TVBTXRQ

4 TVBTEXQ

4 TVBTRDYQ

DESCRIPTION

PRIMARY VSAM DATA SET IN
TERtlINATION
SECONDARY VSAM DATA SET
UPDATE
SECONDARY VSAM DATA SET IN
TERMINATION
CSMI IS ACTIVE
NNT ACCESS METHOD:
O=ACF/VTAM, l=ACF/TCAM
O=NCCF
O=CURRENT SCREEN NOT
MODIFIED, l=SCREEN WAS
NODIFIED
RESERVED
I=SCREEN REQUEST IN PROCESS,
O=NORMAL PSM PROCESS
l=ASYPANEL INPUT REQUEST,
O=NORMAL PANEL PROCESS
l=UNDEFINED POS, O=DEFINED
POS
RESERVED
RESERVED

ACF/TCAM TASK COUNT FOR ID

LOGICAL APPL ID ASSIGNED IN
ACF/TCAM ENVIRONMENT

ACF/TCAM OPCTl QUEUE ANCHOR

ACF/TCAM CMSI READ ECB

ACF/TCAM XDOM RCV ANY QUEUE
ANCHOR .

ACF/TCAM EXIT QUEUE ANCHOR

TCT READY FOR READ QUEUE

TVB

Appendix C. NCCF Control Blocks C-S9

TVB

CROSS REFERENCE

DSITVB 0 (0) TVBTIB 8 (8)
TVBACTV 50 X'80' TVBTOPQ 132 (84)
T\I'QADTn 1?6. ,.,('\ T\ltlTDnVn 16.n fR(,\ _ -- ,. .. _ -
TVBASYIN 117 X'40' TVBTXRQ 136 (88)
TVBATPRI 112 (70) TVBUFLD 76 (4C)
TVBATTCH 48 X'OS' TVBUNPOS 117 X'20'
TVBAUTH 50 X'10' TVBVCLOS 49 X' OS'
TVBBYAP 49 X'40' TVBXACM 116 X'04'
TVBCBH 0 (0) TVBZCACT 116 X'08'
TVBcnt-1P 49 X'02' TVBZINDI 116 (74)
TVBCIMD 49 X'10' TVBZIND2 117 (75)
TVBCLSD 48 X'04' TVBZIND3 118 (76)
TVBCNRM 49 X'20' TVBZIND4 119 (77)
TVBDETCH 48 X'10' TVBZPIT 116 X'40'
TVBECB 20 (14) TVBZPUP 116 X'80'
TVBERCT 52 (34) TVBZSIT 116 X'10'
TVBERIMM 51 X'10' TVBZSTAT 116 (74)
TVBETXR 51 X'04' TVBZSUP 116 X'20'
TVBEXITQ 84 (54)
TVBJ..:Xf>lSG 28 (lC)
TVBHCTVB 44 (2C)
TVBHCUSE 56 (38)
TVBINDI 48 (30)
TVBIND2 49 (31)
TVBIND3 50 (32)
TVBIND4 51 (33)
TVBINUSE 80 (50)
TVBINXIT 50 X'01'
TVBlABT 48 X'02'
TVBlGN 51 X'08'
TVBLGOFF 50 X'20'
TVBlGON 50 X'40'
TVBLUNAM 60 (3C)
TVBMECB 32 (20)
TVBf"lH1NM 104 (68)
TVBNODNM 96 (60)
TVBl"lOVE 49 X'04'
TVBf'iPRI Q 36 (24)
TVBMPUBQ 40 (28)
TVBMTCOD 54 (36)
TVBMVT 16 (10)
TVBNAUTH 50 X'04'
TVBNEXT 4 (4)
TVBNOSP 116 X'02'
TVBNTCOD 55 (37)
TVBNWDVC 51 X'20'
TVBOPID 68 (44)
TVBPANEl 117 X'80'
TVBPAUSE 51 X'80'
TVBPNMOD 116 X'D1'
TVBPTCOD 55 X'80'
TVBRCVAI 50 X'02'
TVBRCVRY 51 X'40'
TVBRDECB 132 (84)
TVBREDP 48 X'4D'
TVBREIN 48 X'80'
TVBRESET 50 X'08'
TVBSIMRQ 51 X'02'
TVBSSB 92 (5C)
TVBSTART 48 X'D1'
TVBSTAT 116 (74)
TVBSTOP 49 X'80'
TVBSTOPF 51 X'OI'
TVBTASKC 120 (78)
TVBTASKQ 88 (58)
TVBTCB 12 (C)
TVBTCODE 54 (36)
TVBTECB 24 (18)
TVBTERM 48 X'20'
TVBTEXQ 140 (SC)

C-60

TVB

Constants in DSITVB

NAME VALUE MEANING

Masks For Setting and Testing TVBIND Flags (Bit 1)

TVBON
TVBOFF

B'l'
B' 0 '

Constants For Setting and Testing TVB Fields

(Fullword)

TVBZERO o

(Char 1)

TVBTCODA , A '

TVBTCODD 'D'

\ rVBTCODF 'F'
.\. TVBTCODG 'G'

TVBTCODH 'H'
TVBTCODL , l '

TVBTCODM 'M'
TVBTCODN , N'

TVBTCODO '0 '

TVBTCODP 'P'
TVBTCODQ

TVBTCODR 'R'

TVBTCODS 'S'

TVBTCODT 'T'

TVBTCODV 'V'
TVBTCODX 'X'

TVBTCODZ 'Z'

FUNCTION IS ACTIVE
FUNCTION IS NOT
ACTIVE

FOR 0 POINTER VALUE
SETTINGS

TVBMTCOD SETTING
FOR DSIlAR
TVBMTCOD SETTING
FOR DSIDFA
TVBMTCOD SETTING
FOR DSIENP
TVBMTCOD SETTING
FOR DSILGN
TVBMTCOD SETTING
FOR DSIHCT
TVBMTCOD SETTING
FOR DSIl T~l
TVBMTCOD SETTING
FOR DS1lAN
TVBMTCOD SETTING
FOR DSIlAN
TVB~1TCOD SETTING
FOR DS10ST
TVDMTCOD SETTING
FOR DSIPS~1
TVBMTCOD SETTING
FOR DS1PPT
TVBMTCOD SETTING
FOR DS1RCV
TVBMTCOD SETTING
FOR DSISTP
TVBMTCOD SETTING
FOR DSITPE
TVBMTCOD SETTING
FOR DsrDST
TVBMTCOD SETTING
FOR DSINSE
TVBMTCOD SETTING
FOR DSIDPR

Appendix C. NCCF Control Blocks C-61

USE

USE

DSIUSE: MAPS THE USER EXIT PARAMETER LIST USED TO
i INTERFACE WITH ALL USER EXITS • _ - ... _ - --.. _. -_. - - -
DuunUhr\ I • LJUUOL.I:~;,jUK.U

LENGTH: 28 BYTES (X'18') + EXTENSION
INCLUDED BLOCKS: CBH (USERCBH)

OFFSETS

o

o
o
1

4

8

12

16

20

24

28
28

28

36

44

52

(0) STRUCTURE

(0) CHARACTER

(0) CHARACTER
(1) UNSIGNED

(4) A-ADDRESS

(8) A-ADDRESS

(C) A-ADDRESS

(10) A-ADDRESS

(14) A-ADDRESS

(18) A-ADDRESS

(lC) CHARACTER
(IC) STRUCTURE

(lC) CHARACTER

(24) CHARACTER

(2C) CHARACTER

(34) A-ADDRESS

CROSS REFERENCE

DSIUSE 0 (0)
USEDSRB 52 (34)
USERCBH 0 (0)
US:ERCODE 1 (1)
USEREXT 28 (lC)
USERHCPY 36 (24)
USERLGON 28 (lC)
USERlU 8 (8)
USERf<1SG 4 (4)
USEROPID 12 eC)
USERPDB 24 (18)
USERPROF 44 (2C)
US ERPSt~D 28 (lC)
USERS~\lB 16 (10)
USERTVB 20 (14)

C-62

LENGTH NAME

28 DSIUSE

4 USERCBH

1
1 USERCODE

4 USERMSG

4 uSERlU

4 USEROPID

4 USERSWB

4 USERTVB

4 USERPDB

o USEREXT
28 USERLGON

8 US ERPSl~D

8 USERHCPY

8 USERPROF

4 USEDSRB

DESCRIPTION

USER EXIT PARAMETER LIST

CONTROL BLOCK HEADER

CONTROL BLOCK ID VALUE
SPECIFIC EXIT ROUTINE
INDICATOR

ADDR OF MESSAGE BUFFER

ADDR OF SESSION LUNAME

ADDR OF SESSION OPERATOR ID

ADDR OF A SWB FOR USE IN EXIT
PROCESSING

ADDR OF SESSION TVB

ADDR OF THE PDB ASSOCIATED
WITH THE MESSAGE BUFFER
PASSED TO THE EXIT

EXTENSION FOR EXIT DSIEX12
LOGON EXIT EXTENSION

PASSL>JORD

HARDCOPY DEVICE NAME

PROFILE NAME

PROFILE NAME

Constants in DSIUSE

VALUE MEANING

Symbolic Return Code Values--Returned From User Exits (Byte)

USERASIS
USERDROP

USERSWAP

USERLOG
USERLOGR

USERHCL
USERHClR

o
4

8

12
16

20
24

USE BUFFER AS IS
DO NOT PROCESS
THIS BUFFER--RC 4
FROM EXIT DSIEX12
WILL CANCEL LOGON
MOVE BUFFER POINTED
TO BY REG ZERO TO
HIE BUFFER POINTED
TO BY USERMSG AND
PROCESS IT IN PLACE
OF THE ORIGINAL ~'SG
LOG TO DISK ONLY
REPLACE ~lESSAGE AND
LOG TO DISK
lOG TO HCL ONLY
REPLACE rr1ESSAGE AND
LOG TO HARD-COPY

Constants For Setting and Testing USERCODE Field (Bit 8)

USERDINT

USERVINT

lJSERVINP
USERVOUT
USERCINP
USERCOUT
USERTRE

X'E9'

X'EA'

X'EB'
X'EC'
X'ED'
X'EE'
X'EF'

DSM INITIALIZATION
EXIT
VSAM INITIALIZATION
EXIT
VSAt'1 INPUT EXI T
VSAM OUTPUT EXIT
C~mI INPUT EXIT
CNMI OUTPUT EXIT
TCT INPUT EXIT

USE

Appendix C. NCCF Control Blocks C-63

Appendix D. Sample User-Written Command Processor

TITLE '

This appendix is an example of a user-written command processor, DSIUSP,
which displays an NCCF control block and its length, or displays data in
storage. Note: This command processor is not executable as it is shown in this
appendix.

DSIUSP USER COMMAND PROCESSOR *** SHOW *** '

* N A M E .- *
* DSIUSP (NCCF USER COMMAND PROCESSOR FOR VERB 'SHOW'). *

* * * 0 B J E C T:- *
* 1. DISPLAY A NCCF CONTROL BLOCK FOR EXPLICIT/IMPLICIT LENGTH. *
* 2. DISPLAY DATA IN THE STORAGE. *

* * * DESCRIPTION:- *
* THIS COMMAND PROCESSOR IS INVOKED WHEN 'SHOW' VERB IS ENTERED *
* IN ONE OF THE FOLLOWING FORMS: *

* *
*
*
*
*
*
*
*

(1)
(2)
(3)
(4)

(5)

(6)
(7)

SHOW CB=<NAME> *
SHOW CB=<NAME>,LEN=<VALUE2>1* *
SHOW CB=<NAME>,LEN=<VALUE2>1*,TERM=<TERM ID> *
SHOW CB=<NAME>,LEN=<VALUE2>1*,OPER=<OPER ID> *
SHOW CB=<NAME>,LEN=<VALUE2>1*,TERM=<ID-l>,OPER=<ID-2> *
SHOW ADDR=<VALUEl> *
SHOW ADDR=<VALUE1>,LEN=<VALUE2> *

* * * KEYWORDS ARE NOT POSITIONAL AND AS SUCH MAY BE SPECIFIED IN ANY *
* ORDER. KEYWORD 'CB' IS REQUIRED FOR COMMANDS 1 THRU 5, AND KEY- *
* WORD 'ADDR' IS REQUIRED FOR COMMANDS 6 AND 7. OTHER KEYWORDS *
* ARE OPTIONAL. *

* * * WHERE NAME IS ABBREVIATED NAME OF A NCCF CONTROL BLOCK, VALUEl *
* IS ADDRESS IN HEX WHERE DISPLAY IS TO START, VALUE2 IS *
* LENGTH FOR WHICH DISPLAY IS DESIRED. LENGTH VALUE MAY BE *
* ENTERED IN DECIMAL, OR IN HEX (PREFIXING THE VALUE BY X). *
* WHEN C'*' IS ENTERED FOR THE LENGTH THEN IT IS ASSUMED TO *
* BE THE IMPLIED LENGTH OF NCCF CONTROL BLOCK (THE VALUE IN *
* CB-HEADER). IF LENGTH IS OMITTED THEN IT IS DEFAULTED TO *
* FOUR (4) BYTES. IF BOTH TERM AND OPER ARE CODED THEN OPER *
* IS IGNORED. *

*
*
*
*

IF 'HELP' IS ENTERED FOR <NAME>, THEN A BRIEF HELP-MENU IS
PRESENTED ON THE TERMINAL.

*
*
*
* * DISPLAY OF DATA CAN BE STOPPED ANY TIME BY SETTING THE TVBRESET *

* INDICATOR VIA RESET COMMAND OF NCCF. *

ANY SYNTAX ERROR IN THE INPUT WILL CAUSE AN ERROR MESSAGE TO
BE DISPLAYED ON THE TERMINAL. RETURN CODE IS SET TO VALUE 8.
CONTROL IS RETURNED TO THE USER FOR NECESSARY CORRECTIONS.

*
*
*
*

Appendix D. Sample User-Written Command Processor D-l

* AFTER STANDARD ENTRY LINKAGE, ADDRESSABILITY IS ESTABLISHED *
* FOR MVT, PDB, TIB, TVB AND THE WORKAREA IN CWB. THE VALUE FOR *
* NUMBER OF ENTRIES IN THE PDB PASSED IS TESTED. IF THE VALUE IS *
* LESS THAN 3, THEN AN ERROR MESSAGE IS PRESENTED AND CONTROL IS *
* RETURNED TO THE USER WITH A RETURN CODE OF 8. IF THE VALUE IS *
* AN EVEN NUM, THEN ALSO AN ERR-MESSAGE IS PRESENTED AND CONTROL *
* IS RETURNED TO THE USER WITH A RETURN CODE OF 8. *
* * * CMD FORMAT 1 - 5 : THE NAME ENTERED IS COMPARED AGAINST A LIST *
* OF NAMES (SEE LIST LISTOFCB). IF A MATCH IS FOUND, THEN THE *
* ADDRESS OF THAT CONTROL BLOCK IS FOUND FROM EITHER MVT OR *
* FROM TIB. THE LENGTH OF THE CONTROL BLOCK IS IN THE FIRST *
* WORD (2ND HALF WORD / THE 4TH BYTE IN THE WORD). THE CONTROL *
* BLOCK IS THEN DISPLAYED FOR THE EXPLICIT/IMPLICIT LENGTH. *
* * * CMD FORMAT 6 - 7 : STORAGE IS DISPLAYED FROM THE ADDRESS VALUE *
* ENTERED TO THE DESIRED LENGTH. INPUT IS CHECKED FOR NON-HEX *
* DIGITS IN HEX VALUE AND NON-DECIMAL DIGITS IN DECIMAL VALUE. *
* IF SOME ERROR IS FOUND THEN AN ERROR MESSAGE IS DISPLAYED, *
* AND CONTROL IS RETURNED TO THE USER WITH RET CODE SET TO 8. *
* IF NO ERROR IS FOUND IN THE INPUT AND EVERY THING IS GOOD, *
* DATA IS PRESENTED FOR DISPLAY ON THE TERMINAL 16-BYTES AT A *
* TIME. A CHECK IS MADE AT THIS POINT TO SEE IF THE TVBRESET *
* BIT IS ON (RESET KEY ENTERED). IF SO, THEN THE DISPLAY IS *
* TERMINATED AND CONTROL IS RETURNED TO THE USER WITH RETURN *
* CODE SET TO O. *
* * * ENTRY POINT:-
* DSIUSP.

* * MODULE CHARACTERISTICS:-
* PROCESSOR - ASSEMBLER
* SIZE - APPROXIMATELY 4K DECIMAL BYTES
* ATTRIBUTES- REENTRANT
* MODE - PROBLEM PROGRAM
* PROTECTION- USER KEY

*
* I N P U T:-

* REGISTER 1 - ADDRESS OF PARAMETER LIST (CONTAINED

* REGISTER 13 - ADDRESS OF HIS SAVE AREA

* REGISTER 14 - RETURN ADDRESS

* REGISTER 15 - ENTRY POINT ADDRESS OF THIS PROGRAM

* OTHER REGS. - UNRELATED INFORMATION

*
* o U T P U T:-

* REGISTER 15 - RETURN CODE VALUE

* OTHER REGS. - UNCHANGED FROM INPUT

* * NORMAL EXIT:-
* NORMAL RETURN TO THE CALLER.

* * ERROR EXIT:-
* NONE.

D-2

IN CWB)

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* CONTROL BLOCKS:-
* FOLLOWING NCCF CONTROL BLOCKS ARE USED:
* DSICBH, DSICWB, DSIMVT, DSIPDB, DSISVL, DSISWB,
* DSITIB, DSITVB.

* * NCCF/SYSTEM MACROS:-

* DSIPSS, DSILCS, AND DSIDATIM.

*
*
*
*
*
*
*

* * * MESSAGES ISSUED:- *
* VARIOUS ERROR MESSAGE ARE PRESENTED USING NCCF 'DSIPSS' MACRO *
* TO IDENTIFY SYNTAX ERROR, ERROR IN COMMAND FORMAT ETC. *

* * * INTERNAL TABLES:- *
* A TABLE OF ABBREVIATED NAMES FOR VARIOUS NCCF CONTROL BLOCKS. *
* VARIOUS TRANSLATE TABLES TO TRANSLATE INPUT/OUTPUT DATA. *

* *

* ADDRESSABILITY IS ESTABLISHED VIA REG 12. SAVE AREA AND THE WORK *
* AREA IN THE CWB PASSED IS ADDRESSED VIA REG 13. THE WORK AREA IS *
* CLEARED BY PROPOGATING NULLS (00) THROUGH IT. REG 11 IS USED AS *
* BASE REG FOR TIB, REG 10 FOR TVB, REG 9 FOR MVT. *
* TEMPORARILY USED BASE REGS: REG 8 FOR PDB, REG 2 FOR PDBENTRY OR *
* BUFHDR IN TIB EXTENSION. *

DSIUSP CSECT
STM
BALR
USING
USING
LA
ST
ST
LR
USING
MVI
MVC
ST
DROP
L
USING
L
USING
ST
L
USING
L
USING

R14,R12,12(R13) SAVE HIS REGISTERS.
R12,0 ESTABLISH ADDRESSABILITY
*,R12 *** FOR THE PROGRAM.
DSICWB,Rl ADDRESSABILITY FOR CWB PASSED.
R9,CWBSAVEA POINT TO SAVE AREA IN tWB.
R9,8(R13) SAVE IN HIS SAVE AREA (BACK PTR).
RI3,4(R9) SAVE HIS SAVE AREA ADDRESS.
R13,R9 POINT TO SAVE AREA AND USE IT AS
CWBSAVEA,RI3 *** BASE REG FOR WORK AREA TOO.
WORKAREA,X'OO' MOVE X'OO' THROUGH THE
WORKAREA+l(255),WORKAREA ***WORK AREA IN CWB.
Rl,PARMADDR SAVE PARM-LIST ADDRESS.
Rl RELEASE REG 1.
Rll,CWBTIB ESTABLISH ADDRESSABILITY FOR
DSITIB,Rll ** TASK INFORMATION BLOCK (TIB).
RIO,TIBTVB ESTABLISH ADDRESSABILITY FOR
DSITVB,RIO *** TASK VECTOR BLOCK (TVB).
RIO,ADDRTVB SAVE TVB ADDRESS TEMPORARILY.
R9,TVBMVT ESTABLISH ADDRRESSABILITY FOR
DSIMVT,R9 *** MAIN VECTOR TABLE (MVT).
R8,CWBPDB ESTABLISH ADDRESSABILITY FOR
DSIPDB,R8 ***PARSE DESCRIPTOR BLOCK (PDB).

Appendix D. Sample User-Written Command Processor D-3

**
*
*
*
*
*
*
*
*
*
*

NUMBER OF ENTRIES IN PDB IS CHECKED. IT SHOULD BE ATLEAST 3 AND
IT MUST BE AN ODD NUMBER. IF THIS IS NOT THE CASE THEN ERRMSG 1 *

* IS PRESENTED. OTHERWISE OUTPUT AREA IS BLANKED OUT AND SEARCH IS *
MADE FOR ALL OF THE FORMAT KEYWORDS. *

REG 7 - POINTS TO THE OUTPUT AREA ~
REG 6 POINTS TO A GROUP OF FORMAT KEYWORDS
REG 4 - POINTS TO KEYWORD/KEYWORD VALUE IN BUFFER
REG 2 - POINTS TO A PDB ENTRY IN THE PDB PASSED
REG 1 - VALUE TO CONTROL SEARCH LOOP
REG 0 - LENGTH OF A PDB ENTRY

*
*
*
*
*
*

**

FNDKYWDl

FNDKYWD2

D4

CLI
BL
TM
BZ
MVI
MVC
SLR
LA
LA
EQU
LA
EQU
CLI
BE
SLR
IC
SRL
LA
USING

PDBNOENT+l,X'03' 3 > NUMBER OF ENTRIES IN PDB ?
ERRORl YES - TOO FEW ENTRIES.
PDBNOENT+l,X'Ol' NUM OF PDB ENTRIES SHOULD BE ODD?
ERROR! NO - SOMETHING IS MISSING.
OUTAREA,C' , PROPaGATE C' , THROUGH THE
OUTAREA+I(31),OUTAREA *** 32 BYTES OF OUTAREA.
R3,R3 ZERO OUT REGISTER 3.
R6,FMTOKYWD ADDRESS OF FMT 0 KEYWORDS.
RO,PDBENTND-PDBENTRY ** LENGTH OF A PDB ENTRY.

* R7,OUTAREA

* OCR6),C' ,
DONEFMT
Rl,Rl
R1,PDBNOENT+l
R 1 , !
R2,PDBTABLE
PDBENTRY,R2

ADDRESS OF OUTPUT AREA.

LAST KEYWORD SEARCHED ?
YES - DONE WITH THE SEARCH.
ZERO REGISTER 1 AND INSERT
*** NUMBER OF ENTRIES IN PDB.
DIVIDE BY 2 FOR LOOP CONTROL.
ADDRESS OF 1ST PDB ENTRY.
ADDRESSABILITY FOR PDBENTRY.

** * IF ANY UNRECOGNISEABLE KEYWORD IS FOUND, ERRMSG 9 IS PRESENTED *
* AND CONTROL IS RETURNED TO THE USER. OTHERWISE PROCESSING CONTI- *
* NUES WITH FINDING EACH KEYWORD IN A PRE-DEFINED ORDER. *
* REG 7 - POINTS TO OUTPUT AREA FOR KEYWORD/KEYWORD-VALUE *
* REG 6 - POINTS TO A GROUP OF FORMAT KEYWORDS *
* REG 5 - POINTS TO KEYWORDS TABLE *
* REG 4 - POINTS TO KEYWORD/KEYWORD VALUE IN BUFFER *
* REG 3 - lENGTH OF KEYWORD IN THE BUFFER *
* REG 2 - POINTS TO A PDB ENTRY IN THE PDB PASSED *
* REG 1 - VALUE TO CONTROL SEARCH lOOP *
* REG 0 - lENGTH OF A PDB ENTRY *
**

FNDKYWD3 EQU
AR
l
AH
IC
lTR
BZ
CH
BH
BCTR
EX
lA

CHKKYWD EQU
CLI
BE
CLC
BE
LA
B

GETKYWD MVC
GOODKYWD EQU

MVC
AR
CLC
BE
BCT
B

* R2,RO
R4,CWBBUF
R4,PDBDISP
R3,PDBLENG
R3,R3
ERROR4
R3,FOUR
ERROR4
R3,O
R3, GETKY~~D
RS,KYWRDTAB

* OCR 5) , C' ,
ERROR9
OC4,R7),OCRS)
GOODKYl~D

RS,4(RS)
CHKKYWD
OCl,R7),OCR4)

* O(4,R7),4(R7)
R2,RO
O(2,R4),OCR6)
GETVALUE
Rl,FNDKYWD3
NEXTKYWD

ADDRESS OF NEXT PDB ENTRY.
ADDRESS OF THE BUFFER PASSED,
*** ADD DISPLACEMENT IN BUFFER.
GET lENGTH OF KEYWORD IN BUFFER
LENGTH OF KEYWORD = 0 ?
YES - IT IS WRONG, PUT ERR-MSG.
lENGTH OF KEYWORD > 4 ?
YES - IT IS WRONG, PUT ERR-MSG.
DECREASE IT BY 1 FOR EXECUTE.
MOVE KEYWORD IN OUTPUT AREA.
ADDRESS OF KEY WORDS TABLE

END OF TABLE W/O FINDING KEYWORD ?
YES - GO PUT ERROR MESSAGE.
IS KEY WORD IN KEYWORDS TABLE ?
YES - CONTINUE PROCESSING.
ADDR OF NEXT KEYWORD IN TABEl.
GO CHECK AGAINST THIS KEY WORD.
MOVE KEYWORD OUT OF THE BUFFER.

BLANK OUT THE OUTPUT AREA
POINT TO NEXT PDB ENTRY.
COMPARE WITH THE FMT KEYWORD ?
SAME - GET KEYWORD VALUE.
LOOP TILL PDB END REACHED.
SEARCH FOR NEXT KEYWORD.

Appendix D. Sample User-Written Command Processor D-5

** * KEYWORD VALUE IS MOVED TO THE OUTPUT AREA, IF THE LENGTH
* WORD VALUE IS BETWEEN 0-8 CHARACTERS. OTHERWISE ERRMSG 4
* SENTED. Fu~MAT SWITCH IS SET TO VALUE 00 OR 01 DEPENDING
* TYPE OF COMMAND ENTERED.
* REG 7 - POINTS TO THE OUTPUT AREA
* REG 6 - POINTS TO APPROPRIATE SET OF FORMAT WORDS
* REG 4 - POINTS TO THE KEYWORD VALUE IN THE BUFFER
* REG 3 - LENGTH OF THE KEYWORD VALUE IN BUFFER

OF
IS
ON

KEY- *
PRE- *
THE *

*
*
*
*
*

**

GETVALUE EQU
L
AH
IC
LTR
BZ
CH
BH
BCTR
EX

NEXTKYWD EQU
LA
lA
B

DONEFMT EQU
ClI
BE
ClI
BNE
MVI
LA
B

OUTOFBUF MVC

* R4,CWBBUF
R4,PDBDISP
R3,PDBLENG
R3,R3
ERROR4
R3,EIGHT
ERROR4
R3,O
R3,OUTOFBUF

* R6,2(R6)
R7,8(R7)
FNDKY~~D2

* FMTSW,X'O. '
ITISF~1T1

OUTAREA,C' ,
ITISFMTO
FMTS~~,X'Ol '
R6, FMT1KY~~D
FNDKYt~D1

0(1,R7),0(R4)

ADDRESS OF THE BUFFER PASSED,
*** ADD DISPLACEMENT IN BUFFER.
lENGTH OF OPERAND IN BUFFER.
lENGTH OF OPERAND = 0 ?
YES - IT IS WRONG, PUT ERR-MSG.
lENGTH OF OPERAND > 8 ?
YES - IT IS WRONG, PUT ERR-MSG.
DECREASE IT BY 1 FOR EXECUTE.
MOVE A OPERAND IN OUTPUT AREA.

POINT TO NEXT KEYWORD.
AREA FOR NEXT KEYWORD VALUE.
GO FIND THIS NEW KEYWORD.

IS THIS SECOND PASS THRU HERE ?
YES - IT IS FORMAT 1 COMMAND.
CB-NAME SPECIFIED?
YES - IT IS FORMAT ° COMMAND.
SET PASS THRU (FMT) SWITCH.
ADDRESS OF FORMAT1 KEYWORDS.
GO FIND KEYWORDS.
MOVE VALUE OUT OF BUFFER.

**
* VALUES FOR VARIOUS FORMAT 0 KEYWORDS IS CHECKED. IF NO VALUE IS *
* ENTERED THEN APPROPRIATE DEFAULT VALUE IS SUBSTITUTED. *
* FOR LENGTH - DEFAULT VALUE IS FOUR BYTES *
* TERM 10 - DEVICE FROM WHICH COMMAND IS ENTERED *
* OPER ID - OPERATOR WHO ENTERED THE COMMAND *
* IF TERM-ID IS ENTERED, THEN TVB CHAIN IS SEARCHED TO LOCATE TVB *
* FOR THAT TERM-ID. WHEN A TVB IS FOUND, BASE REGS FOR TVB AND TIB *
* ARE UPDATED TO POINT TO CORRECT TVB AND TIB. IF NO TVa IS FOUND *
* FOR THE TERM-ID, THEN ERRMSG 5 IS PRESENTED. *
* REG 2 - POINTS TO FIRST TVB IN TVB CHAIN *
* REG 4 - POINTS TO OUTPUT AREA FOR DSILCS *
* REG 15 - RETURN CODE FROM DSILCS (ZERO INDICATES SUCCESS) *
**

ITISFMTO EQU *
MVI FMTSW,X'OO' RESET FMT SWITCH TO X'OO'.
CLI OUTAREA+8,C" VALUE FOR LENGTH SPECIFIED?
BNE CHECKLU YES - CHECK. IF LUNAME SPECIFIED.
MVI OUTAREA+8,C'4' NO - INIT WITH DEFAULT LENGTH.

CHECKLU EQU *
L R2,MVTTVB ADDRESS OF FIRST Tva OFF MVT.
LA R4,ADDRTVB ADDR FOR OUTPUT FROM DSILCS.
CLI OUTAREA+16,C" VALUE FOR LUNAME SPECIFIED?
BE CHECKOP NO; CHECK IF OP-ID SPECIFIED.
LA R3,OUTAREA+16 ADDR OF 8-BYTE LUNAME AREA.
DSILCS TVB=(R2),LU=(R3),CBADDR=(R4) ** LOCATE TVB FOR LUNAME.
LTR R15,R15 LOCATE OK (RET CODE = 0) ?
BZ FMTOISOK YES - FORMAT 0 IS OK.
B ERROR5 NO - GO PUT ERROR MESSAGE.

Appendix D. Sample User-Written Command Processor D-7·

** * IF OPER-ID IS ENTERED THEN TVB CHAIN IS SEARCHED FOR OPER-ID. *
* THE ADDR RETURNED BY DSILCS IS USED TO UPDATE THE TVB AND TIB *
* BASE REGS (REG 10 AND 11). A ZERO TIB ADDRESS INDICATES THAT *
* THE TERMINAL/OPERATOR DOES NOT HAVE AN ACTIVE TIB. ERROR MESS- *
* AGE 8 IS PRESENTED, OTHERWISE CTL BLK NAME IS COMPARED AGAINST *
* A LIST OF CB-NAME. IF NO MATCH IS FOUND, ERRMSG 2 IS PRESENTED. *
* REG 2 - FIRST TVB IN TVB CHAIN *
* REG 4 - ADDRESS OF OUTPUT AREA FOR DSILCS *
* REG 15 - RET CODE FROM DSILCS (ZERO INDICATES SUCCESS) *
**.

CHECKOP

FMTOISOK

/

TESTNAME

D-8

EQU *
CLI OUTAREA+24,C" VALUE FOR OP-ID SPECIFIED?
BE FMTOISOK NO - FORMAT 0 IS OK AS IT IS.
LA R3,OUTAREA+24 ADDR OF 8-BYTE OP-ID AREA.
DSILCS TVB=(R2),OPID=(R3),CBADDR=(R4) ** LOCATE TVB FOR OPID.
LTR R15,R15 LOCATE OK (RET CODE = 0) ?
BNZ ERROR5 NO - GO PUT ERROR MESSAGE.
EQU *
L RI0,ADDRTVB
L' Rl1,TVBTIB
LTR Rll,Rll
BZ ERROR8
L R3,OUTAREA
LA R2,CBNAMEOK
LA R6,LISTOFCB
EQU *
LM R4,R5,O(R6)
LTR R4,R4
BZ ERROR2
CR R3,R4
BER R5
LA R6,8(R6)
B TESTNAME

GET ADDRESS OF TVB.
ADDRESS OF TIB FROM TVB.
DOES TIB EXIST FOR OPER/TERM ?
NO - GO PUT ERROR MESSAGE.
YES - GET CB-NAME VALUE IN REG.
BR TO ADDRESS IF CB-NAME IS GOOD.
ADDRESS OF CB-NAME TABLE.

GET NAME AND BRANCH ADDRESS.
END OF TABLE WITHOUT A MATCH ?
YES - GO PUT ERROR MESSAGE.
NO. ARE TWO NAME SAME ?
YES - GET ADDRESS AND LENGTH OF
NO - CHECK NEXT ENTRY IN TABLE.
LOOP BACK TO TEST AGAIN.

CB.

**
*
*
*
*
*

DEPENDING ON THE CONTROL BLOCK NAME ENTERED, THE CONTROL BLOCK
ADDRESS IS FOUND EITHER FROM THE MVT OR THE TIB.

REG 9 - POINTS TO THE MAIN VECTOR TABLE (MVT)
REG 11 - POINTS TO THE TASK INFORMATION BLOCK (TIB)
REG 4 - POINTS TO THE DESIRED CONTROL BLOCK

*
*
*
*
*

**

ITISMVT EQU
LR
BR

ITISSNT EQU
L
BR

ITISOIT EQU
L
BR

ITISART EQU
L
BR

ITISDQT EQU
L
BR

ITISDDT EQU
L
BR

ITISSCT EQU
L
BR

ITISSVL EQU
L
BR

ITISTIB EQU
LR
BR

ITISTVB EQU
L
BR

* R4,R9
R2

* R4,MVTSNT
R2

* R4,MVTOIT
R2

* R4,MVTART
R2

* R4,MVTDQT
R2

* R4,MVTDDT
R2

* R4,MVTSCT
R2

* R4,MVTSVL
R2

* R4,Rll
R2

* R4,TIBTVB
R2

IT IS MVT. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS SNT. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS OIT. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS ART. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS DQT. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS DDT. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS SCT. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS SVL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS TIB. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

IT IS TVB. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

Appendix D. Sample User-Written Command Processor D-9

**
*
*
*
*
*

DEPENDING ON THE CONTROL BLOCK NAME ENTERED, THE CONTROL BLOCK
ADDRESS IS FOUND EITHER FROM THE MVT OR THE TIB.

REG 9 - POINTS TO THE MAIN VECTOR TABLE (MVT)
REG 11 - POINTS TO THE TASK INFORMATION BLOCK (TIB)
REG 4 - POINTS TO THE DESIRED CONTROL BLOCK

*
*
*
*
*

**

ITISACB EQU *
L R4,TIBACB IT IS ACB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISNCWB EQU *
L R4,TIBNCCWB IT IS NCCWB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISICWB EQU * L R4,TIBICCWB IT IS ICCWB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISMCWB EQU *
L R4,TIBMRCWB IT IS MRCWB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISESWB EQU * L R4,TIBEXSWB IT IS EXSWB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

I T I SNSttJB EQU *
L R4,TIBNPSWB IT IS NPSWB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISNPDB EQU *
L R4,TIBNCPDB IT IS NCPDB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISMPDB EQU * L R4,TIBMRPDB IT IS MRPDB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISIPDB EQU *
L R4,TIBICPDB IT IS ICPDB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISAPDB EQU *
L R4,TIBAGPDB IT IS AGPDB. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

D-IO

**
* DEPENDING ON THE CONTROL BLOCK NAME ENTERED, THE CONTROL BLOCK *
'* ADDRESS IS FOUND EITHER FROM THE MVT OR THE TIB. *
* REG 9 - POINTS TO THE MAIN VECTOR TABLE (MVT) *
* REG 11 - POINTS TO THE TASK INFORMATION BLOCK (TIB) *
* REG 4 - POINTS TO THE DESIRED CONTROL BLOCK *
***************'***

ITISRPLI EQU
BAL
L
B

ITISRPL2 EQU
BAL
L
B

ITISRPL3 EQU
BAL
L
B

ITISRPL4 EQU
BAL
L
B

ITISRPL5 EQU
BAL
L
B

ITISRPL6 EQU
BAL
L
B

ITISRPL7 EQU
BAL
L
B

ITISRPL8 EQU
BAL
L
B

ITISRPL9 EQU
BAL
L
B

ITISRPLA EQU
BAL
L
B

* RI4,OSTTIBX
R4,TIOORRPL
MOVE TYPE

* R14,OSTTIBX
R4,TIOOSRPL
MOVETYPE

'* R14,OSTTIBX
R4,TIORCRPL
MOVETYPE

* R14,QSTTIBX
R4,TIOSCRPL
MOVETYPE

'* R14,OSTTIBX
R4,TIORARPL
MOVETYPE

'* R14,OSTTIBX
R4,TIORSRPL
MOVETYPE

* R14,HCTTIBX
R4,TIHSRPL
MOVETYPE

* R14,HCTTIBX
R4,TIHCLRPL
MOVETYPE

* R14,PPTTIBX
R4,TIPRCRPL
MOVETYPE

'* R14,PPTTIBX
R4,TIPSCRPL
MOVETYPE

GO CHECK THE TYPE OF TIB.
YES - IT IS ORRPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS OSRPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS RCRPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS SCRPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS RARPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS RSRPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS HSRPL. LOAD ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS HCLRPL. GET ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS PRCRPL. GET ITS ADDRESS.
NOW GO GET ITS LENGTH.

GO CHECK THE TYPE OF TIB.
IT IS PSCRPL. GET ITS ADDRESS.
NOW GO GET ITS LENGTH.

Appendix D. Sample User-Written Command Processor D-11

**'
*
*
*
*
*

DEPENDING ON THE CONTROL BLOCK NAME ENTERED, THE CONTROL BLOCK
ADDRESS IS FOUND EITHER FROM THE MVT OR THE TIB.

REG 9 - POINTS TO THE MAIN VECTOR TABLE (MVT)
REG 11 - POINTS TO THE TASK INFORMATION BLOCK (TIB)
REG 4 - POINTS TO THE DESIRED CONTROL BLOCK

*
*
*
*
*

**

ITISONIB EQU * BAL RI4,OSTTIBX GO CHECK THE TYPE OF TIB.
L R4,TIOOSNIB IT IS OSNIB. LOAD ITS ADDRESS.
B MOVETYPE NOW GO GET ITS LENGTH.

ITISCNIB EQU * BAL RI4,OSTTIBX GO CHECK THE TYPE OF TIB.
L R4,TIOCDNIB IT IS CDNIB. LOAD ITS ADDRESS.
B ~10VETYPE NOW GO GET ITS LENGTH.

ITISHNIB EQU * BAL R14,HCTTIBX GO CHECK THE TYPE OF TIB.
L R4,TIHNIB IT IS HNIB. LOAD ITS ADDRESS.
B NOVETYPE NOW GO GET ITS LENGTH.

ITISSAT EQU * BAL RI4,OSTTIBX GO CHECK THE TYPE OF TIB.
L R4,TIOSAUTH IT IS SAT. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

ITISNAT EQU * BAL RI4,OSTTIBX GO CHECK THE TYPE OF TIB.
L R4,TIONAUTH IT IS NAT. LOAD ITS ADDRESS.
BR R2 NOW GO GET ITS LENGTH.

**
* THE ADDRESS AND THE LENGTH OF THE DESIRED CONTROL BLOCK IS SAVED *
* IF THE ADDRESS IS ZERO, ERRNSG 7 IS PRESENTED. OTHERWISE THE CTL *
* BLOCK IS DISPALYED FOR THE APPROPRIATE LENGTH VALUE. *
* REG 4 - ADDRESS OF THE CONTROL BLOCK *
* REG 5 - LENGTH OF THE CONTROL BLOCK *
**

MOVETVPE EQU
MVI

CBNAMEOK EQU
CLI
BE
LH
B

LOADBYTE EQU
SLR
IC

STOREIT EQU

D-12

STM
LTR
BZ
B

* CBTYPE,X'FF'

* CBTYPE,X'FF'
LOADBYTE
R5,2(R4)
STOREIT

* R5,R5
R5,3(R4)

* R4,R5,PARMSPSS
R4,R4
ERROR7
DISPlYCB

INDICATE CB IS RPL OR NIB.

CONTROL BLOCK A NIB OR RPL ?
YES - CB LENGTH FIELD IS 1 BYTE.
NO - IT IS HALFWORD, GET IT.
SAVE ADDRESS AND LENGTH.

ZERO REGISTER.
GET LENGTH VALUE FOR RPL/NIB.

SAVE ADDRESS AND LENGTH OF CB.
IS CTL BLK ADDRESS ZERO ?
YES - GO PUT ERROR MESSAGE.
GO DISPLAY CONTROL BLOCK.

**
* THE HELP DIRECTIONS TO USE THIS COMMAND PROCESSOR ARE PRESENTED *
* ON THE TERMINAL. DIRECTIONS INCLUDE VARIOUS COMMAND FORMATS ETC. *
* REG 2 - POINTS TO THE BUFFER CONTAINING HELP DIRECTIONS *
* REG S - ADDRESS OF THE HELP INFORMATION DIRECTIONS *
* REG 6 - VALUE TO CONTROL LOOP FOR DISPLAY OF DIRECTIONS *
**

ITISHELP EQU * IT IS HELP. DISPLAY DIRECTIONS.
LA R2,BUFFER ADDRESS OF OUTPUT BUFFER.
USING BUFHDR,R2 ADDRESSABILITY FOR BUF-HEADER.
LA Rl,SO LENGTH OF MSG-TEXT IN BUFFER.
STH Rl,HDRMLENG SAVE MSG-LENGTH IN BFR HEADER.
L RS,ADDRHELP ADDRESS OF HELP DIRECTIONS.
MVC MSGAREACSO),QCRS) MOVE A LINE OF HELP DIRECTION.
BAL R14,PUTBUFER GO DISPLAY THE LINE.
LA R6,19 VALUE TO CONTROL 'PUTAGAIN' LOOP.

PUTAGAIN EQU *
LA Rl,SO LENGTH OF MESSAGE TEXT.
STH Rl,HDRMLENG SAVE IT IN 'MLENG' FIELD.
LA RS,SOCRS) ADDRESS OF NEXT HELP INSTRUCTION.
MVC MSGAREA(SO),QCRS) MOVE IT IN MSG AREA OF BUFFER.
l Rl,CWBSWB ADDRESS OF SWB FOR DSIPSS.
DSIPSS SWB=(Rl),TYPE=OUTPUT,BFR=(R2),OPTIONS=SEG
BCT R6,PUTAGAIN CONTINUE UNTIL ALL INFORMATION IS
B RETURN ***DISPLAYED, AND THEN RETURN.

Appendix D. Sample User-Written Command Processor D-13

**
* FOR FORMAT 1 COMMAND, THE VALUE ENTERED FOR ADDRESS AND LENGTH *
* IS TRANSLATED USING APPROPRIATE TRANSLATE TABLE. IF lENGTH IS *
* ENTERED IN DECIMAL THEN IT IS CONVERTED INTO HEX. *
**

ITISFMTI EQU
ClI
BE
ClI
BNE
MVI

FMTIISOK EQU
TR
MVI
MVI
MVC
SlR
lA
lA
BAl

DISPLYCB EQU
ClI
BNE
ClI
BE

NOTFMTO EQU
ClI
BE
TR
MVC
MVI
MVC
B

ITISHEX EQU
TR

TRDONE EQU

~14

MVI
MVI
MVC
SlR
lA
LA
BAl
ClI
BE
CVB
ST

* OUTAREA,C' ,
ERRORl
OUTAREA+8,C' ,
FMTIISOK
OUTAREA+8,C'4'

*

VALUE FOR ADDRESS SPECIFIED ?
NO - PUT ERROR MESSAGE.
VALUE FOR lENGTH SPECIFIED ?
YES - FORMAT 1 IS OK.
NO - SET lENGTH TO DEFAULT VALUE.

OUTAREA(6',TRTABlEl **X-lATE ADDRESS FOR SYNTAX CHECK.
OUTAREA+6,C' , MOVE C' , AT THE END OF FIELD.
PACKAREA,X'OO' CLEAR THE PACK AREA BY
PACKAREA+l(7),PACKAREA ** PROPOGATING X'OO'.
R6,R6 REG TO COUNT NUMBER OF DIGITS.
R7,OUTAREA ADDRESS OF THE OUTPUT AREA.
R4,CBADDR AREA TO SAVE START OF DISPLAY ADDR.
R14,SYNTAXCK GO CHECK THE SYNTAX.
* FOUND CBNAME. PREPARE TO DISPLAY.
FMTSW,X'OO' MAKE SURE IS IT FORMAT 0 ?
NOTFMTO NO - IT IS FORMAT 1.
OUTAREA+8,C'*' YES; lENGTH OF CB IS IMPLIED.
DISPDATA YES - GO DISPLAY CONTROL BLOCK.
* NO - IT IS EXPLICIT.
OUTAREA+8,C'X' IS LENGTH SPECIFIED IN HEX?
ITISHEX YES - TRANSLATE IT ACCORDINGLY.
OUTAREA+8(6),TRTABlE2 ** NO; IT IS DECIMAL. X-LATE IT.
PACKAREA,OUTAREA+8 TEMPORARY MOVE DATA TO AN AREA.
OUTAREA+8,C'D' PREFIX WITH '0' TO INDICATE
OUTAREA+9(6),PACKAREA ** DECIMAL lENGTH VALUE.
TRDONE AFTER X-lATE CHECK SYNTAX.

* OUTAREA+9(6),TRTABlEl **TRANSLATE HEX LENGTH ALSO.

* OUTAREA+15,C" MOVE C' , AT THE END OF OUTPUT AREA.
PACKAREA,X'OO' CLEAR OUT THE PACK AREA.
PACKAREA+1(7),PACKAREA ***BY MOVING X'OO'.
R6,R6 REG TO COUNT NUMBER OF DIGITS.
R7,OUTAREA+9 ADDRESS OF OUTPUT AREA.
R4,CBLENTH ADDRESS TO SAVE LENGTH VALUE.
R14,SYNTAXCK GO CHECK SYNTAX.
OUTAREA+8,C'X' lENGTH IS SPECIFIED IN HEX?
DISPDATA YES - START DISPLAY OF DATA.
R6,PACKAREA CONVERT LENGTH IN BINARY (HEX).
R6,CBlENTH SAVE IT.

**
* DATA IS DISPLAYED FROM THE ADDRESS ENTERED OR DETERMINED FOR THE *
* DESIRED OR DEFAULT LENGTH VALUE. *
* REG 3 - ADDRESS OF THE CURRENT DISPLAY BYTE *
* REG 2 - LENGTH WHICH REMAINED TO BE DISPLAYED *
**

DISPDATA EQU
MVI
L
L
ST
MVI

LOOPOlO EQU
MVI
LTR
BNP
MVI
MVC
LA
LA
MVI
~1V I
SLR
LA

LOOP020 EQU
LA
MVI

LOOP030 EQU
SLR
IC
STC
D
STC
STC
TR
LA
LA
LA
BCTR
LTR
BNP
BCT
LA
BCT

* FMTSW,X'OO'
R2,CBLENTH
R3,CBADDR
R3,DISPADDR
SWITCH2,C'N'

*

DISPLAY THE DATA REQUESTED.
RESET FORMAT INDICATOR SWITCH.
LENGTH OF DATA TO BE DISPLAYED.
ADDRESS WHERE DISPLAY IS TO START.
SAVE THE VALUE.
INDICATES BFR-HDR NOT INITIALIZED.

SWITCHl,C'N' INDICATES NO DATA IN BUFFER.
R2,R2 LENGTH IS = 0 ?
MAYBDONE YES - WE MAY BE DONE.
MSGAREA,C' , NO - PROPOGATE C' , THROUGH
MSGAREA+l(67),MSGAREA ***THE MESSAGE AREA.
R4,MSGAREA+8 AREA FOR TRANSLATED DATA.
R7,MSGAREA+50 AREA FOR CHARACTER FORM OF DATA.
MSGAREA+49,C'+' LEFT MARGIN INDICATOR.
MSGAREA+66,C'+' RIGHT MARGIN INDICATOR.
Rl,Rl ZERO OUT A REGISTER.
R6,4 OUTER LOOP COUNT CLOOP020).

* R5,4
Sl·JITCHl,C'Y'

* RO,RO
Rl,OCR3)
Rl,OCR7)
RO,SIXTEEN
Rl,OCR4)
RO,lCR4)
OC2,R4),TRTABLE3
R3,lCR3)
R7,lCR7)
R4,2CR4)
R2,O
R2,R2
MAYBDONE
RS,LOOP030
R4,2(R4)
R6,LOOP020

INNER LOOP COUNT (LOOP030).
INDICATES BUFFER HAS SOME DATA.

ZERO ANOTHER REGISTER.
GET A BYTE TO TRANSLATE.
SAVE FOR CHARACTER FORM DISPLAY.
SPLIT THE TWO NIBBLES OF BYTE.
SAVE LEFT NIBBLE.
SAVE RIGHT NIBBLE.
TRANSLATE THE BYTES JUST SAVED.
ADDRESS OF NEXT DATA BYTE.
ADDRESS OF NEXT CHAR FORM AREA.
ADDRESS OF NEXT MSG-AREA BYTE.
DECREASE CB-LENGTH BY 1.
CHECK IF CB-LENGTH = ° ?
YES - WE MAY BE DONE.
CONTINUE WITH INNER LOOP.
LEAVE 2 BLANKS BEFORE NEXT DATA.
CONTINUE WITH OUTER LOOP.

Appendix D. Sample User-Written Command Processor D-15

**
* DATA IS DISPLAYED FROM THE ADDRESS ENTERED OR DETERMINED FOR THE *
* DESIRED OR DEFAULT LENGTH VALUE. *
* REG 3 - ADDRESS OF THE CURRENT DISPLAY BYTE *
* REG 2 - LENGTH WHICH REMAINED TO BE DISPLAYED *
**
MAYBDONE EQU

CLI
BE
LA
LA
LA

LOOP040 EQU
SLR
IC
0
STC
STC
TR
LA
LA
BCT
LA
TR
ST
LR
LA
USING
CLI
BE
MVI
LA
STH
BAL
B

* SWITCHl,C'N'
RETURN
R4,MSGAREA
R5,DISPADDR+l
R6,3

* RO,RO
Rl,OCR5)
RO,SIXTEEN
Rl,OCR4)
RO,lCR4)
0(2,R4),TRTABLE3
R4,2(R4)
R5,1(RS)
R6,LOOP040
R7,MSGAREA+SO
O(16,R7),TRTABLE4
R3,DISPADDR
R4,R2
R2,BUFFER
BUFHDR,R2
SWITCH2,C'Y'
HDRDONE
SWITCH2,C'Y'
Rl,68
Rl,HDRMLENG
R14,PUTBUFER
TSTRESET

IS BUFFER EMPTY (WITH OUT DATA) ?
YES - WE ARE DONE AND CAN RETURN.
NO - PREPARE TO X-LATE ADDRESS.
POINT TO WHERE ADDRESS IS SAVED.
VALUE TO CONTROL NEXT LOOP.

ZERO A REGISTER.
GET A BYTE OF ADDRESS FOR X-LATION.
SPLIT TWO NIBBLES OF THE BYTE.
SAVE THE LEFT HALF.
SAVE THE OTHER HALF.
TRANSLATE THE TWO SAVED BYTES.
POINT TO NEXT BYTE IN MSG-AREA.
POINT TO NEXT BYTE OF ADDRESS.
CONTINUE WITH THIS LOOP.
ADDRESS OF CHARACTER FORM DATA.
TRANSLATE TO REMOVE 3270 CC.
ADDR OF NEXT BYTE TO BE DISPLAYED.
TEMPORARILY SAVE REG 2.
ADDRESS OF OUTPUT BUFFER.
ADDRESSABILITY FOR BUF-HEADER.
BUFFER HEADER INITIALIZED ?
YES.
INDICATE HEADER IS INITIALIZED.
VALUE OF MESSAGE AREA LENGTH.
SAVE IT IN 'MLENG' FIELD.
GO DISPLAY BUFFER.
CHECK IF RESET IS ON IN TVB.

**
* DATA IS DISPLAYED FROM THE ADDRESS ENTERED OR DETERMINED FOR THE *
* DESIRED OR DEFAULT LENGTH VALUE. IF TVBRESET BIT IS SET ON THEN *
* THE DISPLAY OF DATA IS STOPPED AND CONTROL IS RETURNED. *
* REG 3 - ADDRESS OF THE CURRENT DISPLAY BYTE *
* REG 2 - TEMPORARILY ALSO USED AS POINTER TO BUFFER *
* REG 2 - LENGTH WHICH REMAINED TO BE DISPLAYED *
**

HDRDONE EQU *
LA Rl,68 LENGTH OF MSG-AREA IN BUFFER.
STH Rl,HDRMLENG SAVE IT IN 'MLENG' FIELD.
L Rl,CWBSWB ADDRESS OF SWB PASSED.
DSIPSS SWB=(Rl),TYPE=OUTPUT,BFR=(R2),OPTIONS=SEG

TSTRESET EQU *
TM TVBIND3,TVBRESET RESET INDICTOR ON IN TVB ?
BO RETURN YES - RETURN IMMEDIATELY.
LR R2,R4 RESTORE REG 2 BACK.
B LOOPOlO GO DISPLAY MORE DATA.

D-16

**
*
*
*
*
*
*
*
*
*

ERRMSG 1 -
ERRMSG 2
ERRMSG 3
ERRMSG 4
ERR~1SG S
ERRMSG 6
ERRMSG 7
ERRMSG 8
ERRMSG 9

INVALID COMMAND FORMAT IS USED
CONTROL BLOCK NAME NOT IN THE LIST
NON-DECIMAL/NON-HEX DIGIT IS ENCOUNTERED.
KEYWORD VALUE LENGTH IS OUTSIDE ITS RANGE CO - 8)
NO TVB EXIST FOR TERM-ID/OPER-ID
DESIRED CTL BLK CAN NOT BE FOUND IN THIS TIB
CONTROL BLOCK STARTS AT ADDRESS ZERO (00000000)
OPERATOR/TERMINAL DOES NOT HAVE AN ACTIVE TIB
RECOGNISED KEYWORDS ARE CB, LEN, TERM, OPER, ADDR

*
*
*
*
*
*
*
*
*

**

ERRORl EQU
LA
B

ERROR2 EQU
LA
B

ERROR3 EQU
LA
B

ERROR4 EQU
LA
B

ERRORS EQU
LA
B

ERROR6 EQU
LA
B

ERROR7 EQU
LA
B

ERROR8 EQU
LA
B

ERROR9 EQU
LA

PUTERROR EQU
MVC
LA
USING
LA
STH
BAL
MVI

* Rl,ERRMSGOl
PUTERROR

* R 1, ERR~1SG02
PUTERROR

* Rl,ERRMSG03
PUTERROR

* Rl,ERRMSG04
PUTERROR

* Rl,ERRMSG05
PUTERROR

* Rl,ERRMSG06
PUTERROR

* Rl,ERRMSG07
PUTERROR

* Rl,ERRMSG08
PUTERROR

* Rl,ERRMSG09

* MSGAREA(50),OCR1)
R2,BUFFER
BUFHDR,R2
Rl,50
Rl,HDRMLENG
R14,PUTBUFER
RETCODE,X'08'

ADDRESS OF ERROR MESSAGE 1.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 2.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 3.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 4.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 5.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 6.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 7.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 8.
DISPLAY ERROR MSG, AND RETURN.

ADDRESS OF ERROR MESSAGE 9.

MOVE ERROR MESSAGE TEXT.
ADDRESS OF OUTPUT BUFFER.
ADDRESSABILITY FOR BUF-HEADER.
LENGTH OF MESSAGE TEXT.
SAVE IN 'MLENG' FIELD OF BUFHDR.
GO DISPLAY ERROR MESSAGE.
SET RETURN CODE VALUE.

Appendix D. Sample User-Written Command Processor D-17

** * RESTORE THE CALLERS REGISTER FROM HIS SAVE AREA AND RETURN TO *
* THE CALLER WITH APPROPRIATE RETURN CODE VALUE IN REG 15. *
* REG 14 - RETURN ADDRESS *
* REG 15 - RETURN CODE VALUE, EITHER 0 OR 8. *
**

RETURN EQU
SLR
IC
L
LM
l
BR

* R15,R15
RI5,RETCODE
R13,4(RI3)
RO,RI2,20(R13)
R14,12(RI3)
R14

ZERO RETURN CODE REGISTER.
GET RETURN CODE VALUE.
ADDRESS OF HIS SAVE AREA.
RESTORE REGISTERS 0 - 12.
LOAD RETURN ADDRESS.
RETURN FOR GOOD.

**
* TIB TYPE IS CHECKED FOR THE CONTROL BLOCK NAME ENTERED. IF IT IS *
* THE RIGHT TIB, PROCESSING CONTINUES ELSE ERRMSG 6 IS PRESENTED. *
* REG 11 - BASE REG FOR TIB *
**

OSTTIBX EQU *
USING DSICBH,R11 ADDRESSABILITY FOR DSICBH.
ClI CBHTYPE,X'02' CHECK IF OST-TIB EXTENSION ?
BER R14 YES - RETURN AND CONTINUE.
B ERROR6 NO - GO PUT ERROR MESSAGE.

HCTTIBX EQU *
ClI CBHTYPE,X'03' CHECK IF HCT-TIB EXTENSION ?
BER R14 YES - RETURN AND CONTINUE.
B ERROR6 NO - GO PUT ERROR MESSAGE.

PPTTIBX EQU *
CLI CBHTYPE,X'OO' CHECK IF PPT-TIB EXTENSION ?
BER R14 YES - RETURN AND CONTINUE.
B ERROR6 NO - GO PUT ERROR MESSAGE.

D-18

**
* INPUT SYNTAX IS CHECKED FOR DECIMAL/HEX DIGITS AFTER TRANSLATION *
* ERRMSG 3 IS PRESENTED IF A NON-HEX/NON-DECIMAL DIGIT IS FOUND. *
* REG 7 - POINTS TO AREA CONTAINING TRANSLATED INPUT *
**

SYNTAXCK EQU
ST

ONCEMORE EQU
ClI
BE
ClI
BE
lA
lA
B

EXECPACK EQU
lTR
BZ
SR
BCTR
EX
L
SRl
ST
BR

* R14,SAVE14C

* O(R7),X'40'
EXECPACK
OCR7),X'OO'
ERROR3
R6,1(R6)
R7,1(R7)
ONCEMORE

* R6,R6
ERROR4
R7,R6
R6,O
R6,GOPACKIT
R6,PACKAREA+4
R6,4
R6,O(R4)
R14

*

SAVE RETURN ADDRESS.

IS IT C' , (END OF DATA) ?
YES - GO PACK THE DATA.
NO - IS IT X'OO' (INVALID CHAR) ?
YES - THERE IS SYNTAX ERROR.
NO - ADD 1 TO COUNT OF VALID CHAR.
ADDRESS OF NEXT BYTE.
GO CHECK THE BYTE.

COUNT OF VALID CHAR = 0 ?
YES - NULL OPERAND NOT ALLOWED.
NO. POINT TO START OF OUTPUT AREA.
REDUCE COUNT OF VALID CHAR BY ONE.
GO PACK THE DATA.
GET PACKED DATA IN REG.
GET RID OF lOW ORDER 4 BITS.
SAVE THE VALUE.
RETURN BACK.

GOPACKIT EQU
PACK PACKAREA+4(4),O(O,R7) ***PACK THE DATA.

**
* DISPLAY THE DATA IN THE BUFFER AFTER INITIALIZING VARIOUS FIELDS *
* IN THE BUFHDR, SUCH AS DOMID, TSTMP, BlENG, TDISP ETC. *
* REG 2 - POINTS TO THE BUFFER *
* REG 1 - POINTS TO THE SWB FOR CALL TO DSIPSS *
**

PUTBUFER EQU *
ST R14,SAVE14A SAVE RETURN ADDRESS.
ClI HDRTDISP+l,X'OO' 'TDISP', 'DOMID' ETC DONE?
BNE HAlFDONE YES - NEED ONLY 'BlENG' AND 'TSTMP'.
lA RO,BUFHDRND-BUFHDR DISPLACEMENT OF MSG FROM BFR HDR.
STH RO,HDRTDISP SAVE IT IN 'TDISP' FIELD.
MVC HDRDOMID(8),MVTCURAN **MOVE DOMAIN-ID INFORMATION.
MVI HDRMTYPE,C'U' INDICATE USER TYPE MESSAGE.
lA RO,120 lENGTH OF TOTAL BUFFER.
STH RO,HDRBlENG SAVE IT IN 'BLENG' FIELD.

HALFDONE EQU *
BAl R14,GETTIME ISSUE SVC 34 FOR TIME (?HHMMSS+).
ST Rl,HDRTSTMP SAVE IT IN 'TST ;P' FIELD.
l Rl,CWBSWB GET ADDRESS OF SWB.
DSIPSS SWB=(Rl),TYPE=OUTPUT,BFR=(R2)
l R14,SAVE14A GET THE RETURN ADDRESS.
BR R14 RETURN BACK.

Appendix D. Sample User-Written Command Processor D-19

**
* ISSUE DSIDATIM TO GET TIME THE TIME OF DAY *
* OUTPUT: REG 1 - TIME IN HHMMSSOC FORM *
**

GETTIME

LISTOFCB

D-20

EQU *
ST R14,SAVE14B SAVE RETURN ADDRESS.
DSIDATIM AREA=PACKAREA,FORMAT=BINARY GET THE TIME OF DAY

THE TIME L Rl,PACKAREA+4 RETURN ONLY
L R14,SAVE14B LOAD RETURN ADDRESS.
BR R14 AND RETURN.

DS OF LIST OF CTL BLK NAME AND BR ADDRESS
DC CL4'ACB , IF NAME IS 'ACB , THEN ,
DC ACITISACB) ***BRANCH TO LABEL 'ITISACB'.
DC CL4'ART , IF NAME IS 'ART , THEN ,
DC ACITISART) ***BRANCH TO LABEL 'ITISART' .
DC CL4'AGPD' IF NAME IS 'AGPDB', THEN
DC ACITISAPDB) ***BRANCH TO LABEL 'ITISAPDB'.
DC CL4'CDNI' IF NAME IS 'CDNIB', THEN
DC ACITISCNIB) ***BRANCH TO LABEL 'ITISCNIB'.
DC CL4'DDT , IF NANE IS 'DDT , THEN ,
DC ACITISDDT) ***BRANCH TO LABEL 'ITISDDT'.
DC CL4'DQT , IF NANE IS 'DQT , THEN ,
DC A(ITISDQT) ***BRANCH TO LABEL 'ITISDQT'.
DC CL4'EXSW' IF NAME IS 'EXSWB' , THEN
DC ACITISESWB) ***BRANCH TO LABEL 'ITIESWB'.
DC CL4'ICC~~' IF NAME IS ' I CCWB' , THEN
DC A(ITISICt~B) ***BRANCH TO LABEL 'ITISICWB'.
DC CL4'ICPD' IF NA~1E IS 'ICPDB', THEN
DC ACITISIPDB) ***BRANCH TO LABEL 'ITISIPDB'.
DC CL4'NRCW' IF NAME IS 'MRCWB', THEN
DC ACITISMCWB) ***BRANCH TO LABEL 'ITISMCWB'.
DC CL4'MRPD' IF NAME IS 'MRPDB', THEN
DC ACITISMPDB) ***BRANCH TO LABEL 'ITISMPDB'.
DC C L 4 ' ~lVT , IF NANE IS 'MVT , THEN ,
DC ACITISMVT) ***BRANCH TO LABEL 'ITISMVT'.
DC CL4'NAT , IF NAME IS 'NAT , THEN ,
DC ACITISNAT) ***BRANCH TO LABEL 'ITISNAT'.
DC CL4'NCCW' IF NAME IS 'NCCWB', THEN
DC ACITISNCWB) ***BRANCH TO LABEL 'ITISNCWB'.
DC CL4'NCPD' IF NAME IS 'NCPDB', THEN
DC ACITISNPDB) ***BRANCH TO LABEL 'ITISNPDB'.
DC CL4'NPSt~' IF NAME IS 'NPSWB' , THEN
DC ACITISNSWB) ***BRANCH TO LABEL 'ITISNSWB' •
DC CL4'OIT , IF NAME IS 'OIT , THEN ,
DC ACITISOIT) ***BRANCH TO LABEL 'ITISOIT'.
DC CL4'ORRP' IF NAME IS 'ORRPL', THEN
DC ACITISRPL1) ***BRANCH TO LABEL 'ITISRPLl'.

~~, DC CL4'OSNI' IF NAME IS 'OSNIB', THEN
1

o.i DC ACITISONIB) ***BRANCH TO LABEL 'ITISONIB'.
DC CL4'OSRP' IF NAME IS 'OSRPL', THEN
DC ACITISRPL2) ***BRANCH TO LABEL 'ITISRPL2'.
DC CL4'RARP' IF NAME IS 'RARPL', THEN
DC ACITISRPLS) ***BRANCH TO LABEL 'ITISRPLS'.
DC CL4'RCRP' IF NAME IS 'RCRPL', THEN
DC ACITISRPL3) ***BRANCH TO LABEL 'ITISRPL3' •
DC CL4'RSRP' IF NAME IS 'RSRPL', THEN
DC ACITISRPL6) ***BRANCH TO LABEL 'ITISRPL7'.
DC CL4'SAT , IF NAME IS 'SAT , THEN ,
DC ACITISSAT) ***BRANCH TO LABEL 'ITISSAT'.
DC CL4'SCRP' IF NAME IS 'SCRPL', THEN
DC ACITISRPL4) ***BRANCH TO LABEL 'ITISRPL4'.
DC CL4'SCT , IF NAf>1E IS 'SCT , THEN ,
DC ACITISSCT) ***BRANCH TO LABEL 'ITISSCT'.
DC CL4'SNT , IF NANE IS 'SNT , THEN ,
DC ACITISSNT) ***BRANCH TO LABEL 'ITISSNT'.
DC CL4'SVL , IF NAME IS 'SVL , THEN ,
DC ACITISSVL) ***BRANCH TO LABEL 'ITISSVL'.
DC CL4'TIB , IF NAME IS 'TIB , THEN ,
DC ACITISTIB) ***BRANCH TO LABEL 'ITISTIB'.
DC CL4'TVB , IF NAME IS 'TVB , THEN ,
DC ACITISTVB) ***BRANCH TO LABEL 'ITISTVB'.
DC CL4'HSRP' IF NAf>1E IS 'HSRPL', THEN

'\
DC ACITISRPL7) ***BRANCH TO LABEL 'ITISRPL7'.
DC CL4'HCLR' IF NAME IS 'HCLRPL', THEN

'"
,,' DC ACITISRPL8) ***BRANCH TO LABEL 'ITISRPL8'.

DC CL4'PRCR' IF NAME IS 'PRCRPL', THEN
DC ACITISRPL9) ***BRANCH TO LABEL 'ITISRPL9'.
DC CL4'PSCR' IF NAf>1E IS 'PSCRPL', THEN
DC ACITISRPLA) ***BRANCH TO LABEL 'ITISRPLA'.
DC CL4'HNIB' IF NAME IS 'HNIB', THEN
DC ACITISHNIB) ***BRANCH TO LABEL 'ITISHNIB'.
DC CL4'HELP' IF NAME IS 'HELP', THEN
DC ACITISHELP) ***BRANCH TO LABEL 'ITISHELP' •
DC XL4'OOOOOOOO' END OF TABLE.

Appendix D. Sample User-Written Command Processor D-21

ADDRHELP DC
THREEOO DC
SIXTY DC
SIXTEEN DC
EIGHT DC
FOUR DC
Ftr1TOKYWD DC
FMTlKYWD DC
KYWRDTAB DC

DC
DC
DC
DC
DC

TRTABLEl DC
DC

TRTABLE2 DC

TRTABLE3 DC

TRTABLE4 DC
DC
DC
DC

ERRMSGOl DC
ERRMSG02 DC
ERRNSG03 DC
ERRMSG04 DC
ERRMSG05 DC
ERRMSG06 DC
ERRMSG07 DC
ERRMSG08 DC
ERRMSG09 DC

D-22

ACHELPINFO)
F'300'
r ' 60'
F ' 16 '
H '8 '
H'4'
C'CBLETEOP
C'ADLE
C'CS
C'LEN '
C'ADDR'
C'TERM'
C'OPER'
C'

ADDRESS OF HELP DIRECTIONS
FULLWORD VALUE 300.
FULLWORD VALUE 60.
FULLWORD VALUE 16.
HALFWORD VALUE 8.
HALFWORD VALUE 4.
FMT 0 KEYWORDS (CB, LEN, TERM, OP)
FORMAT 1 KEYWORDS CADDR, LEN)
LIST OF RECOGNISED KEYWORD 'CB'
**** RECOGNISED KEYWORD 'LEN'
**** RECOGNISED KEYWORD 'ADDR'
**** RECOGNISED KEYWORD 'TERM'
**** RECOGNISED KEYWORD 'OPER'
END OF THE LIST

64X'OO',C' ',64X'00',X'FAFBFCFDFEFF',58X'00',X'FAFB'
X'FCFDFEFF',41X'00',X'FOFIF2F3F4F5F6F7F8F9',6X'00'

64X'00',C' ',175X'00',X'FOFIF2F3F4F5F6F7F8F9',6X'00'

CL16'0123456789ABCDEF'

64X'4B',C' ',9X'4B',X'4A4B4C4D4E4F50',9X'4B',X'5A5B5C'
X'5D5E5F6061',9X'4B',X'6B6C6D6E6F',lOX'4B',X'7A7B7C7D'
X'7E7F',65X'4B',C'ABCDEFGHI',7X'4B',C'JKLMNOPQR',8X'4B'
C'STUVWXYZ',6X'4B',C'0123456789' ,6X'4B'

CL50'INVALID COMMAND FORMAT IS USED. TRY *SHOW CB=HELP*'
CL50'CTL BLOCK NAME NOT IN THE LIST. TRY *SHOW CB=HELP*'
CL50'NON-DECIMAL/NON-HEX DIGIT IS FOUND. PLEASE CORRECT'
CL50'KEYWORD/OPERAND WITH =0 OR >8 CHARS IS NOT ALLOWED'
CL50'NO TVB EXISTS FOR THE SPECIFIED LU-NAME OR OPER-ID'
CL50'THE DESIRED NCCF CONTROL BLOCK IS NOT IN THIS TIB '
CL50'CB STARTING ADDRESS IS O. MAY BE IT DOES NOT EXIST'
CL50'THE OPERATOR/TERMINAL DOES NOT HAVE AN ACTIVE TIB '
CL50'RECOGNISED KEYWORDS ARE: CB, LEN, TERM, OPER, ADDR'

HELPINFO DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

CLSO'FOR THE DISPLAY OF ANY NCCF CONTROL BLOCK, ENTER-
ClSO' SHOW CB=XXXX,lEN=<VAlUE>,TERM=<ID-l>,OPER=<ID-2>
ClSO' WHERE lEN, TERM AND OPER ARE OPTIONAL PARAMETERS.
ClSO' lENGTH CAN BE CODED IN HEX (PREFIXING BY X)/DECI
ClSO' OR AS AN *, IN WHICH CASE IT IS THE IMPLICIT lEN
ClSO' OF THE NCCF CONTROL BLOCK. IF BOTH TERM AND OPER
ClSO' ARE CODED THEN THE OPER-ID IS IGNORED. FOR THE CB
ClSO' CODE ONE OF THE FOLLOWING NAMES (All TASKS):
ClSO'ACB ART AGPDB ICPDB MRPDB NCPDB DDT DQT
ClSO'OIT EXSWB NPSWB ICCWB MRCWB NCCWB TVB SAT
ClSO'MVT NAT SCT SNT SVl TIB HELP
ClSO' FOR OST-TASKS ADD ORRPl OSRPl RARPL
ClSO' RCRPl RSRPl SCRPl CDNIB OSNIB
ClSO' FOR HCT-TASKS ADD HNIB HSRPl HClRPl
CLSO' FOR PPT-TASKS ADD PRCRPl PSCRPl
CLSO'FOR DISPLAY OF DATA IN USERS ADDRESS SPACE ENTER--
ClSO' SHOW ADDR=<VALUEl>,lEN=<VAlUE2>
ClSO'WHERE ADDRESS IS THE STARTING ADDRESS IN HEX, AND
CLSO'LENGTH CAN BE CODED IN HEX (PREFIXING BY X) OR IN
CLSO'DECIMAL. TO STOP DISPLAY HIT RESET KEY.

Appendix D. Sample User-Written Command Processor D-23

DSICWB

WORKAREA
OUTAREA

PACKAREA
PARMADDR
ADDRTVB
SAVE14A
SAVE14B
SAVE14C
DISPADDR
FMTSW
RETCODE
CBTYPE
SWITCHI
S~~ITCH2

PARMSPSS
CBADDR
CBLENTH

BUFFER

MSGAREA
LABELl

D-24

DSICWB COMMAND WORK BLOCK DSECT.

DSECT
ORG
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
DS
OS
OS
DS
DS
EQU
OS

CONTINUE DEFINING CWB.
CWBADATD REDEFINE DATA AREA IN CWB.
OCL256 WORK AREA FOR COMMAND PROCESSOR
OCL32 OUTPUT AREA FOR OPERANDS.
CL8 AREA FOR 1ST KEYWD CB/ADDR VALUE.
CL8 AREA FOR 2ND KEYWD (LENGTH) VALUE.
CL8 AREA FOR 3RD KEYWD (LUNAME) VALUE.
Cl8 AREA FOR 4TH KEYWD (OPID) VALUE.
D DOUBLE WORD AREA TO PACK/UNPACK.
A SAVE AREA FOR PARM-LIST ADDRESS.
A SAVE AREA FOR LOCATE TVB ADDRESS.
F SAVE AREA FOR LINKAGE REGISTER.
F SAVE AREA FOR LINKAGE REGISTER.
F SAVE AREA FOR LINKAGE REGISTER.
F ADDRESS OF CURRENT DISPALY BYTE.
OC FORMAT INDICATOR BYTE.
C RETURN CODE VALUE.
C INDICATOR IF CB-TYPE IS RPL/NIB.
C SWITCH FOR EMPTY/FULL BUFFER
C SWITCH FOR BUF-HEADER INITIALIZATION
OClB PARMS USED TO CALL DSIPSS
A ADDRESS OF CONTROL BLOCK
F LENGTH OF CONTROL BLOCK
F ADDITIONAL FULL WORD AREA.
OF COMPLETE BUFFER AREA
XL(BUFHDRND-BUFHDR) BUFFER HEADER AREA.
OCL96 MESSAGE AREA IN THIS BUFFER
* lABEL TO COMPUTE LENGTH.
XL(256-(lABEl1-WORKAREA» REMAINDER OF THE WORKAREA.

Appendix E. Sample Data Services Command Processors

This appendix contains examples of data services command processors (DSCPs).
DSITDSRD uses the DSIZVSMS macro instruction and reads keyed records
from a VSAM data set. DSITDSOL uses the DSIZCSMS macro instruction to
send a request for data to the CNM interface.

Note: These command processors are not executable as shown in this appendix.

DSITDSRD Command Processor

~~~~~*********~
* *
* NAME = DSITDSRD *
* * * FUNCTION = THIS COMMAND PROCESSOR WILL READ KEYED RECORDS FROM *
* A VSAM DATA SET AS PER THE CNMREAD COMMAND PASSED. *
* * * ENTRY POINT = DSITDSRD *
* * * INPUT = *
* REGISTERS: *
* Rl = DSICWB ADDRESS *
* R13 = ADDRESS OF STANDARD SAVEAREA *
* R14 = RETURN ADDRESS *
* R15 = ENTRY POINT OF ROUTINE *
* * * DSICWB (POINTED TO BY R 1 - PSCP AND DSCP): *

CWBSAVEA = AN 18 WORD SAVE AREA FOR USE IN THIS CMD PROC. *
CWBBUF = ADDRESS OF A MESSAGE BUFFER. THE BUFFER *

CONTAINS A STANDARD NCCF BUFFER HEADER.
CWBPDB = ADDRESS OF A PDB FOR USE IN THIS CMD PROC.

NOTE - THE PDB WILL CONTAIN VALID INFORMATION
ONLY WHEN CONTROL IS RECEIVED INITIALLY FROM
THE TASK (OST OR DST) DRIVING THIS CMD PROC.

CWBSWB = ADDRESS OF A SWB FOR USE IN THIS CMD PROC.
CWBTIB = ADDRESS OF THE DSIOST OR DSIZDST TIB. *
CWBADATD = A 256 BYTE WORK AREA FOR USE IN THIS CMD PROC. *
CWBDSRB = FOR A DSCP ADDRESS OF A DSRB CONTAINING *

INFORMATION RELATED TO PROCESSING OF THE *
COMMAND. FOR A PSCP THIS FIELD IS MEANINGLESS. *

* DSIDSRB (POINTED TO BY CWBDSRB - DSCP ONLY): *
*
* DSRBUSER = THE ADDRESS OF THE READ GLOBAL WORK AREA(RGWA) *

WILL BE PLACED HERE AFTER IT IS OBTAINED. THE *
HIGH ORDER BYTE WILL BE USED AS A FLAG TO
DETERMINE IF THE RGWA SHOULD BE FREE'D UP
UPON COMPLETION.

Appendix E. Sample Data Services Command Processors E-l

* OUTPUT =
* REGISTERS:
* RO - R14 = RESTORED TO INPUT STATUS
* R15 = RETURN CODE

* RETURN CODE (R15 ON EXIT):

FOR A DSCP:
o = MAINTAIN THE DSRB PASSED TO THIS CMD PROC

RESUME PROCESSING HAS TO BE SCHEDULED.
8 = RELEASE THE DSRB PASSED TO THIS CMD PROC -

THE FUNCTION IS COMPLETE.

* * * DESCRIPTION = DSITDSRD IS A DATA SERVICES COMMAND PROCESSOR(DSCP). *
ITS FUNCTION IS TO READ THE NUMBER OF RECORDS
SPECIFIED IN THE CNMREAD COMMAND AREA STARTING *
WITH THE INITIAL KEY SPECIFIED. OUTPUT RECORDS ARE *
BUILT FOR THE FIRST AND LAST RECORDS READ PLUS *
EACH READ ERROR. UPON COMPLETION OF READING THE *
NUMBER OF RECORDS SPECIFIED A FINAL SUMMARY RECORD IS *

* BUILT.EACH RECORD(MESSAGE) BUILT IS THEN QUEUED BACK *
* TO THE INVOKING PSCP VIA THE NCCF MACRO DSIMQS. *
* A SCHEDULING ERROR WILL RESULT IN A MESSAGE BEING *
* SENT DIRECTLY TO THE USER AND THE TERMINATION OF *
* COMMAND PROCESSING. *
* * * EXIT = RETURN TO ADDRESS IN R14, WITH RETURN CODE SET IN R15. *
* * * EXTERNAL REFERENCES = NONE *
* * * CONTROL BLOCKS = *
* DSICWB - COMMAND-PROCESSOR WORK BLOCK *
* DSIDSRB - DATA SERVICES REQUEST BLOCK (DSCP) *
* DSIPDB - PARSE DATA BLOCK *
* DSISWB - SERVICE-ROUTINE WORK BLOCK *
* DSITIB - TASK INFORMATION BLOCK *
* DSITID - DSIZDST TASK INFORMATION BLOCK EXTENSION (DSCP) *
* DSIMVT - NCCF MAIN VECTOR TABLE *
* * * MACROS = DSICBS,DSIGET,DSIFRE,DSIMQS,DSIABN,DSIZVSMS,DSIMBS,DSIPSS *
* * ABENDS:

651 =
652 =

FAILURE
FAILURE

OF
TO

MQS TO PUT OUT MSG 261
FREE THE RGWA

* QUEUE READ ERROR MSG * 653 = FAILURE TO
* QUEUE LAST RECORD MSG * 654 = FAILURE TO
* QUEUE FIRST RECORD * 655 = FAILURE TO
* QUEUE SUMMARY RECORD * 656 = FAILURE TO
* 657 = FAILURE OF MQS TO PUT OUT MSG 256 *
* *
************~**

E-2

~I'
')
~

)

MACRO
&LABEL HEXEBC &TO=,&FROM=
&LABEL UNPK &TO.(7),&FROM.(4)

PACK &TO+7(1),&TO+6(1)
01 &TO+6,X'FO'
01 &TO+7,X'FO'
TR &TO.(8),HEXTAB-240
MEND

*
MACRO

&LABEL UPONE &ADDR=,&DIGITS=4
&LABEL LA 15,&ADDR

LA 14,&DIGITS
LA 15,0(14,15)
BC'PR 15,0

UP&SYSNDX TR O(1,15),UPTAB-240
CLI OC1S),C'O'
BNE UPND&SYSNDX
BCTR 15,0
BCT 14,UP&SYSNDX

UPND&SYSNDX EQU *
MEND

DSITDSRD CSECT
USING *,15
B INSAVE
DC C'DSITDSRD
DC C'&SYSDATE'

INSAVE EQU *
DROP 15

* MODULE ADDRESSABILITY IS ESTABLISHED, ADDRESSABILITY TO THE eWB IS *
* ESTABLISHED, AND THE CWB SAVEAREA IS USED IN PERFORMING STANDARD *
* ENTRY LINKAGE. *

STM 14,12,12(13) SAVE CALLERS REGS
LR 12,15 ESTABLISH MODULE
USING DSITDSRD,12 ADDRESSABILITY
USING DSICWB,l CMD-PROC WORK BLOCK ADDRESSABILITY
LA 2,CWBSAVEA PICK UP ADDRESS OF MY SAVE AREA
ST 13,4(2) SET BACK POINTER
XC 8(4,2),8(2) CLEAR FORWARD POINTER
ST 2,8(13) SET CALLERS FWD POINTER
LR 13,2 R13 NOW POINTS TO MY SAVE AREA
L 6,CWBBUF SET REG 6 TO ADDRESS OF I/P BUFFER
L 10,eWBTIB START SET UP OF MVT ADDRESS
USING DSITIB,10
L 11,TIBTVB
ST 11,0(,13) PUT MY TVB ADDR IN 1ST WORD OF SAVEAREA
USING DSITVB,ll
DROP 10
L 8,TVBMVT
DROP 11
USING DSIMVT,8 FINIALLY GOT THE MVT
LR 11 , 1 ALSO NEED THE CWB IN 11
DROP 1

Appendix E. Sample Data Services Command Processors E-3

USING DSICWB,ll
L 2, CW'BDSRB
USING DSIDSRB,2
LA 4,RGWALEN

GET THE ADD OF THE DSRB

SET RGWA LENGTH IN REG 4
*** * BUILD AN OUTPUT BUFFER IN THE CWBADATD AREA *
*
*

WITH A TEXT AREA LENGTH EQUAL TO THE RDCNMCMD DSECT WHICH
IS THE READ RESPONSE AREA QUEUED BACK TO THE PSCP. *

*

LA 7,CWBADATD GET THE. OF THE ADATD AREA
USING BUFHDR,7 SET REG 7 AS BASE FOR BUFHDR
LA 10,HDRTEXT GET ADDR OF TEXT PORTION
USING RDCNMCMD,10 SET REG 10 AS BASE FOR

RESPONSE AREA FOR QUEUEING BACK TO THE PSCP
MVC CNMVERB(RDCNMEND-CNMVERB),BLANKS BLANK RESP AREA
MVC CNMIFR(2),IFRCDE SET IFR CODE IN RESP AREA
MVC CNMVERB(8),READRSP
DROP 10
SR 10,7
STH 10,HDRTDISP
LA 10,256
STH 10,HDRBLENG
LA 10,RDCNMLEN
STH 10,HDRMLENG
MVI HDRMTYPE,HDRTYPEI
CLI DSRBFNCD,DSRBFNRM
BNE NEXTRD

MOVE COMMAND NAME
DROP RESP AREA BASE
TEXT - START = HEADER LENGTH
STORE DISPL. TO TEXT IN HDR

GEN ACTUAL BUFFER SIZE
STORE TOTAL BUFLEN IN HDR
GET MSG LENGTH
SET HEADER MSG LENGTH
SET MSGTYPE
IS THIS 1ST TIME ENTERED?
IF NOT GO TO READ NEXT RECORD

* * * CODE FOR 1ST TIME ENTERED FOLLOWS. *
* *
* 1) ISSUE DSIGET FOR A READ GLOBAL WORK AREA(RGWA). *
* 2) STORE ITS ADDRESS IN THE DSRB. *
* 3) INITIALIZE THE RGWA AND THE VSAM BUFFER HEADER. *
* 4) SCHEDULE A READ FOR THE FIRST KEY REQUESTED. *
* *

LA 3,DSRBUSER SET ADD OF WHERE STOR ADD GOES
LA 5,CWBADATD+240 GET ADD OF WORK AREA FOR LIST
DSIGET LV=(4),A=(3),BNDRY=DBLWD,LISTA=(5),REENT=YES
LTR 15,15 TEST RETURN CODE
BZ INITRGWA IF GOOD GO SET UP RGWA

*** * COULD NOT GET STORAGE FOR RGWA THEREFORE ISSUE *
*
*

INSUFFICIENT STORAGE MESSAGE,SET 'FREE DSRB' RETURN CODE
AND RETURN TO DST. *

*

MVI HDRMTYPE,HDRTYPEU SET MSGTYPE FOR OUTPUT
L 10,MVTUFLD GEN ADDR WHERE MSG CSECT
LA 10,8(,10) ADDR IS STORED
L 10,0(,10) GET MSG CSECT ADDR
DSIMBS MID=261,SWB=CWBSWB,BFR=(7),MSGTBL=(10)
C 15,RTRNCD12 WAS ERR MSG BUILT O.K.
BNH MQSMSG1 YES, GO SEND MSG
BAL 14,SENDERR NO, GO BUILD INTERNAL MSG & SEND

E-4

LTR 14,15 WAS INTERNAL MSG SENT O.K.
LA 15,8 INDICATE FREE DSRB
BZ SRDEXIT GO EXIT
DC F'O' MQS ERROR, HALT EXECUTION

MQSMSGl EQU *
DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID
LTR 15,15 TEST MQS RETURN CODE
BNZ ABEND651
LA 15,8 INDICATE FREE THE DSRB
B SRDEXIT GO TO RETURN LOGIC

ABEND651 DC F'O' MQS OUTPUT FAILED, HALT EXECUTION
*** * GET OF RGl~A SUCCESSFUL................. *
* SET UP VSAM BUFFER, INITIALIZE RGWA AND SCHEDULE READ FOR *
* 1 ST KEY REQUESTED. *
~~*************
INITRGWA EQU *

L 3,DSRBUSER
USING RGL~A,3

GET ADDRESS OF THE RGWA
SET REG 3 AS BASE FOR RGWA

* * * INITIALIZE THE VSAM BUFFER HEADER & STORE THE BUFFER ADDRESS *
* IN THE DSRB. *
* *

MVC RGWAID(RGWALEN),BLANKS BLANK OUT THE RGWA
LA 9,RBUFHDR GET ADDR OF VSAM BUFFER HDR
ST 9,DSRBVDAD STORE IT IN THE DSRB
DROP 7 DROP TO REBASE BUFHDR
USING BUFHDR,,9 SET REG 9 AS BASE FOR BUFHDR
LA 10,HDRTEXT GET ADDR OF VSAM BUFFER TEXT
SR 10,9 TEXT - START = HEADER LENGTH
STH 10,HDRTDISP STORE DISPL. TO TEXT IN HDR
LA 10,L'READBUF(10) CALC. HDR + TEXT
STH 10,HDRBLENG STORE TOTAL BUFLEN IN HDR

* * * INITIALIZE THE READ GLOBAL WORK AREA (RGWA) FROM THE CNMRDCMD *
*
*

INPUT BUFFER. *
*

DROP 9 DROP TO REBASE BUFHDR
USING BUFHDR,6 SET REG 6 AS BASE FOR BUFHDR
LH 10,HDRTDISP GET ADDR OF I/P COMMAND TEXT
AR 10,6
USING CNMRDCMD,10
MVC RGWAID(4),RGWACHRS
MVC IKEY(4),RDIKEY
MVC
MVC
MVC
MVC
MVC

CURRKEY(4),RDIKEY
TOTREC(3),TREC
CURRTOT(3),ZERO
SUCCESS(3),ZERO
ENOFBUF(8),ENDBUF

START+DISPLACEMENT = TEXT
SET REG 10 AS BASE FOR BUFHDR
MOVE IN ID
MOVE IN INITIAL KEY TO READ
SET CURRENT READ KEY
MOVE IN TOT RECORDS TO READ
SET NO. RECORDS READ TO ZERO
SET SUCCESSFULLY READ TO 0
SET END OF BUFFER CONSTANT

Appendix E. Sample Data Services Command Processors E-5

* * * SCHEDULE A READ FOR THE RECORD WHICH HAS A KEY EQUAL TO THE *
* KEY IN THE RGWA FIELD CURRKEY. *

SCHEDRD EQU *

MVC READBUFCL'READBUF),ASTERIKS MOVE ASTERISKS IN BUFFER
LA 9,CURRKEY SET REG TO • OF CURRENT KEY
DSIZVSMS SWB=CWBSWB,DSRB=CWBDSRB,FUNC=GET,KEY=(9),KEYLEN=FOUR,*

LTR
BZ

OPTION=CDIR,KEQ,FKS),DATAREA=RBUFHDR
15,15
SRDEXIT

TEST RETURN CODE
IF GOOD GO TO EXIT

* * SCHEDULED READ rAILED ISSUE MESSAGE AND GET OUT.

MQSMSG2

MVI TYPRD,C'S' SET ERROR TYPE TO SCHEDULING
ST 15,FDBK1 STORE MAJOR RETURN CODE
ST 0,FDBK2 STORE MINOR RETURN CODE

HEXEBC TO=MAJOR,FROM=FDBK1
HEXEBC TO=MINOR,FROM=FDBK2
DROP 6
USING BUFHDR,7 BASE BUFFER HEADER AT CWBADATD
MVI HDRMTYPE,HDRTYPEU SET MSGTYPE FOR OUTPUT
L 10,MVTUFLD GEN ADDR WHERE MSG CSECT
LA 10,8(,10) ADDR IS STORED
L 10,0(,10) GET MSG CSECT ADDR
DSIMBS MID=256,SWB=CWBSWB,BFR=(7),MSGTBL=C10),

Pl=C*MAJOR,8),
P2=(*MINOR,8),
P3=(*CURRKEY,4),
P4=(*TYPRD,1)

C 15,RTRNCD12 WAS ERR MSG BUILT O.K.
BNH MQSMSG2 YES, GO SEND MSG
BAL 14,SENDERR NO,GO BUILD INTERNAL ERRMSG & SEND
LTR 15,15 WAS INTERNAL MSG SENT O.K.
BZ CLEANUP YES, GO CLEAN UP AND EXIT
DC F'O' MQS ERROR, HALT EXECUTION
EQU *
DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID
LTR 15,15 TEST MQS RETURN CODE
BNZ ABEND657
B CLEANUP

ABEND657 DC F'O'
GO TO CLEANUP LOGIC

MQS OUTPUT FAILED, HALT EXECUTION

E~

* * CODE FOR READ OF NEXT RECORD FOLLOWS.

NEXTRD EQU *

L 3,DSRBUSER GET ADDRESS OF THE RGWA
USING RGWA,3 SET REG 3 AS BASE FOR RGWA
UPONE ADDR=CURRTOT,DIGITS=3 INCREMENT CURRENT TOTAL
USING BUFHDR,7 SET REG 7 AS BASE FOR BUFHDR
LH 10,HDRTDISP GET ADDR OF O/P COMMAND TEXT
AR 10,7 START+DISPLACEMENT = TEXT
USING RDCNMCMD,10 SET REG 10 AS BASE FOR

RESPONSE AREA FOR QUEUEING BACK TO THE PSCP

READERR

L 15,DSRBRCMA GET PREVIOUS READ MAJ CODE
LTR
BNZ
L
LTR
BZ
EQU

15,15
READERR
15,DSRBRCMI
15,15
LASTREC

*

WAS THE READ SUCCESSFUL?
IF NOT GO TO READ ERROR RTN.
GET PREVIOUS READ MIN CODE
WAS THE READ SUCCESSFUL?
IF O.K. GO TEST FOR LAST RECD

READ ERROR PROCESSING FOLLOWS.

MVI CNMCODE,C'E' MOVE IN CODE FOR ERROR RECORD
MVC DBKEY(4),CURRKEY MOVE IN KEY OF RECORD
HEXEBC TO=MAJRC,FROM=DSRBRCMA
HEXEBC TO=MINRC,FROM=DSRBRCMI
MVI TYPERR,C'R' SET ERROR TYPE TO READ

* *
*
*

ISSUE MQS MACRO TO INVOKE READVS PROCESSOR(DSITDSRD)

MQSREAD EQU *

DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID
LTR 15,15 WAS MESSAGE QUEUED O.K. ?
BZ SUMMTEST IF ZERO IT WAS
DC F'O' QUEUE FAILED, HALT EXECUTION

LASTREC EQU - *
UPONE ADDR=SUCCESS,DIGITS=3

SUMMTEST EQU *
CLC CURRTOT(3),TOTREC

INCREMENT SUCCESSFUL READS CTR

COMPARE CURRENT TOTAL TO TOTAL
TO BE READ

BNL SUMMREC IF NOT < GO SEND LAST & SUM RECS
FIRSTREC EQU *

CLC SUCCESS,ONE
BE SENDFRST
UPONE ADDR=CURRKEY,DIGITS=4
B SCHEDRD

COMPARE I SUCCESSES TO ONE
GO SEND 1ST SUCCESSFUL RECORD
INCREMENT SUCCESSFUL READS CTR
GO SCHEDULE A READ

Appendix E. Sample Data Services Command Processors E-7

* *
*
*

FIRST RECORD PROCESSING FOLLOWS. *
*

SENDFRST EQU *

MVI CNMCODE,C'F'
MVC DBKEY(4),CURRKEY
MVC DBREC(48),READBUF

MOVE IN CODE FOR FIRST RECORD
MOVE IN KEY OF RECORD
MOVE IN RECORD READ

* *
*
*

ISSUE MQS MACRO TO INVOKE READVS PROCESSOR(DSITDSRD) *
*

DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID
LTR 15,15 WAS MESSAGE QUEUED O.K. ?
BNZ ABEND655 IF NONZERO ABEND
UPONE ADDR=CURRKEY,DIGITS=4
B

ABEND655 DC
SCHEDRD
F'O'

INCREMENT SUCCESSFUL READS CTR
GO TO SCHEDULE READ

QUEUE FAILED, HALT EXECUTION

* * * LAST RECORD AND SUMMARY RECORD PROCESSING FOLLOWS. *

*******************************y.***************************************
SUMMREC EQU *

L 15,DSRBRCMA DETERMINE IF THE LAST
LTR t 5 , 1 5 READ WAS SUCCESSFUL,
BNZ SENDSMRC IF NOT DO NOT ATTEMPT TO SEND
L 15,DSRBRCMI BUT FINISH BY SENDING SUM~lARY

LTR 15,15 RECORD.
BNZ SENDSMRC
MVI CNMCODE,C'L' MOVE IN CODE FOR LAST RECORD
MVC DBKEY(4),CURRKEY MOVE IN KEY OF RECORD
MVC DBREC(L'DBREC),READBUF r-10VE IN RECORD READ

* * * ISSUE MQS MACRO TO INVOKE READVS PROCESSOR(DSITDSRD) *

DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID
LTR 15,15 WAS MESSAGE QUEUED O.K. ?
BZ SENDSMRC IF ZERO IT WAS, GO SEND SUMMARY
DC QUEUE FAILED, HALT EXECUTION

SENDSMRC EQU
F'O'

*

E-8

MVI
MVC
MVC
MVC
MVC

CNMCODE,C'S'
IKEYRSP(4),IKEY
TRECRSP(S),TOTREC
RDSUCESS(S),SUCCESS
DBREC(L'DBREC),BLANKS

MOVE IN CODE FOR SUMMARY REC
MOVE IN INITIAL KEY
MOVE IN NBR OF ATTEMPTED READS
MOVE IN NBR OF SUCCESSFUL READS
BLANK OUT LAST RECORD IN BUF

* *
*
*

ISSUE MQS MACRO TO INVOKE READVS PROCESSORCDSITDSRD) *
*

DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID

LTR
BZ
DC

15,15
CLEANUP
F'O'

WAS MSG QUEUED O.K. ?
IF ZERO IT WAS, GO EXIT

QUEUE FAILED, HALT EXECUTION

* * * FREE THE RGWA CODE FOLLOWS. *

CLEANUP EQU *

LA 4,RGWALEN GET LENGTH OF RGWA
DSIFRE R,LV=(4),A=C3)
LTR 15,15 TEST FREE RETURN CODE
BNZ ABEND652
LA 15,8 INDICATE FREE THE DSRB
B SRDEXIT EXIT MODULE

ABEND652 DC F'O' FREE OF WORK AREA FAILED,HALT EXECUTION

* STANDARD EXIT LINKAGE IS PERFORMED. REGISTER 15 WILL CONTAIN A *
* RETURN CODE.

SRDEXIT L

L
LM
BR

13,4(13)
14,12(13)
0,12,20(13)
14

RESET TO CALLERS SAVE AREA
RESTORE CALLERS

REGISTERS - EXCEPT 15
AND RETURN

*

* THE FOLLOWING IS AN INTERNAL SUBROUTINE TO CONSTRUCT AND *
* QUEUE AN ERROR MSG TO THE USER INDICATING THAT DSIMBM
* FAILED TO BUILD THE REQUESTED MESSAGE *

*

* SENDERR EQU

LA
LA
STH
LA
STH
USING
LA
MVC
CVD
UNPK
01
L
L
CVD
UNPK

* 5,HDRTEXT GET END OF BUFFER ADDR
6,MBMERRLN GET MSG LENGTH
6,HDRMLENG SET MSG LENGTH IN BUFFER HEADER
6,256 GEN TOTAL BUFFER LENGTH
6,HDRBLENG SET BUFFER LENGTH IN BUF HEADER
MBMERRDS,5 BASE ERROR MSG DSECT
6,MBMERRLN+HDRTEXT GEN ADDR OF TEMP AREA
MBMERRDS(MBMERRLN),MBMERR MOVE ERR MSG TO BUF
15,0(,6) CONVERT RETURN CODE TO PACKED DECIML
MBMRTRN(8),4(4,6) UNPACK TEMP CODE INTO MSG
MBMRTRN+7,X'FO' CHANGE SIGN 'C' TO 'F'
1,CWBSWB GET ADDR OF SWB
15,MBSMIDA-DSISWBC,1) GET MSG NBR
15,0(,6) CONVERT MSG NBR TO PACKED DECIMAL
MBMMSGNM(8),4C4,6) UNPACK MSG NBR INTO ERRMSG

or MBMMSGNM+7,X'FO' CHANGE SIGN 'C' TO 'F'
DSIMQS SWB=CWBSWB,BFR=(7),TASKID=DSRBOID
BR 14 RETURN TO MAINLINE

********************************~~*************************************
Appendix E. Sample Data Services Command Processors E-9

* * CONSTANTS FOLLOW

UPTAB DC
HEXTAB DC

CL16'1234567890000000'
CL16'0123456789ABCDEF'

FOUR
LAST
FIRST
SUMM
ERROR
READRSP
ENDBUF

DC
DC
DC
DC
DC
DC
DC

RGWACHRS DC
BLANKS DC
ONE DC

F'4'
C'L'
C'F'
C'S'
C'E'
CL8'READRESP'
CL8'
CL4'RGWA'
256C' ,
CL3'OOl'
XL2'0003'
CL3'OOO'

KEY LENGTH CONSTANT

IFRCDE DC
ZERO DC
RTRNCD12 DC
MBMERR DS

F' 12'
OC

DSIMBM ERROR CHECK
INTERNAL ERR MSG FOR DSIMBM FAILURE

DC
DC
DC
DC
DC

C'***ERROR IN DSIMBM, RETURN CODE='
CL8'OOOOOOOO'
C', MESSAGE NBR='
CL8'OOOOOOOO'
C' DSITDSRD TERMINATING COMMAND PROCESSING'

MBMERRND EOU *
MBMERRLN EOU MBMERRND-MBMERR
RGWA DSECT
RGWAID DS CL4

DS C
IKEY DS CL4

DS C
TOTREC DS CL3

DS
CURRKEY DS

DS
CURRTOT DS

DS
SUCCESS DS

DS
FDBKl DS
FDBK2 DS

C
CL4
C
CL3
C
CL3
CL2
CL4
CL4
C

LENGTH OF ERROR MSG
CNMREAD WORK AREA
RGWA ID FIELD
BLANK
INITIAL KEY TO READ
BLANK
NUMBER OF RECORDS TO READ
BLANK
CURRENT KEY BEING READ
BLANK
NUMBER OF RECORDS READ SO FAR
BLANK
NO. OF RECORDS READ SUCCESSFULLY
BLANK
RET CODE FEEDBACK AREA
RET CODE FEEDBACK AREA
BLANK DS

RBUFHDR OS
READBUF DS
ENOFBUF DS

CLCBUFHDRND-BUFHDR) NCCF BUFFER HEADER

MAJOR DS
MINOR DS

CL48
CL8
CL8
CL8

DS C
TYPRD OS CLl
RGWAEND EOU *
RGWALEN EOU RGWAEND-RGWA

E-IO

VSAM READ BUFFER
, END OF BUFFER IND.

MAJOR RETURN CODE
MINOR RETURN CODE
BLANK
TYPE OF READ ERROR

CNMROCMO DSECT
ROVERB OS

OS
ROIKEY OS

OS
TREC DS

OS

ROCNMCMO DSECT
CNMIFR OS
CNMVERB DS

DS
CNMCODE OS

*
*
*
*
*
*
OBKEY

MAJRC
MINRC

OS
DS
DS
DS
OS
OS

IKEYRSP DS
DS

TRECRSP DS
DS

ROSUCESS DS
DS

TYPERR DS

*
*
*
*

CL8
CL4
CL4
C
CL3
CL2

CL2
CL8
CL2
C

C
CL4
CL4
CL8
CLS
C
CL4
C
CL3
C
CL3
C
CLl

E = ERROR MESSAGE

CNMREAD COMMAND DSECT
'CNMREAD' COMMAND ID
BLANKS
KEY OF 1ST RECORD TO BE READ
BLANK
NUMBER OF RECORDS TO BE READ
BLANKS

READ RESPONSE DSECT
IFR CODE AREA
'REAORESP' COMMAND
BLANKS
TYPE CODE FOR MESSAGE O/P

F = FIRST RECORD READ
L = LAST RECORD READ
S = SUMMARY RECORD

BLANK
KEY OF RECORD READ
BLANKS
MAJOR RETURN CODE ON READ
MINOR RETURN CODE ON READ
BLANK
INITIAL KEY READ
BLANK
TOTAL RECORDS TO BE READ
BLANK
TOTAL READ SUCCESSFULLY
BLANK
TYPE OF READ ERROR

S = SCHEDULING ERROR
R = READ ERROR

DS CL4 BLANKS
DBREC DS CL48 RECORD READ FRO DATA BASE
RDCNMEND EOU *
RDCNMLEN EOU RDCNMEND-RDCNMCMD

MBMERRDS DSECT OSECT FOR INTERNAL ERRMSG FOR OSIMBM FAILURE
DS CL32

MBMRTRN DS
DS

MBMMSGNM DS

DSITDSRD CSECT

CL8
CL14
CL8

RETURN CODE FROM DSIMBM

MSG NBR THAT CAUSED FAILURE

ASTERIKS DC (L'READBUF)C'*'
END DSITDSRD

Appendix E. Sample Data Services Command Processors E-ll

DSITDSOL Command Processor

* * * NAME = DSITDSOL *
* * * FUNCTION = THIS COMMAND PROCESSOR WILL SEND REQUESTS TO CNMI *
* AND HANDLE THE RESPONSES. *
* * * ENTRY POINT = DSITDSOL *
* * * INPUT = *
* REGISTERS: *
* Rl = DSICWB ADDRESS *
* R13 = ADDRESS OF STANDARD SAVEAREA *
*
*

R14 = RETURN ADDRESS
R15 = ENTRY POINT OF ROUTINE *

*
* * * DSICWB (POINTED TO BY Rl - PSCP AND DSCP): *
* CWBSAVEA = AN 18 WORD SAVE AREA FOR USE IN THIS CMD PROC. *
* CWBBUF = ADDRESS OF A MESSAGE BUFFER. THE BUFFER *

CONTAINS A STANDARD NCCF BUFFER HEADER.
CWBPDB = ADDRESS OF A PDB FOR USE IN THIS CMD PROC.

NOTE - THE PDB WILL CONTAIN VALID INFORMATION
ONLY WHEN CONTROL IS RECEIVED INITIALLY FROM
THE TASK (OST OR DST) DRIVING THIS CMD PROC.

CWBSWB = ADDRESS OF A SWB FOR USE IN THIS CMD PROC.
CWBTIB = ADDRESS OF THE DSIOST OR DSIZDST TIB.

*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*
*
*
*

CWBADATD = A 256 BYTE WORK AREA FOR USE IN THIS CMD PROC. *
CWBDSRB = FOR A DSCP ADDRESS OF A DSRB CONTAINING * INFORMATION RELATED TO PROCESSING OF THE *

COMMAND. FOR A PSCP THIS FIELD IS MEANINGLESS. *

*
*
*
*

DSIDSRB (POINTED TO BY CWBDSRB - DSCP ONLY):

*
*
*
* * OUTPUT =

DSRBFNCD
DSRBRCMA
DSRBRCMI
DSRBOID
DSRBUSER
DSRBINPT

* REGISTERS:

= REASON FOR INVOCATION
= MAJOR RETURN CODE ON COMPLETION
= MINOR RETURN CODE ON COMPLETION
= OPID OF OST THAT INVOKED US
= WORK FIELD
= ADDRESS OF CNMI BUFFER

* RO - R14 = RESTORED TO INPUT STATUS
* R15 = RETURN CODE

* * RETURN CODE (R15 ON EXIT):
* FOR A DSCP:

OF REQUEST
OF REQUEST

*
*
*
*
*

8 = RELEASE THE DSRB PASSED TO THIS CMD PROC - FCT
REQUESTED IS COMPLETE.

E-12

o = MAINTAIN THE DSRB PASSED TO THIS CMD PROC
RESUME PROCESSING HAS BEEN SCHEDULED.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

* DESCRIPTION = *
* THIS COMMAND PROCESSOR IS INVOKED BY DSITPSOL WHICH HAS QUEUED *
* A COMMAND WITH THE FOLLOWING POSSIBLE SYNTAXES: *
* * * 1) - NCFCNMI <PUNAME> *
* 2) - NCFCNMI <PUNAME> <OPTION> *
* WHERE OPTION := REJECT I REPLACE *
* * * DSITPSOL HAS VERIFIED THE PUNAME FOR LENGTH AND THE OPTION, *
* IF PRESENT. DSITDSOL PUTS THE PUNAME IN A WORK AREA, SELECTS *
* A REAL OR DUMMY RU, AND INVOKES DSIZCSMS TO MAKE THE CNMI *
* REQUEST. IF THE REQUEST COMPLETES SUCCESSFULLY OR WITH A *
* NEGATIVE RESPONSE, AN APPROPRIATE COMMAND IS FORMATTED AND *
* QUEUED TO DSITPSOL. *
* * * THE REJECT OPTION CAUSES THE USER FORWARD EXIT, DSICPUTE, *
* TO REJECT THE REQUEST. THE REPLACE OPTIOK CAUSES DSICPUTE *
* TO SUBSTITUTE A GOOD RU FOR THE DUMMY RU AND TO REQUEST BUFFER *
* SUBSTITUTION. *
*
*
*
*
*

*
*
*
*
* * EXIT = RETURN TO ADDRESS IN R14, WITH RETURN CODE SET IN R15. *

* * EXTERNAL REFERENCES = NONE

* * CONTROL BLOCKS =
* DSICWB - COMMAND-PROCESSOR WORK BLOCK
* DSIDSRB - DATA SERVICES REQUEST BLOCK (DSCP)
* DSIPDB - PARSE DATA BLOCK
* DSISWB - SERVICE-ROUTINE WORK BLOCK
* DSITIB - TASK INFORMATION BLOCK
* DSITVB - TASK VECTOR BLOCK
* DSIMVT - MAIN VECTOR TABLE
* DSISVL - SERVICE ROUTINE VECTOR LIST
* DSIIFR - INTERNAL FUNCTION REQUEST

* * MACROS = DSICBS,DSIGET,DSIFRE,DSIMQS,DSIZCSMS

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Appendix E. Sample Data Services Command Processors E-13

DSITDSOL CSECT
*** * MODULE ADDREse·~ILITY IS ESTABLISHED, ADDRESSABILITY TO THE CWB IS *
* ESTABLISHED, AND THE CWB ~AVEAREA IS USED IN PERFORMING STANDARD *
* ENTRY LINKAGE. *

* USING *,R15

B SAVEREGS
DC C'DSITDSOL
DC C'&SYSDATE'

ESTABLISH ADDRESSABILITY FOR BRANCH
BRANCH AROUND NAME AND DATE

SAVEREGS EQU *
DROP R15 DROP ADDRESSABILITY FOR BRANCH

SAVE REGS IN CALLERS AREA STM R14,R12,12CR13)
LR R12,R15
USING DSITDSOL,R12
LR R3,R1
USING DSICWB,R3

R2,CWBSAVEA
R13,4C,R2)
R2tSC,R13)
R13,R2
SC4,R13),SCR13)
R4,CWBTIB

PUT MY ENTRY POINT INTO REG 12
iSTABLISH MODULE ADDRESSABILITY
PUT CWB ADDR INTO R3
BASE THE CWB
GET MY SAVEAREA ADDR
SET MY BACKWARD POINTER
SET CALLERS FORWARD POINTER
PUT MY SAVEAREA INTO REG 13
ZERO MY FORWARD POINTER
GET MY TIB ADDR

LA
ST
ST
LR
XC
L
L
ST
L

R6,TIBTVB-DSITIBC,R4) GET MY TVB ADDR
R6,OC,R13) PUT MY TVB ADDR IN 1ST WORD OF SAVEA
R4,TVBMVT-DSI~VB(,R6) GET MY MVT ADDR

USING DSIMVT,R4
L RS,CWBDSRB
USING DSIDSRB,RS

BASE THE MVT
GET MY DSRB ADDR
BASE THE DSRB

* * * INITIALIZE THE OUTPUT BUFFER HEADER FOR MESSAGES TO THE OST *

* LA R7,CWBADATD GET OUTPUT BUFFER ADDR

USING BUFHDR,R7 BASE THE BUF HEADER ON THE OUTPUT BUF
LA RS,BUFHDRND-BUFHDR GEN LENGTH OF BUFFER HEADER
STH RS,HDRTDISP STORE OFFSET TO MSG IN HEADER
LA RS,256 GEN LENGTH OF BUFFER
STH RS,HDRBLENG STORE BUFFER LENGTH IN HEADER
MVI HDRMTYPE,HDRTYPEU INIT MESSAGE TYPE TO USER
MVI HDRIND,X'OO' ZERO INDICATORS IN HEADER
MVC HDRDOMIDCS),MVTCURAN STORE DOMAIN ID IN HEADER
XC HDRPOICL'HDRPOI),HDRPOI ZERO POI INFO IN HEADER
XC HDRTSTMP(4),HDRTSTMP PUT A PACKED ZERO
MVI HDRTSTMP+3,X'OC' INTO THE TIME STAMP

* * * IF THIS IS THE INITIAL INVOCATION, GETMAIN AN AREA FOR THE CNMI *
* BUFFER AND VERIFY THE OPERANDS. IF EVERYTHING IS OK, *
* ISSUE DSIZCSMS TO SEND CNMI REQUEST. *

E-14

* CLI DSRBFNCO,OSRBFNRM IS THIS THE INITIAL INVOCATION
BNE CNMIRESP NO, GO LOOK AT THE CNMI RESPONSE
DSIGET LV=256, GET THE CNMI BUF AND QUEUE TO TVB >

A=OSRBUSER, >
LISTA=BUFHDRNO, >
Q=YES,
TASKA=CR6),
REENT=YES,
EXIT=NO

LTR R15,R15
BNZ GETMERR
L R6,CWBPDB
L R8,CWBBUF
USING DSIPDB,R6
LA R9,PDBTABLE

TEST THE RETURN CODE
IF NOT ZERO, GETMAIN ERROR
GET ADDR OF POB
GET ADDR OF INPUT COMMAND BUF
BASE THE POB
GET STARTING ADDR OF PDB ENTRIES

LA R9,PDBENTNO-PDBENTRYC,R9) GET ADDR OF 2ND ENTRY
USING PDBENTRY,R9 BASE THE PDBENTRY
MVI BUFHDRND,X'40' INITIALIZE TEMP AREA FOR
MVC BUFHDRND+1(7),BUFHDRND PUNAME TO BLANKS
AH R8,PDBDISP
XR Rl0,Rl0
IC R10,PDBLENG
BCTR Rl0,RO
EX Rl0,MOVE
LA Rl0,3
CH Rl0,PDBNOENT
BE SETOPTN
LA Rl0,REQMS
B SENDRU

SETOPTN EQU *

GEN ADDR OF PUNAME IN INPUT BUF
ZERO REG 10
GET LENGTH Of PUNAME
DECREMENT MOVE LENGTH
MOVE PUNAME TO TEMP AREA
PUT 3 IN REG 10 fOR ENTRIES TEST
TEST FOR 3 ENTRIES IN COMMAND
IF 3, GO SEE WHAT OPTION SPECIFIED
GET ADDR OF THE REAL RU
GO SEND THE RU

* ***SELECT THE DUMMY RU ASSOCIATED WITH THE SPECIFIED OPTION
LA R9,PDBENTND-PDBENTRYC,R9) GEN ADDR OF 3RD PDB ENTRY
L R8,CWBBUF GET STARTING ADDR Of INPUT BUf
AH R8,PDBDISP GEN ADDR OF OPTION IN INPUT BUf
CLC OC3,R8),REJ COMPARE FOR REJECT
BNE REPLRU IF NOT EQUAL, OPTION MUST BE REPLACE
LA Rl0,REJ GET ADDR OF DUMMY REJECT RU
B SENDRU GO SEND THE RU

REPLRU EQU *
* ***SINCE OPTION WAS VERIfIED BY DSITPSOL IT MUST BE REPLACE

LA R10,REPL GET ADDR OF DUMMY REPLACE RU
SENDRU EQU *
* ***ISSUE DSIZCSMS TO SEND FORWARD RU, CHECK RESULT

LA R8,BUfHDRND GET ADDRESS OF PUNAME
DSIZCSMS SWB=CWBSWB,

DSRB=CR5),
INPUT=DSRBUSER,
LENGTH=LNGTH256,
RU=CR10),
RULENG=LNGTH8,
DEST=(R8)

LTR RO,RO TEST MAJOR RETURN CODE

>
>
>

>
>
>
>
>
>

Appendix E. Sample Data Services Command Processors E-15

BNZ CHKFWDEX IF NOT ZERO, EXIT MAY HAVE REJECTED
***RU SCHEDULED OK, IN!T BUFHDR AND MOVE OK MSG TO OUTPUT BUF
LA Rl',L'SCHELDOK GET LENGTH OF MSG
STH Rl1,HDRMLENG STORE MSG LENGTH IN BUr HEADER
MVC BUFHDRNDCL'SCHELDOK),SCHELDOK ~'OVE MSG TO OUTPUT BUF
UNPK BUFHDRND+37(3),DSRBPRIDC2) UNPACK PRID INTO OUT BUF
MVC BUFHDRND+40(1),DSRBPRID+l MOVE LAST BYTE TO OUT BUF
01 BUFHDRND+39,X'FO' MAKE ZONE CORRECT
01 BUFHDRND+40,X'FO' MAKE ZONE CORRECT
TR BUFHDRND+37(4),TRANSTBL-240 MAKE ALL CHARS PRINTABLE
LA Rl1,O INDICATE DSRB SHOULD NOT BE FREED
B EXIT GO SEND MSG AND EXIT

CHKFWDEX EQU *
* ***DETERMINE IF THE USER FORWARD EXIT REJECTED THE REQUEST

LA Rl1,SWBCEXIT GET TEST VALUE FOR USER EXIT REJECT
CR RO,Rl1
BNE CNMMERR

TEST MINOR RETURN CODE FOR REJECT
IF NOT EQUAL, WE HAVE A CNMM ERROR

***INIT BUF HEADER FOR MSG INDICATING USER EXIT REJECT
LA Rll,L'FWEXITRJ GET MSG LENGTH
STH Rl1,HDRMLENG STORE MSG LENGTH IN OUTPUT BUF HDR
MVC BUFHDRNDCL'FWEXITRJ),FWEXITRJ MOVE EXIT REJ MSG TO BUF
B FREEBUF GO FREE BUF, SEND MSG, AND EXIT

CNMMERR EQU *
* ***DSIZCSMM COULD NOT EXECUTE THE REQUEST, SEND ERROR MSG

LA Rl1,L'CNMMREJ GET LENGTH OF MSG
STH Rl1,HDRMLENG STORE MSG LENGTH IN OUTPUT BUF HDR
MVC BUFHDRNDCL'CNMMREJ),CNMMREJ MOVE MSG TO OUTPUT BUF

STCM R15,X'F' ,BUFHDRND+43 PUT MAJOR RETURN CODE IN BUF

UNPK BUFHDRND+43(7),BUFHDRND+43C4) UNPACK THE RETURN CODE
STCM R15,X'1' ,BUFHDRND+50 STICK LAST BYTE IN BUF
01 BUFHDRND+49.XTFO' MAKE ZONE CORRECT
01 BUFHDRND+50,X'FO' MAKE ZONE CORRECT
TR BUFHDRND+43(8),TRANSTBL-240 MAKE ALL CHARS PRINTABLE

STCM RO,X'F' ,BUFHDRND+61 PUT MINOR RETURN CODE IN BUF

UNPK BUFHDRND+61(7),BUFHDRND+61C4) UNPACK THE RETURN CODE
* STCM RO,X'l T , BUFHDRND+68 STICK LAST BYTE IN BUF

01 BUFHDRND+67,X'FO' MAKE THE ZONE CORRECT
01 BUFHDRND+68,X'FO' MAKE THE ZONE CORRECT
TR BUFHDRND+61(8),TRANSTBL-240 MAKE ALL CHARS PRINTABLE
B FREEBUF GO FREE BUFFER, SEND MSG, AND EXIT

GETMERR EQU *
* ***GETMAIN FAILED FOR CNMI BUFFER, INIT BUF HDR AND MOVE MSG

E-16

LA Rl1,L'GMERRMSG GET LENGTH OF GETMAIN ERROR MSG
STH Rl1,HDRMLENG STORE MSG LENGTH IN OUTPUT BUF HDR
MVC BUFHDRNDCL'GMERRMSG),GMERRMSG MOVE MSG TO OUTPUT BUF
LA Rl1,8 INDICATE THAT DSRB SHOULD BE FREED
B EXIT GO SEND MSG AND EXIT

* * * IF THE REQUESTED FUNCTION WAS SUCCESSFULLY COMPLETED, BUILD THE *
* APPROPRIATE COMMAND TO REINVOKE DSITPSOL.
* IF UNSUCCESSFUL COMPLETION, FORMAT THE ERROR MSG.

*

*
*
*

* CNMIRESP EQU *
L R8,DSRBINPT GET ADDR OF CNMI BUFFER
CLI DSRBFNCD,DSRBFSOL TEST FOR SOLICITED FUNCTION CODE
BNE FNCTERR IF NOT EQUAL, GO SEND ERROR MSG
CLC DSRBRCMI(4),RSPGOOD TEST FOR GOOD MINOR RTN CODE
BNE CHKNEGRP IF NOT GOOD, GO CHECK FOR NEG RESP
MVC BUFHDRND+2(9),CNMIDELV MOVE DELIVER CMND TO OUTPUT BUF
B

CHKNEGRP EQU
CLC

BLDCMND GO COMPLETE COMMAND BUILD

* DSRBRCMI(4),RSPNGR TEST FOR NEGATIVE RESPONSE
BNE FNCTFAIL IF NOT EQUAL, GO FORMAT ERROR MSG
MVC BUFHDRND+2(9),CNMINEGR MOVE IN NEG RESPONSE CMND

BLDCMND EQU *
* ***COMPLETE BUILD OF OUTPUT CMND WITH IFR AND DELIVERED INFO

MVI HDRMTYPE,HDRTYPEI SET MSG TYPE TO COMMAND REQUEST
MVC BUFHDRND(2),INTRNLRQ SET IFR CODE
LH R9,HDRMLENG-BUFHDR(,R8) GET INPUT RESPONSE LENGTH
AH R8,HDRTDISP-BUFHDR(,R8) POINT 8 TO START OF RESPONSE
BCTR R9,RO
EX R9,MOVERU
LA R9,12(,R9)
5TH R9,HDRMLENG
B FREEBUF

DECREMENT MOVE LENGTH
MOVE RESPONSE TO OUTPUT BUFFER
GEN OUTPUT MSG LENGTH
PUT MSG LENGTH IN OUTPUT BUF HDR
GO FREE CNMI BUF AND EXIT PROCESSING

FNCTERR EQU *
* ***FUNCTION CODE DID NOT INDICATE A SOLICITED RESPONSE

LA Rll,L'BADFNCT GET LENGTH OF ERROR MSG
STH Rl1,HDRMLENG PUT MSG LENGTH IN OUTPUT BUF HDR
MVC BUFHDRND(L'BADFNCT),BADFNCT MOVE MSG TO OUTPUT BUF
MVC BUFHDRND+31(1),DSRBFNCD MOVE FUNCTION CODE TO BUFFER
UNPK BUFHDRND+30(1),BUFHDRND+31 (1) SWAP NIBBLES
NI BUFHDRND+30,X'OF' ZERO THE ZONE
NI BUFHDRND+31,X'OF' ZERO THE ZONE
TR BUFHDRND+30(2),TRANSTBL MAKE CHARS PRINTABLE
B FREEBUF GO FREE CNMI BUFFER AND EXIT

FNCTFAIL EQU *
* ***REQUEST DID NOT COMPLETE SUCCESSFULLY, BUILD ERROR MSG***

*

*

LA Rl1,L'UNSUCCES GET LENGTH OF ERROR MSG
5TH
MVC

MVC

UNPK
MVC
01
01
TR

Rl1,HDRMLEHG PUT MSG LENGTH IN OUTPUT BUF HDR
BUFHDRNDCL'UNSUCCES),UNSUCCES MOVE MSG TO OUTPUT BUF

BUFHDRND+42(4),DSRBRCMA MOVE MAJOR RETURN CODE TO BUF

BUFHDRND+42(7),BUFHDRND+42(4) UNPACK THE RETURN CODE
BUFHDRND+49(1),DSRBRCMA+3 MOVE LAST BYTE
BUFHDRND+48,X'FO' MAKE THE ZONE CORRECT
BUFHDRND+49,X'FO' MAKE THE ZONE CORRECT
BUFHDRND+42(8),TRANSTBL-240 MAKE ALL CHARS PRINTABLE

Appendix E. Sample Data Services Command Processors E-17

MVC BUFHDRND+60(7),DSRBRCMI MOVE MINOR RETURN CODE TO BUF
UNPK BUFHDRND+60(7),BUFHDRND+60C4) UNPACK THE RETURN CODE
MVC BUFHDRND+67Cl),DSRBRCMI+3 MOVE LAST BYTE
01 BUFHDRND+66,X'FO' MAKE THE ZONE CORRECT
01 BUFHDRND+67,X'FO' MAKE THE ZONE CORRECT
TR BUFHDRND+60(8),TRANSTBL-240 MAKE ALL CHARS PRINTABLE

* * * FREE THE CNMI BUFFER AND CONTINUE WITH EXIT PROCESSING

*
*
*

* FREEBUF EQU
LA
L

Rl1,CWBADATD+241
R2,CWBTIB

GET ADDR OF WORK AREA
GET MY TIB ADDR

L R2,TIBTVB-DSITIBC,R2) GET MY TVB ADDR
DSIFRE LV=256,

LA
LTR
BZ
DC

A=DSRBINPT,
LISTA=(R11),
Q=YES,
TASKA=(R2),
EXIT=NO
R 11 ,8
R15,R15
EXIT
F'O'

INDICATE THAT DSRB SHOULD BE FREED
TEST FOR GOOD FREE
IF OK, GO SEND OUTPUT BUF AND EXIT
BAD FREE, HALT EXECUTION

* * * QUEUE THE OUTPUT BUFFER TO THE OST THAT INVOKED US, RESTORE *
* THE REGS AND RETURN TO THE DST *

* *

* EXIT EQU *
DSIMQS SWB=CWBSWB,

BFR=(R7),
TASKID=DSRBOID

LTR R15,R15 TEST FOR GOOD MQS
BZ RESTOR IF OK, GO RESTORE REGS AND EXIT
DC F' 0' MQS FAILED, HALT EXECUTION

RESTOR EQU *
* ***PERFORM STANDARD EXIT LINKAGE PROCESSING***

LR R15,Rl1 SET THE RETURN CODE
L R13,4(,R13) GET CALLERS SAVEAREA ADDR
L R14p12(,R13) RESTORE REG 14
LM RO,R12,20CR13) RESTORE REGS 0-12
BR R14 RETURN TO DST

>
>
>
>
>

>
>

* * * DECLARES *

E-18

* RSPGOOD DC
RSPNGR DC
LNGTH256 DC
LNGTH8 DC
MOVE MVC
MOVERU MVC
REJ DC
REPL DC
REQMS DC
SCHELDOK DC
FWEXITRJ DC
CNMMREJ DC

GMERRMSG DC
TRANSTBL DC
UNSUCCES DC

BADFNCT DC
INTRNLRQ DC
CNMIDELV DC
CNMINEGR DC

ACDSRCGOOD)
ACDSRCNGRP)
F'256'
F'8'
BUFHDRNDCO)~O(R8) OBJECT OF EXECUTE TO MOVE PUNAME
BUFHDRND+llCO)~O(R8) OBJECT OF EXECUTE TO MOVE CNMI RSP
XL8'D9C5Dl0000000000' DUMMY REJECT RU
XL8'D9C5D70000000000' DUMMY REPLACE RU
XL8'4103040000000000' THE REAL RU
C'CNMI REQUEST HAS BEEN SCHEDULED-PRID=OOOO'
C'USER FORWARD EXIT HAS REJECTED THIS REQUEST'
C'DSIZCSMM INDICATED ERROR CONDITION MAJOR=X" , ,-

MINOR=X' , , , ,
C'GETMAIN FOR CNMI BUFFER FAILED'
C'0123456789ABCDEF'
C'FUNCTION COMPLETED UNSUCCESSFULLY MAJOR=X" " M-
INOR=X" '"
C'INVALID FUNCTION CODE--CODE=X" '"
YCIFRCODCR) IFR CODE FOR CROSS TASK CMND QUEUEING
C'CNMIDELV '
C'CNMINEGR '

VERB FOR DELIVER RESPONSE
VERB FOR NEGATIVE RESPONSE

Appendix E. Sample Data Services Command Processors E-19

Appendix F. Sample Full-Screen Com.mand Processot

This appendix is an example of a user-written full-screen cortunand processor.
Note: This command processor is not executable as it is shown in this appendix.

From OST

FULLSCR

ToOST

~ Initial entry
~Finalexit

~WRITEonIY

-.c> READ and WRITE/READ

FSAPPL WRITREAD

Performs
Full-Screen
Input/Output

ToOST

Appendix F. Sample Full-Screen Command Processor F-l

DISGET

Obtain work space

continue processing.

Process command
parameter with
DSIPAS.

Call full-screen
application program -
FSAPPL.

DSIFRE

Free work area.

DSIPSS

'PROG COMPLETE'
message issued.

Return to OST.

DISPSS

Issue Error Message

Exit

WRITREAD

DSIPSS

TYPE = PANEL

DSIPSS

Issue error message.

Input is required.

continue processing.

DSIFRE

Free work area.

Restore NCCF registers.

Return to OST.

Return to OST to obtain
input.

Appendix F. Sample Full-Screen Command Processor F-3

TITLE 'FUllSCR - NCCF 3270 PANEL DRIVER'
* /**
* * *MODUlE NAME: FUllSCR *
* * *DESCRIPTIVE NAME: NCCF PANEL DRIVER *
* * *FUNCTION: THIS MODULE DRIVES A NCCF FUll SCREEN COMMAND PROCESSOR. *
* NCCF. *
* * *ATTRIBUTES: REENTRANT *
* * *COMMAND SYNTAX: VERB <XYZ> *
* 'XYZ' IS OPTIONAL. IF NOT SPECIFIED, IT IS NOT PASSED TO FSAPPl. *
* 'XYZ' MAY HAVE PARAMETER SYNONYMS DEFINED WITH THE 'PARMSYH' NCCF *
* DEFINITION STATEMENT. DSIPAS IS USED TO OBTAIM THE REGULAR *
* VALUE. *
* * *ENTRY POINT: FULlSCR *
* PURPOSE: TO DEMONSTRATE FULL SCREEN PANEL MODE *
* LINKAGE: CALL *
* INPUT: STANDARD NCCF COMMAND PROCESSOR LINKAGE *
* REGISTERS: Rl=CWB ADDRESS CONTAINING: *
* TIB ADDRESS * * SWB ADDRESS *
* PDB ADDRESS *
* COMMAND BUFFER ADDRESS * * R13=SAVE AREA ADDRESS * * R14=RETURN ADDRESS *
* R15=ADDR OF FULLSCR *
* * *EXIT NORMAL: *
* lINKAGE: RETURN TO CALLER *
* OUTPUT: *
* REGISTERS: *
* UNCHANGED REGISTERS: All REGISTERS EXCEPT R15 *
* OUTPUT REGISTERS: R15 CONTAINS A RETURN CODE FOR CALLER. *
* R15 = 0 - NO ERRORS *
*EXIT ERROR: NONE. *
* * *EXTERNAL REFERENCES: *
*PROCEDURES INVOKED: FSAPPL *
* PURPOSE: TO PERFORM PROCESSING AND BUILD 3270 DATA STREAMS. *
* LINKAGE: CALL *
* INPUT: STANDARD NCCF COMMAND PROCESSOR LINKAGE * * REGISTERS: RO=CWB ADDRESS *
* Rl=WORK AREA ADDRESS. MAPPED BY DSECT FSSAVE. *
* IF PARAMETER 'XYZ' WAS SPECIFIED, PARMSIT IS SET. *
* R13=SAVE AREA ADDRESS *
* R14=RETURN ADDRESS * * R15=ADDR OF FSAPPL *
* NOTE: FSAPPL WILL CALL WRITREAD TO PERFORM THE TERMINAL I/O *
* OF FULL SCREEN 3270 DATA STREAMS BUILT BY FSAPPL. *
* ADDRESSABILITY TO WRITREAD IS BY 'DC V(WRITREAD)' IN *
* IN FSAPPL. *
* * *NCCF CONTROL BLOCKS: DSICWB DSIMVT DSIPDB DSISVL DSISWB *
* DSITIB DSITVB *
*NCCF MACROS: DSICBS DSIGET DSIFRE DSIPAS DSIPSS *
* * **/

F-4

FULLSCR

PROLOG

PST ART

CSECT
DS
USING
B
DC
DROP
STM
BALR
DS
USING

LR
USING
LA
ST
ST
LR
L
USING
L
ST
L
USING
LA
USING

,
OH
*,R15
PROLOG
C'FULLSCR &SYSDATE.'
R15
R14,R12,12(R13)
R12,O
OH
PSTART,R12

R2,Rl
DSICWB,R2
Rl,CWBSAVEA
R13,4(,Rl)
Rl,8(,R13)
R13,Rl
R4,CWBTIB
DSITIB,R4
RIO,TIBTVB
RIO,O(,R13)

/*********************************/
/* */
/* ENTRY */
/* */
/* */
/* */
/* LINKAGE */
/* */
/* */

/*********************************/

/* MOVE THE cwa BASE */
/* BASE THE COMMAND WORK BLOCK */
/* POINT TO FULLSCR SAVEAREA */
/* SAVE CALLER-S SAVEAREA ADDRESS*/
/* SAVE FULLSCR SAVEAREA ADDRESS */
/* */
/* OBTAIN TIB ADDRESS */
/* BASE TASK INFO BLOCK */
/* GET TVB ADDRESS */
/* DEBUGGING AID: SAVEAREA -> TVB*/

RS,TVBMVT-DSITVB(,RIO) /* GET MVT BASE */
DSIMVT,RS /* BASE NCCF MAIN VECTOR TABLE */
Rl1,CWBADATD /* POINT TO AUTO DATA AREA */
DATD,Rll /* DECLARE BASE REG */

* /***/
* /* */
* /* COPY THE BUFFER HEADER PASSED. USE IT AS A PROTOTYPE. */
* /* */
* /***/
* USING BUFHDR,RIO /* BASE BUFHDR iEMPORARILY */

L R 1 0 , C L.J B B U F /* INITIALIZE WORKING BUFHDR ... */
MVC BUFFER(24),BUFHDR /* FROM THE ONE PASSED */
LA RIO,BUFFER /* CHANGE THE LENGTH */
NVC HDRBLENG,BUFFERLN /* TO THE REAL LENGTH */
~1VC HDRTDISP,LNBUFHDR /* SET THE TEXT DISP TO ... */

/* END OF BUFHDR */
MVI HDRMTYPE,HDRTYPEU /* SET TYPE TO USER GEN-ED /~1SG */
DROP RIO /* DROP BUFHDR COVER /

/ */

**
* * * TEST TO SEE IF FSAPPL IS ALREADY RUNNING. IF SO, THE WORK AREA *
* ADDRESS WILL BE IN THE TIB USER FIELD (TIBUFLD). *
* * **

L R6, TIBUFLD /* */
LTR R6,R6 /* TEST FOR ZERO */
BNZ RUNNING /* */

Appendix F. Sample Full-Screen Command Processor F-5

**
* * * SET UP ROUTINE *
* * **
* * /***/ * /* */ * /* GET WORK SPACE. STORE ADDRESS IN TIBUFLD. */
* /* */
* /***K*****/
* L RIO,GETSIZE /* PUT LENGTH IN REGISTER */

L R9,TIBTVB /* POINT TO THE TVB */
DSIGET LV=(RIO), /* LENGTH IS IN REGISTER */*

A=TIBUFLD, /* RETURN ADDRESS IN TIBUFLD */*
REENT=YES, /* CALL IS REENTANT */*
LI5TA=GETWORK, /* DSIGET WORKAREA = GETWORK */*
Q=YES, /* NCCF WILL KEEP TRACK OF AREA */*
TASKA=(R9) /* TVB ADDRESS IS IN REG9 */

* LTR R15,R15 /* WAS DSIGET SUCCESSFUL? */
BZ GETOK /* BRANCH IF YES */
LA RIO,BUFFER
USING BUFHDR,RIO /* BASE THE BUFHDR ON BUFFER */
NVC HDRTEXT(42),MSG3 /* MOVE IN THE MESSAGE TEXT */
MVC HDRNL ENG, r>lSG3 L /* SET MESSAGE LENGTH IN BUFHDR */
DSIPS5 TYPE=OUTPUT, /* SEND MESSAGE TO THE TERMINAL */*

BFR=(RIO), /* MESSAGE ADDRESS IS IN RlO */*
St~B=CWBSWB /* USE THE 5WB PASSED */

* DROP RIO /* DROP BUFHDR COVER */
* B CMDXIT /* RETURN TO NCCF */
* * /***/
* /* */
* /* MOVE FULLSCR SAVEAREA TO THE GETMAINED AREA */
* /* */
* /***/
* GETOK L R6,TIBUFLD /* COpy THE BACK POINTER *./

USING F5SAVE,R6 /* */
L R3,4(,R13) /* */
5T R3,SAVEREGS+4 /* */
ST R6,8(,RI3) /* MOVE FWD PTR TO NEW SAVEAREA */
LR R13,R6 /* POINT TO NEW SAVEAREA */
5T R2,SAVEREGS+28 /* */

* /***/ * /* */ * /* DO INPUT PARAMETER PROCESSING */
* /* */
* /***/
* NI PARMBYTE,X'FF'-PARMBIT /* SET PARAMETER BIT OFF

F-6

* * * * * * * *

*

NOTXYZ

/***/
/* */
/* IF THERE IS ONE OPERAND, AND IF IT IS 3 CHARACTERS AND */
/* IF IT IS THE CHARACTERS 'XYZ' THEN SET THE PARMBIT. */
/* */
/***/

L R3,CWBPDB /* POINT TO PARSE DESCRIP BLOCK */
USING DSIPDB,R3 /* SET UP TEMPORARY BASE REGISTER*/
lH R9,PDBNOENT /* IF NUMBER OF PDB ENTRIES IS ... */
C R9,TWO /* LESS THAN 2, THE COMMAND ... */
BL NOTXYZ /* HAS NO OPERANDS. */
MVI CMDPARM,C' , /* INITIALIZE WITH A BLANK */

/* */
DSIPAS PDS=(CWBPDB,'2'), /* LOOK FOR FIRST OPERAND ALIAS */*

OUT=CMDPARM, /* PLACE OUTPUT IN CMDPARM */*
S~JB =CWBSWB /* USE THE SWB PASSED */

/* */
ClC CMDPARM,XYZ /* IS IT 'XYZ'? */
BNE NOTXYZ /* BRANCH IF NOT */
01 PART"lBYT E, PARMB I T /* SET FSAPPL PARAMETER BIT */
DROP R3 /* DROP PDB COVER */

DS OH

* /***/ * /* */
* /* PERFORM INITIAL CALL TO FSAPPl */
* /* */
* /***/
*

*

LR
LR
L
BALR

RO,R2
Rl,R6
R15,FSADDR
R14,R15

/* MOVE CWB ADDRESS TO REG ZERO
/* POINT TO THE WORKAREA
/* LOAD THE ENTRY POINT ADDRESS
/* CALL FSAPPL

* /***/
* /* */
* /* FINAL CLEAN-UP -- WHEN RETURNING HERE, FSAPPL IS FINISHED */
* /* */
* /* ISSUE DSIFRE TO RELEASE THE WORK AREA POINTED TO BY */
* /* TIBUFLD AND R6. */
* /* */
* /***/
*
* *

LA R13,CWBSAVEA

L RIO,GETSIZE
L R9,TIBTVB
DSIFRE LV=(RIO),

xc

A=TIBUFLD,
LISTA=GETWORK,
Q=YES,
TASKA=(R9)

TIBUFLD,TIBUFLD

/* DONT POINT AT GETMAIN SAVEAREA*/
/* DSIFRE FREE WORKAREA HUNG ON */
/* TIBUFLD */
/* PUT LENGTH IN REGISTER */
/* POINT TO THE TVB */
/* LENGTH IS IN REGISTER */*
/* RETURN ADDRESS IN TISUFLD */*
/* DSIGET WORKAREA = GETWORK */*
/* NCCF WILL KEEP TRACK OF AREA */*
/* TVB ADDRESS IS IN R9 */

/* CLEAR USER FIELD

Appendix F. Sample Full-Screen Command Processor F-7

* ~ /***/ * /* */
* /* PUT OUT COMMAND COMPLETE MESSAGE */
* /* */
* /********************************~****************************/

* LA RlO,BUFFER
USING BUFHDR,RlO
MVC HDRTEXT(28),MSG2
MVC HDRMLENG,MSG2L
DSIPSS TYPE=OUTPUT,

BFR=(RIO),
Sl.JB =CWBSl.JB

DROP RlO

B CMDXIT

/* BASE THE BUFHDR ON BUFFER */
/* MOVE IN THE MESSAGE TEXT */
/* SET MESSAGE LENGTH IN BUFHDR */
/* SEND MESSAGE TO THE TERMINAL */*
/* MESSAGE ADDRESS IS IN RlO */*
/* USE THE SWB PASSED */

/~ DROP BUFDHR COVER

************************* END SETUP ROUTINE ***************************

*/**/
/ */
/ CMDXIT: THE COMMAND COMMON EXIT POINT. RETURN TO NCCF. */
/ */
*/**/
* CMDXIT

F-8

DS
L
LM
SLR
BR

OH
Rl3, Cl'<!BSAVEA+4
R14,Rl2,12(Rl3)
R15,Rl5
R14

/* */
/* RESTORE R13 TO ORIG R13 VALUE */
/* */
/* ALWAYS GIVE A GOOD RETURN CODE*I
/* */

**/ * */
* ALREADY RUNNING FSAPPL. REINVOKED FOR FULL SCREEN INPUT. */
* */
~**~**********/

* RUNNING

'* * * * * *

* * * * * * *

* * * * * *

DS OH
/***/
/* */
/* MOVE FULLSCR SAVEAREA TO THE GETMAINED AREA */
/* */
/***/

L
ST
ST
LR
ST

R3,4(,R13)
R3,SAVEREGS+4
R6,8(,R13)
R13,R6
R2,SAVEREGS+28

/* */
/* */
/* MOVE FWD PTR TO NEW SAVEAREA */
/* POINT TO NEW SAVEAREA */
/* STORE THE NEW CWB ADDRESS IN */
/* OLD SAVEAREA FOR REG 2 */

/***/
/* */
/* IF THERE IS NO DATA (NOT EVEN THE 3270 AID), MUST BE A */
/* RESHOW (REFRESH THE SCREEN) REQUEST. */
/* */
/***/

l R3, CL.JBPDB
USING DSIPDB,R3
CLC PDBNOENT,ONE
BNE INPUT
DROP R3

/* GET THE PDB ADDRESS */
/* BASE PARSE DESCRIPTOR BLOCK */
/* ONLY 1 PARSE ENTRY (VERB ONLY)*/
/* BRANCH IF MORE (CANT BE LESS) */
/* DROP PDB COVER */

/***/
/* ~d
/* RESHOW ROUTINE */
/* */
/***/

L
NVC
LA
STH

R3,SAVEINA
O(3,R3),CLEARKEY
RIO,CLEARlEN
RIO,INPUTlEN

/* */
/* FAKE INPUT = CLEAR KEY */
/* MOVE CLEAR, 40, 40 TO INPUT */
/* GET 'CLEARKEY' LENGTH */
/* PASS LENGTH BACK TO FSAPPL */
/* */

LR RO,R2 /* HAVE TO RETURN THE CWB ADDRESS*'/
L R13,WRSAVA+4 /* RESTORE FSAPPL S.A. POINTER */
SLR R15,R15 /* SEND ZERO RETURN CODE */
L R14,12(,R13) /* RESTORE REG 14 */
LM Rl,R12,24(R13) /* RESTORE REGS 1 - 12 */
BR R14 /* RETURN TO FSAPPL */
/************* END RESHOW ROUTINE **************************/

Appendix F. Sample Full-Screen Command Processo~ F-9

* * * * * * INPUT
* * * *
* *
* *

*

*

*

*

/***/
/* */
/* NORMAL PANEL INPUT ROUTINE */
1* *1
I****************~:**/

DS OH

l

/***/ 1* */
/* MOVE INPUT TO fwAPPL. DO NOT COPY THE VERB OR BLANK. */
/* ONLY COPY THE 3270 INPUT DATA. */
/* */
/***/

R7,CL~BBUF /* POINT TO THE INPUT BUFFER */
USING BUFHDR,R7 /* ESTABLISH BASE REG */
LH R9,HDR~'LENG 1* GET THE INPUT DATA LENGTH *1
SL R9,NINE r* DECREMENT BY 9 (8 FOR VERB, */

1* 1 FOR BLANK) */
STH R9,INPUTLEN 1* PASS INPUT LENGTH TO FSAPPL */

/* */
LH RS,HDRTDISP /* GET INPUT TEXT DISPLACEMENT *1
ALR R8,R7 1* ADD TO THE BUFFER ADDRESS */

/* */
l. R14,SAVEINA 1* LOAD THE INPUT AREA ADDRESS */
LR R15,R9 1* COPY THE LENGTH OF THE DATA */
MVCL R14,R8 /* MOVE THE DATA READ */
DROP R7 1* DROP BUFHDR COVER */

LR RO,R2 /* HAVE TO RETURN THE CWB ADDRESS*/
L R13,WRSAVA+4 /* RESTORE FSAPPL SAVEAREA FTR */
SlR R15,R15 1* SEND ZERO RETURN CODE */
L R14,12(,R13) 1* RESTORE REG 14 */
LM Rl,R12,24(R13) 1* RESTORE REGS 1 - 12 */
BR R14 Ix RETURN TO FSAPPL */

********************** END INfJT ROUTINE *****************************/

F-IO

*/**/ */* */
/ WRITREAD - THE TERMINAL WRITE/READ INTERFACE */
/ */
/ FUNCTION: TO PERFORM FULL SCREEN I/O BY ISSUING THE NCCF MACRO */
/ DSIPSS TYPE=PANEL. */
/ */
/ INPUT: RO = CWB ADDRESS */
/ R1 = PARAMETER LIST ADDRESS. THE PARMLIST FORMAT IS: */
/ +---------------+---------------+--------+-------+ */ */* I PARMOUT ! PARMIN !PARMOUTL!PARMINLI */
/ +---------------+---------------+--------+-------+ */ */* 0 4 8 10 11 */
/ PARMOUT = OUTPUT BUFFER ADDRESS */
/ PARMIN = INPUT BUFFER ADDRESS */
/ PARMOUTL = OUTPUT BUFFER LENGTH */
/ PARMINL = INPUT BUFFER LENGTH */
1 R13 = SAVE AREA ADDRESS */
/ R14 = RETURN ADDRESS */
/ R15 = ENTRY POINT (WRITREAD) ADDRESS *1
/ */
/ NOTES: (1) IF PARMOUT=O, NO OUTPUT IS DONE. */
/ (2) IF PARMIN=O, NO INPUT IS DONE. */
/ (3) IF DATA IS TO BE READ FROM THE TERMINAL, RETURN IS */
/ NOT MADE TO FSAPPL UNTIL THE DATA HAS BEEN READ. */
/ THIS REQUIRES A RETURN TO NCCF AND THE RESUME COMMAND */
/ TO BE EXECUTED. */
/ (4) ANY DATA IN THE OUTPUT BUFFER MUST BE A COMPLETE */
/ 3270 DATA STREAM INCLUDING THE COMMAND CODE, WCC */
/ AND DATA. */
/ */
*1**1

WRITREAD DS OH 1* */
ENTRY WRITREAD 1* TERMINAL I/O ENTRY POINT *1

* 1* *1
USING *,R15 /* */
STl"l R14,R12,12(R13) /* SAVE REGS */
L R12,AENTRY /* POINT TO MAIN CSECT ENTRY *1
USING PSTART,R12 /* */
DROP R15 /* *1
CHOP 0,4 /* ALIGN TO A FULL WORD */
B *+8 1* */

AENTRY DC A(PSTART) /* ADDR OF MAIN ENTRY */
* /* *1

lR R2,RO 1* RE-ESTABLISH Ct·JB COVERAGE */
LA Rl1,CWBADATD /* POINT TO THE AUTO AREA */
L R6,TIBUFLD /* POINT TO WRITREAD SAVEAREA */
LA R15,WRSAVA /* */
ST R13,4(,R15) /* CHAIN SAVE AREAS */
ST R15,8(,R13) /* CHAIN THE OTHER WAY */
LR R13,R15 /* POINT TO SAVEAREA WITH R13 *1

Appendix F. Sample Full-Screen Command Processor F -11

* /***/
* /* */
* /* SET UP THE DSIPSS TYPE=PANEL PARAMETER LIST. */
* /* */
* /***/
* * /***/
* /* */
* /* SET UP RESUME VERB. USE THE VERB FULLSCR WAS INVOKED WITH. */
* /* */
* /***/
* USING PAR~1L 1ST, Rl /* DECLARE BASE REGISTER */

~1VC PSSCND,BLANKS /* START BY BLANKING COMMAND VERB*/
L RIO,CWBPDB /* GET VERB FROM FIRST PDB ENTRY */
USING DSIPDB,RIO /* BASE THE PDB */
LA RIO,PDBTABLE /* POINT TO THE FIRST ENTRY */
USING PDBENTRY,RIO /* BASE THE ENTRY TEMPORARILY */
SLR R3,R3 /* CLEAR FOR THE 'IC' */
IC R3,PDBLENG /* GET THE LENGTH OF THE VERB */
BCTR R3,O /* DECREMENT FOR EXECUTE */
LH R9,PDBDISP /* GET DISPLACEMENT TO VERB, ... */
AL R9,CWBBUF /* ADD INPUT BUFFER ADDRESS, ... */

* /* TO POINT TO THE VERB. */
EX R3,EXMOVE2 /* MOVE JUST 1rlE VERB */
DROP RIO /* DROP PDB COVER */

*
* /***/
* /* */
* /* SET UP REMAINDER OF THE PARAMETER LIST. */
* /* */
* /***/
*

MVC PSSOUT, PAR~'OUT /* MOVE THE OUTPUT BUFFER ADDR */
MVC PSSOUTL, PAR~lOUTL /* MOVE THE OUTPUT DATA LENGTH */
~1VC PSSINL,PARMINL /* MOVE THE EXPECTED INPUT ... */

* /* LENGTH */
*

L R3,PARNIN /* SAVE THE INPUT BUFFER ADDRESS */
ST R3,SAVEINA /* IN THE l~ORK AREA */
DROP Rl /* DROP PARMLIST COVER */

*
* /***/
* /* */
* /* ISSUE DSIPSS TYPE = PANEL. */
* /* */
* /***/
*

LA RIO,PSSPARM /* POINT TO PANEL PARAM LIST */
DSIPSS TYPE=PANEL, /* REQUEST FULL SCREEN I/O */*

PANEL=(RIO), /* SPECIFY PARMLIST ADDRESS */*
Sl~B =Cl~B Sl!jB /* SPECIFY SWB ADDRESS */

*
LTR R15,R15 /* TEST THE DSIPSS RETURN CODE */
BZ PANEL OK /* IF ZERO (GOOD), BRANCH */

F-12

* /***/ * /* */
* /* DSIPSS HAS RETURNED A NONZERO RETURN CODE. NO ERROR ANALYSIS */ * /* IS DONE. A MESSAGE WILL BE ISSUED IN STANDARD NCCF MODE AND */
- / THEN FINAL EXIT IS TAKEN. */
* /* */
* /*************-**/
*

*
* * * * *
*

LA RIO~BUFFER /* SET UP BUFFER COVER */
USING BUFHDR,RIO /* BASE THE BUFHDR */
~1VC HDRTEXT(41)~MSGl /* MOVE IN THE ERROR MSG TEXT */
MVC HDRMLENG,MSGIL /* SET MSG LENGTH */
ST R15~ONEWORD /* PUT RETURN CODE INTO STORAGE */
UNPK UNPACKl~FIVEBYTE /* UNPACK THE RETURN CODE */
TR UNPACKl(8),HEXTAB /* CONVERT TO PRINTABLE HEX */
MVC HDRTEXT+22(8),UNPACKl /* MOVE IN INSERT */
DSIPSS TYPE=OUTPUT, /* REQUEST SINGLE LINE OUTPUT */*

BFR=(RIO), /* TEXT IS IN BUFFER */*
St"B=CWBSWB /* USE THIS SWB */

DROP RIO /* DROP BUFHDR COVER */

/**/
/* DSIFRE FREE WORKAREA HUNG ON TIBUFLD */

/**/
LA RI3,CWBSAVEA /* MOVE SAVEAREA BACK TO THE CWB */
l RIO,GETSIZE /* PUT LENGTH IN REGISTER */
L R9,TIBTVB /* POINT TO THE TVB */
DSIFRE LV=(RIO), /* LENGTH IS IN REGISTER */*

A=TIBUFLD, /* RETURN ADDRESS IN TIBUFLD */*
LISTA=GETWORK, /* DSIGET WORKAREA = GETWORK */*
Q=YES~ /* NCCF WILL KEEP TRACK OF AREA */*
TASKA=(R9) /* TVB ADDRESS IS IN R9 */

SLR R3,R3 /* CLEAR USER FIELD SO THAT ... */
ST R3,TIBUFLD /* NEXT TIME WILL BE FIRST TIME */
B CNDXIT /* EXIT THE COMMAND PROCESSOR */

* /***/ * /* */
* /* DSIPSS TYPE=PANEL WAS SUCCESSFUL. PROCEED. */
* /* */

* /***/
*
PANELOK DS OH /* */

LH RIO~PSSINL /* WAS A READ REQUESTED? TEST ... */
LTR RIO,RIO /* THE INPUT AREA LENGTH */
BNZ CMDXIT /* EXIT TO NCCF IF READ WAS ..• */

* /* REQUESTED. COMMAND WILL BE •.. */
* /* REDRIVEN. */
* /* */
* /* REQUEST WAS WRITE ONLY */

STH RIO,INPUTLEN /* ZERO NUMBER OF BYTES READ. */
* /* */

L RI3,4(,R13) /* RESTORE CALLER-S SAVEAREA */
LM R14,R12,12(R13) /* RESTORE REGS *./
BR R14 /* RETURN TO CALLER (WRITE ONLY) */

*
* /* ****************** END WRITREAD ***************************** */

Appendix F. Sample Full-Screen Command Processor F-13

* * * * * *

/***/
/* */
/* CONSTANTS */
/* *1
/***/

DATA
ONE
lNBUFHDR
BUFFERlN
EX~10VEl
EXr10VE2

TWO
NINE
GETSIZE

*
* *
*

DS
DC
DC
DC
MVC
MVC
DS
DC
DC
DC

NOPR

ORG

FSADDR DC
XYZ DC
CLEARKEY DC
ClEARlEN EQU
BLANKS DC
MSGI DC
f'lSGll DC
MSG2 DC
MSG2l DC
MSG3 DC
MSG3l DC
HEXTAB EQU

DC

F-14

OH /*
H' 1 ' /*
H'24' /*
Al2CBUFFERND-BUFFER) 1*
OCO,R3),9CR7) 1*
PSSCMD(O),O(R9) 1*
OF 1*
F'2' 1*
F' 9 ' 1*
F'10000' 1*

CONSTANT '1'
LENGTH OF BUFHDR
LENGTH OF 'BUFFER'
EXECUTED MOVE
EXECUTED MOVE

CONSTANT '2'
CONSTANT '9'
GETMAINED WORK SPACE SIZE

«ENDDATD-DATD)/257*16) /* GUARANTEE THAT CWB WORK ... *1
1* SPACE DOES NOT GROW OVER 256 *1
1* IF TOO BIG, WILL GET ASM ERRORKI

-2 1 NOPR NOT REALLY NEEDED. *1

V(FSAPPl)
Cl8'XYZ'
X'6D4040'
*-ClEARKEY
CL8'
CL41'FULlSCR: RETURN

1* ADDRESS OF FUll SCREEN APPl
1* CONSTANT FOR OPERAND CHECK
1* CLEAR AID, ROW 0, COLUMN 0
1* LENGTH OF 'CLEARKEY'
/* BLANKS
CODE XXXXXXXX FROM DSIPSS'
1* LENGTH OF MSGI */ Al2 (*-1"1SG1)

Cl28'FULlSCR: PROCESSING COMPLETE'
AL2(*-NSG2)
Cl42'FULlSCR: DSIGET
AL2C*-MSG3)
*-240
C'0123456789ABCDEF'

1* LENGTH OF MSG2
FAILED. COMMAND TERMINATED'
1* LENGTH OF MSG3 *1
1* PRINTABLE HEX CONVERSION TABlE*/
1* *1

* /***/
* /* */
* /* DSECTS */
* /* */
* /***/
*
*
DATD
GETWORK
*
BUFFER
BUFFERND
*

PSSPARM
PSSCMD
PSSOUT
PSSOUTl
PSSINL
*
*

FIVEBYTE
ONEWORD
UNPACKl
CMDPARM
ENDDATD
*

* PARMLIST
PARI"10UT
PARMIN
PARMOUTl
PARr-lINL
*

* FSSAVE
SAVEREGS
WRSAVA
SAVEINA
INPUTLEN
PARNBYTE
PARr-lBIT
FSWORK
* *

DSECT
DS

DS
EQU

DS
DS
DS
DS
DS
DS

DS
DS
DS
DS
DS
EQU

DSECT
OS
OS
DS
OS

DSECT
DS
DS
DS
DS
DS
EQU
EQU

Cll6

Cll56
*

OF
OCll6
Cl8
AL4
FL2
Fl2

OF
OCL5
CL4
CL9
CLa
*

A
A
H
H

laF
l8F
A
H
X
X'Ol'
*

/*********************************/
/* CWB WORK SPACE DSECT */
/* DSIGET/DSIFRE PARMlIST */
/* */
/* WORK BUFFER */
/* END OF 'BUFFER' */
/* */
/* FUll WORD ALIGN */
/* DSIPSS TYPE=PANEl PARMlIST */
/* VERB */
/* OUTPUT BUFFER ADDRESS */
/* OUTPUT BUFFER LENGTH */
/* INPUT DATA lENGTH */
/* */
/* MISC. SCRATCH VARIABLES */
/* FUll WORD ALIGN */
/* 5 BYTES USED FOR UNPACK/TR */
/* FIRST 4 BYTES OF FIVEBYTE */
/* 9 BYTES USED FOR UNPACK/TR */
/* COMMAND PARAMETER FROM DSIPAS */
/* END OF cwa WORK AREA DSECT */
/*********************************/

/*********************************/
/* MAP FOR WRITREAD PARMLIST */
/* OUTPUT AREA ADDRESS */
/* INPUT AREA ADDRESS */
/* OUTPUT AREA LENGTH */
/* INPUT AREA LENGTH */
/*********************************/

/*********************************/
/* FSAPPL WORK AREA DSECT */
/* SAVE AREA */
/* SAVE AREA FOR CALLING WRITREAD*/
/* INPUT AREA ADDR SAVE AREA */
/* NUMBER OF BYTES READ */
/* PARM FLAG BYTE */
/* FSAPPL PARAMETER BIT */
/* REMAINDER OF SPACE FOR USE */
/* BY FSAPPL. */
/*********************************/

Appendix F. Sample Full-Screen Command Processor F-15

Appendix G. Glossary of Terms and Abbreviations

This glossary defines terms and abbreviations that are
important in Network Communications Control
Facility (NCCF) publications. It does not include
terms previously established for IBM operating
systems and for products used with NCCF. Additional
terms can be found by referring to the index, to
prerequisite and corequisite books, and to the IBM
Data Processing Glossary, GC20-1699.

ACF ITCAM. Advanced Communications Function for the
Telecommunications Access Method.

ACF IVTAM. Advanced Communications Function for the
Virtual Telecommunications Access Method.

ACF IVTAME. Advanced Communications Function for the
Virtual Telecommunications Access Method Entry.

alphameric. Pertaining to a character set that contains letters,
digits, and usually other characters, such as punctuation marks.

AMH Application message handler.

application message handler (AMH). In ACF ITCAM, a routine
that routes messages between application programs or between
an application program and a device message handler. NCCF
in ACF ITCAM is supplied with an AMH. See also device
message handler.

application program. (1) A program written for or by a user that
applies to a particular application. (2) In data communication,
a program used to connect and communicate with terminals in
a network, enabling users to perform application-oriented
activities.

authorization message. An NCCF message that is directed to an
authorized operator. An example is a message about the use of
NCCF, such as a successful logon, repeated unsuccessful
logons, logon rejected because of invalid password, a DSM
error message, and logoff.

authorized operator. In NCCF, an operator who has been
authorized to receive undeliverable messages, authorization
messages, and lost terminal messages. Authorization is
specified on the AUTH statement during NCCF definition.

both regular and immediate command. A NCCF command that
may be executed as either a regular or an immediate command,
depending on where it is encountered. If the command is
received from an operator terminal, it is executed as an
immediate command. If it is received in another way (for
example, in a command list), it is executed as a regular
command.

CNM. Communications network management.

command. A request from a terminal for the performance of an
operation or the execution of a particular program. A
command may be entered from a terminal by an operator, or
generated from a command list, or implied in a received
message, or issued by a command processor.

command list. A sequential list of commands andlor control
statements that is assigned a name. When the name is invoked
(as a command) the commands in the list are executed.

command processor. A problem program executed to perform an
operation specified by a command.

communication C':.mtroller. A type of communication control unit
whose operations are controlled by a program stored and
executed in the unit. Examples are the IBM 3704 and 3705
Communication Controllers.

communication network management (CNM). The process of
designing, installing, operating, and managing the distribution
of information and control among end users of communication
systems.

communication network management application. A combination
of the components and elements that comprise the problem
determination, operational facilities, and performance
functions of CNM. An example is NCCF with added CNM
processors.

communication network management interface. The interface
provided to application programs by the access method for
handling data and commands associated with communication
network management. CNM data and commands are handled
across this interface.

communication network management processor. A command
processor that manages one of the functions of a
communication network management application. A CNM
processor is executed under control of NCCF and requires
NCCF as a prerequisite program.

conditional command list. An NCCF command list consisting of
control statements and variables that control the sequence of
execution of the command list.

control statement. In NCCF, a statement in a command list that
controls the processing sequence of the command list or allows
the command list to send messages to the operator and receive
input from the operator.

cross-domain communication. In a multiple-domain network,
communication between domains.

cursor. A movable spot of light on the screen of a display
device, usually indicating where the next character will be
entered.

Appendix G. Glossary of Terms and Abbreviations G-t

data services command processor (DSCP). An NCCF component
that structures the request for recording and retrieving data in
the application program's data base, and also structures the
request to solicit data from a network device.

data services manager (DSM). A function in NCCF that provides
VSAM services for data storage and retrieval and provides the
interface between DSCPs and the CNM interface.

data services request block (DSRB). The NCCF control block
that allows communication between the data services task and a
data services command processor.

data services task (DST). The NCCF subtask that provides
support to gather, record, and manage data in a VSAM file that
contains communication network management information.

device message handler. In ACF/TCAM, a uSf,'-defined routine
that routes messages between a device and an application
message handler, or between devices. See also message handler.
Contrast with application message handler.

domain. In a data communication system, the portion of the
total network that is controlled by the SSCP in one
telecommunication access method.

DSCP. Data services command processor.

DSM. Data services manager.

DSRB. Data services request block.

DST. Data services task.

exit routine. Any of several types of special-purpose routines
that handle processing for certain conditions in a program.
NCCF provides for user-written exit routines. NCCF has its
own data communication access method exit routines an system
exit routines.

full-line mode. A form of screen presentation in NCCF where
the message area of the terminal screen consists of 80-byte
messages. Full-line mode is used by NPDA. Contrast with
standard NCCF mode.

full-screen mode. A form of screen presentation in NCCF where
the contents of an entire terminal screen can be displayed at
once. Full-screen mode is often used for fill-in-the-blanks
prompting.

hard-copy log. In NCCF, a file written on a hard-copy device
(such as a printer) that contains a record of all messages passing
through NCCF that are associated with a specific operator or
operators.

hard-copy task (HCT). The NCCF subtask that controls the
passage of data between NCCF and the hard-copy log device.

HCT. Hard-copy task.

immediate command. In NCCF, a command (such as GO,
CANCEL, or RESET) that can be executed while a regular
command is being processed.

G-2

log. A collection of messages or message segments placed on a
secondary storage device for accounting or data collection.

logger. In NCCF, a subtask that records errors from EP mode
and local mode devices to the EP data base and transmits errors
from NCP mode devices supported by ACF /VT AM and
ACF /TCAM to the NCP data base.

message. In telecommunications, a combination of characters
and symbols transmitted from one point to another,

message handler (MH). Under ACF/TCAM, a sequence of
user-specified macro instructions that examine and process
control information in message headers, and perform the
functions necessary to prepare message segments for
forwarding to their destinations. One message handler is
required for each line group having unique message-handling
requirements.

MH. Message handler.

MSNF. Multisystem Networking Facility.

Multisystem Networking Facility (MSNF). An optional feature of
ACF /VT AM and ACF /TCAM that permits these access
methods, together with ACF/NCP/VS, to control a
multiple-domain network.

NCCF. Network Communications Control Facility.

NCP. Network Control Program

Network Communications Control Facility (NCCF). A program
product consisting of a base for command processors that can
monitor, control, and improve the operation of a data
communication network.

Network Control Program (NCP). A program, generated by the
user from a library of IBM-supported modules, that controls the
operation of the communication controller.

network operator. In SNA, a person or program responsible for
controlling the operation of all or part of a network.

Network Problem Determination Application (NPDA). A program
product that assists the user in identifying communication
network problems from a central control point using interactive
display techniques. NCCF is required fo NPDA.

NPDA. Network Problem Determination Application.

network resource. Any named entry known to the access
method. Network resources include network control programs
(NCPs), local and remote terminals, lines, application
programs, cross-domain resource tables, and cross-domain
resource managers.

operand. Information entered with a command name to define
the data on which a command processor operates and to control
the execution of the command processor.

operator. See network operator.

operator control. The ACF/TCAM facility that allows users to
enter ACF /TCAM operator control commands to examine or
alter the status of the communication network. Operator
control commands Olay be entered from an authorized station
on a nonswitched link, from the system console, or from an
application program.

operator station. A control point in NCCF that links a terminal,
an operator, and the control environment assigned to the
operator (such as profile and span of control). The logical unit
from which an operator logged on.

operator station task (OST). The NCCF subtask that establishes
and maintains the online session with the network operator.
There is one operator station task for each network operator
who logs on to NCCF.

optional subtask. A user-defined subtask specified on the TASK
definition statement.

OST. Operator station task.

overlapped span of control. A condition that exists when the
network resource name appears in a span or spans associated
with more than one active network operator. Under such a
condition, either operator may control the resource. The status
of the device depends on the cumulative effect of commands
entered and the sequence in which the commands are received
by the access method.

password. (1) A unique string of characters that a program,
computer operator, or user must supply to meet security
requirements before gaining access to data. (2) In systems with
time sharing, a 1- to 8-character symbol that the user may be
required to supply at the time he logs on the system. The
password is confidential, as opposed to the user identification.

POI. ACF/VTAM's program operator interface.

PPT. Primary POI task.

presentation services command processor (PSCP). An NCCF
component that processes requests from a user terminal and
formats displays to be presented at the user terminal.

primary POI task (PPT). The NCCF subtask that processes all
unsolicited messages received from the ACF /VT AM program
operator interface (POI) and either delivers them to the
controlling operator or command processor. The primary POI
task also processes the initial command specified to execute
when NCCF is initialized, and timer request commands
scheduled to execute under the PPT.

profile. In NCCF, a record that describes the control available
to a particular network operator. The profile includes the
operator's span of control, the name of the terminal to be used
as a hard-copy device, whether the operator is authorized (see
authorized operator), and (optionally) the name of a command
or command list that is executed immediately after logon is
successfully completed.

program operator. An ACF /VT AM application program that is
authorized to issue ACF /VT AM operator commands and
receive ACF /VT AM operator messages.

PSCP. Presentation services command processor.

regular command. Any access method or NCCF command that
is not an immediate command and is processed by a regular
command processor. Only one regular command may be
executed at one time; regular commands issued while other
regular commands are being processed are stacked. Contrast
with immediate command.

resource. See network resource.

response. (1) An answer to an inquiry. (2) The unit of
information that is exchanged between the access method or an
application program and an SNA terminal to describe how a
request arrived.

routing qualifier. An explicit parameter added to commands in
NCCF to accommodate cross-domain execution. NCCF
removes the routing qualifier before the command is passed to
the appropriate access method.

scope of commands. An NCCF facility that allows restriction of
NCCF commands and operands to a subset of all NCCF
operators in the network.

SNA. Systems Network Architecture.

span. In NCCF, a user-defined group of network resources
within a single domain. Each major or minor node is defined as
belonging to one or more spans. See also span of control

span of control. The total network resources over which a
particular network operator has control. All the network
resources listed in spans associated through profile definition
with a particular network operator are within that operator's
span of control.

standard NCCF mode. A form of screen presentation in NCCF
where the message area of the terminal screen consists of 69
bytes for each message and an 11 byte previx. Contrast with
full-line mode.

station. (1) One of the input or output points of a system that
uses communication facilities; for example, the telephone set in
the telephone system or the point where the business machine
interfaces with the channel on a leased private line. (2) One or
more computers, terminals or devices at a particular location.

suppression character. In NCCF, a user-defined character that is
coded at the beginning of a command list statement or a
command to prevent the statement or command from
appearing on the operator's terminal screen, the hard-copy log,
and the NCCF log.

TCAM control task (TCT). The NCCF subtask that controls
communication between NCCF and ACF/TCAM.

TCT. ACF/TCAM control task.

terminal. A device, often equipped with a keyboard and some
kind of display, capable of sending and receiving information
over a communication link.

Appendix G. Glossary of Terms and Abbreviations G-3

timer initiation. An NCCF facility that allows the operator to
schedule a command or command list to be executed based on a
timer, either at a specific time or repetitively at specified time
intervals.

timer request. A command or command list scheduled to
execute either at a specific time or repetitively at specified time
intervals.

unsolicited message routing. (1) A method of routing replies to
CNM application programs by using a routing table instead of a
process request identifier. (2) A method of routing access
method messages to an NCCF operator by using the PPT.

, G-4

variable. In NCCF, a character string beginning with & that is
coded in a command list and is assigned a value during
execution of the command list.

VSAM. Virtual Storage Access Method.

VSE/OCCF. VSE/OperatorCommunication Control Facility.

VSE/Operator Communication Control Facility (VSE/OCCF). A
program product designed to run with the VSE operating
system and NCCF. VSE/OCCF minimizes required operator
interaction with the VSE system console by intercepting
messages from VSE and application programs and responding
automatically with pre-coded actions.

Index

&BEGWRITE 2~12
&CONCAT 2~16
&CONTROL 2~12
&EXIT 2-13
&GOTO 2~13
&IF 2-14
&LENGTH 2-17
&NCCFID 2-18
&NCCFSTAT 2-18
&PAUSE 2~15
&SUBSTR 2-17
&THEN 2-14
&WRITE 2-16

A operand
DSIFRE macro 3-23
DSIGET macro 3-24

alias, command operand 3-36
alphanumeric G-l
application message handler (AMH) G-l
application program G-l
APPLID operand, DSIPSS macro 3-40
AREA operand, DSIDATIM macro 3-20
ARTPOS operand, DSIRDS macro 3-47
assignment statements

in command lists 2-11
asynchronous full-screen command processors 4-21
ASYP ANEL operand, DSIPSS macro 3-42
authorization and resource table (see DSIART)
authorization message G-I
authorized operator

definition of G-l
locating (see DSILCS macro)

AUTHRCVoperand
DSILCS macro 3~28
DSIMQS macro 3-35

BFRoperand
DSICES macro 3-19
DSIMBS macro 3-31
DSIMQS macro 3-35
DSIPRS macro 3-38
DSIPSS macro 3-43
DSIWCS macro 3-50
DSIWLS macro 3-50

BNDRY operand, DSIGET macro 3-25
"both" command processor 4-4
buffer, command

obtaining 4-11
buffer header (BUFHDR)

example of use 3-9
fields in 3-7
format of 3-8
in command processors 4-11
listed in DSITIB C-42

BUFHDR (see buffer header)

CANCEL operand, DSIPSS macro 3-42
CBADDR operand, DSILCS macro 3-28
cbname operand, DSICBS macro 3-18
CMD operand, DSIKVS macro 3-26
coding guidelines

command list 2-6
command processor 4-1
exit routine 5-13

NCCF, generally 1-1
sub task 6-3

command analysis (see DSICES macro)
command list

assignment statements 2-11
coding guidelines 2-6
commands 2-10
com~ents 2-10
control statements 2-11
control variables 2-8
defining to NCCF 2-2
examples of 2~21-2-27
filing 2-2
invoking

from an access method message 2~4
from an operator terminal 2-3
from another command list 2-3
from a user-written command processor 2-3

labels 2-9
naming 2-2
null statements 2-10
parameters 2-7
PPT restrictions on 2-5
source compatibility with NCCF Release 1 1-1
suppression character in 2-6
user variables 2-9
variables

control variables 2-8
definition of G-4
in general 2-6
parameters 2-7
user variables 2-9

command processors, "both" 4-4
command processors, data services

definition of G-2
example of processing logic 4-14
in general 4-5
initial revocation of 4-13
restrictions for 4-5
sample CNM data E-12
sample VSAM data E-l
use in program design 4-6

command processors, generally
address of command 4-12
both regular and immediate commands 4-4
calling 4-12
coding guidelines for 4-1
control block considerations for 4-6, 4-7
definition of G-l
example of

data services E-l, E-12
regular D-l

executed under DSIPPT 4-4
executed under DST (see command processors, data services)
full-line 4-19
full-screen 4-29
immediate commands 4-3
invoking 4-1, 4-11
looking up address of 4-12
operating environment 4-2
PPT restrictions on 4-4
register usage for 4-2
regular commands 4-2
return codes for 4-15-4-19
source compatibility with NCCF Release 1 1-1

Index X-I

command processors, full-line 4-19
command proressors, full-screen

asynchronous 4-21
coding guidelines 4-1, 4-20
DSIPSS return codes in 4-25
escaping from 4-25
in general 4-20, 4-24
logging input and output 4-25
RESHOW key 4-25
reshow option 4-25
sample F-l
screen formatting in 4-24
suspending 4-25
synchronous 4-23

command processors, immediate
how called 4-3, 4-4
in general 4-3
return codes for 4-16

command processors, presentation services
definition of 0-3
relation to data services 4-6

command processors, regular
how called 4-2,4-3
in general 4-2
return codes for 4-15

command work block (see DSICWB)
commands

building a buffer for 4-11 (see also buffer header)
definition of 0-1
forwarding to another domain 4-13
immediate 0-2
in command lists 2-8
parsing 3-38, 4-11
passing to access method 4-15
passing to another subtask in same domain 4-13
regular 0-3
returning to another domain 4-15
summary of A-2

comments in command lists 2-10
communication network management (CNM)

completion of I/O request 4-17
completion of receipt of unsolicited data 4-18
definition of 0-1

communication network management application 0-1
communication network management interface

definition of 0-1
requesting data from (see DSIZCSMS macro)

communication network management
processor 0-1

compcode operand, DSIPOS macro 3-37
conditional command list 2-1
CONN operand, DSIDKS macro 3-21
console, system operator

writing to (see DSIWCS macro)
control block header (see DSICBH)
control blocks, NCCF

descriptions of C-l
including (see DSICBS macro)
in command processors 4-6,4-7
in exit routines 5-14
in subtasks 6-9
listing of C-l, C-63
locating (see DSILCS macro)
overview of 3-5
printing (see DSICBS macro)
used to invoke service routines 3-4

cross-domain communication 0-1
CWB control block (see DSICWB)
CWB operand, DSILCS macro 3-28

X-2

data services, program design example of 4-6
data services command processor (DSCP) (see command
processor, data services)

data services macro instruction (see DSIZCSMS macro and
DSIZVSMS macro)

data services manager 0-2
data services request block (see DSIDSRB)
data services task (DST) 0-2
DATAREA operand, DSIZVSMS macro 3-54
date, obtaining (see DSIDATIM macro)
DCB operand, DSILOD macro 3-30
DEFER operand, DSICBS macro 3-18
defining command lists to NCCF 2-2
DEST operand, DSIZCSMS macro 3-52
device message handler (DMH) 0-2
DISC Operand, DSIDKS macro 3-22
disk services (see DSIDKS macro)
DPR Operand, DSIWAT macro 3-49
DSB control block (see DSIDSB)
DSBWORD operand, DSIDKS macro 3-21
DSCP (see command processor, data services)
DSIART (authorization and resource table)

relationship to DSIOIT and DSISNT 3-17
search of (see DSIRDS macro)

DSICBH (control block header)
fields in 3-9
listing of C-2

DSICBS macro
explanation of 3-6
in general 3-18
overview of 3-2

DSICES macro
in general 3-19,4-12
overview of 3-2
return codes for 3-19

DSICWB (command work block)
fields in 4-6
freeing (see DSILCS macro)
listing of C-4
obtaining 4-11 (see also DSILCS macro)

DSIDATIM macro
in general 3-20
overview of 3-2

DSIDEL macro
in general 3-20
overview of 3-2
return codes for 3-21

DSIDKS macro
explanation of 3-12
in general 3-21
overview of 3-2
return codes for 3-22

DSIDSB (data service block) C-6
DSIDSRB (data services request block)

definition of 0-2
fields in 4-9
listing of C-7
return codes for CNM I/O request 4-17
return codes for unsolicited CNM data 4-18
return codes for VSAM services 4-16

DSIEXOI exit routine 5-4
DSIEX02 exit routine 5-5
DSIEX03 exit routine 5-5
DSIEX04 exit routine 5-6
DSIEX05 exit routine 5-6
DSIEX06 exit routine 5-6
DSIEX07 exit routine 5-7
DSIEX08 exit routine 5-7
DSIEX09 exit routine 5-7

DSIEXI0 exit routine 5-8
DSIEXII exit routine 5-8
DSIEX12 exit routine 5-8
DSIEX13 exit routine 5-9
DSIEX14 exit routine 5-9
DSIEX15 exit routine 5-9
DSIFRE macro

explanation of 3-11
in general 3-23
overview of 3-2
return codes for 3-24

DSIGET macro
explanation of 3-11
in general 3-24
overview of 3-2
return codes for 3-26

DSIIFR (internal function request)
explanation of 3-9
listing of C-ll

DSIKVS macro
in general 3-26
overview of 3-2
return codes for 3-27

DSILCS macro
explanation of 3-12
in general 3-27
overview of 3-2
return codes for 3-29

DSILOD macro
in general 3-29
overview of 3-2
return codes for 3-30

DSILOGDS
format of B-2
in listing C-15

DSIMBS macro
in general 3-30
overview of 3-3
return codes for 3-32

DSIMDS macro
end message format 3-34
in general 3-33
message text format 3-33
overview of 3-3
start message format 3-33

DSIMQS macro
explanation of 3-13
in general 3-34
overview of 3-3
return codes for 3-35

DSIMVT (main vector table)
establishing addressability in 3-1
field sin 6-9
listing of C-16
requirement of addressability to 3-1

DSIOIS
examples of 3-17
in general 3-36
overview of 3-3
return codes for 3-36

DSIOIT (operator identification table), relationship to
DSIART and DSISNT 3-17

DSIPAS macro
in general 3-36
overview of 3-3
return codes for 3-37

DSIPDB (parse descriptor block)
creating (see DSIPRS)
fields in 3-10
listing of C-26

obtaining 4-11
using 4-11

DSIPOS macro
in general 3-37
overview of 3-3

DSIPPT, restriction on command processors 4-4
DSIPRS macro

in general 3-38
overview of 3-3
return codes for 3-39

DSIPRT (print utility) B-1
DSIPSS macro

ECB post codes for 3-46
examples of 3-15
explanation of 3-14
in general 3-39
output from full-screen command processor 4-25
overview of 3-3
return codes for 3-45, 3-46
use with a full-screen command processor 4-25

DSIRDS macro
explanation of 3-16
examples of 3-16, 3-17
in general 3-46
overview of 3-3
return codes for 3-47

DSISCE (system command entry)
fields in 4-9
in general 3-19, 4-12
listing of C-27

DSISCT (system command table) 4-12
DSISNT (span name table)

contents of 3-48
relationship to DSIART and DSIOIT 3-17
search of (see DSISSS macro)

DSISSS macro
example of 3-17
in general 3-47
overview of 3-3
return codes for 3-48

DSISWB (service work block)
explanation of 3-6
freeing (see DSILCS macro)
listing of C-28
obtaining 4-11 (see also DSILCS macro) 5-17

DSITDSOL (sample CNM data command processor) E-12
DSITDSRD (sample VSAM services command processor) E-l
DSITIB (task information block) C-42

fields in 6-13
DSITRE 5-11
DSITVB (task vector block)

explanation of 3-7
fields in 6-11
listin of C-57

DSIUSE (user exit parameter list)
contents of 5-15
listing of C-62

DSIUSP (sample command processor) D-1
DSIW AT macro

example of 3-49
in general 3-49
overview of 3-3

DSIWCS macro
explanation of 3-13
in general 3-50
overview of 3-3

DSIWLS macro
explanation of 3-13
in general 3-50

Index X-3

overview of 3-3
return codes for 3-50

DSIZCSMS macro
in general 3-51
overview of 3-4
return codes for 3-52,4-18

DSIZVSMS macro
completion of request by 4-16
in general 3-53
overview of 3-4
return codes for 3-54, 4-17

DSRB control block (see DSIDSRB)
DSRB operand

DSIZCMS macro 3-51
DSIZVSMS macro 3-54

E operand, DSIFRE macro 3-23
ecbaddress operand, DSIPOS macro 3-37
ECB operand, DSIW A T macro 3-49
ECBLIST operand

DSIPSS macro 3-42
DSIW A T macro 3-49

entry linkage
in command processor 4-1
in exit routine 5-1
in subtask 6-3

EJECT operand, DSICBS macro 3-18
EP operand

DSIDEL macro 3-20
DSILOD macro 3-29

EPLOC operand
DSIDEL macro 3-21
DSILOD macro 3-29

Escape key 4-25
EXIT operand

DSIFRE macro 3-24
DSIGET macro 3-25

exit routines
coding guidelines 5-13
control block considerations for 5-14
data services (XIT-) 5-1, 5-10, 5-11
definition of G-2
DSIEX01-DSIEXI5 5-4-5-9
environment of 5-3
examples of

DSIEXOI example 5-20
exit routine prototype 5-18

in general 5-1
input parameters 5-14
installation 5-13
interfaces for 5-2
output parameters 5-17
overview of 5-1-5-4
parameter list for (DSIUSE) 5-15
registers

on input 5-14
on output 5-17

return codes set 5-18

FIND operand, DSIDKS macro 3-22
FIRST operand, DSIPRS macro 3-39
FORMAT operand, DSIDATIM macro 3-20
freeing a control block (see DSILCS)
freeing storage (see DSIFRE)
full-line mode 3-14
full-line title-line output 4-19
full-screen command processors (see command processors,

full-screen)

X-4

full-screen mode 3-14
FUNC operand, DSIZVSMS macro 3-54

getting a control block (see DSILCS)
getting storage (see DSIGET)

hard-copy task (HCT) G-2
header

buffer (see buffer header)
control block (see DSICBH)

IFR control block (see DSIIFR)
IMMED operand, DSIPSS macro 3-41
immediate command processor 2-44,4-3
INPUT operand, DSIZCSMS macro 3-51
including a control block (see DSICBS)
internal function request (see DSIIFR)

KEY operand, DSIZVSMS macro 3-54
KEYLEN operand, DSIZVSMS macro 3-54
KEYWORD operand, DSIKVS macro 3-26

LENGTH operand, DSIZCSMS macro 3-52
LIST command 6-5
LIST A operand

DSIFRE macro 3-23
DSIGET macro 3-25
DSILOD macro 3-29

loading (see DSILOD macro)
locating a control block (see DSILCS)
log, hard-copy

definition of G-2
in general B-1
sample printout of B-5

log, NCCF
definition of G-2
in general B-1
record format B-2
sample printout of B-3, B-4
sending messages to (see DSIWLS macro)

logger G-2
LU operand, DSILCS macro 3-28
LUNAME operand, DSIRDS macro 3-47
LV operand

DSIFRE macro 3-23
DSIGET macro 3-25

macro instructions
overview of 3-2,3-3,3-4
in communication from an OST 3-13
syntax in 1-1

message
building (see DSIMBS macro)
command list started by 2-4
defining module for (see DSIMDS macro)
definition of G-2
in subtask 6-7, 6-8
queuing 3-15
sending 3-13
table for 3-30

message handler (MH) G-2
MID operand, DSIMBS macro 3-31
MODNAME operand, DSICES macro 3-19
MSGA operand, DSIMBS macro 3-31
MSGSIZE operand, DSIMBS macro 3-31
MSGTBL operand, DSIMBS macro 3-32
MVT control block (see DSIMVT)

NAME operand, DSIDKS macro 3-22
network resource G-2
NEXT operand, DSILCS macro 3-29

OITPOS operand
DSIOIS macro 3-36
DSISSS macro 3-48

operand G-2
operator, network G-2
operator control (ACF /TCAM) G-3
operator identification, searching for (see DSIOIS macro)
operator identification table (see DSIOIT)
operator station G-3
operator station task (OST)

definition of G-3
macros for communication with 3-13

OPID operand
DSILCS macro 3-28
DSIOIS macro 3-36

OPTION operand, DSIZVSMS macro 3-54
optional subtask G-3
OPTIONS operand, DSIPSS macro

FIRST 3-43
LAST 3-43
MIDDLE 3-43
MSG 3-43
ONLY 3-43
SEG 3-43

OUT operand, DSIPAS macro 3-37
OUTPUT operand, DSIPSS macro 3-40
overlapped span of control G-3

PANEL operand, DSIPSS macro 3-41,3-44-3-46
parse descriptor block (see DSIPDB)
parsing 3-38,4-11
password G-3
PDB operand

DSICES macro 3-19
DSIPAS macro 3-37
DSIPRS macro 3-39

PDBSIZE operand, DSIPRS macro 3-38
positional fields, message 3-30
PPT (see primary POI task)
PPT restrictions on command processors 4-4
presentation services 3-13,3-14 (see also DSIPSS macro)
primary POIT task (DSIPPT) G-3
PRINT operand, DSICBS macro 3-18
profile G-3
program operator G-3
PSSW AIT operand, DSIPSS macro 3-42
publications

corequisite, TCAM i
corequisite, VT AM i
prerequisite i

PI ... P9 operand, DSIMBS macro 3-31

Q operand
DSIFRE macro 3-24
DSIGET macro 3-25

R operand, DSIFRE macro 3-23
READ operand, DSIDKS macro 3-22
REENT operand, DSIGET macro 3-25
regular command processor 4-2
request/response unit (see RU)
RESHOW key, full-screen 4-25
reshow option, full-screen 4-25
response G-3
resource, locating (see DSIRDS macro)
resource location 3-16

routing qualifier G-3
RU (request/response unit)

definition of G-3
use in DSIZCSMS macro 3-52

RU operand, DSIZCSMS macro 3-52
RULENG operand, DSIZCSMS macro 3-52

SCE control block (see DSISCE)
scope checking (see DSIKVS)
scope of commands G-3
screen formatting (see DSIPSS macro)
SCRSIZE operand, DSIPSS macro 3-41
SCTADDR operand

DSICES macro 3-19
DSIKVS macro 3-26

service facilities
control block considerations for 3-4
in general 3-1
macro instructions invoked by 3-2-3-4, 3-18-3-55
obtafu'ing MVT addressability for 3-1

service work block (SWB) (see DSISWB)
SIZE operand, DSIPSS macro 3-43
SNTADDR operand, DSISSS macro 3-48
service compatibility 1-1
SPoperand

DSIFRE macro 3-23
DSIGET macro 3-25

span G-3
span name table (see DSISNT)
span of control

in general G-3
overlapped G-3

standard NCCF mode 3-14
station G-3
status of resource, indicating (see DSIRDS macro)
STATUS operand, DSIRDS macro 3-47
storage

freeing 3-11 (see also DSIFRE macro)
getting 3-11 (see also DSIGET macro)

subtask
attachment of 6-3
coding guidelines 6-3
command processing 6-9
control block considerations for 6-9
defining to NCCF 6-1
displaying status of 6-5
entry linkage 6-3
example of 6-14
exit linkage 6-3
freeing DSIMQS buffers 6-8
indicating when ready 6-4
in general 6-1
initialization 6-2, 6-3
LIST command 6-5
managing queued storage 6-6, 6-8
message handling 6-7, 6-8
optional facilities 6-5
organization 6-1, 6-2
reading initialization deck 6-6
requirements 6-3
termination 6-2, 6-5

suppression character in command lists 2-4
SWB control block (see DSISWB)
SWB operand

DSICES macro 3-19
DSIDKS macro 3-21
DSIKVS macro 3-26
DSILCS macro 3-28
DSIMBS macro 3-30
DSIMQS macro 3-35

Index X-5

DSIOIS macro 3-3(,
DSIPAS macro 3-37
DSIPRS macro 3-38
DSIPSS macro 3-40
DSIRDS macro 3-47
DSISSS macro 3-48
DSIWCS macro 3-50
DSIWLS macro 3-50
DSIZCSMS macro 3-51
DSIZVSMS macro 3-53

synchronous full-screen command processor 4 ~3
system command entry (see DSISCE)

TARGET operand, DSIZCSMS macro 3-52
task vector block (TVB)

listing of C-57
locating (see DSILCS macro)

TASKA operand
DSIFRE macro 3-24
DSIGET macro 3-25

TASKID operand, DSIMQS macro 3-35
TCAM control task (DSITCT) G-3
terminal G-3
TESTW AIT operand, DSIPSS macro 3-42
TIB control block (see DSITIB)
time, obtaining (see DSIDATIM macro)
timer request G-4
timer initiation G-4
title-line processing, full-screen 4-20
title-line processing, full-line 4-19
TRE exit routine 5-1 1

TVB control block (see DSITVB)
TVB operand, DSICLS macro 3-28
TVBRESET bit 4-26
TVBPNMOD bit 4-26
TYPE operand

DSIDKS macro
CONN 3-21
DISC 3-22
FIND 3-22
READ 3-22

DSIMDS macro 3-33, 3-34

X-6

DSIPSS macro
ASYPANEL 3-42
CANCEL 3-24
IMMED 4-41
OUTPUT 3-40
PANEL 3-41
PSSW AIT 3-42
SCRSIZE 3-41
TESTW AIT 3-42
WINDOW 3-41
XSEND 3-41

DSIZCSMS macro 3-52

unsolicited message routing G-4
user-defined modules, loading (see DSILOD macro)
user exit (see exit routines)

VALUE operand, DSIKVS macro 3-26
variables, command list

control variables 2-8
definition of G-4
in general 2-6
user variables 2-9

VSAM disk log B-1
VSAM services, NCCF (see DSIZVSMS macro)

wait, subtask (see DSIWAT macro)
WINDOW operand, DSIPSS macro 3-41

XITCI exit routine 5-10
XITCO exit routine 5-10
XITDI exit routine 5-10
XITVI exit routine 5-11
XITVO exit routine 5-11
XITVN exit routine 5-11
XSEND operand, DSIPSS macro 3-41

3270 data stream
example 4-23
full-screen formatting 4-24

SC27-0433-5

-------- --- ~--- -.... ---------- ..
----- - y - ®

("')
o
:J
.-+ ...,
2.
"'T1
III

~"
~"

("')
c:
CIl
.-+ o
3
N"
III
.-+
0"
:J

"'T1

ro
z
!::l
CJ)
eN
-....J
o
~
eN o
9
eN

9

