
-------------- --- - ---- - ---- ---- - ---- - ---- - - ---- -------------------_.-

Advanced Communications Function for TCAM, Version 3
Program Number 5665-314

TeAM

Application Programming
(MVS)

SC30-3233-1
File No. S370/4300/30XX-50

Second Edition (June 1985)

This edition applies to Version 3 of the Advanced Communications Function for
TCAM, Program Product 5665·314. This edition also applies to all subsequent
releases and modifications unless otherwise indicated in new editions or Technical
Newsletters. Changes are made periodically to the information herein; before
using this publication in connection with the operation of IBM systems. consult
the latest IBM System/370, 30XX and 4300 Processors Bibliography, GC20·0001, for
the editions that are applicable and current.

Any reference to an IBM program product in this document is not intended to
state or imply that only IBM's program product may be used. Any functionally
equivalent program may be used instead.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below: requesta for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader's comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to the IBM Corporation,
Information Development, Department E03, P.O. Box 12195, Research Triangle
Park, North Carolina U.S.A. 27709. IBM may use or distribute any of the
information you supply in any way it believes appropriate without incurring any
obligation whatever. You may, of course, continue to use the information you
supply.

© Copyright International Business Machines Corporation 1984, 1985

Preface

This manual provides information on interfaces between application
programs and the Advanced Communications Function for the
Telecommunications Access Method. The information presented is intended
to assist application programmers in coding interfaces between their
programs and a TCAM message control program (MCP) in order to
communicate with LUs, and other application programs. This manual does
not contain any MCP programming information except that which is
necessary to fully understand the interface between a TCAM MCP and a
TCAM application program. See TeAM Installation Guide for detailed
MCP information.

TCAM runs as an application program of VTAM. TCAM uses the access
method services of (VT AM) Advanced Communications Functions for
Virtual Telecommunications access methods and functions as an
asynchronous message storing and forwarding facility. Additional
processing of the message data is provided through TCAM's message
handlers, which operate on the contents of the message.

TCAM application programs can be written in Basic Assembler Language
(BAL), COBOL, or PL/I. It is assumed that if you use this manual, you are
experienced in at least one of these languages. You should also be familiar
with how to code BAL data management macros. Before using this manual,
you should become familiar with the information in the TeAM General
Information manual to the extent that you understand the fundamental
concepts of TCAM.

Contents of the Book

This manual is organized so that a programmer who has not been exposed
to TCAM application programming can begin with Chapter 1; whereas, the
experienced TCAM programmer can go directly to Chapter 5 and begin
coding. The first four chapters of this book discuss the concepts and
background necessary for coding TCAM application programs. There are
very few coding details in these first four chapters.

Chapter 1 describes the TCAM environment and generally how application
programs are coded. The basic concepts of passing data between TCAM
and an application program are also discussed. This chapter contains no
programming detail, and can be understood by anyone with a general data
processing background.

Preface 111

Chapter 2 describes the control blocks and other TCAM supervisory
information that is necessary to define the interface between TCAM and an
application program. How to code, test, and execute an application
program, and the starting and stopping of the TCAM interface is discussed.
Specification of error exits in an application program is also discussed.
This chapter contains some programming detail.

Chapter 3 describes the details of the procedure that TCAM uses to pass
data to and receive data from application programs. Messages, records, and
program work areas are discussed. The data transfer macros are also
reviewed. Message retrieval and retransmission is discussed. This chapter
contains some programming detail.

Chapter 4 describes several TCAM functions that are not directly related to
the transfer of data or messages, but which are available to the application
programmer. Subjects discussed include use of the operator control
commands in programs, TCAM system monitoring and control, and time
stamping and counting of messages. The MVS checkpoint facility and the
TCAM checkpoint/restart service facility are described, and coordination of
system and application checkpoints is discussed. This chapter contains
some programming detail.

Chapter 5 describes the requirements and options for coding any of the
TCAM application program macros. This chapter can be used as a
stand-alone reference section.

Appendix A describes how to define buffers in TCAM for application
programs.

Appendix B describes possible errors that can occur in coding an
application program.

Terms used in this book

Throughout this publication the term TeAM is used to refer to Advanced
Communication Function for TCAM Version 3, unless otherwise noted.
The term network has two meanings. A public network is a network
established and operated by communication common carriers or
telecommunication Administrations for the specific purpose of providing
circuit-switched, packet-switched, and leased-circuit services to the public.
User application network is a configuration of data processing products,
such as processors, controllers, and terminals, established and operated by
users for the purpose of data processing or information exchange, which
may use transport services offered by common carriers or
telecommunication administrations.

Network, as used in this publication, refers to a user application network.

IV TeAM Application Programming

J

Related Publications

In addition to being familiar with the information presented in the TCAM
General Information: Functional Description GC30·3057 manual, you should
also be familiar with the information presented in other manuals in the
following list:

Appreviated Title Full Title Order No.

Data Management MVS Data Management Macros GC26·3873
Macro Instructions

Data Management MVS Data Management Services Guide GC26·3875
Services

JCL Reference MVSJCL GC28·0692

Supervisor Services MVS Supervisor Services and Macro GC28·0756
and Macros Instructions

System Messages MVS System Messages GC38·1002

TCAM General Advanced Communications Function for GC30·3057
Information TCAM, Version 3, General Information

TCAM Installation Advanced Communications Function for SC30·3237
Guide TCAM, Version 3, Installation Resource

Definition, and Customization Guide

In addition, the following manuals may be helpful to you in writing your
application program.

Abbreviated Title Full Title Order No.

Checkpoint/ Restart MVS Checkpoint Restart GC26·3877

TCAM Installation Advanced Communications Function for SC30·3236
Reference TCAM, Version 3, Installation Reference

TCAM Planning Advanced Communications Function for SC30·3240
Guide TCAM, Version 3, Planning Guide

TCAM Operation Advanced Communications Function for SC30·3239
TCAM, Version 3, Operation

TCAM Diagnosis Advanced Communications Function for LY30·5560
Reference TCAM, Version 3, Diagnosis Reference

TCAM Program Advanced Communications Function for LY30·5561
Reference Summary TCAM, Version 3, Program Reference

Summary

Preface V

Summary of Changes

SC30-3238 (June 1985)

• In order to utilize the multiple release facility, the user must establish
two new release unique libraries. New JCL is required in order to
establish these libraries. Installation procedures were changed for
assembly, linkedit, and execution considerations. For examples of how
to establish new libraries and JCL see "Installation Procedures,
Assembly, Linkedit and Execution Considerations" on page 2·16.

VI· TeAM Application Programming

Contents

Chapter 1. Planning TCAM Application Programs 1-1
The TCAM Environment 1-1

The TCAM Message Control Program (MCP) 1-1
TCAM Applications 1-4

The Interface Between an MCP and an Application Program 1-7

Chapter 2. Defining, Starting, and Stopping the Application-Program
Interface 2-1

Components of the Interface Between TCAM and an Application
Program 2-1

The Control Blocks in an Application Program 2-2
The Input Data Control Block (DCB) Macro 2-3
The Output Data Control Block (DCB) Macro 2-4
Special Considerations for DCB Macro Operands 2-5
BLKSIZE 2-5
BUFL 2-5
DSORG 2-5
LRECL 2-5
MACRF 2-6
OPTCD 2-6
RECFM 2-6
STOP 2-6
SYNAD 2-7
Special Considerations for Multiple TCAMs 2-9

The Control Blocks in an MCP 2-10
PCB Macro 2-11
TPROCESS Macro 2-12

Coding TCAM Application Programs 2-13
Steps for Message Flow 2-13
Use of Data Management Macros 2-14
Secured Queues 2-15
Activating an Application Program 2-15
Deactivating an Application Program 2-15

Installation Procedures, Assembly, Linkedit and Execution
Considerations 2-16

Assembling a TCAM Application Program: 2-16
Link-Editing a TCAM Application Program: 2-16
Executing a TCAM Application Program: 2-17

Testing TCAM Application Programs 2-17
Data Definition (DD) Statement Parameters 2-18

Starting and Stopping the Application Program Interface 2-19
Starting TCAM Application Programs 2-19

Contents Vll

Opening and Closing TCAM-Related Data Control Blocks (The OPEN
and CLOSE macro) 2-20

Stopping the TCAM Message Control Program (the MCPCLOSE
Macro) 2-20

Summary 2-22

Chapter 3. Transferring Data Between TCAM and an Application
Program 3-1

An Example of Message Flow Through TCAM 3-1
The TCAM Inquiry/Reply Facility 3-3
The TCAM Work Unit 3-3

Work Unit Types (Messages and Records) 3-3
Specifying Record or Message Processing 3-5

Processing a Message 3-5
Processing a Record 3-7

Work-Unit Formats 3-9
The Application Program Work Area 3-13

Defining a Static Work Area 3-13
Defining a Dynamic Work Area 3-14
Defining Optional Fields in the Work Area 3-15

The Origin or Destination Field 3-15
The Position Field 3-17
The SAM-Prefix Field 3-18

Message Handling Considerations 3-19
Specifying an End-of-Message or End-of-File Routine 3-20

Summary of Related Operands 3-22
The Data Transfer Macros 3-22

The Basic Access Technique 3-22
The READ Macro 3-23
The WRITE Macro 3-24
The CHECK Macro 3-24
Completion Codes for the Basic Access Technique 3-25

The Queued Access Technique 3-28
The GET Macro 3-28
The PUT Macro 3-28
Caution Against Issuing Simultaneous PUT and WRITE

Macros 3-29
Retrieving and Retransmitting TCAM-User Messages 3-29

Retrieving Messages from TCAM Disk Data Sets (the Point
Macro) 3-30

Retrieval of Multiple Messages 3-31
Summary of Related Operands 3-33

Retransmitting Messages from the TCAM Message Queue Data Set (the
QRESET Macro) 3-34

Summary of Related Operands 3-36

Chapter 4. Optional TCAM Facilities for the Application
Programmer 4-1

Issuing TCAM Operator Control Commands from an Application
Program 4-1

How to Format and Issue Basic Operator Commands 4-3
Formatting Basic Operator Control Commands 4-3
Issuing Basic Operator Control Commands 4-5

VIll TeAM Application Programming

Command Correlation Information Included in Extended Operator
Control Replies 4-5

Initialization in the MCP for Basic Operator Control in an Application
Program 4-7

Summary of Related Operands 4-8
How to Issue Extended Operator Commands from an Application

Program 4-9
Direct Forwarding to Extended Operator Control 4-9
Forwarding Using End-to-End Sessions 4-9

Inspecting and Changing TCAM Control Elements 4-10
Inspecting an Entry in the Terminal Table (the TCOPY Macro) 4-11
Inspecting a Destination Queue Control Block In the MCP (the QCOPY

Macro) 4-13
Changing an Entry in the Terminal Table (the TCHNG Macro) 4-14

Summary of Related Operands for the Copy and Change Macros 4-15
Inspecting and Modifying the Contents of a Fixed Header Prefix 4-15

Coordinating TCAM Checkpoints of the MCP with Checkpoints of an
Application Program 4-16

The CKREQ Macro 4-17
Using the DCB Exit for Checkpoint Coordination 4-19

Coordinating MCP and Application-Program Restarts 4-20
Checkpointing Operator Control Commands 4-21
Summary of Related Operands 4-21

Determining How Many Messages are on a Specific Queue (the
MCOUNT Macro) 4-22

Identifying Application-Program Input Messages by Time and Date
Received (the TPDATE Macro) 4-23

Summary of Related Operands 4-23
Releasing Messages from TCAM Queues (the MRELEASE Macro) 4-23

Summary of Related Operands 4-24
Displaying Main Storage from Within an Application Program (the

COREDSP Macro) 4-24
Converting Numbers into Binary, Decimal, and Hexadecimal Formats

(the TCBINCNV Macro) 4-26

Chapter 5. TCAM Application Programmer's Macro Reference
Guide 5-1

CHECK Macro 5-2
Return Codes

CKREQ Macro
Return Codes

CLOSE Macro
Return Codes

COREDSP Macro

5-3
5-5
5-6

5-6
5-8

5-8
Return Codes 5-10

DCB Macro (Input) 5-10
Return Codes 5-18

DCB Macro (Output) 5-18
Return Codes 5-24

DKJFND Macro 5-24
GET Macro 5-25

Return Codes 5-26
MCOUNT Macro 5-27

Return Codes 5-28

Contents IX

MCPCLOSE Macro 5-28
Return Codes 5-29

MRELEASE Macro 5-30
Return Codes 5-31

OPEN Macro 5-31
Return Codes 5-33

POINT Macro 5-33
Return Codes 5-35

PUT Macro 5-36
Return Codes 5-37

QCOPY Macro 5-38
Return Codes 5-40

QRESET Macro 5-40
Return Codes 5-42

READ Macro 5-43
Return Codes 5-45

TCBINCNV Macro 5-45
Return Codes 5-47

TCHNG Macro 5-47
Return Codes 5-49

TCOPY Macro 5-50
Return Codes 5-51

TPDATE Macro 5-52
Return Codes 5-54

WRITE Macro 5-54
Return Codes 5-56

Appendix A. Defining Buffers in TCAM for Application
Programs A-I

Buffer Design Considerations A-I
For Application Program GET or READ Buffers A-2
For Application Program PUT or WRITE Buffers A-2
A Coding Checklist A-4

Appendix B. Checklist of Possible Coding Errors B-I

Glossary X-I
Reference Words Used in the Entries X-I

Index X-21

x TeAM Application Programming

Figures

1-1. TCAM in a Network 1-2
1-2. Examples of TCAM Message Routing and Processing 1-6
2-] . The Parameters that Define the API 2-2
2-2. Register Contents Upon Entry to the SYNAD Routine 2-8
2-3. Format of the SYNADAF Message Buffer 2-9
3-1. Work-Unit Size Determination Chart 3-8
3-2. Relative Positions of Optional Fields in the Work Area 3-10
3-3. OPTCD Coding Matrix 3-19
3-4. Completion Code Matrix 3-26
4-1. The Length of the Terminal Table Entry DSECT 4-13
4-2. Using the CKREQ Macro for Checkpoint Coordination 4-18

Figures Xl

,

Chapter 1. Planning TCAM Application Programs

This chapter describes the TCAM-VTAM environment, the types of
application programs that may be coded for that environment, and the basic
concepts of passing data between TCAM and an application program. This
chapter contains no coding detail and can be understood by anyone with a
general data processing background.

The TCAM Environment

TCAM is a subsystem that operates as an application program of VTAM.
TCAM uses the access method services of VT AM and functions as a
message storing, forwarding, and queuing facility. Additional processing of
the message data is provided through TCAM's message handlers (MH),
which operate on the contents of the message.

Since VT AM performs the task of an access method for TCAM, details of
network hardware, NCPs, controllers and links are not a direct concern of
the TCAM system application programmer.

Although the application programs you write must be compatible with
TCAM, they do not execute under control of TCAM. They execute under
control of the same operating system that controls the host processor,
TCAM and VTAM. For the remainder of this manual, TCAM application
programs will be referred to simply as programs or application programs.

You can supply TCAM application programs to perform data processing
functions on data which is transmitted back and forth between the
application programs and other TCAM resources through the MCP.

The TeAM Message Control Program (MCP)

The relationship between TCAM MCP and a TCAM application program is
established partly by TCAM and partly by data-management in the
application program. These application-program macros are discussed in
detail in succeeding sections of this manual.

The main feature of the MCP with respect to an application program, is
that the MCP facilitates the process of passing messages from LVs to an
application program for processing, and then, if necessary, transmitting a
reply to an appropriate LV. See Figure 1-1 to see how TCAM fits into the
network. The application program does not need to be concerned with
characteristics of the LV at which a message originated, with the

Chapter 1. Planning TCAM Application Programs 1-1

A-.l
rfVT~

communication
controller

~

-

-.l
T-

transmission code of the link over which the message was sent, or with
what the station control discipline had been.

Host Processor

TCAM V3 MCP

A ~I
C

~ F Appl ication
/
V Program

T

~ A Read-Ahead
M queue

Device Application
r- ... Message Message work area

Handler

~
Handler

Incoming Outgoing
Group Group

Device Application
Message destination

Message ...
I queue for -Handler application Hand ler work area

Outgoing Incoming
~ - Group ... Group

~
destination
queue for
station

Figure 1-1. TeAM in a Network

An MCP with its MHs is defined by a TCAM system programmer. Your
application program communicates with the network through one or more
of these MHs.

The origin or destination of a message may be an external LU, an LU, or an
application program. Each LU or application program defined to the MCP
has an MH assigned to it. This MH handles messages flowing to or from
that application program or LU.

Although an MH may handle messages for more than one LU or application
program, each LU or application program has only one MH assigned to it.
An MH assigned to one or more LUs is called a device message handler
(DMH), while an MH assigned to an application program is called an
application message handler (AMH).

1-2 TeAM Application Programming

If an application program can both send and receive messages, the MH
assigned to it has two parts; (1) an incoming group, which handles
messages coming into the TCAM MCP from an application program, and
(2) outgoing group, which handles messages going out from the MCP to an
application program. See "Message Flow Through a TCAM System" in
Chapter 2 of TeAM Planning Guide for more information on the incoming
group and outgoing group of MHs.

A message in the TCAM environment may be made up of header or control
information, and text or user data. TCAM uses the header information to
direct a message to its proper destination, and then the application program
processes the text or user-data portion of the message. All messages are
initially directed to the incoming group of an MH. The function of the MH
is to process any control information in the message headers, and to
perform the necessary TCAM functions to prepare messages for delivery to
their ultimate destinations.

Once a message has entered the MCP from any source and passed through
the incoming group of the MH assigned to that source, it is placed on a
destination queue. The destination queue is a queue of messages waiting to
be sent to a particular LU or application program.

To send a message to its destination, TCAM takes the message off its
destination queue and routes it through the outgoing group of the MH
assigned to the destination. After MH processing, the message is
transmitted to the destination LU or application program.

Assume that station A in Figure 1-1 wants to direct an inquiry to the
application program shown in the figure and to receive a response from the
application program.

The inquiry is sent from the external LU to the MCP. It flows through the
incoming group of the MH assigned to station A. The incoming group
looks in a field in the message header to determine that the destination of
the message is the application program. The incoming group, therefore,
causes the message to be placed on the destination queue for the
application program.

The message is then taken off the destination queue and flows through the
outgoing group of the AMH assigned to the application program. It is then
put on the Read-Ahead queue for that destination so that it will be readily
available in main storage when an application program READ or GET
macro is issued. When the READ or GET macro is issued by the
application program, the message is transferred from the MCP buffers
(read-ahead queue) to the application program work area.

When the application program issues a PUT or a WRITE macro, the reply
to the inquiry is transferred from the application program's work area to
the MCP buffers and is directed through the incoming group of the AMH.
Since the destination of the reply is station A, the AMH incoming group
causes the response to be placed on the destination queue for A.

Chapter 1. Planning TCAM Application Programs 1-3

TeAM Applications

When the time comes for the reply to be sent to station A, it is removed
from the destination queue and processed by the outgoing group of the
DMH assigned to station A. It is then transmitted to the external LU.

As an application programmer, you are not responsible for coding either the
MCP or any of the MHs in an MCP. It will help you, however, to
understand some of the details of how messages are processed before they
are passed to your program. Although the following chapters occasionally
refer to various functions of the MCP, the information is given only as an
aid to you in coding an application program.

TCAM application programs may be classified by how they execute. A
program can execute as a batch program (batch processing), or it can
process data as it is received in real time (interactive processing). How a
program executes also depends on the application program environment.
Regardless of how you categorize your application program, TCAM does not
impose any special requirements or restrictions on the coding of that
application program other than those noted in this manual.

Batch Processing Versus Interactive Processing: In batch processing
mode, a LU, or application program initiates a request to communicate with
some other TCAM resource. The origin sends a single message or a group
of messages to the MCP, and then disconnects without waiting for a reply,
usually before the MCP has a chance to pass the messages OIl to their
ultimate destination. The MCP holds complete messages that have been
received error-free on a message queue until the destination becomes
available. When the destination becomes available, it accepts the messages
from the MCP and processes them. Examples of batch processing are data
collection and remote printing applications.

In interactive processing mode, a connection with the MCP is established
and maintained while the transmission is completed to the message
destination. The message is transmitted directly through the MCP to the
destination. The destination processes the message in real time, and
responds to the message originator immediately. The reply is transmitted
back to the originator before the communication connection is broken.

In batch mode, communication occurs most often from an external LU to an
application program. Since the program may not be active while the
message is being transmitted, the MCP may store or queue the message
until the program can be started; alternatively, the MCP may reject the
message and inform the originator that the application program is
unavailable. It is also possible, however, for an application program to
generate a message without first receiving input from an LU. In this case,
the MCP queues the message for subsequent delivery if it cannot be
delivered immediately, In interactive mode, the application program must
be active and waiting in main storage before data can be transmitted to it.

The decision concerning which mode you should use depends on your
assessment of the application. If it is necessary to reply to a message
promptly, use the interactive mode. If the timeliness of a response is not a
major consideration, the batch mode would probably be better. Whichever

1-4 TeAM Application Programming

J

J

mode you choose, you do not need to be concerned with either transmission
protocol or access methods. You should, however, thoroughly understand
the application being implemented.

Other Coding Considerations: Regardless of the type of processing
required, there are several ways to design your application support. One
generally accepted method is to code a separate program for each
application; thus each application has its own interface with the MCP.
This way the message will be processed by the appropriate MH, which will
pass the message on to its associated application program. For instance,
one program could be coded for "claims input" and a second program could
be coded for "claims processing." A separate MH may be used for each
program, (see Figure 1-2A.)

In some situations, however, the processing requirements may allow a
single application program having a single interface with TCAM to perform
all of your data processing and one MH to handle all the messages. Using
this design, all messages that require application-program processing are
routed to the same application program, where an analysis routine
determines the type of message received, usually based upon a
user-specified code in the message. The message is then transferred by this
analysis routine to the appropriate processing subroutine. (See Figure
1-2B.)

Another possibility is to use an application program primarily as a message
router to other application programs in the same or other address space. It
performs this function by returning the messages to the MCP through PUT
or WRITE macros. The application MH in the MCP then routes the
message to the specified application program. (See Figure 1-2C.)

Chapter 1. Planning TCAM Application Programs 1-5

Host Processor

MCP
App Pgm 1 -A r AMH D

C r--- • (OUT)
".

F DMH
/ - ~ I I AMH D (IN) - <IN)

~

V I--- (queue) I -
T DMH ~ App Pgm 2

A ~ r- (Oun .. A ~ AMH
.. -

M --~ I I (OUT)
D

(queue) == AMH D
(queue) I" <IN) -

App Pgm 3

~
AMH -
(Oun ". D

AMH ... D
(queue) I <IN) ...

-
Figure 1-2A

Host Processor

MCP

A
C
F
/
V
T
A
M

I I I I • (~~~) I-+------I~I D t.:==~
DMH (queue) AMH
(OUn ~----, <IN)

8
(queue)

Figure 1-2B

Host Processor

- MCP
App Pgm (routing)

~AMH
r'-'--

A D
C -~ (OUT)
F ,---- • DMH 8 AMH D / ~ = Illy (IN) ~ '---
V
T
~

DMH (queue) == App Pgm A

A -~ 1 T (q"eoe) ~ro-
M

(queue) T I ;- D ----- App

AMH
~

(queue) D (OUT)
AMH
(IN) """'! D

--
Figure 1-2C

Figure 1-2. Examples of TCAM Message Routing and Processing

1-6 TCAM Application Programming

J

You should discuss and coordinate examples with the TCAM system
programmer and the system designer before implementing them.

For information on operating in a multiple TCAM environment, see
"Special Considerations for Multiple TCAMS" in Chapter 2.

In summary, the TCAM MCP monitors and controls the transmission of
messages between sources and destinations. This processing or disposition
of messages at the host may be handled either by TCAM or by a "front end"
application program.

The Interface Between an MCP and an Application
Program

Because an application program depends on the MCP to perform its
input/output operations, you must establish a logical relationship between
the application program and the MCP. This relationship is called the
application-program interface (API).

In passing data between the MCP and an application program, there must
be a common format. This format is specified through several TCAM
macros. The macros allow you to specify parameters to TCAM that define
what the application program expects as input and what it will provide for
output. The rationale for these macros is discussed in Chapter 2, and the
actual coding details are discussed in Chapter 5.

Application programs always run asynchronously with TCAM and, in most
cases, in another address space, but always as a separate task or subtask.
Application programs can run in the same address space as the MCP by
running as attached subtasks of the TCAM initiator, or they may operate as
subtasks of the MCP. Also, unless a program is running as a subtask of the
initiator, any communication from the application program to a TCAM
resource must involve two address spaces in the host processor. In order to
communicate between regions, a format for interaction must be set up.
This manual describes this interface from the standpoint of the application
program. The two types of data which pass through the API are control
information and message data. The control information is standard and is
discussed in Chapter 2; the message data depends on the application and is
discussed in Chapters 3 and 4. Where the TCAM side of the interface is
discussed in this manual, only that information necessary to understand the
application program side of the interface is given. Coding of the TCAM
side of the API is the responsibility of the TCAM system programmer.

Because TCAM has message queuing capability, the MCP processes
messages and directs them to specific destination queues, rather than
immediately passing them directly to their destinations. Messages
addressed to application programs will eventually be sent to a work area in
the program. Conversely, application programs may be concurrently
presenting data to TCAM from work areas.

There are several parameters that the application programmer and the
TCAM system programmer must agree on in order to establish a compatible

Chapter 1. Planning TCAM Application Programs 1-7

format for passing messages. You must establish these parameters before
application programming begins. All of these parameters are discussed in
detail in Chapters 2 through 4.

1-8 TeAM Application Programming

Chapter 2. Defining, Starting, and Stopping the
Application-Program Interface

This chapter describes the control blocks and other supervisory information
necessary to define the interface between TCAM and an application
program; how to code, test, and execute application programs; and how to
start and stop the application program interface. This chapter contains
programming detail that may not be understood by someone without a
programming background.

Components of the Interface Between TCAM and an
Application Program

The relationship between a TCAM MCP and an application program is
defined and controlled at the application program interface (API). This is a
logical relationship rather than a physical one and is defined through the
specification of TCAM macro operands. This relationship is necessary so
that both the MCP and an application program will know the data format.
The primary components of the API are two types of control blocks. One
type resides in the application program and is called a data control block or
(DCB); the other type resides in a TCAM MCP and is called a process
control block or (PCB).

Every time your application program refers to some entity outside the
program's address space, it must also refer to a related data control block.
Conversely, every time the TCAM MCP communicates with your
application program, it must specify a particular process control block in
the MCP area of addressability. The following discussion concerns the
specification of the parameters in these control blocks that are necessary to
establish the API. Some of these parameters are specified in the application
program and others are specified in the MCP. The choice of parameters
must be coordinated so that each side of the interface will function
properly. These control blocks are created by expansion of macro
instructions. The application programmer is responsible for coding the
DCB macro, and the TCAM system programmer is responsible for coding
the PCB macro in the MCP.

To complete the interface, the system programmer must also code at least
one TPROCESS macro in the MCP. A TPROCESS macro relates a single
TCAM input or output message queue to your application program. These
queues are referred to as process queues regardless of whether they are
input or output.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-1

Figure 2·1 depicts the specific parameters required to establish an interface,
and the relationship between those parameters. The remainder of this
chapter discusses how to specify those parameters and how to activate the
API. The actual passing of data through the interface is discussed in
Chapter 3.

Name Operation Operand

GET (or READ)
or

PUT (or WRITE> dcbname

J
dcbname DCB DDNAME=ddname application

I
program

J
ddname DD QNAME'pcoGcome jobcome } JCL

I

J
procname TPROCESS PCB=pcbname

I

J
pcbname PCB MH=mhname MCP

J
mhname

STARTMH
MH for this

application program

Figure 2-1. The Parameters that Define the API

The Control Blocks in an Application Program

Any attempt to send or receive data in an application program must be
associated with a data control block (DCB). One input DCB macro must be
coded in an application program for each source of input for this specific
application program. In the MCP, a TPROCESS macro creates an entry in
a TCAM terminal table for a single destination queue. (For the purpose of
creating queues, TCAM considers external LUs and application programs
as destinations requiring a destination queue), This queue is a logical
input data set for the application program.

2-2 TeAM Application Programming

J

J

L

In addition, one output DCB macro may be coded in the application
program for each TPROCESS entry in TCAM that has been specified as
being able to accept messages from that program. This macro creates a
logical output data set for the program.

Messages are moved into an application program work area by an
application program GET or READ macro that specifies the dcbname of the
logical input data set. (See Figure 2-1.) Messages being transmitted from
an application program are transferred to TCAM by specifying the dcbname
of the logical output data set in a PUT or WRITE macro in the application
program.

The Input Data Control Block (DC B) Macro

The DCB macro generates no executable code. When your program is
assembled, each input DCB macro in the program is allocated space in main
storage for a data control block. This data control block defines a single
input data set for the program, which will consist of the messages or
records being sent to an application program from a single TCAM
destination queue. Each separate input data set to a particular program
must be defined by its own input DCB macro.

When the application program executes, the values specified on the DCB
macro, along with any values specified on the related MVS job control
language data definition card, are integrated into the data control block.

The function of this control block is to provide parameters to TCAM and
the operating system, defining the record format that the application
program expects from this particular data set. The operating system then
ensures that any data transferred to the program from this data set does
indeed have the specified format.

The following operands may be omitted from the DCB macro in the
application program and coded as parameters of the DCB operand of the job
control language, data definition (DD) statement defining this logical data
set. These operands, explained in Chapter 5 and in the JCL Reference
manual, are BLKSIZE, LRECL, BUFL, OPTCD, and RECFM. If any of
these operands are coded in the application-program DCB macro, the
corresponding DD values specified will be ignored. Most DCB values can
also be altered during program execution (see Chapter 5). For details on
this capability, see the Data Management Services guide.

The input DCB macro allows the application programmer to specify:

• Whether data transfer from this data set is to occur using
BSAM-compatible or QSAM-compatible request macros (MACRF)

• Whether the application program can handle entire messages or only
message portions called segments (OPTCD)

• The format and characteristics of the input records (RECFM,OPTCD)
• The length in bytes of the message or record that this application

program expects from TCAM for each GET or READ macro (LRECL)
• The length in bytes of the application-program work area into which

input data is to be transferred (BLKSIZE)

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-3

• The length in bytes of the buffers to be used in TCAM to transfer
messages from the TCAM message queue to the application program
(BUFL)

• The label of an MVS data definition card that describes where this data
set resides (DDNAME)

• The data set organization of this input data set (DSORG)
• The address of a list of user-written routines that perform such

activities as checkpointing your program (EXLST)
• The address of a routine to be given control when the normal end of a

series of data records is reached (EODAD)
• The address of a routine to be given control when a message overflow

error on input occurs (SYNAD)
• Whether the EODAD exit should be taken when the MCP is halted

(STOP).

For special considerations while coding an input DCB macro. see the
section "Special Considerations for DCB Macro Operands" following in this
chapter.

The Output Data Control Block (DCB) Macro

If an application program generates any type of output, that output must be
directed to a logical output data set. Therefore, an output data set will
contain all the messages or records that are to be sent from an application
program to the MCP. These messages will then be directed by TCAM to
their destination. An output data set is defined by an output DCB macro.
Messages are transferred from the application program to the MCP by a
PUT or WRITE macro specifying the label of the appropriate output DCB
macro.

The output DCB macro allows an application programmer to specify:

• Whether the application program is to transfer entire messages or only
message segments to TCAM (OPTCD)

• The format and characteristics of records in the output data set
(RECFM, OPTCD)

• The label of an MVS data definition card that describes where this data
set resides (DDNAME)

• The data set organization of the output data set that this DCB refers to
(DSORG)

• Whether data transfer to this data set is to occur in BSAM mode or
QSAM mode (MACRF)

• The length in bytes of the message or record that TCAM expects from
this program (LRECL)

• The length in bytes of the application-program work area from which
data is to be transferred to TCAM (BLKSIZE)

• The length of the TCAM buffers used to receive messages from this
application program (BUFL)

• The address of a routine to be given control if a logical output error
occurs (SYNAD)

• The address of the problem-program exit list (EXLST).

2-4 TeAM Application Programming

J

J

Special Considerations for DCB Macro Operands

BLKSIZE

BUFL

DSORG

LRECL

There are several special considerations in coding a DCB macro for an
application program in the TCAM environment. These considerations are
discussed by operand keyword:

In TCAM, the BLKSIZE operand is used to determine the size of your
application·program work area. This work area must be large enough to
hold a record of the length specified by the LRECL operand plus all the
optional control fields specified by the OPTCD operand. This value
(BLKSIZE) is used to calculate the length of all variable or
undefined-length records that it will send to the application program. For
undefined-length work units, this value (BLKSIZE) may be dynamically
overridden on a work-unit by work-unit basis by the LENGTH operand of
the READ macro.

Since message buffers for a TCAM system are acquired and allocated in the
MCP, the application programmer does not need to be concerned about
either buffer size or the number of available buffers. If, however, it
becomes necessary for you to change the size of the buffers that the MCP
uses to transfer messages to and from your application program, you may
use this operand. Only buffer size may be altered with this operand; buffer
availability is still handled automatically by the MCP.

You should code a value for the BUFL operand only if you wish to change
the value specified in the MCP. Since a value coded here overrides a value
coded in the MCP, this operand should be used only after careful
consideration.

TCAM buffer concepts are discussed in Appendix A of this manual. You
should review that material before coding a value here.

The only specification that can be made on this operand in the TCAM
environment is DSORG = PS.

The LRECL operand must specify the exact length of the fixed-length or
undefined-length record you expect to be transferred into or out of your
work area. Contrast this value with the BLKSIZE operand, which must
specify the size of the work area. This value must include any optional
fields you have specified through the OPTCD operand.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-5

MACRF

OPTCD

RECFM

STOP

In the TCAM environment, the MACRF operand specifies not only the data
movement macro instructions (GET, READ, PUT, or WRITE) that can be
used in your program, but also the processing mode (MOVE or LOCATE)
that is used to transfer your data to and from TCAM. In addition, you can
specify on any input DCB macro whether you intend to use the TCAM
POINT macro to retrieve specific messages from that input data set.

BSAM-compatible (READ, WRITE, CHECK) and QSAM-compatible (GET,
PUT) request macros are supported in the TCAM environment. You should
use whichever method suits your application requirements best. Refer to
the data transfer discussion in Chapter 3 for details on the differences
between BSAM-compatible and QSAM-compatible operation.

The differences between MOVE and LOCATE processing modes are also
discussed in Chapter 3.

The OPTCD operand parameters have different meanings depending on the
environment for which the DCB macro is coded. You will not be able to
test any of the TCAM OPTCD operand parameters before implementing
them because they have different meanings in the SAM environment for
which they must be tested. Therefore, it is advisable to add these
parameters to your program through the DCB operand on the appropriate
JCL data definition card when you execute any program using OPTCD
operand parameters.

If RECFM = V or U, TCAM assumes the length of the program work area to
be equal to the BLKSIZE operand value. If RECFM = F, TCAM assumes
the length of the program work area to be equal to the LRECL operand
value.

This input DCB macro operand must be coded in conjunction with the
EODAD operand. If the EODAD operand is not specified, you must not
code this operand. STOP allows you to extend the function of the EODAD
operand beyond the normal end-of-data condition. It allows you to define
the specific action you wish to be taken if an MCPCLOSE macro is issued
or a TCAM system closedown is requested while your application program
is executing. By specifying the STOP operand or either or both types of
system closedown, you can provide for an orderly closedown under normal
closedown conditions.

2-6 TeAM Application Programming

J

SYNAD

The input and output DCB macros for all TCAM application programs
permit you to specify an exit to be taken when certain errors occur during
transfer of data between the MCP and the application program. This is
called the SYNAD exit, and it is specified by the SYNAD operand of a DCB
macro.

The SYNAD operand specifies the symbolic name of a subroutine that
receives control when certain errors occur. This routine may be either
open or closed and must be coded by the application programmer. This
facility is offered so that you may continue processing instead of
abnormally ending your job before processing has been completed.

The SYNAD routine is entered after a GET or CHECK macro is issued
immediately following an error. In your SYNAD routine, you must close
and reopen the input data set before issuing another GET or READ macro
to it if one of these errors occurs, before TCAM will pass any more
messages to your program. If one of these error conditions occurs and
SYNAD is not specified, TCAM returns a completion code to the
application program in register 15 following the next GET or CHECK
macro. In this case, your main routine must close the data set.

The SYNAD routine specified by an input DCB macro is given control if:
(1) message processing has been specified by coding OPTCD = U on this
DCB, (2) the message to be transferred by the current GET or READ macro
is larger than the work area available to it, and (3) no position field is
specified for this work area (OPTCD does not also specify C).

The SYNAD routine specified by an output DCB macro is given control
when: (1) the position field in the program work area (see next chapter)
contains a value that is invalid, (2) the position field indicates that the
current work unit is out of sequence (for example, the position field
indicates that this is the first portion of the message, but the position field
for the previous work unit did not indicate end-of.message for a previous
message), (3) the name in the destination field in the program work area is
not a valid entry in the MCP terminal-name table, (4) if the work-unit
length exceeds the work-area length, or (5) if a TCAM quick closedown is
III progress.

A TCAM SYNAD routine expects input identical to that provided by the
QSAM and BSAM access methods for their SYNAD exits as explained in
the Data Management Services guide. Therefore, both the SYNADAF and
SYNADRLS macro instructions may be issued in your TCAM SYNAD
routine. See the Data Management Macro Instructions manual for details
on the function and use of these macros.

In designing a SYNAD routine, consideration must be given to the register
and status indicator field contents on entry to the routine.

Input from TCAM to a SYNAD routine in an application program consists
of several loaded registers. When control is transferred to the SYNAD
routine, the general registers will be in the format described by Figure 2-2.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-7

Register Bits

0 8-31

1 0
1 1
1 4
1 8-31
2-13 8-31
14 8-31
15 8-31

For BSAM (READ or WRITE) support the fifth word of the DECB
associated with each read (DECB + 16) contains a status-indicator address.
Status indicators for the SYNAD routine are:

Address
Offset

Byte
+2
+13

Meaning

Bit
o
1

Meaning

Command reject (work units out of sequence)
Incorrect length (work-area overflow)

Address of the data event control block (DECB) for BSAM-compatible
programs; address of status indicators for QSAM-compatible
programs.

Bit is on for error caused by GET or READ.
Bit is on for error caused by PUT or WRITE.
Bit is on if user specified an invalid destination (PUT or WRITE).
Address of associated data control block (DCB).
Contents before the macro instruction was issued.
Return address.
Address of the error analysis routine specified by the SYNAD operand of

the input DCB.

Figure 2-2. Register Contents Upon Entry to the SYNAD Routine

If the bits are on (that is, bit = 1), then you have the error indicated. No
other fields in the SAM-compatible status indicator field are used by the
TCAM.

If you issue a SYNADAF macro in your error analysis routine, you will
receive the following values in your SYNAD routine in the specified
registers:

• Register 0 will contain a return code of X'OO' right adjusted.
• Register 1 will contain the address of a buffer containing a message

describing the TCAM/SAM error. The message consists of EBCDIC
information and is in the form of a variable-length record such as that
described in Figure 2-3.

2-8 TCAM Application Programming

J

Bytes
0-7
8-49
50-57
58
59-66
67
68-73
74
75-82

83
84-89
90
91-105
106
107-120
121
122-125

Contents
SAM variable-(or variable-blocked) length prefix
(character blanks)
job name
,(character comma)
stepname
,(character comma)
(character blanks)
,(character comma)
ddname (name of DD statement in which QNAME
parameter is coded)
,(character comma)
macro format (GET,PUT,READ, or WRITE)
,(character comma)
error description (WORKAREA OFLOW, INVALID DEST, or SEQUENCE ERROR)
,(character comma)

,(character comma)
TCAM

Figure 2-3. Format of the SYNADAF Message Buffer

Special Considerations for Multiple TCAMs

An application program can open to only one TCAM.

If the application program is a subtask of the initiator, it can open only to
the MCP attached as a subtask of that initiator.

If an application program is in a separate address space, the OPEN macro
connects the application program to the TCAM with BASED = CVT
specified or defaulted to on the INTRO macro. If there is no such TCAM
active, the application program is abnormally ended.

Because there may be multiple TCAMs in a single host processor with
OS/VS2 MVS SP-Version 1 Release 3.1 and Version 2 Release 1.1, you may
select the TCAM that your application program will communicate with.

An application program can select a TCAM by qualifying the QNAME
parameter on the DD statement in the JCL. The format is:

QNAME = procname.jobname

where procname is the TPROCESS entry in this TCAM, and jobname is the
name of the TCAM job.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-9

'.

You do not need to specify a jobname in the following cases:

1. TCAM is not running in an OSjVS2 MVS SP-Version 1 Release 3.1 or
Version 2 Release 1.1 system.

2. An application program is already opened to a TCAM.
3. There is only one TCAM in the host processor and it specifies or

defaults to BASED = CVT on the INTRO macro.
4. The application program is a subtask of the initiator.

If you do specify a jobname when it is not required, the jobname will be
verified. For the cases mentioned above, the OPEN macro will fail in:

• Case 1 if the TCAM is not active, of if the TCAM specified is different
from the active TCAM.

• Case 2 if the TCAM specified is different from the TCAM that the
application program is already opened to.

• Case 3 if the TCAM specified is different from the CVT-based TCAM.
• Case 4 if the application program is not a subtask of the TCAM

specified.

The Control Blocks in an MCP

The transfer of messages between the TCAM MCP and an application
program is controlled by several parameters specified in a process control
block (PCB). A PCB, then, is the MCP counterpart to an input or output
DCB in an application program.

The process control block is created through expansion of a PCB macro.
The PCB macro is coded by the TCAM system programmer since it must be
included in the MCP. The PCB macro assigns a particular TCAM MR to a
particular application program (see Figure 2-1). It also specifies the size of
the buffers in the MR that will handle messages being sent to and received
from the application program.

After a message whose destination is an application program is processed
by the incoming group of MRs, it is sent to a message queue that has been
defined by a TPROCESS macro. Expansion of the TPROCESS macro
caused the name of the message queue for your application program to be
included as an entry in the MCP terminal table. This allows TCAM to
treat the queue for your program in relatively the same manner as it would
treat a queue for an external LV; that is, TCAM can process and send
messages to a queue for your program in the same manner it would send
messages to a queue for an external LV.

Several operands on the TPROCESS and PCB macros are of interest to you.
If the TCAM system programmer codes values for those operands, you
should be aware of what those values are.

2-10 TeAM Application Programming

J

PCB Macro

Keep in mind that even though you may not be responsible for coding these
macros, you should be aware of what values are coded because they will
affect how your application program functions.

The PCB macro operand parameters of interest to you are: SFLAG = YES,
DATE = YES, BUFSIZE = nn, TIMEDL Y = number, and PUTCNT = number.

SFLAG = YES: A message segment on the destination queue for an
application program is normally not marked serviced until the next GET or
READ macro instruction has executed. Every time your application
program terminates abnormally, the last message or message segment it
received might be lost during termination. Therefore, you should allow for
this possibility. Coding SFLAG = YES assures you that the last message
obtained by a GET or READ macro will be marked as serviced by TCAM if
your program terminates abnormally. If TCAM is terminating, the last
message will not be marked serviced. See the discussion on message
retrieval and queue reset facilities in Chapter 3.

DATE= YES: If YES is specified here, it should also have been specified
for DATE in the associated TPROCESS macro. This operand specifies that
TCAM will record the date and time of receipt of every message addressed
to this application program. When the application program issues a GET or
READ macro, TCAM will place the time, date, and source of the message in
a I6-byte work area specified by the DTSAREA operand of a TPDATE
macro in your application program. This date and time will indicate the
moment when the message was available for processing. In extended
networking environments, this could be later than the time of entry into
the network. If the earlier time is needed, that information is contained in
the fixed header prefix (FHP).

BUFSIZE = nn: This operand specifies the size of the TCAM buffers that
will be assigned to handle messages for your application program. The
value coded here in the PCB macro may be overridden by coding a different
value in the BUFL operand of the associated DCB macro in your
application program. If you do not code a value for the BUFL operand in
your program, the buffers will be the size that is specified here.

TIMEDL Y = number, PUTCNT = number: These operands may be specified
to create a time delay in the processing of PUT or WRITE macros to pace
buffer utilization and to keep from flooding the queue. TCAM processes the
number of PUT or WRITE macros specified in PUTCNT, then waits the
number of seconds specified in TIMEDLY. This process is repeated until all
PUT or WRITE macros have been processed. Both operands must be
specified to activate the procedure.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-11

TPROCESS Macro

There are also several operand values that may be coded on the TPROCESS
macro that should be of interest to you. The following operand parameters
will have an effect on your application program: ALTDEST = entry,
CKPTSYN = YES, RECDEL = delimiter, QBACK = YES, QUEUES = form,
SECTERM = YES, SECURE = YES, and DATE = YES. In addition, the PCB
operand must specify the name field of the PCB macro related to this
message queue and your application program. See Figure 2-1.

ALTDEST=entry: If this TPROCESS macro relates to an input message
queue in your program, this operand must specify an alternate queue to
which messages can be sent while this queue is being reorganized. If this
operand is omitted and reusable queues are specified in the MCP, messages
may be overlaid and lost during queue reorganization.

If this TPROCESS macro relates to an output message queue in your
program, this operand must specify the destination to which replies to
operator commands issued from this application program are to be sent.
The destination may be this program, an external LU named by a
TERMINAL macro, or an application program represented by another
TPROCESS macro.

Response messages can also be sent to the destination specified by the
RSPDEST operand of the CODE or the IEDOPCTL macro. If neither
ALTDEST nor RSPDEST is specified, response messages go to the
dead-letter queue (DLQ).

CKPTSYN= YES: YES must be coded if you wish checkpointing of the
application program to be synchronized with checkpointing of the MCP.
For more detail see checkpointing in Chapter 4.

RECDEL = delimiter: This operand defines a one-byte, nonzero
hexadecimal value that TCAM will use to delimit every record (not
message) that it sends to your application program in response to the
execution of a single GET or READ macro. You may want to set up the
application program to test for this particular delimiter.

QBACK = YES: If YES is coded, your application program may issue the
QRESET macro. The QRESET macro cannot be issued if this value has not
been coded. For details, on the QRESET macro and the queue reset facility
see the discussion in Chapter 3. QBACK = YES causes a module to be
loaded into the MCP region and a work area to be allocated to support
retransmission of messages from a specific message queue at a particular
output message sequence number.

QUEUES=DR, DN, MO, MR, or MN: This operand specifies where the
message queues containing messages for this application program are to be
maintained (for GET or READ operating only). If the type of the data set
specified by this operand does not correspond to a related message queues
data set defined by a DCB macro in the MCP, the TCAM MCP will
abnormally terminate. By omitting the QUEUES operand, the user
specifies that this process entry is for PUT or WRITE operations only.
Therefore, this operand must not be coded for PUT or WRITE operations.

2-12 TeAM Application Programming

J

See the TPROCESS macro section in TCAM Installation Reference for
details.

SECTERM= YES: Unless YES is coded here, your application program
may not issue basic operator control commands. See the operator control
command section in Chapter 4.

SECURE = YES: If YES is coded, your application program cannot open
the input DCB until the system operator replies to a console message. If
the operator does not allow the input DCB to be opened, your program will
ABEND with a system completion code of hex 043 and a hex 06 in register
15.

DATE = YES: If YES is specified here, it must also have been specified in
the associated PCB macro. This operand specifies that the MCP record the
time and date of receipt of every message addressed to this application
program. When the program issues a GET or READ macro, the MCP will
place the time and date, and the source of the message in a I6-byte work
area specified by the DTSAREA operand of a TPDATE macro in your
application program.

Coding TCAM Application Programs

Before you code an application program, you should be familiar with the
first four chapters of this manual and with the instructions in the TCAM
Installation Guide for coding DCBs, PCBs, and the LOCK macro because
severe errors can result from misuse or omission. When you start writing
the application program, work with a system programmer to code the MRs
for the MCP. At first, use only the code necessary to establish the TCAM
interface and to test the transfer of messages or data between the
application program and the MCP. After successful testing of the interface,
you can then add more code and function.

Steps for Message Flow

The following coding steps are necessary to implement message flow
between TCAM and an application program:

• Specify both input and output DCB macro parameters in the application
program.

• Code an OPEN macro in the application program for each DCB you
specify.

• Check that the appropriate QNAME operands and jobname qualifiers
are in the JCL that specifies execution of the application program.

• Check that the appropriate PCB-macro and TPROCESS-macro
parameters are coded in the MCP.

• Request the actual transfer of message data between the application
program and TCAM by issuing a GET, READ, PUT, or WRITE macro in
the application program.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-13

Use of Data Management Macros

Every TCAM application program must include the data management
macros, such as DCB, OPEN, GET, PUT, or CLOSE, that are necessary to
provide interaction with TCAM. Although not required for implementing
message flow, every application program should include a CLOSE macro to
deactivate each of the program's data sets upon completion of processing.
Failure to include a CLOSE macro causes an error if you try to end
execution of an application program while a data set is open.

An application program may be coded in Basic Assembler Language,
COBOL, or PL/I. The language used must have the ability to generate
QSAM or BSAM input/output requests.

All of the TCAM-compatible data management macros that may be used in
an application program are listed at the beginning of Chapter 5. Any macro
which may be issued in an MVS problem program may be issued in a TCAM
application program. When a TCAM macro is encountered during
execution in a system without TCAM, a return code, indicating the
condition, is set and control immediately passes to the next sequential
instruction. Otherwise execution of the program is not changed.

With one exception, TCAM macro instructions issued in an application
program execute as specified only if the task in which they are issued is
initiated with JCL that contains at least one DD card specifying a QNAME
operand.

The exception is that you may issue a GET, READ, PUT, or WRITE macro
from an application program that is an attached task provided the attached
task is also a TCAM application program that was initiated with proper
JCL coding. For example, the attaching program or task can open the
necessary data control blocks required to establish the MCP-application
program interface and issue a GET, READ, PUT, or WRITE macro to a
TCAM destination queue. If you code your program to take advantage of
this exception, an attached task or application program can communicate
with the MCP without a special interface.

To TCAM, an application program is similar to an external LU. As a valid
destinatiori for messages, it must have a destination queue to which the
GET macro is issued. The location of the queue is specified by the
QUEUES operand of the TPROCESS macro. The QNAME parameter on
the DD card specifies the name of the process entry with which the
destination queue is related. Further information about the QNAME
parameter can be found in "Data Definition (DD) Statement Parameters" on
page 2-18.

One TPROCESS macro in the MCP should be defined for each queue used
by an application program: one TPROCESS macro, for GET or READ, and
one TPROCESS macro, for PUT or WRITE. More than one TPROCESS
macro can name the same PCB. The GET or READ TPROCESS macro
must specify the QUEUES operand, and the PUT or WRITE TPROCESS
macro must not specify the QUEUES operand.

2-14 TeAM Application l'rogramming

J

Secured Queues

In addition, the TPROCESS macro allows a queue to be specified as
secured. A secured queue is one that can be opened only after
authorization from the system operator. If you want a queue to be secured,
code SECURE = YES on the GET or READ TPROCESS macro. When a
program attempts to open a secured queue, a write-to-operator-with reply
(WTOR) is issued. The WTOR gives the operator the name of the job
attempting to open the queue and the name of the queue. The operator can
then either release the queue or abort the job.

Activating an Application Program

An application program can run as a separate job, a subtask of the MCP or
as a subtask of the TCAM initiator, but in each case, it must have a
priority lower than that of the MCP. If the application program runs as a
subtask of the MCP, the priority can be lowered by the CHAP macro.
Whether the application program runs as a separate job or as a subtask, all
application programs must follow standard linkage conventions in saving
and restoring the registers of the calling program.

Deactivating an Application Program

An application program running as an attached subtask of the initiator can
be closed using initiator commands. If the application program runs as a
separate job, the system operator can close it with a Cancel command.
However, if it runs as a subtask of the MCP, you must close it some other
way because the Cancel command cannot locate the application program.
One way to close an attached subtask is to have the application program
test for a special closedown message sent to it by an external LU and to
branch to a closedown routine when it receives this message. The STOP
operand, discussed earlier in "The Input Data Control Block (DCB) Macro"
on page 2-3 specifies the type of closedown being performed. For debugging
purposes, it is better to run the application program separately to avoid
affecting the MCP.

Your system will work more efficiently if you assure that the work-unit size
in the application program is compatible with the buffer size in the MCP.

If you code any non-TCAM macros or use the SYNAD operand of a DCB
macro or any other exit, read the appropriate publications. This manual
covers only coding considerations for TCAM application programs.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-15

Installation Procedures, Assembly, Linkedit and
Execution Considerations

The installation procedure for TCAM V3 is different from that of previous
releases. TCAM V3 requires the system programmer to establish two new
release unique libraries that isolate the product from the normal system
libraries. The two new libraries contain the macros and modules
constituting the product. JCL modifications for all jobs relating to TCAM
V3 is also required.

Assume these data set names for the release unique libraries.

Macros - SYSl.TCAMMAC

Modules - SYSl.TCAMLIB

The following examples demonstrate JCL requirements for using TCAM V3
libraries and does not constitute the complete JCL stream.

Assembling a TCAM Application Program:

//TYPASM
//STEPI

JOB
EXEC

Job card parameters
ASMFC

//ASM.SYSLIB DD DSN=SYSl.TCAMMAC, ... TCAM V3 macro library
/ / DD DSN = SYSl.MACLIB,... Macro library

Note: The concatenation of the new macro library in front of the normal
system macro library. This construction of the JCL stream allows the
TCAM V3 macro expansion to be retrieved from the TCAM V3 library.

Link-Editing a TCAM Application Program:

/ /TYPLKED JOB ,Job card parameters
PGM=IEWL / /STEPI EXEC

//SYSLIB
//SYSLMOD

DD DSN = SYSl.TCAMLIB, ... TCAM V3 module library
DD DSN = SYSl.TCAMLIB(member), ... new load module

(optional)

Note: The library assignments for SYSLIB and SYSLMOD. This JCL
stream allows the link edit process to retrieve the TCAM V3 modules for
inclusion into the final load module. The SYSLMOD library replacement is
optional. However, this mechanism keeps TCAM V3 modules on one
library rather than combine them into the LINKLIB which may also

2-16 TeAM Application Programming

l.

l.

contain TCAM V2 modules that have been duplicated for the TCAM V3
en vironmen t.

Executing a TeAM Application Program:

/ /TYPEXEC JOB Job card parameters
/ /STEP1 EXEC PGM = name,... name could be IEDQTCAM
//STEPLIB DD DSN=SYS1.TCAMLIB, ... TCAM V3 module library

Note: In the above example a STEPLIB card was added which concatenates
this library in front of the normal libraries search at module location time.

Testing TeAM Application Programs

For development and debugging purposes, TCAM allows you to test a new
application program in a BSAM/QSAM environment until it executes
without error before running it in conjunction with a TCAM MCP. For
example, you can test the logic of a TCAM application program by using
input from a card reader with output going to a printer. In many cases, you
can convert from a test environment to a TCAM environment merely by
changing the DD statements for the application program data sets.

If you wish to test a TCAM application program in a BSAM or QSAM
environment, you must remember the following points:

• Depending on the environment, the OPTCD operand of the DCB macro
has incompatible meanings. See the appropriate JCL Reference manual
for the differences between TCAM and non-TCAM DCB parameters.
This operand should be omitted from the DCB macro when testing and
specified if needed at execution through the DCB parameter of the
appropriate DD statement. (Refer to "Special Considerations for DCB
Macro Operands" on page 2-5 for details on DCB operands).

• Test data for the test environment should contain any optional fields
that would be present in the work area of the program if it were run
under control of TCAM. (See the work area section in Chapter 3.)

• The POINT macro may be issued but it has a different meaning in the
BSAM/QSAM environment than in a TCAM environment. (See
"Retrieving Messages from TCAM Disk Data Sets (the Point Macro)"
on page 3-30 Chapter 3 for details).

• When issued in a BSAM/QSAM environment, the TCOPY, QCOPY,
TCHNG, and MCPCLOSE macros place a return code in register 15
indicating that TCAM is not in the system, and immediately pass
control to the next instruction. (Refer to Chapter 4, "Optional TCAM
Facilities for the Application Programmer" on page 4-1 Chapter
5, "TCAM Application Programmer's Macro Reference Guide" on
page 5-1 for details.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-17

• The DCB checkpoint exit specified by the EXLST operand on the DCB
macro is ignored in a BSAM/QSAM environment. (See the DCB and
checkpoint discussions in Chapters 2 and 4).

• TCAM and BSAM/QSAM use different return codes. Therefore,
register 15 cannot be tested for the same codes after a GET or PUT
macro for an application program when running in a BSAM/QSAM
environment. (See the GET/PUT macro discussions in Chapters 2 and 5
and in the Data Management Macro Instructions.)

By allowing for each of these points, you can plan, code, and test all of your
application programs in a controlled environment until they execute
without error, and then integrate them into the TCAM environment. You
should be able to implement most programs without even reassembling
them.

Data Definition (DD) Statement Parameters

Every input and output DCB has a DDNAME operand that must be given a
parameter. The parameter specified for this operand must also be specified
as the symbolic label on a job control language data definition (DD) card
that identifies the respective logical data set to the operating system. This
DD statement must also include a QNAME operand that specifies the
symbolic name of a TPROCESS macro in a TCAM MCP and may also
specify the name of the TCAM job.

The TPROCESS macro defines a particular message queue (a TPROCESS
queue) in TCAM that will either provide input to or accept output from
your program. The TPROCESS macro also identifies a specific MH through
its PCB operand. Thus, the data definition (DD) card helps connect an
application program DCB to a specific TPROCESS queue. At application
program execution, your job control language must specify one data
definition statement for each DCB in the program.

See the appropriate JCL Reference manual for the details on coding DD
statements .. The format for the DD statement is:

//ddname DD QNAME =procname.jobname

ddname is the symbolic name of this data definition statement, and must be
identical to the name specified in the DDNAME operand or a related input
or output DCB macro in the application program.

If the DDNAME of the DD statement in the TCAM job step containing the
QNAME = operand matches a host LU name, the OPEN for the host LU's
ACB will fail. In a TCAM V2 environment, such a situation indicated that
TCAM should provide subsystem support; TCAM V3 does not support
subsystems. This restriction is most likely to be encountered in an
environment where TCAM applications are attached by the TCAM
initiator.

procname is the symbolic label of a TPROCESS macro in a TCAM message
control program that specifies a process control block for an

2-18 TeAM Application Programming

J

application-program input or output queue in TCAM. This value may be
easily changed at execution by changing DD cards, thus allowing the user
to specify different queues at different times.

jobname is the name assigned to the particular TCAM that is to contain the
specified procname. For more information on jobname see the section titled,
"Special Considerations for Multiple TCAMs" in this chapter.

Several DCB macro operands may be omitted from the DCB coded in the
application program and may be coded as parameters of the DCB = operand
of the DD statement. These operands are described in Chapter 5 and in the
appropriate JCL Reference manual. The operands are BLKSIZE, LRECL,
BUFL, OPTCD, and RECFM. If any of these operands are already coded in
the application program, however, these values on the DD statement will be
ignored.

Starting and Stopping the Application Program Interface

Communication between the TCAM MCP and an application program
cannot begin until both the MCP and the application program are running.
Activation of both the MCP and the application program may be handled by
anyone of several methods.

Starting TeAM Application Programs

Both the TCAM initiator and TCAM application programs may be started
as normal jobs through the system card reader. They may also be started
by issuing a START command through the system console naming a
cataloged procedure. The cataloged procedure must specify the TCAM
initiator or the application program that is to be executed. Once the TCAM
initiator has been started, it attaches the TCAM MCP as a subtask.

Both of the above procedures require manual intervention with the
operating system; thus, some user-created operating procedure must be
implemented in order to notify the operator when (or how often) he must
execute the procedure. These two methods also require that the application
program begin execution in a different address space than the TCAM MCP.

A third method applies only to application programs and does not require
operator intervention. The application program may be activated by the
TCAM initiator, just as a system service program is activated. The
application program will then begin executing as a subtask in the same
address space as the MCP. Both the MCP and the application program will
be executing as subtasks of the TCAM initiator. For more information on
how to treat an application program as a user-supplied system service
program, see titled "Initiating and Terminating TCAM" in TeAM
Installation Guide.

Application programs that are treated like user-supplied system service
programs may be automatically activated and deactivated with the MCP.

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-19

Remember that an application program runs asynchronously with the MCP.
The accepted procedure for activating an application program is to start the
TCAM MCP, and then start your application program.

Opening and Closing TCAM-Related Data Control Blocks (The OPEN and
CLOSE macro)

Opening of data control blocks in your application program is implemented
by the OPEN macro. Closing of data control blocks in your application
program is implemented by the CLOSE macro. See Data Management
Services for a discussion on modifying data control blocks.

The actual activation and deactivation of the interface between an
application program and the TCAM MCP is handled by OPEN, CLOSE and
MCPCLOSE macro instructions in the application program. The OPEN
and CLOSE macros for TCAM application programs are coded and used in
the same way as OPEN and CLOSE macros coded for BSAM and QSAM
data sets in a local (BSAM/QSAM) environment. as described in Data
Management Macro Instructions. No other TCAM-related macro instruction
in an application program may be successfully executed before at least one
of the input and output data set data control blocks in the application
program is opened.

Both the list and execute forms of the OPEN and CLOSE macros may be
coded. You may also code any option for the OPEN and CLOSE macros
shown in Data Management Macro Instructions to run an application
program in a BSAM/QSAM environment and for debugging purposes; but
when the program is executed in a TCAM environment, the operands not
applicable to TCAM are ignored. As stated previously, this facility allows
you to develop and test TCAM application programs in a BSAM/QSAM
environment, and then integrate the programs into the TCAM environment
without recompiling.

More than one data set may be opened or closed with the same OPEN or
CLOSE !)lacro. The details for coding OPEN and CLOSE macros in a
TCAM application program are discussed in Chapter 5.

Stopping the TCAM Message Control Program (the MCPCLOSE Macro)

Stopping of the TCAM MCP may occur either in conjunction with an
MCPCLOSE macro or through the use of the Closedown of MCP (HALT)
operator command.

Closedown may be effected by an MCPCLOSE macro issued as part of a
termination routine in an application program. One procedure is to send a
special closedown message to the MCP from an external LU or application
program. This message would be directed to each active application
program in the system by specifying the names of the appropriate
terminal-table process entries as destinations. Each application program
would contain a user-written termination routine that would be activated
when the message was received. The termination routine might perform the
following steps:

2-20 TeAM Application Programming

1. Issue an MCPCLOSE macro
2. Close any open application program data sets
3. Issue an MVS RETURN macro in order to end the application program

job.

If the extended operator control system service program is running in
conjunction with the MCP, the Stop Application Program extended
operator command may be used to trigger closedown of one or more
application programs.

In order to stop a single application program, the operator entering this
command specifies the name of a GET/READ TPROCESS macro for the
application program that is to be stopped. More than one application
program may be stopped by specifying the name of a TLIST macro
instruction defining a distribution list. The list contains the name of a
GET/READ TPROCESS macro for each application program to be stopped.

Upon receiving the CLOSE command, the system generates a close message
and queues it to the specified application program or programs. To use this
facility, each application program must be able to recognize the message
based on the message text, which is CLOSE. The message text mayor may
not be preceded by a fixed header prefix (FHP). If it is, the beginning of the
message text may be found by adding the offset from the beginning of the
FHP, contained in the field FHPHEADP, to the address of the application
program's input work area. When the application program receives a
CLOSE message, it must close its data sets and return control.

At least two levels of priority should be coded for the TPROCESS queues to
ensure that the CLOSE message gets to the application program without
delay.

The system programmer may force a closedown by coding the SETEOF
macro in his AMH coded to execute when the closedown message is
processed. See the TeAM Installation Reference for a description of the
SETEOF macro. When the application program receives the message on
which SETEOF has executed, access method code associated with the
application program branches to the address specified by the EODAD
operand of the input DCB macro when the next GET or CHECK macro is
issued.

An operand of the MCPCLOSE macro allows you to specify either a quick
or a flush closedown. The difference between a quick and flush closedown
is discussed in the MCPCLOSE macro discussion in Chapter 5. After all
message traffic has ceased, TCAM checks for open application-program data
sets; when all such data sets are closed, control passes back to the MCP.
TCAM then starts a user-coded routine in the MCP that issues a CLOSE
macro for each open data set in the MCP and ends with an MVS RETURN
macro. This causes control to be returned to the TCAM initiator, which
sends a WTOR to the system console, allowing the operator to either start
another MCP or free the address space by terminating the initiator task.

If closedown is done via a Closedown of MCP operator command, any
application program data sets that are open at the time message traffic
ceases will cause an error message to be directed to the system console; the

Chapter 2. Defining, Starting, and Stopping the Application-Program Interface 2-21

Summary

error message lists the open data sets for that application program. If more
than one application program has open data sets, the message for the
second application program will not be sent to the console until all data
sets for the first program are closed. When all data sets are closed, the
MCP is deactivated.

The Closedown of MCP operator command or the MCPCLOSE macro will
also allow you to close all open application program DCBs by forcing the
GET/READ routine to take the EODAD exit for each open input DCB. This
will be done only if you code the STOP operand and the EODAD operand
on each input DCB macro. See the section on data control blocks earlier in
this chapter for a discussion of the STOP operand. An error message may
still be issued if your EODAD exit routine is not a closed routine.

Note: When issuing the READ macro without issuing the CHECK macro,
at least one complete message must be read before the EODAD exit may be
taken.

In review, each GET/PUT or READ/WRITE macro issued in an application
program must specify the name of a data control block created by a DCB
macro issued in that program. The DCB macro specifies (by its DDNAME
operand) a job control language DD card label. The QNAME operand of
the DD card defining each DCB to the operating system names a
TPROCESS macro in the MCP. The PCB operand of the TPROCESS macro
creating this entry specifies a TCAM process control block. The MH
operand of the PCB macro creating the process control block specifies the
MH that handles messages directed to or received from the application
program.

After all the control block relationships are established, the control blocks
must be opened before they can control the transfer of data between the
TCAM MCP and your application program. This is accomplished through
the use of the OPEN macro.

At this point, both TCAM and the application program are prepared to
accept and process messages. Chapter 3 discusses the format and
transmission of data between TCAM and an application program.

2-22 TeAM Application Programming

J

Chapter 3. Transferring Data Between TCAM and an
Application Program

This chapter discusses:

• The details of the procedure that TCAM uses to pass data to and
receive data from application programs

• Messages, message segments, and records
• The TCAM work unit
• Application-program work areas and the data transfer macros
• Message retrieval and retransmission.

This chapter contains programming details that may not be understood by
someone without a programming background.

An Example of Message Flow Through TCAM

The following example is given to help you understand how a message flows
through the TCAM system. The example is followed by a more detailed
discussion concerning the specification of work units and work areas and
the transfer of data.

A TCAM MCP is executing in one address space of your host processor. At
3 p.m., an operator at an external LU in your TCAM system initiates a
transmission to the host. TCAM facilitates this transmission by helping the
external LU establish a communication path through the VTAM (access
method) residing in your host processor. The external LU transmits a
five-thousand-byte message. The message contains five hundred accounts
payable records and is addressed to the accounts-payable application
program at the host. The accounts-payable program is not currently in
main storage; it is not scheduled to begin until five p.m. The first network
component to receive this message is a communication controller. The
communication controller passes the message to VTAM in the host in
several parts or segments. VT AM then passes these parts or segments to
TCAM in the host. The TCAM MH examines the message header, which is
contained in the first segment of the message. As a result of this
examination, TCAM stores the entire message on a queue that can be
addressed by the accounts-payable application program. At 5 p.m., an
operator starts the accounts-payable application program.

Between the time that the first external LU sent a message at 3 p.m. and 5
p.m., several other external LUs have also sent in messages to the
accounts-payable program, and the MCP has added these messages to the

Chapter 3. Transferring Data Between TCAM and an Application Program 3-1

same destination queue as the first message. As the program completes
processing each message, it generates a credit reply to the originating
external LU before going on to process the next message. This credit
message is accepted by the MCP, processed, and put on a destination queue
for the respective external LU. If the external LU is available to receive
messages immediately, the message is sent. If the external LU is not ready,
the message waits on the queue until the external LU can accept it.

Now let's look a little closer at the procedure that occurs within the TCAM
MCP at the time the message is received. If you don't understand some of
the terms in the following description, refer to the glossary in the back of
this manual. The primary intent of this discussion is to give you a general
idea of what TCAM does to a message before it is passed on to an
application program.

When a message is received from an external LU a TCAM MH examines
the message header information in that message to determine the message
destination. The message is processed by TCAM and placed on a
destination queue for the destination.

Subsequently, the message is read from the destination queue and handled
by the outgoing group of a second MH. In our example, this is the MH for
the accounts-payable application program.

At this point, the message segment is put on the read-ahead queue. The
destination queue may be on disk storage or it may be in main storage. The
application program obtains messages or message segments from the
read-ahead queue by issuing GET or READ macro instructions. These
macros obtain the message in sections of data called work units. A work
unit can be a message, a message segment, or a record that is the same size
or smaller than the input area of the application program called the work
area. The message or work unit is placed in the work area for processing
by the program.

After processing the message, and assuming that a reply is necessary, the
application program issues a PUT or WRITE macro to return the reply to
TCAM. The reply is processed by the incoming group of the MH assigned
to this application program (in our case the accounts payable application
program) .. The message is then placed on a destination queue for the
external LU. It is then processed by the outgoing group of the MHs
assigned to the external LU and transmitted to the destination terminal via
VTAM. This example shows message flow between an external LU and an
application program; however, an application program can also send
messages to another application program in the same way.

This is one example of how TCAM would function to process a particular
application. How you decide to solve your application problem depends on
the application. Before you begin coding, however, you will need to know a
little more about messages, message segments, records, work units, and the
work area. A few pointers on how to code the data transfer macros will
also be helpful.

3-2 TeAM Application Programming

J

The TeAM Inquiry/Reply Facility

An inquiry is assumed to be a message originating from an external LU,
that is transmitted to an application program in the host. A reply is an
immediate response from the program back to the external L U and should
be logically related to the inquiry TCAM provides a means of achieving
inquiry/reply interactions between an external LU and an application
program, called lock mode.

Message lock involves establishing a logical connection between an external
LU and an application program so that the external LU receives a reply to
its inquiries. Extended lock maintains the lock capability over interaction
of multiple inquires.

The TeAM Work Unit

A work unit is the amount of data transferred between TCAM and an
application program by a single READ, WRITE, GET, or PUT macro. A
work unit must fit within an application program work area.

The way in which TCAM determines how much data to send to an
application program via a single READ or GET macro depends upon the
type of work unit (message or record) and the format of the work unit (fixed,
variable, or undefined length) that you have specified on the associated
DCB.

Work Unit Types (Messages and Records)

An application program can only handle one work unit at a time. A work
unit may be a record, a message, or a portion of a message called a message
segment; a work unit that is a message or message segment may be, but
need not be. a record.

In the TCAM environment, a record is a logically related set of data, the
length of which is defined in the application program DCB macro LRECL
operand. A record is the minimum amount of logically related data that
can be sent or received by a single READ, WRITE, GET, or PUT macro. A
record can, but is not required to, be delimited by a record delimiter. This
delimiter can be added to a record at several points. It can be added at the
message source, it can be added by a MH in the TCAM MCP before the
record is transferred to your program, or it can be added by your program
before transferring the record to TCAM. The primary purpose of a record
delimiter is to clearly define a work unit as a record. The size of a record
need not coincide with the size of a message or message segment; one
message may contain many records. The delimiting character is ignored for
fixed ·length records.

A message may be transmitted as a single physical block or unit, or in
several physical blocks called message segments. A message segment is
that portion of a message that will fit in a single TCAM message buffer and
be transmitted by a single GET, PUT, READ, or WRITE macro.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-3

On input to
an
application
program

The advantages of specifying one type of work unit over the other depends
on how you intend to process your data and on what other data
management options you choose. If you want to process data in the distinct
units that are the same size or smaller than your program work area, you
should specify record processing. TCAM will pass on a clearly identifiable
unit of data to your program for each GET or READ macro.

If your program can handle data in a more informal manner, you may want
to specify message processing. In this case, TCAM will completely fill your
program work area each time you issue a GET or READ macro.

Some of the differences between message and record processing on input or
output from your program are:

Message Processing

• When a GET or READ macro is
issued, ACF/TCAM brings in data
until either the end of the message
is encountered or the work area is
filled.

• If the work area has been filled and
the end of the message was not
reached, TCAM either brings in the
next segment of the message with
the next GET or READ macro (if
OPTCD = C is specified), or goes to
the error-handling routine specified
by the SYNAD operand of the input
DCB macro.

Record Processing
• When a GET or READ macro is

issued, TCAM brings in data until
(1) the delimiting character specified
by the RECDEL operand and of the
TPROCESS macro that defines the
input data set for this program is
encountered, (2) the end of the
message is encountered, or (3) the
work area is filled.

• If the work area is filled, TCAM
assumes that a complete record has
been received.

3-4 TeAM Application Programming

J

On output
from an
application
program.

Message Processing

• Whenever a PUT or WRITE macro
is executed, TCAM transfers one
work unit of data from the
application program work area to
the MCP.

• Same as for message-one work unit
(record) is transferred per PUT or
WRITE macro.

• The RECDEL operand of the
TPROCESS macro is ignored.

• If a position field is present in the
prefix of the work area and it
indicates an initial or intermediate
segment, TCAM transfers the next
segment of the message to the MCP
when the next PUT or WRITE
macro macro is executed for this
output data set. If no position field
is present, TCAM assumes that the
end of the current message coincides
with the end of the work area.

Record Processing

• The delimiting character specified
by the RECDEL operand of the
TPROCESS macro is placed by
ACFjTCAM at the end of each
outgoing undefined-length record
and each outgoing variable-length
record.

• If a position field is present TCAM
considers all records to be part of
the same message until the position
field indicates that the current
record is the last record in the
message. If no position field is
present, execution of the CLOSE
macro in the application program
for the output data set signals an
end of the message.

Specifying Record or Message Processing

Processing a Message

The OPTCD operand of the DCB macro associated with the GET, READ,
PUT, or WRITE macro in your program allows you to specify whether you
prefer message processing or record processing. If OPTCD = U is specified,
either message or message segment processing is assumed. If U is omitted
when specifying the OPTCD operand parameters, record processing is
assumed. (See Figure 3-3).

When U is coded in the OPTCD operand of the input DCB macro, TCAM
attempts to fill the work area with an entire message when a GET or a
READ macro is executed. If the work area is not large enough for the
entire message, TCAM transfers as much of the message as will fit in the
work area.

If the entire message does not fit into the work area, the next portion of the
message will be moved to the work area the next time a GET or READ
macro is issued. This continues until the entire message has been
processed. This is message-segment processing. Portions of messages
processed in this way are not considered to be records since message
processing rather than record processing was specified in the DCB macro.

To determine whether an incoming message will fit into the work area,
TCAM must first know the length of the work area. For fixed-length
messages, TCAM assumes the length of the work area to be equal to the

Chapter 3. Transferring Data Between TCAM and an Application Program 3-5

number of bytes specified in the LRECL operand of the input DCB macro.
For variable- and undefined-length messages, TCAM assumes that the
work-area length is equal to the number of bytes specified in the BLKSIZE
operand of the input DCB macro.

If a completed message does not fit into the work area with one GET or
READ macro, TCAM takes one of three actions depending on what
operands of the input DCB macro are coded. If the first or intermediate
position field option is specified in the position field in the work area (see
the discussion on "Defining Optional Fields in the Work Area" following),
the portion of the message that did not fit into the work area on the first
GET or READ will be obtained when the next GET or READ macro is
executed. A PUT or WRITE macro may be issued before the second GET or
READ macro. (See the OPTCD discussion for the input DCB macro in
Chapter 5.)

If message processing had been specified, but no position field is specified
on the DCB macro, TCAM gives control to the routine specified by SYNAD.

If neither a position field nor a SYNAD exit is specified, TCAM places a
return code in register 15 and returns control to your program. This return
code indicates that an error condition exists, and that you should probably
terminate message processing and correct the error.

Work-area overflow may occur if the LRECL operand does not correspond
to the work-area size. When a work-area overflow error occurs, TCAM
discards the message that caused the overflow. If the input data set is
closed and then reopened as a result of work-area overflow, the first
message received in the work area following reopening of the data set is the
message after the one that caused the overflow.

If U is specified in the OPTCD operand of an output DCB macro, TCAM
performs message processing on any output associated with this DCB. If a
position field is specified in the work area (by coding OPTCD = C in the
output DCB macro), TCAM uses this field to determine whether the work
area contains an entire message or only a segment of a message. If the
work area does not contain an entire message, TCAM treats each piece of
data moved from the work area by a PUT or WRITE macro as part of the
same message until the position-field byte indicates that the work unit
currently being processed is the last unit in the message. If no position
field is specified, TCAM assumes that the entire message is currently in the
work area. For message output, the application program is responsible for
assuring that the position field contains the correct code.

Depending upon the format of the work unit (whether it is fixed, variable,
or undefined), TCAM looks in the SAM-prefix (another optional field
preceding the work unit) or in an output DCB field for the length of the
outgoing work unit, and sends out the quantity of data specified in the
appropriate field, allowing for optional fields in the work area. See Figure
3-1 for an explanation of how TCAM determines work-unit size on input and
output.

3-6 TeAM Application Programming

J

Processing a Record

If U is not coded in the OPTCD operand of the input DCB macro, TCAM
treats each incoming work unit as a record, rather than as a message or a
message segment. After an incoming message is placed on a TCAM queup,
for a specific application program, the application program should obtain
the records in that message one at a time, with one record being passed for
each GET or READ macro issued. The decision concerning the type of
processing you wish to use depends on the size of the input message, the
size of the records in that message, the size of the TCAM buffers, and the
type of data in the message.

If you specify that the input to your application program is to be
fixed-length records (by coding RECFM = F and omitting OPTDC = U on the
input DCB macro), TCAM assumes that each incoming work unit is to be a
record equal in length to the number of bytes specified in the LRECL
operand of the input DCB macros (minus the length of any optional fields in
the work area), and moves this number of bytes into your work area each
time a GET or READ macro is executed against the data set defined by this
DCB. The last record in a message may be shorter than the number of
bytes specified by the LRECL field, in which case TCAM brings in the
remaining number of bytes in this message.

If fixed-length records are designated as the output from an application
program (by coding RECFM = F in the output DCB macro), each time a
PUT or WRITE macro is executed TCAM transfers to the MCP a record
equal in length to the number of bytes specified in the LRECL operand of
the DCB defining the output data set, after making allowance for the length
of optional fields in the program work area.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-7

Work-Unit Format: Record Message J
Work-Unit Type: Fixed Variable Undefined Fixed Variable Undefined

LRECL field
of • • input DCB

Work-unit
size BLKSIZE field

determined of • • • • by: input DCB

Length field
of • • READ macro

Input side
Del imiter as (GET/READ)
specified in • • TPROCESS
macro

End-of- • • • • • • message

Field in SAM • •
Work-unit

prefix

size
stored in: LRECL field

of • • input DCB

LRECL field
of • • • • output DCB

Work-unit
size

determined Length field
by: of • • WRITE macro

Output side
Field in SAM (PUT/WRITE)
prefix • •

Delimiter as
specified in
TPROCESS
macro
inserted • •
after each
record

Figure 3-1. Work-Unit Size Determination Chart

3-8 TCAM, Application Programming

If you specify that the input to your application program is to be variable
or undefined-length records (by coding V or U, respectively, on the RECFM
operand of the input DCB macro), TCAM determines the length of incoming
records according to the following requirements:

• If the delimiting character (specified by the RECDEL operand of the
TPROCESS macro creating the destination queue addressed by the GET
or READ macro) is encountered while the work area is being filled,
TCAM assumes that the current record ends with this character. You
may request that delimiting characters be removed from the data by
specifying DELETE = YES on a TPDATE macro in your program.

• If the end of a message is reached before the work area is filled, TCAM
assumes that the last character in the message is also the last character
in the current record.

• If neither a delimiter nor the end of the message is reached by the time
the work area is filled, TCAM assumes that the length of the record is
equal to the size of the work area, minus the size of any optional fields
in the work area. TCAM determines the size of the work area by
looking in the BLKSIZE operand field of the input DCB.

When record processing is specified in the DCB macro defining an output
data set, TCAM expects a single record for each PUT or WRITE macro
issued to that data set. For variable-length records, the size of the record is
indicated in the SAM prefix of the work area. For undefined-length records
transferred by a PUT or WRITE macro, the size of the record is indicated
by the LRECL field of the output DCB or an operand of the WRITE macro.
The application program is responsible for filling the appropriate field with
the appropriate value or control character so that TCAM will know how to
process each work unit.

The differences between message and record processing are summarized in
the section title "Work Unit Types" in this chapter.

Work-Unit Formats

In addition to specifying work unit type, you must also specify the format of
the work unit that your program is designed to process. You may specify a
fixed-length record format, a variable-length record format, or an
undefined-length record format. Your choice of format must be specified
through the RECFM operand on the input and output DCB macros for the
application program. These operands indicate whether the work unit will
always be the same length (fixed), or whether they may vary in length from
message to message or record to record (variable and undefined).

If messages or records sent to an application program may vary in length,
the application program must know the length of the work unit currently
being processed. When the variable-length or undefined-length format has
been specified, TCAM will count the number of bytes in the incoming work
unit, add the number of bytes that must be reserved for optional fields in
the work area, and place the total either in a special field in the work area
or in a field in the input DCB (depending upon which format you specify on
the RECFM parameter of the input DCB macro). The application program
may then refer to this field to determine the length of the work unit
currently being read in.

Chapter 3. Transferring Data Between TeAM and an Application Program 3-9

The length of any output messages or records using the variable or
undefined-length must also be specified before these work units can be
transferred to TCAM. You, as the application programmer, must ensure
that the sum of the work-unit length and the length of any optional fields in
the work area has been placed in a prefix field in the work area (variable)
or in the output DCB (undefined) before issuing a PUT or WRITE macro to
transfer the work unit (see Figure 3-1). (See the following discussion on
"Defining Optional Fields in the Work Area" for details on how to specify
work unit sizes (see also Figure 3-2).

~ :y~~,B :1, byte ~ B byte, ------1 ... 1

SAM Prefix

RECFM =V or VB

Start of
Work Area

Pos.
Field

OPTCD
=C

Origin or Destination Field

OPTCD
=W

~

Start of
Work Unit

Figure 3-2. Relative Positions of Optional Fields in the Work Area

You must specify the work unit format that you wish your application
program to accept by coding an appropriate value on the RECFM operand
of the input DCB macro. The only values you may code are RECFM = F,
RECFM = V, RECFM = U, or RECFM = VB. If you code RECFM = F, TCAM
knows that this program is set up to process fixed-length work units and
will process only those units that are the same length as specified on the
LRECL operand of the input DCB macro.

If you code RECFM = V, TCAM keeps track of the length of each incoming
work unit and stores this value in the SAM-prefix field in the program work
area each time a GET or READ macro is issued. The total length stored by
TCAM is the work unit length plus the length of any optional fields in the
work area plus the length of the SAM prefix.

If you code RECFM = U, TCAM adds the length of each incoming work unit
to the length of any optional fields and stores this total in the LRECL field
of the input data control block. This function is performed each time a
GET or READ macro is issued.

For work units being transferred out of an application program, the
situation is similar. The RECFM operand of the output DCB macro tells
TCAM where to look for the length of the work unit being sent back by
each PUT or WRITE. If RECFM = F is specified, TCAM looks for the
length of the work unit in the LRECL field of the output DCB. If
RECFM = V is specified, TCAM looks for the length field in the SAM prefix
to the work area. If RECFM = U is specified, TCAM looks for the sum of
the work unit plus the length of any optional fields in the LRECL field of
the output DCB. If the WRITE macro is used with the length operand, that
length is used. It is the application program's responsibility to ensure that

3-10 TeAM Application Programming

the correct length has been entered in every field. The technique for
modifying a DCB field is described in the Data Management Services
manual if you intend to specify RECFM=U.

The significance of specifying a particular format for your work units on an
input or output DCB can be summarized as follows:

For the Input DCB:

Format

Fixed

Variable

Variable
Blocked

Undefined

How Specified

RECFM=F

RECFM=V

RECFM=VB

RECFM=U

For the Output DCB:

Format How Specified

Fixed RECFM=F

Significance

All incoming work units (except possibly the last in a message)
are the same length. When a GET or READ macro is executed,
TCAM brings in the number of bytes specified by the LRECL
operand of the input DCB macro.

Incoming work units will vary in length. When a GET or
READ macro is executed, TCAM brings in data until a
delimiter or the end of the work area is encountered. It then
places the sum of the length of the work unit plus the length of
any optional fields plus the SAM prefix length in the
SAM-prefix of the work area.

When a GET or READ macro is executed, TCAM places an
eight-byte prefix into the work area receiving a work unit from
the input data set for which the DCB macro was coded
provided MACRF = R was also coded (a four-byte prefix is
provided otherwise). The first two bytes of the prefix contain
the binary sum of the length of the work unit plus eight bytes
(the length of the prefix) in hexadecimal notation. The second
two bytes each contain a binary zero. The third two bytes
contain a binary number four less than that contained in the
first two bytes. The final two bytes each contain a binary zero.

Incoming work units will vary in length. When a GET or
READ macro is executed, TCAM brings in data until a
delimiter or the end of the work area is encountered. It then
places the sum of the length of the work unit plus the length of
any optional fields in the work area in the LRECL field of the
input DCB.

Significance

A PUT or WRITE macro referring to this DCB moves the
number of bytes specified in the LRECL field of this DCB from
the work area to the MCP. TCAM subtracts the length of any
optional fields from the number specified in the LRECL field
and only transfers the number of bytes specified for the work
unit.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-11

Format

Variable

Variable

Undefined

How Specified

RECFM=V

RECFM=VB

RECFM=U

Significance

When a PUT or WRITE macro referring to this DCB is
executed, TCAM determines the length of the work unit to be
moved by referring to the SAM-prefix preceding the work unit
in the work area. TCAM subtracts the length of any optional
fields in the work area before transferring the work unit.

When a PUT or WRITE macro referring to this DCB is
executed, TCAM assumes that the work unit being sent to the
output data set for which the DCB macro is coded is preceded
by an eight-byte prefix (provided that MACRF = W is also
specified; a four-byte prefix is provided otherwise) whose layout
is the same as that described above for the eight-byte
BSAM-compatible prefix for the input side. This prefix is for
BSAM compatibility; work units are treated as if they were
blocked, although only one work unit is transferred for each
WRITE macro. It is the application programmer's
responsibility to see to it that the prefix contains the proper
data before a WRITE macro is executed.

If a PUT macro referring to this DCB is executed, TCAM
determines the length of the work unit to be moved to the
MCP by looking in the LRECL field of the DCB. If a WRITE
macro with the "s" operand referring to this DCB is executed,
TCAM determines the length of the work unit to be moved by
looking in the LRECL field of the DCB. In either case,
ACF/TCAM subtracts the length of any optional fields in the
work area from the value found. If a WRITE macro with a
length operand is executed, TCAM uses the length specified in
the WRITE macro minus the length of any optional fields in
the work area as the length of the work unit to be moved.

Figure 3-1 summarizes the specifications and characteristics of the various
work-unit formats and types.

The delimiter mentioned in Figure 3-1 in the discussions of variable and
undefined-length records is the end of the message when message
processing is specified; when record processing is specified, the delimiter
may be either the end of the message or a special record-delimiting
character that was specified by the RECDEL operand of the TPROCESS
macro that created the queue addressed by the GET or READ macro.

If all incoming and outgoing messages were the same length, it would be a
simple matter for TeAM to provide buffers of just that size for every
application program that processes messages. Unfortunately, this is rarely
the case. Instead, messages are usually either too short or too long for a
given buffer. Therefore, some sort of compromise buffering scheme must be
used. The scheme that is used is the responsibility of the TCAM system
programmer, not the application programmer. You, as the application
programmer, however, should be aware of how large the TCAM message
buffers are. If a buffer is too small for a record, additional buffers must be
allocated by TCAM. This may result in inefficient operation or, in some
cases, an error. An application program can execute successfully without
being aware of exactly what size the TCAM message transfer buffers are;
but in the interest of efficient operation, there should be some coordination
between the TCAM system programmer and the application programmer

3-12 TeAM Application Programming

J

concerning the size of TCAM buffers. Therefore, Appendix A provides a
more detailed discussion about how buffers are defined in the MCP.

In summary, the length, in bytes, of a fixed-length work unit is specified in
the LRECL operand of a DCB macro. The length, in bytes, of a
variable-length work unit is defined in the optional SAM-prefix field in the
application program work area. (See the discussion on the SAM-prefix field
following). The length, in bytes, of an undefined-format work unit is
specified in the LRECL operand field of an input or output data control
block or in the length field of a WRITE macro. TCAM counts the number
of bytes in an incoming work unit and passes this value to the program for
both variable- and undefined-length work units. The only difference
between the two types of work units (other than the lengths of their
respective prefixes) is the location of the field in which TCAM stores the
count. For outgoing work units, the same locations are used, and the
application program is responsible for entering the appropriate value (see
Figures 3-1 and 3-2).

The Application Program Work Area

Work units obtained by a GET or READ macro are transferred from TCAM
to a work area defined in the application program. These work areas are
similar to those specified in programs using either the basic or queued
sequential access methods.

A work area in a TCAM application program may be defined in one of two
ways. It may be defined in the application program by a DS or DC
instruction. This is a static work area definition. It may also be defined
dynamically. Dynamic definition relieves the programmer of having to set
aside a specific area in his program for input and output. Every time your
program issues a GET or PUT macro, the operating system dynamically
acquires a work area. Data movement to or from a static work area always
occurs in move mode. Data movement from a dynamically acquired work
area must occur in locate mode. The data movement mode is specified on
the MACRF operand of the DCB macro associated with the respective
logical input and output data sets. See to the Data Management Macro
Instructions for a discussion on move mode and locate mode.

Defining a Static Work Area

The label of the DS or DC instruction in your program that defines your
data work area becomes the name that is coded in the GET, PUT, READ, or
WRITE instruction that moves data to and from a static work area. The
size of the work area must be specified in the BLKSIZE operand of the DCB
macro associated with the data set whose contents are being transferred to
or from the work area.

The APW AS operand of the INTRO macro specifies the size of the work
area in the application interface block (AlB). The work area is used as an
intermediate buffer area for data transfer between the TCAM address space
and the application program address space.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-13

The BLKSIZE operand of the DCB macro specifies the size of the
application program's buffer work area (in the application program itself)
provided by the application programmer.

If the BLKSIZE operand value is greater than the APWAS operand value,
the error will be indicated by the appropriate return code that results from
GET, PUT, READ, WRITE, or CHECK macro execution.

When a work area is defined in this way, you should specify move mode in
the DCB macro referred to by the data-transfer macros that use the work
area. A static work area may receive data from or send data to more than
one input or output data set. Note that either QSAM-compatible or
BSAM-compatible request macros may be used for move mode.

Defining a Dynamic Work Area

If you specify locate mode by coding MACRF= GL on the input DCB macro,
execution of the first GET macro referring to the opened data set causes
TCAM to dynamically obtain a work area (by a GETMAIN macro) in the
same address space as the application program, and to move a work unit of
data into this work area.

The APW AS operand of the INTRO macro specifies the size of the work
area in the application interface block (AlB). The work area is used as an
intermediate buffer area for data transfer between the TCAM address space
and the application program address space.

The BLKSIZE operand of the DCB macro specifies the size of the
application program's buffer in the dynamically obtained work area.

If the BLKSIZE operand value is greater than the APW AS operand value,
the error will be indicated by the appropriate return code that results from
GET, PUT, READ, WRITE, or CHECK macro execution.

The work-area address is returned to the application program in register 1
and is also saved by TCAM. The second and subsequent executions of the
GET ma<;ro referring to the same DCB will then move data into this same
work area.

If locate mode is specified in an output DCB macro (MACRF = PL),
execution of the first PUT macro causes TCAM to dynamically obtain a
work area (by a GETMAIN macro) in the same address space as the
application program. The length of this work area is specified by the
BLKSIZE operand of the output DCB referred to by the PUT macro. The
address of this work area is returned in register 1. This address must be
saved by the application program so that subsequent output work units may
be moved into the same output work area. TCAM will use this same work
area until your program ends. No data transfer takes place upon execution
of the first PUT macro. The second and subsequent PUTs will move data
from the work area addressed by register 1.

Note: Only GET and PUT macros may be used with locate mode.

3-14 TeAM Application Programming

J

L

Defining Optional Fields in the Work Area

The work area can be made up entirely of a work unit. If your application
program requires it, however, up to three optional fields can be affixed to
the beginning of the work unit. The optional fields are the origin or
destination field, the position field, and the SAM-prefix field. One, all, or
any combination of two of these fields may be specified depending on your
requirements (see Figure 3-2).

These optional fields allow TCAM to pass data concerning the source,
position, and size of the current work unit being transferred to the
application program on input. On output, your program can fill in these
same fields so that TCAM can process the output more efficiently.

The optional fields are specified through operands on the appropriate input
and output DCB macros. These operands are:

• OPTCD = [W] [C]
• RECFM=V

If OPTCD = C or W is not coded and RECFM is not coded V or VB, TCAM
starts with the first byte of the work area. When a work unit is passed to
the work area by a GET or READ, it is preceded by whatever optional fields
have been specified in the associated DCB. Therefore, you must allow for
these fields when defining your work area.

The contents of these optional fields are not moved out of the work area
with the message or record being processed by a PUT or WRITE macro.
TCAM refers to each field, but does not move it.

The Origin or Destination Field

If W is coded as one of the parameters of the OPTCD operand of the DCB
macro of the input data set, eight bytes at the beginning of the work area
are reserved for the name of the source of every message. This eight-byte
origin/destination field must immediately precede the work unit in the work
area and follow the other two optional fields if they were specified. (See
Figure 3-2).

When the first work unit of a message is read into the program work area,
TCAM places the EBCDIC name of the source (as specified in the MCP
terminal table) into these eight bytes. The name is left-adjusted, and the
field is padded on the right with blanks if the name is shorter than eight
bytes. This value will remain in the origin field until it is overlaid or
deleted. In most cases, it will be overlaid by the source name of the next
message.

If TCAM cannot determine the origin of a message, the field is filled with
eight character blanks (X'40').

If W is coded on the OPTCD operand of the DCB macro of the output data
set for this work unit, TCAM looks at the 8-byte field immediately
preceding the work unit for the name of the destination of the message
when a PUT or WRITE macro is issued to move a work unit from this work

Chapter 3. Transferring Data Between TCAM and an Application Program 3-15

area to the MCP. The name should be specified in EBCDIC, left-justified,
and padded to the right with blanks if necessary. If a FORWARD macro
with the DEST operand coded DEST = PUT is executed by the inheader
subgroup of the MH for an application program, the message is sent to the
destination specified in the 8-byte field (see the FORWARD macro in the
TeAM Installation Reference manual). If the destination name is filled with
blanks or hexadecimal D's, the work unit will be passed to the MH with a
zero destination and will cause a FORWARD error with DEST = PUT. If
you do not route based on the 8-byte prefix set by TCAM or the FHP, then
code the destination external LU name in the message just as is done for
any external LU, and a FORWARD macro must be coded in the MH.

Only the work unit (without the destination field) is transferred to TCAM
when a PUT or WRITE macro is executed. However, the destination field
remains a part of the work area as long as OPTCD = W is specified for this
DCB.

An inquiry-reply application program whose MH has issued a LOCK macro
must have OPTCD = W coded on its input and output DCB macros. TCAM
places the message origin in the eight-byte field when the inquiry is
initially read into the work area. After the application program processes
the message data (without changing the contents of the eight byte field), a
PUT or WRITE macro is issued; the contents of the eight-byte field are now
assumed to specify a destination address rather than a source address.

For OPTCD = W to work in a TCAM system LUs that can access the
application program must be defined to the local MCP using TERMINAL
macros. In a large network, this requirement can become a maintenance
problem, since the addition of an LU to the network might require the
changing of all other MCPs/VTAMs in the network in order to provide
communication to the new LU.

This problem may be avoided in an extended network. Routing in an
extended network is based on a TCAM network address, which is resolved
into a terminal-table entry in the host controlling the message's
destination. The network address of the origin and destination of a
message flowing in an extended network are contained in a field of the
fixed header prefix (FHP) located at the beginning of the message. The
TCAM network address of the message origin is contained in an FHP field
named FHPOAFLD, while that of the destination is contained in a field
called FHPDAFLD. The system programmer can set up the MCP so that
the FHP is passed to the application program input work area. The
DKJFHP macro allows the user code in the application program to
symbolically examine the contents of the FHP.

The application program need not alter the contents of the FHP; code in
the incoming group of the AMH may be used to switch the origin and
destination TCAM network addresses and route the message back to the
origin using the DAFROUTE macro.

Note: An option, (controlled by use of KEYDEF macro and MHs in the
MCP), allows the 8 character terminal name from the TCAM tables that
define originating external LUs to be inserted in the message for

3-16 TeAM Application Programming

J

The Position Field

application programs that need this information. If this option is used, the
name will appear in the message text area.

This technique of routing in an extended network based on the TCAM
network address eliminates the need to represent via a terminal macro,
each LU that may send messages to these application programs.

For more information on this technique, see TeAM Installation Guide. For
information on how to access fields in the FHP, see "Inspecting and
Changing TCAM Control Elements" in Chapter 4.

The model MCPs contain application program MHs which illustrate ways
in which an application program can route messages using a TCAM
network address.

Note: These examples are particularly adaptable to inquiry-response type
programs. Essentially, it is the functional characteristics of the application
program which dictate the most appropriate mechanism for routing.

If C is coded as one of the parameters of the OPTCD operand of an input or
output DCB macro, a one-byte field is reserved in the work area in the
position noted in Figure 3-2. This field is necessary if messages being sent
to the application program are expected to be larger than the
application-program work area that is to receive them (for example, when
logical records or message segments rather than entire messages, are to be
processed by a single GET or READ). On input, TCAM will store a code in
this field indicating whether the work unit being passed is the first portion
of a message, an intermediate portion, the last portion, or an entire
message. (These codes are described in the discussion of the OPTCD
operand of the input and output DCB macros in Chapter 5.)

If C is specified on the OPTCD operand of an output DCB macro, the
application program must ensure that the position field contains the
appropriate code to describe the current work unit for each PUT or WRITE.
TCAM checks this field and uses it to account for message segments being
transferred to the MCP. You must not interleave segments for different
messages. TCAM has no way of determining which segment belongs to
which message. If C is not specified on the OPTCD operand of an output
DCB macro, TCAM will make one of two assumptions, depending upon
whether record processing or message processing is specified.

• If message processing is specified (OPTCD = U), the end of the work unit
is assumed to be the end of the message. That is, TCAM assumes that
one work unit equals one message.

• If record processing is specified or assumed, TCAM assumes that all
work units specifying this output DCB macro being sent to the MCP
from the time the output data set is opened until the time it is closed
are part of the same message. That is, the application program signals
end-of-message by issuing a CLOSE macro after the last work unit in
the message is sent to the MCP.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-17

The SAM-Prefix Field

The position field is located in the work area immediately preceding the
eight-byte origin/destination field. If no origin/destination field is present,
this field will immediately precede the first byte of the work unit.

If RECFM = V or VB are coded on an input or output DCB macro, a four- or
eight-byte SAM-prefix field must be present in the work area. TCAM uses
this field to insert or refer to the length of the associated work unit.

If RECFM = V is coded on an input DCB macro, TCAM places four bytes
into the SAM-prefix field of the work area receiving a work unit. The first
two bytes of the prefix contain the binary sum of the length, in bytes, of tbe
work unit plus four (the length of the prefix). The second two bytes of the
prefix contains binary zeros.

If RECFM = VB and MACRF = R are coded on an input DCB macro, TCAM
places eight bytes into the SAM-prefix field of the work area that receives a
work unit. (If RECFM = VB is specified and MACRF = G is specified, only
four bytes are provided.)

The first two bytes of the prefix contain the binary sum of the length, in
bytes, of the work unit plus eight (the length of the prefix) plus the length
of any other optional fields. The second two bytes contain binary zeros.
The third two bytes contain a binary number that is four less than the
number contained in the first two bytes. The final two bytes contain binary
zeros. This eight-byte prefix is for BSAM compatibility; work units are
treated as if they were blocked records, although only one work unit is
transferred for each READ or GET macro executed. You are restricted to a
blocking factor of one for RECFM = VB.

If RECFM = V is coded on the output DCB macro, TCAM assumes that a
four-byte SAM-prefix precedes each work unit being sent. This prefix is
similar to a standard SAM variable-length prefix. Its contents are described
in the discussion of the SAM-prefix for input data sets. It is the application
program's responsibility to see that the prefix contains the proper data
before a PUT or a WRITE macro is issued.

If RECFM = VB and MACRF = Ware coded on an output DCB macro,
TCAM assumes that the work unit being sent is preceded by an eight-byte
SAM-prefix; a four-byte prefix is expected otherwise. The layout of these
eight bytes is the same as described for the eight-byte BSAM-compatible
prefix for input data sets. This prefix is also for BSAM compatibility; work
units are treated as if they were blocked, although only one work unit is
transferred for each WRITE macro. It is the application program's
responsibility to see that the work unit and all its prefixes contain the
proper data before a WRITE macro is executed. You are restricted to a
blocking factor of 1 for RECFM = VB.

The origin/destination field, the position field, and the SAM-prefix field are
the only fields that can be specified in the option field portion of the work
area. The remainder of the work area is made up of a work unit. The
options for these fields may be included at program execution through a DD
card parameter (the DCB OPTCD operand) or at assembly through the

3-18 TeAM Application Programming

J

L

Operand

RECFM= V
or VB, or U

OPTCD= C

OPTCT=W

appropriate DCB macro operands. Figure 3-3 is a cross-reference matrix
that shows how to code each OPTCD operand parameter.

Relative Length
Use Position of Field Notes

SAM prefix 1 4 bytes or If V or VB, this field contains the
8 bytes length of the current work unit;

TCAM fills this field on input; the
user must fill this field on output. If
U, the work unit is a message or
segment that is not a record.

Position 2 1 byte The indication in this field specifies
whether the segment currently being
processed is the first, an intermediate,
or the last segment.

Origin/destination 3 8 bytes TCAM loads name of message source
field here on input. On output, the user

must enter message destination.

Figure 3-3. OPTCD Coding Matrix

Message Handling Considerations

Regardless of how large or small a message is, it usually consists of two
parts-the header portion and the text portion. However, a message may be
either header only or text only. The header portion contains control
information relating to that message, such as:

• One or more message destination codes
• The name for the originating external LU
• The number of the message relative to the numbers of the previous

messages received from that external LU (input sequence number)
• A message-type indicator
• Several fields containing TCAM control indicators.

The text portion of a message usually consists of information that is of
concern only to the destination.

A header-only message may use some sort of user-created message-type
indicator to route the message to an application program and, possibly,
obtain a standard reply. If all messages of a particular type go to only one
application program, such as a file-update program, the header may be
omitted. The determination of what part of a message shall be processed as
a header and what part as text is up to the TCAM system programmer.

Operations on the fields in an MH is primarily the responsibility of the
TCAM MHs. A MH can, however, pass on some or all of the header to an
application program if the application so requires. The length and format
of the header and the information in it are the responsibility of the user
and are specified in the MCP by the TCAM system programmer. By the
same token, message control information may be included as part of the
text. For example, you may code your own control block or header as a
part of the work unit.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-19

You should work closely with the TCAM system programmer whenever you
design an application in which more than the basic TCAM control
information referred to in Chapter 2 is to be exchanged between TCAM and
an application program.

Several MH macros used in the MCP can be coded in the application MH.
However, the following macros cannot be coded in the application MH:
CANCELMG (in the outheader), LOCK, MSGFORM, MSGGEN, SCREEN,
IEDDFC, IEDHALT, IEDRESP, IEDRH, IEDSENSE SETEOM, and
UNLOCK. See the TCAM Installation Guide for a discussion on the
macros that can be coded in application MHs.

Application MHs can use the TCAM capability of routing by key by using
the KEYPROC macro to route messages. Routing by key allows you to take
advantage of the following capabilities:

• Special management capability for extended interchanges with a single
application program (end-to-end session)

• Security capability, which allows only authorized message originators
to interact with a particular application program

• Notification capability to tell a message originator that the application
program with which he wishes to communicate is not currently active.

If you use the TCAM capability of routing by key, you can use the code in
the model MCP as an example in setting up your own MCP. For more
information on routing by key, see the sections "TCAM Overview" and
"Coding the Message Handler" in the TCAM Installation Guide.

Specifying an End-of-Message or End-of-File Routine

TCAM provides a capability for signaling the application program that the
work unit currently being processed is the end of a logical file of data; after
processing this work unit, the application program will take an exit to a
user-defined end-of-data routine. Such a routine could close the input data
set, cause' a different type of application-program activity to begin, or issue
a GET or READ macro referring to a different PROCESS queue. Again, the
decision concerning how you use this function depends on your application.
To use this function, you must first specify an address label as the EODAD
operand of your input DCB macro. This address must specify a routine that
you have coded to handle the end-of-data circumstance.

When TCAM recognizes an end-of-file condition on an input data set, it can
indicate that the contents of the current work unit represent the final
portion of a logical file of data by executing a SETEOF macro in the
application-program MH. The SETEOF macro can he coded to execute
conditionally based on the presence of a specified character string (such as
an end-of-file indicator) in the message header. When a SETEOF macro
executes in the MCP, a bit is set in the TCAM buffer prefix of the message,
indicating that this is the last message in the data set. When a message
with this bit on in the prefix is transferred to the application program by a
GET or READ macro, TCAM notes that this is the last message in the file.

3-20 TeAM Application Programming

Execution of the first READ, GET, or CHECK macro following transfer of
the entire end-of-file message to the application-program work area gives
control to the routine specified by the EODAD operand of the related DCB
macro.

Upon recognition of the end-of-file condition and subsequent execution of a
READ, GET, or CHECK macro, TCAM loads register 15 with the address of
the exit routine and control transfers to the EODAD routine. Upon
returning from the EODAD routine to the application program issuing GET
or READ macros, GET or READ macros will again execute in a normal
fashion.

If no SETEOF macro has been specified in the MCP and a GET macro
referring to an empty input queue is issued, the application program enters
a wait state until a message subsequently arrives at the read-ahead queue
for that application program. If a READ macro was issued, the wait state
begins only when the check macro is executed.

If the SETEOF macro executes and no EODAD exit was specified, a
completion code is returned to the program in register 15 and control is
returned to the application program when the next READ, GET, or CHECK
macro is executed. Your program should then check for this return code
and take appropriate action.

If record processing is specified in your program by the absence of the
OPTCD = U parameter on an output DCB macro, you may indicate to the
MCP that this is the last record in a message by coding X'F2' in the
position field preceding the record in the work area_ (See "Defining
Optional Fields in the Work Area" in this chapter for a description of the
position field.) If no position field is defined, the program can signal the
MCP that the last record in the message has been sent by closing the
output data set after executing a PUT or WRITE macro for this last record,
or by issuing a PUT or WRITE macro with no data to be moved. A PUT or
WRITE macro for a header segment is ignored as an invalid operation when
no data is in the work area. (If message processing is specified and no
position field is provided, TCAM assumes that the work unit being
processed is an entire message).

In summary, if the EODAD operand is specified on an input DCB macro,
the SETEOF macro may be issued in the MCP to indicate the end of a file
of data, and the EODAD exit is taken on the next GET or READ macro
after TCAM moves the end-of-message into the program work area. On a
succeeding GET or READ macro, normal processing continues. If EODAD
is not specified, the application program is responsible for issuing a CLOSE
macro to close the input DCB.

If no SETEOF macro had been specified in the MCP, each GET or READ
with CHECK will not be completed until a message arrives on the TCAM
input queue. End-of-file processing must be handled by some means other
than using the EODAD exit. By using the SETEOF macro function, time of
entry to EODAD can be controlled by the user.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-21

Summary of Related Operands

Values for the following TCAM macros must be coded before the SETEOF
macro function will execute properly.

Where Macro
Macro Operand is Issued Notes

SETEOF Application The operands will specify
MH in the how end-of-file is
MCP recognized by TCAM. See

the TeAM Base
Installation Reference

DCB EODAD Application
(input) program

The Data Transfer Macros

Although messages in the TCAM environment are usually received from (or
sent to) external LUs or SNA LUs over communication links, you will be
able to use the same form of data-transfer macros that are used in local
environments.

A TCAM message control program performs all input/output operations for
an application program. Although TCAM can be described as a queued
access method, it provides either a basic access technique or a queued
access technique for I/O processing at the application program interface.
The technique that you choose will depend on your application program
req uiremen ts.

The Basic Access Technique

The basic access technique uses the READ, WRITE, and CHECK macros
for passing data between the TCAM MCP and an application program. The
basic technique should be used when you cannot predict the sequence or
timing of message arrival, or if you do not want all the automatic functions
performed by the queued access technique. (See the "Queued Access
Technique" discussion following). Buffers allocated either by you or the
operating system are loaded or emptied individually each time a READ or
WRITE macro is issued. Issuing a READ or WRITE macro only initiates
the I/O operation_ To ensure that the operation has completed successfully,
you must issue a CHECK macro or another READ macro to test the data
event control block (DECB) of the DCB controlling the I/O you are
performing. Optionally, you can test the DECB completion code yourself
instead of issuing a CHECK macro.

Since the TCAM support for the READ, WRITE, and CHECK macros is
similar to that provided by MVS, you are expected to be thoroughly
familiar with the MVS basic sequential access method (BSAM). This
requirement implies a knowledge on your part of the applicable contents of
Data Management Services and Data Management Macro Instructions.

3-22 TeAM Application Programming

J

The READ Macro

The READ macro instruction requests TCAM to transfer a work unit from
the MCP to a designated work area in the application program. After a
READ macro is issued, control may be returned to the application program
before the work unit is actually transferred. Therefore, every read
operation should be tested for completion by issuing a CHECK macro.
Once a CHECK macro is issued, control is not returned to the application
program until a new work unit has been placed in the work area. Input is
used here as meaning input to an application program from the MCP.

The decbname and dcbname operands of a READ macro, once specified,
should always be paired; decbname should not be specified with a particular
dcbnamein one READ macro and then associated with a different dcbname
in another READ macro in the same program. You may specify only one
DECB per DCB. This technique allows the user to determine the status of
any process queue by interrogating the current completion code in the
DECB. (See "Completion Codes for the Basic Access Technique" on
page 3-25.)

Since only one DECB may be specified per input queue, multiple READ
macros directed to the same input DCB are not permitted. However, you
may achieve the effect of issuing multiple READ macros directed to the
same DCB by coding a list and execute form for the same READ macro.
You must code at least one list form of the READ macro and then you may
code several associated execute-form macros. The list-form READ macro
and all the execute-form READ macros would specify the same DCB and
DECB. This technique does not actually provide a multiple-wait facility,
but does allow you to code READ macros that refer to the same DECB in
one or more sections of the same program. (Details of the function of the
list and execute forms of the READ macro are explained in Data
Management Macro Instructions.)

For instance, in the following example, two READ macros of the execute
form and one READ macro of the list form are coded. All three macros
specify the same DECB (named INPUT). The list-form READ macro also
specifies the appropriate DCB and work area.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-23

The WRITE Macro

LIST
INAREA
INDCB

READ
CHECK

READ
CHECK

READ
DC
DCB

User Code

INPUT,SF,MF = (E,LIST)
INPUT

• User Code

• INPUT,SF,MF = (E,LIST)
INPUT

• User Code

• Constant Area
INPUT,SF,INDCB,INAREA,MF = L
50F'O'
DSORG = PS,MACRF = R,BLKSIZE = 200, *
OPTCD = WUC,RECFM = V,DDNAME = IN

In the TCAM environment, the DECB is posted when a message is placed
on a previously empty Read-Ahead queue for a TPROCESS entry. This
means that a DECB may be posted any time during the execution of an
application program after the first READ macro is issued following the
execution of an OPEN macro. This differs from BSAM in that a DECB
becomes eligible for posting only after a READ macro is issued.

Therefore, under TCAM, a READ DECB may already be posted complete
when you issue a READ, CHECK, or WAIT macro. You should design your
program accordingly.

If a READ macro is issued after a quick closedown of the TCAM message
control program has begun, the EODAD exit specified on the input DCB
macro is taken if the STOP operand is also coded in that same DCB macro.
An EODAD exit may also be taken if a SETEOF macro was executed in the
MCP as described previously.

The WRITE macro instruction moves the current contents of a work area in
your application program to a buffer in the MCP. As with the READ
macro, it is possible that control may be returned to the application
program after the WRITE macro is issued, but before the contents of the
work area are actually moved. Therefore, this output operation should also
be tested for completion by using a CHECK macro instruction.

WRITE macros may also be specified more than once in any application
program. The destination of outgoing work units may be specified either in
the destination field in the program work area, in the message header in
the data portion of the message, or by an operand of the FORWARD macro
in the MCP.

If a WRITE macro is issued after a quick closedown of the MCP has begun,
the write operation does not complete, and a completion code is placed in
the DECB associated with the WRITE macro. (See the discussion on BSAM
completion codes following.)

3-24 TeAM Application Programming

The CHECK Macro

The CHECK macro instruction causes an application program to be placed
in the wait state until an associated input or output operation initiated by a
READ or WRITE macro is completed. The DECB controlling the input or
output operation is tested by the CHECK macro for an error indication. If
no error occurred, control returns to the application program at the
instruction following the CHECK macro. If an error occurred, the routine
specified by the SYNAD operand of the associated DCB macro is given
control. If no SYNAD routine was specified and an error occurs, a return
code of X'08' is passed to the program in register 15 after the CHECK macro
has executed. The program is then responsible for recognizing this code
and the subsequent error processing.

Whenever an end-of-data condition is recognized after a CHECK macro was
issued, CHECK passes control to a user-specified EODAD routine. If you
do not specify an EODAD routine, your program is responsible for checking
the associated event control block (ECB) for a completion code and then
performing appropriate end-of-data processing itself.

A CHECK macro should be issued after each READ or WRITE macro in the
same order as the READ or WRITE macro instructions were issued. If data
is immediately available when a READ macro is issued, it is moved into the
program work area, and the event control block (ECB) in the data event
control block (DECB) for that READ macro is posted with a completion
code. The CHECK macro verifies this operation and immediately returns
control to the application program.

Note: You do not have to check these codes in the DECB yourself; the
CHECK macro accomplishes this for you.

If data is not immediately available and a user-specified end-of-file has not
been recognized by TCAM, the application program goes into a wait state
while the CHECK macro waits for data to arrive and the ECB to be posted.
When data becomes available, TCAM causes it to be moved into the work
area. When this has been accomplished, the application program again
receives control.

If you choose, you may issue aWAIT macro instead of a CHECK macro to
provide a multiple-wait capability. This is accomplished by specifying the
ECB address in the ECB operand of aWAIT macro. (The ECB is contained
within the first four bytes of the DECB and is located on a fullword
boundary.) The function of the WAIT macro is described in Data
Management Macro Instructions.

You may also wish to write your own code to detect an empty-queue
completion code in the DECB. By using this alternative, your program can
do other processing while waiting for I/O to complete. After you complete
this additional processing, you may check the ECB completion code to see
if it has been altered due to a message being placed on the associated
read-ahead queue. You must then issue either a CHECK macro or another
READ macro to cause the pending READ to complete. This technique
requires one DECB per input queue.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-25

When the DECB address is made available to the MCP at the time of the
first read operation, the MCP posts that DECB when a message is queued
on the previously empty queue in the MCP. It is possible that the DECB
may be posted complete after a CHECK macro is issued, but before the next
READ macro is issued. You should be aware of this and be able to handle
this possibility in case of a multiple wait. The DCB must be closed and
reopened to continue processing

Completion Codes for the Basic Access Technique

ECB
Code

7F

70

52

50

After you have issued a READ or WRITE macro, and the BSAM data
movement routine has completed execution, a completion code is placed in
the ECB field of the data event control block associated with the respective
READ or WRITE macro. These codes appear in the data event control
block, not in a general purpose register, and are examined by the CHECK
macro. The CHECK macro inspects the DECB and transfers control
according to the code issued.

If you prefer to issue aWAIT macro rather than a CHECK macro, you are
responsible for testing the completion code yourself. The completion codes
are stored in the high-order byte of the first word of the DECB. The codes
and their meanings are described in the CHECK macro discussion in
Chapter 5.

To aid you in coding, you may use the chart in Figure 3-4.

For the READ Macro

Next A.P. Next
Code Meaning-READ Action Wait Code

Normal completion-Data in work area READ No --
Either SETEOF executed in MCP (work CHECK No 70
unit not in work area) or TCAM
closedown in progress CLOSE

Work-area overflow CHECK No 52

CLOSE

Message not found or message READ Yes 7F
incomplete on queue after POINT

CHECK Yes 7F

CHECK Yes 50
CLOSE

Figure 3-4 (Part 1 of 2). Completion Code Matrix

3-26 TCAM Application Programming

J

For the WRITE Macro

ECB Next A.P. Next
Code Code Meaning-WRITE Action Wait Code

40 Data on read-ahead queue READ Yes 7F

CHECK Yes 7F

Continue No
other A.P.
processing

I
02 No data available CHECK Yes 7F

WAIT Yes 40

Continue No
other A.P.
processing

01 No data immediately available but CHECK Yes 7F
some data currently resides on
destination queue WAIT Yes 40

Continue No 40
other A.P.
processing

~~ Normal
completion WRITE No

~E Request for quick closedown in CLOSE
effect

CHECK No 5E

5C Destination message queues data set WRITE No Any
congested with traffic

Continue No
other A.P.
processing

CHECK No 5C

58 Work unit sequence error CHECK No 58

CLOSE or No Any
correct
error and
issue WRITE

54 Invalid message destination CHECK No 54
I

CLOSE or No Any
correct
error and
issue WRITE

52 Invalid work area size CHECK No 52

CLOSE or No Any
correct
error and
issue WRITE

Figure 3-4 (Part 2 of 2). Completion Code Matrix

Chapter 3. Transferring Data Between TCAM and an Application Program 3-27

The Queued Access Technique

The GET Macro

The PUT Macro

The queued access technique uses the GET and PUT macros to pass data
between TCAM and an application program.

Because the operating system synchronizes I/O with other application
program processing when the queued access technique is used, there is no
need to test for I/O completion. After a GET or PUT macro is issued,
control is not returned to your program until an input area has been filled,
or an output area has been queued for its destination. Exits to error
analysis (SYNAD) and end-of-volume or end-of-data (EODAD) routines are
taken when required. Move or locate mode may be specified for the queued
access technique, but substitute mode is not supported in TCAM.

Since the TCAM support for the GET and PUT macros is similar to that
provided by MVS, the TCAM application programmer is expected to be
thoroughly familiar with the MVS queued sequential access method
(QSAM). This requirement implies a knowledge on your part of the
applicable contents of Data Management Services and Data Management
Macro Instructions.

The GET macro transfers a single work unit from the TCAM message
control program to an application-program work area. The GET macro may
be coded more than once in an application program. The size and format of
the work unit transferred depends upon the BLKSIZE and LRECL
operands, and whether record or message processing is specified by the
OPT CD operand of the input DCB macro associated with this GET macro.

If a GET macro follows a POINT macro (see "Retrieving Messages from
TCAM Disk Data Sets" in Chapter 3) and the message cannot be retrieved
for some reason, a code is returned in register 15 after the POINT macro is
executed. See the POINT macro discussion in Chapter 5 for details on the
return code. You may want to check for these possibilities before issuing a
GET macro if you are retrieving messages.

If a GET macro is issued after a closedown of the MCP has begun, the
EODAD exit is taken if the STOP operand is coded on the DCB (see
discussion in Chapter 5). If a GET macro is issued and the value of the
BLKSIZE operand in the DCB macro is zero, a code is returned in register
15.

The PUT macro causes a work unit to be transferred from your
application-program work area to the TCAM message control program,
where it is processed and placed on a destination queue. PUT macros may
be specified more than once in an application program. The work unit
destination may be specified either: (1) in the message header, (2) as an
operand of a FORWARD macro in the MCP, or (3) in the destination field
in the work area. You are responsible for loading an address in the
message header or destination field before the PUT macro is issued.

3-28 TeAM Application Programming

If your program issues a PUT macro and the MCP cannot immediately
accept the message because message traffic in TCAM is currently too
heavy, the PUT macro does not execute, a return code indicative of that
fact is passed back in register 15, and control passes to the next instruction
in the application program. This will occur as a result of the TCAM
facility that implements input slowdown because of a temporary maximum
message processing threshold condition. You should test the return code
after each PUT so that you may reissue the macro at a later time if
slowdown has occurred.

If a PUT macro is issued after a quick closedown of the MCP has begun,
the operation does not complete, a return code is placed in register 15, and
control passes to the next instruction. There is.a complete list of return
codes in the PUT macro discussion in Chapter 5.

Caution Against Issuing Simultaneous PUT and WRITE Macros

Do not try to execute a PUT or WRITE macro in a TCAM application
program if there is a possibility that another PUT or WRITE macro may be
currently executing either in another region or as a subtask, and indirectly
referring to (by the TPROCESS entry) the same process control block
(PCB). This condition could occur if two subtasks of the same application
program with a single PCB tried to execute a PUT or WRITE macro.

To guard against this condition, TCAM returns a warning indication. If an
attempt is made to execute a PUT or WRITE macro to a PCB entry that
currently has another PUT or WRITE macro pending, TCAM will return a
completion code of X'5COOOOOO' in the DECB for a WRITE macro and X '10'
in register 15 for a PUT macro. Unlike other PUT or WRITE macro errors,
the user is not required to close down the DCB affected in this instance.

If more than one subtask in the same application program includes PUT or
WRITE macros, the possibility of this type of error can be eliminated
through use of the ENQ and DEQ macros. An ENQ macro should be coded
before each PUT or WRITE macro, and a DEQ macro should be coded after
each PUT or WRITE macro. The resource specified on the ENQ macro
must be the symbolic name of the process control block you wish to control.
Using this facility will protect against issuing a simultaneous PUT or
WRITE macro to the same PCB. See Supervisor Services and Macros for
information on how to code an ENQ or DEQ macro. Also, see Appendix I of
the IBM System/370 Principles of Operation manual for examples of how to
use the compare and swap instruction to lock a serially reusable resource.

Retrieving and Retransmitting TeAM-User Messages

Occasionally during the operation of a network it may become necessary to
retrieve and/or transmit a message or series of messages that have already
been processed by TCAM. This includes both messages that have been
transmitted to their destinations and messages still being held by TCAM for
transmission. Either the POINT macro or the QRESET macro will allow
you to handle most of the message retrieval or retransmission situations
that may arise in your environment.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-29

The online retrieval system service program uses TCAM message retrieval
macros to retrieve messagef', based on operator commands. For details, see
the TeAM Utilities publication.

While TCAM is processing or storing a message, that message resides on a
message queue data set. Message queue data sets are controlled by TCAM,
but in some instances the messages in these data sets can be accessed by an
application program. Depending on how your TCAM network was
generated, the message queue data set may reside:

• On reusable disk
• On nonreusable disk
• In main storage only
• In some combination of main storage and disk storage

As long as your network uses some form of disk queuing, you will be able to
use either or both of the following facilities.

Retrieving Messages from TeAM Disk Data Sets (the Point Macro)

If your TCAM system does not use disk storage for the TCAM message
queue data set or disk backup for a main-storage message queue data set,
you cannot use the POINT macro.

TCAM uses a combination of a GET or READ macro instruction and the
POINT macro to return a specific message to a work area in your program.

The POINT macro must specify the symbolic label of a particular
destination queue or a TPROCESS entry and the message sequence number
of the particular message you wish to retrieve. You must also provide a
work area in your program to which the message can be returned.

A message may be retrieved even if it has already been sent to its
destination, provided that the entire message is still on disk in the message
queue data set at the time that the POINT macro is executed.

Since an output sequence number is not assigned to a message until it is
actually sent to the destination, no message can be retrieved by output
sequence number until after it has been successfully sent.

The POINT macro does not provide for nonsequential retrieval of message
segments. For example, if a GET macro moves a header segment into the
program work area after issuing a POINT macro, and then a second POINT
macro is issued, the next GET macro will retrieve the next segment of the
current message. This sequence will continue until all subsequent message
segments of that particular message have been moved to the program work
area. If you do not wish to retrieve the rest of a message, you may specify a
POINT macro whose address operand specifies a destination name followed
by a X'40'. (See the description of the address operand in the POINT macro
discussion in Chapter 5).

3-30 TeAM Application Programming

If your application program work area is too small to contain an entire
message, the next GET or READ macro referring to the same DCB retrieves
the next segment or the rest of the message (if OPTCD = C is specified). If
OPTCD = C is not specified, the SYNAD exit is taken.

Retrieval of Multiple Messages

By using this function, TCAM allows you to request retrieval of either a
single message, or a series of messages. It also allows the return of all
information in the queue-back chain for a specific destination. If you
request information from a queue-back chain, you are then responsible for
examining this information to find the desired message. A queue-back
chain is a time-sequenced record of the message traffic (both sent and
received messages) for the external LU or external LUs represented by a
specific destination queue control block (QCB). TCAM maintains this
chain specifically for the message retrieval function for application
programs, as this queue-back chain contains all messages both sent and
unsent messages can be retrieved. Only messages that have already been
completely sent can be retrieved by output sequence number. For
additional information see "queue-Back Chain under Nonreusable Disk
Queuing" in Section 1 of TeAM Diagnosis Reference.

The advantage of using the multiple retrieval function is that it reduces the
amount of disk access activity when you want to retrieve more than one
message.

To perform multiple retrieval, the application program must set up the
required input for the address operand of the POINT macro, set the
high-order bit in the sequence number field in the POINT macro work area
(see the POINT macro discussion in Chapter 5), and then issue the POINT
macro followed by a GET or READ macro for each message.

Multiple retrieval by sequence number will retrieve the message with the
sequence number specified and every message on that queue with a lower
sequence number. When retrieving by output sequence number, unsent
messages will be returned if the character 0 was coded at X'8' into the
POINT parameter list. If S (MVS only) was coded instead, then only the
sent (serviced) messages will be retrieved. All messages whether sent or
unsent are returned in the order in which they reside on the queue-back
chain, that is, they will be returned in the reverse order in which the
header buffers were received. Multiple retrievals are terminated when the
end of the queue-back chain is reached. This will be indicated by a return
code in REG15 of X'OOOOOOOC' when the GET is issued.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-31

When retrieving multiple messages, your work area for the POINT macro
must be large enough to contain an entire message segment plus ten bytes.
This is because the following information is moved into your work area in
front of each retrieved message:

Field Number of Bytes

Source offset
Message status
Input sequence number
Output sequence number
Destination offset
Number of reserves

The contents of each of these fields are:

2
I
2
2
2
I

The source offset is the binary value of the index into the TCAM terminal
table for the source of this message.

The message status is a byte containing the following work unit status
information. The Test-Under-Mask instruction may be used for testing this
byte. You may ignore any bit combinations not shown here.

X'OI' This is not the first buffer of a message.
X'02' This is not the last buffer of a message.
X'04' FHP present.
X'OS' This is a duplicate header.
X'40' An error message is in this buffer.
X'80' A CANCELMG macro has been executed.

The input sequence number provides TCAM a means of ensuring that
messages are received from a source in the correct order.

The output sequence number is placed in the header of a message by
TCAM. It specifies the order in which messages were sent to a destination
by TCAM. You may use this field and the input sequence field for your
own verification.

The destination offset is the binary value of the index into the TCAM
terminal-name table of the symbolic name of the destination of this
message.

The number of reserves specifies the number of reserved bytes that precede
the message data in the work unit. For multiple retrieval, the reserve
characters are moved to the work area as data. See the RESERVE operand
of the Group macro in TeAM Installation Reference for a discussion of
reserve bytes.

To perform multiple retrievals, an application program must set up the
required input to the POINT macro (set the high-order bit in the sequence
number field to trigger the function, and then issue the POINT macro
followed by a GET or READ macro for each message). See the POINT
macro discussion in Chapter 5 for details on how to code the address field.

3-32 TeAM Application Programming

The code sequence in your program would be:

(initialize POINT
address
field)
POINT
READ
(read processing)
POINT
READ
(read processing)

Because the POINT parameter list is manipulated by TCAM during the
retrieval process, the parameter list should not be altered, following initial
setup, until the retrieval function has terminated.

At least one complete message must be fully retrieved before retrieval of
another message can be started. If your application program work area is
not large enough to contain a complete message, a single GET or READ
obtains only a segment of the message. Remember that execution of the
POINT macro should precede each issuance of a GET or READ during the
retrieval process.

You may terminate the multiple retrieval facility prior to receiving all
messages by issuing a POINT macro with a blank following the address
field. However, this last POINT macro must still be followed by a GET or
READ macro. Retrieve termination must not be invoked by the application
program if retrieve runs to its normal end or if TCAM returns a non-zero
return code before normal end. This does not apply in the case of return
code X'14' from POINT. This return code implies that an attempt was made
to start a retrieval when one was in progress. It is true that the new one
would not be started; however, the original must be ended before anything
else may be done. Retrieve termination may also be accomplished by
closing and reopening the DCB.

Summary of Related Operands

Macro

DCB.

INTRO

Values must be specified for the following macro operands before the
POINT macro will execute properly.

Operand

OPTCD=C
MACRF

DISK = YES

Where Macro
is Issued

Application Program
GLT
GMT
RP

TeAM MCP

Notes

If a message is expected to be
larger than the program work area,
this parameter must be specified.

If DISK = NO is specified, POINT
cannot execute.

Chapter 3. Transferring Data Between TCAM and an Application Program 3-33

Where Macro
Macro Operand is Issued Notes

GROUP RESERVE TAM MCP Specifies the number of reserved
bytes preceding a work unit that
contains ACFjTCAM control
information. This value does not
refer to the option fields preceding
the work unit.

TERMINAL or QUEUES TCAM MCP Must have disk queues specified if
TPROCESS messages are to be retrieved.

Retransmitting Messages from the TeAM Message Queue Data Set (the
QRESET Macro)

During the operation of your TCAM network, you may occasionally wish to
resend a message that has already been transmitted to an output device or
logical unit (LU) and marked serviced by TCAM. A message is marked as
serviced when it has been completely transmitted to its destination; a
TCAM routine has set an indicator in the message queue data set that
marks the copy of the message on disk as serviced. For a message
transmitted to an external LU or LU, the service indicator is set when
acknowledgment is received that the entire message has been successfully
received. For a message sent to an application program, the service
indicator is not set until the next sequential message has been entirely
moved into the application-program work area.

A temporary hardware problem such as a broken printer ribbon at an
external LU may precipitate a situation where you would want to
retransmit a particular message. QRESET allows you to request
resumption of an output operation from a specific message queue at a
particular output message sequence number. Only messages that have been
placed on a destination queue on a disk data set can be retransmitted.

When you issue the QRESET macro for a particular message the specified
queue is searched for the sequence number specified. As the queue search
proceeds backward from the last message sent to the specific external LU,
all intervening messages, up to and including the requested one, are marked
unserviced. This process is called "resetting the queue". The necessary
control fields in TCAM are also reset to allow resending all the marked
messages.

The output-sequence-number field in the associated terminal-table entry is
replaced with the lowest output-sequence-number of all the messages reset.
All messages with higher sequence numbers were also reset and are
available in the same sequence as the original. This ensures
output-sequence-number integrity for that queue when a reset message is
retransmitted. This ensures output-sequence-number integrity for that
queue when a reset message is retransmitted.

"Good morning" messages cannot be processed by QRESET. Neither
initiate mode nor lock mode messages will be processed for resending. If a

3-34 TeAM Application Programming

message with the requested sequence number or any intervening numbers
cannot be marked unserviced, the count of messages that have been
successfully processed by QRESET is returned in register 2 and an
appropriate return code is provided in register 15. This count includes only
those messages with output-sequence numbers higher than the first initiate
mode or lock message encountered. (See the QRESET macro discussion in
Chapter 5.)

You should be aware that while a queue is being processed by the QRESET
macro, the application program that issued the QRESET macro is put into a
wait state, and any output from other sources to the external LV whose
queue is being processed is temporarily suspended. Error conditions that
terminate processing any queue reset request are listed in the discussion of
the QRESET macro in Chapter 5. There is one important consideration
when using the queue reset facility for any device whose destination
message queue resides on reusable disk. In searching the message queue
for the requested output sequence number, only header portions of messages
are examined. It is possible that an intact header resides on disk but that
its text segment has been overlaid as a result of reusable disk
reorganization. If this situation exists and TCAM tries to resend a partially
destroyed message, a logical read error will occur and TCAM will terminate
abnormally. Therefore, if the QRESET macro finds that a header lies
within a disk storage zone that has been or is about to be reorganized, the
queue reset function terminates with an appropriate return code. In
addition, no attempt is made to resend any of the messages that may have
been successfully processed by the QRESET macro up to this point. See the
message data sets discussion in TeAM Installation Guide for details on disk
storage zones.

If a header unit may be safely retransmitted, the QRESET macro checks the
position of the first text unit of the message relative to the disk location of
the header unit. If it is determined that the text unit is far enough behind
the header to present problems when resending, the QRESET macro does
not mark the message unserviced. However, processing of remaining
requested messages continues.

To use queue reset with the least impact on the issuing application
program, on the external LV whose queue is being searched, and on overall
processing time, you should resend only small numbers of recently
transmitted messages.

In addition to the requirement that the queue reside on disk:

• There can be no priority level queuing on the queue you want to reset.
• The external LU whose queue iii being reset must not be intercepted

(held) at the time that the QRESET macro is issued.
• If the queue of an application program is being reset, the DCB in the

application program for this queue must be closed.

The QRESET macro is coded in an application program. The TPROCESS
macro that points to this application program must have specified
QBACK = YES. Before you can execute the QRESET macro, you must
provide TCAM with the desired message sequence number and the name of
the output device or the application-program TPROCESS entry whose

Chapter 3. Transferring Data Between TCAM and an Application Program 3-35

queue you wish to be reset. The address of a ten-byte field containing this
information must be placed in register 2 before the QRESET macro
executes. The format of this field is:

Byte

0-7

8-9

Summary of Related Operands

Format

Character
(left-adjusted and
padded with blanks)

Hexadecimal

Contents

Destination name: the symbolic
name of the external L U or
TPROCESS entry for which you
wish messages to be reset.

Sequence number (maximum value
is decimal 9999 or X'270F') of the
message from which you wish to
begin the reset process. All higher
sequence-numbered messages will
also be reset. They must be less
than the current SEQOUT number.

The following operands must be coded before the queue reset facility can be
used.

Required Macros and Operands:

Where Macro
Macro Operand is Issued Notes

TPROCESS QBACK=YES MCP This informs TCAM
that the application
program pointed to by
this TPROCESS macro
will use the queue
reset facility.

3-36 TeAM Application Programming

J

Chapter 4. Optional TCAM Facilities for the Application
Programmer

This chapter describes several TCAM functions available to the application
programmer that are not directly related to the transfer of messages.
Subjects covered include:

• Coding operator control commands in an application program
• Inspecting and changing TCAM control blocks
• Time stamping and counting messages
• Displaying storage from within an application program
• Converting numbers into different formats

The checkpoint facility is discussed and coordination of system and
application program checkpoints are described. This chapter contains
programming detail that may not be understood by someone without a
programming background.

The TCAM functions that have been discussed up to this point have dealt
primarily with defining the interface between a TCAM message control
program and an application program, and the passing of messages across
that interface. Through the functions discussed in this chapter, you can
build more reliability and convenience into your system. An increase in
reliability can be obtained through the checkpoint and operator command
capabilities, and convenience, through the message counting and dating
and control block inspection capabilities. The use of any of these facilities
will depend upon the size and function of your TCAM system and your
application program environment.

Issuing TCAM Operator Control Commands from an
Application Program

VT AM provides the actual control of the TCAM system and its resources
through VTAM operator control commands. Control of TCAM's use of the
resources of the TCAM system and monitoring of TCAM processes are
allowed through TCAM operator control commands.

TCAM operator control consists of two system service programs supporting
sets of commands which may be entered at an authorized external LU or by
an application program, or from the system console, in order to examine or
alter the status of the communications network resources used be TCAM
during execution.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-1

The messages that can be received following a given command are listed for
each command in the TeAM Operation manual.

Operator control is divided into two components, called basic operator
control and extended operator control. Basic operator control is activated as
a subtask of the initiator and is required. TCAM's basic operator control
supports a set of basic operator commands that allows you to determine the
status of your TCAM system and to alter, start, or stop part or all of TCAM
interface with VTAM.

Extended operator control is an optional system service program that may
be started as an initiator subtask, depending on the requirements of your
location. Extended operator control supports a set of extended operator
commands for monitoring and controlling the TCAM resources shared by
the TCAM system. With these commands, you can display information
concerning external LVs, queues, and system buffer units; you can also
reroute messages to an external LVs alternate destination and purge an
external LVs message queue.

Both basic and extended operator commands may be entered from an
application program. This section describes how to enter basic operator
commands from an application program, and briefly discusses the task of
entering extended operator commands.

TCAM allows you to specify an application program as a basic operator
control external LV, thereby giving the program the capability to issue
TCAM basic operator commands. Among other things, operator commands
may be used to stop and start external LVs, interrogate the status of an
external LV or queue, and load and delete IBM service aids.

Operator commands may also be entered from the system console or from an
external LV that has been designated as an operator control station.
However, only application-pro gram-initiated operator commands are
discussed in this manual. See the TeAM Operation manual for details on
how to issue operator commands from either the console or an external LU.
Any of the operator commands documented in the TeAM Operation manual
may be issued through an application program. The rationale and options
for each command are also documented in the TeAM Operation manual.
They are not duplicated here.

Messages in response to operator are sent to the destination specified by
the ALTDEST operand of the TPROCESS macro or to the destination
specified IEDOPCTL macro. If both the ALTDEST and the RSPDEST
operands are coded, the destination specified by the RSPDEST operand is
used. If no command-reply destination is specified, the reply is sent to the
TCAM dead-letter queue (DLQ).

The dead-letter queue is a destination queue assigned to accept messages
with invalid addresses. (See the discussion of the DLQ operand of the
INTRO macro in TeAM Installation Reference). If no dead-letter queue has
been specified, the command-reply message is lost.

Note: The message that can be received in response to a given message, as
well as the texts of response messages, may be changed from release to

4-2 TeAM Application Programming

J

J

release of TCAM. You should check TeAM Operation and TeAM
Messages for each release to make sure that the response messages expected
in your application program have not changed.

In order for an application program to be able to issue basic operator
commands, several macro operands must be specified in a TCAM message
control program. Without these specifications, TCAM will not be able to
distinguish a program·issued basic operator command from normal message
traffic. See the "Summary of Related Operands" discussion at the end of
this section.

How to Format and Issue Basic Operator Commands

When an application program issues a basic operator command, the
program must first move an image of that command into its output work
area. A PUT or a WRITE macro is then issued to transfer the command
from the application program to the MCP.

You are responsible for entering a control field preceding the command.
Either the CODE or mDOPCTL macros in the TCAM message handler that
processes messages entered by the application program recognizes this
message as an operator command. Once the command is recognized as
such, it is processed like any other operator command. The command is be
executed by TCAM, and an appropriate reply message is issued.

Formatting Basic Operator Control Commands

A basic operator command has several fields. These fields must be
separated by one or more blanks and must appear in the order specified in
the following discussion. In addition, commands entered from an
application program cannot be longer than the size of the
application-program work area and, in terms of TCAM buffers, must be no
longer than the buffer size as determined by the BUFSIZE operand of the
PCB macro. All entries in a command issued from an application program
must be issued in uppercase letters.

The format for specifying basic operator commands is:

controlchars operation operand(specifiers) ending

A correlation ID may be inserted between controlchars and operation and
with intervening blanks. This ID will allow the user to correlate the
request to the response. For more information, see the TeAM Operation
manual.

controlchars - Must be a character string of one to eight nonblank
characters conforming to the rules for assembler-language symbols. This
character string must be unique in the TCAM network since it identifies
this message to TCAM as a basic operator command.

The same character string must identify all basic operator commands being
entered from a particular application program. It is specified either at
assembly by the CONTROL operand of the INTRO macro in the MCP, or at

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-3

INTRO execution by entering a value in response to the "SPECIFY TCAM
PARAMETERS" message.

In addition, user-written code in the MCP can override the CONTROL
operand to change this character string at your discretion. See TCAM
Installation Guide for details.

operation - One of the following operation types must be entered in this
field. Separate the controlchars field from the operation field with at least
one blank.

• DISPLAY - Status of a group, external LU and other activities
• HALT - TCAM system closedown
• HOLD - Messages on a particular TCAM queue
• MODIFY - Option fields
• RELEASE - Messages from a particular TCAM queue

A short form for each command is also available for your convenience. The
short forms are:

DISPLAY D
HALT Z
HOLD H
MODIFY F
RELEASE A

The examples of operator commands given in the next section show the use
of both forms. Separate the operation field from the controlchars field and
the operand(specifiers) field with at least one blank.

operand(s) - This field is where you must specify all the keyword operands
and variable parameters that you wish to specify. These operands and their
parameters detail which functional operations you wish to occur (such as
DISPLAY primary external LU name). If more than one operand is coded,
they must be separated by commas, with no intervening blanks. Brackets
indicate a voluntary option; a parameter value for the enclosed operand
mayor may not be coded depending on your requirements. Braces indicate
that one of the values in the enclosed stack must be coded. Parameters
described in lowercase are called variables and must be replaced by a
numeric or character value. An operand that is given in either uppercase
or lowercase letters and not enclosed in brackets or braces indicates a
value that must be coded. Uppercase values must be coded as given,
lowercase operands should be replaced by a value significant to your
application program.

For a description of the most common variable operands, see "The Operator
and the System" in TCAM Operation.

Separate the operand(specifiers) field from the operation field and the ending
field with at least one blank.

ending - The end-of-message or end-of-command symbol. The symbol for
application programs is EOT. This is the EBCDIC EOT character (X'37'),
not 'EOT'. The ending field must be separated from the operand field by one

4-4 TeAM Application Programming

or more blanks. Any characters other than EOT appearing between a blank
operand field delimiter and the first character of the ending are considered
to be comments and are ignored by TCAM.

Issuing Basic Operator Control Commands

The following two examples are typical of the circumstances under which a
basic operator command might be issued from an application program and
indicate the various ways an operator command may be issued. See the
TeAM Operation manual for details on specifying commands from an
external LU or the system console.

Example 1: If the MCP has been started and the procname field of the
system console START command used to start the TCAM initiator specifies
AQTPROC.QID and the INTRO macro in the MCP specifies
CONTROL = OPID, the command to change an external LU from secondary
to primary operator station status can be:

or
or
or

OPID MODIFY QID,OPERATOR = NYC
OPID F QID,OPERATOR=NYC
OPID MODIFY AQTPROC.QID,OPERATOR=NYC
OPID F AQTPROC.QID,OPERATOR = NYC

EOT
EOT
EOT
EOT

Where EOT= X'37'.

Example 2: If the TCAM initiator is being executed as a normal job
through the system input device with the jobname TCAMJOB and the
INTRO macro specifies CONTROL = OPID, the commands of Example 1 may
become:

or
OPID MODIFY TCAMJOB,OPERATOR=NYC
OPID F TCAMJOB,OPERATOR=NYC

EOT
EOT

Command Correlation Information Included in Extended Operator Control
Replies

Reply messages from extended operator control command processors can be
correlated with the command that produced the messages. This correlation
is provided by information furnished with reply messages generated by
extended might be useful when your application program issues several
replies outstanding at the same time. Also, if an application program, in
addition to issuing extended operator control commands, is designated as
the extended operator control primary external LU, it may require a means
to distinguish unsolicited notices from the replies to commands it has
issued.

Chapter 4. Optional TeAM Facilities for the Application Programmer 4-5

The correlation method used is somewhat different from what would be
used with basic operator control. The following points outline how
command/reply correlation is provided and what the programmer should
consider.

• Extended operator control commands from extended operator control
external LUs (terminals or application programs) always contain an
FHP in the first (or only) command message buffer. An FHP is also
included with all reply messages.

• Extended operator control command processing modules save the value
of the four-byte field FHPUSERD from the FHP sent with the input
command and include it in the FHP of all reply messages sent to the
originator of that command.

• Text and formatting of commands and replies are not affected in any
way by the contents ofthe FHPUSERD field. It is the installation's
responsibility to assign, insert, extract, and use the identification value
in message handlers and/or the application program in any way that
suits the installation's purpose.

• Because extended operator commands can generate messages for
external LUs (or programs) other than the originator, there are a few
special cases to note when identification is used (when the value of
FHPUSERD is not binary zeros on command input). The convention
discussed below is followed so that, in addition to the reasons given
above, an installation can use the FHP field of FHPUSERD for different
purposes without conflict.

On commands that produce replies to another external LU (as well as the
originator), FHPUSERD is preserved only on replies to the originator. The
value on output to nonorigination external LUs is binary zeros.

Examples of these commands are:

• DATA ALL,destname
• QUEUE AUTO,destname, ...

On commands that produce notices to the key operator destination, the
identification value on the FHPs of such notices is binary zeros.

4-6 TeAM Application Programming

Examples of these commands are:

• SEND
• RESEND

Note: Use of identification does not affect the FHPs of messages sent or
resent by SEND or RESEND even if they are directed to the originator. On
commands that produce notices to the key operator destination, when the
key operator destination is also the originator, if identification is being
used (FHPUSERD was not zero on the command), then there may be two
kinds of output to the key destination:

• Replies with identification information included to the key operator
destination in its role as originator

• Notices without identification information to the destination in its role
as the key operator destination.

Note: Sometimes the text of a notice can be the same as the text of a reply.
This means that duplication (aside from the value of FHPUSERD) that
might otherwise be suppressed will occur when correlation information is
requested.

If the installation has developed additional extended operator commands
and command processors accessed via the DKJUSER table, it is the
installation's choice whether to support this convention in output produced
by the user's command processor.

Initialization in the MCP for Basic Operator Control in an Application
Program

To initialize the basic operator control in an application program, you must
code values for several operands of the INTRO, TERMINAL, and
TPROCESS macros, and CODE or IEDOPCTL macros. These macros must
be coded in a message control program, not in the application program.
However, an application program cannot issue operator commands unless
these options have been specified in the MCP.

The CONTROL operand of the INTRO macro allows you to specify a unique
set of control characters that identifies a message from your application
program as a basic operator command. This same set of control characters
must precede every basic operator command issued from your application
program. If these control characters are omitted, the MCP will not
recognize this message as a basic operator command, and the command will
either go to the dead· letter queue or be lost.

Both TERMINAL and TPROCESS macros associated with the selection of
an application program as a basic operator control external LU must
specify SECTERM = YES to designate the program as an operator control
station. Also, an application program will not receive the response
messages for basic operator commands if neither the ALTDEST operand of
the TPROCESS macro nor the RSPDEST operand of the CODE or the
IEDOPCTL macro is coded.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-7

Summary of Related Operands

Macro

INTRO

TERMINAL

TPROCESS

TPROCESS

PUT/WRITE

CODE

IEDOPCTL

The following operands must be coded as specified either in an MCP or in
an application program before operator commands may be issued from your
application program:

Operand

CONTROL

SECTERM

SECTERM

ALTDEST

Where
Macro is
Issued

MCP

MCP

MCP

MCP

Application
program

MCP

MCP

Notes

This operand specifies a symbolic label for all
basic operator commands issued from your
application program. The control-characters field
of each basic operator command issued from your
application program must contain the same
character string.

This operand identifies a particular external LU
as a secondary control station to which TCAM
will transmit replies to basic operator commands
that were issued from your application program.

If the TPROCESS entry associated with this
macro is for PUT or WRITE macros only, this
operand designates the application program as a
basic operator control station that is capable of
issuing operator control commands. In order to
receive the ACF/ TCAM replies to basic operator
commands, the ALTDEST operand for this macro
must also be coded.

If you wish the TCAM reply to all the basic
operator commands that you issue from your
application program to be returned to the same
program, you must enter the terminal-table entry
label for that program here. The replies to basic
operator commands are returned to whatever
destination is named here. Otherwise, any
response message to an operator command is sent
to the dead-letter queue (DLQ); or, if no DLQ is
specified, the response message is lost.

All basic operator commands issued from an
application program must be preceded by the
controlchars field. This field must be identical to
the CONTROL = variable operand of the INTRO
macro.

This macro tests for basic operator control
commands, translates the data, and transfers
control accordingly.

This macro tests for basic operator control
commands and transfers control accordingly.

4-8 TeAM Application Programming

J

J

How to Issue Extended Operator Commands from an Application Program

In order for your application program to issue extended operator commands,
you must designate the program as an extended operator control station by
setting a bit in the TCSOPTS option field associated with the TPROCESS
entry for PUT or WRITE macros issued by the application program.

Replies to basic operator commands entered by an application program and
directed to the basic operator control system service program are routed to
the destination specified in the ALTDEST operand of the PUT/WRITE
TPROCESS entry. Replies to extended operator commands entered by an
application program and directed to an extended operator control system
service program located in another TCAM are routed to the destination
specified in the RETURNQ option field associated with the PUT/WRITE
TPROCESS entry. In either case, the specified destination may be the
name of a GET/READ TPROCESS entry associated with your application
program.

The format of extended operator commands is described in TeAM Operation
manual. Such commands are entered as messages, with no
control-characters preceding them. These commands must be routed to
extended operator control by forwarding them to the extended operator
command TPROCESS OPRA or on an end-to-end session between the
application program and extended operator control.

Direct Forwarding to Extended Operator Control

Extended operator control requires the presence of an FHP and certain
fields in the FHP initialized. If a message is to be forwarded to OPRA
through DEST = PUT in the application AMH, either the application or the
AMH must build the FHP. The FHP may be built by the application
program and transferred as data. In which case, FHPHEADP should point
to the first byte of data, and FHPMODEA should be initialized to the
character 'C'. The incoming group of AMH then issues FHPTEST
ACTION = SETYES and FHPBUILD BLDOAF = YES before forwarding to
OPRA. The FHP may also be built in reserved bytes by the AMH by
issuing the FHPBUILD macro and then initializing FHPMODEA to the
character 'C' before forwarding to OPRA. FHPHEADP is set by
FHPBUILD.

Forwarding Using End-to-End Sessions

If the extended operator control commands are to be routed on an
end-to-end session, before entering such commands, your application
program must format and transfer to the MCP a special message called a
logon message. This logon message must have the key name defined in a
KEYDEF macro and the KEYDEF must specify RESOURCE = OPCTL. The
incoming group of the AMH for an application program transferring
commands on an end-to-end session must create an FHP through an
FHPBUILD macro and must route by key through a KEYPROC macro.
The KEYPROC macro will automatically initialize the FHPMODEA field to
the character 'C'.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-9

You may go into end-to-end session with the extended operator control
system service program (SSP), in your own host or (if the extended
networking capability of TCAM is being used) with the extended operator
control (SSP) located in another host node.

Once you are in end-to-end session, all messages entered by an application
(except for basic operator commands) are be routed to the extended operator
control system service program. Basic operator commands entered on an
end-to-end session with the ext.ended operator control (SSP) in the TCAM
system containing the application program will be routed to the basic
operator control SSP).

To end an end-to-end session with the extended operator control (SSP), your
application program formats and transfers to the MCP a special message
called a logoff message.

The formats of the logon and logoff messages for the end-to-end session with
the extended operator control (SSP) are installation dependent and should
be obtained from the system programmer who designed the MCP.

If your application is going to function solely as an extended operator
control station, you may avoid the necessity of entering logon and logoff
messages by having the system programmer set up your TPROCESS macro
so that your application program enters into a perpetual end-to-end session
with an extended operator control (SSP) when activated. For details, see
"Coding the Message Handler" in TeAM Installation Guide.

The KEYPROC macro provides exits that may be taken if the extended
operator control (SSP) is unavailable when the logon message is sent. A
message may be generated in this exit to inform your application program
of this fact. Such messages may be installation-dependent.

Inspecting and Changing TCAM Control Elements

TCAM offers three macros to the application programmer who wants to
inspect or change various TCAM control elements. Two different control
elements may be examined: the queue control block, and a terminal-table
entry. A queue control block (QCB) contains control information about a
specific destination queue. There is a set of queue control blocks for each
queue in TCAM. For a discussion on the format and use of the queue
control block, see TeAM Program Reference Summary. The TCAM
terminal table contains an entry for each addressable device and application
program process queue in the network. The types of entries that can be
made in the terminal table are described in TeAM Installation Guide and
TeAM Program Reference Summary. The three macros discussed here offer
two capabilities for controlling your terminal characteristics.

1. Interrogation

a. The TCOPY macro requests TCAM to copy the contents of a
particular terminal-table entry and its associated option fields into
an application-program work area.

4-10 TeAM Application Programming

J

h. The QCOPY macro requests TCAM to copy the contents of a
particular queue control block (and its related priority QCBs) into
an application-program work area.

2. Modification

a. The TCHNG macro allows you to replace a terminal table or option
field entry with the contents of your application-program work area.

Protection against unauthorized use of the TCHNG macro is provided
through the optional P ASSWRD operand. If password protection was
specified on the INTRO macro in the MCP, the same password must be
specified on this macro. If a password was coded in the MCP, but not in
the application program, the macro will not execute, and instead, control
will go to the next sequential instruction. In addition, terminal-table
entries can be protected from changes through the TCHNG macro through
the use of a "field-sensitive" mask in the MCP. See the TCHNG macro
discussion for details.

You are required to have at least one TCAM application-program DCB in
any application program in which these macros are issued. Consultation
with the TCAM system programmer is advisable before implementing any
one of the macros in this group.

If the MCP with which your application program interfaces uses routing by
key, you may wish to inspect and modify the fixed header prefix (FHP)
associated with each message routed to your application program in this
way. The following section includes information on how.

Inspecting an Entry in the Terminal Table (the TCOPY Macro)

You may use the TCOPY macro to request TCAM to move the contents of a
terminal-table entry that you have designated toa work area in your
application program. The terminal-tables are for LU's. Functions similar
to those provided by this macro are also provided by the Display Status and
Message Number of Resource and the Display Option Field operator
commands.

You must ensure that your work area is large enough to accommodate the
largest possible string of data that may be moved into it by a TCOPY
macro. If the work area is not large enough, main storage adjoining the
work area will be overlaid.

Note: Yau may determine the length of the longest possible string of data
that the TCOPY macro can move into a work area by looking at the
assembler listing for the MCP. Under each TERMINAL, TLIST,
TPROCESS, and LOGTYPE macro expansion are control sections having
"TERMINAL ENTRY," "OPTION OFFSETS," and "DEVICE-DEPENDENT
FIELDS" in their comment fields. These control sections (CSECTs)
indicate the length of the terminal-table entry, the option-field offsets, and
the device-characteristics fields, respectively. You should find the sum of
these three lengths for each terminal-table entry you wish to copy and add
to this sum the total length of the option fields associated with that entry.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-11

The work area named in TCOPY should be at least as large as the total
value obtained in this way.

The specification of this macro in an application program is optional. You
should not use this macro unless it is necessary for you to examine a
terminal-table entry.

A representative terminal-table entry describing a single external LU has
the format depicted in Figure 4-1 on page 4-13. See the TCAM Program
Reference Summary.

Referring to Figure 4-1 on page 4-13 in addition to the contents of the
terminal-table entry itself, the TCOPY macro also moves the contents of
any option fields associated with a terminal-table entry into the specified
application-program work area. The first option field immediately follows
the last device-characteristics field. The two-byte TRMOPTBL field,
located at an offset of 18 bytes from the beginning of each terminal-table
entry, contains the offset from the beginning of the entry to the beginning
of the first option field. The length of the TRMOPT field (+ 20) is variable.
If no OPTION macros are coded in the MCP, no space is allocated for the
TRMOPNO field, the TRMOPTBL field, or the TRMOPT field.

A variable number of device-characteristics fields follow the TRMOPT field,
or the TRMCHCIN field if no OPTION macros are coded. The first byte of
each device-characteristics field contains the binary length of that field.
The rest of the field contains the device-dependent data. See TCAM
Program Reference Summary for a discussion of the individual
terminal-table field names and their contents.

4-12 TeAM Application Programming

TRMSTATE TRMDESTQ

0 +1

TRMOUTSO :~ TRMINSEQ

+4 +6

lRMomL :~ TRMALTDL

+8 +10

TRMTEMPR lRMS~ TRMSIO

+12 +14

TRMO~BL:~ TRMCHCIN TRMOPNO

+16 +17 +18

TRMOPT « Start of device
characteristics field

+20

Figure 4-1. The Length of the Terminal Table Entry DSECT

Inspecting a Destination Queue Control Block In the MCP (the QCOPY
Macro)

You may use the QCOPY macro to request TCAM to copy the contents of a
destination or master queue control block (QCB) and its related priority
QCBs (if any) into a designated application-program work area. This copy
function may either be coded to execute only after a specific number of
messages have been queued, or it may be coded to execute unconditionally.
You can specify a threshold number of messages on the QCOPY macro for
the case where you want the QCOPY macro to execute conditionally. The
QCOPY macro may be issued for a host LU or an outboard LU. Only the
master QCB will be copied if there is no priority QCB.

The QCB is a TCAM control block associated with a particular destination
message queue. For a complete description of queue control blocks, see the
"Data Areas" section in TeAM Program Reference Summary. A master
QCB is 40 bytes long and always has at least one priority QCB associated
with it, even if no priorities are specified.

Each priority QCB is 28 bytes; therefore, the formula for determining the
number of bytes needed in the application-program work area for a given
QCB is:

68 + 28n bytes

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-13

Where n is the number of different priorities specified for the external LU
whose associated QCB is being copied. The number of allowable priority
levels is specified by the LEVEL operand of the TERMINAL macro for the
related external LU.

Part of the function of QCOPY is also provided by the Display Queue
Control Block operator command. This macro is optional in an application
program and should not be coded unless it is necessary for you to examine a
queue control block.

Changing an Entry in the Terminal Table (the TCHNG Macro)

You may use the TCHNG macro to request TCAM to replace the contents
of a particular terminal-table entry with the contents of your
application-program work area. See the preceding discussion on the
TCOPY fIlacro for a description of a typical terminal-table entry. Table
entries for a host or an outboard LU may be modified based on the mask
defined on the INTRO macro. Option fields associated with a terminal-table
entry may also be modified by this macro.

All the fields necessary for proper execution of TCAM must be placed in the
terminal-table entry in proper form. If you use this macro, you are
responsible for maintaining the integrity of the terminal-table entry that
you change. The storage for each terminal-table entry's device dependent
field and option field is allocated at assembly time. If a new field is added
to either the device dependent field or the option field, storage following
the field is destroyed. This also occurs if the length field of a device
dependent field is increased. You should, therefore, not add any new device
dependent or option fields, or increase the length of any field.

TCAM provides a field-sensitive mask to allow the system programmer to
protect terminal-table entries from inadvertent modification or destruction
by an application program. These masks allow the application program to
alter only certain fields in a terminal-table entry. The masks will apply to
device classes, not specific devices. Details on how a field-sensitive mask is
specified are given in the description of the OPMASK operand of the
INTRO macro discussion in the TeAM Installation Reference.

Masks may be established at TCAM generation to restrict the kinds of
fields that may be modified by a TCHNG macro. Masks may be specified
for log entries, LUs, list entries and TPROCESS entries.

The contents of option fields may also be modified by the Insert Option
Field Data operator command. The TCHNG macro is optional in an
application program. You should not use this macro unless it is necessary
for you to make changes to a terminal-table entry.

4-14 TeAM Application Programming

J

L
Summary of Related Operands for the Copy and Change Macros

Macro

INTRO

INTRO

TERMINAL

Values for the following macros and macro operands must be coded in the
MCP as specified before the referenced macro will execute properly in an
application program.

Operand

PASSWRD

OPMASK

LEVEL

Where
Macro is
Issued

MCP

MCP

MCP

Notes

If this operand is coded in the MCP, the TCHNG
macro will not execute unless it also specifies the
same password.

Used to specify a set of security masks to protect
particular fields in a terminal-table entry. This
facility is used in conjunction with the TCHNG
macro.

The length of a QCB to be copied can be
calculated by the formula 68 + 28n bytes, where n
is the number of priorities specified by this
operand.

Inspecting and Modifying the Contents of a Fixed Header Prefix

If the system programmer elects to pass the full FHP to the application
program, it is placed in the program's input work area along with the
message as follows:

FHP DATA AREA

TCAM provides a macro instruction (DKJFHD) which generates a dummy
section (DSECT) describing the FHP. Using the DSECT and assuming the
name of the program's work area is AREA, use the following instructions to
access the address of the first data character of the message:

LA
USING
SR
IC
LA

6,AREA
FHPSTART,6
1,1
I,FHPHEADP
2,0(1,6)

Establish address ability

Clear a register
Get offset to data
Put address of data in register 2.

The FHP field FHPHEADP contains a value which, when added to the
address of the first character of the FHP, yields the address of the first data
character. FHPHEADP is an offset, then, to the data from the start of the
FHP.

FHPOAFLD is the symbolic name of the field in the FHP which contains
the network address of the message origin (the origin address field or OAF).

If any field in the passed FHP is to be referred to, it should be referred to
by its symbolic field name.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-15

The DKJFHD macro instruction must be issued in the application program
to obtain the necessary dummy section. The macro is described in Chapter
5.

The contents of the FHP are discussed in "Designing the Message Handler"
in TCAM Installation Guide. The DSECT for the FHP is described in the
TCAM Program Reference Summary.

Coordinating TCAM Checkpoints of the MCP with
Checkpoints of an Application Program

When you are updating data files by sending messages from an application
program, coordination of the output messages with messages being sent to
the application program following a restart can be achieved by using a
combination of MVS checkpoints and the TCAM CKREQ macro. This
facility would be used in conjunction with "flip-flop" data sets that are set
up to change back to their status as of the last MVS checkpoint upon
restart.

TCAM checkpoints of the message control program can be coordinated with
MVS checkpoints of TCAM application programs by issuing a CKREQ
macro in the application program. The purpose of this coordination is to
allow the MCP and each application program to restart at the same point
following system failure. This section describes how the CKREQ macro can
ensure coordination between the application program and the MCP, and
how a user-specified exit from an input or output DCB macro in an
application program may be used for this purpose. The MVS advanced
checkpoint/restart facility for application programs is described in
Checkpoint/Restart.

Another way to obtain coordination upon restart is to specify
CKPTSYN = NO in the TPROCESS macros for the application program, and
take an MVS checkpoint each time a data file update occurred. If one data
file update per message were performed and one MVS checkpoint per
message were taken, upon restart the application program would only have
to check for one duplicate message in order to ensure that updating of the
data file resumes from the point of interruption.

In this discussion on restarts, system failure is assumed to involve MCP
failure. If the MCP fails, the application program is abnormally terminated
by TCAM and, consequentially, all of its data sets are automatically closed.
Therefore, after the MCP is restarted, you must also restart your
application program and reopen all necessary data sets.

Failure of an application program need not be accompanied by failure of
the MCP. However, in some application programs, you might wish to close
down the MCP following abnormal termination of an application program,
so that both might be restarted from the same point. See the following
discussion on coordinating MCP and application program restarts for more
on this topic.

4-16 TeAM Application Programming

J

The CKREQ Macro

When a CKREQ macro is executed in an application program, a checkpoint
request is written in the TCAM checkpoint data set for each queue to
which a GET or READ macro can be directed by that program. If restart is
necessary, this checkpoint request record is used to update the MCP
environment. The checkpoint/restart function causes transmission to the
application program after restart to begin with the last message marked
serviced at the time the last checkpoint request record was written, rather
than with the last message marked serviced before the MCP closedown or
failure.

When a restart is performed after the CKREQ macro has executed, normal
processing of the TCAM message queues does not occur if CKPTSYN = YES
was specified on the associated TPROCESS macro. Instead, the first
message to be sent from the MCP to the application program following
restart is determined by the contents of the last checkpoint request record
written for that queue as the result of execution of a CKREQ macro. If
CKPTSYN = NO was specified, the first unserviced message in the
highest-priority group of messages on the message queue for that
application program is sent following a restart.

When the CKREQ macro is used in an application program with low
message traffic, the checkpoint request record written as a result of
execution of the macro may be obsolete when compared to the MCP
environment. For example, it may contain information pertaining to a zone
on a reusable disk that has already been reformatted. When this happens,
messages can be lost. Therefore, consideration should be given to the
matter of how often checkpoints should be taken, and how application
program and MCP checkpoints should be coordinated.

After processing a reasonable number of messages or records (see the
checkpoint discussion in TeAM Installation Guide), the application
program should take an MVS checkpoint. An MVS checkpoint cannot be
taken from an application program that is attached to the TCAM MCP as a
subtask. Immediately after the MVS checkpoint is taken, the program
should issue a CKREQ macro. If this sequence is followed, upon restart
after an MCP failure, the application-program environment will be
restructured using the latest MVS checkpoint, and no more than the
number of messages processed by the application program since the
previous checkpoint will be sent.

Note: If both MVS checkpoints and TCAM checkpoint request records are
used, a CKREQ macro should be issued each time an MVS checkpoint is
taken.

Figure 4-2 on page 4-18 shows how to use the CKREQ macro for checkpoint
coordination.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-17

DESTINATION QUEUE FOR
APPLICATION PROGRAM

Enviroment
...-- Checkpoint

Record

Message #1

Message #2

Message #3

Message #4

APPLICATION PROGRAM

GET #1

~
process and dispose of msg #1

~
OS/VS CHECKPOINT #1

~
CKREQ Macro #1

~
GET #2

~
process and dispose of msg #2

~
GET #3

~
process and disposf of msg #3

~
OS/VS CHECKPOINT #2

~
g]88lTI~ CKREQ Macro #2

~
GET #4

~
process and dispose of msg #4

Figure 4-2. Using the CKREQ Macro for Checkpoint Coordination

Referring to Figure 4·2, a TCAM environment checkpoint record is written
before the first GET macro is issued. After the first message is processed
and disposed of by the application program, an MVS checkpoint is taken.
Upon return from the checkpoint subroutine, a checkpoint request record is
written to record the status of the destination queue for the application
program by using the CKREQ macro. When the next GET macro is
satisfied (that is, after the second message has been moved into the work
area), the first message is marked serviced in the destination queue. When
the third GET macro is satisfied, the second message is marked serviced.
After the third message is processed by the application program, another
MVS checkpoint record and TCAM checkpoint request record are written.
When the fourth GET macro is satisfied, the third message is marked
serviced.

Assume that a system failure (failure of the MCP) occurs during the
processing of the fourth message. In this case, upon restart, the
application-program environment is reconstructed using the second MVS
checkpoint and the fourth message (the message pointed to by the second
CKREQ macro) is the first message sent upon restart. No duplicate
messages would be sent to the application program from the destination
queue.

4-18 TCAM Application Programming

Now, assume that system failure occurs during processing of the third
message. In this case, the application-program environment is
reconstructed using the first MVS checkpoint, and message number 2 is the
first message sent upon restart. This is the next unprocessed message with
respect to the reconstructed application-program environment.

As a final example, assume that system failure occurs after the second MVS
checkpoint is taken, but before the second CKREQ macro is executed. In
this case, the application-program environment is reconstructed using the
second MVS checkpoint, but the first message sent upon restart is message
number two. Messages number two and three are duplicate messages with
respect to the reconstructed application program environment.

Using the DCB Exit for Checkpoint Coordination

The input and output DCB macros in TCAM application programs permit
specification of a user-written routine to take an MVS checkpoint after
each TCAM environment is taken. You may designate the address of an
exit routine that you must code by specifying a value for the EXLST
operand on the input or output DCB macro for your application program.
(See the DCB macro discussions in Chapter 5). The format and contents of
the exit routine list are discussed in Data Management Services.

You should specify your own checkpoint routine in the exit list by coding
an X'OF' as a control byte in the exit list and by following the control byte
with the three-byte address of a checkpoint routine that you have coded.
The routine must save and restore the contents of registers 1 and 14. You
must not store data in the area pointed to by register 13 upon entry to this
routine. All registers except 1, 13, and 14 will contain what they did before
the macro causing the exit to be taken is executed. In addition to coding
the EXLST operand of the input or output DCB macro, you should also
specify CKPTSYN = YES in the TPROCESS macro for each process queue
you wish to checkpoint.

When the EXLST operand is coded in an application program DCB, an
indication is made to the application program each time an environment
record is made. If your checkpoint routine is coded in the input DCB
macro, the first GET or READ macro issued by the application program
after the TCAM environment checkpoint is taken passes control to your
checkpoint routine. Your routine is then responsible for taking an MVS
checkpoint before returning to the calling routine. The GET or READ
macro is not satisfied until after the calling routine regains control.

If the checkpoint routine is coded on the EXLST operand of an output DCB
macro, the first PUT or WRITE macro issued by the application program
after the environment checkpoint is taken passes control to your
checkpoint routine. Again, the PUT or WRITE macro is not satisfied until
after control is returned to the application program. If MVS checkpointing
is used, a CKREQ macro should be issued after each operating system
checkpoint.

Upon restart following a system failure, message traffic to the application
program resumes with the message in each queue that was the earliest
completed, unserviced message in the highest priority group at the time the

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-19

last checkpoint was taken. All other unserviced messages on the queue at
the time the environment checkpoint was taken are ultimately sent to the
application program upon restart.

By coding a value for the CPINTVL operand of the INTRO macro in the
MCP, the system programmer may ensure that the TeAM environment
checkpoints are taken within a specified time limit after the MVS
checkpoint.

Note: Ordinarily, the MVS checkpoint routine cannot be invoked from a
DCB exit routine. When the DCB involved is a TCAM input or output
DCB, however, this restriction does not hold.

Coordinating MCP and Application-Program Restarts

When restarting an MCP in conjunction with an application program, the
MCP must be restarted first. Then the application program may be
restarted using MVS restart facilities.

If the MCP terminates abnormally, TCAM application programs currently
active are also automatically halted abnormally, providing there was at
least one open TCAM DCB. If the TCAM checkpoint facility is being used.
a point-of-Iast environment restart may be performed for the MCP; as
before, the application program may then be restarted.

If the application program ends abnormally and the MCP does not end, you
have two courses of action open to you:

1. You may restart the application program without closing down or
ending the MCP job. In this case, the first message received by the
restarted application program from a particular process queue is the
unserviced message in the highest-priority group for that queue that
was completely received and queued before any other message in the
highest priority group of that queue.

Note: A message is not marked serviced until the next message to be
sent to the application program from the same queue has been
transferred in its entirety to the application program.

Message A is not marked serviced until message B has been entirely
transferred to the application-program work area. If the closing of an
application program data set is invoked either by the CLOSE macro or
by an abnormal termination, message B is marked serviced if it has
been completely transferred to the application program prior to close.
Therefore, if message A is transferred to the application program and is
followed immediately by message B on the same process queue, and if
the application program terminates abnormally when half of message B
has been transferred to the application program, the first message to be
transferred to the application program following its restart would be
message B. If this course of action is followed, no synchronization of
MVS checkpoints with the TCAM MCP checkpoints is performed. If
the final segment of message B is being transferred to the application
program and a failure occurs during processing, message B is marked

4-20 TeAM Application Programming

J

J

serviced by the close routine activated by abnormal termination
processing. Message B is not re-sent when the application program is
restarted. If necessary, the message may be reprocessed by using the
POINT macro and the TCAM message-retrieval facility.

2. Following failure of the application program, you can close down or
terminate the TCAM MCP, and then reactivate the MCP with a
point-of-failure or point-of-Iast-environment restart, and the application
program by an MVS restart. In this case, the application program will
receive from each process queue those messages that were on the queue
and unserviced at the time that the last checkpoint request record (or
environment record, if no checkpoint request record was made) was
written for that queue, plus all messages that were placed on the queue
after the last checkpoint request record was written.

When reusable disk queuing is used, there is an advantage to be gained by
combining the two coordination methods described here by issuing both a
CKREQ macro and an MVS checkpoint request in the DCB exit routine. If
an environment checkpoint is taken due to a zone changeover on the
reusable-disk data set, checkpoint request records written before the data
set reorganization are now out of date, because they do not point to the
disk zone currently being used. Since the DCB exit routine is given control
after each environment checkpoint is taken, it provides the user with an
opportunity to write a fresh checkpoint request record after each zone
changeover.

Checkpointing Operator Control Commands

If you intend to issue operator commands from an application program, you
should first be familiar with the TCAM Operations manual. If the
checkpoint DCB in the TCAM MCP has been opened, incident records are
written when certain operator commands are successfully processed. A list
of the MODIFY commands that cause incident records to be written can be
found in the TCAM Operation manual.

None of the display commands and no unsuccessful, operator-initiated
commands are checkpointed.

Summary of Related Operands

Macro

TPROCESS

The following macros or macro operands must be coded either in an MCP
or in an application program before the TCAM checkpoint/restart facility
can be implemented.

Operand

CKPTSYN = YES

Where
Macro is
Issued

MCP

Notes

The CKREQ macro cannot be issued in an
application program unless this operand is
coded in the MCP.

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-21

Macro Operand

INTRO STARTUP

Where
Macro is
Issued

MCP

Notes

Specifies the restart options you wish for
any TCAM restarts.

The following macros and operands may be specified optionally, depending on your circumstances.

Macro Operand

TPROCESS CKPTSYN=NO

DCB EXLST

INTRO CPINTVL

Where
Macro is
Issued

MCP

application
program

MCP

Notes

If you want to take your own MVS
checkpoint in the application program
each time a file update occurs.

If you desire to take your own MVS
checkpoint each time a file update occurs.
EXLST must specify a routine that you
have written and included in the
application-program region.

You may specify a time interval within
which an environment checkpoint must be
taken following an MVS checkpoint.

Determining How Many Messages are on a Specific Queue (the MCOUNT
Macro)

At times, it may be necessary for you to find out how many completed
messages are waiting to be processed by a specific application program.
Execution of the MCOUNT macro can give you this information.
MCOUNT should be issued in an application program just before a GET or
a READ macro to determine how many messages are queued for a
particular DCB.

The message count returned in register 1 as a result of execution of an
MCOUNT macro is for the queue associated with the DCB operand of the
MCOUNT macro. MCOUNT returns a message count only for an input
queue of an application program. Refer to the QCOPY macro for message
counts on other queues. If the DCB operand specifies an output data
control block, register 1 will contain a zero after the MCOUNT macro
executes.

You must issue an OPEN macro for the DCB that you intend to refer to
before issuing an MCOUNT macro. The MCOUNT macro uses standard
register linkage. (See the coding details for the MCOUNT macro in
Chapter 5.)

The execution of this macro is not dependent on any macros in the MCP.

4-22 TeAM Application Programming

Identifying Application-Program Input Messages by Time and Date Received
(the TPDATE Macro)

Execution of the TPDATE macro causes the transfer of time-stamped and
dated messages into your application program. However, before you can
execute the TPDATE macro, the system programmer must have specified in
the MCP that you wish all the messages coming into your program to be
stamped and dated. (See the following "Summary of Related Operands" for
TPDATE.)

The TPDATE macro allows you to:

• Specify which TCAM input message queue you wish to access
• Define a 16-byte work area in your application program where you want

the time and date information to be returned
• Specify whether you wish TCAM to return an image of the current

record delimiter to your application program
• Specify whether you wish record delimiters to be deleted from each

message before the message is transmitted to your application program.

You must issue an OPEN macro for an application-program DCB before
issuing a TPDATE macro referring to that DCB. The TPDATE macro uses
standard register linkage.

Summary of Related Operands

Macro

PCB

TPROCESS

The following macros and macro operands must be coded in the MCP before
the TPDATE macro executes your program.

Operand

DATE=YES

DATE=YES

Where
Macro is
Issued

MCP

MCP

Notes

TPDATE will not execute unless this
operand is coded.

TPDATE will not execute unless this
operand is coded.

Releasing Messages from TeAM Queues (the MRELEASE Macro)

You may use the MRELEASE macro in your application program to release
all queued messages that have been intercepted for a specific external LU,
LU, or application program. An intercepted LU, external LU or application
program is one that has had all message traffic to it stopped. This may
have occurred through execution of the Intercept a Station operator
command or the HOLD macro. This macro has the same effect as the
Release Intercepted Station operator command. (See the MRELEASE
macro discussion in Chapter 5 for coding details.)

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-23

Summary of Related Operands

If the P ASSWRD operand was coded on the INTRO macro of the M CP, the
MRELEASE macro must specify that same password.

Displaying Main Storage from Within an Application Program (the
COREDSP Macro)

The COREDSP macro permits the display, at the system console, of selected
main storage locations in the application program region. Optionally it
allows the console operator to indicate whether the application program
should attempt to process the current message or should discard it and
obtain another message for processing.

A main storage display consists of a message formatted as three lines that
are sent sequentially to the system console (see the following example).
Each of the three lines contains three data fields:

1. The first field is the standard MVS message identification and type
field. This field contains identical data for all lines of all display
messages, namely, DKJ860I.

2. The second field contains different data in each of the three lines of a
display message. In the first line, this field contains the identifier coded
in the NAME operand of the COREDSP macro, or, if no NAME operand
was specified, the name of the control section in which the COREDSP
macro was issued. In the second display line, this field contains a
constant caption, AT ADDR. In the third display line, this field
contains the starting address of the main storage display in hexadecimal
format.

3. The third field in each line is composed of a hyphen followed by 60
positions of display data from the area in main storage. In the first line,
the data area displays the storage area as EBCDIC characters with a
period (.), substituted for each unprintable byte configuration. In the
second line, the data area displays the hexadecimal zone portion (the
first four bits) of each byte in the storage area. The last line of a
display message contains the hexadecimal numeric portion (the last four
bits) of each byte of the sixty-byte main storage area being displayed.

DKJ860I FIRST -123456789ABC
DKJ860I AT AD DR -FFFFFFFFFCCC
DKJ860I 134B4C -123456789123

XYZTHE FIRST 60 CHARACTERS ••
EEEECC4CCDEE4FF4CCCDCCECDE67
78938506992306003819133592FF) 757, EAC

'--v----' '--v----'
a b c

Example of a display of a main storage message (abbreviated)

a. standard MVS message identification and type code field
b. display area identification data field
c. display data field. (In an actual display, 60 bytes are displayed.)

4-24 TeAM Application Programming

If the COREDSP macro is not coded with CONY = YES specified, the
function of the macro is completed after the main storage display. Register
15 contains a return code of O. The only exception to this procedure occurs
when the macro specifies an invalid main storage address; in this case, the
error message-mentioned below-is issued and, subsequently, the console
operator is able to correct it.

If the COREDSP macro is coded with CONY = YES, an operator
conversation message is sent to the system console after the initial main
storage display. This conversation message consists of an MVS message in
the following format:

DKJ871D nameid -STARTUP-ENTER GO,NO,OR AD=

Where nameid is the name specified by the NAME operand coded in the
COREDSP macro, or if no NAME operand is specified, the name of the
control section in which the COREDSP macro was issued.

The operator's reply determines further processing. If the operator replies
GO, he is indicating that the application program should continue
processing the last record accessed. This indication is passed to the
application program in the form of a 0 return code in register 15. An
operator reply of NO indicates that the application program should not
attempt to process the last record accessed, but should, instead, access
another record to avoid repetition of the abnormal termination of the
application program that resulted in the application program restart. The
indication is passed to the application program as a 4 return code in
register 15. The application program must interrogate the return code from
the COREDSP macro and take appropriate action.

If the system console operator wishes to examine other areas of main
storage before making his GO/NO decision, he may reply AD followed by
either MORE or a main storage address. AD = MORE indicates that he
wishes to see a main storage display of the next sixty positions after the
sixty-position area previously displayed. AD = nnnnnn, where nnnnnn is a
hexadecimal main storage address of up to six digits, generates a main
storage display, in the format described previously, of the sixty-byte area
beginning at the specified address. The operator may request as many
displays of main storage as he requires until he has enough information to
make a GO/NO decision; the conversation message, described above, is
printed on the console after each main storage display.

If the main storage address specified in either a COREDSP macro or in an
operator AD = reply is not a valid main storage address. or if a
sixty-character display would extend to an invalid address. an error
message is sent to the system console formatted as follows:

DKJ862I nameid - nnnnnn IS AN INVALID CORE ADDRESS

Where nameid is the name specified by the NAME operand coded in the
COREDSP macro; or if no NAME is specified, the name of the control
section in which the COREDSP macro was issued, and nnnnnn is the
six-digit hexadecimal main storage address prompting the error message.
This invalid address message is followed by a transmission of the operator

Chapter 4. Optional TCAM Facilities for the Application Programmer 4-25

conversation message described above; this allows the operator to request a
display starting at another main storage address, or to terminate the main
storage display processing via the GO/NO reply options.

Converting Numbers into Binary, Decimal, and Hexadecimal Formats (the
TCBINCNV Macro)

The TCBINCNV macro allows you to convert a halfword binary number to
the equivalent principal decimal or hexadecimal value, and to convert an
EBCDIC decimal number to the equivalent halfword binary number. For
details, see the description of this macro in Chapter 5.

4-26 TeAM Application Programming

J

Chapter 5. TCAM Application Programmer's Macro
Reference Guide

This chapter is a reference guide for coding your TCAM application
programs. The macros are arranged in this chapter in alphabetical order
for ease of reference. Coding details for the following macros are included
in this chapter.

CHECK
CKREQ
CLOSE
COREDSP
DCB(input)
DCB(output)
DKJFND
GET
MCOUNT
MCPCLOSE
MRELEASE

OPEN
POINT
PUT
QCOPY
QRESET
READ
TCBINCNV
TCHNG
TCOPY
TPDATE
WRITE

Details for any TCAM macro not listed here can be found in the TCAM
Installation Reference.

The TCAM Installation Reference contains the macro coding details for all
of the TCAM system macros used in the MCP. This chapter describes only
those macros that may be used in TCAM application programs.

In order for an application program to execute in the TCAM environment,
it must contain a minimum of an OPEN macro, at least one DCB macro, a
GET, READ, PUT, or WRITE macro, and a CLOSE macro. Any of the
other macros in this chapter are optional, and their use will depend on the
application being coded.

The rationale for coding any of these macros is not discussed in this
chapter. The following pages consist of "how to code" detail only. By the
time you are ready to use this chapter, you should understand fully why
you want to use a particular macro. However, if you still have some doubt
about the proper instruction to use, you may review the topic in question in
the first four chapters of this manual or discuss your problem with the
TCAM system programmer.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-1

Register notation may be used in several of these macros. When an
operand is specified as a register, the application program must have
inserted the value or address to be used into the register as follows:

• If the register is to contain a value, it must be placed in the low-order
portion of the register unless the macro instruction description states
otherwise. Any unused bits in the register should be set to zero.

• If the register is to contain an address, the address must be placed in
the low-order three bytes of the register, and the high-order byte of the
register should be set to zero.

CHECK Macro

symbol

decbname

The CHECK macro:

• Checks the DECB associated with a READ or WRITE for successful
completion

• May cause an application program to be placed in the wait state
• Should be issued after each READ or WRITE macro in the same order

as the READ or WRITE macro instructions were issued

Refer to Chapter 3 for details.

Name Operation Operands
[symbol] CHECK decbname

Function: Allows symbolic addressing of this instruction within a program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the data event control block
referred to by the READ or WRITE macro instruction that this macro is
intended to CHECK.

Format: Must be the same symbolic name as that specified in the decbname
operand of the associated READ or WRITE macro. Register notation may
be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed in
parentheses and the address of the DECB must have been previously loaded
into that register. Any of the general registers 1 through 12 may be used.

5-2 TeAM Application Programming

J

Return Codes

Code

X'OlOOOOOO'

X'02000000'

Meaning

The following return codes may be passed back to your program in register
15 after this macro executes:

Bit Meaning

X '00000000' The CHECK macro executed successfully.

X'00000004' End of file has been reached, and no EODAD was specified.

X'00000008' An error (work area overflow or sequence error) occurred
during execution of the associated READ or WRITE macro,
and no SYNAD routine was specified.

X'OOOOOOOC' A message was not found during retrieve (READ with
POINT) or an invalid destination was specified (WRITE).

X '00000010 , The WRITE macro just issued cannot execute because of a
congested destination message queue data set in the MCP.

Completion codes that may be returned to the event control block of the
DECB associated with this CHECK macro, or with a second READ or
WRITE macro are:

Comments and TCAM Action

The read-ahead queue is empty, but the
destination queue is not empty.

See comments for X'02000000'.

An end-of-queue condition has been
encountered. No SETEOF macro was
specified in the MCP, and no data is
currently on a read-ahead or destination
queue for this DCB.

Along with X'OlOOOOOO', this code indicates
that the process queue has no data on it.
TCAM waits for a message to be put on
the read-ahead queue and then changes
the value from X'OlOOOOOO' or X'02000000'
to X' 40000000' .

Note: Neither the wait nor the complete
bit in the ECB field of a DECB is set to 1
by the two empty-queue completion codes
(X'01000000' and X'02000000'). This is so
you can continue processing without first
having to set the wait bit in the ECB to
zero. You can code to test the ECB before
issuing a CHECK macro. If the ECB
contains a X'OlOOOOOO' or X'02000000', your
routine may engage in some other program
activity rather than immediately issuing
the CHECK macro and entering a wait
state.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-3

Code

X'40000000'

X'50000000'

X'52000000'

X'54000000'

Meaning

There is now data on the read-ahead
queue.

A READ macro was issued in conjunction
with a POINT macro in order to retrieve a
message; no message was found on the
specified message queue. If a sequence
number greater than the highest known to
TCAM is used (for example, greater than
9999 or greater than the highest for the
queue), this return code is not issued and
the subsequent READ will get X'50' in the
ECB (that is, ECBNOMSG, Message not
found). If multiple retrieval was
requested, this code means that the
function has been terminated and the
chain of messages eligible for retrieval has
ended.

There was a work-area overflow in the
application program at the completion of
the latest READ macro; or an invalid
BLKSIZE operand was detected for a
WRITE macro.

An invalid message destination was
specified on a WRITE macro.

5-4 TeAM Application Programming

Comments and TCAM Action

A READ macro was issued previously and
the input queue was empty; since then,
some data has been placed on the queue.
Another READ or a CHECK macro should
now be issued to bring this data into your
work area. TCAM reads a message into
your work area and returns control to the
application program at the instruction
following the READ or CHECK macro.

TCAM issues a return code of X'OOOOOOOC'
in register 15. If multiple retrieval was
requested, a POINT macro with a blank
address field to terminate is not required
and must not be issued now because the
function has already terminated.

The CHECK macro gives control to the
SYNAD exit routine in both cases. This
code is also returned if the BLKSIZE
operand the DCB macro is invalid (the
BLKSIZE operand is greater than the
APW AS operand of the INTRO macro.
LRECL = 0 and RECFM = F have been
specified on the DCB associated with this
READ macro. TCAM either (1) takes the
user SYNAD exit or (2) returns a code of
X'00000008' in register 15 if no SYNAD
exit was specified.

The CHECK macro gives control to the
SYNAD exit because the message
destination specified was not found in the
terminal name table. TCAM either (1)
takes the user's SYNAD exit, or (2) returns
a code of X'OOOOOOOC' in register 15 if no
SYNAD exit was specified.

J

J

Code Meaning

X'58000000' A work-unit sequence error occurred.

X'5COOOOOO' There is a congested destination message
queue data set.

X'5EOOOOOO'

X'70000000'

The WRITE macro that you just issued
cannot execute because simultaneous
WRITES were issued against the same
PCB.

A TCAM quick close-down was begun. The
WRITE macro that you just issued has
been rejected.

A SETEOF macro was just executed in the
MCP. The program work area will not
contain a work unit until another read is
issued. The EODAD operand and the
STOP operand of the DCB macro are not
coded and an MCP closedown is in
progress.

X'7F'OOOOOO' Normal completion of a READ or WRITE
macro.

CKREQ Macro

The CKREQ macro:

Comments and TCAM Action

The CHECK macro gives control to the
SYNAD exit. The output DCB specifies
OPTCD = C and the work-unit position
field specifies the wrong type of work unit.
For example, the last work unit processed
was the last segment of a message, and the
position field did not reflect that it was the
last portion of a message. TCAM either (1)
takes the user's SYNAD exit, or (2) returns
a code of X'00000008' in register 15 if no
SYNAD exit was specified.

The TCAM message queue data set is
receiving more traffic than it can
currently handle. Therefore, TCAM
cannot accept your work unit at this time.
This is in keeping with the TCAM
approach to slowing down input because of
a temporary threshold condition. You
should issue the WRITE again. TCAM
returns a code of X'OOOOOOI0' in register
15.

You should issue the WRITE again.
TCAM returns a code of X'OOOOOOlO' in
register 15.

TCAM either (1) takes the user SYNAD
exit, or (2) returns a code of X'00000004' in
register 15 if no SYNAD exit was specified.

The CHECK macro gives control to the
EODAD exit. TCAM returns a code of
X'00000004' in register 15 if no EODAD
exit was specified.

Application program execution continues
normally at the instruction following the
CHECK macro.

• Causes a checkpoint request record to be written in the TCAM
checkpoint data set for each queue to which a GET or READ macro can
be directed by an application program

Refer to Chapter 4 for details.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-5

symbol

Return Codes

CLOSE Macro

Name Operation Operands
[symbol] CKREQ (no operands)

Function: Allows symbolic addressing of this instruction within a program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Note: The CKREQ macro has no operands. This macro does not move
messages. It only identifies messages that have already been transmitted.
The checkpoint request record written at the execution of CKREQ macro is
used to update the MCP environment if restart is necessary. The first
message sent after restart of MCP is the last message marked serviced by
the CKREQ macro. Registers 0, 1, 14, or 15 may be altered during
execution of the CKREQ macro.

One of the following return codes will be passed back to your program in
register 15 after the CKREQ macro executes.

Code

X'oooooooo'

X '00000004'

Meaning

A checkpoint-request record has been successfully written
on disk.

No checkpoint-request record was written on disk for this
request.

The CLOSE macro:

• Is issued in the application program to deactivate any open input or
output data sets.

Refer to Chapter 2 for details.

Name Operation Operands
[symbol] CLOSE (dcbname" ...) [,MF={L}]

5-6 TeAM Application Programming

symbol

dcbname

MF={L
{ (.£;., listname) }

Function: Allows symbolic addressing of this instruction within a program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the data control block for the
logical data set you wish to close with this instruction. The ellipsis in the
format indicates that you may specif~' multiple dcbname parameters with
this operand.

Format: Register notation may be used. Each dcbname must conform to
the rules for assembler language symbols, and must be the same as the label
of the DCB macro associated with the data set being closed. If more than
one data set is being closed, the dcbnames must be separated by double
commas. For example, if you were using DCB names, you would code
(DCBA"DCBB"DCBC). Using register notation, you would code
«4),,(5),,(6» if the addresses were in registers 4, 5, and 6.

Default: None. Specification of this operand is required except when a list
name is specified in the execute form macro.

Note: Every data set in an application-program can be closed with one
CLOSE macro by including the name of each of their data control blocks as
an operand. If register notation is used, the address of the appropriate data
control block must have been previously loaded into the register specified.

Function: Specifies whether this instruction is to be an executable
instruction (MF = E), or a list instruction (MF = L) which must be referred
to by an executable CLOSE macro instruction. See the Data Management
Macro Instructions manual for the definition and use of the list and execute
forms of this macro.

Format: Lor (E,listname) where listname is any arbitrarily assigned
character sequence of up to eight characters that is unique within the
program. listname refers to the label of a list form of the CLOSE macro
that contains a parameter list and resides in the constant area of your
program.

Default: MF = E

Note: MF = L creates a parameter list; no executable code is generated.
You must specify this parameter list among your program constants. The
dcbnames in the parameter list are not used until the application program
issues a CLOSE macro with an MF = (E,listname) operand that refers to a
list form of the macro. The label specified by listname is the label of the

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-7

Return Codes

MF = L version of the CLOSE macro that you want executed. The
MF = (E,listname) form of this macro executes the TCAM close routine,
using the parameter list referred to by listname. This list was created by a
macro having the MF = Loperand specified. Parameters specified in a
macro having the MF=(E, listname) operand override corresponding
parameters in the list form.

None.

COREDSP Macro

The COREDSP macro:

• Provides assistance for application program restart through displaying
memory content of a specific location.

• Is normally issued in an application program, but may be issued (for
main storage display during testing) anywhere in an executable section
of the MCP.

The COREDSP macro instruction allows the system console operator to
display selected main storage locations, and, if so specified, to indicate
whether an application program should attempt to process the current
message or should access another message. The issuing program may
display any location in its MVS region.

You can code the macro instruction in such a way that, after an initial
main storage display, the system console operator may request another
display or decide that the record last accessed by the application program
should not be processed again.

The contents of registers 1, 14, and 15 will be destroyed by the COREDSP
macro instruction. Register 13 is presumed to contain the address of an
18-fullword register save area. All other registers are saved and restored by
the COREDSP macro. When control is returned to the user: register 1
contains the address of the work area used by the macro (see the WORK
operand, below) and register 15 contains the return code (0 if the operator
entered GO or if no operator conversation occurred, and 4 if the operator
entered NO).

Refer to Chapter 4 for details.

5-8 TeAM Application Programming

J

symbol

ADDR={name }
{ (register) }

CONV={YES}
{NO }

NAME={name }
{(register) }

Name Operation Operands
[symbol] COREDSP ADDR={name }

{ (register) }
[,CONV= {YES}]

{NO }
[,NAME= {name }]

{(register) }
[,WORK= {name }]

{(register) }

Function: Name of the macro.

Format: Must conform to the rules for assembler language symbols.

Default: None. Specification optional.

Function: Identifies the first main storage address to be displayed.

Format: name is the symbolic name of the field from which main storage
display should begin.

(register): decimal integer within parentheses, minimum 1, maximum 12.

Default: None. This parameter is required.

Note: The specified register contains the main storage address of the
message or other area for which display is being requested.

Function: YES specifies that the system console will be given the
opportunity of receiving more than the one main storage display specified
in the macro, as well as the option of bypassing the last record accessed, as
described in Chapter 4, "Displaying Main Storage from within an
Application Program."

NO specifies that only the initial macro-specified display will be provided.

Format: YES or NO

Default: CONV = NO.

Function: Supplies the identifier that precedes the display characters on
the first print line.

Format: name: eight characters or less.

(register): decimal integer within parentheses, minimum 1, maximum 12

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-9

WORK={name }
{ (register) }

Return Codes

Default: The name of the current CSECT will be used to identify messages.

Note: If (register) is used, the specified number is of a register containing
the address of an 8-byte field that includes the identifier name.

Function: Specifies a 184-byte, doubleword-aligned work area.

Format: name: the name of the work area.

(register): decimal integer within parentheses, minimum 2, maximum 12.

Default: The work area is internally generated.

Note: If (register) is used, the specified register contains the address of tht,
work area.

One of the following return codes will be passed back to the application
program in register 15 after the COREDSP macro executes.

Code

x'oooooooo'

X '00000004'

Meaning

Indicates that either CONV = NO has been coded
or CONV = YES, has been coded and the operator
has entered GO in response to COREDSP
indicating current message should be processed.

Indicates the operator responded NO to CORESP
which indicates current message should not be
processed.

DeB Macro (Input)

The input DCB macro:

• Defines an input data set for an application program
• Must be issued for each process queue addressed by the application

program with GET or READ macros
• Specifies whether BSAM-compatible macros or QSAM-compatible

macros are to transfer messages or records from the MCP to the
application program

• Specifies the length in bytes of the application-program work area to
which data is transferred from the MCP

• Specifies the length in bytes of buffers to be used in the MCP to
transfer messages from the process queue to the application-program
interface

• Specifies whether the application program is to handle entire messages
or message portions called logical records

5-10 TeAM Application Programming

J

symbol

BLKSIZE=integer

• Specifies the format and characteristics of records in the input data set
• Indicates the address of a routine to be given control when the end of a

user-defined series of data records is reached
• Indicates the address of a routine to be given control when message

overflow occurs.

Refer to Chapter 2 for details on using the (INPUT) DCB macro.

Name Operation Operands
[symbol] DCB BLKSIZE=integer

,DDNAME=symbol
,DSORG=PS
,LHECL=integer
, MlI.CRF= {GM }

{GL }
{GLT}
{GMT}
{RP }
{R }

[,BUFL=integer]
[EODAD=address]
[,EXLST=address]
[OPTCD= [wI [U] [e]]
[, RECFM= {GL }]

{V }
{VB}
{U }

[,STOP={QUICK}]
{FLUSH}
{BOTH }

[, ::;YNAD=address]

Note: Other DCB operands may be coded, but only the ones detailed here
are used by TCAM. Since these operands are all keyword operands, they
may be coded in any order.

Function: Allows symbolic addressing of this instruction within a program;
this symbol becomes the name of the TCAM data control block generated
by the expansion of this macro.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this symbol is required.

Function: Specifies the length (in bytes) of the application-program work
area that this DCB controls.

Format: A decimal integer no smaller than the length of a record as
specified by the LRECL operand of this DCB, and no larger than 32,760, or
the APW AS operand specified on the INTRO macro.

Default: None. Specification of this operand is required either here or by
the alternate source.

I

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-11

BUFL=integer

DDNAME=symbol

DSORG=PS

Alternate Source: The value for this operand can be omitted from this DCB
macro definition if it is provided at program execution by the DCB operand
of the appropriate job control language data definition card.

The total length of all optional fields in your work area must also be
included in this value. (See the OPTCD operand.) TCAM uses the
BLKSIZE operand and LRECL parameters to determine the length of the
record it will send to the work area in your program in response to each
GET or READ macro.

For undefined-length work units, the value specified here will be
dynamically overridden on a work-unit-by-work-unit basis by the length
operand of each associated READ macro.

Function: Specifies the length, in bytes, for each application program
buffer.

Format: integer is a decimal value no greater than 32,760.

Default: If the EUFL operand is omitted, the system acquires INTRO macro
buffers with a length equal to the sum of the values specified in the
KEYLEN and BLKSIZE operands. If the application program requires
larger buffers, the BUFL operand must be specified.

Alternate Source: The BUFL operand can be specified in the DCB
subparameter of a DD statement or by the application program before
completion of the data control block exit routine.

Function: Specifies the symbolic label of the job control language data
definition statement associated with this data control block.

Format: An arbitrarily assigned character string of up to eight characters
unique to this program. It must be the same as the DD card label that
defines this DCB to the operating system.

Default: None. Specification of this operand is required either here or by
the alternate source.

Alternate Source: The value for this operand may be provided any time
before this DCB is opened. See the DCB discussion in Chapter 2 for details
on other ways that this value may be specified.

Function: Specifies that the data set identified by this data control block is
organized in the physical sequential mode.

Format: PS

Default: None. Specification of this operand is required.

5-12 TeAM Application Programming

J

EODAD=address

EXLST=address

Alternate Source: None. This operand must be specified in the application
program.

Note: This operand allows TCAM to achieve compatibility with either
QSAM (GET/PUT) or BSAM (READ/WRITE).

Function: Specifies the symbolic address of an open or closed user-written
subroutine that is to be given control if TCAM recognizes a user-generated
end-of-file indication in the header of a message during normal message
processing.

Format: Must be identical to the symbolic name assigned to the routine that
you wrote to handle an end-of-file condition. address must also conform to
the rules for assembler language symbols.

Default: None. Specification of this operand is optional unless the STOP
operand was coded on this DCB.

Alternate Source: The value for this operand may be provided any time
before the DCB created by this macro is opened. (See the DCB discussion
in Chapter 2.)

Note: TCAM will take an exit to this routine when the next GET or
CHECK macro is issued following a GET macro that transferred a work
unit that ended with the end-of-file character. Time of entry to EODAD
must be controlled by the user because of the real-time nature of the arrival
of messages to a process queue for an application program. If an
end-of-data character has not been specified in TCAM and a SETEOF
macro is not issued in the MCP, you must provide some other means of
determining end-of-data on input.

Function: Specifies the symbolic address of a list of housekeeping or exit
routines.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must conform to the rules
for assembler language symbols.

Default: None. Specification of this operand is optional.

Alternate Source: The value for this operand may be provided any time
before the DCB created by this macro is opened. (See the DCB discussion
in Chapter 2.)

Note: You are responsible for coding all the routines addressed by this list.
The list must start on a full word boundary; its format and contents are
shown and described in the Data Management Services manual. Each entry
in the list must be a fullword made up of a control byte followed by a
three-byte address of a user-written routine.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-13

LRECL=integer

MACRF=(GM }
(GL }
(GLT}
{GMT}
{RP }
{R }

Only two entries in the list (those having control bytes of X'05' and X'OF')
are meaningful for a TCAM input DCB. If the control byte is X'05', a DCB
exit is taken. (See the Data Management Services manual for details.)

The routine with the control byte of OF' is given control to initiate an MVS
checkpoint of the application program. (See the section on coordinating
MVS and TCAM checkpoints in Chapter 4.)

Upon entry to any of the routines specified by this exit list, the contents of
registers 0 and 2 through 13 are the same as they were just before the
associated GET or CHECK macro was executed. Register 1 contains the
address of the input DCB created by this macro, and register 14 contains
the return address of the application program. The just entered routine
must save and restore the contents of registers 1 and 14. The contents of
the user-defined save area must not be altered.

Function: Specifies the length (in bytes) of a work unit, or the length of a
single logical record in your input data set plus all of the optional fields
you have specified by the OPTCD operand on this macro.

Format: A decimal integer no larger than the APW AS operand specified on
the INTRO macro.

Default: None. If RECFM = F has been specified on this DCB, this operand
is required. Otherwise, specification is optional.

Alternate Source: The value for this operand can be omitted from this DCB
macro definition if it is provided at program execution by the DCB operand
on the appropriate job control language data definition card. Specification
here always takes preference over a DD card value.

Note: If RECFM = U is specified on this DCB, after each GET or READ
macro the LRECL operand field in the data control block created by this
macro is updated with the number of bytes of data that have been fetched.
This total would include the record length, plus the length of all the
optional fields preceding the record. (See the OPTCD operand of this
macro.)

Function: Specifies the type of MVS access method that will be used to
retrieve records from the process queue defined by this DCB.

Format: GM, GL, GMT, GLT, R, or RP.

Default: None. Specification of this operand is required.

5-14 TeAM Application Programming

J

OPTCD=

Alternate Source: None. This operand must be specified on a DCB macro
in the application program.

Note: G indicates GET for QSAM-compatibility; R indicates READ for
BSAM-compatibility. GET may be specified in either move (M) or
locate (L) mode.

T indicates that you intend to use the POINT macro in conjunction
with the GET macro. P indicates that you intend to use the POINT
macro in conjunction with the READ macro.

If locate (L) mode is specified with GET, TCAM obtains space for an
application program work area by executing the GETMAIN macro
instruction when the data set is opened. The space for the work area
is obtained from the pageable area of main storage that is available to
the application program. TCAM returns the address of the space to be
used for the work area to the program in register 1 following execution
of the first GET macro, and the program uses this same work area for
all succeeding GETs until the program ends. See the section on
"Dynamic Work-Area Definition" in Chapter 3.

Function: Specifies the types of optional TCAM control fields that you wish
to precede the work unit in your program work area.

Format: W, WV, WC, WVC, V, VC, or C. (You may choose any
combination of fields.)

Default: None. Specification of this operand is optional unless you require
one or more option fields in your work area because of other operand
specifications.

Alternate Source: The value for this operand can be omitted from this DCB
macro definition and provided at program execution by the DCB operand on
the appropriate job control language data definition card.

Note: W specifies that you wish an eight-byte field called the origin field to
be allocated immediately preceding the work unit. This field is
provided so TCAM may insert the symbolic name of the source of each
message received by your program. TCAM places the name of the
source, in EBCDIC, in the field left-justified and padded on the right
with blanks. If W is coded but TCAM cannot determine the message
source, the field is filled with eight character blanks (X'40').

U specifies that you intend to use message rather than record
processing (see Chapter 3). If U is omitted, the work unit is assumed
to be a record.

C specifies that you want a one-byte control field, called the position
field, to be included in the work area. This field will be used by
TCAM to indicate whether the work unit currently being read into the
work area is the first, an intermediate, or the last segment of the
message if message processing was specified; or whether a record

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-15

RECFM={F}
{v}
{B}
{U}

delimiter has been detected in the data if record processing had been
specified. When TeAM passes a work unit to your program, it fills
the position field with a specific control byte depending on the
contents of the work area. The control bytes that can be entered in
this field are:

Control Byte
X'40'

Work Area Contents
Intermediate portion of message
First portion of message X'Fl'

X'F2' Last portion of message
X'Fa' An entire message

If you had specified RECFM = U (undefined· length work units), RECFM = V
(variable-length), or RECFM = VB (variable-length blocked), and OPTCD = C
or CW, the control byte will have one of the following meanings:

Control Byte
X'F4'
X'F5'
X'F6'
X'F7'

Work Area Contents
Intermediate portion of message, end-or-record
First portion of message, end-of-record
Last portion of message, end-of-record
An entire message, end-of-record

The control byte will have one of the four values X'F4' through X'F7' only
if the end-of-record delimiter specified on the TPROCESS macro is the last
byte of data in the work unit.

Function: Specifies the format characteristics of the work units in the data
set controlled by the DCB being created by this macro.

Format: F, V, VB, or U.

Default: RECFM = U.

Alternate Source: The value for this operand can be omitted from this DCB
macro definition if it is specified at program execution by the DCB operand
on the appropriate job controJ language data definition card.

Note: RECFM = F specifies that the length of the work units are to be
fixed. You must specify the length of each work unit obtained, plus the
length of any optional field in the work area, in the LRECL field of this
DCB macro. RECFM = F should be coded only when the number of bytes of
data in a complete message will always be an exact multiple of the number
of bytes specified by the LRECL operand. Otherwise, the last segment to be
passed by TCAM will contain fewer bytes than the number specified in the
LRECL operand, thus causing a read error.

If RECFM = V is coded on this DCB' macro, TCAM places a four-byte prefix
into the work area for each GET or READ macro. The first two bytes of
the prefix will contain the binary sum of the length of the work unit plus

5-16 TeAM Application Programming

STOP={QGrCK}
{FLUSH}
{BOTH }

SYNAD=address

four bytes (the length of the prefix). The second two bytes of the prefix will
be binary zeros.

V specifies that the length of the work units in the data set that will be
controlled by this DCB will be variable. Each work unit must be preceded
in the work area by a standard four-byte SAM-prefix. (See the discussion in
Chapter 3 on optional fields in the work area.)

If RECFM = VB and MACRF = R are coded on this DCB macro, TCAM
places an eight-byte prefix into the work area for each READ. The first two
bytes of the prefix will contain the binary sum of the length of the work
unit plus eight bytes (the length of the prefix). The second two bytes will
be binary zeros. The third two bytes will contain a binary number four less
than that contained in the first two bytes. The final two bytes will be
binary zeros.

VB specifies that the variable-length work units will be treated by TCAM
as if they were blocked. Regardless, only one work unit is transferred to
the work area per GET or READ macro. The work area must include an
eight-byte SAM-prefix if MACRF = Rand RECFM = VB are specified, and a
four-byte prefix otherwise. If RECFM = VB is specified, the blocking factor
must be one.

U specifies that the length of the work units you expect with each GET or
READ macro is undefined. TCAM requires no prefix in the work area for
this format. The length of each work unit passed to the work area is stored
by TCAM in the LRECL field in the input data control block at the time
the work unit is transferred.

Function: Specifies the type of end-of-data processing action that you wish
to be taken if a TCAM closedown is issued while this application program
is executing.

Format: QUICK, FLUSH, or BOTH.

Default: None. Specification of this operand is optional, but if it is coded,
EODAD must also be coded.

Alternate Source: The value for this operand may be provided any time
before this DCB is opened. (See the DCB discussion in Chapter 2.)

Note: QUICK specifies that the EODAD exit of this DCB is to be taken on
a quick closedown only. FLUSH specifies that the EODAD exit is to be
taken on a flush closedown only. BOTH specifies that the EODAD exit is
to be taken for either type of closedown.

Function: Specifies the symbolic address of an open or closed subroutine
that you have coded. When record processing is used, this routine is to be

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-17

Return Codes

given control if a work unit is received that is larger than the program
work area and if OPTCD = C was not specified in this DCB.

Format: Must be identical to the symbolic name assigned to a routine in
this region that you coded to handle this error condition. address must
conform to the rules for assembler language symbols.

Default: None. Specification of this operand is optional.

Alternate Source: The value for this operand may be provided any time
before this DCB is opened.

Note: For more information on SYNAD routines, see the input DCB macro
discussion in Chapter 2.

None.

DCB Macro (Output)

The output DCB macro:

• Defines an output data set for an application program
• Must be issued for each process entry set up to receive messages or

logical records from an application program
• Specifies whether QSAM-compatible macros or BSAM-compatible

macros are to transfer messages or logical records from the application
program to the MCP

• Specifies the format and characteristics of records in the data set
• Specifies the length of the MCP buffers used to receive messages from

this application program
• Specifies the address of a routine to be given control when logical

output errors occur
• Specifies the address of the problem-program exit list.

Refer to Chapter 2 for details on using the DCB (OUTPUT) macro.

5-18 TeAM Application Programming

symbol

BLKSIZE=integer

BUFL=integer

Name Operation Operands
[symbol] DeB BLKSIZE=integer

,DDNAME=symbol
,DSORG=PS
,LREeL=integer
,MAeRF={W }

{PM}
{PL}

[,BUFL=integer]
[,EXLST=address]
[OPTeD= [WI [U] [ell
[,REeFM={F }]

{V }
{VB}
{ll }

[, SYNAD=address]

Note: Other operands may be specified, but only the ones detailed here are
used by TCAM. Since these operands are all keyword operands, they may
be coded in any order.

Function: Allows symbolic addressing of this instruction within a program;
this symbol becomes the name of the data control block generated by the
expansion of this macro.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this symbol is required.

Function: Specifies the length (in bytes) of the application-program work
area that the DCB created by this macro controls.

Format: A decimal integer no larger than the APW AS operand specified on
the INTRO macro.

Default: None. If MACRF = PL is specified on this DCB, this operand is
required. Otherwise, specification is optional.

Alternate Source: This operand can be omitted from this DCB macro
definition if it is provided at program execution by the DCB operand on the
appropriate job control language data definition card.

Note: The length of any optional fields (see the OPTCD operand
discussion) in the work area should be included in the value specified for
this operand.

Function: Specifies the length in bytes of the buffers in the TCAM MCP
that are to receive messages from this application program.

Format: A decimal integer equal to or greater than the value of the
UNITSIZE operand on the MCP INTRO macro.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-19

DDNAME=symbol

DSORG=PS

EXLST=address

Default: None. Specification of this operand is optional.

Alternate Source: The value for this operand can be omitted from this DCB
macro definition if it is provided by the DCB operand on the appropriate job
control language data definition card.

Note: If this operand is omitted here, the value specified in the BUFSIZE
operand of the PCB macro in the MCP is used. Caution should be exercised
when using this operand because the value specified here overrides the
value specified in the MCP.

Function: Specifies the symbolic label of the job control language data
definition statement associated with this data control block.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must be the same as the
label specified on the DD card that defines this DCB to the operating
system.

Default: None. Specification of this operand is required.

Alternate Source: The value for this operand may be provided any time
before this DCB is opened. See the DCB discussion in Chapter 2 for details
on how this value may be specified.

Note: If this operand is omitted here, it must be specified from an alternate
source.

Function: Specifies that the data set organization of the output data set
controlled by this DCB is physical sequential.

Format: PS

Default: None, Specification of this operand is required.

Alternate Source: None. This operand must be specified in the application
program.

Note: This operand allows your TCAM program to achieve compatibility
with either QSAM (GET/PUT) or BSAM (READ/WRITE).

Function: Specifies the symbolic address of a list of exit routines.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must conform to the rules
for assembler language symbols.

Default: None. Specification of this operand is optional.

5-20 TeAM Application Programming

LRECL=integer

Alternate Source: The value for this operand may be provided any time
before the DCB created by this macro is opened. (See the DCB discussion
in Chapter 2.)

Note: You are responsible for coding all of the routines addressed by this
list. The list must start on a full word boundary; its format and contents are
shown in the Data Management Services manual. Each entry in the list
must be a fullword made up of a control byte, followed by a three-byte
address of a user-written routine.

Only two entries in the list (those having control bytes of X'05' and X'OF')
are meaningful for a TCAM output DCB. If the control byte is X'05', a DCB
exit is taken. (See the Data Management Services manual for details.)

If the control byte is X 'OF', the routine is given control to initiate an MVS
checkpoint of the application program. (See the section on coordinating
MVS and TCAM checkpoints in Chapter 4.)

Upon entry to any of the routines specified by this exit list, the contents of
registers 0 and 2 through 13 are the same as they were just before the PUT
or CHECK macro was executed. Register 1 contains the address of the
DCB created by this macro, and register 14 contains the return address for
the application program. Your routine must save and restore the contents
of registers 1 and 14. The contents of the user-defined save area must not
be altered.

Function: Specifies the length (in bytes) of a work unit, or the length of a
single logical record in your input data set plus all of the optional fields
you have specified by the OPTCD operand on this macro.

Format: A decimal integer no larger than the APW AS operand specified on
the INTRO macro.

Default: None. If RECFM = F is specified on this DCB, this operand is
required. Otherwise, specification is optional.

Alternate Source: The value for this operand can be omitted from this DCB
macro definition if it is provided by the DCB operand on the appropriate job
control language data definition card.

Note: If RECFM = U is specified on this DCB, after each GET or READ
macro the LRECL operand field in the data control block created by
this macro is updated with the number of bytes of data that have been
fetched. This total would include the record length, plus the length of
all the optional fields preceding the record. (See the OPTCD operand
of this macro.) This may be done with a DCBD macro as described in
the Data Management Macro Instructions manual.

If you specify RECFM = U on this DCB and also code a value for the
LRECL operand, the value specified by the length operand of the
WRITE macro overrides the value specified here in the LRECL
operand.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-21

MACRF={PL}
{PM}
{W }

OPTCD=

Function: Specifies the MVS access method by which messages are to be
transferred from your application program to the TCAM destination queue.

Format:. PL, PM, or W.

Default: None. Specification of this operand is required.

Alternate Source: None. This operand must be specified in the application
program.

Note: P specifies that your messages are to be transferred by QSAM PUT
macros. W specifies that the messages are to be transferred by BSAM
WRITE macros.

PUT may be specified in move (M) mode or locate (L) mode.

If locate (L) mode is specified for PUT, TCAM dynamically obtains a
work area by issuing a GETMAIN macro instruction. When the first
PUT macro in your program is executed, TCAM returns the address
of the acquired work area to your program in register 1. The record is
not actually written out in the data set until the next PUT macro
instruction is issued. (See the section on "Dynamic Work-Area
Definition" in Chapter 3.)

Function: Specifies the type(s) of optional TCAM control field(s) that you
require in the program work area of your application program.

Format: W, WU, WC, WUC, U, UC, or C. (You may choose any
combination of fields.)

Default: None. Specification of this operand is optional unless you require
one or more optional fields in your work area because of other operand
specifications.

Alternate Source: The value for this operand can be omitted from this DCB
macro definition and provided by the DCB operand on the appropriate job
control language data definition card.

Note: W specifies that you wish an eight-byte field called the destination
field to be allocated immediately preceding the work unit. A
destination field allows you to insert the symbolic name of the
destination in each message your program generates. You must place
the message destination name in EBCDIC, in the destination field,
left-justified and padded on the right with blanks.

U specifies that the work unit is a message. If U is omitted, the work
unit is assumed to be a record.

5-22 TeAM Application Programming

RECFM={F }
{V }

{VB}

CQ }

C specifies that you want a one-byte control field called the position
field to be included in the working area. This field will be used to
indicate whether the work unit being handled is the first segment, an
intermediate segment, or the last segment of a message. When you
load a work unit into the work area for output, you must also fill the
position field with the appropriate byte depending on the contents of
the work area. The control bytes that you can specify are:

Control Byte
X'40'

Work Area Contents
Intermediate portion of message
First portion of message X'FI'

X'F2' Last portion of message
X'F3' An entire message

Function: Specifies the format characteristics of the work units that will be
sent to the output data set defined by this DCB.

Format: F, V, VB, or U.

Default: RECFM = U

Alternate Source: The value for this operand can be omitted from this DCB
macro definition if it is provided by the DCB operand on the appropriate job
control language data definition card.

Note: F specifies fixed-length work units. Prior to issuing a PUT or
WRITE macro, the length of the work unit, plus the length of any
optional fields in the work area, must have been placed in the LRECL
field of the associated output data control block.

V specifies that the work units are to be variable length. For both
BSAM-compatible and QSAM-compatible requests, each work unit
loaded into the work area must be prefaced by a standard SAM-prefix
option field of four bytes. The length of the work unit must be
provided by the setting of the prefix before issuing a PUT or WRITE
macro.

VB specifies that the variable-length records should be treated as
blocked by TCAM, although only one work unit is transferred to the
MCP by each PUT or WRITE macro. The variable-length record
work area includes a SAM-prefix of eight bytes if a MACRF= W is
specified, and four bytes if otherwise.

U specifies undefined-length work units. TCAM requires no
work-area prefix in this case. The sum of the length of the work unit,
plus the length of any optional fields in the work area, must be placed
in the LRECLfield of the DCB created by this macro prior to each
PUT or WRITE macro, unless it is specified by the length operand of
the WRITE macro.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-23

SYNAD=address

Return Codes

Function: Specifies the symbolic address of a routine that is to be given
control if a logical output error occurs.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must conform to the rules
for assembler language symbols and be the same as the symbolic name
specified on your SYNAD routine.

Default: None. Specification of this operand is optional.

Alternate Source: The value for this operand may be provided any time
before this DCB is opened. (See the DCB discussion in Chapter 2.)

Note: You are responsible for coding the SYNAD routine. For more
information on SYNAD routines, see the SYNAD discussion in Chapter 2.

None.

DKJFND Macro

symbol

The DKJFND macro:

•. Provides the TCAM application program with a dummy section
(DSECT) containing the TCAM fixed header prefix fields; you can
symbolically reference these fields when the DSECT is present.

• May be coded once in an application program.

After you have established addressability for the generated DSECT, you
may reference any symbolic FHP field name.

The format of the DSECT generated by the DKJHFD macro is given in the
TeAM Program Reference Summary.

In addition to the FHP DSECT, the DKJHFD macro may also generate a
DSECT for the buffer prefix. Unlike the FHP, however, the buffer prefix is
not passed in a message to the application program.

Name Operation Operands
[symbol] DKJFND [TCAM={YES} 1

{NO }

Function: Specifies the name of the macro.

Format: Must conform to the rules for assembler language symbols.

Default: None. Specification optional.

5-24 TeAM Application Programming

J

J

TCAM={YES}
{NO }

GET Macro

symbol

areaname

Function: Specifies whether the DSECT should contain the names of the
fields in the TCAM buffer prefix.

Format: YES or NO

Default: TCAM = YES.

Note: NO should be used in an application program because the buffer
prefix is not passed in the application program work area.

If NO is used, only the FHP fields are generated and the macro must be
preceded immediately by the following assembler instruction:

symbol DSECT

The GET macro:

• Obtains work units from the MCP for processing
• May be coded more than once in an application program

Refer to Chapter 3.

Name Operation Operands
[symbol] GET deb name [,areaname]

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies a symbolic address of an application-program work area
into which you wish the work unit to be placed.

Format: Must be identical to the label of your application-program work
area. Register notation may be used.

Default: None. If move mode (GM or GMT) is specified in the MACRF
operand of the input DCB macro associated with this GET, this operand is
required. Otherwise, specification is optional.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-25

dcbname

Return Codes

Note: If register notation is used, the register number must be enclosed in
parentheses and the address of the work area must have been
previously loaded into the register. Permissible registers are 1
through 12.

This operand may be omitted if MACRF= GL or GLT was specified in
the input DCB macro. In this case, TCAM dynamically obtains a
work area from pageable main storage by issuing a GETMAIN macro
instruction when the input DCB is opened. After the first GET macro
is issued, TCAM returns the address of the work area in register 1.
TCAM transmits work units to your program in this same work area
until the DCB is closed.

Function: Specifies the symbolic address of the input data control block
associated with the process queue from which this instruction is to obtain
work units.

Format: Must be identical to the label of the DCB macro defining the data
set you wish to refer to. Register notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number (1 through 12) must
be enclosed in parentheses, and the address of the data control block must
have been previously loaded into the register.

One of the following return codes will be passed to your program in register
15 after a GET macro executes:

Code Meaning

X '00000000' Normal completion; data is in work area.

X '00000004 , A SETEOF was executed in the MCP (no data in work area).
A closedown is in progress; an EODAD exit was not taken.

X '00000008' The work area overflowed; a SYNAD exit was not taken.

X 'OOOOOOOC , A message was not found or a message was incomplete after
a POINT/GET macro was executed (Retrieve mode).

X'00000010' The block size is zero or invalid (larger than the value
specified on the APW AS operand of the INTRO macro) or
LRECL = 0 and RECFM = F was specified.

X'00000080' The GET macro cannot execute because the MCP is not
active.

5-26 TeAM Application Programming

J

L

MCOUNT Macro

symbol

DCB=dcbname

The MCOUNT macro:

• Returns, in register 1, the number of complete messages on the input
queue

• Can be issued in an application program before a GET or READ macro
to determine how many messages are queued for the application
program.

Refer to Chapter 4 for details on using the MCOUNT macro.

Name Operation Operands
[symbol] MCOUNT DCB=dcbnarne

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the data control block that defines
the message queue whose messages you wish to count.

Format: Must be identical to the label specified on the DCB macro that
controls the process queue for which you wish to count messages. Register
notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, any of general registers 2 through 12 may
be used. The register must be loaded with the address of the DeB.
The specified register number must be enclosed in parentheses.

If dcbname defines an output data control block, a count of zero is put
in register 1 by TeAM.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-27

Return Codes

Code

X '00000000'

X '00000004 ,

Meaning

MCOUNT executed successfully.

MCOUNT did not execute because TCAM is not in the
system.

X '00000008' MCOUNT did not execute because the specified DCB does
not define a data set for TCAM messages.

X'OOOOOOOC' MCOUNT did not execute because dcbname named an
output DCB.

MCPCLOSE Macro

symbol

{QUICK}
{FLUSH}

The MCPCLOSE macro:

• Initiates closedown of TCAM
• Is optional in an application program.

MCPCLOSE may be issued in an application program to initiate TCAM
closedown. For successful execution of MCPCLOSE, the issuing
application program must meet one of the following conditions:

• Application program has an open TCAM DCB.
• Attacher of the application program has an open TCAM DCB.
• Refer to Chapter 2 for stopping the MCPCLOSE macro.

Name Operation Operands
[symbol] MCPCLOSE {QUICK}

{FLUSH}
[{,PASSWRD=chars}]

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the type of MCP closedown that you wish to occur (see
Notes).

Format: QUICK or FLUSH

5-28 TeAM Application Programming

PASSWRD=chars

Return Codes

Default: FLUSH

Note: QUICK specifies that message traffic is to cease upon completion of
the reception or transmission by the MCP of any message currently in
progress. Messages queued for destinations are not transmitted unless
the MCP is subsequently restarted (warm start).

FLUSH specifies that input message traffic to TCAM is to cease
immediately. The network will be closed down after completion of
processing of all messages currently in the MCP. All messages
completely queued for the destinations are transmitted, but messages
in a middle-of-message condition are not completed or transmitted.

Function: Specifies the TCAM protection password that enables only
qualified application programs to issue this macro.

Format: One to eight non blank characters conforming to the rules for
assembler language symbols. chars must be identical to the value coded on
the PASSWRD operand of the INTRO macro in the MCP.

Default: None. If the PASSWRD operand is specified on the INTRO macro
in the MCP, this operand is required. Otherwise, this operand should not
be specified.

One of the following return codes will be passed back to your program in
register 15 after the MCPCLOSE macro executes:

Code Meaning

X'OOOOOOOO' MCPCLOSE executed successfully.

X'OOOOOOOC' MCPCLOSE did not execute because either TCAM is not in
the system, or because the application program did not meet
one of the two conditions listed at the beginning of the
discussion of the MCPCLOSE macro.

X '00000014' MCPCLOSE did not execute because either an invalid
protection password is specified in the PASSWRD operand,
or the P ASSWRD operand is not specified and should be
because a password was specified on the INTRO macro in
the MCP.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-29

MRELEASE Macro

symbol

PASSWRD=chars

statname

The MRELEASE macro:

• Releases messages queued for a destination
• Reactivates a destination made inactive by a HOLD macro or an

Intercept a Station operator command.

Name Operation Operands
[symbol] MRELEASE statname

[,PASSWRD=chars

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function Specifies the specific protection password that enables only
qualified application programs to issue this macro.

Format: One to eight nonblank characters conforming to the rules for
assembler language symbols. chars must be identical to the value coded on
the PASSWRD operand of the INTRO macro in the MCP.

Default: None. If the PASSWRD operand is specified on the INTRO macro
in the MCP, this operand is required. Otherwise, this operand should not
be specified.

Function: Specifies the symbolic name of the program or external LU for
which you wish to release all the queued messages.

Format: Must be the same as the symbolic name of the external LU entry in
the terminal-name table related to this external LU or program. Register
notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the address of the symbolic name of the
program or external LU must be placed in a general register. The name
must be left-justified and padded with blanks to the length of eight bytes.
Any of these registers 2 through 12 may be used. The register number must
be enclosed in parentheses.

5-30 TeAM Application Programming

J

Return Codes

OPEN Macro

One of the following return codes will be passed back to your program in
register 15 after the MRELEASE macro executes:

Code

x '00000000'

X '00000004'

Meaning

MRELEASE executed successfully.

MRELEASE did not execute because the external LU or
program is already receiving its queued messages.

MRELEASE did not execute because either the protection
password specified in the PASSWRD operand does not
match the protection password specified by the PASSWRD
operand of the INTRO macro, or a protection password is
not specified and it must be because password protection is
specified in the MCP. Code the PASSWRD operand value
exactly as it is coded in the PASSWRD operand of the
INTRO macro in the MCP.

MRELEASE did not execute because statname is not a
single entry in the terminal table, there is no HOLD macro
coded in the MCP, or the external LU specified uses
main-storage-only message queues.

X'OOOOOOOC' MRELEASE did not execute because TCAM is not in the
system or (in a system which allows multiple TCAMs) there
is no open DCB in your application program.

X '00000020' MRELEASE did not execute because an invalid external LU
or program is specified in the statname field.

The OPEN macro for the application program:

• Completes initialization and activation of the input and output data sets
for the application program

• Is required to activate each data set represented by an input or output
DCB macro

• Tests for proper authorization.

Refer to Chapter 2 for details on the OPEN macro.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-31

symbol

(dcbname, , ...)

MF={L
{(g,listname) }

Name Operation Operands
[symbol] OPEN (dcbname" ...)

MF={L }
{CJ;; . ..Llistname) }

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. If MF = L is coded as an operand of this macro, this label is
required. Otherwise, specification is optional.

Note: If MF = L is specified on this macro, this label becomes the name of
the parameter list generated by this macro. This label must be specified as
listname in a corresponding MF = E form of this macro.

Function: Specifies the symbolic names of all the data control blocks that
you wish to be opened with this instruction. The ellipsis indicates that you
may specify multiple dcbname parameters.

Format: Each dcbname must be identical to the symbolic name of the DCB
that controls each of the data sets being opened. Register notation may be
used.

Default: None. Specification of this operand is required except when a list
name is specified in the execute form of this macro.

Note: If register notation is used, the specified register should contain the
symbolic name of the data control block for the data set being opened. Any
of the registers 2 through 12 may be used. The register number must be
enclosed in parentheses. If multiple dcbname parameters are specified, they
must be separated by double commas. For example, for three dcbnames, you
would code (DCBA"DCBB"DCBC) and for register notation, you would
code «3),,(4),,(5».

Function: Specifies whether this instruction is to be an executable
instruction (MF = E), or a list instruction (MF = L) that must be referred to
by another OPEN macro instruction. See Data Management Macro
Instructions for a discussion on the list and execute forms.

Format: L or (E,listname), where listname must conform to the rules for
assembler language symbols.

Default: MF = E

5-32 TeAM Application Programming

J

Return Codes

POINT Macro

symbol

address

Note: MF = L allows you to create a parameter list. No executable code is
generated. You must specify this form of the OPEN macro among your
program constants. The parameters in the list are not used until the
application program issues an OPEN macro with an MF = (E, listname)
operand that refers to the list. The label specified in the name field of the
list form of OPEN becomes the name assigned to the parameter list. This
label must be coded as the listname value for an execute form of the
instruction.

MF = (E,listname) executes the OPEN routine, using the parameter list
referred to by listname. Any parameters specified in a macro having the
MF = (E,listname) operand override corresponding parameters in the list.

None.

The POINT macro:

• Permits message identification, causing the next GET or READ macro
to retrieve the desired messages, (i.e. messages destined for the terminal
or TPROCESS entry or messages for which the terminal or TPROCESS
entry is a source).

Refer to Chapter 3 for details on the POINT macro.

Name Operation Operands
[symbol] POINT dcbname

,address

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic address of a field in your program that
contains control information necessary for the execution of this macro. See
Notes.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must conform to the rules
for assembler language symbols. Register notation may be used.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-33

dcbname

Default: None. Specification of this operand is required.

Note: address is the symbolic address of an eleven-byte block in your
program containing three fields:

• The first is an eight-byte field containing the external LU name,
left-justified and padded with character blanks (X'40'). This field must
be initialized with a valid external LU name or name of a TPROCESS
entry. The retrieval function (GET or READ) then retrieves messages
from this external LU's destination queue or the queue associated with
the TPROCESS entry.

• The next byte contains a character which identifies the type of retrieval
desired. I (X'C9') for retrieval by input sequence numbers. S (X'E2') for
retrieval by output sequence numbers of sent (serviced) messages, (MVS
only). 0 (X'D6') for retrieval by output sequence numbers of both sent
and unsent messages. (X'40') to request termination of the retrieval
function.

• The last is a two-byte message sequence number, specified in binary and
right-justified with leading zeros. If multiple retrieval is desired, the first
byte must be X'80'. The sequence number is the number of the message
that message retrieval starts with.

If register notation is used, the address of this area must have been previously
loaded into one of the registers 2 through 12. The register number must be
enclosed in parentheses.

Function: Specifies the label of the data control block in your application
program that defines the logical data set to which you will issue a
subsequent GET or READ macro associated with this POINT macro.

Format: Must be identical with the label of the data control block that
controls the data set that you wish to access. Register notation may be
used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the address of the data control block
must have been previously loaded into one of the general registers 2
through 12. The register number must be enclosed in parentheses.

5-34 TeAM Application Programming

Return Codes

Registers that may be altered during execution of the POINT macro are 0,
1, 14, and 15. One of the following return codes is passed back to your
application program in register 15 after the POINT macro executes:

Code

X'OOOOOOOO'

X'00000004'

X '00000008'

Meaning

POINT executed successfully.

POINT did not execute because the message sequence
number specified is invalid for this queue. This return code
is only returned when the specified sequence number is o.
For more information, see the explanation of completion
code X'50000000' in the description of the CHECK macro.

POINT did not execute because the destination name
specified is not a valid entry in the terminal-name table.

X'OOOOOOOC' POINT did not execute because either:

X'OOOOOOIO'

X'00000014,

• The specified destination queue is not located in a data
set residing on disk

• You tried to specify an input process entry as the
message source (that is, you specified I in conjunction
with the name of a GET process entry)

• You tried to specify an output process entry as the
message destination (that is, you specified 0 in
conjunction with the name of a PUT process entry)

• DISK = NO was specified on the INTRO macro
instruction in the MCP

POINT request to terminate a retrieval did not execute
because a retrieval operation was not in progress.

POINT did not execute because the POINT parameter list
was altered while a multiple retrieval operation was in
progress. For example, an attempt to start a retrieval
operation was made while a retrieval operation was in
progress.

Programmer Response: The original retrieval operation
must be ended. Issuing a GET after receiving this return
code will have unpredictable results. Retrieval may be
ended by issuing a POINT blank followed by a GET or by
closing and reopening the DCB.

Chapter 5. TeAM Application Programmer's Macro Reference Guide 5-35

PUT Macro

symbol

areaname

The PUT macro:

• Returns work units to the MCP after processing
• May be specified more than once in an application program

Refer to Chapter 3 for details on the PUT macro.

Name Operation Operands
[symbol] PUT dcbname

[, areaname]

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic address of a work area in your program
from which you wish a work unit to be transmitted.

Format: Must be identical to the symbolic name specified for your
application-program work area. Register notation may be used.

Default: None. If move mode (MACRF = PM) is specified on the output
DCB macro specified by the deb name operand of this macro, this operand is
required. Otherwise, specification is optional.

Note: If register notation is used, the register number must be enclosed
within parentheses and the address of the work area must have been
previously loaded into that register. Anyone of the general registers 0
or 2 through 12 may be used.

If MA CRF = PL is specified on the referenced DCB macro, this
operand should be omitted. In this case, the address of a work area
into which your program must place the work unit for it to be
transferred to the MCP is returned in register 1 by the first PUT
macro referring to this DCB. The first PUT macro does not transfer
any data; it only provides the address of a work area in your area of
addressability. The second and all subsequent PUT macros will
cause transfer of data from the address specified after the first PUT
macro. You are therefore responsible for loading the work unit that
you wish transferred into that work area. For more information on
locate mode, see" Dynamic Work Area Definition" in Chapter 3.

5-36 TeAM Application Programming

dcbname

Return Codes

L

Function: Specifies the label of the data control block for the output data
set to which you wish to transmit an application program work unit.

Format: Must be identical to the label of the output DCB controlling the
data set you wish to transmit a work unit to.

Default: None. Specification of this operand is required.

Note: The QNAME operand of the job control language DD statement for
this DCB names a process entry in a terminal table in TCAM that is coded
especially to receive messages from this application program.

Do not try to execute a PUT or WRI'.i.'E macro in an application program if
a PUT or WRITE macro is currently executing and indirectly referring to
(by the TPROCESS entry) the same process control block (PCB). This
condition could occur if two subtasks of the same application program with
a single PCB tried to execute a PUT or WRITE macro. If for some reason
the MCP must wait before the first operation can be completely processed,
the second subtask of the same application program could gain control and
try to execute a PUT or WRITE macro. As a rule, the MCP would be
forced to wait only if there was a buffer shortage or if the message being
processed was an operator control message that required a long time to
process.

To guard against this condition, TCAM returns an indication. If an
attempt is made to execute a PUT macro, TCAM will return an error
indication X'10' in register 15. For a WRITE macro, the DECB will contain
a completion code of X'5COOOOOO'. Unlike other PUT/WRITE errors, the
user is not required to close down the DeB affected.

If more than one subtask in the same application program includes PUT or
WRITE macros, the possibility of this type of error can be eliminated by use
of the ENQ and DEQ macros. ENQ can be coded before each PUT or
WRITE, and DEQ can be coded after each PUT or WRITE macro. The
resource must be a name that symbolizes the PCB.

If register notation is used, the register number specified must be enclosed
in parentheses, and the address of the data control block must have been
loaded previously into a register (1 through 12).

One of the following return codes will be passed back to your application
program register 15 after the PUT macro executes:

Code

X'OOOOOOOO'

X '00000004'

Meaning

PUT executed successfully.

PUT cannot execute because a quick closedown of the MCP
has begun.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-37

QCOPY Macro

X '00000008 , PUT cannot execute because the position-code field
preceding the work unit contains an invalid or
out-of-sequence value.

X'OOOOOOOC' PUT cannot execute because the destination field contains a
name that is not a valid entry in the terminal-name table.

X '00000010'

X'00000014'

PUT cannot execute because TCAM has no buffers available
due to heavy message traffic.

PUT cannot execute because simultaneous PUTS were
issued against the same PCB. A PUT should be reissued.

PUT cannot execute because an invalid BLKSIZE operand
was specified on the output DCB macro. The DCB macro
BLKSIZE operand value was greater than the INTRO macro
APWAS operand value. The BLKSIZE operand value must
be equal to or greater than the work unit length, and less
than or equal to 32,760.

Note: When a PUT or WRITE/CHECK is issued, with the destination's
name in the work area, TCAM verifies that the named destination is in the
terminal-name table. Verification that the named destination is capable of
receiving data is not done until the message passes through the INHDR (in
header) subgroup of the AMH (application program message handler) in the
TCAM MCP. Therefore, if the name exists in the terminal name table, a
return code will be received on the PUT or CHECK macros even though
the message cannot go to the named destination. The AMH must check the
return code from its FORWARD macro to ensure that the destination is
valid. This return code will be non-zero if the named external LU is not
capable of receiving output from TCAM.

The QCOPY macro:

• When LIMIT is specified, displays an external L U QCB
• Displays all QCBs for external LUs having some threshold number of

messages queued when LIMIT is specified
• Is optional in a TeAM application program

Refer to Chapter 4 for details on QCOPY macro.

Name Operation Operands
[symbol] QCOPY terrnnarne

,areanarne
[,LIMIT= {integer }]

{(register)}

5-38 TeAM Application Programming

symbol

areaname

LIMIT={integer
{ (register) }

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the application-program work area
into which you wish the contents of the designated QCB to be placed.

Format: Must be identical to the symbolic name that you have specified for
the work area you wish to copy the QCB into. Register notation may be
used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed in
parentheses and the register must have been previously loaded with the
address of the work area. Permissible registers are 2 through 12.

Function: Allows you to specify a minimum number of messages that must
be queued for this termname before TCAM will select the entry for copying.

Format: A decima 1 integer with a minimum value of 1 and a maximum of
4095. Register notation may be used.

Default: None. Specification of this operand is optional.

Note: If register notation is used, the register number must be enclosed
within parentheses. The limit that you wish to specify must have been
loaded into the register in binary. Registers 2 through 12 may be used. If
this operand is not coded, the QCOPY macro will copy the QCB for the
designated external LU name. If this operand is coded, and some number of
messages less than that specified on this operand is actually on the queue,
TCAM will increment through the terminal-name table for an external LU
name subsequent to the one specified in termname with at least the LIMIT
number of messages in its queue. The name of this external LU will be
returned by TCAM to the termname field and its QCB will be copied.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-39

termname

Return Codes

Function: Specifies the symbolic name of the terminal-name table entry
whose QCB is to be displayed, or the name of the terminal-name table entry
you wish to start with.

Format: Must be identical to the symbolic name of the TERMINAL macro
that defines the terminal-name entry for the queue control block you wish
to copy. Register notation may be used.

Default: None. Specification of this operand is required.

Note: The name must be left justified and padded with blanks to the length
of the longest external LU name in the table. If register notation is used,
the register number must be enclosed within parentheses, and the register
must contain the address of a field containing the name of the entry.
Permissible registers are 2 through 12.

One of the following return codes is passed back to your program in
register 15 after the QCOPY macro executes:

Code

X '00000000'

X '00000004 ,

Meaning

QCOPY executed successfully.

QCOPY did not execute because the resources named by
termname does not have a QCB.

X'OOOOOOOS' QCOPY did not execute because TCAM is not in the system
or in a system which allows multiple TCAMs. There is no
open DCB in your application program.

X 'OOOOOOOC , QCOPY did not execute because no TCAM application
program DCB was open; at least one input or output DCB
must be open for this macro to execute.

X'OOOOOOIS' QCOPY did not execute because the interface work area is
too small.

X'00000020' QCOPY did not execute because the resources named by
termname were not found in the terminal name table.

QRESET Macro

The QRESET macro:

• Resends messages to an output device whose message queue resides on
reusable or nonreusable disk

• May alter registers 0, 1, 2, and 15 during the execution of the QRESET
function routines.

5-40 TeAM Application Programming

J

symbol

dcbname

MAX=integer

L

Name Operation Operands
[symbol] QRESET dcbname

,MAX=integer

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the name of some opened DCB in the application
program except the DCB for the queue you wish to reset.

Format: Must be identical with the name of a DCB that is defined in the
application program. Register notation may be used.

Default: None. Specification of this operand is required.

Note: If you are attempting to reset an application-program queue, the DeB
for that particular queue must be closed when the QRESET macro
executes. Since at least one DeB in the program must be open for the
QRESET macro to execute, one of the other DeBs in the program will
have to be open. If register notation is used, the address of the DeB
must have been previously loaded in one of the registers 3 through 12.
The register number must be coded with parentheses.

Byte

0-7

8-9

The name of the queue you wish to be reset must be specified in the
following format. The address of this ten-byte field must be loaded
into register 2 before the QRESET macro executes.

Format

Character
(left-j ustified) and
padded with blanks)

Hexadecimal

Contents

Queue name as specified on the
DCB defining that queue.

Sequence number-maximum
value is decimal or 9999 (hex
270F).

Function: Allows you to specify the maximum number of messages that you
wish to be re-sent from the queue specified in the ten-byte control field
referred to by register 2. (See the QRESET macro discussion in Chapter 3).

Format: A decimal value greater than zero and less than or equal to 25.
The number must be equal to or greater than the difference between the

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-41

Return Codes

current SEQOUT number and the QRESET sequence number. If more than
25 messages are to be reset then the QRESET macro may be reissued,
provided a return code of zero was received on the previous request.

Default: None. Specification of this operand is required.

One of the following return codes is passed back to your program in
register 15 after the QRESET macro executes:

Code Meaning

X '00000000 , QRESET has executed successfully. The terminal sequence
out field is the last message reset.

X '00000004' QRESET has been unable to mark some of the range of
output sequence numbers as unserviced. Register 2 contains
the count of messages successfully processed by QRESET.
The terminal sequence out field is the last message reset.

X '00000008 , Reusable disk reorganization is in progress. Register 2
contains the count of messages successfully processed by
QRESET prior to the start of reorganization.

X'OOOOOOOC' QRESET did not execute because the requested output
sequence number is invalid for one of the following reasons:

X'OOOOOOlO'

X '00000014 ,

X'00000018'

• It is higher than the last sequence number received at
the specified output device

• The specified maximum value is less than the difference
between the current SEQOUT number and the QRESET
sequence number

• It is zero
• It is not marked serviced.

QRESET cannot be issued from this application program
because QBACK = YES was not specified on the TPROCESS
macro, or this request was for an open application program
DCB. The APW AS operand of the INTRO macro does not
specify 440 or greater.

QRESET did not execute because either the specified output
device or the process entry name is invalid, or the device is
currently being held (intercepted).

QRESET did not execute because either an error condition
regarding the type of queuing has been detected, or there
are no messages queued for the specified external LU.

5-42 TeAM Application Programming

J

READ Macro

symbol

areanarne

X'OOOOOOlC' The queue reset function has been prematurely terminated
because one of the requested headers may not be available
due to reusable disk reorganization. Any complete messages
found up to this point have been marked unserviced, but will
not be scheduled to be re-sent.

The READ macro:

• Requests TCAM to transfer a work unit from the MCP to a designated
work area in the application program

• May be coded more than once in an application program.

Name Operation Operands
[symbol] READ decbnarne

,SF
,dcbnarne
,area
{,length}
{ I S I }
[MF={L }]

{ (~, listnarne)}

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the work in your program into
which the incoming work unit is to be placed.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must also conform to the
rules for assembler language symbols. Register notation may be used.

Default: None. Specification of this operand is required.

Note: The work area must be aligned on a full word boundary and must be
large enough to hold the largest work unit your program expects. If
register notation is used, the address of the work area must have been
previously loaded into a register, and the register number must be enclosed
within parentheses. You may use any on the general registers 2 through
12.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-43

dcbname

decbname

{length}
{ J S ' }

MF={L }
{(~, listname) }

Function: Specifies the label of the data control block defining the input
data set from which this READ macro will acquire a work unit.

Format: Must be identical to the name specified as the label of the DCB
macro for the data set being read. Register notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the address of the data control block
must have been previously loaded into one of the general registers 2
through 12, and the register number must be enclosed within parentheses.

Function: Specifies a symbolic name to be assigned to the data event
control block (DECB) created as part of this macro expansion. This symbol
will be referred to by the CHECK macro.

Format: An arbitrarily assigned character sequence of up to eight
characters that i.s unique within this program. It must also conform to the
rules for assembler language symbols.

Default: None. Specification of this operand is required.

Function: Specifies the length in bytes of the work unit, plus any optional
fields, that are to be read into the work area.

Format: A decimal integer equal to 32,760 or no larger than APW AS
operand specified on the INTRO macro.

Default: None. Specification of this operand is required only if
RECFM = U is coded on the DCB associated with this READ macro.

Note: This operand should only be coded for undefined-length
(RECFM = U) work units; it is ignored for fixed-length (RECFM = F) and
variable-length (RECFM = V) work units. If'S' is coded, and an
undefined-length work unit is to be processed, the number of bytes to be
read is taken from the LRECL operand of the data control block specified
by dcbname. Note that S is enclosed within single quotes.

Function: Specifies whether this instruction is to be an executable
instruction (MF = E), or a list instruction (MF = L) that must be referred to
by another READ macro instruction. See the Data Management
Instructions manual for a discussion of the list and execute forms.

Format: L or (E, listname) where listname is any arbitrarily assigned
character sequence of up to eight characters that occurs as the label of

5-44 TeAM Application Programming

J

J

SF

Return Codes

another READ macro in this program. The other READ macro must define
a list format (MF = L) macro.

Default: MF = E

Note: MF= L creates a parameter list based on the other READ macro's
operands. No executable code is generated. You must specify the list
form of this READ macro among your program constants. The
parameters in the list are not used until the application program
issues a READ macro with an MF= (E, listname) operand that refers
to the list. The label specified in the name field of the list form
becomes the name assigned to the parameter list.

MF = (E, listname) executes the READ macro, using the parameter list
referred to by listname. This list was created by a macro having the
MF = L operand specified. Parameters specified in a macro having the
MF = (E, listname) operand, override corresponding parameters in the
list form of the macro.

Function: This operand establishes BSAM compatibility. It also specifies
that any data set being read will be read sequentially.

Format: SF

Default: None. Specification of this operand is required.

No return codes are returned in register 15. Completion codes from
execution of the READ macro are placed in the event control block of the
DECB for this macro. (See the preceding CHECK macro discussion in this
chapter.)

TCBINCNV Macro

The TCBINCNV macro instruction:

• Converts a halfword binary number to the equivalent printable decimal
value expressed as a 5-byte EBCDIC number with leading zeros (if any)
replaced by the EBCDIC blank character (X'40')

• Converts a halfword binary number to the equivalent hexadecimal value
expressed as a 4-byte EBCDIC field

• Converts an EBCDIC decimal number (up to 5 bytes long) to the
equivalent halfword binary number.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-45

symbol

CONVTO={DEC}
{HEX}
{BIN}

INPUT= { (reg) }
{name }

Name Operation Operands
[symbol) TCBINCV CONVTO= [DEC}

[HEX }
[BIN }

,INPUT= [(reg)}
[name }

,OUTPUT= [(reg) }
[name }

Function: Name of the macro.

Format: Must conform to the rules for assembler language symbols.

Default: None. Specification optional

Function: Specifies type of conversion to be performed.

Format: DEC, HEX, or BIN

Default: CONVTO = DEC

Note: DEC converts a halfword binary number to the equivalent decimal
value expressed as a 5-byte EBCDIC number, with any leading zeros
replaced by EBCDIC blank characters (X'40'), in the output area
specified by the user.

HEX converts a halfword binary number to the equivalent
hexadecimal value expressed as a 4-byte EBCDIC field in the output
area specified by the user.

BIN converts an EBCDIC decimal numeric field to the equivalent
halfword binary number.

Function: Provides the address of the field containing the input value.

Format: (reg) is a general register, 2 through 12, containing, if
CONVTO = DEC or HEX, the address of the halfword-aligned area for
binary input or, if CONVTO = BIN, an address pointer to the first EBCDIC
decimal character of an input string to be converted from decimal to binary.

reg must be enclosed in parenthesis and can be specified as an explicit
decimal integer from 2 through 12, or a symbol that has previously been
equated to a decimal value from 2 through 12.

name is the name of a halfword-aligned area for binary input (if
CONVTO = DEC or HEX) or the name of an area containing the first
character ofthe LEBCDIC decimal number (if CONVTO = BIN).

5-46 TeAM Application Programming

OUTPUT=((reg)}
[name }

Return Codes

Default: None. Specification required

Note: If CONVTO = BIN, the input decimal number to be converted is
considered to be delimited by the first non-numeric character found, or by a
maximum of 5 characters, whichever occurs first.

Function: Provides the address of an area that will contain the converted
value.

Format: (reg) is a general register 2 through 12, containing the beginning
address of the area where the converted output is to be placed. (reg) must
be enclosed in parentheses and can be specified as an explicit decimal
integer from 2 through 12. It is the user's responsibility to assign this
operand a value that falls within the prescribed limits. name for binary to
decimal conversion is the name of a field 5 bytes long.

name for binary to hex conversion is the name of a field 4 bytes long. name
for a decimal to binary conversion is the name of a halfword-aligned area.

Default: None. Specification required.

None.

TCHNG Macro

The TCHNG macro:

• Places specified data in a terminal-table entry and its associated option
fields

• Is optional in a TCAM application program.

Refer to Chapter 4 for details on TCHNG macro.

Name Operation Operands
[symbol] TCHNG termname

,areaname
[, PASSWRD=chars]

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-47

symbol

areanarne

PASSWRD=chars

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the work area in your program
from which TCAM is to obtain the information to move into the terminal
table.

Format: Must be identical to the symbolic name that you specified for the
work area. Register notation may be used.

Default: None. Specification of this operand is required.

Note: The first byte of data in the work area must be the terminal table list
status byte. The work area should be at least as long as the longest
terminal-table entry that will ever be changed. When the entry is
shorter than the work area, you must pad to the right with blanks to
fill out the work area.

If register notation is used, the register number must be enclosed
within parentheses, and the register must contain the address of the
work area. Permissible registers are 2 through 12.

You are responsible for the integrity of the new entry. The entry must
contain all necessary information and be in the proper form for
successful operation of TCAM. See the description of the
terminal-table entries in the TCAM Installation Guide.

Function: Specifies the specific TCAM protection password that enables
only qualified application programs to issue this macro.

Format: One to eight nonblank characters conforming to the rules for
assembler language symbols. This value must be identical to the value
coded on the PASSWRD operand of an INTRO macro in the MCP.

Default: None. If the PASSWRD operand is specified on the INTRO macro
in the MCP, this operand is required. Otherwise, this operand should not
be specified.

Note: If the character string specified in this operand does not match that
specified in the INTRO macro, or if this operand is not coded but
PASSWRD was coded on the INTRO macro, the TCHNG macro is ignored.

5-48 TeAM Application Programming

J

J

termname

Return Codes

Function: Specifies the symbolic name of the terminal-table entry whose
contents are to be replaced by the contents of the work area named in the
area name operand.

Format: Must be identical to the symbolic name of the TERMINAL macro
or TPROCESS macro that defines this entry in the terminal table. Register
notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed
within parentheses, and the register must contain the address of a field
containing the name of the terminal-table entry, left-justified and padded
with blanks. The field must be at least as long as the longest external LU
or program name in the terminal-name table, with a maximum of eight
characters. Permissible registers are 2 through 12.

One of the following return codes is passed back to your program in
register 15 after the TCHNG macro executes:

Code

X'OOOOOOOO'

Meaning

TCHNG executed successfully.

Note: If operator mask prohibits changes, no change will
occur.

X'00000008' TCHNG did not execute because TCAM is not in the system
or (in a system which allows multiple TCAMs) there is no
open DCB in your application program.

X'OOOOOOOC' TCHNG did not execute because no TCAM application
program DCB is open; at least one input or output DCB
must be open in order for this macro to execute.

X'00000014' TCHNG did not execute because either (a) an invalid
protection password is specified as the PASSWRD value of
the TCHNG macro, or (b) the PASSWRD operand is not
specified in the TCHNG macro. (PASSWRD must be
specified because the INTRO macro specifies a protection
password; code this operand exactly as it is coded in the
INTRO macro).

X'00000020' TCHNG did not execute because an invalid external LU
name is specified in the termname field (that is, no such
entry exists in the terminal-name table).

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-49

TCOPY Macro

symbol

areaname

X'00000040'

X '00000044'

TCHNG did not execute because the device dependent field
was incorrectly changed by one of the following:

• A change was attempted on TRMDEVFL in order to add
or delete a new field.

• A change was attempted on the length field of a device
dependent field.

TCHNG did not execute because it was attempting to add,
delete, or change the length of an option field.

The TCOPY macro:

• Permits examination of the contents of a terminal-table entry and its
associated option fields

• Is optional in a TeAM application program
• Cannot be used with a GROUP macro.

Name Operation Operands
[symbol] TCOPY statname

,areaname

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the application-program work area
into which the terminal-table entry and its associated option fields are to be
placed.

Format: Must be identical to the symbolic name that you specified for the
program work area that you wish to copy the terminal-table entry into.
Register notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed
within parentheses. The register must previously have been loaded with
the address of the work area. Permissible registers are 0, and 2 through 12.

5-50 TeAM Application Programming

J

J

statname

Return Codes

The work area must be aligned on a full word boundary and be large enough
to hold the longest terminal-table entry you expect to receive.

Function: Specifies the symbolic name of the TERMINAL or TPROCESS
entry whose queue contents are to be moved to your program work area.

Format: Must be the same as the symbolic name specified for the external
LU or program in the MCP terminal-name table. Register notation may be
used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed
within parentheses, and the register must have been previously loaded with
the address of a field containing the entry name as specified on the
TERMINAL or TPROCESS macro defining the entry. The name must be
left-justified and padded with blanks to the length of the longest name in
the terminal-name table. Permissible registers are 0, and 2 through 12.

One of the following return codes is passed back to your program in
register 15 after the TCOPY macro executes:

Code Meaning

X'OOOOOOOO' TCOPY executed successfully.

X'OOOOOOOS' TCOPY did not execute because TCAM is not in the system
or (in a system which allows multiple TCAMs) there is no
open DCB in your application program.

X'OOOOOOOC' TCOPY did not execute because no TCAM
application-program DCB is open; at least one input or
output DCB must be open for this macro to execute.

X'OOOOOOlS'

X'00000020'

The interface work area (application interface block) as
defined by the APW AS operand on the INTRO macro is too
small to accommodate the data being copied.

TCOPY did not execute because an invalid external LU
name is specified in the statname field. Either no such entry
exists in the terminal-name table or the entry is for a Group
specified in the MCP.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-51

TPDATE Macro

symbol

DCB=dcbnarne

DELETE={YES}
(NO }

The TPDATE macro:

• Specifies whether the date, time, and origin of a message obtained by
the application program are to be placed in the 16-byte area specified

• Allows the user to obtain the record delimiter from the TPROCESS
entry

• Allows the user to specify whether TCAM should delete record
delimiters from data going to the application program.

Name Operation Operands
[symbol] TPDATE DCB=dcbnarne

,DELETE=(YES}
(NO }

(,DTSAREA={area}
[,RECDLM= [YES}]

(NO }

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the data control block that defines
the input message queue that you wish to receive time stamped and data
messages from.

Format: Must be the same as the symbolic label of the DCB that controls
the logical input data set for which you wish messages to be time stamped
and dated. Register notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, any general register, 2 through 12, that
has been loaded with the address of the DCB may be used. The register
number must be enclosed within parentheses.

Function: Specifies whether you wish the record delimiter on each incoming
record to be deleted from the record before it is sent to the application
program.

Format: YES or NO.

5-52 TeAM Application Programming

J

DTSAREA=area

RECDLM={YES}
{NO }

Default: DELETE = NO.

Note: The TPDATE macro must be coded before a GET or READ macro
when you wish record delimiters to be deleted from the data coming to the
application program or when the date, time, and message source
information is to be provided.

Function: Specifies the I6-byte area in your program where you wish TCAM
to return the control information (date and time)

Format: Must be identical to the symbolic name specified for a work area in
your program in which you wish the date and time to be entered. Register
notation may be used.

Default: None. Specification of this operand is optional.

Note: If register notation is used, any of the general registers 2 through 12
may be used. The register number must be enclosed within
parentheses. You are responsible for loading the address of area into
the appropriate register before the TPDATE macro executes. The
format of the data that will arrive in area is:

YY DDD C HH MM SS NN CC CC CC CC

where:
YY = last two digits of the year (packed decimal)
DDD = Julian day of the year (packed decimal)
C = sign character (for unpacking)
HH = hours (packed decimal)
MM = minutes (packed decimal)
SS = seconds (packed decimal)
NN = hundredths of seconds (packed decimal)
CCCCCCCC = message source (character)

If the date and time are not available to TCAM, the data and time
fields will contain zeros. If the source is not available, the source field
will contain character blanks X'40'

This operand requires that DATE= YES be specified on both the
TPROCESS and the PCB macros in the MCP relating to this
application program.

Function: Allows you to indicate whether you wish the record delimiter as
specified on the TPROCESS macro in the MCP to be returned in the
low-order byte of register 1.

Format: YES or NO.

Default: RECDLM = NO.

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-53

Return Codes

WRITE Macro

symbol

areaname

Note: If no record delimiter was specified on the TPROCESS macro, the
value returned in the low-order byte of register 1 will be X'OO'. If you
specify YES, you may use the value returned in register 1 to test for this
delimiter as messages are received by your program.

One of the following return codes will be passed to your program in register
15 after the TPDATE macro executes:

Code

X '00000000'

X'00000004'

X '00000008'

Meaning

TPDATE executed successfully.

TPDATE did not execute because TCAM is not in the
system.

TPDATE did not execute because the specified DCB does not
define a data set for TCAM messages.

The WRITE macro:

• Returns work units to the MCP after processing
• May be specified more than once in an application program.

Name Operation Operands
[symbol] WRITE ,deeb name

,SF
,deb address
,area address
[, length I , I S I]

Function: Allows symbolic addressing of this instruction within your
program.

Format: An arbitrarily assigned character sequence of up to eight
characters that must be unique within your program. It must also conform
to the rules for assembler language symbols.

Default: None. Specification of this label is optional.

Function: Specifies the symbolic name of the application-program work area
from which a work unit will be moved to the MCP.

5-54 TeAM Application Programming

J

dcbname

decbname

(length}
(I S I }

Format: Must conform to the rules for assembler language symbols and
must be identical to the symbolic name assigned to the program work area.
Register notation may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed
within parentheses and the address of the work area must have been
previously loaded into one of the general registers 2 through 12.

Function: Specifies the symbolic name of the data control block defining the
destination queue being written to by this macro.

Format: Must conform to the rules for assembler language symbols and
must be identical to the symbolic name specified as the label of the data
control block that defines the data set being written to. Register notation
may be used.

Default: None. Specification of this operand is required.

Note: If register notation is used, the register number must be enclosed
within parentheses and the address of the work area must have been
previously loaded into one of the general registers 2 through 12.

Function: Specifies the symbolic name you wish to be assigned to the data
event control block (DECB) created as part of this macro expansion. This
symbol will be used by the CHECK macro.

Format: An arbitrarily assigned character sequence of up to eight
characters that is unique within this program. It must also conform to the
rules for assembler language symbols.

Default: None. Specification of this operand is required.

Function: Allows you to specify the total length of the work unit to be
transferred to the MCP. This includes the length of the work unit plus the
length of any optional fields preceding the work unit.

Format: A decimal integer no larger than the APW AS operand specified on
the INTRO macro.

Default: None. Specification of this operand is not required unless
RECFM = U was specified on the DCB associated with this write.

Note: This operand is required for undefined-length (RECFM = U) work
units; it is ignored for fixed-length (RECFM = F) or variable-length
(RECFM = V) work units. If'S' is specified and an undefined-length work
unit is specified, the number of bytes to be written is taken from the

Chapter 5. TCAM Application Programmer's Macro Reference Guide 5-55

SF

Return Codes

LRECL field of the appropriate data control block. Note that'S' is enclosed
within single quotes.

Function: This operand establishes BSAM compatibility. It also specifies
that the data set being written to be this instruction must have a sequential
format.

Format: SF

Default: None. Specification of this operand is required.

No return codes are returned in register 15 as a result of execution of this
macro. Completion codes for WRITE are placed in the event control block
of the DECB for this macro. (See the preceding CHECK macro discussion
in this chapter.)

5-56 TeAM Application Programming

J

J

Appendix A. Defining Buffers in TCAM for Application
Programs

Messages being transferred between the application program work area and
the MCP reside in buffers, the same as messages being transferred between
the MCP and an external LU.

Although you are not responsible for defining these buffers (since the
definition is made in an TCAM MCP), it helps you in coding your
application program to understand how buffers are defined and what
considerations are given.

Buffer Design Considerations

The size of these application-program buffers is specified by the BUFSIZE
operand of the PCB macro. This size may be overridden by the BUFL
operand of the input or output DCB macro depending on which buffers you
want to change.

For example, if the line buffers for all external LUs that could enter and
accept messages processed by a particular application program were either
116 bytes or 232 bytes, you could define two input and two output data sets
(each with its own GET/READ and PUT/WRITE process entries), one for
each buffer length. You could direct all incoming messages for the
application program that were entered by external LUs using 116-byte
buffers to one process queue, and all incoming messages for the application
program that were entered by external LUs using 232-byte buffers to the
other process queue. If the system programmer coded BUFSIZE = 116 in his
PCB macro and BUFL = 232 in the input DCB macro for the data set
containing messages placed in 232-byte buffers upon arrival of the message
at the MCP, no additional data transfer would be necessary when the data
was read from the destination queue into the application-program buffer.

When transferring replies from the application program, you name the PUT
or WRITE process entry for the 116-byte buffer output data set or for the
232-byte buffer output data set, depending upon the size of the line buffers
for the reply destination. In the output DCB macro for the 232-byte buffer
output data set, you would specify BUFL = 232. Again, no additional data
transfer would be necessary when messages were read from the destination
queues into the line buffers for the destination if this scheme were followed.

Appendix A. Defining Buffers in TeAM for Application Programs A-l

For Application Program GET or READ Buffers

The system programmer should assign the maximum number of buffers
necessary (with the BUFOUT = operand of the PCB macro) to handle what
you propose to be the longest messages to be transferred from M CP process
queues to the application program work area at any given time. These
buffers will be used to construct a read-ahead queue, a temporary queue in
main storage on which messages are held in anticipation of a GET or READ
macro from an application program. The read-ahead queue is discussed in
detail in the TeAM Installation Guide. TCAM constructs one read-ahead
queue for each process queue associated with an opened application
program input data set.

The maximum capacity of any read-ahead queue is two messages.
Therefore, you must assure that at least enough buffers are allocated to
handle the longest message you expect to be sent. Buffers are allocated to
this queue dynamically, but the queue will never contain more than the
number of buffers needed to handle two messages. If the system
programmer specifies a number of buffers less than that needed to contain
two complete messages on the read-ahead queue, less main storage in the
TCAM region is tied up by being assigned to the read-ahead queue, but
more time is required to transfer messages to the application program. You
must decide which alternative is more attractive to you.

The following formula for calculating the BUFOUT operand of the PCB
macro will provide a read-ahead queue that is always capable of containing
two complete messages; by specifying a queue of this size, delay is
minimized in transferring messages to the application program. The
formula is:

I=2X+l

where I represents the integer to be coded as the value for BUFOUT, and X
is the maximum number of buffers needed to hold one message being
transferred to the application program. The extra buffer represented by 1 is
used internally by TCAM.

Note: If main-storage-only queuing is the only type of queuing used for
process queues in the MCP, the optimum number of the buffers specified by
BUFOUT is reduced; in this case, the system programmer need only specify
enough buffers to handle the largest work unit expected to be sent to the
application program at one time.

For Application Program PUT or WRITE Buffers

The BUFIN operand of the PCB macro specifies the initial number of
buffers that will be allocated to receive data being transferred by a PUT or
WRITE macro from the application program to the MCP. (If there is more
than one process entry in your program that may be referred to by PUT or
WRITE macros, the number of buffers specified by BUFIN is allocated to
each process entry.) Buffers assigned to receive data from an application
program are allocated and sent through the incoming group of the

A-2 TeAM Application Programming

application program message handler as they are filled by a PUT or WRITE
macro.

If the number of buffers specified by BUFIN is not sufficient to handle the
entire work unit being transferred, TCAM dynamically allocates additional
buffers. However, such an allocation takes time; therefore, to optimize
performance, a sufficient number of buffers should be assigned initially to
handle the entire work unit.

Buffers are sent through the incoming group of the application-program
message handler as soon as they are filled. If a buffer is not completely
filled when the end of the work unit is reached, either a time or a space
penalty will be incurred, depending upon whether a position field is present
in the work area, and whether message or record processing is specified.
(Position fields are discussed in "Defining Optional Fields in the Work
Area" in Chapter 3. Message and record processing are described in "The
TCAM Work Unit" in the same chapter.)

If no position field is present and message processing is specified, the
partially filled buffer is sent through the incoming group of the
application-program message handler as soon as the last portion of the
work unit has been received. In this case, a space penalty is incurred and
main storage is wasted, since the entire buffer is tied up while the work
unit is being processed by the incoming group. If record processing is
specified and there is no position field, a buffer that is larger than the work
unit it contains is not sent through the incoming group immediately, but is
held until it is filled by a subsequent PUT or WRITE macro (or until the
application program signals end-of-message by closing the output data set);
in this case, a time penalty is incurred.

If a position field is present and indicates that the current work unit is the
last or only work unit in the message, the buffer containing that work unit
is sent through the incoming group as soon as the work unit is placed in it;
if the work unit is shorter than the buffer, main storage is wasted, as
explained above. If the position field indicates that the current work unit
is the first or an intermediate segment in a multiple segment message, then
the buffer is not sent through the incoming group until it is filled or until
the end of the message is encountered. If the work unit is smaller than the
buffer, a time penalty is incurred, as explained previously.

Because data movement takes time, the size of the link buffers handling
messages being sent to or from an application program should be the same
size as the application program buffers whenever possible. By overriding
the buffer size specified by the BUFSIZE operand of the PCB macro, the
BUFL operand of the input and output DCB macros in the application
program may tailor application program buffer sizes to match the buffer
sizes for particular origin or destination external LU.

Appendix A. Defining Buffers in TeAM for Application Programs A-3

A Coding Checklist

Macro

INTRO

pcn

A good macro operand coding checklist for definition of application
program buffers is:

Operand

UNITSZ = integer
KEYLEN = integer

BUFSIZE = integer

BUFOUT = integer

BUFIN = integer

Description of Function

Specifies the length in bytes of a single buffer unit; all
buffers in the TCAM system are constructed of multiples of
units of this size. integer must be between 76 and 255
inclusive.

Specifies the length in bytes of the buffers used to transfer
message segments between the TCAM process queues and an
application program work area. The value coded here may
be overridden for a single input or output data set with the
BUFL operand of the input or output DCB macro for the
data set. (See the preceding discussions of the BUFL
operand.) integer must be between 31 and 65,535 inclusive.

Specifies the maximum number of application-program
buffers that may be filled at one time from the destination
queue. These buffers are then processed by the outgoing
group of the application program message handler as a
single work unit, and placed on the read-ahead queue in
main storage in anticipation of a GET or READ macro from
the application program. integer must be at least 2 (TCAM
uses one buffer internally) and may be no greater than 15.

Specifies the initial number of buffers to be allocated to a
message handler to receive data being transferred by a PUT
or WRITE macro from the application program work area.

Contrast this discussion with the BUFOUT discussion
above. integer must be between 2 and 15 inclusive.

RESERVE = (integerl, Specifies the number of bytes to be reserved in the beginning
integer2) of each buffer. This space is for the insertion of time and

date for each message. integer 1 and integer2 can each be
any decimal value between 1 and 255. Data will be inserted
in these fields by the DATETIME or SEQUENCE macros in
the MCP.

Application BUFL= integer
Program

Specifies the length (in bytes) of the buffers used to transfer
message segments from the MCP to the application program
where this DCB resides; this value overrides the value
specified by the BUFSIZE operand of the PCB macro. integer
must be between 35 and 65,535 inclusive.

Input to
DCB

Application BUFL = integer
Program
Output DCB

A-4 TeAM Application Programming

Specifies the length (in bytes) of the buffers to be used to
transfer message segments from the application program
where this DCB resides to the MCP; this value overrides the
value specified by the BUFSIZE operand of the PCB macro.
integer must be between 35 and 65,535 inclusive.

Appendix B. Checklist of Possible Coding Errors

The following list of questions are intended to aid in the diagnosis of
possible errors in coding an application program. Five reference headings
are provided to ease the location of a possible error: Activation and
Deactivation ofInput and Output Data Sets and the MCP, Work Areas,
Message Transfers, Message Queues, and Buffers.

The list of possible errors in coding an application program is in the form of
questions with YES/NO answers so that you can examine your code against
the correct procedures.

Question

1. ACTIVATION AND DEACTIVATION OF INPUT
AND OUTPUT DATA SETS AND THE MCP

1. Did you follow standard linkage conventions?

2. If the application program is linked as
AUTHORIZED, then code AUTHA=YES on the
INTRO macro.

3. Did you code an OPEN macro for each DCB?

4. Did you check each OPEN macro for successful
completion?

5. Did you issue an OPEN macro for a PCB?

6. Did you code closedown procedures?

7. Do your application programs have lower
priority than your MCP?

8. Did you specify a record delimiter for
variable-length records or messages?

9. Did you activate your application
program before you started your MCP?

10. Did you omit any DD statements?

11. Did you check all return codes provided
by TCAM?

Right Wrong

YES NO

YES NO

YES NO

YES NO

NO YES

YES NO

YES NO

YES NO

NO YES

NO YES

YES NO

Appendix B. Checklist of Possible Coding Errors B-1

Question Right Wrong

12. Have all GET/READ and PUT/WRITE YES NO
DCBs been opened in this task
or the attaching (mother) task?

II. WORK AREAS

1. Did you destroy or overlay your work-area NO YES
prefix?

2. Is your work-area size compatible with YES NO
TCAM buffer size?

3. Is the value specified by the APW AS YES NO
operand equal to or larger than the
largest work-area size of any application
program macro.

4. Is your work-area size for copy functions YES NO
large enough when using the TCOPY macro
or when displaying the option fields by an
operator control command?

5. Did you omit the BLKSIZE operand of the NO YES
DCB macro for GET in locate mode?

6. If you specified DATE = YES with your YES NO
TPROCESS macro, did you also specify
DATE = YES with the PCB macro and the
DTSAREA operand of the TPDATE macro?

7. Did you code a TPROCESS macro with the YES NO
QBACK operand coded for each application
program that will issue a QRESET macro?

8. If you are using multiple retrieve, did you YES NO
either (1) specify a work-area large enough
or (2) issue subsequent READs or GETs to
handle the complete message?

III. MESSAGE TRANSFERS

1. Are your incoming and outgoing work units YES NO
compatible?

2. Is your destination correct for a lock YES NO
response?

3. Did you code an outmessage subgroup in your NO YES
message handler (MH)?

J

B-2 TeAM Application Programming

Question Right Wrong

4. Did you specify an external L U to receive YES NO
response messages from basic operator
commands generated by the application
program (in the ALTDEST operand of the
TPROCESS macro or in the RESPDEST operand
of the CODE or IEDOPCTL macro)?

5. Did you specify a work-unit size for PUT YES NO
or WRITE?

6. When you are using message processing, did YES NO
you specify the OPTCD = U operand of the
DCB macros?

7. If you specified OPTCD = W with the input YES NO
DCB macro, did you make your work unit
8 bytes larger than the buffer size
defined by the DCB macro?

8. Was the same PCB specified for the GET YES NO
and PUT response TPROCESS entries that
were used for lock mode?

IV. MESSAGE QUEUES

1. Did you code the QUEUES operand of the YES NO
TPROCESS macro for GET or READ?

2. Did you code the QUEUES operand of the NO YES
TPROCESS macro for PUT or WRITE?

3. If the TPDATE macro is used, did you YES NO
code it after OPEN but before GET or READ?

4. If you are using the MCOUNT macro, did you YES NO
code it after OPEN?

v. BUFFERS

1. Did you specify enough buffer units? YES NO

Appendix B. Checklist of Possible Coding Errors B-3

Glossary

This glossary includes terms and definitions from
the IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems, GC20-1699.
Definitions from the American National Dictionary
for Information Processing are identified by an
asterisk (*).

Reference Words Used in the
Entries

The following reference words are used in this
glossary.

Contrast with. Refers to a term that has an
opposed or substantively different meaning.

Deprecated term for. Indicates that the term
should not be used. It refers to a preferred
term, which is defined.

See. Refers to multiple-word terms that have
the same last word.

See also. Refers to related terms that have
similar (but not synonymous) meanings.

Synonym for. Appears in the commentary of a
less desirable or less specific term and identifies
the preferred term that has the same meaning.

Synonymous with. Appears in the commentary
of a preferred term and identifies less desirable
or less specific terms that have the same
meaning.

ACB. In VTAM, access method control block.

accept. In a VTAM application program, to accept
a CINIT request from a system services control
point (SSCP) to establish a session with a logical
unit; the application program acts as the primary
end of the session. Contrast with acquire (1).

Note: The accept process causes a BIND request to
be sent from the primary end of the session to the
logical unit that will act as the secondary end of the

session, requesting that the session be established
and passing session parameters. For example, the
session-initiation request that originally caused the
SSCP to send the CINIT request may have resulted
from a logon by the terminal operator, from a macro
instruction issued by a VT AM application program,
or from a VTAM operator command.

access method. A technique for moving data
between main storage and input/output devices. See
Basic Direct Access Method, Basic Sequential Access
Method, TCAM (Version 2 and previous releases),
and VTAM.

access method control block (ACB). A control
block that links an application program to VSAM or
VTAM.

access method interface (AMI). The TCAM
function for managing communication on the access
method control block (ACB) interface between
TCAM and VT AM.

ACF. Advanced Communications Function.

ACF/TCAM. Advanced Communications Function
for TCAM. Synonym for TCAM.

ACF/VTAM. Advanced Communications Function
for VT AM. Synonym for VT AM.

acquire. (1) In VTAM, the operation in which an
authorized VT AM application program initiates and
establishes a session with another logical unit; the
application program acts as the primary end of the
session. Contrast with accept. (2) In relation to
VT AM resource control, to take over resources.
(communication controllers or other physical units)
that were formerly controlled by a data
communication access method in another domain, or
to assume control of resources that were controlled
by this domain but released. Contrast with release.
See also resource takeover.

active. In VT AM, the status of a resource that
makes the resource known to VTAM (for major
nodes) or makes it available for use in the network
(for minor nodes). For a logical unit (LU) minor

Glossary X-I

node, it also enables the LU to participate in LU-LU
sessions. Contrast with inactive.

address space. The area of virtual storage that is
available for a particular job.

Advanced Communications Function (ACF). A
group of IBM program products, principally VTAM,
TCAM, NCP, and SSP.

Advanced Communications Function for the
Network Control Program (NCP). An IBM
program product that provides communication
controller support for single-domain,
multiple-domain, and interconnected network
capability. Programs (SSP)

Advanced Communications Function for
Systems Support Programs (SSP). An IBM
program product made up of a collection of utilities
and small programs. SSP is required for the
operation of the NCP.

Advanced Communications Function for TCAM
(TCAM). An IBM program product that provides
queued message handling. TCAM, Versions 1 and 2,
are telecommunications access methods, but TCAM,
Version 3, is a message handling subsystem.

Advanced Communications Function for VTAM
(VTAM). An IBM program product that controls
communication and the flow of data in an SNA
network. It provides single-domain,
multiple-domain, and interconnected network
capability. VTAM runs under MVS (OS/VSl and
OS/VS2), VSE, and VM/SP. It supports direct
control application programs and subsystems such
as VSE/POWER.

affinity-based routing. Message routing in which
a temporary relationship, or routing affinity, is
established between a source and a destination; all
messages from the source are routed to the
destination for the duration of the relationship. See
also invariant routing, transaction-based routing,
routing by destination, routing by key.

AMH. Application message handler.

AMI. Access method interface.

application message handler (AMH). A
user-defined routine that processes messages that
are received by the message control program (MCP)
from an application program or that are sent by the
MCP to an application program. See message
handler, device message handler, internodal message
handler. See also Message control program.

X-2 TCAM Application Programming

application program. (1) A program written for
or by a user that applies to the user's work. (2) A
program used to connect and communicate with
resources in a network, enabling users to perform
application-oriented activities.

asynchronous. Without regular time relationship;
unexpected or unpredictable with respect to the
execution of a program's instructions.

automatic purge/copy/redirect. A collection of
message-handler and extended operator control
functions that permits messages to be conditionally
or unconditionally redirected to another
destination, copied to another destination, or purged
(that is, not sent to any destination).

Basic Direct Access Method (BDAM). An access
method used to directly retrieve or update
particular blocks of a data set on a direct access
device.

basic information unit (BIU). In SNA, the unit
of data and control information that is passed
between half-sessions. It consists of a
request/response header (RH) followed by a
request/response unit (RU).

basic operator command. An operator command
directed to the basic operator control system service
program. Synonymous with basic operator control
command.

basic operator control. The function of a
particular system service program that processes a
set of basic operator commands. These commands
allow the operator to determine the status of the
TCAM system and to alter, start, and stop TCAM
and its resources by entering appropriate commands
from either the system console or a basic operator
control station. The basic operator control system
service program is required in order to execute a
TCAM message control program (MCP).

basic operator control command. Synonym for
basic operator command.

basic operator control station. A system
console, external logical unit (LU), or application
program that is authorized to enter operator
commands to be executed by the basic operator
control system service program.

basic primary operator control station. A basic
operator control station that is sent all TCAM
error-recovery messages and TCAM reply messages
to basic operator commands. See basic secondary
operator control station, extended primary operator
control station, extended secondary operator control
station.

J

basic secondary operator control station. A
basic operator control station that is sent only the
reply messages to basic operator commands entered
from it. See basic primary operator control station,
extended primary operator control station, extended
secondary operator control station.

Basic Sequential Access Method (BSAM). An
access method for storing or retrieving data blocks
in a continuous sequence, using either a sequential
access or direct access device.

BDAM. Basic Direct Access Method.

begin bracket. In SNA, the value (binary 1) of the
begin-bracket indicator in the request header (RH)
of the first request in the first chain of a bracket;
the value denotes the start of a bracket. Contrast
with end bracket. See also bracket.

bidder. In SNA. the LU-LU half-session defined at
session activation as having to request and receive
permission from the other LU-LU half-session to
begin a bracket. Contrast with first speaker. See
also bracket protocol.

binary synchronous communication (BSC).
Communication using binary synchronous line
discipline. See also binary synchronous
transmission.

binary synchronous transmission. Data
transmission in which synchronization of characters
is controlled by time signals generated at the
sending and receiving stations .. Contrast with
start-stop transmission, synchronous data link
control.

bind image. Synonym for logon mode.

bind image table. Synonym for logon mode table.

BIU. Basic information unit.

BIU segment. In SNA, a portion of a basic
information unit (BIU) that is contained within a
path information unit. It consists of either a
request/response header (RH) followed by all or a
portion of a request/response unit (RU), or of only a
portion of an RU. See also segment.

bracket. In SNA, one or more chains of request
units (RUs) and their responses that are exchanged
between two LU-LU half-sessions and that represent
a transaction between them. A bracket must be
completed before another bracket can be started.
Examples of brackets are data base
inquiries/replies, update transactions, and remote

job entry output sequences to work stations. See
begin bracket, end bracket. See also RU chain.

bracket protocol. In SNA, a data flow control
protocol in which exchanges between two LU-LU
half-sessions are achieved through the use of
brackets, with one logical unit (LU) designated at
session initiation as the first speaker and the other
LU as the bidder. The bracket protocol involves
bracket initiation and termination rules. See also
bidder, first speaker.

bracket state manager. A TCAM routine that
enforces the bracket protocol by making proper
bracket state changes and detecting bracket errors.

broadcast. The simultaneous transmission of data
to a number of destinations.

BSAM. Basic Sequential Access Method.

BSC. Binary synchronous communication.

buffer. (1) * A routine or storage area used to
compensate for a difference in rate of flow of data,
or time of occurrence of events, when transferring
data from one device to another. (2) An area of
storage that is temporarily reserved for use in
performing an input/output operation, into which
data is read or from which data is written.

buffer list. In VTAM, a contiguous set of control
blocks (buffer list entries) that allow an application
program to send function management data (FMD)
from a number of discontiguous buffers with a
single SEND macro instruction.

buffer prefix. A control area within each buffer
that contains buffer control information. A user
must allow room for the buffer prefix when
specifying buffer size.

buffer unit. The smallest block of main storage
from which TCAM buffers and main storage
message queues can be built. Synonymous with
main storage unit.

buffer-unit pool. All the buffer units in a
particular TCAM system.

cascade entry. A terminal-table entry associated
with a cascade list.

cascade list. A list of pointers to single entries.
When a cascade entry is named as the destination
for a message, the message is sent to the valid entry
in the list with the fewest messages queued for it.

chain. See RU chain.

Glossary X-3

channel program block (CPB). A TCAM control
block used in the transfer of data between buffer
units and message queues maintained on disk.

checkpoint data set. An optional TCAM data set
that contains the checkpoint records used to
reconstruct the message control program (MCP)
environment after closedown or system failure when
the TCAM checkpoint/restart service facility is
used.

checkpoint records. Records that contain the
status of a job and the system at the time the
records are written by the checkpoint routine.
These records provide the information necessary for
restarting a job without having to return to the
beginning of the job. There are four types:
checkpoint request record, control record,
environment record, and incident record.

checkpoint request record. A checkpoint record
taken as a result of the execution of a CKREQ
macro instruction in an application program; the
record contains the status of a single destination
queue for the application program. See control
record, environment record, incident record.

checkpoint/restart service facility. A TCAM
service facility that records the status of the TCAM
system at designated intervals or following certain
events. After system failure, the TCAM system can
be restarted and can continue without loss of
messages.

CIB. Command input buffer.

clear data. Data that is not enciphered.

clear session. A session in which only clear data
is transmitted or received. Contrast with
cryptographic session.

closed subroutine. A subroutine of which one
replica suffices for the subroutine to be linked by
calling sequences for use at more than one place in
a computer program. Contrast with open routine.

closedown. The orderly termination of the
message control program. See flush closedown,
quick closedown.

cold restart. Startup of a message control
program (MCP) following either a flush closedown,
a quick closedown, or a system failure. A cold
restart ignores the previous environment; that is,
the MCP is started as if this were the initial
startup. A cold restart is the only type of restart
possible when no checkpoint/restart service facility
is used. Contrast with warm restart.

X-4 TCAM Application Programming

command. (1) In SNA, any field set in the
transmission header, request header (RH), and
sometimes portions of a request unit (RV), that
initiates an action or begins a protocol; for
example, (a) Bind Session (session-control request
unit), a command that activates an LV-LV session;
(b) the change-direction indicator in the RH of the
last RV of a chain; (c) the virtual route reset
window indicator in an FID4 transmission header.
(2) Loosely, a request unit. (3) In SDLC, the control
information (in the C-field of the link header) sent
from the primary station to the secondary station.
(4) In TCAM, an operator control command.

command input buffer (CIB). A buffer-like area
that contains operator commands entered at the
system console. Main storage space is allocated for
it dynamically and is freed once the operator
command contained within the CIB has been
processed. Only one CIB need be specified for
operator commands entered from the system
console.

communication common carrier. In the VSA
and Canada, a public data transmission service that
provides the general public with transmission
service facilities; for example, a telephone or
telegraph company.

COMWRITE. An IBM-supplied sub task of the
TCAM initiator that formats and writes trace
records to the COMWRITE data set.

COMWRITE data set. A data set on a sequential
storage device in which trace information is
written.

connection point manager. In SNA, a component
of the transmission control layer that (a) performs
session-level pacing of normal-flow requests; (b)
checks sequence numbers of received response
units; (c) verifies that request units do not exceed
maximum permissible size; (d) routes incoming
request units to their destinations within the
half-session; and (e) enciphers and deciphers
function management data (FMD) request units
when cryptography is selected. The sending
connection point manager within a half-session
builds the request/response header for outgoing
request units, and the receiving connection point
manager interprets the request headers that precede
incoming request units.

control record. A checkpoint record included in a
checkpoint data set that keeps track of the correct
environment records, incident records, and
checkpoint request records to use for restructuring
the message control program environment during
restart. See environment record, incident record,
checkpoint request record.

J

J

conversational mode. A mode in which the next
message received by an external logical unit (LU)
after it enters an inquiry message is a reply to that
message. See lock mode.

CPB. Channel program block.

cryptographic. Pertaining to the transformation
of data to conceal its meaning.

cryptographic session. An LU-LU session in
which a function management data request may be
enciphered before it is transmitted, and deciphered
after it is received. Contrast with clear session. See
also mandatory cryptographic session, selective
cryptographic session.

DASD. Direct access storage device.

data control block (DCB). A control block used
by access method routines in storing and retrieving
data.

Data Encryption Standard (DES) algorithm. A
cryptographic algorithm designed to encipher and
decipher 8-byte blocks of data using a 64-bit
cryptographic key, as specified in the Federal
Information Processing Standard Publication 46,
January 15, 1977.

data flow. (1) In SNA: any of four flows in a given
session: primary-to-secondary flow,
secondary-to-primary flow, normal flow, or expedited
flow. (2) The type of route or extended route that a
message takes from its origin to its destination,
including the host nodes that process the message
while it is enroute to its destination. See level 1
data flow, level 2 data flow, level 2+ data flow, level
3 data flow.

data flow control (DFC) layer. In SNA, the layer
within a half-session that (a) controls whether the
half-session can send, receive, or concurrently send
and receive request/response units (RUs); (b) groups
related RUs into RU chains; (c) delimits
transactions via the bracket protocol; (d) controls
the interlocking of requests and responses in
accordance with control modes specified at session
activation; (e) generates sequence numbers; and (f)
correlates requests and responses.

data set. (1) The major unit of data storage and
retrieval in the operating system, consisting of a
collection of data in one of several prescribed
arrangements and described by control information
to which the system has access. (2) * Deprecated
term for modem.

data staging. An extended networking technique
in which high-volume, low-priority message traffic is

moved from one TCAM node to another,
progressively approaching the destination TCAM.
Data staging allows such traffic to be moved at a
convenient time to avoid overloading the network to
protect response times for high-priority inquiries.

DCB. Data control block.

dead-letter queue. In TCAM, a queue containing
messages that could not be placed in the
appropriate destination queue.

decipher. To convert enciphered data into clear
data. Contrast with encipher. Synonymous with
decrypt.

decrypt. To convert encrypted data into clear
data. Contrast with encrypt. Synonym for decipher.

definite response. In SNA, a form of response
requested in the request header (RR) for a request
unit (RU). The receiver is requested to return a
response indicating whether the request is
acceptable as received. Contrast with exception
response, no response.

delayed-request mode. In SNA, an operational
mode in which the sender may continue sending
request units on the normal flow after sending a
definite-response chain on that flow, without
waiting to receive the response to that chain.
Contrast with immediate-request mode. See also
delayed-response mode.

delayed-response mode. In SNA, an operational
mode in which the receiver of normal-flow request
units can return responses to the sender in a
sequence different from that in which the
corresponding request units are sent. Contrast with
immediate-response mode. See also delayed-request
mode.

delimiter macro instruction. A TCAM
message-handler macro instruction that classifies
and identifies sequences of functional
message-handler macro instructions and directs
control to the appropriate sequence of functional
macro instructions. Contrast with functional macro
instruction.

DES. Data Encryption Standard. See also Data
Encryption Standard algorithm.

DES algorithm. Data Encryption Standard
algorithm.

destination. An external logical unit (LU) or
application program to which a message or other
data is directed.

Glossary X-5

destination queue. A queue on which messages
bound for a particular destination are placed after
being processed by the incoming group of the
message handler. See also process queue.

device message handler (DMH). A user-written
routine defined in a TCAM message control
program (MCP) that processes messages being
received from or sent to an external logical unit
(LU). See also application message handler,
internodal message handler, message handler.

DFC. Data flow control.

direct access storage device (DASD). A storage
device in which the access time is effectively
independent of the location of the data.

distribution entry. A terminal-table entry
associated with a distribution list.

distribution list. A list of pointers to single or
cascade entries. When a distribution entry is
namp,d as the destination for a message, the message
is sent as separate transmissions to all items in the
list.

DMH. Device message handler.

domain. In SNA, a system services control point
(SSCP) and the physical units (PUs), logical units
(LUs), links, link stations, and all the associated
resources that the SSCP has the ability to control
by means of activation requests and deactivation
requests. Svnonymous with single-domain network.

dynamic accounting facility. A TCAM service
facility that gathers resource utilization data for
processing by user-supplied applications.

EBCDIC. Extended binary-coded decimal
interchange code.

encipher. (1) To scramble data or convert it, prior
to transmission, to a secret code that masks the
meaning of the data to any unauthorized recipient.
(2) In VTAM, to convert clear data into enciphered
data. Contrast with decipher. Synonymous with
encrypt.

enciphered data. Data that is intended to be
illegible to all except those who legitimately possess
the means to reproduce the clear data.

encrypt. In VTAM, to convert clear data into
enciphered data. Contrast with decrypt. Synonym
for encipher.

end bracket. In SNA, the value (binary 1) of the
end bracket indicator in the request header (RR) of

X-6 TCAM Application Programming

the first request of the last chain of a bracket. The
value denotes the end of the bracket. Contrast with
begin bracket. See also bracket.

end-of-address (EOA) character. A character
that must be placed in a message if the system is to
route that message to several destinations. The
character must immediately follow the last
destination coded in the message header.

end-to-end session. In TCAM a logical
connection in which an affinity-based routing
relationship has been established between a source
and a destination. Either the source or destination
can be either a logical unit (LU) or an application
program. End-to-end sessions require routing by
key.

end user. The ultimate source or destination of
application data flowing through an SNA network.
An end user may be an application program or a
terminal operator.

environment record. A checkpoint record of the
total TCAM system at a single point in time. See
checkpoint request record, checkpoint/restart service
facility, control record, incident record.

EOA. End-of-address. See end-of-address character.

error record. Five bytes assigned to each message
processed by a message handler. These bytes
indicate physical or logical errors that have
occurred during transmission or during subsequent
processing or queuing of the message. In addition, a
message error record may be the created when a
session cannot be established. Error records are
checked by error-handling macro instructions in the
in-message and out-message subgroups of a message
handler. Synonymous with message error record.

error-recovery procedures. A set of internal
TCAM routines that attempt to recover from
transmission errors.

exception request. In SNA, a request that
replaces another message unit in which an error has
been detected.

exception response. In SNA, a value in the
form-of-response requested field of a request header.
The receiver is requested to return a response only
if the request is unacceptable as received or cannot
be processed. That is, a negative response, but not
a positive response, may be returned. Contrast with
definite response, no response. See negative response.

expedited flow. In SNA, a data flow designated in
the transmission header that is used to carry

network control, session control, and various data
flow control request/response units (RUs). The
expedited flow is separate from the normal flow
(which carries primarily end-user data) and can be
used for commands that affect the normal flow on
the path. Contrast with normal flow. See also
isolated pacing response.

extended lock mode. A type of lock mode in
which an external logical unit (LU) remains in lock
mode for the duration of several inquiry/reply
cycles. Contrast with message lock mode. See lock
mode.

extended network. A network that includes two
or more TCAM systems using extended networking
facilities.

extended networking. A TCAM function that
uses a collection of TCAM macro instructions,
system service programs, and message-handler
facilities to simplify TCAM system definition,
management, and error recovery in a network with
two or more TCAM systems.

extended operator command. An operator
command directed to the extended operator control
system service program. Synonymous with extended
operator control command.

extended operator control. The function of a
particular system service program that processes a
set of extended operator commands. These
commands are not required in order to control a
TCAM system, but are useful in some environments.
The extended operator control system service
program is required if the message control program
(MCP) uses one or more of the following functions:
(a) extended networking, (b) online retrieval system
service program, or (c) automatic
purge/ copy/redirect.

extended operator contrql command. Synonym
for extended operator command.

extended operator control station. A system
console, external logical unit (LU), or application
program that is authorized to enter extended
operator commands. See basic operator control
station, extended primary operator control station,
extended secondary operator control station.

extended primary operator control station. An
extended operator control station that receives the
extended operator control startup and closedown
messages; responses to extended operator commands
entered from it; responses to extended operator
commands that successfully modify the TCAM
system; and, optionally, the online retrieval system
service program startup and c1osedown messages (if

online retrieval is part of the TCAM system). See
basic primary operator control station, basic
secondary operator control station, extended
secondary operator control station.

extended secondary operator control station.
An extended operator control station that enters
extended operator commands and receives the
responses made to those commands. See basic
primary operator control station, basic secondary
operator control station, extended primary operator
control station.

extended route. In TCAM extended networking, a
series of one or more routes that involves an
intermedi..1te TCAM node.

external LU. A logical unit (LU) that
communicates with a TCAM message control
program (MCP) through VTAM. Each external LU
is defined to the MCP with a TERMINAL macro
instruction.

FHP. Fixed header prefix.

first speaker. In SNA, the LU-LU half-session
defined at session activation as (a) able to begin a
bracket without requesting permission from the
other LU-LU half-session to do so, and (b) winning
contention if both half-sessions attempt to begin a
bracket simultaneously. Contrast with bidder. See
also bracket protocol.

fixed header prefix (FHP). An optional control
block that provides a place to keep message-related
information needed by certain optional TCAM
functions.

flush closedown. A c1osedown of TCAM during
which incoming message traffic is suspended and
queued outgoing messages are sent to their
destinations ("flushed" from the message queues)
before c1osedown is completed. Contrast with quick
closedown.

FM. Function management.

FMD. Function management data.

FMD services layer. In SNA, the layer within a
half-session that routes function management data
(FMD) requests and responses to particular network
addressable unit (NAU) services manager
components and that provides session network
services or session presentation services, depending
on the type of session.

function management data (FMD) services. A
general term for session network services and

Glossary X-7

session presentation services, both of which process
FMD requests and responses.

function management (FM) header. In SNA,
one or more headers, optionally present in the
leading request units (RU) of an RU chain, that
allow one half-session in an LU-LU session to: (a)
select a destination (for example, a program or a
device) as the session partner and control the way
that the end-user data it sends is handled at the
destination, (b) change the destination or the
characteristics of the data during the session, and
(c) transmit between session partners status or user
information about the destination (for example, a
program or a device).

function management (FM) profile. In SNA, a
specification of various data flow control protocols
(such as request unit chains and data flow control
requests) and function management data (FMD)
options (such as use of FM headers, compression,
and alternate codes) supported for a particular
session. Each function management profile is
identified by a number.

functional macro instruction. A TCAM macro
instruction that performs the specific operations
required for messages directed to the message
handler. Contrast with delimiter macro instruction.

group entry. A terminal-table entry associated
with a group of logical units (LUs).

group of logical units (LUs). In TCAM, a set of
external LU definitions that are associated with the
same group entry. See also group entry.

half-session. In SNA, a component that provides
FMD services, data flow control, and transmission
control for one of the sessions of a network
addressable unit. See primary half-session,
secondary half-session.

header. That portion of a message containing
control information for the message; a hea.der might
contain one or more destination fields, the name of
the originating station, an input sequence number, a
character string indicating the type of message, and
a priority level for the message. The message
header is operated on by macro instructions in the
inheader and outheader subgroups of the message
handler. See message header.

header buffer. A buffer containing either all or
the first part of a message header. Contrast with
text buffer.

host computer. Synonym for host processor.

X-8 TeAM Application Programming

host logical unit (LU). An SNA logical unit (LU)
located in a host processor, for example, a VTAM
application program. See TeAM host logical unit
(LU).

host node. In SNA, a subarea node that contains a
system services control point (SSCP).

host processor. The controlling processor with its
operating system, access methods, and application
programs. A system services control point is
located in a host processor. Synonymous with host
computer.

1MB .. Internodal message handler.

immediate-request mode. An operational mode
in which the sender, after sending a
definite-response request chain on a given flow,
stops sending request units on the flow until the
chain has been responded to. Contrast with
delayed-request mode. See immediate-response mode.

immediate-response mode. An operational mode
in which the receiver responds to request units on a
given normal flow in the order it receives them; that
is, in a first-in, first-out sequence. Contrast with
delayed-response mode. See immediate-request mode.

inactive. In VT AM, pertai.ning to a resource that
has never been activated or has been deactivated by
a VTAM operator command. Contrast with active.

inblock subgroup. The part of a message handler
(MH) incoming group that, if used, precedes the
inheader subgroup and blocks several physical
messages into a longer, logical message or unblocks
a physical message into a shorter, logical message.

inbuffer subgroup. The part of a message handler
(MH) incoming group that operates on each segment
of an incoming message.

incident record. A checkpoint record that logs a
change in external logical unit (LU) or application
program status, and in the contents of an option
field that occurred since the last envi.ronment
record was taken. It is used to update the
information contained in environment records at
restart after a closedown or system failure. See
checkpoint request record, control record,
environment record.

incoming group. That portion of a message
handler that is designed to handle incoming
messages for the message control program (MCP).
Contrast with outgoing group.

J

incoming message. A message sent from an
external logical unit (LU) or application program to
the message control program (MCP).

inheader subgroup. The part of a message
handler (MH) incoming group that operates on all
or part of an incoming message header.

initial chaining value (ICV). An eight-byte,
pseudo-random number used to verify that both ends
of a session with cryptography have the same
session cryptography key. The initial chaining
value is also used as input to the Data Encryption
Standard (DES) algorithm to encipher or decipher
data in a session with cryptography.

initiation. Synonym for LU-LU session initiation.
See also session-initiation request.

initiator. The component of TCAM that is
executed as the job-step task. The initiator starts,
monitors, and restarts the message control program
(MCP), TCAM system service programs, and
user-supplied system service programs. It can also
display status information at the system console.

inmessage subgroup. The part of a message
handler (MH) incoming group that specifies actions
to be taken after a complete message has arrived at
the message control program (MCP).

input data set. A data set that contains all
messages or records sent to an application program
from a single process queue. Contrast with output
data set.

inquiry/reply. A TCAM application in which a
device message handler receives a message from an
external logical unit (LU) and then routes it to an
application program that processes the message and
generates a reply. The reply is routed back to the
inquiring external LU.

intercepted resource. An external logical unit
(LU) to which no messages may be sent for a
specified time interval or until an operator
command or an application-program macro
instruction is issued to release messages. An
intercepted resource can enter messages, but
messages destined for it are not sent.

intermediate function. In SNA, a path control
capability within a subarea node that receives and
routes path information units that neither originate
in nor are destined for the network addressable
units in that subarea node.

intermediate TeAM node. In TCAM extended
networking, a TCAM node that processes messages
flowing along the extended route but does not

provide the queuing for the originating or
destination resources for those messages.
Processing by an intermediate TCAM node includes
processing by the incoming group of the internodal
message handler, queuing of each message on the
internodal destination queue for the next TCAM
node on its extended route, and processing by the
outgoing group of the internodal message handler
(IMH). See TeAM node.

internodal awareness. In TCAM extended
networking, a function used by TCAM systems to
share information about each other. This
information includes the status of TCAM systems,
the status of application programs in TCAM
systems, and the contents of selected key-table
entries. This function is provided by node path
system service programs in the various TCAM
systems that communicate with each other.

internodal destination queue. In TCAM
extended networking, a destination queue for an
external logical unit (LU) that is a partner in a
utility session.

internodal message handler (IMH). In TCAM
extended networking, a message handler that
processes messages flowing on utility sessions.

internodal sequence number synchronization.
In TCAM extended networking, the function of a
particular system service program that operates in
conjunction with the internodal message handler.
Internodal sequence number synchronization is used
to request retransmission from any TCAM node of
sequence-numbered messages not received on that
utility session and retransmit sequence-numbered
messages flowing on a utility session when
requested to do so by another TCAM node or an
extended operator command.

internodal sequence prefix. In TCAM extended
networking, a control block that is used to contain
sequence-number information for messages flowing
on utility sessions.

invariant routing. Message routing in which
messages from the same source are always sent to
the same destination. See affinity-based routing,
transaction-based routing. See also routing by
destination, routing by key.

key. A character string that matches a definition
in the key table. This key identifies the destination
of a message or special processing to be done on
that message. See also key table.

key table. A main-storage table of keys and their
definitions, which contain information on routing

Glossary X-9

and special processing to be done on a message. See
also key.

layer. In SNA, a grouping of related functions that
are logically separate from the functions in other
layers; the implementation of the functions in one
layer can be changed without affecting other layers.
See data flow control layer, FMD services layer.

LCB. Line control block.

level 1 data flow. In SNA, a data flow (within a
single-domain network) in which each message's
origin and destination logical units (LUs) reside in
the same domain.

level 2 data flow. In TCAM extended networking,
a data flow on an extended route in which each
message enters the TCAM node that provides
queuing for the originating resource, another
TCAM node that provides queuing for the
destination resource, and one or more intermediate
TCAM nodes.

level 2 + data flow. In TCAM extended
networking, a data flow on an extended route in
which each message enters both the TCAM node
that provides queuing for the originating resource
and the TCAM node that provides queuing for the
destination resource, but does not pass through any
intermediate TCAM nodes.

level 3 data flow. In SNA, a data flow (within a
multiple-domain network) in which each message's
origin and destination logical units (LUs) reside in
different domains.

line. Any physical medium, such as a wire or
telephone circuit, that connects one or more
stations to a communication control unit or
connects one communications control unit with
another. See also link.

line control block (LCB). A control block used
for scheduling, sending, and receiving.

link. In SNA, the combination of the link
connection and the link stations joining network
nodes; a serial-by-bit connection under the control
of SDLC. A link connection is a physical medium of
transmission, such as a telephone wire or a
microwave beam. A link includes a physical
medium of transmission (a line), a protocol (SDLC),
and associated communication devices and
programming; it is both logical and physical.

load balancing. In TCAM extended networking,
the technique for balancing the message flow
between any pair of TCAM nodes by assigning

X-IO TCAM Application Programming

different paths to different messages flowing
between them.

lock mode. A mode in which an external logical
unit (LU) entering an inquiry message for an
application program is ensured that the next
message it receives is a reply from the application
program. See conversational mode, extended lock
mode, message lock mode.

log. A collection of messages or message segments
placed on a secondary-storage device for accounting
or data collection purposes.

log data set. A data set consisting of the messages
or message segments recorded on a
secondary-storage medium by the TCAM logging
facility.

logging service facility. A TCAM service facility
that selectively causes incoming or outgoing
messages or message segments to be copied onto
tape or disk. The log produced by the logging
service facility provides a record of message traffic
through the message control program (MCP).

logical message. A user-defined message,
consisting of one or more related units of data in a
transmission, ending with an end-of-message code.
Contrast with physical message.

logical unit (LU). In SNA, a port through which
an end user gains access to the SNA network to
communicate with another end user and through
which the end user uses the functions provided by
the SSCP. An LU can have at least two
sessions--one with the SSCP, and one with another
LU--and may be able to have many sessions with
other LUs. Contrast with physical unit. See host
LU, auxiliary LU, primary logical unit, secondary
logical unit. See also system services control point.

logical unit (LU) services. In SNA, capabilities
in a logical unit to: (a) receive requests from an
end user and, in turn, issue requests to perform the
requested functions, typically for session initiation;
(b) receive requests from the SSCP to activate
LU-LU sessions through Bind Session requests; and
(c) provide session presentation and other services
for LU-LU sessions.

logon mode. In VTAM, a set of session parameters
specified in a logon mode table entry for
communication with a logical unit. See also session
parameters. Synonymous with bind image.

logon mode table. In VTAM, a set of entries for
one or more logon modes. Each logon mode is
identified by a logon mode name. Synonymous with
bind image table.

J

log type entry. A terminal-table entry associated
with a queue on which complete messages reside
while awaiting transfer by the logging service
facility_ A logtype entry is not needed if message
segments only are to be logged_

LU_ Logical unit_

LU-LU half-session. A half-session in which the
session involved is an LU-LU session_

LU-LU session. In SNA, a session between two
logical units (LUs) in an SNA network. It provides
communication between two end users, or between
an end user and an LU services component.

LU-LU session initiation. The process that
begins with a session-initiation request from a
logical unit (LU) to a system services control point
and culminates in activation of an LU-LtJ session.
See also session activation.

LU-LU session termination. The process that
begins with either a session-termination request
from a logical unit to a system services control
point, or an Unbind request from one logical unit to
another, and that culminates in deactivation of an
LU-LU session_ See also session deactivation.

LU-LU session type. The classification of an
LU-LU session in terms of the specific subset of
SNA protocols and options required by the logical
units for that session. LU-LU session types 0, 1, 2,
3, 4, 6, and 7 are defined in SNA.

LU services. See logical unit services.

LU services manager. An SNA component that
provides a logical unit (LU) with network services
and end-user to end-user services_ The LU services
manager provides services for all half-sessions
within the LU_

main storage unit. Synonym for buffer unit.

mandatory cryptographic session. A
cryptographic session in which all outgoing data is
enciphered and all incoming data is deciphered.
Contrast with selective cryptographic session.

MCP. Message control program.

MCP definition. The collection of macro-language
statements by which the network is defined to
TCAM in the resource-definition section of the
message control program (MCP).

message. In TCAM, a unit of data transmitted
from one point to another. See logical message,
physical message.

message control program (MCP). A general
term referring to any specific implementation of
TCAM, including initialization and termination
routines, resource management routines, message
handling routines, and service facilities.

message error record. Synonym for error record.

message handler (MH). A sequence of
user-specified macro instructions and basic
assembler language instructions that invoke
routines that examine and process control
information in message headers and perform
functions necessary to prepare messages for
forwarding to their destinations. See application
message handler, device message han.dler, internodal
message handler. See also delimiter maClO
instruction, functional macro instruction.

message header. The leading part of a message
that contains information such as the source or
destination code of the message, the message
priority, and the type of message. See also header.

message lock mode. A type of lock mode in
which an external logical unit (LU) is in lock mode
for the duration of a single inquiry and reply.
Contrast with extended lock mode. See also station
lock.

message priority. The order in which messages in
a destination queue are transmitted to a
destination. Higher-priority messages are forwarded
before lower-priority messages. See also route
transmission priority, station transmission priority.

message queue data set. A TCAM data set that
contains one or more destination queues. A
message queue data set contains messages that have
been processed by the incoming group of a message
handler and are waiting for TCAM to dequeue them,
route them through an outgoing group of a message
handler, and send them to their destinations. Up to
three message queue data sets (one in main storage,
one on reusable disk, and one on nonreusable disk)
may be specified for a TCAM message control
program.

message routing. A message control program
(MCP) function that determines the correct
destination for each message received by the MCP
and places the message on the appropriate
destination queue. See affinity-based routing,
invariant routing, transaction-based routing. See also
routing by destination, routing by key.

message segment. The portion of a message that
is contained in a single request unit (RU).

Glossary X-ll

message text. Synonym for text.

message unit. In SNA, a general term for the unit
of data processed by any layer; for example, a basic
information unit, a path information unit, or a
request/response unit (RU).

MH. Message handler.

mode name. The name of an entry in the logon
mode table.

multiple-domain network. A network with more
than one system services control point (SSCP).
Contrast with single-domain network.

Multiple Virtual Storage (MVS). An IBM
program product whose full name is the Operating
System/Virtual Storage (OS/VS) with Multiple
Virtual Storage/System Product for System/370. It
is a software operating system controlling the
execution of programs.

MVS. Multiple Virtual Storage operating system.

NAV. Network addressable unit.

NAV services. In SNA, the functions provided by
the NAU services manager layer and the FMD
services layer.

NCP. (1) Advanced Communications Function for
the Network Control Program. An IBM program
product that provides communication controller
support for single-domain, multiple-domain, and
interconnected network capability. (2) A general
term for a program that is generated by the user
from a library of IBM-supplied modules and controls
the operation of a communication controller.

negative response. In SNA, a response indicating
that a request did not arrive successfully or. was not
processed successfully by the receiver. Contrast
with positive response. See exception response.

negotiable bind. In SNA, a function that allows
two LV-LU half-sessions to negotiate the
parameters of a session when the session is being
activated.

network. In data processing, a user application
network. See public network, SNA network, user
application network.

network address. In SNA, an address, consisting
of subarea and element fields, that identifies a link,
a link station, or a network addressable unit (NAU).
Subarea nodes use network addresses; peripheral
nodes use local addresses. The boundary function
in the subarea node to which a peripheral node is

X-12 TeAM Application Programming

attached transforms local addresses to network
addresses and vice versa. See local address, TCAM
network address. See also network name.

network addressable unit. In SNA, a logical unit
(LU), a physical unit (PU), or a system services
control point (SSCP).

network control program. A program, generated
by the user from a library of IBM-supplied modules,
that controls the operation of a communication
controller.

Network Control Program (NCP). An IBM
program product that provides communication
controller support for single-domain,
multiple-domain, and interconnected network
capability. Officially, the Advanced
Communications Function for the Network Control
Program.

network operator. In SNA, a person or program
responsible for controlling the operation of all or
part of a network.

network services procedure error (NSPE). A
request unit that is sent by a system services
control point (SSCP) to a logical unit (LU) when a
procedure requested by that LV has failed.

Network Terminal Option (NTO). An IBM
program product that allows certain non-SNA
devices to participate in sessions with SNA
application programs in the host processor. NTO
converts non-SNA protocol to SNA protocol when
data is sent to the host from a non-SNA device and
reconverts SNA protocol to non-SNA protocol when
data is sent back to the device.

networking. In a multiple-domain network,
communication between domains. See extended
networking.

NIB. Node initialization block.

no response. In SNA, a value in the
form-of-response-requested field of the request
header (RH) indicating that no response is to be
returned to the request, whether or not the request
is received and processed successfully. Contrast
with definite response, exception response.

node. In SNA, a junction point in a network that
contains a physical unit (PU). A node contains
network addressable units, path control
components, and may contain boundary function.
See TeAM node.

node identifier. That portion of the TCAM
network address of a resource that indicates which

L

TCAM node provides the message queuing for that
resource. See resource identifier.

node initialization block (NIB). In VTAM, a
control block associated with a particular node or
session that contains information used by the
VTAM application program to identify the node or
session and to indicate how communication requests
on a session are to be handled by VT AM.

node table. For TCAM extended networking, a
main-storage table that associates each node
identifier with internodal destination queues.

non-SNA terminal. A terminal that supports
non-SNA protocols; for example, channel-attached
3270 Information Display System or devices
supported by Network Terminal Option (NTO) that
use binary synchronous protocols. Contrast with
SNA terminal.

normal flow. In SNA, a data flow that is used for
most requests and responses. The expedited flow is
independent of and used to control the normal flow.
Requests and responses on a normal or expedited
flow are processed sequentially within the path, but
the expedited flow traffic may be moved ahead of
the normal flow traffic within the path. Contrast
with expedited flow.

NSPE. Network services procedure error.

NTO. Network Terminal Option.

OEF. Origin element field.

online retrieval. The function of a system service
program that allows system operators to retrieve
disk-queued messages based upon origin or
destination, time of entry, or input or output
sequence number.

OPCE. Operator control element.

open subroutine. A subroutine of which a replica
must be inserted at each place in a computer
program at which the subroutine is used. Contrast
with closed routine.

operator command. Synonym for operator control
command.

operator control. Synonym for basic operator
control, extended operator control.

operator control command. A command entered
from an operator control station to examine or alter
the status of the TCAM system during execution of
TCAM.

operator control element (OPCE). A unit
assigned to each operator control command that is
used by the operator control routines to process the
command.

operator control station. Synonym for basic
operator control station, basic primary operator
control station, basic secondary operator control
station, extended operator control station, extended
primary operator control station, extended secondary
operator control station.

option field. A storage area containing data
relating to a particular external logical unit (LU) or
application program. Certain message-handler
routines that need origin- or destination-related
data to perform their functions have access to data
in an option field. User-written message-handler
exit routines also have access to data in an option
field.

option table. A table that contains option fields of
user-provided information, using certain TCAM
macro instructions, related to external logical units
(LUs) or application programs.

origin. An external logical unit (LU) or
application program from which a message or other
data originates. See also destination.

outbuffer subgroup. The part of a message
handler (MH) outgoing group that operates on each
segment of an outgoing message.

outgoing group. That portion of the message
handler that handles messages sent from the
message control program (MCP) to any external
logical units (LUs) or application programs.
Contrast with incoming group.

outheader subgroup. The part of a message
handler (MH) outgoing group that operates on all OJ

part of an outgoing message header.

outmessage subgroup. The part of a message
handler (MH) outgoing group that specifies actions
to be taken after the entire message has been sent
to an external logical unit (LU), or when special
processing or error conditions are detected.

output data set. A data set that contains the
messages or records returned from an application
program to the message control program by a
process entry in the terminal table. Contrast with
input data set.

path switch. A field in the option table that
determines whether a given subgroup is to be
executed for a message.

Glossary X-13

PCB. Process control block.

physical message. The data entered on a link
during a complete transmission sequence, from the
first byte of data to the end of the transmission
character. Contrast with logical message. In SNA,
synonym for R U chain.

PLU. Primary logical unit.

POF restart. Point-of-failure restart.

point-of-failure (POF) restart. A type of warm
restart of the message control program (MCP) that
uses incident records to update an environment
record when the system is restarted following
closedown or system failure. Contrast with
point-<>f-last-environment restart. See cold restart,
warm restart.

point-of-Iast-environment (POLE) restart. A
type of warm restart of the message control program
(MCP) that ignores incident records when the
system is restarted following closedown or system
failure. Contrast with point-of-failure restart. See
cold restart, warm restart.

POLE restart. Point-of-last-environment restart.

positive response. In SNA. a response unit that
indicates that a request was successfully received
and processed. Contrast with exception response,
negative response.

prefix. Synonym for buffer prefix.

presentation services. Synonym for session
presentation services.

primary end of a session. Deprecated term for
primary half-session.

primary half-session. The half-session that sends
the session-activation request. Contrast with
secondary half-session. See also primary logical unit.

primary logical ullit (PLU). In SNA, a logical
unit that contains the primary half-session for a
particular LU-LU session. A PLU issues a Bind
Session command to establish an LU-LU session.
Contrast with secondary logical unit. See also logical
unit.

primary operator control station. See basic
primary operator control station, extended primary
operator control station.

priority. Synonym for message priority, station
transmission priority.

X-14 TCAM Application Programming

process control block (PCB). A message control
program (MCP) data area that is necessary for
communication between the MCP and an
application program.

process entry. A terminal-table entry that
represents an application program. One entry must
be defined for each queue to which an application
program can issue a GET or READ macro
instruction, and at least one entry must be defined
for all PUT and WRITE macro instructions issued
from the same application program.

process queue. A destination queue for an
application program. See destination queue.

protocol. In SNA, the meanings of, and the
sequencing rules for, requests and responses used
for managing the network, transferring data, and
synchronizing the states of network components.
SDLC, BSC, and start-stop (SS) are link protocols.

public network. A network established and
operated by communication common carriers or
telecommunication Administrations for the specific
purpose of providing circuit-switched,
packet-switched, and leased-circuit services to the
public. Contrast with user application network.

QCB. Queue control block.

queue. (1) A line or list formed by items in a
system waiting for service; for example, tasks to be
performed or messages to be transmitted in a
message-routing system. (2) To arrange in, or form
a queue. See also queuing.

queue control block (QCB). A control block that
is used to regulate the sequential use of a
programmer-defined facility among requesting tasks.

queuing. The programming technique used to
handle messages that are awaiting delivery. See
also queue.

quick closedown. A c1osedown in which message
traffic is stopped as soon as any messages in the
process of being sent or received at the time the
request for closedown is received are transmitted.
Contrast with flush closedown.

read-ahead queue. An area of main storage from
which an application program obtains work units in
advance of their being requested by the application
program.

record. A collection of related data or words,
treated as a unit; for example, in stock control, each
invoice could constitute one record.

J

reply. (1) In TCAM, response to an inquiry. (2) In
SNA, a request unit sent only in reaction to a
received request unit. For example, Quiesce
Complete is the reply sent after receipt of Quiesce
at End of Chain.

request. In SNA, a message unit that signals
initiation of a particular action or protocol. For
example, Initiate Self is a request for activation of
an LU-LU session.

request header (RH). In SNA, an RU header that
precedes a request unit.

request/response header (RH). In SNA, control
information preceding a request/response unit (RU)
that specifies the type of RU (request unit or
response unit) and contains control information
associated with that RU. See also request/response
unit, connection point manager.

request/response unit (RU). In SNA, a general
term for a request unit or a response unit.

request parameter list (RPL). In VT AM, a
control block that contains the parameters
necessary for processing a request for data transfer,
for establishing or terminating a session, or for
some other operation.

request unit (RU). In SNA, a message unit that
contains control information such as a request code
or function management (FM) headers, end-user
data. or both.

resource identifier. That portion of the TCAM
network address of a resource that uniquely
identifies the resource within the message control
program (MCP) providing the message queuing for
that resource. See also node identifier.

resource management block (RMB). A
collection of control blocks all of which are
associated with a particular external logical unit
(LU). The RMB contains a line control block
(LCB), a station control block (SCB), a
savearea/workarea (SAU), and a request parameter
list (RPL).

resource table. In TCAM extended networking, a
main-storage table that associates each resource
identifier with an external logical unit (LU) or
application program.

response. In SNA, a message unit that
acknowledges receipt of a request. A response
consists of a response header, a response unit, or
both.

response header (RH). A header, optionally
followed by a response unit, that indicates whether
the response is positive or negative and may contain
a pacing response. See also isolated pacing
response, negative response, pacing response, positive
response.

response unit (RU). In SNA, a message unit that
acknowledges a request unit; it may contain prefix
information received in a request unit. If it is
positive, the response unit may contain additional
information (such as session parameters in response
to a Bind Session request). If it is negative, the
response unit may contain sense data that defines
the exception condition.

RH. Request/response header.

RMB. Resource management block.

routing. Synonym for message routing.

routing affinity. A temporary relationship
between a source and a destination.

routing by destination. Message routing based
upon a destination name. Contrast with routing by
key.

routing by key. Message routing based upon a
key, which matches a definition in the key table.
The key identifies the destination of a message or
special processing to be done on that message.
Contrast with routing by destination.

routing key. Synonym for key.

routing key table. Synonym for key table.

RPL. Request parameter list.

RU. Request/response unit.

RU chain. In SNA, a set of related request units
(RU) that are consecutively transmitted on a
particular normal or expedited data flow. The
request unit (RU) chain is the unit of recovery. If
one of the request units (RUs) in the chain cannot
be processed, the entire chain is discarded.

save/restore message queues (SMQ). The
function of a system service program that saves
unsent messages on sequential storage devicee and
restores them to an altered message control
program (MCP) following a cold restart. This
program also assists in recovery when the message
queue data set on nonreusable disk becomes full.
The program may be used to obtain an online dump
of unsent messages from one or more destination
queues on disk.

Glossary X-15

scan pointer. A pointer that refers to the proper
header field when the macro instruction that acts
upon that field is given control. Some user-specified
macro instructions use this pointer to locate the
field on which they act and automatically move the
pointer to the next field before passing control to
the next macro instruction. The user must be aware
of positioning of the scan pointer when designing
the message handler.

SDLC. Synchronous data link control.

secondary end of a session. Synonym for
secondary half-session.

secondary half-session. In SNA, the half-session
that receives the session-activation request.
Contrast with primary half-session. See also
secondary logical unit.

secondary logical unit (SLU). In SNA, the
logical unit that contains the secondary half-session
for a particular LU-LU session. Contrast with
primary logical unit.

secondary operator control station. Synonym
for basic secondary operator control station, extended
secondary operator control station.

segment. A portion of a message that can be
contained in a buffer. See BIU segment.

selective cryptographic session. A cryptographic
session in which an application program is allowed
to specify the request units to be enciphered.
Contrast with mandatory cryptographic session.

service facility. An auxiliary routine that runs
under control of the message control program
(MCP) and is invoked when needed by user code in
the MCP. on an as-needed basis. Contrast with
system service program, utility.

session. In SNA, a logical connection between two
network addressable units that can be activated,
tailored to provide various protocols, and
deactivated, as requested. The session-activation
request and response can determine options relating
to the rate and currency of data exchange, the
control of contention and error recovery, and the
characteristics of the data stream. Sessions
compete for network resources such as the links
within the path control network. See half-session,
LU-LU session. See also LU-LU session type, PU-PU
flow.

session activation. In SNA, the process of
exchanging a session activation request and a
positive response between network addressable

X-16 TCAM Application Programming

units. Contrast with session deactivation. See also
start.

session-activation request. In SNA, a request
that activates a session between two network
addressable units and specifies session parameters
that control various protocols during session
activity. Contrast with session deactivation request.

session control. (1) One of the components of
transmission control. Session control is used to
purge data flowing in a session after an
unrecoverable error occurs, to resynchronize the
data flow after such an error, and to perform
cryptographic verification. (2) A request/response
unit (RU) category used for requests and responses
exchanged between the session control components
of a session and for session activation or
deactivation requests or responses.

session count. (1) The number of currently active
LU-LU sessions for a particular logical unit. (2)
The number of currently active sessions for a
particular virtual route.

session deactivation. The process of exchanging
a session-deactivation request between two network
addressable units. Contrast with session activation.
See also stop.

session deactivation request. A request that
deactivates a session between two network
addressable units. Contrast with session activation
request.

session end. Synonym for half-session.

session information block (SIB). A control block
that contains information about a particular SNA
session.

session initiation. Synonym for LU-LU session
initiation. See also LU-LU session termination.

session-initiation request. An initiate or logon
request from a logical unit (LU) to a systems
services control point (SSCP) so that an LU-LU
session can be activated.

session parameters. In SNA, the parameters that
specify or constrain the protocols (such as bracket
protocol) for a session between two network
addressable units. See also logon mode.

session presentation services. A component of
the function management data (FMD) services layer
that provides, within LU-LU sessions, services for
the application programmer or terminal operator
such as formatting data to be displayed or printed.

session sequence number. In SNA, a
sequentially incremented identifier that is assigned
by data flow control to each request unit on a
particular normal flow of a session, typically an
LU-LU session, and is checked by transmission
control. The identifier is carried in the
transmission header of the path information unit
and is returned in the transmission header of any
associated response.

session termination. Synonym for LV-LV session
termination.

SIB. Session information block.

single-domain network. A network with one
system services control point (SSCP). Contrast with
multiple-domain network.

single entry. A terminal-table entry associated
with a single external logical unit (LU) or
application program. Contrast with distribution
entry.

SLU. Secondary logical unit.

SMQ. Save/restore message queues.

SNA. Systems Network Architecture.

SNA network. The part of a user-application
network that conforms to the formats and protocols
of Systems Network Architecture. It makes possible
reliable transfer of data among end users and
provides protocols for controlling the resources of
various network configurations. An SNA network
consists of network addressable units, boundary
function components, and the pat.h control network.

SNA node. A node that uses SNA protocols.

SNA session. A logical connection, established
bet.ween two network addressable units (NAUs), to
allow them to communicate. The session is
uniquely identified by a pair of network addresses
identifying the origin and destination NAUs of any
transmissions exchanged during the session. See
LV-LV session, pseudo LV-LV session.

SNA terminal. A terminal that supports SNA
protocols. Contrast with non-SNA terminal.

SSCP. System services control point.

SSP. (1) In TCAM, a system service program.
(2) Advanced Communications Function for the
Systems Support Programs. An IBM product
program made up of a collection of utilities and
small programs. SSP is required for operation of
the NCP.

start. For external logical units (LUs) in TCAM,
the state in which an LU is able to enter an LU-LU
seSSIOn.

start-stop (SS) transmission. Asynchronous
transmission in which a group of bits is preceded by
a start bit that prepares the receiving mechanism
for the reception and registration of a character and
is followed by at least one stop bit that enables the
receiving mechanism to come to an idle condition
pending the reception of the next character.
Contrast with binary synchronous transmission,
synchronous data link control.

startup/restart message generation facility. A
TCAM service facility that generates and sends
tailored messages to external logical units (LUs)
when the message control program (MCP) is started
or restarted.

station. One or more terminals or devices at a
particular location; for example, an external logical
unit (LU).

station lock. A facility that maintains a
connection between a station and an application
program to ensure that the next message received
by the station, after it enters an inquiry message, is
a reply to that inquiry. See also extended lock mode,
lock mode, message lock mode.

station transmission priority. The relative order
of the host sending and receiving messages. Host
sending has priority over host receiving. See
message priority.

stop. In TCAM, the state in which a logical unit
(LU) is not able to enter an LU-LU session. This
state also terminates any existing LU-LU sessions
involving that LU.

symbol. In assembler language, a character or
character string that represents addresses or
arbitrary values. A symbol must meet the following
requirements: (a) A symbol may consist of no more
than eight characters, the first character being a
letter (A through Z, $, #, or @) and the other
characters being either letters or digits. (b) No
blanks or special characters are allowed in a
symbol.

synchronous data link control (SDLC). A
discipline conforming to subsets of the Advanced
Data Communication Control Procedure (ADDCP)
of the American National Standards Institute and
High-Level Data Link Control (HDLC) of the
International Standards Organization, for managing
synchronous, code-transparent, serial-by-bit
information transfer over a link connection.

Glossary X-17

Transmission exchanges may be duplex or
half-duplex over switched or nonswitched links.
The configuration of the link connection may be
point-to-point, multipoint, or loop. Contrast with
binary synchronous transmission, start-stop
transmission.

system service program (SSP). An IBM-supplied
or user-supplied program that performs
system-oriented auxiliary functions in support of the
MCP. System service programs run under the
control of the initiator as attached subtasks.
Contrast with service facility, utility. See also basic
operator control, extended operator control, online
retrieval, save/restore message queues, internodal
awareness, internodal sequence number
synchronization.

Note: The abbreviation SSP has two references. See
also SSP.

system services control point (SSCP). In SNA, a
focal point within an SNA network for managing
the configuration, coordinating network operator
and problem determination requests, and providing
directory support and other session services for end
users of the network. Multiple SSCPs, cooperating
as peers, can divide the network into domains of
control, with each SSCP having a hierarchical
control relationship to the physical units and
logical units within its domain.

Systems Network Architecture (SNA). The
description of the logical structure, formats,
protocols, and operational sequences for
transmitting information units through and
controlling the configuration and operation of
networks.

TCAM. Advanced Communications Function for
TCAM. An IBM program product that provides
queued message handling. TCAM, Versions 1 and 2,
are telecommunications access methods, but TCAM,
Version 3, is a message handling subsystem.

TCAM application program. A program that is
user written and interfaces with the message
control program (MCP) using READ, WRITE,
CHECK, GET, or PUT macro instructions.

TCAM destination address field (TDAF). A field
in the fixed header prefix of a message that contains
the TCAM network address of the destination of the
message. Contrast with TCAM origin address field.

TCAM host logical unit (LU). A
TCAM-generated logical unit (LU) that is the access
method control block (ACB) interface to VTAM, for
example, PROGID. External LUs must establish a

X-IS TCAM Application Programming

session with a TCAM host LU in order to use
TCAM services. See host logical unit (LU).

TCAM network address. A unique identifier for
an application program or an external logical unit
(LU) in an extended networking environment. A
TCAM network address consists of a node identifier
and a resource identifier. See also node identifier,
resource identifier.

TCAM node. A message control program (MCP) to
which there has been assigned a node identifier.
See also node identifier.

TCAM origin address field (TOAF). A field in
the fixed header prefix of a message that contains
the TCAM network address of the originator of the
message. Contrast with TCAM destination address
field.

TCAM subtask table (TST). A table containing
entries for programs eligible to run as initiator
subtasks.

TCAM system. A subsystem controlled by a single
message control program (MCP) with a collection of
external logical units (LUs) and application
programs.

TDAF. TCAM destination address field.

terminal table. In TCAM, an ordered collection of
information about each origin or destination of
messages in the network. See also terminal-table
entry.

terminal-table entry (TTE). The information in
the terminal table that identifies each origin or
destination of messages in the network. See cascade
entry, logtype entry, process entry, single entry.

termination. Synonym for LU-Lf; session
termination.

text. That part of the message that is not the
header or control information.

text buffer. A buffer containing any segment of a
message other than the first segment, which is
contained in a header buffer. Contrast with header
buffer.

TOAF. TCAM origin address field.

transaction-based routing. Message routing in
which messages are routed to their destinations
individually, according to one or more destination
names or routing keys entered in the message
header by the originator. See affinity-based routing,

invariant routing. See also routing by destination,
routing by key.

transmission category. In TCAM extended
networking, utility sessions. All messages in the
same transmission category have similar
characteristics and should be handled similarly.
For example, messages flowing in an inquiry/reply
application and messages flowing in a high-volume,
low-priority data collection application are placed
in different transmission categories. Different
versions of the following TCAM techniques and
capabilities may be applied to messages in different
transmission categories: queuing medium, message
priority, sequence checking, error handling, load
balancing, and data staging.

transmission services profile. In SNA, a
specification in a session-activation request of
transmission control protocols (such as session-level
pacing and the usage of session-control requests) to
be supported by a particular session. Each defined
transmission services profile is identified by a
number.

TST. TCAM subtask table.

TTE. Terminal-table entry.

unit. Synonym for buffer unit, work unit.

user application network. A configuration of
data processing products, such as processors,
controllers, and stations, established and operated
by users for the purpose of data processing or
information exchange, which may use services
offered by common carriers or telecommunications
Administrations. Contrast with public network.

utility. In TCAM, an auxiliary routine designed to
support the message control program (MCP), which
runs under the control of the operating system_
Contrast with system service program, service
facility.

utility session. In TCAM extended networking, a
pair of LU-LU sessions between TCAM nodes. One
utility session is established between each pair of
TCAM nodes for each transmission category defined

for the pair. Data messages being routed from
TCAM node to TCAM node flow on the utility
session corresponding to their transmission
category.

VTAM. (1) Advanced Communications Function
for VT AM, an IBM program product. (2) Virtual
Telecommunication Access Method.

VTAM application program. A program that has
opened an access method control block (ACB) to
identify itself to VTAM and can now issue VTAM
macro instructions. See TeAM application
program.

warm restart. Restart of TCAM following either
a quick or a flush closedown. The TCAM
checkpoint/restart service facility restores the
TCAM environment as nearly as possible to its
condition before closedown or failure. Contrast
with cold restart. See point-of-failure restart,
point-of-last-environment restart.

W ATS. Wide Area Telephone Service, which
provides a special line on which the subscriber may
make unlimited calls to certain zones on a
direct-distance-dialing basis for a flat monthly
charge.

work area. An area of storage related to an
application program that receives messages or
records transferred to the application program from
TCAM by GET or READ macro instructions, and
from which messages or records are transferred to
TCAM by PUT or WRITE macro instructions.

work unit. The amount of data transferred from
TCAM to an application program by a single GET
or READ macro instruction or transferred from an
application program to TCAM by a single PUT or
WRITE macro instruction. A work unit may be a
message or a record.

zero-length buffer. A buffer that is sent to the
message handler to indicate that there is an error
on the link. If user code dot!is not execute correctly
for a zero-length buffer, the programmer must check
for zero length and branch around the code that
does not execute correctly.

Glossary X-19

Index

ADDR operand
COREDSP macro 5-8

address operand
POINT macro 5-33

ALTDEST operand 2-12
API (Application Program Interface)

See Application Program Interface (API)
application program

application message handler 1-2
batch processing 1-4
checkpoint coordination with TCAM 4-16
coding 2-13
components between TCAM and an 2-1
coordinating MCP and application-program

restarts 4-20
coordinating MCP and restarts with 4-20
DCB relationship 2-2
dead-letter queue 4-2
defining buffers A-I
defining buffers for application programs A-I
device message handler 1-2
displaying main storage within an 4-24
examples of message routing and processing

(figure) 1-7
in a network 1-2
initialization in the MCP for basic operator
control in an 4-7

inquiry/reply facility 3-3
inspecting and changing 4-10
interactive processing 1-4
interface with an MCP 1-7
issuing operator commands from an 4-1
issuing operator control commands 4-1
MCP relationship 1-7
message flow 3-1
operator commands from an 4-1
optional TCAM facilities 4-1
starting 2-19
starting TCAM 2-19
stopping the MCP 2-20
testing 2-17
transferring data between TCAM and 3-1
transferring data between TCAM and an 3-1
work unit 3-1

Application Program Interface (API)
checklist for operand coding for A-4
components of 2-1
components of the interface 2-19

defining 2-1, 2-19
parameters 2-1, 2-19

description 1-7
stopping and starting the API 2-19

basic access technique
what macros used 3-22

basic operator command
format 4-1

basic operator control
system service program 4-1

buffer
coding checklist A-4
design A-I

buffers
defining A-I
GET, READ A-2
PUT, WRITE A-2

CHECK macro 5-2
checklist for possible coding errors B-1
CLOSE macro 2-20
coding application programs 2-13
compatibility, MCP and an application

program 1-7
completion codes for basic access 3-27
concurrent retrieval of multiple messages 3-31
control blocks

application program 2-2, 2-3
input DCB macro 2-3

MCP (Message Control Program) 2-10
control elements
control operand, use for operator commands 4-8
controlchars, field of command 4-3
CONVoperand

COREDSP macro 5-9
converting numbers 4-26
CONVTO operand

TCBINCNV macro 5-45
COREDSP macro

use 5-8
CVT = based TCAM 2-9

Index X-21

data definition card parameters 2-18
data transfer macros 2-11, 3-22
DCB macro 2-6

DCB macro (input) 5-15
DCB macro (output) 5-22
input operands 2-3
output operands 2-4

dcbname operand
CLOSE macro 5-6
COREDSP macro 5-9
GET macro 5-25
OPEN macro 5-31
POINT macro 5-33
PUT macro 5-36
QRESET macro 5-40
READ macro 5-43
WRITE macro 5-54

DDNAME operand 2-18
dead-letter queue 4-2
DECBNAME operand

CHECK macro 5-2
READ macro 5-43
WRITE macro 5-54

defining buffers A-I
DELETE operand, TPDATE macro 5-52
destination field work area 3-15
destination QCB

inspecting 4-13
disk data sets, retrieving messages 3-30
DISPLAY basic operator command, displaying

group, line or status 4-4
DKJFND macro 5-24
DTSAREA operand

TPDATE macro 5-52

end-of-file specifying 3-20
end-of-message specifying 3-21
ending operator commands 4-4
extended operator commands 4-2, 4-9
extended operator control 4-9

system service program 4-10

FLUSH operand
MCPCLOSE macro 5-28

format for basic operator commands 4-3
forwarding

direct 4-9

X-22 TCAM Application Programming

end-to-end sessions, using 4-9

GET buffers A-2
GET macro 5-25

function 3-28

HALT basic operator command, system
closedown 4-4

header control information 3-19
HOLD basic operator command, hold message on a
queue 4-4

IEDOPCTL macro, use for basic operator
commands 4-7

input data control block (DCB) macro 2-3
INPUT operand

TCBINCNV macro 5-45
inquiry/reply facility 3-3
inspecting a QCB 4-13
inspecting TCAM control elements 4-10
Installation Procedures for

Assembly, Linkedit, Execution 2-16
INTRO macro A-4
issuing basic operator control commands 4-5
issuing extended operator commands 4-9
issuing TCAM Operator Control Commands 4-1

job language control (JCL) considerations 2-18

KEYPROC macro, use for extended operator
commands 4-10

length operand
READ macro 5-43
WRITE macro 5-54

LIMIT operand
QCOPY macro 5-38

macro reference guide, application program 5-1
macros

&I2(a)arean.
CKREQ macro 5-5
COREDSP macro 5-8
DCB macro (input) 5-10
DCB macro (output) 5-18
DKJFND macro 5-24
GET macro 5-25
MCOUNT macro 5-27
MCPCLOSE macro 5-28
MRELEASE macro 5-30
OPEN macro 5-31
POINT macro 5-33
PUT macro 5-36
QCOPY macro 5-38
QRESET macro 5-40
READ macro 5-43
TCBINCNV macro 5-45
TCHNG macro 5-47
TCOPY macro 5-50
TPDATE macro 5-52
WRITE macro 5-54

application program
CHECK macro 5-2

MAX operand
QRESET macro 5-41

MCOUNT macro 5-27
use 4-22

MCP (Message Control Program)
See Message Control Program (MCP)

MCPCLOSE macro 2-20,5-28
closedown of the MCP 2-20
function of the MCPCLOSE macro 2-20
stopping the MCP 2-20

Message Control Program (MCP)
control blocks in 2-10
initializing MCP for basic operator control 4-7
interface between application program and 1-7

message flow through TCAM 3-1
message handlers 1-1, 1-2

incoming group 1-3
destination queue 1-3

outgoing group 1-3
Read-Ahead queue 1-3

message handling considerations 3-19

message processing, specifying 3-5
message vs record processing 3-5
messages

compatible format 1-8
message queue dataset 1-4
retransmitting and retrieving messages 3-34
retrieving messages from disk 3-30

messages and records
description 3-3
processing differences 3-4

MF operand
CLOSE macro 5-7

MODIFY basic operator command, modify polling
list or option fields 4-4

MRLEASE macro 5-30
use 4-23

multiple messages, concurrent retrieval 3-31
mUltiple TCAMs, special considerations 2-9

NAME operand

opening and closing TCAM-related DCBs 2-20
CLOSE macro 2-20, 5-6
OPEN macro 5-31

operand(s) field of command 4-4
operation field of command 4-4
operator control

basic operator control, system service
program 4-2

extended operator control, system service
program 4-9

OPTCD operand 2-6
input data control block (DCB) macro 2-3

origin field, work area 3-15
outgoing group 1-3
OUTPUT operand

TCBINCNV macro 5-45

P ASSWRD operand
MCPCLOSE 5-29
MRELEASE macro 5-30
TCHNG macro 5-47

PCB macro 2-11
BUFSIZE operand, PCB macro 2-11
checklist for coding application programs A-4
special considerations 2-11

Index X-23

planning TCAM
application programs 1-1
environment 1-1

POINT macro 5-33
related operands 3-33
retrieving messages 3-30

position field, work area 3-18
SAM Prefix field 3-18

processing a message 3-5
processing a record 3-7
PUT buffers A-2
PUT macro 5-36

avoiding simultaneous multiple execution 3-29
function of 3-29

PUTCNT operand
PCB macro 2-11

QBACK operand
TPROCESS macro 2-12

QCB (queue control block)
See queue control block (QCB)

QCOPY macro 5-38
QNAME parameter

jobname 2-9
procname 2-9

QRESET macro 5-40
retransmitting messages 3-29

queue control block (QCB)
control element 4-10

queue, determining number on 4-22
queued access technique 3-28
QUEUES operand

TPROCESS macro 2-12
QUICK operand

MCPCLOSE macro 5-28

READ buffers A-2
READ macro 5-43
read-ahead queue A-2
RECDEL operand

TPROCESS 2-12
RECDLM operand

TPDATE operand 5-52
record

record processing 3-4
RELEASE basic operator command, release

messages from a queue 4-23
reserve bytes 3-32
Return Codes

&I2@return.
CKREQ macro 5-6

X-24 TCAM Application Programming

CHECK macro 5-3
COREDSP macro 5-10
MCOUNT macro 5-28
MCPCLOSE macro 5-29
MRELEASE macro 5-31
POINT macro 5-35
PUT macro 5-37
QCOPY macro 5-40
READ macro 5-45
TCHNG macro 5-49
TCOPY macro 5-51
TPDATE macro 5-54
WRITE macro 5-56

S operand
READ macro 5-43
WRITE macro 5-54

SAM-Prefix field, work area 3-18
SECTERM operand

TPROCESS macro 2-13
use for operator commands 4-7

SECURE operand
TPROCESS macro 2-13

SETEOF macro
use 3-20

SF operand
READ macro 5-43
WRITE macro 5-54

SFLAG operand
PCB macro 2-11

starting application programs 2-] 9
statname operand

MRELEASE macro 5-30
TCOPY macro 5-50

STOP operand
DCB macro 2-6

stopping the API 2-19
SYNADAF message buffer format 2-9

TCAM operand
DKJFND macro 5-24

TCBlNCNV macro 5-45
TCHNG macro 5-47
TCOPY macro 5-50
TERMINAL macro, use for basic operator

commands 4-8
terminal table DSECT length (figure) 4-13
terminal table entry

changing 4-14
inspecting 4-11

TERMNAME operand

J

QCOPY macro 5-38
TCHNG macro 5-47

time and date received 4-23
TIMEDL Y operand

PCB macro 2-11
TPDA TE macro 4-23
TPROCESS macro 2-12

checkpoint restart 4-21
special considerations 2-12
time and date 4-23
use for basic operator commands 4-8

work area
dynamic 3-14
optional fields 3-15
origin or destination field 3-15
position field 3-17
static 3-13
types 3-3

WORK operand
COREDSP macro 5-9

work unit
formats 3-9
size determination (figure) 3-8

WRITE buffers A-2
WRITE macro 3-24

avoiding simultaneous multiple execution 3-29
use for basic operator commands 4-8

Index X-25

J

Advanced Communications
Function for TCAM
Version 3

Application Programming
(MVS)

Order No. SC30-3233-1

READER'S
COMMENT
FORM

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. You may use this form to communicate your
comments about this publication, its organization, or subject matter, with the understanding
that IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

Note: Copies of IBM publications are not stocked at the location to which this form is
addressed. Please direct any requests for copies of publications, or for assistance in using your
IBM system, to your IBM representative or to the IBM branch office serving your locality.

Possible topics for comment are:

Clarity Accuracy Completeness Organization Coding Retrieval Legibility

If you wish a reply, give your name, company, mailing address, and date:

What is your occupation?

Number of latest Newsletter associated with this publication:

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.)

SC30-3233-1

Reader's Comment Form

Fold and tape Please Do Not Staple

BUSINESS REPLY MAIL

Fold and tape.

--.. -. .-
---~ .-- ---.~ - ------~ ---"-- -------

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Dept. E03
P.O. Box 12195
Research Triangle Park, N.C. 27709-2195

Please Do Not Staple

==-'= ~ =®

IIIII

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

J

J

J

