SC38-0256-0
File No. S370-30

Advanced Communications
Function for VTAM
(ACF/VTAM)

Program Product Macro Language Guide

Program Numbers 5746-RC3 (DOS/VS)
5735-RC2 (OS/VS)

First Edition (July 1977)

This edition applies to the initial DOS/VS version of ACF/VTAM (Program Number
5746-RC3) and to the initial OS/VS version of ACF/VTAM for OS/VS1, OS/VS2 SVS, and
0OS/VS2 MVS (Program Number 5735-RC2). Information about the optional Multisystem
Networking Facility of ACF/VTAM is included. The information in this publication should
be used for planning purposes untii ACF/VTAM becomes available for your operating
system.

The program product described in this manual, and all licensed materials available for it, are
provided by IBM under terms of the Agreement for IBM Licensed Programs. Your branch
_office can advise you on the ordering procedures.

A form has been provided at the back of this publication for readers’ comments. Address
additional comments to IBM Corporation, Department 63T, Neighborhood Road, Kingston,
New York 12401. Comments become the property of IBM.

© Copyright International Business Machines Corporation 1977

Preface

This book describes how to write application programs
for the Advanced Communications Function for VTAM
(ACF/VTAM) and for the Multisystem Networking Fea-
ture that is available with ACF/VTAM. This book is a
guide to using ACF/VTAM macro instructions in the data
communication part of an ACF/VTAM application pro-
gram. As such, this book is a companion for and is to be
used with ACF/VTAM Macro Language Reference,
SC38-0261.

Who This Book Is For

This book is for any programmer, whether an application
programmer or a system programmer, who must write a
program that uses ACF/VTAM macro instructions. The
reader is assumed to be familiar with Basic Assembler
Language.

How This Book Is Orgm/lized

The body of this book describes the use of record-mode
macro instructions to communicate with Systems Net-
work Architecture (SNA) devices. Use of basic-mode
macro instructions to communicate with BSC devices,
start-stop devices, and local non-SNA devices are
described in Appendix A.

This book contains three parts:

Part 1, “ACF/VTAM Application Program Concepts and
Language,” should be read as an introduction. It contains
chapters on:

What an ACF/VTAM Application Program Is. This
chapter describes on an introductory level how an
ACF/VTAM application program is part of a data
communication system and generally how an ACF/
VTAM application program is organized.

The ACF/VTAM Language. This chapter summarizes
the ACF/VTAM application program macro instruc-
tions and control blocks and relates them to each
other. '

Part 2, “Writing an ACF/VTAM Application Program,”
describes ACF/VTAM application program facilities in
detail and with examples. It contains chapters on:

Organizing a Program

Opening and Closing a Program

Connecting and Disconnecting Logical Units
Communicating with Logical Units

Using Exit Routines

Manipulating Control Blocks

Handling Errors and Special Conditions
Debugging a Program

Part 3, “Sampie Programs,” contains the general logic of
two sample programs:

A synchronous program

An asynchronous program that communicates with
3600 and non-SNA terminals

Appendix A includes information on using ACF/VTAM to
communicate with BSC devices, start-stop devices, and
local non-SNA devices. Appendix B summarizes the indi-
cators and commands that can be used to control the
exchange of messages. Appendix C contains data-flow
diagrams that show sequences in which messages, com-
mands, and responses are exchanged in various types of
operations. Appendix D contains a coded example of a
primary application program, based on Sample Program 1
in Part 3. Appendix E contains a coded example of an
ACF/VTAM application program that uses authorized
path. Appendix F contains a coded example of a primary
application program and secondary application program
that work together.

How to Use This Book

Read Part 1 for an introduction to ACF/VTAM applica-
tion program concepts and to the ACF/VTAM macro
instructions. Use Parts 2 and 3 and the appendixes in
conjunction with ACF/VTAM Macro Language Reference
when designing and coding a program.

Related Publications
These publications are related to this manual:

ACF|/VTAM Concepts and Planning, GC38-0282. This
manual describes the concepts and tasks involved in
designing, defining, and using an ACF/VTAM data
communication network, including the writing of
ACF/VTAM application programs. This book is useful
for understanding how ACF/VTAM application pro-
grams fit into an installation’s teleprocessing system.

ACF/VTAM Macro Language Reference, SC38-0261.
This manual, which describes ACF/VTAM macro
instructions and operands in detail, must be used to
write an ACF/VTAM application program. ACF/VTAM
Macro Language Guide is a companion to ACF/VTAM
Macro Language Reference.

ACF|VTAM Program Operator Guide, SC38-0257. This
manual describes how to write a program-operator
application program for use with ACF/VTAM. This

information supplements ACF/VTAM Macro Language
Guide and ACF/VTAM Macro Langauge Reference.

ACF/VTAM System Programmer’s Guide, SC38-0268
(DOS/VS), SC38-0258 (0S/VS1), SC38-0267 (0OS/VS2
SVS), and SC38-0262 (0S/VS2 MVS). This manual
describes how to define, tailor, tune, and maintain an
ACF/VTAM system. It includes information on the
choice and specification of installation options. Infor-
mation on definition of devices and programs can be
found in this manual.

Systems Network Architecture; General Information,
GA27-3102. This manual describes Systems Network
Architecture concepts that might be useful when
writing an ACF/VTAM application program.

Systems Network Architecture; Format and Protocol
Reference Manual: Architecture Logic, SC30-3112.
This manual is a very detailed description of the SNA
architecture. It is intended for system programmers. It
may be useful for persons who want an in-depth
knowledge of the SNA protocols.

Contents

Part 1. ACF/VTAM Application Program Concepts and
Language 1

Chapter 1. What an ACF/VTAM Application Program Is 3
An ACF/VTAM Application Program as Part of an ACF/VTAM
System 3
The ACF/VTAM Application Program 3
The Processing Part S
The Communication Part 5
ACF/VTAM 5
The Network Control Program §
The Logical Unit §
The Terminal Operator and the Batch Function 6
Another ACF/VTAM Application Program 6
Systems Network Architecture (SNA) Concepts in ACF/VTAM 6
The SNA Concept of Network Addressable Units 6
The SNA Concept of Primary and Secondary Logical Units 9
The SNA Concept of Sessions 9
The SSCP-PU Session 10
The SSCP-LU Session 10
Initiate Command or Logon 11
LOGON Exit Routine 11
Opening the LU-LU Session (OPNDST Macro Instruction) 11
The Bind Command 11
Completing the LU-LU Session 11
The SNA Concept of Domains as Implemented by
ACF/VTAM 12
The Major Programming Elements in an ACF/VTAM Application
Program 12
Opening the Program 14
Connecting a Logical Unit 14
Receiving a Message from Any Logical Unit 16
Receiving a Message from a Specific Logical Unit 17
Sending a Message 17
Scheduling the Sending of a Message 17
Sending a Response 18
Receiving a Response 18
Other Exit Routines 18
Disconnecting a Logical Unit 18
Closing the Program 18
Constants and Control Blocks 19
Manipulative Macro Instructions 19

Chapter 2. The ACF/VTAM Language 21
Characteristics of the ACF/VTAM Language 21
A Summary of Macro Instructions 21
The Connection Macro Instructions 21
The Communication Macro Instructions 22
The Network Control Macro Instructions 23
The Control Block Macro Instructions 23
The Control-Block-Building Macro Instructions 23
The Control-Block-Manipulating Macro Instructions 24
Supporting Macro Instructions 24
How the Executable Macro Instructions and the Control Blocks
Are Related 25
Opening the Application Program 25
Connecting Logical Units 26
Communicating with Logical Units 26
Disconnecting Logical Units 27
Exit Routines 27
Register Conventions 28

Part 2. Writing an’ACF/VTAM Application Program 31

Chapter 3. Organizing a Program 33
Single-Thread or Multithread Operations 33
Deciding to Use a Single-Thread Program 33
Deciding to Use a Multithread Program 34
How a Synchronous Operation Works 34
How an Asynchronous Operation Works 35
Using ECBs 35
Using RPL Exit Routines 36
Advantages and Disadvantages of Different Forms of
Operation 38
Multithreading Facilities 38
The USERFLD Field of the NIB 39
Scheduling Output 40
Receiving Input from Any Connected Logical Unit Except
Those Already in Conversation 40
Some Decisions That Affect Program Organization 41
Handling Control Blocks and Work Areas 41
Techniques for Handling Control Blocks and Work Areas 44
Using Multitasking 47
Using Multitasking to Separate Data Communication Activity
from Other Activity 47
Using Multitasking to Divide Data Communication Activity
among Several Tasks 48
Multiple Tasks, Using the Same ACB 48
Multiple Tasks, Each with Its Own ACB 49
Using Multiple ACBs within One Task 50
Using Authorized Path in OS/VS2 MVS 50

Chapter 4. Opening and Closing a Program 55
Opening a Program 55
What Is Required to Open a Program 55
The Access Method Control Block (ACB) 55
The OPEN Macro Instruction 57
Using Multiple ACBs in an ACF/VTAM Application
Program §7
Where the OPEN Can Be Issued 57
Closing a Program 57
The Program Initiates Closing 58
The Program Receives a Closedown Message 58
The TPEND Exit Routine Is Entered 58
Action for a Standard HALT Command 59
Actions for a HALT QUICK Command or for an
ACF/VTAM-Initiated Halt 59
Actions for a HALT CANCEL Command or for Abnormal
Termination of ACF/VTAM (OS/VS Only) 60

Chapter 5. Connecting and Disconnecting Logical Units 61
Roles of Primary and Secondary Logical Units in Connection
and Disconnection 61
The Concepts of Connection 61
Acceptance by a Primary Application Program 61
Acquisition by a Primary Application Program 63
Acquiring a Logical Unit with the OPNDST Macro
Instruction 64
Acquiring a Logical Unit with the SIMLOGON Macro
Instruction 64
Queuing Connection Requests for a Device-Type Logical
Unit 66
Disconnection by a Primary Application Program 68

i
' How a Primary Application Program Performs Connection 69
' The Request Parameter List (RPL) 69
The Node Initialization Block (NIB) 70
Acquiring Logical Units 73
Accepting Logons 76
Accepting Logons in the Main Program 76
Accepting Logons in the LOGON Exit Routine 77
‘Using INQUIRE in a LOGON Exit Routine 78
Simulating Logons in a Primary Application Program 79
How a Secondary Application Program Requests Connection 80
What a Secondary Application Program Needs to Request
Connection 80
The RPL for a REQSESS Macro Instruction 82
The NIB for a REQSESS Macro Instruction 82
The Role of a SCIP Exit Routine in Session
Establishment 83
The Role of an NSEXIT Exit Routine in a REQSESS
Operation 83
The General Pattern of a Secondary Program’s Request for
Connection 83
Example of a Secondary Application Program Requesting
Connection 86
Establishing Session Parameters during Connection - 89
The General Pattern of Agreement on Session Parameters 89
Defining Sets of Session Parameters 89 ’
Tables That Contain Session Parameters 90
The Default Entry in a Logon Mode Table 92
How Logon Mode Names and Session Parameters Are Used 92
Logon Mode for a Logon from a Device-Type Logical
Unit 93
Logon Mode for a Logon from a Secondary Application
Program 93
Logon Mode for a Simulated Logon 93
Logon Mode for a CLSDST Macro Instruction with
OPTCD=PASS 93
Logon Mode with Automatic Logon and VARY Logon 94
How the Primary Application Program Processes Session
Parameters 94
Effect of the BNDAREA Field on Session Parameters
in a Bind Command 96
Effect of the LOGMODE Field on Session Parameters in
the Bind Command 96
Handling Session Parameters When the Logon Could Be
from the Same Domain or Another Domain 97
Using the INQUIRE Macro Instruction to Get Session
Parameters 97
Specifying Session Parameters When Acquiring
Connection 98)
Example 1: Using Session Parameters Associated with a
Logon 98
Example 2: Building and Using Session Parameters in a
Bind Area 99
How the Secondary’ Application Program Processes Session
Parameters Received in a Bind Command 99
Disconnection 100
How a Primary Application Program Disconnects Logical
Units 100
CLSDST Using a Symbolic Name 100
CLSDST Usinga CID 101
Storage Management at Disconnection 102
Disconnecting All Logical Units at One Time 102
How a Secondary Application Program Requests
Disconnection 102

Requesting Disconnection with a Request Shutdown
" Command 102
Requesting Disconnection with the TERMSESS Macro
Instruction 103 .

~

Chapter 6. Communicating with Logical Units 105
An Introduction to Communicating with Logical Units 105
Who is Communicating: The ACF/VTAM Application
Program and Logical Units 105
‘What is Communicated: Messages and Responses 105
What a Message Contains 106)
What a Response Contains 107
How Messages and Responses Are Exchanged 111
The Send and Receive Macro Instructions 111
Normal-Flow and Expedited-Flow Messages and
Responses 112
Sequence Numbers 115
Controlling Flow 116
Identifying Logical Units 119
Using ACF/VTAM to Communicate with Logical Units 119
Major Alternatives 120
Synchronous versus Asynchronous Operations 120
ECB versus RPL Exit Routine 122
Scheduled versus Responded Output Considerations 122
Receiving Input from Any Logical Unit versus Receiving
Input from a Specific Logical Unit 124
The Continue-Any versus the Continue-Specific Mode 125
An Explicit RECEIVE for Expedited-Flow and Response
Input versus DFASY and RESP Exit Routines 127
Handling Overlength Input Data 128
Using SNA Protocols 129
Chaining 129
Request and Response Modes 130
Quiescing 133
Protocols for Ensuring Orderly Communications 134
Function Management Header Option =~ 142
Additional SNA Protocol Information 142
Communicating with the 3270 Information Display System 142

Chapter 7. Using Exit Routines 145
How Exit Routines Work 145
How RPL-Specified Exit Routines Work 145
How EXLST Exit Routines Work 145
A Summary of ACF/VTAM Application Program Exit
Routines 148
Deciding Whether and How to Use Exit Routines 148
RPL Exit Routines 150
Specifying the DFASY, RESP, and SCIP Exit Routines in
an ACBor NIB 150
DFASY Exit Routine 150
RESP Exit Routine 153
LERAD Exit Routine 15§
SYNAD Exit Routine 157
Special Considerations for LERAD and SYNAD Exit
Routines 158
LOGON Exit Routine 158
LOSTERM Exit Routine 159
NSEXIT Routine 167
- Network Services Procedure Error 162
~ Cleanup Conditions 163
TPEND Exit Routine 165
RELREQ Exit Routine 167
SCIP Exit Routine 169

Summary of Exit Routines Involved in Session Initiation, Session
Outage, and Session Termination 172

Using Exit Routines When Multitasking 172

Procedures to Follow in Writing Exit Routines 172

Chapter 8. Manipulating Control Blocks 181
Setting and Testing Control Block Values 181
Using the Manipulative Macro Instructions 181
The GENCB Macro Instruction 181
The MODCB Macro Instruction 183
The SHOWCB Macro Instruction 184
The TESTCB Macro Instruction 184
Using the DSECT Macro Instructions and Assembler
Instructions 185
Defining the DSECTS 185
Using the DSECTS 186
Using INQUIRE with OPTCD=TERMS to Generate NIBs 186

Chapter 9. Handling Errors and Special Conditions 189
OPEN/CLOSE Errors and Special Conditions 189
Manipulative Macro Instruction Errors and Special
Conditions 190
RPL-Based Macro Instruction Errors and Special Conditions 191
Coding LERAD and SYNAD Exit Routines 195
Handling Exception Conditions (R0=X‘04") 200
Handling Exception Messages 200
Handling Negative Responses 201
Handling Retriable Completion (R0=X‘08") 201
Handling Data Integrity Damage (R0=X‘0C’) 202
Handling Environment Errors (R0=X‘10") 202
Handling Logical Errors (R0=X‘14" and X‘18”) 202
Handling ACF/VTAM Software Errors 202

Chapter 10. Debugging a Program 205
Debugging before Executing the Program 205
Checking for Assembly Errors 205
Checking for Program Logic Errors 205
A Checklist 206
Adding Debugging Aids to the Program 207
Requesting a Dump 207
Loading the Current Address before Each Macro 207
Using a Special Code to Indicate which ABEND or DUMP
Macro Was Issued 207

Saving Register 1 (Which Points to the RPL) (DOS/VS) = 208

Using the ABEND Completion Code (OS/VS) 208
Writing a Debugging Record That Can Be Printed 208
Debugging after Executing the Program 208
Important Information in a Dump 208
Replacing the Dump with a Program Message 209
System and ACF/VTAM Debugging Guides 209

Part 3, Sample Programs 211
Chapter 11. Sample Program 1 213

Chapter 12, Sample Program 2 219

The Organization and Flow of Sample Program 219
The Logic of the 3600 I/O Routine 227

The Logic of the 3600 Chaining Output Routine 230
The Logic of the 3270 I/O Routine 230

The Logic of the RESP Exit Routine 234

The Logic of the DFASY Exit Routine 234

Appendix A. Communicating with BSC and Start-Stop
Terminals 239
Using BTAM 239
Using ACF/VTAM 239
Distinguishing between Logical Units and BSC/Start-Stop
Devices 241
The Basic-Mode Macro Instructions 241
Basic-Mode Concepts and Facilities 241
Data Blocks 242
Solicitation 242
Soliciting Blocks 243
Soliciting Messages and Transmissions 244
Continuous Solicitation 244
Special I/O Operations 244
Special Processing Options 245
Using the Basic-Mode Macro Instructions 245
Connecting BSC and Start-Stop Terminals 246
Modifying Terminal Characteristics 246
Reading Data 247
READ SPEC 247
READ ANY 250
Writing Data 252
Simple Writes 252
Multiple Writes 254
Conversational Writes 255
Canceling Data-Transfer Requests 256
Handling Attentions 256
Handling Release Requests 257
Basic-Mode Sample Programs 258
Basic-Mode Sample Program 1: LOGON Exit, RPL Exit, and
READ ANY 259
Basic-Mode Sample Program 2: - ACQUIRE, SOLICIT, and
RPL Exit 264
Basic-Mode Sample Program 3: ACCEPT, LOGON Exit,
SOLICIT, and RPL Exits 267

Appendix B. Summary of Commands and Indicators 271

Appendix C. Examples of Message, Response, and Command
Exchanges for Typical Communication Operations 279

Appendix D. Example of a Primary Application Program 313
What SAMP1 Does 313
How SAMP1 Relates to Sample Program 1 (Chapter 11) 313
The Message Interface between SAMP1 and Logical Units 314
Notes on SAMP1 315

Notes on the Main Program 316

Notes on the LOGON Exit Routine 317

Notes on the RESP Exit Routine 317

Notes on the LERAD and SYNAD Exit Routines 318

Notes on the LOSTERM Exit Routine 318

Source Statements for SAMP1 319

Appendix E. Example of Authorized Path 343

Notes about SAMP2 343
SAMP2 Assembler Language Code 344

Glossary 349

Index X-1

Figures

Figure 1-1.
Figure 1-2.

Figure 1-3.
Figure 14.

Figure 1-5.
Figure 1;6.
Figure 2-1.

Figure 3-1.
Figure 3-2.

Figure 3-3.
Figure 34.
Figure 3-5.
Figure 3-6.
Figure 3-7.
Figure 3-8.
Figure 3-9.
Figure 3-10.
Figure 3-11.

Figure 5-1.
Figure 5-2.

Figure 5-3.

Figure 54.
Figure 5-5.

Figure 5-6.
Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 64.
Figure 6-5.

Figure 6-6.
Figure 6-7.

Figure 6-8.
Figure 6-9.
Figure 6-10.

Figure 6-11.
Figure 6-12.

ACF/VTAM Application Programs in-an ACF/VTAM
Data Communication System 4

The SSCP, Physical Units, and Logical Units in a
Network 8

Establishing an LU-LU Session 10

A Data Communication Network with Two
Domains 13

The Major Functions of the Communication Part

of an ACF/VTAM Application Program 14

Major Programming Elements in the Communication
Part of an ACF/VTAM Application Program 15
Special-Purpose Exit Routines and the Events That
Cause Them to Be Scheduled 28

A Synchronous Operation 35

An Asynchronous Operation with an ECB

Posted 36

An Asynchronous Operation with an RPL Exit
Routine Scheduled 37

A Possible Pattern of Requests in RPL Exit
Routines for Asynchronous Operations 38
Relative Advantages of Synchronous and
Asynchronous Requests 39

Some Decisions That Affect Program Design

and Coding 42

Multitasking a Program 48

Multiple Tasks, Using the Same ACB 49

Multiple Tasks, Each with Its Own ACB 50

A Single Task with Multiple ACBs 51

The Logical Requirements for Using Authorized
Path (OS/VS2 MVS) 52

Queued and Nonqueued Connection Requests 67
Protocols for Sessions between Primary and
Secondary Application Programs 81

Exchange When a Secondary Application Program
Requests Connection 84 “
Logon Mode Table Macro Instructions 90
Identification of Logon Mode Tables in LU
Definition Statements 91

Setting the NIB Fields to Acquire or Control

Session Parameters 95

Exchanging Messages and Responses 106

A Logical Unit (A) Requests a Definite Response,
(B) Requests Only a Negative Response, and
(C) Receives an Exception Response 109
Normal-Flow Messages Are Sent Sequentially
The Difference between Normal-Flow and
Expedited-Flow Messages 113

Messages and Responses Transmitted on the
Normal Flow and on the Expedited Flow
How Sequence Numbers Are Used 116
Starting and Stopping the Flow of Messages and
Responses 117

The General Sequence of Events When
ECB-Posting Is Specified 122

The General Sequence of Events When an RPL
Exit Routine Is Specified - 123

Scheduled OQutput 124

Responded Output 125

Example of Using Any-Mode and Specific-Mode
to Handle an Inquiry from a Logical Unit 126

112

114

Figure 6-13.

Figure 6-14.

Figure 6-15.
Figure 6-16.

Figure 6-17.
Figure 6-18.
Figure 6-19.
Figure 6-20.
Figure 7-1.
Figure 7-2.
Figure 7-3.
Figure 74.
Figure 7-5.
Figure 7-6.
Figure 7-7.
Figure 7-8.

Figure 7-9.

Figure 7-10.

Figure 7-11.
Figure 7-12.
Figure 7-13.
Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.
Figure 9-5.
Figure 9-6.
Figure 9-7.
Figure 9-8.
Figure 99.

Figure 11-1.
Figure 12-1.

An Example of Using Continue-Any and
Continue-Specific Modes to Handle Concurrent
Inquiries 127

An Example Showing Values in the RECLEN Field
ofan RPL 128

An Example of Message Chaining 130

An Example of Sending a Chain of Messages to a
Logical Unit That Is Buffering Data 131

An Example of a Logical Unit Quiescing an
Application Program in Order to Interrupt
Continuous Sending 135
Quiesce Protocol 137
Change-Direction Protocol
Bracket Protocol 141
An Example of Using an RPL Exit Routine
A Summary of Exit Routines 149

How ACF/VTAM Handles DFASY
(Expedited-Flow) Input 152

How ACF/VTAM Handles RESP (Normal-Flow
Response) Input 154

Summary of Parameter Lists Passed to Exit
Routines 155

Format of a Network Services Procedure Error
Request Unit 164

Format of a Network Services Cleanup Request
Unit 166 s

Summary of Exit Routines Involved in Session
Initiation 174

Summary of Exit Routines Involved in Session
Outages 175

Summary of Exit Routines Invoived in Session
Termination 176

A Summary of Addressability and Save-Area
Requirements for the Main Program 177
Situations in Which LERAD and SYNAD Exit
Routines Do not have to be Reenterable 178
Situation in Which LERAD and SYNAD Exit
Routines Must be Reenterable 179

How OPEN/CLOSE Error and Special-Condition
Information is Organized 190

How Manipulative Macro Instruction Error and
Special-Condition Information Is Organized 191
Register 15 and Register 0 Return Codes
Following an RPL-Based Request 191

How RPL-Based Macro Instruction Error and
Special-Condition Information Is Organized
Recovery Action Return Codes and -

Their General Meanings 193

A Summary of Error and Special-Condition
Handling with Synchronous Operations 194
A Summary of Error and Special-Condition
Handling with Asynchronous Operations

A Summary of Error and Special-Condition
Handling with Scheduling of Messages 198

A Summary of Register Usage on Entering and
Leaving a LERAD or SYNAD Exit Routine 199
The General Logic of Sample Program 1 214

A Possible Data Communication System
Configuration for Sample Program 2 220

139

146

192

196

Figure 12-2.

Figure 12-3.
Figure 124.
Figure 12-5.
Figure 12-6.
Figure 12-7.

Figure A-1.
Figure A-2.
Figure A-3.
Figure A4.
Figure A-5.
Figure A-6.
Figure B-1.
Figure B-2.
Figure B-3.
Figure B-4.
Figure B-5.
Figure B-6.
Figure B-7.
Figure C-1.
Figure C-2.

Figure C-3.

Figure C4.

Figure C-5.

Figure C-6.

Figure C-7.

Figure C-8.

The Organization and Flow of Sample

Program 2 221

The Logic of the 3600 I/O Routine 228

The Logic of the Chaining Output Routine 231
The Logic of the 3270 I/O Routine 232

The Logic of the RESP Exit Routine 235

The Logic of the DFASY Exit Routine 236 -
Types of Devices and Modes (Record or Basic)
Used for Their Sessions 239

Using BTAM and ACF/VTAM to Communicate with
BSC and Start-Stop Terminals 240

Implicit and Explicit Solicitation Using Basic

Mode 243

The Logic of Basic-Mode Sample Program 1 260
The Logic of Basic-Mode Sample Program 2 265
The Logic of Basic-Mode Sample Program 3 268
Summary of Sending Normal-Flow Commands

Summary of Sending Expedited-Flow

Commands 274

Summary of Receiving Expedited-Flow
Commands 275

Summary of Sending Session-Control

Commands 276

Summary of Receiving Session-Control
Commands 277

Summary of Indicators 278

A Logical Unit (Other Than a Secondary
Application Program) Initiates Connection with a
Primary Application Program 281

A Primary Application Program Acquires a Logical
Unit 282

‘After a Warm Start, a Primary Application
Program Reestablishes Connection and
Resynchronizes Sequence Numbers 283

A Primary Application Program and a Logical Unit
Exchange Messages: (A) with No Responses,

(B) with Negative Responses Only If an Exception
Occurs, (C) with Definite Response 1 (Positive or
Negative), and (D) with Definite Responses 1 and
2 Sent at the Same Time 284

The Logical Unit Sends a Chain of Messages to the
Primary Application Program: (A) without a
Negative Response, and (B) with a Negative
Response 287

The Application Program and Logical Unit Use

‘Quiesce Protocol: (A) the Application Program

Quiesces the Logical Unit, and (B) the Logical Unit
Quiesces the Application Program 288

The Application Program and Logical Unit Use
Bracket Protocol: (A) Where the Logical Unit
Begins the Bracket, (B) Where the Primary
Application Program Begins the Bracket, (C) Where
the Primary Application Program Gets a Positive
Response to Its Bid and Begins the Bracket, and
(D) Where Bid Produces a Later Ready to Receive
Command 289

The Application Program and the Logical Unit Use.
Change-Direction Protocol: (A) Where Only Change
Direction Command Indicators Are Used, and (B)
Where, in Addition, Change Direction Request
Indicator (or Signal Command) Is Used 291

272
Summary of Receiving Normal-Flow Commands 273

Figure C9.

Figure C-10.

Figure C-11.

Figure C-12.

Figure C-13.

Figure C-14.

Figure C-15.

Figure C-16.

- Figure C-17.

Figure C-18.

Figure C-19.

Figure C-20.

Figure C-21.

Figure C-22.

Figure C-23.

Figure C-24.

The Primary Application Program Resynchronizes
Sequence Numbers with the Logical Unit 292
The Application Program and Logical Unit Use the
Signal Command: (A) Sent by the Logical Unit, and
(B) Sent by the Primary Application Program 293
The Application Program and Logical Unit Use the
LUS Command: (A) Sent by the Logical Unit, and
(B) Sent by the Primary Application Program 294
Operations Are Shut Down in an Orderly Fashion:
(A) the Logical Unit Requests Shutdown, and (B)
the Primary Application Program Orders

Shutdown 295

The Logical Unit Initiates Disconnection: (A)
Conditionally, and (B) Unconditionally 296

The Primary Application Program Disconnects the
Logical Unit 297

The Secondary Application Program Requests

Connection to the Primary Application Program 298

The Primary Application Program Acquires the
Secondary Application Program 300

The Primary Application Program Issues a
SIMLOGON Macro Instruction to Acquire the
Secondary Application Program 301

The Primary Application Program Resynchronizes
Sequence Numbers with the Secondary Application
Program 303

A Primary Application Program and Secondary
Application Program Use Bracket Protocol (a Bid
Command Is First Rejected, Then Accepted) 305
A Primary Application Program and Secondary
Application Program Use Bracket Protocol (Bid by
Primary Program Is Rejected, But a Ready to
Receive Command Follows) 306

The Secondary Application Program Sends a
Conditional Request for Disconnection 307

The Secondary Application Program Sends an
Unconditional Request for Disconnection 308
The Secondary Application Program Sends a
Request Shutdown Command 309

The Primary Application Program Shuts Down the
Secondary Application Program 310

Part 1. ACF/VTAM Application Program Concepts and Language

Chapter 1. What an ACF/VTAM Application Program Is. This chapter introduces
ACF/VTAM application program concepts and facilities, which are discussed in more
detail, with examples, in Parts 2 and 3. This chapter gives the reader an overview of
ACF/VTAM application program concepts by showing how an ACF/VTAM application
program fits into an installation’s teleprocessing system and by showing the principal
elements in any ACF/VTAM application program. The facilities provided and major
choices involved in writing an ACF/VTAM application program are summarized.

Chapter 2. The ACF/VTAM Language. This chapter summarizes ACF/VTAM macro
instructions and discusses their general characieristics. It explains the relationship among
control blocks defined by ACF/VTAM macro instructions and the executable ACF/
VTAM macro instructions that use these control blocks. These relationships are discussed
in the context of three things that every ACF/VTAM application program must do: open
and close the program, connect and disconnect logical units, and communicate with
logical units.

Part 1. ACF/VTAM Application Program Concepts and Language 1

Chapter 1. What an ACF/VTAM Application Program Is

This chapter provides an overview of ACF/VTAM application programs. It describes what
an ACF/VTAM application program is by:

Showing an ACF/VTAM application program as part of an ACF/VTAM data
communication system

Showing an ACF/VTAM application program’s relationship to the concepts of Systems
Network Architecture (SNA)

Showing the major programming elements in an ACF/VTAM application program

An ACF/VTAM Application Program as Part
of an ACF/VTAM System

Figure 1-1 shows an ACF/VTAM application program as part of an ACF/VTAM data
communication system. The circled numbers in Figure 1-1 refer to major parts of the
system; those circled numbers appear beside headings below and tie the discussion below
to the related parts of the figure. An ACF/VTAM application program can communicate
with synchronous data link control (SDLC) logical units, with binary synchronous
communication (BSC) and start-stop devices, with local SNA devices, with local non-SNA
devices, and with other ACF/VTAM application programs. The body of this book
describes communication with local SNA devices, remote SNA devices, and certain
non-SNA (BSC and local) devices. Appendix A describes communication with BSC
devices, start-stop devices, and local 3270s not treated as SNA devices.

The ACF/VTAM Application Program (1)

An ACF/VTAM application program can contain two types of instructions: communica-
tion instructions and processing instructions. The application program always contains
communication instructions, which are the instructions that send and receive messages
and control other aspects of communication between the program and other elements in
the network. The program usually also contains processing instructions, which are the
instructions that manipulate the data before it is sent or after it is received, but the
program does not have to contain processing instructions.

If an ACF/VTAM application program does contain processing instructions and if the
program is small, those instructions may be interleaved with communication instructions.
More commonly, however, the processing instructions are written separately, with an
interface defined between processing parts of the program and the communication part of
the program. This separation of function allows each part to be created separately and
means that changes or additions to one part will not affect other parts. The processing
part of an ACF/VTAM application program can be written in a higher-level language, such
as PL/I. The communication part, which uses ACF/VTAM macro instructions, is written
in assembler language.

ACF/VTAM application programs can share the resources of the system; that is, the
application programs can use the same communications controllers, cluster controllers,
and communication lines to reach logical units. For example, in Figure 1-1, application
programs A and B use the same communications controller (at 5) and the same SDLC link
to reach terminals and logical units (at 6 and 7). The application programs, however, are
not aware that they are sharing these resources because ACF/VTAM, the network control
program (NCP), and other programming elements in the network handle communications
in such a way that the programs do not know they are sharing the resources. One
restriction on sharing resources is that only one session can exist between any two logical
units in a network at the same time. A second restriction is that a logical unit cannot
establish a session with itself.

Chapter 1. What an ACF/VTAM Application Program Is 3

Host Computer

ACF/VTAM Application Program A

D

@

®

| I

ACF/VTAM Application Program B

O,

ACF/VTAM

NCP

SDLC Link

Logical Unit (s)

SDLC
Cluster

Controller Logical Unit (s)

@

To other
logical
units

N

Figure 1-1. ACF/VTAM Application Programs in an ACF/VTAM Data Communication System

The Processing Part @

The Communication Part @

ACF/vTaM (4)

The instructions in the processing part of an application program can be written in
assembler language or in a higher-level language, such as PL/I or COBOL. If written in
assembler language, the instructions can be interleaved with the communication
instructions in the program. But more commonly, as shown in Figure 1-1, the processing
part is separate and requests data communication services by calling or branching to the
communication part of the program. Many programs will contain several processing parts
(routines or modules) that use a common communication part.

This part of the ACF/VTAM application program contains macro instructions and
associated control blocks used to connect and communicate with logical units that have
been defined to ACF/VTAM. The programming elements that make up the
communication part are discussed further in this chapter under “The Major Programming
Elements in an ACF/VTAM Application Program.”

ACF/VTAM controls the data communication network. Logical units (including other
application programs) are defined as part of the network during ACF/VTAM definition
and are then activated by start procedures or network operator commands. The
ACF/VTAM application program then requests connection (on its own initiative or as the
result of a logon) to one or more active logical units. Once connected, the program
requests ACF/VTAM to perform data-transfer operations with each logical unit. In
addition to managing the network and building channel programs, ACF/VTAM performs
such services as input and output data buffering, automatic scheduling of ﬁpp]ication
program exit routines, and sequence numbering of outbound messages. ACF/VTAM
requests the operating system to execute channel programs it has built; the channel
programs result in communication with local or remote logical units through a local
communications controller or cluster controller.

The Network Control Program @

The Logical Unit @

On receiving the input or output requests and associated data, the network control
program (NCP) in the 3704 or 3705 Communications Controller does what is required to
communicate with logical units on data communication lines. Many functions previously
performed by the access method (for example, BTAM) or application program are now
performed by the communications controller; for example, the controller schedules line
activity, retries operations after transmission errors, and collects error statistics.

An ACF/VTAM application program communicates with logical units. A logical unit can
be:

An SNA terminal used directly by a terminal operator, or a program in a terminal, a
terminal control unit, or a cluster controller (such as a 3601 or 3791 controller)

A non-SNA 3270 device (local or remote) used in a record-mode session

Logical units controlled by TCAM or by another ACF/VTAM

Another ACF/VTAM application program

When the unqualified term logical unit is used in this book, it refers to any or all of the
above. The term device-type logical unit refers to any logical unit other than another
application program. To distinguish a logical unit that is another ACF/VTAM application
program, it is called a secondary application program.

. Though not shown in Figure 1-1, the ACF/VTAM application program can also

communicate with certain BSC and start-stop devices. The set of macro instructions
available for communicating with these devices is different from that used for

Chapter 1. What an ACF/VTAM Application ProgramIs 5

communicating with logical units. The method of communicating with BSC terminals,
start-stop terminals, and local non-SNA devices in basic mode is described in Appendix A.

In general, for programmable SNA devices, the user defines which processing functions
will take place in a program in the programmable device (such as a cluster controller) and
which in the ACF/VTAM application program in the host computer. The user must
coordinate the cluster controller program and the ACF/VTAM application program so
that they work together.

The Terminal Operator and the Batch Function @

If the ACF/VTAM application program communicates with a cluster controller program
rather than with a nonprogrammable terminal, the ACF/VTAM application program may
not need to know about terminal operator actions. The logical unit will determine
whether and how data received from a terminal operator will go to the ACF/VTAM
application program and whether and how data received from the ACF/VTAM
application program will go to the terminal operator.

An ACF/VTAM application program can also communicate with a batch-transmission or
batch-reception program in a cluster controller (such as the 3791 batch function). To
participate effectively in the batch transmissions, the ACF/VTAM application program
does not need to know the original source of or the eventual disposition of data received
from or sent to the subsystem batch program.

Another ACF/VTAM Application Program
An ACF/VTAM application program can also communicate with another ACF/VTAM
application program. The two application programs can be in the same host computer or
in different host computers. In this kind of communication in a particular session, one
application program adheres to a set of defined primary protocols and is known as the
primary application program. The other application program adheres to a set of
secondary protocols and is known as the secondary application program.

An ACF/VTAM application program can be both a primary and a secondary application

program at the same time. It can be a primary application program in its sessions with

logical units while it is also functioning as a secondary application program in sessions
~ with other ACF/VTAM application programs.

Systems Network Architecture
(SNA) Concepts in ACF/VTAM

ACF/VTAM follows SNA concepts and uses SNA protocols to connect and communicate
with elements in a data communication network. Several SNA concepts provide helpful
background information for the programmer who writes an ACF/VTAM application
program. Those concepts are:

Network addressable units

Primary and secondary logical units
Sessions

Domains

The SNA Concept of Network Addressable Units . /
Each element in a network to which a data or control message can be sent is assigned a’

network address by ACF/VTAM. Each element with such an address is known as a

- network addressable unit (NAU). The network address uniquely identifies the element,

regardless of whether the element is a device (such as a terminal or terminal control unit),

a program (such as an application program in a cluster controller or terminal), or a

portion of ACF/VTAM. For ACF/VTAM and other elements in the data communication
network, the network address contains the information necessary to route a message to
its destination.

Three types of network addressable units are defined by SNA and recognized by
ACF/VTAM. The three types are: (1) system services control point (SSCP), (2) physical
units (PUs), and (3) logical units (LUs). Figure 1-2 shows the location of these types of
network addressable units in a simplified network.

The system services control point is a unit of coding in ACF/VTAM that manages the
network and has primary control over communications. The SSCP performs functions
such as bringing up the network and shutting it down, establishing and disestablishing
connections (sessions) between units, and reacting to network problems (such as failure
of a link or unit). To perform these functions, the SSCP must be able to communicate
with, physical units and logical units in the network under its control.

A physical unit is not literally a physical device in the network. Rather, a physical unit is
a portion of a device (usually programming or circuitry, or both) that performs control
functions for the device in which it is located and, in some cases, for other devices that
are attached to the PU-containing device. For the devices under its control, the physical
unit takes action during activation and deactivation, during error recovery and
resynchronization, during testing, and during gathering of statistics on operation of the
device. Each device in the network is associated with a physical unit.

The physical unit may exist either within the device or within an attached controlling
device. The physical unit exists within a host computer, a communications controller, and
a cluster controller. For a terminal, however, the physical unit may be within the terminai
or it may be within the terminal control unit, cluster controller, or communications
~ controller to which the terminal is attached.

A logical unit is a device or program by which an end user (a terminal operator or an
input/output mechanism) gains access to the data communication network. To the
network, a logical unit is the source of a message coming into the network. But the logical
unit may or may not be the original source. The contents of the message or the
information on which the message is based may have originated at a device controlled by
the logical unit. (For example, in a 3601 cluster controller, the logical unit is a program
that handles input and output for one or several finance terminals attached to the
controller. Input actually originates at one of the terminals, but it is the logical unit [the
program] in the 3601 that uses the input to create a message and begin transmission of
the message.) Similarly, the network sees a logical unit as the destination of a message,
but the logical unit may actually pass the message on to a device for recording, printing,
or displaying to a terminal operator. (For example, a message received by a logical unit [a
program] in a 3601 may be passed on to a finance terminal to be displayed on the screen
of that terminal.) In some cases, however, the logical unit is an intrinsic part of the device
at which the message is displayed (for example, a 3767 terminal contains the logical unit
and is the input/output device).

An ACF/VTAM application program is also a logical unit. ACF/VTAM sees it as an
originator of and destination for messages. But there can be other programs in the host
computer that interface with an ACF/VTAM application program and to which the
contents of messages can be passed or from which the contents of messages can be
received. Thus, although the ACF/VTAM application program is the logical unit, the
messages it handles may be used by another program. In this case, the other program is
the end user.

Chapter 1. What an ACF/VTAM Application Program Is 7

Host Computer

ACF/VTAM ACF/VTAM
Application
Program
@ System
Services
Control
Point
ACF/VTAM (SSCP)
Application
Program Cluster
Controller
) PU
. LU LU
Communications T T
Controller
Terminal
”~ -~
\
(PU1) @
N
Communications lnp\ft : OutPut
Controller Device ; Device
Cluster
\ Controller
L —)
Terminal
Controller
-~ d
PU
T T

W@

}

Application programs
in the cluster controller

\E

TPU function is provided by the
attached communications
controller.

Indicates a terminal,

Figure 1-2. The SSCP, Physical Units, and Logical Units in a Network

The SNA Concept of Primary
and Secondary Logical Units

The SNA Concept of Sessions

Of the three types of network addressable units, an ACF/VTAM application programmer
is concerned only with logical units, and is not concerned with the SSCP and the physical
units. An ACF/VTAM application programmer is concerned with logical units because his
or her program (which itself is a logical unit) will communicate with other logical units
(for example, terminals, programs in cluster controllers or terminals, and/or other
ACF/VTAM application programs). An ACF/VTAM application program does not
communicate directly with the SSCP or physical unit, but commands issued by the
program may lead to actions by the SSCP or physical unit.

When an application program establishes connection with a logical unit (by issuing an
OPNDST or OPNSEC macro instruction), a 32-bit communication identifier (CID) is
returned in two control blocks used in making the connection (the request parameter list
[RPL] and the node initialization block [NIB]). The CID identifies the two logical units
involved in a communication session. Whenever the application program is to send a
message to the logical unit, the CID must be in the RPL used to send the message. The
programmer can move the CID out of and back into the RPL, but the programmer does
not directly use and must not change the contents of the CID.

In communication between two logical units, one logical unit acts as the primary end of
the session (by using primary protocols), the other as the secondary end (by using
secondary protocols).

The same ACF/VTAM application program can be primary on some sessions and
secondary on other sessions at the same time. For example, it can perform primary
functions in its communications with terminals and logical units (including other
ACF/VTAM application programs), and it can perform secondary functions in its
communications with another application program.

For more information on what primary and seccondary application programs can and
cannot do, see “How a Secondary Application Program Requests Connection” in Chapter
5. '

Before two units in a network can communicate with each other, the units must be tied
together in what is known as a session. In an SNA network, several different types of
sessions are established, including SSCP-SSCP sessions, SSCP-PU sessions, SSCP-LU
sessions, and LU-LU sessions.

When a network includes more than one host computer and therefore more than one
ACF/VTAM (or ACF/VTAM in one or more hosts and ACF/TCAM in one or more other
hosts), a session called an SSCP-SSCP session must be esiablished between the SSCP in
one ACF/VTAM and each other SSCP with which the first SSCP will communicate.

Within the machine configuration controlled by each SSCP, different kinds of sessions are
established in stages. The SSCP must first establish an SSCP-PU session with each physical
unit that is active in the configuration. Then, for each active logical unit associated with a
physical unit, the SSCP must establish an SSCP-LU session. And finally, when a pair of
logical units indicate that they want to communicate with each other, the SSCP must
establish an LU-LU session between them. The paragraphs that follow describe the steps
in establishing these sessions, with the circled numbers beside the headings serving as keys
to the circled numbers in Figure 1-3.

Chapter 1. What an ACF/VTAM Application Program Is 9

~The SSCP-PIJ Session (1)
eSS O/

The SSCP-LU Session @

. 10

ACF/VTAM N A aunte DU

®Sses§‘°“ PU other
r / L-J LUs
T T
D ssoe I
-

ACF/VTAM 4

Application
/
;/

LOGON

Program
Exit Routine @ LU-LU Session

LU

(&) OPNDST
@ Bind -

Figure 1-3. Establishing an LU-LU Session

To get ready for an SSCP-LU session, the SSCP must first establish a session with the
physical unit that controls the logical unit. This type of session is called an SSCP-PU
session. This session is used to exchange messages and commands that pertain to startup
and shutdown of the machine configuration or the individual physical unit and to the
recovery of operations after a device or link failure. After the SSCP-PU session has been
established, the SSCP can attempt to establish a session with any active logical unit
associated with that physical unit. The SSCP-PU session is established on a nonswitched
line as soon as the physical unit is activated. On a switched line, the session is established
following a dial-in or dial-out operation. For local SNA devices, the session is established
when physical connection is established. In ACF/VTAM, the SSCP-PU session is
established by the SSCP; an ACF/VTAM application program does not itself take any
direct action to establish that session.

Once a session has been established between the SSCP and a physical unit, the SSCP can
issue commands to establish a session between itself and any active logical unit associated
with the physical unit. This type of session is called an SSCP-LU session. The
establishment of this session allows SNA commands to flow back and forth between the
logical unit and the SSCP. These commands pertain mainly to connection and
disconnection. In ACF/VTAM, the SSCP-LU session is established by the SSCP; =n
ACF/VTAM application program does not itself take any direct action to establish :'i¢
session.

Initiate Command or Logon @

Logon Exit Routine @

After the SSCP has established a session with a logical unit, the logical unit can attempt
to initiate a session with an ACF/VTAM application program. Action by the logical unit
to start such a session is usually initiated when a terminal operator communicates with
the logical unit and indicates that he or she wants to work with an application program in
the host computer. The logical unit either uses the logon information entered by the
terminal operator to create an Initiate command to be sent to the SSCP, or the logical
unit passes the logon information from the terminal operator on to the SSCP in the form
in which it was received from the operator.

In addition, after the SSCP-LU session has been established, a secondary ACF/VTAM
application program can request that a session be established with a primary ACF/VTAM
application program. In this case, the secondary application issues a special macro
instruction (the REQSESS macro instruction). This macro instruction causes an Initiate
command (containing logon information) to be sent to the SSCP.

In either case, when the logon information reaches the SSCP, the SSCP notifies the
ACF/VTAM application program that the logon has been received and should be
processed. The logon information includes session parameters and, optionally, a user
logon message. The user logon message is particular data that the terminal operator or
logical unit wants to be passed to the ACF/VTAM application program. When the
application program is notified that the logon has been received, the session parameters
and the user logon message are made available for inspection by the program. Session
parameters are a set of codes that indicate the communication rules that the logging-on
unit wants to use for the session that is about to be established. The parameters specify
such things as whether chained or unchained messages will be sent, what kinds of
responses will be requested, which logical unit will start and end brackets, and so on.

In ACF/VTAM, the SSCP notifies the application program that the logon has been
received by scheduling execution of the program’s LOGON exit routine. The LOGON
exit routine then either accepts or rejects the logon. During processing of the logon, the
application program determines whether the session parameters suggested by the logical
unit are the right ones for the session or whether a different set of session parameters
should be used.

Opening the LU-LU Session (OPNDST Macro Instruction) (5)

The Bind Command @

If the application program decides that it wants to go into session with the logical unit,
the application program issues an OPNDST macro instruction. As a result of the OPNDST
macro instruction, ACF/VTAM builds a Bind command and sends it to the logical unit. If
the application program decides to reject the request for a session, it issues a CLSDST
macro instruction, and the session is not established.

The Bind command is the key item in establishing the LU-LU session. Besides indicating
the application program’s willingness to go into session, the Bind command contains the
session parameters that the program decided should be used for the session (the
parameters may be the same or different from those suggested in the logical unit’s logon
information). If the logical unit agrees with the session parameters and wishes to establish
a session with the application program, the logical unit sends a positive response to the
Bind. If the logical unit does not agree with the session parameters, it sends a negative
response and the LU-LU session is not completed.

Completing the LU-LU Session (7)

When ACF/VTAM receives a positive response to the Bind command, it completes the
LU-LU session and the logical units are ready to communicate. In some cases, the

Chapter 1. What an ACF/VTAM Application Program Is 11

The SNA Concept of Domains

exchange of messages and responses cannot begin until a Start Data Traffic command is
sent by the primary end of the session to the logical unit. The need for the Start Data
Traffic command is determined by the transmission services profile in the session
parameters.

as Iimplemented by ACF/VTAM

A data communication network is divided into domains when the network contains more
than one host computer and each host computer contains ACF/VTAM (or another data
communication access method that supports networking). A domain is that portion of a
total network that is controlled by a particular ACF/VTAM (or another access method).
Figure 1-4 shows a network with two domains. The elements in domain A are controlled
by the ACF/VTAM in host computer 1; the elements in domain B are controlled by the
ACF/VTAM in host computer 2.

The domains are joined either (1) by a cross-domain link between two local
communications controllers (as shown in Figure 1-4) or (2) by a communications
controller that is channel-attached to more than one host computer.

When a network contains more than one domain, an ACF/VTAM application program in
one domain can communicate with logical units in its own domain and in other domains.
The application program can communicate across domain boundaries with SNA terminals
and SNA logical units, with ACF/VTAM or ACF/TCAM application programs, and with
BSC 3270 terminals that were defined with PU=YES. The application program cannot
communicate with local, start-stop, or BSC terminals (except specially designated BSC

. 3270 terminals) in other domains.

In cross-domain communications, neither end of the session need be aware that the other
end of the session is in another domain. By using a symbolic name to refer to the resource
in another domain, each end of the session provides enough information for the resource
to be identified and located. All addressing and routing of messages between the domains
are handied auiowaticaily by ACF/VTAM and ihe neiwork controi programs (NCPs) in
the local communications controllers. ‘

The Major Programming Elements
in an ACF/VTAM Application Program

12

Figure 1-5 shows the three major functions that any ACF/VTAM application program
performs:

@ Opening and closing the program (associating the program with and disassociating it
from ACF/VTAM).

e Connecting to logical units that have already been defined to ACF/VTAM and made
active either when ACF/VTAM was started or when the network operator issued a

command. Disconnecting the logical units when communication is no longer necessary
or possible.

e Communicating with logical units to which the program is connected.

Figure 1-6 shows these major functions in more detail in the approximate order in which
the functions occur. Although every ACF/VTAM facility is not shown in Figure 1-6, the
facilities that are shown give a general idea of an ACF/VTAM application program. The
headings below correspond to the numbers in Figure 1-6.

Domain A

Host Computer 1

ACF/VTAM
Application
Programs

ACF/VTAM

Domain B

' Host Computer 2

ACF/VTAM
Application
Programs

ACF/VTAM

Communications Communications % Communications
Controller Controller Controller
Cross-Domain Link
T T
T Cluster T Cluster
Controller Controller
T T
T T I
] \ T T
T T
‘ T
T T

Figure 14. A Data Communication Network with Two Domains

T Indicates terminal

Chapter 1. What an ACF/VTAM Application Program Is

13

Opening the Program @

ACF/VTAM Application Program

Processing Parts Communication ACF/VTAM
Part

Opening and closing the program' '

Connecting and disconnecting
logical units

Communicating with logical units

Figure 1-5. The Major Functions of the Communication Part of an ACF/VTAM Application Program

Assume that a program has been started. The program issues an OPEN macro instruction
to open an access method control block (ACB). The ACB, in the constants area of the
program, enables ACF/VTAM to relate the program to the name of the APPL statement
that was used to define the application program to ACF/VTAM.

Connecting a Logical Unit @

14

A common way to connect a logical unit is to have the logical unit send a logon, which
requests connection to a particular program. An ACF/VTAM application program can
have a LOGON exit routine that is automatically entered when a logon is received. The
LOGON exit routine connects the logical unit by issuing an OPNDST macro instruction.
The OPNDST points to a node initialization block (NIB). The NIB contains information
that ACF/VTAM associates with the logical unit during its connection. When the
OPNDST is completed, the program and the logical unit can exchange messages.

ACF/VT AM Application Program

Processing Parts Communication Part

ACF/VTAM

[]
@ OPEN ACB1

°
[]
.
SETLOGON OPTCD=START
°
°

Exit Routines

LOGON Exit Routine

b Message containing logon
@ LOGON1 |
[]
[]
e
OPNDST
[]
L]
[]
BR R14
@ RECEIVE RPL=(2), OPTCD=ANY, < Message
o AREA=AREA1
[]
[]
Message
@ RECEIVE RPL=(2), OPTCD=SPEC <
[]
L]
* Message
@ SEND . .POST=RESP, . .. -
[]
[]
[]
@ SEND ...POST=SCHED, ... Message -
SEND .. .POST=SCHED, . . . Message -
SEND ...POST=SCHED, . . . Message LSS
@ SEND .. .STYPE=RESP | _Reseomse

Figure 1-6 (Part 1 of 2). Major Programming Elements in the Communication Part of an ACF/VTAM Application Program

Chapter 1. What an ACF/VTAM Application Program Is 15

RESP Exit Routine A
esponse to a message
*.. — — — Cm— G— S—— C—

Post ECB

Other Exit Routines

®

[]
CLOSE ACB1

®

ACB1

AREA1

Defined Constants and Storage

ACB Points to APPL name
RPL(s)
NIB(s)
EXLST
DC cL100
°
°
°
END

Figure 1-6 (Part 2 of 2). Major Programming Elements in the Communication Part of an ACF/VTAM Application Program

Receiving a Message from Any Logical Unit @

16

After one or more connections have been made, a request can be issued to receive input
from a specific connected logical unit or from any connected logical unit. To receive a
message sent from any connected logical unit, a RECEIVE with OPTCD=ANY is issued.
Such a RECEIVE is completed if ACF/VTAM is already holding a message received from
any connected logical unit or is completed when such a message is received. (Note that a
message from a logical unit that has been switched to specific mode is not eligible to
complete a RECEIVE with OTPCD=ANY.) As part of the RECEIVE operation, the data
in the message is moved from ACF/VTAM to a designated area in the application
program—for example, to AREA1 shown in the constants area. Note also that there isa
separate and independent CA-CS setting for each type of input (DFSYN, DFASY, and
RESP).

The RECEIVE and most other ACF/VTAM application program requests must furnish
the address of a request parameter list (RPL), shown in the constants area of Figure 1-6.
Fields in the RPL contain parameters that tell ACF/VTAM exactly how to perform the
requested operation. On completion of a requested operation, ACF/VTAM places
feedback information in the RPL, where it can be checked by the application program.

Each message that is received or sent by the ACF/VTAM application program contains
either or both of two kinds of information: data and commands. Data is information that
is meaningful only to the processing portion of an application program. Commands are
special signals that help direct the further exchznge of messages between the application
program and the logical unit. Whereas data is received in or sent from a defined input or
output area in the program, commands are received in or sent from certain fields of the
RPL that is specified in a RECEIVE or SEND macro instruction. (The term commands is
used here and in other parts of this manual to cover SNA commands and indicators used

for data-flow control and session control.) t

Receiving a Message from a Specific Logical Unit @

Sending a Message @

An input request can also be issued in such a way that only a message from a specific
logical unit will satisfy the request. To do this, a program issues a RECEIVE with °
OPTCD=SPEC and with the RPL indicating the logical unit from which the input is
desired. A common practice is for a program to issue a RECEIVE with OPTCD=ANY to
accept input from any logical unit. Then, when a message is received from a logical unit, -
the program specifies that the logical unit is to be switched into a mode (called specific -
mode) in which a message from it cannot satisfy a RECEIVE with OPTCD=ANY and can -
only complete a RECEIVE with OPTCD=SPEC. When this mechanism is used, a -
conversation with a logical unit consists of an initial RECEIVE with OPTCD=ANY
followed by a series of RECEIVEs with OPTCD=SPEC and SEND macro instructions. -
(Note that a SEND macro instruction always specifies that the message is to be
transmitted to a specific logical unit.) When the conversation is completed, the
application program can switch the logical unit back to the ANY mode. "

Completion of the RECEIVE with OPTCD=ANY might be followed by execution of a -
processing routine of the program and, subsequently, by the processing part of the -
program’s calling the communication part with individual requests for input and output. -
The communication part issues the RECEIVE with OPTCD=SPEC at 4 or one or more °
SENDs at 5 or 6. ‘

As implied by the preceding description, a RECEIVE is not completed until ACF/VTAM :”
receives a message from a logical unit and passes it to the application program.

In contrast to a RECEIVE macro instruction, a SEND macro instruction can be
completed at either of two different times: when the message is scheduled (that is, when
ACF/VTAM has accepted the request, moved the message to its own output area, and
prepared everything for the transmission) or when the message has been responded to
(that is, after ACF/VTAM has sent the message and received a response). To specify
completion upon receipt of a response, the programmer uses a SEND with POST=RESP
(as at 5), meaning that the results of the operation will be immediately available in the
RPL when the request is completed. With POST=RESP, the application program cannot
reuse the RPL or message output buffer associated with the SEND until the operation is
completed.

Scheduling the Sending of a Message @

As an alternative to POST=RESP, a message can be scheduled for output (SEND with
POST=SCHED). On completion of the SEND, the data has been accepted by ACF/VTAM
and the program can reuse the RPL and the message output buffer. The program itself
must determine that a scheduled message actually arrived at its destination and was
processed successfully. One way is to request the logical unit to send back a special
message called a response, which is an indication of whether and how a message arrived
and was processed, successfully or unsuccessfully. A response can be requested in each
SEND that specifies POST=SCHED. When the response arrives, ACF/VTAM either

Chapter 1. What an ACF/VTAM Application Program Is 17

Sending a Response @

Receiving a Response

Other Exit Routines @

Disconnecting a Logical Unit

Closing the Program

18

completes a special RECEIVE that can receive responses (not shown) or enters an
ACF/VTAM application program’s RESP exit routine, such as the one at 8.

The SEND requests in 5§ and 6 above requested the sending of a message. The program
may also want to send a response to a message. This is done by specifying STYPE=RESP
instead of STYPE=REQ in the SEND macro instruction and by specifying other
parameters to indicate the type of response (for example, positive or negative) to be sent.
A response is sent because the logical unit requested it; it is a special kind of message that
is identified as a response to a particular preceding message. Each message is given a
sequence number by the sender’s access method (ACF/VTAM or the logical unit); the
receiver puts the same sequence number in a response, thus indicating within the response
which message is being responded to.

When a program uses SEND with POST=SCHED macro instructions, the program can
take direct action to receive each response; that is, for each response, it can issue a
RECEIVE with RTYPE=RESP. More frequently, however, a program will contain a RESP
exit routine (at 8), which is scheduled each time a response is received. The RESP exit
routine can notify the main program of receipt of the response, perhaps by posting an
ECB. The main program must then correlate the response with the send operation that
produced it.

In addition to the LOGON and RESP exit routines, ACF/VTAM provides automatic
scheduling of other special-purpose exit routines. LERAD and SYNAD exit routines can
be coded which ACF/VTAM schedules when the program issues a macro instruction that
uses an RPL (such as SEND or RECEIVE) and an error or a special condition occurs. The
presence and addresses of these special-purpose exit routines are identified to ACF/
VTAM in an EXLST macro instruction (in the constants area). The EXLST is pointed to
by the ACB or NIB, or both.

Although not shown, ACF/VTAM also provides another general kind of exit routine, the
RPL-specified exit routine. An RPL exit routine is identified in the EXIT operand of an
RPL-based macro instruction (any macro instruction that uses an RPL). A different RPL
exit routine can be identified in each RPL-based macro instruction, or some macro
instructions can use the same exit routine. When the operation requested in the macro
instruction is completed, control is automatically given to the exit routine specified in the
EXIT operand. Having an RPL exit routine scheduled upon completion of a request is an
alternative to having ACF/VTAM post an ECB upon completion.

The connection with a logical unit is terminated when the application program issues a
CLSDST macro instruction. Disconnecting the logical unit allows it to be connected to
another application program.

An application program can be closed when the program determines it should be or when
the ACF/VTAM network operator requests it. To close an application program, the
program issues a CLOSE macro instruction. This disconnects from the program any
logical units that are still connected to it and disassociates the program itself from
ACF/VTAM.

Constants and Control Blocks

In addition to message buffers (data areas) required for input and output messages and in
addition to other areas such as status flags for logical units, each ACF/VTAM application .
program must define (or generate dynamically) these control blocks: '

One ACB to define several facts about the program itself.

One EXLST (list of exit routine names) if any exit routines are to be written.
Although not required, certain exit routines, such as TPEND, NSEXIT, and
LOSTERM are recommended.

At least one RPL for each request that can be pending concurrently with other
requests.

At least one NIB for each logical unit that must be in the connection process
concurrently. It is possible to use only one NIB if logical units are connected one at a
time.

Manipulative Macro Instructions
ACF/VTAM provides macro instructions that allow control blocks to be created and
initialized during program execution (the GENCB macro instruction) and that allow the
control block fields to be changed and tested (the MODCB, SHOWCB, and TESTCB
macro instructions). In addition, macro instructions are provided that generate DSECTs
for the control blocks. This allows control block fields to be located and tested with
assembler language instructions. ACF/VTAM application program macro instructions and
control blocks are discussed in more detail in Chapter 2. '

Chapter 1. What an ACF/VTAM Application Program Is 19 "

Chapter 2. The ACF/VTAM Language

The ACF/VTAM application program uses ACF/VTAM macro instructions to request the
operations discussed in Chapter 1. ACF/VTAM provides assembler language macro
instructions to:

Associate an application program with or disassociate it from ACF/VTAM
Connect the program to or disconnect it from specific logical units
Communicate with logical units

Control an ACF/VTAM network

Build and initialize control blocks used when requesting connection, communication,
or other services from ACF/VTAM

Manipulate a control block; for example, to test the value of a field in a control block

Characteristics of the ACF/VTAM Language

These are some characteristics of the ACF/VTAM language:

Keyword operands: The operands in ACF/VTAM macro instructions, with the
exception of OPEN and CLOSE, are keyword operands rather than positional
operands. Keyword operands make the coding easier to read. The keywords themselves
identify control block fields. Some keyword operands must be specified, but most are
optional.

Manipulative macro instructions: These macro instructions provide an easy way to
gain access to particular control block fields, usually to test or display values after a
requested operation. Fields are specified symbolically; field displacements do not have
to be known.

Exit routines: The ACF/VTAM application program can specify that ACF/VTAM is
to automatically schedule special-purpose exit routines. These routines are written to
handle conditions such as receiving a request for connection from a logical unit or
receiving a certain type of command from a logical unit. In addition, an ACF/VTAM
application program can request that ACF/VTAM complete a particular request by
scheduling an RPL-specified exit routine instead of by posting an ECB. RPL exit
routines provide additional programming flexibility and convenience and give greater
priority to the handling of an event’s completion than does the posting of an ECB.

Complements VSAM: In general, the ACF/VTAM language complements the VSAM
language. Both ACF/VTAM and VSAM use ACB, EXLST, and RPL control blocks
(although the formats of these control blocks differ in the two access methods). Both
ACF/VTAM and VSAM have macro instructions (GENCB, MODCB, TESTCB, and
SHOWCB) that are used to manipulate these control blocks, and both provide the
ability to code and specify the scheduling of exit routines.

A Summary of Macro Instructions
This section summarizes the ACF/VTAM application program macro instructions. For a
complete description of each macro instruction, see ACF/VTAM Macro Language
Reference.

The Connection Macro Instructions

These macro instructions tell ACF/VTAM that a particular ACF/VTAM application
program is in operation and, subsequently, request ACF/VTAM to connect the

Chapter 2. The ACF/VTAM Language 21

application to one or more logical units. The macro instructions also request ACF/VTAM
to disconnect the program from one or more logical units and to disconnect the program
from the ACF/VTAM system.

OPEN: ldentifies an application program to ACF/VTAM. Once the program is
identified, ACF/VTAM can schedule exit routines associated with the program.

CLOSE: Indicates to ACF/VTAM that an application program is terminating its
association with ACF/VTAM.

OPNDST: Requests ACF/VTAM to connect the application program to a designated
logical unit or to a list of logical units. Connection must be made before
communication macro instructions can be used to transfer data to or from the logical
unit or units.

CLSDST: Requests ACF/VTAM to terminate the connection between the application
program and a designated logical unit.

REQSESS: Requests ACF/VTAM to inform a primary application program that a
secondary application program wants to start a session with the primary program.

OPNSEC: Informs ACF/VTAM that the secondary application program is satisfied
with the session parameters transmitted to it in a Bind command and that ACF/VTAM
should complete the connection to a primary application program.

TERMSESS: Requests ACF/VTAM to terminate the session (unconditional termina-

tion) or inform a primary application program that a secondary application program
wants to end the session.

The Communication Macro Instructions

22

ACF/VTAM provides two types of communication macro instructions: basic mode and
record mode. In general, basic-mode macro instructions are used to communicate with
non-SNA devices; record-mode macro instructions are used to communicate with SNA
devices. A program can communicate with local non-SNA 3270 and BSC 3270 terminals
in either mode, but to communicate with these terminals in basic mode, the terminals
must have been defined with PU=NO. This section describes the record-mode macro
instructions. Basic-mode macro instructions are described in Appendix A. Here are brief
descriptions of the record-mode communication macro instructions:

RECEIVE: Requests ACF/VTAM to transfer a message, command, or response, when
received from a specific logical unit or any one of a group of logical units, to the
application program’s data area (if the input is data) and/or to appropriate fields of the
RPL (if the input is command or response information).

SEND: Requests ACF/VTAM to transmit a message, command, or response to a
specific logical unit. Data in a message is transferred from an output area in the
application program; commands in a message and responses to messages are specified
symbolically in the SEND macro instruction.

SESSIONC: Used by a primary application program to request ACF/VTAM to send to
a logical unit commands that either (1) start or stop the exchanging of messages and
responses with the SEND and RECEIVE macro instructions, (2) clear out all pending
messages and responses for that session, or (3) assist in synchronizing message
sequence numbers. Used by a secondary application program to (1) request the
primary application program to begin message recovery action, (2) send a negative
response to a connection request, (3) send a response to a sequence number request,
and (4) send a response to a request to start (or resume) message and response
exchange with SEND and RECEIVE macro instructions.

RESETSR: Changes the mode of receiving input from a particular logical unit. The
modes are continue-any mode (have input from the logical unit satisfy an outstanding
RECEIVE that will accept input from any logical unit) and continue-specific mode

(have input satisfy an outstanding RECEIVE that specifies only that particular logical
unit). RESETSR can also be used to cancel outstanding requests for input from the
specified logical unit.

Network Control Macro Instructions
These macro instructions allow an authorized application program to issue ACF/VTAM
network operator commands (except START and HALT) and the OS/VS REPLY
command and to receive network operator messages from ACF/VTAM:

SENDCMD: Enters an ACF/VTAM network operator command or the OS/VS
REPLY command from an authorized application program, (called a program
operator). All network operator commands can be entered except START and HALT.

RCVCMD: Receives an unsolicited network operator message, or receives replies to
commands that were issued by a program operator.

Sample programs and the use of these macro instructions are presented in the
ACF|/VTAM Program Operator Guide, SC38-0257.

Note: The REPLY command is used for communication between ACF/VTAM and the
application program. For DOS[VS, ACF/VTAM supports the REPLY command (in the
OS/VS format) only in response to a request from ACF/VTAM.

The Control Block Macro Instructions
These macro instructions are used to build and initialize ACF/VTAM application program
control blocks and manipulate these control blocks. The ACF/VTAM application
program control blocks are the:

Access method control block (ACB)
Exit list (EXLST)

Node initialization block (NIB)
Request parameter list (RPL)

Each ACF/VTAM application program can have one or more of each type of control
block. Ordinarily, a program will have one ACB, one or several exit lists, a number of
NIBs, and a number of RPLs.

The Control- Block-Building Macro Instructions
The control blocks are built and initialized by coding a macro instruction for each control
block. The operation codes of the macro instructions are identical to the names of the
control blocks that they build and initialize. These are the control-block-building macro
instructions:

ACB: Builds and initializes an ACB. An ACB contains information the application
program provides ACF/VTAM about the application program in its entirety. Primarily,
it names the application program and the list of exit routines associated with the
program. The ACB contains information about the application program.

EXLST: Builds and initializes an exit list. An exit list contains the addresses of special
exit routines that ACF/VTAM is to schedule when certain conditions occur (as, for
example, when a logon is received from a logical unit). The EXLST contains the names
of exit routines.

NIB: Builds and initializes a NIB. A NIB contains information the application
program provides ACF/VTAM about general communication characteristics that are to
exist between the application program and a particular logical unit. This information is
provided to ACF/VTAM as part of a connection request; it remains in effect for the
duration of a connection. The NIB contains information about a logical unit.

Chapter 2. The ACF/VTAM Language 23

RPL: Builds and initializes an RPL. An RPL contains information (parameters) that
an application program provides ACF/VTAM when requesting connection,
communication, or other RPL-based action. On completion of the requested action,
the RPL contains information that ACF/VTAM has put there for the application
program. The RPL contains information about a request.

An ACB, EXLST, NIB, or RPL control block can be assembled in the application
program by using the appropriate control-block-building macro instruction described
above, or the control block can be created and initialized during program execution by
using the GENCB macro instruction described below.

The Control-Block Manipulating Macro Instructions

ACF/VTAM provides a group of macro instructions that manipulate control-block fields.
These macro instructions provide a more convenient way to do this than by using
assembler-language instructions. They refer to fields symbolically rather than by specific
control-block location. By using these macro instructions rather than the control-block-
building macro instructions listed above, a program can be written to be unaffected by
control-block changes in future releases of ACF/VTAM. In addition, the macro
instructions may be used to code a reenterable application program. The manipulative
macro instructions are:

GENCB: Builds an ACB, EXLST, NIB, or RPL during program execution and can
initialize designated fields with specified values. Multiple copies of one control block
can be built with one GENCB macro instruction.

SHOWCB: Obtains the value or values from one or more fields of a control block and
places them in an area in the application program where they can be examined. In
addition to fields that are set by the application program’s use of macro instruction
keyword operands, a number of control block fields can be shown that are set by
ACF/VTAM but that cannot be directly modified by the application program.

TESTCB: Tests the contents of a field against a value and sets the condition code in
the program status word (PSW).

MODCB: Changes the contents of one or more fields by inserting specified values in
the fields.

There are several different forms of the manipulative macro instructions. In addition to
the standard form, there is a list form, a remote list form, a generate form, and an execute
form. The nonstandard forms can be used for programs that must be reenterable or that
are sharing with other programs the parameter lists that are assembled when the macro
instructions are expanded.

Rather than using the manipulative macro instructions, the program can include
IBM-supplied macro instructions that generate DSECTs for each kind of control block.
Each DSECT shows the field names and possible values that each field can contain. These
names and values can be used in assembler instructions to set and test designated fields.

Supporting Macro Instructions
These additional macro instructions are provided:

CHECK: Checks and, if necessary, awaits completion of a previously requested
RPL-based operation; marks as inactive the RPL associated with the request (thus
freeing it for further use); and, if a logical or other error or special condition is
detected and a LERAD or SYNAD exit routine exists, causes the appropriate routine
to be entered.

EXECRPL: Reissues a specified request. One use of this macro instruction is to
reexecute a request without changing any field in the RPL. This is done, for example,
in a SYNAD exit routine when the return code from the first attempt to perform the

operation indicates that a retry is possible (return code 8 in register 0). Another use of
the EXECRPL macro instruction is to request that the operation be performed again
and to specify that, before the operation is retried, one or more fields in the RPL are
to be changed or to be reset to their original values.

The EXECRPL can also be used in place of an RPL-based macro instruction, such as
OPNDST, SEND, or RECEIVE. Prior to issuing an EXECRPL, the operation to be
performed must be set in the RPL; this requires the use of the IBM-supplied RPL
DSECT. Other parameters may either be set in the RPL or specified with keyword
operands when the EXECRPL macro is issued. While less convenient to code, using
EXECRPL results in execution of fewer instructions.

Note that EXECRPL cannot be used to issue or reissue a CHECK request that has
failed, since CHECK does not alter the operation field of the RPL.

INQUIRE: Obtains certain information that the application program may need and
places it in a specified area of the program. The information that can be requested
using INQUIRE includes: the user logon message associated with a logon; the session
parameters associated with a particular logon mode name or with a logical unit that is
logging on; the number of logical units currently connected to, or queued for, the
application program; and whether another application program is active or inactive and
whether it is accepting logons.

INTRPRET: Provides a means of gaining access to a user-defined table. For example,
INTRPRET can be used to obtain the real symbolic name of an application program
when the program is identified with an alias in a logon message. INTRPRET can be
used by special programs written to receive logon messages and then reconnect logical
units to the appropriate application program.

SETLOGON: Used by a primary application program to tell ACF/VTAM to begin
queuing and scheduling logons for an application program’s LOGON exit routine. The
user can also temporarily halt the queuing of logons until more logical units can be
handled or can permanently halt the queuing of logons in preparation for a
close-of-day operation. Used by a secondary application program to enable itself to
issue REQSESS macro instructions and enable its SCIP exit routine to receive session
parameters.

SIMLOGON: Allows the applicaton program itself to initiate a logon on behalf of one
or more logical units to which the program is to be connected.

How the Executable Macro Instructions
and the Control Blocks Are Related

The relationship of the ACF/VTAM control blocks to each other and to the macro
instructions that refer to them can be described in the context in which they are used. To
establish that context, the following sections describe the relationships and use of the
control blocks in terms of the operations that every application program must perform:

Opening the application program—that is, identifying itself to ACF/VTAM as
operational

Connecting to logical units with which it will communicate

Communicating with connected logical units

Opening the Application Program

OPEN

L]

APPL

ACB T—>

o

entry

EXLST

The OPEN macro instruction associates an active application program with ACF/VTAM
so the application program can use ACF/VTAM facilities. The OPEN macro specifies an
ACB; the ACB in turn points to a location in the program that contains the name of the
application program as defined in an APPL statement during ACF/VTAM definition. The
ACB may also point to an EXLST control block containing the names of exit routines

Chapter 2. The ACF/VTAM Language 25

Connecting Logical Units

OPNDST

—

ACB

NIB

‘13:_']

that are to be associated with the application program. (An EXLST can also be pointed to
when a logical unit is connected; see “Connecting Logical Units,” below.) When the open
process is completed, any exit routines that have been specified are eligible for scheduling
by ACF/VTAM.

More than one ACB can be opened by a single OPEN macro instruction. This means that
a program that performs related functions (for example, communicating with both logical
units and terminals) may be defined so that it is viewed by ACF/VTAM as more than one
application program. Many ACF/VTAM users will find it satisfactory to open only one
ACB for each program.

The CLOSE macro instruction notifies ACF/VTAM that an application program is
detaching itself from ACF/VTAM. As a result of a CLOSE macro, any logical units still
connected to the program are disconnected.

Before communicating with a logical unit, an application program must be connected to
the logical unit. Connection can be initiated by the logical unit, the network operator,
ACF/VTAM, or an application program. But, regardless of who initiates the connection
request, it is the application program that will adhere to primary protocols that formally
completes connection by issuing an OPNDST macro instruction. The OPNDST macro
instruction specifies an RPL that is associated with the request. The RPL contains the
address of a NIB. The NIB contains information that applies to subsequent communica-
tion with the logical unit. If necessary, the address of a unique storage area to be
associated with the logical unit can be specified in the NIB. This area could include an I/O
area and a place for flags that keep track of communication with the logical unit. If a
number of logical units are to be connected by an application program, a single
SIMLOGON or OPNDST with OPTCD=ACQUIRE can be used, and the RPL points to a
list of NIBs instead of to a single NIB.

Optionally, for certain types of exit routines (DFASY, RESP, and SCIP), a NIB can point
to a list of exitroutine names in an EXLST control block. For the logical unit being
connected, these exit routines are used in preference to the corresponding exit routines
identified for the entire application program when the ACB was opened.

When a logical unit is connected as the result of an OPNDST macro instruction,
ACF/VTAM returns information about the logical unit in the RPL and the NIB. In both
the RPL and the NIB, ACF/VTAM places a communication identifier (CID) that it has
assigned to the session with the logical unit. On all subsequent I/O requests for the logical
unit, the application program must be sure that this CID is present in the RPL. In
addition to the CID, ACF/VTAM also places the logical unit name (for an OPNDST
ACCEPT ANY) and other information in the NIB; if desired, the application prograg can
use this information to determine how to communicate with the logical unit.

Once a NIB has been used to connect one logical unit, it can be reinitialized and reused to
connect another logical unit.

Communicating with Logical Units

RECEIVE/SEND

RPL

26

—» ACB

Logical
Unit

Having opened the application program’s ACB and having connected one or more logical
units to the program, the program can communicate with each connected logical unit by
issuing SEND and RECEIVE macro instructions. ACF/VTAM obtains the name of the
application program that made the request and the identity of the logical unit (if a
specific logical unit is being addressed) from the RPL. The communication macro
instruction specifies an RPL; the RPL contains the address of an ACB and the identity of
the logical unit.

\

Disconnecting Logical Units

Exit Routines

The SEND and RECEIVE macro instructions write and read messages and responses. A
message contains data and/or control commands and indicators. A response contains
information that tells whether a message requiring a response arrived and was processed
successfully or unsuccessfully. Certain messages, called normal-flow messages, are received
or sent in sequence with other serially queued messages; other messages, called
expedited-flow messages, are received or sent immediately, ahead of other queued
messages.

Only data is written from or read into an application program data area. Control
commands and responses are sent by being specified symbolically in a SEND macro
instruction or its associated RPL. Commands and responses that are received are not read
into a data area but are detected by analyzing fields in the RPL associated with a
RECEIVE macro instruction or in an RPL associated with the scheduling of a special exit
routine that handles the receipt of commands or responses.

Once a series of communications between the application program and a logical unit is
completed, the program disconnects the logical unit by issuing the CLSDST macro
instruction. If the program is terminating and all logical units are to be disconnected at
the same time, the program can issue a single CLOSE macro instruction, which closes the
ACB, instead of issuing a series of CLSDST macro instructions for the logical units. As a
result of the CLOSE macro instruction, ACF/VTAM issues a CLSDST macro instruction
for each logical unit. Although it requires more coding, issuance of separate CLSDST
macro instructions in the application program may result in faster execution than using
the CLOSE macro instruction and having ACF/VTAM disconnect the units.

ACF/VTAM allows use of exit routines by which an ACF/VTAM application program can
gain control to handle certain conditions. An exit routine is written to handle a specific
event (for example, a SYNAD routine which is written to process RPL-based errors or
special conditions other than logical errors). When the event occurs, ACF/VTAM gives the
exit routine control as soon as possible. With the exception of SYNAD and LERAD, exit
routines need not be reenterable, since only one exit routine will be invoked at a time. If
multitasking is used and each task opens an ACB, more than one exit routine can be
invoked at the same time (one for each task that opened an ACB). The exit routines still
need not be reenterable as long as they are not shared between the tasks (that is, as long
as two tasks do not open ACBs that use the same exit routines). If an exit routine is
shared in this way, it must be reenterable.

There are two kinds of exit routines:

Exitlist exit routines: These are special-purpose exit routines that ACF/VTAM
schedules when an event they are designed to handle occurs, such as receipt of a logon.
The exit-routine addresses (entry points) are specified in an exit list created with the
EXLST macro instruction. A program can have more than one exit list. An exit list (a
set of exit routines defined with the EXLST macro) can be specified in an ACB and
thus be used by ACF/VTAM when an exit-routine event occurs for any logical unit
connected to the program or, for certain exit routines—DFASY, RESP, and SCIP—an
exit list can be specified in a NIB and be used by ACF/VTAM only when an
exit-routine event occurs for the logical unit associated with the NIB.

RPL-specified exit routines: These are exit routines that contain instructions to be
executed when particular requests are completed. In any individual connection,
communication, or other RPL-based request, if an RPL exit-routine address is

Chapter 2. The ACF/VTAM Language 27

Register Conventions

specified, the exit routine is scheduled as an alternative to ACF/VTAM’s posting an
ECB when the requested action is completed. A program can use a mixture of
ECB-posting and RPL exit routines, or it can use all one or the other. :

The names of the special-purpose exit routines and the events that cause them to be
entered are summarized in Figure 2-1.

The use of exit routines is described in detail in Chapter 7 and illustrated in the sample
programs in Part 3 and Appendixes D and F.

These general register conventions apply in writing an ACF/VTAM application program:

e Before issuing an executable macro instruction (such as SEND), the address of an
18-word save area must be in register 13.

e When issuing an executable macro instruction, register notation can be used. However,
register notation cannot be used to initialize a value in an ACB, RPL, NIB, or EXLST
macro instruction.

e Registers 2-12 (and only those registers) can be used when issuing ACF/VTAM macro
instructions. The one exception is that register 1 can be used to supply an RPL address
for any RPL-based macro instruction.

Exit Routine

Name Event
ATTN A start-stop terminal has caused an attention interruption.
DFASY An expedited-flow command has been received from a logical unit.
LERAD A logical error has occurred following an application program request.
LOGON A request for connection has been received from a logical unit.
LOSTERM Connection with a terminal or logical unit has been temporarily interrupted or

permanently lost; the logical unit has requested that the session be terminated;
or an event has occurred that may affect future operation of the session.

NSEXIT A network services request unit has arrived for the application program,
indicating either that (1) a session with a logical unit has been broken because
of a session outage, or (2) a partially complete session establishment procedure
will not be completed..

RELREQ Another application program has requested connection to a logical unit that
is presently connected to this program.
RESP A response has been received from a logical unit for which no RECEIVE with
RTYPE=RESP is outstanding.
SCIP One of the following commands has been received by the program:
Clear

Start Data Traffic (SDT)

Request Recovery (RQR)

Set and Test Sequence Numbers (STSN)

Bind

Unbind

SYNAD An error other than a logical error or a special condition has occurred following
an application program request.

TPEND The network operator is shutting down the network, or an abend of VTAM
has occurred.

Figure 2-1. Special-Purpose Exit Routines and the Events That Cause Them to Be Scheduled

® On regaining control after issuing a macro instruction:
— Register 15 contains a return code.
— Register 1 contains the address of the RPL associated with the macro instruction.

Chapter 2. The ACF/VTAM Language 29

Part 2. Writing an ACF/VTAM Application Program

Chapter 3. Organizing a Program: Describes major program organization alternatives that
are available when constructing a program and discusses the advantages of each
alternative. The facilities related to each alternative are discussed in more detail in
subsequent chapters in this part.

Chapter 4. Opening and Closing a Program: Describes how a program is opened and
closed and what happens as a result of these actions.

Chapter 5. Connecting and Disconnecting Logical Units: Describes alternative techniques
for connecting logical units to a program and for disconnecting them.

Chapter 6. Communicating with Logical Units: Describes the detailed concepts and
language involved in exchanging messages and responses with logical units, the flow of
messages in the network that results from ACF/VTAM communication macro instruc-
tions, and the facilities provided for communication, such as sequence numbers.

Chapter 7. Using Exit Routines: Describes how exit routines are used in an ACF/VTAM
application program and lists the rules that must be followed in using them.

Chapter 8. Manipulating Control Blocks: Describes some ways to manipulate control
blocks. It shows examples of using the manipulative macro instructions: GENCB,
MODCB, SHOWCB, and TESTCB. It lists and discusses in general the macro instructions
that supply DSECTs, so that ACF/VTAM application program control blocks can be
manipulated using assembler instructions.

Chapter 9. Handling Errors and Special Conditions: Describes in general how to organize
and code special routines to analyze and handle the occurrence of errors and special
conditions.

Chapter 10. Debugging a Program: Suggests how to minimize coding errors and how to

determine the location of errors in an ACF/VTAM application program that is being
developed.

Part 2. Writing an ACF/VTAM Application Program 31

Chapter 3. Organizing a Program

The organization of an ACF/VTAM application program affects how much storage it will
use, how well it will perform, and how easy it will be to write. Before getting into the
details about writing an ACF/VTAM application program, it may be helpful to
understand the decisions that are made when writing the program and some of the ways
in which a program can be organized. This chapter discusses these things:

® Data processing and data communication operations should be kept in different parts
of an ACF/VTAM application program (this book is concerned primarily with the data
communication part of the program).

o If new data processing routines are being written, it may be possible to move some
work formerly performed in the host computer to the logical units with which the
ACF/VTAM application program will communicate.

e Terminals supported by BTAM or by the basiccmode macro instructions of
ACF/VTAM can be handled in the same ACF/VTAM program that communicates with
logical units. See Appendix A.

e Different routines may be needed within an application program to handle logical
units that have different session parameters. Chapters 5 and 6 discuss this subject.

e There are two major kinds of program organization: synchronous (single-thread) and
asynchronous (multithread).

® Asynchronous (multithread) facilities include the scheduling of output and the
receiving of input from any logical unit. It includes the continuance of conversation
with a logical unit in a mode that excludes the logical unit from being read by a
request for input from any logical unit. It includes a NIB that allows a unique storage
area to be associated with a logical unit.

® A number of decisions must be made .in writing a program. These are summarized in
Figure 3-6.

e The control blocks and work areas required for each logical unit or for a group of
logical units can be obtained and controlled in a number of different ways. Some
examples are shown.

Single-Thread or Multithread Operations

An ACF/VTAM applicaticn program can be described as a single-thread program—that is,
capable of processing the request of only one logical unit at a time—or as a multithread
program—capable of processing the requests of many logical units concurrently. These
terms are only generally descriptive of how the program works; in practice, many
single-thread programs may do some overlapping of processing, and many multithread
programs may do some processing that momentarily ties up the program for an action on
behalf of only one logical unit. In general, a single-thread program requests synchronous
operations and waits until each operation is completed before continuing. A multithread
program requests asynchronous operations and continues processing on behalf of other
logical units while waiting for an operation for a particular logical unit to be completed.

Deciding to Use a Single-Thread Program
A single-thread program is easier to design and code than a multithread program. Sample
Program 1 in Part 3 is basically a single-thread program.

A single-thread design can be used for a program that never handies more than a few

logical units at a time or, if more than a few are handled, where response time is not a
consideration. A more likely use of a single-thread design is for a program that does

Chapter 3. Organizing a Program 33

nothing more than send a continuous series of messages to a logical unit (which might in
turn forward the messages to a printer or to a data base on a disk) or receive a continuous
series of messages from a logical unit (perhaps from the disk associated with a logical
unit) and write them to a data base on disk storage at the host computer.

Deciding to Use a Multithread Program

In general, any ACF/VTAM application program that must communicate concurrently
with a number of logical units must be organized in a manner that allows multithreading.
This implies the use of asynchronous operations, determining completion of operations
cither by having ACF/VTAM post an ECB or by having it schedule an RPL exit routine.

In a multithread program, the control blocks for each logical unit must be managed
efficiently. The control blocks reflect the status of the logical unit; for example, whether
it has begun a conversation, what address is to be branched to when a requested output
operation is completed, or whether the logical unit has sent in a logoff message. Sample
Program 2 in Part 3 shows the general logic of a multithread program.

Multitasking may be used to transfer control between the communication and data
processing parts of a program. It is also possible for the same routines to be shared among
what ACF/VTAM perceives as more than one ACF/VTAM application program. This
arrangement can be used for communicating with two different types of logical units.
Two ACBs can be defined in a program, and one kind of logical unit connected with
control blocks that point to one ACB while another kind of logical unit is to be
associated with the other ACB. Since ACF/VTAM sees each ACB as an application
program, each type of logical unit can have separate logic associated with it, including its
own exit routines and its own I/O routines. Data processing parts of the program, a wait
routine, and other routines can be shared.

How a Synchronous Operation Works

34

In a synchronous program, operations are performed serially. A request for a synchronoug
operation (for example, a SEND or RECEIVE with OPTCD=SYN) means that
ACF/VTAM will not return control to the next sequential instruction in the program
until after the requested operation is completed. Execution of the application program is
halted until ACF/VTAM determines that the operation has been completed. The program
must be willing to wait for the processing of one requested operation to be completed
before going on to the next. Figure 3-1 illustrates a synchronous operation. (Note that
while the program is waiting for the event to be completed, an asynchronous event such
as a network operator HALT command could cause the program’s TPEND exit routine to
be entered. Only the main line of the program is suspended while waiting for completion
of a synchronous operation. The exit routines associated with the program are scheduled
and executed whether or not the main program logic is awaiting completion of a
synchronous operation.)

When a synchronous operation is completed, the application program must determine
whether the operation was successful or unsuccessful. The program does this by testing
values in registers 15 and O and by examining fields in the RPL used for the operation.
For more information on testing return codes from RPL-based macro instructions, see
Chapter 9 in this manual and see Appendix C in ACF/VTAM Macro Language Reference.

In general, issuance of a synchronous request within an exit routine should be avoided,
because that causes all execution under the task to be suspended until the operation is
completed. Neither the main program, the exit routine in which the request was issued,
nor another exit routine (except LERAD, SYNAD, or TPEND) can be executed until the
operation is completed.

Application Program ACF/VTAM

SENDIRPL=RPL1,OPTCD=SYN

» Request is accepted

SEND is completed

-+

Code tests registers to determine whether
operation was successful

°

°

.

Figure 3-1. A Synchronous Operation

How an Asynchronous Operation Works

Using ECBs

In an asynchronous operation, ACF/VTAM returns control to the next sequential
instruction as soon as it has accepted the request, not when the requested operation has
been completed. Accepting a request consists of screening the request for errors and
scheduling the parts of ACF/VTAM that will eventually carry out the operation. While
the operation is being performed, the application program is free to initiate other
data-transfer operations or do other processing. For example, an application program can
issue a RECEIVE macro instruction and indicate that the operation is to be handled
asynchronously (OPTCD=ASY); while the input operation is being performed, the
application program can begin to write to a direct-access storage device or receive input
from another logical unit.

When an asynchronous operation is specified, there are two ways that ACF/VTAM can
notify the application program that the requested operation has been completed. If the
application program associates an event control block (ECB) with the request,
ACF/VTAM posts the ECB when the operation is completed. Alternatively, the
application program can designate that a particular RPL exit routine is to be executed as
soon as the operation is completed. When the operation is completed, ACF/VTAM
schedules the exit routine. The method of notification is controlled by the setting of the
ECB operand or EXIT operand in the RPL used for the request. Figure 3-2 illustrates
asynchronous processing in an application program using ECBs; Figure 3-3 illustrates the
use of an RPL exit routine.

Regardless of whether a program waits on an ECB or uses an RPL exit routine, a CHECK
macro instruction must be issued after an asynchronous operation to mark the RPL
inactive and to make it available for another operation. The CHECK macro instruction
also clears the ECB.

By using ECBs, the application program can issue one WAIT macro instruction for a
combination of ACF/VTAM requests and any non-ACF/VTAM requests that use ECBs.

Chapter 3. Organizing a Program 35

Using RPL Exit Routines

Application Program ACF/VTAM

SEND RPL-—RPL1 OPTCD=ASY ,ECB=ECB1

—'—...'

Request is accepted ‘

interruption

SEND is completed

'—"...'

ECB is posted

-+
[]
[
[]

CHECK RPL=RPL1 (which tests and clears the ECB)
(or WAIT and then CHECK)

Figure 3-2. An Asynchronous Operation with an ECB Posted

For example, an application program can issue three VSAM requests and three

.A_CF/ VTAM requests; "‘" issuing one WAIT for all six ECBs, the apyuwauuu progiain

resumes processing when any one of the six operations is completed.

Using ECBs, the application program can test ECBs itself and continue to wait only if no
ECB has been posted. The program can prioritize requested operations or logical units by
testing some ECBs before testing others. The order of checking can be varied during
program execution as circumstances change.

The distinction between ECBs and RPL exit routines rests primarily on the fact that the
RPL exit routine is automatically scheduled when the requested operation is completed,
thereby saving the application program the trouble of testing ECBs and branching to
subroutines. The use of ECBs provides the program with greater control over the order in
which events are to be handled.

If neither an ECB address nor an RPL exit-routine address is specified in the RPL-based
macro instruction, ACF/VTAM uses the ECB-EXIT field of the RPL as an internal ECB,
and ACF/VTAM (for synchronous operations) or the user (for asynchronous operations)
checks and clears it. It can be set to point to an external ECB by using an RPL-based
macro that specifies ECB=ech address. Once set, it can be reset to an internal ECB by
using an RPL-based macro instruction that specifies ECB=INTERNAL.

Instead of having ACF/VTAM post an ECB when a request for an asynchronous
operation is completed, the program can have ACF/VTAM schedule and cause control to
be given to an RPL-specified exit routine. The RPL exit routine can supply the logic that

Application Program ACF/VTAM

°
SEND RPL=RPL2,0PTCD=ASY,EXIT=ASYNCEND

Request is accepted

Unterruption

» SEND is completed,
ASYNCEND

RPL exit routine is
(RPL Exit Routine) scheduled

P

.

CHECK
RPL=RPL2
°

°

Control is returned

—..OV

Figure 3-3. An Asynchronous Operation with an RPL Exit Routine Scheduled

would have been branched to by the main program after discovering a posted ECB. An
RPL exit routine is any exit routine whose symbolic name has been provided in the EXIT
operand of the macro instruction or the RPL used for the request.

One advantage to using an RPL exit routine instead of an ECB is that it is easier to code
for that type of processing than it is to code the logic associated with discovering a posted
ECB and relating the ECB to a branch address. The disadvantage of an RPL exit routine is
that more system instructions must be executed to schedule an exit routine than must be
executed to post an ECB. A program may use a combination of ECB-posting and RPL-
exit routines (see Sample Program 2 in Part 3).

An RPL exit routine may itself issue asynchronous requests, continue executing, and
return to ACF/VTAM. The asynchronous request in an RPL exit routine may specify that
upon completion of the request, an ECB is to be posted or an RPL exit routine is to be
scheduled. If the RPL exit routine option is taken, the exit routine can be the same one
in which the request was issued. (This is also shown in Sample Program 2 in Part 3.)
Figure 3-4 shows a possible pattern of asynchronous requests within RPL exit routines.

An RPL exit routine must always eventually return control to ACF/VTAM. While one
exit routine has control, no other exit routine (except LERAD, SYNAD, or TPEND) can
be executed.

Chapter 3. Organizing a Program = 37

Application Program

°
RECEIVE from any logical unit.
EXIT1 is scheduled when
the RECEIVE is completed.

°
° EXIT1 (RPL Exit Routine)
°
Continue with other CHECK RPL used for RECEIVE.
processing SEND to the same logical unit. EXIT1 then

returns to ACF/VTAM. EXIT2 is-
scheduled when the SEND is com-
pleted.

Return to
ACF/VTAM

EXIT2 (RPL Exit Routine)

CHECK RPL used for SEND at EXIT1.

RECEIVE from the same logical unit if com-
munication with that logical unit
is to be continued; otherwise
RECEIVE from any logical unit.
EXIT2 then returns to ACF/VTAM.
EXIT1 is scheduled when RECEIVE
is completed.

Return to
ACF/VTAM

Figure 34. A Possible Pattern of Requests in RPL Exit Routines for Asynchronous Operations

Advantages and Disadvantages

of Different Forms of Operation
Figure 3-5 summarizes the advantages and disadvantages of synchronous operations and
the two general forms of asynchronous operations, ECB-posting and RPL exit-routine
scheduling.

Multithreading Facilities

In addition to the asynchronous handling of input and output requests, ACF/VTAM also
provides the following facilities as aids to handling logical units in a multithread program:

A special field that can be used to associate a unique storage area with each logical unit
The ability to schedule the sending of a message

The ability to receive input from any session except those sessions that are specifically
precluded ~

These facilities are discussed below.in more detail.

38

Type of Request

Performance

Storage Requirements
for RPLs and Data
Areas

Programming
Complexity

Synchronous
(OPTCD=SYN)

Adequate for many batch-
type (continuous input

or output) programs or
for programs serving few
online logical units; poor
for programs serving many
active online logical units.

Small, since only one
request can be outstanding
at a time; can reuse RPL
and data areas.

Simplest to program.

Asynchronous
(OPTCD=ASY)

e ECB-posting
(ECB=address or INTERNAL)

Best; better than RPL exit
routine which requires
that more system instruc-
tions be executed than
does posting of ECB.

May require more storage
since many pending
requests may be outstand-
ing, tying up RPLs and
data areas.

Most complex.

e RPL exit-routine
scheduling (EXIT=
address)

Not as good as ECB-
posting. Some advantages

About the same as ECB-
posting.

Less complex than ECB-
posting.

if used to give priority of
handling to a logical unit
(for example, first input
after logon).

Figure 3-5. Relative Advantages of Synchronous and Asynchronous Requests

The USERFLD Field of the NIB

In handling a series of input and output actions with a particular logical unit, the program
may need some way of associating a particular piece of information with the logical unit.
For example, the program might need to know:

Which city the logical unit is located in
What type of logical unit this particular one is
Which symbolic name this program is using for the logical unit

Which storage area contains the input buffer and other application-
program-manipulated.control information about operations with this logical unit

When such information is static in nature (for example, the city in which the logical unit
is located), the information can be assembled into the program and always be available.
More frequently, however, the information that the program wants to associate with the
logical unit is not available until after the program starts execution or changes during
program execution. For these dynamic types of information, the program needs a
mechanism for associating the desired piece of information with the logical unit.

The mechanism provided by ACF/VTAM involves the USERFLD field of the NIB, which
contains space for 4 bytes of information. Whatever information is in the USERFLD field
of the NIB at the time the logical unit is connected is saved by ACF/VTAM, and
whenever input is subsequently received from the logical unit, that information is
provided in the USER field of the RPL used for the operation. This mechanism has many
uses, including those described in the following paragraphs:

Identifying the logical unit from which input has been received. Each time the
application program connects a logical unit, the program puts its own version of the
symbolic name of the unit into the USERFLD field of the NIB before the OPNDST

Chapter 3. Organizing a Program 39

Scheduling Output

macro instruction is issued. Later, the program issues a RECEIVE OPTCD=ANY,
which will accept an input message from any connected logical unit. When an input
message is received, the program examines the USER field of the RPL to determine
the logical unit from which the input message came.

Associating a storage area with a logical unit. For each logical unit, the application
program may want to have a logical-unit-associated storage area that contains an RPL,
possibly an ECB (if ECB-posting is used), a data area (to be used as a buffer for input
and output messages), and a status information area. When the program connects a
logical unit, it specifies in the USERFLD field of the NIB the address of the storage
area it wants to be associated with that logical unit. ACF/VTAM saves this address
and, when input is received from the logical unit, ACF/VTAM places the address in the
USER field of the RPL. The program can use the USER field address to process the
input rather than having to first identify the logical unit.

ACF/VTAM allows a program to request that a message be scheduled for sending and that
the operation be considered complete as soon as the message has been scheduled for
output rather than actually sent with arrival confirmed by the receiving logical unit. If the
program wants to determine whether the message actually arrived, it can, as part of the
output scheduling request, specify that a definite response be returned by the logical unit.
On receiving the response, the program knows that the message arrived successfully or
unsuccessfully. (For many logical units, the return of a positive response indicates not
only that the message arrived successfully but also that it was processed successfully.)
Since scheduling output usually takes relatively little time, a request to schedule the
sending of a message may often be specified as a synchronous operation; it may also be
specified as an asynchronous op eration with ECB-posting or RPL exit-routine scheduling
specified.

In scheduling output, the program may choose not to require that a response be returned
to every message; it may ask that a response be returned only to the last in a series of
messages. Receipt of a positive response confirms successful arrival and processing of the
message or series of messages, while receint of a negative response indicates an eiroi.
Successful arrival and processing of a message can also be assumed if the resultant input
message contains what the program expects or, in the event of an error, it can be assumed
that a terminal operator will take the initiative in notifying the application program that
he or she is waiting for a message that has not arrived.

By scheduling the sending of a message, the program reserves for itself the determination
of whether confirmation of arrival and processing is necessary. When fewer responses are
requested, greater message throughput is possible. The user, however, does not have a free
hand entirely, since SNA protocols dictate when some responses must or may be
requested.

 Receiving Input from Any Connected
Logical Unit Except Those Already in Conversation

40

ACF/VTAM provides a way of receiving input from any connected logical unit. To do
this, a RECEIVE with OPTCD=ANY is issued. On completion, the identity (the CID) of
the logical unit from which input has been received is in the ARG field of the RPL
associated with the RECEIVE request. (The INQUIRE macro instruction with the
CIDXLATE option can be used to translate the CID into the symbolic name of the logical
unit.) Typically, a RECEIVE with OPTCD=ANY is issued to receive the initial input that
will lead to a conversation with a logical unit.

Once a RECEIVE with OPTCD=ANY has been used to get initial input from a logical
unit, that logical unit can be switched to another mode called continue-specific mode.
When a logical unit is in this mode, a message from the logical unit will not satisfy a

RECEIVE with OPTCD=ANY; the message can only satisfy a RECEIVE with
CPTCD=SPEC and whose RPL identifies the logical unit from which the message was
received. While the logical unit is in continue-specific mode, the application program
maintains specific control over each message sent to or received from the logical unit.

Thus, a program can consist of a single RECEIVE with OPTCD=ANY that is reissued each
time it is completed and sets of specific RECEIVE and SEND macro instructions, with
each set of specific macro instructions controlling the conversation with a particular
logical unit. To obtain the continue-specific facility, OPTCD=CS is specified in the
request at the point at which the logical unit is to be switched to continue-specific mode.
For example, the RECEIVE that reads input from any logical unit (except those already
in continue-specific mode) specifies OPTCD=(ANY,CS). This places the logical unit
whose input satisfied the RECEIVE in continue-specific mode; the next issuance of the
RECEIVE with OPTCD=ANY excludes this logical unit from being able to complete the
RECEIVE. Sample Program 2 in Part 3 shows use of a RECEIVE with OPTCD=
(ANY,CS).

Some Decisions That Affect Program Organization

Figure 3-6 lists some of the decisions that anyone designing and coding an ACF/VTAM
application program must make. Some of the alternatives in managing the control blocks
and work areas in the ACF/VTAM application program are discussed below.

Handling Control Blocks and Work Areas
The application program can handle control blocks and logical-unit-related work areas
(data areas and status flags) in a number of ways. It can:

e Define RPLs, NIBs, or EXLSTs in the application program during assembly, or
generate them during program execution by using the GENCB macro instruction

e Assign one RPL or NIB to a specific logical unit during assembly, or assemble or
generate RPLs and NIBs that are to be available for any logical unit as the need arises

¢ Retain the RPL used in connecting the logical unit for all further communication with
the logical unit

e Use one RPL for all connection requests and use another RPL or group of RPLs for all
communication requests

e Define the RPLs, NIBs, and any other control blocks to be associated with logical
units as a pool so that a limited amount of control block storage is not exceeded

In application programs that must handle many logical units concurrently, it may be
useful to have a control block other than the RPL or NIB associated with a particular
logical unit or logical unit conversation. ACF/VTAM provides a way of associating a
storage area with a particular logical unit. The application program initially associates the
storage with the logical unit by specifying the address of the area in the USERFLD of the
NIB prior to issuing the OPNDST macro instruction; thereafter, whenever input -is
received from the logical unit, ACF/VTAM provides the specified address in the RPL’s
USER field.

Chapter 3. Organizing a Program - 41

Program Function

Decisions to Make

Opening and closing the program

Connecting logical units

® One ACB or more than one ACB?
® Send final message to logical units before closing the program or simply disconnect them?
® How is the program to terminate normally?

By network operator closing down the network? (Use a TPEND exit routine.)

By special message from one or more particular logical units?

By some internal logic, such as time-of-day?

By system operator message (for example, via WTOR)?

® |ogon expected? (Use OPNDST with OPTCD=ACCEPT.)
Analyze user logon message before connecting? (Use LOGON exit routine, INQUIRE to
obtain user logon message, and OPNDST with OPTCD=ACCEPT to connect.)
If not, can use OPNDST with OPTCD=ACCEPT in main program logic.

® Who furnishes the logon? (The program logic may not have to be aware of this.)
Automatic logon (user-defined logon that automatically schedules the LOGON exit
routine for all or some logical units)?
Logical unit (that is, a predefined logon message stored in and sent from the logical unit)?
Terminal operator associated with a logical unit (the logical unit forwards a message from
the terminal operator after perhaps modifying it in some way)?
The application program itself, by issuing a SIMLOGON macro instruction?
Another application program, by issuing a CLSDST macro instruction with the
OPTCD=PASS option?
A secondary application program, by issuing a REQSESS macro instruction?

More than one of the above? (The LOGON exit routine may have to handle more than one
of these kinds of logons.)

® Are session parameters used?

Will session parameters be supplied with the logon?

— s an INQUIRE macro needed to investigate the session parameters?

— Will the application program ever have to modify the parameters supplied with the
logon?

Will the session parameters always be supplied solely by the primary application program?

— lIs a logon mode name to be provided in the LOGMODE field of the NIB?

— Is a bind area address to be provided in the NIB?

® | ogon not expected?

Identity of logical units known to program? (Use OPNDST or SIMLOGON to acquire

the logical units.)

— Acquire as many as are available? (Use OPNDST with OPTCD=(ACQUIRE ,CONALL).)

— Acquire any (single) one of them? (Use OPN DST with OPTCD=
(ACQUIRE,CONANY).)

— Simulate a logon so that all logical units are connected by the same logic? (Issue
SIMLOGON and then issue OPNDS T with OPTCD=ACCEPT in LOGON exit routine
or in main program.)

Identity of logical units known to program? (Use INQUI RE with OPTCD=TERMS to
obtain the identities of the defined logical units, then issue OPNDST or SIMLOGON.)

® Expect to share connected logical units with other programs? (Use RELREQ exit routine to
handle requests from other programs for your logical units.)

Figure 3-6 (Part 1 of 3). Some Decisions That Affect Program Design and Coding

742

Program Function

Decisions to Make

Communicating with logical units

® Receiving

® Sending

® |dentity of logical unit known (CID of logical unit in ARG field of RPL)? (Use SEND/
RECEIVE with OPTCD=SPEC.)

® |dentity of logical unit unknown? (Use RE CEIVE with OPTCD=ANY to read input, then
RECEIVE/SEND with OPTCD=SPEC.)

® Exclude logical unit from having its input complete a request for any input while it is in the
midst of a transaction? (Specify OPTCD=CS.)

® Expect to receive responses to messages (using SENDs with other than POST=RESP)?
Can use either:

RECEIVE that includes RTYPE=RESP
A RESP exit routine

® Expect to receive expedited-flow control commands relating to quiescing or shutting down?
Can use either:

RECEIVE that includes RTYPE=DFASY
A DFASY exit routine

® Want to be able to receive session-control commands from a logical unit? (Use a SCIP exit
routine.)

® Can length of input message vary greatly? (Use PROC=KEEP in connecting logical unit and
reissue RE CE I VEs until entire message is read.)

® Expect that logical unit may want to quiesce your program (temporarily stop it from
sending) ? Have logic to receive QEC and RELQ commands as result of DFASY input.

® Send all of a message at once?

Wait for the message to arrive at its destination before proceeding? (Use SEND with
OPTCD=SYN, POST=RESP.)

Start the message on its way and have ACF/VTAM post an ECB or schedule an RPL exit
routine when ACF/VTAM receives a response to the message? (Use SEND with OPTCD=
ASY, POST=RESP.)

Have ACF/VTAM schedule the sending of the message and determine #ts arrival yourself?

(Use SEND with OPTCD=SYN [or ASY] POST=SCHE D,RE SPON D=values.)

— Have the logical unit return a definite response which will cause completion of a
RECEIVE with RTYPE=RESP specified or cause entry to an RESP exit routine?
(Specify RESPOND=NE X,FME ,NRRN, or RESPOND=NEX,FME,RRN, or
RESPOND=NEX ,NFME,RRN, according to user preferences.)

— Have the logical unit return only an exception (negative) response and either assume
successful arrival or determine from the next received message that the input arrived
successfully? (Specify RESPOND=EX,FME,RRN, or RESPOND=EX,FME NRRN, or
RESPOND=EX ,NFME,RRN, according to user preferences.)

— Have the logical unit return no response and determine successful arrival yourself?
(Specify RESPOND=NEX NFMENRRN.)

® Send an element in a chain of elements? (Specify SEND with POST=SCHED and CHAIN=
FIRST, MIDDLE, or LAST with RESPOND=EX on all but the last SEND.)

Request a definite response on the last SEND (to determine that the entire chain arrived
successfully)? (S pecify RESPOND=NE X,FME ,RRN, or NEX,FME,NRRN, or
NEX,NFME,RRN [according to user preferences] and receive the response with a
RECEIVE (RTYPE=RESP) or with a RESP exit routine, or specify POST=RESP on the
last element and the operation will not be posted complete until the response comes back.)

Request only a negative response and assume by subsequent action of the receiver that the
chain was received successfully? (Specify RESPOND=EX,FME,RRN, or EX,FMENRRN,
or EX,NFME,RRN according to user preferences.)

Figure 3-6 (Part 2 of 3). Some Decisions That Affect Program Design and Coding

Chapter 3. Organizing a Program 43

Program Function Decisions to Make

. Handling errors and special ® What kind of information should be saved in a LERAD exit routine? Does the logic error
conditions affect only one fogical unit or the entire program?

® Which physical errors can be retried in a SYNAD exit routine? Which require that the logical
unit be disconnected? Which require sending a system operator message? Which require that
the program terminate?

® What action should be taken in the NSEXIT and LOSTERM exit routines.?

® What action should be taken when ACF/VTAM abnormally terminates while running under a
user’s task?

Should the application program have aSTXIT AB, STAE, or ESTAE exit routine to
investigate and clean up its own files?
| Handling control blocks and work
‘| ;areas
® For connection ® Acquiring one in a list of known logical units? Decide whether to:
i Assemble a NIB or a list of NIBs and an RPL (for the OPNDST) into the program.
- Generate and initialize the NIB or list of NIBs and the RPL dynamically, using the
GENCB macro instruction.
Obtain the NIB or list of NIBs and the RPL from a pool, assembled or created
I dynamically, and initialize them. .
S ® Acquiring one or a list of unknown logical units? (Use INQUIRE with OPTCD=TERMS to
create and initialize NIBs and use an assembled, generated, or pool-obtained RPL.)
® Accepting logon? Decide whether to:
Have a LOGON exit routine and reuse the same NIB and RPL for each connection request.

Have one or more OPN DS Ts in the main program, each of which will require an RPL and a
NiB.

® Do you.need to create a BN DAREA for session parameters?

® For communication ® Simple program with synchronous requests? (Assemble RPLs and data area in program and
reuse for each request.)

® Asynchronous program?

Assemble, generate, or obtain from an assembled or generated pool one RPL, one ECB (if
an ECB will be posted), and one work area (data area and flags) for each active logical
unit? Decide whether to use this storage for the duration of:

— Connection to disconnection with the logical unit
— RECEIVE and a related SEND
— A series of RECEIVEs and SENDs

Put address of logical-unit-related storage in USERFLD of NIB if storage obtained at
connection?

Figure 3-6 (Part 3 of 3). Some Decisions That Affect Program Design and Coding

Techmques for Handling Control Blocks and Work Areas
Here are some techniques that can be used in handling control blocks and work areas:

Element Per Logical Unit at Assembly: This method works well if a known set of logical
units is to be connected to the program. A separate predefined RPL is used for each
logical unit that is connected. The RPL points to a NIB and to a data area. The
USERFLD field of the NIB can be set to point to a status save area for the logical unit.

LUl

RPL 4 NIB - Status Save Area

Data Area

244

POOL

To do this, a correspondence can be set up between each logical unit and its RPL. For
example, a logical unit table can be constructed that matches a logical unit’s symbolic
name with its RPL. Since fixed connection is being used, a separate OPNDST macro can
be coded for each logical unit; each OPNDST can be coded to use a specific RPL. When a
data-transfer request is completed, the RPL’s USER field points to the status save area.
The RPL continues to point to the data area.

This method can be used if the program accepts logons from a known set of logical units.
Whenever a logical unit logs on, the program is passed the logical unit’s symbolic name. In
the LOGON exit routine, this name is used as an index into a logical unit table to find the
correct RPL. That RPL is used to connect the logical unit and to control data-transfer
requests.

Element Per Logical Unit at Connection: This method can be used if the program accepts
logons from logical units whose names are not known at assembly. A pool of RPLs, NIBs,
data areas, and status save areas can be set up to be used as they are needed. The pool can
consist of elements; each element contains one RPL, one NIB, one data area, and one
status save area. As each logical unit logs on, the program selects an available element
from the pool and uses some technique to associate the element with the logical unit. One
technique is to put the address of the element in the USERFLD field of the NIB prior to
issuing the OPNDST macro instruction. Subsequently, whenever execution of an
RPL-based macro instruction is completed, the address is available in the USER field of
the RPL. Here is a sample showing how the pool might be set up:

CONTROL

BLOCK

Address of First Element | Control Counter
I

E1

Address of Next Element]

RPL
NIB
Data Area

Status Save Area

E2

Address of Next Element |

E3
00000000

Chapter 3. Organizing a2 Program 45

46

This coding could be used to construct the pool:

DS oD

PCB DC A(E1) POOL CONTROL BLOCK
DC A(0) CONTROL COUNTER

El EQU * FIRST ELEMENT
DC A(E2)
RPL ' AM=VTAM,ACB=ACB1,NIB=NIB1,AREA=AREAI,

OPTCD=(ACCEPT,ANY)

NIB1 NIB USERFLD=A(SAREAI1)

AREA1 DS 200C DATA AREA

SAREA1 DS 18C "STATUS SAVE AREA

E2 EQU * SECOND ELEMENT

DC A(E3)

After selecting a pool element for a logical unit (when it logs on), that element can be
used with the same logical unit for all subsequent requests. When the logical unit logs off
or is disconnected, the element is returned to the pool. Here is an example to illustrate
one method of managing the elements in the pool. Assume that the program is about to
connect a logical unit for which a logon is queued. A pool element is needed for the
logical unit. If no elements are available, the program issues a CLSDST, using a reserved
RPL, to disconnect the logical unit and remove the queued logon. Or the program may
want to connect the logical unit, write a “resources unavailable” message, and then
disconnect it. Here is the sample coding:

*GET ELEMENT FROM POOL

START LM EREG,SREG,PCB GET ADDR FIRST ELEM AND COUNTER
GLOOP LTR EREG,EREG TEST IF POOL EMPTY

BE POOLMTY

L WREG1,0(EREG) GET ADDR SECOND ELEMENT

LR WREG2,SREG GET CONTROL COUNTER
AL WREG2,=A(1) INCREMENT COUNTER
CDS EREG,WREG1,PCB UPDATE PCB

BNE GLOOP IF CDS DID NOT WORK

*EREG NOW HAS ADDRESS OF OBTAINED ELEMENT

EREQ EQU 6

SREG EQU EREG+l1
WREG1 EQU 10
WREG2 EQU WREGI+!

POOLMTY CLSDST ... CLSDST IF NO ELEMENTS AVAILABLE

*PUT ELEMENT BACK IN POOL
*EREG HAS ADDRESS OF ELEMENT TO BE PUT BACK
L WREG1,PCB GET ADDR FIRST ELEMENT
LOOP ST WREG1,0(EREG) CHAIN ELEMENT TO PREVIOUS
CS WREGL,EREG,PCB PUT ELEMENT IN POOL
BNE LOOP IF UPDATE DID NOT WORK

*ELEMENT IS BACK IN POOL

Element Per Transaction: Here again, a pool is used for storage management. However,
instead of assigning an element to a logical unit for the life of the connection, a new
element is obtained for each transaction. A transaction is a two-way interchange: data
goes both from and to the logical unit. An element is obtained for connection and
returned when connection is made. A new element is obtained for each transaction and
returned when the transaction is completed. Using this technique, a NIB does not have io
be included in the elements used for the transactions.

Element Per Request: This is a more dynamic version of the “element per transaction”
method. Here, a new element is used for each request. As each request is completed, the
element is returned to the pool.

As a modification to this method, one NIB and one RPL can be used for all connection
requests and additional pool elements obtained for subsequent data-transfer requests, The
NIB and RPL for connection can be assembled in the program; they need not come from
a pool.

To maintain a strict “‘element per request” technique, the data area portion of an element
can be used to hold a NIB for connection and as a data area for data transfer. To do this,
one NIB can be set up in the program. For each connection request, the contents of the
NIB can be moved into the data area in the pool element. Or, a GENCB cun be used to
build a complete NIB in the data area. This reduces the size of the pool elements.

Combinations: These techniques can be combined to suit particular needs. Here are two
ways to combine storage management techniques:

1. At assembly, establish a fixed status save area for each logical unit to be connected.
Each status save area can contain a user identification to be compared to one
contained in a logon, or the save area can be used to count the number of times the
logical unit has logged on during the day. At connection, a pool element is obtained
(containing RPL, NIB, and data area) for each request. The fixed save area provides a
permanent place to keep logical unit information.

2. Assign one status save area per logical unit at connection. This is more dynamic than
the method in 1, above, in that the programmer does not have to know at assembly
which logical units will log on. One RPL and data area per request or per transaction
can be used. Again, the status save area can be used to keep track of logical unit
activity, but only between connection and disconnection. The RPL and data area,
selected from a pool, allow dynamic data-transfer requests.

Using Multitasking

In addition to the multithreading facilities provided by ACF/VTAM, the operating system
provides multitasking facilities that may be used when writing an ACF/VTAM application
program that concurrently handles a large number of sessions. Multitasking can be used to
separate communication activity from other activity such as disk I/O, to divide
communication activity among several tasks, or to do both.

Using Multitasking to Separate
Data Communication Activity from Other Activity
Multitasking can be used so that communication activity can occur while waiting for
" other activity such as disk I/O processing to be completed (see Figure 3-7). For example,
an ACF/VTAM application program can be organized into a task that opens and closes
the ACB and performs ACF/VTAM requests, and a task that performs disk I/O (VSAM)
requests.

Chapter 3. Organizing a Program 4/

TCB1 (JOBSTEP) ACB1

OPEN ACB1
1/0 ACB1
CLOSE ACB1

TCB2

DISK I1/0

Figure 3-7. Multitasking a Program

In such a program, a page fault occurring during a request in the task that performs disk
I/O requests does not prevent the task that performs communication requests from
getting control during the time that the system is waiting for the required page to arrive
in main storage. In a single-task ACF/VTAM application program, a page fault would
require that the entire program wait.

Using Multitasking to Divide Data
Communication Activity among Several Tasks

Further efficiency may be possible by issuing ACF/VTAM requests in more than one
task. For example, a program can use one task to open and close the ACB and to connect
and disconnect logical units, and the program can use a number of other tasks, each
containing a RECEIVE that specifies OPTCD=ANY and additional IfO requests.
Whenever one ACF/VTAM I/O task has to wait, the system can schedule another
ACF/VTAM I/O task.

There are two different ways to use multitasking to divide communication activity among
several tasks: (1) a program can be written so that the first task attaches subtasks and all
tasks use the same ACB, or (2) a program can be written so that the first task attaches
subtasks and each task uses a separate ACB.

Multiple Tasks, Using the Same ACB

48

When multiple tasks in a job step use the same ACB (see Figure 3-8), the following
considerations apply:

e The macro instructions (OPEN and CLOSE) that open and close the ACB must be in
the same task.

e To multitask the same ACB in OS/VS1 or OS/VS2 SVS, a program must be privileged.
e Subtasks (non-ACB opened) should terminate only when no outstanding ACF/VTAM
requests remain.

e The task that closes the ACB should ensure that other tasks refrain from issuing
ACF/VTAM requests during and after CLOSE processing.

e In OS/VS1, OS/VS2 SVS, and OS/VS2 MVS, tasks that perform ACF/VTAM 1/O
requests must be lower than or equal in the task structure to the task that opens the
ACB.

TCB1 (JOBSTEP)

TCB2 ACB1

OPEN ACB1

CLOSE ACB1 K

TCB3

1/0 ACB1

TCB4

1/0 ACB1

Figure 3-8. Multiple Tasks, Using the Same ACB

e All exit routines, both RPL-specified exit routines and EXLST exit routines, are
scheduled to run as part of the task in which the ACB is opened. If any of the
ACF/VTAM 1/O tasks is dependent on information that may be detected in an exit
routine (such as a response being received by a RESP exit routine), the exit routine
must be able to communicate with that task (perhaps by posting an ECB located in a
common area).

e In OS/VS1 and OS/VS2 SVS, any ABEND issued in an exit routine results in the
abnormal termination of the task that opened the ACB as well as all of its subtasks.

e In DOS/VS, all ACF/VTAM processing occurs as part of the task in which the ACB
was opened.

Multiple Tasks, Each with Its Own ACB
In an ACF/VTAM application program consisting of more than one task, each task can
open its own ACB (see Figure 3-9). In such a structure, the following considerations

apply:
e The macro instructions (OPEN and CLOSE) that open and close a particular ACB
must be issued in the same task.

Chapter 3. Organizing a Program 49

TCB1 (JOBSTEP) ACB1

OPEN ACB1

CLOSE ACB1 TCB2 ACB2

OPEN ACB2

CLOSE ACB2

TCB3 ACB3

OPEN ACB3

CLOSE ACB3

Figure 3-9. Multiple Tasks, Each with Its Own ACB

e In OS/VS1, OS/VS2 SVS, and OS/VS2 MVS, any task that opens an ACB can perform
ACF/VTAM requests only on that ACB (not on any of the other ACBs that have been
opened by related tasks).

Using Multiple ACBs within One Task

An ACF/VTAM application program that remains a single task can open more than one
ACB (see Figure 3-10). By doing this, some ACB-specified exit routines, such as the
TPEND exit routine, can be used in common by ACBs, while other exit routines can be
associated with only one particular ACB. A possible use of multiple ACBs is to code one
set of ACB-specified exit routines for one set of terminals (for example, all basic-mode
terminals that may be connected) and a different set of exit routines for another set of
terminals (for example, all record-mode terminals or logical units that may be connected).

Using Authorized Path in OS/VS2 MVS

50

In OS/VS2 MVS, an ACF/VTAM application program can specify that individual SEND,
RECEIVE, RESETSR, and SESSIONC macro instructions be executed by ACF/VTAM in
a path that requires fewer instructions. This faciltity, called authorized path, can be used
to improve performance in an ACF/VTAM application program.

To use authorized path, the program must be authorized and in the supervisor state.
OS/VS2 System Programming Library: Supervisor, GC28-0628, describes how to specify
an authorized program. The MODESET macro instruction can be used to put the program
into supervisor state.

TCB1 (JOBSTEP) ACB1

OPEN ACB1
OPEN ACB2
1/0 ACB1
1/0 ACB2
CLOSE ACB1 ACB?
CLOSE ACB2

TCB2

DISK 1/0

Figure 3-10. A Single Task with Multiple ACBs

The ACF/VTAM application program can use authorized path while running under a TCB
or while running under an SRB. To use it while running under a TCB, the authorized
program, having put itself into supervisor state, specifies BRANCH=YES on any SEND,
RECEIVE, RESETSR, or SESSIONC macro that is to be executed using authorized path.
(Subsequently, to issue any macro instruction that does not use authorized path and that
uses the same RPL, the RPLBRANC flag in the RPL must be turned off either by (1)
coding BRANCH=NO on a MODCB macro instruction, (2) referring to the field by using
the IBM-supplied DSECT and turning it off with an assembler language instruction, or (3)
by coding BRANCH=NO on the subsequent macro instruction that does not use
authorized path.)

Authorized path is always used when SEND, RECEIVE, RESETSR, or SESSIONC is
issued under control of an SRB. One way to use authorized path under an SRB is for the
authorized program, while running under a TCB, to specify an RPL exit routine when
issuing (in supervisor state) a SEND, RECEIVE, RESETSR, or SESSIONC macro that
specifies BRANCH=YES. On entry to the RPL exit routine, the program will be running
under an SRB. Any SEND, RECEIVE, RESETSR, or SESSIONC in this environment is
automatically executed using the authorized path; BRANCH=YES need not be specified.
An alternative way to create the SRB environment is to use the SCHEDULE macro
instruction. No RPL-based macro instruction other than SEND, RECEIVE, RESETSR,
SESSIONC, and CHECK should be issued while running under an SRB.

Figure 3-11 illustrates the basic logical requirements for using authorized path when
running under a TCB and under an SRB. The program in Figure 3-11 is highly simplified.
The program only connects and handles input from one logical unit, whereas an actual
program would connect and handle input from several logical units. In addition, the logic
associated with input/output requests would be more complex in an actual program. The
following notes are keyed to the numbers in Figure 3-11.

Chapter 3. Organizing a Program 51 -

AUTHPATH

C Enter)
Y

Open the ACB

!

Connect the
logical unit

Y

Change to
supervisor state

Y

Receive a message
from any logical

unit

Wait on own ECB

®
®
®

.

®

No Is

logoff indicator
set?

Disconnect the
logical unit
1

Y

Close the ACB

Y
C Return)

Running under the
control of a TCB

AUTHEXIT

I
._....._.I._
I

©

©® ®

@

ter

Check status
of RECEIVE:

Is
this a logoff
message?

Process
message

|
Y

Build reply

Y

Send reply to
logical unit

Y

Post ECB

{
(e)

Yes

Y

Turn on
logoff
indicator

Y

Post ECB

Y
(Return’)

—_————e]

Running under the control of an SRB

Figure 3-11. The Logical Requirements for Using Authorized Path (0S/VS2 MVS)

52

The application program begins processing as a task in OS/VS2 MVS, running under
the control of a TCB. As part of normal ACF/VTAM processing, it issues an OPEN
macro instruction to open an ACB. The OPEN might be coded like this:

OPEN AUTHACB

In this sample program, AUTHACB contains:
AUTHACB ACB AM=VTAM,APPLID=APPLSID ,PASSWD=APPL5ID

Next, the application program issues an OPNDST macro instruction to connect the
logical unit. The OPNDST might be coded:

OPNDST RPL=AUTHRPL,OPTCD=SYN

The RPL, named AUTHRPL, contains the rest of the information needed for the
OPNDST.

Now the application program uses the MODESET macro instruction to change into
the supervisor mode. This is coded:

MODESET MODE=SUP

The RECEIVE macro instruction conforms to the coding rules for authorized path
running under the control of a TCB. The BRANCH=YES operand is specified. The
RECEIVE macro instruction might be coded:

RECEIVE RPL=AUTHRPL,RTYPE=DFSYN,AREA=INPUTO00,
AREALEN=100,0PTCD=(ASY,ANY,CS),EXIT=AUTHEXIT,
BRANCH=YES

It is known that a message received from the logical unit will never exceed 100
bytes.

Because the RECEIVE was specified as an asynchronous operation (ASY in
OPTCD), the main program AUTHPATH can continue execution until an input
message from the logical unit completes the receive-any operation. In a more
elaborate program, meaningful processing could be done here. But in AUTHPATH,
the program immediately enters a wait state, waiting on its own ECB.

When a message is received from the logical unit, control goes to the RPL exit

routine named AUTHEXIT. Note that this exit routine runs under the control of an

SRB, and that the exit routine receives parameters that are different from those

received by an RPL exit routine running under a TCB. On entry to AUTHEXIT:

® Register 1 contains the address of the RPL.

® Register 13 does not contain a save area address because no save area is provided.
(This is also true of an RPL exit routine running under a TCB.)

e Register 14 contains the return address of the OS/VS2 MVS dispatcher.

e Register 15 contains the entry-point address of the exit routine.

The CHECK macro instruction frees the RPL for reuse and causes entry to a
LERAD or SYNAD exit routine if necessary. The CHECK macro instruction is the
only ACF/VTAM macro instruction other than SEND, RECEIVE, RESETSR, and
SESSIONC that can be issued under control of an SRB. Any other ACF/VTAM
macro instruction will fail. The CHECK macro instruction is coded:

CHECK RPL=AUTHRPL

Chapter 3. Organizing a Program 53

54

10

11

12

13

14

The exit routine then tests the input message to see if it is a logoff message (a
message in a special format that indicates the logical unit wants to end
communication with the program AUTHPATH).

If the message is a logoff message, the exit routine turns on a logoff indicator, posts
the ECB, and returns control to AUTHPATH.

If the message is not a logoff message, the exit routine analyzes the message and
builds a reply. ‘

The exit routine is running under the control of an SRB because it is an exit routine
entered from a macro instruction using authorized path. The SEND macro
instruction therefore uses authorized path. The SEND looks like this:

SEND RPL=AUTHRPL,OPTCD=(SYN,CA),CONTROL=DATA,
STYPE=REQ,RTYPE=DFSYN,RECLEN=95,AREA=OUTPUTO0,
POST=SCHED,RESPOND=(NEX ,NFME ,NRRN)

The macro instruction specifies that the SEND operation is to be performed
synchronously (SYN in OPTCD), meaning that the exit routine surrenders control
until the SEND operation is scheduled. The macro instruction also specifies that no
response is to be returned, which assumes that failure of the message to arrive will
be detected by analyzing the next message entered by the terminal operator.

After the SEND operation has been scheduled, the exit routine posts the ECB on
which the main program, AUTHPATH, has been waiting. The exit routine then
returns control to AUTHPATH.

Because the ECB has been posted, the wait at 5 is satisfied and AUTHPATH
continues execution. It tests to determine whether the logoff indicator has been set.
If the indicator has not been set, it returns to 4 to reissue the RECEIVE macro
instruction. Thus, execution continues through steps 4 through 12 for as long as
normal input messages are received from the logical unit.

When the logoff indicator has been set (indicating that the message received from
the logical unit was a logoff message), execution continues at 13."

The program disconnects the logical unit by using the CLSDST macro instruction.
The CLSDST might be coded:

CLSDST RPL=AUTHRPL BRANCH=NO,OPTCD=SYN

The BRANCH=NO operand turns off the RPLBRANC flag that was turned on by
the BRANCH=YES operand in the RECEIVE macro instruction. This must be done
for the CLSDST macro instruction to be executed correctly. Because there is no
authorized path for this macro instruction, the flag cannot be on when CLSDST is
executed.

The CLOSE macro instruction closes the ACB.

Chapter 4. Opening and Closing a Program

Opening a Program

After an ACF/VTAM application program has been started, it must notify ACF/VTAM
that it is to be recognized as an active element in the network. To do this, the program
issues an OPEN macro instruction. On completion of the OPEN, ACF/VTAM has
modified its control blocks and tables to indicate that the program is present in the
network. ACF/VTAM can then accept requests from logical units for connection to this
program. The program is also now able to make further requests of ACF/VTAM.
Normally, the program remains “open” until a CLOSE macro instruction is issued when
the program is terminating.

ACF/VTAM considers each open ACB to be a separate application program. Therefore, if
an application program opens more than one ACB, VTAM sees each open ACB as a
different program, even though the ACBs are related to the same program.

What Is Required to Open a Program

Two things are required to open an application program:
An ACB (defined with an ACB or GENCB macro instruction)

An OPEN macro instruction

Because an ACB can point to a list of exit routines, defined with an EXLST macro
instruction, an EXLST macro may also be required.

The Access Method Control Block (ACB)

The access method control block contains information that describes the ACF/VTAM
application program to ACF/VTAM. After an ACB has deen opened, logical units that
become connected to the program in reality become connected to the ACB. An ACB
contains:

® The name of the access method to be used in opening the ACB (VTAM).

e The address of an application program identification. The application program
identification must match a name that was specified on an APPL statement provided
as part of the ACF/VTAM definition. When the program opens an ACB, ACF/VTAM
searches an internal table. If it finds a match, the ACB is opened; if it does not find a
match, the ACB is not opened.

Note: If no application program identification is available when an ACB is opened
(that is, the APPLID operand was not specified in the ACB or in the OPEN macro
instruction), ACF/VTAM uses the job-step name (the label of the EXEC statement) as
the application program identification in OS/VS. If the programmer starts a job step
that opens multiple ACBs, he or she must ensure that the application program
identification is not missing from more than one ACB. In DOS/VS, if the programmer
starts an application program in which no application program identification is
provided in the ACB, the job name in the JOB statement is used as the application
program identification.

The application program identification is put into a storage area with the other
constants in the program. It must be left-adjusted, and can be no longer than 8 bytes.
In the byte that precedes the identification, the length of the identification is coded:
APID1 DC ALI(L‘NAME)
NAME DC CJOF’

The address of the length byte (for example, APID1 above) is coded in the APPLID
field of the ACB.

Chapter 4. Opening and Closing a Program 55

Alternatively, the length of the application program’s identification can be specified:

APID1 DC X03’
DC CIJOF’

although this would require that both statements be changed if the name of the
application program were changed.

¢ Optionally, the address of a password can be associated with the application program.
When an ACB is opened, the password in the ACB is compared with a password
defined in the APPL statement at network definition. ACF/VTAM keeps this password
in an internal table. These passwords must match, or the ACB is not opened. If no
password is specified on the APPL statement, no password need be specified on the
ACB macro instruction.

The password is put into a storage area in the program. It must be left-adjusted, and
can be no longer than 8 bytes. In the preceding byte, the length of the password is
coded:

PSWD1 DC AL1(L°‘AUTHO1)
AUTHO1 DC C‘AUTHOY’

The address of the length byte (for example, PSWD1 in the preceding example) must
be coded in the password operand of the ACB.

e The name of an exit list containing the names of exit routines written in the
ACF/VTAM application program to handle specific events.

e An indication of whether ACF/VTAM is to queue logons directed to the application
program identification specified in this ACB. If the programmer so specifies
(MACRF=LOGON), ACF/VTAM queues logons on the ACB. Each queued logon
causes the LOGON exit routine to be entered or a connection request in the main
program to be completed. If the programmer specifies that logons are not to be
queued (MACRF=NLOGON), no logons are saved if they cannot immediately be
processed.

If the ACB is being defined for an application program that will act as a secondary
logical unit in any of its sessions, MACRF=LOGON must be coded. This is necessary
for the secondary application program to be able to handle its end of the connection
process properly.

Here is a sample ACB macro instruction used to build an access method control block.

ACB1 ACB AM=VTAM,APPLID=APIDI,
PASSWD=PSWD1,EXLST=EXIT MACRF=LOGON

APID1 DC AL(L‘APINAME)

APINAME DC C'MYPROG’

PSWDI1 DC ALI(LPASSCHAR)

PASSCHAR DC CJOE007

EXIT EXLST AM=VTAM,LERAD=LGERRTN,SYNAD=PHYSERTN,etc.

where:
ACBI is the symbolic name for this ACB; it will be included in the OPEN macro
instruction that is used to open this ACB.

AM=VTAM tells the operating system that ACF/VTAM open processing will be used
for this ACB.

APID1 is the address of the application program identification (MYPROG). When the
ACB is opened, ACF/VTAM compares MYPROG to the entries in an internal table.
Logon entries to this program are directed to MYPROG.

PSWD1 is the address of the password (JOEQ07). This must match the password coded
in the appropriate entry in the internal table. If they match, or if no password was
coded in the table, the ACB can be opened. If the passwords do not match, the ACB
cannot be opened.

EXIT is the name of the exit list created by the EXLST macro instruction.

MACRF=LOGON specifies that (1) ACF/VTAM will queue logons for this ACB, and
(2) ACF/VTAM will schedule the SCIP exit routine when a Bind command is received
by the program. Neither action can occur, however, until the program has issued a
SETLOGON with OPTCD=START.

An ACB can also be created when the program is being executed by issuing a GENCB
macro instruction.

The OPEN Macro Instruction
Having created an ACB, the program opens it by issuing an OPEN macro instruction. For
example:

OPENPROG OPEN ACB1

This macro instruction opens an ACB with the name ACB1. (Note that the OPEN and
CLOSE macro instructions use a positional rather than a keyword operand.)

Using Multiple ACBs in an

ACF/VTAM Application Program
Normally, an ACF/VTAM application program has only one ACB; the program is known
to ACF/VTAM by only one APPL identification. However, a program can be known
under two or more different APPL identifications, and each requires that a separate ACB
be opened. One OPEN macro instruction can be used. For example:

OPENPROG OPEN ACB1,ACB2 (DOS/VS)
OPENPROG OPEN (ACB1,,ACB2) (0S/VS)

Where the OPEN Can Be Issued
Normally, the OPEN macro instruction is issued in the communication part of the
ACF/VTAM application program. The OPEN macro instruction cannot be issued from an
exit routine. Information pertaining to the opening of the ACB, multiple ACBs, and
multitasking ACBs can be found in Chapter 3.

Closing a Program

An ACF/VTAM application program closes itself by issuing a CLOSE macro instruction
that specifies the program’s ACB. The CLOSE macro instruction is used in the same way
as the OPEN macro instruction. Normally, it should be issued in the communication part
of the ACF/VTAM application program and must not be issued from an exit routine. The
CLOSE request tells ACF/VTAM to mark the program as no longer present in the
ACF/VTAM network. For example:

CLOSE ACBI1

When the program is closed, any logical units that have not previously been disconnected
(with the CLSDST macro instruction) are disconnected. Any outstanding operations are
posted complete. In addition, the program can no longer issue the SENDCMD or
RCVCMD macro instructions.

Chapter 4. Opening and Closing a Program 57

The Program Initiates Closing

In general, there are three ways that a program can learn that it should close its ACB.

e The program can determine itself that it should close (perhaps by determining the
time-of-day).

¢ The program can receive a special text or data message, either from a logical unit or
from the network operator, indicating that the program should close operations.

e The program’s TPEND exit routine is entered, either because the network operator has
issued a HALT command or because some abnormal event has caused ACF/VTAM to
be terminated. There are three kinds of HALT commands: a standard HALT command
(which contains neither the QUICK nor the CANCEL operand), a HALT QUICK
command (which initiates a quick closedown), and a HALT CANCEL command
(which initiates a cancel closedown). When all application programs running under
ACF/VTAM are to be ended at the same time, the user must choose to end the
programs by issuing a standard HALT command or a HALT QUICK command.
Neither of these two commands, however, is completed (that is, ACF/VTAM is not
halted) until all application programs have closed their ACBs. Particular actions to be
taken by the TPEND exit routine in response to the different HALT commands are
described in separate discussions below.

The program can itself recognize that is has reached the end of its operations and should
close itself. It might recognize this either as part of its normal processing or because it has
encountered an error or special condition, such as the lack of a certain resource. For a
normal end to operations, the program can send a final message to all logical units
connected to it. For an error or special condition, it can send the final message as well as
record information about the nature of the error. After taking any pre-closing action that
it wants, the program issues a CLOSE macro instruction and then terminates itself.

The Program Receives a Closedown Message

The application program can close as the result of a special message from some element in
the network. This occurs if closing the program depends on a situation remote from the
host computer (and the network operator cannot be informed about the situation). For
example, a terminal operator at a logical unit in Chicago knows that Chicago is always the
last user of the program. When all terminal operators in Chicago finished using the
program, a terminal operator sends a special message to the ACF/VTAM application
program, telling it to close its operations. The ACF/VTAM application program then
closes in an orderly fashion, notifying the network operator at the host computer.

The TPEND Exit Routine Is Entered

58

The TPEND exit routine is entered when the network operator issues a HALT command
or when, because of an internal error or problem, ACF/VTAM is terminating itself or
being abnormally terminated. When the TPEND exit routine is entered, register 1
contains the address of a 2-word parameter list in which:

Word 1 contains the address of the ACB of the application program being shut down.
Word 2 contains a code that indicates the reason for entry to the exit routine:
0 The network operator issued a standard HALT command.

4 The network operator issued a HALT QUICK command, or ACF/VTAM is halting
itself in an orderly fashion because of an internal problem.

8 (OS/VS only) The network operator issued a HALT CANCEL command, or
ACF/VTAM is being abnormally terminated.

For codes 0 and 4, the TPEND exit routine should take action as indicated in the
following paragraphs. For code 8, the exit routine should immediately return control to
its main program, where a CLOSE macro instruction should be issued.

Action for a Standard HALT Command
To an ACF/VTAM application program, notification that a standard HALT command
(HALT NET without the QUICK or CANCEL operand) has been received represents a
request from ACF/VTAM for the program to close its operations, but it also indicates
that ACF/VTAM is willing to wait for the application program to do it in an orderly
manner.

When ACF/VTAM receives a standard HALT command, it prevents any new application
programs for associating themselves with ACF/VTAM (by opening their ACBs) and
prevents application programs from making new connections with logical units.
ACF/VTAM also stops queuing logons for application programs. But ACF/VTAM allows
the programs to continue communications with connected logical units. For each
application program, ACF/VTAM schedules the TPEND exit routine (if the program has
one) and passes code 0 in the parameter list.

Under these conditions, the application program does not have to immediately close its
ACB. The TPEND exit routine can inform other parts of the program that the standard
HALT has been issued. It can do this by posting an ECB or by setting a switch that is
checked by other parts of the program. The program can continue communications but
should end them as soon as it can. It should then disconnect each logical unit and issue a
CLOSE macro instruction. Note that the CLOSE macro instruction cannot be issued in an
exit routine; it must be issued in the main program.

If the program has no TPEND exit routine and a standard HALT is issued by the network
operator, the program has no immediate way of knowing that the HALT command has
been issued. The program will continue communicating with logical units until the
network operator cancels the program or until ACF/VTAM terminates (because the
network operator has entered a HALT QUICK command).

The standard HALT command will not be completed until all application programs have
issued a CLOSE macro instruction. If any application program has not closed its ACB
after 45 seconds following receipt of the standard HALT command, ACF/VTAM sends
the network operator a list of the application programs that are still open. The network
operator can then cancel the programs (using the job name that is equivalent to the
application program name), or the operator can notify each program to close its ACB by
sending it a special message (if the programs are coded to recognize and act upon such a
message).

Actions for a HALT QUICK Command

or for an ACF/VTAM-Initiated Halt
The TPEND exit routine is also entered when the network operator issues a HALT
QUICK command or when ACF/VTAM enters halt-quick processing because of an
internal error. In either case, ACF/VTAM wants to close down the network rapidly.

After it receives a HALT QUICK command or after it enters halt-quick processing,
ACF/VTAM will not allow any new application programs to associate themselves with
ACF/VTAM (by opening their ACBs), nor will it allow application programs to make any
new connections with logical units. For programs already in session with logical units,
ACF/VTAM will not accept any new data-transfer requests. Any pending data-transfer
request is marked complete, with a special flag set in the FDBK 2 field of the RPL to
indicate that the operation was canceled because of a quick closedown.

When an application program learns that a quick closedown is in progress, the program

should close its ACB as soon as possible. The TPEND exit routine learns of the quick
closedown by finding code 4 in the parameter list when it is entered. That exit routine

Chapter 4. Opening and Closing a Program 59

should do a minimum of closedown processing and return control to ACF/VTAM as soon
as possible so that the main program can issue the CLOSE macro instruction.

The user should be aware that, after the TPEND exit routine has returned control to
ACF/VTAM, the halt-quick situation does not prevent ACF/VTAM from scheduling the
program’s other exit routines (such as the LOSTERM exit routine). Because of that, the
TPEND exit routine should set a quick-halt-in-progress switch, which is tested at the
beginning of each exit routine. When the switch is on, each exit routine should
immediately return control to ACF/VTAM. The TPEND exit routine should also set a
switch or post an ECB to signal the main program to disconnect logical units (if the exit
routine did not do that) and close the ACB as soon as possible.

For a quick-halt situation, the TPEND exit routine or the main program should
disconnect each logical unit with which it was communicating by issuing CLSDST or
TERMSESS unconditional macro instructions. If the program closes its ACB without
issuing the CLSDST and TERMSESS macros, the logical units will be disconnected
serially, thus requiring more time to disconnect the logical units and slowing down the
closedown operation.

If a program has no TPEND exit routine, it learns of the quick-halt situation by detecting
a special return code when its next ACF/VTAM request is completed. The program
should disconnect its logical units and issue a CLOSE macro instruction.

With the HALT QUICK command, as with the standard HALT command, a list of open
application programs is sent to the network operator if any application program has not
closed its ACB after 45 seconds.

Actions for a HALT CANCEL Command
or for Abnormal Termination of ACF/VTAM (0OS/VS Only)

60

In an OS/VS system, ACF/VTAM’s receipt of a HALT CANCEL command or an
ACF/VTAM abnormal termination also causes entry to the TPEND exit routine. For
cithei eveiii, ACF/VTAM liteirupis aity data-tiansfer operation and does ot compieie it
(that is, the RPL is not marked as complete and no ECB is posted or RPL exit routine
scheduled). ACF/VTAM will not accept any ACF/VT AM macro instruction except the
CLOSE macro instruction. Therefore, when the TPEND exit routine detects code 8 in the
parameter list it receives, the exit routine should set a switch or post an ECB to inform
the main program that it should immediately issue the CLOSE macro instruction. The
exit routine should then return control to ACF/VTAM so that control can be given to the

main program.

If an application program does not have a TPEND exit routine or if that exit routine
cannot be scheduled, the application program is abnormally terminated.

For more information on the TPEND exit routine, see Chapter 7.

Chapter 5. Connecting and Disconnecting Logical Units

Roles of Primary and Secondary Logical Units
in Connection and Disconnection

Communication between two logical units cannot begin until a connection (that is, an
LU-LU session) has been established between the logical units. As mentioned in
Chapter 1, in any connection between logical units, one logical unit acts as the primary
end of the session and the other logical unit acts as the secondary end of the session.
The primary logical unit has more control over communications.

One distinction between the primary and secondary logical units involves their roles in
connection. The distinction is this: The secondary logical unit can only request that a
session be established; it cannot order the session to be established. It is the primary
application program that, after receiving a request for a session, orders the session to
be started (or rejects the request).

A similar relationship exists between a primary logical unit and a secondary logical unit
in bringing an end to a session (that is, in causing disconnection of the logical units).
Under normal conditions, the secondary logical unit asks that a session be ended by
sending a Terminate command (an SNA command) to ACF/VTAM. ACF/VTAM
informs the primary program that the Terminate command has been received. Then,
either ACF/VTAM or the primary application program takes the action that actually
breaks the connection.

In considering connections, the reader shouid be aware that a logical unit other than a
secondary application program can be connected to only one primary application
program at a time. In contrast, a secondary application program can have concurrent
sessions with more than one primary application program.

The Concepts of Connection

The discussion above indicates that the process of connection and disconnection must
be looked at from two viewpoints: from the viewpoint of the primary application
program and from the viewpoint of the logical unit that is acting as the secondary end
of the session. This chapter looks first at connection from the viewpoint of the
primary application program. The role of a secondary application program is discussed
later in the chapter.

A primary application program can establish connection in one of two ways: it can
accept the logical unit or it can acquire the logical unit. (For information on
requesting connection from a secondary application program, see “How a Secondary
Application Program Requests Connection” later in this chapter.)

Acceptance by a Primary Application Program
When a primary application program accepts a logical unit, it does so because a logon
was received from or received for the logical unit. A logon is a request from the logical
unit to be connected, and the logon contains information needed by the primary
application program to perform the next step in the connection process. The logon can
come from the logical unit itself, or it can come from one of several other sources:

¢ From another application program which ended its connection with the logical unit
by issuing a CLSDST macro instruction with OPTCD=PASS.

Chapter 5. Connecting and Disconnecting Logical Units 61 k

62

e From the network operator by means of a VARY LOGON command (although this
cannot be used to generate a logon on behalf of a secondary application program.)

e From ACF/VTAM when the logical unit is activated. ACF/VTAM automatically
generates a logon at that time when the LOGAPPL operand was specified in the
definition statement for the logical unit. (This also cannot be used to generate a
logon on behalf of a secondary application program.)

A logon can also be generated within the application program that the logical unit is to
be logged on to by issuance of the SIMLOGON macro instruction. However, such
logons, called simulated logons, are essentially a form of acquisition and are discussed
under “Acquisition by a Primary Application Program” later in this chapter.

A primary application program accepts a connection by issuing the OPNDST macro
instruction with OPTCD=ACCEPT.

Acceptance is suitable for primary application programs that do not require access to a
specific logical unit or a specific set of logical units in order to function, but instead
are designed to service various logical units that require access to the application
program. If, for example, the user wants the logical units themselves to designate
which application program they wish to use, the user can allow each logical unit to
initiate logons so that the application program can accept the logical unit.

Queuing Logons: When ACF/VTAM receives a logon for an active application program
and the logon cannot be passed immediately to the application program (for example,
no SETLOGON START macro instruction has been issued), the logon is placed on a
queue to await processing by the application program. When the logon is placed on the
queue, the logical unit from which the logon was received or for which it was created
is allocated to the application program if it is a logical unit other than a secondary
application program. (A secondary application program is not allocated to the primary
program.) As long as the logical unit is allocated (queued) to the application program,
it is not available for connection to any other application program; it is available for
connection only to the application program to which it is queued. (A secondary
application program remains available for connection to other application programs.)
The application program and its queued logical unit cannot communicate with each
other until the connection is completed by the application program’s acceptance of the
logical unit. Because a queued logical unit (other than a secondary application
program) is effectively eliminated from the system until accepted or disconnected by
the application program, the user should ensure that application programs avoid leaving
logical units on this queue any longer than necessary. Note especially that the queuing
of a logon from a device-type logical unit makes that logical unit unavailable for
acquisition, as discussed in later paragraphs.

When more than one logon is queued for the same application program, the logons are
generally processed in the order in which they were received (that is, the first received
is the first to be processed). There is, however, an exception to this: When the
program disconnects the logical unit with a CLSDST macro instruction containing
OPTCD=PASS (to pass the logical unit to a program that requested it), that logon is
placed at the top of the queue and is processed first.

Accepting Logical Units with an Exit Routine: The application program can maintain
a LOGON exit routine that ACF/VTAM schedules whenever a logon for the applica-
tion program is received. ACF/VTAM provides the exit routine with the identity of the
logical unit that issued the logon. The application program can either accept the logical
unit (with an OPNDST macro instruction) or reject it (with a CLSDST macro
instruction).

The application program does not have to use an exit routine to determine when a
logon has been received. The application program can issue a connection request
(OPNDST with OPTCD=ACCEPT,Q) that will remain outstanding (that is, will not be
completed) until a logon is received from a specific logical unit or, optionally, from
any logical unit. Although this method is simpler than using an exit routine, the
application program does not have the opportunity to inspect the session parameters
and to decline the Jogon. The application program also cannot ensure that the MODE
field in the NIB is set properly. For example, it is possible to use a NIB with
MODE=BASIC to successfully accept a logon from another application program.
However, since all sessions between application programs must be in record mode, any
attempt to send or receive messages would fail.

Preventing Logons: Logons cannot be directed to an application program until the
application program notifies ACF/VTAM that it is ready to accept them. It controls
this with the SETLOGON macro instruction. After a SETLOGON with OPTCD=
START is used to start the acceptance of logons, ACF/VTAM schedules the program’s
LOGON exit routine for each logon that was queued and waiting or that subsequently
is received, or it completes any connection requests (OPNDSTs with OPTCD=ACCEPT)
that may have been issued outside the LOGON exit routine. Any time during its
execution, the application program can notify ACF/VTAM that it is no longer
accepting logons by issuing a SETLOGON with OPTCD=STOP or QUIESCE. (In a
secondary application program, issuance of SETLOGON with OPTCD=START is
necessary to enable the secondary program to perform its end of the connection
procedure.)

Types of Acceptance: The application program can issue a connection request to
accept a specific logical unit, or to accept any logical unit for which a logon has been
issued.

To accept a specific logical unit, the application program must tell ACF/VTAM the
identity of the logical unit; connection is not made until a logon has been issued for
that logical unit. The application program can also accept a logon from any logical unit
in the network. After connection is established, ACF/VTAM provides the identity of
the logical unit.

Acquisition by a Primary Application Program

When the initiative for connection originates in the primary application program, the
application program establishes connection by acquiring the logical unit. To acquire a
logical unit, the application program need not and should not have received a logon
from the logical unit. (If the application program has received a logon, it must either
accept it or reject it.) When the acquisition request is issued, if the logical unit is active
and available, the logical unit is connected (or queued for connection if the application
program is simulating a logon on behalf of the logical unit). To be able to acquire
logical units, an application program must have been authorized to use acquisition
when the program”was defined to ACF/VTAM,; that is, the AUTH=ACQ operand must
have been specified in the APPL definition statement.

A primary application program can acquire a logical unit in either of two ways: (1) by
issuing an OPNDST macro instruction with OPTCD=ACQUIRE, or (2) by issuing a
SIMLOGON macro instruction to create a simmulated logon and then accepting the
simulated logon.

Chapter 5. Connecting and Disconnecting Logical Units 63

Acquiring a Logical Unit with the OPNDST Macro Instruction

To acquire a logical unit, the primary application program can issue an OPNDST macro
instruction with OPTCD=ACQUIRE at any point at which the application program
wants to attempt to acquire connection with one or more logical units.

In using an OPNDST with OPTCD=ACQUIRE, the application program can specify
that ACF/VTAM should attempt to acquire a connection (1) with a particular logical
unit, (2) with the first logical unit that is available in a set of logical units, or (3) with
some or all of a set of logical units. For the latter two possibilities, which involve a set
of logical units, the application program defines the set by building a series of
contiguous control blocks (NIBs), each containing the name of a logical unit. The
series of contiguous NIBs is called a NIB list.

Acquiring Connection with a Particular Logical Unit: To acquire a connection with a
specific logical unit, the application program issues an OPNDST with OPTCD=
ACQUIRE that points to a single NIB (that is, LISTEND=YES was specified when the
NIB was defined). As an alternative, the application program can use the SIMLOGON
macro instruction as described below.

Acquiring Some or All Logical Units in a Set (CONALL): The OPNDST with
OPTCD=ACQUIRE can also be used to attempt to acquire connection with some or all
of the logical units in a NIB list. In this case, the macro instruction points to the first
NIB in a NIB list, and the OPTCD operand contains the CONALL option as well as
the ACQUIRE option. When such a macro instruction is issued, as many logical units
as are available are connected. This type of acquisition can be used when the
application program is willing to proceed with as many logical units as are available. (A
secondary application program that is active is always available for connection. A
device-type logical unit is gvailable for connection if it is not already connected to or
queued for connection to another application program.) After execution of the macro
instruction, ACF/VTAM provides information so that the primary application program
can determine which logical units were connected and which were not.

Acquiring ihe Firsi Available Logical Unii in a Sei (CONANY): Another vaiiation of
the OPNDST with OPTCD=ACQUIRE allows the application program to acquire any
one logical unit of a specified set. To specify this type of acquisition, the application
program issues an OPNDST with OPTCD=(ACQUIRE,CONANY), and the macro
instruction points to the first NIB in a NIB list. When the macro instruction is
executed, the first available logical unit in the set is connected. This type of
acquisition is useful for application programs that require one of a set of logical units,
but for which one logical unit is as good as another.

Acquiring a Logical Unit with the SIMLOGON Macro Instruction

An alternative method of acquiring a logical unit involves the use of the SIMLOGON
macro instruction. In this method, the application program issues a SIMLOGON macro
instruction, which causes ACF/VTAM to generate a logon for the logical unit and to
pass that logon to the application program as though it had come from the logical unit
itself. The application program then accepts the logon with an OPNDST OPTCD=
ACCEPT, either in its LOGON exit routine or in its main line. The SIMLOGON macro
instruction can be used to generate a logon for (1) a particular logical unit, (2) the
first available logical unit in a set of logical units (the CONANY option), or (3) for all
available logical units in a set (the CONALL option). For the SIMLOGON macro
instruction (as for OPNDST OPTCD=ACQUIRE), a set of logical units consists of a
series of consecutive NIBs called a NIB list. A logon that results from a SIMLOGON
macro instruction is called a simulated logon.

The use of simulated logons is a form of acquisition because the initiative for the
connection is taken within the application program itself; it does not come from the
logical unit. And, like OPNDST OPTCD=ACQUIRE, use of the SIMLOGON macro
instruction must have been authorized when the application program was defined to
ACF/VTAM,; that is, the AUTH=ACQ operand must have been specified in the APPL
definition statement. (Note that AUTH=ACQ authorizes the program to use OPNDST
OPTCD=ACQUIRE and SIMLOGON.)

Simulated logons might be used by an application program that employs one part of
the program (for example, a LOGON exit routine) to ensure that adequate resources
(such as storage or control blocks) are available for accepting a logical unit. If one part
of the application program attempts to use a simulated logon to acquire a logical unit,
the part that accepts logical units has a chance to determine whether the program can
actually afford to establish connection with the logical unit.

A simulated logon might also be used by an application program that wants to ask the
current owner (via the RELREQ exit routine) to release a particular logical unit. To
cause the current owner to be notified that the logical unit is wanted, the OPTCD=
(Q,RELRQ) operand must be included in the SIMLOGON macro instruction.

An application program that initially uses the SIMLOGON macro instruetion to acquire
logical units can be modified in the future to accept logons that originate at the logical
units. If the application program is initially designed to acquire logical units with
simulated logons, the modifications can be made more easily because coding to accept
the logons already exists (either in the LOGON exit routine or as part of the mainline
code).

Acquiring Connected Logical Units: A device-type logical unit (that is, a logical unit
~ other than a secondary application program) cannot be connected to more than one
application program at a time. Thus, if a primary application program attempts to
acquire a device-type logical unit that is already connected to another application
program, the requesting program cannot acquire the logical unit until the other
program disconnects it. ACF/VTAM provides a means by which the owning application
program can be notified that another application program wants one of the device-type
logical units connected to the owning program.

The requesting application program can indicate whether its attempt to acquire a
connected device-type logical unit should or should not cause the owning application
program to be notified (SIMLOGON with OPTCD=RELRQ or NRELRQ). The
requesting application program should request notification (that is, specify the RELRQ
option) when it needs the device-type logical unit regardless of its connection status.
Notification should not be indicated when the requesting application program needs
the device-type logical unit only if it is unconnected.

The owning application program also controls whether it can be notified when another
application program issues a connection request (that is, a SIMLOGON) to acquire one
of its device-type logical units. To receive such notification, the owning application
program must contain a RELREQ exit routine, and that exit routine must have been
identified in an exit list pointed to by the ACB. Notification can only occur, therefore,
when the requesting application program calls for notification with (OPTCD
=Q,RELRQ) in the SIMLOGON and the owning application program contains the
means for receiving the notification (a RELREQ exit routine).

Chapter 5. Connecting and Disconnecting Logical Units 65

Queuing Connection Requests for a Device-Type

Logical Unit

An attempt to acquire a logical unit (with either an OPNDST with OPTCD=ACQUIRE
or with a SIMLOGON macro instruction) always fails if the logical unit is inactive.
However, if the requested logical unit is a device-type logical unit (as opposed to a
secondary application program) and is active but unavailable, and the acquisition
request is a SIMLOGON request, the request can be queued if the requesting program
specifies such queuing. A queued request remains pending until the logical unit
becomes available. (Note that an acquisition request entered with OPNDST OPTCD=
ACQUIRE cannot be queued; if the requested logical unit is not available, the request
immediately fails.)

The reader must be aware that there is a distinction between the meaning of
“available” as it applies to acquisition and as it applies to acceptance. When an
application program attempts to accept any type of logical unit, the logical unit is
available if a logon for it has been directed at the application program. When an
application program attempts to acquire an active device-type logical unit, the logical
unit is available if it is not connected (or queued for connection as the result of a
logon) to another application program.

The reader must also be aware that there is a distinction between the meaning of
“available” as it applies to a secondary logical unit and as it applies to a device-type
logical unit. Since a secondary application program can be the secondary end of
multiple sessions, a secondary application program that is active is always available for
connection. A device-type logical unit is available for connection only if it is active and
is not connected to (or queued for connection to) another application program. The
following discussion of queuing connection requests applies only to requests from or
requests for device-type logical units.

A program should specify that an acquisition request is to be queued only if the
application program does not require the device-type logical unit immediately. To
indicate that the request is to be queued if the logical unit is not available, the
application program uses a SIMLOGON with OPTCD=Q. In addition, the requesting
application program can specify that the owning application program is to be notified
of the request by adding RELRQ to the option codes, that is, by using SIMLOGON
with OPTCD=(Q,RELRQ). The RELRQ option is effective only if the Q option has
also been specified. Figure 5-1 lists the effects of queuing on the various types of
connection requests. Note that queuing cannot be specified for an OPNDST with
OPTCD=ACQUIRE. o

When a program issues a SIMLOGON with OPTCD=(Q,RELRQ) for a device-type
logical unit that is already owned, ACF/VTAM notifies the owning application program
by scheduling an exit routine (RELREQ). The RELREQ exit routine is scheduled
when the connection request occurs while the logical unit is already connected. If,
before the logical unit is connected (that is, while the logical unit is still queued for
connection), another application program issues a queued connection request for the
logical unit, the RELREQ exit routine is not scheduled. Instead, ACF/VTAM sets a bit
in the control block used for connection (the NIB) indicating that another application
program has requested the logical unit.

The RELREQ exit routine is provided with the identity of the contested logical unit.
The application program can elect to disconnect the logical unit immediately,
disconnect it later, or ignore the request entirely. If the logical unit is disconnected,
the previous owner can immediately attempt to acquire the logical unit from the new
owner (using a queued connection request) so that the logical unit will be returned
when it is no longer being used. When the logical unit is disconnected, it is

Type of Connection
Request

Meaning When Request Specifies Queuing

Meaning When Request Does Not Specify Queuing

OPNDST ACCEPT

a specific logical unit
(SPEC)

any logical unit (ANY)

Connect the specified logical unit if a logon has
been received for it. Otherwise, connect the
logical unit when a logon is received for it.

Connect any logical unit for which a logon has
been received (if logons have been received for
more than one logical unit, connect the logical
unit that has waited the longest). Otherwise,
wait until a logon is received from any logical
unit and then connect that logical unit.

Connect the specified logical unit if a logon has
been received for it. Otherwise, ipdicate failure in
the return code.

Connect any logical unit for which a logon has
been received (if logons have been received for
more than one logical unit, connect the logical
unit that has waited the longest). Otherwise,
indicate failure in the return code.

OPNDST ACQUIRE
a set of one (CONANY)

any one of a set (CONANY)

as many as are available in a
set (CONALL)

(Cannot be queued)

(Cannot be queued)

(Cannot be queued)

Connect the logical unit if it is available®. Other-
wise, indicate failure in the return code.

Connect the first logical unit in the set (NIB list)
that is available. Otherwise, indicate failure in the
return code.

Connect all logical units in the set (NIB list) that
are available. If none is available, indicate failure
in the return code.

SIMLOGON

one specific logical unit
(CONANY or CONALL
with a single NIB)

any one of a set
(CONANY)

A. If the logical unit is active' , live*, and
available®, generate the logon and either pass
it to the application program* or queue it for
the application program. The return code for
the SIMLOGON request indicates successful
completion.

B. If the logical unit is active but is not live or is
not available, queue a session initiation
request for the application program. Generate
the logon when the terminal becomes live
and available. The return code for the
SIMLOGON request indicates successful
completion.

C. If the logical unit is inactive, indicate failure

of the SIMLOGON request in the return code.

Functionally equivalent to a series of
SIMLOGONSs, with one SIMLOGON attempted
in sequence for each logical unit in the set (NIB
list). For each SIMLOGON attempt for a logical
unit in the list, items A and B above in this
column apply to the attempt. The attempts stop
when ACF/VTAM finds an available logical unit
and generates the logon.

If no logical unit in the NIB list is currently live
and available, a session initiation request is
queued for each logical unit in the list that is
active. When one of those logical units becomes
live and available, a logon is created for it, and
all other queued session initiation request
generated by the SIMLOGON are canceled.

If no logical unit in the list is active, failure of
the SIMLOGON is indicated in the return code.

A. If the logical unit is active' , live?, and
available®, generate the logon and either pass it
to the application program® or queue it for the
application program. The return code for the
SIMLOGON request indicates successful
completion.

B. If the logical unit is inactive, or is not live, or is
not available, indicate failure of the
SIMLOGON request in the return code.

Functionally equivalent to a series of SIMLOGONSs,
with one SIMLOGON attempted in sequence for
each logical unit in the set (NIB list). A logon is
created for the first logical unit in the list that is
active, live, and available.

If no logical unit in the list is active, live, and
available, failure of the SIMLOGON is indicated

in the return code.

Figure 5-1 (Part 1 of 2). Queued and Nonqueued Connection Requests

Chapter 5. Connecting and Disconnecting Logical Units 67

Type of Connection
Request

Meaning When Request Specifies Queuing

Meaning When Request Does Not Specify Queuing

all in a set (CONALL)

Functionally equivalent to a series of
SIMLOGON:Ss, with one SIMLOGON attempted
for each logical unit in the set (NIB list). For
each logical unit that is immediately available,
ACF/VTAM generates a logon and passes it to
the application program or queues it for the
application program. For each logical unit that
is active, but not live or not available, ACF/
VTAM queues a session initiation request,
which is converted to a logon when the logical

unit becomes physically connected or available.

If any lgoical unit in the set is inactive, failure
of the SIMLOGON is indicated in the return
code.

Functionally equivalent to a series of SIMLOGONSs,
with one SIMLOGON attempted for each logical
unit in the set (NIB list). When all logical units in
the set are active, live, and available, a logon is
generated for each one and passed to or queued

for the application program.

If any logical unit in the set is not active, or not
live or not available, the request fails and the
failure is indicated in the return code. In this

case, no logon is generated.

Notes:

1. "Active” means that the logical unit has been activated and additionally, for switched logical units that are dial-in only, that a
dial cornection has been established.

2 Al active logical units are “‘live’” except for dial-in start-stop and BSC terminals that have been activated but have not yet dialed

in.

3 “Available’” means that the logical unit is not connected to or queued for connection to another application program.

The logon is passed immediately to the application program if the program has issued an OPNDST ACCEPT for the specific logical
unit or an OPNDST ACCEPT,ANY to accept any logical unit, or if the program’s LOGON exit routine can be scheduled (the
program has issued SETLOGON START). Otherwise, the logon remains pending, awaiting an OPNDST or the issuance of a

SETLOGON START.

Figure 5-1 (Part 2 of 2). Queued and Nonqueued Connection Requests

reconnected to the acquiring application program that has waited the longest, which
may not be the application program that was the previous owner of the logical unit.

By controlling which application programs release contested logical units and which do
not, the user can cause some application programs to be able to obtain and keep
logical units more readily than other application programs. Or, the user can establish a
policy that all application programs release contested logical units that are not being
used; this makes the logical units more generally available.

Disconnection by a Primary Application Program

68

A primary application program can disconnect a device-type logical unit in one of two
ways: it can release the logical unit or it can pass the logical unit to another
application program. The logical unit is released by disconnecting it without regard to
which application program (if any) is to receive the logical unit. The logical unit is
passed by disconnecting it and designating which application program is to receive the
logical unit. Passing must be authorized when the application program is defined to
ACF/VTAM (that is, AUTH=PASS must be specified in the APPL definition state-
ment).

Passing and releasing are accomplished by using the PASS and RELEASE options of a
CLSDST macro instruction.

When a device-type logical unit is released, ACF/VTAM connects the logical unit to
any application program that has attempted to acquire the logical unit with a
SIMLOGON macro instruction (and has indicated in the SIMLOGON that its connec-
tion request should be queued). If more than one application program has issued a
SIMLOGON for the logical unit, ACF/VTAM connects the logical unit to the
application program that first issued the connection request. If there are no queued
requests to acquire the logical unit, ACF/VTAM generates an automatic logon for the
logical unit (unless the automatic logon would be to the program that is releasing the
logical unit). If no automatic logon has been specified by the user, the logical unit
remains unconnected.

When a device-type logical unit is passed, ACF/VTAM generates a logon, directs the
logon to the designated application program, and then disconnects the logical unit
from the passing application program. The logical unit is not reconnected until the
receiving application program accepts the logon.

A device-type logical unit should be passed only when it is imperative that it be
connected to a specific application program and to no other. For example, a user
might maintain several application programs, each of which requires the same
information from the logical unit before it can be used. Although each application
program could conduct its own interrogation, it might be simpler for one application
program to obtain the initial information and then pass the logical unit to the
appropriate application program.

When the application program passes a logical unit, it can also pass a logon message
and session parameters (by using a logon mode name) to the receiving application
program. In the example above, the application program might pass the results of the
preliminary conversation in the logon message.

For information on disconnection by a secondary application program, see “How a
Secondary Application Program Requests Disconnection” later in this chapter.

How a Primary Application Program Performs Connection

Performing connection in a primary application program requires three language
elements:

A request parameter list (RPL)
A node initialization block (NIB)
An OPNDST macro instruction

The Request Parameter List (RPL)
The request parameter list, built with the RPL or GENCB macro instruction, contains
information that describes a request for connection or data transfer. Either kind of
request must identify an RPL. After the request has been completed and the event has
been posted, the RPL may be used for another request.

When used for connection, an RPL contains information that describes a connection
request. The data-transfer RPL describes a data-transfer request. However, the program-
mer can build an RPL that contains both kinds of information, and that RPL can be
used for both kinds of requests. Here is a sample RPL for a connection request:

RPL1 RPL AM=VTAM,ACB=ACB1,0PTCD=(ACCEPT,SPEC,ASY),
NIB=NIB1,ECB=ECB1

Chapter 5. Connecting and Disconnecting Logical Units 69

where:
RPL1 is the label for the macro and serves as the name of the RPL.
AM=VTAM specifies the access method.

ACB=ACBI specifies that the logical unit is to be connected to the ACB labeled
ACBL1. ’

OPTCD=(ACCEPT,SPEC,ASY), when used with an OPNDST macro, specifies that
asynchronous processing is to be used to accept a logon from the logical unit
identified in the NIB.

NIB=NIB1 specifies the address of the NIB containing the name of the logical unit
to be connected.

ECB=ECBI1 specifies that when the request defined by this RPL is completed, ECB1
is to be posted.

The Node Initialization Block (NIB)

70

A node initialization block (NIB) describes a logical unit that is to be connected to an
ACF/VTAM, application program. A NIB contains the symbolic name of the logical
unit, user data that is to be associated with the logical unit, processing options to be
used when the program communicates with the logical unit, and other items of
information. After a logical unit is connected, ACF/VTAM adds the communication
identifier (CID), which is ACF/VTAM’s means of identifying the session. For BSC,
start-stop, and local non-SNA devices, additional device information is provided.

A NIB is built with the NIB or GENCB macro instruction which can specify:
The symbolic name of the logical unit
The mode of communication (basic or record mode)
The processing options
The user data

The logon mode name

The Start Data Traffic indication

The address of a bind area in which the application program can construct a set of
session parameters

The symbolic name of a logical unit is assigned at network definition. It is the name in
the name field of the definition statement (LU statement, APPL statement, LOCAL
statement, etc.) used to describe the logical unit to ACF/VTAM. This symbolic name is
used only when the program connects a logical unit. After a connection is made, the
application program uses the CID to communicate with the logical unit. For acquiring
a logical unit, the symbolic name is placed in the NIB before the connection request
(OPNDST or SIMLOGON) is issued. For accepting connection following a logon, a
symbolic name is coded only if accepting connection from a specific logical unit. For
accepting a logon from any requesting logical unit, a symbolic name is not specified in
the NIB. ACF/VTAM connects the program to any logical unit that is logging on.
When the logical unit is connected, ACF/VTAM puts its CID and symbolic name in the
NIB.

The mode is either record or basic. Record mode is specified in a NIB used to connect
a logical unit, and mey- optionally be specified if record mode is to be used to
communicate with a BSC 3270 or local non-SNA 3270 terminal. Basic mode is
specified for a stop-start or BSC terminal and may optlona]ly be specified for a BSC
3270 or local 3270.

The processing options (PROC) determine certain characteristics to be assigned to the
logical unit; for example, whether certain input from the logical unit will cause
ACF/VTAM to schedule a DFASY or RESP exit routine. These options are fully
described in ACF/VTAM Macro Language Reference.

The user data is in a 4-byte field (USERFLD) that allows some relevant data to be
associated with the logical unit. A common use is to store the address of an area that
contains an ECB, RPL, and work area that are to be associated with the logical unit.
Having provided this address initially to ACF/VTAM at connection, ACF/VTAM
supplies the address in the USER field of any RPL that receives input from the logical
unit. More generally, however, whatever information is in the USERFLD field of the
NIB at the time of connection is placed in the USER field of the RPL upon
completion of each input operation from the logical unit.

The logon mode name is the name of an entry in a logon mode table. The entry
contains the session parameters to be used for the connection.

The BNDAREA operand can be specified in the NIB macro to give the location of a
bind area where the application program can predefine or dynamically construct a set
of session parameters to be used for the connection. When the BNDAREA operand
contains an address, the LOGMODE operand (logon mode name) is ignored. (The
ISTDBIND DSECT can be used to set up session parameters in the bind area.)

The Start Data Traffic indication (the SDT operand) specifies whether the primary
application program will issue the Start Data Traffic command (SDT=APPL) or
whether ACF/VTAM should issue that command automatically as part of the OPNDST
processing (SDT=SYSTEM). The transmission services profile in the session parameters
indicates whether or not the Start Data Traffic (SDT) command is to be used in the
session. When use of the command is indicated, the SDT command must be sent
during initial connection processing, after a Clear command has been sent, and after
sequence number resynchronization to inform the secondary end of the session that
the flow of messages and responses can begin. For many primary application programs,
it is convenient and adequate to let ACF/VTAM issue the Start Data Traffic command
during initial connection processing (that is, allow SDT=SYSTEM to take effect by
default when defining the NIB). However, the primary application program must still
issue an SDT command after a Clear command is sent.

For a secondary application program, the SDT indication is used to indicate a response
to an SDT command. The secondary application program may return either a positive
or a negative response.

A NIB is used in conjunction with each connection request. The RPL used for
connection points to one or more NIBs which represent logical units to be connected.
Depending on the type of request, there are several ways in which an RPL can point
to a NIB (or NIBs). In all cases, the NIB operand of an RPL macro is used to specify
the Iabel of a NIB (or GENCB) macro instruction, not the name of the logical unit
represented by the NIB.

Here are the ways in which an RPL can point to a NIB:

® The RPL can point to a specific NIB. To be sure the NIB is treated as a single NIB,
the LISTEND=YES operand must have been included in the macro instruction that

Chapter 5. Connecting and Disconnecting Logical Units 71

-2

defined the NIB or that operand must have been allowed to take effect by default.
The LISTEND=YES operand ensures that processing stops with that NIB.

RPL1

NIB1

This form is used by the OPNDST and SIMLOGON macros. The requested
operation is performed only for the specified logical unit. The RPL and NIB might
be coded:

RPLI RPL AM=VTAM,ACB=ACBI,NIB=NIBI
NIBI NIB NAME=LU1,MODE=RECORD,LISTEND=YES,
USERFLD=A(LUTAB)

The RPL can point to a list of NIBs. To define a NIB list, an application
programmer defines a series of contiguous NIBs, either with NIB macro instructions
or GENCB macro instructions or by using an IBM-provided DSECT. The last NIB in
the list must have the LISTEND indicator (LISTEND=YES in the NIB macro
instruction); the other NIBs in the list must have LISTEND=NO.

RPL1 |

NiB1

LISTEND=NO
NIB2

NIB3 } LISTEND=YES

The coding might look like this:

RPL1 RPL AM=VTAM,ACB=ACBI1 NIB=NIB1,0PTCD=ACQUIRE
NIB1 NIB NAME=LU1,LISTEND=NO,MODE=RECORD

NIB2 NIB NAME=LU2,LISTEND=NO MODE=RECORD

NIB3 NIB NAME=LU3,LISTEND=YES,MODE=RECORD

If all NIBs in a program are in one list, the programmer may want to specify a
working subset of the list for one operation. To do this, the RPL should point to
any one NIB in the list. The subset will include all NIBs from (and including) the
NIB to which the programmer has pointed, through (and including) the next NIB in
which the LISTEND indicator is set (LISTEND=YES).

This list form can be used in the SIMLOGON and OPNDST (with OPTCD=
ACQUIRE) macro instructions when the programmer wants to simulate logons or
acquire connections with a set of logical units.

The RPL can point to a NIB that contains neither a CID nor a symbolic name. This
form can be used when the logical unit that will send a logon is not known. When
the request is completed, ACF/VTAM fills in the NIB. This form is used by an
OPNDST macro instruction with OPTCD=(ACCEPT,ANY). The coding might look
like this:
RPL1 RPL AM=VTAM,ACB=ACB1NIB=NIB1,0PTCD=(ACCEPT,ANY)
NIB1 NIB MODE=RECORD,PROC=(DFASYX,RESPX)

Acquiring Logical Units

T« acquire a logical unit, a primary application program issues an OPNDST macro
instruction containing OPTCD=ACQUIRE with the RPL pointing either to a single NIB
or list of NIBs. Here is a simple example to illustrate the process of acquiring logical
units.

Assume that the message-processing portion of a data communication program has
been written, and that the program’s identification is GOLDEN and its password is
AU. GOLDEN is to be connected to three logical units in San Francisco (named SF1,
SF2, and SF3) and to two logical units in Boston (named BOS1 and BOS2).

First, an ACB must be built to specify:
That the access method is ACF/VTAM
That the application program identification is contained in an area labeled APID
That the password is contained in an area labeled PSWD
That logons will not be accepted

ACB1 ACB AM=VTAM,APPLID=APID,
PASSWD=PSWD MACRF=NLOGON

The application program identification is coded in an area labeled APID. The byte
preceding the actual identification contains the length of the ID:

APID DC ALI(L‘GOLDNAME)
GOLDNAME DC C‘GOLDEN’

The password is coded in an area labeled PSWD. The first byte of PSWD contains the
length of the password:

PSWD DC AL1(L‘GOLDPASS)
GOLDPASS DC CAU

Next, GOLDEN defines the five logical units to which it is to be connected. One NIB
is built for each logical unit:

SF1 NIB NAME=SF1,MODE=RECORD
SF2 NIB NAME=SF2 ,MODE=RECORD
SF3 NIB NAME=SF3 MODE=RECORD
BOS1 NIB NAME=BOS1,MODE=RECORD
BOS2 NIB NAME=BOS2,MODE=RECORD

And GOLDEN has one RPL for each logical unit:

RPL1 RPL AM=VTAM,ACB=ACB1,0PTCD=(ACQUIRE, ASY),
NIB=BOS1,EXIT=ACQEX
RPL2 RPL AM=VTAM,ACB=ACB1,0PTCD=(ACQUIRE,ASY),
. NIB=BOS2,EXIT=ACQEX
RPL3 RPL AM=VTAM,ACB=ACB1,0PTCD=(ACQUIRE,ASY),
NIB=SF1,EXIT=ACQEX
RPI4 RPL AM=VTAM,ACB=ACB1,0PTCD=(ACQUIRE,ASY),
NIB=SF2,EXIT=ACQEX
RPL5 RPL AM=VTAM,ACB=ACB1,0PTCD=(ACQUIRE,ASY),
NIB=SF3,EXIT=ACQEX

Each RPL is used to connect a specific logical unit using a specific NIB. Since the

queuing of a connection request is not possible unless SIMLOGON is used, the
connection request will not be queued if the logical unit is not available. The

Chapter 5. Connecting and Disconnecting Logical Units 73

74

connection is performed asynchronously (OPTCD=ASY). When any connection request
is completed, the RPL exit routine ACQEX is scheduled.

To request connection, GOLDEN opens the ACB, and issues five OPNDST macros in
the main program:

OPEN ACB1

OPNDST RPL~=RPLL1
OPNDST RPL=RPL2
OPNDST RPL=RPL3
OPNDST RPL=RPLA
OPNDST RPL~=RPL5

Since the OPNDST macros specify asynchronous operations, GOLDEN receives control
again as each OPNDST is accepted by ACF/VTAM. As each OPNDST is completed, the
ACQEX RPL exit routine is scheduled. On entry, register 1 contains the address of the
RPL for the completed request. GOLDEN can issue a CHECK macro to test for errors,
and it can issue a SEND macro to send a message to the logical unit telling the logical
unit that it is now connected to the program.

ACQEX BALR 3,0

USING *3
ST 14,SAVE1
LA 13,SAVE2
LR 2,1

CHECK RPL=(2)

(Instructions to test return codes in registers)

SEND RPL=(2),AREA=CONNMSG,RECLEN=L‘CONNMSG
(Instructions to test return codes in registers)

L 14,SAVE1
BR 14
SAVE1 DS F
SAVE2 DS 18F
CONNMSG DC 22C‘YOU MAY NOW USE GOLDEN’

This example assumes that it is known at assembly which logical units will be needed.
In the next example, all that is known is that the program is to be connected to up to
10 active logical units defined during network definition by a PU statement and a
series of LU statements. The PU statement is labeled GOLDPU. All available logical
units are to be connected. (Some may not be available because they have already been
acquired by another program.) No password is used, but a processing option is set for
each logical unit.

First, GOLDEN builds an ACB, an RPL, an application program identification, and 10
NIBs (one for each logical unit that may be connected).

The ACB is:

ACB1 ACB AM=VTAM,APPLID=APID MACRF=NLOGON
APID DC X‘08’
DC CL8‘GOLDEN’

In the RPL, GOLDEN specifies the name of the NIB list (NIB1) and a NIB that
contains the name of the PU statement (GOLDPU) for use with INQUIRE.

RPL1 RPL AM=VTAM,ACB=ACBI1,NIB=ADDR,AREA=NIBI,
OPTCD=(ACQUIRE,SYN,CONALL)

ADDR NIB NAME=GOLDPU

NIB1 is the address of an area that contains the 10 NIBs needed for connection.
GOLDEN also sets PROC=(DFASYX,RESPX) and MODE=RECORD for each NIB so
that appropriate input from the logical units can result in scheduling the ACB-specified
DFASY and RESP exit routines in the program.

NIB1 NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB2 NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB3 NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB4 NIB PROC=(DFASYX,RESPX) MODE=RECORD
NIBS NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB6 NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB7 NIB PROC=(DFASYX,RESPX) MODE=RECORD
NIB8 NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB9 NIB PROC=(DFASYX,RESPX),MODE=RECORD
NIB10 NIB PROC=(DFASYX,RESPX),MODE=RECORD

NIBEND EQU *
LISTLEN DC A(NIBEND-NIBI)

GOLDEN opens ACB1:
OPEN ACB1

ACB1 is now recognized by and associated with ACF/VTAM. The NIBEND and
LISTLEN values, following the NIB list, are used to compute the length of the NIB list
for the INQUIRE macro. GOLDEN now uses INQUIRE to fill in the NIBs from
GOLDPU:

L 6,LISTLEN
INQUIRE RPL=RPL1,0PTCD=TERMS,AREALEN=(6)

The single INQUIRE with OPTCD=TERMS causes ACF/VTAM to fill in the 10 NIBs
(one for each active logical unit) in the area starting at NIB1. Each NIB will contain
the name of the logical unit, the device characteristics for that logical unit, and the
system-assigned values for the remaining processing options. ACF/VTAM will insert a
LISTEND=YES indication in the last NIB that is filled in.

Now that all the NIBs are ready, GOLDEN requests connection to all logical units in
the list that are available. The RPL already specifies OPTCD=(ACQUIRE,CONALL).
Because CONALL is specified, the NIB field of the RPL is set to specify the beginning
of a NIB list (NIB1).

OPNDST RPL=RPL1,NIB=NIB1

When the OPNDST is completed, GOLDEN is connected to as many logical units as
are available. The CID generated for each connected logical unit is in the CID field of
the respective NIB. A flag is set in the NIB indicating whether or not the logical unit
was connected. If an OPNDST is completed without connecting any logical unit, an
error return is set, and the LERAD or SYNAD exit routine in the program is
scheduled.

Chapter 5. Connecting and Disconnecting Logical Units 75:

Accepting Logons

“"Accepting Logons in the Main Program

76

A logon can come from any of the following sources: (1) a connection request to the
program from a logical unit (including a secondary application program); (2) an
automatic logon, as described in the ACF/VTAM System Programmer’s Guide; (3) a
simulated logon, discussed below in “Simulating Logons,” (4) a network-
operator-initiated logon (VARY LOGON), or (5) the passing of a logical unit from one
application program to another (CLSDST OPTCD=PASS).

After a logical unit enters a logon, ACF/VTAM queues the logon for the application
program. The program must accept the logon in order to complete the connection.

There are two methods of accepting logons. An OPNDST can be issued in the main
program, and the OPNDST will not be completed until the logical unit logs on. Or the
program can include a LOGON exit routine, which will be invoked whenever a logical
unit issues a logon for the program.

To accept a logon in the main program, the main program issues an OPNDST macro
instruction with OPTCD=ACCEPT, which is not completed until some logical unit logs
on and the logon has been queued on an ACB in the program. When the OPNDST is
completed, the logical unit is connected to the program; the RPL specified in the
OPNDST macro contains the CID of the logical unit. The overall procedure is as
follows:

1. Code an ACB indicating that logons are to be queued.
2. Code an RPL with OPTCD=(ACCEPT,Q) for coanection.

3. Construct a NIB that does not identify a logical unit. ACF/VTAM fills in the
symbolic name and CID of whatever logical unit logs on.

4. Cpen the ACB and issue a SETLOGON macro with OPTCD=START to initiate
queuing of logons.

5. Issue an OPNDST to connect a logical unit. This may be synchronous or
asynchronous.

Here is a simple example. A program is to process data from logical units that log on
to the program, and the programmer does not know which logical units will log on.
First, an ACB is opened that specifies that logons are to be queued for application
program DAVE.

ACB1 ACB AM=VTAM,APPLID=APID MACRF=LOGON
APID DC X08’
DC CL8‘DAVE’

OPEN ACBI

After the program opens ACB1, a SETLOGON macro is issued:
SETLOGON RPL=RPL1,0PTCD=START

An RPL is defined that indicates that a logon will be accepted from any logical unit,
and that the request for connection is to remain pending (queued) until the logical
unit becomes available:

RPL1 RPL AM=VTAM,ACB=ACBI,NIB=NIBI,
OPTCD=(ACCEPT,ANY,Q)

A NIB is coded, specifying no specific logical unit:
NIB1 NIB MODE=RECORD

If any processing options are to be set in the NIB, they must be set before connecting
the logical unit.

Now, the OPNDST is issued:
OPNDST RPL=RPL1

After the logical unit is connected to the program, NIB1 will contain the CID and
symbolic name of the logical unit so that it can be identified. The ARG field of the
RPL also will contain the CID so that this same RPL can be used for data-transfer
requests to and from the logical unit.

If the asynchronous option (OPTCD=(ANY,ASY)) had been selected, a CHECK or
WAIT macro would be required to await completion of the OPNDST, and the program
would be able to do other processing while the request was being processed. A series
of OPNDST macros with OPTCD=(ACCEPT,ANY,ASY) could be coded at the
beginning of the program. Then, as each logical unit logged on, an OPNDST would be
completed, and the result would have to be tested with the CHECK macro instruction.

Accepting Logons in the LOGON Exit Routine
To accept a logon in a LOGON exit routine, the ACB is opened in the main program,
and the logical unit is connected in the exit routine. After the ACB is opened and a
SETLOGON macro with OPTCD=START is issued, the LOGON exit routine is
scheduled for each logon that is received.

Here is a simple example to show how this procedure works. In the main program,

ACBO is opened and SETLOGON is issued to allow logons to be queued. When any
logon is queued, routine LOGON1 is scheduled to connect the logical unit.

PGM1

OPEN ACBO
SETLOGON RPL=RPL1,0PTCD=START

(Data transfer and message processing)

LOGON1 BALR 3,0

USING *3

ST 14,SAVE1
LA 13,SAVE2
OPNDST RPL=RPLO
L 14,SAVE1
BR 14

Chapter 5. Connecting and Disconnecting Logical Units 77

SAVEl1 DS F

SAVE2 DS 18F

ACBO ACB AM=VTAM,APPLID=APID,
EXLST=EXLSTO,MACRF=LOGON

APID DC X08

DC CL8PGMYT’

EXLSTO EXLST AM=VTAM,LOGON=LOGON]1

NIBO NIB MODE=RECORD

RPLO RPL ACB=ACB0,AM=VTAM,OPTCD=(ACCEPT,ANY),
NIB=NIBO

RPL1 RPL ACB=ACB0,AM=VTAM

Notes on the sample coding:

1. The main program opens ACBO to initiate ACF/VTAM processing and issues
SETLOGON to initiate queuing of logons.

2. ACBO defines the program to ACF/VTAM. ACBO also specifies that an exit list is
used and that logons directed to PGM1 are to be queued (MACRF=LOGON) for
ACBO.

3. EXLSTO specifies a LOGON exit routine. Whenever a logon is queued for ACBO,
the LOGON1 routine will be scheduled.

4. LOGONT1 issues an OPNDST to accept any requesting logical unit. After the logical
unit has been connected, LOGON1 returns control to the main program.

5. RPLO and NIBO are used for all logon processing. RPLO specifies that any logon
will be accepted and that NIBO will be used to define the logical unit. (This can be
varied by using a storage pool to provide an RPL and a NIB at connection. The
connection RPL can then be used for subsequent data transfer.)

As each logical unit is connected, its CID is placed both in the NIB and in the ARG
field of the RPL. If a pool of RPLs and NIBs is used, the terminal’s CID is now in the
RPL for future data transfer. If the same RPL is used for all connection requests, the
CID may have to be moved into another RPL that will be used for data transfer.

Using INQUIRE in a LOGON Exit Routine

78

In the previous example, the LOGON exit routine connects any requesting logical unit
without regard for its identity or authorization. It may be desirable to know more
about the logical unit before accepting connection to it. The INQUIRE macro can be
used to determine suggested session parameters associated with the logon or to
determine the contents of the user logon message (which is part of the logon).

When the LOGON exit routine is invoked, register 1 contains the address of a
parameter list. The second word of the parameter list contains the address of the
symbolic name of the logical unit.

First, the symbolic name of the logical unit must be put into the NIB. Then,
INQUIRE is issued to get the user logon message or the session parameters. Here is an
example showing how to get the user logon message.

When the LOGON exit routine is entered, the address of an 18-word save area must be
loaded into register 13, and register 14 must be saved for returning control. The
MODCB macro is used to put the symbolic name of the logical unit (in the second
word of the input parameter list) into the NIB.

L 2,4(1)
MODCB AM=VTAM,NIB=NIB1,NAME=(*,0(2))

Note that MODCB uses an indirect form of addressing to put the symbolic name into
the NIB. The parameter list only contains the address of the name, and the NIB needs
the actual name. This indirect addressing indicates that an address is supplied from
which a value is to be taken. Next, INQUIRE is issued:

INQUIRE RPL=RPL1,0PTCD=LOGONMSG

The RPL specifies that the user logon message is to be placed in AREA1. Here is the
LOGON exit routine:

LOGON1 BALR 3,0
USING *3
ST 14,SAVE1
LA 13,SAVE2
L 2,4(1)
MODCB NIB=NIB1,NAME=(*,0(2))
INQUIRE RPL=RPL1,0PTCD=LOGONMSG,NIB=NIB1
* VERIFY THE LOGON MESSAGE
OPNDST RPL=RPL1,0PTCD=(ACCEPT,SPEC),NIB=NIB1
L 14,SAVEIL
BR 14
SAVE1 DS F
SAVE2 DS 18F
NIB1 NIB MODE=RECORD
RPL1 RPL ACB=ACB1,AM=VTAM,AREA=AREAI,
AREALEN=30
AREAL1 DS CL30

Simulating Logons in a Primary Application Program

The simulated logon facility can be used to simulate the process by which a logical
unit logs on to a program. But the program itself initiates the connection as it would
in acquiring a logical unit. By using the SIMLOGON macro instruction, the application
program requests ACF/VTAM to generate a logon for a logical unit and to queue it for
the SIMLOGON:-issuing program as though it had come from the logical unit. If the
logical unit is available, ACF/VTAM creates the logon and queues it. When an
OPNDST is issued in the LOGON exit routine, the logical unit is connected.

This method can be used as an alternative to acquiring a logical unit. An advantage to
using SIMLOGON rather than acquiring the logical unit (OPNDST with OPTCD=
ACQUIRE) is that each logical unit (those that send their own logons as well as those
for which SIMLOGONS are issued) can be processed by the same LOGON exit routine.
Another advantage is that, if the logical unit is not immediately available, the logon
will, if requested, be queued until the logical unit becomes available. An OPNDST with
OPTCD=ACQUIRE cannot request queuing if the logical unit is not available. Note
that a program must be authorized to issue the SIMLOGON macro (that is,
AUTH=ACQ must have been specified in the APPL definition statement).

A SIMLOGON macro instruction can be used to create a logon for more than one
logical unit. To do this, the NIB field of the RPL specified in the macro instruction
points to a NIB that is the first in a NIB list.

Here is the procedure for simulating a logon for a single logical unit:
1. Build an RPL for the request. The RPL points to the NIB for the logical unit to be

Chapter 5. Connecting and Disconnecting Logical Units 79

connected, and the NIB contains a logical unit name. Assume that the ACB is
defined with MACRF=LOGON.

NIB1 NIB NAME=KINGSTON
RPL1 RPL AM=VTAM,ACB1,NIB=NIBI

2. To request the simulated logon, issue SIMLOGON.

SIMLOGON RPL=RPL1,0PTCD=(SYN,Q)

When KINGSTON becomes available, ACF/VTAM generates a logon as though it
had come from the logical unit. The logon is queued for ACB1.

3. Issue an OPNDST (with OPTCD=ACCEPT) to connect the logical unit. Usually this
is issued in a LOGON exit routine, but it can be in the main program.

A user logon message to be included in the simulated logon can be built in a work
area. The address of that work area is put in the AREA field of the RPL, and the
length of the user logon message is coded in the RECLEN operand.

How a Secondary Application Program

Requests Connection

A primary application program can take the initiative in establishing connection with a
secondary application program. The initiative can be in the form of a SIMLOGON
macro instruction or can be in the form of an OPNDST macro instruction with
OPTCD=ACQUIRE. These macro instructions will acquire a secondary application
program in the same way they would acquire any other secondary logical unit.

In many cases, however, the initiative for the session comes from the secondary
application program. The secondary application program takes the initiative by issuing
a REQSESS macro instruction, which asks the primary program for the session. The
primary program can either accept or reject the request.

The roles of primary and secondary application program are established by the manner
in which the connection is made. The application program that issues the REQSESS
macro instruction indicates, by the very act of issuing that macro instruction, that it is
to be the secondary half of the session. The program that issues the OPNDST macro
instruction assumes the role of the primary end of the session. Having assumed one
role or the other, the primary and secondary application programs must do certain
things and cannot do others. The capabilities of and limitations on primary and
secondary programs are summarized in Figure 5-2.

‘What a Secondary Application Program Needs

to Request Connection

80

Before a secondary application program can issue a REQSESS macro instruction to ask
a primary application program for a connection, the secondary application program
must have the following language elements and routines available:

e A request parameter list (RPL) to define the request for connection

® A node initialization block (NIB) to identify the primary application program with
which the connection is desired and, optionally, to indicate the logon mode that the
secondary application program wants to suggest for the session

® A SCIP exit routine, which is scheduled when a Bind command is received and,
later, when other session control commands (for example, a Start Data Traffic
command) are received from the primary end of the session.

Primary Application Program Secondary Application Program

Must issue the OPNDST macro instruction to Cannot issue the OPNDST macro instruction.
request ACF/VTAM to establish the session
(that is, to connect the two programs).

Cannot issue the REQSESS macro instruction. Can issue the REQSESS macro instruction to
ask the primary application program to establish
a session.

Cannot issue the OPNSEC macro instruction. Can issue the OPNSEC macro instruction to

accept a Bind command and to complete the
secondary's end of the session. Can also issue a
SESSIONC macro instruction to send a negative
response to the Bind command and therehy
reject the Bind command and prevent the session
from being established.

Can issue the Start Data Traffic command at Cannot issue the Start Data Traffic command.
the beginning of the session (or have ACF/VTAM | (Optionally, can respond to Start Data Traffic
do it as part of the OPNDST processing) and can | command.)

issue the command during the session to restart
the flow of messages and responses. (The Start
Data Traffic command is sent with the
SESSIONC macro instruction.)

Can issue the Clear command to stop the flow Cannot issue the Clear command. o
of messages and responses. {The Clear command
is sent with the SESSIONC macro instruction.)

Cannot issue the Request Recovery command. Can issue the Request Recovery command to ask
the primary application program to take recovery
action. (The Request Recovery command is sent
with the SESSIONC macro instruction.)

Must send the Set and Test Sequence Numbers Can only respond to the Set and Test Sequence

command to start resynchronization of Numbers command. (A response to the Set and
message sequence numbers. (The Set and Test Test Sequence Numbers command is sent with
Sequence Numbers command is sent with the the SESSIONC macro instruction.)

SESSIONC macro instruction.)

Cannot issue the TERMSESS macro instruction. | Can issue the TERMSESS macro instruction to
ask the primary application program to end the
session (conditional termination) or to tell the
ACF/VTAM servicing the primary application
program to end the session (unconditional
termination).

Cannot issue the Request Shutdown command. Can issue the Request Shutdown command to ask
the primary application program to end the session.
(The Request Shutdown command is sent with the
SEND macro instruction.

Can issue the Shutdown command to warn the Cannot issue the Shutdown command.
secondary application program that the session

is going to be ended and to tell the secondary
application program to prepare for the shutdown.
(The Shutdown command is sent with the
SESSIONC macro instruction.)

Cannot issue the Shutdown Complete command. | Can issue the Shutdown Complete command to
inform the primary application program that
preparation for shutdown is completed and the
primary application program can now end the
session. (The Shutdown Complete command is
sent with the SEND macro instruction.)

Can issue the CLSDST macro instruction to end | Cannot issue the CLSDST macro instruction.
the session (that is, to disconnect the two
programs).

Figure 5-2. Protocols for Sessions between Primary and Secondary Application Programs

Chapter 5. Connecting and Disconnecting Logical Units 81

e An NSEXIT exit routine to handle network services request units (for example, a
network services procedure error request unit if such an error occurs during the
attempt to establish the session)

" 'The RPL for a REQSESS Macro Instruction .

When used with a REQSESS macro instruction, an RPL defines the manner in which
the REQSESS operation is to be performed and identifies the NIB to be used in the
operation. Here is a sample RPL for use with a REQSESS macro instruction:

REQRPLI RPL AM=VTAM,ACB=SECACB1,0PTCD=(ASY,NQ),
NIB=PRNIB1,EXIT=REQEXIT1,AAREA=0,
AREA=MSGTOPRI,RECLEN=4

where:
REQRPLI is the label for the macro instruction and serves as the name of the RPL.
AM=VTAM specifies the access method that is to be used for the operation.

ACB=SECACBI identifies the ACB that was opened by the secondary application
program. This is the ACB to which the primary application program will be
connected when the session is established.

OPTCD=(ASY,NQ) specifies that the operation is to be performed asynchronously
(ASY). The NQ operand must be specified and indicates that the request is to be
rejected immediately (that is, not queued) and reported as unsuccessful if the
primary application program is not available. For example, the primary application
program is not available if it has not opened its ACB, has not issued a SETLOGON
macro instruction with OPTCD=START to start processing of logons, or has issued
the SETLOGON macro instruction with OPTCD=QUIESCE or STOP.

NIB=PRINIB1 specifies the address of the NIB that contains the name of the
primary application program with which connection is desired. For a REQSESS
macro, the RPL must point to a single NIB; it cannot point to a NIB list.

EXIT=REQEXIT1 specifies that when the REQSESS operation is completed, the
RPL exit routine named REQEXIT1 is to be scheduled.

AAREA=0 must be specified or allowed to take effect by default. This operand has
no effect in the current level of ACF/VTAM.

AREA=MSGTOPRI specifies the address of a storage area that contains a user logon
message to be sent to the primary application program as part of the logon that is
generated as the result of the REQSESS macro.

RECLEN=4 specifies that the user logon message in MSGTOPRI is 4 bytes long.

VThe NIB for a REQSESS Macro Instruction

<82

Two fields in the NIB used with the REQSESS macro instruction are significant for
the REQSESS operation: the NAME field and the LOGMODE field.

The NAME field must contain the symbolic name of the primary application program
with which connection is desired. This name is the name that was used in the name
field of the APPL definition statement when the primary application program was
defined to ACF/VTAM.

The LOGMODE field can optionally contain a logon mode name to identify the
session parameters that the secondary application program wants to use for the session.
If a logon mode name is specified, the name must be one that appears in the logon
mode table that is associated with the secondary application program in the host
computer in which the secondary application program is being executed. If LOGMODE
does not contain a logon mode name (that is, the field contains zeros or blanks), the
default session parameters from the logon mode table associated with the secondary

application program are used. As the result of the REQSESS macro, ACF/VTAM
creates a logon and sends it to the primary application program. As part of the logon
process, ACF/VTAM also sends the session parameters so they will be available to the
primary application program. For more information on session parameters, see
“Establishing Session Parameters during Connection” later in this chapter.

The BNDAREA field of the NIB cannot be used by the secondary application program
to specify a set of session parameters to be sent to the primary application program.
ACF/VTAM ignores this field during a REQSESS or OPNSEC operation.

The Role of a SCIP Exit Routine in Session Establishment

During the exchange of commands and responses that establish a session, the secondary
application program receives one or two commands that must be processed by a SCIP
exit routine in the secondary program. One command is the Bind command, which is
generated when the primary application program issues an OPNDST macro instruction.
The other command is the Start Data Traffic command, which the primary end of the
session may send to the secondary end after the session has been established.

To handle these commands, the secondary application program must have a SCIP exit
routine. The scheduling of that exit routine is the only way that the secondary
program can learn that the command has been received. In fact, the scheduling of the
SCIP exit routine is the way that ACF/VTAM informs any application program of the
receipt of a Bind, Unbind, Clear, Start Data Traffic, Request Recovery, or Set and Test
Sequence Numbers command.

The Role of an NSEXIT Exit Routine in a REQSESS Operation

A secondary application program must also have an NSEXIT exit routine to handle a
network services procedure error request unit if such a request unit is received during
the attempt to establish a session.

A network services procedure error is an indication that a connection procedure that
has been started successfully (and which the application program thinks is proceeding
normally) has been interrupted and will not be completed. For example, after a
secondary application program has issued a REQSESS macro instruction and the macro
instruction has been completed, the next thing the secondary application program
expects to receive is a Bind command. Instead, it may receive a network services
procedure error request unit. Receipt of that request unit indicates that either (1) the
primary application program rejected the request for a session by issuing the CLSDST
macro instruction or (2) after the ACF/VTAM that services the primary application
program sent a positive response to the REQSESS macro, something happened that
prevented that ACF/VTAM from completing its processing of the logon.

Receipt of a network services procedure error request unit is signaled to the secondary
application program by scheduling its NSEXIT exit routine.

The General Pattern of a Secondary Program’s

Request for Connection

When a secondary application program requests a connection to a primary application
program and the connection is made without difficulties, the exchange of commands
and responses follows the pattern shown in Figure 5-3. The exchange is described in
the paragraphs below, and the circled numbers that appear beside the paragraphs refer
to related portions of the figure.

A session can be established between application programs in the same domain or

different domains. When the programs are in the same domain, they are serviced by
the same ACF/VTAM, and the communication between them actually occurs through

Chapter 5. Connecting and Disconnecting Logical Units 83

Primary Application Program

Secondary Application Program

ACB1

RPL1

Ni1B1

name

(Puts symbolic name of secondary
application program in the NAME

START START
° .
® °
° ®
OPEN ACB1 OPEN
° .
° .
f ® []
g @ SETLOGON OPTCD=START
1K ° Logon [}
e (Initiate °
° command) .
@ LOGON Exit Routine (INLOG) =g~ @ REQSESS
. '
®
°
°
°

SECACB1

@ SETLOGON OPTCD=START

RPL=SECRPL1

L @SCIP Exit Routine (SCIPEX1)

field of NIB1)
e Bind command
° (with session
° parameters)
@OPNDST RPL=RPL1
Positive
Response

(OPNDST completed -

successfully)
.
.

) . Start Data
(8)sessione mpL-rPL, Traffic ©O)

°
.
°

(Checks session parameters)
'y

]
°
@ OPNSEC RPL=SECRPL1

CONTROL=SDT T = (SCIP exit routine scheduled again)
| e
ACF/VTAM P
responds ®
Positive | BR R14
Response !

(SESSIONC completedfatf — — + — -

successfully)

BR R14

ACB Points to APPL name for primary

program
RPL For opening destination (Points
to NIB1)
NIB For opening destination
SDT=APPL,MODE=RECORD
°
)
°

EXLST AM=VTAM,LOGON=INLOG,...
]
°
°

END

NSEXIT Exit Routine (NSRUEXT1)

SECACB1 ACB

PRINIB1 NIB

ECB1 ECB
END

SECRPL1 RPL

Points to APPL name for secondary
program

For requesting connection (Points
to PRINIBT1) ‘

Contains symbolic name of primary
application program
MODE=RECORD

name EXLST AM=VTAM,...,SCiP=

SCIP=SCIPEX1,
NSEXIT=NSRUEXTT, ...

Figure 5-3. Exchange When a Secondary Application Program Requests Connection

ACF/VTAM. When the application programs are in different domains, each program is
serviced by the ACF/VTAM in its own host computer, and commands and responses
flow between the separate ACF/VTAMs.

1

After both programs have been started and have opened their ACBs, each
program must issue a SETLOGON macro instruction with OPTCD=START. In
the primary application program, this macro instruction tells ACF/VTAM to start
scheduling the LOGON exit routine to process any logons that were previously
received (and queued for ACB1) and for each future logon that is received. In
the secondary application program, the macro instruction makes it possible for
ACF/VTAM to schedule the SCIP exit routine when one of several session
control commands is received.

To initiate the connection, the secondary application program takes the first step
by issuing the REQSESS macro instruction. This macro instruction causes
ACF/VTAM to create a logon and to send the logon (along with session
parameters) to the primary application program.

When the logon reaches the primary end of the session, ACF/VTAM notifies the
primary application program of the logon in either of two ways: (1) by
scheduling the primary application program’s LOGON exit routine, or (2) by
completing an outstanding OPNDST with OPTCD=ACCEPT. When notification is
done by scheduling the LOGON exit routine, a pointer to the symbolic name of
the secondary application program attempting to log on is available in the second
word of the 4-word parameter list passed to the exit routine by ACF/VTAM.
When notification is done by completing an outstanding OPNDST macro
instruction, the symbolic name of the secondary application program is available
in the NIB associated with the OPNDST. Figure 5-3 assumes that the pnmary
application program has a LOGON exit routine.

The LOGON exit routine performs any checks that the user wants and
determines whether to accept the logon. As part of this processing, the exit
routine moves the symbolic name of the secondary logical unit to the NAME
field of a NIB. To reject the logon, it issues a CLSDST macro instruction. Te
accept the logon, it issues an OPNDST macro instruction, specifying an RPL that
points to the NIB that contains the symbolic name of the secondary application
program.

The OPNDST macro instruction causes ACF/VTAM to create a Bind command
and to transmit that command to the secondary application program. The Bind
command contains the session parameters that the primary application program
wants to use for the session. Those parameters can be the same as those
suggested by the secondary application program or they can be different.

When the Bind command is received at the secondary end of the session, the
secondary program’s SCIP exit routine is scheduled. The fact that the Bind
command has been received can be determined by examining the CONTROL
field of the read-only RPL provided to the exit routine by ACF/VTAM (the fifth
word of the parameter list passed to the exit routine points to the read-only
RPL). The SCIP exit routine checks the session parameters passed in the Bind
command and determines whether it wants to proceed with establishing the
session.

If the exit routine decides to go ahead with the session, it prepares a NIB for its

next operation (the issuance of an OPNSEC macro instruction). This NIB can be
the same as or different from.the one that was used with the REQSESS macro

Chapter 5. Connecting and Disconnecting Logical Units 85

instruction. The exit routine then issues the OPNSEC macro instruction,
specifying an RPL that points to the NIB. This macro instruction causes a
positive response to the Bind command to be sent to the primary end of the
session.

7 Receipt of the positive response causes ACF/VTAM to set up control informa-
tion for the primary end of the session. This action completes the connection. If
the session parameters specified use of the Start Data Traffic (SDT) command,
that command musi be sent from the primary end to the secondary end of the
session before the flow of messages and responses can begin. Upon receipt of the
positive response to the Bind command, ACF/VTAM checks the SDT field of the
NIB associated with the OPNDST macro. If the field indicates SYSTEM, the
primary’s ACF/VTAM automatically sends a Start Data Traffic command to the
secondary application program. If the SDT field indicates APPL, ACF/VTAM
completes the OPNDST macro instruction, and the Start Data Traffic command
must be sent by the primary application program. Figure 5-3 assumes that the
Start Data Traffic command is to be sent by the primary application program.

8 The primary application program issues the SESSIONC macro instruction with
CONTROL=SDT to transmit the Start Data Traffic command. This command
informs the secondary application program that the exchange of messages and
responses can begin.

9 Upon receipt of the Start Data Traffic command, ACF/VTAM schedules the
secondary program’s SCIP exit routine to inform the program that the command
has been received. After a response to the SDT command has been sent, the
secondary application program can send messages and commands according to
the conventions established by the session parameters.

10 At the primary end of the session, receipt of the response to the Start Data
Traffic command causes completion of the SESSIONC macro that was used to
send the command.

This pattern of commands and responses is shown in more detail in Figure C-15 in
Appendix C.

The flow is similar when the secondary application program is being acquired (with
OPNDST OPTCD=ACQUIRE) by the primary application program. In this case,
however, the flow begins at steps 4 and 5. At step 4 an OPNDST with OPTCD=
ACQUIRE produces the Bind command that is sent to the secondary application
program. The secondary’s SCIP exit routine, at step 5, is scheduled to process the Bind
command. For details on this flow, see Figure C-16 in Appendix C.

Example of a Secondary Application Program

Requesting Connection

86

To associate itself with ACF/VTAM, a secondary application program builds an ACB
and opens it. The program also issues the SETLOGON macro instruction with
OPTCD=START before attempting to request connection to a primary application
program.

To prepare to request connection, the secondary application program builds an RPL to
define the request and a NIB to identify the primary application program with which

it is to be connected. The secondary application program then issues the REQSESS . .

macro instruction. The following is an example of what the coding might be to this
point:

SECPGM

OPEN SECACB
(Test for successful completion of the OPEN operation)

REQMACRO REQSESS RPL=PROC1IRPL

SECACB ACB AM=VTAM,APPLID=SECAPLID EXLST=EXRTNLST,
MACRF=LOGON

SECAPLID DC ALI(L'MYNAME)

MYNAME DC CL7‘SECPGMY’

EXRTNLST EXLST AM=VTAM,SCIP-CMDINRTN,NSEXIT=NSPERTN,
.. . (other exit routines) . . .

SLGNRPL RPL AM=VTAM,ACB=SECACB

PROC1RPL RPL AM=VTAM,ACB-SECACB,NIB=RQSTNIB,
OPTCD=(ASY,NQ),ECB=ECB1,AAREA=0

RQSTNIB NIB NAME=PROCESS1,LISTEND=YES, MODE=RECORD,

LOGMODE=TALKMOD1

As the result of the REQSESS macro instruction, a logon is sent to the primary end of
the session. In addition, the session parameters associated with TALKMODI1 are sent to
the primary end. The session parameters will be returned to the secondary program in
the Bind command, either with or without change by the primary program.

The RPL specified for the REQSESS operation (PROCIRPL) indicates that the
operation is to be performed asynchronously (ASY), that the request for connection is
not to be queued if the primary program is not immediately available (NQ), and that
completion of the operation is to be signaled by posting ECB1. Because the operation
is performed asynchronously, the secondary program can continue processing until the
operation is completed.

When the REQSESS operation is completed, ECB1 is posted, and the secondary
application program issues a CHECK macro instruction to test whether the operation
was successful and to mark the RPL as available for reuse:

CHECK RPL-PROCIRPL

(CHECK must be used because the operation was asynchronous. If the operation were
synchronous [OPTCD=SYN in the RPL], the secondary program would determine the
results of the operation by testing register 15 and possibly register 0.) If the operation
being checked was unsuccessful, the LERAD or SYNAD exit routine is invoked, if
available. Otherwise, control is returned to the application program. Control is also
returned to the application program if the operation was successful.

After completion of the REQSESS operation, the secondary application program can
proceed with other processing (perhaps with communications if it is also functioning as
the primary application program in session with other logical units), or it can enter a
wait state. The next thing the secondary application program will see in relation to the
connection request is either (1) an indication of a network services procedure error, or
"(2) an indication that a Bind command has been received from the primary end of the
session.

Chapter 5. Connecting and Disconnecting Logical Units 87

88

Receipt of a network services procedure error is indicated by scheduling of the
secondary program’s NSEXIT exit routine, which must be provided in any application
program that functions as the secondary end of a session. Receipt of this error
indicates either that the primary end of the session rejected the session request by
issuing a CLSDST macro instruction or that an error at the primary end of the session
has nullified the REQSESS operation, even though successful completion of the macro
instruction was reported in return codes. The reason for the error can be determined
by examining the request unit and the read-only RPL that ACF/VTAM provides when
it schedules the exit routine.

Receipt of a Bind command is indicated by the scheduling of the secondary program’s
SCIP exit routine, which also must be provided in any application program that
functions as the secondary end of a session. The parameter list passed to the exit
routine indicates that a Bind command was received and provides the starting address
of the session parameters. The exit routine can examine the session parameters to
determine whether they are acceptable.

If the session parameters are unacceptable or if, for some other reason, the secondary
application program does not want to proceed with establishing the session, the SCIP
exit routine issues a SESSIONC macro instruction to send a negative response to the
Bind command:

SESSIONC RPL=PROC1RPL,STYPE=RESP,CONTROL=BIND,
RESPOND=(EX,FME)

Values that indicate the exact reason for rejection of the Bind command must be
provided in the SSENSEO, SSENSMO, and USENSEO fields of the RPL used for the
SESSIONC operation.

If the session parameters are acceptable and the secondary application program wants
to proceed with establishing the session, the secondary program prepares a NIB for an
OPNSEC operation. Assume that the NIB was coded as follows:

OPNSCNIB NIB MODE=RECORD,USERFLD=data (up to 4 bytes),
LISTEND=YES

To prepare this NIB for the OPNSEC operation, the SCIP exit routine must move into
the NAME field of the NIB the symbolic name of the primary application program
that sent the Bind command. Remember that the parameter list passed by ACF/VTAM
to the SCIP exit routine contains the address of the session parameters. Within those
session parameters is the symbolic name of the application program that sent the Bind
command. By using the ISTDBIND DSECT, the programmer can move the symbolic
name into the NAME field of the NIB. The SCIP exit routine then issues an OPNSEC
macro instruction that cites an RPL that points to OPNSCNIB:

OPNSEC RPL=PROC1RPL NIB=OPNSCNIB,0PTCD=SYN

This macro instruction causes ACF/VTAM to send a positive response to the Bind
command, which in turn causes successful completion of the OPNDST at the primary
end of the session. The macro instruction specifies that the operation is to be
performed synchronously (SYN), meaning that processing in the SCIP exit routine
stops until the OPNSEC operation is completed. When the operation is completed, the
secondary application program tests register 15 to determine whether the operation
was successful. Following successful completion of the operation, the CID for the
session is available in the ARG field of the RPL and the CID field of the NIB.

With successful completion of the OPNSEC operation, the connection between the
secondary and primary application programs is completed. However, if required by the

session parameters, a Start Data Traffic (SDT) command must be sent from the
primary end of the session (by ACF/VTAM or the primary application program,
depending on the setting of the SDT field in the NIB used with the OPNDST macro
instruction). Once the SDT command has been sent and responded to by ACF/VTAM
or the secondary application program, the flow of messages and responses can begin.

Establishing Session Parameters during Connection

As part of the connection process, the primary and secondary ends of the session must
agree on the communication rules to be followed during the session. These communica-
tion rules, called session parameters, enable each end of the session to know what the
other end of the session will do and will not do in different communication situations.

The session parameters are bit settings that indicate such things as “the primary end of
the session will send chained data” or “‘the secondary end of the session will not ask
for responses to messages” or ‘“‘the secondary end of the session will not send
end-of-bracket indications if brackets are used.” The session parameters are described
in detail in Appendix J of ACF/VTAM Macro Language Reference. When the session
parameters are part of the Bind command, they also include the symbolic name of the
application program that sent the command and the user logon message (if any). The
process of agreement on session parameters follows a general pattern, as described in
the following section.

The General Pattern of Agreement

on Session Parameters
A request for connection to a primary application program reaches that program in the
form of a logon. A set of session parameters is associated with each logon. These
parameters are available for inspection by the primary application program when it
processes the logon.

During processing of the logon, the primary application program can decide to use the
session parameters suggested by the originator of the logon, or the primary application
program can choose a different set of parameters. In either case, when the application
program issues an OPNDST macro instruction to accept the connection, it must
designate.a set of session parameters to be sent to the logical unit being accepted. The
set of session parameters is sent as part of the Bind command, which is created by
ACF/VTAM as a result of the OPNDST macro instruction. (Whether the primary
application program uses the same parameters as those suggested in the logon or a
different set may be determined by user conventions. For example, the primary
application program is to always use the session parameters that accompany a logon or
is to always disregard the suggested parameters and select session parameters on the
basis of some criteria chosen by the user.)

When the Bind command reaches the logical unit, the logical unit can examine the
session parameters in the command. At this point, the logical unit must either accept
or reject the whole set of parameters; it cannot accept some and reject others. The
logical unit accepts the session parameters by sending a positive response to the Bind
command; it rejects the parameters by sending a negative response. When the response
is negative, the connection is not completed.

Defining Sets of Session Parameters
In many cases, the ends of the session work with predefined sets of session parameters.
When a set is defined, a name is associated with the set. That name is known as the
logon mode name. The logon mode name is used in some logons and in the
LOGMODE operand of certain macro instructions and commands to identify the set of
session parameters.

Chapter 5. Connecting and Disconnecting Logical Units 89

Several sets of session parameters, each with its own name, can be grouped into a table
known as a logon mode table. The table itself is identified by a logon mode table
name, which is the name specified in the linkage-editor NAME statement when the
table is link-edited.

In lieu of using a predefined set of session parameters, a primary application program
can build a set of parameters at the time it is needed. The set of parameters is built in
an area of the application program known as a bind area, whose address is placed in
the NIB used for connection.

Tables That Contain Session Parameters

LU definition
statement

In each domain, predefined sets of session parameters can exist in user-defined tables,
in an IBM-supplied default table, or in a user-defined default table that has replaced
the IBM-supplied default table. (In subsequent discussions, the term default table is
used to mean the IBM-supplied default table or the user-defined default table that has
replaced the IBM-supplied table.) The tables are stored in a system data set associated
with the operating system that controls the host computer in a particular domain.

Logon Mode Tables Built by the User: The user can define one or more logon mode
tables by using the MODETAB, MODEENT, and MODEEND macro instructions, which
are described in detail in the ACF/VTAM system programmer’s guide for the operating
system being used. After a table has been coded, it is assembled and link-edited into
the appropriate library (the core image library for DOS/VS, SYS1.VTAMLIB for
0S/VS1 and OS/VS2 SVS, and SYS1.LPALIB for OS/VS2 MVS).

In coding a logon mode table, the programmer uses a MODETAB macro instruction to
identify the beginning of the definition. The symbolic name of this macro instruction
becomes the CSECT name for the logon mode table. The symbolic name can also be
used in the linkage-editor NAME statement when the table is link-edited, and thus can
become the name of the logon mode table.

The MODETAB macro instruction is followed by one or more MODEENT macro
instructions. Each MODEENT macro instruction creates one entry ,in the table, and
each entry consists of a logon mode name and a set of session parameters (the logon
mode name is the name used to designate the set of parameters). The end of the table
is identified by the MODEEND macro instruction. The functions of the macro
instructions and the basic structure of a logon mode table are shown in Figure 5-4.

When the network for a particular domain is defined to the ACF/VTAM in that
domain, a logon mode table in that domain can be associated with a particular logical
unit (a device-type logical unit or a secondary application program). However, a logon

=P

MODETAB
MODEENT
MODEENT
MODEENT
MODEEND

Logon Mode = BATCH Session Parameter Set for BATCH

Logon Mode = DVCTYPEA Session Parameter Set for DVCTYPEA

Logon Mode = DVCTYPEB Session Parameter Set for DVCTYPEB

Figure 54. Logon Mode Table Macro Instructions

920

Network Definition Statements

SWNODE1 VBUILD . ..

PU

LU ... , MODETAB=LG
LU ..., MODETAB=LG
LU ..., MODETAB=LG
LU ... (NoMODETAB

specified) . . .

Figure 5-5. Identification of Logon Mode

mode table in one domain cannot be associated with a logical unit in another domain.
A logon mode table is associated with a logical unit by coding the logon mode table
name in the MODETAB operand of the LU statement or APPL statement that defines
the logical unit. (For a device-type logical unit, the association can also be made by
coding the table name in the PU statement below which the LU statement appears, or
in a GROUP or LINE macro instruction.) By making this association, the user
identifies the first logon mode table that is to be searched when a logon mode name is
supplied as part of the connection request. If the logon mode name is not found in
this logon mode table, the default logon mode table is also searched. The various
definition statements can identify the same logon mode table, or they can identify
different logon mode tables (as indicated in Figure 5-5), but all of the logon mode
tables referred to in the definition statements for a particular domain must be in the
domain being defined.

Default Logon Mode Tables: If the user has not designated a logon mode table to be
used for a logical unit (that is, did not code the MODETAB operand in a definition
statement), ACF/VTAM associates a default logon mode table with the logical unit or
program. The default table is one of the following: (1) for DOS/VS, the ISTINCLM
table in the core image library, (2) for OS/VS1 and OS/VS2 SVS, the ISTINALM table
in SYS1.VTAMLIB, or (3) for OS/VS2 MVS, the ISTINCLM table in SYS1.LPALIB.

In each operating system, the table under the name shown above is an IBM-supplied
default table unless the IBM-supplied table has been replaced with a user-defined
default table. For the contents of the IBM-supplied default table, see the ACF/VTAM
system programmer’s guide for the operating system you are using. The user can use
the MODETAB, MODEENT, and MODEEND macro instructions to code a default
table and then use that table to replace the IBM-supplied table in the appropriate
library, storing it under the name ISTINCLM or ISTINALM as appropriate.

Logon Mode Table Definitions

— LGMDTBL1 MODETAB

MODEENT LOGMODE=MODEA,session parameters
MODEENT LOGMODE=MODEB,session parameters
MODEENT LOGMODE=MODEC,session parameters

MODEEND
MDTBL1
MDTBL2 ~P»4 LGMDTBL2 MODETAB
MDTBL1 == MODEENT LOGMODE=MODED,session parameters
name MODEEND

IBM-Supplied (or User-Supplied) Default Logon Mode Table

—P4 ISTINCLM MODETAB (in DOS/VS or OS/VS2 MVS)
{or)
ISTINALM MODETAB (in OS/VS1 or OS/VS2 SVS)
(For contents of the IBM-supplied table, see the

ACF/VTAM system programmer’s guide for the
operating system you are using.)

MODEEND

Tables in LU Definition Statements

Chapter 5. Connecting and Disconnecting Logical Units 91

The Default Entry in a Logon Mode Table

As indicated above, one of two logon mode tables is associated by ACF/VTAM with
each logical unit during ACF/VTAM definition: either the logon mode table identified
in the MODETAB operand of the definition statement for the logical unit or, in the
absence of such a specification, the default logon mode table. The table associated
with the logical unit is the one searched for a logon mode name when such a name is
specified for the logical unit during the connection process.

However, if no logon mode name is specified in a connection request (and, for
OPNDST, no session parameters are supplied in a bind area), ACF/VTAM must still
find a set of session parameters to include in the connection request. In this case,
ACF/VTAM takes the default set of session parameters from the logon mode table
associated with the logical unit. The default set may be either of two possible default
entries:

1. If the user specified the DLOGMOD operand in the definition statement for the
logical unit (or in a higher-level definition statement), the logon mode entry
named in that operand is used to search the logon mode table associated with the
logical unit and is used as the default entry for that particular logical unit.

2. If no DLOGMOD operand was specified for the logical unit, the first entry in the
logon mode table associated with the logical unit is used as the default entry.

In the remainder of this section, the term default entry or default session parameters is
used for either possibility.

How Logon Mode Names and Session

Parameters are Used

92

A logon mode name can be used at different points in the connection process to
designate a particular set of session parameters. A logon mode name can be used in
these ways:

e A logical unit can include a logon mode name as part of its logon information to
suggest a set of session parameters.

e A secondary application program can specify a logon mode name in the LOGMODE
field of the NIB it uses with a REQSESS macro instruction to suggest a set of
session parameters.

e A primary application program can specify a logon mode name in the LOGMODE

field of the NIB it uses with an OPNDST macro instruction to indicate the session

parameters that are to be sent to the secondary end of the- session in the Bind
command. Note: When the logical unit or secondary application program that is
logging on is in another domain, a logon mode name cannot be used with OPNDST
OPTCD=ACCEPT.

e A primary application program can specify a logon mode name in the LOGMODE
field of the NIB it uses with a SIMLOGON macro instruction to indicate the session
parameters to be associated with the simulated logon.

e A primary application program can specify a logon mode name in the LOGMODE
field of the NIB it uses with a CLSDST macro instruction with OPTCD=PASS to
indicate the session parameters to be associated with the logon generated as a result
of that macro instruction.

® A network operator can specify a logon mode name in the LOGMODE operand of a
VARY LOGON command to indicate the set of session parameters to be associated
with the logon generated as a result of that command.

As noted previously, the logon mode table that is associated with a secondary logical
unit by being named in a definition statement must be stored in a system data set in

the domain that owns the logical unit. When a logon mode name is supplied as part of
a connection request, the logon mode name is translated into session parameters in the
domain that owns the logical unit. If necessary, the logon mode name is passed from
the domain in which the connection request originates to the domain that owns the
logical unit and is then translated in that domain. Similarly, if no legon mode name is
supplied as part of the connection request, the default session parameters are taken
from the appropriate logon mode table in the domain that owns the secondary logical
unit. The named session parameters or default session parameters are then passed,
along with the logon, to the domain that owns the primary application program to
which the logon is directed. The suggested session parameters are then available to the
primary application program when it begins to process the logon.

Logon Mode for a Logon from a Device-Type Logical Unit

When a logon from a logical unit originates in the primary application program’s
domain, a logon mode name may accompany the logon when it reaches ACF/VTAM.
In this case, the logon mode name is translated into session parameters before the
logon is presented to the primary application program for processing. If no logon mode
name accompanies a the logon, the default session parameters are presented along with
the logon.

A set of session parameters accompanies a logon received from a logical unit in another
domain. In this case, the session parameters are found by the ACF/VTAM in the other
domain before the logon is transmitted to the primary application program’s domain.

Logon Mode for a Logon from a Secondary Application Program

A secondary application program suggests a set of session parameters by setting the
LOGMODE field of the NIB associated with the REQSESS macro instruction. The
effects of that field are:

If the field contains a logon mode name, the session parameters associated with that
name are transmitted with the logon.

If the field contains zeros or blanks, the default entry from the appropriate logon
mode table is transmitted with the logon.

Logon Mode for a Simulated Logon

A SIMLOGON macro instruction causes the ACF/VTAM in the domain in which the
macro instruction is issued to generate a simulated logon and pass the logon back to
the program in a way that makes it look as though the logon was received from the
logical unit named in the NIB used with the macro instruction.

The LOGMODE field of the NIB used with the macro instruction controls the session
parameters that are associated with the logon. If the LOGMODE field contains a logon
mode name, the session parameters identified by that name are provided with the
logon. Otherwise, the default session parameters are provided with the logon. If the
SIMLOGON involves a logical unit in another domain, the named session parameters or
the default parameters are found in logon mode tables in the other domain and
returned to the domain in which the SIMLOGON was issued.

Logon Mode for a CLSDST Macro Instruction

with OPTCD=PASS

A CLSDST macro instruction with OPTCD=PASS is used to pass a logical unit from
one primary application program to another. The macro instruction disconnects the
logical unit and causes a logon to be generated on behalf of that logical unit or
secondary application program. The logon is presented to the application program
whose symbolic name is pointed to by the AAREA field of the RPL used with the
macro instruction.

Chapter 5. Connecting and Disconnecting Logical Units 93

According to the setting of the LOGMODE field of the NIB at the time the macro
instruction is issued, a set of session parameters is found and provided with the logon.
If the LOGMODE field contains a logon mode name, the named set of session
parameters is found. If the LOGMODE field contains zeros or blanks, the default set
of session parameters is found in the appropriate table. If the CLSDST with
OPTCD=PASS involves a logical unit in another domain, the named session parameters
or default session parameters are found in logon mode tables in that domain and are
passed with the logon to the domain in which the receiving application program is
located.

Logon Mode with Automatic Logon and VARY LOGON

When automatic logon has been specified for a device-type logical unit, the session
parameters are determined by the method in which the automatic logon was generated:
(1) by naming a controlling application program and (2) by naming a controlling
application program by a VARY LOGON command.

Specification of the LOGAPPL operand in the LU staftement causes the application
program named in that operand to become the controlling application program for that
logical unit. Whenever the logical unit is active and is not connected to another
application program, ACF/VTAM automatically logs the logical unit on to the
controlling application program. For the initial connection to that program and for
each reconnection (after another program has disconnected the logical unit), the
session parameters are the default parameters. (A controlling application program can
relinquish control over a logical unit by issuing a CLSDST macro instruction with
OPTCD=RELEASE.)

The network operator can change the controlling application program (or establish
one) by issuing a VARY LOGON command for the logical unit. That command names
another application program that is to become the controlling application program.
The command must be issued in the domain that owns the logical unit, but the new
controlling application program can be in another domain. (Note that a VARY
LOGON command cannot be issued to specify automatic logon for an application
program.) A LOGMODE operand can be specified in the VARY LOGON command,
and inclusion or omission of that operand controls the session parameters that are
associated with the logon. If the LOGMODE operand is included in the command, the
logon mode name in that operand identifies the session parameters in the logical unit’s
logon mode table that are to be used for the first connection and subsequent
reconnections with the new controlling application program. If the LOGMODE
operand is omitted from the command, the logon mode name (if any) in the preceding
VARY command is used to find the session parameters, or if no logon mode name has
been supplied previously for the logical unit, the default parameters are used.

How the Primary Application Program

Processes Session Parameters

94

As indicated in the preceding paragraphs, a set of session parameters is associated with
each logon that reaches an application program. Those parameters (but not the logon
mode name that might have been used to find the parameters) are available for
inspection by the application program when it begins to process the logon (that is,
when execution of the application program’s LOGON exit routine begins).

The application program has complete control over whether the session parameters
received with the logon or other session parameters are to be the ones sent to the
logical unit in the next step of the connection process. That next step is to issue an
OPNDST macro instruction with OPTCD=ACCEPT, which causes ACF/VTAM to
generate a Bind command and send it to the logical unit. The Bind command contains
the set of session parameters (see Figure 5-6) that the primary application program has
designated to be included in the command.

Macro Instruction to Be Used

Desired Action

Setting of BNDAREA and/or
LOGMODE Field When Macro
Is Issued’

Restrictions or Qualications on
Desired Action

REQSESS

Include named set of session
parameters in the logon created
by the macro.

LOGMODE=/ogon mode name

Include default set of session
parameters in the logon created
by the macro.

LOGMODE=0 or blanks?

SIMLOGON or CLSDST
with OPTCD=PASS

Inciude named set of session
parameters in the logon created
by the macro.

LOGMODE=/logon mode name

Include default set of session
parameters in the logon created
by the macro.

LOGMODE=0 or blanks?

INQUIRE with
OPTCD=SESSPARMS

Get the session parameters
associated with the logon for

the logical unit being processed.

LOGMODE=0

The~2 must be a pending logon
for tne logical unit.

Get a named set of session
parameters from the logon
mode table associated with the
logical unit.

LOGMODE=logon mode name

Named logical unit must be in
the same domain as the one in
which the macro instruction is
issued.

Get the default set of session
parameters from the logon
mode table associated with the
logical unit.

LOGMODE=blanks*

Named logical unit must be in
the same domain as the one in
which the macro instruction is
issued.

OPNDST with
OPTCD=ACCEPT

Use the session parameters BNDAREA=0

associated with the logon to LOGMODE=0

build the Bind command.

Use a named set of session BNDAREA=0 Can only be used when the

parameters from the logon
mode table associated with the
logical unit to build the Bind
command.

LOGMODE=/logon mode name

logical unit and its associated
logon mode table are in the same
domain as the one in which the
macro instruction is issued.

Use the default set of session
parameters from the logon
mode table associated with
the logical unit to build the
Bind command.

BNDAREA=0
LOGMODE=blanks*

Can only be used when the
logical unit and its associated
logon mode table are in the same
domain as the one in which the
macro instruction is issued.

Use the contents of the bind
area as the session parameters
in the Bind command.

BNDAREA=bind area address
LOGMODE=anything (Ignored)

OPNDST with
OPTCD=ACQUIRE

Use a named set of session

parameters from the logon

mode table associated with
the logical unit to build the
Bind command.

BNDAREA=0
LOGMODE=/agon mode name

Use the default set of session
parameters from the logon
mode table associated with
the logical unit to build the
Bind command.

BNDAREA=0
LOGMODE=0 or planks?

Use the contents of bind area
as the session parameters in
the Bind command.

BNDAREA=bind area address
LOGMOD E=anything (lgnored)

! In all cases, the NAME field of the NIB must contain the symbolic name of the logical unit for which the desired action is to be taken
and with which the logon mode table (if used) is associated. Where no BNDAREA specification is shown, the BNDAREA field is not
involved in the operation. When a logon mode name is specified in LOGMODE, the name is resolved into an actual set of session
parameters in the domain of tt.e secondary logical unit involved in the operation. Therefore, the logon mode name (if specified) must
exist in a logon mode table associated with the secondary logical unit or in the system default logon mode table in the domain of the

secondary logical unit.

2To get blanks, specify LOGMODE=C’

Figure 5-6, Setting NIB Fields to Acquire or Control Session Parameters

Chapter 5. Connecting and Disconnecting Logical Units 95

Two fields in the NIB associated with an OPNDST macro instruction play roles in
determining which session parameters are sent in the Bind command. Those fields are
the BNDAREA field and the LOGMODE field.

Effect of the BNDAREA Field on Session Parameters

in a Bind Command

The BNDAREA field of the NIB associated with an OPNDST macro instruction can be
used to provide the address of an area (called the bind area) within the application
program in which the program can build a set of session parameters to be sent in the
Bind command.

IBM provides a DSECT (named ISTDBIND) that can be used to set up session
parameters in the bind area and can be used by an application program to examine
session parameters. The DSECT is described in Appendix J of ACF/VTAM Macro
Language Reference. The DSECT is provided as part of the system macro library
(source statement library in DOS/VS and SYS1.MACLIB in OS/VS).

In determining which session parameters to include in a Bind command, ACF/VTAM
always examines the BNDAREA field of the NIB first. If that field contains an
address, the session parameters starting at that address are used in the command. If the
BNDAREA field contains zeros, the setting of the LOGMODE field of the NIB
controls which session parameters are sent in the Bind command.

Effect of the LOGMODE Field on Session Parameters

in the Bind Command

96

When used with an OPNDST macro instruction, the LOGMODE field of the NIB
provides a mechanism for designating which set of session parameters is to be included
in the Bind command. The field can be used in different ways, depending on whether
the connection request involves a logical unit in the same domain or in a different
domain from the primary application program.

Using LOGMODE When the Logon Is from a Logical Unit in the Same Domain: When
the primary application program knows that a logical unit is in the same domain, the
primary program has the following options in using the LOGMODE field to specify the
session parameters for the Bind command:

e Allow the session parameters associated with the logon to be incoporated into the
Bind command. To do this, the application program sets the BNDAREA field of the
NIB to O and sets the LOGMODE field to O before issuing the OPNDST macro
instruction.

o Indicate that the default session parameters are to be sent in the Bind command. To
do this, the application program sets the BNDAREA field of the NIB to 0 and sets
the LOGMODE field to blanks before issuing the OPNDST macro instruction.

e Designate that a particular named set of session parameters from the logon mode
table associated with the logical unit is to be sent in the Bind command. To do this,
the application program sets the BNDAREA field of the NIB to 0 and puts a logon
mode name in the LOGMODE field before issuing the OPNDST macro instruction.

In processing a logon from a logical unit in the same domain, the primary application
program can also build a set of session parameters in the bind area and can specify
that those parameters are to be sent. To do this, the application program puts the
address of the bind area into the BNDAREA field of the NIB before issuing the
OPNDST macro instruction. The presence of an address in the BNDAREA field causes
ACF/VTAM to use the session parameters in the bind area and to ignore the setting of
the LOGMODE field.

Using LOGMODE When the Logon Is from a Logical Unit in Another Domain: When
the primary application program knows that a logon involves a logical unit in another
domain, the primary application program has only one option in using the LOGMODE
field to designate the session parameters to be used in the Bind command. That option
is to designate that the session parameters that accompanied the logon are to be
incorporated without change into the Bind command. To designate that, the primary
application program sets the BNDAREA field to 0 and the LOGMODE field to 0
before it issues the OPNDST with OPTCD=ACCEPT.

In processing a logon from a logical unit in another domain, the alternative to setting
the LOGMODE field to O is to build a set of session parameters in a bind area and to
put the address of that area in the BNDAREA field of the NIB before issuing the
OPNDST OPTCD=ACCEPT macro instruction.

Handling Session Parameters When the Logon Could

Be from the Same Domain or Another Domain
In many cases, the primary application program does not know whether the logon
involves a logical unit in its own domain or in a different domain. In this case, there
are three standard actions the primary application program can take to designate the
session parameters to be included in the Bind command:

1. Always accept and use the session parameters that accompany the logon. (Set the
BNDAREA field to 0 and the LOGMODE field to O before issuing the OPNDST
macro instruction.)

2. Always build a set of session parameters in a bind area and designate that those
parameters are to be sent in the Bind command. (Put the address of the bind area
into the BNDAREA field before issuing the OPNDST macro instruction.)

3. Examine (using an INQUIRE macro instruction) the session parameters that
accompany the logon and possibly modify them in a bind area before issuing the
OPNDST macro instruction.

The user may want to adopt one of the above options as a convention for any
application program that can receive a mixture of same-domain and cross-domain
logons.

Using the INQUIRE Macro Instruction to Get Session Parameters

The INQUIRE macro instruction can be used in several ways to get a set of session
parameters. At any point in a program, the macro instruction can be issued to get a
named set of session parameters or the default parameters from the logon mode table
associated with a logical unit owned by the domain in which the macro instruction is
issued. The session parameters are acquired from the logon mode table associated with
the logical unit whose symbolic name is in the NAME field of the NIB. The setting of
the LOGMODE field of the NIB identifies the particular set of parameters to be taken
from that logon mode table. See Figure 5-6.

When a program is processing a logon, the INQUIRE macro instruction can be used to
get the set of session parameters that accompanied the logon. To do this, the program
puts the name of the logical unit in the NAME field of the NIB, sets the LOGMODE
field of the NIB to 0, and issues the INQUIRE macro instruction. The session
parameters that accompanied the logon can be acquired in this way regardless of
whether the logon applies to a logical unit in the same domain or in a different
domain. Acquisition of the session parameters enables the primary application program
to inspect them and to decide whether those parameters or different ones should be
sent to the logical unit when the OPNDST macro instruction is issued.

Chapter 5. Connecting and Disconnecting Logical Units 97

When the INQUIRE macro instruction is executed, ACF/VTAM finds the indicated
session parameters and places them in the area of storage pointed to by the AREA
field of the RPL. The AREALEN field of the RPL must specify the length of the
storage area in which the session parameters (and any user logon message) are to be
placed. To do this, the INQUIRE macro instruction can be issued twice. qu the first
INQUIRE, the AREALEN field is set to 0. This INQUIRE is completed with
RTNCD=0 and FDBK2=5 (insufficient length), and RECLEN indicates the required
length. Then, the INQUIRE is issued again, with the AREALEN field set to the correct
length.

Specifying Session Parameters When Acquiring Connection

When a primary application program issues an OPNDST macro instruction with
OPTCD=ACQUIRE to acquire a connection with a logical unit, the settings of the
BNDAREA and LOGMODE fields of the NIB control the session parameters sent in
the Bind command. See Figure 5-6. Examples of using the LOGMODE field and the
BNDAREA field to control session parameters are provided next.

Example 1: Using Session Parameters Associated with a Logon

98

Assume that a logical unit named LU1 has sent a logon. Receipt of the logon causes
scheduling of the LOGON exit routine. Coding near the beginning of the exit routine
might be as follows:

INQ1 INQUIRE RPL=RPL1,0PTCD=SESSPARM
(Test for RTNCD=0 and FDBK2=5 in the RPL)
(Load value in RECLEN field of the RPL into register 7)

MODCB AM=VTAM,RPL~RPL1,AREALEN=(7)
(Test return codes from execution of the MODCB macro)

INQ2 INQUIRE RPL=RPL1,0PTCD=SESSPARM

(Checks session parameters placed in AREA1 and determines
that they are appropriate)

OPNDST RPL=RPLI

RPL1 RPL AM=VTAM,NIB=NIB1,AREA=AREA1,AREALEN=0
NIB1 NIB NAME=LU1,LOGMODE=0,BNDAREA=0
AREA1l DS 14F

The INQUIRE macro instruction at INQ1 attempts to get the session parameters with
the RPL’s AREALEN field set to 0. This causes failure of the macro instruction with
the FDBK2 field set to 5 (insufficient length). Upon return from the macro
instruction, however, the RPL’s RECLEN field contains the number of bytes needed

for the session parameters (and any user logon message). The required length is loaded
into register 7, and the MODCB macro instruction is issued to put that value into the
AREALEN field of the RPL. Then, at INQ2, the INQUIRE macro instruction is issued
again, causing ACF/VTAM to put the session parameters into AREA1. (The session
parameters are those that were received with the logon.) The coding checks the session
parameters and determines that they are appropriate for the logical unit and for the
type of session the application program will have with that unit. Therefore, the
application program issues the OPNDST macro instruction, using the NIB whose
BNDAREA and LOGMODE fields are set to 0. The zero in the LOGMODE field tells
ACF/VTAM to use the session parameters associated with the logon to build the Bind
command to be sent to the logical unit. (A large value of 14F is shown in the example
for the amount of storage reserved for AREAL, and that may not be the correct value
for your application program. The value should be equal to the maximum size of the
session parameters and any user logon message.)

Example 2: Building and Using Session Parameters

in a Bind Area
Assume that an application program wants to initiate a session with a logical unit
named LU2 in the same domain. A logon mode table was defined and was identified in
the MODETAB operand of the LU definition statement for LU2. The application
program wants to get the default session parameters from the logon mode table,
modify them, and then send the modified parameters to the logical unit in the Bind
command when it acquires the logical unit. The coding could look like this:

INQUIRE RPL=RPL2,0PTCD=SESSPARM
(Instructions test and modify the session parameters in SPAREA2)

iviODCB AM=VTAM,NIB=NIB2,BNDAREA=SPAREA2
OPNDST RPL=RPL2,0PTCD=ACQUIRE

RPL2 RPL AM=VTAM,NIB=NIB2,AREA=SPAREA?2,

AREALEN=SPLEN
NIB2 NIB NAME=LU2,LOGMODE=C* >, BNDAREA=0
SPAREA2 DS XL(SPLEN)
SPLEN EQU BINUSE-ISTDBIND

Because the NIB’s LOGMODE field contains blanks, the INQUIRE macro instruction
causes the the default entry in the logon mode table to be moved into SPAREA2. The
application program then modifies the session parameters to fit the way it wants to
communicate with LU2. The MODCB macro instruction puts the address of SPAREA2
in the NIB’s BNDAREA field. When the OPNDST macro instruction is executed, the
modified session parameters are transmitted to LU2 in the Bind command.

How the Secondary Application Program Processes

Session Parameters Received in a Bind Command
When a Bind command is received by a secondary application program, the program’s
SCIP exit routine is scheduled. When execution of the exit routine starts, the fourth

Chapter 5. Connecting and Disconnecting Logical Units 99

Disconnection

word of the parameter list passed to the exit routine contains the address of the
session parameters received in the command. Using that address, the exit routine can
find the session parameters in the Bind request unit and examine those parameters
(using the ISTDBIND DSECT).

If the session parameters are acceptable, the secondary application program issues an
OPNSEC macro instruction. If the session parameters are not acceptable, the secondary
application program rejects the Bind command by issuing a SESSIONC macro
instruction with operands specifying a negative response. For an illustration of this
process, see Figure C-15 in Appendix C.

When a primary application program has finished communicating with a logical unit,
the program can disconnect it. The logical unit is then available for use by other
programs. The program can reconnect it at some later time. There are several
conditions that call for disconnecting a logical unit:

e The logical unit has logged off by issuing a character-coded logoff or Terminate
command. This causes the LOSTERM exit routine to be entered. The LOSTERM
exit routine disconnects the logical unit.

e A terminal that has logged on to the application program might use a prearranged
logoff message that the terminal operator issues when finished using the program.
Each input message must be checked to see if it is a logoff message. When a logoff
message arrives, the terminal is disconnected and any storage pools are updated.

e Communication with the terminal is finished; there is no more data to send or
receive. Here, the program has probably acquired the logical unit and is not
expecting a logoff message. The program determines when communication is
finished, and the logical unit should be disconnected.

e Another program has requested connection to one of your logical units. Your
program can surrender the logical unit to the requesting program.

e An error or special condition occurs in relation to a logical unit. The program can
disconnect the logical unit while continuing to service other logical units connected
to the program. For more information, see Chapter 9, “Handling Errors and Special
Conditions.” !

How a Primary Application Program Disconnects

Logical Units

CLSDST Using a Symbolic Name

100

The CLSDST macro instruction is used by a primary application program to disconnect
a specific logical unit. The logical unit to be disconnected can be identified either by
its symbolic name or by its communication identifier (CID). When the identification is
to be by the symbolic name, the RPL specified in the CLSDST macro instruction
points to a NIB that contains the symbolic name. When the identification is to be by
CID, the logical unit’s CID must be in the ARG field of the RPL specified in the
CLSDST macro instruction. ,

A logical unit can be disconnected by using the logical unit’s symbolic name contained
in a NIB. This method is used when the CID is not availabie or when it is moie
convenient to use the symbolic name than to use the CID. The symbolic name is
normally used in these circumstances:

e In a LOGON exit routine when the exit routine has determined that it does not
want to issue an OPNDST macro instruction to establish a session with the logical

CLSDST Using a CID

unit. To reject the logical unit’s request for a session, the exit routine must issue a
CLSDST macro instruction. Because no OPNDST macro instruction has been issued,
no CID for the logical unit is available, and the CLSDST must use the symbolic
name in the NIB.

e In a LOGON exit routine or elsewhere in a program when an OPNDST macro
instruction has failed. If the logon is still pending (found by checking the
logon-still-queued flag in the failing OPNDST’s NIB) and the program does not want
to issue another OPNDST macro to make another attempt to establish the session,
the program should issue the CLSDST macro instruction to clean up unnecessary
control information in ACF/VTAM. Here, as above, the failure of the OPNDST
macro instruction means that no CID for the logical unit is available, and the
CLSDST must use the symbolic name in the NIB.

¢ In a RELREQ exit routine where the symbolic name of the logical unit, rather than
the CID, is provided in the parameter list that is available upon entry to the exit
routine.

¢ In a main program to cancel a SIMLOGON macro instruction before the simulated
logon has been processed. Here again, no CID is available and the CLSDST must use
the symbolic name in the NIB.

The procedure for disconnecting by means of the symbolic name is: (1) be sure the
NAME field of a NIB contains the symbolic name of the logical unit to be
disconnected, (2) set the NIB field of the RPL to the address of the NIB that contains
the symbolic name, and (3) issue the CLSDST macro instruction, specifying the RPL
that points to the NIB. For example:

CLSDST RPL=RPLI

RPL1 RPL ACB=ACB1,AM=VTAM,NIB=NIB1
NIB1 NIB NAME=LU1

If the application program has just connected the logical unit or has just completed an
input or output operation with the logical unit, the CID of the logical unit is available
in the ARG field of the RPL that was used for the operation. For example, if the
logical unit has sent a logoff message to the application program, the RPL used to read
the message contains the CID of the logical unit. To disconnect the logical unit, issue a
CLSDST macro instruction that specifies the same RPL:

CLSDST RPL=(1)

There are other sources of the CID:

e When the LERAD or SYNAD exit routine is scheduled, register 1 contains the
address of the RPL that was used for the request that failed. That register and RPL
can be used to disconnect the logical unit.

® When a DFASY, RESP, or SCIP (for other than a Bind command) exit routine is
scheduled, the CID of the session from which the request or response was received
is in the second word of the parameter list that ACF/VTAM makes available to the
exit routine when the exit routine is scheduled. In this case, the MODCB macro
instruction can be used to move the CID to the RPL to be used to disconnect the
logical unit.

Chapter 5. Connecting and Disconnecting Logical Units 101

Storage Management at Disconnection

If you have been using the storage management techniques presented in Chapter 3,
remember to replace the storage elements in their pools when you disconnect a logical
unit.

Disconnecting All Logical Units at One Time

When an application program is finished processing and is to disconnect all logical
units, it can either (1) issue a separate CLSDST macro instruction for each logical unit
or (2) issue a CLOSE macro instruction and allow ACF/VTAM to disconnect the
logical units.

Use of the CLOSE macro instruction, which eventually closes the ACB, causes
ACF/VTAM to issue a synchronous CLSDST macro instruction for each logical unit to
which the program is connected. The synchronous CLSDST macro instructions are
executed one after another, which is slower than asynchronous execution in which
processing of the CLSDST macro instructions would be overlapped. If the application
program issues the CLSDST macro instructions itself, it can designate that the macro
instructions are to be executed asynchronously. Thus, while issuing separate CLSDST
macro instructions in the application program requires more coding, it results in faster
execution than issuing the CLOSE macro instruction and having ACF/VTAM discon-
nect the logical units.

How a Secondary Application Program

Requests Disconnection

In a session between two application programs, the secondary application program,
instead of the primary application program, may take the initiative to end the session
because the secondary program is the first to recognize that communication is finished
or because the user may have established a convention by which the secondary
program is required to inform the primary program when the session is to be ended.
The secondary application program has two ways of initiating action to end the
session. It can either (1) send a Request Shutdown (RSHUTD) command to the
primary application program, or (2) issue a TERMSESS macro instruction, which
causes the primary application program’s LOSTERM exit routine to be scheduled.

Requesting Disconnection with a Request Shutdown Command

102

The sending of a Request Shutdown (RSHUTD) command (if allowed by the session’s
FM profile) is the way a secondary application program can send a disconnection
request to a primary application program without involving ACF/VTAM in the
notification process. The command goes from one application program to the other
without being recognized or acted upon by ACF/VTAM. To the primary application
program, the command represents a request to disconnect the secondary program as
soon as possible. This allows the primary application program to continue communica-
tions with the secondary program, including the exchange of normal-flow messages, in
order to do any cleanup operations that are necessary.

The Request Shutdown command is transmitted as an expedited-flow message. Because
of this, the command cannot be used unless the primary application program has either
a DFASY exit routine or an outstanding RECEIVE macro instruction with RTYPE=
DFASY. When the DFASY exit routine is scheduled or when the RECEIVE is
completed, the primary application program must determine that it has received a
Request Shutdown command (rather than some other expedited-flow command) by
checking the CONTROL field of an RPL. In the case of the DFASY exit routine, the
exit routine checks the CONTROL field of the read-only RPL that is available to the
exit routine.

Requesting Disconnection with the

TERMSESS Macro Instruction

After receipt of the command, the primary application program should issue a
CLSDST macro instruction for the session as soon as possible.

An alternative way for a secondary application program to request disconnection is to
issue a TERMSESS macro instruction. The CID in the ARG field of the RPL or the
symbolic name in the NAME field of the NIB can be used to identify the primary
application program from which the secondary program wants to be disconnected.

The TERMSESS macro instruction specifies (in its OPTCD operand) whether the
disconnection is to be conditional or unconditional. ACF/VTAM converts the macro
instruction into a Terminate command (either conditional or unconditional, according
to the OPTCD operand in the macro instruction). When the Terminate command
reaches the primary end of the session, the primary application program’s LOSTERM
exit routine is scheduled. The fourth word of the parameter list passed to the exit
routine contains decimal reason code 20 for an unconditional Terminate and decimal
reason code 32 for a conditional Terminate.

A conditional TERMSESS macro instruction leaves disconnection of the secondary
application program entirely at the discretion of the primary application program. The
primary application program can issue the CLSDST macro instruction immediately or
it can perform cleanup operations (including exchange of normal-flow messages with
the secondary program) before it issues the macro instruction.

A1 unconditional TERMSESS macro instruction causes ACF/VTAM to immediately
terminate the session. The primary application program should still issue a CLSDST
macro instruction for the secondary program, but most of the disconnection processing
will have been completed by the time it issues that macro instruction. No communica-
tion with the secondary application program is possible after the primary application
program has been notified.

Chapter 5. Connecting and Disconnecting Logical Units 103

Chapter 6. Communicating with Logical Units

This chapter contains these major sections:
An introduction to communicating with logical units
Using ACF/VTAM to communicate
Using SNA protocols

How to communicate with non-SNA 3270 terminals as logical units

Appendix A discusses use of ACF/VTAM to communicate with BSC terminals, start-stop
terminals, and (optionally) local non-SNA 3270 terminals.

An Introduction to Communicating with Logical Units
ACF/VTAM uses Systems Network Architecture (SNA) concepts to establish communica-
tions between an ACF/VTAM application program and a logical unit (including another
ACF/VTAM application program). (Some of the basic SNA concepts are described in
Chapter 1 of this book.) This chapter provides a general description of communication
facilities.

Before learning how to communicate with logical units, it is necessary to understand
some fundamental concepts about communicating with logical units.

Who Is Communicating: The ACF/VTAM

Application Program and Logical Units
Both an ACF/VTAM application program and the logical units with which it
communicates can contain program logic. This fact implies these general characteristics of
communication between ACF/VTAM application programs and logical units:

e The design and coding of those parts of a logical unit and those parts of an
ACF/VTAM application program that communicate with each other must be
coordinated. In some cases, for example, both the application program and the logical
unit may be designed by the same person; perhaps one is designed first and the other
designed to complement it. This is a probable approach for application programs
designed to serve a particular kind of logical unit (for example, a 3600 logical work
station). Or the application program can be designed as a standard program with which
all logical units must conform, and logical units can be required to meet the
application program’s interface. In either case, both ends of the communication must
be coordinated.

o The existence of program logic in a terminal or cluster controller makes it possible to
remove work from the host computer. The data that is exchanged between an
application program and a logical unit may vary considerably, depending on what data
processing (including the addition and deletion of device-control and format characters
and data editing) can be performed by the logical unit rather than by the application
program in the host computer.

What Is Communicated: Messages and Responses
An ACF/VTAM application program and a logical unit exchange messages and responses
to messages. A message normally contains data; in addition to or instead of data, a
message can contain control information (described in ACF/VTAM publications as
commands or indicators). A response normally contains information about whether a
particular message arrived and was processed successfully or unsuccessfully; in addition, it
contains certain control information (commands or indicators). As explained later in this
chapter, a response does not have to be returned for every message; it is possible for an
application program and a logical unit to communicate without either side ever sending a

Chapter 6. Communicating with Logical Units 105

What a Message Contains

106

response. (A message corresponds to a SNA request unit [RU] and associated request
header [RH] indicators. A response corresponds to a SNA response unit and associated
response header.)

Figure 6-1 illustrates this exchange of messages and responses between an application
program and a logical unit.

A message contains:
Data
A command or indicator

Combinations of the above (for example, data and an indicator)

Data consists of information that is'sent from or received in an ACF/VTAM application
program’s input/output area. Since both an application program and a logical unit contain
program logic, each has the ability to insert, interpret, and strip off information before
forwarding it to a terminal operator, to a recording medium, or to some other
destination.

Application Program Logical Unit

Message

seno L >
Response
receive €=

Message

RECEIVE <]

Response

SEND -

Legend:

(for figures in this chapter depicting
message and response flows)

L > Message
’ Response

““‘“ Exception Message

-— ams e = * Negative Response

Figure 6-1. Exchange Messages and Responses

What a Response Contains

Here is an example of data that might be exchanged between an application program and
a logical unit. An application program receives input from a connected logical unit as the
result of issuing a RECEIVE macro instruction. When the RECEIVE is completed, the
input area specified in the AREA operand of the RECEIVE contains data. For example,
after completion of a RECEIVE, the input area might contain data in this format:

Account | Amount

Code Number | Deposited

The code was either typed in by an operator at a terminal associated with the logical unit
or it was inserted by the logical unit based on its analysis of the operator’s input. The
code is interpreted by the application program as a request for passbook update
processing, and control is passed to the routine that handles that processing. The
application program might prepare a data reply in this format:

Account | Amount New

Code | Number |Deposited | Batance

It sends the reply to the logical unit with a SEND macro instruction, specifying the
output area in the AREA operand. Any device-control or format information required to
print the message at a printer or keyboard-display unit is furnished by the logical unit
when the message arrives.

In addition to the transaction data, the logical unit can also send certain control
indicators. For example, the application program and the logical unit may be using
change-direction indicators to ensure that only one of them at a time is sending (this
method of communication is described in more detail later in this chapter). On receiving
the message that contains data, the application program also checks the change-direction
field of the RPL associated with the completed RECEIVE request:

TESTCB RPL=(2),CHNGDIR=CMD

The TESTCB macro tests whether a Change Direction Command indicator is part of the
message. If not, the program prepares to receive a further message. If the indicator is in
the message, the program can send the reply. When a data reply, such as the passbook
update reply shown above, is prepared, the program can indicate in the reply that the
next message is to come from the logical unit. To do this, the program includes a Change
Direction Command indicator by specifying CHNGDIR=CMD in the SEND used to send
the reply.

Note that only data is sent from or received in an I/O area of the application program; all
indicators, commands, and response information are sent by being specified symbolically
and received by being detected in appropriate fields of the RPL.

Certain commands and indicators can be sent only in messages that do not contain data.
Examples of these indicators and commands are explained later in this chapter.

A response to a message contains information about the success or failure of transmission
and processing of a particular message. In sending a message, the ACF/VTAM application
program or logical unit specifies the circumstances under which it expects a response to
the message. When sending a response from an ACF/VTAM application program,
commands or indicators are specified symbolically in a SEND macro instruction. When

Chapter 6. Communicating with Logical Units 107

108

receiving a response, response information and control commands are available in
appropriate fields of the RPL associated with the completed RECEIVE or in a read-only
RPL provided by ACF/VTAM on scheduling the ACF/VTAM application program’s
RESP exit routine.

Definite, Exception, or No Response Indication: In the example above under “What a
Message Contains,” the message sent by the logical unit (requesting a passbook update)
might have contained an indicator requesting that:

® No response be returned, whether the message arrived and was processed successfully
or not (no response requested)

® A response be returned only if the message contained a transmission error or could not
be processed successfully (negative response requested)

e A response be returned, whether the message arrived with or without error and was
processed successfully or not (definite response requested)

A request for no response is feasible if the logical unit has its own means of determining
failure of the message’s transmission, such as using a timer or assuming that the terminal
operator will resend the message if there is no reply to it from the host computer after a
certain length of time. In these cases, neither ACF/VTAM nor the host application
program sends a response, because the logical unit is not prepared to receive it.

Frequently, a logical unit will request that a response (called an exception response or
negative response) be returned only if the message is not received and processed
successfully. If the message is received and processed successfully, no response is returned
by the application program. However, if the message is not received successfully,
ACF/VTAM indicates this in a return code and in additional information provided in RPL

~ fields upon completion of the RECEIVE; the application program sends a negative

response. Even when the message arrives successfully, the ACF/VTAM application
program for its own reasons (for example, bécause it discovers the format of the message
is improper) can send back a negative response, using the SEND macro instruction with
STYPE=RESP. The negative response is indicated by specifying RESPOND=EX;
additional information can be provided by using the SSENSEQ, SSENSMO, and
USENSEDO fields of the RPL.

If the passbook update message above is received and processed successfully and a
definite response was requested, the ACF/VTAM application program sends a positive
response, using.a SEND macro instruction and specifying STYPE=RESP (a response) and
RESPOND=NEX (positive). If some messages require a definite response and others do
not, the application program determines whether to send a response by testing for a NEX
indication in the RESPOND field of the RPL associated with a completed RECEIVE.

Figure 6-2 illustrates the lbgical unit requesting (A) that a response be returned in either
case and (B) that a response be returned only if the message does not arrive or is not
processed successfully.

Again, referring to the passbook update example, on sending the message that it prepares
after performing the passbook update, the ACF/VTAM application program can specify
whether it wants no response, a response only if the message is unsuccessful, or a response
regardless of what happens to the message. This is done by specifying an appropriate
indication in the RESPOND operand of the SEND macro instruction. If a response is

.requested, it is received by the application program either by a RECEIVE that specifies

RTYPE=RESP or by ACF/VTAM’s scheduling the program’s RESP exit routine. When
the RESPOND field of the SEND RPL is set to NEX and the SEND macro instruction
includes the POST=RESP option, the SEND is not completed until the response is

A Logical Unit Requests a Definite Response
Application Program ACF/VTAM Logical Unit

Message
<‘]
Application Program: Send a definite response
< -1 (positive or negative).

If the message is received and processed normally,

Positive Response

————-—_—’

the application program returns a positive response.

<aumaw <]

But if the application program detects an error in the
message or cannot process the message successfully,

Negative Response
CGED GED GNP GBED GIED GEP GIND GIED GNP GIEED GIND GIND (END GNP GND NS NN GED G

the application program returns a negative response.

B Logical Unit Requests Only a Negative Response

Application Program ACF/VTAM Logical Unit

Application Program: Send only a negative
< 1 response if appropriate.

If the message is received and processed normally,
the application program returns nothing.

N\ \\\\\Pq]

But if the application program detects an error in the

message or cannot process the message successfully, .
Negative Response

CGEEED GNP GNP GED GED GED GED GND IS G GEND GaED G IEED GIND aEND GNP A
the application program returns a negative response.

C Logical Unit Receives an Exception Response (ACF/VTAM Detected)

Application Program ACF/VTAM Logical Unit

Incorrectly sent message

“““““““‘ (for example, incorrect sequence number)

ACFTVTAM detects error and

ifi licati rogram .
notifies application prog Negative Response

G GIENED GND GEED D GNP GNP GIED (IEED GNP GNP CEEED G GEED TNy
the application program returns a negative response.

Figure 6-2. A Logical Unit (A) Requests a Definite Response, (B) Requests Only a Negative Response, and (C) Receives an Exception
Response

Chapter 6. Communicating with Logical Units 109

110

received. In this case, a RECEIVE is not used to obtain the response; the response infor-
mation is available in the SEND RPL when the operation is complete.

Definite Response 1 and 2 Indication: In addition to the positive versus negative aspect
of responses, there is another aspect to any response: whether it is response type 1
(formerly FME response) or response type 2 (formerly RRN response). Every response,
independent of its positive or negative aspect, is designated by its sender as a response
type 1, response type 2, or both. The meanings of the types of responses are agreed upon
by the application program and the logical unit involved in the communication and may
be determined by SNA protocols.

The application program indicates on each message whether it expects a definite response
1, a definite response 2, or both, to be returned. Combining these types of responses with
the positive/negative response types described above yields seven possible combinations
of response types that can be indicated for a given message:

Return a definite response 1 (either positive or negative)
Return a definite response 2 (either positive or negative)
Return definite responses 1 and 2 (either positive or negative)
Return only a negative response 1

Return only a negative response 2

Return only negative responses 1 and 2

Return no response of any kind

When definite responses 1 and 2 are requested, the responses are returned together in the
same response; they are not returned separately. Similarly, when an error occurs and
negative responses 1 and 2 are requested, the negative responses are returned together.

The logical unit, like the application program, also specifies for each message the types of
responses it wants.

The user should be aware that SNA protocols dictate when responses should be requested
and what responses are returned.

Specifying Special Handling of the Response to a Normal-Flow Message or Command: In
special circumstances, a programmer may want the response to a normal-flow message or
command to be handled as if it were an incoming normal-flow message from the logical
unit. To accomplish this the programmer must have specified PROC=0ORDRESP in the
NIB at connection and must specify RESPOND=QRESP in the RPL when the message or
command is sent. For information on how such responses are handled by ACF/VTAM,
see “Controlling the Handling of Normal-Flow Responses™ later in this chapter. In
contrast to specifying RESPOND=QRESP, the programmer can specify
RESPOND=NQRESP, thus telling ACF/VTAM to handle the response in the regular
manner as a normal-flow response.

The Three Key Elements in a RESPOND Operand: When a program is sending a message
or command and is specifying the type of response it wants to receive, it makes the
specifications either by setting the RESPOND fields of the RPL before issuing the macro -
instruction or by specifying parameters in the RESPOND operand when the macro
instruction is issued. There are three potential parameters that can be specified in the
RESPOND field or operand:

1. Nature of response desired:

NEX for positive or negative response
EX for negative response only

2. Type of response:

FME for response type 1
RRN for response type 2
FME,RRN for response types both 1 and 2
3. Handling of a normal-flow response when PROC=ORDRESP was set in the NIB:
NQRESP for regular handling
QRESP for handling as though the response was a normal-flow

message coming from the logical unit

Thus, an example of a RESPOND operand in which all three parameters are specified is:
RESPOND=(NEX,FME ,NQRESP)

These parameters indicate that a positive or negative response is to be returned; the
response is to be type 1; and the response is not to receive any special handling by
ACF/VTAM.

How Messages and Responses Are Exchanged

Messages and responses are exchanged by using SEND and RECEIVE macro instructions
in an ACF/VTAM application program and by similar instructions in a logical unit. Using
SEND/RECEIVE communication, messages can be sent simultaneously by the application
program and by the logical unit. Messages that contain certain commands can be sent
ahead of messages that contain data or other commands. Messages can be queued and
responses correlated by using sequence numbers (a sequence number is automatically
assigned to each message). This flow of data, commands, and responses between an
ACF/VTAM application program and a logical unit can be synchronized, if necessary, by
stopping the flow, resetting sequence numbers at one or both ends of the message
exchange, and then restarting the flow. These concepts are described below.

The SEND and RECEIVE Macro Instructions

The ACF/VTAM application program sends and receives messages and responses by using
the SEND and RECEIVE macro instructions. (A logical unit uses its own corresponding
instructions to send and receive.) Some messages containing commands and some
responses can be received by an ACF/VTAM application program by having ACF/VTAM
schedule an exit routine designed to handle these commands (a DFASY exit routine) and
responses (a RESP exit routine); alternatively, they can be handled by a RECEIVE with
RTYPE=DFASY or RTYPE=RESP specified.

If required by the transmission services profile in the session parameters, the sending and
receiving of messages and responses between the ACF/VTAM application program and a
logical unit cannot begin until a Start Data Traffic (SDT) command has been sent from
the primary end of the session to the secondary end of the session. When required, the
SDT command must be sent at the beginning of a session, and it must be sent within a
session if the message flow is to be restarted after it was stopped (with a Clear command).
At the beginning of a session, the Start Data Traffic command is sent either by
ACF/VTAM or the application program, depending on how the SDT field of the NIB was
set when the OPNDST macro instruction was issued. If the SDT field indicated SYSTEM,
the SDT command is sent by ACF/VTAM as part of the OPNDST processing. If the SDT
field indicated APPL, the SDT command must be sent by the application program using
the SESSIONC macro instruction. To resume message flow after it has been stopped, the
application program sends the SDT command by using the SESSIONC macro. SESSIONC
can also be used to halt the flow of messages and responses by specifying CONTROL=
CLEAR.

If the secondary end of the session is an application program, a response to that SDT
command can be sent by ACF/VTAM or the secondary application program, depending

Chapter 6. Communicating with Logical Units 111

on how the SDT field of the NIB is set when the OPNSEC macro instruction is issued. If
the SDT field indicates APPL, the response must be sent by the secondary application
program (using a SESSIONC macro instruction).

If the secondary end of the session is a device-type logical unit, ACF/VTAM
automatically responds to the SDT command.

Normal-Flow and Expedited-Flow Messages and Responses

112

Messages that contain data, messages that contain certain commands (called normal-flow
commands), and the responses to such data messages and commands form the
normal-flow traffic between an application program and a logical unit. Normal-flow
traffic is handled separately from the expedited-flow traffic described below. Normal-
flow messages and commands are sent sequentially, one after the other, through the
network, and a normal-flow message or command that is sent before another message or
command arrives sooner. Figure 6-3 illustrates this principle. Similarly, responses to
normal-flow messages and commands keep their order as they travel through the network;
a normal-flow response sent before another normal-flow response arrives before the
second response. Note, however, that ACF/VTAM does not maintain the exact sequence
relationship between messages and responses in relation to each other; that is, a response
sent by a logical unit after a message may be presented to the application program before
the message. The only way an application program can be sure of receiving normal-flow
messages and responses in the exact order in relation to each other as they were sent by
the logical unit is by specifying RESPOND=QRESP (and POST=SCHED) in the RPL used
to send the message or command (see “Controlling the Handling of Normal-Flow
Responses” below). (The reader should also note that use of authorized path in OS/VS2
MVS affects the order in which asynchronous operations are completed, and that because

Application Program Logical Unit

>

Sequence 21

Sequence 22

>

' Response to Sequence 21

Sequence 23

>

l Response to Sequence 23

Note: No response for
message with
sequence number
22 was required.

Figure 6-3. Normal-Flow Messages Are Sent Sequentiaily

of this, the sequences in which messages are received may be affected [see “Coding
Considerations for OS/VS2 MVS Authorized Path” in Chapter 3].)

Messages that contain certain other commands (called expedited-flow commands) and
responses to those commands are sent in a separate flow from the normal-flow messages
and responses; these form the expedited-flow traffic in the network. Only one of these
commands can be sent at a time by the application program; a response must be received
to one expedited-flow command before another can be sent. The expedited-flow
commands tell the receiver to do something that has higher priority than receiving
normal-flow messages; for example, to stop sending normal-flow messages or to prepare
to shut down communication with the other end of the session. Because of this,
ACF/VTAM sends an expedited-flow command immediately—ahead of any normal-flow
traffic that may be waiting to be sent. Figure 6-4 illustrates how ACF/VTAM gives
priority to expedited-flow traffic.

The messages and responses that are sent on the normal flow and the expedited flow are
listed in Figure 6-5. The responses to normal-flow data messages are also transmitted on
the normal flow (and can be called normal-flow responses), and the responses to
expedited-flow commands are transmitted on the expedited flow (and can be called
expedited-flow responses).

Application Program ACF/VTAM Logical Unit

Normal-flow message 101 101

> >
Normal-flow message 102

> Scheduled for

output but not
yet sent,

Normal-flow message 103

>

Expedited-flow message This is sent immediately.
It contains an indicator or
> . / command but no data.
There is no queuing of
expedited-flow messages;
a response must be re-
ceived before the next

102 expedited-flow message

can be sent.

103

>

Figure 6-4. The Difference between Normal-Flow and Expedited-Flow Messages

Chapter 6. Communicating with Logical Units 113

114

!

i
|

Normal Flow Expedited Flow

Data messages Quiesce at End of Chain (QEC) command

Release Quiesce (RELQ) command

Bid command Request Shutdown (RSHUTD) command
Cancel command Shutdown (SHUTD) command

Chase command Shutdown Complete (SHUTC) command
Logical Unit Status (LUS) command Signal command

Quiesce Complete (QC) command Stop Bracket Initiation (SB1) command

Ready to Receive (RTR) command

Bracket Initiation Stopped (BS1) command

Figure 6-5. Messages and Responses Transmitted on the Normal Flow and on the Expedited Flow

Controlling the Handling of Normal-Flow Responses: The macro instruction that sends a
normal-flow message can be used to control how ACF/VTAM will handle the response to
that message. The ability to exercise that control depends on whether PROC=
NORDRESP or PROC=0ORDRESP was specified in the NIB when connection was
established.

If PROC=NORDRESP was in effect at the time of connection, the programmer has no
control over how ACF/VTAM handles the responses. In this case, all normal-flow
responses (regardless of the QRESP setting) are handled as responses, exactly as they are
handled in VTAM Level 2. Thus, PROC=NORDRESP is specified in the NIB when a user
wants the application program to be executed in ACF/VTAM as it is executed in VTAM
Level 2.

If PROC=ORDESP was in effect in the NIB at connection, the programmer establishes, at
the time the normal-flow message is sent, the way in which ACF/VTAM handles the
response, as follows:

e When the message is sent with RESPOND=NQRESP in the RPL, the response is
handled as an ordinary normal-flow response—meaning that it can cause completion of
a POST=RESP operation, will cause scheduling of a RESP exit routine, and will cause
completion of a RECEIVE RTYPE=RESP.

When the message is sent with RESPOND=QRESP, the response is not handled as a
response, but instead is handled as though it were an incoming normal-flow message
from the logical unit—a DFSYN response. This means the “response” will not cause
scheduling of a RESP exit routine and will not cause completion of a RECEIVE with
RTYPE=RESP. It will, however, cause completion of the original SEND operation if
the operation specified POST=RESP. If POST=RESP was not specified in the original
operation, the application program can get the response by using a RECEIVE with
RTYPE=DFSYN and checking the RTYPE field of the RPL upon completion. If the
RTYPE field after completion contains RTYPE=(DFSYN,RESP), the program knows
it has received a normal-flow response instead of a normal-flow message.

The key distinction between a NQRESP response and a QRESP response is this: the
NQRESP response is handled as a regular normal-flow response and is presented to the
application program in sequence with other normal-flow responses; the QRESP response
is treated as an incoming normal-flow message and is presented to the application
program in sequence with those messages. A response that satisfies a SEND which

Sequence Numbers

specifies POST=RESP and either QRESP or NQRESP, is always delivered immediately by
ACF/VTAM and thus may get out of order with other normal-flow responses.

Note that when a program sends a normal-flow message on a session established with the
ORDRESP NIB option, the POST operand in the macro instruction can be set to SCHED
or RESP, and the completion of the macro instruction will be based on that setting. In
VTAM Level 2, when a normal-flow command (as opposed to a data message) is sent,
VTAM ignores the POST operand and automatically establishes POST=RESP (meaning
that the operation is not completed until the response has been received). Similarly if
ORDRESP is specified, the application program must specify the correct RESPOND
setting for normal-flow commands (normally NEX,FME); whereas, in VTAM Level 2 and
for NORDRESP, this value of RESPOND is assumed.

An application program will send most of its normal-flow messages with RESPOND=
NQRESP. QRESP is used only for particular purposes, as described under “The Chase
Command” and “Bracket Protocol” later in this chapter.

In a session, each normal-flow message sent to a logical unit is assigned a sequence
number by ACF/VTAM. To the primary application program, this number is known as
the outbound sequence number, but to the logical unit, the number is known as the
inbound sequence number. The numbering begins with 1 for the first normal-flow
message sent after connection, and the number is increased by 1 for each subsequent
message. This process continues until the logical unit is disconnected, unless sequence
numbers are reset during the session (see “Controlling Flow™ later in this chapter).
(ACF/VTAM also assigns an identification number to each expedited-flow message it
sends in a session, but those numbers are handled separately from the normal-flow
sequence numbers.)

Similarly, the logical unit assigns a sequence number to each normal-flow message it sends
to the application program. The numbering begins with 1, and the number is increased by
1 for each subsequent normal-flow message the logical unit sends. To the logical unit, this
number is known as the outbound sequence number. To the primary application program
and the ACF/VTAM that services that program, the number is known as the inbound
sequence number. ACF/VTAM checks the inbound sequence numbers on the normal-flow
messages it receives from a logical unit. Should a message arrive out of sequence (that is,
its sequence number is not 1 greater than that of the last normal-flow message received),
ACF/VTAM considers this to be a transmission error and indicates to the application
program that an out-of-sequence message has been received.

When a normal-flow response is sent (either a positive or a negative response), the sender
assigns to it the sequence number of the message being responded to. This provides the
sender with a means of matching the response with its message. For example, an
application program can send a group of messages, with each message indicating that only
an exception response should be returned. Should an exception response be returned, the
application program can use the sequence number to determine where in the group the
error occurred. Sequence numbers are also useful for logical units that log each message
that is received or sent. Figure 6-6 illustrates how sequence numbers are used. Later
examples in this chapter show more specific examples of their use.

The SEQNO field of the RPL is used to convey sequence numbers between ACF/VTAM
and the application program. The application program can determine the sequence
number that ACF/VTAM assigned to an outbound message by checking the SEQNO field
after completion of the SEND macro. For an inbound message or response, the
application program determines the sequence number that was contained in the message
or response by examining the SEQNO field after completion of the RECEIVE macro. To

Chapter 6. Communicating with Logical Units 115

Application Program ’ Logical Unit

ACF/VTAM assigns the
sequence number for
outbound messages.

Sequence 21
SEND) . > The logical unit can use the sequence
The program can determine the sequence number to keep track of messages if
number that ACF/VTAM assigned by they are being logged.

examining the SEQNO field of the RPL.

Response to Sequence 21
RECEIVE ‘ The logical unit must specify the

The program can use the sequence sequence number of the message
number to determine which message was being responded to, if a response is
received and to post an ECB for the SEND requested.

that was used to send message 21.

Figure 6-6. How Sequence Numbers Are Used

assign a sequence number to an outgoing response, the application program puts the

sequence number into the SEQNO field before issuing the SEND macro.

Controlling Flow

The ACF/VTAM application program can start and stop the flow of all messages and
responses between itself and a logical unit. In most cases, the flow begins when the
application program sends a Start Data Traffic (SDT) command to the logical unit at the
beginning of a session. Depending on how the SDT field of the NIB is set, the SDT
command may be sent automatically by ACF/VTAM as part of the OPNDST processing,
or it may have to be sent by the application program. The flow of messages and responses
is stopped when the application program sends a Clear command to the logical unit. This
not only prohibits any further transmission of messages and responses, but also causes the
sequence numbers of the logical unit and ACF/VTAM to be reset to 0. The first data
message or normal-flow command sent is assigned the sequence number 1. The Clear
command also causes all incoming and outgoing data messages, responses, and commands
in the network pertaining to the session but not yet received to be discarded. The Clear
command is sent whenever it is needed to stop the flow of data and to clean up traffic
flowing in the session. (Sometimes ACF/VTAM automatically sends a Clear.) When the
Clear command is sent by the application program in the middle of a session, the flow can
be restarted with the SDT command. The flow of messages and responses can be started

and stopped any number of times, as illustrated in Figure 6-7.

The Set and Test Sequence Numbers (STSN) Command: Another command sent with
the SESSIONC macro instruction is called the Set and Test Sequence Numbers (STSN)
command. This command allows the application program to reset the normal-flow
sequence numbers and to communicate with a logical unit to establish the proper
- sequence numbers. An attempt to resynchronize sequence numbers can begin when the
application program or the logical unit recognizes that the sequence number of a message
it has received is not 1 greater than the sequence number of the previous message it
received. When the logical unit recognizes the sequence number error, it sends the
Request Recovery (RQR) command to ask the application program to take recovery
action. When this command is received by the application program, its SCIP exit routine

is scheduled.
116

Primary Application Program Secondary Logical Unit

SEND/RECEIVE
communication is
possible.

Only SESSIONC
communication is
possible.

SEND/RECEIVE
communication is
possible.

Only SESSIONC
communication is
possible.

SEND/RECEIVE
communication is

possible.

OPNDST (Start Data Traffic command [> Data flow can begin.
can be sent by ACF/VTAM)

C >
>

>
C >

CLSDST (Clear command is

sometimes sant by |:"> Pending I/0 is canceled;

ACE/VTAM data flow ceases.

Figure 6-7. Starting and Stopping the Flow of Messages and Responses

Chapter 6. Communicating with Logical Units 117

118

The primary application program normally uses the following procedure to resynchronize
sequence numbers with the logical unit:

1. The application program issues the SESSIONC macro instruction with CONTROL=
CLEAR to stop the message flow and to remove all undelivered messages and
responses pertaining to its session that are still in the network.

2. The application program then issues the SESSIONC macro instruction with
CONTROL=STSN to question the logical unit about normal-flow sequence numbers.
With this macro instruction, the application program can send sequence number
values to the logical unit and, from the response, determine whether the logical unit
“agrees” with those numbers. Or, the application program can request the logical
unit to return whatever values it considers to be the correct sequence numbers. Or,
the application program can tell the logical unit to set its sequence numbers to
particular values. To reach agreement with the logical unit, the application program
may have to send several STSN commands, with the logical unit responding to each
command. When agreement is finally reached, either the logical unit or the
application program, or both, may have to return to a previous point in their
operations and resend one or more messages.

3. After agreement on sequence numbers is reached, the application program issues the
SESSIONC macro instruction with CONTROL=SDT to restart the flow of messages
and responses.

For examples of the use of the SESSIONC macro instruction with CONTROL=STSN, see
Figures C-3, C-9, and C-18 in Appendix C.

Another use of Set and Test Sequence Number commands is for restarting message flow,
where the ACF/VTAM application program, having taken periodic checkpoints of
messages that it was sending to a logical unit, wants to inform the logical unit of the
sequence numbers at which it is restarting after a system, session, application program or
logical unit faiture.

The Chase Command: The Chase command can be used by an application program at
any point in its processing to ensure that the program has received all responses from the
other end of the session. When the other end of the session receives the Chase command,
it must send any unsent response to previous messages or normal-flow commands before
it sends the response to the Chase command. Thus, when the sender receives the response
to the Chase command, the sender knows there are no outstanding responses for that
session.

The Chase command is frequently used by an application program before a session
termination command. For example, a secondary application program that has received a
Shutdown command might issue a Chase command to get any outstanding responses from
the primary application program before issuing the Shutdown Complete command. (See
Figure C-12 in Appendix C.) Or, the Chase command can be issued by a primary
application program before it issues a CLSDST macro instruction.

Using the Chase command may cause a problem. When a response cannot be passed
immediately to the application program, it is placed on a queue to await presentation to
the program. If the program sends a Chase command with POST=RESP, the operation is
posted complete as soon as the response to the Chase command is received by
ACF/VTAM. If any responses were previously queued for the program, it may not be
prepared to process them, having interpreted the respons to the Chase command as an
indication that all responses were received.

To avoid this problem, the session should be established with PROC=ORDRESP specified
in the NIB and, the Chase command should be sent with a macro instruction that
specifies POST=SCHED and RESPOND=QRESP:

Identifying Logical Units

SEND RPL=RPL1,STYPE=REQ,CONTROL=CHASE,POST=SCHED,
RESPOND=(FME,NEX)

The response to the Chase is thus handled in order with respect to other normal-flow
responses. Note that if any outstanding responses might have the QRESP indicator on,
then the Chase must also be sent with RESPOND=(NEX,FME,QRESP) to ensure that the
Chase response will be received in order with other responses having QRESP on.

For more information on the QRESP and NQRESP parameters, see “Specifying Special
Handling of the Response to a Normal-Flow Message or Command” under “What a
Response Contains™ earlier in this chapter.

When an application program receives a logon from a logical unit and before it connects
the logical unit, the application program has available to it the logical unit’s user-supplied
name. This is an 8-byte symbolic name created for the logical unit during ACF/VTAM
definition. (When the logon is processed by a LOGON exit routine, one word in the
parameter list passed to that exit routine points to the symbolic name. When the logon
satisfies an outstanding OPNDST macro with OPTCD=(ACCEPT,ANY}, the NAME field
of the NIB [pointed to by the RPL] contains the symbolic name.)

After connection is established with the logical unit (that is, when the OPNDST with
OPTCD=ACCEPT is completed), the application program is also provided with a 4-byte
ACF/VTAM-supplied identification (called a communication identifier, or CID) for the
session with the particular logical unit that has been connected. After the OPNDST is
completed, the CID is in the ARG field of the RPL used for the connection. The
application program uses the CID for all I/O requests issued in the specific-mode (all
SEND requests and all RECEIVE requests specifying OPTCD=SPEC).

When a RECEIVE macro instruction issued in the any-mode is completed, ACF/VTAM
provides the identity of the logical unit that sent the data. Since the application program
will probably communicate with the logical unit in the specific-mode, it is the CID, rather
than the symbolic name, that ACF/VTAM supplies to the application program. (This CID
is provided in the ARG field of the RPL used with the RECEIVE macro.) Should the
identity be significant, the application program has three ways to relate the CID to the
logical unit’s symbolic (user-supplied) name:

e The application program can use an INQUIRE macro to translate the CID into a
symbolic name.

e The application program can maintain a table of CIDs and their symbolic equivalents.

e When the application program establishes connection with the logical unit, the
application program can initially assign a 4-byte value to the logical unit (by putting
the value in the USERFLD field of the NIB), and ACF/VTAM returns the value each
time that logical unit’s data satisfies a RECEIVE. The 4-byte value can be anything the
application program chooses to associate with the logical unit. It can be used to
identify the logical unit, or it can contain the address of a subroutine that is to handle
that logical unit’s data.

Using ACF/VTAM to Communicate with Logical Units

Using ACF/VTAM to communicate with logical units requires an understanding of these
major alternatives:

e Having ACF/VTAM perform an operation synchronously or asynchronously with
respect to execution of the ACF/VTAM application program (OPTCD=SYN|ASY
specified in the SEND or RECEIVE macro instruction)

Chapter 6. Communicating with Logical Units 119

Major Alternatives

e For asynchronous operations, having ACF/VTAM post an ECB or having it schedule
an exit routine when the operation is completed (OPTCD=ASY and either ECB=
address or EXIT=address specified in the SEND or RECEIVE macro instruction)

e Having ACF/VTAM schedule a message to be sent or to send it and confirm its arrival
(POST=SCHED|RESP on a SEND)

e Having a message from any connected logical unit put in an ACF/VTAM application
program area or having a message from a specific logical unit put in a program area
(OPTCD=ANY|SPEC on a RECEIVE)

e Having a logical unit be in continue-any mode or in continue-specific mode
(OPTCD=CA|CS on any RPL-based macro instruction)

e Having a RECEIVE with RTYPE=DFASY satisfied or having a DFASY exit routine
scheduled when a logical unit sends an expedited-flow (DFASY) message

e Having a RECEIVE with RTYPE=RESP satisfied or having a RESP exit routine
scheduled when a logical unit sends a response

e Having ACF/VTAM retain or discard portions of an incoming message that is too long
to fit in the program’s unit area (PROC=KEEP|TRUNC)

Some of these alternatives are also discussed in Chapter 3, “Organizing a Program.” Here
they are discussed specifically in relation to communicating.

Synchronous versus Asynchronous Operations

120

Synchronous Requests:: An ACF/VTAM application program can request that a
communication operation be performed synchronously with relation to the execution of
the program. For example:

SEND RPL=(2),STYPE=REQ,AREA=AREA1,RESPOND=(NEX,FME),
OPTCD=SYN,POST=RESP

This macro instruction requests that a message (STYPE=REQ) be sent from AREA1 with
a response to be returned whether or not the message arrives and is processed successfully
(RESPOND=(NEX,FME)). Execution of the ACF/VTAM application program is sus-
pended because it has made a synchronous request (OPTCD=SYN), and the next
instruction is not executed untili ACF/VTAM has determined that the requested
operation has been performed. In this case, however, the requested operation is the
scheduling of a SEND (POST=SCHED) rather than the actual transmission (with
ACF/VTAM receiving a response). In most cases, when scheduling is specified,
ACF/VTAM returns control to the requesting program in a relatively short period of
time; however, certain circumstances may cause a long delay. For example, posting may
not occur until a pacing response is returned from the logical unit. The ASY option is
therefore usually preferable.

Here is another example of a synchronous SEND:

SEND RPL=(2),STYPE=REQ,AREA=AREA1,RESPOND=(NEX,FME),
OPTCD=SYN,POST=RESP

For this SEND, the ACF/VTAM application program has to wait until ACF/VTAM
receives a response to the message (POST=RESP). A program that communicates with
only a few logical units and can wait for each communication request to be completed
before doing any further processing might use this kind of synchronous operations; for
most programs, however, this is not efficient.

Note that POST=RESP cannot be specified unless a definite response is requested; that is,
no response (NEX,NFME or NEX,NFME NRRN) or exception response only (EX,FME

or EX,NFME ,RRN) cannot be specified with POST=RESP, because ACF/VTAM would
never know that the message had arrived. '

Here is an example of a RECEIVE for input from a specific logical unit with
OPTCD=SYN:

RECEIVE RPL=(2),RTYPE=DFSYN,AREA=AREA1,AREALEN=100,
OPTCD=(SYN,SPEC)

Here, execution of the ACF/VTAM application program is suspended until input arrives
from the logical unit (whose CID is located in the RPL’s ARG field). This is undesirable
except in simple programs, perhaps where batch input is being received. It is also efficient
enough if a message is already in ACF/VTAM buffers. This is true, for example, if the
message received in ACF/VTAM’s buffer is larger than the amounts of data read each
time a RECEIVE is issued (and the KEEP option, described later in this chapter, is used).

Here is an example of a RECEIVE for input from any logical unit with OPTCD=SYN:

RECEIVE RPL=(2),RTYPE=DFSYN,AREA=AREA1,AREALEN=200,
OPTCD=(SYN,ANY)

Here, execution of the ACF/VTAM application program is suspended until input arrives
from any connected logical unit that is not in continue-specific mode. This type of
request is most likely to be used in a program that communicates with only a few logical
units. It can also be used with a large number of logical units if response time is not
important.

Asynchronous Requests: An ACF/VTAM application program can also request that a
communication operation be performed asynchronously with relation to the execution of
the program. For example:

SEND RPL=(2),AREA=AREA1,STYPE=REQ,RESPOND=(NEX,FME),
OPTCD=ASY,POST=SCHED,ECB=ECB1

This SEND requests that ACF/VTAM schedule the sending of the data from AREALI to
the logical unit. As soon as scheduling of the output has been completed, ACF/VTAM
notifies the program either by posting an ECB (shown here) or by scheduling an RPL exit
routine. (The relative advantages of posting ECBs and scheduling RPL exit routines are
discussed in Chapter 3 and below.) .

Rather than the scheduling, the actual sending of a message can be requested to be
performed asynchronously with relation to the execution of the program. For example:

SEND RPL=(2),AREA=AREA1,STYPE=REQ,RESPOND=(NEX ,FME),
OPTCD=ASY ,POST=RESP ,EXIT=RPLEXIT

This SEND requests that ACF/VTAM initiate sending of the message at AREA1 and
immediately return control to the program. When ACF/VTAM receives a response
indicating the success or failure of the transmission and processing, ACF/VTAM schedules
an RPL exit routine at RPLEXIT. The program continues processing; the RPLEXIT exit
routine automatically gets control when this operation is completed. Or, if ECB-posting is
specified instead of the exit routine, the program continues processing—minus the time
ACF/VTAM takes to get control and post the ECB—until it discovers the ECB is posted
or until the program issues a WAIT or a CHECK macro instruction.

In general, synchronous operations are easier to program but inefficient with regard to
the amount of processing that the program can do. Asynchronous operations are more
difficult to program, but are required to handle communication with a reasonably large
number of logical units.

Chapter 6. Communicating with Logical Units 121

ECB versus RPL Exit Routine

Note: If two or more asynchronous requests for the same logical unit are issued,
ACF|VTAM may not process these requests in the same order in which they were issued.
For example, if two SEND macro instructions specifying POST=RESP, OPTCD=ASY are
executed for the same logical unit without an intervening CHECK, the second message
can arrive at the logical unit before the first.

If asynchronous operations are requested, each. request can specify that ACF/VTAM do
either of two things when the operation is completed: (1) post an ECB or (2) schedule an
RPL exit routine.

Here is an example of a SEND macro instruction that specifies that an ECB be posted
upon completion:

SEND RPL=(2),AREA=AREA1 STYPE=REQ,RESPOND=(NEX,FME),
OPTCD=ASY,POST=RESP ECB=ECB1

Figure 6-8 shows the sequence of events that might occur following the issuance of this
macro instruction.

Here is an example of a SEND macro instruction that specifies that an RPL exit routine
be scheduled upon completion:
SEND RPL=(2),AREA=AREA1 STYPE=REQ,RESPOND=(NEX,FME),
OPTCD=ASY ,POST=RESP . EXIT=RPLEXIT

Figure 6-9 shows the sequence of events that might occur following the issuance of this
macro instruction.

Scheduled versus Responded Output Operations

Application Program

.
SEND
Program continues with
other processing.
.
.
°

(This alternative is also discussed above as an example in “Synchronous versus
Asynchronous Operations.”)

ACF/VTAM

2 ,
: > ACF/VTAM forwards the message to

the logical unit, returning control to >
the program (OPTCD=ASY).

When the program discovers the ECB ‘ When the response arrives, '

has been posted, either by testing the ACF/VTAM posts the ECB
ECB itself, or by receiving control

following a WAIT or CHECK macro, specified in the SEND.
it knows the operation is completed. ‘

Figure 6-8. The General Sequence of Events When ECB-Posting Is Specified

122

Application Program ACF/VTAM

.
°
1 o _ 2
SEND > ACF/VTAM forwards the message ~
Program continues to the logical unit, returning >
with other processing. control to the program
: (OPTCD=ASY).
°
° When a response arrives,
. ACF/VTAM schedules the ‘——
The RPL exit routine is executed exit routine specified in the
without interruption, performing RPL.
the next step in communicating
with the logical unit (perhaps
issuing a RECEIVE or posting an
ECB so that the main program
can issue a RECEIVE). It then
returns control to ACF/VTAM. 5
ACF/VTAM returns control to the
6 main program at the point where it
The main program continues. was interrupted.

Figure 6-9. The General Sequence of Events When an RPL Exit Routine Is Specified

The ACF/VTAM application program requests the sending of a message to a logical unit
in one of two ways:

e The application program can indicate that as soon as the message has been scheduled
for transmission and transferred to an ACF/VTAM buffer area, thus freeing the
application program’s output data area, ACF/VTAM is to consider the output
operation completed (by returning control and either posting an ECB or scheduling an
RPL exit routine, as specified in the output request). This is called scheduled output
and is illustrated in Figure 6-10.

e The application program can indicate that ACF/VTAM is not to consider the
operation completed until the message has been received by the logical unit and a
response has been returned. This is called responded output and is illustrated in Figure
6-11.

Responded output is easier to use, but requires that the output data area not be reused
until a response has been received by ACF/VTAM. If the response indicates that an error
occurred, the data is still available for retransmission. Scheduled output allows the
application program to send a series of messages that all use the same RPL and, possibly,
the same output area. It also allows the program to decide whether or not a response to
the message must be returned. If message chaining is used (discussed later in this chapter),
a positive response is not required for every message that is sent.

With responded output, completion status information is returned as part of the
operation. With scheduled output, the operation is completed when the message is
scheduled, before any completion status information is available. To determine how the
output operation was completed, the application program must issue an input request to
obtain a response containing the completion status information. This is why the
application program in Figure 6-10 issues three input requests in addition to the three
output requests.

Chapter 6. Communicating with Logical Units 123

Application Program ‘ACF/VTAM Logical Unit

R Message No. 1 N
> L >
SEND 1 completed,
output area is free.

Message No. 1
SEND 1 L

Message No. 2 R Message No. 2
SEND2 |) L

SEND 2 completed,
~ output area is free.

A

Message No. 3 R
SEND3 [>

SEND 3 completed,
output area is free.

RECEIVE
completes or
RESP exit ‘
routine is
scheduled. ‘ L

RECEIVE
completes or
RESP exit ‘
routine is
scheduled.

RECEIVE
completes or‘
RESP exit
routine is
scheduled.

Response No. 1

Message No. 3

>

Response No. 2

Response No. 3

Figure 6-10. Scheduled Output

Receiving Input from any Logical Unit versus Receiving Input

from a Specific Logical Unit

124

The ACF/VTAM application program can obtain data from a specific logical unit, or it
can request data from any one of its connected logical units. The application program
designates the desired mode—specific or any—with each RECEIVE macro instruction.
These two modes are called, respectively, the specific-mode, and the any-mode.

In general, an application program initially requests input from a logical unit in the
any-mode, and then communicates with the logical unit in the specific-mode until the
transaction, inquiry, or conversation is completed. While communications proceed with
one logical unit, the application program keeps a RECEIVE macro instruction (issued in
the any-mode) pending so that a new transaction, inquiry, or conversation can be handled
while the previous ones continue.

In the any-mode, the application program does not know the identity of the logical unit
until the data has been moved into its input area and the RECEIVE has been completed.
Since the logical unit is initially unknown, the amount of incoming data may also be
unknown. This means that the application program must either reserve an input area large
enough to hold the largest possible amount of incoming data or execute additional
instructions to handle overlength data. On the other hand, the any-mode allows the
application program to use just one input area for data from all of its logical units, rather
than using a separate input area for each of its logical units.

Application Program ACF/VTAM Logical Unit

Message No. 1 Message No. 1

SEND 1 [> T >

Message No. 2

SEnD 2 [>

Message No. 2

l >

Message No. 3

SEND 3 [>

Response No. 1

SEND 1 completed
Message No. 3
[>

Response No. 2

SEND 2 completed

Response No. 3

SEND 3 completed

Figure 6-11. Responded Output

With the specific-mode, the application program must specify the identity of the logical
unit supplying the data. Since the identity of the source is known, the size of the input
data is more predictable than with the any-mode. A disadvantage is that, since any given
logical unit may not supply data for some time, the application program may have to
contend with unused data areas. The simplest way to avoid this problem is to not issue
RECEIVE requests in the specific-mode unless data has already arrived in ACF/VTAM’s
buffers or is expected to arrive in a relatively short time.

Input data areas can be more efficiently managed by using a combination of
specificcrmode and any-mode. As an example, consider an application program that
obtains an inquiry from any of its logical units, handles that inquiry with a series of
SEND and RECEIVE macro instructions, and then obtains a new inquiry. Part of such a
program is illustrated in Figure 6-12.

The Continue-Any versus the Continue-Specific Mode
The example in Figure 6-12 assumes that I/O requests are handled synchronously. The
application program handles each inquiry serially, never accepting a new inquiry until it
has completed the previous one. Although this procedure might be suitable for
application programs that deal with short inquiries and a few logical units, most
applications require handling inquiries in parallel.

Chapter 6. Communicating with Logical Units 125

126

Application Program

—p» RECEIVE (Any) The application program begins by accepting data
in the any-mode. When an inquiry is eventually
received, the data and the identity of the logical

° unit are passed to the application program and the
[RECEIVE request is completed. The application
) program can now call the subroutine that handles -

the type of inquiry or handles the particular
logical unit that made the inquiry.

Call appropriate subroutine

SEND (Specific)
° ~ The subroutine sends to the logical
° unit and receives from it in specific-
[} mode (output requests are always

RECEIVE (Specific) directed to a specific logical unit).

® The size of the subroutine’s input
° area can be limited, since the identity
° of the logical unit is known. The
SEND (Specific) input area probably does not remain
° ' unused for long, since the subroutine
] is in the midst of a conversation
L] with the logical unit.
RECEIVE (Specific) .
°
°
°
SEND (Specific) Once the inquiry has been satisfied, the
Return application program again issues the

RECEIVE in the any-mode and waits
for the next inquiry to arrive.

1 'll

Figure 6-12. Example of Using Any-Mode and Specific-Mode to Handle an Inquiry from a Logical Unit

An application program that handles more than one inquiry concurrently (Sample
Program 2 in Part 3 is an example) can use asynchronous request handling and issue new
RECEIVEs in the any-mode before the previous inquiry is completed. This, however,
raises the possibility that both a RECEIVE for a specific logical unit and a RECEIVE for
any logical unit (which includes the specific logical unit as well) might be awaiting data at
the same time. Consequently, data that is meant to satisfy the subroutine’s RECEIVE
might instead be intercepted by the RECEIVE in the main program, which is meant only
to receive new inquiries.

To eliminate this sort of problem, ACF/VTAM allows the application program to indicate
when a particular logical unit’s data can be received by a RECEIVE macro instruction
issued in the any-mode, and when the data must be received by a RECEIVE macro
instruction issued in the specific-mode. The former is called continue-any mode, and the
latter is called the continue-specific mode. These modes are designated when an I/O
request is issued, but do not become effective until the I/O operation is completed. The
RESETSR macro instruction can also be used to reset the mode for a logical unit. Figure
6-13 illustrates how the various modes described above relate to one another.

An Explicit RECEIVE versus DFASY and RESP Exit Routines
for Responses and Expedited-Flow Commands

RECEIVE
RECEIVE
RECEIVE

.

[

[J

Wait for data to arrive.
| Call appropriate subroutine.

Any, Continue-Specific
Any, Continue-Specific
Any, Continue-Specific

An ACF/VTAM application program that may recieve expedited-flow commands (for
example, a Quiesce at End of Chain command) or that may receive responses has a choice
of ways in which this kind of input can be received. A RECEIVE can be used in which
RTYPE=DFASY (for commands) or RTYPE=RESP (for responses) is specified, or both
can be specified in the same RECEIVE. In addition, normal input can complete the same
RECEIVE (for example, RTYPE=(DFSYN,DFASY,RESP can be specified). The program
then examines the RTYPE field of the RPL to determine which kind of input was
received and branches to an appropriate routine. Alternatively, RECEIVEs can be used
only for normal-flow messages, and the addresses of the special input routines can be
designated (the DFASY and RESP exit routines) in an EXLST macro instruction to
handle responses and expedited-flow commands using exit routines, however, requires
execution of more system instructions to schedule the exit routines and is therefore less
efficient than checking the RTYPE field.

Application Program

The application program begins by issuing three RECEIVEs in the any-
mode. Continue-specific mode is also designated for each one; this
means that once a logical unit sends data and causes one of the
RECEIVEs to be completed, subsequent data from that logical unit can
only be obtained with RECEIVEs issued in specific-mode.

When the data arrives, the appropriate subroutine determines if the
inquiry is completed. If it is not, the subroutine exchanges data in the
specific-mode. The logical unit is kept in the continue-specific mode
so that the arriving data can only satisfy the RECEIVE issued in the
specific-mode, not one of the RECEIVEs issued in the any-mode.

End of inquiry?

No

Yes

Return to main program.

If, however, the subroutine determines
that the inquiry is at an end, a final record
is sent to the logical unit. The subroutine
specifies the continue-any mode on the
SEND; this ensures that the logical unit
being sent to, like all the other logical
units in the continue-any mode, will be
able to satisfy the RECEIVE macro
instruction in the any-mode in the main
program and begin a new inquiry.

Continue-Specific

Specific, Continue-Specific

L

Continue-Any
°
°
®
Return to main program.

|

Figure 6-13. An Example of Using Continue-Any and Continue-Specitic Modes to Handle Concurrent Inquiries

Chapter 6. Communicating with Logical Units

127

Handling Overlength Input Data

Application Program

When an application program issues a RECEIVE macro instruction, the length of the
incoming data is often unpredictable. As noted earlier, this is particularly true of
RECEIVE macro instructions issued in the any-mode. ACF/VTAM provides two ways of
handling data that is too large for the input area:

e ACF/VTAM can discard the overlength data. The excess data is lost. This facility,
called the TRUNC (truncate) option, is useful in applications that must impose rigid
size limitations on input data. For example, an inventory-control application might
require the logical unit to supply an account number no longer than 10 bytes.

o ACF/VTAM'can keep the data. ACF/VTAM fills the input area, saves the remainder,
and completes the input request. Additional input requests must be issued to obtain
the excess data. This facility is called the KEEP option.

When the data message read by ACF/VTAM is larger than the number of bytes specified
in the AREALEN operand of a RECEIVE macro instruction, the RECLEN field of the
RPL indicates, after completion of the RECEIVE, the number of bytes that were
available before the RECEIVE was executed. This characteristic of the RECLEN field is
shown in Figure 6-14.

The application program can select the appropriate option when the logical unit is
connected (PROC=TRUNCIKEEP specified in the NIB). Or it can select it when the
RECEIVE is issued (OPTCD=TRUNCI|KEEP specified in the RPL).

@ RECEIVE

RECEIVE

®

RECEIVE

Application
Program Buffers

(OPTCD=KEEP was specified in
the NIB at connection)

..., AREALEN=80,...

After completion of this RECEIVE,
RECLEN field of RPL=200

..., AREALEN=80,...

After completion of this RECEIVE,
RECLEN field of RPL=120

..., AREALEN=40, ...

After completion of this RECEIVE,
RECLEN field of RPL=40

200-byte message in
ACF/V TAM buffer

O @

< 200-byte message received
by ACF/VTAM from
@ logical unit

80 bytes

80 bytes

40 by tes

Figure 6-14. An Example Showing Values in the RECLEN Field of an RPL

128

Using SNA Protocols

Chaining

The major alternatives described above are of interest to all ACF/VTAM application
program designers. Here are some additional facilities that not every user will require, but
which should be considered:

® The chaining of messages so that the number of responses required is minimized
(CHAIN=ONLY|FIRST|MIDDLE|LAST)

e The quiescing of messages so that a sender can be told to temporarily stop sending
when, for example, an input buffer is about to overflow (CONTROL=QEC)

¢ A method of communication that ensures that only the ACF/VTAM application
program or the logical unit can be sending at one time, using either:

— Quiesce protocol
— Change-direction protocol

®* A method of communication that ensures that unexpected output from an
ACF/VTAM application program will be postponed until completion of an existing
transaction (bracket protocol)

Figures C-6, C-7, and C-8 in Appendix C show examples of quiesce, bracket, and
change-direction protocols.

Application programs (or logical units) can group any number of messages into a set
called a chain. The sender can indicate which part of a chain is being transmitted—the
first message of the chain, the last message of the chain, neither (the message is
somewhere in the middle), or both (the message is the sole element of the chain).

Systems Network Architecture (SNA) allows only three types of chains to be used:
No-response chain, in which each element in the chain requests no response.

Exception-response chain, in which each element in the chain requests a negative
response only.

Definite-response chain, in which the last element in the chain requests a definite
response and all other elements request a negative response only.

With these types of chains, no more than one response per chain is sent from the receiving
logical unit.

The sender of a chain can at any time send a Cancel command to the receiver (the sender
might send this command because the receiver has returned a negative response). The
Cancel command informs the receiver that the current chain is abnormally terminated,
that the receiver will receive no further elements in the chain, and that the receiver may
want to discard the chain elements it has already received.

The actual. unit of work that the chain represents is determined entirely by the
application program and the logical unit. When connection is established, the application
program and logical unit determine‘what chaining protocols are to be used.

Figure 6-15 illustrates a possible use of chaining. In this example, a logical unit submits an
inquiry to the application program. The application program can obtain various pieces of
information from data files and send them to the logical unit as each becomes available.
By chaining the output requests, the application program has a convenient way of telling

~ the logical unit whether any given piece of data represents the beginning, middle, or end

of a reply to an inquiry.

 Figure 6-16 shows the use of chaining illustrated by Figure 6-15 in more detail. Chaining

is also shown in Figure C-5 in Appendix C. ‘
Chapter 6. Communicating with Logical Units 129

Request and Response Modes

130

Application Program Logical Unit

Request
information
from data
base

Message
(Inquiry)
<]
Response
DASD
1/0 First Message in Chain
Requests L

Respond only if received
as exception message

vV OV V¥

Respond only if received
as exception message

°

°

°
Last Message in Chain

C >

Respond

<

Response

| Display
data in

message
chain

Figure 6-15. An Example of Message Chaining

When session parameters are sent to a logical unit as part of the connection process,
certain combinations of protocol bits establish certain request and response modes.
Essentially, the bits indicate whether chaining will be permitted, how often a response
will be requested, and in what order the responses must be returned.

There are two modes in which the senders of messages can operate: immediate control
mode or delayéd control mode.

Immediate Control Mode: When operating in this mode, the sender sends only
single-element messages (that is, cannot send a chain), and the sender requests a definite
response to each single-element message. After sending each message, the sender must
wait for a response before sending the next message.

Application Program

The data for the chain may be passed all at
once to an output routine by a processing
routine, or it may be passed in sections by

the processing routine, which is doing multiple
disk reads. This example assumes the data is
passed all at once to the output routine, which
sends it in a five-element chain.

Normal Sequence

1. The output routine first issues
SEND RPL=RPLLU1,AREA=(2),
RECLEN=15STYPE=REQ,
CONTROL=DATA,OPTCD=
SYN POST=SCHED,
RESPOND=(EX,FME),
CHAIN=FIRST

2. When the SEND is scheduled, the output
routine obtains the sequence number of
the first element sent from the SEQNO
field of the RPL and saves it, using the
SHOWCB macro instruction.

3. The output area address is updated and the
second element is sent with
SEND RPL=RPLLU1,AREA=(2),
RECLEN=15,
CHAIN=MIDDLE

4. The output area address is updated and the
third element is sent as in step 3.

Sequence number 50

Sequence nﬁmber 51

Logical Unit

The logical unit receives the first
chain element and saves the data
in a buffer. D)

Sequence number 52

C

>

i March 30, 1974

buffer. D

—- John Smith

The logical unit receives the second
chain element and puts it in the

March 30, 1974

The logical unit receives the third
element and puts it in the buffer. D)

i $90.22

March 30, 1974
John Smith

Figure 6-16 (Part 1 of 2). An Example of Sending a Chain of Messages to a Logical Unit That Is Buffering Data

Chapter 6. Communicating with Logical Units 131

Application Program

5. The output area address is updated and the
fourth element is sent as in step 3.

6. The output area address is updated and the
last element is sent with
SEND RPL=RPLLU1,AREA=(2),
RECLEN=15,CHAIN=LAST,
RESPOND=(NEX,FME)

7. The application program receives the
response (in a RESP exit routine or by comple-
tion of a RECEIVE with RTYPE=RESP
specified). An ECB associated with
completion of sending the chain is posted.

If an E xception Occurs

Errors or special conditions are detected
by a negative response returned to an element
in the chain.

A sequence-number-error indication in a
negative response indicates some unrecoverabie
error and requires either disconnecting the
logical unit or using the Clear, STSN, and SDT
operands of the SESSIONC macro instruction
to resynchronize communications.

Sequence number 53

>

Logical Unit

The logical unit receives the fourth
element and puts it in the buffer. D)

Sequence number 54

Response to sequence number 54

March 30, 1974
John Smith
$90.22

Ninety

The logical unit successfully receives
the last element and puts it in the

buffer. D

March 30, 1974
John Smith
$90.22

Ninety

P Account 9

The logical unit then sends the buffer
of data to the printer or other device.

The logical unit sends a positive
response 1 to the last
element in the chain.

Figure 6-16 (Part 2 of 2). An Example of Sending a Chain of Messages to a Logical Unit That Is Buffering Data

132

Quiescing

Delayed Control Mode: When operating in delayed control mode, the sender may send
single-element messages and may also send multiple-element messages (chains). There are
two forms of delayed control mode:

Immediate request mode: The distinguishing characteristic of this mode is that the
sender may send a series of elements constituting one or more complete chains and ask
for a definite response only in the last element in the series. In addition, once the
sender has requested a definite response, it will send no other element until it receives
the definite response. Thus, if the sender is sending a series of single-element messages,
only the last single-element message will request a definite response; the other
single-element messages will request an exception response only. If the sender is
sending a chain, only the last element in the chain will request a definite response. If
the sender is sending multiple chains, only the last element in the last chain requests a
definite response; all preceding elements ask for an exception response only.

Delayed request mode: The distinguishing characteristic of this mode is that, while the
sender may insert requests for definite responses into the series of elements it is
sending, it is not required to wait for any of those responses. This mode can be used to
send multiple chains, with a definite response requested in the last element of each
chain (all other elements in each chain would request an exception response only), and
the sender can send any number of chains before stopping to wait for responses.

The receiver may be in either of two modes:

Immediate response mode: The receiver sends responses in the same order as the
sender requested them. Thus, when the sender receives a response, it can infer that the
receiver has received all preceding elements and that no negative responses will be
forthcoming for those preceding elements.

Delayed response mode.: The receiver need not return responses in the same order as
they were requested. A response for one element may be delayed beyond the response
for a subsequent element. There is one restriction, however, on the receiver. The
receiver must send responses for elements preceding a Chase command before it sends
the response to the Chase command.

ACF/VTAM provides a set of commands that the application program can use to request
a logical unit to stop sending normal-flow messages (data messages and data flow control
commands) to the program. A logical unit can also request that the ACF/VTAM
application program stop sending.

One use of this facility is to ensure that, at a given time, only one side (the ACF/VTAM
application program or the logical unit) can send normal-flow messages. (This use of the
quiesce commands is described below as “quiesce protocol.”)

Another use of quiescing is to stop the other end of the session from sending because of a
temporary condition or problem. This action is usually needed when the sender is sending
a long chain or a series of chains and the receiver wants the transmissions to be stopped
temporarily. Often, the receiver needs to halt the transmissions because the receiver. is
running out of buffer space in which to store the incoming data. Another reason is to
stop the incoming messages long enough to allow the receiver to send an informational
message of its own.

To understand how quiescing works, consider the situation in which the receiver is
running out of buffer space. Assume that this condition develops at the logical unit while
the application program is in the middle of sending a chain to the logical unit. To tell the
application program that it should stop sending data, the logical unit sends a Quiesce at
End of Chain (QEC) command to the application program. The exact meaning of that
command must have been worked out between the logical unit and the application

Chapter 6. Communicating with Logical Units 133

program before the programs were coded. Receipt of the command might mean “stop
sending immediately and do not complete the chain,” or it might mean “stop sending
after you complete the current chain.” If it means “stop sending immediately,” the
application program can send a Cancel command or a special message to tell the logical
unit to discard the beginning of the chain. If the QEC command means “complete the
chain before stopping,” the application program continues sending elements until the
chain is completed. In either case, the application program signals its compliance with the
QEC request by sending a Quiesce Complete (QC) indicator to the logical unit. The
logical unit then continues disposing of previously received elements (perhaps by printing
them or by writing them to disk storage).

When buffers are available to hold more incoming data, the logical unit sends a Release
Quiesce (RELQ) command to the application program. Upon receipt of that command,
the application program recommences sending (either at the beginning of the aborted
chain or at the beginning of a new chain, depending upon the agreed-upon protocol).
Figure 6-17 illustrates the use of quiescing to prevent buffer overflow.

After the application program stops sending elements and before it sends the Quiesce
Complete indicator, the program can senid certain normal-flow commands. For example,
at that point, the application program can send a Chase command to ensure that it has
received all responses before it sends the Quiesce Complete indicator.

Protocols for Ensuring Orderly Communications

134

Certain types of devices are limited in their communication with each other to specific
directions of traffic flow. Some devices can only send messages; others can only receive
(master/slave or simplex). Some devices can both send and receive, but can only do one
of them at a time (half duplex). Others can send and receive simultaneously (full duplex).
These characteristics are one factor that affect the selection of session parameters, which
are sent by the application program to the logical unit when connection is established (see
“Establishing Session Parameters during Connection” in Chapter 5). Other factors that
affect the selection of session parameters are (1) the type of communication that will
take place (interactive versus batch, for example) and (2) particular conventions that are
agreed upon between programmers before the host application program and the logical
unit program are written.

Systems Network Architecture (SNA) provides several protocols that enable the
application program and the logical unit to coordinate and control the direction of flow
and their exchanges of messages. None of these protocols is enforced by ACF/VTAM;
ACF/VTAM sends the commands and indicators specified by the sender without checking
them and without comparing them to the current status of communications. It is the
responsibility of the application program and the logical unit to abide by the
communication rules (the session parameters) they agreed upon when the connection was
established.

Quiesce Protocol: As described above, the quiesce commands can be used to temporarily
stop the sender from sending when the receiver encounters a problem or special
condition. Another use of the quiesce commands is to ensure that, at any one time, only
one end of the session (the application program or the logical unit) can send normal-flow
messages. This second use of the quiesce commands is called quiesce protocol.

In this protocol, one end of the session controls the direction of flow by using the quiesce
commands to “turn off” normal-flow transmission by the other end of the session. For
example, assume that the application program is to control the direction of flow.
Whenever the application program has not quiesced the logical unit, the logical unit is free
to send normal-flow messages. When the application program wants to start sending, it
informs the logical unit by transmitting the Quiesce at End of Chain command on the

Application Program Logical Unit

The ACF/VTAM application program is sending
continuous chains 1 of data to the logical unit for
a printout. Each chain contains five elements.
Each element is sent with a SEND macro
instruction. A processing routine passes the data
for each chain to the output routine. This
example begins with a new chain being sent by
the output routine.

Sequence number 26
1. Sends the first chain element with > Receives first chain element success-
SEND RPL=RPL1,AREA=(2), fully and stores it in a buffer. (No

RECLEN=120,STYPE= response is required.)
REQ,CONTROL=DATA,
CHAIN=FIRST,OPTCD=
SYN,POST=SCHED,
RESPOND=(EX,FME)

Sequence number 27
2. Updates the data area address in register 2 > Receives second chain element success-
and sends the second chain element with fully and stores it in the buffer.
SEND RPL=RPL1,AREA=(2),
CHAIN=MIDDLE

Sequence number 28

3. Updates the data area address in register 2 > Receives third chain element success-
and sends the third chain element with fully and stores it in the buffer.

SEND RPL=RPL1,AREA=(2),
CHAIN=MIDDLE

4. Updates the data area address in register 2
and sends the fourth chain element with
SEND RPL=RPL1,AREA=(2),

CHAIN=MIDDLE ACF/VTAM schedules the output
but has not yet sent it when The logical unit recog-

nizes that it is running low on buffer

space because it is receiving data faster

than it can print it. The logical unit
must tell the application program to
stop sending. This will give the logical

Expedited-flow message; no normal- unit time to clear out some of its

ézv sequence number buffers. It sends a Quiesce at End of

5. ACF/VTAM schedules the program’s DFASY Chain (QEC) command.
exit routine or completes a RECEIVE that
specifies RTYPE=DFASY. The RPL contains
QEC in the CON TROL field. (If requested by
the application program, ACF/VTAM will
have sent a response to the QEC command.)

6. The program sets a program-defined flag
indicating that, for this logical unit, the next
output request after sending the present chain
is to be held in abeyance until the quiesce is
released.

7. The program updates the data area address
and schedules the sending of the fifth and
last element in the chain with
SEND RPL=RPL1,AREA=(2),

CHAIN=LAST,
RESPOND=(NEX,FME)

Figure 6-17 (Part 1 of 2). An Example of a Logical Unit Quiescing an Application Program in Order to Interrupt Continuous Sending

Chapter 6. Communicating with Logical Units 135

13.

14.

15.

10.

11.

12.

16.

Application Program

. (Meanwhile, ACF/VTAM sends the fourth

chain element scheduled at step 4.)

. (The last chain element, scheduled at

step 7, is sent.)

Receives a positive response to the last chain
element, either in an RESP exit routine or
with a RECEIVE with RTYPE=RESP. Posts
an ECB associated with sending the chain.

Sends a Quiesce Complete (QC) control

command to the logical unit with

SEND RPL=RPL1,STYPE=REQ,
CONTROL=QC
(POST=RESP is assumed)

Has the ECB associated with the QC SEND
posted by ACF/VTAM.

The application program refrains from
sending any normal-flow messages to the
logical unit. The program does other
processing or relinquishes the CPU to
another program . . .

Receives the RELQ in a DFASY exit
routine or by completion of a RECEIVE
with RTYPE=DFASY. Turns off the hold-
sending flag associated with the logical unit,
sets the address of the output routine to be
branched to, and posts an ECB for the
logical unit (if using a DFASY exit routine).

Sends the first element in a new chain, as at
step 1 on the preceding page.

The output routine resumes sending at the
request of the processing routine. The first
element of the chain is sent with

Sequence number 29

Sequence number 30

Response to

VvV V

¢ Sequence number 30

Sequence number 31

Response to
Sequence number 31

‘

Expédited-flow message,
so no normal-flow
sequence number

<-

Sequence number 33
N

SEND RPL=RPL1,AREA=(2),
RECLEN=120,STYPE=
REQ,CONTROL=DATA,
CHAIN=FIRST,
OPTCD=SYN,POST=
SCHED,RESPOND=
(EX,FME)

>

Logical Unit

Receives fourth chain element success-
fully and stores it in the buffer.

Receives last element of chain success-

_fully, puts it in the buffer, and sends

the entire buffer to the printer.

Since a definite response was
requested, a definite response is sent.

Receives the QC.

Sends a response to the QC.

. . . Meanwhile, the logical unit contin-
ues printing data and thereby emptying
buffers until it reaches a point at which
sufficient buffers are available to
accept more input.

Sends a Release Quiesce (RELQ)
command meaning that the logical unit
is ready to resume receiving chains for
printout.

Receives the first chain element
successfully and stores it in a buffer.
(No response is required.)

1 Chaining is shown in this example. However, quiescing can also be performed when continuous sending does not involve
chaining (each SEND specifies CHAIN=ONLY).

Figure 6-17 (Part 2 of 2). An Example of a Logical Unit Quiescing an Application Program in Order to Interrupt Continuous Sending

‘136

expedited flow. On receipt of that command, the logical unit knows that it must stop
sending normal-flow messages when it completes sending the current chain. The logical
unit also knows that the next normal-flow transmission will come from the application-
program. The application program then starts sending normal-flow messages and-
continues until it sends the Release Quiesce command to the logical unit. On receipt of’
that command, the logical unit knows that it can again start sending normal-flow
messages. In this way, the application program alternately grants the logical unit
permission to send (by transmitting the Release Quiesce command) and stops the logical
unit from sending (by transmitting the Quiesce at End of Chain command). The direction
of flow can similarly be controlled by the logical unit. .

Quiesce state applies only to normal-flow traffic. While a program or logical unit is m

quiesce state, it can send responses and expedited-flow commands. Figure 6-18 shows an
example of quiesce protocol.

Application Program Logical Unit

< -
<]

Both nodes can send and
L > > receive
Quiesce Command

<]

Quiesce Complete Command
As soon as the logical unit

replies to the Quiesce
command by sending a
Quiesce Complete
command, it can no longer
send normal-flow data
messages or commands.

—>
> .
> > The logical unit can receive
>
>

data messages and
commands but can send
only responses and
expedited-flow commands. -
As soon as a Release

J Quiesce command is
received, the logical unit

can again send normal-flow -
data messages and :

< l commands.
< .

L

Release Quiesce Command

Note: Responses are not shown

Figure 6-18. Quiesce Protocol

Chapter 6. Communicating with Logical Units 137

i.‘ l38

Change-Direction Protocol: In this protocol, the application program and the logical unit
alternately relinquish the ability to send normal-flow messages by transmitting the
Change Direction Command indicator to the other end of the session. This protocol is
used in the half-duplex mode of communication, which is the mode in which a unit can
either send or receive but cannot do both at the same time.

There are two forms of half-duplex communication: salf-duplex flip-flop communication
and half-duplex contention communication. In half-duplex flip-flop communication, one
end of the session (the application program or the logical unit) is designated in the session
parameters as the first to send a message after a session is established; thereafter, the
program and the logical unit notify each other, in turn, that the other side can begin
sending normal-flow messages. In half-duplex contention communication, after connec-
tion has been established, the application program and the logical unit can both attempt
to start sending a normal-flow message at the same time (called contention). The one that
is allowed to proceed is the one that was designated in the session parameters as the one
that would always win in a contention situation. Similarly, in contention communication,
when either end of the session finishes sending a chain of normal-flow messages, both
ends can attempt at the same time to start sending a new message; again, the winner of
the contention is the one designated as such in the session parameters.

One bit in the common protocol portion of the session parameters controls priority for
initial sending in half-duplex communication. One setting of the bit indicates that the
logical unit has priority for sending; that is, (1) in flip-flop communication, the logical
unit is to send the first normal-flow message in the session, or (2) in contention
communication, the logical unit is to win the contention. The other setting of the bit
indicates that the application program is to have priority for sending.

Change-direction protocol must be used in half-duplex flip-flop communication; the
protocol may optionally be used in half-duplex contention communication.

Change-direction: protocol works like this: The side that is the first to send continues
sending normal-flow messages until it reaches the end of the data it wants to send. In the
last element of the last chain, the sender includes a Change Direction Command indicator.
The other side then sends normal-flow messages until it relinquishes its ability to send by
including the Change Direction Command indicator in the last element of a chain.
Communication continues to alternate in this fashion indefinitely, as shown in Figure
6-19.

While the receiver is awaiting the Change Direction Command indicator, it can transmit.
(as part of a response) a prompting indicator to the other side that in effect says, “I
would like the Change Direction Command indicator sent to me now.” This prompting
indicator, called a Change Direction Request indicator, can be honored or it can be
ignored. This indicator is supported by ACF/VTAM and by certain logical units (for
example, logical units in the IBM 3600 Finance Communication System), but the
indicator is not recognized by Systems Network Architecture (SNA). SNA defines the
Signal command for requesting a Change Direction Command indicator.

The side that is awaiting a Change Direction Command indicator (like the side that has
been quiesced in quiesce protocol) is prohibited only from sending normal-flow traffic. It
is free to send responses and expedited-flow commands.

As mentioned previously, ACF/VTAM does not enforce the change-direction protocol.
Should the side waiting for a Change Direction Command indicator begin sending dzia
anyway, ACF/VTAM does not prevent the transmission. Compliance with the change-
direction protocol is entirely the responsibility of the application program and the logizal
unit.

Application Program Logical Unit

N
L > The application program
sends data followed by a
L > Change Direction Command
> indicator. The logical unit
is expected to refrain from
C > ;
sending normal-flow
messages until the Change
- > Direction Command

Change Direction Command Indicator J indicator is received.

] The logical unit now
becomes the sender. The
application program is
expected to refrain from
sending normal-flow

] messages until it receives

. - the Change Direction
Change Direction Command Indicator) Command indicator.

A AN

L

YAV

L

Change Direction Command Indicator

J
Change Direction Command Indicator

NN N

Note: Responses are not shown.

Figure 6-19. Change-Direction Protocol

Bracket Protocol: A bracket is any unit of work that an application program and a
logical unit have been programmed to accomplish. A bracket may consist of any
combination of data messages and data replies, ranging from a single message in one
direction to an elaborate exchange of messages and replies. But, no matter how simple or
complex the series of messages and replies may be, the characteristic that makes them all
part of the same bracket is that they all pertain to the same unit of work.

A data-base inquiry transaction is a typical example of a bracket. In such a transaction,
the logical unit sends an inquiry to the host computer asking for some piece or body of
information stored in the data base. For example, an insurance agent at a terminal asks
the computer to provide information on all insurance policies issued to a particular client.
In answer to the inquiry, the application program in the host computer sends a single
message or a series of messages containing the requested information. At this point, the

Chapter 6. Communicating with Logical Units 139

140

bracket might end. Or, as the result of one of the replies, the logical unit might ask for
further details, and the bracket does not end until the application program has acquired
the details from the data base and sent them to the logical unit.

Bracket protocol is used when one or both of the ends of the session cannot begin
processing a new unit of work until the current one has been completed. For example, it
can be used if the logical unit or application program cannot start handling a new inquiry
until the replies to the current inquiry have been completed. Bracket protocol provides a
way of ensuring that a new unit of work is not started until the preceding one has been
finished.

The application program and logical unit that are using bracket protocol indicate on each
first-in-chain or only-in-chain message whether that chain is the beginning, middle, or end
of the bracket. These delimiters allow the receiving node to determine whether or not a
new bracket can be started. A Begin Bracket indicator is included in the first element of
the first chain in a bracket. The End Bracket indicator is included in the first element of
the last chain in the bracket.

When a connection is established, bits in the session parameters sent by the application
program to the logical unit determine who wins bracket contention when both sides want
to begin a bracket simultaneously, who can end a bracket, and whether bracket
termination is conditional (the side sending the End Bracket indicator does not consider
the bracket ended until it receives a positive response to the element that includes the
indicator) or unconditional (termination occurs when any response is returned). Figure
6-20 shows an example of bracket protocol.

One bracket-related bit in the session parameters determines the winner of bracket
contention by assigning the role of first speaker to one participant (application program
or logical unit) and the role of bidder to the other participant. The first speaker is the
participant that is given the ability to begin a bracket without asking permission from the
other side. The bidder is the participant that must request and receive permission from
the first speaker to begin a bracket. The bit in the session parameters designates whether
the application program or the logical unit is to be the first speaker; the other participant
is automatically the bidder.

When a bracket is ended, the first speaker can start a new bracket if it wants. The bidder,
however, must request permission to begin a bracket. The bidder can do this in either of
two ways:

e The bidder can request permission by sending a Bid command to the first speaker. A
positive response to the Bid command indicates that the first speaker has granted
permission. A negative response indicates that permission is denied. The negative
response, however, may be accompanied by sense data that indicates whether the first
speaker will or will not later grant the permission by sending a Ready to Receive
command. On receipt of that command, the bidder can begin a bracket.

¢ The bidder can request permission by starting to send a message in which the first
element contains a Begin Bracket indicator. The response indicates whether or not the
bidder can continue with the bracket, with a positive response indicating that it can
continue and a negative response indicating that the attempt was rejected. The
negative response, however, may be accompanied by sense data that indicates whether
the first speaker will or will not later send the Ready to Receive command. There are
restrictions on attempting to begin a bracket by starting to send a message with a
Begin Bracket indicator: :

1. If the bidder is sending only a single-element message or a single chain, the message
or the first element in the chain must have the Begin Bracket and End Bracket
indicators.)

Application Program

The application program
processes the inquiry. This
results in transmission of a
chain that ends with a
query regarding the
adequacy of the data.

Logical Unit

The logical unit receives
an inquiry from one
of its input devices.

(‘ 1 The logical unit transmits a
N . " , message to the
Begin Bracket Indicator application program with a
Begin Bracket indicator.
f y =
L v)
Continue Bracket,
First-in-Chain
[™
o
Continue Bracket,
Middle-of-Chain
[>
Continue Bracket,
\ Last-in-Chain
<] The logical unit replies with a

Continue Bracket request for more data.

N

The application program r >
mits th iti . Al
;rans its the additional Continue Bracket
ata.
<)| The logical unit determines that
. it has the data needed to satisfy
End Bracket Indicator the inquiry and notifies the
application program that the
bracket is ended.
Note: In this example, the logical unit determines the
beginning and the end of the bracket. In other The logical unit displays
applications, the application program could the requested
determine the beginning and the end of the information.

bracket, or one node could determine the
beginning and the other node determine the end.

Figure 6-20. Bracket Protocol

2. If the bidder is sending multiple chains, the first element in the first chain must
contain the Begin Bracket indicator and the bidder must ask for a definite response
to the first chain. If the bidder gets a negative response, it knows that its bid was
rejected and that it must terminate the chain (either by sending the Cancel com-
mand or by sending an element marked last in chain).

Like quiesce and change-direction protocol, bracket protocol is not enforced by ACF/
VTAM. It must be adhered to by the participants.

Special Use of RESPOND=QRESP with Bracket Protocol: Consider this situation: The
application program (which is the bidder) and the logical unit (the first speaker) are in a
session involving half-duplex contention and the use of brackets. They are within a
bracket. They have agreed in the session parameters that a bracket is not terminated until
the sender of an End Bracket indicator (EB) gets a response to the message containing
EB.

Chapter 6. Communicating with Logical Units 141

Now, the application program sends a message containing EB. Simultaneously, the logical
unit sends a data message that was meant to be within the current bracket. In VTAM
Level 2 and if RESPOND=NQRESP is used for the EB message in ACF/VTAM, it is
possible for the application program to get the response to the EB message before it gets
the data message. If that happens, the application program fails to know that the logical
unit meant the data message to be within the bracket. ‘

To avoid this problem, the application program should send the EB message with a macro
instruction that specifies QRESP as one of the RESPOND parameters. That parameter
causes ACF/VTAM to treat the response to the message as if it were a normal-flow
message. Since the logical unit must send the EB response after it sends the in-bracket
message, and because the EB response will be treated as a normal-flow message, the
application program will get the in-bracket message and the EB response in that
order—the correct order.

Note that, because the EB response is treated as a normal-flow message, it will not cause
scheduling of a RESP exit routine, nor can it cause completion of a RECEIVE specifying
RTYPE=RESP. The macro instruction used to send the message containing the End
Bracket indication and RESPOND=QRESP must specify POST=SCHED. The EB response
itself (because it is treated as a normal-flow message) must be gotten with a RECEIVE
RTYPE=DFSYN (not RTYPE=RESP).

For more information on the QRESP and NQRESP parameters in the RESPOND
operand, see “Specifying Special Handling of the Response to a Normal-Flow Message or
Command” under “What a Response Contains” earlier in this chapter.

Function Management Header Option
The function management (FM) header option is specified through the RPL or SEND
macro. Specifying OPTCD=FMHDR, indicates that a user-defined or SNA-defined FM
header is included in a data message to a logical unit. This option only applies for record
mode (with STYPE=REQ,CONTROL=DATA) and indicates to ACF/VTAM how the
format bit in the request header (RH) of a specific data message is to be set. If FMHDR is
coded, the format bit is set in the RH and sent to the receiver of the message.

Similarly, if the format bit is on in the RH of a received message (indicating the presence
of an FM header), it causes FMHDR to be set in the RPL used for the receive operation.
FMHDR can be tested with the TESTCB macro instruction or by using the IFGRPL
DSECT. OPTCD=FMHDR is set whenever a command or command response is received.

When connection is established, the application program and logical unit determine
whether FM headers can be used.

Additional SNA Protocol Information
In addition to the protocols described earlier in this chapter, the following protocols can
be specified in the session parameters when connection is made between the application
program and the logical unit:

Whether or not a logical unit can remove extraneous blank characters before data is
transmitted (compression)

Who has error recovery responsibility

Whether an alternate character code is acceptable (for example, ASCII instead of
EBCDIC)

Communicating with the 3270 Information
Display System
- The application program can communicate with a BSC 3270 or local non-SNA 3270 using
record-mode macro instructions. This is possible if MODE=RECORD is specified (in the

142

NIB) when the OPNDST macro instruction is issued to connect the 3270. ACF/VTAM
provides the record-mode facility so that application programs communicating with other
logical units can use the same macro instructions to communicate with 3270s.

The application program can also communicate with local non-SNA 3270s (or BSC 3270s
defined with PU=NO) in the same manner used to communicate with BSC and start-stop
terminals—using basic-mode and macro instructions.

For more information on communicating with 3270s, see Appendix A, “Communicating

with BSC and Start-Stop Terminals,” or refer to Introduction to Programming the IBM
3270 Information Display System, GC27-6999.

Chapter 6. Communicating with Logical Units 143

Chapter 7. Using Exit Routines

How Exit Routines Work

Other chapters discuss exit routines in relation to connecting or communicating with
logical units or closing the program. This chapter discusses how exit routines work,
summarizes them, discusses the advantages and disadvantages of using them, and describes
procedures to follow in using them. These exit routines apply to application programs
that use record-mode macro instructions to communicate with logical units. See
Appendix A for descriptions of special exit routines that apply only to non-SNA
terminals used in the basic mode.

ACF/VTAM provides for the use of two general kinds of exit routines: RPL-specified exit
routines and EXLST exit routines. The two kinds of exit routines work somewhat
differently as described below.

How RPL-Specified Exit Routines Work

The instructions to be executed when an RPL-based operation is completed can be
written as a separate routine. This routine, called an RPL exit routine, can be specified in
the RPL-based macro instruction that requests the operation. The address of the exit
routine is specified in the EXIT operand of the macro instruction or is placed in the EXIT
field of the RPL. When the requested operation is completed, ACF/VTAM schedules and
causes entry to the RPL exit routine. When ACF/VTAM gives control to the RPL exit
routine, the routine cannot be interrupted even though other pending events are
completed; the exit routine must return control to ACF/VTAM before ACF/VTAM can
return control to other parts of the application program, including other exit routines
that ACF/VTAM may have scheduled. (A LERAD or SYNAD exit routine, however, can
be entered if an error or special condition occurs during an RPL-based request that is
issued in the RPL exit routine.) Figure 7-1 illustrates the use of an RPL exit routine.

Designating a routine as an RPL exit routine is an alternative to having ACF/VTAM post
an ECB when an asynchronous event is completed. A program can use one or the other
technique exclusively, or it can use a mixture of ECB-posting and RPL exit routines.
Sample Program 2 in Part 3 shows an example of an RPL exit routine. The same RPL exit
routine can be designated by more than one macro instruction; in other words, an RPL
exit routine can be established as a common exit routine.

If the application program also uses ECBs, the RPL exit routine may post an ECB related
to the logical unit being communicated with, so that the main program will later discover
that an event is completed. Since it may be necessary to reuse the RPL associated with
the request whose completion caused entry to the exit routine (for example, for
reissuance of a RECEIVE request within the exit routine) and because it is a means of
causing entry to a LERAD or SYNAD exit routine if an error occurs, a CHECK macro
instruction may be required in the exit routine. If the RPL does not have to be reused,
the CHECK macro can be in the main program, perhaps following the discovery of the
posted ECB associated with the logical unit.

How EXLST Exit Routines Work

This type of exit routine differs from the RPL exit routine in being a special-purpose exit
routine. The special purpose is understood by both the ACF/VTAM application program
and ACF/VTAM. Instead of being specified in a particular macro instruction request, the
identity of an EXLST exit routine is established only when the exit list in which its name
is specified is identified to ACF/VTAM, either when the program is opened or, for certain
types of exit routines, when a logical unit is connected. In general, EXLST exit routines

Chapter 7. Using Exit Routines 145

. |
2

‘Application Program _ ACF/VTAM

RECEIVE ~~— ,EXIT=RPLEX) '

A

Interruption

Input
4 RPLEX Exit Routine

Y

.
.
CHECK
.
°
RECEIVE ~~~ , EXIT=RPLEX
.
)
°

5 BR R14 B e

The ACF/V TAM application program issues an asynchronous RECEIVE request, which passes control to ACF/VTAM. The
request specifies the scheduling of the RPLEX when the operation is completed. ACF/VTAM accepts the request and
returns control to the program at the next sequential instruction (2).

The program continues execution until input arrives, and ACF/VTAM interrupts the program when the input arrives.

ACF/VTAM schedules RPLEX as the next exit routine. Since an exit routine is not currently being executed, RPLEX is
immediately given control (4).

RPLEX is executed without any other part of the program gaining control. A CHECK macro instruction is issued to mark the
RPL action. A RECEIVE is issued to read input again. It is an asynchronous request specifying that RPLEX be scheduled
when the operation is completed. (If more input arrives and the operation is completed, RPLEX is to be scheduled but not
reentered until after it finishes and returns control to ACF/VTAM.

RPLEX, having completed its job, returns control to ACF/VTAM.

If the RECEIVE in RPLEX has not been completed, ACF/VT AM returns control to the main program that was interrupted
at 3. If the RECEIVE in RPLEX has been completed, RPLEX is again given control.

Fi”g(ne 7-1. An Example of Using an RPL Exit Routine

s«

146

are special-purpose exit routines, entered only when a somewhat unusual event occurs,
such as the network operator’s issuance of a HALT command to shut down the network.

Here is how EXLST exit routines work:

1. An ACF/VTAM application contains a number of exit routines written for different

purposes (for example, a LOGON exit routine and a TPEND exit routine).

ACF/VTAM Application Program

LOGON Exit Routine

LOGON 1| TPEND Exit Routine
DFASY Exit Routine

2. The program names the special-purpose exit routines and puts their names in an exit-.
list. The exit list is created with the EXLST macro instruction. Each exit routine name
is specified with an appropriate ACF/VTAM-provided operand, such as LOGON and

TPEND.
N~ "L
La d -
EX1 EXLST AM=VTAM,LOGON= r
LOGON1,TPEND=
TPEND1

3a. This exit list, identified by the name of the EXLST macro, can be specified in the :
EXLST operand of the program’s ACB. When the ACB is opened, the list of exit

routines becomes available to ACF/VTAM.

ACF/VTAM
OPEN ACB1
7
7
A
7
7
Ve

AL -~~~
~ //

ACB1 ACB EXLST=EX1

EX1 EXLST y 4

3b. Alternatively, certain - types of exit routines—DFASY, SCIP, and RESP—can be
specified in the EXLST operand of the NIB that is used when a logical unit is
connected. After the logical unit is connected (that is, after OPNDST is completed),
ACF/VTAM will use an exit routine identified in the NIB exit list in preference to the
corresponding exit routine specified in the ACB exit list. The preference applies only
for the logical unit represented by the NIB at connection. If an appropriate exit
routine is not in the exit list passed during connection, ACF/VTAM will look in the
ACB-specified exit list that was passed for the entire program when the ACB was

opened.
ACF/VTAM
OPNDST RPL=RPL1 e =
7
Ve
A
Ve
Jv -~ /
g 4 L 4 7
RPL1 RPL NIB=NIB1 //
NIB1 NIB EXLST=EXIT1
EXIT1T EXLST DFASY=DFASY1 y

Chapter 7. Using Exit Routines 147 ;

4. When an event occurs for which a related exit routine exists, ACF/VTAM schedules
the appropriate exit routine, using the exit routine address (name) that it has been
provided. As soon as no other exit routine is being executed or scheduled, the exit
routine is given control (if necessary, interrupting the main portion of the program).

Main program
interrupted, if necessary
Control given Logon

D ——
to LOGONT1.

ACF/VTAM

LOGON1 BALR 3,0
L]
.
.

BR R14

A Summary of ACF/VTAM Application Program
Exit Routines

Figure 7-2 summarizes exit routines by showing the purpose of each type of exit routine
and how the address of each type is specified to ACF/VTAM.

Deciding Whether and How to Use Exit Routines

The use of exit routines is optional. An RPL exit routine is an alternative to having a
routine that is branched to in the main program following the posting of an ECB by
ACF/VTAM. EXLST exit routines are not absolutely required, although some are
designed for common use and should normally be included in an application program.
These EXLST exit routines are designed for common use:

LERAD

LOGON, in a primary application program when requests for connection (logons) can
be expected

LOSTERM
NSEXIT
SCIP
SYNAD
TPEND

The following EXLST exit routine is required only if the facility associated with it is
required:
RELREQ, in a primary application program if the application program is to be
notified when another program requests control of a logical unit that is already
connected to the first program

These EXLST exit routines are optional in that they are an alternatives to other facilities:

DFASY, rather than having to issue a RECEIVE specifying RTYPE=DFASY in the
main program and branching to a related routine on completion ‘

RESP, rather than having to issue a RECEIVE specifying RTYPE=RESP in the main
program and branching to a related routine on completion

148

Type of Exit Routine

Purpose

How the Exit Routine’s
Address Is Specified

Type of Exit List
That Routine’s Name
May Appear In

RPL Exit Routine

EXLST Exit Routines
(Each type is listed
below.)

DFASY

LERAD

LOGON

LOSTERM

NSEXIT

RELREQ

RESP

SCIP

SYNAD

TPEND

Any purpose

Special purposes

Receive expedited-flow input (for
example, a Quiesce at End of Chain
command) from a logical unit without
requiring an outstanding RECEIVE
specifying RTYPE=DFASY.

Handle logical errors that may occur
as the result of a request.

Handle a request for connection to the|
application program that ACF/NTAM
has received from a logical unit.

Handle the situation of a logical unit’s
being unexpectedly lost to the
program, or notify the application
program of other unusual conditions
that can affect the session.

Handle a situation in which (1) a
request for a procedure has been
positively responded to but the
procedure cannot be completed, (2)
ACF/VTAM has initiated session
termination because of a session
outage, or (3) some other kind of
network services request unit is
received.

Handle a request from another
application program for a logical unit
that is presently connected to the
program that contains the RELREQ
exit routine.

Receive a response from a logical unit
without requiring an outstanding
RECEIVE specifying RTYPE=RESP.

Receive and process one of the
following session-control commands:

Clear

Start Data Traffic (SDT)

Request Recovery (RQR)

Set and Test Sequence Numbers

(STSN)

Bind

Unbind
Handle a physical error or special
condition that occurs as the resuit of
a request.

Handle the closing of the program that
is required when the network operator
halts the network or ACF/VTAM

terminates abnormally.

Code the address in the EXIT operand of
an RPL macro or in the request that uses
the RPL.

Code the names of the exit routines in an
EXLST macro instruction. The list that is
created is then identified in either the E
EXLST operand of an ACB or NIB macro.

Code the name in the DFASY operand
of the EXLST macro.

Code the name in the LERAD operand of
the EXLST macro.

Code the name in the LOGON operand of
the EXLST macro.

Code the name in the LOSTERM
operand of the EXLST macro.

Code the name in the NSEXIT operand
of the EXLST macro.

Code the name in the RELREQ operand
of the EXLST macro.

Code the name in the RESP operand of
the EXLST macro.

Code the name in the SCIP operand of
the EXLST macro.

Code the name in the SYNAD operand
of the EXLST macro.

Code the name in the TPEND operand
of the EXLST macro.

(Not applicable)

ACB or NIB

ACB only

ACB only

ACB only

ACB only

ACB only

ACB or NIB

ACB or NIB

ACB only

ACB only

Figure 7-2. A Summary of Exit Routines

- Chapter 7. Using Exit Routines

149

RPL Exit Routines

If an EXLST exit routine is not provided and the event or condition that the routine
handles occurs, the user may never learn of the event or condition. In some cases, the user
might learn of the event or condition through return codes or information in the RPL.

Note: Only exit routines that can be recognized by ACF/VTAM can be specified in the
EXLST macro instruction. Non-ACEF|/VTAM exit routines (such as VSAM exit routines)
cannot be specified in the macro instruction.

In general, it is easier to have ACF/VTAM schedule and enter an RPL exit routine than it
is to write instructions that, after an ECB has been posted, determine which ECB was
posted, keep track of which ECB to check next, wait if no ECB is yet posted, and branch
to an appropriate routine when an ECB is found to be posted. There is another advantage
to an RPL exit routine even if ECB-handling is also used: Certain requests can be given
priority by having an RPL exit routine scheduled rather than an ECB posted. The RPL
exit routine can be entered sooner than the same logic can be branched to after the main
program discovers the posted ECB.

Specifyving the DFASY, RESP, and SCIP
Exit Routines in an ACB or NIB

DFASY Exit Routine

150

Certain EXLST exit routines—DFASY, RESP, and SCIP—can be in a list that is associated
either with an ACB (identified in the EXLST operand of an ACB) or with a NIB
(identified by the EXLST operand of a NIB). ACB-specified exit routines are used by
ACF/VTAM for all logical units connected to the program represented by the ACB.
NIB-specified exit routines are used by ACF/VTAM only for the logical unit whose NIB
specifies the exit routine when the logical unit is connected. For details on how
ACF/VTAM handles DFASY and RESP input, see Figures 7-3 and 7-4. Several logical
units can share the same list of DFASY, SCIP, and RESP exit routines or the list can be
unique for each logical unit.

Here is an example of the use of both ACB- and NIB-specified exit routines in the same
program. Program A has a list of exit routines that are common to all logical units
connected to the program. These include the LOGON, TPEND, LERAD, NSEXIT,
SYNAD, LOSTERM, and SCIP exit routines. These are defined in an EXLST macro
instruction whose address is specified in the program’s ACB macro instruction. In
addition, because the program plans to handle DFASY and RESP input from some logical
units differently from similar input from others, the program has two lists of DFASY and
RESP exit routines. (One list will be used to process signals from logical units at one
location and the other list will be used for signals received from another location.) Prior
to connecting a logical unit, its logon message can help determine its location, and the
related exit-list address can be placed in the EXLST field of the NIB, using MODCB.

The DFASY exit routine provides a way for ACF/VTAM to notify an application
program that an expedited-flow command has arrived. The expedited-flow commands
that can be received by a primary application program are:

Quiesce at End of Chain (QEC)
Release Quiesce (RELQ)
Request Shutdown (RSHUTD)
Shutdown Complete (SHUTC)
Signal

Stop Bracket Initiation (SBI)

The expedited-flow commands that can be received by a secondary application program
are:

Quiesce at End of Chain (QEC)
Release Quiesce (RELQ)
Shutdown (SHUTD)

Signal

Stop Bracket Initiation (SBI)

For information on these commands, see Appendix B.

If a DFASY exit routine is specified, either in the EXLST operand of the NIB used for
connection or of the ACB (and PROC=DFASYX was specified in the NIB), whenever an
expedited-flow command arrives from the logical unit associated with the NIB,
ACF/VTAM schedules the DFASY exit routine. The manner in which ACF/VTAM
handles an expedited-flow command is shown in Figure 7-3.

Using a DFASY exit routine is an alternative to getting each expedited-flow command
with a RECEIVE macro instruction that contains RTYPE=DFASY or that includes
DFASY among other RTYPE parameters. The program can maintain an active RECEIVE
with RTYPE=DFASY to get each expedited-flow command, but use of the RECEIVE
requires an active RPL before the command arrives. Use of the RECEIVE also requires
the program to include coding that, after completion of the RECEIVE, determines which
command has been received and branches to the routine that processes that command.

Using a DFASY exit routine may be more convenient. This frees the application program
from having to issue the RECEIVE and from tying up storage for the active RPL. The
disadvantage is that scheduling an exit routine requires more ACF/VTAM execution time
than posting an ECB. However, since DFASY input occurs less frequently than
normal-flow input, that disadvantage may be outweighed by the convenience of having
the exit routine.

Whether or not the application program must send a response to the expedited-flow
command depends on the setting of a PROC option in the NIB when the connection was
made:

If PROC=APPLRESP was specified in the NIB at connection, the application program
sends the response, using SEND ...STYPE=RESP,CONTROL=command code of
received command RESPOND=(response operands). Sense information may also be
returned for a negative response.

If PROC=SYSRESP was specified in the NIB at connection, ACF/VTAM automatic-
ally sends the response before presenting the command to the application program.

For a DFASY exit routine, information on the expedited-flow command that has been
received is available in a read-only RPL provided by ACF/VTAM. The location of the
read-only RPL is provided in the parameter list passed to the exit routine when the
routine is scheduled.

Registers Upon Entry: When the DFASY exit routine receives control, register 1 contains
the address of a 5-word parameter list (the parameter list is summarized in Figure 7-5):

The first word contains the address of the ACB of the application program to which
the expedited-flow command was sent.

The second word contains the CID of the logical unit that sent the command.

The third word contains whatever has been placed in the USERFLD field of the NIB
associated with that logical unit.

pter 7. Using Exit Routines 151

DFASY
input

Is there
aNIB DFASY
exit

Yes No

Invoke

NiB Is there a N
E o

gth1SY RECEIVE SPEC

DFASY

Input will
satisfy the What
RECEIVE is CA/CS mode
SPEC of LU
DFASY

Queue input

for the next

RECEIVE 2

Yes Is No
DFASYX in
NIB
Yes Is there No Is there a No

an ACB DFASY
exit

RECEIVE ANY
DFASY

Invoke Queue Input Queue

ACB input will input

DFASY for the satisfy for the

exit 3 next the next
RECEIVE RECEIVE RECEIVE
SPEC SPEC DFASY
DFASY or

ANY DFASY

1 The exit routine is scheduled if no other exit routine (including the NIB DFASY exit routine) is currently running. |f
another exit routine is running, the input is queued for the NIB DFASY exit routine.

2 The input will satisfy a RECEIVE SPEC DFASY. The input can also be obtained by a RECEIVE ANY DFASY if the
mode has been switched to CA for the session with the logical unit.

3 The exit routine is scheduled if no other exit routine (including the ACB DFASY exit routine) us currently running. If
another exit routine is running, the input is queued for the ACB DF ASY exit routine.

Figure 7-3. How ACF/VTAM Handles DFASY (Expedited-Flow) Input

152 (

RESP Exit Routine

The fourth word is reserved.

The fifth word contains the address of an ACF/VTAM-supplied, read-only RPL. Other
than the fact that it resides in read-only ACF/VTAM storage and cannot be used by an
RPL-based macro instruction, the read-only RPL is identical to any other RPL. The
application program can examine the read-only RPL fields with SHOWCB and
TESTCB macro instructions or by using assembler instructions and the IFGRPL
DSECT. The read-only RPL feedback fields are set exactly as they would be following
a RECEIVE (RTYPE=DFASY) macro instruction, except that the REQ field is not
set. A CHECK macro instruction must not be issued against the read-only RPL.

Other general purpose registers contain the following:

Register 14: The address in ACF/VTAM to which the DFASY routine must branch
when it has finished processing. ACF/VTAM will handle the return of control to the
instruction in the application program that was about to be executed when the
DFASY interruption occurred.

Register 15: The address of the DFASY routine.
Registers 0 and 2-13: Unpredictable.

The RESP exit routine provides a way for ACF/VTAM to notify an application program
when a response to a normal-flow message (data or command) has arrived.

Using a RESP exit routine is one of three ways an application program can be notified of
receipt of a normal-flow response. The other two ways are:

Specifying POST=RESP in the macro instruction used to send the normal-flow
message. If this is done, the macro instruction is not completed until the response is
received.

Maintaining an active RECEIVE with RTYPE=RESP. The RECEIVE is completed
(and reissued) each time a normal-flow response is received.

If a RESP exit routine is specified (either in the EXLST operand of the NIB used for
connection or of the ACB) and PROC=RESPX was defined in the NIB at connection,
ACF/VTAM schedules the RESP exit routine whenever a normal-flow response is received
from the logical unit associated with the NIB. This frees the main part of the application
program from having to issue a RECEIVE with RTYPE=RESP or, if a RECEIVE is issued
that will receive any kind of input (RECEIVE with RTYPE=(DFSYN,DFASY ,RESP)),
from having to distinguish the type of input that was received and branching to the
appropriate routine. The disadvantage of having a RESP exit routine is that the system
must execute more instructions to schedule an exit routine than to post an ECB. Howver,
since RESP input occurs less frequently than normal-flow input; this disadvantage may be
outweighted by the convenience of having a RESP exit routine. The way in which
ACF/VTAM handles RESP input is shown in Figure 7-4. A RESP exit routine is shown in
Appendix D.

For a RESP exit routine, information on the normal-flow response that has been received
is available in a read-only RPL provided by ACF/VTAM. The location of the read-only
RPL is provided in the parameter list passed to the exit routine when the routine is
scheduled. »

Registers Upon Entry: When the RESP exit routine receives control, the register contents
are the same as those described above for the DFASY exit routine. That is:

Register 1: The address of a parameter list containing the ACB address, the logical
unit’s CID, the USERFLD data, a reserved word, and the address of the read-only
RPL. The parameter list is summarized in Figure 7-5.

Chapter 7. Using Exit Routines 153

RESP
input

Is there
a NIB RESP
exit

Yes No

Invoke
NIB RESP Yes Is there a
exit 1 RECEIVE SPEC

RESP

Input will

satisfy the

RECEIVE _ What
SPEC is CS/CA mode
RESP of LU

Queue input
for the next
RECEIVE 2

Is there
an ACB RESP
exit

Is there a
RECEIVE ANY
RESP

Yes Yes No

Invoke Queue Input Queue

ACB input will input

RESP for the satisfy for the

exit 3 next the next
RECEIVE RECEIVE RECEIVE
SPEC SPEC RESP
RESP or

ANY RESP

The exit routine is scheduled if no other exit routine (including the NIB RESP exit routine) is currently running. |f
another exit routine is running, the input is queued for the NIB RESP exit routine.

2 The input will satisfy a RECEIVE SPEC RESP. The response can also be obtained by a RECEIVE ANY RESP if the
mode has been switched to CA mode for the session with the logical unit.

3 The exit routine is scheduled if no other exit routine (including the ACB RESP exit routine) is currently running. If
another exit routine is running, the input is queued for the ACB RESP exit routine. .

Figure 7-4. How ACF/VTAM Handles RESP (Normal-Flow Response) Input

154

LERAD Exit Routine

T
Register 1 Parameter List

Exit Routine 1st Word 2nd Word L3rd Word 4th Word 5th Word
LERAD None (Register 1 contains the RPL address for the request that failed)
SYNAD None (Register 1 contains the RPL address for the request that failed)
DFASY ACB address CID USERFLD Unused Read-only
data RPL address
RESP ACB address CiD USERFLD Unused Read-only
data RPL address
SCIP ACB address CID except USERFLD Unused except | Read-only
for Bind. For | data except for Bind. For RPL address
Bind, this word| for Bind. For Bind, address
is reserved. Bind, this word | of session
is reserved. parameters.
TPEND ACB address Reason-
terminated
code
RELREQ ACB address Address of the
terminal’s
symbolic name
LOGON ACB address Address of the | Unused Length of
terminal’s logon message
symbolic name
LOSTERM ACB address CID USERFLD Reason-lost
data code
NSEXIT ACB address (Contents depend on type of Read-only
network services request unit RPL address
received. See description of
NSEXIT exit routine.)

Figure 7-5. Summary of Parameter Lists Passed to Exit Routines

Register 14: The address in ACF/VTAM to which the RESP exit routine must return
when it is finished processing. ACF/VTAM returns control to the instruction in the
application program that was about to be executed when the RESP interruption
occurred.

Register 15: The address of the RESP exit routine.
Registers 0 and 2-13: Unpredictable.

A LERAD exit routine is included in an application program (and identified in an ACB
exit list) when the application program wants a routine to be automatically invoked when
a logical error (in contrast to a physical error) is detected.

Generally, a logical error results when an RPL-based request is made that is inherently
contradictory—like attempting to use an invalid CID. (Errors that occur because of
hardware malfunctions, for example, are not logical errors. These errors are handled by
the SYNAD exit routine.)

If the SYN option code is in effect when the logical error occurs or if the request cannot
be accepted because of a logical error, the LERAD exit routine is entered immediately;
otherwise, if the ASY option code is in effect, the routine is not scheduled until a
CHECK macro instruction is issued for the operation in which the error occurred. One
exception: If the ASY option code is set, the request is accepted by ACF/VTAM, and
then ACF/VTAM determines that it cannot post the RPL (perhaps because the ACB has
been overwritten), ACF/VT AM abnormally terminates the application program.

Chapter 7. Using Exit Routines 155

156

Before the LERAD exit routine is given control, ACF/VTAM sets a recovery action
return code of 20 or 24 (decimal) in register 0 and in the RTNCD field of the RPL and
sets a specific error return code in the FDBK2 field indicating the specific cause of the
error. These return codes are explained in Appendlx C of ACF/VTAM Macro Language
Reference.

If the application program has no LERAD exit routine and a logical error occurs,
ACF/VTAM simply returns control to the next sequential instruction. ACF/VTAM places
a return code of 4 in register 15 and a recovery action return code of 20 or 24 (decimal)
in register 0 and in the RTNCD field of the RPL. It also sets a specific error return code
in the FDBK?2 field of the RPL indicating the specific cause of the error. These codes are
explained in Appendix C of ACF/VTAM Macro Language Reference.

If the application program issues RPL-based requests in both the main program and in the
exit routines, the LERAD exit routine may be reentered by ACF/VTAM. The routine
may likewise be reentered if any RPL-based requests are issued in the LERAD exit
routine itself. In these situations, the exit routine must be reeneterable.

When the LERAD exit routine returns control to ACF/VTAM, ACF/VTAM leaves
registers 0 and 15 intact so that the routine can pass information back in these registers to
the main part of the application program.

Registers Upon Entry: When the LERAD routine receives control, the general purpose
registers contain the following:

Register 0: A recovery action return code (refer to Appendix C in ACF/VTAM Macro
Language Reference).

Register 1: The address of the RPL associated with the request. If the recovery action
return code in register O is set to 24 (decimal), ACF/VTAM was unable to place an
indicator in the FDBK?2 field specifying the reason for the error. This happens in three
cases: A macro has been issued whose RPL is already in use, CHECK has been issued
for a request whose RPL exit routine has not yet been scheduled, or an invalid RPL
was specified (for example, the RPL address is invalid or the RPL is overlaid). For
descriptions of the return codes placed in FDBK2, see Appendix C in ACF/VTAM
Macro Language Reference.

Register 13: The address of an 18-word save area supplied by the programmer when
the macro instruction that caused the logical error was issued. If the exit routine is
going to return control via register 14, it must not change anything in the save area.
This means that if any macro instruction is issued in the exit routine, register 13 must
first be loaded with the address of a new save area. Furthermore, before control is
returned via register 14, register 13 must be restored with the value it had when the
exit routine was invoked.

Register 14: The address in ACF/VTAM to which the LERAD exit routine can branch
when it has finished processing. When the exit routine branches to this address,
ACF/VTAM handles the retuning of control to the next sequential instruction in the
application program following the request (or following the CHECK macro instruction
issued for the request). The LERAD exit routine can branch to any part of the main
program because the routine is executed under the same system task control block as
the main program. (Care should be taken, however, to eventually branch to the register
14 address if LERAD was entered from an RPL-based request issued in another exit
routine.) If the routine returns control to the next sequential instruction by branching
on the register 14 address, ACF/VTAM restores the registers from the save area whose
address is in register 13.

Register 15: The address of the LERAD routine.

Registers 2-12: Unmodified; whatever was in them when the macro instruction was
issued is still there.

SYNAD Exit Routine

A SYNAD exit routine is included in an application program (and identified in an ACB
exit list) when a routine is to be automatically invoked when a physical error is detected.
A physical error is an unrecoverable input or output error or other unusual condition that
occurs during an I/O operation. The SYNAD exit routine, if specified. is entered for all
recovery action return codes of 4, 8, 12, and 16 (decimal).

If the SYN option code is in effect when the error occurs or if the request cannot be
accepted, the SYNAD exit routine is entered immediately; otherwise, if the ASY option
code is in effect, the routine is not invoked until a CHECK macro is issued for the
operation in which the error occurred.

The SYNAD exit routine can examine the REQ field of the RPL and determine the type
of request that caused the routine to be invoked. Each RPL-based macro instruction
(except CHECK and EXECRPL) has its own REQ code. The SYNAD exit routine can
analyze the FDBK?2 field and attempt to recover from the error.

If the application program has no SYNAD exit routine and a physical error occurs,
ACF/VTAM simply returns control to the next sequential instruction with return codes
in registers O and 15.

If the application program issues RPL-based requests in both the main program and the
exit routines, the SYNAD exit routine may be reentered by ACF/VTAM. The routine
may likewise be reentered if RPL-based requests are issued in the exit routine itself. In
these situations, the exit routine must be reenterable.

When the SYNAD exit routine returns control to ACF/VTAM, ACF/VTAM leaves
registers 0 and 15 intact; this enables the routine to pass information back in those
registers to the main part of the application program.

Registers Upon Entry: When the SYNAD routine receives control, the general purpose
registers contain the following:

Register 0: A recovery action return code (see Appendix C in ACF/VTAM Macro
Language Reference).

Register 1: The address of the RPL associated with the request.

Register 13: The address of an 18-word save area supplied by the programmer when
the macro instruction that caused the physical error was issued. If the exit routine is
going to return control via register 14, it must not change anything in the save area.
This means that if any macro instruction is issued in the exit routine, register 13 must
first be loaded with the address of a new save area. Furthermore, before control is
returned via register 14, register 13 must be restored with the value it had when the
exit routine was invoked.

Register 14: The address in ACF/VTAM to which the SYNAD exit routine can branch
when it has finished processing. When the exit routine branches to this address,
ACF/VTAM handles the return of control to the next sequential instruction following
the request (or following the CHECK macro issued for the request). The SYNAD exit
routine can branch to any part of the main program. (Care should be taken, however,
to eventually return to the register 14 address if SYNAD was entered from an
RPL-based request issued in another exit routine.) If the application program
eventually returns to the next sequential instruction by branching on the register 14
address, ACF/VTAM restores the registers from the save area whose address is in
register 13.

Register 15: The address of the SYNAD routine.

Registers 2-12: Unmodified; whatever was in them when the macro instruction was
issued is still there.

Chapter 7. Using Exit Routines 157

Special Considerations for LERAD and SYNAD

Exit Routines

LOGON Exit Routine

158

LERAD and SYNAD exit routines are not required. If a macro instruction that specifies
an RPL is issued, one of these two exit routines, if present, is entered if an error occurs. If
the exit routine does not exist, ACF/VTAM in any case provides feedback information in
registers 0 and 15 and in appropriate RPL fields. The return code in register O enables the
next sequential instruction in the program to determine whether a logical error or one of
several other general types of errors occurred; the program can itself then branch to an
appropriate routine. The chief advantage in using LERAD and SYNAD exit routines is
that they provide a convenient way to organize sets of error and special condition-
handling logic that serve all requests in the program.

The same name can be specified for the program’s LERAD and SYNAD exit routines.
The common exit routine can determine after it is entered whether a logical or some
other error or special condition occurred.

A discussion of the kinds of logic that these routines might contain is provided in Chapter
9, “Handling Errors and Special Conditions.” Coded LERAD and SYNAD exit routines
are shown in Appendix D.

A program that expects a logon from one or more logical units can handle the logon
either by having ACF/VTAM complete a pending OPNDST specifying OPTCD=ACCEPT
in the main program or by having ACF/VTAM schedule a LOGON exit routine. The
LOGON exit routine enables the program to examine a logon message or make other
inquiries of ACF/VTAM, using the INQUIRE macro instruction, before connecting the
logical unit with an OPNDST specifying OPTCD=ACCEPT. If the logical unit’s request
for connection is to be rejected, the LOGON exit routine may wish to connect the logical
unit, send a message, and then disconnect the logical unit. (Even if the logical unit is not
temporarily connected with an OPNDST, rejection of its logon must include disconnect-
ing it, using a CLSDST.)

VTAM queues a logon if (1) the logical unit has issued an Initiate command or a
character-coded logon, (2) a terminal issues a logon. via the network solicitor, (3) another
application program to which the logical unit is currently connected issues a CLSDST
macro instruction with OPTCD=PASS, (4) the application program issues a SIMLOGON
macro instruction on behalf of the logical unit, (5) the user has specified automatic logon
for the logical unit, when the network was defined or the network operator has specified
an automatic logon using the VARY command, or (6) another application program acting
as a secondary end of a session has issued a REQSESS macro instruction. These cause the
LOGON exit routine to be scheduled if SETLOGON with OPTCD=START is in effect.

Note: When a logical unit logs on, ACF/VTAM first checks for an outstanding OPNDST
request (that is, OPNDST with ACCEPT and Q) that has not yet been completed. If there
is no outstanding OPNDST request, ACF/VTAM and schedules a LOGON exit routine if
an active one exists. Thus, a logon will not cause a LOGON exit routine to be scheduled if
there is a pending OPNDST with ACCEPT. If no LOGON exit routine exists, the logon is
queued.

Regardless of the mechanism by which the LOGON exit routine is scheduled, the routine

. is in effect being asked to connect the logical unit to the application program. The

routine’s principal task therefore is to determine whether it should honor the request and,
when it determines that it should, issue an OPNDST macro instruction to establish
connection with the logical unit. If ‘the request is not to be honored, the routine should
issue the CLSDST macro instruction for the logical unit (which removes the logical unit
from the logon queue). If neither OPNDST nor CLSDST is issued, the logical unit may
remain unconnected to any application program.

LOSTERM Exit Routine

If MACRF=LOGON was specified in the ACB and SETLOGON with OPTCD=QUIESCE
has not been issued, logons are queued for the application program regardless of whether
a LOGON exit routine is available. A logon remains queued until the program issues
OPNDST or CLSDST for the logical unit. Note that the “queuing” of a logon does not
necessarily mean that the logon is queued for eventual scheduling of the LOGON exit
routine; it merely means that the logon is queued for an eventual OPNDST with
OPTCD=ACCEPT macro instruction (or CLSDST).

The LOGON exit routine can issue an INQUIRE macro instruction to obtain the session
parameters and the user logon message supplied by the logical unit that is logging on. If
the routine determines from the session parameters and the logon message that
connection with the logical unit is acceptable, it may wish to establish that connection.
This is accomplished by using information passed to the LOGON exit routine, along with
information obtained with the INQUIRE macro instruction, to build or modify a NIB

--and an RPL, and by then issuing the OPNDST macro instruction with ACCEPT and SPEC

option codes.

The LOGON exit routine is entered only if MACRF=LOGON was specified for the ACB,
and the application program has issued the SETLOGON with OPTCD=START macro
instruction.

Registers Upon Entry: When the LOGON exit routine receives control, register 1
contains the address of a 4-word parameter list (the parameter list is summarized in
Figure 7-5):
The first word contains the address of the ACB to which the logon request was
directed. The ACB address should be specified for the ACB operand of an INQUIRE
macro instruction used to obtain the data portion of the logon.

The second word contains the address of the 8-byte symbolic name of the logical unit
requesting logon. This name should be placed in the NAME field of the NIB used to
establish connection with the logical unit. The symbolic name being pointed to here is
the same as the name that was specified in the NAME field of the definition statement
for the logical unit. LU, TERMINAL, and COMP are ACF/VTAM definition
statements used by the user to define logical units and terminals.)

The third word is reserved.

The fourth word contains the length of the data portion of the logon sent by the
logical unit. This length should be used with the LENGTH operand of INQUIRE
macro instruction to obtain the data portion of the logon.

Other registers contain the following:

Register 14: The address in ACF/VTAM to which the LOGON exit routine should
branch when it is through processing. ACF/VTAM handles the return of control to the
application program instruction that was about to be executed when the LOGON
interruption occurred. .

Register 15: The address of the LOGON exit routine.
Registers 0 and 2-13: Unpredictable.

A LOGON exit routine is shown in Appendix D.

A LOSTERM exit routine is scheduled by ACF/VTAM when contact with a logical unit
has been lost, when a logical unit has requested a logoff, when certain errors are detected
in transmission, or when a logical unit is temporarily unavailable. As noted below, the
application program may or may not issue CLSDST to disconnect the logical unit. (If the
application program fails to issue CLSDST, the logical unit will remain unavailable for
connection to any other application program.)

Chapter 7. Using Exit Routines 159

160

If a LOSTERM exit routine is not provided, ACF/VTAM posts any outstanding requests
associated with affected logical units with an appropriate return code. If there are no
outstanding requests, whenever the program makes the next request, it is posted with a
lost-terminal return code. If there is a LOSTERM exit routine, the program can
disconnect the logical unit. (When a logical unit is lost, ACF/VTAM stops sending to that
unit but does not disconnect it.) As with LERAD and SYNAD exit routines (LOSTERM
might be thought of as a special form of SYNAD exit routine), its advantage is having a
more convenient and immediate way to have control passed to this part of the program.

A LOSTERM exit routine is especially recommended for an application program that
does not issue specific-mode I/O requests for its logical units, but is driven instead by
input arriving as the result of RECEIVE macro instructions issued in the any-mode. Use
of the exit routine is also recommended for an application program that issues specific-
mode I/O requests when there is the possibility that the logical unit may fill ACF/VTAM’s
buffers faster than the application program is emptying them with RECEIVE macro
instructions.

When ACF/VTAM determines that it can attempt to restart a logical unit, the LOSTERM
exit routine may be entered twice. (This action can occur only when the application
program does not have an NSEXIT exit routine.) On first entry, a reason code of 24 is
passed to the LOSTERM exit routine, indicating that ACF/VTAM has begun its attempt
to restart the logical unit. After the attempt is completed, ACF/VTAM gives control to
the LOSTERM exit routine a second time (unless the CLSDST macro instruction has
already been completed). On this second entry, the reason code is either 16 (the logical
unit has been successfully restarted) or 12 (the attempt was unsuccessful and contact
with the logical unit has been lost). Even when the restart is successful, the application
program must issue a CLSDST macro instruction to end the session that was disrupted
and then, if desired, establish connection again with the logical unit that was successfully
restarted. A coded LOSTERM exit routine is shown in Appendix D.

If the application program has an NSEXIT exit routine, the conditions listed below for
reason-codes 12, 16, and 24, are reported to the NSEXIT exit routine (with a network
services cleanup request unit) instead of to the LOSTERM exit routine. If the application
program does not have an NSEXIT exit routine but does have a LOSTERM exit routine,
those conditions are reported to the LOSTERM exit routine.

Registers Upon Entry: When the LOSTERM exit routine receives control, register 1
contains the address of a 4-word parameter list (the parameter list is summarized in
Figure 7-5):
The first word contains the address of the ACB of the application program to which
the logical unit or terminal is connected.

The second word contains the session’s CID. The ARG field of an RPL used for
CLSDST must contain this CID.

The third word contains whatever had been placed in the USERFLD field of the NIB
associated with the logical unit or terminal.

The value contained in the fourth word (called the reason code) indicates why the
LOSTERM exit routine was entered:

LOSTERM
Reason Code
(Decimal) Meaning .
0 A dialdine disconnection occurred for a dial-in BSC or start-stop terminal. A
CLSDST macro instruction is required.
4 A dial-line disconnection occurred for a dial-out BSC or start-stop terminal. If no

data from the terminal remains in ACF/VTAM buffers, a READ or WRITE
(OPTCD=SPEC) macro instruction will redial the terminal. If redialing fails
(causing the LOSTERM exit routine to be rescheduled), the CLSDST macro
instruction should be issued for the terminal.

LOSTERM
Reason Code
(Decimal)

8

12

16

20

24

28
32

36

40

Meaning
Reserved.

Contact with a BSC terminal, start-stop terminal, or logical unit was permanently
lost for one of the following reasons: (1) The network operator has issued a
VARY INACT command for the logical unit or terminal. For VARY INACT,F or
R, the LOSTERM exit routine is entered twice: once with a code of 24 and once
with a code of 12. (Note: If the device lost was a PU or a 3705, the VARY
INACT,R causes the LOSTERM exit routine to be scheduled with a code of 16
instead of 12.) (2) The communications controller’s NCP has begun an automatic
network shutdown or has abended and cannot be restarted. (3) There has been a
permanent channel failure between the CPU and the communications controller
or locally attached terminal. (4) There has been a failure in the network path
between the communications controller and the remotely attached terminal. (5)
The network operator has issued a HALT NET,QUICK command. (6) A test
request message has been received from the terminal other than a 3270 (see
ACF/VTAM TOLTEP, SC38-0283, for more information about test request
messages). For logical units, ACF/VTAM automatically issues an Unbind
command. For local 3270, BSC, and start-stop terminals, the program can
issue READ macro instructions to obtain data already sent from the terminal
A CLSDST macro instruction is required unless a CLSDST has already been
executed successfully. (Note: If the program has an NSEXIT exit routine, these
conditions are in some cases reported instead to that exit routine.)

The logical unit has been successfully recontacted. ACF/VTAM has automatically
issued an Unbind command for the application program. Issue a CLSDST macro
instruction. If desired, the program can issue an OPNDST or SIMLOGON macro
instruction to re-acquire the logical unit. (Note: If the program has an NSEXIT
exit routine, this condition is reported instead to that exit routine.)

Note: Once the CLSDST macro instruction has been issued, reconnection of the
terminal is subject to the normal rules for acquisition. Therefore, if another
application program has a connection request queued for the logical unit, or the
logical unit has issued a connection request for another application program, the
logical unit may not be immediately reconnected to the releasing application
program.

An unconditional Terminate command, an unconditional character-coded logoff,
or an unconditional TERMSESS macro instruction has been issued by the logical
unit. ACF/VTAM automatically issues an Unbind command for the application
program. A CLSDST macro instruction is required.

Contact with the logical unit has been lost but ACF/VTAM may be able to
reestablish it. Stop output to the logical unit and either return to ACF/VTAM or
issue a CLSDST macro instruction. If the program does not issue a CLSDST, it
must return to ACF/VTAM; ACF/VTAM will attempt to recontact the logical
unit. If recontact is successful, ACF/VTAM reschedules the LOSTERM exit
routine with a return code of 16. If recontact is unsuccessful, the LOSTERM exit
routine is rescheduled with a return code of 12. If the program issues a CLSDST
for the logical unit, the LOSTERM exit routine might not be rescheduled and the
program might not get return code 12 or 16. (Note: If the program has an
NSEXIT exit routine, this condition is not reported to the LOSTERM exit
routine.)

Reserved.

A conditional Terminate command, a conditional character-coded logoff, or a
conditional TERMSESS macro instruction has been issued by the logical unit. The
application program may take any action it desires including issuing a CLSDST
for the logical unit.

The buffer limit defined for a logical unit has been exceeded. ACF/VTAM
automatically issues a Clear command for the application program. Any data for
which the application program has not issued a RECEIVE will be discarded. The
application program may resynchronize sequence numbers, or the data may be
retransmitted after issuing SESSIONC (CONTROL=SDT) if appropriate for the
transmission services profile specified by the session parameters.

The operator at a BSC 3270 or local 3270 terminal has hit the Test Request Key.
A CLSDST macro instruction is required.

Chapter 7. Using Exit Routines 161

NSEXIT Exit Routine

Network Services Procedure Error

162

Note: For any of the LOSTERM reason codes that require or recommend a CLSDST
macro instruction, do not issue a second CLSDST if one has already been issued to the
same logical unit or terminal but for a different reason.

Other general purpose registers contain the following:

Register 14: The address in ACF/VTAM to which the LOSTERM exit routine must
branch when it is through processing. ACF/VTAM handles the return of control to the
point in the application program where the LOSTERM interruption occurred.

Register 15: The address of the LOSTERM exit routine.
Registers 0 and 2-13: Unpredictable.

The NSEXIT exit routine is entered whenever a network services request unit arrives for
an application program. Since an application program can specify only one NSEXIT exit
routine, this same routine must serve both when the program is the primary end of a
session and when it is the secondary end. The action taken by the exit routine depends on
the type of network services request unit received by the program.

An application program can receive either of two types of network services request units:

The program receives a network services procedure error request unit if, after the
program has issued a session establishment request and the request has been posted
complete, something happens that makes it impossible to perform the next step in
setting up the session. (See “Network Services Procedure Error” below.)

The program receives a network services cleanup request unit when a connection with
a logical unit has been broken because of a session outage (for example, a link failure
or an NCP failure) or because the network operator has issued a VARY INACT,F or
VARY INACT,R command for the logical unit. (See “Cleanup Conditions™ below.)

When the exit routine is scheduled, ACF/VTAM provides it with the address of a
read-only RPL. The AREA field of the RPL contains the address of the request unit that
was received, and the RECLEN field of the RPL tells the number of bytes in the request
unit. The exit routine examines the request unit to determine which type of network
services request unit was received, which determines what action it should take.

In any future releases of ACF/VTAM, other types of network services request units may
be passed to the NSEXIT exit routine. For that reason, the exit routine should be coded
to determine the particular type of request unit received and to take action for each type.
The exit routine should also take particular action when it receives a request unit other
than one of the types it expects to receive. (In other words, the exit routine should not,
by default, do nothing when it receives a request unit other than a type that is expected.)
If the exit routine receives a request unit other than a procedure error request unit or a
cleanup request unit, the exit routine should set register 0 to 0 and register 15 to 4 and
then return control to ACF/VTAM.

As indicated above, a network services procedure error (NSPE) request unit can arrive at
an application program when, after having received a positive response to a session
establishment request, the program is awaiting the next event in the session establishment
procedure. Here are some examples of conditions that cause a network services procedure
error request unit to be generated and delivered to an application program:

1. A secondary application program has issued a REQSESS macro instruction, and the
macro has been completed successfully (indicating that a positive response to the
request was sent back). The primary application program then rejects the logon by

Cleanup Conditions

issuing a CLSDST macro instruction. Issuance of the CLSDST macro causes a
network services procedure error request unit to be sent to the secondary application
program.

2. A secondary application program has issued a REQSESS macro instruction, and the
macro has been completed successfully. The primary application program is then
abnormally terminated before it can process the logon which resulted from the
REQSESS. ACF/VTAM sends a network services procedure error request unit to the
secondary program.

3. A primary application program issues a SIMLOGON macro instruction for a logical
unit, and the macro is completed successfully (indicating that a logon for the logical
unit has been created by ACF/VTAM and queued for the application program that
issued the macro). Before the logon can be processed, the network operator
deactivates the logical unit. This causes ACF/VTAM to send the application program
a network services procedure error request unit.

4. Application program A issues a CLSDST macro instruction with OPTCD=PASS to
pass a logical unit to application program B. The macro completes successfully,
indicating that a logon has been created and queued for application program B. When
application program B processes the logon, it either (1) rejects the logon by issuing a
CLSDST macro or (2) issues an OPNDST to the logical unit, but the logical unit
rejects the Bind command by sending a negative response. In either case, ACF/VTAM
sends a network services procedure error request unit to application program A. The
request unit signals application program A that, even though the CLSDST with
OPTCD=PASS was posted complete, the session that was requested cannot be
accomplished.

5. When a primary application program issues an OPNDST with OPTCD=ACQUIRE and
for some reason ACF/VTAM cannot establish the session, ACF/VTAM may send an
NSPE to the primary application program. Since the application program may receive
the NSPE either before or after the processing associated with the OPNDST is
completed (either successfully or unsuccessfully), the application program’s NSEXIT
exit routine should be written to take appropriate error recovery regardless of when
the NSPE is received.

The format of the network services procedure error request unit is shown in Figure 7-6.

In some situations, such as conditions 1 and 2 described above, the application program
may want to issue another session establishment request immediately or may want to
wait and issue the request at a later time. Even if no other action is taken, the NSEXIT
exit routine should set registers 0 and 15 to O before returning control to ACF/VTAM.
This is done so that those registers can be used for return codes when processing other
types of network services request units in any future releases of ACF/VTAM.

When a session is interrupted either by a session outage or by a VARY INACT command
with the F (forced) or R (reactivate) operand, ACF/VTAM sends the primary application
program a network services cleanup request unit. A network services cleanup request unit
is also sent to the secondary end of the session when the secondary end is an application
program. When the secondary end of the session is a device-type logical unit, ACF/VTAM
performs a cleanup sequence consisting of deactivation of the logical unit and an attempt
to reactivate the logical unit.

Arrival of the cleanup request unit at an application program causes that program’s
NSEXIT exit routine to be scheduled (if one exists). Because ACF/VTAM has already
terminated the session, the exit routine does not take any action to end the session (that
is, does not issue a CLSDST macro instruction or send a Request Shutdown command).
The exit routine may want to clean up control blocks for the session. The exit routine

Chapter 7. Using Exit Routines 163

164

Byte

W N -

45

6-7

Contents

X'01’
X'06’
lel
Reason code
The meaning of the bits in this code are: -
0123 4567
1... An internal processing error occurred in trying to reach the primary
logical unit.
o R, A Bind error occurred in reaching the secondary logical unit.
.1. [Initiation was rejected at the primary logical unit.
.1 Initiation was rejected at the secondary logical unit.

.... 0... A setup procedure error occurred.
... .0.. Reserved.)
.... ..1. [Initiation was rejected at the system services control point.
.... ...1 The request unit is in the comprehensive format (rather than the
condensed format).

In the current release of ACF/VTAM, bits 4 and 7 (setup error and comprehensive
format) are always O and 1, respectively. If bit 4 is not O or bit 7 is not 1, set register
0 to O and register 15 to 4 and return to ACF/VTAM.

System sense data
(if applicable)

User sense data

(if applicable)
The system and user sense data, if applicable, is from the step in the procedure that
caused the setup failure. For the meaning of the system sense data, see Appendix C
in ACF/VTAM Macro Language Reference.

X'%'

Identification of the logical units involved in the failed procedure, as follows:

1Byte 1Byte 18 Bytes 1Byte 1Byte 1-8 Bytes

X'F3’ 11 Symbolic name of | X'F3' | /2 Symbolic name of
primary logical unit secondary logical unit
(1-8 characters) (1-8 characters)

L 11 is the length {number of L 12 is the length (number of
characters) of the symbolic characters) of the symbolic
name of the primary logical name of the secondary logical
unit. unit.

Figure 7-6. Format of a Network Services Procedure Error Request Unit

TPEND Exit Routine

may also want to attempt to reestablish the session, and the attempt may be successful if
the session outage has been repaired or bypassed and the desired logical unit is available.
The format of the network services cleanup request unit is shown in Figure 7-7.

When the primary application program involved in the broken session does not have an
NSEXIT exit routine, that program’s LOSTERM exit routine (if one exists) is scheduled
to report loss of the session. The LOSTERM exit routine is scheduled first with reason
code 24 (contact lost) and is later rescheduled with reason code 16 (logical unit
successfully restarted) or reason code 12 (restart was unsuccessful).

Even if no other action is taken, the NSEXIT exit routine should set registers 0 and 15 to
0 before returning to ACF/VTAM. This is done so that those registers can be used for
return codes when processing other types of network services request units in any future
releases of ACF/VTAM.

Registers Upon Entry: When the NSEXIT exit routine receives control, register 1
contains the address of a 5-word parameter list (the parameter list is summarized in
Figure 7-5):

The first word contains the address of the ACB for the application program to which
the network services request unit was sent.

Word 2 contains the CID for the session referred to in the cleanup request unit. Word
2 is not applicable for a network services procedure error request unit.

Word 3 contains the data that was placed in the USERFLD field of the NIB when the
session referred to in the cleanup request unit was established (that is, when the
OPNDST macro was issued by the primary application program or when the OPNSEC
macro was issued by the secondary application program). Word 3 is not applicable for
a network services procedure error request unit.

The fourth word is reserved.

The fifth word contains the address of an ACF/VTAM-supplied, read-only RPL. Other
than the fact that it resides in read-only storage and cannot be used by an RPL-based
macro instruction, the read-only RPL is identical to any other RPL. The application
program can examine the read-only RPL fields with SHOWCB and TESTCB macro
instructions or with assembler instructions.

Other general purpose registers contain the following:

Register 14: The address in VTAM to which the NSEXIT routine must branch when it
" has finished processing. VTAM will return control to the instruction in the application
program that was about to be executed when the NSEXIT interruption occurred.

Register 15: The address of the NSEXIT exit routine.
Registers 0 and 2-13: Unpredictable.

The TPEND exit routine is entered when the network operator issues a HALT command,
when ACF/VTAM is halting itself in an orderly fashion because of an internal problem, or
when ACF/VTAM is being abnormally terminated. The reason for entry to the exit
routine is indicated by a code in the second word of the parameter list passed to the exit
routine.

For a standard HALT command (a HALT command without the QUICK or CANCEL
operand), indicated by code 0 in the parameter list, the program is allowed to continue
communications with connected logical units, but the program should end those
communications in an orderly fashion as soon as it can. It should issue an asynchronous

Chapter 7. Using Exit Routines 165

Byte Contents

0 X‘'81"

1 X'06’

2 X29'

3-4 Reserved

5 Reason code

In the current release of ACF/VTAM, this byte always contains X‘03’, indicating that
the session has been taken down. In any future releases of ACF/VTAM, additional
reason codes may be returned.

6 X‘'06’
7-n Identification of the logical units involved in the session, in this format:
1Byte 1Byte 18 Bytes 1Byte 1Byte 18 Bytes
X‘F3' 11 Symbolic name of |X‘F3’ 2 Symbolic name of
primary logical unit| secondary logical unit
(1-8 characters) (1-8 characters)

LI 1 is the length (number of le is the length {(number of
characters) of the symbolic characters) of the symbolic
name of the primary logical name of the secondary logical
unit. . unit.

Figure 7-7. Format of a Network Services Cleanup Request Unit

RELREQ Exit Routine

CLSDST macro instruction for each connected logical unit, return to its main program,
and issue a CLOSE macro instruction. (A CLOSE macro instruction cannot be issued in
an exit routine.)

For a HALT QUICK command or when ACF/VTAM is halting itself (code 4), pending
data-transfer operations are stopped, but they are marked as completed and canceled
(ACF/VTAM sets a flag in the FDBK2 field of each RPL to indicate that the operation
was canceled). For code 4 (as for code 0), the application program should issue a
CLSDST macro instruction for each connected logical unit and then issue the CLOSE
macro instruction.

For a HALT CANCEL command or ACF/VTAM abnormal termination (code 8, which
appears only in an OS/VS system), pending operations are interrupted (without being
marked as completed or canceled), and no ACF/VTAM request except the CLOSE macro
instruction is accepted. The TPEND exit routine should return to the main program for
immediate issuance of the CLOSE macro instruction without any attempt to disconnect
the logical units.

See Chapter 4 for more information on actions to be taken by the TPEND exit routine. A
coded TPEND exit routine is shown in Appendix D.

Registers Upon Entry: When the TPEND exit routine receives control, register 1 contains
the address of a 2-word parameter list (the parameter list is summarized in Figure 7-5):

The first word contains the address of the ACB of the application program being shut
down.

" The value in the second word indicates the reason for the shutdown:

0 The network operator issued a standard HALT command to close the network
normally.

4 The network operator issued a HALT QUICK command, or ACF/VTAM de-
tected an internal problem and is halting itself.

8 The network operator issued a HALT CANCEL command, or ACF/VTAM has
abnormally terminated.

Other general purpose registers contain the following:

Register 14: The address in ACF/VTAM to which the TPEND exit routine must
branch when it is through processing. ACF/VTAM returns control to the instruction in
the application program that was to be executed when the TPEND interruption
occurred.

Register 15: The address of the TPEND exit routine.
Registers 0 and 2-13: Unpredictable.

The RELREQ exit routine is entered when one application program (a set of instructions
associated with one ACB) or TOLTEP (the teleprocessing online test executive program)
requests connection to a logical unit that is connected to another application program (a
set of instructions associated with a different ACB). The requesting program requests
connection with a SIMLOGON macro instruction that specifies OPTCD=(RELRQ,Q). As
a result, ACF/VTAM schedules and causes entry to the RELREQ exit routine of the
application program currently connected to the logical unit and acting as the primary end
of the session. The RELREQ exit routine can either ignore the request (that is, remain
connected to the logical unit and make the requesting program wait) or take action to
immediately release the requested logical unit.

Chapter 7. Using Exit Routines 167

168

If the exit routine decides to release the logical unit, it may want to determine whether
there are any pending (incomplete) data-transfer requests for the logical unit and release
it only after those data-transfer operations have been completed. To disconnect and
release the logical unit, the application program issues the CLSDST macro instruction
with the RELEASE option. After execution of the CLSDST macro, the logical unit is
made available to the application program that has the oldest pending request for the
logical unit. (Note that the application program to which the logical unit is made available
may be a different application program from the one that caused the current entry to the
RELREQ exit routine. This will be the case when another application program made an
earlier connection request and the request was queued.)

If the exit routine decides to ignore the RELREQ request, it takes no action and
continues communication with the logical unit. The connection request from the other
application program remains pending and is queued (behind any other pending
connection request for the logical unit) until the logical unit is released.

If an application program does not have a RELREQ exit routine, the program cannot be
notified of another program’s request. If the other program issued its SIMLOGON request
with the NQ option® ACF/VTAM rejects the request. If the other program issued the
request with the Q option, the request remains pending until the logical unit is released.

The application program that caused entry to the RELREQ exit routine may have issued
its SIMLOGON request with the CONANY option in effect and provided a list of NIBs
from which any one logical unit is acceptable. This kind of request is satisfied if one of
the logical units is immediately available or when the first of the logical units is released
and thus becomes available. When no logical unit is immediately available, ACF/VTAM
invokes the RELREQ exit routine (or queues the connection request) for each
application program currently connected to one of the logical units. Thus, for a
SIMLOGON with the RELREQ and CONANY options, many RELREQ exit routines
may be invoked. In this situation, if another application program releases one of the
logical units first, but your program also releases one of the logical units, the logical unit
released by your program may remain unconnected. To prevent this, the CLSDST that
releases the logical unit should be followed by an OPNDST (OPTCD=ACQUIRE) or
SIMLOGON request to attempt to reacquire the logical unit that was just released. Then,
if the released logical unit is being ignored, the program that released it gets it back.

Registers Upon Entry: When the RELREQ exit routine receives control, register 1
contains the address of a 2-word parameter list (the parameter list is summarized in
Figure 7-5):
_The first word of the parameter list contains the address of the ACB through which
the logical unit is currently connected to an application program.

The second word of the pararheter list contains the address of the symbolic name of
the requested logical unit. The name is 8 bytes long and padded on the right with
blanks, if necessary.

The other registers contain the following:

Register 14: The address in ACF/VTAM to which the RELREQ routine must branch
when it is through processing. ACF/VTAM will return control to the instruction in the
application program that was about to be executed when the RELREQ interruption
occurred.

Register 15: The address of the RELREQ exit routine.
Registers 0 and 2-13: Unpredictable.

SCIP Exit Routine

The SCIP exit routine is entered when any of the following session-control commands is
received by an application program:

Clear

Start Data Traffic (SDT)

Request Recovery (RQR)

Set and Test Sequence Numbers (STSN)

Bind

Unbind
For the Clear, RQR, and Unbind commands, ACF/VTAM automatically sends a
response before the command is presented to the exit routine. For the STSN and Bind
commands, the application program must send its own response. For the SDT command,
either the application program or ACF/VTAM sends the response, depending on
the NIB’s SDT operand for the session. For all six commands, if the application
program has no SCIP exit routine, ACF/VTAM automatically sends a negative response

with sense information indicating that the request was rejected because the function is
disabled.

Five of the commands—Clear, SDT, STSN, Bind, and Unbind—are sent only from the
primary end of the session (the primary application program) to the secondary end of
the session (a device-type logical unit or a secondary application program). Thus, in an
application program, those five commands can only be received and processed in a
SCIP exit routine in a secondary application program. The other command—RQR—is
sent only from the secondary end of a session to the primary end. Thus, that command
is only received and processed in a SCIP exit routine in a primary application
program.

For a SCIP exit routine, information on the command that has been received is
available in a