
Program Product 

SC38-0256-0 
File No. 5370-30 

Advanced Communications 
Function for VTAM 
(ACF/VTAM) 

Macro Language Guide 

Program Numbers 5746-RC3 (DOS/VS) 
5735-RC2 (OS/VS} 

---- ------ ----- ~--- -.. ---- - ----------~- .. -



First Edition (July 1977) 

This edition applies to the initial DOS/VS version of ACF/VTAM (Program Number 
5746-RC3) and to the initial OS/VS version of ACF/VTAM for OS/VSl, OS/VS2 SVS, and 
OS/VS2 MVS (Program Number 5735-RC2). Information about the optional Multisystem 
Networking Facility of ACF/VTAM is included. The information in this publication should 
be used for planning purposes until ACF/VTAM becomes available for your operating 
system. 

The program product described in this manual, and all licensed materials available for it, are 
provided by IBM under terms of the Agreement for IBM Licensed Programs. Your branch 
office can advise you on the ordering procedures. 

A form has been provided at the back of this publication for readers' comments. Address 
additional comments to IBM Corporation, Department 63T, Neighborhood Road, Kingston, 
New York 12401. Comments become the property of IBM. 

©Copyright International Business Machines Corporation 1977 



Preface 

This book describes how to write application programs 
for the Advanced Communications Function for VTAM 
(ACF/VTAM) and for the Multisystem Networking Fea­
ture that is available with ACF/VTAM. This book is a 
guide to using ACF /VT AM macro instructions in the data 
communication part of an ACF/VTAM application pro­
gram. As such, this book is a companion for and is to be 
used with ACF/VTAM Macro Language Reference, 
SC38-0261. 

Who This Book Is For 
This book is for any programmer, whether an application 
programmer or a system programmer, who must write a 
program that uses ACF/VTAM macro instructions. The 
reader is assumed to be familiar with Basic Assembler 
Language. 

How This Book Is OrgaAfzed 
The body of this book describes the use of record-mode 
macro instructions to communicate with Systems Net­
work Architecture (SNA) devices. Use of basic-mode 
macro instructions to communicate with BSC devices, 
start-stop devices, and local non-SNA devices are 
described in Appendix A. 

This book contains three parts: 

Part 1, "ACF/VTAM Application Program Concepts and 
Language," should be read as an introduction. It contains 
chapters on: 

What an ACF/VTAM Application Program ls. This 
chapter describes on an introductory level how an 
ACF/VTAM application program is part of a data 
communication system and generally how an ACF/ 
VT AM application program is organized. 

The ACF/VTAM Language. This chapter summarizes 
the ACF/VTAM application program macro instruc­
tions and control blocks and relates them to each 
other. 

Part 2, "Writing an ACF /VTAM Application Program," 
describes ACF /VTAM application program facilities in 
detail and with examples. It contains chapters on: 

Organizing a Program 

Opening and Qosing a Program 

Connecting and Disconnecting Logical Units 

Communicating with Logical Units 

Using Exit Routines 

Manipulating Control Blocks 

Handling Errors and Special Conditions 

Debugging a Program 

Part 3, "Sample Program8," contains the general logic of 
two sample programs: 

A synchronous program 

An asynchronous program that communicates with 
3600 and non-SNA terminals 

Appendix A includes information on using ACF/VT.AM to 
communicate with BSC devices, start-stop devices, and 
local non-SNA devices. Appendix B summarizes the indi­
cators and commands that can be used to control the 
exchange of messages. Appendix C contains data-flow 
diagrams that show sequences in which messages, com­
mands, and responses are exchanged in various types of 
operations. Appendix D contains a coded example of a 
prunary application program, based on Sample Program 1 
in Part 3. Appendix E contains a coded example of an 
ACF/VTAM application program that uses authorized 
path. Appendix F contains a coded example of a primary 
application program and secondary application program 
that work together. 

How to Use This Book 
Read Part 1 for an introduction to ACF/VTAM applica­
tion program concepts and to the ACF/VTAM macro 
instructions. Use Parts 2 and 3 and the appendixes in 
conjunction with ACF/VTAM Macro Language Reference 
when designing and coding a program. 

Related Publications 
These publications are related to this manual: 

ACF/VTAM Concepts and Planning, GC38-0282. This 
manual describes the concepts and tasks involved in 
designing, defining, and using an ACF /VT AM data 
communication network, including the writing of 
ACF/VTAM application programs. This book is useful 
for understanding how ACF/VTAM application pro­
grams fit into an installation's teleprocessing system. 

ACF/VTAM Macro Language Reference, SC38-0261. 
This manual, which describes ACF /VT AM macro 
instructions and operands in detail, must be used to 
write an ACF/VTAM application program. ACF/VTAM 
Macro Language Guide is a companion to ACF/VTAM 
Macro Language Reference. 

ACF/VT.AM Program Operator Guide, SC38-0257. This 
manual describes how to write a program-operator 
application program for use with ACF/VTAM. This 



infonnation supplements ACF/VTAM Macro Language 
Guide andACF/VTAM Macro Langauge Reference. 

ACF/VTAM System Programmer's .Guide, SC38-0268 
(DOS/VS), SC38-0258 (OS/VSI), SC38-0267 (OS/VS2 
SYS), and SC38-0262 (OS/VS2 MYS). This manual 
describes how to define, tailor, tune, and maintain an 
ACF/VTAM system. It includes infonnation on the 
choice and specification of installation options. Infor­
mation on definition of devices and programs can be 
found in this manual. 

ii 

Systems Network Architecture; Genenzl Information, 
GA27-3102. This manual describes Systems Network 
Architecture concepts that might be useful when 
writing an ACF/VTAM application program. 

Systems Network Architecture; Format and Protocol 
Reference Manual: Architecture Logic, SC30-3112. 
This manual is a very detailed description of the SNA 
architecture. It is intended for system programmers. It 
may be useful for persons who want an in-depth 
knowledge of the SNA protocols. 



Contents 

Part 1. ACF/VTAM Application Program Concepts and 
Language 1 

Chapter 1. What an ACF/VTAM Application Program Is 3 
An ACF /VT AM Application Program as Part of an ACF /VT AM 

System 3 
The ACF/VTAM Application Program 3 
The Processing Part 5 
The Communication Part 5 
ACF/VTAM 5 
The Network Control Program 5 
The Logical Unit 5 
The Terminal Operator and the Batch Function 6 
Another ACF /VT AM Application Program 6 

Systems Network Architecture (SNA) Concepts in ACF/VTAM 6 
The SNA Concept of Network Addressable Units 6 
The SNA Concept of Primary and Secondary Logical Units 9 
The SNA Concept of Sessions 9 

The SSCP-PU Session 10 
The SSCP-LU Session 10 
Initiate Command or Logon 11 
LOGON Exit Routine 11 
Opening the LU-LU Session (OPNDST Macro Instruction) 11 
The Bind Command 11 
Completing the LU-LU Session 11 

The SNA Concept of Domains as Implemented by 
ACF/VTAM 12 

The Major Programming Elements in an ACF /VT AM Application 
Program 12 

Opening the Program 14 
Connecting a Logical Unit 14 
Receiving a Message from Any Logical Unit 16 
Receiving a Message from a Specific Logical Unit 1 7 
Sending a Message 1 7 
Scheduling the Sending of a Message 1 7 
Sending a Response 18 
Receiving a Response 18 
Other Exit Routines 18 
Disconnecting a Logical Unit 18 
Closing the Program 18 
Constants and Control Blocks . 19 
Manipulative Macro Instructions 19 

Chapter 2. The ACF/VTAM Language 21 
Characteristics of the ACF /VTAM Language 21 
A Summary of Macro Instructions 21 

The Connection Macro Instructions 21 
The Communication Macro Instructions 22 
The Network Control Macro Instructions 23 
The Control Block Macro Instructions 23 

The Control-Block-Building Macro Instructions 23 
The Control-Block-Manipulating Macro Instructions 24 

Supporting Macro Instructions 24 
How the Executable Macro Instructions and the Control Blocks 

Are Related 25 
Opening the Application Program 25 
Connecting Logical Units 26 
Communicating with Logical Units 26 
Disconnecting Logical Units 27 

Exit Routines 27 
Register Conventions 28 

Part 2. Writing anACF/VTAM Application Program 31 

Chapter 3. Organizing a Program 33 
Single-Thread or Multithread Operations 

Deciding to Use a Single-Thread Program 
Deciding to Use a Multithread Program 

How a Synchronous Operation Works 34 

33 
33 

34 

How an Asynchronous Operation Works 35 
Using ECBs 35 
Using RPL Exit Routines 36 
Advantages and Disadvantages of Different Forms of 

Operation 38 
Multithreading Facilities 38 

The USERFLD Field of the NIB 39 
Scheduling Output 40 
Receiving Input from Any Connected Logical Unit Except 
Those Already in Conversation 40 

Some Decisions That Affect Program Organization 41 
Handling Control Blocks and Work Areas 41 
Techniques for Handling Control Blocks and Work Areas 44 

Using Multitasking 47 
Using Multitasking to Separate Data Communication Activity 

from Other Activity 4 7 
Using Multitasking to Divide Data Communication Activity 

among Several Tasks 48 
Multiple Tasks, Using the Same ACB 48 
Multiple Tasks, Each with Its Own ACB 49 

Using Multiple ACBs within One Task 50 
Using Authorized Path in OS/VS2 MVS 50 

Chapter 4. Opening and Closing a Program 55 
Opening a Program 55 

What Is Required to Open a Program 55 
The Access Method Control Block (ACB) 55 
The OPEN Macro Instruction 57 
Using Multiple ACBs in an ACF /VTA¥ Application 

Program 57 
Where the OPEN Can Be Issued 57 

Closing a Program 57 
The Program Initiates Closing 58 
The Program Receives a Closedown Message 58 
The TPEND Exit Routine Is Entered 58 

Action for a Standard HALT Command 59 
Actions for a HALT QUICK Command or for an 

ACF/VTAM-lnitiated Halt 59 
Actions for a HALT CANCEL Command or for Abnormal 

Termination of ACF/VTAM (OS/VS Only) 60 

Chapter 5. Connecting and Disconnecting Logical Units 61 
Roles of Primary and Secondary Logical Units in Connection 
and Disconnection 61 

The Concepts of Connection 61 
Acceptance by a Primary Application Program 61 
Acquisition by a Primary Application Program 63 

Acquiring a Logical Unit with the OPNDST Macro 
Instruction 64 

Acquiring a Logical Unit with the SIMLOGON Macro 
Instruction 64 

Queuing Connection Requests for a Device-Type Logical 
Unit 66 

Disconnection by a Primary Application Program 68 

iii 



1 How a Primary Application Program Performs Connection 69 
The Request Parameter List (RPL) 69 
The Node Initialization Block (NIB) 70 
Acquiring Logical Units 73 
Accepting Logons 7 6 

Accepting Logons in the Main Program 76 
Accepting Logons in the LOGON Exit Routine 77 

·Using INQUIRE in a LOGON Exit Routine 78 
Simulating Logons in a Primary Application Program 79 

Q:ow a Secondary Application Program Requests Connection 80 
What a Secondary Application Program Needs to Request 

Connection 80 
The RPL for a REQSESS Macro Instruction 82 
The NIB for a REQSESS Macro Instruction 82 
The Role of a SCIP Exit Routine in Session 

Establishment 83 
The Role of an NSEXIT Exit Routine in a REQSESS 

Operation 83 
The General Pattern of a Secondary Program's Request for 

Connection 83 
Example of a Secondary Application Program Requesting 

Connection 86 
Establishing Session Parameters during Connection 89 

The General Pattern of Agreement on Session Parameters 89 
Defining Sets of Session Parameters 89 

Tables That Contain Session Parameters 90 
The Default Entry in a Logon Mode Table 92 

How Logon Mode Names and Session Parameters Are Used 92 
Logon Mode for a Logon from a Device-Type Logical 

Unit 93 
Logon Mode for a Logon from a Secondary Application 

Program 93 
Logon Mode for a Simulated Logon 93 
Logon Mode for a CLSDST Macro Instruction with 

OPTCD=PASS 93 
Logon Mode with Automatic Logon and VARY Logon 94 

How the Primary Application Program Processes Session 
Parameters 94 

Effect of the BNDAREA Field on Session Parameters 
in a Bind Command 96 

Effect of the LOGMODE Field on Session Parameters in 
the Bind Command 96 

Handling Session Parameters When the Logon Could Be 
from the Same Domain or Another Domain 97 

Using the INQUIRE Macro Instruction to Get Session 
Parameters 97 

Specifying Session Parameters When Acquiring 
Connection 98 

Example 1: Using Session Parameters Associated with a 
Logon 98 

Example 2: Building and Using Session Parameters in a 
Bind Area 99 

How the Secondary' Application Program Processes Session 
Parameters Received in a Bind Command 99 

Disconnection 100 

iv 

How a Primary Application Program Disconnects Logical 
Units 100 

CLSDST Using a Symbolic Name 100 
CLSDST Using a CID 101 
Storage Management at Disconnection 102 
Disconnecting All Logical Units at One Time 102 

How a Secondary Application Program Requests 
Disconnection 102 

Requesting Disconnection with a Request Shutdown , 
Command 102 

Requesting Disconnection with the TERMSESS Macro 
Instruction 103 

Chapter 6. Communicating with Logical Units 105 
An Introduction to Communicating with Logical Units 105 

Who is Commqnicating: The ACFNTAM Application 
Program and Logical Units 105 

What is Communicated: ·Messages and Responses 105 
What a Message Contains 106 
What a Response Contains 107 

How Messages and Responses Are Exchanged 111 
The Send and Receive Macro Instructions 111 
Normal-Flow and Expedited-Flow Messages and 

Responses 112 
Sequence Numbers 115 
Controlling Flow 116 
Identifying Logical Units 119 

Using ACF/VTAM to Communicate with Logical Units 119 
Major Al~tives 120 

Synchronous versus Asynchronous Operations 120 
ECB versus RPL Exit Routine 122 
Scheduled versus Responded Output Considerations 122 
ReceiVing Input from Any Logical Unit versus Receiving 

Input from a Specific Logical Unit 124 
The Continue-Any versus the Continu8-Specific Mode 125 
An Explicit RECEIVE for Expedited-Flow and Response 

Input versus DFASY and RESP Exit Routines 127 
Handling Overlength Input Data 128 

Using SNA Protocols 129 
Chaining 129 
Request and Response Modes 130 
Quiescing 133 
Protocols for Ensuring Orderly Communications .134 
Function Management Header Option 142 
Additional SNA Protocol Information 142 

Communicating with the 3270 Information Display System 142 

Chapter?. UsingExitRoutines 145 
How Exit Routines Work 145 

How RPL-Specified Exit Routines Work 145 
How EXLST Exit Routines Work 145 

A Summary of ACF/VTAM Application Program Exit 
Routines 148 

Deciding Whether and How to Use Exit Routines 148 
RPL Exit Routines 150 
Specifying the DF ASY, RESP, and SCIP Exit Routines in 

an ACB or NIB 150 
DFASY Exit Routine 150 
RESP Exit Routine 153 
LERAD Exit Routine 155 
SYNAD Exit Routine 157 
Special Considerations for LERAD and SYNAD Exit 

Routines 158 
LOGON Exit Routine 158 
LOSTERM Exit Routine 159 
NSEXIT Routine 167 

Network-Services Procedure Error 162 
Cleanup Conditions 163 

TPEND Exit Routine 165 
RELREQ Exit Routine 167 
SCIP Exit Routine 169 



Summary of Exit Routines Involved in Session Initiation, Session 
Outage, and Session Termination 1 72 

Using Exit Routines When Multitasking 172 
Procedures to Follow in Writing Exit Routines 172 

Chapter 8. Manipulating Control Blocks 181 
Setting and Testing Control Block Values 181 
Using the Manipulative Macro Instructions 181 

The GENCB Macro Instruction 181 
The MODCB Macro Instruction 183 
The SHOWCB Macro Instruction 184 
The TESTCB Macro Instruction 184 

Using the DSECT Macro Instructions and Assembler 
Instructions 185 
Defining the DSECTS 185 
Using the DSECTS 186 

Using INQUIRE with OPTCD=TERMS to Generate NIBs 186 

Chapter 9. Handling Errors and Special Conditions 189 
OPEN/CLOSE Errors and Special Conditions 189 
Manipulative Macro Instruction Errors and Special 
Conditions 190 

RPL-Based Macro Instruction Errors and Special Conditions 191 
Coding LERAD and SYNAD Exit Routines 195 

Handling Exception Conditions {RO=X'04') 200 
Handling Exception Messages 200 
Handling Negative Responses 201 

Handling Retriable Completion {RO=X'08') 201 
Handling Data Integrity Damage {RO=X'OC') 202 
Handling Environment Errors {RO=X'lO') 202 
Handling Logical Errors {RO=X'l4' and X'18') 202 
Handling ACF/VTAM Software Errors 202 

Chapter 10. Debugging a Program 205 
Debugging before Executing the Program 205 

Checking for Assembly Errors 205 
Checking for Program Logic Errors 205 
A Checklist 206 
Adding Debugging Aids to the Program 207 

Requesting a Dump 207 
Loading the Current Address before Each Macro 207 
Using a Special Code to Indicate which ABEND or DUMP 
Macro Was Issued 207 

Saving Register 1 (Which Points to the RPL) (DOS/VS) 208 
Using the ABEND Completion Code (OS/VS) 208 
Writing a Debugging Record That Can Be Printed 208 

Debugging after Executing the Program 208 
Important Information in a Dump 208 
Replacing the Dump with a Program Message 209 
System and ACF/VTAM Debugging Guides 209 

Part 3. Sample Programs 211 

Chapter 11. Sample Program 1 213 

Chapter 12. Sample Program 2 219 
The Organization and Flow of Sample Program 219 
The Logic of the 3600 1/0 Routine 227 
The Logic of the 3600 Chaining Output Routine 230 
The Logic of the 3270 1/0 Routine 230 
The Logic of the RESP Exit Routine 234 
The Logic of the DF ASY Exit Routine 234 

Appendix A. Communicating with BSC and Start-Stop 
Terminals 239 

Using BT AM 239 
Using ACF/VTAM 239 

Distinguishing between Logical Units and BSC/Start-Stop 
Devices 241 

The Basic-Mode Macro Instructions 241 
Basic-Mode Concepts and Facilities 241 

Data Blocks 242 
Solicitation 242 

Soliciting Blocks 243 
Soliciting Messages and Transmissions 244 
Continuous Solicitation 244 

Special 1/0 Operations 244 
Special Processing Options 245 

Using the Basic-Mode Macro Instructions 245 
Connecting BSC and Start-Stop Terminals 246 
Modifying Terminal Characteristics 246 
Reading Data 24 7 

READ SPEC 24 7 
READANY 250 

Writing Data 252 
Simple Writes 252 
Multiple Writes 254 
Conversational Writes 255 

Canceling Data-Transfer Requests 256 
Handling Attentions 256 
Handling Release Requests 257 

Basic-Mode Sample Programs 258 
Basic-Mode Sample Program 1: LOGON Exit, RPL Exit, and 
READANY 259 

Basic-Mode Sample Program 2: ·ACQUIRE, SOLICIT, and 
RPLExit 264 

Basic-Mode Sample Program 3: ACCEPT, LOGON Exit, 
SOLICIT, and RPL Exits 267 

Appendix B. Summary of Commands and Indicators 271 

Appendix C. Examples of Message, Response, and Command 
Exchanges for Typical Communication Operations 279 

Appendix D. Example of a Primary Application Program 313 
What SAMPl Does 313 
How SAMPl Relates to Sample Program 1(Chapter11) 313 
The Message Interface between SAMPl and Logical Units 314 
Notes on SAMPl 315 

Notes on the Main Program 316 
Notes on the LOGON Exit Routine 317 
Notes on the RESP Exit Routine 31 7 
Notes on the LERAD and SYNAD Exit Routines 318 
Notes on the LOSTERM Exit Routine 318 
Source Statements for SAMPl 319 

Appendix E. Example of Authorized Path 343 
Notes about SAMP2 343 
SAMP2 Assembler Language Code 344 

Glossary 349 

Index X-1 

v 



Figures 

Figure 1-1. 

Figure 1-2. 

Figure 1-3. 
Figure 1-4. 

Figure 1-5. 

Figure 1-6. 

Figure 2-1. 

Figure 3-1. 
Figure 3-2. 

Figure 3-3. 

Figure 3-4. 

Figure 3-5. 

Figure 3-6. 

Figure 3-7. 
Figure 3-8. 
Figure 3-9. 
Figure 3-10. 
Figure 3-11. 

Figure 5-1. 
Figure 5-2. 

Figure 5-3. 

Figure 5-4. 
Figure 5-5. 

Figure 5-6. 

Figure 6-1. 
Figure 6-2. 

Figure 6-3. 
Figure 6-4. 

Figure 6-5. 

Figure 6-6. 
Figure 6-7. 

Figure 6-8. 

Figure 6-9. 

Figure 6-10. 
Figure 6-11. 
Figure 6-12. 

vi 

ACF/VTAM Application Prograni.s'in an ACF/VTAM 
Data Communication System 4 
The SSCP, Physical Units, and Logical Units in a 
Network 8 
Establishing an LU-LU Session 10 
A Data Communication Network with Two 
Domains 13 
The Major Functions of the Communication Part 
of an ACF/VTAM Application Program 14 
Major Programming Elements in the Communication 
Part of an ACF/VTAM Application Program 15 
Special-Purpose Exit Routines and the Events That 
Cause Them to Be Scheduled 28 
A Synchronous Operation 35 
An Asynchronous Operation with an ECB 
Posted 36 
An Asynchronous Operation with an RPL Exit 
Routine Scheduled 37 
A Possible Pattern of Requests in RPL Exit 
Routines for Asynchronous Operations 38 
Relative Advantages of Synchronous and 
Asynchronous Requests 39 
Some Decisions That Affect Program Design 
and Coding 42 
Multitasking a Program 48 
Multiple Tasks, Using the Same ACB 49 
Multiple Tasks, Each with Its Own ACB 50 
A Single Task with Multiple ACBs 51 
The Logical Requirements for Using Authorized 
Path (OS/VS2 MVS) 52 
Queued and Nonqueued Connection Requests 67 
Protocols for Sessions between Primary and 
Secondary Application Programs 81 
Exchange When a Secondary Application Program 
Requests Connection 84 
Logan Mode Table Macro Instructions 90 
Identification of Logan Mode Tables in LU 
Definition Statements 91 
Setting the NIB Fields to Acquire or Control 
Session Parameters 95 
Exchanging Messages and Responses 106 
A Logical Unit (A) Requests a Definite Response, 
(B) Requests Only a Negative Response, and 
(C) Receives an Exception Response 109 
Normal-Flow Messages Are Sent Sequentially 112 
The Difference between Normal-Flow and 
Expedited-Flow Messages 113 
Messages and Responses Transmitted on the 
Normal Flow and on the Expedited Flow 114 
How Sequence Numbers Are Used 116 
Starting and Stopping the Flow of Messages and 
Responses 11 7 
The General Sequence of Events When 
ECB-Posting Is Specified 122 
The General Sequence of Events When an RPL 
Exit Routine Is Specified 123 
Scheduled Output 124 
Responded Output 125 
Example of Using Any-Mode and Specific-Mode 
to Handle an Inquiry from a Logical Unit 126 

Figure 6-13. 

Figure 6-14. 

Figure 6-15. 
Figure 6-16. 

Figure 6-17. 

Figure 6-18. 
Figure 6-19. 
Figure 6-20. 
Figure 7-1. 
Figure 7-2. 
Figure 7-3. 

Figure 7-4. 

Figure 7-5. 

Figure 7-6. 

Figure 7-7. 

An Example of Using Continue-Any and 
Continue-Specific Modes to Handle Concurrent 
Inquiries 127 
An Example Showing Values in the RECLEN Field 
of an RPL 128 
An Example of Message Chaining 130 
An Example of Sending a Chain of Messages to a 
Logical Unit That Is Buffering Data 131 
An Example of a Logical Unit Quiescing an 
Application Program in Order to Interrupt 
Continuous Sending 135 
Quiesce Protocol 137 
Change-Direction Protocol 139 
Bracket Protocol 141 
An Example of Using an RPL Exit Routine 146 
A Summary of Exit Routines 149 
How ACF/VTAM Handles DFASY 
(Expedited-Flow) Input 152 
How ACF/VTAM Handles RESP (Normal-Flow 
Response) Input 154 
Summary of Parameter Lists Passed to Exit 
Routines 155 
Format of a Network Services Procedure Error 
Request Unit 164 
Format of a Network Services CTeanup Request 
Unit 166 

Figure 7-8. Summary of Exit Routines Involved in Session 
Initiation 174 

Figure 7-9. Summary of Exit Routines Involved in Session 
Outages 175 

Figure 7-10 . Summary of Exit Routines Involved in Session 
Termination 176 

Figure 7-11. A Summary of Addressability and Save-Area 
Requirements for the Main Program 1 77 

Figure 7-12. Situation.sin Which LERAD and SYNAD Exit 
Routines Do not have to be Reenterable 178 

Figure 7-13. Situation in Which LERAD and SYNAD Exit 
Routines Must be Reenterable 1 79 

Figure 9-1. How OPEN/CLOSE Error and Special-Condition 
Information is Organized 190 

Figure 9-2. How Manipulative Macro Instruction Error and 
Special-Condition Information Is Organized 191 

Figure 9-3. Register 15 and Register 0 Return Codes 
Following an RPL-Based Request 191 

Figure 9-4. How RPL-Based Macro Instruction Error and 
Special-Condition Information Is Organized 192 

Figure 9-5. Recovery Action Return Codes and 
Their General Meanings 193 

Figure 9-6. A Summary of Error and Special-Condition 
Handling with Synchronous Operations 194 

Figure 9-7. A Summary of Error and Special-Condition 
Handling with Asynchronous Operations 196 

Figure 9-8. A Summary of Error and Special-Condition 
Handling with Scheduling of Messages 198 

Figure 9-9. A Summary of Register Usage on Entering and 
Leaving a LERAD or SYNAD Exit Routine 199 

Figure 11-1. The General Logic of Sample Program 1 214 
Figure 12-1. A Possible Data Communication System 

Configuration for Sample Program 2 220 



Figure 12-2. 

Figure 12-3. 
Figure 12-4. 
Figure 12-5. 
Figure 12-6. 
Figure 12-7. 
Figure A-1. 

Figure A-2. 

Figure A-3. 

Figure A-4. 
Figure A-5. 
Figure A-6. 
Figure B-1. 
Figure B-2. 
Figure B-3. 

Figure B-4. 

Figure B-5. 

Figure B-6. 

Figure B-7. 
Figure C-1. 

Figure C-2. 

Figure C-3. 

Figure C-4. 

Figure C-5. 

FigureC-6. 

FigureC-7. 

Figure C-8. 

The Organization and Flow of Sample 
Program 2 221 
The Logic of the 3600 I/O Routine 228 
The Logic of the Chaining Output Routine 231 
The Logic of the 3270 I/O Routine 232 
The Logic of the RESP Exit Routine 235 
The Logic of the DF ASY Exit Routine 236 
Types of Devices and Modes (Record or Basic) 
Used for Their Sessions 239 
Using BTAM and ACF/VTAM to Communicate with 
BSC and Start-Stop Terminals 240 
Implicit and Explicit Solicitation Using Basic 
Mode 243 
The Logic of Basic-Mode Sample Program 1 
The Logic of Basic-Mode Sample Program 2 

260 
265 
268 The Logic of Basic-Mode Sample Program 3 

Summary of Sending Normal-Flow Commands 
Summary of Receiving Normal-Flow Commands 
Summary of Sending Expedited-Flow 
Commands 274 
Summary of Receiving Expedited-Flow 
Commands 275 
Summary of Sending Session-Control 
Commands 276 
Summary of Receiving Session-Control 
Commands 277 
Summary of Indicators 278 
A Logical Unit (Other Than a Secondary 
Application Program) Initiates Connection with a 
Primary Application Program 281 

272 
273 

A Primary Application Program Acquires a Logical 
Unit 282 
After a Warm Start, a Primary Application 
Program Reestablishes Connection and 
Resynchronizes Sequence Numbers 283 
A Primary Application Program and a Logical Unit 
Exchange Messages: (A) with No Responses, 
(B) with Negative Responses Only If an Exception 
Occurs, (C) with Definite Response 1 (Positive or 
Negative), and (D) with Definite Responses 1 and 
2 Sent at the Same Time 284 
The Logical Unit Sends a Chain of Messages to the 
Primary Application Program: (A) without a 
Negative Response, and (B) with a Negative 
Response 287 
The Application Program and Logical Unit Use 
Quiesce Protocol: (A) the Application Program 
Quiesces the l,ogical Unit, and (B) the Logical Unit 
Quiesces the Application Program 288 
The Application Program and Logical Unit Use 
Bracket Protocol: (A) Where the Logical Unit 
Begins the Bracket, (B) Where the Primary 
Application Program Begins the Bracket, (C) Where 
the Primary Application Program Gets a Positive 
Response to Its Bid and Begins the Bracket, and 
(D) Where Bid Produces a Later Ready to Receive 
Command 289 
The Application Program and the Logical Unit Use 
Change-Direction Protocol: (A) Where Only Change 
Direction Command Indicators Are Used, and (B) 
Where, in Addition, Change Direction Request 
Indicator (or Signal Command) ls Used 291 

Figure C-9. The Primary Application Program Resynchronizes 
Sequence Numbers with the Logical Unit 292 

Figure C-10. The Application Program and Logical Unit Use the 
Signal Command: (A) Sent by the Logical Unit, and 
(B) Sent by the Primary Application Program 293 

Figure C-11. The Application Program and Logical Unit Use the 
LUS Command: (A) Sent by the Logical Unit, and 
(B) Sent by the Primary Application Program 294 

Figure C-12. Operations Are Shut Down in an Orderly Fashion: 
(A) the Logical Unit Requests Shutdown, and (B) 
the Primary Application Program Orders 
Shutdown 295 

Figure C-13. The Logical Unit Initiates Disconnection: (A) 
Conditionally, and (B) Unconditionally 296 

Figure C-14. The Primary Application Program Disconnects the 
Logical Unit 297 

Figure C-15. The Secondary Application Program Requests 
Connection to the Primary Application Program 298 

Figure C-16. The Primary Application Program Acquires the 
Secondary Application Program 300 

Figure C-17. The Primary Application Program Issues a 
SIMLOGON Macro Instruction to Acquire the 
Secondary Application Program 301 

Figure C-18. The Primary Application Program Resynchronizes 
Sequence Numbers with the Secondary Application 
Program 303 

Figure C-19. A Primary Application Program and Secondary 
Application Program Use Bracket Protocol (a Bid 
Command Is First Rejected, Then Accepted) 305 

Figure C-20. A Primary Application Program and Secondary 
Application Program Use Bracket Protocol (Bid by 
Primary Program Is Rejected, But a Ready to 
Receive Command Follows) 306 

Figure C-21. The Secondary Application Program Sends a 
Conditional Request for Disconnection 307 

Figure C-22. The Secondary Application Program Sends an 
Unconditional Request for Disconnection 308 

Figure C-23. The Secondary Application Program Sends a 
Request Shutdown Command 309 

Figure C-24. The Primary Application Program Shuts Down the 
Secondary Application Program 310 

vii 





Part 1. ACF /VT AM Application Program Concepts and Language 

Chapter I., What an ACF/VTAM Application Program Is. This chapter introduces 
ACF/VTAM application program concepts and facilities, which are discussed in more 
detail, with examples, in Parts 2 and 3. This chapter gives the reader an overview of 
ACF/VTAM application program concepts by showing how an ACF/VTAM application 
program fits into an installation's teleprocessing system and by showing the principal 
elements in any ACF/VTAM application program. The facilities provided and major 
choices involved in writing an ACF/VT.AM application program are summarized. 

Chapter 2. The ACF/VTAM Language. This chapter summarizes ACF/VTAM macro 
instructions and discusses their general characteristics. It explains the relationship among 
control blocks defined by ACF/VTAM macro instructions and the executable ACF/ 
VT AM macro instructions that use these control blocks. These relationships are discussed 
in the context of three things that every ACF/VTAM application program must do: open 
and close the program, connect and disconnect logical units, and communicate with 
logical units. 

Part 1. ACF!VTAM Application Program Concepts and Language 1 





Chapter 1. What an ACF/VTAM Application Program Is 

This chapter provides an overview of ACF/VTAM application programs. It describes what 
an ACF/VTAM application program is by: 

Showing an ACF/VTAM application program as part of an ACF/VTAM data 
communication system 

Showing an ACF/VTAM application program's relationship to the concepts of Systems 
Network Architecture (SNA) 

Showing the major programming elements in an ACF/VT AM application program 

An ACF/VTAM Application Program as Part 
of an ACF/VTAM System 

Figure 1-1 shows an ACF/VTAM application program as part of an ACF/VTAM data 
communication system. The circled numbers in Figure 1-1 refer to major parts of the 
system; those circled numbers appear beside headings below and tie the discussion below 
to the related parts of the figure. An ACF /VT AM application program can communicate 
with synchronous data link control (SDLC) logical units, with binary synchronous 
communication (BSC) and start-stop devices, with local SNA devices, with local non-SNA 
devices, and with other ACF/VTAM application programs. The body of this book 
describes communication with local SNA devices, remote SNA devices, and certain 
non-SNA (BSC and local) devices. Appendix A describes communication with BSC 
devices, start-stop devices, and local 3270s not treated as SNA devices. 

The ACF/VTAM Application Program G) 
An ACF/VTAM application program can contain two types of instructions: communica­
tion instructions and processing instructions. The application program always contains 
communication instructions, which are the instructions that send and receive messages 
and control other aspects of communication between the program and other elements in 
the network. The program usually also contains processing instructions, which are the 
instructions that manipulate the data before it is sent or after it is received, but the 
program does not have to contain processing instructions. 

If an ACF/VTAM application program does contain processing instructions and if the 
program is small, those instructions may be interleaved with communication instructions. 
More commonly, however, the processing instructions are written separately, with an 
interface defined between processing parts of the program and the communication part of 
the program. This separation of function allows each part to be created separately and 
means that changes or additions to one part will not affect other parts. The processing 
part of an ACF/VTAM application program can be written in a higher-level language, such 
as PL/I. The communication part, which uses ACF/VTAM macro instructions, is written 
in assembler language. 

ACF/VTAM application programs can share the resources of the system; that is, the 
application programs can use the same communications controllers, cluster controllers, 
and communication lines to reach logical units. For example, in Figure 1-1, application 
programs A and Buse the same communications controller (at S) and the same SDLC link 
to reach terminals and logical units (at 6 and 7). The application programs, however, are 
not aware that they are sharing these resources because ACF/VTAM, the network control 
program (NCP), and other programming elements in the network handle communications 
in such a way that the programs do not know they are sharing the resources. One 
restriction on sharing resources is that only one session can exist between any two logical 
units in a network at the same time. A second restriction is that a logical unit cannot 
establish a session with itself. 

Cllapter 1. What an ACF/VTAM Application Program Is 3 



Host Computer 

ACF/VTAM Application Program A 

171 
I\ 

@ ~ ® © 
.,. 

ACF/VTAM 

s) 
.........., 

ACF/VTAM Application Program B 

1--- .._ ~ 
1 

l 
J 0 

® Logical Unit (s) 

© 
SDLC Link 

To other NCP - logical 
units 

SDLC 
Cluster 
Controller Logical Unit (s) 

T 
r l 

1-- ~ I---

Figure 1-1. ACF/VTAM Application Programs in an ACF/VTAM Data Communication System 

4 



The Processing Part @ 
The instructions in the processing part of an application program can be written in 
assembler language or in a higher-level language, such as PL/I or COBOL. If written in 
assembler language, the instructions can be interleaved with the communication 
instructions in the program. But more commonly, as shown in Figure 1-1, the processing 
part is separate and requests data communication services by calling or branching to the 
communication part of the program. Many programs will contain several processing parts 
(routines or modules) that use a common communication part. 

The Communication Part @ 
This part of the ACF/VTAM application program contains macro instructions and 
associated control blocks used to connect and communicate with logical units that have 
been defined to ACF/VTAM. The programming elements that make up the 
communication part are discussed further in this chapter under "The Major Programming 
Elements in an ACF/VTAM Application Program." 

ACF/VTAM © 
ACF/VTAM controls the data communication network. Logical units (including other 
application programs) are defined as part of the network during ACF/VTAM definition 
and are then activated by start procedures or network operator commands. The 
ACF/VTAM application program then requests connection (on its own initiative or as the 
result of a logon) to one or more active logical units. Once connected, the program 
requests ACF/VTAM to perform data-transfer operations with each logical unit. In 
addition to managing the network and building channel programs, ACF /VT AM performs 
such services as input and output data buffering, automatic scheduling of application 
program exit routines, and sequence numbering of outbound messages. ACF/VTAM 
requests the operating system to execute channel programs it has built; the channel 
programs result in communication with local or remote logical units through a local 
communications controller or cluster controller. 

The Network Control Program @ 

The Logical Unit @ 

On receiving the input or output requests and associated data, the network control 
program (NCP) in the 3704 or 3705 Communications Controller does what is required to 
communicate with logical units on data communication lines. Many functions previously 
performed by the access method (for example, BTAM} or application program are now 
performed by the communications controller; for example, the controller schedules line 
activity, retries operations after transmission errors, and collects error statistics. 

An ACF/VTAM application program communicates with logical units. A logical unit can 
be: 

An SNA terminal used directly by a terminal operator, or a program in a terminal, a 
terminal control unit, or a cluster controller (such as a 3601 or 3791 controller) 

A non-SN A 32 70 device (local or remote) used in a record-mode session 

Logical units controlled by TCAM or by another ACF /VT AM 

Another ACF/VTAM application program 

When the unqualified term logical unit is used in this book, it refers to any or all of the 
above. The term device-type logical unit refers to any logical unit other than another 
application program. To distinguish a logical unit that is another ACF/VTAM application 
program, it is called a secondary application program . 

. Though not shown in Figure 1-1, the ACF/VTAM application program can also 
communicate with certain BSC and start-stop devices. The set of macro instructions 
available for communicating with these devices is different from that used for 

Olapter 1. What an ACF/VTAM Application Program Is S 



communicating with logical units. The method of communicating with BSC terminals, 
start-stop terminals, and local non-SNA devices in basic mode is described in Appendix A. 

In general, for programmable SNA devices, the user defines which processing functions 
will take place in a program in the programmable device (such as a cluster controller) and 
which in the ACF/VTAM application program in the host computer. The user must 
coordinate the cluster controller program and the ACF/VTAM application program so 
that they work together. 

The Terminal Operator and the Batch Function CZ) 
If the ACF/VT AM application program communicates with a cluster controller program 
rather than with a nonprogrammable terminal, the ACF/VTAM application program may 
not need to know about terminal operator actions. The logical unit will determine 
whether and how data received from a terminal operator will go to the ACF/VTAM 
application program and whether and how data received from the ACF /VT AM 
application program will go to the terminal operator. 

An ACF /VT AM application program can also communicate with a batch-transmission or 
batch-reception program in a cluster controller (such as the 3791 batch function). To 
participate effectively in the batch transmissions, the ACF/VTAM application program 
does not need to know the original source of or the eventual disposition of data received 
from or sent to the subsystem batch program. 

Another ACF/VTAM Application Program ® 
An ACF/VTAM application program can also communicate with another ACF/VTAM 
application program. The two application programs can be in the same host computer or 
in different host computers. In this kind of communication in a particular session, one 
application program adheres to a set of defined primary protocols and is known as the 
primary application program. The other application program adheres to a set of 
secondary protocols and is known as the secondary application program. 

An ACF /VT AM application program can be both a primary and a secondary application 
program at the same time. It can be a primary application program in its sessions with 
logical units while it is also functioning as a secondary application program in sessions 
with other ACF /VT AM application programs. 

Systems Network Architecture 
(SNA) Concepts in ACF/VTAM 

ACF/VTAM. follows SNA concepts and uses SNA protocols to connect and communicate 
with elements in a data communication network. Several SNA concepts provide helpful 
background information for the programmer who writes an ACF/VTAM application 
program. Those concepts are: 

Network addressable units 

Primary and secondary logical units 

Sessions 

Domains 

The SNA Concept of Network Addressable Units ,. ,,.,. 

6 

Each element in a network to which a data or control message can be sent is assigned a 
network address by ACF/VT AM. Each element with such an address is known as a 
network addressable unit (NAU). The network address uniquely identifies the element, 
regardless of whether the element is a device (such as a terminal or terminal control unit), 
a program (such as an application program in a cluster controller or terminal), or a 



portion of ACF/VTAM. For ACF/VTAM and other elements in the data communication 
network, the network address contains the information necessary to route a message to 
its destination. 

Three types of network addressable units are defined by SNA and recognized by 
ACF/VTAM. The three types are: (1) system services control point (SSCP), (2) physical 
units (PUs), and (3) logical units (LUs). Figure 1-2 shows the location of these types of 
network addressable units in a simplified network. 

The system services control point is a unit of coding in ACF/VTAM that manages the 
network and has primary control over communications. The SSCP performs functions 
such as bringing up the network and 3hutting it down, establishing and disestablishing 
connections (sessions) between units, and reacting to network problems (such as failure 
of a link or unit). To perform these functions, the SSCP must be able to communicate 
with, physical units and logical units in the network under its control. 

A physical unit is not literally a physical device in the network. Rather, a physical unit is 
a portion of a device (usually programming or circuitry, or both) that performs control 
functions for the device in which it is located and, in some cases, for other devices that 
are attached to the PU-containing device. For the devices under its control, the physical 
unit takes action during activation and deactivation, during error recovery and 
resynchronization, during testing, and during gathering of statistics on operation of the 
device. Each device in the network is associated with a physical unit. 

The physical unit may exist either within the device or within an attached controlling 
device. The physical unit exists within a host computer, a communications controller, and 
a cluster controller. For a terminal, however, the physical unit may be within the terminal 
or it may be within the terminal control unit, cluster controller, or communications 
controller to which the terminal is attached. 

A logical unit is a device or program by which an end user (a terminal operator or an 
input/output mechanism) gains access to the data communication network. To the 
network, a logical unit is the source of a message coming into the network. But the logical 
unit may or may not be the original source. The contents of the message or the 
information on which the message is based may have originated at a device controlled by 
the logical unit. (For example, in a 3601 cluster controller, the logical unit is a program 
that handles input and output for one or several finance terminals attached to the 
controller. Input actually originates at one of the terminals, but it is the logical unit [the 
program] in the 3601 that uses the input to create a message and begin transmission of 
the message.) Similarly, the network sees a logical unit as the destination of a message, 
but the logical unit may actually pass the message on to a device for recording, printing, 
or displaying to a terminal operator. (For example, a message received by a logical unit [a 
program] in a 3601 may be passed on to a finance terminal to be displayed on the screen 
of that terminal.) In some cases, however, the logical unit is an intrinsic part of the device 
at which the message is displayed (for example, a 3767 terminal contains the logical unit 
and is the input/output device). 

An ACF/VTAM application program is also a logical unit. ACF/VTAM sees it as an 
originator of and destination for messages. But there can be other programs in the host 
computer that interface with an ACF/VTAM application program and to which the 
contents of messages can be passed or from which the contents of messages can be 
received. Thus, although the ACF/VTAM application program is the logical unit, the 
messages it handles may_ pe used by another program. In this case, the other program is 
the end user. 

Chapter 1. What an ACF/VTAM Application Program Is 7 



~ : .. 

,!\, 

8 

Host Computer 

ACF/VT AM 
Application 
Program 

G 
ACF/VT AM 
Application 
Program 

G 

Communications 
Controller 

Cluster 
Controller 

ACF/VT AM 

r "" System 
Services 
Control 
Point 

'- (SSCP) 
.J 

Communications 
Controller 

Terminal 

GGG } Application programs 
in the cluster controller 

Cluster 

Input 
Device 

1 Output 
Device 

Cluster 
Controller 

1 PU function is provided by the 
attached communications 
controller. 

[:] Indicates a terminal. 

Figure 1-2. The SSCP, Physical Units, and Logical Units in a NetwoU 



The SNA Concept of Primary 
and Secondary Logical Units 

The SNA Concept of Sessions 

Of the three types of network addressable units, an ACF /VT AM application programmer 
is concerned only with logical units, and is not concerned with the SSCP and the physical 
units. An ACF/VTAM application programmer is concerned with logical units because his 
or her program (which itself is a logical unit) will communicate with other logical units 
(for example, terminals, programs in cluster controllers or terminals, and/or other 
ACF/VTAM application programs). An ACF/VTAM application program does not 
communicate directly with the SSCP or physical unit, but commands issued by the 
program may lead to actions by the SSCP or physical unit. 

When an application program establishes connection with a logical unit (by issuing an 
OPNDST or OPNSEC macro instruction), a 32-bit communication identifier (CID) is 
returned in two control blocks used in making the connection (the request parameter list 
[RPL] and the node initialization block [NIB]). The CID identifies the two logical units 
involved in a communication session. Whenever the application program is to send a 
message to the logical unit, the CID must be in the RPL used to send the message. The 
programmer can move the CID out of and back into the RPL, but the programmer does 
not directly use and must not change the contents of the CID. 

In communication between two logical units, one logical unit acts as the primary end of 
the session (by using primary protocols), the other as the secondary end (by using 
secondary protocols). 

The same ACF/VTAM application program can be primary on some sessions and 
secondary on other sessions at the same time. For example, it can perform primary 
functions in its communications with terminals and logical units (including other 
ACF/VTAM applicaFon programs), and it can perform secondary functions in its 
communications with another application program. 

For more information on what primary and s~condary application programs can and 
cannot do, see "How a Secondary Application Program Requests Connection" in Chapter 
5. 

Before two units in a network can communicate with each other, the units must be tied 
together in what is known as a session. In an SNA network, several different types of 
sessions are established, including SSCP-SSCP sessions, SSCP-PU sessions, SSCP-LU 
sessions, and LU-LU sessions. 

When a network includes more than one host computer and therefore more than one 
ACF/VTAM (or ACF/VTAM in one or more hosts and ACF/TCAM in one or more other 
hosts), a session called an SSCP-SSCP session must be established between the SSCP in 
one ACF /VT AM and each other SSCP with which the first SSCP will communicate. 

Within the machine configuration controlled by each SSCP, different kinds of sessions are 
established in stages. The SSCP must first establish an SSCP-PU session with each physical 
unit that is active in the configuration. Then, for each active logical unit associated with a 
physical unit, the SSCP must establish an SSCP-LU session. And finally, when a pair of 
logical units indicate that they want to communicate with each other, the SSCP must 
establish an LU-LU session between them. The paragraphs that follow describe the steps 
in establishing these sessions, with the circled numbers beside the headings serving as keys 
to the circled numbers in Figure 1-3. 

OJ.apter 1. What an ACF/VTAM Application Program Is 9 



>-The SSCP-LU Session 0 

10 

ACF/VTAM 
Application 
Program 

© LOGON 
Exit Routine 

@OPNDST 

I 

I 
I 

I 

I 

ACF/VTAM 

I 

r--
1 SSCP 

L7 
I 

I 
I 

Figure 1-3. Establishing an LU-LU Session 

0 LU-LU Session 

6 Bind 

To 
other 
LUs 

LU 

To get ready for an SSCP-LU session, the SSCP must first establish a session with the 
physical unit that controls the logical unit. This type of session is called an SSCP-PU 
session. This session is used to exchange messages and commands that pertain to startup 
and shutdown of the machine configuration or the individual physical unit and to the 
recovery of operations after a device or link failure. After the SSCP-PU session has been 
established, the SSCP can attempt to establish a session with any active logical unit 
associated with that physical unit. The SSCP-PU session is established on a nonswitched 
line as soon as the physical unit is activated. On a switched line, the session is established 
following a dial-in or dial-out operation. For local SNA devices, the session is established 
when physical connection is established. In ACF/VTAM, the SSCP-PU session is 
established by the SSCP; an ACF/VTAM application program does not itself take any 
direct action to establish that session. 

Once a session has been established between the SSCP and a physical unit, the SSCP can 
issue commands to establish a session between itself and any active logical unit associated 
with the physical unit. This type of session is called an SSCP-LU session. The 
establishment of this session allows SNA commands to flow back and forth between the 
logical unit and the SSCP. These commands pertain mainly to connection and 
disconnection. In ACF/VTAM, the SSCP-LU session is established by the SSCP; fill 

ACF /VT AM application program does not itself take any direct action to establish ''ie 
session. 



Initiate Command or Logon 0 

Logon Exit Routine © 

After the SSCP has established a session with a logical unit, the logical unit can attempt 
to initiate a session with an ACF/VTAM application program. Action by the logical unit 
to start such a session is usually initiated when a terminal operator communicates with 
the logical unit and indicates that he or she wants to work with an application program in 
the host computer. The logical unit either uses the logon information entered by the 
terminal operator to create an Initiate command to be sent to the SSCP, or the logical 
unit passes the logon information from the terminal operator on to the SSCP in the form 
in which it was received from the operator. 

In addition, after the SSCP-LU session has been established, a secondary ACF/VTAM 
application program can request that a session be established with a primary ACF /VT AM 
application program. In this case, the secondary application issues a special macro 
instruction (the REQSESS macro instruction). This macro instruction causes an Initiate 
command (containing logon information) to be sent to the SSCP. 

In either case, when the logon information reaches the SSCP, the SSCP notifies the 
ACF/VTAM application program that the logon has been received and should be 
processed. The logon information includes session parameters and, optionally, a user 
logon message. The user logon message is particular data that the terminal operator or 
logical unit wants to be passed to the ACF /VT AM application program. When the 
application program is notified that the logon has been received, the session parameters 
and the user logon message are made available for inspection by the program. Session 
parameters are a set of codes that indicate the communication rules that the logging-on 
unit wants to use for the session that is about to be established. The parameters specify 
such things as whether chained or unchained messages will be sent, what kinds of 
responses will be requested, which logical unit will start and end brackets, and so on. 

In ACF /VT AM, the SSCP notifies the application program that the logon has been 
received by scheduling execution of the program's LOGON exit routine. The LOGON 
exit routine then either accepts or rejects the logon. During processing of the logon, the 
application program determines whether the session parameters suggested by the logical 
unit are the right ones for the session or whether a different set of session parameters 
should be used. 

Opening the LU-LU Session (OPNDST Macro Instruction) 0 

The Bind Command @ 

If the application program decides that it wants to go into session with the logical unit, 
the application program issues an OPNDST macro instruction. As a result of the OPNDST 
macro instruction, ACF/VTAM builds a Bind command and sends it to the logical unit. If 
the application program decides to reject the request for a session, it issues a CLSDST 
macro instruction, and the session is not established. 

The Bind command is the key item in establishing the LU-LU session. Besides indicating 
the application program's willingness to go into session, the Bind command contains the 
session parameters that the program decided should be used for the session (the 
parameters may be the same or different from those suggested in the logical unit's logon 
information). If the logical unit agrees with the session parameters and wishes to establish 
a session with the application program, the logical unit sends a positive response to the 
Bind. If the logical unit does not agree with the session parameters, it sends a negative 
response and the LU-LU session is not completed. 

Completing the LU-LU Session (2) 
When ACF/VTAM receives a positive response to the Bind command, it completes the 
LU-LU session and the logical units are ready to communicate. In some cases, the 

Otapter 1. What an ACF /VTAM Application Program Is 11 



exchange of messages and responses cannot begin until a Start Data Traffic command is 
sent by the primary end of the session to the logical unit. The need for the Start Data 
Traffic command is determined by the transmission services profile in the session 
parameters. 

The SNA Concept of Domains 
as Implemented by ACF/VTAM 

A data communication network is divided into domains when the networ:(c contains more 
than one host computer and each host computer contains ACF/VTAM. (or another data 
communication access method that supports networking). A domain is that portion of a 
total network that is controlled by a particular ACF/VTAM. (or another access method). 
Figure 1-4 shows a network with two domains. The elements in doniain A are controlled 
by the ACF/VTAM. in host computer 1; the elements in domain Bare controlled by the 
ACF/VT.AM in host computer 2. 

The domains are joined either (1) by a cross-domain link between two local 
communications controllers (as shown in Figure 14) or (2) by a communications 
controller that is channel-attached to more than one host computer. 

When a network contains more than one domain, an ACF/VTAM applicatio11 program in 
one domain can communicate with logical units in its own domain and in other domains. 
The application program can communicate across domain boundaries with SNA terminals 
and SNA logical units, with ACF/VTAM or ACF/TCAM application programs, and with 
BSC 3270 terminals that were defined with PU=YES. The application program cannot 
communicate with local, start-stop, or BSC terminals (except specially designated BSC 

. 3270 terminals) in other domains. 

In cross-domain communications, neither end of the session need be aware that the other 
end of the session is in another domain. By using a symbolic name to refer to the resource 
in another domain, each end of the session provides enough information for the resource 
to be identified and located. All addressing and routing of messages between the domains 
are handled auto1m1til:ally by ACF(VTAM and the network controi programs (NCPs) in 
the local communications controllers. 

The Major Programming Elements 
in an ACF/VTAM Application Program 

12 

Figure 1-5 shows the three major functions that any ACF/VTAM application program 
performs: 

• Opening and closing the program (associating the program with and disassociating it 
from ACF/VTAM). 

• Connecting to logical units that have already been defined to ACF /VT AM and made 
active either when ACF/VTAM was started or when the network operator issued a 
command. Disconnecting the logical units when communication is no longer necessary 
or possible. 

• Communicating with logical units to which the program is connected. 

Figure 1-6 shows these major functions in more detail in the approximate order in which 
the functions occur. Although every ACF/VTAM facility is not shown in Figure 1-6, the 
facilities that are shown give a general idea of an ACF/VTAM application program. The 
headings below correspond to the numbers in Figure 1-6. 



Domain A 

Host Computer 1 

...L 
_[ 

PCF/VTAM 
Application 
Programs 

Communications 
Controller 

Cluster 
Controller 

ACF/VT AM 

Communications 
Controller 

Fiaum 1-4. A Data Communication Network with Two Domains 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Domain B 

Host Computer 2 

__[ 

ACF/VTAM 
Application 
Programs 

ACF/VT AM 

Communications 
Controller 

Cross-Domain Link 

Cluster 
Controller 

8 Indicates terminal 

Cltapter 1. What an ACF/VTAM Application Program Is 13 



Opening the Program 0 

PCF/VTAM Application Program 

Processing Parts Communication 
Part 

ACF/VTAM 

Communicating with logical units 

Figure 1-5. The Major Functions of the Communication Part of an ACF/VTAM Application Program 

Assume that a program has been started. The program issues an OPEN macro instruction 
to open an access method control block (ACB). The ACB, in the constants area of the 
program, enables ACF /VT AM to relate the program to the name of the APPL statement 
that was used to define the application program to ACF/VTAM. 

Connecting a Logical Unit @ 

14 

A common way to connect a logical unit is to have the logical unit send a logon, which 
requests connection to a particular program. An ACF/VTAM application program can 
have a WGON exit routine that is automatically entered when a logon is received. The 
LOGON exit routine connects the logical unit by issuing an OPNDST macro instruction. 
The OPNDST points to a node initialization block (NIB). The NIB contains information 
that ACF/VTAM associates with the logical unit during its connection. When the 
OPNDST is completed, the program and the logical unit can exchange messages. 



® 

© 

© 

© 

0 

/JC,F/VT AM Application Program 

Processing Parts Communication Part 

START 

• 
• 
• 

OPEN ACB1 

• 
• 
• 

SETLOGON OPTCD=START 

• 
• 
• 

RECEIVE RPL=(2), OPTCD=ANY, 
e AREA=AREA1 

• 
• 

RECEIVE RPL=(2), OPTCD=SPEC 

• 
• 
• 

SEND ... ,POST=RESP, ... 

• 
• 
• 

SEND ... ,POST=SCHED, ... 
SEND ... ,POST=SCHED, ... 

SEND ... ,POST=SCHED, ... 

SEND ... ,STYPE=RESP 

® 

ACF/VTAM 

Exit Routines 

LOGON Exit Routine 

LOGON1 

• 
• 
• 

OPNDST 

• 
• 
• 

BR R14 

Message 

Message 

Message 

Message 

Message 
Messa e 

Message containing logon 

Response ________ ,..... 

Figure 1-6 (Part 1of2). Major Programming Elements in the Communication Part of an ACFNTAM. Application Program 

Chapter 1. What an ACFNTAM Application Program Is 15 



• 
• 
• 

CLOSE ACBl 

@ Defined Constants and Storage 

ACBl 

AREAl 

ACB 
RPL(s) 
NIB(s) 
EXLST 
DC 

• 
• 
• 

END 

Points to APPL name 

CL100 

l 
RESP Exit Routine 

© I _____ r- Resp~~~~ -

• Post ECB -

® 

Figure 1-6 (Part 2 of 2). Major Programming Elements in the Communication Part of an ACF/VTAM. Application P.ropam 

Receiving a Message from Any Logical Unit 0 

16 

After one or more connections have been made, a request can be issued to receive input 
from a specific connected logical unit or from any connected logical unit. To receive a 
message sent from any connected logical unit, a RECEIVE with OPTCD=ANY is issued. 
Such a RECEIVE is completed if ACF/VTAM is already holding a message received from 
any connected logical unit or is completed when such a message is received. (Note that a 
message from a logical unit that has been switched to specific mode is not eligible to 
complete a RECEIVE with OTPCD=ANY.) As part of the RECEIVE operation, the data 
in the message is moved from ACF /VT AM to a designated area in the application 
program-for example, to AREAi shown in the constants area. Note also that there is a 
separate and independent CA.CS setting for each type of input (DFSYN, DFASY, and 
RESP). 

The RECEIVE and most other ACF/VTAM application program requests must furnish 
the address of a request parameter list (RPL), shown in the constants area of Figure 1-6. 
Fields in the RPL contain parameters that tell ACF/VTAM exactly how to perform the 
requested operation. On completion of a requested operation, ACF/VTAM places 
feedback information in the RPL, where it can be checked by the application program. 



Each message that is received or sent by the ACF/VTAM application program contains 
either or both of two kinds of information: data and commands. Data is information that 
is meaningful only to the processing portion of an application program. Commands are 
special signals that help direct the further exch<mge of messages between the application 
program and the logical unit. Whereas data is received in or sent from a defi11ed input or 
output area in the program, commands are received in or sent from certain fields of the 
RPL that is specified in a RECEIVE or SEND macro instruction. (The term commands is 
used here and in other parts of this manual to cover SNA commands and indicators used 
for data-flow control and session control.) 

Receiving a Message from a Specific Logical Unit (]) 

Sending a Message 0 

An input request can also be issued in such a way that only a message from a specific 
logical unit will satisfy the request. To do this, a program issues a RECEIVE with 
OPTCD=SPEC and with the RPL indicating the logical unit from which the input is 
desired. A common practice is for a program to issue a RECEIVE with OPTCD=ANY to 
accept input from any logical unit. Then, when a message is received from a logical unit, 
the program specifies that the logical unit is to be switched into a mode (called specific 
mode) in which a message from it cannot satisfy a RECEIVE with OPTCD=ANY and can 
only complete a RECEIVE with OPTCD=SPEC. When this mechanism is used, a 
conversation with a logical unit consists of an initial RECEIVE with OPTCD=ANY 
followed by a series of RECEIVEs with OPTCD=SPEC and SEND macro instructions. · 
(Note that a SEND macro instruction always specifies that the message is to be 
transmitted to a specific logical unit.) When the conversation is completed, the 
application program can switch the logical unit back to the ANY mode. 

Completion of the RECEIVE with OPTCD=ANY might be followed by execution of a 
processing routine of the program and, subsequently, by the processing part of the 
program's calling the communication part with individual requests for input and output. 
The communication part issues the RECEIVE with OPTCD=SPEC at 4 or one or more 
SENDs at 5 or 6. 

As implied by the preceding description, a RECEIVE is not completed until ACF /VT AM · 
receives a message from a logical unit and passes it to the application program. 

In contrast to a RECEIVE macro instruction, a SEND macro instruction can be 
completed at either of two different times: when the message is scheduled (that is, when 
ACF /VT AM has accepted the request, moved the message to its own output area, and 
prepared everything for the transmission) or when the message has been responded to 
(that is, after ACF/VTAM has sent the message and received a response). To specify 
completion upon receipt of a response, the programmer uses a SEND with POST= RESP 
(as at 5), meaning that the results of the operation will be immediately available in the 
RPL when the request is completed. With POST=RESP, the application program cannot 
reuse the RPL or message output buffer associated with the SEND until the operation is 
completed. 

Scheduling the Sending of a Message @ 
As an alternative to POST=RESP, a message can be scheduled for output (SEND with 
POST=SCHED). On completion of the SEND, the data has been accepted by ACF/VTAM 
and the program can reuse the RPL and the message output buffer. The program itself 
must determine that a scheduled message actually arrived at its destination and was 
processed successfully. One way is to request the logical unit to send back a special 
message called a response, which is an indication of whether and how a message arrived 
and was processed, successfully or unsuccessfully. A response can be requested in each 
SEND that specifies POST=SCHED. When the response arrives, ACF/VTAM either 

Chapter 1. What an ACF/VTAM Application Program Is 17 



Sending a Response 0 

Receiving a Response @ 

Other Exit Routines 0 

Disconnecting a Logical Unit 

aosing the Program @ 

18 

completes a special RECEIVE that can receive responses (not shown) . or enters an 
ACF/VTAM application program's RESP exit routine, such as the one at 8. 

The SEND requests in S and 6 above requested the sending of a message. The program 
may also want to send a response to a message. This is done by specifying STYPE=RESP 
instead of STYPE=REQ in the SEND macro instruction and by specifying other 
parameters to indicate the type of response (for example, positive or negative) to be sent. 
A response is sent because the logical unit requested it; it is a special kind of message that 
is identified as a response to a particular preceding message. Each message is given a 
sequence number by the sender's access method (ACF/VTAM or the logical unit); the 
receiver puts the same sequence number in a response, thus indicating within the response 
which message is being responded to. 

When a program uses SEND with POST=SCHED macro instructions, the program can 
take direct action to receive each response; that is, for each response, it can issue a 
RECEIVE with RTYPE=RESP. More frequently, however, a program will contain a RESP 
exit routine (at 8), which is scheduled each time a response is received. The RESP exit 
routine can notify the main program of receipt of the response, perhaps by posting an 
ECB. The main program must then correlate the response with the send operation that 
produced it. 

In addition to the LOGON and RESP exit routines, ACF/VTAM provides automatic 
scheduling of other special-purpose exit routines. LERAD and SYNAD exit routines can 
be coded which ACF /VT AM schedules when the program issues a macro instruction that 
uses an RPL (such as SEND or RECEIVE) and an error or a special condition occurs. The 
presence and addresses of these special-purpose exit routines are identified to ACF/ 
VT AM in an EXLST macro instruction (in the constants area). The EXLST is pointed to 
by the ACB or NIB, or both. 

Although not shown, ACF/VTAM also provides another general kind of exit routine, the 
RPl.rspecified exit routine. An RPL exit routine is identified in the EXIT operand of an 
RPl.rbased macro instruction (any macro instruction that uses an RPL). A different RPL 
exit routine can be identified in each RPl.rbased macro instruction, or some macro 
instructions can use the same exit routine. When the operation requested in the macro 
instruction is completed, control is automatically given to the exit routine specified in the 
EXIT operand. Having an RPL exit routine scheduled upon completion of a request is an 
alternative to having ACF/VTAM post an ECB upon completion. 

The connection with a logical unit is terminated when the application program issues a 
CLSDST macro instruction. Disconnecting the logical unit allows it to be connected to 
another application program. 

An application program can be closed when the program determines it should be or when 
the ACF/VTAM network operator requests it. To close an application program, the 
program issues a CLOSE macro instruction. This disconnects from the program any 
logical units that are still connected to it and disassociates the program itself from 
ACF/VTAM. 



Constants and Control Blocks @ 
In addition to message buffers (data areas) required for input and output messages and in 
addition to other areas such as status flags for logical units, each ACF/VTAM application 
program must define (or generate dynamically) these control blocks: 

Manipulative Macro Instructions 

One ACB to define several facts about the-program itself. 

One EXLST (list of exit routine names) if any exit routines are to be written. 
Although not required, certain exit routines, such as TPEND, NSEXIT, and 
LOSTERM are recommended. 

At least one RPL for each request that can be pending concurrently with other 
requests. 

At least one NIB for each logical unit that must be in the connection process 
concurrently. It is possible to use only one NIB iflogical units are connected one at a 
time. 

ACF /VT AM provides macro instructions that allow control blocks to be created and 
initialized during program execution (the GENCB macro instruction) and that allow the 
control block fields to be changed and tested (the MODCB, SHOWCB, and TESTCB 
macro instructions). In addition, macro instructions are provided that generate DSECTs 
for the control blocks. This allows control block fields to be located and tested with 
assembler language instructions. ACF /VT AM application program macro instructions and 
control blocks are discussed in more detail in Chapter 2. 

Chapter l. What an ACF/VTAM Application Program Is 19 





Chapter 2. The ACF /VT AM Language 

The ACF /VT AM application program uses ACF /VT AM macro instructions to request the 
operations discussed in Chapter 1. ACF/VTAM provides assembler language macro 
instructions to: 

Associate an application program with or disassociate it from ACF /VT AM 

Connect the program to or disconnect it from specific logical units 

Communicate with logical units 

Control an ACF /VT AM network 

Build and initialize control blocks used when requesting connection, communication, 
or other services from ACF /VT AM 

Manipulate a control block; for example, to test the value of a field in a control block 

Characteristics of the ACF/VTAM Language 

These are some characteristics of the ACF /VT AM language: 

Keyword operands: The operands in ACF /VT AM macro instructions, with the 
exception of OPEN and CLOSE, are keyword operands rather than positional 
operands. Keyword operands make the coding easier to read. The keywords themselves 
identify control block fields. Some keyword operands must be specified, but most are 
optional. 

Manipulative macro instructions: These macro instructions provide an easy way to 
gain access to particular control block fields, usually to test or display values after a 
requested operation. Fields are specified symbolically; field displacements do not have 
to be known. 

Exit routines: The ACF/VTAM application program can specify that ACF/VTAM is 
to automatically schedule special-purpose exit routines. These routines are written to 
handle conditions such as receiving a request for connection from a logical unit or 
receiving a certain type of command from a logical unit. In addition, an ACF/VTAM 
application program can request that ACF/VTAM complete a particular request by 
scheduling an RPL-specified exit routine instead of by posting an ECB. RPL exit 
routines provide additional programming flexibility and convenience and give greater 
priority to the handling of an event's completion than does the posting of an ECB. 

Complements VSAM: In general, the ACF /VT AM language complements the VSAM 
language. Both ACF/VTAM and VSAM use ACB, EXLST, and RPL control blocks 
(although the formats of these control blocks differ in the two access methods). Both 
ACF/VTAM and VSAM have macro instructions (GENCB, MODCB, TESTCB, and 
SHOWCB) that are used to manipulate these control blocks, and both provide the 
ability to code and specify the scheduling of exit routines. 

A Summary of Macro Instructions 

This section summarizes the ACF/VTAM application program macro instructions. For a 
complete description of each macro instruction, see ACF/VTAM Macro Language 
Reference. 

The Connection Macro Instructions 
These macro instructions tell ACF/VTAM that a particular ACF/VTAM application 
program is in operation and, subsequently, request ACF /VT AM to connect the 

OJ.apter 2. The ACF/VTAM Language 21 



application to one or more logical units. The macro instructions also request ACF/VTAM 
to disconnect the program from one or more logical units and to disconnect the program 
from the ACF /VT AM system. 

OPEN: Identifies an application, program to ACF/VTAM. Once the program is 
identified, ACF/VT.AM can schedule exit routines associated with the program. 

CLOSE: Indicates to ACF/VTAM that an application program is terminating its 
association with ACF/VTAM. 

OPNDST: Requests ACF/VT.AM to connect the application program to a designated 
logical unit or to a list of logical units. Connection must be made before 
communication macro instructions can be used to transfer data to or from the logical 
unit or units. 

CLSDST: Requests ACF/VTAM to terminate the connection between the application 
program and a designated logical unit. 

REQSESS: Requests ACF /VT AM to inform a primary application program that a 
secondary application program wants to start a session with the primary program. 

OPNSEC: Informs ACF /VT AM that the secondary application program is satisfied 
with the session parameters transmitted to it in a Bind command and that ACF/VTAM 
should complete the connection to a primary application program. 

TERMSESS: Requests ACF/VTAM to terminate the session (unconditional termina­
tion) or inform a primary application program that a secondary application program 
wants to end the session. 

The Communication Macro Instructions 

22 

ACF/VTAM provides two types of communication macro instructions: basic mode and 
record mode. In general, basic-mode macro instructions are used to communicate with 
non-SN A devices; record-mode· macro instructions are used to communicate with SNA 
devices. A program can communicate with local non-SNA 3270 and BSC 3270 terminals 
in either mode, but to communicate with these terminals in basic mode, the terminals 
must have been defined with PU=NO. This section describes the record-mode macro 
instructions. Basic-mode macro instructions are described in Appendix A. Here are brief 
descriptions of the record-mode communication macro instructions: 

RECEIVE: Requests ACF/VTAM to transfer a message, command, or response, when 
received from a specific logical unit or any one of a group of logical units, to the 
application program's data area (if the input is data) and/or to appropriate fields of the 
RPL (if the input is command or re.~pc>nse information). 

SEND: Requests ACF/VT.AM to transmit a message, c<>mmand, or response to a 
specific logical unit. Data in a message is transferred from an output area in the 
application program; commands in a message and responses to messages are specified 
symoolically in the SEND macro instruction. 

SESSIONC: Used by a primary application program to request ACF/VTAM to send to 
a logical unit commands that either (1) start or stop the exchanging of messages and 
responses with the SEND and RECEIVE macro instructions, (2) clear out all pending 
messages and responses for that session, or (3) assist in synchronizing message 
sequence numbers. Used by a secondary application program to (1) request the 
primary application program to begin message recovery action, (2) send a negative 
response to a connection request, (3) send a response to a sequence number request, 
and (4) send a response to a request to start (or resume) message and response 
exchange with SEND and RECEIVE macro instructions. 

RESETSR: Changes the mode of receiving input from a particular logical unit. The 
modes are continue-any mode (have input from the logical unit satisfy an outstanding 
RECEIVE that will accept input from any logical unit) and continue-specific mode 



(have input satisfy an outstanding RECEIVE that specifies only that particular logical 
unit). RESETSR can also be used to cancel outstanding requests for input from the 
specified logical unit. 

Network Control Macro Instmctions 
These macro instructions allow an authorized application program to issue ACF /VT AM 
network operator commands (except START and HALT) and the OS/VS REPLY 
command and to receive network operator messages from ACF /VT AM: 

SENDCMD: Enters an ACF/VTAM network operator command or the OS/VS 
REPLY command from an authorized application program, (called a program 
operator). All network operator commands can be entered except START and HALT. 

RCVCMD: Receives an unsolicited network operator message, or receives replies to 
commands that were issued by a program operator. 

Sample programs and the use of these macro instructions are presented in the 
ACF/VTAM Program Operator Guide, SC38-0257. 

Note: The REPLY command is used for communication between ACF/VTAM and the 
application program. For DOS/VS, ACF/VTAM supports the REPLY command (in the 
OS/VS format) only in response to a request from ACF/VT AM. 

The Control Block Macro Instroctions 
These macro instructions are used to build and initialize ACF/VTAM application program 
control blocks and manipulate these control blocks. The ACF /VTAM application 
program control blocks are the: 

Access method control block (ACB) 

Exit list (EXLST) 

Node initialization block (NIB) 

Request parameter list (RPL) 

Each ACF /VT AM application program can have one or more of each type of control 
block. Ordinarily, a program will have one ACB, one or several exit lists, a number of 
NIBs, and a number of RPLs. 

The Control- Block-Building Macro Instructions 
The control blocks are built and initialized by coding a macro instruction for each control 
block. The operation codes of the macro instructions are identical to the names of the 
control blocks that they build and initialize. These are the control-block-building macro 
instructions: 

ACB: Builds and initializes an ACB. An ACB contains information the application 
program provides ACF/VTAM about the application program in its entirety. Primarily, 
it names the application program and the list of exit routines associated with the 
program. The ACB contains information about the application program. 

EXLST: Builds and initializes an exit list. An exit list contains the addresses of special 
exit routines that ACF/VTAM is to schedule when certain conditions occur (as, for 
example, when a logon is received from a logical unit). The EXLST contains the names 
of exit routines. 

NIB: Builds and initializes a NIB. A NIB contains information the application 
program provides ACF /VT AM about general communication characteristics that are to 
exist between the application program and a particular logical unit. This information is 
provided to ACF/VTAM as part of a connection request; it remains in effect for the 
duration of a connection. The NIB contains information about a logical unit. 

Oiapter 2. The ACF/VTAM Language 23 



RPL: Builds and initializes an RPL. An RPL contains information (parameters) that 
an application program provides ACF/VTAM. when requesting connection, 
communication, or other RPL-based action. On completion of the requested action, 
the RPL contains information that ACF/VTAM. has put there for the application 
program. The RPL contains information about a request. 

An ACB, EXLST, NIB, or RPL control block can be assembled in the application 
program by using the appropriate control-block-building macro instruction described 
above, or the control block can be created and initialized during program execution by 
using the GENCB macro instruction described below. 

The Control-mock Manipulating Macro Instructions 

Supporting Macro Instructions 

24 

ACF/VTAM. provides a group of macro instructions that manipulate control-block fields. 
These macro instructions provide a more convenient way to do this than by using 
assembler-language instructions. They refer to fields symbolically rather than by specific 
control-block location. By using these macro instructions rather than the control-block­
building macro instructions listed above, a program can be written to be unaffected by 
control-block changes in future releases of ACF/VTAM.. In addition, the macro 
instructions may be used to code a reenterable application program. The manipulative 
macro instructions are: 

GENCB: Builds an ACB, EXLST, NIB, or RPL during program execution and can 
initialize designated fields with specified values. Multiple copies of one control block 
can be built with one GEN CB macro instruction. 

SHOWCB: Obtains the value or values from one or more fields of a control block and 
places them in an area in the application program where they can be examined. In 
addition to fields that are set by the application program's use of macro instruction 
keyword operands, a number of control block fields can be shown that are set by 
ACF/VTAM but that cannot be directly modified by the application program. 

TESTCB: Tests the contents of a field against a value and sets the condition code in 
the program status word (PSW). 

lviODCB: Changes the contents of one or more fields by inserting speci.fled values in 
the fields. 

There are several different forms of the manipulative macro instructions. In addition to 
the standard form, there is a list form, a remote list form, a generate form, and an execute 
form. The nonstandard forms can be used for programs that must be reenterable or that 
are sharing with other programs the parameter lists that are assembled when the macro 
instructions are expanded. 

Rather than using the manipulative macro instructions, the program can include 
IBM-supplied macro instructions that generate DSECTs for each kind of control block. 
Each DSECT shows the field names and possible values that each field can contain. These 
names and values can be used in assembler instructions to set and test designated fields. 

These additional macro instructions are provided: 

CHECK: Checks and, if necessary, awaits completion of a previously requested 
RPL-based operation; marks as inactive the RPL associated with the request. (thus 
freeing it for further use); and, if a logical or other error or special condition is 
detected and a LERAD or SYNAD exit routine exists, causes the appropriate routine 
to be entered. 

EXECRPL: Reissues a specified request. One use of this macro instruction is to 
reexecute a request without changing any field in the RPL. This is done, for example, 
in a SYNAD exit routine when the return code from the first attempt to perform the 



operation indicates that a retry is possible (return code 8 in register 0). Another use of 
the EXECRPL macro instruction is to request that the operation be perfonned again 
and to specify that, before the operation is retried, one or more fields in the RPL are 
to be changed or to be reset to their original values. 

The EXECRPL can also be used in place of an RPL-based macro instruction, such as 
OPNDST, SEND, or RECEIVE. Prior to issuing an EXECRPL, the operation to be 
performed must be set in the RPL; this requires the use of the IBM-supplied RPL 
DSECT. Other parameters may either be set in the RPL or specified with keyword 
operands when the EXECRPL macro is issued. While less convenient to code, using 
EXECRPL results in execution of fewer instructions. 

Note that EXECRPL cannot be used to issue or reissue a CHECK request that has 
failed, since CHECK does not alter the operation field of the RPL. 

INQUIRE: Obtains certain information that the application program may need and 
places it in a specified area of the program. The information that can be requested 
using INQUIRE includes: the user logon message associated with a logon; the session 
parameters associated with a particular logon mode name or with a logical unit that is 
logging on; the number of logical units currently connected to, or queued for, the 
application program; and whether another application program is active or inactive and 
whether it is accepting logons. 

INTRPRET: Provides a means of gaining access to a user-defined table. For example, 
INTRPRET can be used to obtain the real symbolic name of an application program 
when the program is identified with an alias in a logon message. INTRPRET can be 
used by special programs written to receive logon messages and then reconnect logical 
units to the appropriate application program. 

SETLOGON: Used by a primary application program to tell ACF/VTAM to begin 
queuing and scheduling logons for an application program's LOGON exit routine. The 
user can also temporarily halt the queuing of logons until more logical units can be 
handled or can permanently halt the queuing of logons in preparation for a 
close-of-day operation. Used by a secondary application program to enable itself to 
issue REQSESS macro instructions and enable its SCIP exit routine to receive session 
parameters. 

SIMLOGON: Allows the applicaton program itself to initiate a logon on behalf of one 
or more logical units to which the program is to be connected. 

How the Executable Macro Instructions 
and the Control Blocks Are Related 

The relationship of the ACF/VTAM control blocks to each other and to the macro 
instructions that refer to them can be described in the context in which they are used. To 
establish that context, the following sections describe the relationships and use of the 
control blocks in terms of the operations that every application program must perform: 

Opening the application program-that is, identifying itself to ACF/VTAM as 
operational 

Connecting to logical units with which it will communicate 

Communicating with connected logical units 

Opening the Application Program 

OPEN 

ACS 
APPL 
entry 

EXLST 

The OPEN macro instruction associates an active application program with ACF/VTAM 
so the application program can use ACF /VT AM facilities. The OPEN macro specifies an 
ACB; the ACB in turn points to a location in the program that contains the name of the 
application program as defined in an APPL statement during ACF/VTAM definition. The 
ACB may also point to an EXLST control block containing the names of exit routines 

Chapter 2. The ACF/VT.AM Language 25 



Connecting Logical Units 

OP NOST 

RPL 

or I 
I 
I 

ACB 

NIB 

L_~ 

that are to be associated with the application program. (An EXLST can also be pointed to 
when a logical unit is connected; see "Connecting Logical Units," below.) When the open 
process is completed, any exit routines that have been specified are eligible for scheduling 
by ACF /VT AM. 

More than one ACB can be opened by a single OPEN macro instruction. This means that 
a program that performs related functions (for example, communicating with both logical 
units and terminals) may be defined so that it is viewed by ACF/VTAM as more than one 
application program. Many ACF /VT AM users will find it satisfactory to open only one 
ACB for each program. · 

The CLOSE macro instruction notifies ACF/VTAM that an application program is 
detaching itself from ACF/VTAM. As a result of a CLOSE macro, any logical units still 
connected to the program are disconnected. 

Before communicating with a logical unit, an application program must be connected to 
the logical unit. Conn,ection can be initiated by the logical unit, the network operator, 
ACF/VTAM, or an application program. But, regardless of who initiates the connection 
request, it is the application program that will adhere to primary protocols that formally 
completes connection by issuing an OPNDST macro instruction. The OPNDST macro 
instruction specifies an RPL that is associated with the request. The RPL contains the 
address of a NIB. The NIB contains information that applies to subsequent communica­
tion with the logical unit. If necessary, the address of a unique storage area to be 
associated with the logical unit can be specified in the NIB. This area could include an 1/0 
area and a place for flags that keep track of communication with the logical unit. If a 
number of logical units are to be connected by an application program, a single 
SIMLOGON or OPNDST with OPTCD=ACQUIRE can be used, and the RPL points to a 
list of NIBs instead of to a single NIB. 

Optionally, for certain types of exit routines (DFASY, RESP, and SCIP), a NIB can point 
to a !ist of exit-routine numes in an EXLST control block. For the logical utllt behtg 
connected, these exit routines are used in preference to the corresponding exit routines 
identified for the entire application program when the ACB was opened. 

When a logical unit is connected as the result of an OPNDST macro instruction, 
ACF/VTAM returns information about the logical unit in the RPL and the NIB. In both 
the RPL and the NIB, ACF/VTAM places a communication identifier (CID) that it has 
assigned to the session with the logical unit. On all subsequent 1/0 requests for the logical 
unit, the application program must be sure that this CID is present in the RPL. In 
addition to the CID, ACF/VTAM also places the logical unit name (for an OPNDST 
ACCEPT ANY) and other information in the NIB; if desired, the application prograip can 
use this information to determine how to communicate with the logical unit. 

Once a NIB has been used to connect one logical unit, it can be reinitialized and reused to 
connect another logical unit. 

Communicating with Logical Units 

RECEIVE/SEND 

RPL 

26 

ACB 

Having opened the application program's ACB and having connected one or more logical 
units to the program, the program can communicate with each connected logical unit by 
issuing SEND and RECEIVE macro instructions. ACF/VTAM obtains the name of the 
application program that made the request and the identity of the logical unit (if a 
specific logical unit is being addressed) from the RPL. The communication macro 
instruction specifies an RPL; the RPL contains the address of an ACB and the identity of 
the logical unit. 



Disconnecting Logical Units 

Exit Routines 

The SEND and RECEIVE macro instructions write and read messages and responses. A 
message contains data and/or control commands and indicators. A response contains 
information that tells whether a message requiring a response arrived and was processed 
successfully or unsuccessfully. Certain messages, called normal-flow messages, are received 
or sent in sequence with other serially queued messages; other messages, called 
expedited-flow messages, are received or sent immediately, ahead of other queued 
messages. 

Only data is written from or read into an application program data area. Control 
commands and responses are sent by being specified symbolically in a SEND macro 
instruction or its associated RPL. Commands and responses that are received are not read 
into a data area but are detected by analyzing fields in the RPL associated with a 
RECEIVE macro instruction or in an RPL associated with the scheduling of a special exit 
routine that handles the receipt of commands or responses. 

Once a series of communications between the application program and a logical unit is 
completed, the program disconnects the logical unit by issuing the CLSDST macro 
instruction. If the program is terminating and all logical units are to be disconnected at 
the same time, the program can issue a single CLOSE macro instruction, which closes the 
ACB, instead of issuing a series of CLSDST macro instructions for the logical units. As a 
result of the CLOSE macro instruction, ACF /VT AM issues a CLSDST macro instruction 
for each logical unit. Although it requires more coding, issuance of separate CLSDST 
macro instructions in the application program may result in faster execution than using 
the CLOSE macro instruction and having ACF/VTAM disconnect the units. 

ACF/VTAM allows use of exit routines by which an ACF/VTAM application program can 
gain control to handle certain conditions. An exit routine is written to handle a specific 
event (for example, a SYNAD routine which is written to process RPL-based errors or 
special conditions other than logical errors). When the event occurs, ACF/VTAM gives the 
exit routine control as soon as possible. With the exception of SYNAD and LERAD, exit 
routines need not be reenterable, since only one exit routine will be invoked at a time. If 
multitasking is used and each task opens an ACB, more than one exit routine can be 
invoked at the same time (one for each task that opened an ACB). The exit routines still 
need not be reenterable as long as they are not shared between the tasks (that is, as long 
as two tasks do not open ACBs that use the same exit routines). If an exit routine is 
shared in this way, it must be reenterable. 

There are two kinds of exit routines: 

Exit-list exit routines: These are special-purpose exit routines that ACF/VTAM 
schedules when an event they are designed to handle occurs, such as receipt of a logon. 
The exit-routine addresses (entry points) are specified in an exit list created with the 
EXLST macro instruction. A program can have more than one exit list. An exit list (a 
set of exit routines defined with the EXLST macro) can be specified in an ACB and 
thus be used by ACF/VTAM when an exit-routine event occurs for any logical unit 
connected to the program or, for certain exit routines-DFASY, RESP, and SCIP-an 
exit list can be specified in a NIB and be used by ACF/VTAM only when an 
exit-routine event occurs for the logical unit associated with the NIB. 

RPL-specified exit routines: These are exit routines that contain instructions to be 
executed when particular requests are completed. In any individual connection, 
communication, or other RPL-based request, if an RPL exit-routine address is 

Chapter 2. Tlte ACF/VTAM Language 27 



Register Conventions 

l8 

specified, the exit routine is scheduled as ;m alternative to ACF/VTAM's posting an 
ECB when the requested action is completed. A program can use a mixture of 
ECB-posting and RPL exit routines, or it can use all one or the other. 

The names of the special-purpose exit routines and the events that cause them to be 
entered are summarized in Figure 2-1. 

The use of exit routines is described in detail in Chapter 7 and illustrated in the sample 
programs in Part 3 and Appendixes D and F. 

These general register conventions apply in writing an ACF/VTAM application program: 

• Before issuing an executable macro instruction (such as SEND), the address of an 
18-word save area must be in register 13. 

• When issuing an executable macro instruction, register notation can be used. However, 
register notation cannot be used to initialize a value in an ACB, RPL, NIB, or EXLST 
macro instruction. 

• Registers 2-12 (and only those registers) can be used when issuing ACF/VTAM macro 
instructions. The one exception is that register 1 can be used to supply an RPL address 
for any RPL-based macro instruction. 

Exit Routine 
Name Event 

ATTN A start-stop terminal has caused an attention interruption. 

DFASY An expedited-flow command has been received from a logical unit. 

LE RAD A logical error has occurred following an application program request. 

LOGON A request for connection has been received from a logical unit. 

LOSTERM Connection with a terminal or logical unit has been temporarily interrupted or 
permanently lost; the logical unit has requested that the session be terminated; 
or an event has occurred that may affect future operation of the session. 

NS EXIT A network services request unit has arrived for the application program, 
indicating either that ( 1 l a session with a logical unit has been broken because 
of a session outage, or (2) a partially complete session establishment procedure 
will not be completed.~ 

RELREQ Another application program has requested connection to a logical unit that 
is presently connected to this program. 

RESP A response has been received from a logical unit for which no RECEIVE with 
RTYPE=RESP is outstanding. 

SCIP One of the following commands has been received by the program: 
Clear 
Start Data Traffic (SOT) 
Request Recovery (RQR) 
Set and Test Sequence Numbers (STSN) 
Bind 
Unbind 

SYN AD An error other than a logical error or a special condition has occurred following 
an application program request. 

TPEND The network operator is shutting down the network, or an abend of VT AM 
has occurred. 

Figure 2-1. Special-Purpose Exit Routines and the Events That Cause Them to Be Scheduled 



• On iegaining control after issuing a macro instruction: 

- Register 1 S contains a return code. 

- Register 1 contains the address of the RPL associated with the macro instruction. 

Olapter 2. 11ae ACF/VTAM Language 29 





Pnt l. Writing an ACF /VT AM. Application Program 

Otapter 3. Organizing a Program: Describes major program organization alternatives that 
are available when constructing a program and discusses the advantages of each 
alternative. The facilities related to each alternative are discussed in more detail in 
subsequent chapters in this part. 

Chapter 4. Opening and Qosing a Program: Describes how a program is opened and 
closed and what happens as a result of these actions. 

Olapter 5. Connecting and Disconnecting Logical Units: Describes alternative techniques 
for connecting logical units to a program and for disconnecting them. 

Ourpter 6. Communicating with Logical Units: Describes the detailed concepts and 
language involved in exchanging messages and responses with logical units, the flow of 
messages in the network that results from ACF/VTAM communication macro instruc­
tions, and the facilities provided for communication, such as sequence numbers. 

Otapter 7. Using Exit Routines: Describes how exit routines are used in an ACF/VTAM 
application program and lists the rules that must be followed in using them. 

Oiapter 8. Manipulating Control Blocks: Describes some ways to manipulate control 
blocks. It shows examples of using the manipulative macro instructions: GENCB, 
MODCB, SHOWCB, and TESTCB. It lists and discusses in general the macro instructions 
that supply DSECTs, so that ACF/VTAM application program control blocks can be 
manipulated using assembler instructions. 

01.apter 9. Handling E"ors and Special Conditions: Describes in general how to organize 
and code special routines to analyze and handle the occurrence of errors and special 
conditions. 

Otapter JO. Debugging a Program: Suggests how to minimize coding errors and how to 
determine the location of errors in an ACF /VT AM application program that is being 
developed. 

Part 2. Writing.an ACF{VTAM Application Program 31 



) ' ' 



01apter 3. Organizing a Program 

The organization of an ACF /VT AM application program affects how much storage it will 
use, how well it will perform, and how easy it will be to write. Before getting into the 
details about writing an ACF/VTAM application program, it may be helpful to 
understand the decisions that are made when writing the program and some of the ways 
in which a program can be organized. This chapter discusses these things: 

• Data processing and data communication operations should be kept in different parts 
of an ACF/VTAM application program (this book is concerned primarily with the data 
communication part of the program). 

• If new data processing routines are being written, it may be possible to move some 
work formerly performed in the host computer to the logical units with which the 
ACF/VTAM application program will communicate. 

• Terminals supported by BTAM or by the basic-mode macro instructions of 
ACF/VTAM can be handled in the same ACF/VTAM program that communicates with 
logical units. See Appendix A. 

• Different routines may be needed within an application program to handle logical 
units that have different session parameters. Chapters 5 and 6 discuss this subject. 

• There are two major kinds of program organization: synchronous (single-thread) and 
asynchronous (multithread). 

• Asynchronous (multithread) facilities include the scheduling of output and the 
receiving of input from any logical unit. It includes the continuance of conversation 
with a logical unit in a mode that excludes the logical unit from being read by a 
request for input from any logical unit. It includes a NIB that allows a unique storage 
area to be associated with a logical unit. 

• A number of decisions must be made in writing a program. These are summarized in 
Figure 3-6. 

• The control blocks and work areas required for each logical unit or for a group of 
logical units can be obtained and controlled in a number of different ways. Some 
examples are shown. 

Single-Thread or Multithread Operations 

An ACF /VT AM applicaticn program can be described as a single-thread program-that is, 
capable of processing the request of only one logical unit at a time-or as a multithread 
program-capable of processing the requests of many logical units concurrently. These 
terms are only generally descriptive of how the program works; in practice, many 
single-thread programs may do some overlapping of processing, and many multithread 
programs may do some processing that momentarily ties up the program for an action on 
behalf of only one logical unit. In general, a single-thread program requests synchronous 
operations and waits until each operation is completed before continuing. A multithread 
program requests asynchronous operations and continues processing on behalf of other 
logical units while waiting for an operation for a particular logical unit to be completed. 

Deciding to Use a Single-Thread Program 
A single-thread program is easier to design and code than a multithread program. Sample 
Program I in Part 3 is basically a single-thread program. 

A single-thread design can be used for a program that never handles more than a few 
logical units at a time or, if more than a few are handled, where response time is not a 
consideration. A more likely use of a single-thread design is for a program that does 

Otapter 3. Organizing a Program 33 



nothing more than send a continuous series of messages to a logical unit (which might in 
turn forward the messages to a printer or to a data base on a disk) or receive a continuous 
series of messages from a logical unit (perhaps from the disk associated with a logical 
unit) and write them to a data base on disk storage at the host computer. 

Deciding to Use a Multithread Program 
In general, any ACF/VT.AM. application program that must communicate concurrently 
with a number of logical units must be organized in a manner that allows multithreading. 
This implies the use of asynchronous operations, determining completion of operations 
either by having ACF /VT AM. post an ECB or by having it schedule an RPL exit routine. 

In a multithread program, the control blocks for each logical unit must be managed 
efficiently. The control blocks reflect the status of the logical unit; for example, whether 
it has begun a conversation, what address is to be branched to when a requested output 
operation is completed, or whether the logical unit has sent in a logoff message. Sample 
Program 2 in Part 3 shows the general logic of a multithread program. 

Multitasking may be used to transfer control between the communication and data 
processing parts of a program. It is also possible for the same routines to be shared among 
what ACF/VT.AM. perceives as more than one ACF/VT.AM. application program. This 
arrangement can be used for communicating with two different types of logical units. 
Two ACBs can be defined in a program, and one kind of logical uajt connected with 
control blocks that point to one ACB while another kind of logical unit is to be 
associated with the other ACB. Since ACF/VT.AM. sees each ACB as an application 
program, each type of logical unit can have separate logic associated with it, including its 
own exit routines and its own 1/0 routines. Data processing parts of the program, a wait 
routine, and other routines can be shared. 

How a Synchronous Operation Works 

34 

In a synchronous program, operations are performed serially. A req1_1est for a synchronous 
operation (for example, a SEND or RECEIVE with OPTCD=SYN) means that 
ACF/VTAM will not return control to the next sequential instruction in the program 
until after the requested operation is completed. Execution of the application program is 
halted until ACF/VT.AM. determines that the operation has been completed. The program 
must be willing to wait for the processing of one requested operation to be completed 
before going on to the next. Figure 3-1 illustrates a synchronous operation. (Note that 
while the program is waiting for the event to be completed, an asynchronous event such 
as a network operator HALT command could cause the program's TPEND exit routine to 
be entered. Only the main line of the program is suspended while waiting for completion 
of a synchronous operation. The exit routines associated with the program are scheduled 
and executed whether or not the main program logic is awaiting completion of a 
synchronous operation.) 

When a synchronous operation is completed, the application program must detennine 
whether the operation was successful or unsuccessful. The program does this by testing 
values in registers 15 and 0 and by examining fields in the RPL used for the operation. 
For more information on testing return codes from RPL-based macro instructions, see 
Chapter 9 in this manual and see Appendix C in A CF/VT AM Macro Language Reference. 

In general, issuance of a synchronous request within an exit routine should be avoided, 
because that causes all execution under the task to be .suspended until the operation is 
completed. Neither the main program, the exit routine in which the request was issued, 
nor another exit routine (except LERAD, SYNAD, or TPEND) can be executed until the 
operation is completed. 



Application Program 

• • • 
SEND RPL=RPL 1,0PTCD=SYN 

Code tests registers to determine whether 
operation was successful 

• • • 
Figure 3-1. A Synchronous Operation 

ACF NT AM 

• • • 
• • • 

Request is accepted 

SEND is completed 

How an Asynchronous Operation Works 

UsingECBs 

In an asynchronous operation, ACF/VTAM returns control to the next sequential 
instruction as soon as it has accepted the request, not when the requested operation has 
been completed. Accepting a request consists of screening the request for errors and 
scheduling the parts of ACF /VT AM that will eventually carry out the operation. While 
the operation is being performed, the application program is free to initiate other 
data-transfer operations or do other processing. For example, an application program can 
issue a RECEIVE macro instruction and indicate that the operation is to be handled 
asynchronously (OPTCD=ASY); while the input operation is being performed, the 
application program can begin to write to a direct-access storage device or receive input 
from another logical unit. 

When an asynchronous operation is specified, there are two ways that ACF/VTAM can 
notify the application program that the requested operation has been completed. If the 
application program associates an event control block (ECB) with the request, 
ACF /VT AM posts the ECB when the operation is completed. Alternatively, the 
application program can designate that a particular RPL exit routine is to be executed as 
soon as the operation is completed. When the operation is completed, ACFNTAM 
schedules the exit routine. The method of notification is controlled by the setting of the 
ECB operand or EXIT operand in the RPL used for the request. Figure 3-2 illustrates 
asynchronous processing in an application program using ECBs; Figure 3-3 illustrates the 
use of an RPL exit routine. 

Regardless of whether a program waits on an ECB or uses an RPL exit routine, a CHECK 
macro instruction must be issued after an asynchronous operation to mark the RPL 
inactive and to make it available for another operation. The CHECK macro instruction 
also clears the ECB. 

By using ECBs, the application program can issue one WAIT macro instruction for a 
combination of ACF/VTAM requests and any non-ACF/VTAM requests that use ECBs. 

Otapter 3. Organizing a Program 35 



Using RPL Exit Routines 

36 

Application Program ACF/VTAM 

• • • 
SEND RPL=RPL 1,0PTCD=ASY,ECB=ECB 1 

• • • 
• 
• 
• 

interruption 

• • 
• 

Request is accepted 

.._ _____________ .,.. SEND is completed 

• • 
• 

• • • ECB is posted 

CHECK RPL=RPL 1 (which tests and clears the ECB) 
(or WAIT and then CHECK) 

Figure 3-2. An Asynchronous Operation with an ECB Posted 

For example, an application program can issue three VSAM requests and three 
ACF/VT_A_A/i. requests; by issuing cn.e W~A&!T for all six ECBs, the application prograrn 
resumes processing when any one of the six operations is completed. 

Using ECBs, the application program can test ECBs itself and continue to wait only if no 
ECB has been posted. The program can prioritize requested operations or logical units by 
testing some ECBs before testing others. The order of checking can be varied during 
program execution as circumstances change. 

The distinction between ECBs and RPL exit routines rests primarily on the fact that the 
RPL exit routine is automatically scheduled when the requested operation is completed, 
thereby saving the application program the trouble of testing ECBs and branching to 
subroutines. The use of ECBs provides the program with greater control over the order in 
which events are to be handled. 

If neither an ECB address nor an RPL exit-routine address is specified in the RPL-based 
macro instruction, ACF/VTAM uses the ECB-EXIT field of the RPL as an internal ECB, 
and ACF/VTAM (for synchronous operations) or the user (for asynchronous operations) 
checks and clears it. It can be set to point to an external ECB by using an RPL-based 
macro that specifies ECB=ecb address. Once set, it can be reset to an internal ECB by 
using an RPL-based macro instruction that specifies ECB=INTERNAL. 

Instead of having ACF/VTAM post an ECB when a request for an asynchronous 
operation is completed, the program can have ACF/VTAM schedule and cause control to 
be given to an RPL-specified exit routine. The RPL exit routine can supply the logic that 



Application Program 

• • 
• 

ACF NT AM 

SEND RPL=RPL2,0PTCD=ASY,EXIT=ASYNCEND 

• 
• 
• 
• 
• 
• 

• 
• • 

Request is accepted 

I interruption 
,__ ____________ _,.., SEND is completed, 

• 
• 
• 

ASYNCEND • RPL exit routine is 
( RPL Exit Routine) • scheduled . -
• 
CHECK 
RPL=RPL2 

• 
• 

• _J 

~ 

• • 
• 

Control is returned 

Figure 3-3. An Asynchronous Operation with an RPL Exit Routine Scheduled 

would have been branched to by the main program after discovering a posted ECB. An 
RPL exit routine is any exit routine whose symbolic name has been provided in the EXIT 
operand of the macro instruction or the RPL used for the request. 

One advantage to using an RPL exit routine instead of an ECB is that it is easier to code 
for that type of processing than it is to code the logic associated with discovering a posted 
ECB and relating the ECB to a branch address. The disadvantage of an RPL exit routine is 
that more system instructions must be executed to schedule an exit routine than must be 
executed to post an ECB. A program may use a combination of ECB-posting and RPL 
exit routines (see Sample Program 2 in Part 3). 

An RPL exit routine may itself issue asynchronous requests, continue executing, and 
return to ACF/VTAM. The asynchronous request in an RPL exit routine may specify that 
upon completion of the request, an ECB is to be posted or an RPL exit routine is to be 
scheduled. If the RPL exit routine option is taken, the exit routine can be the same one 
in which the request was issued. (This is also shown in Sample Program 2 in Part 3.) 
Figure 3-4 shows a possible pattern of asynchronous requests within RPL exit routines. 

An RPL exit routine must always eventually return control to ACF/VTAM. While one 
exit routine has control, no other exit routine (except LERAD, SYNAD, or TPEND) can 
be executed. 

Oiapter 3. Organizing a Program 37 



• • • 
RECEIVE 

• • • 

Application Program 

from any logical unit. 
EXIT1 is scheduled when 
the RECEIVE is completed . 

EXITl (RPL Exit Routine) 

Continue with other CHECK 
SEND 

RPL used for RECEIVE. 
processing to the same logical unit. EXIT1 then 

returns to ACF/VTAM. EXIT2 is· 
scheduled when the SEND is com­
pleted. 

Return to 
ACF/VTAM 

EXIT2 (RPL Exit Routine) 

CHECK RPL used for SEND at EXIT1. 
RECEIVE from the same logical unit if com­

munication with that logical unit 
is to be continued; otherwise 
RECEIVE from any logical unit. 
EXIT2 then returns to ACF/VTAM. 
EXITl is scheduled when RECEIVE 
is completed. 

Return to 
ACF/VTAM 

Figure 34. A Possible Pattern of Requests in RPL Exit Routines for Asynchronous Operations 

Advantages and Disadvantages 
of Different Forms of Operation 

Multithreading Facilities 

38 

Figure 3-5 summarizes the advantages and disadvantages of synchronous operations and 
the two general forms of asynchronous operations, ECB-posting and RPL exit-routine 
scheduling. 

In addition to the asynchronous handling of input and output requests, ACF/VTAM also 
provides the following facilities as aids to handling logical units in a multithread program: 

A special field that can be used to associate a unique storage area with each logical unit 

The ability to schedule the sending of a message 

The ability to receive input from any session except those sessions that are specifically 
precluded 

"'' ,' 

These facilities are discussed below ln more detail. 



Type of Request Performance Storage Requirements Programming 
for RPLs and Data Complexity 
Areas 

Synchronous Adequate for many batch- Small, since only one Simplest to program. 
(OPTCD=SYN) type (continuous input request can be outstanding 

or output) programs or at a time; can reuse RPL 
for programs serving few and data areas. 
online logical units; poor 
for programs serving many 
active online logical units. 

Asynchronous Best; better than RPL exit May require more storage Most complex. 
(OPTCD=ASY) routine which requires since many pending 

that more system instruc- requests may be outstand-

• ECB-posting tions be executed than ing, tying up RPLs and 
(ECB=address or INTERNAL) does posting of ECB. data areas. 

Not as good as ECB- About the same as ECB- Less complex than ECB-
posting. Some advantages posting. posting. 
if used to give priority of 

• RPL exit-routine handling to a logical unit 
scheduling (EXIT= (for example, first input 
address) after I ogon). 

Figure 3-5. Relative Advantages of Synchronous and Asynchronous Requests 

The USERFLD Field of the NIB 
In handling a series of input and output actions with a particular logical unit, the program 
may need some way of associating a particular piece of information with the logical unit. 
For example, the program might need to know: 

Which city the logical unit is located in 

What type of logical unit this particular one is 

Which symbolic name this program is using for the logical unit 

Which storage area contains the input buffer and other application­
program-manipulated control information about operations with this logical unit 

When such information is static in nature (for example, the city in which the logical unit 
is located), the information can be assembled into the program and always be available. 
More frequently, however, the information that the program wants to associate with the 
logical unit is not available until after the program starts execution or changes during 
program execution. For these dynamic types of information, the program needs a 
mechanism for associating the desired piece of information with the logical unit. 

The mechanism provided by ACF /VT AM involves the USERFLD field of the NIB, which 
contains space for 4 bytes of information. Whatever information is in the USERFLD field 
of the NIB at the time the logical unit is connected is saved by ACF/VTAM, and 
whenever input is subsequently received from the logical unit, that information is 
provided in the USER field of the RPL used for the operation. This mechanism has many 
uses, including those described in the following paragraphs: 

Identifying the logical unit from which input has been received. Each time the 
application program connects a logical unit, the program puts its own version of the 
symbolic name of the unit into the USERFLD field of the NIB before the OPNDST 

Olapter 3. Organizing a Program 39 



Scheduling Output 

macro instruction is issued. Later, the program issues a RECENE OPTCD=ANY, 
which will accept an input message from any connected logical unit. When an input 
message is received, the program examines the USER field of the RPL to determine 
the logical unit from which the input message came. 

Associating a storage area with a logical unit. For each logical unit, the application 
program may want to have a logical-unit-associated storage area that contains an RPL, 
possibly an ECB (if ECB-posting is used), a data area (to be used as a buffer for input 
and output messages), and a status information area. When the program connects a 
logical unit, it specifies in the USERFID field of the NIB the address of the storage 
area it wants to be associated with that logical unit. ACF/VTAM saves this address 
and, when input is received from the logical unit, ACF/VTAM places the address in the 
USER field of the RPL. The program can use the USER field address to process the 
input rather than having to first identify the logical unit. 

ACF/VTAM. allows a program to request that a message be scheduled for sending and that 
the operation be considered complete as soon as the message has been scheduled for 
output rather than actually sent with arrival confirmed by the receiving logical unit. If the 
program wants to determine whether the message actually arrived, it can, as part of the 
output scheduling request, specify that a definite response be returned by the logical unit. 
On receiving the response, the program knows that the message arrived successfully or 
unsuccessfully. (For many logical units, the return of a positive response indicates not 
only that the message arrived successfully but also that it was processed successfully.) 
Since scheduling output usually takes relatively little time, a request to schedule the 
sending of a message may often be specified as a synchronous operation; it may also be 
specified as an asynchronous op eration with ECB-posting or RPL exit-routine scheduling 
specified. 

In scheduling output, the program may choose not to require that a response be returned 
to every message; it may ask that a response be returned only to the last in a series of 
messages. Receipt of a positive response confirms successful arrival and processing of the 
message or series of messages, while receipt of a negative response indicates an error. 
Successful arrival and processing of a message can also be assumed if the resultant input 
message contains what the program expects or, in the event of an error, it can be assumed 
that a terminal operator will take the initiative in notifying the application program that 
he or she is waiting for a message that has not arrived. 

By scheduling the sending of a message, the program reserves for itself the determination 
of whether confirmation of arrival and processing is necessary. When fewer responses are 
requested, greater message throughput is possible. The user, however, does not have a free 
hand entirely, since SNA protocols dictate when some responses must or may be 
requested . 

. Receiving Input from Any Connected 
Logical Unit Except Those Already in Conversation 

· ACF/VTAM. provides a way of receiving input from any connected logical unit. To do 
this, a RECEIVE with OPTCD=ANY is issued. On completion, the identity (the CID) of 
the logical unit from which input has been received is in the ARG field of the RPL 
associated with the RECEIVE request. (The INQUIRE macro instruction with the 
CIDXLATE option can be used to translate the CID into the symbolic name of the logical 
unit.) Typically, a RECEIVE with OPTCD=ANY is issued to receive the initial input that 
will lead to a conversation witha logical unit. 

40 

Once a RECEIVE with OPTCD=ANY has been used to get initial input from a logical 
unit, that logical unit can be switched to another mode called continue-specific mode. 
When a logical unit is in this mode, a m~ssage from the logical unit will not satisfy a 



RECEIVE with OPTCD=ANY; the message can only satisfy a RECEIVE with 
O:r>TCD=SPEC and whose RPL identifies the logical unit from which the message was 
received. While the logical unit is in continue-specific mode, the application program 
maintains specific control over each message sent to or received from the logical unit. 

Thus, a program can consist of a single RECEIVE with OPTCD=ANY that is reissued each 
time it is completed and sets of specific RECEIVE and SEND macro instructions, with 
each set of specific macro instructions controlling the conversation with a particular 
logical unit. To obtain the continue-specific facility, OPTCD=CS is specified in the 
request at the point at which the logical unit is to be switched to continue-specific mode. 
For example, the RECEIVE that reads input from any logical unit (except those already 
in continue-specific mode) specifies OPTCD=(ANY ,CS). This places the logical unit 
whose input satisfied the RECEIVE in continue-specific mode; the next issuance of the 
RECEIVE with OPTCD=ANY excludes this logical unit from being able to complete the 
RECEIVE. Sample Program 2 in Part 3 shows use of a RECEIVE with OPTCD= 
(ANY,CS). 

Some Decisions That Affect Program Organization 

Figure 3-6 lists some of the decisions that anyone designing and coding an ACF/VTAM 
application program must make. Some of the alternatives in managing the control blocks 
and work areas in the ACF/VTAM application program are discussed below. 

Handling Control Blocks and Work Areas 
The application program can handle control blocks and logical-unit-related work areas 
(data areas and status flags) in a number of ways. It can: 

• Define RPLs, NIBs, or EXLSTs in the application program during assembly, or 
generate them during program execution by using the GENCB macro instruction 

• Assign one RPL or NIB to a specific logical unit during assembly, or assemble or 
generate RPLs and NIBs that are to be available for any logical unit as the need arises 

• Retain the RPL used in connecting the logical unit for all further communication with 
the logical unit 

• Use one RPL for all connection requests and use another RPL or group of RPLs for all 
communication requests 

• Define the RPLs, NIBs, and any other control blocks to be associated with logical 
units as a pool so that a limited amount of control block storage is not exceeded 

In application programs that must handle many logical units concurrently, it may be 
useful to have a control block other than the RPL or NIB associated with a particular 
logical unit or logical unit conversation. ACF/VTAM provides a way of associating a 
storage area with a particular logical unit. The application program initially associates the 
storage with the logical unit by specifying the address of the area in the USERFLD of the 
NIB prior to issuing the OPNDST macro instruction; thereafter, whenever input is 
received from the logical unit, ACF/VTAM provides the specified address in the RPL's 
USER field. 

Chapter 3. Organizing a Program 41 



Program Function 

Opening and closing the program 

Connecting logical units 

Decisions to Make 

• One ACB or more than one ACB? 

• Send final message to logical units before closing the program or simply disconnect them? 

• How is the program to terminate normally? 

By network operator closing down the network? (Use a TPEND exit routine.I 

By special message from one or more particular logical units? 

By some internal logic, such as time-of-day? 

By system operator message (for example, via WTOR)? 

• Logon expected? (Use OPNDST with OPTCD=ACCEPT.) 

Analyze user logon message before connecting? (Use LOGON exit routine, INQUIRE to 
obtain user logon message, and OPNDST with OPTCD=ACCEPT to connect.I 

If not, can use OPN DST with OPTCD=ACCEPT in main program logic. 

• Who furnishes the logon? (The program logic may not have to be aware of this.) 

Automatic logon (user-defined logon that automatically schedules the LOGON exit 
routine for all or some logical units)? 

Logical unit (that is, a predefined logon message stored in and sent from the logical unit)? 

Terminal operator associated with a logical unit (the logical unit forwards a message from 
the terminal operator after perhaps modifying it in some way)? 

The application program itself, by issuing a SIMLOGON macro instruction? 

Another application program, by issuing a CL.SDST macro instruction with the 
OPTCD=PASS option? 

A secondary application program, by issuing a RECISESS macro instruction? 

More than one of the above? (The LOGON exit routine may have to handle more than one 
of these kinds of logons.) 

• A re session parameters used? 

Will session parameters be supplied with the logon? 

- Is an INQUIRE macro needed to investigate the session parameters? 

- Will the application program ever have to modify the parameters supplied with the 
logon? 

Will the session parameters always be supplied solely by the primary application program? 

- Is a logon mode name to be provided in the LOGMODE field of the NIB? 

- Is a bind area address to be provided in the NIB? 

• Logon not expected? 

Identity of logical units known to program? (Use OPNDST or SIMLOGON to acquire 
the logical units.I 

- Acquire as many as are available? (Use OPNDST with OPTCD=(ACOUIRE,CONALL).) 

- Acquire any (single) one of them? (Use OPN DST with OPTCD= 
(ACOUIRE,CONANY).) 

- Simulate a logon so that all logical units are connected by the same logic? (Issue 
SIMLOGON and then issue OPNOOT with OPTCD=ACCEPT in LOGON exit routine 
or in main program.) 

Identity of logical units known to program? (Use I NOUI RE with OPTCD=TE RMS to 
obtain the identities of the defined logical units, then issue OPNl:ST or SIMLOGON.I 

• Expect to share connected logical units with other programs? (Use RE LREO exit routine to 
handle requests from other programs for your logical units.) 

Figure 3-6 (Part 1 of 3). Some Decisions That Affect Program Design and Coding 

42 



Program Function Decisions to Make 

Communicating with logical units 

• Receiving • Identity of logical unit known (CID of logical unit in ARG field of RPL)? (Use SEND/ 
RECEIVE with OPTCD=SPEC.l 

• Identity of logical unit unknown? (Use RECEIVE with OPTCD=ANY to read input, then 
RECEIVE/SEND with OPTCD=SPEC.) 

• Exclude logical unit from having its input complete a request for any input while it is in the 
midst of a transaction? (Specify OPTCD=CS.) 

• Expect to receive responses to messages (using SENDs with other than POST=RESP)? 
Can use either: 

RECEIVE that includes RTYPE=RESP 
A RESP exit routine 

• Expect to receive expedited-flow control commands relating to quiescing or shutting down? 
Can use either: 

RECEIVE that includes RTYPE=DFASY 
A DFASY exit routine 

• Want to be able to receive session-control commands from a logical unit? (Use a SCIP exit 
routine.) 

• Can length of input message vary greatly? (Use PROC=KEEP in connecting logical unit and 
reissue RECEIVEs until entire message is read.) 

• Expect that logical unit may want to quiesce your program (temporarily stop it from 
sending)? Have logic to receive OEC and RELO commands as result of DFASY input . 

• Sending • Send all of a message at once? 

Wait for the message to arrive at its destination before proceeding? (Use SEND with 
OPTCD=SYN, POST=RESP.) 

Start the message on its way and have ACF/VTAM post an ECB or schedule an APL exit 
routine when ACF/VTAM receives a response to the message? (Use SEND with OPTCD= 
ASY, POST=RESP.l 

Have ACF /VT AM schedule the sending of the message and determine its arrival yourself? 
(Use SEND with OPTCD=SYN[or ASY] ,POST=SCHED,RESPOND=values.) 

- Have the logical unit return a definite response which will cause completion of a 
RECEIVE with RTYPE=RESP specified or cause entry to an RESP exit routine? 
(Specify RESPOND=NEX,FME,NRRN, or RESPOND=NEX,FME,RRN, or 
RESPON D=N EX,NFME,RRN, according to user preferences.) 

- Have the logical unit return only an exception (negative) response and either assume 
successful arrival or determine from the next received message that the input arrived 
successfully? (Specify RESPOND=EX,FME,RRN, or RESPOND=EX,FME,N RAN, or 
RESPOND=EX,NFME,RRN, according to user preferences.I 

- Have the logical unit return no response and determine successful arrival yourself? 
(Specify RESPOND=NEX,NFME,N ARN.I 

• Send an element in a chain of elements? (Specify SEND with POST=SCHED and CHAIN= 
FIRST, MIDDLE, or LAST with RESPOND=EX on all but the last SEND.I 

Request a definite response on the last SEND ho determine that the entire chain arrived 
successfully)? (Specify RESPOND=NEX,FME,RRN, or N.EX,FME,NRRN, or 
NEX,NFME,RRN [according to user preferences] and receive the. response with a 
RECEIVE (RTYPE=RESP) or with a RESP exit routine, or specify POST=RESP on the 
last element and the operation will not be posted complete until the response comes back.) 

Request only a negative response and assume by subsequent action of the receiver that the 
chain was received successfully? (Specify RESPOND=EX,FME,RRN, or EX,FME,NRRN, 
or EX,NFME,RRN according to user preferences.) 

Figure 3-6 (Part 2 of 3). Some Decisions That Affect Program Design and Coding 

Chapter 3. Organizing a Program 43 



·1 

Program Function 

Handling errors and special 
conditions 

· · · Handling control blocks and work 
··j areas 

·~ • For connection 

:I 

• For communication 

Decisions to Make 

• What kind of information should be saved in a LE RAD exit routine? Does the logic error 
affect only one logical unit or the entire program? 

• Which physical errors can be retried in a SYN AD exit routine? Which require that the logical 
unit be disconnected? Which require sending a wstem operator message? Which require that 
the program terminate? 

• What action should be taken in the NSEXIT and LOSTERM exit routines.? 

• What action should be taken when ACFNTAM abnormally terminates while running under a 
user's task? 

Should the application program have a STXIT AB, STAE, or ESTAE exit routine to 
investigate and clean up its own files? 

• Acquiring one in a list of known logical units? Decide whether to: 

Assemble a NIB or a list of NIBs and an APL (for the OPNDST! into the program. 

Generate and initialize the NIB or list of NIBs and the APL dynamically, using the 
GENCB macro instruction. 

Obtain the NIB or list of NI Bs and the APL from a pool, assembled or created 
dynamically, and initialize them. 

• Acquiring one or a list of unknown logical units? (Use INQUIRE with OPTCD=TERMS to 
create and initialize NIBs and use an assembled, generated, or pool-obtained APL.) 

• Accepting logon? Decide whether to: 

Have a LOGON exit routine and reuse the same NIB and APL for each connection request. 

Have one or more OPN OS Ts in the main program, each of which will require an APL and a 
NIB. 

• Do you need to create a BN DARE A for session parameters? 

• Simple program with synchronous requests? (Assemble RPLs and data area in program and 
reuse for each request.) 

• Asynchronous program? 

Assemble, generate, or obtain from an assembled or generated pool one APL, one ECB (if 
an ECB will be posted), and one work area (data area and flags) for each active logical 
unit? Decide whether to use this storage for the duration of: 

- Connection to disconnection with the logical unit 

- RECEIVE and a related SEND 

- A series of RECEIVEs and SENDs 

Put address of logical-unit-related storage in USERFLD of NIB if storage obtained at 
connection? 

Figure 3-6 (Part 3 of 3). Some Decisions That Affect Program Design and Coding 

Techniques for Handling Control Blocks and Work Areas 

·44 

Here are some techniques that can be used in handling control blocks and work areas: 

Element Per Logical Unit at Assembly: This method works well if a known set oflogical 
units is to be connected to the program. A separate predefined RPL is used for each 
logical unit that is connected. The RPL points to a NIB and to a data area. The 
USERFLD field of the NIB can be set to point to a status save area for the logical unit. 

t.U1 

Status Save Area 



To do this, a correspondence can be set up between each logical unit and its RPL. For 
example, a logical unit table can be constructed that matches a logical unit's symbolic 
name with its RPL. Since fixed connection is being used, a separate OPNDST macro can 
be coded for each logical unit; each OPNDST can be coded to use a specific RPL. When a 
data-transfer request is completed, the RPL's USER field points to the status save area. 
The RPL continues to point to the data area. 

This method can be used if the pro gram accepts logons from a known set of logical units. 
Whenever a logical unit logs on, the program is passed the logical unit's symbolic name. In 
the IDGON exit routine, this name is used as an index into a logical unit table to find the 
correct RPL. That RPL is used to connect the logical unit and to control data-transfer 
requests. 

Element Per Logical Unit at Connection: This method can be used if the program accepts 
logons from logical units whose names are not known at assembly. A pool of RPLs, NIBs, 
data areas, and status save areas can be set up to be used as they are needed. The pool can 
consist of elements; each element contains one RPL, one NIB, one data area, and one 
status save area. As each logical unit logs on, the program selects an available element 
from the pool and uses some technique to associate the element with the logical unit. One 
technique is to put the address of the element in the USERFLD field of the NIB prior to 
issuing the OPNDST macro instruction. Subsequently, whenever execution of an 
RPL-based macro instruction is completed, the address is available in the USER field of 
the RPL. Here is a sample showing how the pool might be set up: 

POOL 
CONTROL 
BLOCK 

Control Counter 

Address of Next Element 

RPL 
NIB 
Data Area 
Status Save Area 

Address of Next Element 

E3 

c 

Oiapter 3. Organizing a Program 45 



46 

This coding could be used to construct the pool: 

PCB 

El 

NIBl 
AREAl 
SAREAl 
E2 

DS 
DC 
DC 
EQU 
DC 
RPL 

NIB 
DS 
DS 
EQU 
DC 

OD 
A(El) 
A(O) 

* 
A(E2) 

POOL CONTROL BLOCK 
CONTROL COUNTER 
FIRST ELEMENT 

. AM=VTAM,ACB=ACBl ,NIB=NIBl ,AREA=AREAl, 
OPTCD=(ACCEPT,ANY) 
USERFLD=A(SAREAI) 
200C DATA AREA 
18C . STATUS SA VE AREA 
* SECOND ELEMENT 
A(E3) 

After selecting a pool element for a logical unit (when it logs on), that element can be 
used with the same logical unit for all subsequent requests. When the logical unit logs off 
or is disconnected, the element is returned to the pool. Here is an exaanple to illustrate 
one method of managing the elements in the pool. Assume that the program is about to 
connect a logical unit for which a logon is queued. A pool element is needed for the 
logical unit. If no elements are available, the program issues a CLSDST, using a reserved 
RPL, to disconnect the logical unit and remove the queued logon. Or the program may 
want to connect the logical unit, write a "resources unavailable" message, and then 
disconnect it. Here is the sample coding: 

*GET ELEMENT FROM POOL 

START 
GLOOP 

LM 
LTR 
BE 
L 
LR 
AL 
CDS 
BNE 

EREG,SREG,PCB 
EREG,EREG 
POOLMTY 
WREG I ,O(EREG) 
WREG2,SREG 
WREG2,=A(l) 
EREG,WREGl,PCB 
GLOOP 

GET ADDR FIRST ELEM AND COUNTER 
TEST IF POOL EMPTY 

GET ADDR SECOND ELEMENT 
GET CONTROL COUNTER 
INCREMENT COUNTER 
UPDATE PCB 
IF CDS DID NOT WORK 

*EREG NOW HAS ADDRESS OF OBTAINED ELEMENT 

EREQ 
SREG 
WREGl 
WREG2 

EQU 
EQU 
EQU 
EQU 

6 
EREG+l 
IO 
WREGI+l 

POOLMTY CLSDST ... 

*PUT ELEMENT BACK IN POOL 

CLSDST IF NO ELEMENTS AVAILABLE 

*EREG HAS ADDRESS OF ELEMENT TO BE PUT BACK 
L WREG 1,PCB GET ADDR FIRST ELEMENT 

LOOP ST WREG l ,O(EREG) CHAIN ELEMENT TO PREVIOUS 
CS WREGl,EREG,PCB PUT ELEMENT IN POOL 
BNE LOOP IF UPDATE DID NOT WORK 

*ELEMENT IS BACK IN POOL 



Using Multitasking 

Using Multitasking to Separate 

Element Per Transaction: Here again, a pool is used for storage management. However, 
instead of assigning an element to a logical unit for the life of the connection, a new 
element is obtained for each transaction. A transaction is a two-way interchange: data 
goes both from and to the logical unit. An element is obtained for connection and 
returned when connection is made. A new element is obtained for each transaction and 
returned when the transaction is completed. Using this technique, a NIB does not have to 
be included in the elements used for the transactions. 

Element Per Request: This is a more dynamic version of the "element per transaction" 
method. Here, a new element is used for each request. As each request is completed, the 
element is retu:-ned to the pool. 

As a modification to this method, one NIB and one RPL can be used for all connection 
requests and additional pool elements obtained for subsequent data-transfer requests. The 
NIB and RPL for connection can be assembled in the program; they need not come from 
a pool. 

To maintain a strict "element per request" technique, the data area portion of an element 
can be used to hold a NIB for connection and as a data area for data transfer. To do this, 
one NIB can be set up in the program. For each connection request, the contents of the 
NIB can be moved into the data area in the pool element. Or, a GENCB cun be used to 
build a complete NIB in the data area. This reduces the size of the pool elements. 

Combinations: These techniques can be combined to suit particular needs. Here are two 
ways to combine storage management techniques: 

1. At assembly, establish a fixed status save area for each logical unit to be connected. 
Each status save area can contain a user identification to be compared to one 
contained in a logon, or the save area can be used to count the number of times the 
logical unit has logged on during the day. At connection, a pool element is obtained 
(containing RPL, NIB, and data area) for each request. The fixed save area provides a 
permanent place to keep logical unit information. 

2. Assign one status save area per logical unit at connection. This is more dynamic than 
the method in 1, above, in that the programmer does not have to know at assembly 
which logical units will log on. One RPL and data area per request or per transaction 
can be used. Again, the status save area can be used to keep track of logical unit 
activity, but only between connection and disconnection. The RPL and data area, 
selected from a pool, allow dynamic data-transfer requests. 

In addition to the multithreading facilities provided by ACF/VTAM, the operating system 
provides multitasking facilities that may be used when writing an ACF/VTAM application 
program that concurrently handles a large number of sessions. Multitasking can be used to 
separate communication activity from other activity such as disk 1/0, to divide 
communication activity among several tasks, or to do both. 

Data Communication Activity from Other Activity 
Multitasking can be used so that communication activity can occur while waiting for 
other activity such as disk 1/0 processing to be completed (see Figure 3-7). For example, 
an ACF /VT AM application program can be organized into a task that opens and closes 
the ACB and performs ACF/VTAM requests, and a task that performs disk 1/0 (VSAM) 
requests. 

01apter 3. Organizing a Program 4~ 



TCB1 (JOBSTEP) ACB1 

OPEN ACB1 

1/0 ACB1 

CLOSE ACB1 

TCB2 

DISK 1/0 

Figure 3-7. Multitasking a Program 

In such a program, a page fault occurring during a request in the task that performs disk 
1/0 requests does not prevent the task that performs communication requests from 
getting control during the time that the system is waiting for the required page to arrive 
in main storage. In a single-task ACF/VTAM application program, a page fault would 
require that the entire program wait. 

Using Multitasking to Divide Data 
Communication Activity among Several Tasks 

Further efficiency may be possible by issuing ACF /VT AM requests in more than one 
task. For example, a program can use one task to open and close the ACB and to connect 
and disconnect logical units, and the program can use a number of other tasks, each 
containing a RECEIVE that specifies OPTCD=ANY and additional 1/0 requests. 
Whenever one ACF/VTAM 1/0 task has to wait, the system can schedule another 
ACF/VTAM 1/0 task. 

There are two different ways to use multitasking to divide communication activity among 
several tasks: (1) a program can be written so that the first task attaches subtasks and all 
tasks use the same ACB, or (2) a program can be written so that the first task attaches 
subtasks and each task uses a separate ACB. 

Multiple Tasks, Using the Same ACB 

48 

When multiple tasks in a job step use the same ACB (see Figure 3-8), the following 
considerations apply: 

• The macro instructions (OPEN and CLOSE) that open and close the ACB must be in 
the same task. 

• To multitask the same ACB in OS/YSl or OS/VS2 SYS, a program must be privileged. 

• Subtasks (non-ACB opened) should terminate only when no outstanding ACF/VTAM 
requests remain. 

• The task that closes the ACB should ensure that other tasks refrain from issuing 
ACF/YTAM requests during and after CLOSE processing. 

• In OS/VSl, OS/VS2 SYS, and OS/VS2 MYS, tasks that perform ACF/VTAM 1/0 
requests must be lower than or equal in the task structure to the task that opens the 
ACB. 



TCB1 (JOBSTEP) 

TCB2 ACB1 

OPEN ACB1 

CLOSE ACB1 
~~ ·~ 

[ TCB3 

1/0 ACB1 

[ TCB4 

1/0 ACB1 

Figure 3-8. Multiple Tasks, Using the Same ACB 

• All exit routines, both RPL-specified exit routines and EXLST exit routines, are 
scheduled to run as part of the task in which the ACB is opened. If any of the 
ACF/VTAM. I/O tasks is dependent on information that may be detected in an exit 
routine (such as a response being received by a RESP exit routine), the exit routine 
must be able to communicate with that task (perhaps by posting an ECB located in a 
common area). 

• In OS/VSl and OS/VS2 SYS, any ABEND issued in an exit routine results in the 
abnormal termination of the task that opened the ACB as well as all of its subtasks. 

• In DOS/VS, all ACF/VTAM. processing occurs as part of the task in which the ACB 
was opened. 

Multiple Tasks, Each with Us Own ACB 

: < 

In an ACF/VTAM. application program consisting of more than one task, each task can 
open its own ACB (see Figure 3-9). In such a structure, the following considerations 
apply: 

• The macro instructions (OPEN and CLOSE) that open and close a particular ACB 
must be issued in the same task. 

Cllapter 3. Organizing a Program 49. 



TCB1 (JOBSTEPI ACB1 

OPEN ACB1 

CLOSE ACB1 
TCB2 ACB2 

OPEN ACB2 

CLOSE ACB2 

l TCB3 ACB3 

OPEN ACB3 

CLOSE ACB3 

Fagure 3-9. Multiple Tasks, Each with Its Own ACB 

• In OS/VSl, OS/VS2 SVS, and OS/VS2 MVS, any task that opens an ACB can perfonn 
ACF /VT AM requests only on that ACB (not on any of the other ACBs that have been 
opened by related tasks). 

Using Multiple ACBs within One Task 

An ACF/VfAM application program that remains a single task can open more than one 
ACB (see Figure 3-10). By doing this, some ACB-specified exit routines, such as the 
TPEND exit routine, can be used in common by ACBs, while other exit routines can be 
associated with only one particular ACB. A possible use of multiple ACBs is to code one . 
set of ACB-specified exit routines for one set of tenninals (for example, all basic-mode 
terminals that may be connected) and a different set of exit routines for another set of 
terminals (for example, all record-mode terminals or logical units that may be connected). 

Using Authorized Path in OS/VS2 MVS 

50 

In OS/VS2 MVS, an ACF/VfAM application program can specify that individual SEND, 
RECEIVE, RESETSR, and SESSIONC macro instructions be executed by ACF/VTAM in 
a path that requires fewer instructions. This faciltity, called authorized path, can be used 
to improve performance in an ACF /Vf AM application program. 

To use authorized path, the program must be authorized and in the supervisor state. 
OS/VS2 System Programming Library: Supervisor,· GC28-0628, describes how to specify 
an authorized program. The MODESET macro instruction can be used to put the program 
into supervisor state. 



TCB1 (JOBSTEP) ACB1 

OPEN ACB1 

OPEN ACB2 

1/0 ACB1 

1/0 ACB2 

CLOSE ACB1 ACB2 
CLOSE ACB2 

TCB2 '----

DISK 1/0 

Figure 3-10. A Single Task with Multiple ACBs 

The ACF/VTAM application program can use authorized path while running under a TCB 
or while running under an SRB. To use it while running under a TCB, the authorized 
program, having put itself into supervisor state, specifies BRANCH=YES on any SEND, 
RECEIVE, RESETSR, or SESSIONC macro that is to be executed using authorized path. 
(Subsequently, to issue any macro instruction that does not use authorized path and that 
uses the same RPL, the RPLBRANC flag in the RPL must be turned off either by (1) 
coding BRANCH=NO on a MODCB macro instruction, (2) referring to the field by using 
the IBM-supplied DSECT and turning it off with an assembler language instruction, or (3) 
by coding BRANCH=NO on the subsequent macro instruction that does not use 
authorized path.) 

Authorized path is always used when SEND, RECEIVE, RESETSR, or SESSIONC is 
issued under control of an SRB. One way to use authorized path under an SRB is for the 
authorized program, while running under a TCB, to specify an RPL exit routine when 
issuing (in supervisor state) a SEND, RECEIVE, RESETSR, or SESSIONC macro that 
specifies BRANCH=YES. On entry to the RPL exit routine, the program will be running 
under an SRB. Any SEND, RECEIVE, RESETSR, or SESSIONC in this environment is 
automatically executed using the authorized path; BRANCH=YES need not be specified. 
An alternative way to create the SRB environment is to use the SCHEDULE macro 
instruction. No RPL-based macro instruction other than SEND, RECEIVE, RESETSR, 
SESSIONC, and CHECK should be issued while running under an SRB. 

Figure 3-11 illustrates the basic logical requirements for using authorized path when 
running under a TCB and under an SRB. The program in Figure 3-11 is highly simplified. 
The program only connects and handles input from one logical unit, whereas an actual 
program would connect and handle input from several logical units. In addition, the logic 
associated with input/output requests would be more complex in an actual program. The 
following notes are keyed to the numbers in Figure 3-11. 

Chapter 3. Organizing a Prognm 51 



AUTHPATH 
Enter 

Open the ACB 

Connect the 
logical unit 

Change to 
supervisor state 

© Receive a message 
~-....,"" from any logical 

unit 

No 

@ 

Wait on own ECB 

Disconnect the 
logical unit 

Close the ACB 

Return 

Running under the 
control of a TCB 

IA~~,:;:- - - - - - - - - - -, 
I 

--t - Enter 

0 

0 

@ 

I· C-:\ 
·1~ 
I 
I 
I 
I 

Check status 
of RECEIVE 

Process 
message 

Build reply 

Send reply to 
logical unit 

Post ECB 

Return 

Yes 

© 
Turn on 
logo ff 
indicator 

Post ECB 

Return 

L------·---------_J 
Running under the control of an SRB 

Figure 3-11. The Logical Requirements for Using Authorized Path (OS/VS2 MVS) 

52 



1 The application program begins processing as a task in OS/VS2 MYS, running under 
the control of a TCB. As part of normal ACF /VT AM processing, it issues an OPEN 
macro instruction to open an ACB. The OPEN might be coded like this: 

OPEN AUTHACB 

In this sample program, AUTHACB contains: 

AUTHACB ACB AM=VTAM,APPLID=APPLSID,PASSWD=APPLSID 

2 Next, the application program issues an OPNDST macro instruction to connect the 
logical unit. The OPNDST might be coded: 

OPNDST RPL=AUTHRPL,OPTCD=SYN 

The RPL, named AUTHRPL, contains the rest of the information needed for the 
OPNDST. 

3 Now the application program uses the MODESET macro instruction to change into 
the supervisor mode. This is coded: 

MODESET MODE=SUP 

4 The RECEIVE macro instruction conforms to the coding rules for authorized path 
running under the control of a TCB. The BRANCH=YES operand is specified. The 
RECEIVE macro instruction might be coded: 

RECEIVE RPL=AUTHRPL,RTYPE=DFSYN ,AREA=INPUTOO, 
AREALEN=lOO,OPTCD=(ASY,ANY,CS),EXIT=AUTHEXIT, 
BRANCH= YES 

It is known that a message received from the logical unit will never exceed l 00 
bytes. 

5 Because the RECEIVE was specified as an asynchronous operation (ASY in 
OPTCD), the main program AUTHPATH can continue execution until an input 
message from the logical unit completes the receive-any operation. In a more 
elaborate program, meaningful processing could be done here. But in AUTHPATH, 
the program immediately enters a wait state, waiting on its own ECB. 

6 When a message is received from the logical unit, control goes to the RPL exit 
routine named AUTHEXIT. Note that this exit routine runs under the control of an 
SRB, and that the exit routine receives parameters that are different from those 
received by an RPL exit routine running under a TCB. On entry to AUTHEXIT: 

• Register 1 contains the address of the RPL. 

• Register 13 does not contain a save area address because no save area is provided. 
(This is also true of an RPL exit routine running under a TCB.) 

• Register 14 contains the return address of the OS/VS2 MYS dispatcher. 

• Register 15 contains the entry-point address of the exit routine. 

The CHECK macro instruction frees the RPL for reuse and causes entry to a 
LERAD or SYN AD exit routine if necessary. The CHECK macro instruction is the 
only ACF/VTAM macro instruction other than SEND, RECEIVE, RESETSR, and 
SESSIONC that can be issued under control of an SRB. Any other ACF/VTAM 
macro instruction will fail. The CHECK macro instruction is coded: 

CHECK RPL=AUTHRPL 

Cllapter 3. Organizing a Program 53 



54 

7 The exit routine then tests the input message to see if it. is a logoff message (a 
message in a special format that indicates ·the logical unit wants to end 
communication with the program AUTHPATH). 

8 If the message is a logoff message, the exit routine turns on a logoff indicator, posts 
the ECB, and returns control to AUTHPATH. 

9 If the message is not a logoff message, the exit routine analyzes the message and 
builds a reply. 

10 The exit routine is running under the control of an SRB because it is an exit routine 
entered from a macro instruction using authorized path. The SEND macro 
instruction therefore uses authorized path. The SEND looks like this: 

SEND RPL=AUTHRPL,OPTCD=(SYN,CA),CONTROL=DATA, 
STYPE=REQ,RTYPE=DFSYN,RECLEN=95,AREA=OUTPUTOO, 
POST=SCHED,RESPOND=(NEX,NFME,NRRN) 

The macro instruction specifies that the SEND operation is to be performed 
synchronously (SYN in OPTCD), meaning that the exit routine surrenders control 
until the . SEND operation is scheduled. The macro instruction also specifies that no 
response is to be returned, which assumes that failure of the message to arrive will 
be detected by analyzing the next message entered by the terminal operator. 

11 After the SEND operation has been scheduled, the exit routine posts the ECB on 
which the main program, AUTHPATH, has been waiting. The exit routine then 
returns control to AUTHPATH. 

12 Because the ECB has been posted, the wait at 5 is satisfied and AUTHPATH 
continues execution. It tests to determine whether the logoff indicator has been set. 
If the indicator has not been set, it returns to 4 to reissue the RECEIVE macro 
instruction. Thus, execution continues through steps 4 through 12 for as long as 
normai input messages are received from the logical unit. 

When the logoff indicator has been set (indicating that the message received from 
the logical unit was a logoff message), execution continues at 13. 

13 The program disconnects the logical unit by using the CISDST macro instruction. 
The CISDST might be coded: . 

CISDST RPL=AUTHRPL,BRANCH=NO,OPl'CD=SYN 

The BRANCH=NO operand turns off the RPLBRANC flag that was turned on by 
the BRANCH=YES operand in the RECEIVE macro instruction. This must be done 
for the CISDST macro instruction to be executed correctly. Because there is no 
authorized path for this macro instruction, the flag cannot be on when CLSDST is 
executed. 

14 The CLOSE macro instruction closes the ACB. 



Chapter 4. Opening and Oosing a Program 

Opening a Program 

After an ACF /VT AM application program has been started, it must notify ACF /VT AM 
that it is to be recognized as an active element in the network. To do this, the program 
issues an OPEN macro instruction. On completion of the OPEN, ACF/VTAM has 
modified its control blocks and tables to indicate that the program is present in the 
network. ACF /VT AM can then accept requests from logical units for connection to this 
program. The program is also now able to make further requests of ACF /VT AM. 
Normally, the program remains "open" until a CLOSE macro instruction is issued when 
the program is terminating. 

ACF /VT AM considers each open ACB to be a separate application program. Therefore, if 
an application program opens more than one ACB, VTAM sees each open ACB as a 
different program, even though the ACBs are related to the same program. 

What Is Required to Open a Program 
Two things are required to open an application program: 

An ACB (defined with an ACB or GENCB macro instruction) 

An OPEN macro instruction 

Because an ACB can point to a list of exit routines, defined with an EXLST macro 
instruction, an EXLST macro may also be required. 

The Access Method Control Block ( ACB) 
The access method control block contains information that describes the ACF/VTAM 
application program to ACF/VTAM. After an ACB has been opened, logical units that 
become connected to the program in reality become connected to the ACB. An ACB 
contains: 

• The name of the access method to be used in opening the ACB (VTAM). 

• The address of an application program identification. The application program 
identification must match a name that was specified on an APPL statement provided 
as part of the ACF /VT AM definition. When the program opens an ACB, ACF /VTAM 
searches an internal table. If it finds a match, the ACB is opened; if it does not find a 
match, the ACB is not opened. 

Note: If no application program identification is available when an ACB is opened 
(that is, the APPLID operand was not specified in the ACB or in the OPEN macro 
instruction), ACF/VT AM uses the job-step name (the label of the EXEC statement)as 
the application program identification in OS/VS. If the programmer starts a job step 
that opens multiple ACBs, he or she must ensure that the application program 
identification is not missing from more than one ACB. In DOS/VS, ifthe programmer 
starts an application program in which no application program identification is 
provided in the ACB, the job name in the JOB statement is used as the application 
program identification. 

The application program identification is put into a storage area with the other 
constants in the program. It must be left-adjusted, and can be no longer than 8 bytes. 
In the byte that precedes the identification, the length of the identification is coded: 

APIDI DC ALI(L'NAME) 
NAME DC C'JOE' 

The address of the length byte (for example, APIDl above) is coded in the APPLID 
field of the ACB. 

Otapter 4. Opening and Cosing a Program SS 



56 

Alternatively, the length of the application program's identification can be specified: 

APIDl DC X'03' 
DC C'JOE' 

although this would require that both statements be changed if the name of the 
application program were changed. 

• Optionally, the address of a password can be associated with the application program. 
When an ACB is opened, the password in the ACB is compared with a password 
defined in the APPL statement at network definition. ACF/VTAM keeps this password 
in an internal table. These passwords must match, or the ACB is not opened. If no 
password is specified on the APPL statement, no password need be specified on the 
ACB macro instruction. 

The password is put into a storage area in the program. It must be left-adjusted, and 
can be no longer than 8 bytes. In the preceding byte, the length of the password is 
coded: 

PSWDl DC 
AUTHOl DC 

ALl(L'AUTHOl) 
C'AUTHOl' 

The address of the length byte (for example, PSWDl in the preceding example) must 
be coded in the password operand of the ACB. 

• The name of an exit list containing the names of exit routines written in the 
ACF /VT AM application program to handle specific events. 

• An indication of whether ACF /VT AM is to queue logons directed to the application 
program identification specified in this ACB. If the programmer so specifies 
(MACRF=LOGON), ACF/VTAM queues logons on the ACB. Each queued logon 
causes the LOGON exit routine to be entered or a connection request in the main 
program to be completed. If the programmer specifies that logons are not to be 
queued (MACRF=NLOGON), no logons are saved if they cannot immediately be 
processed. 

If the ACB is being defined for an application program that will act as a secondary 
logical unit in any of its sessions, MACRF=LOGON must be coded. This is necessary 
for the secondary application program to be able to handle its end of the connection 
process properly. 

Here is a sample ACB macro instruction used to build an access method control block. 

ACBl 

APIDl 
APlNAME 
PSWDl 
PASSCHAR 
EXIT 

where: 

ACB AM=VT AM,APPLID=APID 1, 
PASSWD=PSWDl,EXLST=EXIT,MACRF=LOGON 

DC AL(L'APlNAME) 
DC C'MYPROG' 
DC ALl(L'PASSCHAR) 
DC C'JOE007' 
EXLST AM=VT AM,LERAD=LGERRTN ,SYNAD=PHYSERTN,etc. 

ACBl is the symbolic name for this ACB; it will be included in the OPEN macro 
instruction that is used to open this ACB. 

AM=VTAM tells the operating system that ACF/VTAM open processing will be used 
for this ACB. 



The OPEN Macro Instruction 

APIDl is the address of the application program identification (MYPROG). When the 
ACB is opened, ACF/VTAM compares MYPROG to the entries in an internal table. 
Logon entries to this program are directed to MYPROG. 

PSWDl is the address of the password (JOE007). This must match the password coded 
in the appropriate entry in the internal table. If they match, or if no password was 
coded in the table, the ACB can be opened. If the passwords do not match, the ACB 
cannot be opened. 

EXIT is the name of the exit list created by the EXLST macro instruction. 

MACRF=LOGON specifies that (1) ACF/VTAM will queue logons for this ACB, and 
(2) ACF/VTAM will schedule the SCIP exit routine when a Bind command is received 
by the program. Neither action can occur, however, until the program has issued a 
SETLOGON with OPTCD=START. 

An ACB can also be created when the program is being executed by issuing a GENCB 
macro instruction. 

Having created an ACB, the program opens it by issuing an OPEN macro instruction. For 
example: 

OPENPROG OPEN ACBl 

This macro instruction opens an ACB with the name ACBl. (Note that the OPEN and 
CLOSE macro instructions use a positional rather than a keyword operand.) 

Using Multiple A CBs in an 
ACF/VT AM Application Program 

Normally, an ACF/VTAM application program has only one ACB; the program is known 
to ACF/VTAM by only one APPL identification. However, a program can be known 
under two or more different APPL identifications, and each requires that a separate ACB 
be opened. One OPEN macro instruction can be used. For example: 

OPENPROG 
OPENPROG 

OPEN 
OPEN 

ACB1,ACB2 
{ACBl ,,ACB2) 

(DOS/VS) 
(OS/VS) 

Where the OPEN Can Be Issued 

Oosing a Program 

Normally, the OPEN macro instruction is issued in the communication part of the 
ACF /VT AM application program. The OPEN macro instruction cannot be issued from an 
exit routine. Information pertaining to the opening of the ACB, multiple ACBs, and 
multitasking ACBs can be found in Chapter 3. 

An ACF/VT AM application program closes itself by issuing a CLOSE macro instruction 
that specifies the program's ACB. The CLOSE macro instruction is used in the same way 
as the OPEN macro instruction. Normally, it should be issued in the communication part 
of the ACF /VT AM application program and must not be issued from an exit routine. The 
CLOSE request tells ACF/VTAM to mark the program as no longer present in the 
ACF/VTAM network. For example: 

CLOSE ACBl 

When the program is closed, any logical units that have not previously been disconnected 
(with the CLSDST macro instruction) are disconnected. Any outstanding operations are 
posted complete. In addition, the program can no longer issue the SENDCMD or 
RCVCMD macro instructions. 

Otapter 4. Opening and Oosing a Program 57 



The Program Initiates Closing 

In general, there are three ways that a program can learn that it should close its ACB. 

• The program can determine itself that it should close (perhaps by determining the 
time-of-day). 

• The program can receive a special text or data message, either from a logical unit or 
from the network operator, indicating that the program should close operations. 

• The program's TPEND exit routine is entered, either because the network operator has 
issued a HALT command or because some abnormal event has caused ACF /VTAM to 
be terminated. There are three kinds of HALT commands: a standard HALT command 
(which contains neither the QUICK nor the CANCEL operand), a HALT QUICK 
command (which initiates a quick closedown), and a HALT CANCEL command 
(which initiates a cancel closedown). When all application programs running under 
ACF/VTAM are to be ended at the same time, the user must choose to end the 
programs by issuing a standard HALT command or a HALT QUICK command. 
Neither of these two commands, however, is completed (that is, ACF/VTAM is not 
halted) until all application programs have closed their ACBs. Particular actions to be 
taken by the TPEND exit routine in response to the different HALT commands are 
described in separate discussions below. 

The program can itself recognize that is has reached the end of its operations and should 
close itself. It might recognize this either as part of its normal processing or because it has 
encountered an error or special condition, such as the lack of a certain resource. For a 
normal end to operations, the program can send a final message to all logical units 
connected to it. For an error or special condition, it can send the final message as well as 
record information about the nature of the error. After taking any pre-closing action that 
it wants, the program issues a CLOSE macro instruction and then terminates itself. 

The Program Receives a Closedown Message 
The application program can close as the result of a special message from some element in 
the network. This occurs if closing the program depends on a situation remote from the 
'hn~t l'nntnntAr ( 'lln...I +liio notu:u\.rlr nnor'lltnr l"'llnnn+ 'ho in.fn ... _..o~ ghn.11+ tho l'.'itufll+inn \ 'Cn<P ...... -..,. v-aaat'_ .. .., ... ,,.,. .... _ &.&&""" ..,..,..,.,,.._ ...... .., "t"""'.a. .. •-& vu..a.a&..,., u.., .&.&.Ll.V.1..1.&AV..., ..,..,..,_._ .._.av u.a.•W~•ava&J• .IL v.a. 

example, a terminal operator at a logical unit in Chicago knows that Chicago is always the 
last user of the program. When all terminal operators in Chicago finished using the 
program, a terminal operator sends a special message to the ACF/VTAM application 
program, telling it to close its operations. The ACF/VTAM application program then 
closes in an orderly fashion, notifying the network operator at the host computer. 

The TPEND Exit Routine Is Entered 

SB 

The TPEND exit routine is entered when the network operator issues a HALT command 
or when, because of an internal error or problem, ACF /VT AM is terminating itself or 
being abnormally terminated. When the TPEND exit routine is entered, register 1 
contains the address of a 2-word parameter list in which: 

Word 1 contains the address of the ACB of the application program being shut down. 

Word 2 contains a code that indicates the reason for entry to the exit routine: 

0 The network operator issued a standard HALT command. 

4 The network operator issued a HALT QUICK command, or ACF/VTAM is halting 
itself in an orderly fashion because of an internal problem. 

8 (OS/VS only) The network operator issued a HALT CANCEL command, or 
ACF /VT AM is being abnormally terminated. 

For codes 0 and 4, the TPEND exit routine should take action as indicated in the 
following paragraphs. For code 8, the exit routine should immediately return control to 
its main program, where a CLOSE macro instruction should be issued. 



Action for a Standard HALT Command 
To an ACF/VTAM application program, notification that a standard HALT command 
(HALT NET without the QUICK or CANCEL operand) has been received represents a 
request from ACF/VTAM for the program to close its operations, but it also indicates 
that ACF/VTAM is willing to wait for the application program to do it in an orderly 
manner. 

When ACF/VTAM receives a standard HALT command, it prevents any new application 
programs for associating themselves with ACF/VTAM (by opening their ACBs) and 
prevents application programs from making new connections with logical units. 
ACF/VTAM also stops queuing logons for application programs. But ACF/VTAM allows 
the programs to continue communications with connected logical units. For each 
application program, ACF/VTAM schedules the TPEND exit routine (if the program has 
one) and passes code 0 in the parameter list. 

Under these conditions, the application program does not have to immediately close its 
ACB. The TPEND exit routine can inform other parts of the program that the standard 
HALT has been issued. It can do this by posting an ECB or by setting a switch that is 
checked by other parts of the program. The program can continue communications but 
should end them as soon as it can. It should then disconnect each logical unit and issue a 
CLOSE macro instruction. Note that the CLOSE macro instruction cannot be issued in an 
exit routine; it must be issued in the main program. 

If the program has no TPEND exit routine and a standard HALT is issued by the network 
operator, the program has no immediate way of knowing that the HALT command has 
been issued. The program will continue communicating with logical units until the 
network operator cancels the program or until ACF /VT AM terminates (because the 
network operator has entered a HALT QUICK command). 

The standard HALT command will not be completed until all application programs have 
issued a CLOSE macro instruction. If any application program has not closed its ACB 
after 45 seconds following receipt of the standard HALT command, ACF/VTAM sends 
the network operator a list of the application programs that are still open. The network 
operator can then cancel the programs (using the job name that is equivalent to the 
application program name), or the operator can notify each program to close its ACB by 
sending it a special message (if the programs are coded to recognize and act upon such a 
message). 

Actions for a HALT QUICK Command 
or for an ACF/VTAM-Initiated Halt 

The TPEND exit routine is also entered when the network operator issues a HALT 
QUICK command or when ACF /VT AM enters halt-quick processing because of an 
internal error. In either case, ACF/VTAM wants to close down the network rapidly. 

After it receives a HALT QUICK command or after it enters halt-quick processing, 
ACF/VTAM will not allow any new application programs to associate themselves with 
ACF/VTAM (by opening their ACBs), nor will it allow application programs to make any 
new connections with logical units. For programs already in session with logical units, 
ACF/VTAM will not accept any new data-transfer requests. Any pending data-transfer 
request is marked complete, with a special flag set in the FDBK2 field of the RPL to 
indicate that the operation was canceled because of a quick closedown. 

When an application program learns that a quick closedown is in progress, the program 
should close its ACB as soon as possible. The TPEND exit routine learns of the quick 
closedown by finding code 4 in the parameter list when it is entered. That exit routine 

Otapter 4. Opening and Oosing a Program 59 



should do a minimum of closedown processing and return control to ACF /VT AM as soon 
as possible so that the main program can issue the CLOSE macro instruction. 

The user should be aware that, after the TPEND exit routine has returned control to 
ACF/VTAM, the halt-quick situation does not prevent ACF/VTAM from scheduling the 
program's other exit routines (such as the LOSTERM exit routine). Because of that, the 
TPEND exit routine should set a quick-halt-in-progress switch, which is tested at the 
beginning of each exit routine. When the switch is on, each exit routine should 
immediately return control to ACF/VTAM. The TPEND exit routine should also set a 
switch or post an ECB to signal the main program to disconnect logical units {if the exit 
routine did not do that) and close the ACB as soon as possible. 

For a quick-halt situation, the TPEND exit routine or the main program should 
disconnect each logical unit with which it was communicating by issuing CLSDST or 
TERMSESS unconditional macro instructions. If the program closes its ACB without 
issuing the CLSDST and TERMSESS macros, the logical units will be disconnected 
serially, thus requiring more time to disconnect the logical units and slowing down the 
closedown operation. 

If a program has no TPEND exit routine, it learns of the quick-halt situation by detecting 
a special return code when its next ACF /VT AM request is completed. The program 
should disconnect its logical units and issue a CLOSE macro instruction. 

With the HALT QUICK command, as with the standard HALT command, a list of open 
application programs is sent to the network operator if any application program has not 
closed its ACB after 45 seconds. 

Actions for a HALT CANCEL Command 
or for Abnormal Termination of ACF/VTAM. (OS/VS Only) 

60 

In an OS/VS system, ACF/VTAM's receipt of a HALT CANCEL command or an 
ACF/VTAM abnormal termination also causes entry to the TPEND exit routine. For 
either eve.nt, ACF/'VTAM inten:upts any data-uai1:sfe1 operation ai1d does ii.ul ~omplcie ii 
{that is, the RPL is not marked as complete and no ECB is posted or RPL exit routine 
scheduled). ACF/VTAM will not accept any ACF/VTAM macro instruction except the 
CLOSE macro instruction. Therefore, when the TPEND exit routine detects code 8 in the 
parameter list it receives, the exit routine should set a switch or post an ECB to inform 
the main program that it should immediately issue the CLOSE macro instruction. The 
exit routine should then return control to ACF/VT.AM so that control can be given to the 
main program. 

If an application program does not have a TPEND exit routine or if that exit routine 
cannot be scheduled, the application program is abnormally terminated. 

For more information on the TPEND exit routine, see Chapter 7. 



Chapter S. Connecting and Disconnecting Logical Units 

Roles of Primary and Secondary Logical Units 
in Connection and Disconnection 

The Concepts of Connection 

Communication between two logical units cannot begin until a connection (that is, an 
LU-LU session) has been established between the logical units. As mentioned in 
Chapter 1, in any connection between logical units, one logical unit acts as the primary 
end of the session and the other logical unit acts as the secondary end of the session. 
The primary logical unit has more control over communications. 

One distinction between the primary and secondary logical units involves their roles in 
connection. The distinction is this: The secondary logical unit can only request that a 
session be established; it cannot order the session to be established. It is the primary 
application program that, after receiving a request for a session, orders the session to 
be started (or rejects the request). 

A similar relationship exists between a primary logical unit and a secondary logical unit 
in bringing an end to a session (that is, in causing disconnection of the logical units). 
Under normal conditions, the secondary logical unit asks that a session be ended by 
sending a Terminate command (an SNA command) to ACF/VTAM. ACF/VTAM 
informs the primary program that the Terminate command has been received. Then, 
either ACF /VT AM or the primary application program takes the action that actually 
breaks the connection. 

In considering connections, the reader should be aware that a logical unit other than a 
secondary application program can be connected to only one primary application 
program at a time. In contrast, a secondary application program can have concurrent 
sessions with more than one primary application program. 

The discussion above indicates that the process of connection and disconnection must 
be looked at from two viewpoints: from the viewpoint of the primary application 
program and from the viewpoint of the logical unit that is acting as the secondary end 
of the session. This chapter looks first at connection from the viewpoint of the 
primary application program. The role of a secondary application program is discussed 
later in the chapter. 

A primary application program can establish connection in one of two ways: it can 
accept the logical unit or it can acquire the logical unit. (For information on 
requesting connection from a secondary application program, see "How a Secondary 
Application Program Requests Connection" later in this chapter.) 

Acceptance by a Primary Application Program 
When a primary application program accepts a logical unit, it does so because a logon 
was received from or received for the logical unit. A logon is a request from the logical 
unit to be connected, and the logon contains information needed by the primary 
application program to perform the next step in the connection process. The logon can 
come from the logical unit itself, or it can come from one of several other sources: 

• From another application program which ended its connection with the logical unit 
by issuing a CLSDST macro instruction with OPTCD=P ASS. 

Olapter S. Connecting and Disconnecting Logical Units 61 c 



62 

• From the network operator by means of a VARY LOGON command {although this 
cannot be used to generate a logon on behalf of a secondary application program.) 

• From ACF/VTAM. when the logical unit is activated. ACF/VTAM. automatically 
generates a logon at that time when the LOGAPPL operand was specified in the 
definition statement for the logical unit. {This also cannot be used to generate a 
logon on behalf of a secondary application program.) 

A logon can also be generated within the application program that the logical unit is to 
be logged on to by issuance of the SIMLOGON macro instruction. However, such 
logons, called simulated logons, are essentially a form of acquisition and are discussed 
under "Acquisition by a Primary Appljcation Program" later in this chapter. 

A primary application program accepts a connection by issuing the OPNDST macro 
instruction with OPTCD=ACCEPT. 

Acceptance is suitable for primary application programs that do not require access to a 
specific logical unit or a specific set of logical units in order to function, but instead 
are designed to service various logical units that require access to the application 
program. If, for example, the user wants the logical units themselves to designate 
which application program they wish to use, the user can allow each logical unit to 
initiate logons so that the application program can accept the logical unit. 

Queuing Logons: When ACF/VTAM. receives a logon for an active application program 
and the logon cannot be passed immediately to the application program {for example, 
no SETLOGON START macro instruction has been issued), the logon is placed on a 
queue to await processing by the application program. When the logon is placed on the 
queue, the logical unit from which the logon was received or for which it was created 
is allocated to the application program if it is a logical unit other than a secondary 
application program. (A secondary application program is not allocated to the primary 
program.) As long as the logical unit is allocated (queued) to the application program, 
it is not available for connection to any other application program; it is available for 
connection only to the application program to which it is queued. (A secondary 
application program remains available for connection to other application programs.) 
The application program and its queued logical unit cannot communicate with each 
other until the connection is completed by the application program's acceptance of the 
logical unit. Because a queued logical unit (other than a secondary application 
program) is effectively eliminated from the system until accepted or disconnected by 
the application program, the user should ensure that application programs avoid leaving 
logical units on this queue any longer than necessary. Note especially that the queuing 
of a logon from a device-type logical unit makes that logical unit unavailable for 
acquisition, as discussed in later paragraphs. 

When more than one logon is queued for the same application program, the logons are 
generally processed in the order in which they were received (that is, the first received 
is the first to be processed). There is, however, an exception to this: When the 
program disconnects the logical unit with a CLSDST macro instruction containing 
OPTCD=PASS (to pass the logical unit to a program that requested it), that logon is 
placed at the top of the queue and is processed first. 

Accepting Logical Units with an Exit Routine: The application program can maintain 
a LOGON exit routine that ACF /VT AM schedules whenever a logon for the applica­
tion program is received. ACF /VT AM provides the exit routine with the identity of the 
logical unit that issued the logon. The application program can either accept the logical 
unit {with an OPNDST macro instruction) or reject it (with a CLSDST macro 
instruction). 



The application program does not have to use an exit routine to determine when a 
logon has been received. The application program can issue a connection request 
(OPNDST with OPTCD=ACCEPT,Q) that will remain outstanding (that is, will not be 
completed) until a logon is received from a specific logical unit or, optionally, from 
any logical unit. Although this method is simpler than using an exit routine, the 
application program does not have the opportunity to inspect the session parameters 
and to decline the Jogon. The application program also cannot ensure that the MODE 
field in the NIB is set properly. For example, it is possible to use a NIB with 
MODE=BASIC to successfully accept a logon from another application program. 
However, since all sessions between application programs must be in record mode, any 
attempt to send or receive messages would fail. 

Preventing Logons: Logons cannot be directed. ta an application program until the 
application program notifies ACF/VTAM that it is ready to accept them. It controls 
this with the SETLOGON macro instruction. After a SETLOGON with OPTCD= 
START is used to start the acceptance of logons, ACF/VTA.M schedules the program's 
LOGON exit routine for each logon that was queued and waiting or that subsequently 
is received, or it completes any connection requests (OPNDSTs with OPTCD=ACCEPT) 
that may have been issued outside the LOGON exit routine. Any time during its 
execution, the application program can notify ACF/VTAM that it is no longer 
accepting logons by issuing a SETLOGON with OPTCD=STOP or QUIESCE. (In a 
secondary application program, issuance of SETLOGON with OPTCD=ST ART is 
necessary to enable the secondary program to perform its end of the connection 
procedure.) 

Types of Acceptance: The application program can issue a connection request to 
accept a specific logical unit, or to accept any logical unit for which a logon has been 
issued. 

To accept a specific logical unit, the application program must tell ACF/VTAM the 
identity of the logical unit; connection is not made until a logon has been issued for 
that logical unit. The application program can also accept a logon from any logical unit 
in the network. After connection is established, ACF /VT AM provides the identity of 
the logical unit. 

Acquisition by a Primary Application Program 
When the initiative for connection originates in the primary application program, the 
application program establishes connection by acquiring the logical unit. To acquire a 
logical unit, the application program need not and should not have received a logon 
from the logical unit. (If the application program has received a logon, it must either 
accept it or reject it.) When the acquisition request is issued, if the logical unit is active 
and available, the logical unit is connected (or queued for connection if the application 
program is simulating a logon on behalf of the logical unit). To be able to acquire 
logical units, an application program must have been authorized to use acquisition 
when the program' was defined to ACF/VTAM; that is, the AUTH=ACQ operand must 
have been specified in the APPL definition statement. 

A primary application program can acquire a logical unit in either of two ways: (1) by 
issuing an OPNDST macro instruction with OPTCD=ACQUIRE, or (2) by issuing a 
SIMLOGON macro instruction to create a simulated logon and then accepting the 
simulated logon. 

Oiapter S. Connecting and Disconnecting Logical Units 63 



Acquiring a Logical Unit with the OPNDST Macro Instruction 

To acquire a logical unit, the primary application program can issue an OPNDST macro 
instruction with OPTCD=ACQUIRE at any point at which the application program 
wants to attempt to acquire connection with one or more logical units. 

In using an OPNDST with OPTCD=ACQUIRE, the application program can specify 
that ACF/VTAM should attempt to acquire a connection (1) with a particular logical 
unit, (2) with the first logical unit that is available in a set of logical units, or (3) with 
some or all of a set of logical units. For the latter two possibilities, which involve a set 
of logical units, the application program defines the set by building a series of 
contiguous control blocks (NIBs), each containing the name of a logical unit. The 
series of contiguous NIBs is called a NIB list. 

Acquiring Connection with a Particular Logical Unit: To acquire a connection with a 
specific logical unit, the application program issues an OPNDST with OPTCD= 
ACQUIRE that points to a single NIB (that is, LISTEND=YES was specified when the 
NIB was defined). As an alternative, the application program can use the SIMLOGON 
macro instruction as described below. 

Acquiring Some or All Logical Units in a Set (CONALL): The OPNDST with 
OPTCD=ACQUIRE can also be used to attempt to acquire connection with some or all 
of the lo~al units in a NIB list. In this case, the macro instruction points to the first 
NIB in a NIB list, and the OPTCD operand contains the CONALL option as well as 
the ACQUIRE option. When such a macro instruction is issued, as many logical units 
as are available are connected. This type of acquisition can be used when the 
application program is willing to proceed with as many logical units as are available. (A 
secondary application program that is active is always available for connection. A 
device-type logical unit is available for connection if it is not already connected to or 
queued for connection to another application program.) After execution of the macro 
instruction, ACF /VT AM provides information so that the primary application program 
can determine which logical units were connected and which were not. 

Acquiring the First Availabie Logicai Unil iii u Sd (CONAN\'); Another variation of 
the OPNDST with OPTCD=ACQUIRE allows the application program to acquire any 
one logical unit of a specified set. To specify this type of acquisition, the application 
program issues an OPNDST with OPTCD=(ACQUIRE,CONANY), and the macro 
instruction points to the first NIB in a NIB list. When the macro instruction is 
executed, the first available logical unit in the set is connected. This type of 
acquisition is useful for application programs that require one of a set of logical units, 
but for which one logical unit is as good as another. 

Acquiring a Logical Unit with the SIMLOGON Macro Instruction 
An alternative method of acquiring a logical unit involves the use of the SIMLOGON 
macro instruction. In this method, the application program issues a SIMLOGON macro 
instruction, which causes ACF/VTAM to generate a logon for the logical unit and to 
pass that logon to the application program as though it had come from the logical unit 
itself. The application program then accepts the logon with an OPNDST OPTCD= 
ACCEPT, either in its LOGON exit routine or in its main line. The SIMLOGON macro 
instruction can be used to generate a logon for (1) a particular logical unit, (2) the 
first available logical unit in a set of logical units (the CONANY option), or (3) for all 
available logical units in a set (the CONALL option). For the SIMLOGON macro 
instruction (as for OPNDST OPTCD=ACQUIRE), a set of logical units consists of a 
series of consecutive NIBs called a NIB list. A logon that results from a SIMLOGON 
macro instruction is called a simulated logon. 



The use of simulated logons is a form of acquisition because the initiative for the 
connection is taken within the application program itself; it does not come from the 
logical unit. And, like OPNDST OPTCD=ACQUIRE, use of the SIMLOGON macro 
instruction must have been authorized when the application program was defined to 
ACF/VTAM; that is, the AUTH=ACQ operand must have been specified in the APPL 
definition statement. (Note that AUTH=ACQ authorizes the program to use OPNDST 
OPTCD=ACQUIRE and SIMLOGON.) 

Simulated logons might be used by an application program that employs one part of 
the program (for example, a LOGON exit routine) to ensure that adequate resources 
(such as storage or control blocks) are available for accepting a logical unit. If one part 
of the application program attempts to use a simulated logon to acquire a logical unit, 
the part that accepts logical units has a chance to determine whether the program can 
actually afford to establish connection with the logical unit. 

A simulated logon might also be used by an application program that wants to ask the 
current owner (via the RELREQ exit routine) to release a particular logical unit. To 
cause the current owner to be notified that the logical unit is wanted, the OPTCD= 
(Q,RELRQ) operand must be included in the SIMLOGON macro instruction. 

An application program that initially uses the SIMLOGON macro instruction to acquire 
logical units can be modified in the future to accept logons that originate at the logical 
units. If the application program is initially designed to acquire logical units with 
simulated logons, the modifications can be made more easily because coding to accept 
the logons already exists (either in the LOGON exit routine or as part of the mainline 
code). 

Acquiring Connected Logical Units: A device-type logical unit (that is, a logical unit 
other than a secondary application program) cannot be connected to more than one 
application program at a time. Thus, if a primary application program attempts to 
acquire a device-type logical unit that is already connected to another application 
program, the requesting program cannot acquire the logical unit until the other 
program disconnects it. ACF/VfAM provides a means by which the owning application 
program can be notified that another application program wants one of the device-type 
logical units connected to the owning program. 

The requesting application program can indicate whether its attempt to acquire a 
connected device-type logical unit should or should not cause the owning application 
program to be notified (SIMLOGON with OPTCD=RELRQ · or NRELRQ). The 
requesting application program should request notification (that is, specify the RELRQ 
option) when it needs the device-type logical unit regardless of its connection status. 
Notification should not be indicated when the requesting application program needs 
the device-type logical unit only if it is unconnected. 

The owning application program also controls whether it can be notified when another 
application program issues a connection request (that is, a SIMLOGON) to acquire one 
of its device-type logical units. To receive such notification, the owning application 
program must contain a RELREQ exit routine, and that exit routine must have been 
identified in an exit list pointed to by the ACB. Notification can only occur, therefore, 
when the requesting application program calls for notification with (OPTCD 
=Q,RELRQ) in the SIMLOGON and the owning application program contains the 
means for receiving the notification (a RELREQ exit routine). 

Clapter S. Connecting and Disconnecting Logical Units 65 



Queuing Connection Requests for a Device-Type 
Logical Unit 

66 

An attempt to acquire a logical unit (with either an OPNDST with OPTCD=ACQUIRE 
or with a SIMLOGON macro instruction) always fails if the logical unit is inactive. 
However, if the requested logical unit is a device-type logical unit (as opposed to a 
secondary application program) and is active but unavailable, and the acquisition 
request is a SIMLOGON request, the request can be queued if the requesting program 
specifies such queuing. A queued request remains pending until the logical unit 
becomes available. (Note that an acquisition request entered with OPNDST OPTCD= 
ACQUIRE cannot be. queued; if the requested logical unit is not available, the request 
immediately fails.) 

The reader must be aware that there is a distinction between the meaning of 
"available" as it applies to acquisition and as it applies to acceptance. When an 
application program attempts to accept any type of logical unit, the logical unit is 
available if a logon for it has been directed at the application program. When an 
application program attempts to acquire an active device-type logical unit, the logical 
unit is available if it is not connected (or queued for connection as the result of a 
logon) to another application program. 

The reader must also be aware that there is a distinction between the meaning of 
"available" as it applies to a secondary logical unit and as it applies to a device-type 
logical unit. Since a secondary application program can be the secondary end of 
multiple sessions, a secondary application program that is active is always available for 
connection. A device-type logical unit is available for connection only if it is active and 
is not connected to (or queued for connection to) another application program. The 
following discussion of queuing connection requests applies only to requests from or 
requests for device-type logical units. 

A program should specify that an acquisition request is to be queued only if the 
application program does not require the device-type logical unit immediately. To 
indicate that the request is to be queued if the logical unit is not available, the 
application program uses a SIMLOGON with OPTCD=Q. In addition, the requesting 
application program can specify that the owning application program is to be notified 
of the request by adding RELRQ to the option codes, that is, by using SIMLOGON­
with OPTCD=(Q,RELRQ). The RELRQ option is effective only if the Q option has 
also been specified. Figure 5-1 lists the effects of queuing on the various types of 
connection requests. Note that queuing cannot be specified for an OPNDST with 
OPTCD=ACQUIRE. 

When a program issues a SIMLOGON with OPTCD=(Q,RELRQ) for a device-type 
logical unit that is already owned, ACF/VTAM notifies the owning application program 
by scheduling an exit routine (RELREQ). The RELREQ exit routine is scheduled 
when the connection request occurs while the logical unit is already connected. If, 
before the logical unit is connected (that is, while the logical unit is still queued for 
connection), another application program issues a queued connection request for the 
logical unit, the RELREQ exit routine is not scheduled. Instead, ACF/VTAM sets a bit 
in the control block used for connection (the NIB) indicating that another application 
program has requested the logical unit. 

The RELREQ exit routine is provided with the identity of the contested logical unit. 
The application program can elect to disconnect the logical unit immediately, 
disconnect it later, or ignore the request entirely. If the logical unit is disconnected, 
the previous owner can immediately attempt to acquire the logical unit from the new 
owner (using a queued connection request) so that the logical unit will be returned 
when it is no longer being used. When the logical unit is disconnected, it is 



Type of Connection Meaning When Request Specifies Queuing Meaning When Request Does Not Specify Queuing 
Request 

OPNDST ACCEPT 

a specific logical unit Connect the specified logical unit if a logon has Connect the specified logical unit if a logon has 
(SPEC) been received for it. Otherwise, connect the been received for it. Otherwise, indicate failure In 

logical unit when a logon is received for it. the return code. 

any logical unit (ANY) Connect any logical unit for which a logon has Connect any logical unit for which a logon has 
been received (if logons have been received for been received (if logons have been received for 
more than one logical unit, connect the logical more than one logical unit, connect the logical 
unit that has waited the longest). Otherwise, unit that has waited the longest). Otherwise, 
wait until a logon is received from any logical indicate failure in the return code. 
unit and then connect that logical unit. 

OPNDST ACQUIRE 

a set of one (CONANY) (Cannot be queued) Connect the logical unit if it is available3 • Other-
wise, indicate failure in the return code. 

any one of a set (CONANY) (Cannot be queued) Connect the first logical unit in the set (NIB list) 
that is available. Otherwise, indicate failure in the 
return code. 

as many as are available in a (Cannot be queued) Connect all logical units in the set (NIB list) that 
set (CONALL) are available. If none is available, indicate failure 

in the return code. 

SIMLOGON 

one specific logical unit A. If the logical unit is active', live2 , and A. If the logical unit is active', live•, and 
(CONANY or CONALL available3 , generate the logon and either pass available3 , generate the logon and either pass it 
with a single NIB) it to the application program4 or queue it for to the application program4 or queue it for the 

the application program. The return code for application program. The return code for the 
the SIMLOGON request indicates successful SIMLOGON request indicates successful 
completion. completion. 

B. If the logical unit is active but is not live or is B. If the logical unit is inactive, or is not live, or is 
not available, queue a session initiation not available, indicate failure of the 
request for the application program. Generate SIMLOGON request in the return code. 
the logon when the terminal becomes live 
and available. The return code for the 
SIMLOGON request indicates successful 
completion. 

c. If the logical unit is inactive, indicate failure 
of the SIMLOGON request in the return code. 

any one of a set Functionally equivalent to a series of Functionally equivalent to a series of SIMLOGONs, 
{CONANY) SIMLOGONs, with one SIMLOGON attempted with one SIMLOGON attempted in sequence for 

in sequence for each logical unit in the set (NIB each logical unit in the set (NIB listl. A logon is 
listl. For each SIMLOGON attempt for a logical created for the first logical unit in the list that is 
unit in the list, items A and B above in this active, live, and available. 
column apply to the attempt. The attempts stop If no logical unit in the list is active, live, and 
when ACF/VTAM finds an available logical unit available, failure of the SIMLOGON is indicated 
and generates the logon. in the return code. 
If no logical unit in the NIB list is currently live 
and available, a session initiation request is 
queued for each logical unit in the list that is 
active. When one of those logical units becomes 
live and available, a logon is created for it, and 
all other queued session initiation request 
generated by the SIMLOGON are canceled. 
If no logical unit in the list is active, failure of 
the SIMLOGON is indicated in the return code. 

Figure 5-1 (Part 1of2). Queued and Nonqueued Connection Requests 

<ltapter S. Connecting and Disconnecting Logical Units 67 



Type of Connection Meaning When Request Specifies Queuing Meaning When Request Does Not Specify Queuing 
Request 

all in a set (CONALL) Functionally equivalent to a series of Functionally equivalent to a series of SIMLOGONs, 
SIMLOGONs, with one SIMLOGON attempted with one SIMLOGON attempted for each logical 
for each logical unit in the set (NIB list). For unit in the set (NIB list). When all logical units in 
each logical unit that is immediately available, the set are active, live, and available, a logon is 
ACF/VTAM generates a logon and passes it to generated for each one and passed to or queued 
the application program or queues it for the for the application program. 
application program. For each logical unit that If any logical unit in the set is not active, or not 
is active, but not live or not available, ACF/ live or not available, the request fails and the 
VTAM queues a session initiation request, failure is indicated in the return code. In this 
which is converted to a logon when the logical case, no logon is generated. 
unit becomes physically connected or available. 
If any lgoical unit in the set is inactive, failure 
of the SIMLOGON is indicated in the return 
code. 

Notes: 

"Active" means that the logical unit has been activated and additionally, for switched logical units that are dial-in only, that a 
dial cormection has been established. 

2 All active logical units are "live" except for dial-in start-stop and BSC terminals that have been activated but have not yet dialed 
in. 

3 "Available" means that the logical unit is not connected to or queued for connection to another application program. 

4 The logon is passed immediately to the application program if the program has issued an OPNDST ACCEPT for the specific logical 
unit or an OPNDST ACCEPT,ANY to accept any logical unit, or if the program's LOGON exit routine can be scheduled (the 
program has issued SETLOGON START). Otherwise, the logon remains pending, awaiting an OPNDST or the issuance of a 
SETLOGON START. 

Figure S-1 (Part 2 of 2). Queued and Nonqueued Connection Requests 

reconnected to the acqumng application program that has waited the longest, which 
may not be the application program that was the previous owner of the logical unit. 

By controlling which application programs release contested logical units and which do 
not, the user can cause some application programs to be able to obtain and keep 
logical units more readily than other application programs. Or, the user can establish a 
policy that all application programs release contested logical units that are not being 
used; this makes the logical units more generally available. 

Disconnection by a Primary Application Program 

68 

A primary application program can disconnect a device-type logical unit in one of two 
ways: it can release the logical unit or it can pass the logical unit to another 
application program. The logical unit is released by disconnecting it without regard to 
which application program (if any) is to receive the logical unit. The logical unit is 
passed by disconnecting it and designating which application program is to receive the 
logical unit. Passing must be authorized when the application program is defined to 
ACF /VT AM (that is, AUTH=P ASS must be specified in the APPL definition state­
ment). 

Passing and releasing are accomplished by using the PASS and RELEASE options of a 
CLSDST macro instruction. 



When a device-type logical unit is released, ACF/VTAM connects the logical unit to 
any application program that has attempted to acquire the logical unit with a 
SIMLOGON macro instruction (and has indicated in the SIMWGON that its connec­
tion request should be queued). If more than one application program has issued a 
SIMLOGON for the logical unit, ACF/VTAM connects the logical unit to the 
application program that first issued the connection request. If there are no queued 
requests to acquire the logical unit, ACF/VTAM generates an automatic logon for the 
logical unit (unless the automatic logon would be to the program that is releasing the 
logical unit). If no automatic logon has been specified by the user, the logical unit 
remains unconnected. 

When a device-type logical unit is passed, ACF/VTAM generates a logon, directs the 
logon to the designated application program, and then disconnects the logical unit 
from the passing application program. The logical unit is not reconnected until the 
receiving application program accepts the logon. 

A device-type logical unit should be passed only when it is imperative that it be 
connected to a specific application program and to no other. For example, a user 
might maintain several application programs, each of which requires the same 
information from the logical unit before it can be used. Although each application 
program could conduct its own interrogation, it might be simpler for one application 
program to obtain the initial information and then pass the logical unit to the 
appropriate application program. 

When the application program passes a logical unit, it can also pass a logon message 
and session parameters (by using a logon mode name) to the receiving application 
program. In the example above, the application program might pass the results of the 
preliminary conversation in the logon message. 

For information on disconnection by a secondary application program, see "How a 
Secondary Application Program Requests Disconnection" later in this chapter. 

How a Primary Application Program Performs Connection 

Performing connection in a primary application program requires three language 
elements: 

A request parameter list (RPL) 

A node initialization block (NIB) 

An OPNDST macro instruction 

The Request Parameter List (RPL) 
The request parameter list, built with the RPL or GENCB macro instruction, contains 
information that describes a request for connection or data transfer. Either kind of 
request must identify an RPL. After the request has been completed and the event has 
been posted, the RPL may be used for another request. 

When used for connection, an RPL contains information that describes a connection 
request. The data-transfer RPL describes a data-transfer request. However, the program­
mer can build an RPL that contains both kinds of information, and that RPL can be 
used for both kinds of requests. Here is a sample RPL for a connection request: 

RPLl RPL AM=VTAM,ACB=ACBl,OPTCD=(ACCEPT,SPEC,ASY), 
NIB= NIB l ,ECB=ECB 1 

Cliapter s. Connecting and Disconnecting Logical Units 69 



where: 

RPLI is the label for the macro and serves as the name of the RPL. 

AM=VTAM specifies the access method. 

ACB=ACBl specifies that the logical unit is to be connected to the ACB labeled 
ACBI. 

OPTCD=(ACCEPT,SPEC,ASY), when used with an OPNDST macro, specifies that 
asynchronous processing is to be used to accept a logon from the logical unit 
identified in the NIB. 

NIB=NIBl specifies the address of the NIB containing the name of the logical unit 
to be connected. 

ECB=ECBl specifies that when the request defined by this RPL is completed, ECBl 
is to be posted. 

The Node Initialization Block (NIB) 

70 

A node initialization block (NIB) describes a logical unit that is to be connected to an 
ACF/VTAM,,application program. A NIB contains the symbolic name of the logical 
unit, user data that is to be associated with the logical unit, processing options to be 
used when the program communicates with the logical unit, and other items of 
information. After a logical unit is connected, ACF/VT AM adds the communication 
identifier (CID), which is ACF/VTAM's means of identifying the session. For BSC, 
start-stop, and local non-SNA devices, additional device information is provided. 

A NIB is built with the NIB or GENCB macro instruction which can specify: 

The symbolic name of the logical unit 

The mode ofcommunication (basic or record mode) 

The processing options 

The user data 

The logon mode name 

The Start Data Traffic indication 

The address of a bind area in which the application program can construct a set of 
session parameters 

The symbolic name of a logical unit is assigned at network definition. It is the name in 
the name field of the definition statement (LU statement, APPL statement, LOCAL 
statement, etc.) used to describe the logical unit to ACF/VTAM. This symbolic name is 
used only when the program connects a logical unit. After a connection is made, the 
application program uses the CID to communicate with the logical unit. For acquiring 
a logical unit, the symbolic name is placed in the NIB before the connection request 
(OPNDST or SIMLOGON) is issued. For accepting connection following a logon, a 
symbolic name is coded only if accepting connection from a specific logical unit. For 
accepting a logon from any requesting logical unit, a symbolic name is not specified in 
the NIB. ACF/VTAM connects the program to any logical unit that is logging on. 
When the logical unit is connected, ACF/VTAM puts its CID and symbolic name in the 
NIB. 

The mode is either record or basic. Record mode is specified in a NIB used to connect 
a logical unit, and mtr;i' optionally be specified if record mode is to be used to 
communicate with a BSC 3270 or local non-SNA 3270 terminal. Basic mode is 
specified for a stop-start or BSC terminal and may optionally be specified for a BSC 
3270 or local 3270. 



The processing options (PROC) determine certain characteristics to be assigned to the 
logical unit; for example, whether certain input from the logical unit will cause 
ACF/VTAM to schedule a DFASY or RESP exit routine. These options are fully 
described in ACF/VTAM Macro Language Reference. 

The user data is in a 4-byte field (USERFLD) that allows some relevant data to be 
associated with the logical unit. A common use is to store the address of an area that 
contains an ECB, RPL, and work area that are to be associated with the logical unit. 
Having provided this address initially to ACF/VTAM at connection, ACF/VTAM 
supplies the address in the USER field of any RPL that receives input from the logical 
unit. More generally, however, whatever information is in the USERFLD field of the 
NIB at the time of connection is placed in the USER field of the RPL upon 
completion of each input operation from the logical unit. 

The logon mode name is the name of an entry in a logon mode table. The entry 
contains the session parameters to be used for the connection. 

The BNDAREA operand can be specified in the NIB macro to give the location of a 
bind area where the application program can predefine or dynamically construct a set 
of session parameters to be used for the connection. When the BNDAREA operand 
contains an address, the LOGMODE operand (logon mode name) is ignored. (The 
ISTDBIND DSECT can be used to set up session parameters in the bind area.) 

The Start Data Traffic indication (the SDT operand) specifies whether the primary 
application program will issue the Start Data Traffic command (SDT=APPL) or 
~Iiether ACF/VTAM should issue that command automatically as part of the OPNDST 
processing (SDT=SYSTEM). The transmission services profile in the session parameters 
indicates whether or not the Start Data Traffic (SDT) command is to be used in the 
session. When use of the command is indicated, the SDT command must be sent 
during initial connection processing, after a Clear command has been sent, and after 
sequence number resynchronization to inform the secondary end of the session that 
the flow of messages and responses can begin. For many primary application programs, 
it is convenient and adequate to let ACF/VTAM issue the Start Data Traffic command 
during initial connection processing (that is, allow SDT=SYSTEM to take effect by 
default when defining the NIB). However, the primary application program must still 
issue an SDT command after a Clear command is sent. 

For a secondary application program, the SDT indication is used to indicate a response 
to an SDT command. The secondary application program may return either a positivt: 
or a negative response. 

A NIB is used in conjunction with each connection request. The RPL used for 
connection points to one or more NIBs which represent logical units to be connected. 
Depending on the type of request, there are several ways in which an RPL can point 
to a NIB (or NIBs). In all cases, the NIB operand of an RPL macro is used to specify 
the label of a NIB (or GENCB) macro instruction, not the name of the logical unit 
represented by the NIB. 

Here are the ways in which an RPL can point to a NIB: 

• The RPL can point to a specific NIB. To be sure the NIB is treated as a single NIB, 
the LISTEND=YES operand must have been included in the macro instruction that 

Chapter S. Connecting and Disconnecting Logical Units 71 



72 

defined the NIB or that operand must have been allowed to take effect by default. 
The LISTEND=YES operand ensures that processing stops with that NIB. 

This form is used by the OPNDST and SIMLOGON macros. The requested 
operation is performed only for the specified logical unit. The RPL and NIB might 
be coded: 

RPLl RPL 
NIBl NIB 

AM=VTAM,ACB=ACBl ,NIB= NIB I 
NAME=LUl ,MODE=RECORD,LISTEND=YES, 
USERFLD= A(LUTAB) 

• The RPL can point to a list of NIBs. To define a NIB list, an application 
programmer defines a series of contiguous NIBs, either with NIB macro instructions 
or GENCB macro instructions or by using an IBM-provided DSECT. The last NIB in 
the list must have the LISTEND indicator (LISTEND=YES in the NIB macro 
instruction); the other NIBs in the list must have LISTEND=NO. 

NIB1 l 
NIB2 ' 

LISTENO=NO 

NIB3 } LISTEND=YES 

The coding might look like this: 

RPLl RPL 
NIBI NIB 
NIB2 NIB 
NIB3 NIB 

AM=VTAM,ACB=ACBl ,NIB=NIBl ,OPTCD=ACQUIRE 
NAME=LUl ,LISTEND=NO,MODE=RECORD 
NAME=LU2,LISTEND=NO,MODE=RECORD 
NAME=LU3,LISTEND=YES,MODE=RECORD 

If all NIBs in a program are in one list, the programmer may want to specify a 
working subset of the list for one operation. To do this, the RPL should point to 
any one NIB in the list. The subset will include all NIBs from (and including) the 
NIB to which the programmer has pointed, through (and including) the next NIB in 
which the LISTEND indicator is set (LISTEND=YES). 

This list form can be used in the SIMLOGON and OPNDST (with OPTCD= 
ACQUIRE) macro instructions when the programmer wants to simulate logons or 
acquire connections with a set of logical units. 

• The RPL can point to a NIB that contains neither a CID nor a symbolic name. This 
form can be used when the logical unit that will send a logon is not known. When 
the request is completed, ACF /VT AM fills in the NIB. This form is used by an 
OPNDST macro instruction with OPTCD=(ACCEPT ,ANY). The coding might look 
like this: 

RPLl RPL 
NIBl NIB 

AM=VTAM,ACB=ACBl,NIB=NIBl,OPTCD=(ACCEPT,ANY) 
MODE=RECORD,PROC=(DF ASYX,RESPX) 



Acquiring Logical Units 
T,-, acquire a logical unit, a primary application program issues an OPNDST macro 
instruction containing OPTCD=ACQUIRE with the RPL pointing either to a single NIB 
or list of NIBs. Here is a simple example to illustrate the process of acquiring logical 
units. 

Assume that the message-processing portion of a data communication program has 
been written, and that the program's identification is GOLDEN and its password is 
AU. GOLDEN is to be connected to three logical units in San Francisco (named SFl, 
SF2, and SF3) and to two logical units in Boston (named BOSI and BOS2). 

First, an ACB must be built to specify: 

That the access method is ACF /VT AM 

That the application program identification is contained in an area labeled APID 

That the password is contained in an area labeled PSWD 

That logons will not be accepted 

ACBI ACB AM=VTAM,APPLID=APID, 
PASSWD=PSWD,MACRF=NLOGON 

The application program identification is coded in an area labeled APID. The byte 
preceding the actual identification contains the length of the ID: 

APID DC ALI(L'GOLDNAME) 
C'GOLDEN' GOLDNAME DC 

The password is coded in an area labeled PSWD. The first byte of PSWD contains the 
length of the password: 

PSWD 
GOLDPASS 

DC 
DC 

ALI(L'GOLDP ASS) 
C'AU' 

Next, GOLDEN defines the five logical units to which it is to be connected. One NIB 
is built for each logical unit: 

SFI NIB 
SF2 NIB 
SF3 NIB 
BOSI NIB 
BOS2 NIB 

NAME=SFl ,MODE= RECORD 
NAME=SF2,MODE=RECORD 
NAME=SF3,MODE=RECORD 
NAME=BOSI,MODE=RECORD 
NAME=BOS2,MODE=RECORD 

And GOLDEN has one RPL for each logical unit: 

RPLI RPL AM=VTAM,ACB=ACBI ,OPTCD=(ACQUIRE,ASY), 
NIB=BOSI,EXIT=ACQEX 

RPL2 RPL AM:;:VTAM,ACB=ACBI,OPTCD=(ACQUIRE,ASY), 
NIB=BOS2,EXIT=ACQEX 

RPL3 RPL AM=VTAM,ACB=ACBI ,OPTCD=(ACQUIRE,ASY), 
NIB=SFI ,EXIT=ACQEX 

RPIA RPL AM=VTAM,ACB=ACBI ,OPTCD=(ACQUIRE,ASY), 
NIB=SF2,EXIT=ACQEX 

RPLS RPL AM=VTAM,ACB=ACBl ,OPTCD=(ACQUIRE,ASY), 
NIB=SF3,EXIT=ACQEX 

Each RPL is used to connect a specific logical unit using a specific NIB. Since the 
queuing of a connection request is not possible unless SIMLOGON is used, the 
connection request will not be queued if the logical unit is not available. The 

Cllapter S. Connecting and Disconnecting Logical Units 73 



;1 I 

7~. 

connection is performed asynchronously (OPTCD=ASY). When any connection request 
is completed, the RPL exit routine ACQEX is scheduled. 

To request connection, GOLDEN opens the ACB, and issues five OPNDST macros in 
the main program: 

OPEN 
OPNDST 
OPNDST 
OPNDST 
OPNDST 
OPNDST 

ACBl 
RPL=RPLl 
RPL=RPL2 
RPL=RPL3 
RPL=RPIA 
RPL=RPLS 

Since the OPNDST macros specify asynchronous operations, GOLDEN receives control 
again as each OPNDST is accepted by ACF /VT AM. As each OPNDST is completed, the 
ACQEX RPL exit routine is scheduled. On entry, register 1 contains the address of the 
RPL for the completed request. GOLDEN can issue a CHECK macro to test for errors, 
and it can issue a SEND macro to send a message to the logical unit telling the logical 
unit that it is now connected to the program. 

ACQEX 

SAVEl 
SAVE2 
CONNMSG 

BALR 3,0 
USING *,3 
ST 14,SAVEl 
LA 13,SAVE2 
LR 2,1 
CHECK RPL=(2) 
(Instructions to test return codes in registers) 
SEND RPL=(2),AREA=CONNMSG,RECLEN=L'CONNMSG 
(Instructions to test return codes in registers) 
L 14,SAVEl 
BR 14 
DS F 
DS 18F 
DC 22C'YOU MAY NOW USE GOLDEN' 

This example assumes that it is known at assembly which logical units will be needed. 
In the next example, all that is known is that the program is to be connected to up to 
10 active logical units defined during network definition by a PU statement and a 
series of LU statements. The PU statement is labeled GOLDPU. All available logical 
units are to be connected. (Some may not be available because they have already been 
acquired by another program.) No password is used, but a processing option is set for 
each logical unit. 

First, GOLDEN builds an ACB, an RPL, an application program identification, and 10 
NIBs (one for each logical unit that may be connected). 

The ACB is: 

AC Bl 
APID 

ACB 
DC 
DC 

AM=VTAM,APPLID=APID,MACRF=NLOGON 
X'08' 
CL8'GOLDEN' 

In the RPL, GOLDEN specifies the name of the NIB list (NIBl) and a NIB that 
contains the name of the PU statement (GOLDPU) for use with INQUIRE. 



RPLl RPL AM=VTAM,ACB=ACBI,NIB=ADDR,AREA=NIBI, 
OPTCD=(ACQUIRE,SYN,CONALL) 

ADDR NIB NAME=GOLDPU 

NIBI is the address of an area that contains the 10 NIBs needed for connection. 
GOLDEN also sets PROC=(DF ASYX,RESPX) and MODE= RECORD for each NIB so 
that appropriate input from the logical units can result in scheduling the ACB-specified 
DF ASY and RESP exit routines in the program. 

NIBI 
NIB2 
NIB3 
NIB4 
NIBS 
NIB6 
NIB7 
NIBS 
NIB9 
NIBIO 
NIB END 
USTLEN 

NIB 
NIB 
NIB 
NIB 
NIB 
NIB 
NIB 
NIB 
NIB 
NIB 
EQU 
DC 

PROC=(DF ASYX,RESPX),MODE=RECORD 
PROC=(DF ASYX,RESPX),MODE=RECORD 
PROC=(DFASYX,RESPX),MODE=RECORD 
PROC=(DFASYX,RESPX),MODE=RECORD 
PROC=(DFASYX,RESPX),MODE=RECORD 
PROC=(DFASYX,RESPX),MODE=RECORD 
PROC=(DF ASYX,RESPX),MODE=RECORD 
PROC=(DFASYX,RESPX),MODE=RECORD 
PROC=(DF ASYX,RESPX),MODE=RECORD 
PROC=(DFASYX,RESPX),MODE=RECORD 

* 
A(NIBEND-NIBI) 

GOLDEN opens ACBI: 

OPEN ACBI 

ACBI is now recognized by and associated with ACF/VTAM. The NIBEND and 
USTLEN values, following the NIB list, are used to compute the length of the NIB list 
for the INQUIRE macro. GOLDEN now uses INQUIRE to fill in the NIBs from 
GOLDPU: 

L 
INQUIRE 

6,LISTLEN 
RPL=RPLl ,OPTCD=TERMS,AREALEN=( 6) 

The single INQUIRE with OPTCD=TERMS causes ACF/VTAM to fill in the 10 NIBs 
(one for each active logical unit) in the area starting at NIBI. Each NIB will contain 
the name of the logical unit, the device characteristics for that logical unit, and the 
system-assigned values for the remaining processing options. ACF /VT AM will insert a 
LISTEND=YES indication in the last NIB that is filled in. 

Now that all the NIBs are ready, GOLDEN requests connection to all logical units in 
the list that are available. The RPL already specifies OPTCD=(ACQUIRE,CONALL). 
Because CONALL is specified, the NIB field of the RPL is set to specify the beginning 
of a NIB list (NIBI). 

OPNDST RPL=RPLl ,NIB= NIB I 

When the OPNDST is completed, GOLDEN is connected to as many logical units as 
are available. The CID generated for each connected logical unit is in the CID field of 
the respective NIB. A flag is set in the NIB indicating whether or not the logical unit 
was connected. If an OPNDST is completed without connecting any logical unit, an 
error return is set, and the LERAD or SYNAD exit routine in the program is 
scheduled. 

Otapt.er S. Connecting and Disconnecting Logical Units 75 



Accepting Logons 
A logon can come from any of the following sources: (1) a connection request to the 
program from a logical unit (including a secondary application program); (2) an 
automatic logon, as described in the ACF/VTAM System Programmer's Guide; (3) a 
simulated logon, discussed below in "Simulating Logons," (4) a network­
operator-initiated logon (VARY LOGON), or (5) the passing of a logical unit from one 
application program to another (CLSDST OPTCD=PASS). 

After a logical unit enters a logon, ACF/VTAM queues the logon for the application 
program. The program must accept the logon in order to complete the connection. 

There are two methods of accepting logons. An OPNDST can be issued in the main 
program, and the OPNDST will not be completed until the logical unit logs on. Or the 
program can include a LOGON exit routine, which will be invoked whenever a logical 
unit issues a logon for the program. 

· Accepting Logons in the Main Program 

76 

To accept a logon in the main program, the main program issues an OPNDST macro 
instruction with OPTCD=ACCEPT, which is not completed until some logical unit logs 
on and the logon has been queued on an ACB in the program. When the OPNDST is 
completed, the logical unit is connected to the program; the RPL specified in the 
OPNDST macro contains the CID of the logical unit. The overall procedure is as 
follows: 

1. Code an ACB indicating that logons are to be queued. 

2. Code an RPL with OPTCD=(ACCEPT,Q) for connection. 

3. Construct a NIB that does not identify a logical unit. ACF/VTAM fills in the 
symbolic name and CID of whatever logical unit logs on. 

4. Open the ACB and issue a SETLOGON macro with OPTCD=START to initiate 
queuing of logons. 

5. Issue an OPNDST to connect a logical unit. This may be synchronous or 
asynchronous. 

Here is a simple example. A program is to process data from logical units that log on 
to the program, and the programmer does not know which logical units will log on. 
First, an ACB is opened that specifies that logons are to be queued for application 
program DA VE. 

AC Bl 
APID 

ACB 
DC 
DC 

AM=VTAM,APPLID=APID,MACRF=LOGON 
X'08' 
CL8'DAVE' 

OPEN ACBl 

After the program opens ACBl, a SETLOGON macro is issued: 

SETLOGON RPL= RPLl ,OPTCD=START 

An RPL is defined that indicates that a logon will be accepted from any logical unit, 
and that the request for connection is to remain pending (queued) until the logical 
unit becomes avail.able: 

RPLl RPL AM=VTAM,ACB=ACBl,NIB=NIBl, 
OPTCD=(ACCEPT ,ANY,Q) 



A NIB is coded, specifying no specific logical unit: 

NIBl NIB MODE=RECORD 

If any processing options are to be set in the NIB, they must be set before connecting 
the logical unit. 

Now, the OPNDST is issued: 

OPNDST RPL=RPLl 

After the logical unit is connected to the program, NIBI will contain the CID and 
symbolic name of the logical unit so that it can be identified. The ARG field of the 
RPL also will contain the CID so that this same RPL can be used for data-transfer 
requests to and from the logical unit. 

If the asynchronous option (OPTCD=(ANY,ASY)) had been selected, a CHECK or 
WAIT macro would be required to await completion of the OPNDST, and the program 
would be able to do other processing while the request was being processed. A series 
of OPNDST macros with OPTCD=(ACCEPT,ANY,ASY) could be coded at the 
beginning of the program. Then, as each logical unit logged on, an OPNDST would be 
completed, and the result would have to be tested with the CHECK macro instruction. 

Accepting Logons in the LOGON Exit Routine 
To accept a logon in a LOGON exit routine, the ACB is opened in the main program, 
and the logical unit is connected in the exit routine. After the ACB is opened and a 
SETLOGON macro with OPTCD=START is issued, the LOGON exit routine is 
scheduled for each logon that is received. 

Here is a simple example to show how this procedure works. In the main program, 
ACBO is opened and SETLOGON is issued to allow logons to be queued. When any 
logon is queued, routine LOGONI is scheduled to connect the logical unit. 

PGMl 

OPEN 
SETLOGON 

ACBO 
RPL=RPLl ,OPTCD=START 

(Data transfer and message processing) 

LOGO NI BALR 3,0 
USING *,3 
ST 14,SAVEI 
LA 13,SAVE2 
OPNDST RPL=RPLO 
L 14,SAVEI 
BR 14 

Chapter S. Connecting and Disconnecting Logical Units 77 



SAVEl 
SAVE2 
ACBO 

APID 

EXLSTO 
NIBO 
RPLO 

RPLl 

DS 
DS 
ACB 

DC 
DC 
EXLST 
NIB 
RPL 

RPL 

Notes on the sample coding: 

F 
18F 
AM=VTAM,APPLID=APID, 
EXLST=EXLSTO,MACRF=LOGON 
X'08' 
CL8'PGM1' 
AM=VTAM,LOGON=LOGONl 
MODE= RECORD 
ACB=ACBO,AM=VTAM,OPTCD=(ACCEPT,ANY), 
NIB=NIBO 
ACB=ACBO.,AM=VTAM 

1. The main program opens ACBO to initiate ACF/VTAM processing and issues 
SETLOGON to initiate queuing of logons. 

2. ACBO defmes the program to ACF /VT AM. ACBO also specifies that an exit list is 
used and that logons directed to PGMl are to be queued (MACRF=LOGON) for 
ACBO. 

3. EXLSTO specifies a LOGON exit routine. Whenever a logon is queued for ACBO, 
the LOGONl routine will be scheduled. 

4. LOGONl issues an OPNDST to accept any requesting logical unit. After the logical 
unit has been connected, LOGONl returns control to the main program. 

5. RPLO and NIBO are used for all logon processing. RPLO specifies that any logon 
will be accepted and that NIBO will be used to define the logical unit. (This can be 
varied by using a storage pool to provide an RPL and a NIB at connection. The 
connection RPL can then be used for subsequent data transfer.) 

As each logical unit is connected, its CID is placed both in the NIB and in the ARG 
field of the RPL. If a pool of RPLs and NIBs is used, the terminal's CID is now in the 
RPL for future data transfer. If the same RPL is used for all connection requests, the 
CID may have to be moved into another RPL that will be used for data transfer. 

Using INQUIRE in a WGON Exit Routine 

78 

In the previous example, the LOGON exit routine connects any requesting logical unit 
without regard for its identity or authorization. It may be desirable to know more 
about the logical unit before accepting connection to it. The INQUIRE macro can be 
used to determine suggested session parameters associated with the logon or to 
determine the contents of the user logon message (which is part of the logon). 

When the LOGON exit routine is invoked, register 1 contains the address of a 
parameter list. The second word of the parameter list contains the. address of the 
symbolic name of the logical unit. 

First, the symbolic name of the logical unit must be put into the NIB. Then, 
INQUIRE is issued to get the user logon message or the· session parameters. Here is an 
example showing how to get the user logon message. 

When the LOGON exit routine is entered, the address of an 18-word save area must be 
loaded into register 13, and register 14 must be saved for returning control. The 
MODCB macro is used to put the symbolic name of the logical unit (in the second 
word of the input parameter list) into the NIB. 

L 
MO DCB 

2,4(1) 
AM=VTAM,NIB=NIBl,NAME=(*,0(2)) 



Note that MODCB uses an indirect form of addressing to put the symbolic name into 
the NIB. The parameter list only contains the address of the name, and .the NIB needs 
the actual name. This indirect addressing indicates that an address is supplied from 
which a value is to be taken. Next, INQUIRE is issued: 

INQUIRE RPL=RPLl ,OPTCD= LOGONMSG 

The RPL specifies that the user logon message is to be placed in AREAl. Here is the 
WGON exit routine: 

WGONl BALR 3,0 
USING *,3 
ST 14,SAVEl 
LA 13,SAVE2 
L 2,4(1) 
MODCB NIB=NIBl,NAME=(*,0(2)) 
INQUIRE RPL=RPLl,OPTCD=WGONMSG,NIB=NIBl 

* VERIFY THE LOGON MESSAGE 
OPNDST RPL=RPLl ,OPTCD=(ACCEPT ,SPEC),NIB=NIB 1 
L 14,SAVEl 
BR 14 

SAVEl DS F 
SAVE2 DS 18F 
NIBl NIB MODE= RECORD 
RPLl RPL ACB=ACBl,AM=VTAM,AREA=AREAl, 

AREALEN=30 
AREAi DS CL30 

Simulating Logons in a Primary Application Program 
The simulated logon facility can be used to simulate the process by which a logical 
unit logs on to a program. But the program itself initiates the connection as it would 
in acquiring a logical unit. By using the SIMLOGON macro instruction, the application 
program requests ACF /VT AM to generate a logon for a logical unit and to queue it for 
the SIMLOGON-issuing program as though it had come from the logical unit. If the 
logical unit is available, ACF/VTAM creates the logon and queues it. When an 
OPNDST is issued in the LOGON exit routine, the logical unit is connected. 

This method can be used as an alternative to acquiring a logical unit. An advantage to 
using SIMLOGON rather than acquiring the logical unit (OPNDST with OPTCD= 
ACQUIRE) is that each logical unit (those that send their own logons as well as those 
for which SIMLOGONs are issued) can be processed by the same LOGON exit routine. 
Another advantage is that, if the logical unit is not immediately available, the logon 
will, if requested, be queued until the logical unit becomes available. An OPNDST with 
OPTCD=ACQUIRE cannot request queuing if the logical unit is not available. Note 
that a program must be authorized to issue the SIMLOGON macro (that is, 
AUTH=ACQ must have been specified in the APPL definition statement). 

A SIMLOGON macro instruction can be used to create a logon for more than one 
logical unit. To do this, the NIB field of the RPL specified in the macro instruction 
points to a NIB that is the first in a NIB list. 

Here is the procedure for simulating a logon for a single logical unit: 

1. Build an RPL for the request. The RPL points to the NIB for the logical unit to be 

Chapter S. Connecting and Disconnecting Logical Units 79 



connected, and the NIB contains a logical unit name. Assume that the ACB is 
defined with MACRF=LOGON. 

Nml NIB NAME=KINGSTON 
RPLI RPL AM=VTAM,ACBI,NIB=NIBI 

2. To request the simulated logon, issue SIMLOGON. 

SIMLOGON RPL=RPLI,OPTCD=(SYN,Q) 

When KINGSTON becomes available, ACF/VTAM generates a logon as though it 
had come from the logical unit. The logon is queued for ACBI. 

3. Issue an OPNDST (with OPTCD=ACCEPT) to connect the logical unit. Usually this 
is issued in a LOGON exit routine, but it can be in the main program. 

A user logon message to be included in the simulated logon can be built in a work 
area. The address of that work area is put in the AREA field of the RPL, and the 
length of the user logon message is coded in the RECLEN operand . 

.How a Secondary Application Program 
Requests Connection 

A primary application program can take the initiative in establishing connection with a 
secondary application program. The initiative can be in the form of a SIMLOGON 
macro instruction or can be in the fonn of an OPNDST macro instruction with 
OPTCD=ACQUIRE. These macro instructions will acquire a secondary application 
program in the same way they would acquire any other secondary logical unit. 

In many cases, however, the initiative for the session comes from the secondary 
application program. The secondary application program takes the initiative by issuing 
a REQSESS macro instruction, which asks the primary program for the session. The 
primary program can either accept or reject the request. 

The roles of primary and secondary application program are established by the manner 
in which the connection is made. The application program that issues the REQSESS 
macro instruction indicates, by the very act of issuing that macro instruction, that it is 
to be the secondary half of the session. The program that issues the OPNDST macro 
instruction assumes the role of the primary end of the session. Having assumed one 
role or the other, the primary and secondary application programs must do certain 
things and cannot do others. The capabilities of and limitations on primary and 
secondary programs are summarized in Figure 5-2. 

What a Secondary Application Program Needs 
to Request Connection 

80 

Before a secondary application program can issue a REQSESS macro instruction to ask 
a primary application program for a connection, the secondary application program 
must have the following language elements and routines available: 

• A request parameter list (RPL) to define the request for connection 

• A node initialization block (NIB) to identify the primary application program with 
which the connection is desired and, optionally, to indicate the logon mode that the 
secondary application program wants to suggest for the session 

• A SCIP exit routine, which is scheduled when a Bind command is received and, 
later, when other session control commands (for example, a Start Data Traffic 
command) are received from the primary end of the session. 



Primary Application Program Secl(lndary Application Program 

Must issue the OPNDST macro instruction to Cannot issue the OPNDST macro instruction. 
request ACF/VTAM to establish the session 
(that is, to connect the two programs!. 

Cannot issue the REQSESS macro instruction. Can issue the R EOSESS macro instruction to 
ask the primary application program to establish 
a session. 

Cannot issue the OPNSEC macro instruction. Can issue the OPNSEC macro instruction to 
accept a Bind command and to complete the 
secondary's end of the session. Can also issue a 
SESSIONC macro instruction to send a negative 
response to the Bind command and there~y 1 

reject the Bind command and prevent the sesslon 
from being established. 

Can issue the Start Data Traffic command at Cannot issue the Start Data Traffic command. 
the beginning of the session (or have ACF/VT AM (Optionally, can respond to Start Data Traffic 
do it as part of the OPNDST processing) and can command.) 
issue the command during the session to restart 
the flow of messages and responses. (The Start 
Data Traffic command is sent with the 
SESSIONC macro instruction.) 

Can issue the Clear command to stop the flow Cannot issue the Clear command. 
of messages and responses. (The Clear command 
is sent with the SESSIONC macro instruction.) 

Cannot issue the Request Recovery command. Can issue the Request Recovery command to ask 
the primary application program to take recovery 
action. (The Request Recovery command is sent 
with the SESSIONC macro instruction.) 

Must send the Set and Test Sequence Numbers Can only respond to the Set and Test Sequence 
command to start resynchronization of Numbers command. (A response to the Set and 
message sequence numbers. (The Set and Test Test Sequence Numbers command is sent with 
Sequence Numbers command is sent with the the SESSIONC macro instruction.) 
SESSIONC macro instruction.) 

Cannot issue the TERMSESS macro instruction. Can issue the TERMSESS macro instruction to 
ask the primary application program to end the 
session (conditional termination) or to tell the 
ACF/VTAM servicing the primary application 
program to end the session (unconditional 
termination). 

Cannot issue the Request Shutdown command. Can issue the Request Shutdown command to ask 
the primary application program to end the session. 
(The Request Shutdown command is sent with the 
SEND macro instruction. 

Can issue the Shutdown command to warn the Cannot issue the Shutdown command. 
secondary application program that the session 
is going to be ended and to tell the secondary 
application program to prepare for the shutdown. 
(The Shutdown command is sent with the 
SESSIONC macro instruction.) 

Cannot issue the Shutdown Complete command. Can issue the Shutdown Complete command to 
inform the primary application program that 
preparation for shutdown is completed and the 
primary application program can now end the 
session. (The Shutdown Complete command is 
sent with the SEND macro instruction.) 

Can issue the CLSDST macro instruction to end Cannot issue the CLSDST macro instruction. 
the session (that is, to disconnect the two 
programs). 

Figure 5-2. Protocols for Sessions between Primary md Secondary Application Programs 

Chapter 5. Connecting and Disconnecting Logical Units 81 



-.tf.•-J:< 

• An NSEXIT exit routine to handle network services request units (for example, a 
network services procedure error request unit if such an error occurs during the 
attempt to establish the session) 

The RPL for a REQSESS Macro Instruction 

,'"':.,· 

When used with a REQSESS macro instruction, an RPL defines the manner in which 
the REQSESS operation is to be performed and identifies the NIB to be used in the 
operation. Here is a sample RPL for use with a REQSESS macro instruction: 

REQRPLl 

where: 

RPL AM=VTAM,ACB=SECACBl,OPTCD=(ASY ,NQ), 
NIB=PRNIBl,EXIT=REQEXITl ,AAREA=O, 
AREA=MSGTOPRI,RECLEN=4 

REQRPLl is the label for the macro instruction and serves as the name of the RPL. 

AM=VTAM specifies the access method that is to be used for the operation. 

ACB=SECACBl identifies the ACB that was opened by the secondary application 
program. This is the ACB to which the primary application program will be 
connected when the session is established. 

OPTCD=(ASY,NQ) specifies that the operation is to be performed asynchronously 
(ASY). The NQ operand must be specified and indicates that the request is to be 
rejected immediately (that is, not queued) and reported as unsuccessful if the 
primary application program is not available. For example, the primary application 
program is not available if it has not opened its ACB, has not issued a SETLOGON 
macro instruction with OPTCD=START to start processing of logons, or has issued 
the SETLOGON macro instruction with OPTCD=QUIESCE or STOP. 

NIB=PRINIBl specifies the address of the NIB that contains the name of the 
primary application program with which connection is desired. For a REQSESS 
macro, the RPL must point to a single NIB; it cannot point to a NIB list. 

EXIT=REQEXITl specifies that when the REQSESS operation is completed, the 
RPL exit routine named REQEXIT 1 is to be scheduled. 

AAREA=O must be specified or allowed to take effect by default. This operand has 
no effect in the current level of ACF/VTAM. 

AREA=MSGTOPRI specifies the address of a storage area that contains a user logon 
message to be sent to the primary application program as part of the logon that is 
generated as the result of the REQSESS macro. 

RECLEN=4 specifies that the user logon message in MSGTOPRI is 4 bytes long. 

The NIB for a REQSESS Macro Instruction 

·.:.· 

Two fields in the NIB used with the REQSESS macro instruction are significant for 
the REQSESS operation: the NAME field and the LOGMODE field. 

The NAME field must contain the symbolic name of the primary application program 
with which connection is desired. This name is the name that was used in the name 
field of the APPL definition statement when the primary application program was 
defined to ACF/VTAM. 

The LOGMODE field can optionally contain a logon mode name to identify the 
session parameters that the secondary application program wants to use for the session. 
If a logon mode name is specified, the name must be one that appears in the logon 
mode table that is associated with the secondary application program in the host 
computer in which the secondary application program is being executed. If lDGMODE 
does not contain a logon mode name (that is, the field contains zeros or blanks), the 
default session parameters from the logon mode table associated with the secondary 



application program are used. As the result of the REQSESS macro, ACF /VT AM 
creates a logon and sends it to the primary application program. As part of the logon 
process, ACF /VT AM also sends the session parameters so they will be available to the 
primary application program. For more information on session parameters, see 
"Establishing Session Parameters during Connection" later in this chapter. 

The BNDAREA field of the NIB cannot be used by the secondary application program 
to specify a set of session parameters to be sent to the primary application program. 
ACF /VT AM ignores this field during a REQSESS or OPNSEC operation. 

The Role of a SCIP Exit Routine in S~ion Establishment 
During the exchange of commands and responses that establish a session, the secondary 
application program receives one or two commands that must be processed by a SCIP 
exit routine in the secondary program. One command is the Bind command, which is 
generated when the primary application program issues an OPNDST macro instruction. 
The other command is the Start Data Traffic command, which the primary end of the 
session may send to the secondary end after the session has been established. 

To handle these commands, the secondary application program must have a SCIP exit 
routine. The scheduling of that exit routine is the only way that the secondary 
program can learn that the command has been received. In fact, the scheduling of the 
SCIP exit routine is the way that ACF/VTAM informs any application program of the 
receipt of a Bind, Unbind, Clear, Start Data Traffic, Request Recovery, or Set and Test 
Sequence Numbers command. 

The Role of an NSEXIT Exit Routine in a REQSESS Operation 

A secondary application program must also have an NSEXIT exit routine to handle a 
network services procedure error request unit if such a request unit is received during 
the attempt to establish a session. 

A network services procedure error is an indication that a connection procedure that 
has been started successfully (and which the application program thinks is proceeding 
normally) has been interrupted and will not be completed. For example, after a 
secondary application program has issued a REQSESS macro instruction and the macro 
instruction has been completed, the next thing the secondary application program 
expects to receive is a Bind command. Instead, it may receive a network services 
procedure error request unit. Receipt of that request unit indicates that either (I) the 
primary application program rejected the request for a session by issuing the CLSDST 
macro instruction or (2) after the ACF /VTAM that services the primary application 
program sent a positive response to the REQSESS macro, something happened that 
prevented that ACF/VTAM from completing its processing of the logon. 

Receipt of a network services procedure error request unit is signaled to the secondary 
application program by scheduling its NSEXIT exit routine. 

The General Pattern of a Secondary Program~ 
Request for Connection 

When a secondary application program requests a connection to a primary application 
program and the connection is made without difficulties, the exchange of commands 
and responses follows the pattern shown in Figure 5-3. The exchange is described in 
the paragraphs below, and the circled numbers that appear beside the paragraphs refer 
to related portions of the figure. 

A session can be established between application programs in the same domain or 
different domains. When the programs are in the same domain, they are serviced by 
the same ACF/VTAM, and the communication between them actually occurs through 

Chapter S. Connecting and Disconnecting Logical Units 83 



Primary Application Program Secondary Application Program 

START START 

• • • • • • 
F OPEN ACB1 OPEN SECACB1 

• • • • 
> • • 
G)seTLOGON OPTCD=START CD SETLOGON OPTCD=START 

: > • Logon • • (Initiate • 
9 0 LOGON Exit Routine (INLOG) 

command) • - ® REOSESS RPL=SECRPL1 

• • • • • ,1- • 
I 

(Puts symbolic name of secondary 
application program in the NAME 
field of NIB1) 

• Bind command 

• (with session 

• parameters) 
_(~sc1P Exit Routine (SCIPEX1) ©oPNDST .. RPL=RPL1 ~ 

• • 
• 

(Checks session parameters) 

• 
Positive • 

I 0 (OPNDST completed 
Response ©oP~SEC : RPL=SECRPL 1 

successfully) 

• • 
• Start Data 

CV @sESSIONC RPL=RPL 1, Traffic 
CONTROL=SDT .. (SCIP exit routine scheduled again) : • 

ACF/VTAM • responds • 
Positive I BR R14 
Response I 

@(SESSIONC completed t-c- -- 1--...J 
successfully) NSEXI T Exit Routine (NSRUEXT1) 

• 

I I • • 
BR R14 

ACB1 ACB Points to APPL name for primary SECACB1 ACB Points to APPL name for secondary 
program program 

RPL1 RPL For opening destination (Points SECRPL1 RPL For requesting connection (Points 
to N/81) to PRIN/81) 

NIB1 NIB For opening destination PRINIB1 NIB Contains symbolic name of primary 
SDT=APPL,MODE=RECORD application program 

• MODE= RECORD 

• name EXLST AM=VTAM, ... , SCIP= 
• SCIP=SCIPEX1, 

name EXLST AM=VTAM,LOGON=INLOG, ... NSEXIT=NSRUEXT1, •.. 

• ECB1 ECB 
• END 
• 

END 

Figure 5-3. Exchange When a Secondary Application Program Requests Connection 

84 



ACF/VTAM. When the application programs are in different domains, each program is 
serviced by the ACF/VTAM in its own host computer, and commands and responses 
flow between the separate ACF/VTAM.s. 

1 After both programs have been started and have opened their ACBs, each 
program must issue a SETLOGON macro instruction with OPTCD=START. In 
the primary application program, this macro instruction tells ACF /VT AM to start 
scheduling the LOGON exit routine to process any logons that were previously 
received (and queued for ACBl) and for each future logon that is received. In 
the secondary application program, the macro instruction makes it possible for 
ACF/VTAM to schedule the SCIP exit routine when one of several session 
control commands is received. 

2 To initiate the connection, the secondary application program takes the first step 
by issuing the REQSESS macro instruction. This macro instruction causes 
ACF/VTAM to create a logon and to send the logon (along with session 
parameters) to the primary application program. 

3 When the logon reaches the primary end of the session, ACF/VTAM notifies the 
primary application program of the logon in either of two ways: (I) by 
scheduling the primary application program's LOGON exit routine, or (2) by 
completing an outstanding OPNDST with OPTCD=ACCEPT. When notification is 
done by scheduling the LOGON exit routine, a pointer to the symbolic name of 
the secondary application program attempting to log on is available in the second 
word of the 4-word parameter list passed to the exit routine by ACFNTAM. 
When notification is done by completing an outstanding OPNDST macro 
instruction, the symbolic name of the secondary application program is available 
in the NIB associated with the OPNDST. Figure 5-3 assumes that the primary 
application program has a LOGON exit routine. 

The LOGON exit routine performs any checks that the user wants and 
determines whether to accept the logon. As part of this processing, the exit 
routine moves the symbolic name of the secondary logical unit to the NAME 
field of a NIB. To reject the logon, it issues a CLSDST macro instruction. To 
accept the logon, it issues an OPNDST macro instruction, specifying an RPL that 
points to the NIB that contains the symbolic name of the secondary application 
program. 

4 The OPNDST macro instruction causes ACF /VT AM to create a Bind command 
and to transmit that command to the secondary application program. The Bind 
command contains the session parameters that the primary application program 
wants to use for the session. Those parameters can be the same as those 
suggested by the secondary application program or they can be different. 

5 When the Bind command is received at the secondary end of the session, the 
secondary program's SCIP exit routine is scheduled. The fact that the Bind 
command has been received can be determined by examining the CONTROL 
field of the read-only RPL provided to the exit routine by ACF/VTAM (the fifth 
word of the parameter list passed to the exit routine points to the read-only 
RPL). The SCIP exit routine checks the session parameters passed in the Bind 
command and determines whether it wants to proceed with establishing the 
session. 

6 If the exit routine decides to go ahead with the session, it prepares a NIB for its 
next operation (the issuance of an OPNSEC macro instruction). This NIB can be 
the same as or different from. the one that was used with the REQSESS macro 

Chapter S. Connecting and Disconnecting Logical Units 85 



instruction. The exit routine then issues the OPNSEC macro instruction, 
specifying an RPL that points to the NIB. This macro instruction causes a 
positive response to the Bind command to be sent to the primary end of the 
session. 

7 Receipt of the positive response causes ACF /VT AM to set up control informa­
tion for the primary end of the session. This action completes the connection. If 
the session parameters specified use of the Start Data Traffic (SDT) command, 
that command must be sent from the primary end to the secondary end of the 
session before the flow of messages and responses can begin. Upon receipt of the 
positive response to the Bind command, ACF /VT AM checks the SDT field of the 
NIB associated with the OPNDST macro. If the field indicates SYSTEM, the 
primary's ACF /VT AM automatically sends a Start Data Traffic command to the 
secondary application program. If the SDT field indicates APPL, ACF /VT AM 
completes the OPNDST macro instruction, and the Start Data Traffic command 
must be sent by the primary application program. Figure 5-3 assumes that the 
Start Data Traffic command is to be sent by the primary application program. 

8 The primary application program issues the SESSIONC macro instruction with 
CONTROL=SDT to transmit the Start Data Traffic command. This command 
informs the secondary application program that the exchange of messages and 
responses can begin. 

9 Upon receipt of the Start Data Traffic command, ACF/VTAM schedules the 
secondary program's SCIP exit routine to inform the program that the command 
has been received. After a response to the SDT command has been sent, the 
secondary application program can send messages and commands according to 
the conventions established by the session parameters. 

10 At the primary end of the session, receipt of the response to the Start Data 
Traffic command causes completion of the SESSIONC macro that was used to 
send the command. 

This pattern of commands and responses is shown in more detail in Figure C-15 in 
Appendix C. 

The flow is similar when the secondary application program is being acquired (with 
OPNDST OPTCD=ACQUlRE) by the primary application program. In this case, 
however, the flow begins at steps 4 and 5. At step 4 an OPNDST with OPTCD= 
ACQUIRE produces the Bind command that is sent to the secondary application 
program. The secondary's SCIP exit routine, at step 5, is scheduled to process the Bind 
command. For details on this flow, see Figure C-16 in Appendix C. 

Example of a Secondary Application Program 
Requesting Connection 

86 

To associate itself with ACF/VTAM, a secondary application program builds an ACB 
and opens it. The program also issues the SETWGON macro instruction with 
OPTCD=START before attempting to request connection to a primary application 
program. 

To prepare to request connection, the secondary application program builds an RPL to 
define the request and a NIB to identify the primary application program with which 
it is to be connected. The secondary application program then issues the REQSESS 
macro instruction. The following is an example of what the coding might be to this 
point: 



SECPGM 

OPEN SECACB 
(Test for successful completion of the OPEN operation) 

REQMACRO 

SEC A CB 

SEC AP LID 
MYNAME 
EXRTNLST 

SLGNRPL 
PROClRPL 

RQSTNIB 

REQSESS 

ACB 

DC 
DC 
EXIST 

RPL 
RPL 

NIB 

RPL=PROClRPL 

AM=VTAM,APPLID=SECAPLID,EXLST=EXRTNLST, 
MACRF=LOGON 
ALI(L'MYNAME) 
CL7'SECPGMI' 
AM=VTAM,SCIP-CMDINRTN ,NSEXIT=NSPERTN, 
... (other exit routines) ... 
AM=VTAM,ACB=SECACB 
AM=VTAM,ACB-SECACB,NIB=RQSTNIB, 
OPTCD=(ASY,NQ),ECB=ECBl ,AAREA=O 
NAME=PROCESSI,LISTEND=YES,MODE=RECORD, 
LOGMODE=TALKMODI 

As the result of the REQSESS macro instruction, a logon is sent to the primary end of 
the session. In addition, the session parameters associated with TALKMODI are sent to 
the primary end. The session parameters will be returned to the secondary program in 
the Bind command, either with or without change by the primary program. 

The RPL specified for the REQSESS operation (PROClRPL) indicates that the 
operation is to be performed asynchronously (ASY), that the request for connection is 
not to be queued if the primary program is not immediately available (NQ), and that 
completion of the operation is to be signaled by posting ECBl. Because the operation 
is performed asynchronously, the secondary program can continue processing until the 
operation is completed. 

When the REQSESS operation is completed, ECBl is posted, and the secondary 
application program issues a CHECK macro instruction to test whether the operation 
was successful and to mark the RPL as available for reuse: 

CHECK RPL=PROClRPL 

(CHECK must be used because the operation was asynchronous. If the operation were 
synchronous [OPTCD=SYN in the RPL], the secondary program would determine the 
results of the operation by testing register 15 and possibly register 0.) If the operation 
being checked was unsuccessful, the LERAD or SYNAD exit routine is invoked, if 
available. Otherwise, control is returned to the application program. Control is also 
returned to the application program if the operation was successful. 

After completion of the REQSESS operation, the secondary application program can 
proceed with other processing (perhaps with communications if it is also functioning as 
the primary application program in session with other logical units), or it can enter a 
wait state. The next thing the secondary application program will see in relation to the 
connection request is either (1) an indication of a network services procedure error, or 

· (2) an indication that a Bind command has been received from the primary end of the 
session. 

Chapter s, Connecting and Disconnecting Logical Units 87 



88 

Receipt of a network services procedure error is indicated by scheduling of the 
secondary program's NSEXIT exit routine, which must be provided in any application 
program that functions as the secondary end of \a session. Receipt of this error 
indicates either that the primary end of .the session rejected the session request by 
issuing a CLSDST macro instruction or that an error at the primary end of the session 
has nullified the REQSESS operation, even though successful completion of the macro 
instruction was reported in return codes. The reason for the error can be determined 
by examining the request unit and the read-only RPL that ACF /VTAM provides when 
it schedules the exit routine. 

Receipt of a Bind command is indicated by the scheduling of the secondary program's 
SCIP exit routine, which also must be provided in any application program that 
functions as the secondary end of a session. The parameter list passed to the exit 
routine indicates that a Bind command was received and provides the starting address 
of the session parameters. The exit routine can examine the session parameters to 
determine whether they are acceptable. 

If the session parameters are unacceptable or if, for some other reason, the secondary 
application program does not want to proceed with establishing the session, the SCIP 
exit routine issues a SESSIONC macro instruction to send a negative response to the 
Bind command: 

SESSIONC RPL=PROClRPL,STYPE=RESP,CONTROL=BIND, 
RESPOND=(EX,FME) 

Values that indicate the exact reason for rejection of the Bind command must be 
provided in the SSENSEO, SSENSMO, and USENSEO fields of the RPL used for the 
SESSIONC operation. 

If the session parameters are acceptable and the secondary application program wants 
to proceed with establishing the session, the secondary program prepares a NIB for an 
OPNSEC operation. Assume that the NIB was coded as follows: 

OPNSCNIB NIB MODE=RECORD,USERFLD=data (up to 4 bytes), 
LISTEND=YES 

To prepare this NIB for the OPNSEC operation, the SCIP exit routine must move into 
the NAME field of the NIB the symbolic name of the primary application program 
that sent the Bind command. Remember that the parameter list passed by ACFNTAM 
to the SCIP exit routine contains the address of the session parameters. Within those 
session parameters is the symbolic name of the application program that sent the Bind 
command. By using the ISTDBIND DSECT, the programmer can move the symbolic 
name into the NAME field of the NIB. The SCIP exit routine then issues an OPNSEC 
macro instruction that cites an RPL that points to OPNSCNIB: 

OPNSEC RPL=PROC 1 RPL,NIB=OPNSCNIB,OPTCD=SYN 

This macro instruction causes ACF /VT AM to send a positive response to the Bind 
command, which in tum causes successful completion of the OPNDST at the primary 
end of the session. The macro instruction specifies that the operation is to be 
performed synchronously (SYN), meaning that processing in the SCIP exit routine 
stops until the OPNSEC operation is completed. When the operation is completed, the 
secondary application program tests register 15 to determine whether the operation 
was successful. Following successful completion of the operation, the CID for the 
session is available in the ARG field of the RPL and the CID field of the NIB. 

With successful completion of the OPNSEC operation, the connection between the 
secondary and primary application programs is completed. However, if required by the 



session parameters, a Start Data Traffic (SDT) command must be sent from the 
primary end of the session (by ACF /VT AM or the primary application program, 
depending on the setting of the SDT field in the NIB used with the OPNDST macro 
instruction). Once the SDT command has been sent and responded to by ACF/VTAM. 
or the secondary application program, the flow of messages and responses can begin. 

Establishing Session Parameters during Connection 

As part of the connection process, the primary and secondary ends of the session must 
agree on the communication rules to be followed during the session. These communica­
tion rules, called session parameters, enable each end of the session to know what the 
other end of the session will do and will not do in different communication situations. 

The session parameters are bit settings that indicate such things as "the primary end of 
the session will send chained data" or "the secondary end of the session will not ask 
for responses to messages" or "the secondary end of the session will not send 
end-of-bracket indications if brackets are used." The session parameters are described 
in detail in Appendix J of ACF/VTAM Macro Language Reference. When the session 
parameters are part of the Bind command, they also include the symbolic name of the 
application program that sent the command and the user logon message (if any). The· 
process of agreement on session parameters follows a general pattern, as described in 
the following section. 

The General Pattern of Agreement 
on Session Parameters 

A request for connection to a primary application program reaches that program in the 
form of a logon. A set of session parameters is associated with each logon. These 
parameters are available for inspection by the primary application program when it 
processes the logon. 

During processing of the logon, the primary application program can decide to use the 
session parameters suggested by the originator of the logon, or the primary application 
program can choose a different set of parameters. In either case, when the application 
program issues an OPNDST macro instruction to accept the connection, it must 
designate. a set of session parameters to be sent to the logical unit being accepted. The 
set of session parameters is sent as part of the Bind command, which is created by 
ACF /VT AM as a result of the OPNDST macro instruction. (Whether the primary 
application program uses the same parameters as those suggested in the logon or a 
different set may be determined by user conventions. For example, the primary 
application program is to always use the session parameters that accompany a logon or 
is to always disregard the suggested parameters and select session parameters on the 
basis of some criteria chosen by the user.) 

When the Bind command reaches the logical unit, the logical unit can examine the 
session parameters in the command. At this point, the logical unit must either accept 
or reject the whole set of parameters; it cannot accept some and reject others. The 
logical unit accepts the session parameters by sending a positive response to the Bind 
command; it rejects the parameters by sending a negative response. When the response 
is negative, the connection is not completed. 

Defining Sets of Session Parameters 
In many cases, the ends _of the session work with predefined sets of session parameters. 
When a set is defined, a name is associated with the set. That name is known as the 
logon mode name. The logon mode name is used in some logons and in the 
LOGMODE operand of certain macro instructions and commands to identify the set of 
session parameters. 

Otapter S. Connecting and Disconnecting Logical Units 89 



Several sets of session parameters, each with its own name, can be grouped into a table 
known as a logon mode table. The table itself is identified by a logon mode table 
name, which is the name specified in the linkage-editor NAME statement when the 
table is link-edited. 

In lieu ·of using a predefined set of session parameters, a primary application program 
can build a set of parameters at the time it is needed. The set of parameters is built in 
an area of the application program known as a bind area, whose address is placed in 
the NIB used for connection. 

Tables That Contain Session Parameters 

LU definition 
statement 

_..., 
MOD ET AB 

MOD EE NT 

MOD EE NT 

MODE ENT 

MODE END 

In each domain, predefined sets of session parameters can exist in user-defined tables, 
in an IBM-supplied default table, or in a user-defined default table that has replaced 
the IBM-supplied default table. (In subsequent discussions, the term default table is 
used to mean the IBM-supplied default table or the user-defined default table that has 
replaced the IBM-supplied table.) The tables are stored in a system data set associated 
with the operating system that controls the host computer in a particular domain. 

Logon Mode Tables Built by the User: The user can define one or more logon mode 
tables by·using the MODBTAB, MODEENT, and MODEEND macro instructions, which 
are described in detail in the ACF /VT AM system programmer's guide for the operating 
system being used. After a table has been coded, it is assembled and link-edited into 
the appropriate library (the core image library for DOS/VS, SYSl.VTAMLIB for 
OS/VSl and OS/VS2 SYS, and SYSl.LPALIB for OS/VS2 MYS). 

In coding a logon mode table, the programmer uses a MODETAB macro instruction to 
identify the beginning of the definition. The symbolic name of this macro instruction 
becomes the CSECT name for the logon mode table. The symbolic name can also be 
used in the linkage-editor NAME statement when the table is link-edited, and thus can 
become the name of the logon mode table. 

The MODETAB macro instruction is followed by one or more MODEENT macro 
instructions. Each MODEENT macro· instruction creates one entry ,in the table, and 
each entry consists of a logon mode name and a set of session parameters (the logon 
mode name is the name used to designate the set of parameters). The end of the table 
is identified by the MODEEND macro instruction. The functions of the macro 
instructions and the basic structure of a logon mode table are shown in Figure 5-4. 

When the network for a particular domain is defined to the ACF/VTAM in that 
domain, a logon mode table in that domain can be associated with a particular logical 
unit (a device-type logical unit or a secondary application program). However, a logon 

1 
Logon Mode = BATCH Session Parameter Set for BATCH 

Logon Mode = DVCTYPEA Session Parameter Set for DVCTYPEA 

Logon Mode,= DVCTYPEB Session Parameter Set for DVCTYPEB 

I 
Figure 5-4. Logon Mode Table Macro Instructions 

90 



Network Definition Statements 

SWNODE1 VBUILD 

PU 

mode table in one domain cannot be associated with a logical unit in another domain. 
A logon mode table is associated with a logical unit by coding the logon mode table 
name in the MODETAB operand of the LU statement or APPL statement that defines 
the logical unit. (For a device-type logical unit, the association can also be made by 
coding the table name in the PU statement below which the LU statement appears, or 
in a GROUP or LINE macro instruction.) By malting this association, the user 
identifies the first logon mode table that is to be searched when a logon mode name is 
supplied as part of the connection request. If the logon mode name is not found in 
this logon mode table, the default logon mode table is also searched. The various 
definition statements can identify the same logon mode table, or they can identify 
different logon mode tables (as indicated in Figure 5-5), but all of the logon mode 
tables referred to in the definition statements for a particular domain must be in the 
domain being defined. 

Default Logon Mode Tables: If the user has not designated a logon mode table to be 
used for a logical unit (that is, did not code the MODETAB operand in a definition 
statement), ACF/VTAM associates a default logon mode table with the logical unit or 
program. The default table is one of the following: (1) for DOS/VS, the ISTINCLM 
table in the core image library, (2) for OS/VSl and OS/VS2 SYS, the ISTINALM table 
in SYSl.VTAMLIB, or (3) for OS/YS2 MYS, the ISTINCLM table in SYSl.LPALIB. 

In each operating system, the table under the name shown above is an IBM-supplied 
default table unless the IBM-supplied table has been replaced with a user-defined 
default table. For the contents of the IBM-supplied default table, see the ACF/VTAM 
system programmer's guide for the operating system you are using. The user can use 
the MODETAB, MODEENT, and MODEEND macro instructions to code a default 
table and then use that table to replace the IBM-supplied table in the appropriate 
library, storing it under the name ISTINCLM or ISTINALM as appropriate. 

Logon Mode Table Definitions 

..... 
~ LGMDTBL1 MOD ET AB 

MODEENT LOGMODE=MODEA,session parameters 

MODE ENT LOGMODE=MODEB,session parameters 

MODE ENT LO GM OD E=MODEC,session parameters 

MODE END 
LU , MODETAB=LGMDTBL 1 -
LU , MODETAB=LGMDTBL2 

LU , MODETAB=LGMDTBL1 

LU (No MODETAB name 
specified) ... ---

_.. .. 
____.. 

LGMDTBL2 MOD ET AB 

MODE ENT LOGMODE=MODED,session parameters 

MODEEND 

IBM-Supplied (or User-Supplied) Defaultlogon Mode Table 

ISTINCLM MODETAB (in DOS/VS or OS/VS2 MVS) 
(or) 

ISTINALM MODETAB (in OS/VS1 or OS/VS2 SVS) 

(For contents of the IBM-supplied table, see the 
ACF/VTAM system programmer's guide for the 
operating system you are using.) 

MODEEND 

Figme 5-5. Identification of Logon Mode Tables in LU Definition Statements 

Chapter 5. Connecting and Disconnecting Logical Units 91 



The Default Entry in a Logon Mode Table 
As indicated above, one of .two logon mode tables is associated by ACF/VTAM with 
each logical unit during ACF/VTAM definition: either the logon mode table identified 
in the MODETAB operand of the definition statement for the logical unit or, in the 
absence of such a specification, the default· logon mode table. The table associated 
with the logical unit is the one searched for a logon mode name when such a name is 
specified for the logical unit during the connection process. 

However, if no logon mode name is specified in a connection request (and, for 
OPNDST, nci session parameters are supplied in a bind area), ACF/VTAM must still 
find a set of session parameters to include in the connection request. In this case, 
ACF/VTAM takes the default set of session parameters from the logon mode table 
associated with the logical unit. The default set may be either of two possible default 
entries: 

1. If the user specified the DLOGMOD operand in the definition statement for the 
logical unit (or in a higher-level definition statement), the logon mode entry 
named in that operand is used to search the logon mode table associated with the 
logical unit and is used as the default entry for that particular logical unit. 

2. If no DLOGMOD operand was specified for the logical unit, the first entry in the 
logon mode table associated with the logical unit is used as the default entry. 

In the remainder of this section, the tenn default entry or default session parameters is 
used for either possibility. · 

How Logon Mode Names and Session 
Parameters are Used 

92 

A logon mode name can be used at different points in the connection process to 
designate a particular set of session parameters. A logon mode name can be used in 
these ways: 

• A logical unit can include a logon mode name as part of its logon information to 
suggest a set of session parameters. · 

• A secondary application program can specify a logon mode name in the LOGMODE 
field of the NIB it uses with a REQSESS macro instruction to suggest a set of 
session parameters; 

• A primary application program can specify a logon mode name in the LOGMODE 
field of the NIB it uses with an OPNDST macro instruction to indicate the session ~ 
parameters that are to be sent to the secondary end of the session in the Bind 
command. Note: When the logical unit or secondary application program that is 
logging on is in another domain, a logon mode name cannot be used with OPNDST 
OPTCD=ACCEPT. 

• A primary application program can specify a logon mode name in the LOGMODE 
field of the NIB it uses with a SIMLOGON macro instruction to indicate the session 
parameters to be associated with the simulated logon. 

• A primary application program can specify a logon mode name in the LOGMODE 
field of the NIB it uses with a CLSDST maero instruction with OPTCD=PASS to 
indicate the session parameters to be associated with the logon generated as a result 
of that macro instruction. 

• A network operator can specify a logon mode name in the LOGMODE operand of a 
VARY LOGON command to indicate the set of session parameters to be associated 
with the logon generated as a result of that command. 

As noted previously, the logon mode . table that is associated with a secondary logical 
unit by being named in a definition statement must be stored in a system data set in 



the domain that owns the logical unit. When a logon mode name is supplied as part of 
a connection request, the logon mode name is translated into session parameters in the 
domain that owns the logical unit. If necessary, the logon mode name is passed from 
the domain in which the connection request originates to the domain that owns the 
logical unit and is then translated in that domain. Similarly, if no logon mode name is 
supplied as part of the connection request, the default session parameters are taken 
from the appropriate logon mode table in the domain that owns the secondary logical 
unit. The named session parameters or default session parameters are then passed, 
along with the logon, to the domain that owns the primary application program to 
which the logon is directed. The suggested session parameters are then available to the 
primary application program when it begins to process the logon. 

Logon Mode for a Logon from a Device-Type Logical Unit 
When a logon from a logical unit originates in the primary application program's 
domain, a logon mode name may accompany the logon when it reaches ACFNTAM. 
In this case, the logon mode name is translated into session parameters before the 
logon is presented to the primary application program for processing. If no logon mode 
name accompanies a the logon, the default session parameters are presented along with 
the logon. 

A set of session parameters accompanies a logon received from a logical unit in another 
domain. In this case, the session parameters are found by the ACF/VTAM in the other 
domain before the logon is transmitted to the primary application program's domain. 

Logon Mode for a Logon from a Secondary Application Program 
A secondary application program suggests a set of session parameters by setting the 
LOGMODE field of the NIB associated with the REQSESS macro instruction. The 
effects of that field are: 

Logon Mode for a Simulated Logon 

If the field contains a logon mode name, the session parameters associated with that 
name are transmitted with the logon. 

If the field contains zeros or blanks, the default entry from the appropriate logon 
mode table is transmitted with the logon. 

A SIMLOGON macro instruction causes the ACF/VTAM in the domain in which the 
macro instruction is issued to generate a simulated logon and pass the logon back to 
the program in a way that makes it look as though the logon was received from the 
logical unit named in the NIB used with the macro instruction. 

The LOGMODE field of the NIB used with the macro instruction controls the session 
parameters that are associated with the logon. If the LOGMODE field contains a logon 
mode name, the session parameters identified by that name are provided with the 
logon. Otherwise, the default session parameters are provided with the logon. If the 
SIMLOGON involves a logical unit in another domain, the named session parameters or 
the default parameters are found in logon mode tables in the other domain and 
returned to the domain in which the SIMLOGON was issued. 

Logon Mode for a CLSDST Macro Instruction 
with OPTCD=PASS 

A CLSDST macro instruction with OPTCD=PASS is used to pass a logical unit from 
one primary application program to another. The macro instruction disconnects the 
logical unit and causes a logon to be generated on behalf of that logical unit or 
secondary application program. - The logon is presented to the application program 
whose symbolic name is pointed to by the AAREA field of the RPL used with the 
macro instruction. 

Olapter S. Connecting and Disconnecting Logical Units 93 



According to the setting of the LOGMODE field of the NIB at the time the macro 
instruction is issued, a set of session parameters is found and provided with the logon. 
If the LOGMODE field contains a logon mode name, the named set of session 
parameters is found. If the LOGMODE field contains zeros or blanks, the default set 
of session parameters is found in the appropriate table. If the CLSDST with 
OPTCD=PASS involves a logical unit in another domain, the named session parameters 
or default session parameters are found in logon mode tables in that domain and are 
passed with the logon to· the domain in which the receiving application program is 
located. 

Logon Mode with Automatic Logon and VARY LOGON 
When automatic logon has been specified for a device-type logical unit, the session 
parameters are determined by the method in which the automatic logon was generated: 
(1) by naming a controlling application program and (2) by naming a controlling 
application program by a VARY LOGON command. 

Specification of the LOGAPPL operand in the LU statement causes the application 
program named in that operand to become the controlling application program for that 
logical unit. Whenever the logical unit is active and is not connected to another 
application program, ACF/VTAM automatically logs the logical unit on to the 
controlling application program. For the initial connection to that program and for 
each reconnection (after another program has disconnected the logical unit), the 
session parameters are the default parameters. (A controlling application program can 
relinquish control over a logical unit by issuing a CLSDST macro instruction with 
OPTCD=RELEASE.) 

The network operator can change the controlling application· program (or establish 
one) by issuing a VARY LOGON command for the logical unit. That command names 
another application program that is to become the controlling application program. 
The command must be issued in the domain that owns the logical unit, but the new 
controlling application program can be in another domain. (Note that a VARY 
LOGON command cannot be issued to specify automatic logon for an application 
program.) A LOGMODE operand can be specified in the VARY LOGON command, 
and inclusion or omission of that operand controls the session parameters that are 
associated with the logon. If the LOGMODE operand is included in the command, the 
logon mode name in that operand identifies the session parameters in the logical unit's 
logon mode table that are to be used for the first connection and subsequent 
reconnections with the new controlling application program. If the LOGMODE 
operand is omitted from the command, the logon mode name (if any) in the preceding 
VARY command is used to find the session parameters, or if no logon mode name has 
been supplied previously for the logical unit, the default parameters are used. 

How the Primary Application Program 
Processes Session Parameters 

94 

As indicated in the preceding paragraphs, a set of session parameters is associated with 
each logon that reaches an application program. Those parameters (but not the logon 
mode name that might have been used to fin~ the parameters) are available for 
inspection by the application program when it begins to process the logon (that is, 
when execution of the application program's LOGON exit routine begins). 

The application program has complete control over whether the session parameters 
received with the logon or other session parameters are to be the ones sent to the 
logical unit in the next step of the connection process. That next step is to issue an 
OPNDST macro instruction with OPTCD=ACCEPT, which causes ACF/VTAM to 
generate a Bind command and send it to the logical unit. The Bind command contains 
the set of session parameters (see Figure 5-6) that the primary application program has 
designated to be included in the command. 



Setting of BNDAREA and/or 
LOGMODE Field When Macro Restrictions or Qualications on 

Macro Instruction to Be Used Desired Action Is Issued' Desired Action 

REOSESS Include named set of session LOGMODE=logon mode name 
parameters in the logon created 
by the macro. 

Include default set of session LOGMODE=Oor blanks2 

parameters in the logon created 
by the macro. 

SIMLOGON or CLSDST Include named set of session LOGMODE=logon mode name 

with OPTCD=PASS parameters in the logon created 
by the macro. 

Include default set of session LOGMODE=O or blanks' 
parameters in the logon created 
by the macro. 

INQUIRE with Get the session parameters LOGMODE=O The·~.~ must be a pending logon 
OPTCD=SESSPARMS associated with the logon for for tne logical unit. 

the logical unit being processed. 

Get a named set of session LOGMODE=logon mode name Named logical unit must be in 
parameters from the logon the same domain as the one in 
mode table associated with the which the macro instruction is 
logical unit. issued. 

Get the defau It set of session LOGMODE=blanks2 Named logical unit must be in 
parameters from the logon the same domain as the one in 
mode table associated with the which the macro instruction is 
logical unit. issued. 

OPNDSTwith Use the session parameters BNDAREA=O 
OPTCD=ACCEPT associated with the logon to LOGMODE=O 

build the Bind command. 

Use a named set of session BNDAREA=O Can only be used when the 
parameters from the logon LOGMODE=/ogon mode name logical unit and its associated 
mode table associated with the logon mode table are in the same 

logical unit to build the Bind domain as the one in which the 

command. macro instruction is issued. 

Use the default set of session BNDAREA=O Can only be used when the 

parameters from the logon LOGMODE=blanks2 logical unit and its associated 
mode table associated with logon mode table are in the same 
the logical unit to build the domain as the one in which the 

Bind command. macro instruction is issued. 

Use the contents of the bind BNDAREA=bind area address 

area as the session parameters LOGMODE=anything (Ignored) 
in the Bind command. 

OPNDSTwith Use a named set of session BNDAREA=O 
OPTCD=ACQUIRE parameters from the logon LOGMODE=/ogon mode name 

mode table associated with 
the logical unit to build the 
Bind command. 

Use the def au It set of session BNDAREA=O 
parameters from the logon LOGMODE=O or blanks2 

mode table associated with 
the logical unit to build the 
Bind command. 

Use the contents of bind area BNDAREA=bind area address 
as the session parameters in LOGMODE=anything (Ignored) 
the Bind command. 

1 In all cases, the NAME field of the NIB must contain the symbolic name of the logical unit for which the desired action is to be taken 
and with which the logon mode table (if used) is associated. Where no BNDAREA specification is shown, the BNDAREA field is not 
involved in the operation. When a logon mode name is specified in LOGMODE, the name is resolved into an actual set of session 
parameters in the domain of tt.e secondary logical unit involved in the operation. Therefore, the logon mode name (if specified) must 
exist in a logon mode table associated with the secondary logical unit or in the system default logon mode table in the domain of the 
secondary logical unit. 

2 To get blanks, specify LOGMODE=C' 

Figure 5-6, Setting NIB Fields to Acquire or Control Session Parameters 

Otapter 5. Connecting and Disconnecting Logical Units 95 



Two fields in the NIB associated with an OPNDST macro instruction play roles in 
determining which session parameters are sent in the Bind command. Those fields are 
the BNDAREA field and the LOGMODE field. 

Effect of the BNDAREA Field on Session Parameters 
in a Bind Command 

The BNDAREA field of the NIB associated with an OPNDST macro instruction can be 
used to provide the address of an area (called the bind area) within the application 
program in which the program can build a set of session parameters to be sent in the 
Bind command. 

IBM provides a DSECT (named ISTDBIND) that can be used to set up session 
parameters in the bind area and can be used by an application program to examine 
session parameters. The DSECT is described in Appendix J of ACF/VTAM Macro 
Language Reference. The DSECT is provided as part of the system macro library 
(source statement library in DOS/VS and SYSl .MACLIB in OS/VS). 

In determining which session parameters to include in a Bind command, ACF/VTAM 
always examines the BNDAREA field of the NIB first. If that field contains an 
address, the session parameters starting at that address are used in the command. If the 
BNDAREA field contains zeros, the setting of the LOGMODE field of the NIB 
controls which session parameters are sent in the Bind command. 

Effect of the LOGMODE Field on Session Parameters 
in the Bind Command 

96 

When used with an OPNDST macro instruction, the LOGMODE field of the NIB 
provides a mechanism for designating which set of session parameters is to be included 
in the Bind command. The field can be used in different ways, depending on whether 
the connection request involves a logical unit in the same domain or in a different 
domain from the primary application program. 

Using WGMODE When the Logon Is from a Logical Unit in the Same Domain: When 
the primary application program knows that a logical unit is in the same domain, the 
primary program has the following options in using the LOGMODE field to specify the 
session parameters for the Bind command: 

• Allow the session parameters associated with the logon to be incoporated into the 
Bind command. To do this, the application program sets the BNDAREA field of the 
NIB to 0 and sets the LOGMODE field to 0 before issuing the OPNDST macro 
instruction. 

• Indicate that the default session parameters are to be sent in the Bind command. To 
do this, the application program sets the BNDAREA field of the NIB to 0 and sets 
the LOGMODE field to blanks before issuing the OPNDST macro instruction. 

• Designate that a particular named set of session parameters from the logon mode 
table associated with the logical unit is to be sent in the Bind command. To do this, 
the application program sets the BNDAREA field of the NIB to 0 and puts a logon 
mode name in the LOGMODE field before issuing the OPNDST macro instruction. 

In processing a logon from a logical unit in the same domain, the primary application 
program can also build a set of session parameters in the bind area and can specify 
that those parameters are to be sent. To do this, the application program puts the 
address of the bind area into the BNDAREA field of the NIB before issuing the 
OPNDST macro instruction. The presence of an address in the BNDAREA field causes 
ACF/VTAM to use the session parameters in the bind area and to ignore the setting of 
the LOGMODE field. 



Using LOGMODE When the Logon Is from a Logical Unit in Another Domain: When 
the primary application program knows that a logon involves a logical unit in another 
domain, the primary application program has only one option in using the LOGMODE 
field to designate the session parameters to be used in the Bind command. That option 
is to designate that the session parameters that accompanied the logon are to be 
incorporated without change into the Bind command. To designate that, the primary 
application program sets the BNDAREA field to 0 and the LOGMODE field to 0 
before it issues the OPNDST with OPTCD=ACCEPT. 

In processing a logon from a logical unit in another domain, the alternative to setting 
the LOGMODE field to 0 is to build a set of session parameters in a bind area and to 
put the address of that area in the BNDAREA field of the NIB before issuing the 
OPNDST OPTCD=ACCEPT macro instruction. 

Handling Session Parameters When the Logon Could 
Be from the Same Domain or Another Domain 

In many cases, the primary application program does not know whether the logon 
involves a logical unit in its own domain or in a different domain. In this case, there 
are three standard actions the primary application program can take to designate the 
session parameters to be included in the Bind command: 

1. Always accept and use the session parameters that accompany the logon. (Set the 
BNDAREA field to 0 and the LOGMODE field to 0 before issuing the OPNDST 
macro instruction.) 

2. Always build a set of session parameters in a bind area and designate that those 
parameters are to be sent in the Bind command. (Put the address of the bind area 
into the BNDAREA field before issuing the OPNDST macro instruction.) 

3. Examine (using an INQUIRE macro instruction) the session parameters that 
accompany the logon and possibly modify them in a bind area before issuing the 
OPNDST macro instruction. 

The user may want to adopt one of the above options as a convention for any 
application program that can receive a mixture of ·same-domain and cross-domain 
logons. 

Using the INQUIRE Macro Instruction to Get Session Parameters 
The INQUIRE macro instruction can be used in several ways to get a set of session 
parameters. At any point in a program, the macro instruction can be issued to get a 
named set of session pa,rameters or the default parameters from the logon mode table 
associated with a logical unit owned by the domain in which the macro instruction is 
issued. The session parameters are acquired from the logon mode table associated with 
the logical unit whose symbolic name is in the NAME field of the NIB. The setting of 
the LOGMODE field of the NIB identifies the particular set of parameters to be taken 
from that logon mode table. See Figure 5-6. 

When a program is processing a logon, the INQUIRE macro instruction can be used to 
get the set of session parameters that accompanied the logon. To do this, the program 
puts the name of the logical unit in the NAME field of the NIB, sets the LOGMODE 
field of the NIB to 0, and issues the INQUIRE macro instruction. The session 
parameters that accompanied the logon can be acquired in this way regardless of 
whether the logon applies to a logical unit in the· same domain or in a different 
domain. Acquisition of the session parameters enables the primary application program 
to inspect them and to decide whether those parameters or different ones should be 
sent to the logical unit when the OPNDST macro instruction is issued. 

Olllpter s. Connecting and Disconnecting Logical Units 97 



When the INQUIRE macro instruction is executed, ACF/VTAM finds the indicated 
session parameters and places them in the area of storage pointed to by the AREA 
field of the RPL. The AREALEN field of the RPL must specify the length of the 
storage area in which the session parameters (and any user logon message) are to be 
placed. To do this, the INQUIRE macro instruction can be issued twice. For the first 
INQUIRE, the AREALEN field is set to O. This INQUIRE is compl~ted with 
RTNCD=O and FDBK2=5 (insufficient length), and RECLEN indicates the required 
length. Then, the INQUIRE is issued again, with the AREALEN field set to the correct 
length. 

Specifying Session Parameters When Acquiring Connection 
When a primary application program issues an OPNDST macro instruction with 
OPTCD=ACQUIRE to acquire a connection with a logical unit, the settings of the 
BNDAREA and LOGMODE fields of the NIB control the session parameters sent in 
the Bind command. See Figure 5-6. Examples of using the LOGMODE field and the 
BNDAREA field to control session parameters are provided next. 

Example 1: Using Session Parameters Associated with a Logon 

98 

Assume that a logical unit named LUI has sent a logon. Receipt of the logon causes 
scheduling of the LOGON exit routine. Coding near the beginning of the exit routine 
might be as follows: 

INQI INQUIRE RPL=RPLI,OPTCD=SESSPARM 
(Test for RTNCD=O and FDBK2=5 in the RPL) 

INQ2 

RPLl 
NIBl 
AREAl 

(Load value in RECLEN field of the RPL into register 7) 

MODCB AM=VTAM,RPL=RPLl ,AREALEN=(7) 
(Test return codes from execution of the MODCB macro) 

INQUIRE RPL=RPLl ,OPTCD=SESSPARM 

(Checks session parameters placed in AREAl and determines 
that they are appropriate) 

OPNDST 

RPL 
NIB 
DS 

RPL=RPLl 

AM=VTAM,NIB=NIBl,AREA=AREAl ,AREALEN=O 
NAME=LOl ,LOGMODE=O,BNDAREA=O 
14F 

The INQUIRE macro instruction at INQl attempts to get the session parameters with 
the RPL's AREALEN field set to 0. This causes failure of the macro instruction with 
the FDBK2 field set to S . (insufficient length). Upon return from the macro 
instruction, however, the RPL's RECLEN field contains the number of bytes needed 



for the session parameters (and any user logon message). The required length is loaded 
into register 7, and the MODCB macro instruction is issued to put that value into the 
AREALEN field of the RPL. Then, at INQ2, the INQUIRE macro instruction is issued 
again, causing ACF/VfAM to put the session parameters into AREAL (The session 
parameters are those that were received with the logon.) The coding checks the session 
parameters and determines that they are appropriate for the logical unit and for the 
type of session the application program will have with that unit. Therefore, the 
application program issues the OPNDST macro instruction, using the NIB whose 
BNDAREA and LOGMODE fields are set to 0. The zero in the LOGMODE field tells 
ACF/VTAM to use the session parameters associated with the logon to build the Bind 
command to be sent to the logical unit. (A large value of 14F is shown in the example 
for the amount of storage reserved for AREAl, and that may not be the correct value 
for your application program. The value should be equal to the maximum size of the 
session parameters and any user logon message.) 

Example 2: Building and Using Session Parameters 
in a Bind Area 

Assume that an application program wants to initiate a session with a logical unit 
named LU2 in the same domain. A logon mode table was defined and was identified in 
the MODETAB operand of the LU definition statement for LU2. The application 
program wants to get the default session parameters from the logon mode table, 
modify them, and then send the modified parameters to the logical unit in the Bind 
command when it acquires the logical unit. The coding could look like this: 

INQUIRE RPL=RPL2,0PTCD=SESSPARM 

(Instructions test and modify the session parameters in SP AREA2) 

RPL2 

NIB2 
SPAREA2 
SP LEN 

MO DCB 
OPNDST 

RPL 

NIB 
DS 
EQU 

AM=VTAM,NIB=NIB2,BNDAREA=SPAREA2 
RPL=RPL2,0PTCD=ACQUIRE 

AM=VTAM,NIB=NIB2,AREA=SPAREA2, 
AREALEN=SPLEN 
NAME=LU2,LOGMODE=C' ',BNDAREA=-0 
XL( SP LEN) 
BINUSE-ISTDBIND 

Because the NIB's LOGMODE field contains blanks, the INQUIRE macro instruction 
causes the the default entry in the logon mode table to be moved into SPAREA2. The 
application program then modifies the session parameters to fit the way it wants to 
communicate with LU2. The MODCB macro instruction puts the address of SPAREA2 
in the NIB's BNDAREA field. When the OPNDST macro instruction is executed, the 
modified session parameters are transmitted to LU2 in the Bind command. 

How the Secondary Application Program Processes 
Session Parameters Received in a Bind Command 

When a Bind command is received by a secondary application program, the program's 
SCIP exit routine is scheduled. When execution of the exit routine starts, the fourth 

Otapter S. Connecting and Disconnecting Logical Units 99 



Disconnection 

word of the parameter list passed to the exit. routine contains the address of the 
session parameters received in the command. Using that address, the exit routine can 
find the session parameters in the Bind request unit and examine those parameters 
(using the ISTDBIND DSECT). 

If the session parameters are acceptable, the secondary application program issues an 
OPNSEC macro instruction. If the session parameters are not acceptable, the secondary 
application program rejects the Bind command by issuing a SESSIONC macro 
instruction with operands specifying a negative response. For an illustration of this 
process, see Figure C-15 in Appendix C. 

When a primary application program has finished communicating with a logical unit, 
the program can disconnect it. The logical unit is then available for use by other 
programs. The program can reconnect it at some later time. There are several 
conditions that call for disconnecting a logical unit: 

• The logical unit has logged off by issuing a character-coded logoff or Terminate 
command. This causes the LOSTERM exit routine to be entered. The LOSTERM 
exit routine disconnects the logical unit. 

• A terminal that has logged on to the application program might use a prearranged 
logoff message that the terminal operator issues when finished using the program. 
Each input message must be checked to see if it is a logoff message. When a logoff 
message arrives, the terminal is disconnected and any storage pools are updated. 

• Communication with the terminal is finished; there is no more data to send or 
receive. Here, the program has probably acquired the logical unit and is not 
expecting a logoff message. The program determines when communication is 
finished, and the logical unit should be disconnected. 

• Another program has requested connection to one of your logical units. Your 
program can surrender the logical unit to the requesting program. 

• An error or special condition occurs in relation to a logical unit. The program can 
disconnect the logical unit while continuing to service other logical units connected 
to the program. For more information, see Chapter 9, "Handling Errors and Special 
Conditions." ' 

How a Primary Application Program Disconnects 
Logical Units 

CLSDST Using a Symbolic Name 

100 

The Cl.SDST macro instruction is used by a primary application program to disconnect 
a specific logical unit. The logical unit to be disconnected can be identified either by 
its symbolic name or by its communication identifier (CID). When the identification is 
to be by the symbolic name, the RPL specified in the ClSDST macro instruction 
points to a NIB that contains the symbolic name. When the identification is to be by 
CID, the logical unit's CID must be in the ARG field of the RPL specified in the 
Cl.SDST macro instruction. 

A logical unit can be disconnected by using the logical unit's symbolic name contained 
in a NIB. This method is used when the CID is not available or when it is more 
convenient to use the symbolic name than to use . the CID. The symbolic name is 
normally used in these circumstances: 

• In a LOGON exit routine when the exit routine has determined that it does not 
want to issue an OPNDST m,acro instruction to establish a session with the logical 



CLSDST Using a CID 

unit. To reject the logical unit's request for a session, the exit routine must issue a 
CLSDST macro instruction. Because no OPNDST macro instruction has been issued, 
no CID for the logical unit is available, and the CLSDST must use the symbolic 
name in the NIB. 

• In a IDGON exit routine or elsewhere in a program when an OPNDST macro 
instruction has failed. If the logon is still pending (found by checking the 
logon-still-queued flag in the failing OPNDST's NIB) and the program does not want 
to issue another OPNDST macro to make another attempt to establish the session, 
the program should issue the CLSDST macro instruction to clean up unnecessary 
control information in ACF/VTAM. Here, as above, the failure of the OPNDST 
macro instruction means that no CID for the logical unit is available, and the 
CLSDST must use the symbolic name in the NIB. 

• In a RELREQ exit routine where the symbolic name of the logical unit, rather than 
the CID, is provided in the parameter list that is available upon entry to the exit 
routine. 

• In a main program to cancel a SIMLOGON macro instruction before the simulated 
logon has been processed. Here again, no CID is available and the CLSDST must use 
the symbolic name in the NIB. 

The procedure for disconnecting by means of the symbolic name is: (1) be sure the 
NAME field of a NIB contains the symbolic name of the logical unit to be 
disconnected, (2) set the NIB field of the RPL to the address of the NIB that contains 
the symbolic name, and (3) issue the CLSDST macro instruction, specifying the RPL 
that points to the NIB. For example: 

RPLl 
NIBl 

CLSDST RPL=RPLl 

RPL 
NIB 

ACB=ACBl ,AM=VTAM,NIB=NIBl 
NAME= LUI 

If the application program has just connected the logical unit or has just completed an 
input or output operation with the logical unit, the CID of the logical unit is available 
in the ARG field of the RPL that was used for the operation. For example, if the 
logical unit has sent a logoff message to the application program, the RPL used to read 
the message contains the CID of the logical unit. To disconnect the logical unit, issue a 
CLSDST macro instruction that specifies the same RPL: 

CLSDST RPL=(l) 

There are other sources of the CID: 

• When the LERAD or SYNAD exit routine is scheduled, register l contains the 
address of the RPL that was used for the requeSt that failed. That register and RPL 
can be used to disconnect the logical unit. 

• When a DFASY, RESP, or SCIP (for other than a Bind command) exit routine is 
scheduled, the CID of the session from which the request or response was received 
is in the second word of the parameter list that ACF /VT AM makes available to the 
exit routine when the exit routine is scheduled. In this case, the MODCB macro 
instruction can be used to move the CID to the RPL to be used to disconnect the 
logical unit. 

Otapter S. Connecting and Disconnecting Logical Units 101 



Storage Management at Disconnection 
If you have been using the storage management techniques presented in Chapter 3, 
remember to replace the storage elements in their pools when you disconnect a logical 
~L , 

Disconnecting All Logical Units at One Time 
When an application program is finished processing and is to disconnect all logical 
~ts, it can either {l) issue a separate CLSDST macro instruction for each logical unit 
or (2) issue a ClDSE macro instruction and allow ACF/VT.AM to disconnect the 
logical units. 

Use of the ClDSE macro instruction, which eventually closes the ACB, causes 
ACF /VT AM to issue a synchronous CLSDST macro instruction for each logical unit to 
which the program is connected. The synchronous CLSDST macro instructions are 
executed one after another, which is slower than asynchronous execution in which 
processing of the CLSDST macro instructions would be overlapped. If the application 
program issues the CLSDST macro instructions itself, it can designate that the macro 
instructions are to be executed asynchronously. Thus, while issuing separate CLSDST 
macro instructions in the application program requires more coding, it results in faster 
execution than issuing the CLOSE macro instruction and having ACF /VT AM discon­
nect the logical units. 

How a Secondo,ry Application Program 
Requests·Disconnection 

In a session between two application programs, the secondary application program, 
instead of the primary application program, may take the initiative to end the session 
because the secondary program is the first to recognize that comm~cation is finished 
or because the user may have established a convention by which the secondary 
program is required to inform the primary program when the session is to be ended. 
The secondary application program has two ways of initiating action to end the 
session. It can either (1) send a Request Shutdown (RSHUTD) command to the 
primary application program, or (2) issue a TERMSESS macro instruction, which 
causes the primary application program's LOSTERM exit routine to be scheduled. 

Requesting Disconnection with a Request Shutdown Command 

102 

The sending of a Request Shutdown (RSHUTD) command (if allowed by the session's 
FM profile) is the way a secondary application program can send a disconnection 
request to a primary application program without involving ACF/VT.AM in the 
notification process. The command goes from one application program to the other 
without being recognized or acted upon by ACF/VT.AM. To the primary application 
program, the command represents a request to disconnect the secondary program as 
soon as possible. This allows the primary application program to continue communica­
tions with the secondary program, including the exchange of normal-flow messages, in 
order to do any cleanup operations that are necessary. 

The Request Shutdown command is transmitted as an expedited-flow message. Because 
of this, the command cannot be used unless the primary application program has either 
a DFASY exit routine or an outstanding RECEIVE macro instruction with RTYPE= 
DFASY. When the DFASY exit routine is scheduled or when the RECEIVE is 
completed, the primary application program must determine that it has received a 
Request Shutdown co91mand (rather than some other expedited-flow command) by 
checking the CONTROL field of an RPL. In the case of the DF ASY exit routine, the 
exit routine checks the CONTROL field of the read-only RPL that is available to the 
exit routine. 



Requesting Disconnection with the 
TERMSESS Macro Instruction 

After receipt of the command, the primary application program should issue a 
CLSDST macro instruction for the session as soon as possible. 

An alternative way for a secondary application program to request disconnection is to 
issue a TERMSESS macro instruction. The CID in the ARG field of the RPL or the 
symbolic name in the NAME field of the NIB can be used to identify the primary 
application program from which the secondary program wants to be disconnected. 

The TERMSESS macro instruction specifies (in its OPTCD operand) whether the 
disconnection is to be conditional or unconditional. ACF/VTAM converts the macro 
instruction into a Terminate command (either conditional or unconditional, according 
to the OPTCD operand in the macro instruction). When the Terminate command 
reaches the primary end of the session, the primary application program's LOSTERM 
exit routine is scheduled. The fourth word of the parameter list passed to the exit 
routine contains decimal reason code 20 for an unconditional Terminate and decimal 
reason code 32 for a conditional Terminate. 

A conditional TERMSESS macro instruction leaves disconnection of the secondary 
application program entirely at the discretion of the primary application program. The 
primary application program can issue the CLSDST macro instruction immediately or 
it can perform cleanup operations (including exchange of normal-flow messages with 
the secondary program) before it issues the macro instruction. 

At, unconditional TERMSESS macro instruction causes ACF/VTAM to immediately 
terminate the session. The primary application program should still issue a CLSDST 
macro instruction for the secondary program, but most of the disconnection processing 
will have been completed by the time it issues that macro instruction. No communica· 
tion with the secondary application program is possible after the primary application 
program has been notified. 

Chapter S. Connecting and Disconnecting Logical Units 103 



'\ 



Chapter 6. Communicating with Logical Units 

This chapter contains these major sections: 

An introduction to communicating with logical units 

Using ACF/VTAM to communicate 

Using SNA protocols 

How to communicate with non-SNA 3270 terminals as logical units 

Appendix A discusses use of ACF/VTAM to communicate with BSC terminals, start-stop 
terminals, and (optionally) local non-SNA 3270 terminals. 

An Introduction to Communicating with Logical Units 
ACF/VTAM uses Systems Network Architecture (SNA) concepts to establish communica­
tions between an ACF/VTAM application program and a logical unit (including another 
ACF/VTAM application program). (Some of the basic SNA concepts are described in 
Chapter 1 of this book.) This chapter provides a general description of communication 
facilities. 

Before learning how to communicate with logical units, it is necessary to understand 
some fundamental concepts about communicating with logical units. 

Who ls Communicating: The ACF/VTAM 
Application Program and Logical Units 

Both an ACF/VTAM application program and the logical units with which it 
communicates can contain program logic. This fact implies these general characteristics of 
communication between ACF/VTAM application programs and logical units: 

• The design and coding of those parts of a logical unit and those parts of an 
ACF/VTAM application program that communicate with each other must be 
coordinated. In some cases, for example, both the application program and the logical 
unit may be designed by the same person; perhaps one is designed first and the other 
designed to complement it. This is a probable approach for application programs 
designed to serve a particular kind of logical unit (for example, a 3600 logical work 
station). Or the application program can be designed as a standard program with which 
all logical units must conform, and logical units can be required to meet the 
application program's interface. In either case, both ends of the communication must 
be coordinated. 

• The existence of program logic in a terminal or cluster controller makes it possible to 
remove work from the host computer. The data that is exchanged between an 
application program and a logical unit may vary considerably, depending on what data 
processing (including the addition and deletion of device-control and format characters 
and data editing) can be performed by the logical unit rather than by the application 
program in the host computer. 

What ls Communicated: Messages and Responses 
An ACF/VTAM application program and a logical unit exchange messages and responses 
to messages. A message normally contains data; in addition to or instead of data, a 
message can contain control information (described in ACF/VTAM publications as 
commands or indicators). A response normally contains information about whether a 
particular message arrived and was processed successfully or unsuccessfully; in addition, it 
contains certain control information (commands or indicators). As explained later in this 
chapter, a response does not have to be returned for every message; it is possible for an 
application program and a logical unit to communicate without either side ever sending a 

OJ.apter 6. Communicating with Logical Units 105 



What a Message Contains 

106 

response. (A message corresponds to a SNA request unit [RU] and associated request 
header [RH] indicators. A response corresponds to a SNA response unit and associated 
response header.) 

Figure 6-1 illustrates this exchange of messages and responses between an application 
program and a logical unit. 

A message contains: 

Data 

A command or indicator 

Combinations of the above (for example, data and an indicator) 

Data consists of information that is sent from or received in an ACF /VT AM application 
program's input/output area. Since both an application program and a logical unit contain 
program logic, each has the ability to insert, interpret, and strip off information before 
forwarding it to a terminal operator, to a recording medium, or to some other 
destination. 

Application Program Logical Unit 

SEND 
Message ---------.> 

Response 

RECEIVE 4---------------------------------

Message 

RECEIVE <:::~~~~~~~~~~~~~~~__, 

Response 
SEND 

Legend: 
(for figures in this chapter depicting 
message and response flows) 

--> 
~ 

Message 

Response 

Exception Message 

Negative Response 

Figure 6-1. Exchange Messages and Responses 



What a Response Contains 

Here is an example of data that might be exchanged between an application program and 
a logical unit. An application program receives input from a connected logical unit as the 
result of issuing a RECENE macro instruction. When the RECENE is completed, the 
input area specified in the AREA operand of the RECENE contains data. For example, 
after completion of a RECENE, the input area might contain data in this format: 

Account Amount 
Number Deposited 

Code 

The code was either typed in by an operator at a terminal associated with the logical unit 
or it was inserted by the logical unit based on its analysis of the operator's input. The 
code is interpreted by the application program as a request for passbook update 
processing, and control is passed to the routine that handles that processing. The 
application program might prepare a data reply in this format: 

Code 
Account Amount 
Number Deposited 

New 
Balance 

It sends the reply to the logical unit with a SEND macro instruction, specifying the 
output area in the AREA operand. Any device-control or format information required to 
print the message at a printer or keyboard-display unit is furnished by the logical unit 
when the message arrives. 

In addition to the transaction data, the logical unit can also send certain control 
indicators. For example, the application program and the logical unit may be using 
change-direction indicators to ensure that only one of them at a time is sending (this 
method of communication is described in more detail later in this chapter). On receiving 
the message that contains data, the application program also checks the change-direction 
field of the RPL associated with the completed RECENE request: 

TESTCB RPL=(2),CHNGDIR=CMD 

The TESTCB macro tests whether a Change Direction Command indicator is part of the 
message. If not, the program prepares to receive a further message. If the indicator is in 
the message, the program can send the reply. When a data reply, such as the passbook 
update reply shown above, is prepared, the program can indicate in the reply that the 
next message is to come from the logical unit. To do this, the program includes a Change 
Direction Command indicator by specifying CHNGDIR=CMD in the SEND used to send 
the reply. 

Note that only data is sent from or received in an 1/0 area of the application program; all 
indicators, commands, and response information are sent by being specified symbolically 
and received by being detected in appropriate fields of the RPL. 

Certain commands and indicators can be sent only in messages that do not contain data. 
Examples of these indicators and commands are explained later in this chapter. 

A response to a message contains information about the success or failure of transmission 
and processing of a particular message. In sending a message, the ACF/VTAM application 
program or logical unit specifies the circumstances under which it expects a response to 
the message. When sending a response from an ACF/VTAM application program, 
commands or indicators are specified symbolically in a SEND macro instruction. When 

Oiapter 6. Communicating with Logical Units 107 



receiving a response, response information and ·control commands are available in 
appropriate fields of the RPL associated with the completed RECENE or in a read-only 
RPL provided by ACFNTAM on scheduling the ACFNTAM application program's 
RESP exit routine. 

Defmite, Exception, or No Response Indication: In the example above under "What a 
Message Contains," the message sent by the logical unit (requesting a passbook update) 
might have contained an indicator requesting that: 

• No response be returned, whether the message arrived and was processed successfully 
or not (no response requested) 

• A response be returned only if the mes~age contained a transmission error or could not 
be processed successfully (negative response requested) 

• A response be returned, whether the message arrived with or without error and was 
processed successfully or not (definite response requested) 

A request for no response is feasible if the logical unit has its own means of determining 
failure of the message's transmission, such as using a timer or assuming that the terminal 
operator will resend the message if there is no reply to it from the host computer after a 
certain length of time. In these cases, neither ACF NT AM nor the host application 
program sends a response, because the logical unit is not prepared to receive it. 

Frequently, a logical unit will request that a response (called an exception response or 
negative response) be returned only if the message is not received and processed 
successfully. If the message is received and processed successfully, no response is returned 
by the application program. However, if the message is not received successfully, 
ACF/VTAM indicates this in a return code and in additional information provided in RPL 
fields upon completion of the RECENE; the application program sends a negative 
response. Even when the message arrives successfully, the ACFNTAM application 
program for its own reasons (for example, because it discovers the format of the message 
is improper) can send back a negative response, using the SEND macro instruction with 
STYPE=RESP. The negative response is indicated by specifying RESPOND=EX; 
additional information can be provided by using the SSENSEO, SSENSMO, and 
USENSEO fields of the RPL. 

If the passbook update message above is received and processed successfully and a 
definite response was requested, the ACFNTAM application program sends a positive 
response, using .. a SEND macro instruction and specifying STYPE=RESP (a response) and 
RESPOND=NEX (positive). If some messages require a definite response and others do 
not, the application program determines whether to send a response by testing for a NEX 
indication in the RESPOND field of the RPL associated with a completed RECENE. 

Figure 6-2 illustrates the logical unit requesting (A) that a response be returned in either 
case and (B) that a response be returned only if the message does not arrive or is not 
processed successfully. 

Again, referring to the passbook update example, on sending the message that it prepares 
after performing the passbook update, the ACFNTAM application program can specify 
whether it wants no response, a response only if the message is unsuccessful, or a response 
regardless of what happens to the message. This is done by specifying an appropriate 
indication in the RESPOND operand of the SEND macro instruction. If a response is 

. requested, it is received, by the application program either by a RECENE that specifies 
RTYPE=RESP or by ACFNTAM's scheduling the program's RESP exit routine. When 
the RESPOND field of the SEND RPL is set to· NEX and the SEND macro instruction 
includes the POST=RESP option, the SEND is not completed until the response is 



A Logical Unit Requests a Definite Response 

B 

Application Program ACF/VT AM Logical Unit 

Message 

<:-~~~~~~~~~--'' 

<--------1 
If the message is received and processed normally, 

the application program returns a positive response . 

................... ~ <-----' 
But if the application program detects an error in the 
message or cannot process the message successfully, 

Application Program: Send a definite response 
(positive or negative). 

Positive Response 

Negative Response -------------------+ the application program returns a negative response. 

Logical Unit Requests Only a Negative Response 

Application Program ACF/VT AM Logical Unit 

<----~ 
If the message is received and processed normally, 
the application program returns nothing. 

<-----____.. 
Application Program: Send only a negative 
response if appropriate. 

But if the application program detects an error in the 
message or cannot process the message successfully. 

Negative Response 

------------------~ the application program returns a negative response. 

C Logical Unit Receives an Exception Response (ACF/VTAM Detected) 

Application Program ACF/VTAM Logical Unit 

<r----------1 Incorrectly sent message ............. ,,,,,,,, ...... ~ (for example, incorrect sequence number) 

ACFTVT AM detects error and 
notifies application program Ne.gative Response ----------------+ the application program returns a negative response. 

Figu:re 6-2. A Logical Unit (A) Requests a Definite Response, (B) Requests Only a Negative Response, and (C) Receives an Exception 
Response 

Ctapter 6. Communicating with Logical Units 109 



110 

received. In this case, a RECEIVE is not used to obtain the response; the response infor­
mation is available in the SEND RPL when the operation is complete. 

Definite Response 1 and 2 Indication: In addition to the positive versus negative aspect 
of responses, there is another aspect to any response: wliether it is response type 1 
(formerly FME response) or response type 2 (formerly RRN response). Every response, 
independent of its positive or negative aspect, is designated by its sender as a response 
type 1, response type 2, or both. The meanings of the types of responses are agreed upon 
by the application program and the logical unit involved in the communication and may 
be determined by SNA protocols. 

The application program indicates on each message whether it expects a definite response 
1, a definite response 2, or both, to be returned. Combining these types of responses with 
the positive/negative response types described above yields seven possible combinations 
of response types that can be indicated for a given message: 

Return a definite response 1 (either positive or negative) 

Return a definite response 2 (either positive or negative) 

Return definite responses 1 and 2 (either positive or negative) 

Return only a negative response l 

Return only a negative response 2 

Return only negative responses 1 and 2 

Return no response of any kind 

When definite responses 1 and 2 are requested, the responses are returned together in the 
same response; they are not returned separately. Similarly, when an error occurs and 
negative responses 1 and 2 are requested, the negative responses are returned together. 

The logical unit, like the application program, also specifies for each message the types of 
responses it wants. 

The user should be aware that SNA protocols dictate when responses should be requested 
and what responses are returned. 

Specifying Special Handling of the Response to a Normal-Flow Message or Command: In 
special circumstances, a programmer may want the response to a normal-flow message or 
command to be handled as if it were an incoming normal-flow message from the logical 
unit. To accomplish this the programmer must have specified PROC=ORDRESP in the 
NIB at connection and must specify RESPOND=QRESP in the RPL when the message or 
command is sent. For information on how such responses are handled by ACF/VTAM, 
see "Controlling the Handling of Normal-Flow Responses" later in this chapter. In 
contrast to specifying RESPOND=QRESP, the programmer can specify 
RESPOND=NQRESP, thus telling ACF/VTAM to handle the response in the regular 
manner as a normal-flow response. 

The Three Key Elements in a RESPOND Operand: When a program is sending a message 
or command and is specifying the type of response it wants to receive, it makes the 
specifications either by setting the RESPOND fields of the RPL before issuing the macro · 
instruction or by specifying parameters in the RESPOND operand when the macro 
instruction is issued. There are three potential parameters that can be specified in the 
RESPOND field or operand: 

1. Nature of response desired: 

NEX 
EX 

for positive or negative response 
for negative response only 



2. Type of response: 
FME 
RRN 
FME,RRN 

for response type 1 
for response type 2 
for response types both 1 and 2 

3. Handling of a normal-flow response when PROC=ORDRESP was set in the NIB: 
NQRESP for regular handling 
QRESP for handling as though the response was a normal-flow 

message coming from the logical unit 

Thus, an example ofa RESPOND operand in which all three parameters are specified is: 

RESPOND=(NEX,FME,NQRESP) 

TI1ese parameters indicate that a positive or negative response is to be returned; the 
response is to be type 1 ; and the response is not to receive any special handling by 
ACF/VTAM. 

How Messages and Responses Are Exchanged 
Messages and responses are exchanged by using SEND and RECEIVE macro instructions 
in an ACF /VT AM application program and by similar instructions in a logical unit. Using 
SEND/RECEIVE communication, messages can be sent simultaneously by the application 
program and by the logical unit. Messages that contain certain commands can be sent 
ahead of messages that contain data or other commands. Messages can be queued and 
responses correlated by using sequence numbers (a sequence number is automatically 
assigned to each message). This flow of data, commands, and responses between an 
ACF /VT AM application program and a logical unit can be synchronized, if necessary, by 
stopping the flow, resetting sequence numbers at one or both ends of the message 
exchange, and then restarting the flow. TI1ese concepts are described below. 

The SEND and RECEIVE Macro Instructions 
The ACF/VTAM application program sends and receives messages and responses by using 
the SEND and RECEIVE macro instructions. (A logical unit uses its own corresponding 
instructions to send and receive.) Some messages containing commands and some 
responses can be received by an ACF/VTAM application program by having ACF/VT AM 
schedule an exit routine designed to handle these commands (a DF ASY exit routine) and 
responses (a RESP exit routine); alternatively, they can be handled by a RECEIVE with 
RTYPE=DFASY or RTYPE=RESP specified. 

If required by the transmission services profile in the session parameters, the sending and 
receiving of messages and responses between the ACF/VTAM application program and a 
logical unit cannot begin until a Start Data Traffic (SDT) command has been sent from 
the primary end of the session to the secondary end of the session. When required, the 
SDT command must be sent at the beginning of a session, and it must be sent within a 
session if the message flow is to be restarted after it was stopped (with a Clear command). 
At the beginning of a session, the Start Data Traffic command is sent either by 
ACF/VTAM or the application program, depending on how the SDT field of the NIB was 
set when the OPNDST macro instruction was issued. If the SDT field indicated SYSTEM, 
the SDT command is sent by ACF /VT AM as part of the OPNDST processing. If the SDT 
field indicated APPL, the SDT command must be sent by the application program using 
the SESSIONC macro instruction. To resume message flow after it has been stopped, the 
application program sends the SDT command by using the SESSIONC macro. SESSIONC 
can also be used to halt the flow of messages and responses by specifying CONTROL= 
CLEAR. 

If the secondary end of the session is an application program, a response to that SDT 
command can be sent by ACFNTAM or the secondary application program, depending 

Chapter 6. Communicating with Logical Units 111 



on how the SOT field of the NIB is set when the OPNSEC macro instruction is issued. If 
the SOT field indicates APPL, the response must be sent by the secondary application 
program (using a SESSIONC macro instruction). 

If the secondary end of the session is a device-type logical unit, ACF/VTAM. 
automatically responds to the SOT command . 

.Normal-Flow and Expedited-Flow Messages and Responses 

1:12 

Messages that contain data, messages that contain certain commands (called normal-flow 
commands), and the responses to such data messages and commands form the 
normal-flow traffic between an application program and a logical unit. Normal-flow 
traffic is handled separately from the expedited-flow traffic described below. Normal­
flow messages and commands are sent sequentially, one after the other, through the 
network, and a normal-flow message or command that is sent before another message or 
command arrives sooner. Figure 6-3 illustrates this principle. Similarly, responses to 
normal-flow messages and commands keep their order as they travel through the network; 
a normal-flow response sent before another normal-flow response arrives before the 
second response. Note, however, that ACF/VTAM. does not maintain the exact sequence 
relationship between messages and responses in relation to each other; that is, a response 
sent by a logical unit after a message may be presented to the application program before 
the message. The only way an application program can be sure of receiving normal-flow 
messages and responses in the exact order in relation to each other as they were sent by 
the logical unit is by specifying RESPOND=QRESP (and POST=SCHED) in the RPL used 
to send the message . or command (see "Controlling the Handling of Normal-Flow 
Responses" below). (The reader should also note that use of authorized path in OSNS2 
MVS affects the order in which asynchronous operations are completed, and that because 

Application Program Logical Unit 

Sequence 21 

--------i> 
Sequence 22 

-----> 
Response to Sequence 21 

Sequence 23 

--------.> 
Response to Sequence 23 

Note: No response for 
message with 
sequence number 
22 was required. 

FigUJ:e 6-3. Nonnal-Flow Meuases Axe Sent Sequentially 



of this, the sequences in which messages are received may be affected [see "Coding 
Considerations for OS/VS2 MYS Authorized Path" in Chapter 3].) 

Messages that contain certain other commands (called expedited-flow commands) and 
responses to those commands are sent in a separate flow from the normal-flow messages 
and responses; these form the expedited-flow traffic in the network. Only one of these 
commands can be sent at a time by the application program; a response must be received 
to one expedited-flow command before another can be sent. The expedited-floW 
commands tell the receiver to do something that has higher priority than receiving 
normal-flow messages; for example, to stop sending normal-flow messages or to prepare 
to shut down communication with the other end of the session. Because of this, 
ACF/VTAM sends an expedited-flow command immediately-ahead of any normal-flow 
traffic that may be waiting to be sent. Figure 6-4 illustrates how ACF/VTAM gives 
priority to expedited-flow traffic. 

The messages and responses that are sent on the normal flow and the expedited flow are 
listed in Figure 6-5. The responses to normal-flow data messages are also transmitted on 
the normal flow (and can be called normal-flow responses), and the responses to 
expedited-flow commands are transmitted on the expedited flow (and can be called 
expedited-flow responses). 

Application Program ACFNTAM Logical Unit 

Normal-flow message 101 

--> 
Normal-flow message 102 

----"'!> 
Normal-flow message 103 

--> 
Expedited-flow message 

--> 

101 

--> 
Scheduled for 
output but not 
yet sent. 

This is sent immediately. 
~ It contains an indicator or 
~ _ command but no data. 

-----~· There is no queuing of 
____...,....... expedited-flow messages; 

a response must be re­
ceived before the next 

102 expedited-flow message -------> can be sent. 

103 

--> 
Figure 64. The Difference between Normal-Flow and Expedited-Flow Messages 

Oiapter 6. Communicating with Logical Units 113 



~- ~ ~j.~ 
~ : ...... ~~ 

,.:.· .. 

i' 114 

Normal Flow Expedited Flow 

Data messages Quiesce at End of Chain (QEC) command 

Release Quiesce (RELQ) command 

Bid command Request Shutdown (RSHUTD) command 

Cancel command Shutdown (SHUTD) command 

Chase command Shutdown Complete (SHUTC) command 

Logical Unit Status (LUS) command Signal command 

Quiesce Complete (QC) command Stop Bracket Initiation (SBI) command 

Ready to Receive (RTR) command 

Bracket Initiation Stopped (BSI) command 

Figure 6-S. Messages and Responses Transmitted on the Normal Flow and on the Expedited Flow 

Controlling the Handling ofNonnal-Flow Responses: The macro instruction that sends a 
normal-flow message can be used to control how ACF/VTAM. will handle the response to 
that message. The ability to exercise that control depends on whether PROC= 
NORDRESP or PROC=ORDRESP was specified in the NIB when connection was 
established. 

If PROC=NORDRESP was in effect at the time of connection, the programmer has no 
control over how ACF/VTAM. handles the responses. In this case, all nonnal-flow 
responses (regardless of the QRESP setting) are handled as responses, exactly as they are 
handled in VTAM. Level 2. Thus, PROC=NORDRESP is specified in the NIB when a user 
wants the application program to be executed in ACF /VT AM. as it is executed in VT AM. 
Level 2. 

If PROC=ORDESP was in effect in the NIB at connection, the programmer establishes, at 
the time the nonnal-flow message is sent, the way in which ACF/VTAM. handles the 
response, as follows: 

• When the message is sent with RESPOND=NQRESP in the RPL, the response is 
handled as an ordinary nonnal-flow response-meaning that it can cause completion of 
a POST=RESP operation, will cause scheduling of a RESP exit routine, and will cause 
completion of a RECEIVE RTYPE=RESP . 

• 
When the message is sent with RESPOND=QRESP, the response is not handled as a 
response, but instead is handled as though it were an incoming nonnal-flow message 
from the logical unit-a DFSYN response. This means the "response" will not cause 
scheduling of a RESP exit routine and will not cause completion of a RECEIVE with 
RTYPE=RESP. It will, however, cause completion of the original SEND operation if 
the operation specified POST=RESP. If POST=RESP was not specified in the original 
operation, the application program can get the response by using a RECEIVE with 
RTYPE=DFSYN and checking the RTYPE field of the RPL upon completion. If the 
RTYPE field after completion contains RTYPE=(DFSYN,RESP), the program knows 
it has received a normal-flow response instead of a normal-flow message. 

The key distinction between a NQRESP response and a QRESP response is this: the 
NQRESP response is handled as a regular normal-flow response and is presented to the 
application program in sequence with other normal-flow responses; the QRESP response 
is treated as an incoming nonnal-flow message and is presented to the application 
program in sequence with those messages. A response that satisfies a SEND which 



Sequence Numbers 

specifies POST=RESP and either QRESP or NQRESP, is always delivered immediately by 
ACF/VTAM and thus may get out of order with other normal-flow responses. 

Note that when a program sends a normal-flow message on a session established with the 
ORDRESP NIB option, the POST operand in the macro instruction can be set to SCHED 
or RESP, and the completion of the macro instruction will be based on that setting. In 
VTAM Level 2, when a normal-flow command (as opposed to a data message) is sent, 
VTAM ignores the POST operand and automatically establishes POST=RESP (meaning 
that the operation is not completed until the response has been received). Similarly if 
ORDRESP is specified, the application program must specify the correct RESPOND 
setting for normal-flow commands (normally NEX,FME); whereas, in VTAM Level 2 and 
for NORDRESP, this value of RESPOND is assumed. 

An application program will send most of its normal-flow messages with RESPOND= 
NQRESP. QRESP is used only for particular purposes, as described under "The Chase 
Command" and "Bracket Protocol" later in this chapter. 

In a session, each normal-flow message sent to a logical unit is assigned a sequence 
number by ACF/VTAM. To the primary application program, this number is known as 
the outbound sequence number, but to the logical unit, the number is known as the 
inbound sequence number. The numbering begins with 1 for the first normal-flow 
message sent after connection, and the number is increased by 1 for each subsequent 
message. This process continues until the logical unit is disconnected, unless sequence 
numbers are reset during the session (see "Controlling Flow" later in this chapter). 
(ACF/VTAM also assigns an identification number to each expedited-flow message it 
sends in a session, but those numbers are handled separately from the normal-flow 
sequence numbers.) 

Similarly, the logical unit assigns a sequence number to each normal-flow message it sends 
to the application program. The numbering begins with I, and the number is increased by 
I for each subsequent normal-flow message the logical unit sends. To the logical unit, this 
number is known as the outbound sequence number. To the primary application program 
and the ACF/VTAM that services that program, the number is known as the inbound 
sequence number. ACF/VTAM checks the inbound sequence numbers on the normal-flow 
messages it receives from a logical unit. Should a message arrive out of sequence (that is, 
its sequence number is not I greater than that of the last normal-flow message received), 
ACF /VT AM considers this to be a transmission error and indicates to the application 
program that an out-of-sequence message has been received. 

When a normal-flow response is sent (either a positive or a negative response), the sender 
assigns to it the sequence number of the message being responded to. This provides the 
sender with a means of matching the response with its message. For example, an 
application program can send a group of messages, with each message indicating that only 
an exception response should be returned. Should an exception response be returned, the 
application program can use the sequence number to determine where in the group the 
error occurred. Sequence numbers are also useful for logical units that log each message 
that is received or sent. Figure 6-6 illustrates how sequence numbers are used. Later 
examples in this chapter show more specific examples of their use. 

The SEQNO field of the RPL is used to convey sequence numbers between ACF/VTAM 
and the application program. The application program can determine the sequence 
number that ACF/VTAM assigned to an outbound message by checking the SEQNO field 
after completion of the SEND macro. For an inbound message or response, the 
application program determines the sequence number that was contained in the message 
or response by examining the SEQNO field after completion of the RECEIVE macro. To 

Chapter 6. Communicating with Logical Units 115 



Application Program 

ACF/VT AM assigns the 
sequence number for 
outbound messages. 

Logical Unit 

SEND >· --------------- The logical unit can use the sequence 
The program can determine the sequence number to keep track of messages if 

Sequence 21 

number that ACF/VT AM assigned by they are being logged, 
examining the SEQNO field of the RPL. 

Response to Sequence 21 

RECEIVE 
The program can use the sequence 
number to determine which message was 

The logical unit must specify the · 
sequence number of the message 
being responded to, if a response is 
requested. received and to post an ECB for the SEND 

that was used to send message 21. 

Figure 6-6. How Sequence Numbem Are Used 

Controlling Flow 

116 

assign a sequence number to an outgoing response, the application program puts the 
sequence number into the SEQNO field before issuing the SEND macro. 

The ACFNTAM application program can start and stop the flow of all messages and 
responses between itself and a logical unit. In most cases, the flow begins when the 
application program sends a Start Data Traffic (SDT) command to the logical unit at the 
beginning of a session. Depending on how the SDT field of the NIB is set, the SDT 
command may be sent automatically by ACF /VT AM as part of the OPNDST processing, 
or it may have to be sent by the application program. The flow of messages and responses 
is stopped when the application program sends a Clear command to the logical unit. This 
not only prohibits any further transmission of messages and responses, but also causes the 
sequence numbers of the logical unit and ACF/VTAM to be reset to 0. The first data 
message or normal-flow command, sent is assigned the sequence number 1. The Clear 
command also causes all incoming and outgoing data messages, responses, and commands 
in the network pertaining to the session but not yet received to be discarded. The Clear 
command is sent whenever it is needed to stop the flow of data and to clean up traffic 
flowing in the session. (Sometimes ACF/VTAM automatically sends a Clear.) When the 
Clear command is sent by the application program in the middle of a session, the flow can 
be restarted with the SDT command. The flow of messages and responses can be started 
and stopped any number of times, as illustrated in Figure 6-7. 

The Set and Test Sequence Numbers (STSN) Command: Another command sent with 
the SESSIONC macro instruction is called the Set and Test Sequence Numbers (S'ISN) 
command. This command allows the application program to reset the normal-flow 
sequence numbers and to communicate with a logical unit to establish the proper 

· sequence numbers. An attempt to resynchronize sequence numbers can begin when the 
application program or the logical uriit recognizes that the sequence number of a message 
it has received is not 1 greater than the sequence number of the previous message it 
received. When the logical unit recognizes the sequence n'umber error, it sends the 
Request Recovery (RQR) command to ask the application program to take recovery 
action. When this command is received by the application program, its SCIP exit routine 
is scheduled. 



Primary Application Program Secondary Logical Unit 

OPNDST (Start Data Traffic command._! ----> Data flow can begin. 
can be sent by ACF/VTAM) 

SEND/RECEIVE 
communication is 
possible. 

Only SESSIONC 
communication is 
possible. 

SEND/RECEIVE 
communication is 
possible. 

Only SESSIONC 
communication is 
possible. 

SEND/RECEIVE 
communication is 
possible. 

{1 --<=========-$ 

t.---< ___ > 

CLSDST (Clear command is 
sometimes sent by 
ACF/VTAM 

Pending 1/0 is canceled; 
data flow ceases. 

Figure 6· 7. Starting and Stopping the Flow of Messages and Responses 

Chapter 6. Communicating with Logical Units 117 



118 

The primary application program normally uses the following procedure to resynchronize 
sequence numbers with the logical unit: 

1. The application program issues the SESSIONC macro instruction with CONTROL= 
CLEAR to stop the message flow and to remove all undelivered messages and 
responses pertaining to its session that are still in the network. 

2. The application program then issues the SESSIONC macro instruction with 
CONTROL=STSN to question the logical unit about normal-flow sequence numbers. 
With this macro instruction, the application program can send sequence number 
values to the logical unit and, from the response, determine whether the logical unit 
"agrees" with those numbers. Or, the application program can request the logical 
unit to return whatever values it considers to be the correct sequence numbers. Or, 
the application program can tell the logical unit to set its sequence numbers to 
particular values. To reach agreement with the logical unit, the application program 
may have to send several STSN commands, with the logical unit responding to each 
command. When agreement is finally reached, either the logical unit or the 
application program, or both, may have to return to a previous point in their 
operations and resend one or more messages. 

3. After agreement on sequence numbers is reached, the application program issues the 
SESSIONC macro instruction with CONTROL=SDT to restart the flow of messages 
and responses. 

For examples of the use of the SESSIONC macro instruction with CONTROL=STSN, see 
Figures C-3, C-9, and C-18 in Appendix C. 

Another use of Set and Test Sequence Number commands is for restarting message flow, 
where the ACF/VTAM application program, having taken periodic checkpoints of 
messages that it was sending to a logical unit, wants to inform the logical unit of the 
sequence numbers at which it is restarting after a system, session, application program or 
logical unit failure. 

The Chase Command: The Chase command can be used by an application program at 
any point in its processing to ensure that the program has received all responses from the 
other end of the session. When the other end of the session receives the Chase command, 
it must send any unsent response to previous messages or normal-flow commands before 
it sends the response to the Chase command. Thus, when the sender receives the response 
to the Chase command, the sender knows there are no outstanding responses for that 
session. 

The Chase command is frequently used by an application program before a session 
termination command. For example, a secondary application program that has received a 
Shutdown command might issue a Chase command to get any outstanding responses from 
the primary application program before issuing the Shutdown Complete command. (See 
Figure C-12 in Appendix C.) Or, the Chase command can be issued by a primary 
application program before it issues a CLSDST macro instruction. 

Using the Chase command may cause a problem. When a response cannot be passed 
immediately to the application program, it is placed on a queue to await presentation to 
the program. If the program sends a Chase command with POST=RESP, the operation is 
posted complete as soon as the response to the Chase command is received by 
ACF /VT AM.. If any responses were previously queued for the program, it may not be 
prepared to process them, having interpreted the respons to the Chase command as an 
indication that all responses were received. 

To avoid this problem, the session should be established with PROC=ORDRESP specified 
in the NIB and, the Chase command should be sent with a macro instruction that 
specifies POST=SCHED and RESPOND=QRESP: 



Identifying Logical Units 

SEND RPL=RPLI ,STYPE=REQ,CONTROL=CHASE,POST=SCHED, 
RESPOND=(FME,NEX) 

The response to the Chase is thus handled in order with respect to other normal-flow 
responses. Note that if any outstanding responses might have the QRESP indicator on, 
then the Chase must also be sent with RESPOND=(NEX,FME,QRESP) to ensure that the 
Chase response will be received in order with other responses having QRESP on. 

For more information on the QRESP and NQRESP parameters, see "Specifying Special 
Handling of the Response to a Normal-Flow Message or Command" under "What a 
Response Contains" earlier in this chapter. 

When an application program receives a logon from a logical unit and before it connects 
the logical unit, the application program has available to it the logical unit's user-supplied 
name. This is an 8-byte symbolic name created for the logical unit during ACF/VTAM 
definition. (When the logon is processed by a LOGON exit routine, one word in the 
parameter list passed to that exit routine points to the symbolic name. When the logon 
satisfies an outstanding OPNDST macro with OPTCD=(ACCEPT ,ANY), the NAME field 
of the NIB [pointed to by the RPL] contains the symbolic name.) 

After connection is established with the logical unit (that is, when the OPNDST with 
OPTCD=ACCEPT is completed), the application program is also provided with a 4-byte 
ACF/VTAM-supplied identification (called a communication identifier, or CID) for the 
session with the particular logical unit that has been connected. After the OPNDST is 
completed, the CID is in the ARG field of the RPL used for the connection. The 
application program uses the CID for all I/O requests issued in the specific-mode (all 
SEND requests and all RECEIVE requests specifying OPTCD=SPEC). 

When a RECEIVE macro instruction issued in the any-mode is completed, ACF/VTAM 
provides the identity of the logical unit that sent the data. Since the application program 
will probably communicate with the logical unit in the specific-mode, it is the CID, rather 
than the symbolic name, that ACF/VTAM supplies to the application program. (This CID 
is provided in the ARG field of the RPL used with the RECEIVE macro.) Should the 
identity be significant, the application program has three ways to relate the CID to the 
logical unit's symbolic (user-supplied) name: 

• The application program can use an INQUIRE macro to translate the CID into a 
symbolic name. 

• The application program can maintain a table of CIDs and their symbolic equivalents. 

• When the application program establishes connection with the logical unit, the 
application program can initially assign a 4-byte value to the logical unit (by putting 
the value in the USERFLD field of the NIB), and ACF /VT AM returns the value each 
time that logical unit's data satisfies a RECEIVE. The 4-byte value can be anything the 
application program chooses to associate with the logical unit. It can be used to 
identify the logical unit, or it can contain the address of a subroutine that is to handle 
that logical unit's data. 

Using ACF/VTAM to Communicate with Logical Units 

Using ACF/VTAM to communicate with logical units requires an understanding of these 
major alternatives: 

• Having ACF/VTAM perform an operation synchronously or asynchronously with 
respect to execution of the ACF/VTAM application program (OPTCD=SYNIASY 
specified in the SEND or RECEIVE macro instruction) 

Oiapter 6. Communicating with Logical Units 119 



Major Alternatives 

• For asynchronous operations, having ACF/VTAM post an ECB or having it schedule 
an exit routine when the operation is completed (OPTCD=ASY and either ECB= 
address or EXIT=address specified in the SEND or RECENE macro instruction) 

• Having ACF/VTAM schedule a message to be sent or to send it and confirm its arrival 
(POST=SCHEDIRESP on a SEND) 

• Having a message from any connected logical unit put in an ACF/VTAM application 
program area or having a message from a specific logical unit put in a program area 
(OPTCD=ANYISPEC on a RECENE) 

• Having a logical unit be in continue-any mode or in continue-specific mode 
(OPTCD=CAICS on any RPI.rbased macro instruction) 

• Having a RECENE with RTYPE=DFASY satisfied or having a DFASY exit routine 
scheduled when a logical unit sends an expedited-flow (DF ASY) message 

• Having a RECENE . with RTYPE=RESP satisfied or having a RESP exit routine 
scheduled when a logical unit sends a response 

• Having ACF /YT AM retain or discard portions of an incoming message that is too long 
to fit in the program's unit area (PROC=KEEPITRUNC) 

Some of these alternatives are also discussed in Chapter 3, "Organizing a Program." Here 
they are discussed specifically in relation to communicating. 

Synchronous versus Asynchronous Operations 

120 

Synchronous Requests: An ACF/VTAM application program can request that a 
communication operation be performed synchronously with relation to the execution of 
the program. For example: 

SEND RPL=(2),STYPE=REQ,AREA=AREA1 ,RESPOND=(NEX,FME), 
OPTCD=SYN,POST=RESP 

This macro instruction requests that a message (STYPE=REQ) be sent from AREAi with 
a response to be returned whether or not the message arrives and is processed successfully 
(RESPOND=(NEX,FME)). Execution of the ACF /VT AM application program is sus­
pended because it has made a synchronous request (OPTCD=SYN), and the next 
instruction is not executed until ACF /VT AM has determined that the requested 
operation has been performed. In this case, however, the requested operation is the 
scheduling of a SEND (POST=SCHED) rather than the actual transmission (with 
ACF/VTAM receiving a response). In most cases, when scheduling is specified, 
ACF /VT AM returns control to the requesting program in a relatively short period of 
time; however, certain circumstances may cause a long delay. For example, posting may 
not occur until a pacing response is returned from the logical unit. The ASY option is 
therefore usually preferable. 

Here is another example of a synchronous SEND: 

SEND RPL=(2),STYPE=REQ,AREA=AREA1 ,RESPOND=(NEX,FME), 
OPTCD=SYN,POST=RESP 

For this SEND, the ACF/VTAM application program has to wait until ACF/VTAM 
receives a response to the message (POST=RESP). A program that communicates with 
only a few logical units and can wait for each communication request to be completed 
before doing any further processing might use this kind of synchronous operations; for 
most programs, however, this is not efficient. 

Note that POST=RESP cannot be specified unless a definite response is requested; that is, 
no response (NEX,NFME or NEX,NFME,NRRN) or exception response only (EX,FME 



or EX,NFME,RRN) cannot be specified with POST=RESP, because ACFNTAM would 
never know that the message had arrived. 

Here is an example of a RECENE for 
OPTCD=SYN: 

input from a specific logical unit with 

REC ENE RPL=(2),RTYPE=DFSYN,AREA=AREA1,AREALEN=l00, 
OPTCD=(SYN,SPEC) 

Here, execution of the ACF/VTAM application program is suspended until input arrives 
from the logical unit (whose CID is located in the RPL's ARG field). This is undesirable 
except in simple programs, perhaps where batch input is being received. It is also efficient 
enough if a message is already in ACF/VTAM buffers. This is true, for example, if the 
message received in ACF/VTAM's buffer is larger than the amounts of data read each 
time a RECEIVE is issued (and the KEEP option, described later in this chapter, is used). 

Here is an example of a RECENE for input from any logical unit with OPTCD=SYN: 

REC ENE RPL=(2),RTYPE=DFSYN,AREA=AREA1,AREALEN=200, 
OPTCD=(SYN,ANY) 

Here, execution of the ACF/VTAM application program is suspended until input arrives 
from any connected logical unit that is not in continue-specific mode. This type of 
request is most likely to be used in a program that communicates with only a few logical 
units. It can also be used with a large number of logical units if response time is not 
important. 

Asynchronous Requests: An ACF/VTAM application program can also request that a 
communication operation be performed asynchronously with relation to the execution of 
the program. For example: 

SEND RPL=(2),AREA=AREA1 ,STYPE=REQ,RESPOND=(NEX,FME), 
OPTCD=ASY ,POST=SCHED,ECB=ECBI 

This SEND requests that ACF/VTAM schedule the sending of the data from AREAi to 
the logical unit. As soon as scheduling of the output has been completed, ACF/VTAM 
notifies the program either by posting an ECB (shown here) or by scheduling an RPL exit 
routine. ('lhe relative advantages of posting ECBs and scheduling RPL exit routines are 
discussed in Chapter 3 and below.) 

Rather than the scheduling, the actual sending of a message can be requested to be 
performed asynchronously with relation to the execution of the program. For example: 

SEND RPL=(2),AREA=AREAI ,STYPE=REQ,RESPOND=(NEX,FME), 
OPTCD=ASY ,POST=RESP,EXIT=RPLEXIT 

This SEND requests that ACF/VTAM initiate sending of the message at AREAi and 
immediately return control to the program. When ACF /VT AM receives a response 
indicating the success or failure of the transmission and processing, ACF /VT AM schedules 
an RPL exit routine at RPLEXIT. The program continues processing; the RPLEXIT exit 
routine automatically gets control when this operation is completed. Or, if ECB-posting is 
specified instead of the exit routine, the program continues processing-minus the time 
ACF/VTAM takes to get control and post the ECB-until it discovers the ECB is posted 
or until the program issues a WAIT or a CHECK macro instruction. 

In general, synchronous operations are easier to program but inefficient with regard to 
the amount of processing that the program can do. Asynchronous operations are more 
difficult to program, but are required to handle communication with a reasonably large 
number of logical units. 

Otapter 6. Communicating with Logical Units 121 



Note: If two or more ayncluonOlll requests for the same logical unit are issued, 
ACF/VTAM may not proce11 these reifuests in the same order in which they were issued. 
For example, if two SEND "1tDo instructions specifying POST=RESP, OPTCD=ASY are 
executed for the same logical unit without 1111 intervening CHECK, the second message 
can arrive at the logical unit before the ftrst. 

ECB venus RPL Exit Routine 
If asynchronous operations are requested, each.request can specify that ACF/VT.AM do 
either of two things when the operation is completed: (1) post an ECB or (2) schedule an 
RPL exit routine. 

Here is an example of a SEND macro instruction that specifies that an ECB be posted 
upon completion: 

SEND RPL=(2),AREA•AREA1 ,STYPE=REQ,RESPOND=(NEX,FME), 
OP'fCJ)=ASY ,POST=RESP ,ECB=ECBl 

Figure 6-8 shows the sequence of events that might occur following the issuance of this 
macro instruction. 

Here is an example of a SEND macro instruction that specifies that an RPL exit routine 
be scheduled upon completion: 

SEND RPL=(2),AREA=AREA1 ,STYPE=REQ,RESPOND=(NEX,FME), 
OPl'Cl>-ASY ,POST=RESP ,EXIT=RPLEXIT 

Figure 6-9 shows the sequence of events that might occur following the issuance of this 
macro instruction. 

Scheduled versus Responded Output Operations 
(This alternative is also cliscuuecl above as an example in "Synchronous versus 
Asynchronous Operations.") 

Application Program 

• • 
1 • 

4 

SEND 
Program continues with 
other processing. 

• • • 

When the program discovers the ECB 
has been posted, either by testing the 
ECB itself, or by receiving control 
following a WAIT or CHECK macro, 
it knows the operation is completed. 

> 

ACFNTAM 

2 

3 

ACF NT AM forwards the message tc;> 
the logical unit, returning control to 
the program (OPTCD=ASY); 

When the mponse arrives, 
ACFNTAM pom the ECB 
specified in the SEND. 

FJIUle 6-8. The Genenl Sequence of Events When ECJ1.Po1tina la SpecUied 

122 

-> 



Application Program ACFNTAM 

1 

6 

• • • SEND 
Program continues 
with other processing. 

--> 
• • • 

4 • • • 
The RPL exit routine is executed 
without interruption, performing 
the next step in communicating 
with the logical unit (perhaps 
issuing a RECEIVE or posting an 
ECB so that the main program 
can issue a RECEIVE). It then 
returns control to ACF/VT AM. 

The main program continues. 

2 

3 

5 

ACFNTAM forwards the message 
to the logical unit, returning 
control to the program 
(OPTCD=ASY) . 

When a response arrives, 
ACF/VTAM schedules the 
exit routine specified in the 
RPL. 

ACF/VT AM returns control to the 
main program at the point where it 
was interrupted. 

--> 

Figule 6-9. The Genenl Sequence of Ewnts When an RPL Exit Routine Is Specified 

The ACF/VTAM. application program requests the sending of a message to a logical unit 
in one of two ways: 

• The application program can indicate that as soon as the message has been scheduled 
for transmission and transferred to an ACF /VT AM. buffer area, thus freeing the 
application program's output data area, ACF/VTAM. is to consider the output 
operation completed (by returning control and either posting an ECB or scheduling an 
RPL exit routine, as specified in the output request). This is called scheduled output 
and is illustrated in Figure 6-10. 

• The application program can indicate that ACF/VTAM is not to consider the 
operation completed until the message has been received by the logical unit and a 
response has been returned. This is called responded output and is illustrated in Figure 
6-11. 

Responded output is easier to use, but requires that the output data area not be reused 
until a response has been received by ACF /VT AM.. If the response indicates that an error 
occurred, the data is still available for retransmission. Scheduled output allows the 
application program to send a series of messages that all use the same RPL and, possibly, 
the same output area. It also allows the program to decide whether or not a response to 
the message must be returned. If message chaining is used (discussed later in this chapter), 
a positive response is not required for every message that is sent. 

With responded output, completion status infonnation is returned as part of the 
operation. With scheduled output, the operation is completed when the message is 
scheduled, before ,any completion status infonnation is available. To detennine how the 
output operation was completed, the application program must issue an input request to 
obtain a response containing the completion status infonnation. This is why the 
application program in Figure 6-10 issues three input requests in addition to the three 
output requests. 

Otapter 6. Communicating with Logical Units 123 



Application Program ACFNTAM. Logical Unit 

Message No. 1 Message No. 1 
SEND 1 I > 

--· --- '----> 
Message No. 2 

SEND 1 completed, 
output area is free. 

SEND 2 _, ---·----..> -'-----> 
Message No. 2 

SEND 2 completed, 
output area is free. 

Message No. 3 
SEND3 -'-----...> 

SEND 3 completed, 
output area is free. 

RECEIVE 
completes or41A _______ R_e_s_p_o_ns_e_N_o_._1 _______ _ 
RESP exit "'111111 

routine is 
scheduled. I > ----

Message No. 3 

Response No. 2 
RECEIVE 
completes or 4 
RESP exit ....... --------------------
routine is 
scheduled. 

RECEIVE Response No. 3 
completes or""~--------------------
RESP exit 
routine is 
scheduled. 

Figure 6-10. Scheduled Output 

Receiving Input from any Logical Unit versus Receiving Input 
from a Specific Logical Unit . 

124 

The ACF/VTAM application program can obtain data from a specific logical unit, or it 
can request data from any one of its connected logical units. The application program 
designates the desired mode-specific or any-with each RECENE macro instruction. 
These two modes are called, respectively, the specific-mode, and the any-mode. 

In general, an application program initially requests input from a logical unit in the 
any-mode, and then communicates with the logical unit in the specific-mode until the 
transaction, inquiry, or conversation is completed. While communications proceed with 
one logical unit, the application program keeps a RECENE macro instruction (issued in 
the any-mode) pending so that a new transaction, inquiry, or conversation can be handled 
while the previous ones continue. · 

In the any-mode, the application program does not know the identity of the logical unit 
until the data has been moved into its input area and the RECENE has peen completed. 
Since the logical unit is initially unknown, the amount of incoming data may also be 
unknown. This means that the application program must either reserve an input area large 
enough to hold the largest possible amount of incoming data or execute additional 
instructions to handle overlength data. On the other hand, the any-mode allows the 
application program to use just one input area for data from all of its logical units, rather 
than using a separate input area for each of its logical units. 



Application Program ACF/VT AM Logical Unit 

SEND 1 I > -· --"--'! 
Message No. 1 

I - ---___,> Message No. 1 

SEND 21 ... ---------.> Message No. 2 

Message No. 2 

-------> 
Message No. 3 

SEND 3 ... • ---------.> 
4 Response No. 1 

SEND 1 completed 

Message No. 3 

I > 
~ Response No. 2 

SEND 2 completed 

4 Response No. 3 

SEND 3 completed 

Figuie 6-11. Responded Output 

With the specific-mode, the application program must specify the identity of the logical 
unit supplying the data. Since the identity of the source is known, the size of the input 
data is more predictable than with the any-mode. A disadvantage is that, since any given 
logical unit may not supply data for some time, the application program may have to 
contend with unused data areas. The simplest way to avoid this problem is to not issue 
RECEIVE requests in the specific-mode unless data has already arrived in ACF /VT AM's 
buffers or is expected to arrive in a relatively short time. 

Input data areas can be more efficiently managed by using a combination of 
specific-mode and any-mode. As an example, consider an application program that 
obtains an inquiry from any of its logical units, handles that inquiry with a series of 
SEND and RECEIVE macro instructions, and then obtains a new inquiry. Part of such a 
program is illustrated in Figure 6-12. 

The Continue-Any versus the Continue-Specific Mode 
The example in Figure 6-12 assumes that 1/0 requests are handled synchronously. The 
application program handles each inquiry serially, never accepting a new inquiry until it 
has completed the previous one. Although this procedure might be suitable for 
application programs that deal with short inquiries and a few logical units, most 
applications require handling inquiries in parallel. 

Chapter 6. Communicating with Logical Units 125 



126 

Application Program 

RECEIVE 

• • • 

(Any) 

Call appropriate subroutine 

SEND 

• • • 
RECEIVE 

• • • 
SEND 

• • • 
RECEIVE 

• • • 
SEND 
Return 

The application program begins by accepting data 
in the any-mode. When an inquiry is eventually 
received, the data and the identity of the logical 
unit are passed to the application program and the 
RECEIVE request is completed. The application 
program can now call the subroutine that handles 
the type of inquiry or handles the particular 
logical unit that made the inquiry. 

(Specific) 
The subroutine sends to the logical 
unit and receives from it in specific-
mode (output requests are always 

(Specific) directed to a specific logical unit). 
The size of the subroutine's input 
area can be limited, since the identity 
of the logical unit is known. The 

(Specific) input area probably does not remain 
unused for long, since the subroutine 
is in the midst of a conversation 
with the logica.1 unit . 

(Specific) 

I I I 
(Specific) Once the inquiry has been satisfied, the 

application program again issues the 
RECEIVE in the any-mode and waits 
for the next inquiry to arrive. 

Figure 6-12. Example of Using Any-Mode and Specific-Mode to Handle an Jnquhy from a Logical Unit 

An application program that handles more than one inquiry concurrently (Sample 
Program 2 in Part 3 is an example) can use asynchronous request handling and issue new 
RECEIVEs in the any-mode before the previous inquiry is completed. This, however, 
raises the possibility that both a RECEIVE for a specific logical unit and a RECEIVE for 
any logical unit (which includes the specific logical unit as well) might be awaiting data at 
the same time. Consequently, data that is meant to satisfy the subroutine's RECEIVE 
might instead be intercepted by the RECENE in the main program, which is meant only 
to receive new inquiries. 

To eliminate this sort of problem, ACF/VTAM allows the application program to indicate 
when a particular logical unit's data can be received by a RECEIVE macro instruction 
issued in the any-mode, and when the data must be received by a RECENE macro 
instruction issued in the specific-mode. The former is called continue-any mode, and the 
latter is called the continue-specific mode. These modes are designated when an 1/0 
request is issued, but do not become effective until the 1/0 operation is completed. The 
RESETSR macro instruction can also be used to reset the mode for a logical unit. Figure 
6-13 illustrates how the various modes described above relate to one another. 



An Explicit RECEIVE versus DF ASY and RESP Exit Routines 
for Responses and Expedited-Flow Commands 

RECEIVE 
RECEIVE 
RECEIVE 

• • • 

An ACFNTAM application program that may recieve expedited-flow commands (for 
example, a Quiesce at End of Chain command} or that may receive responses has a choice 
of ways in which this kind of input can be received. A RECEIVE can be used in which 
RTYPE=DFASY (for commands} or RTYPE=RESP (for responses) is specified, or both 
can be specified in the same RECEIVE. In addition, normal input can complete the same 
RECEIVE (for example, RTYPE=(DFSYN,DFASY,RESP can be specified}. The program 
then examines the RTYPE field of the RPL to determine which kind of input was 
received and branches to an appropriate routine. Alternatively, RECEIVEs can be used 
only for normal-flow messages, and the addresses of the special input routines can be 
designated (the DFASY and RESP exit routines) in an EXLST macro instruction to 
handle responses and expedited-flow commands using exit routines, however, requires 
execution of more system instructions to schedule the exit routines and is therefore less 
efficient than checking the RTYPE field. 

Any, Continue-Specific 
Any, Continue-Specific 
Any, Continue-Specific 

Application Program 

The application program begins by issuing three RECEIVEs in the any­
mode. Continue-specific mode is also designated for each one; this 
means that once a logical unit sends data and causes one of the 
RECEIVEs to be completed, subsequent data from that logical unit can 
only be obtained with RECEIVEs issued in specific-mode . 

~~:ii1t~f~r data to arrive. 
L:...:.'.Jpropriate subroutine. 

When the data arrives, the appropriate subroutine determines if the 
inquiry is completed. If it is not, the subroutine exchanges data in the 
specific-mode. The logical unit is kept in the continue-specific mode 
so that the arriving data can only satisfy the RECEIVE issued in the 
specific-mode, not one of the RECEIVES issued in the any-mode. 

End of inquiry? 

No 

Yes 

SEND 

• • • 

Continue-Specific 

RECEIVE Specific, Continue-Specific 
Return to main program. 

SEND 

• • 
• 

Continue-Any 

Return to main program. 

If, however, the subroutine determines 
that the inquiry is at an end, a final record 
is sent to the logical unit. The subroutine 
specifies the continue-any mode on the 
SEND; this ensures that the logical unit 
being sent to, like all the other logical 
units in the continue-any mode, will be 
able to satisfy the RECEIVE macro 
instruction in the any-mode in the main 
program and begin a new inquiry. 

Figure 6-13. An Example of .Using Continue-Any and Continue-Specillc Modes to Handle Conc1111ent Inquiries 

<llapter 6. Communicating with Logical Units 127 



Handling Overlength Input Data 
When an application program issues a RECENE macro instruction, the length of the 
incoming data is often unpredictable. As noted earlier, this is particularly true of 
RECENE macro instructions issued in the any-mode. ACF/VTAM provides two ways of 
handling data that is too large for the input area: 

• ACF/VTAM can discard the overlength data. 'The excess data is lost. This facility, 
called the TRUNC (truncate) option, is useful in applications that must impose rigid 
size limitations on input data. For example, an inventory-control application might 
require the logical unit to supply an account number no longer than 10 bytes. 

• ACF/VTAM can keep the data. ACF/VTAM fills the input area, saves the remainder, 
and completes the input request. Additional input requests must be issued to obtain 
the excess data. This facility is called the KEEP option. 

When the data message read by ACF/VTAM is larger than the number of bytes specified 
in the AREALEN operand of a RECEIVE macro instruction, the RECLEN field of the 
RPL. indicates, after completion of the RECEIVE, the number of bytes that were 
available before the RECEIVE was executed. This characteristic of the RECLEN field is 
shown in Figure 6-14. 

The application program can select the appropriate option when the logical unit is 
connected (PROC=TRUNCIKEEP specified in the NIB). Or it can select it when the 
RECENE is issued (OPTCD=TRUNCIKEEP specified in the RPL). 

Application Program 

(OPTCD=KEEP was specified in 
the NIB at connection I 

• 
• 
• 

© RECEIVE ... , AREALEN=80, ... 

After completion of this RECEIVE, 200-byte message in i< RECLEN field of RPL=200 ACF IV TAM buffer 

® 
~ 

200-byte message received 
RECEIVE ... , AREALEN=80, ... 

© @ ® 
by ACF/VT AM from 

After completion of this RECEIVE, logical unit 
RECLEN field of RPL=120 

® RECEIVE ... , AREALEN=40, ... 

After completion of this RECEIVE, 
RECLEN field of RPL=40 

• 
• 
• 

Application 
Program Buffers 

l L 80 bytes 

J -

[ 1 ... 80 bytes 

1 --

l L.-. 40 bytes 

_f -

Figure 6-14. An Example Showing Values in the RECLEN Field of an RPL 

128 



Using SNA Protocols 

Chaining 

The major alternatives described above are of interest to all ACF/VTAM. application 
program designers. Here are some additional facilities that not every user will require, but 
which should be considered: 

• The chaining of messages so that the number of responses required is minimized 
(CHAIN=ONLYIFIRSTIMIDDLEILAST) 

• The quiescing of messages so that a sender can be told to temporarily stop sending 
when, for example, an input buffer is about to overflow (CONTROL=QEC) 

• A method of communication that ensures that only the ACF/VTAM. application 
program or the logical unit can be sending at one time, using either: 

- Quiesce protocol 

- Change-direction protocol 

• A method of communication that ensures that unexpected output from aJ). 

ACF/VTAM. application program will be postponed until completion of an existing 
transaction (bracket protocol) 

Figures C-6, C-7, and C-8 in Appendix C show examples of quiesce, bracket, and 
change-direction protocols. 

Application programs (or logical units) can group any number of messages into a set 
called a chain. The sender can indicate which part of a chain is being transmitted-the 
first message of the chain, the last message of the chain, neither (the message is 
somewhere in the middle), or both (the message is the sole element of the chain). 

Systems Network Architecture (SNA) allows only three types of chains to be used: 

No-response chain, in which each element in the chain requests no response. 

Exception-response chain, in which each element in the chain requests a negative 
response only. 

Definite-response chain, in which the last element in the chain requests a definite 
response and all other elements request a negative response only. 

With these types of chains, no more than one response per chain is sent from the receiving 
logical unit. 

The sender of a chain can at any time send a Cancel command to the receiver (the sender 
might send this command because the receiver has returned a negative response). The 
Cancel command informs the receiver that the current chain is abnormally terminated, 
that the receiver will receive no further elements in the chain, and that the receiver may 
want to discard the chain elements it has already received. 

The actual unit of work that the chain represents is determined entirely by the 
application program and the logical unit. When connection is established, the application 
program and logical unit determine what chaining protocols are to be used. 

Figure 6-15 illustrates a possible use of chaining. In this example, a logical unit submits an 
inquiry to the application program. The application program can obtain various pieces of 
information from data files and send them to the logical unit as each becomes available. 
By chaining the output requests, the application program has a convenient way of telling 
the logical unit whether any given piece of data represents the beginning, middle, or end 
of a reply to an inquiry,. 

Figure 6-16 shows the use of chaining illustrated by Figure 6-15 in more detail. Chaining 
is also shown in Figure C-5 in Appendix C. 

Ctapter 6. Communicating with Logical Units 129 



Request and Response Modes 

130 

Application Program Logical Unit 

DASO 
1/0 
Requests 

Message 
(Inquiry) 

<----
Response 

First Message in Chain > 
-----Respond only if received 

as exception message 

-----> Respond only if received 
as exception message 

• • • 
Last Message in Chain > -------Respond 

Response 

Figure 6-15. An Example of Message Qiaining 

Request 
information 
from data 
base 

Display 
data in 
message 
chain 

When session parameters are sent to a logical unit as part of the connection process, 
certain combinations of protocol bits establish certain request and response modes. 
Essentially, the bits indicate whether chaining will be permitted, how often a response 
will be requested, and in what order the responses must be returned. 

There are two modes in which the senders of messages can operate: immediate control 
mode or delayed control mode. 

Immediate Control Mode: When operating in this mode, the sender sends only 
single-element messages (that is, cannot send a chain), and the sender requests a definite 
response to each single-element message. After sending each message, the sender must 
wait for a response before sending the next message. 



Application Program 

The data for the chain may be passed all at 
once to an output routine by a processing 
routine, or it may be passed in sections by 
the processing routine, which is doing multiple 
disk reads. This example assumes the data is 
passed all at once to the output routine, which 
sends it in a five-element chain. 

Normal Sequence 

1. The output routine first issues 
SEND RPL=RPLLUl .AREA=(21, 

RECLEN=15,STYPE•REQ, 
CONTROL=DATA,OPTCD• 
SYN,POST=SCHEO, 
RESPONO=(EX,FMEI. 
CHAIN=FIRST 

2. When the SEND is scheduled, the output 
routine obtains the sequence number of 
the first element sent from the SEONO 
field of the APL and saves it, using the 
SHOWCB macro instruction. 

3. The output area address is updated and the 
second element is sent with 
SEND RPL=RPLLU1 ,AREA=(2). 

RECLEN=15, 
CHAIN=MI ODLE 

4. The output area address is updated and the 
third element is sent as in step 3. 

Sequence number 50 

Sequence number S 1 

Sequence number 62 

.. 
',> 
( 

Logical Unit 

The logical unit receives the first 
chain element and saves the data 
in a buffer. _:> 

March 30, 1974 

The logical unit receives the second 
chain element and puts it in the 
buffer. _::, 

( March 30, 1974 
---+-~ .... ~---J-o_h_n_S_m--it-h--------~ 

The logical unit receives the third 
element and puts it in the buffer. ~i 

March 30, 1974 

John Smith 
.. $90.22 

Figure 6-16 (Part 1of2). An Example of Sending a 08n of.....,. to a Lqpcal Unit That Is Buffering Data 

Olapter 6. Communicating with Logical Units 131 



Application Program 

5. The output area address is updated and the 
fourth, element is sent as in step 3. 

6. The output area address is updated and the 
last element is sent with 
SEND RPL=RPLLU1 ,AREA=(2l, 

RECLEN=15,CHAIN=LAST, 
RESPOND=(NEX,FME) 

7. The application program receives the 
response (in a RESP exit routine or by comple­
tion of a RECEIVE with RTYPE=RESP 
specified). An ECB associated with 
completion of sending the chain is posted. 

If an Exception Occurs 

Errors or special conditions are detected 
by a negative response returned to an element 
in the chain. 

A sequence-number-error indication in a 
negative response indicates some unrecoverable 
error and requires either disconnecting the 
logical unit or using the Clear, STSN, and SOT 
operands of the SESSIONC macro instruction 
to resynchronize communications. 

Sequence number 53 __... 

Sequence number 54 __.... 

( 

~esponse to sequence number 54 

Logical Unit 

The logical unit receives the fourth 
element and puts it in the buffer. "') 

March 30, 1974 

John Smith 

$90.22 

Ninety 

The logical unit successfully receives 
the last element and puts it in the 

buffer. ") 

March 30, 1974 

John Smith 

$90.22 

Ninety .. Account 9 

The logical unit then sends the buffer 
of data to the printer or other device. 

The logical unit sends a positive 

response 1 to the last 
element in the chain. 

Figure 6-16 (Part 2 of 2). An Example of Sending a Chain of Messages to a Logical Unit That Is Buffering Data 

132 



Quiescing 

Delayed Control Mode: When operating in delayed control mode, the sender may send 
single-element messages and may also send multiple-element messages (chains). There are 
two forms of delayed control mode: 

Immediate request mode: The distinguishing characteristic of this mode is that the 
sender may send a series of elements constituting one or more complete chains and ask 
for a definite response only in the last element in the series. In addition, once the 
sender has requested a definite response, it will send no other element until it receives 
the definite response. Thus, if the sender is sending a series of single-element messages, 
only the last single-element message will request a definite response; the other 
single-element messages will request an exception response only. If the sender is 
sending a chain, only the last element in the chain will request a definite response. If 
the sender is sending multiple chains, only the last element in the last chain requests .a 
definite response; all preceding elements ask for an exception response only. 

Delayed request mode: The distinguishing characteristic of this mode is that, while the 
sender may insert requests for definite responses into the series of elements it is 
sending, it is not required to wait for any of those responses. This mode can be used to 
send multiple chains, with a definite response requested in the last element of each 
chain (all other elements in each chain would request an exception response only), and 
the sender can send any number of chains before stopping to wait for responses. 

The receiver may be in either of two modes: 

Immediate response mode: The receiver sends responses in the same order as the 
sender requested them. Thus, when the sender receives a response, it can infer that the 
receiver has received all preceding elements and that no negative responses will be 
forthcoming for those preceding elements. 

Delayed response mode: The receiver need not return responses in the same order as 
they were requested. A response for one element may be delayed beyond the response 
for a subsequent element. There is one restriction, however, on the receiver. The 
receiver must send responses for elements preceding a Chase command before it sends 
the response to the Chase command. 

ACF/VTAM provides a set of commands that the application program can use to request 
a logical unit to stop sending normal-flow messages (data messages and data flow control 
commands) to the program. A logical unit can also request that the ACFNTAM 
application program stop sending. 

One use of this facility is to ensure that, at a given time, only one side (the ACFNTAM 
application program or the logical unit) can send normal-flow messages. (This use of the 
quiesce commands is described below as "quiesce protocol.") 

Another use of quiescing is to stop the other end of the session from sending because of a 
temporary condition or problem. This action is usually needed when the sender is sending 
a long chain or a series of chains and the receiver wants the transmissions to be stopped 
temporarily. Often, the receiver needs to halt the transmissions because the receiver is 
running out of buffer space in which to store the incoming data. Another reason is· to 
stop the incoming messages long enough to allow the receiver to send an informational 
message of its own. 

To understand how quiescing works, consider the situation in which the receiver is 
running out of buffer space. Assume that this condition develops at the logical unit while 
the application program is in the middle of sending a chain to the logical unit. To tell the 
application program that it should stop sending data, the logical unit sends a Quiesce at 
End of Chain (QEC) command to the application program. The exact meaning of that 
command must have been worked out between the logical unit and the application 

Chapter 6. Communicating with Logical Units 133 



program before the programs were coded. Receipt of the command might mean "stop 
sending immediately and do not complete the chain," or it might mean "stop sending 
after you complete the current chain." If it means "stop sending immediately," the 
application program can send a Cancel command or a special message to tell the logical 
unit to discard the beginning of the chain. If the QEC command means "complete the 
chain before stopping," the application program continues sending elements until the 
chain is completed. In either case, the application program signals its compliance with the 
QEC request by sending a Quiesce Complete (QC) indicator to the logical unit. The 
logical unit then continues disposing of previously received elements (perhaps by printing 
them or by writing them to disk storage). 

When buffers are available to hold more incoming data, the logical unit sends a Release 
Quiesce (RELQ) command to the application program. Upon receipt of that command, 
the application program recommences sending (either at the beginning of the aborted 
chain or at the beginning of a new chain, depending upon the agreed-upon protocol). 
Figure 6-17 illustrates the use of quiescing to prevent buffer overflow. 

After the application program stops sending elements and before it sends the Quiesce 
Complete indicator, the program can send certain normal-flow commands. For example, 
at that point, the application program can send a Chase command to ensure that it has 
received all responses before it sends the Quiesce Complete indicator. 

Protocols for Ensuring Orderly Communications 

134 

Certain types of devices are limited in their communication with each other to specific 
directions of traffic flow. Some devices can only send messages; others can only receive 
(master/slave or simplex). Some devices can both send and receive, but can only do one 
of them at a time (half duplex). Others can send and receive simultaneously (full duplex). 
These characteristics are one factor that affect the selection of session parameters, which 
are sent by the application program to the logical unit when connection is established (see 
"Establishing Session Parameters during Connection" in Chapter 5). Other factors that 
affect the selection of session parameters are (1} the type of communication that will 
take place (interactive versus batch, for example) and (2) particular conventions that are 
agreed upon between programmers before the host application program and the logical 
unit program are written. 

Systems Network Architecture (SNA) provides several protocols that enable the 
application program and the logical unit to coordinate and control the direction of flow 
and their exchanges of messages. None of these protocols is enforced by ACF/VTAM; 
ACFNTAM sends the commands and indicators specified by the sender without checking 
them and without comparing them to the current status of communications. It is the 
responsibility of the application program and the logical unit to abide by the 
communication rules (the session parameters) they agreed upon when the connection was 
established. 

Quiesce Protocol: As described above, the quiesce commands can be used to temporarily 
stop the sender from sending when the receiver encounters a problem or special 
condition. Another use of the quiesce commands is to ensure that, at any one time, only 
one end of the session (the application program or the logical unit) can send normal-flow 
messages. This second use of the quiesce commands is called quiesce protocol. 

In this protocol, one en4.of the session controls the direction of flow by using the quiesce 
commands to "tum off' normal-flow transmission by the other end of the session. For 
example, assume that the application program is to control the direction of flow. 
Whenever the application program has not quiesced the logical unit, th~ logical unit is free 
to send normal-flow messages. When the application program wants to start sending, it 
informs the logical unit by transmitting the Quiesce at End of Chain command on the 



Application Program 

r 

The ACF/VT AM application program is sending 

continuous chains 1 of data to the logical unit fo 
a printout. Each chain contains five elements. 
Each element is sent with a SEND macro 
instruction. A processing routine passes the data 
for each chain to the output routine. This 
example begins with a new chain being sent by 
the output routine. 

1. Sends the first chain element with 
SEND RPL=RPL1,AREA=(2), 

RECLEN=120,STYPE= 
REQ,CONTROL=DATA, 
CHAIN=FIRST,OPTCD= 
SYN,POST=SCH ED, 
RESPOND=(EX,FME) 

2. Updates the data area address in register 2 
and sends the second chain element with 
SEND RPL=RPL1,AREA=(2), 

CHAIN=MIDDLE 

3. Updates the data area address in register 2 
and sends the third chain element with 
SEND RPL=RPL 1,AREA=(2), 

CHAIN=MIDDLE 

4. Updates the data area address in register 2 
and sends the fourth chain element with 
SEND RPL=RPL 1,AREA=(2), 

CHAIN=MIDDLE 

5. ACF/VTAM schedules the program's DFASY 
exit routine or completes a RECEIVE that 
specifies RTYPE=DFASY. The RPL contain 

QEC in the CONTROL field. (If requested b 
the application program, ACF/VTAM will 
have sent a response to the OEC command.) 

s 
y 

G. The program sets a program-defined flag 
indicating that, for this logical unit, the next 
output request after sending the present chain 
is to be held in abeyance until the quiesce is 
released. 

7. The program updates the data area address 
and schedules the sending of the fifth and 
last element in the chain with 
SEND RPL=RPL 1,AREA=(2), 

CHAI N=LAST, 
RESPOND=(NEX,FME) 

Sequence number 26 

"> ...... 

Sequence number 27 

~ ..... 

Sequence number 28 

-'> .... 

ACF/VTAM schedules the output 
but has not yet sent it when ... 

Expedited-flow message; no normal-
~w sequence number 

re; 

Logical Unit 

Receives first chain element success­
fully and stores it in a buffer. (No 
response is required.) 

Receives second chain element success­
fully and stores it in the buffer. 

Receives third chain element success­
fully and stores it in the buffer . 

... The logical unit recog-
nizes that it is running low on buffer 
space because it is receiving data faster 
than it can print it. The logical unit 
must tell the application program to 
stop sending. This will give the logical 
unit time to clear out some of its 
buffers. It sends a Quiesce at End of 
Chain (QEC) command. 

Figure 6-17 (Part 1 of 2). An Example of a Logical Unit Quiescing an Application Program in Order to Interrupt Continuous Sending 

Cllapter 6. Communicating with Logical Units 135 



Application Program 

8. (Meanwhile, ACF/VT AM sends the fourth 
chain element scheduled at step 4.) 

9. (The last chain element, scheduled at 
step 7, is sent.I 

10. Receives a positive response to the last chain 
element, either in an RESP exit routine or 
with a RECEIVE with RTYPE=RESP. Posts 
an ECB associated with sending the chain. 

11. Sends a Quiesce Complete (QC) control 
command to the logical unit with 
SEND RPL=RPL1,STYPE=REQ, 

CONTROL=QC 
(POST=RESP is assumed) 

12. Has the ECB associated with the QC SEND 
posted by ACF/VT AM. 

13. The application program refrains from 
sending any normal-flow messages to the 
logical unit. The program does other 
processing or relinquishes the CPU to 
another program ... 

14. Receives the RELQ in a DFASY exit 
routine or by completion of a RECEIVE 
with RTYPE=DFASY. Turns off the hold­
sending flag associated with the logical unit, 
sets the address of the output routine to be 
branched to, and posts an ECB for the 
logical unit (if using a DFASY exit routine). 

15. Sends the first element in a new chain, as at 
step 1 on the preceding page. 

16. The output routine resumes sending at the 
request of the processing routine. The first 
element of the chain is sent with 
SEND RPL=RPL1,AREA=(2), 

RECLEN=120,STYPE= 
REQ,CONTROL=DATA, 
CHAIN=FIRST, 
OPTCD=SYN ,POST= 
SCHED,RESPOND= 
(EX,FME) 

Sequence number 29 

Sequence number 30 

Response to 
Sequence number 30 

Logical Unit 

Receives fourth chain element success­
fully and stores it in the buffer. 

Receives last element of chain success­
fully. puts it in the buffer, and sends 
the entire buffer to the printer. 

--------------+ Since a definite response was 
requested, a definite response is sent. 

Sequence number 31 

Response to 
Sequence number 31 

Receives the QC. 

111111•~------------~~ Sends a response to the QC. 

Expedited-flow message, 
so no normal-flow 
sequence number 

. .. Meanwhile, the logical unit contin­
ues printing data and thereby emptying 
buffers until it reaches a point at which 
sufficient buffers are available to 
accept more input. 

Sends a Release Quiesce (RELQ) """"--------------+- command meaning that the logical unit 
is ready to resume receiving chains for 
printout. 

Sequence number 33 

Receives the first chain element 
successfully and stores it in a buffer. 
(No response is required.I 

1 Chaining is shown in this example. However, quiescing can also be performed when continuous sending does not involve 
chaining (each SEND specifies CHAIN=ONL Y). 

Figure 6-17 (Part 2 or 2). An Example or a Logical Unit Quiescing an Application Program in Order to Interrupt Continuous Sending 

136 



expedited flow. On receipt of that command, the logical unit knows that it must stop 
SP,nding normal-flow messages when it completes sending the current chain. The logical 
unit also knows that the next normal-flow transmission will come from the application 
program. The application program then starts sending normal-flow messages and 
continues until it sends the Release Quiesce command to the logical unit. On receipt of 
that command, the logical unit knows that it can again start sending normal-flow 
messages. In this way, the application program alternately grants the logical unit 
permission to send (by transmitting the Release Quiesce command) and stops the logical 
unit from sending (by transmitting the Quiesce at End of Chain command). The direction 
of flow can similarly be controlled by the logical unit. 

Quiesce state appli~s only to normal-flow traffic. While a program or logical unit is in·· 

quiesce state, it can send responses and expedited-flow commands. Figure 6-18 shows an 
example of quiesce protocol. 

Application Program Logical Unit 

<....---------':] 

<-----
.....____ ___ > 

Quiesce Command 

<-----
<---~ 

Quiesce Complete Command 

.....___ ___ > 
,_____ __ __,> 
.....____ ___ > 
----> 
----> Release Quiesce Command 

<------' 
<------' 

Figure 6-18. Quiesce Protocol 

Both nodes can send and 
receive 

As soon as the logical unit 
replies to the Quiesce 
command by sending a 
Quiesce Complete 
command, it can no longer 
send normal-flow data 
messages or commands. 
The logical unit can receive 
data messages and 
commands but can send 
only responses and 
expedited-flow commands. 
As soon as a Release 
Quiesce command is 
received, the logical unit 
can again send normal-flow 
data messages and 
commands. 

Note: Responses are not shown 

Chapter 6. Communicating with Logical Units 137 



J38 

Change-Direction Protocol: In this proto~ol, the application program and the logical unit 
alternately relinquish the ability to se~d normal-flow messages by transmitting the 
Change Direction Command indicator to the other end of the session. This protocol is 
used in the half-duplex mode of communication, which is the mode in which a unit can 
either send or receive but cannot do both at the same time. 

There are two forms of half-duplex communication: half-duplex flip-flop communication 
and halfduplex contention communication. In half-duplex flip-flop communication, one 
end of the session (the application program or the logical unit) is designated in the session 
parameters as the first to send a message after a session is established; thereafter, the 
program and the logical unit notify each other, in turn, that the other side can begin 
sending normal-flow messages. In half-duplex contention communication, after connec­
tion has been established, the application program and the logical unit can both attempt 
to start sending a normal-flow message at the same time (called contention). The one that 
is allowed to proceed is the one that was designated in the session parameters as the one 
that would always win in a contention situation. Similarly, in contention communication, 
when either end of the session finishes sending a chain of normal-flow messages, both 
ends can attempt at the same time to start sending a new message; again, the winner of 
the contention is the one designated as such in the session parameters. 

One bit in the common protocol portion of the session parameters controls priority for 
initial sending in half-duplex communication. One setting of the bit indicates that the 
logical unit has priority for sending; that is, (I) in flip-flop communication, the logical 
unit is to send the first normal-flow message in the session, or (2) in contention 
communication, the logical unit is to win the contention. The other setting of the bit 
indicates that the application program is to have priority for sending. 

Change-direction protocol must be used in half-duplex flip-flop communication; the 
protocol may optionally be used in half-duplex contention communication. 

Change-direction protocol works like this: The side that is the first to send continues 
sending normal-flow messages until it reaches the end of the data it wants to send. In the 
last element of the last chain, the sender includes a Change Direction Command indicator. 
The other side then sends normal-flow messages until it relinquishes its ability to send by 
including the Change Direction Command indicator in the last element of a chain. 
Communication continues to alternate in this fashion indefinitely, as shown in Figure 
6-19. 

While the receiver is awaiting the Change Direction Command indicator, it can transmit 
(as part of a response) a prompting indicator to the other side that in effect says, "I 
would like the Change Direction Command indicator sent to me now." This prompting 
indicator, called a Change Direction Request indicator, can be honored or it can be 
ignored. This indicator is supported by ACF/VTAM and by certain logical units (for 
example, logical units in the IBM 3600 Finance Communication System), but the 
indicator is not recognized by Systems Network Architecture (SNA). SNA defines the 
Signal command for requesting a Change Direction Command indicator. 

The side that is awaiting a Change Direction Command indicator (like the side that has 
been quiesced in quiesce protocol) is prohibited only from sending normal-flow traffic. It 
is free to send responses and expedited-flow commands. 

As mentioned previously, ACF /VT AM does not enforce the change-direction protocol. 
Should the side waiting for a Change Direction Command indicator begin sending d<lLa 
anyway, ACF/VTAM does not prevent the transmission. Compliance with the chan~e· 
direction protocol is entirely.the responsibility of the application program and the logi:~al 
unit. 



Application Program 

-----> 
-------.> 
--------.> 
-----> Change Direction Command Indicator 

<------
<-----­
<-----Change Direction Command Indicator 

-----> 
-------,> 
----> Change Direction Command Indicator 

<-----
<,...----------' 
<,...---------' 

Change Direction Command Indicator 

Logical Unit 

The application program 
sends data followed by a 
Change Direction Command 
indicator. The logical unit 
is expected to refrain from 
sending normal-flow 
messages until the Change 
Direction Command 
indicator is received. 

The logical unit now 
becomes the sender. The 
application program is 
expected to refrain from 
sending normal-flow 
messages until it receives 
the Change Direction 
Command indicator. 

Note: Responses are not shown. 

Fp 6-19. Owtge-Dilection Protocol 

Bracket Protocol: A bracket is any unit of work that an application program and a 
logical unit have been programmed to accomplish. A bracket may consist of any 
combination of data messages and data replies, ranging from a single message in one 
direction to an elaborate exchange of messages and replies. But, no matter how simple or 
complex the series of messages and replies may be, the characteristic that makes them all 
part of the same bracket is that they all pertain to the same unit of work. 

A data-base inquiry transaction is a typical example of a bracket. In such a transaction, 
the logical unit sends an inquiry to the host computer asking for some piece or body of 
information stored in the data base. For example, an insurance agent at a terminal asks 
the computer to provide information on all insurance policies issued to a particular client. 
In answer to the inquiry, the application program in the host computer sends a single 
message or a series of messages containing the requested information. At this point, the 

Otapter 6. Communicating with Logical Units )J9 



" ... .:-

bracket might end. Or, as the result of one of the replies, the logical unit might ask for 
further details, and the bracket does not end until the application program has acquired 
the details from the data base and sent them to the logical unit. 

Bracket protocol is used when one or both of the ends of the session cannot begin 
processing a new unit of work until the current one has been completed. For example, it 
can be used if the logical un!t orapplication program cannot start handling a new inquiry 
until the replies to the current inquiry have been completed. Bracket protocol provides a 
way of ensuring that a new unit of work is not started until the preceding one has been 
finished. 

The application program and logical unit that are using bracket protocol indicate on each 
first-in-chain or only-in-chain message whether that chain is the beginning, middle, or end 
of the bracket. These delimiters allow the receiving node to determine whether or not a 
new bracket can be started. A Begin Bracket indicator is included in the first element of 
the first chain in a bracket. The End Bracket indicator is included in the first element of 
the last chain in the bracket. 

When a connection is established, bits· in the session parameters sent by the application 
program to the logical unit determine who wins bracket contention when both sides want 
to begin a bracket simultaneously, who can end a bracket, and whether bracket 
termination is conditional (the side sending the End Bracket indicator does not consider 
the ·bracket ended until it receives a positive response to the element that includes the 
indicator) or unconditional (termination occurs when any response is returned). Figure 
6-20 shows an example ofbracketprotocol. 

One bracket-related bit in the session parameters determines the winner of bracket 
contention by assigtling the role of first speaker to one participant (application program 
or logical unit) and the role of bidder to the other participant. The first speaker is the 
participant that is given the ability to begin a bracket without asking permission from the 
other side. The bidder is the participant that must request and receive permission from 
the first speaker to begin a bracket. The bit in the session parameters desimates whether 
the application program or the logicaI unit is to be the first speaker; the other participant 
iS automatically the bidder. 

When a bracket is ended, the first spea,ker can start a new bracket if it wants. The bidder, 
however, must request permission to begin a bracket. The bidder can do this in either of 
two ways: 

• The bidder can request permission by sending a Bid command to the first speaker. A 
positive response to the Bid command indicates that the first speaker has granted 
permission. A negative response indicates that permission is denied. The negative 
response, however, may be accompanied by sense data that indicates whether the first 
speaker will or will not later grant the permission by sending a Ready to Receive 
command. On receipt of that command, the bidder can begin a bracket. 

• The bidder can request permission by starting to send a message in which the first 
element contains a Begin Bracket indicator. The response indicates whether or not the 
bidder can continue with the bracket, with a positive response indicating that it can 
continue and a negative response indicating that the attempt was rejected. The 
negative response, however, may be accompanied by sense data that indicates whether 
the first speaker will or will not later send the Ready to Receive command. There are 
restrictions on attempting to begin a bracket by starting to send a message with a 
Begin Bracket indicator: 

1. If the bidder is sending only a single-element message or a single chain, the message 
or the first element in the chain must have the Begin Bracket and End Bracket 
indicators. 



Application Program 

< 

The application program 
processes the inquiry. This 
results in transmission of a 
chain that ends with a 
query regarding the 
adequacy of the data. 

< 
The application program I 
transmits the additional 
data. 

< 

Begin Bracket Indicator 

> 
Continue Bracket, 
First-in-Chain 

> Continue Bracket, 
Middle-of-Chain 

> Continue Bracket, 
Last-in-Chain 

Continue Bracket 

> Continue Bracket 

End Bracket Indicator 

Logical Unit 

The logical unit receives 
an inquiry from one 
of its input devices. 

The logical unit transmits a 
message to the 
application program with a 
Begin Bracket indicator. 

The logical unit replies with a 
request for more data. 

The logical unit determines that 
it has the data needed to satisfy 
the inquiry and notifies the 
application program that the 
bracket is ended. 

Note: In this example, the logical unit determines the 
beginning and the end of the bracket. In other 
applications, the application program could 
determine the beginning and the end of the 
bracket, or one node could determine the 
beginning and the other node determine the end. 

The logical unit displays 
the requested 
information. 

F1p19 6-20. Bracket P.lOtocol 

2. If the bidder is sending multiple chains, the first element in the first chain must 
contain the Begin Bracket indicator and the bidder must ask for a definite response 
to the first chain. If the bidder gets a negative response, it knows that its bid was 
rejected and that it must terminate the chain (either by sending the Cancel com­
mand or by sending an element marked last in chain). 

Uke quiesce and change-direction protocol, bracket protocol is not enforced by ACF/ 
VT AM. It must be adhered to by the participants. 

Special UM! of RESPOND-QR.ESP with Bracket Protocol: Consider this situation: The 
application program (which is the bidder) and the logical unit (the first speaker) are in a 
session involving half-duplex contention and the use of brackets. They are within a 
bracket. They have agreed in the session parameters that a bracket is not terminated until 
the sender of an End Bracket indicator (EB) gets a response to the message containing 
EB. 

Olapter 6. Communicating with LoJPcal Units 141 



Now, the application program sends a message containing EB. Simultaneously, the logical 
unit sends a data message that was meant to be within the current bracket. In VTAM 
Level 2 and if RESPOND=NQRESP is used for the EB message in ACf/VT AM, it is 
possible for the application program to get the response to the EB message before it gets 
the data message. If that happens, the application program fails to know that the logical 
unit meant the data message to be within the bracket. 

To avoid this problem, the application program should send the EB message with a macro 
instruction that specifies QRESP as one of the RESPOND parameters. That parameter 
causes ACF/VTAM to treat the response to the message as if it were a normal-flow 
message. Since the logical unit must send the EB response after it sends the in-bracket 
message, and because the EB response will be treated as a normal-flow message, the 
application program will get the in-bracket message and the EB response in that 
order-the correct order. 

Note that, because the EB response is treated as a normal-flow message, it will not cause 
scheduling of a RESP exit routine, nor can it cause completion of a RECEIVE specifying 
RTYPE=RESP. The macro instruction used to send the message containing the End 
Bracket indication and RESPOND=QRESP must specify POST=SCHED. The EB response 
itself (because it is treated as a normal-flow message) must be gotten with a RECEIVE 
RTYPE=DFSYN (not RTYPE=RESP). 

For more information on the QRESP and NQRESP parameters in the RESPOND 
operand, see "Specifying Special Handling of the Response to a Normal-Flow Message or 
Command" under "What a Response Contains" earlier in this chapter. 

Function Management Header Option 
The function management (FM) header option is specified through the RPL or SEND 
macro. Specifying OPTCD=FMHDR, indicates that a user-defined or SNA-defined FM 
header is included in a data message to a logical unit. This option only applies for record 
mode (with STYPE=REQ,CONTROL=DATA) and indicates to ACF/VTAM how the 
format bit in the request header (RH) of a specific data message is to be set. If FMHDR is 
coded, the format bit is set in the RH and sent to the receiver of the message. 

Similarly, if the format bit is on in the RH of a received message (indicating the presence 
of an FM header), it causes FMHDR to be set in the RPL used for the receive operation. 
FMHDR can be tested with the TESTCB macro instruction or by using the IFGRPL 
DSECT. OPTCD=FMHDR is set whenever a command or command response is received. 

When connection is established, the application program and logical unit determine 
whether FM headers can be used. 

Additional SNA Protocol Information 
In addition to the protocols described earlier in this chapter, the following protocols can 
be specified in the session parameters when connection is made between the application 
program and the logical unit: 

Whether or not a logical unit can remove extraneous blank characters before data is 
transmitted (compression) 

Who has error recovery responsibility 

Whether an alternate character code is acceptable (for example, ASCII instead of 
EBCDIC) 

Communicating with the 3270 Information 
Display System 

142 

The application program can communicate with a BSC 3270 or local non-SNA 3270 using 
record-mode macro instructions. This is possible if MODE=RECORD is specified (in the 



NIB) when the OPNDST macro instruction is issued to connect ~e 3270. ACFNTAM 
provides the record-mode facility so that application programs communicating with other 
logical units can use the same macro instructions to communicate with 3270s. 

The application program can also communicate with local non-SNA 3270s (or BSC 3270s 
defined with PU=NO) in the same manner used to communicate with BSC and start-stop 
terminals-using basic-mode and macro instructions. 

For more information on communicating with 3270s, see Appendix A, "Communicating 
with BSC and Start-Stop Terminals," or refer to Introduction to Programming the IBM 
3270 Information Display System, GC27-6999. 

Olapter 6. Commµnicating with Logical Units 143 





Chapter 7. Using Exit Routines 

How Exit Routines Work 

Other chapters discuss exit routines in relation to connecting or communicating with 
logical units or closing the program. This chapter discusses how exit routines work, 
summarizes them, discusses the advantages and disadvantages of using them, and describes 
procedures to follow in using them. These exit routines apply to application programs 
that use record-mode macro instructions to communicate with logical units. See 
Appendix A for descriptions of special exit routines that apply only to non-SNA 
terminals used in the basic mode. 

ACF /VT AM provides for the use of two general kinds of exit routines: RPL-specified exit 
routines and EXLST exit routines. The two kinds of exit routines work somewhat 
differently as described below. 

How RPL-Specified Exit Routines Work 
The instructions to be executed when an RPL-based operation is completed can be 
written as a separate routine. This routine, called an RPL exit routine, can be specified in 
the RPL-based macro instruction that requests the operation. The address of the exit 
routine is specified in the EXIT operand of the macro instruction or is placed in the EXIT 
field of the RPL. When the requested operation is completed, ACF/VTAM schedules and 
causes entry to the RPL exit routine. When ACF/VTAM gives control to the RPL exit 
routine, the routine cannot be interrupted even though other pending events are 
completed; the exit routine must return control to ACF/VTAM before ACF/VTAM can 
return control to other parts of the application program, including other exit routines 
that ACF/VTAM may have scheduled. (A LERAD or SYNAD exit routine, however, can 
be entered if an error or special condition occurs during an RPL-based request that is 
issued in the RPL exit routine.) Figure 7-1 illustrates the use of an RPL exit routine. 

Designating a routine as an RPL exit routine is an alternative to having ACF/VTAM post 
an ECB when an asynchronous event is completed. A program can use one or the other 
technique exclusively, or it can use a mixture of ECB-posting and RPL exit routines. 
Sample Program 2 in Part 3 shows an example of an RPL exit routine. The same RPL exit 
routine can be designated by more than one macro instruction; in other words, an RPL 
exit routine can be established as a common exit routine. 

If the application program also uses ECBs, the RPL exit routine may post an ECB related 
to the logical unit being communicated with, so that the main program will later discover 
that an event is completed. Since it may be necessary to reuse the RPL associated with 
the request whose completion caused entry to the exit routine (for example, for 
reissuance of a RECENE request within the exit routine) and because it is a means of 
causing entry to a LERAD or SYNAD exit routine if an error occurs, a CHECK macro 
instruction may be required in the exit routine. If the RPL does not have to be reused, 
the CHECK macro can be in the main program, perhaps following the discovery of the 
posted ECB associated with the logical unit. 

How EXLST Exit Routines Work 
This type of exit routine differs from the RPL exit routine in being a special-purpose exit 
routine. The special purpose is understood by both the ACF/VTAM application program 
and ACF /VT AM. Instead of being specified in a particular macro instruction request, the 
identity of an EXLST exit routine is established only when the exit list in which its name 
is specified is identified to ACF/VTAM, either when the program is opened or, for certain 
types of exit routines, when a logical unit is connected. In general, EXLST exit routines 

Chapter 7. Using Exit Routines 145 



;~plication Program 

t1 
2 

3 

6 

;,1r;' 

RECEIVE - ,EXIT=APLEX 

• 
• 
• 
• Interruption 
• 
• 
• 4 AP LEX Exit Routine 

• 
• 
• 

CHECK 

• 
• 

RECEIVE 

• 
• 
• 

5 BA A14 

ACF/VT AM 

_.. .. .. ... 

.. ,.Input - ... 
... 

.......,.. , EXIT=APLEX 

---.. 

1 The ACF/VTAM application program issues an asynchronous RECEIVE request, which passes control to ACF/VT AM. The 
request specifies the scheduling of the AP LEX when the operation is completed. ACF NT AM accepts the request and 
returns control to the program at the next sequential instruction (2). 

2 The program continues execution until input arrives, and ACF/VT AM interrupts the program when the input arrives. 

3 ACF/VT AM schedules AP LEX as the next exit routine. Since an exit routine is not currently being executed, APLEX is 
immediately given control (4). 

4 AP LEX is executed without any other part of the program gaining control. A CHECK macro instruction is issued to mark the 
APL action. A RECEIVE is issued to read input again. It is an asynchronous request specifying that RPLEX be scheduled 
when the operation is completed. (If more input arrives and the operation is completed, APLEX is to be scheduled but not 
reentered until after it finishes and returns control to P<CF/VT AM. 

5 RP LEX, having completed its job, returns control to ACF/VTAM. 

6 If the RECEIVE in RP LEX has not been completed, ACF/VT AM returns control to the main program that was interrupted 
at 3. If the RECEIVE in RPLEX has been completed, APLEX is again given control. 

F~ie 7-1. An Example of Using an RPI.. Exit Routine 

···," 
<' 

146 

are special-purpose exit routines, entered only when a somewhat unusual event occurs, 
such as the network operator's issuance ofa HALT command to shut down the network. 

Here is how EXIST exit routines work: 

I. An ACF /Vf AM application contains a number of exit routines written for different 
purposes (for example, a LOGON exit routine and a TPEND exit routine). 

ACF/VT AM Application Program 

LOGON Exit Routine 

LOGON 1 



2. The program names the special-purpose exit routines and puts their names in an exit .: 
list. The exit list is created with the EXLST macro instruction. Each exit routine name 
is specified with an appropriate ACF/VTAM-provided operand, such as LOGON and 
TPEND. 

EX1 EXLST AM=VTAM,LOGON= 
LOG ON 1,TPEND= 
TPEND1 

3a. This exit list, identified by the name of the EXLST macro, can be specified in the : 
EXLST operand of the program's ACB. When the ACB is opened, the list of exit : 
routines becomes available to ACF /VT AM. 

OPEN ACB1 

-1..o 

ACB1 ACB EXLST=EX1 
EX1 EXLST 

... I,.. 
./ 

/ 

PCF/VTAM 

_... 

/ ...... 
/"1 

./ 
/ 

/ 
/ 

3b. Alternatively, certain· types of exit routines-DFASY, SCIP, and RESP-can be 
specified in the EXLST operand of the NIB that is used when a logical unit is 
connected. After the logical unit is connected (that is, after OPNDST is completed), 
ACF/VTAM will use an exit routine identified in the NIB exit list in preference to the 
corresponding exit routine specified in the ACB exit list. The preference applies only 
for the logical unit represented by the NIB at connection. If an appropriate exit 
routine is not in the exit list passed during connection, ACF /VT AM will look in the 
ACB-specified exit list that was passed for the entire program when the ACB was 
opened. 

OPNDST 

"'"" 
RPL1 
NIB1 
EXIT1 

APL 
NIB 
EXLST 

RPL=RPL 1 

NIB=NIB1 
EXLST=EXIT1 
DFASY=DFASY1 

-1.J 
/ 

/ 
/ 

ACF/VTAM 

. 

/ 
/ 

// 

/ 

Otapter 7. Using Exit Routines 147 



4. When an event occurs for which a related exit routine exists, ACF/VTAM schedules 
the appropriate exit routine, using the exit routine address (name) that it has been 
provided. As soon as no other exit routine is being executed or scheduled, the exit 
routine is given control (if necessary, interrupting the main portion of the program). 

LOGON1 

A Summary of ACF/VTAM Application Program 
Exit Routines 

.._ J Main pr OQl'.8m 
l interru pted, if necessary 

BALA 3,0 

• • • 
BR R14 

ACF/VTAM 

Control given Logon 
to LOGON1. 

Figure 7-2 summarizes exit routines by showing the purpose of each type of exit routine 
and how the address of each type is specified to ACF/VT.AM. 

Deciding Whether and How to Use Exit Routines 

The use of exit routines is optional. An RPL exit routine is an alternative to having a 
routine that is branched to in the main program following the posting of an ECB by 
ACF/VTAM. EXLST exit routines are not absolutely required, although some are 
designed for common use and should normally be included in an application program. 
These EXLST exit routines are designed for common use: 

LE RAD 

LOGON, in a primary application program when requests for connection {logons) can 
be expected 

LOS TERM 

NS EXIT 

SCIP 

SYN AD 

TPEND. 

The following EXLST exit routine is required only if the facility associated with it is 
required: 

RELREQ, in a primary application . program if the application program is to be 
notified when another program requests control of a logical unit that is already 
connected to the first program 

. These EXLST exit routines are optional in that they are an alternatives to other facilities: 

DFASY, rather than having to issue a RECEIVE specifying RTYPE=DFASY in the 
main program and branching to a related routine on completion 

RESP, rather than having to issue a RECEIVE specifying RTYPE=RESP in the main .. 
program and branching to a related routine on completion 



Type of Exit List 
How the Exit Routine's That Routine's Name 

Type of Exit Routine Purpose Address Is Specified May Appear In 

RPL Exit Routine Any purpose Code the address in the EXIT operand of (Not applicable) 
an RPL macro or in the request that uses 
the RPL. 

EXLST Exit Routines Special purposes Code the names of the exit routines in an 
(Each type is listed EXLST macro instruction. The list that is 
below.I created is then identified in either the E 

EXLST operand of an ACB or NIB macro. 

DFASY Receive expedited-flow input (for Code the name in the DFASY operand ACB or NIB 
example, a Quiesce at End of Chain of the EXLST macro. 
command) from a logical unit without 
requiring an outstanding RECEIVE 
specifying RTYPE=DFASY. 

LERAD Handle logical errors that may occur Code the name in the LERAD operand of ACB only 
as the result of a request. the EXLST macro. 

LOGON Handle a request for connection to the Code the name in the LOGON operand of ACB only 
application program that ACF/VT AM the EXLST macro. 
has received from a logical unit. 

LOS TERM Handle the situation of a logical unit's Code the name in the LOSTERM ACB only 
being unexpectedly lost to the operand of the EXLST macro. 
program, or notify the application 
program of other unusual conditions 
that can affect the session. 

NS EXIT Handle a situation in which (1) a Code the name in the NSEXIT operand ACB only 
request for a procedure has been of the EXLST macro. 
positively responded to but the 
procedure cannot be completed, (2) 
ACF/VTAM has initiated session 
termination because of a session 
outage, or (3) some other kind of 
network services request unit is 
received .. 

RELREQ Handle a request from another Code the name in the RELREQ operand ACB only 
application program for a logical unit of the EXLST macro. 
that is presently connected to the 
program that contains the R ELREQ 
exit routine. 

RESP Receive a response from a logical unit Code the name in the RESP operand of ACB or NIB 
without requiring an outstanding the EXLST macro. 
RECEIVE specifying RTYPE=RESP. 

SCIP Receive and process one of the Code the name in the SCIP operand of ACB or NIB 
following session-control commands: the EXLST macro. 

Clear 
Start Data Traffic (SOT) 
Request Recovery (RORI 
Set and Test Sequence Numbers 
(STSNI 
Bind 
Unbind 

SYNAD Handle a physical error or special Code the name in the SYNAD operand ACB only 
condition that occurs as the result of of the EXLST macro. 
a request. 

TPEND Handle the closing of the program that Code the name in the TPEND operand ACB only 
is required when the network operator of the EXLST macro. 
halts the network or ACF/VTAM 
terminates abnormally. 

Figw:e 7·2. A Summary of. Exit Routines 

· Olapter 7. Using Exit Routines 149 



RPL Exit Routines 

If an EXIST exit routine is not provided and the event or condition that the routine 
handles occurs, the user may never learn of the event or condition. In some cases, the user 
might learn of the event or condition through return codes or information in the RPL. 

Note: Only exit routines that can be recognized by ACF/VT AM can be specified in the 
EXLST macro instruction. Non-ACF/VTAM exit routines (such as VSAM exit routines) 
cannot be specified in the macro instruction. 

In general, it is easier to have ACF /VT AM schedule and enter an RPL exit routine than it 
is to write instructions that, after an ECB has been posted, determine which ECB was 
posted, keep track of which ECB to check next, wait if no ECB is yet posted, and branch 
to an appropriate routine when an ECB is found to be posted. There is another advantage 
to an RPL exit routine even if ECB-handling is also used: Certain requests can be given 
priority by having an RPL exit routine scheduled rather than an ECB posted. The RPL 
exit routine can be entered sooner than the same logic can be branched to after the main 
program discovers the posted ECB. 

Specifying the DFASY, RESP, and SCTP 
Exit Routines in an ACB or NIB 

DFASY Exit Routine 

150 

Certain EXLST exit routines-DFASY, RESP, and SCIP-can be in a list that is associated 
either with an ACB (identified in the EXIST operand of an ACB) or with a NIB 
(identified by the EXLST operand of a NIB). ACB-specified exit routines are used by 
ACFNTAM for all logical units connected to the program represented by the ACB. 
NIB-specified exit routines are used by ACF/VTAM only for the logical unit whose NIB 
specifies the exit routine when the logical unit is connected. For details on how 
ACFNTAM handles DFASY and RESP input, see Figures 7-3 and 74. Several logical 
units can share the same list of DFASY, SCIP, and RESP exit routines or the list can be 
unique for each logical unit. 

Here is an example of the use of both ACB- and NIB-specified exit routines in the same 
program. Program A has a list of exit routines that are common to all logical units 
connected to the program. These include the LOGON, TPEND, LERAD, NSEXIT, 
SYNAD, LOSTERM, and SCIP exit routines. These are defined in an EXLST macro 
instruction whose address is specified in the program's ACB macro instruction. In 
addition, because the program plans to handle DF ASY and RESP input from some logical 
units differently from similar input from others, the program has two lists of DF ASY and 
RESP exit routines. (One list will be used to process signals from logical units at one 
location and the other list will be used for signals received from another location.) Prior 
to connecting a logical unit, its logon message can help determine its location, and the 
related exit-list address can be placed in the EXLST field of the NIB, using MODCB. 

The DFASY exit routine provides a way for ACFNTAM to notify an application 
program that an expedited-flow command has arrived. The expedited-flow commands 
that can be received by a primary application program are: 

Quiesce at End of Chain (QEC) 

Release Quiesce (RELQ) 

Request Shutdown (RSHUTD) 

Shutdown Complete (SHUTC) 

Signal 

Stop Bracket Initiation (SBI) 



The expedited-flow commands that can be received by a secondary application program 
are: 

Quiesce at End of Chain (QEC) 

Release Quiesce (RELQ) 

Shutdown (SHUTD) 

Signal 

Stop Bracket Initiation (SBI) 

For information on these commands, see Appendix B. 

If a DFASY exit routine is specified, either in the EXLST operand of the NIB used for 
connection or of the ACB (and PROC=DFASYX was specified in the NIB), whenever an 
expedited-flow command arrives from the logical unit associated with the NIB, 
ACF/VTAM schedules the DFASY exit routine. The manner in which ACF/VTAM 
handles an expedited-flow command is shown in Figure 7-3. 

Using a DF ASY exit routine is an alternative to getting each expedited-flow command 
with a RECEIVE macro instruction that contains RTYPE=DF ASY or that includes 
DFASY among other RTYPE parameters. The program can maintain an active RECEIVE 
with RTYPE=DF ASY to get each expedited-flow command, but use of the RECEIVE 
requires an active RPL before the command arrives. Use of the RECENE also requires 
the program to include coding that, after completion of the RECENE, determines which 
command has been received and branches to the routine that processes that command. 

Using a DFASY exit routine may be more convenient. This frees the application program 
from having to issue the RECEIVE and from tying up storage for the active RPL. The 
disadvantage is that scheduling an exit routine requires more ACF/VTAM execution time 
than posting an ECB. However, since DFASY input occurs less frequently than 
normal-flow input, that disadvantage may be outweighed by the convenience of having 
the exit routine. 

Whether or not the application program must send a response to the expedited-flow 
command depends on the setting of a PROC option in the NIB when the connection was 
made: 

If PROC=APPLRESP was specified in the NIB at connection, the application program 
sends the response, using SEND ... ,STYPE=RESP,CONTROL=command code of 
received command,RESPOND=(response operands). Sense information may also be 
returned for a negative response. 

If PROC=SYSRESP was specified in the NIB at connection, ACF/VTAM automatic­
ally sends the response before presenting the command to the application program. 

For a DFASY exit routine, information on the expedited-flow command that has been 
received is available in a read-only RPL provided by ACF/VTAM. The location of the 
read-only RPL is provided in the parameter list passed to the exit routine when the 
routine is scheduled. 

Registers Upon Entry: When the DFASY exit routine receives control, register 1 contains 
the address of a 5.-word parameter list (the parameter list is summarized in Figure 7-5): 

The first word contains the address of the ACB of the application program to which 
the expedited-flow command was sent. 

The second word contains the CID of the logical unit that sent the command. 

The third word contains whatever has been placed in the USERFLD field of the NIB 
associated with that logical unit. 

pter 7. Using Exit Routines 151 



Yes 

DFASY 
input 

No 

Invoke 
NIB 
DFASY 
exit 1 

Input will 
satisfy the 
RECEIVE 
SPEC 
DFASY 

Yes 

Invoke 
ACB 
DFASY 
exit3 

Queue input 
for the next 
RECEIVE 2 

Yes 

Queue 
input 
for the 
next 
RECEIVE 
SPEC 
DFASY 

Input Queue 

will input 

satisfy for the 

the next 

RECEIVE RECEIVE 
SPEC DFASY 

or 
ANY DFASY 

The exit routine is scheduled if no other exit routine (including the NIB DFASY exit routine) is currently running. If 
another exit routine is running, the input is queued for the NIB DFASY exit routine. 

2 The input will satisfy a RECEIVE SPEC DFASY. The input can also be obtained by a RECEIVE ANY DFASY if the 
mode has been switched to CA for the session with the logical unit. 

3 The exit routine is scheduled if no other exit routine (including the ACB DFASY exit routine) us currently running. If 
another exit routine is running, the input is queued for the ACB DFASY exit routine. 

FJgllle 7-3. How ACF/VT.AM. Handles DFASY (Expedited-Flow) Input 

152 



RESP Exit Routine 

The fourth word is reserved. 

The fifth word contains the address of an ACF /VT AM-supplied, read-only RPL Other 
than the fact that it resides in read-only ACF/VTAM storage and cannot be used by an 
RPL-based macro instruction, the read-only RPL is identical to any other RPL. The 
application program can examine the read-only RPL fields with SHOWCB and 
TESTCB macro instructions or by using assembler instructions and the IFGRPL 
DSECT. The read-only RPL feedback fields are set exactly as they would be following 
a RECEIVE (RTYPE=DFASY) ·macro instruction, except that the REQ field is not 
set. A CHECK macro instruction must not be issued against the read-only RPL. 

Other general purpose registers contain the following: 

Register 14: The address in ACF/VTAM to which the DFASY routine must branch 
when it has finished processing. ACF/VTAM will handle the return of control to the 
instruction in the application program that was about to be executed when the 
DF ASY interruption occurred. 

Register 15: The address of the DFASY routine. 

Registers 0 and 2-13: Unpredictable. 

The RESP exit routine provides a way for ACF/VTAM to notify an application program 
when a response to a normal-flow message (data or command) has arrived. 

Using a RESP exit routine is one of three ways an application program can be notified of 
receipt of a normal-flow response. The other two ways are: 

Specifying POST=RESP in the macro instruction used to send the normal-flow 
message. If this is done, the macro instruction is not completed until the response is 
received. 

Maintaining an active RECEIVE with RTYPE=RESP. The RECEIVE is completed 
(and reissued) each time a normal-flow response is received. 

If a RESP exit routine is specified (either in the EXLST operand of the NIB used for 
connection or of the ACB) and PROC=RESPX was defined in the NIB at connection, 
ACF/VTAM schedules the RESP exit routine whenever a normal-flow response is received 
from the logical unit associated with the NIB. This frees the main part of the application 
program from having to issue a RECEIVE with RTYPE=RESP or, if a RECEIVE is issued 
that will receive any kind of input (RECEiVE with RTYPE=(DFSYN,DFASY,RESP)), 
from having to distinguish the type of input that was received and branching to the 
appropriate routine. The disadvantage of having a RESP exit routine is that the system 
must execute more instructions to schedule an exit routine than to post an ECB. Howver, 
since RESP input occurs less frequently than normal-flow input; this disadvantage may be 
outweighted by the convenience of having a RESP exit routine. The way in which 
ACF/VTAM_ handles RESP input is shown in Figure 7-4. A RESP exit routine is shown in 
Appendix D. 

For a RESP exit routine, information on the normal-flow response that has been received 
is available in a read-only RPL provided by ACF/VT AM. The location of the read-only 
RPL is provided in the parameter list passed to the exit routine when the routine is 
scheduled. 

Registers Upon Entry: When the RESP exit routine receives control, the register contents 
are the same as those described above for the OF ASY exit routine. That is: 

Register I: The address of a parameter list containing the ACB address, the logical 
unit's CID, the USERFLD data, a reserved word, and the address of the read-only 
RPL. The parameter list is swnmarized in Figure 7-5. 

Chapter 7. Using Exit Routines 153 



Yes 

RESP 
input 

No 

Invoke 
NIB RESP 
exit 1 Yes 

Input will 
satisfy the 
RECEIVE 
SPEC 
RESP 

Yes 

Invoke 
ACB 
RESP 
exit 3 

Queue input 
for the next 
RECEIVE 2 

Yes 

No 

Queue 
input 
for the 
next 
RECEIVE 
SPEC 
RESP 

Input 
will 
satisfy 
the 
RECEIVE 

No 

Queue 
input 
for the 
next 
RECEIVE 
SPEC RESP 

or 
ANY RESP 

The exit routine is scheduled if no other exit routine {including the NIB RESP exit routinel is currently running. If 
another exit routine is running, the input is queued for the NIB RESP exit routine. 

2 The input will satisfy a RECEIVE SPEC RESP. The response can also be obtained by a RECEIVE ANY RESP if the 
mode has been switched to CA mode for the session with the logical unit. 

3 The exit routine is scheduled if no other exit routine (including the ACB RESP exit routine I is currently running. If 
another exit routine is running, the input is queued for the ACB RESP exit routine. 

Figme 7-4. How ACF/VTAM. Handles RESP (Nonnal-Flow Response) Input 

154 



LERAD Exit Routine 

Register 1 Para~eter List 
Exit Routine 1st Word 2nd Word l 3rd Word 4th Word 5th Word 

LERAD None (Register 1 contains the RPL address for the request that failed) 

SYNAD None (Register 1 contains the RPL address for the request that failed) 

DFASY ACB address CID USERFLD Unused Read-only 
data RPL address 

RESP ACB address CID USERFLD Unused Read-only 
data APL address 

SCIP ACB address CID except USERFLD Unused except Read-only 
for Bind. For data except for Bind. For RPL address 
Bind, this word for Bind. For Bind, address 
is reserved. Bind, this word of session 

is reserved. parameters. 

TPEND ACB address Reason-
terminated 
code 

RELREQ ACB address Address of the 
terminal's 
symbolic name 

LOGON ACB address Address of the Unused Length of 
terminal's logon message 
symbolic name 

LOSTERM ACB address CID USERFLD Reason-lost 
data code 

NS EXIT ACB address (Contents depend on type of Read-only 
network services request unit RPL address 
received. See description of 
NSEXIT exit routine.) 

Figure 7-5. Summary of Parameter Usu Passed to Exit Routines 

Register 14: The address in ACF/VTAM to which the RESP exit routine must return 
when it is finished processing. ACF/VTAM returns control to the instruction in the 
application program that was about to be executed when the RESP interruption 
occurred. 

Register 15: The address of the RESP exit routine. 

Registers 0 and 2-13: Unpredictable. 

A LERAD exit routine is included in an application program (and identified in an ACB 
exit list) when the application program wants a routine to be automatically invoked when 
a logical error (in contrast to a physical error) is detected. 

Generally, a logical error results when an RPL-based request is made that is inherently 
contradictory-like attempting to use an invalid CID. (Errors that occur because of 
hardware malfunctions, for example, are not logical errors. These errors are handled by 
the SYNAD exit routine.) 

If the SYN option code is in effect when the logical error occurs or if the request cannot 
be accepted because of a logical error, the LERAD exit routine is entered immediately; 
otherwise, if the ASY option code is in effect, the routine is not scheduled until a 
CHECK macro instruction is issued for the operation in which the error occurred. One 
exception: If the ASY option code is set, the request is accepted by ACF /VT AM, and 
then ACF/VTAM determines that it cannot post the RPL (perhaps because the ACB has 
been overwritten), ACF/VT AM abnormally terminates the application program. 

Chapter 7. Using Exit Routines 155 



156 

Before the LERAD exit routine is given control, ACF/VTAM sets a recovery action 
return code of 20 or 24 (decimal) in register 0 and in the RTNCD field of the RPL and 
sets a specific error return code in the FDBK2 field indicating the specific cause of the 
error. These return codes are explained in Appendix C of ACF/VTAM Macro Language 
Reference. 

If the application program has no LERAD exit routine and a logical error occurs, 
ACF/VTAM simply returns control to the next sequential instruction. ACF/VTAM places 
a return code of 4 in register 15 and a recovery action return code of20 or 24 (decimal) 
in register 0 and in the RTNCD field of the RPL. It also sets a specific error return code 
in the FDBK2 field of the RPL indicating the specific cause of the error. These codes are 
explained in Appendix C of ACF/VT AM Macro Language Reference. 

If the application program issues RPL-based requests in both the main program and in the 
exit routines, the LERAD exit routine may be reentered by ACF/VTAM. The routine 
may likewise be reentered if any RPL-based requests are issued in the LERAD exit 
routine itself. In these situations, the exit routine must be reeneterable. 

When the LERAD exit routine returns control to ACF/VTAM, ACF/VTAM leaves 
registers 0 and 15 intact so that the routine can pass information back in these registers to 
the main part of the application program. 

Registers Upon Entry: When the LERAD routine receives control, the general purpose 
registers contain the following: 

Register 0: A recovery action return code (refer to Appendix C in ACF/VT AM Macro 
Language Reference). 

Register 1: The address of the RPL associated with the request. If the recovery action 
return code in register 0 is set to 24 (decimal), ACF /VT AM was unable to place an 
indicator in the FDBK2 field specifying the reason for the error. This happens in three 
cases: A macro has been issued whose RPL is already in use, CHECK has been issued 
for a request whose RPL exit routine has not yet been scheduled, or an invalid RPL 
was specified (for example, the RPL address is invalid or the RPL is overlaid). For 
descriptions of the return codes placed in FDBK2, see Appendix C in ACF/VTAM 
Macro Language Reference. 

Register 13: The address of an 18-word save area supplied by the programmer when 
the macro instruction that caused the logical error was issued. If the exit routine is 
going to return control via register 14, it must not change anything in the save area. 
This means that if any macro instruction is issued in the exit routine, register 13 must 
first be loaded with the address of a new save area. Furthermore, before control is 
returned via register 14, register 13 must be restored with the value it had when the 
exit routine was invoked. 

Register 14: The address in ACF/VTAM to which the LERAD exit routine can branch 
when it has finished processing. When the exit routine branches to this address, 
ACF/VTAM handles the retuning of control to the next sequential instruction in the 
application program following the request (or following the CHECK macro instruction 
issued for the request). The LERAD exit routine can branch to any part of the main 
program because the routine is executed under the same system task control block as 
the main program. (Care should be taken, however, to eventually branch to the register 
14 address if LERAD was entered from an RPL-based request issued in another exit 
routine.) If the routine returns control to the next sequential instruction by branching 
on the register 14 address, ACF/VTAM restores the registers from the save area whose 
address is in register 13. 

Register 15: The address of the LERAD routine. 

Registers 2-12: Unmodified; whatever was in them when the macro instruction was 
issued is still there. 



SYNAD Exit Routine 
A SYNAD exit routine is included in an application program (and identified in an ACB 
exit list) when a routine is to be automatically invoked when a physical error is detected. 
A physical error is an unrecoverable input or output error or other unusual condition that 
occurs during an I/O operation. The SYNAD exit routine, if specified. is entered for all 
recovery action return codes of 4, 8, 12, and 16 (decimal). 

If the SYN option code is in effect when the error occurs or if the request cannot be 
accepted, the SYN AD exit routine is entered immediately; otherwise, if the ASY option 
code is in effect, the routine is not invoked until a CHECK macro is issued for the 
operation in which the error occurred. 

The SYN AD exit routine can examine the REQ field of the RPL and determine the type 
of request that caused the routine to be invoked. Each RPL-based macro instruction 
(except CHECK and EXECRPL) has its own REQ code. The SYNAD exit routine can 
analyze the FDBK2 field and attempt to recover from the error. 

If the application program has no SYNAD exit routine and a physical error occurs, 
ACF/VTAM simply returns control to the next sequential instruction with return codes 
in registers 0 and 15. 

If the application program issues RPL-based requests in both the main program and the 
exit routines, the SYNAD exit routine may be reentered by ACF/VTAM. The routine 
may likewise be reentered if RPL-based requests are issued in the exit routine itself. In 
these situations, the exit routine must be reenterable. 

When the SYNAD exit routine returns control to ACF/VTAM, ACF/VTAM leaves 
registers 0 and 15 intact; this enables the routine to pass information back in those 
registers to the main part of the application program. 

Registers Upon Entry: When the SYNAD routine receives control, the general purpose 
registers contain the following: 

Register 0: A recovery action return code (see Appendix C in ACF/VTAM Macro 
Language Reference). 

Register 1: The address of the RPL associated with the request. 

Register 13: The address of an 18-word save area supplied by the programmer when 
the macro instruction that caused the physical error was issued. If the exit routine is 
going to return control via register 14, it must not change anything in the save area. 
This means that if any macro instruction is issued in the exit routine, register 13 must 
first be loaded with the address of a new save area. Furthermore, before control is 
returned via register 14, register 13 must be restored with the value it had when the 
exit routine was invoked. 

Register 14: The address in ACF/VTAM to which the SYNAD exit routine can branch 
when it has finished processing. When the exit routine branches to this address, 
ACF/VTAM handles the return of control to the next sequential instruction following 
the request (or following the CHECK macro issued for the request). The SYNAD exit 
routine can branch to any part of the main program. (Care should be taken, however, 
to eventually return to the register 14 address if SYNAD was entered from an 
RPL-based request issued in another exit routine.) If the application program 
eventually returns to the next sequential instruction by branching on the register 14 
address, ACF /VT AM restores the registers from the save area whose address is in 
register 13. 

Register 15: The address of the SYNAD routine. 

Registers 2-12: Unmodified; whatever was in them when the macro instruction was 
issued is still there. 

Oiapter 7. Using Exit Routines 157 



Special Considerations for LERAD and SYNAD 
Exit Routines 

LOGON Exit Routine 

158 

LERAD and SYNAD exit routines are not required. If a macro instruction that specifies 
an RPL is issued, one of these two exit routines, if present, is entered if an error occurs. If 
the exit routine does not exist, ACF/VTAM. in any case provides feedback information in 
registers 0 and 15 and in appropriate RPL fields. The return code in register 0 enables the 
next sequential instruction in the program to determine whether a logical error or one of 
several other general types of errors occurred; the program can itself then branch to an 
appropriate routine. The chief advantage in using LERAD and SYNAD exit routines is 
that they provide a convenient way to organize sets of error and special condition­
handling logic that serve all requests in the program. 

The same name can be specified for the program's LERAD and SYNAD exit routines. 
The common exit routine can determine after it is entered whether a logical or some 
other error or special condition occurred. 

A discussion of the kinds of logic that these routines might contain is provided in Chapter 
9, "Handling Errors and Special Conditions." Coded LERAD and SYNAD exit routines 
are shown in Appendix D. 

A program that expects a logon from one or more logical units can handle the logon 
either by having ACF/VTAM complete a pending OPNDST specifying OPTCD=ACCEPT 
in the main program or by having ACF /VT AM schedule a LOGON exit routine. The 
LOGON exit routine enables the program to examine a logon message or make other 
inquiries of ACF/VTAM, using the INQUIRE macro instruction, before connecting the 
logical unit with an OPNDST specifying OPTCD=ACCEPT. If the logical unit's request 
for connection is to be rejected, the LOGON exit routine may wish to connect the logical 
unit, send a message, and then disconnect the logical unit. (Even if the logical unit is not 
temporarily connected with ai1 OPNDST, rejection of its logon must include disconnect­
ing it, using a CLSDST.) 

VTAM queues a logon if (1) the logical unit has issued an Initiate command or a 
character-coded logon, (2) a terminal issues a logon, via the network solicitor, (3) another 
application program to which the logical unit is currently connected issues a CLSDST 
macro instruction with OPTCD=PASS, (4) the application program issues a SIMLOGON 
macro instruction on behalf of the logical unit, (5) the user has specified automatic logon 
for the logical unit, when the network was defined or the network operator has specified 
an automatic logon using the VARY command, or (6) another application program acting 
as a secondary end of a session has issued a REQSESS macro instruction. These cause the 
LOGON exit routine to be scheduled if SETLOGON with OPTCD=START is in effect. 

Note: When a logical unit logs on, ACF/VT AM first checks for an outstanding OPNDST 
request (that is, OPNDSTwith ACCEPT and Q) that has not yet been completed. If there 
is no outstanding OPNDST request, ACF/VTAM and schedules a LOGON exit routine if 
an active one exists. Thus, a logon will not cause a LOGON exit routine to be scheduled if 
there is a pending OPNDST with ACCEPT. If no LOGON exit routine exists, the logon is 
queued. 

Regardless of the mechanism by which the LOGON exit routine is scheduled, the routine 
is in effect being asked to connect the logical unit to the application program. The 
routine's principal task therefore is to determine whether it should honor the request and, 
when it determines that it should, issue an OPNDST macro instruction to establish 
connection with the logical unit. If·the request is not to be honored, the routine should 
issue the CLSDST macro instruction for the logical unit (which removes the logical unit 
from the logon queue). If neither OPNDST nor CLSDST is issued, the logical unit may 
remain tinconnected to any application program. 



LOSTERM Exit Routine 

If MACRF=LOGON was specified in the ACB and SETLOGON with OPTCD=QUIESCE 
has not been issued, logons are queued for the application program regardless of whether 
a LOGON exit routine is available. A logon remains queued until the program issues 
OPNDST or CLSDST for the logical unit. Note that the "queuing" of a logon does not 
necessarily mean that the logon is queued for eventual scheduling of the LOGON exit 
routine; it merely means that the logon is queued for an eventual OPNDST with 
OPTCD=ACCEPT macro instruction (or CLSDST). 

The LOGON exit routine c·an issue an INQUIRE macro instruction to obtain the session 
parameters and the user logon message supplied by the logical unit that is logging on. If 
the routine determines from the session parameters and the logon message that 
connection with the logical unit is acceptable, it may wish to establish that connection. 
This is accomplished by using information passed to the LOGON exit routine, along with 
information obtained with the INQUIRE macro instruction, to build or modify a NIB 

. and an RPL, and by then issuing the OPNDST macro instruction with ACCEPT and SPEC 
option codes. " 

The LOGON exit routine is entered only ifMACRF=LOGON was specified for the ACB, 
and the application program has issued the SETLOGON with OPTCD=ST ART macro 
instruction. 

Registers Upon Entry: When the LOGON exit routine receives control, register 1 
contains the address of a 4-word parameter list (the parameter list is summarized in 
Figure 7-5): 

The first word contains the address of the ACB to which the logon request was 
directed. The ACB address should be specified for the ACB operand of an INQUIRE 
macro instruction used to obtain the data portion of the logon. 

The second word contains the address of the 8-byte symbolic name of the logical unit 
requesting logon. This name should be placed in the NAME field of the NIB used to 
establish connection with the logical unit. The symbolic name being pointed to here is 
the same as the name that was specified in the NAME field of the definition statement 
for the logical unit. LU, TERMINAL, and COMP are ACF/VTAM definition 
statements used by the user to define logical units and terminals.) 

The third word is reserved. 

The fourth word contains the length of the data portion of the logon sent by the 
logical unit. This length should be used with the LENGTH operand of INQUIRE 
macro instruction to obtain the data portion of the logon. 

Other registers contain the following: 

Register 14: The address in ACF/VTAM to which the LOGON exit routine should 
branch when it is through processing. ACF /VTAM handles the return of control to the 
application program instruction that was about to be executed when the LOGON 
interruption occurred. 

Register 15: The address of the LOGON exit routine. 

Registers 0 and 2-13: Unpredictable. 

A LOGON exit routine is shown in Appendix D. 

A LOSTERM exit routine is scheduled by ACF/VTAM when contact with a logical unit 
has been lost, when a logical unit has requested a logoff, when certain errors are detected 
in transmission, or when a logical unit is temporarily unavailable. As noted below, the 
application program may or may not issue CLSDST to disconnect the logical unit. (If the 
application program fails to issue CLSDST, the logical unit will remain unavailable for 
connection to any other application program.) 

Chapter 7. Using Exit Routines 159 



160 

If a LOSTERM exit routine is not provided, ACF/VTAM posts any outstanding requests 
associated with affected logical units with an appropriate return code. If there are no 
outstanding requests, whenever the program makes the next request, it is posted with a 
lost-terminal return code. If there is a LOSTERM exit routine, the program can 
disconnect the logical unit. (When a logical unit is lost, ACF/VTAM stops sending to that 
unit but does not disconnect it.) As with LERAD and SYNAD exit routines (LOSTERM 
might be thought of as a special form of SYNAD exit routine), its advantage is having a 
more convenient and immediate way to have control passed to this part of the program. 

A LOSTERM exit routine is especially recommended for an application program that 
does not issue specific-mode I/O requests for its logical units, but is driven instead by 
input arriving as the result of RECENE macro instructions issued in the any-mode. Use 
of the exit routine is also recommended for an application program that issues specific. 
mode 1/0 requests when there is the possibility that the logical unit may fill ACF/VTAM's 
buffers faster than the application program is emptying them with RECEIVE macro 
instructions. 

When ACF/VTAM determines that it can attempt to restart a logical unit, the LOSTERM 
exit routine may be entered twice. (This action can occur only when the application 
program does not have an NSEXIT exit routine.) On first entry, a reason code of 24 is 
passed to the LOSTERM exit routine, indicating that ACF/VTAM has begun its attempt 
to restart the logical unit. After the attempt is completed, ACF/VTAM gives control to 
the WSTERM exit routine a second time (unless the CLSDST macro instruction has 
already been completed). On this second entry, the reason code is either 16 (the logical 
unit has been successfully restarted) or 12 (the attempt was unsuccessful and contact 
with the logical unit has been lost). Even when the restart is successful, the application 
program must issue a CLSDST macro instruction to end the session that was disrupted 
and then, if desired, establish connection again with the logical unit that was successfully 
restarted. A coded LOSTERM exit routine is shown in Appendix D. 

If the application program has an NSEXIT exit routine, the conditions listed below for 
reason-codes 12, 16, and 24, are reported to the NSEXIT exit routine (with a network 
services cleanup request unit) instead of to the LOSTERM exit routine. If the application 
program does not have an NSEXIT exit routine but does have a LOSTERM exit routine, 
those conditions are reported to the LOSTERM exit routine. 

Registers Upon Entry: When the LOSTERM exit routine receives control, register 1 
contains the address of a 4-word parameter list (the parameter list is summarized in 
Figure 7-5): 

The first word contains the address of the ACB of the application program to which 
the logical unit or terminal is connected. 

The second word contains the session's CID. The ARG field of an RPL used for 
CLSDST must contain this CID. 

The third word contains whatever had been placed in the USERFLD field of the NIB 
associated with the logical unit or terminal. 

The value contained in the fourth word (called the reason code) indicates why the 
LOSTERM exit routine was entered: 

WSTERM 
Reason Code 
(Decimal) 

0 

4 

Meaning 

A dial-line disconnection occurred for a dial-in BSC or start-stop terminal. A 
CLSDST macro instruction is required. 

A dial-line disconnection occurred for a dial-out BSC or start-stop terminal. If no 
data from the terminal remains in ACF/VTAM buffers, a READ or WRITE 
(OPTCD=SPEC) macro instruction will redial the terminal. If redialing fails 
(causing the LOSTERM exit routine to be rescheduled), the CLSDST macro 
instruction should be issued for the terminal. 



LOSTERM 
Reason Code 
(Decimal) Meaning 

8 Reserved. 

12 Contact with a BSC terminal, start-stop terminal, or logical unit was permanently 
lost for one of the following reasons: (1) The network operator has issued a 
VARY IN ACT command for the logical unit or terminal. For VARY INACT,F or 
R, the LOSTERM exit routine is entered twice: once with a code of 24 and once 
with a code of 12. (Note: If the device lost was a PU or a 3705, the VARY 
INACT,R causes the LOSTERM exit routine to be scheduled with a code of 16 
instead of 12.) (2) The communications controller's NCP has begun an automatic 
network shutdown or has abended and cannot be restarted. (3) There has been a 
permanent channel failure between the CPU and the communications controller 
or locally attached terminal. (4) There has beeh a failure in the network path 
between the communications controller and the remotely attached terminal. (5) 
The network operator has issued a HALT NET,QUICK command. (6) A test 
request message has been received from the terminal other than a 3270 (see 
ACF/VTAM TOLTEP, SC38-0283, for more information about test request 
messages). For logical units, ACF/VTAM automatically issues an Unbind 
command. For local 3270, BSC, and start-stop terminals, the program can 
issue READ macro instructions to obtain data already sent from the terminal 
A CLSDST macro instruction is required unless a CLSDST has already been 
executed successfully. (Note: If the program has an NSEXIT exit routine, these 
conditions are in some cases reported instead to that exit routine.) 

16 The logical unit has been successfully recontacted. ACF/VTAM has automatically 
issued an Unbind command for the application program. Issue a CLSDST macro 
instruction. If desired, the program can issue an OPNDST or SIMLOGON macro 
instruction to re-acquire the logical unit. (Note: If the program has an NSEXIT 
exit routine, this condition is reported instead to that exit routine.) 

20 

24 

28 

32 

36 

40 

Note: Once the CLSDST macro instruction has been issued, reconnection of the 
terminal is subject to the normal rules for acquisition. Therefore, if another 
application program has a connection request queued for the logical unit, or the 
logical unit has issued a connection request for another application program, the 
logical unit may not be immediately reconnected to the releasing application 
program. 

An unconditional Terminate command, an unconditional character-coded logoff, 
or an unconditional TERMSESS macro instruction has been issued by the logical 
unit. ACF/VTAM automatically issues an Unbind command for the application 
program. A CLSDST macro instruction is required. 

Contact with the logical unit has been lost but ACF/VTAM may be able to 
reestablish it. Stop output to the logical unit and either return to ACF/VTAM or 
issue a CLSDST macro instruction. If the program does not issue a CLSDST, it 
must return to ACF/VTAM; ACF/VTAM will attempt to recontact the logical 
unit. If recontact is successful, ACF/VTAM reschedules the LOSTERM exit 
routine with a return code of 16. If recontact is unsuccessful, the LOSTERM exit 
routine is rescheduled with a return code of 12. If the program issues a CLSDST 
for the logical unit, the LOSTERM exit routine might not be rescheduled and the 
program might not get return code 12 or 16. (Note: If the program has an 
NSEXIT exit routine, this condition is not reported to the LOSTERM exit 
routine.) 

Reserved. 

A conditional Terminate command, a conditional character-coded logoff, or a 
conditional TERMSESS macro instruction has been issued by the logical unit. The 
application program may take any action it desires including issuing a CLSDST 
for the logical unit. 

The buffer limit defined for a logical unit has been exceeded. ACF/VTAM 
automatically issues a Oear command for, the application program. Any data for 
which the application program has not issued a RECEIVE will be discarded. The 
application program may resynchronize sequence numbers, or the data may be 
retransmitted after issuing SESSIONC (CONTROL=SDT) if appropriate for the 
tranSJl\ission services profile specified by the session parameters. 

The operator at a BSC 3270 or local 3270 terminal has hit the Test Request Key. 
A CLSDST macro instruction is required. 

Chapter 7. Using Exit Routines 161 



NSEXIT Exit Routine 

Network Services Procedure Error 

162 

Note: For any of the LOSTERM reason codes that require or recommend a CLSDST 
macro instruction, do not issue a second CLSDST if one has already been issued to the 
same logical unit or terminal but for a different reason. 

Other general purpose registers contain the following: 

Register 14: The address in ACF/VTAM to which the LOSTERM exit routine must 
branch when it is through processing. ACF/VTAM handles the return of control to the 
point in the application program where the LOSTERM interruption occurred. 

Register 15: The address of the LOSTERM exit routine. 

Registers 0 and 2-13: Unpredictable. 

The NSEXIT exit routine is entered whenever a network services request unit arrives for 
an application program. Since an application program can specify only one NSEXIT exit 
routine, this same routine must serve both when the program is the primary end of a 
session and when it is the secondary end. The action taken by the exit routine depends on 
the type of network services request unit received by the program. 

An application program can receive either of two types of network services request units: 

The program receives a network services procedure e"°r request unit if, after the 
program has issued a session establishment request and the request has been posted 
complete, something happens that makes it impossible to perform the next step in 
setting up the session. (See "Network Services Procedure Error" below.) 

The program receives a network services cleanup request unit when a connection with 
a logical unit has been broken because of a session outage (for example, a link failure 
or an NCP failure) or because the network operator has issued a VARY INACT,F or 
VARY IN ACT ,R command for the logical unit. (See "Cleanup Conditions" below.) 

When the exit routine is scheduled, ACF/VTAM provides it with the address of a 
read-only RPL. The AREA field of the RPL contains the address of the request unit that 
was received, and the REC LEN field of the RPL tells the number of bytes in the request 
unit. The exit routine examines the request unit to determine which type of network 
services request unit was received, which determines what action it should take. 

In any future releases of ACF/VTAM, other types of network services request units may 
be passed to the NSEXIT exit routine. For that reason, the exit routine should be coded 
to determine the particular type of request unit received and to take action for each type. 
The exit routine should also take particular action when it receives a request unit other 
than one of the types it expects to receive. (In other words, the exit routine should not, 
by default, do nothing when it receives a request unit other than a type that is expected.) 
If the exit routine receives a request unit other than a procedure error request unit or a 
cleanup request unit, the exit routine should set register 0 to 0 and register 15 to 4 and 
then return control to ACF/VTAM. 

As indicated above, a network services procedure error (NSPE) request unit can arrive at 
an application program when, after having received a positive response to a session 
establishment request, the program is awaiting the next event in the session establishment 
procedure. Here are some examples of conditions that cause a network services procedure 
error request unit to be generated and delivered to an application program: 

1. A secondary application program has issued a REQSESS macro instruction, and the 
macro has been completed successfully (indicating that a positive response to the 
request was sent back). The primary application program then rejects lthe logon by 



Oeanup Conditions 

issuing a CLSDST macro instruction. Issuance of the CLSDST macro causes a 
network services procedure error request unit to be sent to the secondary application 
program. 

2. A secondary application program has issued a REQSESS macro instruction, and the 
macro has been completed successfully. The primary application program is then 
abnormally terminated before it can process the logon which resulted from the 
REQSESS. ACF/VTAM sends a network services procedure error request unit to the 
secondary program. 

3. A primary application program issues a SIMLOGON macro instruction for a logical 
unit, and the macro is completed successfully (indicating that a logon for the logical 
unit has been created by ACF/VTAM and queued for the application program that 
issued the macro). Before the logon can be processed, the network operator 
deactivates the logical unit. This causes ACF/VTAM to send the application program 
a network services procedure error request unit. 

4. Application program A issues a CLSDST macro instruction with OPTCD=PASS to 
pass a logical unit to application program B. The macro completes successfully, 
indicating that a logon has been created and queued for application program B. When 
application program B processes the logon, it either (1) rejects the logon by issuing a 
CLSDST macro or (2) issues an OPNDST to the logical unit, but the logical unit 
rejects the Bind command by sending a negative response. In either case, ACF/VTAM 
sends a network services procedure error request unit to application program A. The 
request unit signals application program A that, even though the CLSDST with 
OPTCD=PASS was posted complete, the session that was requested cannot be 
accomplished. 

5. When a primary application program issues an OPNDST with OPTCD=ACQUIRE and 
for some reason ACF/VTAM cannot establish the session, ACF/VTAM may send an 
NSPE to the primary application program. Since the application program may receive 
the NSPE either before or after the processing associated with the OPNDST is 
completed (either successfully or unsuccessfully), the application program's NSEXIT 
exit routine should be written to take appropriate error recovery regardless of when 
the NSPE is received. 

The format of the network services procedure error request unit is shown in Figure 7-6. 

In some situations, such as conditions 1 and 2 described above, the application program 
may want to issue another session establishment request immediately or may want to 
wait and issue the request at a later time. Even if no other action is taken, the NSEXIT 
exit routine should set registers 0 and 15 to 0 before returning control to ACF/VTAM. 
This is done so that those registers can be used for return codes when processing other 
types of network services request units in any future releases of ACF/VT AM. 

When a session is interrupted either by a session outage or by a VARY INACT command 
with the F (forced) or R (reactivate) operand, ACF/VTAM sends the primary application 
program a network services cleanup request unit. A network services cleanup request unit 
is also sent to the secondary end of the session when the secondary end is an application 
program. When the secondary end of the session is a device-type logical unit, ACF/VTAM 
performs a cleanup sequence consisting of deactivation of the logical unit and an attempt 
to reactivate the logical unit. 

Arrival of the cleanup request unit at an application program causes that program's 
NSEXIT exit routine to be scheduled (if one exists). Because ACF/VTAM has already 
terminated the session, the exit routine does not take any action to end the session (that 
is, does not issue a CLSDST macro instruction or send a Request Shutdown command). 
The exit routine may want to clean up control blocks for the session. The exit routine 

Otapter 7. Using Exit Routines 163 



164 

Byte Contents 

0 X'01' 

x·oe· 
2 X'04' 

3 Reason code 
The meaning of the bits in this code are: · 

0123 4567 
1 ... 

. 1 .. 

. . 1 . 

. . . 1 
0 .•• 
. 0 .• 
. . 1. 
... 1 

An internal processing error occurred in trying to reach the primary 
logic&I unit . 
A Bind error occurred in reaching the secondary logical unit. 
Initiation was rejected at the primary logical unit . 
Initiation was rejected at the secondary logical unit . 
A setup procedure error occurred . 
Resented • 
Initiation was rejected at the system services control point. 
The request unit is in the comprehensive format (rather than the 
condensed format). 

Ir\ the current release of ACF/VT AM, bits 4 and 7 (setup error and comprehensive 
format) are always 0 and 1, respectively. If bit 4 is not 0 or bit 7 is not 1, set register 
0 to 0 and register 15 to 4 and return to ACF /VT AM. 

4-5 System sense data 
(if applicable) 

6-7 User sense data 
(if applicable) 

The system and user sense data, if applicable, is from the step in the procedure that 
caused the setup failure. For the meaning of the system sense data, see Appendix C 
inACFNTAM Macro Language Reference. 

8 X'06' 

9-n Identification of the logical units involved in the failed procedure, as follows: 

1 Byte 1 Byte 1-8 Bytes 

X'F3' 11 Symbolic name of 
primary logical unit 
( 1-8 characters) 

l /1 is the length (number of 
characters) of the symbolic 
name of the primary logical 
unit. 

1 Byte 1 Byte 1-8 Bytes 

X'F3' 12 Symbolic name of 
secondary logical unit 
( 1-8 characters) 

l 12 is the length (number of 
characters) of the symbolic 
nal!le of the secondary logical 
uriit. 

Figure 7-6. Format of a Network Services Procedure Error Request Unit 



TPEND Exit Routine 

may also want to attempt to reestablish the session, and the attempt may be successful if 
the session outage has been repaired or bypassed and the desired logical unit is available. 
The format of the network services cleanup request unit is shown in Figure 7-7. 

When the primary application program involved in the broken session does not have an 
NSEXIT exit routine, that program's LOSTERM exit routine (if one exists) is scheduled 
to report loss of the session. The LOSTERM exit routine is scheduled first with reason 
code 24 (contact lost) and is later rescheduled with reason code 16 (logical unit 
successfully restarted) or reason code 12 (restart was unsuccessful). 

Even if no other action is taken, the NSEXIT exit routine should set registers 0 and 15 to 
0 before returning to ACF/VTAM. This is done so that those registers can be used for 
return codes when processing other types of network services request units in any future 
releases of ACF/VTAM. 

Registers Upon Entry: When the NSEXIT exit routine receives control, register 1 
contains the address of a 5-word parameter list (the parameter list is summarized in 
Figure 7-5): 

The first word contains the address of the ACB for the application program to which 
the network services request unit was sent. 

Word 2 contains the CID for the session referred to in the cleanup request unit. Word 
2 is not applicable for a network services procedure error request unit. 

Word 3 contains the data that was placed in the USERFLD field of the NIB when the 
session referred to in the cleanup request unit was established (that is, when the 
OPNDST macro was issued by the primary application program or when the OPNSEC 
macro was issued by the secondary application program). Word 3 is not applicable for 
a network services procedure error request unit. 

The fourth word is reserved. 

The fifth word contains the address of an ACF/VTAM-supplied, read-only RPL. Other 
than the fact that it resides in read-only storage and cannot be used by an RPL-based 
macro instruction, the read-only RPL is identical to any other RPL. The application 
program can examine the read-only RPL fields with SHOWCB and TESTCB macro 
instructions or with assembler instructions. 

Other general purpose registers contain the following: 

Register 14: The address in VTAM to which the NSEXIT routine must branch when it 
has finished processing. VTAM will return control to the instruction in the application 
program that was about to be executed when the NSEXIT interruption occurred. 

Register 15: The address of the NSEXIT exit routine. 

Registers 0 and 2-13: Unpredictable. 

The TPEND exit routine is entered when the network operator issues a HALT command, 
when ACF /VT AM is halting itself in an orderly fashion because of an internal problem, or 
when ACF/VTAM is being abnormally terminated. The reason for entry to the exit 
routine is indicated by a code in the second word of the parameter list passed to the exit 
routine. 

For a standard HALT command (a HALT command without the QUICK or CANCEL 
operand), indicated by code 0 in the parameter list, the program is allowed to continue 
communications with connected logical units, but the program should end those 
communications in an orderly fashion as soon as it can. It should issue an asynchronous 

Chapter 7. Using Exit Routines 165 



166 

Byte Contents 

0 X'81' 

X'06' 

2 X'29' 

3-4 Reserved 

5 Reason code 
In the current release of ACF/VTAM, this byte always contains X'03', Indicating that 
the session has been taken down. In any future releases of ACFNTAM, additional 
reason codes may be returned. 

6 X'06' 

7-n Identification of the logical units involved in the session, in this format: 

1 Byte 1 Byte 1.S Bytes 

X'F3' 11 Symbolic name of 
primary logical unit 
( 1-8 characters) 

L11 is the length (number of 
characters) of the symbolic 
name of the primary logical 
unit. 

1 Byte 1 Byte 1.S Bytes 

X'F3' 12 Symbolic name of 
secondary logical unit 
I 1-8 characters) 

l 12 is the length (number of 
characters) of the symbolic 
name of the secondary logical 
unit. 

Figure 7-7. Format of a Network Services Cleanup Request Unit 



RELREQ Exit Routine 

CLSDST macro instruction for each connected logical unit, return to its main program, 
and issue a CLOSE macro instruction. (A CLOSE macro instruction cannot be issued in 
an exit routine.) 

For a HALT QUICK command or when ACF/VT.AM is halting itself (code 4), pending 
data-transfer operations are stopped, but they are marked as completed and canceled 
(ACF/VT.AM sets a flag in the FDBK2 field of each RPL to indicate that the operation 
was canceled). For code 4 (as for code 0), the application program should issue a 
CLSDST macro instruction for each connected logical unit and then issue the CLOSE 
macro instruction. 

For a HALT CANCEL command or ACF/VT.AM abnormal termination (code 8, which 
appears only in an OS/VS system), pending operations are interrupted (without being 
marked as completed or canceled), and no ACF/VTAM request except the CLOSE macro 
instruction is accepted. The TPEND exit routine should return to the main program for 
immediate issuance of the CLOSE macro instruction without any attempt to disconnect 
the logical units. 

See Chapter 4 for more information on actions to be taken by the TPEND exit routine. A 
coded TPEND exit routine is shown in Appendix D. 

Registers Upon Entry: When the TPEND exit routine receives control, register 1 contains 
the address of a 2-word parameter list (the parameter list is summarized in Figure 7-5): 

The first word contains the address of the ACB of the application program being shut 
down. 

The value in the second word indicates the reason for the shutdown: 

0 The network operator issued a standard HALT command to close the network 
normally. 

4 The network operator issued a HALT QUICK command, or ACF/VTAM de­
tected an internal problem and is halting itself. 

8 The network operator issued a HALT CANCEL command, or ACF /VT.AM has 
abnormally terminated. 

Other general purpose registers contain the following: 

Register 14: The address in ACF/VT.AM to which the TPEND exit routine must 
branch when it is through processing. ACF /VT AM returns control to the instruction in 
the application program that was to be executed when the TPEND interruption 
occurred. 

Register 15: The address of the TPEND exit routine. 

Registers 0 and 2-13: Unpredictable. 

The RELREQ exit routine is entered when one application program (a set of instructions 
associated with one ACB) or TOLTEP (the teleprocessing online test executive program) 
requests connection to a logical unit that is connected to another application program (a 
set of instructions associated with a different ACB). The requesting program requests 
connection with a SIMLOGON macro instruction that specifies OPTCD=(RELRQ,Q). As 
a result, ACF/VT.AM schedules and causes entry to the RELREQ exit routine of the 
application program currently connected to the logical unit and acting as the primary end 
of the session. The RELREQ exit routine can either ignore the request (that is, remain 
connected to the logical unit and make the requesting program wait) or take action to 
immediately release the requested logical unit. 

Chapter 7. Using Exit Routines 167 



168 

If the exit routine decides to release the logical unit, it may want to determine whether 
there are any pending (incomplete) data-transfer requests for the logical unit and release 
it only after those data-transfer operations have been completed. To disconnect and 
release the logical unit, the application program issues the CLSDST macro instruction 
with the RELEASE option. After execution of the CLSDST macro, the logical unit is 
made available to the application program that has the oldest pending request for the 
logical unit. (Note that the application program to which the logical unit is made available 
may be a different application program from the one that caused the current entry to the 
RELREQ exit routine. This will be the case when another application program made an 
earlier connection request and the request was queued.) 

If the exit routine decides to ignore the RELREQ request, it takes no action and 
continues communication with the logical unit. The connection request from the other 
application program remains pending and is queued (behind any other pending 
connection request for the logical unit) until the logical unit is released. 

If an application program does not have a RELREQ exit routine, the program cannot be 
notified of another program's request. If the other program issued its SIMLOGON request 
with the NQ option~ ACF/VTAM rejects the request. If the other program issued the 
request with the Q option, the request remains pending until the logical unit is released. 

The application program that caused entry to the RELREQ exit routine may have issued 
its SIMLOGON request with the CON ANY option in effect and provided a list of NIBs 
from which any one logical unit is acceptable. This kind of request is satisfied if one of 
the logical units is immediately available or when the first of the logical units is released 
and thus becomes available. When no logical unit is immediately available, ACF/VTAM 
invokes the RELREQ exit routine (or queues the connection request) for each 
application program currently connected to one of the logical units. Thus, for a 
SIMLOGON with the RELREQ and CONANY options, many RELREQ exit routines 
may be invoked. In this situation, if another application program releases one of the 
logical units first, but your program also releases one of the logical units, the logical unit 
released by your program may remain unconnected. To prevent this, the CLSDST that 
releases the logical unit should be followed by an OPNDST (OPTCD=ACQUIRE) or 
SIMLOGON request to attempt to reacquire the logical unit that was just released. Then, 
if the released logical unit is being ignored, the program that released it gets it back. 

Registers Upon Entry: When the RELREQ exit routine receives control, register 
contains the address of a 2-word parameter list (the parameter list is summarized in 
Figure 7-5): 

_The first word of the parameter list contains the address of the ACB through which 
the logical unit is currently connected to an application program. 

The second word of the parameter list contains the address of the symbolic name of 
the requested logical unit. The name is 8 bytes long and padded on the right with 
blanks, if necessary. 

The other registers contain the following: 

Register 14: The address in ACF/VTAM to which the RELREQ routine must branch 
when it is through processing. ACF /VT AM will return control to the instruction in the 
application program that was about to be executed when the RELRpQ interruption 
occurred. 

Register 15: The address of the RELREQ exit routine. 

Registers 0 and 2-13: Unpredictable. 



SCIP Exit Routine 
The SCIP exit routine is entered when any of the following session-control commands is 
received by an application program: 

Clear 

Start Data Traffic (SDT) 

Request Recovery (RQR) 

Set and Test Sequence Numbers (STSN) 

Bind 

Unbind 

For the Clear, RQR, and Unbind commands, ACF/VTAM automatically sends a 
response before the command is presented to the exit routine. For the STSN and Bind 
commands, the application program must send its own response. For the SDT command, 
either the application program or ACF/VTAM sends the response, depending on 
the NIB's SDT operand for the session. For all six commands, if the application 
program has no SCIP exit routine, ACF /VT AM automatically sends a negative response 
with sense information indicating that the request was rejected because the function is 
disabled. 

Five of the commands-Clear, SDT, STSN, Bind, and Unbind-are sent only fr.om the 
primary end of the session (the primary application program) to the secondary end of 
the session (a device-type logical unit or a secondary application program). Thus, in an 
application program, those five commands can only be received and processed in a 
SCIP exit routine in a secondary application program. The other command-RQR-is 
sent only from the secondary end of a session to the primary end. Thus, that command 
is only received and processed in a SCIP exit routine in a primary application 
program. 

For a SCIP exit routine, information on the command that has been received is 
available in a read-only RPL provided by ACF/VTAM. The location of the read-only 
RPL is provided in the parameter list passed to the exit routine when the routine is 
ow.heduled. 

Clear Command: The Clear command is sent by the primary end of the session (either 
ACF/VTAM or the primary application program) when the flow of data messages, 
data-flow control commands, and responses is to be stopped, either because the primary 
end is terminating the ~ession or because the primary end wants to take some recovery 
action. The Clear command does these things: 

Informs the secondary end of the session to stop transmitting messages and responses 

Causes the inbound and outbound sequence numbers for both ends of the session to 
reset to 0 

Causes all incoming and outgoing messages, commands, and responses pertaining to the 
session and not yet delivered to be discarded. 

For certain logical units1 , issuance of the CLSDST macro instruction in a primary 
application program causes ACF/VTAM to generate a Clear command and send it to the 
secondary ·end of the session. For certain logical units1 , ACF/VT AM also generates a 
Clear command when it receives a Terminate command from the secondary end of the 
session. A primary application program usually issues a Clear command (using the 
SESSIONC macro with CONTROL=CLEAR) when the SCIP exit routine in that program 
receives a Request Recovery (RQR) command from the secondary end of the session. 

1 ACF/VTAM. sends a Oear command before an Unbind command when the logical unit being discon­
nected is (1) in another domain, or (2) in the same domain and attached to a communications 
controller (3704 or 3705) that contains Release 5 of the NCP. 

Cltapter 7. Using Exit Routines 169 



170 

As the result of receiving the Clear command, the SCIP exit routine in a secongary 
application program should take action to stop the program from sending any more 
messages, responses, or commands. 

For more information on the Clear command, see "Controlling Flow" in Chapter 6. For 
the role of the Clear command in various command sequences, see Figures C-9, C-12, 
C-13, C-14, C-18, C-21, C-22, C-23, and C-24 in Appendix C. 

Start Data Traffic (SDT) Command: When required by the session parameters, a Start 
Data Traffic (SDT) command is sent from the primary end of the session to the 
secondary end of the session at the beginning of the session and within a session after 
successful sequence number resynchronization has occurred. In both cases, the command 
informs the secondary end of the session that the flow of data messages, data flow 
commands, and responses can be started (or resumed). 

After receipt of a Start Data Traffic command, the SCIP exit routine in a secondary 
application program should inform the rest of the program that transmissions can be 
started or pass control to the part of the program that handles beginning-of-session 
activities. 

For more information on the Start Data Traffic command, see "The Node Initialization 
Block (NIB)" and "Connection with a Secondary Application Program" in Chapter S, and 
see "Controlling Flow" in Chapter 6. For the role of the Start Data Traffic command in 
various command sequences, see Figures C-1, C-2, C-3, C-9, C-15, C-16, C-17, and C-18 in 
Appendix C. 

Request Recovery (RQR) Command: The secondary end of the session sends the 
Request Recovery command to the primary application program to request the primary 
program to start sequence number resynchronization. In most cases, the command is sent 
when the secondary end discovers a discrepancy in the sequence numbers of incoming 
messages or a discrepancy between the sequence numbers it assigned to outgoing messages 
and the responses it is receiving to those messages. It might also send the command if it 
loses or is forced to discard some incoming messages before it can process them. (For 
example, input buffers are too full to hold the incoming messages.) 

The Request Recovery command informs the primary application program that the 
secondary end of the session wants to resynchronize sequence numbers (that is, agree on 
which sequence numbers represent the last incoming and outgoing message to be 
successfully sent and received) and to resend some messages if necessary. 

Upon receiving the Request Recovery command, the SCIP exit routine in the primary 
application program should start resynchronization. That action normally consists of 
issuing a Clear command (using SESSIONC with CONTROL=CLEAR), followed by one 
or more Set and Test Sequence Numbers (STSN) commands followed by an SDT 
command. To each STSN command it receives, the secondary end of the session sends a 
response indicating the action it has taken in relation to sequence numbers suggested by 
the primary application program. For a description of the procedure used to 
resynchronize sequence numbers, see "Controlling Flow" in Chapter 6. For examples of 
the use of the Request Recovery command, see Figures C-9 and C-18 in Appendix C. 

Set and Test Sequence Numbers (STSN) Command: As indicated above, the Set and Test 
Sequence Numbers command is used by the primary application program in resynchroniz­
ing sequence numbers and in message recovery action. For more information on the 
command, see "Controlling Flow" in Chapter 6 and Figures C-3, C-9, and C-18 in 
AppendixC. 



Bind Command: The Bind command is sent from the primary end of the session to the 
secondary end of the session during connection. The Bind command indicates that the 
primary application program wants to start a session with the secondary end, and the 
command contains the session parameters that the primary program proposes to be used 
for the session. 

Upon receipt of a Bind command, the SCIP exit routine in a secondary application 
program should inspect the session parameters contained in the command. If the session 
parameters are acceptable and if the secondary program is willing to go into session with 
the primary application program, the secondary program should issue the OPNSEC macro 
instruction (which produces a positive response to the Bind command). If the session 
parameters are unacceptable or the secondary program does not want the session, it uses 
the SESSIONC macro to send a negative response to the Bind command. For more 
information on the Bind command, see Chapter 5, especially the section under 
"Connection with a Secondary Application Program." Also see Figures C-1, C-2, C-15, 
C-16, and C-17 in Appendix C. 

Unbind Command: As part of the disconnection process (that is, after the primary 
application program has issued the CLSDST macro instruction), the primary end of the 
session sends the Unbind command to the secondary end of the session. (In some cases, 
the Unbind command is preceded by the Clear command-see "Clear Command" above.) 

Upon receipt of the Unbind command, the SCIP exit routine in the secondary application 
program cleans up control blocks and other information pertaining to the session, because 
that information is no longer needed. For the role of the Unbind command in various 
command sequences, see Figures C-13, C-14, C-21, C-22, C-23, and C-24 in Appendix C. 

Registers Upon Entry: When the SCIP exit routine receives control, register 1 contains 
the address of a 5-word parameter list (the parameter list is summarized in Figure 7-5): 

The first word contains the address of the ACB of the application program to which 
the command was sent. 

The second word contains the CID of the application program that sent the command. 
(For a Bind command, the contents of this word have no significance.) 

The third word contains whatever was placed in the USERFLD field of the NIB at the 
time the connection was established; that is, when the command is received by a 
primary application program, this word contains the USERFLD data that was in the 
NIB associated with the OPNDST macro, and when the command is received by a 
secondary application program, this word contains the USERFLD data that was in the 
NIB associated with the OPNSEC macro. (For a Bind command, the contents of this 
word have no significance.) routine. 

The fourth word contains no meaningful data except for receipt of a Bind command. 
For a Bind command, this word contains the beginning address of the session 
parameters. 

The fifth word contains the address of an ACF /VT AM-supplied, read-only RPL. Other 
than the fact that it resides in read-only storage and cannot be used by an RPL-based 
macro instruction, the read-only RPL is identical to any other RPL. The information 
in the read-only RPL can be examined by using the IFGRPL DSECT or by using the 
SHOWCB and TESTCB macro instructions. The particular command that caused 
scheduling of the exit routine can be determined by examining the CONTROL field of 
the read-only RPL. A CHECK macro instruction must not be issued against the 
read-only RPL. 

Other general purpose registers contain the following: 

Register 14: The address in ACF/VTAM to which the SCIP routine must branch when 
it has finished processing. ACF/VTAM will return control to the instruction in the 

Otapter 7. Using Exit Routines 171 



application program that was about to be executed when the SCIP interruption 
occurred. 

Register 15: The address. of the SCIP routine. 

Registers 0 and 2-13: Unpredictable. 

Summary of Exit Routines Involved in Session 
Initiation, Session Outages, and Session Termination 

Various exit routines play significant roles in session initiation, session outages, and 
session termination. The involvement of e:itjt routines in those activities is summarized in 
Figures 7-8, 7-9, and 7-10. 

Using Exit Routines When Multitasking 

When multitasking, both RPL exit routines and EXLST exit routines are scheduled under 
the task that opens the ACB with which the exit routines are associated. For example, if 
the ACB is opened in the main task and a SEND is issued in a subtask that specifies a 
response to be returned, using a RESP exit routine, the RESP exit routine is scheduled 
under the main task. The exit routine and the subtask may thus require communication 
with each other (perhaps by posting and checking an ECB located in a common area). 

Procedures to Follow in Writing Exit Routines 

172 

Figure 7-11 summarizes the addressability and save-area requirements for the main 
program and for exit routines. In most cases, LERAD and SYNAD exit routines must be . 
reenterable. Figure 7-12 shows the situations in which LERAD and SYNAD exit routines 
do not have to be reenterable. Figure 7-13 shows the situations in which they must be 
reenterable. 

Entry .Procedures: In general, when an exit routine is entered, the following apply: 

• Register 1 contains the address of a parameter list. 

• Register 14 contains an address for returning control to ACF/VTAM. 

• ACF/VTAM's registers do not have to be saved; register 13 does not contain the 
address of an ACF/VTAM save area. However, when a LERAD or SYNAD exit routine 
is entered, register 13 does contain the address of an 18-word save area in the 
application program. 

• ACF/VTAM does not provide a save area for the application program's general 
registers. If any executable ACF/VTAM. macro is issued in the exit routine, the address 
of the exit routine's own 18-word save area must be in register 13 when the macro is 
issued. 

Cautions, Restrictions, and Techniques: These cautions and techniques can be used when 
writing exit routines: 

• Be sure to establish addressability for each exit routine and for all of the storage that 
the exit routine uses. There are two techniques for addressing control blocks: 

- Defme constants and literals that are within the range of the USING statement by 
using LTORG. 

- Use A-type address constants for storage that must be shared among the main 
program and exit routines or that cannot economically be duplicated (for example, 
save areas and the ACB). 



• For DOS/VS users, certain system macros, such as DUMP and PDUMP, cannot be used 
in an ex.it routine. 

• The OPEN and CLOSE macro instructions cannot be used in an exit routine. 

• Although most exit routines cannot be interrupted to be reentered, there are some 
exceptions. An exit routine must be reenterable if it is associated with ACBs opened 
by different tasks in the same job step. A LERAD or SYNAD ex.it routine in most 
cases must be reenterable. It must be reenterable if: 

It issues an RPL-based macro. 

It is being executed because of an error in the main program, but is interrupted to 
process an error encountered in an ex.it routine. 

In a reenterable exit routine, storage must be obtained dynamically for control blocks 
(an RPL, for example) and data. 

• If an RPL-based macro is issued in a LERAD or SYNAD ex.it routine (such as 
CLSDST, SEND, or EXECRPL), a flag should be set so that, in the event of an error or 
special condition, the LERAD or SYNAD ex.it routine will recognize that it has been 
reentered. This flag can be set in the leftmost bit of any register between register 2 and 
register 12 that is used to point to the RPL when the request is issued. For example: 

ST R2,WORKAREA 
OI WORK.AREA,X'80' 
L R2,WORKAREA 
SEND RPL=(R2) 

R2 CONTAINS RPL ADDR 
SET RECURSION FLAG 
PUT FLAGGED ADDR BACK IN R2 

• If the exit routine issues a macro instruction and completion is awaited in the same 
routine, the main program as well as the ex.it routine will wait until the requested 
operation is completed. To avoid such delays, consider using an RPL ex.it routine for 
notification of completion. 

Ex.it Procedures: An exit routine can branch to any location in the main program. The 
main program, however, must return control to the ex.it routine (except for LERAD and 
SYN AD routines). Then, when the exit routine is finished, the following conventions 
must be observed: 

• Except for LERAD and SYNAD, exit routines must return control with a BR 14 after 
register 14 has been restored with the address it contained when the ex.it routine was 
entered (an address within ACF/VTAM). 

• For LERAD and SYNAD ex.it routines, if the program returns control with a BR 14, it 
must not issue any macro that would change the contents of the 18-word save area 
whose address is in register 13 unless it first specifies a new save area. Then, when 
ready to return control, it puts the address of the old save area back into register 13. 
In other words, when the program returns control with a BR 14, register 13 must be 
pointing to the same save area it was pointing to at the time the LERAD or SYNAD 
exit routine was entered. 

• A LERAD or SYNAD exit routine can use registers 0 and 15 to pass information to 
the main program. 

Otapter 7. Using Exit Routines 173 



Action or Event Causing Exit Routine' of Event That Occurs ••. 
Connection Request •• .In Primary Application Program ••• In Secondary Application Program 

Device-type logical unit sends Initiate LOGON exit routine is scheduled. (Not applicable) 
command or character-coded logon 
to primary application program. 

Secondary application program LOGON exit routine is scheduled. If primary application program accepts logon by 
issues REOSESS macro. issuing OPNDST OPTCD=ACCEPT. Bind command 

is received in SCIP exit routine. 

If, after REOSESS is posted complete, the session 
cannot be initiated, NSEXIT exit routine is 
scheduled with network services procedure error 
request unit. 

If primary application program rejects logon by 
issuing CLSDST macro, NSEXIT exit routine is 
scheduled with network services procedure error 
request.unit. 

Primary application program issues Bind command received in SCIP exit routine. 
OPNDST OPTCD=ACCEPT. 

Primary application program issues If the session cannot be initiated, Bind command received in SCIP exit routine. 
OPNDST OPTCD=ACOUIRE for NSEXIT exit routine is scheduled 
secondary application program. with network services procedure error 

request unit. This can occur before or 
after posting of the OPNDST . 
OPTCD=ACOUIRE. 

Primary application program issues LOGON exit routine is scheduled to If SIMLOGON names a secondary application 
SIMLOGON to create simulated process the simulated logon. program and if primary application program 
logon. 

If, after the SIMLOGON is posted accepts the logon by issuing OPNDST 

complete, the session cannot be initiated, OPTCD=ACCEPT, Bind command is received in 

NSEXIT exit routine is scheduled with SCIP exit routine of secondary program. 

network services procedure error request 
unit. 

« 

Primary application program is LOGON exit routine is scheduled to 
controlling application program for process the logon created by ACF/VTAM. 
a device-type logical unit 
(LOGAPPL=this program name in 
logical unit's definition statement) 
and another application program 
releases the logical unit. 

Network operator issues VARY LOGON exit routine of primary 
LOGON command to make a application program named in VARY 
primary application program the LOGON command is scheduled when 
controlling application program for logical unit is available-immediately 
a device-type logical unit. if the logical unit is not in session or 

when the logical unit is released. 

Primary application program A Application program B's LOGON exit The SCIP exit routine will be entered twice; once 
issues a CLSDST OPTCD=PASS to routine is scheduled to process the logon. by the Unbind received from application A, 
pass a logical unit to primary If, after the CLSDST OPTCD=PASS is again by the Bind received from application B. 
application program B. posted complete, the session cannot be 

initiated, application program A's 
NSEXIT exit routine is scheduled with a 
network services procedure error request 
unit. 

Primary application program A issues Application program B's RELREQ exit 
a SIMLOGON with OPTCD•RELREQ routine is scheduled. 
to request primary application 
program B to release a logical unit to 
which it is currently connected. 

1 If the program does not have the exit routine, no notification occurs. 

Fi,gme 7-8. Sunuruuy of Exit Routines Involved in Session Initiation 

174 



Method of Notification 
••• For Secondary 

Action or Event Causing Session Outage1 ••• For Primary Application Program2 Application Program2 

Session outage occurs (for example, a link If primary application program has NSEX IT routine, NSEXIT exit routine is 
failure, an NCP failure, or a dial-line that exit routine is scheduled with a cleanup request scheduled with a cleanup 
disconnection). (The following LOSTERM unit. Otherwise, the LOSTERM exit routine is request unit. 
decimal reason codes are session outages: 0, scheduled with a reason code. 
4, 12, 16, 24, and 40. When the conditions Note that events that can cause double entry to the 
represented by these reason codes cause LOSTERM exit routine (first entry with code 24 and 
scheduling of the NSEXIT exit routine, second entry with code 12 or 16) do not cause 
these codes are not part of the network double entry to the NSEXIT exit routine. Instead, 
services cleanup request unit passed to the NSEXIT exit routine is entered once with network 
exit routine; the NSEXIT exit routine services cleanup request unit indicating that the 
receives only the request unit.I session has been lost (no CLSDST is needed because 

ACFNTAM has ended the session). 

Session-type error detected (buffer limit for LOSTERM exit routine is scheduled with a reason (same as primary) 
logical unit exceeded or invalid segmented code. 
request received from logical unit). 

Network operator issues a VARY NET,INACT,1 LOSTERM exit routine is scheduled with a reason (Not applicable) 
(immediate) command to deactivate a device- code. 
type logical unit in the same domain or to 
deactivate a cross-domain resource (CDRSC) 
that is a device-type logical unit in another 
domain. 

Network operator issues a VARY NET,INACT,I LOSTERM exit routine is scheduled with a reason Unbind command is 
(immediate) command to deactivate a cross- code. received in SCIP exit 
domain resource (CDRSC) that is a secondary routine. 
application program or primary application 
program in another domain. 

Network operator issues a VARY NET,INACT,F If primary application program has an NSEXIT exit (Not applicable) 
or R command to deactivate a device-type routine, that exit routine is scheduled with a cleanup 
logical unit in the same domain or to deactivate request unit. Otherwise, LOSTERM exit routine is 
a cross-domain resource (CDRSCI that is a scheduled with a reason code. 
device-type logical unit in another domain. 

Network operator issues a VARY NET,INACT,F If primary application program has an NSEXIT exit NSEXIT exit routine is 
or R command to deactivate a cross-domain routine, that exit routine is scheduled with a cleanup scheduled with a cleanup 
resource (CDRSC) that is a secondary request unit. Otherwise, LOSTERM exit routine is request unit. 
application program or primary application scheduled with a reason code. 
program in another domain. 

1 A session outage is any action or event that causes a path between a primary application program and its logical unit to be broken or 
that causes loss of one of the participants in the session. 

1 lfprogram does not have an NSEXIT or LOSTERM exit routine, no notification occurs. However, in those cases in which the 
LOSTERM exit routine is scheduled when there is no NSEXIT exit routine, no notification occurs only when there is neither an 
NSEXIT nor a LOSTERM exit routine. 

Figure 7-9. Summary of Exit Routines Involved in Session Ou'lages 

Otapter 7. Using Exit Routines 175 



Action or Event Causing Method of Notification .•. 
Session Termination .•. For Primary Application Program' ..• For Secondary Application Program' 

Device-type logical unit requests session LOSTERM exit routine is scheduled with (Not applicable) 
termination. a reason code. 

Secondary application program issues LOSTERM exit routine is scheduled with When primary application program issues 
TERMSESS macro. a reason code. CLSDST to end the session, secondary 

application program receives Unbind command 
in SCIP exit routine. 

Primary application program issues (Not applicable) Unbind command received in SCIP exit routine. 
CLSDST or CLOSE 

Secondary application program issues a NSEXIT or LOSTERM exit routine is (Not applicable) 
CLOSE scheduled. 

ACF/VTAM servicing the primary TPEND exit routine is scheduled. If secondary application program is in same 
application program is being terminated, domain as primary application program, 
recognizes an internal error, or receives a secondary program's TPEND exit routine is 
HALT command from the operator. scheduled. 

Network operator issues standard HALT, If primary.application program is in TPEND exit routine is scheduled. 
HALT QUICK, or HALT CANCEL same domain as secondary application 
command to halt the ACF/VTAM that is program, primary program's TPEND 
servicing the secondary application exit routine is scheduled. 
program. 

ACF/VTAM servicing the secondary If the primary application program is in TPEND exit routine is scheduled. 
application program enters halt-quick the same domain as the secondary 
processing because of an internal error application program, the primary 
or the ACF/VTAM is being abnormally program's TPEND exit routine is 
terminated. scheduled. 

1 If program does not have required exit routine, no notification occurs. 

Figure 7-10. Summary of Exit Routines Involved in Session Termination 

176 



Main Program 

PROG CSECT 
USING 
SAVE 
BALA 

BASE EQU 
DROP 
USING 
ST 

ST 
LA 
OPEN 

• 
• 
• 

BASESAVE OS 
SAVEO OS 

* ,15 
(14,12) Must save registers. 
12,0 Must establish addressability. 
* 
15 
* ,12 

1--12,BASESAVE-' Save global addressability point. 

13,SAVEo+4 
13,SAVEO 
ACB1 

-
F 
18F 

Before issuing an executable macro or making other external call, must save address that 
was in register 13 (upon entry) in second word of own save area, and then put address of 
own save area in register 13. 

Asynchronous Exit Routine 
LOGON,TPEND,RPL exit, etc.) ( 

USING *, 15 -----1-- Must establish global addressability. 
L 12,BASESAVE 
DROP 15 
USING BASE,12 

• ------------ Do not have to save AC F/VTAM's registers . 
LR 

• 
LA 
SEND 

• 
• 
• 
• 

R3,R14 -----Must save register 14 (that is, save return 

13,SAVEA 

address). 

__ ....,._..., If going to issue an executable macro or make 
other external call, must put address of own 
save area in register 13 . 

• __ _,_ ________ Do not have to restore ACF/VTAM's registers . 

LR 
BR 

---+-- Must restore register 14 (that is, restore return 
address). 
Must return to address initially provided in 
register 14. 

SAVEA OS 18F 

LERAD/SYNAD Exit Routine 

LS 
LR 

• 
• 
• 

ST 
LA 
SEND 

• 
• 
• 

• 
• 
• 

L 
LR 
BR 

SAVeLS OS 

R3,R14 ------Must save register 14 (that is, save return 

13,SAVELS+4 
13,SAVELS 

address) . 

If going to issue an executable macro or make 
other external call, must save address that was 
in register 13 (upon entry) in the second word 
of own save area, and then put address of own 
save area in register 13 . 

If register 13 was changed (to iSS\Je executable 
macro or make other external call), address 
that was in that register upon entry must be 
restored. 

---+--Must restore register 14 (that is, restore return 

18F 

address). 

The BR 14 returns control to ACF/VTAM, 
which restores all user registers except 
registers 0 and 15. The LERAD/SYNAD exit 
routine puts return codes in registers O and 15. 

Figwe 7-11. A Summary of Addressability and Save-Alea Requirements for the Main Program 

Chapter 7. Using Exit Routines 177 



A Only the Main Program Issues RPL-Based Requests 

Main program 

• 
• 
• 

1 APL-based request 
8 ACF/VTAM returns control to 

NSI. 

• 
• 
• LERAD/SYNAD 

2 Error occurs and i-,""' 
exit routine entered. 

• 
• 
• 

3 Event occurs causing 
asynchronous exit 
routine to get control, 

6 ACF/VTAM returns 
control to NSI . 

• 
• 
• 

7 Return to ACF/VTAM. 
L 

""[ 

B Only Asynchronous Exit Routines Issue RPL-Based Requests 

Main program 

(No APL-based requests 
or branches to LERAD/SYNAD.) 

• 
• 
• 

1 Event occurs causing 
asynchronous exit routine 
to get control. 

8 ACF/VT AM returns control 
to NSI . 

LERAD/SYNAD 

Asynchronous exit routines (LOGON, TPEND •. or RPL exit, etc.) 

4 Entered, 

• 
• 
• 

(No APL-based requests 

} 

Each of these routines 
executes completely 
without interruption by 
other asynchronous 
events • 

or branches to 
LERAD/SYNAD,) 

• 
• 
• 

5 Returns to ACF/VTAM. 

Asynchron~u~ exit -~outil'.!~--

l 

2 Entered. 

• 
• 
• 

3 APL-based request 
6 /JCF/VTAM returns 

control to NSI. 

7 Returns to ACF/VTAM. 

• 
• 
• 4 Error occurs and 

LERAD/SYNAD entered • 

• 
• 
• 

5 Returns to ACF/VTAM. 

Figure 7-12. Situations in Which LERAD and SYNAD Exit Routines Do not have to be Reen1erable 

178 



A A LE RAD or SYNAD Exit Routine Issues RPL-Based Requests 

Main program Asynchronous exit routines 

LERAD/SYNAD 

1 APL-based request 

• • 
• 

2 Error occurs and 
LERAD/SYNAD 

l 
l 

reentered . 

• 
• 
• 

B Both the Main Program and an Asynchronous Exit Routine Issue RPL-Based Requests 

Main program Asynchronous exit routines 

• 4 Entered . 

• • 
• • 1 APL-based request • 

12 ACF/VT AM returns control 5 APL-based request 
to NSI. 8 ACF/VTAM returns 

• control to NSI . 

• • • LERAD/SYNAD • 
2 Error occurs and 

ex it routine entered 
• 

9 Returns to ACF/VT AM. 

or 6 reentered. I. --.. 
• • • 3 Event occurs causing 

asynchronous exit routine 
to get control. 

10 ACF/VTAM returns 
control. 

• 
• 

7and 11 Returns to ACF/VTAM. 

C Two Programs (ACBs) Share a Common LE RAD or SYNAD Exit Routine 

Main program or asynchronous 
exit routine associated with ACBA 

Main program or asynchronous 
exit routine associated with ACBB 

l I 
Common LERAD/SYNAD 

Figure 7-13. Situation in Which LERAD and SYNAD Exit Routines Must be Reenterable 

...... 

Cllapter 7. Using Exit Routines 179 





Chapter 8. Manipulating Control Blocks 

The ACF/VTAM application program places values in the control blocks-ACB, EXIBT, 
NIB, and RPL-that are used by ACF/VTAM when the application program requests 
ACF/VTAM to perform actions on its behalf. When the request is accepted or completed, 
ACF/VTAM places values in the ACB, NIB, or the RPL control block, as appropriate. The 
application program tests these values to determine the outcome of the request. This 
chapter discusses ways in which the ACF/VTAM application program can set and test 
these control block values. 

Setting and Testing Control Block Values 

Control block values can be set: 

By defining them in an ACB, EXLST, NIB, or RPL macro instruction 

By specifying values in operands of RPL-based macro instructions 

By using the manipulative macro instructions GENCB and MODCB 

By using the DSECT macro instructions and assembler instructions to move values into 
specified fields 

By using the INQUIRE macro instruction with OPTCD=TERMS to generate a NIB or 
list of NIBs 

Control block values can be tested: 

By using the manipulative macro instructions TESTCB and SHOWCB 

By using the DSECT macro instructions and assembler instructions to test values in 
specified fields 

Using the Manipulative Macro Instructions 

The GENCB Macro Instruction 

The macro instructions that manipulate application program control blocks are: 

GENCB 

MO DCB 

SHOWCB 

TESTCB 

The advantages of these macro instructions are that they: 

Provide in one instruction what would require several assembler language instructions 
to provide 

Allow symbolic references to be made to control blocks and their fields without 
having to be concerned with their relative storage locations 

Can create control blocks in storage obtained dynamically, thereby allowing the 
application program to be reenterable 

Make it possible to avoid reassembly should ACF /VT AM control blocks be changed in 
future releases 

GENCB builds and initializes a NIB, ACB, RPL, or EXLST. To use GENCB, this 
information is specified: 

Otapter 8. Manipulating Control Blocks 181 



182 

• The kind of control block to be built: ACB, NIB, RPL, or EXLST. 

• The fields to be initialized and the values to be set in each field. For example, to build 
an RPL and initialize the OPTCD field to SYN, specify: 

GENCB BLK=RPL,AM=VTAM,OPTCD=SYN 

• The number of copies of the control block to be built. Each copy is initialized with 
the same values. Each copy can later be modified as particular requests are made. 

• Where the control block is to be built. The program defines an area where ACF/VTAM 
is to build the control block. If an area is not specified, ACF/VTAM gets the storage 
from the system dynamically. When storage is obtained dynamically, ACF/VTAM 
returns the address of the created control block in register 1 and the length in register 
0. 

Example 1: Build an ACB dynamically; initialize the EXLST field. 

GENCB BLK=ACB,AM=VTAM,EXLST=MYLl;)T 

When GENCB is completed, register 1 contains the address of the new ACB; register 0 
contains its length. 

Example 2: Build 50 copies of a NIB dynamically. Initialize the processing options field 
to DFASYX and RESPX so that expedited-flow messages and response input from the 
logical units connected with the NIBs will cause a DF ASY or RESP exit routine to be 
scheduled. 

GENCB BLK=NIB,AM=VTAM,PROC=(DFASYX,RESPX), 
MODE=RECORD,COPIES=SO 

The program can calculate the length of each NIB by dividing the length in register 0 by 
the number of copies and use this value to refer to each NIB from an RPL 

Example 3: A storage management technique is used whereby, for each logical unit, the 
program obtains a storage area to contain an RPL, a logical unit work area, and a data 
area. It issues GETMAIN (or GETVIS in DOS/VS) to get storage for the entire area. 
Then, using a DSECT to map the area, it issues a GENCB to build an RPL The WARBA 
operand of the GENCB macro uses an S-type constant to point to a real storage area using 
the DSECT as a map: 

TWA 
CHAIN 
RPL 

RP LEND 
WORK.AREA 
DATA 
END 
LEN 
RPLLEN 

GETMAIN 
LR 
USING 
GEN CB 

DSECT 
DS 
DS 
IFGRPL 
EQU 
DS 
DS 
EQU 
EQU 
EQU 

R,LV=LEN 
2,1 
TWA,2 
BLK=RPL,AM=VTAM,WAREA=(S,RPL), 
LENGTH=RPLLEN 

F CHAINING POINTER 
OF 
AM=VTAM,DSECT=YES 

* 
lOF LOGICAL UNIT WORK-AREA 
lOOC DATA AREA 

* 
END-TWA LENGTH OF ELEMENT 
RPLEND-RPL LENGTH OF RPL 



The SHOWCB macro can be used to examine the fields of this RPL: 

SHOWCB 

SHOWAREA DS 

AREA=SHOWAREA,RPL=(S,RPL), 
FIEIDS=FDBK2,LENGTH=4,AM=VTAM 

F 

If the program does not specify any fields to be initialized in the new control block, 
GENCB does one of the following: 

The MODCB Macro Instruction 

Builds a blank (all zeros) ACB and assumes NLOGON for the MACRF operand 

Builds an RPL using default values for all fields 

Builds an EXLST with all entries flagged as inactive (no exit routines provided) 

Builds a NIB using default values for all fields 

MODCB modifies the contents of an existing ACB, NIB, RPL, or EXLST. To use 
MODCB, this information is specified: 

The access method (ACF/VTAM) 

The kind of control block to be modified 

The symbolic name of the control block or a register that contains the address of the 
control block 

The fields to be modified 

A common use of MODCB is to modify a NIB during execution of a LOGON exit 
routine. Here are some examples: 

Example 1: A LOGON exit routine has been entered to put the symbolic name of the 
logical unit requesting connection into the NIB prior to connecting it. A pointer to the 
symbolic name of the logical unit is in the parameter list pointed to by register I when 
the exit routine is entered. Since the NIB NAME field must have the symbolic name itself 
and not its address, the programmer codes: 

L 

MO DCB 

R4,4(Rl) POINT TO THE SYMBOLIC NAME 
OF THE LOGICAL UNIT 

AM=VTAM,NIB=NIBl,NAME=(* ,O(R4)) PUT IN NIB 

Example 2: The entry for the LOGON exit routine in an exit list (labeled EXl) is to be 
changed to point to a routine named LOGONl. 

MO DCB AM=VTAM,EXLST=EXl ,LOGON=LOGONl 

Example 3: A pool of 50 RPLs has been created using GENCB. The address of that pool 
is in register 6. Later, to modify the OPTCD field in the first RPL, this macro is issued: 

MO DCB AM=VTAM,RPL=(6),0PTCD=SYN 

To modify the second RPL in the same way, the program divides the number of copies 
(50) into the total length (contained in register 0) to obtain the length of one RPL. 
Assume that register 4 contains the length of one RPL. 

AR 6,4 GET TO NEXT RPL 
MO DCB AM=VTAM,RPL=(6),0PTCD=SYN 

Chapter 8. Manipulating Control Blocks 183 



There are two restrictions governing the use of MODCB: 

An open ACB or an RPL for a request that is being processed cannot be modified. 

New entries cannot be added to an EXLST; only addresses of existing entries can be 
changed. 

The SHOWCB Macro Instrnction 
SHOWCB copies the values of selected fields in an ACB, NIB, RPL, or EXLST into a 
designated area. In using SHOWCB, this information is specified: 

The access method (ACF/VTAM). 

The kind of control block: ACB, NIB, RPL, or EXLST. 

The symbolic name of the particular control block or a register that contains the 
address of the control block. 

The fields to be copied. For example, FDBK and FDBK2 fields in an RPL, the CID 
field in a NIB, or the ERROR field in an ACB can be specified. The fields must be in 
the same control block. 

The name and length of a storage area in which ACF /VT AM will place the contents of 
the named fields. This area must begin on a fullword boundary. 

Example 1: Extract the 4-byte CID from a NIB whose address is in register 2; put the 
CID in an area defined as CIDAREA. 

SHOW CB AM=VTAM,AREA=CIDAREA,NIB=(2),FIELDS=CID, 
LENGTH=4 

Example 2: Extract the 4-byte address of the application program identification from 
the ACB labeled ACBl and put it into an area labeled MYID. 

SHOWCB AM=VTAM,AREA=MYID,ACB=ACBl ,FIELDS=APPLID, 
LENGTH=4 

The application program identification can be used, for example, in an output message to 
a logical unit. 

Example 3: Extract the contents of the FDBK and FDBK2 field from the RPL whose 
address is in register 7 and store the contents contiguously at HERE: 

SHOWCB AM=VTAM,AREA=HERE,RPL=(7),FIELDS=(FDBK,FDBK2), 
LENGTH=8 

The TESTCB Macro Instrnction 

184 

TESTCB tests the value of a specific field in an ACB, NIB, RPL, or EXLST. In using 
TESTCB, this information is specified: 

The access method (ACF/VTAM) 

The kind of control block: ACB, NIB, RPL, or EXLST 

The name of the control block or a register that contains the address of the control 
block 

The keyword for the field to be tested 

The value against which the field is to be tested 

Optionally, the name of a routine to be given control if ACF/VTAM cannot compare 
the two values 

To test the results of a TESTCB, the TESTCB macro instruction can be followed with a 
branching instruction such as BE or BNE. 



Some common uses of TESTCB are to test the ACB error flags when an ACB does not 
open properly and to test the FDBK field in the RPL after a data-transfer operation. 

Example: If an ECB within the RPL is specified for posting, TESTCB can be used to 
determine which RPL has had its 1/0 request completed. Use TESTCB to test the IO field 
of each RPL: 

LOOP TESTCB 
BE 

AM=VTAM,RPL=(8),IO=COMPLETE 
OUT 

* INCREMENT REGISTER 8 TO NEXT RPL ADDRESS 
B LOOP 

Using the DSECT Macro Instructions and 
Assembler Instructions 

Defining the DSECTs 

ACF/VTAM provides macro instructions that generate a map of the fields and possible 
field values for each of the application program control blocks. Each macro instruction 
generates a DSECT instruction, a DS instruction for each field, and EQU instructions for 
certain predefined values. These macro instructions and associated assembler instructions 
can be used as an alternative to or in combination with the manipulative macro 
instructions. Whereas the manipulative macro instructions provide a more convenient way 
to set and test control block values, the DSECT macro instructions and assembler 
instructions that use the generated labels require the execution of fewer instructions. 

Appendix H of ACF/VTAM Macro Language Reference shows the DSECT fields and 
equated values generated by the macro instructions. These are the DSECT macro 
instructions: 

IFGACB for an ACB 

IFGEXLST for an EXLST 

ISTDNIB for an NIB 

IFGRPL for an RPL 

ISTDBIND for building a set of session parameters in an area in the application 
program or for checking a set of session parameters 

In addition, one or both of these macro instructions can be used if ISTDNIB is not used: 

ISTDPROC for the processing options field of the NIB 

ISTDVCHR for the device characteristics field of the NIB 

This field can be used if IFGRPL is not used: 

ISTUSFBC for the FDBK2 field of an RPL 

In coding these macro instructions, follow these rules: 

Except for ISTDNIB, specify AM=VTAM as the sole operand. 

Follow the macro instruction with a CSECT statement or another DSECT statement 
unless it is the last instruction before ending the program or unless the map is to be 
extended intentionally. (A terminal work area could be mapped following IFGRPL, 
for example.) 

Ensure that no labels that are generated or reserved for future use are used elsewhere 
in the program. Do not use elsewhere in the program any label beginning with: 

Oiapter 8. Manipulating Control Blocks 185 



Using the DSECTs 

ACB 
BIN 
DEV 
EXLST 

IFG 
IST 
NIB 
PRO 

RPL 
RSV 
USF 

The DSECT produced by the ISTDBIND macro instruction is used to set up session 
parameters in an area in the application program or is used to examine a set of session 
parameters. For more information about the ISTDBIND DSECT, see Chapter 5 of this 
publication and Appendix J of ACF/VT AM Macro Language Reference. 

Having used the DSECT macro instructions to define one or more control block maps, 
the program can obtain storage for a control block from an assembled pool or 
dynamically from the system. The address of this storage should be placed in a register 
and specified in a USING statement before setting or testing values using the statements 
generated by the macro instruction. For example, suppose the address of an RPL is in 
register 5 and that, after a message containing data has been received, it is necessary to 
determine the value of the RECLEN field of the RPL. If an RPL-mapping macro 
instruction is coded: 

IFGRPL AM=VTAM 

This statement: 

USING IFGRPL,5 

allows assembler language instructions to refer to the label RPLRLEN to obtain the 
record length. (The labels are shown in Appendix H and Appendix J of ACF/VTAM 
Macro Language Reference.) 

Using INQUIRE with OPTCD=TERMS to 
Generate NIBs 

186 

The INQUIRE macro instruction with OPTCD=TERMS can be used to build a single NIB 
or a list of NIBs. When the macro instruction is issued, the RPL must point to a NIB 
whose NAME field contains the name of the single logical unit or terminal or group of 
logical units or terminals for which the NIB or NIBs are to be created. The NAME field of 
the NIB can contain the symbolic name of a PU, LU, TERMINAL, LINE, CLUSTER, or 
GROUP definition statement. A NIB is built for each logical unit or terminal represented 
by the definition statement. 

When the macro instruction is issued, the RPL's AREA and AREALEN fields must 
designate the location and length of the work area where the NIBs are to be built. Before 
the macro instruction is issued, the work area must be set to binary zeros. 

If the application program wants the NIBs to be built in dynamically allocated storage 
(storage obtained by the application program during execution), the INQUIRE should be 
issued twice. For the first INQUIRE, set AREALEN to 0. This INQUIRE will be 
completed with RTNCD=O and FDBK2=5 (insufficient length), and RECLEN will 
indicate the required length. Obtain the required storage and then issue INQUIRE again 
with AREALEN set to the proper length. 

After the macro instruction is completed, the RPL's RECLEN field contains the total 
length (number of bytes) for all NIBs generated by the macro instruction. The NAME 
field of each NIB contains the symbolic name of the logical unit or terminal for which the 
NIB was generated, and each NIB contains the device characteristics for the logical unit or 
terminal it represents. The LISTEND indicator is YES in the last NIB generated; all 



terminal it represents. The LISTEND indicator is YES in the last NIB generated; all 
precedins senerated NIBs contain LISTEND=NO. Using the symbolic names and device 
characteristics, the application program can set PROC options and the MODE field in 
each NIB, and it can set other fields to desired values. The NIBs are then ready to be used 
for connection. For an example of using INQUIRE with OPTCD=TERMS, see "Acquiring 
Lopcal Units" in Chapter S. 

Olapter 8. Manipulating Control Blocks 187 





Chapter 9. Handling Errors and Special Conditions 

The ACF/VTAM application program requests that ACF/VTAM perform an operation, 
passing control to ACF/VTAM. ACF/VTAM returns control to the program with 
information about the operation. For RPL-based requests, depending on how the request 
was specified, ACF/VTAM tells the program (1) whether the request is accepted and the 
operation is underway or (2) how the operation was completed. If the operation was 
completed successfully, ACF/VTAM provides information such as the identity of the 
logical unit and the length of a message received. This kind of information for successful 
completion is discussed throughout this book. 

This chapter discusses how to analyze information for errors and special conditions and 
what to do, in general, when the error or special condition is identified. Identifying and 
acting upon errors and special conditions are discussed separately for: 

OPEN/CLOSE macro instructions 

Manipulative macro instructions 

RPL-based requests (such as SEND, RECENE, and CHECK) 

ACF/VTAM software errors 

For RPL-based requests, errors and special conditions are discussed separately in these 
categories: 

Exception conditions (including exception messages and negative responses with 
related sense information) 

Retriable completions 

Data-integrity-damage completions 

Environment errors 

Logical errors 

The information that ACF /VT AM returns to the application program is organized so that 
only a minimum amount of checking need be done. For most macro instructions, if 
register 15 contains 0 on return to the program, no further checking need be done; the 
program proceeds normally. If register 15 contains a nonzero value, checking proceeds 
until the condition is defined and appropriate action is taken. For certain RPL-based 
macro instructions, register 0 must be examined for a special condition even if register 15 
contains 0. Since fewer errors and special conditions can occur as the result of an 
OPEN/CLOSE or manipulative macro instruction (GENCB, MODCB, SHOWCB, or 
TESTCB) than for RPL-based macro instructions, the coding needed to handle the 
OPEN/CLOSE and manipulative errors is simpler to write. 

OPEN/CLOSE Errors and Special Conditions 

Before issuing an OPEN or CLOSE macro instruction, DOS/VS users should clear register 
15. For DOS/VS and OS/VS, after the OPEN or CLOSE, register 15 should be tested. If 
the return code in register 15 is 0, all ACBs have been opened or closed as requested. If 
the return code does not equal 0, one or more ACBs were not properly opened or closed. 
When this occurs, the TESTCB macro can be used to test the OFLAGS field of each ACB 
to see if it is open: 

TESTCB AM=VTAM,ACB=(3),0FLAGS=OPEN 

The address of an ACB is in register 3. If an OPEN macro failed, the failing ACB will not 
have OFLAGS=OPEN, and the ACB will still be closed. If CLOSE failed, the failing ACB 

Chapter 9. Handling Emns and Special Conditions 189 



will have OFLAGS=OPEN because the ACB was not closed. When the ACB is found, 
SHOWCB macro can be used to look at the error bits in the ERROR field of the ACB. 
ACF/VTAM Macro Language Reference describes the format and content of the ERROR 
field in its description of the OPEN and CLOSE macro instructions. Figure 9-1 shows 
how OPEN/CLOSE error and special condition information is organized. 

Most ERROR settings shown in A CF/VT AM Macro Language Reference indicate an error 
in program logic or some failure to match the name of an ACB as specified in the program 
with its name as specified during ACF/VTAM definition. A dump, program termination, 
and debugging is required. If multiple ACBs are being opened, and only some have been 
opened successfully, it may be possible to continue with the programs whose ACBs were 
opened. 

Manipulative Macro Instruction Errors 
and Special Conditions 

After issuing a GENCB, MODCB, SHOWCB, or TESTCB macro instruction, the return 
code in register 15 must be tested. If the return code is 0, the manipulative operation was 
successful. If register 15 contains hex 04 or hex 08, it was not successful. Hex 04 in 
register 15 is an indication to look for the specific error in register 0. (Thus, examination 
of a return code for a SHOWCB or TESTCB macro does not require examination of a 
control block field.) Hex 08 in register 15 indicates that an attempt has been made to use 
the execute form of the macro to enter a new item in the parameter list being modified 
(only existing items can be modified). In DOS/VS, hex OC in register 15 has special 
meaning. Appendix D in ACF/VTAM Macro Language Reference shows the possible 
register 0 settings and their meanings. Figure 9-2 shows in general how manipulative 
macro instruction error and special condition information is organized. 

In all cases except one, manipulative macro instruction errors and special conditions are 
due to faulty logic and require program termination and debugging; they should not 
occur once the program has been debugged. In one case, however (register 0 contains hex 
08), GENCB can fail because of insufficient storage; the request can be reissued at a later 
time. 

For OPEN/CLOSE Requests 

After OPEN or CLOSE, the next sequential instruction of an ACF/VT AM application program finds in: 

Register 15 

Successful 

Unsuccessful 

If unsuccessful, each ACB whose address was specified contains: 

ACB 

OF LAGS 
._l _____ I ~1--Whether this ACB was opened or closed. 

ERROR 
I I ---i~ The reason the ACB was not opened or closed (if it was 
.__ ____ _. not). See the OPEN and CLOSE macro instruction 

descriptions in ACFNTAM Macro Language Reference 
for possible ERROR values and their meanings. 

Figure 9-1. How OPEN/CLOSE Error and Special-Condition Infonnation Is Organized 

190 



For Manipulative Macro Instruction Requests 

After a GENCB, MODCB, SHOWCB, or TESTCB, the next sequential instruction* finds in: 

Register 15 

x·oo· 
1-------1 

X'04' 
I- - - ----1 x·oa· 
~----

~·oc· 

Successful 

Error. See register 0. 

Error. No code in register 0. See Appendix Din ACFNTAM Macro Language Reference tor the meaning 
ot x·oa·. 

Error. DOS/VS system control error. See register 0. See Appendix Din ACFIVTAM Macro Language 
Reference tor the meaning of X'OC'. 

If unsuccessful with X'04' in register 15 or with X'OC' in register 15 in a DOS/VS system, register O 
contains: 

Register 0 

I Error Return Code I See Appendix Din ACF!VTA~ Macro Lantiuage Reference. 
for possible return codes and their meanings. 

*Alternately. for TESTCB, if an error occurs, control may be pasiled to the specified addre~ ~fan ERET 
(error return code) routine. 

Figule 9-2. How Manipulative Macro Instruction Error and Special.COOdition Information Is Organjzed 

RPL-Based Macro Instruction Errors 
and Special Conditions 

Reg 15 

x·oo· 

X'04' 

X'20' 

Meaning 

Th.ere are two kinds of RPL-based operations: synchronous and asynchronous. For 
synchronous RPL-based operations, a single macro instruction is issued. On return to the 
ACF/VTAM application program, error or special-condition information is available 
about the requested operation. 

For asynchronous RPL-based operations, two RPL-based macro instructions are required: 
a request macro instruction and a CHECK (completion) macro instruction. Error and 
special-condition infonnation can thus be returned at two different stages, as a result of 
the request being accepted or not accepted and, if the request is accepted, as a result of 
the operation completing successfully or unsuccessfully. 

Following an RPL-based macro instruction, information is available to the program about 
the acceptability of the request or about the completion of the operation. This 
information may be provided by ACF/VTAM or, if an error or special condition was 
detected and ACF/VTAM scheduled the program's LERAD or SYNAD exit routine, from 
the LERAD or SYNAD exit routine. The information consists of a return code in register 
15, in some cases a return code in register 0, and information in the RPL. Figures 9-3, 
94, and 9-5 show how this information is organized. 

RegO 

Normal or conditional completion, 0 or conditional completion return code 
or acceptance. 

Request not accepted or completed APL recovery action return coda 
abnormally. No exit found. 

ACB not 9pen. APL request code 

Figute 9-3. Register 15 and Register 0 Return Codes Following an RPL-Bued Request 

Otapter 9. Handling Enon and Specid Conditions 191 



For RPL ·Based Requests 

After a SEND, RECEIVE, CHECK, or other APL-based request, the next sequential instruction finds in: 

Register 15 

X'OO' The request or, for a synchronous request (including CHECK), the operation was successful. 
~- - - ....., 
Some other value The request or the operation was not successful. 

Depending on the request and whether or not it was successful,* it may be necessary to test: 

Register 0 

I I If register 15 is X'OO', register 0 indicates for certain macros whether success was 
conditional. If register 15 is not X'OO'. register 0 can contain a return code from a 

.. ________ LERAD or SYNAD exit routine or, if there is no LERAD/SYNAD, a recovery action 

return code (generally the code from the RTNCD field of the RPL). 

If a request or operation was unsuccessful or conditionally successful, these APL fields can be examined (in 
either the issuing routine or in a LE RAD or SYN AD exit routine): 

APL 

If RTNCD contains 
X'04' and FDBK2 
contains X'03' or 
X'04' (an exception 
message or response 
was received) 

For a BSC or start-stop 
terminal, if RTNCD= 
X'04', FDBK2=X'02' 

RTNCD 

FDBK2 

SSENSEI 

SENSE 

Recovery action return code. See Figure 9-5. 

Specific error return code 

System sense information 

System sense modifier information 

User sense information 

BSC/start·stop sense information 

In addition, other APL fields that contain feedback information normally used following completion of a 
requested operation, such as SEONO, CHAIN, and CHNGDIR, may be used in determining how to handle 
an error or special condition. 

RPL fields are described under APL and other macro instruction descriptions and summarized in Appendix A 
of ACF/VTAM Macro Language Reference. 

Possible APL RTNCD, FDBK2, and sense information settings and their meanings are in Appendix C of 
ACFIVTAM Macro Language Reference. 

For Arrival of a Logical Unit Status command 

After receiving input with a RECEIVE specifying RTYPE=DFSYN, if CONTROL=LUS, one or more of the APL sense fields 
(SSENSEI, SSENSMI, and USENSEI) will contain error or special-condition information from the logical unit. 

*Register 0 is of interest in these circumstances: 

• For certain macros with certain options set (00, INQUIRE, INTRPRET, OPNDST, READ, RECEIVE with OPTCD=NO, 
RESET, and WRITE), if register 15 contains X'OO', success may be conditional. Register 0 should be examined to see if 
there is a condition (and what it is). 

• If an error or special condition occurred for an RPL-based request and no LE RAD or SYNAD exit routine is available, 
register 15 contains X'04', and register 0 contains a recovery action return code. 

• If a LE RAD or SYNAD exit routine is available, register 15 can be set to X'OO' to indicate "Error corrected-request 
or operation successful." If not corrected, register 15 should be nonzero and a return code can be passed from 
LERAD/SYNAD in register O. 

Figure 9-4. How RPL-Based Macro Instruction Error and Special-Condition lnfonnation Is Oiganized 

192 



" 
Recovery Action Return Code LERAD or SVNAD Type of Completion Programmer Action 
lln RPL RTNCD Field) Exit Scheduled 

I He xi 

00 Normal or conditional Program for at NSI. 

04 SVNAD Exception condition Analyze APL to choose 
logic path. 

08 SVNAD Retriable completion Use EXECAPL macro to 
retry if desired. 

oc SVNAD Data integrity damage Execute user program 
error recovery coding. 

10 SVNAD Environment error Call for external inter-
vention. 

14 LEAAD User logic error Dump program status and 
continue or abend. 

18 LE RAD User logic error, no Dump program status and 
(in register 0 but not in APL feedback continue or abend. Do 
ATNCD field) not reuse this APL. 

Others LEAAD or RPL overwritten Same as above. 
SYNAD 

FtgUie 9-5. Recoveiy Ac1ion Return Codes and Their General Meanings 

If an error or special condition occurred, it can be analyzed and handled in either or both 
of two places: 

In the main program or exit routine where the RPL-based request was issued 

In a designated LERAD or SYNAD exit routine 

It is convenient to use LERAD and SYNAD exit routines to handle error and special 
conditions for all RPL-based requests in a program. A LERAD or SYNAD exit routine 
can be entered for an asynchronous operation at two different times: after the request 
fails and, if the request is accepted, after the operation fails. The LERAD or SYNAD exit 
routine can set register 15 to 0 so that the request-issuing part of the program is not 
aware that an error or special condition occurred and will continue normally. If the 
request-issuing part of the program must be made aware that an error or special condition 
occurred, register 15 can be set to a nonzero value and a user-specified return code placed 
in register 0 (in this case, register 15 can also be used as a return code register between the 
LERAD or SYNAD exit routine and the issuing part of the program). 

If a LERAD or SYNAD exit routine is not used, errors and special conditions can be 
handled in the inline coding that follows the request or can be processed in a common 
subroutine. The same. information available to the LERAD/SYNAD exit routine is 
available to the requesting part of the program, and the discussion of this information in 
"Coding LERAD or SYNAD Exit Routines" applies (apart from the discussion of passing 
. return codes back to the requesting part of the program). 

Figures 9-6 and 9-7 show the relationship between the requesting part of the program and 
~RAD and SYNAD exit routines if present. These figures can also be used to code the 
instructions that check the results of requests in the requesting parts of the program. 

( 

Cllapter 9. Handling Etlm:s and Special Conditions 193 



1 

Application Program 

SEND, RECEIVE, 
or other RPL·based 
request (OPTCD= 
SYN) 

4 NSI 

3 

LE RAD or SYNAD Exit 
Routine 

• Analyze RPL. 
Attempt to recover. 

• If recovery is successful, 
may set register 15 to O. 
Register 0 r.an be •t to 
some u•r-defined 
value. 

• If recovery is not 
successful, set action 
code in register 0 and/ 
or register 15. Register 
15 should be •t to non­
zero and not to X'20'. 

Return to ACFNTAM •. 

(ACB not 
open.) 

Dump and 
terminate 
the program. 

Take action, such as 
continue or resend chain. 

ACFNTAM 

I 2 ACFNTAM tries to complete the operation. 

I • Succe•ful? Sets registers 15 and 0 to 0 and 
passes control to NSI. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

• ACB not open? Sets register 15 to X'20' 
(32) and passes control to NSI. 

• C>nditionally successful? Sets register 15 to 
0 and sets code in register 0 and passes control 
to NSI. See Note 1. 

• Unsuccessful? Places feedback information 
in RPL and recovery action return code in 
register 0. 

• LERAD/SYNAD available? Schedules 
it. Passes control to NSI as soon as 
LERAD or SYNAD returns to 
VTAM. 

e LERAD/SYNAD not available? Sets 
register 15 to X'04'. Register 0 
contains recovery action return 
code. 

Figllle 9-6 (Part 1 of 2). A Summuy of Error ancl Speci»Condition lbadliq witll Spcluonou Opentionl 

194 



Note 1 If a DO, INQUIRE, INTRPRET, OPNDST, READ, RECEIVE specifying NO, or WRITE is issued, register 
0 may be set to indicate some condition that may or may not require further action, such as getting a larger 
input area for a logon message and reissuing INQUIRE. For other requests, register 0 need not be checked. 

Note 2 Register 0 can contain: 

• A value set by the LE RAD or SYNAD exit routine. This can indicate one of several actions to take, 
such as reissuing the request or setting up the resending of a chain. Register 15 can also be used to 
pass information. 

• If the issuer is handling errors inline (no LE RAD or SYNAD is available), the RTNCD value from the 
APL. The value is one of these: 

X'04' - Exception condition 
X'08' - Retriable completion 
X'OC' - Data integrity damaged 
X'10' - Environment error 
X'14' - Logical error 

See Appendix C of 
ACFIVTAM Mac;o Language Reference 
for a discussion of these recovery 
action return codes. 

The FDBK2 field of the APL will contain a specific error code. 

Or register 0 can contain: 

X'18' - Logical error: Invalid APL; or an operation was attempted on an RPL already in use; or a 
CHECK macro instruction has been used for a request whose 'RPL exit routine has not yet 
been scheduled. 

Figure 9-6 (Part 2 of 2). A Summary of Error and Special.Condition Handling with Synchronous Operations 

If an output operation (SEND macro instruction) that specifies scheduling of message 
output is requested, error information can be viewed as returning at two different times if 
the request is for a synchronous operation: first, when the scheduling of the requested 
operation is completed and secondly, if a response is requested, when a RECENE that 
specifies RTYPE=RESP is completed or a RESP exit routine is scheduled, with the 
response that has arrived confirming that the scheduled message was received. {The 
RECENE specifying RTYPE=RESP can be seen as an operation by itself.) Error 
information can be viewed as occurring at three different times if the request is for an 
asynchronous operation: first, when the request to schedule the operation is accepted; 
second, when the scheduling of the operation is completed; and third, when a response 
confirms arrival of the message. Figure 9-8 can be used to understand this sequence of 
events. 

Coding LERAD and SYNAD Exit Routines 

LERAD and SYNAD exit routines can have a common entry point; the logic at the 
common entry point can determine whether the error is a logical error or a physical error 
and branch to the appropriate error-handling instructions. 

Figure 9-9 shows the use of registers on entering and leaving a LERAD/SYNAD exit 
routine. Addressability and save area requirements are described in Chapter 7. Examples 
of LERAD and SYNAD exit routines are shown in the sample ACF/VTAM application 
program in Appendix D. 

Ompter 9. HancDing Errors and Special Conditions 195 



Application Program ACFNTAM 

Request 

1 
SEND, RECEIVE, 

I 2 ACF/VTAM tries to accept the request. 
• Accepted? Sets register 15 to 0 and 

or other RPL-based 
request (OPTCD=ASY) I passes control to NSI. 

· • ACB not open? Sets register 15 to X'20' (32) and 

Request 
accepted· 
continue 

4 

3 

NSI 

No 

Take 
appropriate action. 

passes control to NSI. 

LE RAD or SYNAO I • Not accepted for other reasons? Sets 
Exit Routine register 0 to a recovery action code and 
• Analyze RPL. puts a specific error return code in FDBK2 

cover. • LERAD/SYNAD available? Schedules it. 
Attempt to re- I field of RPL. 

• If recovery is Passes control to NSI as soon as LERAD or 

registers 15 and· 
Oto user-chosen • LERAD/SYNAD not available? Sets register 
values. 15 to X'04'. Register 0 contains recovery 

successful, set I SYNAD returns to ICF/VT AM. 

• If recovery is not action return code. 
successful, set I 
own action code 
in register 0 and/ 
or register 15. 
Register 15 
should be set to I 
nonzero and not 
to X'20'. 

• Return to 
ACF/VT AM. I -

Yes 
(ACB not 
open.) 

Dump and 
terminate 
the program. 

I 
I 
I 
I 
I 

Figure 9-7 (Part 1 of 2). A Summuy of Error and Special-Omditi.on Handling with Asynchronous Operations 

196 



Application Program ACF/VT AM 

Completion 
of Request 

1 Note 2 
2 • After the operation is completed, I ACF/VTAM posts an ECB or 

schedules an RPL exit routine. After 

Note3 

Issue 
CHECK 

,.. , No 

3 

I CHECK is.issued, if the opera-
tion was successful, ACF/VT AM sets 

_L_E_R_A_D_o_r_S_Y_N_A_D_.. 1 registers 15 and 0 to 0 and passes 

Exit Routine control to NSI. 

• Analyze RPL. I 
Attempt to 
recover. 

• If the operation was condition­
ally successful, register 15 is set 
to 0 and register 0 is set to a 
special code (see note 4). ACF/VTAM 
passes control to NSI. 

""' ' ~""' REGO= ', 
Take ' .... X'OO' ,,"' 

• If recovered, may I 
set register 15 to 0. 

action code in 
• If not, set own 1 • If the request or the operation 

was unsuccessful, ACF/VJ AM puts 
the recovery action return code 
(RTNCD) in register 0 and. 
feedback information in the 

. ' ,, 
action. 'I 

Successful 
completion-
continue 

Take 
appropriate 

action 

Note 1 Register 0 can contain: 

register 0 and/or 
register 15. Regis- I 
ter 15 should be 
set to nonzero. 

• Test to see if regis- I 
ter 15 = X'20' and 
register 0 = X'18'. 
(See Note 1.) 1 • Return to 
ACF/VT AM. 

APL. 

• LE RAD or SYNAD avail· 
able? Schedule it. Pass con· 
trol back to NSI when exit· 
routine returns to ACF/VT AM. 

• LERAD or SYNAD not 
available? Set register 15 to 
X'04'. Register 0 contains 
the recovery action return 
code. 

• A value set by the LE RAD or SYNAD exit routine. This can indicate one of several actions to take, 
such as reissuing the request. Register 15 can also be used to pass information. 

• If no LE RAD or SYNAD is available, the RTNCD value from the APL. The value is one of these: 

X'04' - Exception condition 
X'08' - Retriable completion 
X'OC' - Data integrity damaged 
X'10' - Environment error 
X'14' - Logical error 

Or register 0 can contain: 

See Appendix C of 
ACF/VTAM Macro Language Reference. 

X'18' - Logical error: Invalid APL; or an operation was attempted on an APL already in use; or a 
CHECK macro instruction has been issued for a request whose APL exit routine has not yet 
been scheduled. 

Note 2 The CHECK macro can be issued following discovery of a posted ECB, or to wait for it to be posted, 
or after scheduling of an APL exit routine. The description here applies whether ECB-posting or APL 
exit-routine scheduling is used. Rather than issue a CHECK immediately, the program can look at the 
APL feedback fields. CHECK is required sooner or later, however, to free the RPL for reuse. 

Note 3 If a DO, INQUIRE, INTRPRET, OPNDST, READ, RECEIVE (specifying NO), or WRITE is issued, 
register 0 may be set to indicate some condition that may or may not require further action, such as 
getting a larger input area for a logon message and reissuing INQUIRE. For other operations, register 0 
need not be checked. 

Note 4 Register 0 and, if necessary, register 15 can be used to convey information from the LE RAD or SYNAD 
exit routine about what to do next. These routines can reduce the alternatives that follow the CHECK 
to two or three things, such as sending a special message, disconnecting the logical unit, or terminating 
the program. 

Figwe 9-7 (Part 2 of 2). A Summary of Error and Special-O>ndition Handling with Asynchronous Operations 

Chapter 9. Handling Enon and Special Conditions 197 



Application. Program 

Scheduling Synchronously 

1 

Yes 

Message is scheduled. 
RPL and output area 
can be reused. Continue 

SEND 
POST=SCHED 
OPTCD=SYN 

(See Note 1 on how to know whether 
the message arrived successfully.) 

Scheduling Asynchronously 

1 
Request 

3 

Yes 

Request to 
schedule 
message is 
accepted. 
Continue 

Completion 

Message is 
scheduled. 

1 

Yes 

RPL and output 
area can be 
reused. 
Continue 

SEND 
POST=SCHED 
OPTCD=ASY 

See Figure 9-7. 

Issue 
CHECK 

ACFNTAM 

I 
I 
I 2 ACF/VT AM tries to complete this operation (that is, 

schedule the message for sending, moving the 

I message to a ACF/VTAM buffer). 

• Completed? Sets registers 15 and 0 to 0 and 

I passes control to the next sequential instruction 
(NSI). The operation is completed. 

I • Not completed? See Figure 9-6. 

I 
I 

I 
I 
I 2 ACF/VT AM tries tci accept the request. 

I • Accepted? Sets registers 15 and 0 to 0 
and passes control to NSI. 

I 
• Not accepted? See Figure 9-7. 

I 
I 

I 
I 2 When the operation is completed (that is, the 

I 
scheduling of sending the message), ACF/VTAM posts 
an ECB or schedules an RPL exit routine. After 
CHECK is issued, if the operation was successful, 

I registers 15 and 0 are set to 0. If unsuccessful, 
ACF/VTAM puts feedback information in the RPL. 

I 
See Figure 9-7. 

I 
I ,. , .. 

(See Note 1 on how to know whether the message arrived successful! .) / 

Figure 9-8 (Part 1 of 2). A Summuy of Enor and Special-O>ndition Handling with Scheduling of Messages 

198 



Note 1 After scheduling a message successfully, the program can determine its arrival by: 

1. Receiving a positive response to it (requested by specifying RESPOND=NEX, FME 
or NEX,RRN). This response is received either by completion of a RECEIVE with 
RTYPE=RESP or by the program's gaining control at its RESP exit routine. The 
SEONO field of the RPL associated with the response will match the sequence 
number of the message being replied to. If a RESP exit routine is enter.id, it can 
post an ECB to tell the main program that the message arrived. 

2. Receiving a positive response to the last message in a chain (or to a message that is 
the only one in a chain) indicates that all messages in the chain were received. 

3. Receiving a subsequent message from the logical unit that indicates by its content 
that the message was successfully received. (This might mean that if it had not 
been successfully received, the content of a subsequent message would so indicate.) 

Figure 9-8 (Part 2 of 2). A Summuy of Error and Special-COndition Handling with Scheduling of Messages 

On Entering A LE RAD or SYNAD Exit Routine 

Register Contains 

0 The recovery action return code (RTNCD field of RPL) 

1 The address of the RPL 

2-13 The contents as they were when RPL-based request was issued 
14 The address at which control may be returned to ACF/VTAM 
15 The address of the LE RAD or SYNAD exit-routine 

On Leaving a LE RAD or SYNAD Exit Routine 

Register Contains 

0 The user return code from LE RAD or SYNAD 

1 The address of the RPL (although ACF/VT AM will restore it) 

2-12 Any value (ACF/VTAM will restore the contents as they were when the request was issued) 

13 The address of the save area from the request-issuing part of the program 

14 The address to which control is being passed 

15 An optional user return code (in addition to register 0) 

Figure 9·9. A Summuy of Register Usage on Entering and Leaving a LERAD or SYN AD Exit Routine 

The recovery action return code (in register 0 and in the RTNCD field of the RPL unless 
it is unusable) can be used to branch to separate subroutines in the LERAD/SYNAD exit 
routine. This might be coded: 

LR R2,RO SINCE RO NOT USABLE AS INDEX REG 
B *(R2) BRANCH TO APPROPRIATE BRANCHING 

* INSTRUCTION 
B EXCEPTN EXCEPTION CONDITION (R2='04') 
B REISSUE RETRIABLE COMPLETION (R2='08') 
B DINTDAM DATA INTEGRITY DAMAGE (R2='0C') 
B ENVERR ENVIRONMENT ERROR (R2='1 O') 
B US LOGIC USER LOGIC ERROR (R2='14') 
B NOTINRPL USER LOGIC ERROR BUT INFORMATION 

* IS NOT IN THE RPL (R2='18') 

The logic that these subroutines, each representing a general category of recovery action, 
might contain is discussed below. 

Otapter 9. Handling Errors and Special Conditions 199 



Handling Exception Conditions (RO=X'04') 

Handling Exception Messages 

200 

This section covers: 

Handling exception messages 

Handling negative responses 

Handling certain exceptional conditions for BSC and start-stop terminals 

If a message arrives from the other end of the session for which ACF/VT.AM detects an 
error (for example, the message arrived with a sequence number that was not one greater 
than the previous sequence number), ACF NT.AM puts hex 04 in register 0, hex 04 in the 
recovery action return code field (RTNCD) of the RPL, and hex 03 in the specific error 
return code field (FDBK2) of the RPL. It also puts values in the SSENSEI, SSENSMI, 
and USENSEI fields of the RPL. Unless the other end of the session does not want a 
response (the RESPOND field contains NFME,NRRN), the ACF/VT.AM application 
prograip. either in this part of the SYNAD exit routine or perhaps later in some other part 
of the program, must send a response. An exception to this rule is this: if a chain of 
messages is being received, and a negative response has already been returned to a message 
that was received as part of the chain, and remaining elements of the chain are being 
received as exception messages, only the first negative response should be sent and the 
remaining elements should be disregarded. 

Before sending the negative response, the values in the SSENSEI and SSENSMI fields 
must be transferred to the SSENSEO and SSENSMO fields of the RPL. (SHOW CB cannot 
be used to make this transfer; a combination of TESTCBs, to determine the values, and 
MODCB, to set the determined values in SSENSEO and SSENSMO, must be used.) 

Further Action by a Primary Application Program: In addition to transferring these 
values for sending response information, the SYNAD exit routine in a primary application 
program may want to analyze these fields to determine what to do next. It may want to: 

Begin sequence number resynchronization, using the SESSIONC macro instruction. 

Await a Request Recovery (RQR) command from the logical unit (which would cause 
scheduling of the program's SCIP exit routine) and then begin sequence number 
resynchronization. In this case, the logical unit must be capable of deciding whether to 
shut down or to request recovery. 

If in the process of receiving a chain of messages, set a flag to purge the buff er that 
contains messages in this chain that have been previously received. It can set a flag to 
indicate to itself that the rest of the messages in this chain are to be disregarded. When 
the last message arrives, the program can tum off this flag. 

The sense information return codes and their meanings are discussed in Appendix C of 
ACF/VT AM Macro Language Reference. 

Further Action by a Secondary Application Program: When a secondary application 
program learns of a sequence number error in an incoming message, it too transfers the 
values in the SSENSI and SSENSMI fields to the SSENSEO and SSENSMO fields of the 
RPL before sending the negative response with that RPL. In addition, the SYNAD exit 
routine in a secondary application program may want to: 

Send a Request Shutdown (RSHUTD) command to the primary application program if 
sequence number resynchonization is not possible. 

Send a Request Recovery (RQR) command to ask the primary application program to 
begin sequence number resynchronization. In this case, the secondary application 
program will await a Clear command followed by a Set and Test Sequence Numbers 
(STSN) command from the primary program. 



Handling Negative Responses 

If in the process of receiving a chain of messages, set a flag to purge the buffer that 
contains messages in this chain that have been previously received. It can set a flag to 
indicate to itself that the rest of the messages in this chain are to be discarded. When 
the last message arrives, the program can tum off this flag. 

The exact action to be taken by each end of the session in the event of a sequence 
number error must be agreed upon by the programmers coding the primary and 
secondary application programs before they are coded. 

Further information on sequence nwnber resynchronization action can be found under 
"Controlling Flow" in Chapter 6 and in Figures C-3, C-9, and C-18 in Appendix C. 

This logic can be entered as the result of one of the following conditions: 

A pending RECENE that specifies RTYPE=RESP is completed. The program 
determines that a negative response was received and branches to the negative response 
handling routine or reaches it as a result of issuing a CHECK macro. 

The program's RESP exit routine is entered as the result of a response being received. 
A CHECK is issued against the user-specified RPL (not the read-only RPL furnished to 
the exit routine by ACFNTAM), or a direct branch is made to the negative response 
handling routine. 

A SEND that specifies POST=RESP is completed. A CHECK is issued or a direct 
branch is made after it is determined that a negative response has been received. 

A synchronous SEND with POST= RESP is issued resulting in a negative response being 
returned. ACF/VTAM schedules the SYNAD exit routine. 

In this logic, the SSENSEI, SSENSMI, and possibly the USENSEI fields must be analyzed 
to determine what recovery action is possible. Appendix C of ACF/VTAM Macro 
Language Reference describes the possible settings of these fields and their meanings. 
Appendix H of ACF/VTAM Macro Langu,age Reference shows the DSECT labels and 
possible values of these fields. In general, certain settings require that the logical unit be 
disconnected; other settings indicate that the zituation is recoverable and that either 
sequence number synchronization or some other action can be taken. 

Handling Retrlable Completion (RO=X'08') 
This return code indicates that an operation was not successful but should be requested 
again. The RPL does not contain any further information. The program should issue an 
EXECRPL macro instruction. Note that the parameters in the EXECRPL's RPL do not 
apply to the EXECRPL request itself but to the original request already specified in the 
REQ field of the RPL (in other words, the RPL associated with the request that is to be 
retried). The EXECRPL does not require a CHECK; it simply reinitiates the request in the 
portion of the program whose issuance caused entry to the SYN AD exit routine. 

An error on retrying an operation may cause LERAD or SYNAD to be entered again. So 
that this situation can be recognized, a flag can be set before issuing the EXECRPL or 
other RPL-based macro. (See "Procedures to Follow in Writing Exit Routines" in Chapter 
7.) 

Note: If an OPNDST ACCEPT fails because of insufficient storage, do not reissue the 
OPNDST ACCEPT. Instead, attempt to connect the logical unit with a SIMLOGON 
macro or VARY LOGON operator command before retrying the OPNDST ACCEPT 
request For more information, see Appendix C of the ACF NT AM Macro Language 
Reference. 

Olapter 9. Handling Errors and Special Conditions 201 



Handling Data Integrity Damage (RO=X'OC') 
A number of errors fall into this category; the action to be taken depends on conditions 
that are unique to each program. For example, a program that has no means of recovering 
data that is lost on its way to a logical unit may decide that the logical unit will have to 
revert to some earlier point in a conversation or inquiry (may have to reenter its inquiry) 
and sends it a message to that effect. The logical unit can then reenter its request and 
start the process at an initial stage. On the other hand, a program may want to always 
keep a copy of its latest transmission to a logical unit so that it can retransmit it if 
required. 

Handling Environment E"ors (RO=X'JO') 
In general, this category requires intervention by a network or terminal operator or 
program support representative because the logical unit or some communication element 
between the application program and the logical unit is permanently or temporarily 
unavailable. The intervention action can consist of one or more of these actions: 

Sending a message to the network operator 

Sending a message to any log that is being kept in addition to the error logs being kept 
by ACF /VT AM and the NCP 

Sending a message to a master terminal or logical unit 

Sending a message to a logical unit that is associated with the logical unit for which 
intervention is required 

If the error is temporary, the program can set a flag and retry the operation at a later time 
or set up an ECB that when posted will indicate that external intervention has taken place 
and the operation can be resumed. If the error is permanent, the logical unit (and perhaps 
other logical units associated with the failing logical unit) must be disconnected. If the 
program is dependent on the logical unit, the program must terminate. 

Handling Logical E"ors (RO=X'J4' and X'l8') 
Most return codes that cause entry to a LERAD exit routine are likely to occur when the 
program is being debugged. These errors require that the program save as much 
information as necessary for debugging, perhaps request a dump of storage, and terminate 
the program at that point. (See Chapter 10, "Debugging a Program," for suggestions on 
what information to save.) Once the program has been debugged and it seems unlikely 
that any of these logical errors will occur, a message to the operator can be substituted 
for program termination in the event that a logical error occurs. 

If the LERAD exit routine is not terminating and wants the request-issuing portion of the 
program to continue normally, registers 15 and 0 must be set to hex 00. If the LE RAD 
exit routine is to indicate some action that the request-issuing portion of the program is 
to take (such as disconnecting a logical unit or terminating the program), a return code 
can be set in register 0 or register 15, or both. In any case, register 15 must be set to a 
nonzero value other than hex 20. 

Handling ACF/VTAM Software E"ors 

202 

When ACF/VTAM encounters a software error, it attempts to determine whether the 
error resulted from user action, the operating system, or ACF/VfAM. If an abnormal 
termination occurs in ACF/VTAM while running under a user's task, ACFNTAM 
attempts to recover. During the attempted recovery, all ACF/VTAM requests from the 
user are rejected including CLOSE ACB. 

If ACF NT AM cannot recover from an error, the following sequence of events can occur: 

1. The abnormal termination process continues and the user's application program is 
shut down. 



2. If the user has an STXIT AB (for DOS/VS), STAE (for OS/VSl and OS/VS2 SVS), 
or ESTAE (for OS/VS2 MVS) exit routine in the application program, the system 
eventually passes control to the user. 

3. The user can perform a retry or pass control back to the system. If a retry is 
perfonned, the user can inspect user files, clean up user resources, and terminate. 
Termination passes control back to the system to continue the abnormal termination 
processing. The user cannot issue any ACF /VT AM requests, because the application 
program is shut down. 

4. The system eventually passes control to the ACF/VTAM resource manager to 
schedule ACF/VTAM cleanup. 

S. The user's task terminates. 

6. The user can log on after the application program has been reactivated. 

Note: If the user does not give control back to the system after attempting a retry, 
ACF/VTAM resources are not cleaned up. 

For additional information on the STXIT AB, STAE, or ESTAE exit routines, see 
DOS/VS Supervisor and 1/0 Macros, GC33-S373; OS/VSJ Supervisor Services and Macro 
Instructions, GC24-Sl03; for OS/VS2 MVS, OS/VS2 Supervisor Services and Macro 
Instructions, GC28-0683; or, for OS/VS2 SVS, OS/VS Supervisor Services and Macro 
Instructions, GT29-6979. 

Oaapter 9. Handling Enon and Special Conditions 203 





Chapter 10. Debugging a Program 

Chapter 9 discusses the handling of errors and special conditions. One kind of error that 
the program must handle, especially when trying to get a program to run, is a logical 
error. Some logical errors become evident when the program fails to execute as planned; 
these errors may or may not be related to the program's use of ACF /VT AM. Other logical 
errors are discovered by ACF /VT AM, which analyzes the error and provides feedback in 
the RTNCD and FDBK2 fields of the RPL. When ACF/VTAM discovers such an error 
following an RPL-based request or following a subsequent CHECK macro instruction, it 
schedules the application program's LERAD exit routine. (Chapter 7, "Using Exit 
Routines," describes how to use a LERAD exit routine.) Of the logical errors detected by 
ACF/VTAM, some can be handled without terminating the program, either because the 
program can correct the situation (for example, get a larger output area) or because the 
problem affects only one logical unit, which can be disconnected. Other logical errors, 
however, especially in the initial stages of developing a program, require termination of 
the program and the taking of a dump so that the error can be analyzed. This chapter 
discusses getting a program to execute as the programmer intends. 

Debugging is performed at two times: before executing the program and after 
unsuccessful execution of the program. 

Debugging before Executing the Program 

Checking for Assembly Errors 

It is better to find and correct errors before trying to execute the program. Two kinds of 
errors can be found before trying to execute the program: 

Assembly errors 

Program logic errors 

In addition to finding obvious errors, the programmer can insert coding in the program to 
help him locate errors if the program fails to execute. 

After coding the program and prior to assembling it, a list of things to check for includes: 

Spelling errors in names (that is, a name spelled one way in the name field of the 
statement that defines the name and another way in a statement that refers to the 
name). 

Names longer than 8 characters. 

Duplication of names in IBM-supplied DSECTs (if DSECTs are used). See "Using the 
DSECT Macro Instructions and Assembler Instructions" in Chapter 8. 

Executable instructions that refer to undefined Equate statements, constants, or 
storage areas. 

Syntactical errors, such as blank spaces between operands. 

Improperly specified operands, such as register notation where it is not allowed. 

Continuation lines that do not begin in column 16. 

Punctuation errors, such as missing commas or parentheses. 

Checking for Program Logic Errors 
Before trying to run the program, it is a good idea to "walk through" the main logic flow 
of the program to see whether there are any obvious errors. The parameters and register 

Chapter 10. Debugging a Program 205 



A Checklist 

206 

contents that are passed between ACF/VTAM, the main program, and exit routines 
(especially LERAD and SYNAD exit routines) can be simulated to make sure the 
parameters and registers will contain what they should. 

Program Logic errors include errors in using ACF /VT AM macro instructions, control 
blocks, and linkage conventions that cannot be detected during assembly. 

Here is a list of some checks to make and errors to watch for: 

• Check each RPL-based macro instruction to be sure that an omitted parameter with an 
assumed previous setting retains the assumed setting. For example, be sure that if a CS 
setting is desired, another macro instruction has not set it to CA. Note that a default 
value exits in an RPL field only until the value is first changed; after that, the changed 
value is in effect and the default value no longer applies to the field. 

• Make sure that a CLOSE macro is not issued in a TPEND exit routine; CLOSE must be 
issued in the main program. 

• In checking the effects of alternative logic paths on various RPL fields, remember that, 
in addition to SEND and RECEIVE macro instructions, OPNDST, INQIBRE, 
CLSDST, and other RPL-based macro instructions can change the contents of an 
RPL's fields. 

• In a LERAD exit routine or other feedback analysis routine, be sure to handle all 
logical errors that ACF/VTAM might indicate (all relevant feedback information 
described in Appendix C of ACF/VT AM Macro Language Reference). 

• Make sure that addressability is established on entry to all exit routines except the 
LERAD and SYNAD exit routines. 

• Make sure that register and save area instructions are properly performed on entry to a 
LERAD or SYNAD exit routine. If the LERAD or SYNAD exit routine contains an 
RPL-based macro instruction, the exit routine must: (1) point to its own save area in 
register 13, (2) save the return address that was passed to it in register 14, and (3) 
reload this address in register 14 prior to returning from the exit routine. Each 
recursive entry to LERAD and SYNAD must provide a previously unused save area. 

• Make sure that LERAD and SYNAD exit routines are reenterable, if this is required. 
(See Figure 7-18.) Other exit routines do not have to be reenterable unless they can be 
used by more than one ACF/VTAM application program (VTAM considers each open 
ACB to be a separate application program). 

• After an OPNDST macro instruction, ACF /VT AM moves the address of the NIB or list 
of NIBs (specified by the programmer in the NIB field of the RPL prior to making the 
OPNDST request) into the AREA field of the RPL. (This frees the NIB field so that 
ACF /VT AM can place the CID in it.) Before issuing another request using this RPL, 
perhaps to write an initial message to a connected logical unit, be sure that the AREA 
field is reset to contain the data area address. 

• Be sure that PROC=RESPX and DF ASYX are coded in the NIB if the program is to 
receive responses in a RESP exit routine and expedited-flow input in a DF ASY exit 
routine, respectively. 

• An INQUIRE macro instruction may set the REC LEN field of the RPL; a subsequent 
SEND using this RPL should respecify a value for RECLEN. 

• An exit routine may branch to the main program. However, with the exception of 
authorized path, exit routines other than LERAD and SYNAD must return control to 
ACF/VTAM after their processing is completed, using the address in register 14. 

• Be sure that each RPL-based request uses an inactive RPL (one against which a 
CHECK has been issued if it was active previously for an asynchronous request). 



• If using an RPL exit routine for asynchronous operations, ensure that the RPL 
associated with the exit routine has a CHECK issued for it. This can be done either in 
the exit routine or in the main program after discovering an ECB posted by the exit 
routine. 

• Use TESTCB rather than SHOWCB to analyze the contents of fields that contain only 
bit settings (for example, the SSENSEI field). 

Adding Debugging Aids to the Program 

Requesting a Dump 

Here are some ways a programmer can insert instructions to help in debugging the 
program. 

An application program can request a dump of the supervisor and program area by using 
macro instructions as follows: 

In DOS/VS, by issuing any of the DOS/VS DUMP macro instructions (DUMP, 
PDUMP, and JDUMP) 

In OS/VSI, OS/VS2 SYS, and OS/VS2 MYS, by issuing the SNAP or ABEND macro 
instruction 

For information on the DOS/VS DUMP, PDUMP, and JDUMP macro instructions, see the 
DOS/VS ACF/VT AM Debugging Guide, GC27-0021. For information on the OS/VSl and 
OS/VS2 SNAP and ABEND macro instructions, see the ACF/VTAM Debugging Guide for 
the operating system you are using. 

A dump can also be requested by the system operator by using commands as follows: 

In DOS/VS, by using the DUMP or DSPLY command 

In OS/VSl, OS/VS2 SYS, and OS/VS2 MYS, by using the DUMP or CANCEL 
command 

For detailed information on these commands, see the Operator's Reference manual for 
the operating system you are using. 

Loading the Current Address before Each Macro 
A specific register can be loaded with the current location counter before issuing a macro 
instruction. Then, if abnormal termination occurs, the register contains the location of 
the macro that ACF /VT AM was attempting to execute when the LERAD or SYN AD exit 
routine gained control: 

LA 
RECEIVE 

RS,* 
RPL=RPLl 

Using a Special Code to Indicate Which ABEND or DUMP Macro 
Was Issued 

PUT CURRENT ADDRESS IN REGISTER 5 
RECENE A REQUEST 

A defined storage area can be used to contain a code that will indicate the particular 
macro instruction that caused a program termination and dump. For example, a program 
can contain DUMP macro instructions in the main program and in the LERAD, SYNAD, 
LOSTERM, NS EXIT, and RESP exit routines. Knowing which of these DUMP macros 
caused the program termination will help localize the error. For example, in a DOS/VS 
program, the LERAD exit routine might contain: 

LA 
ST 
DUMP 

RS,4 
RS,DUMPID 

PUT DUMP ID IN REGISTER 5 
STORE CODE 4 IN DUMPID 
CAUSE DUMP AND TERMINATE PROGRAM 

Chapter 10. Debugging a Program 207 



Since the programmer knows the ·displacement of DUMPID from the beginning of the 
program, he can locate this field and its contents in the dump. The value of 4 in DUMPID 
tells the programmer that the dump was requested in the LERAD exit routine. 

Saving Register 1 (Which Points to the RPL} (DOS/VS) 
The code generated by the DOS/VS DUMP macro instruction uses register 1 and thus 
destroys its contents. Since register 1 will probably point to the RPL associated with the 
most recent ACF/VTAM request, its contents are important for debugging. The contents 
of register 1 should be saved in a defined storage area prior to issuing DUMP. For 
example, the previous example could be coded: 

LA 
ST 
ST 
DUMP 

RS,4 
RS,DUMPID 
Rl,RlCONTS 

PUT DUMP ID IN REGISTER 5 
STORE CODE 4 IN DUMPID 
SAVE REGISTER 1 CONTENTS 

The programmer, knowing the displacement of RlCONTS, can locate the field in the 
dump; it will contain the address of the RPL that was pointed to at the time of 
termination. 

Using the ABEND Completion Code (OS/VS} 
An alternative in OS/VS to using a defined storage field, as described above, is to specify 
a unique completion code as a parameter in issuing an ABEND macro instruction in each 
routine in which it is issued. This completion code will be printed on the system output 
device if the job step is being terminated (the STEP operand is specified} or placed in the 
tas control block of the task that is terminating (if STEP is not specified}. For example, 
the LERAD exit routine might contain: 

ABEND 4,DUMP 4 INDICATES LERAD ABEND 

Writing a Debugging Record That Can Be Printed 
For a complex program, it might be worth the· effort to write a small routine in the 
LERAD exit routine (and possibly other exit routines where errors and special conditions 
are handled) that logs an error record. If the program terminates abnormally during the 
debugging stage, this record can be used instead of or in addition to the dump. This kind 
of record can be used for recording any kind of abnormal program activity, as well as 
logic errors. 

Debugging after Executing the Program 

If the program is executed successfully, but does not do exactly what it was intended to 
do, the program's design and general logic must be examined. If the program is not 
executed successfully, the error or errors causing the failure must be located. The most 
common tool is a dump of the storage associated with the program. 

Important Information in a Dump 

208 

The contents of these registers and fields may be useful: 

• The completion code, either your own in a designated location in the program or an 
ABEND completion code. 

• Register 1, which contains the address of the RPL associated with the most recent 
request prior to program termination. In DOS/VS, this address must be located by 
looking in a program area where the contents of register 1 will have been stored prior 
to issuing DUMP. 

• If the program terminated in a LERAD or SYNAD exit routine, register 13 contains 
the address of the save area of the LERAD or SYNAD exit routine. The second word 



of that save area contains the address of the main program's save area, which contains 
the register contents of the main program at the time the LERAD or SYNAD exit 
routine was entered. 

• If the program terminated in a LERAD or SYNAD exit routine, the contents of 
register 14, the address the LERAD or SYNAD exit routine was to return to upon 
completion, were saved in a program area. The address in this program area indicates 
the macro instruction that caused the LERAD or SYNAD .exit routine to be? entered. 

• The RPL, pointed to by register 1, provides more information on the failing operation. 
The RTNCD field contains the recovery action return code, and the FDBK2 field 
contains the specific error return code; possible codes are described in Appendix C of 
ACF/VTAM Macro Language Reference. The contents of other RPL fields, such as the 
REQ field, which indicates the requested operation, may be useful in determining the 
source of the error. 

• Use Appendix H of ACF/VTAM Macro Language Reference to determine the 
displacement of RPL and other ACFNTAM control-block fields. 

• The USER field of the RPL may be used to point to a logical-unit-associated control 
block. This control block may contain infomiation about the status of the logical unit. 

Replacing the Dump with a Programmer Message 
If a logic error involves only one logical unit and the program can continue execution, a 
message can be written to the console instead of terminating the program. In OS/VS, such 
a message can be sent with a WTO macro instruction that specifies routing code 11 
(programmer message). The programmer can then determine whether the error is a logical 
error that must be corrected. This approach might be used after the program has been 
debugged and is in productive operation. This message can also be written to a 
programmer log or to a printer. 

System and A CF/VTAM Debugging Guides 
These system and ACF/VTAM publications contain more information about debugging: 

DOS/VS Serviceability Aids and Debugging Procedures, GC33-5380 

OS/VSJ Debugging Guide, GC24-5093 

OS/VS2 SVS Component Release Guide, GC27-0053 

OS/VS2 Debugging Guide, GC28-0663 

DOS/VS ACF/VTAM Debugging Guide, SY27-8007 

OS/VSJ ACF/VTAM Debugging Guide, SY27-8005 

OS/VS2 SVS ACF/VTAM Debugging Guide, SY27-8008 

OS/VS2 MVS ACF/VTAM Debugging Guide, SY27-8006 

Chapter 10. Debugging a Program 209 





Part 3. Sample Programs 

The sample programs in this section show how ACF/VTAM macro instructions are used 
in application programs. Most ACF/VTAM services and language features are illustrated in 
these sample programs. In the text that explains the programs, some alternative facilities 
or techniques are discussed, but they are not shown in the figures. 

Sample Program 1 (Chapter 11) shows how simple an ACF/VTAM program can be; it is 
not designed to portray a typical program. A completely coded version of Sample 
Program 1 is shown in Appendix D. 

Sample Program 2 (Chapter 12) illustrates additional ACF/VTAM programming concepts 
and techniques and contains more detail than Sample Program 1. Sample Program 2 
communicates with logical units in a 3601 Finance Co.mmunication Controller and with 
3270 Information Display System terminals. It communicates with both types of 
terminals using the record-mode macro instructions (SEND and RECENE). 

The logic of each program is displayed in flowcharts that show the major decision points 
but do not show all program instructions. The key macro instructions and operands are 
shown, and they are discussed in notes. 

To follow the sample programs, the reader must be familiar with programming techniques 
for acquiring and handling control block areas, posting ECBs, and scheduling processing 
routines. 

Part 3. Sample Programs 211 





Chapter 11. Sample Program 1 

Figure 11-1 shows an ACF/VTAM application program that receives a logon (request for 
connection) for a logical unit, connects it, reads input from any connected logical unit, 
processes the input, prepares a reply for output, and then writes the output to the logical 
unit. 

Sample Program 1 demonstrates use of: 

A LOGON exit routine and the acceptance of a logon 

A request to receive input from any connected logical unit 

Synchronous 1/0 requests 

Continue-anY. and continue-specific modes 

A SEND macro instruction to send a response rather than data 

A request to schedule output 

A RESP exit routine to handle a response received from the logical unit each time the 
logical unit receives data 

A TPEND exit routine 

For simplicity, error recovery routines and other special routines are omitted; these 
routines are discussed and shown in coded form in Appendix D. Appendix D consists of a 
coded ACF /VT AM application program that is based on Sample Program l's general 
logic. 

Sample Program 1 might be usable for an application program in which each transaction 
between the program and the logical unit consists of a short inquiry and a short reply. 
Because the program waits for the processing for one logical unit to be completed before 
reissuing a request for input from any connected logical unit, the program might not 
adequately serve a large number of logical units communicating with the program at the 
same time. 

These notes are keyed to Figure 11-1. 

1 The ACBl, defined in the program with the ACB macro instruction, is opened with 
the OPEN macro instruction. For example, this might be coded: 

OPEN AC Bl 

ACBl contains: 

ACBl ACB 

APPLl contains: 

APPLl DC 
DC 

AM=VTAM,APPLID=APPLI ,EXLST=EXLSTI, 
MACRF=LOGON 

X'OS' 
C'PROGl' 

PROG 1 is the name of the APPL statement used to define the program during 
ACF/VTAM definition. 

EXLSTl contains the names of the exit routines shown in Figure 11-1. 

Chapter 11. Sample Program 1 213 



Main Program 

1 

3 

4 

5 

6 

7 
NO 

Begin 

Open the ACB, 
allow logon requests 
(SETLOGON) 

Receive input from 
any connected 
logical unit 
(synchronously) 

YES 

NO 

Process input and 
prepare reply 

Send data reply 
(Schedule it 
synchronously) 

Close the ACB 

Send response to 
logical unit 
(Schedule it 
synchronously) 

Figure 11-1. The General Logic of Sample Program 1 

214 

Exit Routines r-------------.. 
I 
I 

2 

8 

9 

10 

LOGON 
Exit Routine 

YES 

Connect the 
logical unit 
(OPNDST) 

Return to 
ACF NT AM 

RESP 
Exit Routine 

Restore logical 
unit to continue­
any mode 
(RESETSR) 

Return to 
ACF NT AM 

NO 

Disconnect the 
logical unit 
(CLSDST) 

NO Take recovery or 
other action 

L-------------...1 



After the OPEN macro instruction, a SETLOGON macro instruction is used to tell 
ACF/VTAM to begin processing logons for the program. The macro instruction 
might be coded: 

SETLOGON RPL=RPLl ,OPTCD=START 

2 The LOGON exit routine, whose address is specified in the LOGON operand of the 
EXLST macro instruction (whose address is in turn specified in the ACB macro 
instruction), is scheduled when ACF/VTAM receives a request for connection from 
or on behalf of a logical unit. Providing no other exit routine is being executed, the 
LOGON exit routine is given control. When the LOGON exit routine is completed, 
either the next-scheduled exit routine receives control or the main program regains 
control at its next sequential instruction. 

An INQUIRE macro instruction can be used to obtain a user logon message when 
there is one. 

INQI INQUIRE RPL=RPLl,OPTCD=LOGONMSG,ACB=ACBl, 
NIB= NIB I ,AREA=LGNMSG.AREALEN= I 00 

By examining the logon message in AREA, the exit routine determines whether the 
logical unit should be connected to the program. If so, an OPNDST macro 
instruction like this can be issued: 

OPNDST RPL=RPLlCONN,OPTCD=(ACCEPT,SPEC),NIB=NIBl 

A NIB and an RPL are required for the OPNDST request; if the OPNDST is 
synchronous, the same NIB and RPL can be reused by the OPNDST each time the 
LOGON exit routine is entered. If necessary, the type of terminal and other 
communication characteristics can be obtained by using the INQUIRE macro, and 
the NIB can be properly initialized with this information prior to issuing the 
OPNDST macro. (The MODCB macro instruction can be used to initialize the NIB.) 

If the logical unit is not to be allowed to use the program, a CLSDST macro 
instruction must be issued to notify ACF /VT AM that the logical unit's logon is 
being rejected. Although not shown in the flowchart, it may be desirable to connect 
the logical unit (using OPNDST), write an appropriate message to it, and then 
disconnect it. 

3 In this example, the first request to receive input from any connected logical unit is 
issued in the main program. The request is synchronous; that is, the program 
indicates that it will wait until input is received from one of the logical units. In 
making the request, the program identifies an RPL and an input area. The macro 
instruction can be coded: 

REC ANY RE CE NE 

or it can be coded: 

REC ANY REC ENE 

where RPL is coded: 

RPLl RPL 

RPL=RPLl ,AREA=AREAI ,AREALEN=l 00, 
RTYPE=DFSYN,OPTCD=(SYN,ANY,CS) 

RPL=RPLl 

AM=VTAM,ACB=ACBl,AREA=AREAl, 
AREALEN=IOO,RTYPE=DFSYN, 
QPTCD=(SYN,ANY,CS) 

Chapter 11. Sample Program 1 215 



216 

The input request can be coded with some operands appearing in the RPL and 
others in the macro instruction. If an operand that appears in the RPL is also coded 
in the macro instruction, the value in the macro instruction replaces the value in the 
RPL and is in effect not only for the current operation but for subsequent 
operations that use the RPL (unless changed by a manipulative macro instruction or 
by a subsequent request using the RPL). 

RTYPE=DFSYN is specified so that the receipt of data or of a normal-flow 
command will complete the request. (The receipt of a response in this sample 
program causes the RESP exit routine to be entered.) 

CS is specified so that the logical unit whose input is read by the RECEIVE will be 
put in continue-specific mode until its inquiry has been successfully answered. 
Thus, if the logical unit is still in continue-specific mode when the next RECENE 
with OPTCD=ANY is issued, input from that logical unit will not satisfy the 
continue-any-mode request. The logical unit will be put back in continue-any mode 
when a response has been received acknowledging that the reply to the inquiry 
arrived successfully; in this sample program, this is done in the RESP exit routine. 

Assume that a logical unit just connected sends in the first inquiry to the program. 
The synchronous RECEIVE is completed. If register 15 contains 0, the operation 
was successful. If register 15 contains some value other than 0, an error or special 
condition occurred. A LERAD or SYNAD exit routine in the program may have 
been entered, and may have returned a code in register 15 or register 0 that 
indicates further action for the program to take. Whether or not a LERAD or 
SYNAD was entered, information is available in various feedback fields of the RPL 
for analysis. One of the errors that can occur is that the message arrived as an 
exception; this information is available as one of the feedback return codes in the 
RPL. 

Assuming that the operation was successful, the identity of the logical unit whose 
input was received is provided in the ARG field of the RPL. Data is located in 
AREAl, and a SHOWCB or TESTCB can be used to determine its length (by 
examining the RECLEN field of the RPL). 

4 The logical unit that sends the data can indicate that the program should issue a 
response to verify that the input has been received. There may be some occasions 
when the logical unit wants a response, perhaps to verify that a data base update 
message has been received so that it can free its buffers. On other occasions, such as 
an inquiry message, the logical unit may not want a response (or want a response 
only if an exception condition occurs); the answer to its inquiry will be 
forthcoming soon and will be implicit assurance that the inquiry arrived. The 
application program can examine the RESPOND field of the RPL to determine 
whether and under what conditions a response is required. If completion 
information following the RECENE indicates that the input was received normally 

-and the RESPOND field indicates that a definite response is required, it is sent with 
a SEND macro instruction that can be coded: 

SENDRESP SEND RPL=RPLl ,STYPE=RESP,OPTCD=SYN 

If completion information following the RECEIVE indicates that an exception 
message was received (in which case there will be no input to process), and the 
RESPOND field indicates that a response is requested, it is sent with a SEND macro 
instruction that might be coded: 

SENDRESP SEND RPL=RPLl ,STYPE=RESP,OPTCD=SYN, 
RESPOND= EX 



If the logical unit wants a response only in the event of an exception, the 
RESPOND field will already be set to EX and will not have to be reset in the 
SEND. Before issuing this SEND, the application program places sense infonnation 
defining the exception in the RPL. 

The same RPL used for the RECEIVE request can be reused for the SEND. Since a 
response is being sent (STYPE=RESP), no data area or length is needed. For a 
response, POST=SCHED is assumed. The operation is specified to be synchronous. 
However, because it is only being scheduled, the operation will take a relatively 
short time. As soon as the operation has been scheduled and the SEND is 
completed, the RPL can be reused. 

5 The inquiry is analyzed and a reply is prepared by a processing routine. Disk 1/0 
may be required. If so, the program waits until the reply is ready. 

6 The reply is then sent with a SEND that requests the transmission of data 
(STYPE=REQ). In this sample program, the same area used to receive input is used 
for output. The macro instruction can be coded: 

SENDDATA SEND RPL=RPLl ,STYPE=REQ,RESPOND=(NEX,FME), 
OPTCD=SYN,POST=SCHED 

Since the RPL currently contains the value AREA=AREAl, this need not be 
respecified in the macro. So that the application program can detennine whether or 
not the logical unit receives the data successfully, a response from the logical unit is 
requested (RESPOND=(NEX,FME)). The macro instruction requests control to be 
returned to the application program as soon as ACF /VT AM has completed 
scheduling the operation; the request will be completed synchronously (OPTCD= 
SYN) as soon as the sending of the output has been scheduled. Completion of the 
reply to the inquiry will be determined as a result of the program's receiving the 
definite response 1 in the RESP exit routine. 

With the reply under way, a branch is made back to the RECEIVE so that input 
that may have been read into ACF/VTAM's buffers from another connected logical 
unit (that is not in continue-specific mode) will be read into the application 
program for processing. 

7 If the ACF/VTAM network is being halted, the program's TPEND exit routine (not 
shown) is scheduled and entered by ACF/VTAM. This routine can indicate to the 
main program that the program is to terminate. The TPEND exit routine or the 
main program later can send final messages to connected logical units and do other 
close processing depending on whether the closedown is immediate or a routine 
end-of-day closedown. The main program, discovering the closedown requirement, 
must issue a CLOSE macro instruction to disconnect the application program from 
the network; any logical units not yet disconnected will, as a result of the CLOSE, 
be disconnected. Note that the CLOSE macro instruction must be issued in the 
main program and not in the TPEND exit routine. The program terminates by 
returning control to the operating system. 

8 When a response to the data sent in 6 is received by ACF /VT AM, the RESP exit 
routine is scheduled and entered. On entry, register 1 points to a parameter list that 
points to a read-only RPL in ACF/VTAM's storage, whose feedback fields can be 
examined to determine the kind of response received. 

9 If a negative response was received, the program can determine from sense 
infonnation in the RPL whether or not to retry the operation, disconnect the 
logical unit, or take some other action. 

Otapter 11. Sample Program 1 217 



218 

10 If a positive response was received, the logical unit can be returned to continue-any 
mode so that the next request for input from any logical unit will include this 

·logical unit as one whose input can be read by the application program. This is done 
by issuing: 

RESETSR RPL=RPLlR,OPTCD=CA,RTYPE=DFSYN 

The RESP exit routine must have its own RPL available. The identity of the terminal to 
be placed back in continue-any mode must be put in the ARG field of the exit routine's 
RPL. The RESP exit routine then returns control to ACF/VTAM. 

A completely coded version of Sample Program 1 is shown in Appendix D. 



Chapter 12. Sample Program 2 

Sample Program 2 is a more typical example of an ACF /VT AM program than Sample 
Program 1. Sample Program 1 (Chapter I I) should be read first. 

Sample Program 2 communicates with logical units associated with 3600 Finance 
Communication Systems and SNA 3270 Information Display Systems. The logical units 
are associated with physical units that are connected to ACF/VTAM on nonswitched 
remote lines through a 3704 or 3705 Communications Controller with a network control 
program. Additionally, local 3270s are attached to ACF/VTAM through a d1mmel. The 
ACF/VTAM application program uses the record mode to communicate with all of these 
terminals. 

Figure 12-1 shows a possible configuration of terminals with which Sample Program 2 
might communicate. 

The application program in the 3601 controller can be written to perform certain 
functions that would otherwise have to be performed by the ACF/VTAM application 
program. For example, the 3601 application program can screen inquiries for correct 
format prior to forwarding them to the ACF/VTAM application program for processing, 
or it can collect inquiries from several terminals that form a work station and send them 
as one transmission to the ACF/VTAM application program. 

The logic of Sample Program 2 is described at a high level in Figure 12-2 and 
accompanying notes. The logic of special routines is described in more detail in 
subsequent figures and accompanying notes. 

Sample Program 2 uses the posting of ECBs (either by ACF/VTAM or within the 
program) and a central wait routine that discovers posted ECBs as a mechanism to handle 
a number of terminals alternately without having to suspend all program execution while 
waiting for 1/0 operation to be completed. After a request has been issued for an 
asynchronous operation, control is transferred to the wait routine, which discovers (or, if 
necessary, waits for) a posted ECB. The posted ECB may be associated with another 
terminal, and the wait routine branches to a point related to further processing for the 
terminal for which an operation has been completed. An understanding of the details of 
this technique is assumed in this discussion. 

Although not discussed in detail, it is likely that Sample Program 2 would use a separate 
control block for each terminal that was actively using the program. This control block 
can include an input/output area. A separate RPL can be associated exclusively with each 
active terminal. The storage for these control blocks can be obtained from a fixed pool or 
be obtained dynamically and initialized with the GENCB macro instruction. This terminal 
control block and RPL area can be obtained and related to a terminal for the duration of 
its connection, for the duration of the program, for the duration of a transaction or 
conversation, or on some other basis. The ECB associated with a terminal can be located 
in the RPL or outside of it in some fixed relationship, perhaps just in front of it. In 
Sample Program 2, it is assumed that the storage for an ECB, RPL, and terminal control 
block is obtained and initialized in the LOGON exit routine and retained for the duration 
of the terminal's connection to the program. 

The Organization and Flow of Sample Program 2 

Figure 12-2 shows the principal routines in Sample Program 2; the notes below indicate 
how Sample Program 2 works. More detailed logic is shown and discussed in subsequent 
figures and notes. 

Chapter 12. Sample Program 2 219. 



1--) 

~ 
Branch Office 

r------, 

l I 3612 I ' ,-----, 
I 
I 

\ 
\ 
\ 

3618 

HOST Computer 

Sample Program 2 
,-----------1 
I ~ I 
I . ACF/VTAM : I Proc~ssmg Control 
I Routmes I--- Routine 

I 
I I 
L __ --------- __J 

Other ACF/VTAM Application Programs 
.---------------i_, 

ACF/ 
VTAM 

Communications 
Controller 

-----. SDLC Link 
:::::» 

NCP 

\ 

I 
\ 
' ' \ 

3604 

' ' ' ' \. _____ , 
Work 
Station 3 

3614 

' 

\ I Work 
\ I Station 
\ I 2 
\ I 

\: 
,----, 
I Application I 
I Program(s) I 
"- - .,- _ _J/ 

3601 

I 'It I I Chonnol 

! : : I To oili" 
I I I I 3270s 

3277 

I I 
I I I 
I --------..---_J! 
~- - --- --- ___ __.J 

3272 

3277 3284 3277 

Local 3270s 

Figure 12-1. A Possible Data Communication System Configuration for Sample Program 2 

/ 
/ 

/ 

3275 

I 
I 
I 
I 
I 
I 
I 
I 
I 

) 

(Other work 
stations not 
shown) 

To other 
branch 
offices 



Main Program 
Initial Routine 

1 • Open the ACB 

• SETLOGON 

• Request input from any 
connected logical unit. 
Have RPL invoked three 
times when input received 

• Branch to Wait Routine . 
Disk 1/0 Routine 

Wait Routine r-------; 
4 WAIT 

Determine whi~h ECB I I • I I posted or wait Or one 
to be posted I "'1 I • CHECK RPL 

• Pass control to address 
L---- -i.J related to posted ECB 

Proce~ng Routines 
Processing Routine Analyzer 

5 • Determine which 
processor is needed r------ lh 
and branch to it or I_ Disk 1/0? I I 
call it r ACF/VTAM 1101 ; 1 ~ 3600 1/0 Routines 

Input Routine ~., * • Issue a RECEIVE -------'I ------~ to receive the -------next data input 
from the specific 
logical unit 

8 • Branch to Wait (Details in Figure 12-3) 
Routine 

Output Routine 

• Chaining? Use Chaining Subroutine 
chaining sub· 
routine 

Issue series of SENDs, SEND data, • • specifying chain and specifying POST=SCHED POST=SCHED 

• Final output? • Branch to WAIT 

Set logical unit 
(Details in Figure 12-4) to CA 

• Branch to Wait 
Routine 

3270 1/0 Routines 
Input Routine 

• Issue a RECEIVE .... 
to receive the 
next input from 
the specific 
logical unit. 

9 • Branch to Wait 
Routine (Details in Figure 12-5) 

Output Routine 

• Set logical unit to 
CA if last SEND 

• lssueSEND 
POST= RESP 

• Branch to Wait 
Routine 

Close Routine 

• Close the ACB 

• Return to the operating 
system (the program 
ends) 

Figme 12-2. The Organization and Flow of Sample Program 2 

Exit Routines 
LOGON Exit Routine 

2 • Validate logon 
• Determine session 

parameters 

3 

• Connect valid logical unit 
• Disconnect invalid logical 

unit and return 
• Send initial message 
• Return to ACF/VTAM 

RPL 1 Exit Routine 

RPL1 
• Check APL 
• Post an ECB so the Wait 

Routine will pass the 
input to the Processing 
Routine Analyzer 

• Move input to logical 
unit related input aree 

• Re-issue a request for 
input from any logical 
unit 

• Return to ACF/VTAM 

RESP Exit Routine 

10. If exception response, 
analyze response 
information 

• Indicate whether to retry 
• Post ECB related to 

request 
e Return to ACF/VTAM -

(Details in Figure 12-6) 
DFASY Exit Routine 

11 • Quiesce received? 
Hold sending 

• Release quiesce 
received? Release 
pending SEND 

• Return to ACF/VTAM 

(Details in Figure 12-7) 
TPEND Exit Routine 

12 • Post close ECB 
e Return to ACF/VTAM 

LERAD Exit Routine 

r 
• Analyze error 
• Set action code 
• Return to ACF/VTAM 

SYNAD Exit Routine 
• Analyze error 

13 • Set action code l e Return to ACF/VTAM 

LOSTERM Exit Routine 
• Analyze situation 
• Set action code 
• Return to ACF/VTAM 

Chapter 12. Sample Program 2 221 



222 

Figure 12-2 shows the main program and the exit routines as separate groups of routines. 
This is a logical rather than a physical separation; exit routines are distinctive because 
they are ente.red only when an event occurs that requires handling by an exit routine. 
When an exit routine is scheduled, ACF/VTAM suspends execution of the main program 
until the exit routine completes its processing and returns to ACF/VTAM. Only one exit 
routine can be executed at a time; if an exit routine event occurs while an exit routine is 
being executed, the second exit routine is scheduled for entry only after the first exit 
routine is completed. The LERAD and SYNAD exit routines are exceptions to . this 
general rule; they can be entered as the result of an RPL-based operation, such as 
OPNDST, RECENE, or CHECK in another exit routine (in which case, they may be 
viewed as extensions of the exit routine that caused them to be entered). 

Except for the LERAD and SYNAD exit routines, each exit routine must establish its 
own addressability, be executed, and then return to ACF/VTAM; ACF/VTAM's registers 
need not be saved or restored. A temporary branch to part of the main routine can be 
made from an exit routine-and common code can be shared,-but the exit routine would 
be considered to be in progress until control is returned to ACF NT AM. The LE RAD and 
SYNAD exit routines are furnished addressability as the result of loading registers (a user 
save area address is passed in register 13). 

Except for an RPL exit routine, whose address is specified in the RPL or request macro 
instruction, the addresses of exit routines to be associated with the program are defined 
in an EXLST macro instruction. In addition, for DFASY, RESP, and SCIP exit routines, 
different exit lists can be defined for different terminals or sets of terminals. In Sample 
Program 2, one exit list is assumed; the address of this exit list is provided to ACFNTAM 
in the EXLST operand of the ACB when the ACB is opened. 

The following notes are keyed to the numbers in Figure 12-2. 

1 The ACB is opened and a SETLOGON is issued. A request to read input from any 
logical unit is issued; the operation is to be completed asynchronously, and an RPL 
exit routine (RPLl) is designated for scheduling by ACF/VTAM when the 
operation is completed. The logical unit whose input is read into Sample Program 2 
is to be put into continue-specific mode. Thus, subsequent requests to read input 
from any logical unit, issued in the RPL exit routine, will exclude the logical unit 
whose input was just read and with whom the program will now be in specific 
communication The RECENE can be coded: 

RECENE RPL=RPLlANY,AREA=AREAANY ,AREALEN=lOO, 
RTYPE=DFSYN,OPTCD=(ASY,ANY,CS),EXIT=RPLl 

Issuing more than one request to receive input from any logical unit at this point 
can improve efficiency. If three RECENEs are issued using three different RPI..s 
and data areas, when one RECENE is completed (thus causing the RPLl exit 
routine to be scheduled and entered), there are two other RECENEs outstanding 
that allow scheduling of RPLl. The RECENE that is completed first can be 
reissued in the RPLl exit routine. 

The RPI..s and input areas can be assembled in the program as fixed areas and 
reused each time the program issues a request to read input from any logical unit. 

A branch is made to the wait routine, which waits for the first input to arrive from 
a connected logical unit. The initial routine is executed only once. 

2 Both 3600 and 3270 logical units can be connected in the LOGON exit routine. 
The INQUIRE macro instruction is used to determine which type of logical unit is 
being connected. The particular type of SNA terminal product (3600, 3790, 3270, 



etc.) need not be identified by the ACF/VTAM application program. Instead, the 
ACF/VTAM application program distinguishes between types of logical units on the 
basis of the set of session parameters associated with the logical unit. In this 
example, 3600 logical units have a different set of session parameters from 3270 
logical units; the program can relate a logical unit that is being connected with one 
of these sets and use the appropriate routine to communicate with the logical unit. 
Storage that is to be associated with this terminal can be obtained from a pool or 
can be obtained dynamically from the system. (The storage can include an ECB, an 
RPL, and a logical unit block for additional logical-unit-related information.) The 
address of this storage or any other logical-unit-related information can be put in 
the USERFLD field of the NIB, using the MODCB macro; when the logical unit is 
connected, ACF/VTAM will save this address and return it to the program 
following completion of each subsequent input from the logical unit. 

A logical unit can be connected as the result of a logical-unit~initiated logon, 
installation-initiated (automatic) logon, network operator-initiated logon, or 
application-program-initiated logon. A 3600 logical-unit-initiated logon could be 
the result of either some logical-unit-operator action or could be initiated solely by 
the 3601 application program without involving a logical unit operator (in either 
case, the actual request would be transmitted by the 3601 application program). 

Figure C-1 in Appendix C shows part of the general sequence of events that occur 
prior to and during a logon. Here is a sequence of events that can occur prior to and 
during a 3600 logical-unit-initiated logon: 

a. The 3601 and its logical units, defined to ACF/VTAM during ACF/VTAM 
definition, are made an active part of the ACF/VTAM network (perhaps by a 
network operator VARY command). · 

b. As a result of receiving an activation request for the 3601 controller, 
ACF/VTAM sends an Activate Physical Unit command to the 3601 controller. 
The 3601 acknowledges the command and responds that it is ready for 
operation. (This command is followed by an Activate Logical Unit command to 
one or more of the logical units [logical work stations] associated with that 
particular 3601.) 

c. After the Activate Logical Unit command is received, the 3601 application 
program can either wait for a terminal operator at a 3601 work station to 
indicate that the logical unit (work station) is to be logged on, or can issue a 
logon on its own initiative. This is done by sending an Initiate command to 
ACF/VTAM specifying the name of the ACF/VTAM application program with 
which the logical unit is to be connected. The Initiate command may also 
specify a fogon mode (set of session parameters) and a user-defined logon 
message. 

d. ACF/VTAM, receiving the Initiate command, schedules Sample Program 2's 
LOGON exit routine. 

e. In the LOGON exit routine, after confirming the validity of the logon, the 
logical unit is connected, using an OPNDST macro instruction. The OPNDST 
causes ACF/VTAM to send a Bind command (containing the session paranieters) 
and to issue a Start Data Traffic (SDT) command to the logical unit (assuming 
SDT=SYSTEM was specified in the NIB used for connection). On receipt of a 
response to the SDT signal, the logical unit is connected to the ACF/VTAM 
application program and the OPNDST is complete. (If SDT=APPL is specified in 
the NIB used for connection, the ACF/VTAM application program must itself 
send the initial SDT, using the SESSIONC macro instruction.) 

Oiaprer 12. Sample Program 2 223 



224 

The OPNDST can be specified as a synchronous operation or an asynchronous 
operation. If the latter, the LOGON exit routine can either identify an ECB to be 
posted or an RPL exit routine to be scheduled as soon as the connection has been 
made. 

The same RPL and NIB can be used for each logical unit being connected in the 
LOGON exit routine. 

It may be desirable to write an initial message to the connected logical unit; this 
could be done from the LOGON exit routine or in an RPL exit routine following an 
asynchronously scheduled OPNDST. 

So that the session parameters to be associated with the logical unit can be 
identified (which in this program determine whether the 3600 or the 3270 I/O 
routines are used with the logical unit), an INQUIRE macro instruction optionally 
specifying OPTCD=SESSP ARM can be issued. This will allow the session 
parameters and logon data to be inspected and perhaps saved in the storage that is 
to be associated with the logical unit. 

3 As soon as the first input is received from a connected logical unit, the operation 
started by the request to read input from any logical unit, issued in the initial 
routine, is completed. RPLl is then scheduled and entered. 

RPLl can use the USER or the ARG field of the RPL of the request just completed 
to locate the logical unit storage and the identity of the logical unit. On entry to 
RPLl, the address of the RPL is in register 1. 

A CHECK macro is required to free the RPL for reuse; it will also cause LERAD or 
SYNAD exit routines to be entered if any error occurred. 

RPLl posts an ECB so that, subsequently, the wait routine in the main program 
will determine that the input has been received and pass it to the processing routine 
analyzer. The RPLl exit routine then reissues a request to read input from any 
logical unit. Because a logical-unit-related RPL obtained in the LOGON exit routine 
is used for subsequent I/O with the terminal just read, the RPL causing entry to 
RPLl can be continuously reused by the RECEIVE in RPLl. The operation is to be 
asynchronous with relation to the program and RPLl is to be reentered each time 
the request is completed. Note that the logical unit whose input caused entry to 
RPLl is now in continue-specific (CS) mode. The RECENE can be coded 
identically to the RECENE in the initial routine. 

Although not shown in Figure 12-2, the RPL exit routine sends a positive response 
to the message that caused it to be entered if a positive response is requested by the 
logical unit. If a response is to be sent for an exception condition, sending the 
negative response is probably performed in a SYNAD exit routine after a CHECK 
was issued. 

An alternative to having an RPL exit routine for the RECENE with OPTCD=ANY 
and related logic is to have this logic located in the main part of the program and 
have an ECB posted. In Sample Program 2, one advantage to using an RPL exit 
routine is that input resulting from a RECEIVE with OPTCD=ANY is handled 
sooner in an RPL exit routine than if an ECB were to be posted (which would 
require waiting until the next entry to the main program's wait routine). This gives 
some preference to handling the first input of a new transaction or conversation 
over transactions or converstations already in progress. 



4 The wait routine waits on a list of ECBs, with each ECB associated with a separate 
RPL. When an ECB is posted, the wait routine is activated, and the routine searches 
the ECB list to find the posted ECB and zeros it out. The routine then issues a 
CHECK macro instruction. This macro instruction clears the RPL for reuse in the 
next request involving the logical unit, and if an error occurred, the macro 
instruction causes the LERAD or SYNAD routine to be entered. On return from 
CHECK, the feedback fields of the RPL contain information provided by 
ACF/VTAM; in addition, the LERAD or SYNAD routine may have indicated 
action to be taken. If the operation was successful, the wait routine branches to the 
address associated with the ECB. (In the case of the first input of a transaction or 
conversation, that address is the one for the processing routine analyzer.) When 
control is returned to the wait routine, the routine again searches the ECB list to 
see if another ECB has been posted. If a posted ECB is found, processing continues 
as described above. If not, the RECENE with OPTCD=ANY is issued again, and 
the program enters the wait state. 

5 The processing routine analyzer, which can consist of separate routines for different 
types of logical units, analyzes the input and branches to or calls the appropriate 
processor. This processor may have been coded in a higher level language, such as 
COBOL or PL/I. 

6 The processing routine processes the input and prepares the output. This may 
require one or more disk 1/0 operations, which can be performed by calling a 
common disk 1/0 routine. When output is ready, or, in a conversation the .next 
input is required, the processing routine requests ACF /VT AM 1/0, causing control 
to pass to an appropriate ACF/VTAM 1/0 routine. 

7 The disk I/O routine requests a disk 1/0 operation asynchronously and uses the 
wait routine to wait for completion. This allows processing for other logical units to 
continue while a disk 1/0 operation for one logical unit is under way. 

8 Although not shown, a processing routine can return control to the next sequential 
instruction in the main program from which it was called; a branch can then be 
made to a common 1/0 routine, which in tum branches to a 3600 or a 3270 input 
or output routine. A special routine might be required to edit 3270 input and 
format 3270 output. 

If the logical unit has the 3600 session parameters, an input or an output operation 
is requested as appropriate. The operation is specified as asynchronous; completion 
is determined when the ECB related to the logical unit is posted. Before issuing the 
request, the address to which the wait routine should branch (the return address is 
the processing routine) is placed in the ECB-related logical unit block. 

If additional input is requested, the input, when it arrives, will not be used to 
satisfy the outstanding RECENE request in RPLl because the logical unit is now 
in CS mode. 

If output is requested, the data can be sent in a chain of transmissions which is 
useful with output that is passed from the 3601 application program to a 3610 
printer. The 3601 application program can store all elements of the chain in a 
buffer until the entire chain is received (or print each element as it arrives). The 
ACF/VTAM application program would ensure arrival of the entire chain by 
receiving a single positive response sent by the 3601 application program when the 
last element of the chain is received. This notifies the ACF/VTAM application 
program that the data transfer was successful. 

Chapter 12. Sample Program 2 225 



226 

If the output completes a transaction or conversation, the logical unit is reset to 
continue-any (CA) mode so that input that begins the next transaction or 
conversation will satisfy the RECEIVE with OPTCD=ANY request that is issued in 
RPLI. 

Details about the 3600 I/O routine are provided in Figure 12-3 and in 
accompanying notes. 

9 If the logical unit has the 3270 session parameters, different I/O routines are 
required. The size of I/O areas required may be different and the range of input 
that may arrive may be wider. An additional requirement is the use of brackets for 
controlling the overlap of input and output with 3270. 

Details about the 3270 I/O routine are provided in Figure 12-5 and in 
accompanying notes. 

10 The RESP exit routine is scheduled and entered when a response arrives from a 
logical unit. A response will be received by ACF/VT.AM because the ACFNTAM. 
application program requested it in the RESPOND operand of the SEND macro. 
When the response is received, the operation, only scheduled in the 3270 or 3600 
output routine, is now completed and the RESP exit routine cart· now post the 
ECB. If the operation was successful, the response is positive; if an error occurred, a 
negative response is indicated in the RPL. The RESP exit routine can set up 
parameters and branch to the SYNAD exit routine which analyzes the error and 
takes corrective action. The ECB is posted and control is returned to ACFNTAM.. 

Details of the RESP exit routine are in Figure 12-6 and accompanying notes. 

11 In Sample Program 2, two kinds of expedited-flow commands can be received from 
a 3601 application program: a command to stop sending to the logical unit at the 
end of the chain that is currently being sent (a Quiesce at End of Chain (QEC] 
command) and a command to reinitiate sending after previously being requested to 
stop (a Release Quiesce [RELQ] command). The use of these commands can be 
desirable if a work station operator wants to interrupt a long series of printing so 
that keyboard input can be entered. After handling the operator's request, the 
ACF/VTAM application program can resume printing. When either of these 
commands is received, ACF/VT.AM schedules Sample Program 2's DFASY exit 
routine. 

This exit routine does not apply to 3270 operation. Details of this routine are 
shown in Figure 12-7 and accompaJ).ying notes. 

12 The TPEND exit routine is scheduled and entered when the network operator 
enters a HALT command or when ACF/VT.AM terminates itself or is abnonnally 
terminated. In addition to other possible processing, the TPEND exit routine posts 
a special close ECB so that, subsequently, the main program's wait routine will 
branch to a CLOSE macro instruction in the main program. 

13 The LERAD, SYNAD, and LOSTERM exit routines handle different categories of 
errors or unusual situations. The LERAD or SYNAD exit routine can be entered as 
the result of any RPL-based request. The LOSTERM exit routine is scheduled 
asynchronously when certain situations occur, such as the deactivation of a 
connected logical unit by the terminal operator. Llke other parts of the program, 
the LOSTERM exit routine can branch to the LERAD or SYNAD exit routine for 
problem analysis. The LERAD exit routine primarily handles logical errors; it is 
most likely for these to occur during the debugging stages of the program. This exit 



The Logic of the 3600 1/0 Routine 

routine can gather information, format it, and save it for programmer analysis after 
the program ends. The SYNAD exit routine primarily handles physical errors; it 
determines what general action should be taken (for example, retry, disconnection 
of the logical unit, termination of the program, or sending a message to the network 
operator) and either takes the action or passes an action code to the main program 
where the action is taken. The SYNAD exit routine may also want to record 
information related to situations that it handles for later problem analysis. 

A number of error situations must be perceived and analyzed as the result of 
receiving a response from a logical unit; the response is analyzed following a SEND 
with POST=RESP specified, following a RECEIVE with RTYPE=RESP specified, 
or after a RESP exit routine is entered. Errors or special situations that result in 
negative responses cause the SYNAD exit routine to be entered when a 
synchronous macro or a CHECK macro is issued; the SYNAD exit routine can 
determine the cause of the negative response by analyzing sense information in the 
RPL and then take appropriate action. The program, after determining that 
negative response has been received, can also branch directly to the SYNAD exit 
routine. 

This routine is entered directly or indirectly (perhaps from a common 1/0 branching rou­
tine in the main program) as the result of a request for input from a specific terminal with 
which a processor is currently engaged in a transaction or a conversation. 

Figure 12-3 shows the logic of the 3600 1/0 routines. The following notes are keyed to 
this figure. 

If the processor's request is for input, the information that must be passed to 
ACF/VT.AM is set up and a RECEIVE'8 issued. The address of the logical unit's 
RPL is put in a register and the address of the input area associated with the 
terminal and the length of the area are put in other registers. Since data is to be 
read, RTYPE=DFSYN is specified. The operation is to be asynchronous and input 
is to be read only from the specific terminal (whose CID is located in the RPL's 
ARG field). The ECB associated with the logical unit is specified for posting by 
ACF/VT.AM when the operation is completed. After issuing the RECEIVE request, 
register 15 contains 0 if the request is accepted, or some other return code if it is 
not. If the request is accepted, the wait routine is returned to, after setting the next 
sequential instruction in this routine as the address to be branched to when the 
ECB is posted. 

Note: For simplicity, most checks of register 15 are not shown in Sample Program 
2. 

2 When data is received from the logical unit, ACF /VT AM posts the ECB. When the 
wait routine discovers the posted ECB, it branches to the indicated location in the 
3600 1/0 routine. The RESPOND field of the RPL can be tested to determine 
whether the logical unit wants a definite response returned so that it will know 
positively that the input was received. If so, a SEND is issued, indicating that a 
response is to be sent to the logical unit (STYPE=RESP). 

The SEND that sends the response, if requested, is scheduled synchronously. 
ACF/VTAM assumes POST=SCHED. Since no response can be returned to a 
response, once the request to send the response is accepted, the ACF/VTAM 
application program considers the sending of the response as complete. 

Olapter 12. Sample Program 2 227 



1 

2 

3 

Issue RECEIVE with 
RTYPE=DFSYN, 
OPTCD=(ASY ,SPEC), 
ECB=address 

Branch to 
WAIT Routine 

Issue SEND with 
STYPE=RESP 

NO 

YES 

INPUT 

36001/0 
Routines 

Analyze 
and take 
action 

Issue SEND with 
STYPE=RESP, 
RESPOND=EX 

Branch to 
reissue 
RECEIVE 
request at 1 

Disconnect logical 
unit using CLSDST, 
and release control 
blocks 

Branch to 
Wait Routine 

Figure 12-3. The Logic of the 3600 1/0 Routine 

228 

OUTPUT 

4 

5 

6 

Set logical unit to 
continue-any 
mode (CA) 

Issue SEND with 
POST=SCHED, 
CHAIN=ONL Y, 
STYPE=REQ, 
CONTROL=DAT A, 
RESPOND=NEX, 
OPTCD=SYN or ASY 

NO Analyze >---- and take 

Branch to 
Wait Routine 

action 



If input arrives unsuccessfully or out of sequence (indicating that some input was 
lost), ACF/VTAM completes the ACF/VTAM application program's input request 
with an indication that a negative response must be returned; no input is forwarded 
to the program. The application program sends the negative response. The input 
can be reissued. 

Although not shown, the ACF/VTAM. application program can also return a 
negative response to input that is successfully received. This might be done where 
such a response is understood by both the application program and the logical unit. 
The USENSEO field of the RPL can be used to convey exception information. 

3 If the input contains a request to log off (to be disconnected from this program), 
the logical unit is disconnected by issuing a CLSDST macro instruction, and the 
control blocks associated with the logical unit are returned to the system or to a 
pool. Optionally, a message can be sent to the logical unit, confirming logoff, prior 
to issuing CLSDST. 

The above description of the 3600 input routine assumes that a CHECK macro is 
issued in the wait routine upon completion of each requested input operation; if an 
error occurs, CHECK causes entry to the LERAD or SYNAD exit routine which 
takes appropriate action. This can include sending the negative response for 2 . It 
might be noted that the input routine can issue a request to receive any kind of 
input: a normal-flow data or an SNA command (DFSYN), an expedited-flow 
command, which is always an. SNA command, (DF ASY), or a response (RESP). In 
this sample program, DF ASY and RESP-type input is handled by ACF /VT AM.­
scheduled DF ASY and RESP exit routines, but the logic in these routines could 
have been branched to after determining in the wait routine or 3600 input routine 
that DF ASY or RESP information had been received. DFSYN means that either 
data or normal-flow SNA commands can be received; although not shown in this 
example, normal-flow commands such as a Quiesce Complete (QC) command might 
be receivable in some applications, in which case, such commands have to be 
responded to. 

4 When an output request from a processor is received by the 3600 output routine, 
the routine does not process the request if the logical unit has quiesced the 
ACFNTAM application program; instead, the 1/0 routine branches to the wait 
routine. The processor must wait until the quiesce· is released at which time the 
ECB for this logical unit is posted, a pending send request detected, and the routine 
is reentered. (This logic is discussed in "The Logic of the1 DFASY Exit Routine.") 

5 If the output request is chained to other output requests, a branch is made to a 
chaining output routine (see Figure 124). 

6 If output is not being chained, a SEND is issued that includes the operand 
CHAIN=ONLY. If the output completes a transaction or conversation, the logical 
unit is returned to continue-any mode; its next input will satisfy the RECEIVE 
with OPTCD=ANY request issued in RPLI. The request can specify scheduling of 
the operation (POST=SCHED) with completion to be determined as the result of a 
positive or negative response (RESPOND=NEX) that will cause scheduling of the 
RESP exit routine. (The RESP exit routine will post the ECB associated with the 
logical unit, thus notifying the ACF/VTAM application program and the processor 
that the output request was completed.) The output routine then branches to the 
wait routine. 

Otapter 12. Sample Program 2 229 



The Logic of the 3600 Chaining Output Routine 

Figure 124 shows the logic of the 3600 chaining output routine. The following notes are 
keyed to this figure. 

1 The number of elements in the chain can vary or always be the same. Assuming that 
it varies in Sample Program 2, the number of chain elements must be determined so 
that the routine will know when to send the last element. It might be convenient to 
picture this routine being entered to send a report to an administrative line printer; 
this report may vary in length between 20 and 100 printer lines. Each line is sent to 
the 3601 logical unit as a chain element. The 3601 logical unit determines how 
many lines (chain elements) it collects before sending them on to the administrative 
printer. 

This chaining routine can be passed all of the data to be sent in a chain or only part 
of it. In other words, the routine is not necessarily sending an entire chain each 
time it is entered. The logic discussed here, however, assumes that all or, in a retry 
situation, the last part of a chain is being sent. 

2 Because one of the advantages of chaining output is to reduce the number of 
required responses while still breaking output into segments (request units) that can 
be interspersed on the communication path, all SEND macros other than the last 
one specify that a respon&e is to be returded only if an exception is noted 
(RESPOND= EX). When the last segment is received, a positive response is returned, 
and the ACF/VTAM application program recognizes that the entire chain arrived 
successfully. When RESPOND=EX is specified, the scheduling of output (POST= 
SCHED) is assumed by ACFNTAM; it does not have to be specified. 

3 In some cases, it may be necessary to save the sequence number Of the first element 
sent in a chain. This number is available as soon as sending has been scheduled. It 
can be obtained from the SEQNO field of the RPL by using the SHOWCB macro. 
In case all or part of the chain must be resent (a negative response arrives in the 
RESP exit routine), the first-in-chain sequence number may be useful in 
determining where to start resending. It may also be necessary (not shown here) to 
reset the beginning sequence number for the logical unit that is receiving the chain; 
this number is sent to the logical unit by using a SESSIONC macro. The sequence 
number can be saved in the control block associated with the logical unit. 

4 All elements except the first and last are middle elements (CHAIN=MIDDLE). 

5 For the last element in the chain, the SEND macro must identify it as the last 
(CHAIN=LAST) and request the return of a response (RESPOND=NEX). Either 
POST=SCHED or POST= RESP can be specified. 

When the response is received, if POST=SCHED was specified, the RESP exit 
routine posts an ECB, causing the wait routine to return to the processor that 
originated the output request. If POST=RESP was specified, ACF/VTAM posts an 
ECB or schedules an RPL exit routine. 

The Logic of the 32701/0 Routine 

230 

Figure 12-5 shows the logic of Sample Program 2's 3270 1/0 routine. With few 
exceptions, the ACF /VT AM application program using record-mode macro instructions 
need not distinguish between locally attached, BSC, and SDLC 3270s. Data received from 
a 3270 begins with an AID (Attention Identifier) character. Data sent to the 3270, 
whether local or remote, must begin with a 3270 command character, indicating Erase, 



1 

2 

3 

4 

5 

Chaining 
Routine 

Determine the 
number of elements 
in the chain 

Issue SEND with 
CHAIN=FIRST, 
RESPOND=EX 

Save sequence 
number using 
SHOWCB 

Issue SEND with 
CHAIN= LAST, 
POST=SCHED, 
RESPOND=NEX 

Branch to 
Wait Routine 

NO 
Issue SEND with 

CHAIN=MIDDLE, 
RESPOND=EX 

Figure 12-4. The Logic of the Chaining Output Routine 

Chapter 12. Sample Program 2 231 



232 

INPUT 

1 Issue RECEIVE with 
RTYPE=DFSVN, 
OPTCD=(ASV, SPEC), 
ECB=address 

2 

NO 

(Request 
YES accepted) 

Branch to 
Wait Routine 

YES 

Disconnect terminal 
using CLSDST, and 
release control blocks 

Branch to 
Wait Routine 

NO 

32701/0 
Routine 

Analyze 
and take 
action 

4 

Figme 12-5. The Logic of the 32701/0 Routine 

OUTPUT 

NO 

Set terminal to 
continue-any mode 

Issue SEND with 
STYPE=REQ, 
CONTROL=DATA, 
POST=SCHED, 
OPTCD=SVN, 
RESPOND=(NEX,FME) 

NO Analyze 
and take 
action 

YES 
(Request 
accepted) 

Branch to 
Wait Routine 



whether local or remote, must begin with a 3270 command character, indicating Erase, 
Erase and Write, or Erase All Unprotected; ACF/VTAM inserts an ESC character for BSC 
3270. The 3270 is different from other logical units in several ways, including the 
following: 

Since a 3270 does not contain an application program (a variable program), it cannot 
send commands or record-mode responses. However, in some cases, ACF/VTAM will 
provide responses to the ACF/VTAM application program on behalf of the 3270 as a 
result of receiving BSC responses to transmitted data or as a result of receiving 
indications that the 3270 is in a particular bracket state. 

The amount of data that can be sent to or received from the 3270 is limited by the 
physical characteristics of the 3270, whereas the amount of data that can be sent to or 
received from a 3601 is more indefinite. 

Chaining output to the 3270 is not possible. 

Responses cannot be requested by 3270 terminals. 

For other differences, see the considerations for "IBM 3270 Information Display System 
(Record-Mode)" in Appendix I of the ACF/VTAM Macro Language Reference. 

The following notes are keyed to Figure 12-5. 

1 Except that the type and length of data may be different for a 3270 RECENE, this 
request is similar to 1 discussed for the 3600 input routine. 

2 This logic is similar to that of 2 for the 3600 input routine except that, because the 
3270 cannot request a response to input it has provided, no check is made to 
determine whether to send a response. 

3 If 3270 output is requested by a processing routine, the 3270 I/O routine 
determines whether this output completes a transaction or conversation. If it does, 
the 3270 terminal is put back into continue-any mode so that the RECEIVE (with 
OPTCD=ANY) specified in the RPLl exit routine can receive input from this 
terminal when the terminal operator wishes to begin a new transaction or 
conversation. 

4 A SEND macro instruction is issued to send the output. (Although not shown, this 
routine may also have to determine from the processing-routine request what 3270 
command character-for example, Erase and Write-is to precede the output data 
stream that the processing routine furnishes.) The sending of the output is 
scheduled synchronously (POST=SCHED, OPTCD=SYN); ACF/VTAM returns 
control after it has scheduled the output operation. A response is requested 
(RESPOND=(NEX,FME)) so that the ACF/VTAM application program can 
determine whether or not the operation was successful. The 3270 returns 
information enabling ACF/VTAM to provide the appropriate response in the RPL 
and to schedule the RESP exit routine. The RESP exit routine (Figure 12-6) posts 
an ECB so that the main program's wait routine can determine that the operation 
completed, branching back to the processing routine that requested the output. 
(Note that an output request to a 3270 printer requires a definite response 
(RESPOND=(NEX,FME)); an output request to a display can specify either NEX or 
EX but cannot specify that neither a positive nor negative response is to be 
returned (RESPOND=(NEX,NFME)).) After successfully scheduling output to the 
3270, the 3270 output routine branches to the wait routine. 

Chapter 12. Sample Program 2 233 



The Logic of the RESP Exit Routine 

Figure 12-6 shows the logic of the RESP exit routine. This routine is entered when the 
response is received to an output request that has POST=SCHED specified in a 3600 or 
3270 output routine. The output operations have been scheduled with responses to be 
returned by the logical unit so that completion of each operation can be detennined. (It 
is also possible for all output operations to be specified with POST=RESP. In this case, 
the response is received by ACFNTAM and its nature determined by the ACF/VTAM. 
application program after ECB posting or RPL exit routine scheduling. No RESP exit 
routine is required.) 

Note that when the ACF/VTAM application program gets control in its RESP exit 
routine, a RECEIVE is not issued. The nature of the response is determined by examining 
the RESPOND and other fields of an RPL that is in ACF /VT AM's storage. The address of 
this RPL is in a parameter list whose address is in register 1 when the RESP exit routine is 
entered. The logical unit control area {the ECB, RPL, and logical unit control block) can 
be located by the address in the USER field of the ACF/VTAM RPL (It contains 
whatever was placed in the USERFLD field of the NIB when the logical unit was 
connected.) 

The following notes are keyed to Figure 12-6. 

I If the response is positive, the appropriate ECB is posted and a return is made to 
ACF/VTAM. Even if other action must be taken because the response is negative, 
the ECB is posted so that the wait routine will know that the operation has been 
completed. 

2 The RESP exit routine can use the SYNAD exit routine to analyze a negative 
response; if so, the user could set up the appropriate registers and branch directly to 
the SYNAD exit routine. 

3 If the situation is defined by the SYNAD exit routine to be recoverable, the 
operation is retried. If it is part of a chaining operation, it may be necessary to save 
the sequence number of the output segment to which a negative response was 
returned so that the chaining routine can determine the sequence number at which 
it starts a retry. If the logical unit's inbound sequence number (outbound from the 
host) must be reset, a SESSIONC using the STSN operand can be used to 
synchronize sequence numbers. (This logic can also be in the SYNAD exit routine.) 

On completion, the RESP exit routine returns control to ACF /VT AM. 

The Logic of the DF ASY Exit Routine 

Figure 12-7 shows the logic of the DFASY exit routine in Sample Program 2. The 
DF ASY exit routine is entered when a request is received from the logical unit asking the 
program to quiesce (stop) sending to the logical unit or to resume sending, if sending was 
previously quiesced. 

Quiescing can be done for two reasons: 

• To ensure that, at a given time, only the logical unit or the ACF/VTAM. application 
program can be sending. This use of quiescing is not demonstrated in this sample 
program. (Quiescing is only one means available to ensure that both sides do not ser.~4 
at the same time. Change-direction indicators may also be used. In many cas~, 
receiving a response message ensures that both ends do not send at the same time.) 



1 

r 
2 

l 

3 

YES 

NO 
(Set 
retry) 

RESP 
Exit Routine 

NO 

Using the sense fields 
in the read-only RPL, 
determine whether a 
retry is possible 

Indicate where to 
retry from (sequence 
number of exception 
response) 

Issue SESSIONC to 
inform logical unit 
of new sequence 
number 

Post the ECB related 
to this response 

Return to 
ACF/VTAM 

NO 
(Unrecoverable) 

Figure 12-6. The Logic of the RESP Exit Routine 

Chapter 12. Sample Program 2 235 



236 

I 
1 

l 
2 

3 

4 

DFASY 
Exit Routine 

Turn on hold 
indication in 
work area 
associated with 
logical unit 

If immediate cancel, 
tell logical unit to 
discard chain 

Issue SEND with 
STYPE=REO, 
CONTROL=OC, 
OPTCD=CA 

Indicate all or part 
of chain must be 
resent 

Return to 
ACF NT AM 

5 
NO 

YES 

Turn off hold 
indicator in 
work area 

6 
NO 

Put 1/0 request 
address in Return-
from-WAIT field 

Post ECB so that 
pending SEND 
can be issued 

Figure 12-7. The Logic of the DF ASY Exit Routine 

NO 

Branch to an 
error routine 

• To interrupt a steady flow of input data so that an output operation can be 
performed. This is the use of quiescing that is demonstrated here. For example, a teller 
at a 3600 terminal may wish to temporarily interrupt a long printout so that an 
informational message can be sent to the ACF /VT AM application program. As a result 
of a teller action, the 3601 logical unit for the teller's work station sends a Quiesce at 
End of Chain command to the ACF/VTAM application program, which can then agree 
to stop sending and be ready to read input from the logical unit. 

The Quiesce at End of Chain and Release Quiesce commands are sent as expedited-flow 
comrnancis unaccompanied by data. ACF/VTAM schedules the ACF/VTAM application 
program's DF ASY exit routine when one of these commands is received. 

The following notes are keyed to Figure 12-7. 

1 The type of command that caused the DFASY exit routine to be entered is 
available in the CONTROL field of the read-only RPL whose address is provided by 



ACF/VTAM on entry. If a Quiesce at End of Chain (QEC) command was received, 
this routine sets a do-not-send bit in the work area associated with the logical unit. 
The logical unit control block, as in the RESP exit routine, is located by the address 
in the USER field of the RPL. The QEC may be treated as an immediate quiesce 
rather than as a quiesce on the completion of sending the current chain; this is not 
shown here. 

2 If the quiesce is to be immediate, the exit routine can instruct the logical unit to 
discard the chain by issuing a SEND macro that specifies CONTROL=CANCEL 
Alternatively, the next SEND would be set to CHAIN=LAST; the logical unit 
determines whether or not to use the chain elements previously received. If in the 
middle of a chain and not all of the chain is to be resent, the ACFNTAM 
application program can note where sending is to resume when the quiesce 
condition is released. 

3 The QEC command is acknowledged by sending back a Quiesce Complete (QC) 
command. The command is specified symbolically (CONTROL=QC) by the 
ACFNTAM application program. So that the logical unit's input will be able to 
complete the request to receive input from any terminal, being recurrently issued in 
the RPLl exit routine, the logical unit is put back into continue-any mode 
(OPTCD=CA). In sending with CONTROL specified other than DATA, a response 
should not be specified; ACF/VTAM does not post the operation until it receives a 
response (assuming that, POST= RESP and RESPOND=(NEX,FME) were specified). 

4 This flag may be required in addition to the do-not-send flag to determine where to 
resume sending. See 2 above. 

5 If the command is a Release Quiesce (RELQ) command, the do-not-send flag is 
twned off. 

6 If further output is being held, the output routine is rescheduled for this logical 
unit, and an ECB is posted so that the wait routine will branch to it. Control is 
returned to ACF/VTAM. 

Oiapter 12. Sample Program 2 237 





Appendix A. Communicating with BSC and Start-Stop Terminals 

UsingBTAM 

Using ACF /VTAM 

The ACF/VTAM user communicating with logical units can also communicate with BSC 
terminals, start-stop terminals, and (optionally) local 3270 terminals, using either BTAM 
or ACF/VTAM basic-mode macro instructions. In this appendix, the term terminal is used 
for a BSC device, a start-stop device, or a BSC or local 3270 (used in basic mode), while 
the term logical unit is used for the entity (program or device) that is communicated with 
in ACF/VTAM record mode. 

Figure A-1 shows the communication mode (record or basic) that can or must be used for 
the various types of devices that can be attached to an ACF/VTAM network. 

Figure A-2 shows that communication through BTAM can be combined with 
communication through ACF/VT AM in a number of ways: 

An application program that uses ACF/VT AM record-mode macro instructions to 
communicate with SNA logical units can also include BTAM macro instructions to 
communicate with BSC, start-stop, and local 3270 terminals. 

An application program that uses ACF/VTAM record-mode macro instructions to 
communicate with SNA logical units can use ACF/VTAM basic-mode macro 
instructions to communicate with some BSC terminals, start-stop terminals, and local 
3270 terminals, and can also use BTAM macro instructions to communicate with other 
BSC, start-stop, and local 3270 terminals. 

ACF /VT AM and BT AM application programs can be used separately. 

A user who wanted to continue to use terminals not supported by ACF/VT.AM must use 
one of these combinations. However, even if all BSC and start-stop terminals in a network 
are supported by ACF/VTAM, the user can use BTAM (instead of ACF/VTAM) to 
communicate with them. 

As an alternative to using BTAM macro instructions, a set of ACF/VT.AM macro 
instructions is provided for communicating with certain BSC, start-stop, and local 3270 
terminals. (Supported terminals are listed in ACF/VTAM Concepts and Planning.) This 
set consists of the basic-mode macro instructions-READ, WRITE, SOLICIT, and 
others-described in this appendix. These basic-mode macro instructions contrast with the 
record-mode macro instructions described in Chapter 6. 

Must use record mode Application program in session with another application program 

Local (channel-attachment) SNA devices (for example, 3790) 

Remote SNA devices (on SDLC link) 

BSC 3270s defined with PU=YES 

Can use either record BSC 3270s defined with PU=NO 
mode or basic mode Local (channel-attached) 3270s 

Must use basic mode Start-stop terminals 

BSC terminals (except the BSC 3270 as shown above) 

Flfpue A-1. Types of Devices and Modes (Record or Basic) Used for Their Sessions 

Appendix A. Communicating with BSC and Start-Stop Terminals 239 



Program A 

SDLC Link 
ACF /VTAM macros Logical units -- ------.-
BTAM macros 

Program A 

ACF/VTAM record· 
mode macros 

ACF/VT AM basic­
mode macros 

NCP/ 
PEP 

BSC or Start·stoP Line 
Terminals 

SDLC Link 
Logical units 

_r-------
BSC or Start-stop Line 

Terminals 

------BTAM macros 
BSC or Start-stap Line 

Program A 

ACF/VTAM macros }-
SDLC Link 

NCP/ 
PEP 

~-- - -"'! I""'- __, 
I"- - - -- -

Program B 
BSC o~ Start-stop Line 

BTAM macros I--

Notes: Local and remote 3270 terminals can be communicated with using ACF/VT AM record-mode 
macro instructions, ACF/VT AM basic-mode macro instructions, or BTAM macro instructions. Using 
ACF/VT AM record mode allows logical units and 3270s to be communicated with using the same set 
of macro instructions. 

Figure A-2. Using BTAM and ACF/VTAM to Communicate with DSC and Smt-Stop Terminals 

240 

Terminals (different 
set from those above) 

Logical units 

---
Terminals 



Distinguishing between Logical Units and BSC/Start-Stop 
Devices 

When connecting a terminal whose identity and device type are unknown, ACF/VTAM, 
as the result of an OPNDST macro instruction, identifies the type of terminal (logical unit 
or BSC/start-stop terminal) by setting a value in the DEVCHAR field of the NIB. 
furnished by the application program. ACF /VT AM also indicates in the DEV CHAR field. 
whether record mode macro instructions or basic mode macro instructions (or either) crut 
be used to communicate with the logical unit or terminal. By testing the values in the~ 
DEVCHAR field, the program can determine the appropriate macro instructions and; 
related logic with which to communicate with the terminal. 

The Basic-Mode Macro Instructions 
Here are brief descriptions of the basic-mode macro instructions: 

SOUCIT: Requests ACF/VTAM to solicit input from a specific BSC, start-stop, or: 
local 3270 terminal or from a group of terminals. Input is read into ACF NTAM: 
buffers, not into the application program; a READ macro instruction is used to read: 
the input from the ACF/VTAM buffers into the application program's data area. The 
solicitation for a group of terminals continues until input has been received from every' 
terminal in the group. Once input has been received from a terminal, the terminal must· 
be resolicited unless continuous solicitation was specified when the terminal was 
connected. 

READ: Requests ACF/VT AM to transfer c~ata from a specific BSC, start-stop, orlocal 
3270 terminal or from any one of a group of terminals into an area in the application 
program. A request to read from any one of a group requires a SOLICIT prior to the 
READ; a request to read from a specific te:rminal causes solicitation of input to take 
place if a SOLICIT was not previously issued for that terminal. If data is already in an 
ACF/VTAM buffer as the result of a previous solicit or read operation, the transfer of 
data takes place immediately. 

WRITE: Requests ACF/VTAM to transfer data from an application program to a 
specific BSC, start-stop, or local 3270 terminal. The application program can also 
request that ACF /VT AM send certain control information to a terminal (such as an' 
Erase All Unprotected Fields command to .1 3270 terminal) or that ACF/VT AM write~ 
conversationally {write and then read from a terminal). · 

DO: Requests ACF/VT AM to perform thr<! 1/0 defined by an LOO control block in 
the application program. 

RESET: Requests ACF/VTAM to cancel all outstanding 1/0 requests to a BSC, 
start-stop, or local 3270 terminal and, if necessary, to reset any error lock that may' 
have been set for the terminal to prevent output. 

LDO: Defines a particular kind of 1/0 operation that is not ordinarily performed, 
such as writing a positive response with leading graphics to a System/3 or System/370 
CPU. The operation is requested by issuing a DO macro instruction that specifies the 
LOO. 

CHANGE: Requests that the information furnished to ACF/VTAM as part of a 
connection request be changed. The macro instruction assumes that the information in 
the NIB, used to pass information when requesting connection, has been modified. 

Basic-Mode Concepts and Facilities 

Most of the concepts and facilities that have bc~en discussed previously in this book apply 
to communication with BSC, start-stop, and local 3270 terminals as well as to 
communication with logical units. This appendix supplements the information provided 
previously in this book (most of Chapter 6, however, does not apply to BSC terminals, 

Appendix A. Communicating with BSC and Start-Stop Ter.minals 241 



Data Blocks 

Solkitation 

242 

start-stop terminals or local 3270 terminals (used in basic mode)). The following concepts 
and facilities apply to both the basic mode and the record mode: 

Connection 

Overlapping ACF/VTAM requests with other processing 

Application program exit routines (the DFASY, SCIP, and RESP exit routines apply 
only to communication in record mode) 

Error notification 

Specific-mode and any-mode 

Continue-any and continue-specific modes 

Terminal identification (see "Identifying Logical Units" in Chapter 6) 

Handling overlength input data 

The concepts and facilities described in the following sections are those that are used only 
for basic-mode communication. 

The unit of data exchanged in record-mode operations is different from that exchanged in 
basic-mode operations. In record mode, the units exchanged are messages (which includes 
data) and responses. In basic mode, the unit of data is a block. 

Blocks are delimited differently for different types of terminals. For start-stop terminals, 
a block ends with an EOB character; for BSC terminals, a block ends with an ETB 
character. 

Although the application program can solicit more than one block from a terminal, a 
READ macro instruction can move only one block into the application program's input 
area (or less, if the input area is smaller than a block). An output operation (a WRITE 
macro instruction) always sends one block to the terminal. 

When the application program solicits data from a terminal, ACFNTAM initiates 
whatever actions (such as polling or line preparation) are required to obtain data from the 
terminal and put it into ACF/VTAM buffers. 

READ requests issued in the specific-mode cause solicitation to take place if no 
previously solicited data is in ACF/VTAM.'s buffers, and then cause the data to be moved 
into the application program's I/O storage area. In contrast, READ requests issued in the 
any-mode can only move solicited data from ACF/VTAM's buffers into the application 
program's input area. The user of READ requests in the any-mode must therefore 
explicitly request solicitation. Figure A-3 illustrates both implicit and explicit soliciting of 
data. 

Specific-mode and any-mode are also used when data is solicited~ In the specific-mode, 
data is solicited only from a single terminal. In the any-mode, data is solicited from all 
connected terminals. 

An application program might use these forms of solicitation in the following manner: 

1. The application program initially uses the SOLICIT macro instruction to solicit data 
from all of the terminals to which it has become connected. 

2. The application program then issues a READ in the any-mode, which is completed 
when one of the terminals responds to the solicitation. 



Soliciting Blocks 

Application Program 

READ Specific 

Data is moved. 

SOLICIT 

• • • 
READ Any or Specific 

Data is moved. 

ACFNTAM Terminal 

• 
Data is solicited, if none 
is in ACF/VTAM buffers. 

Data is solicited . 

* Arrows indicate data flow. 

Figule A·l. Implicit and Explicit Solicitation Using Basic Mode 

3. The application program communicates with the terminal using WRITE and READ 
macro instructions issued in the specific-mode. The READ macro instructions cause 
implicit solicitation to occur. 

4. When the transaction is completed, the application program issues a new SOLICIT 
macro instruction directed specifically at the terminal, so that a new READ issued in 
the any-mode will be satisfied when the next transaction begins. 

When connection is established with a terminal in the basic mode, the application 
program indicates the amount of data that each solicit request (implicit or explicit) is to 
obtain from that terminal. It is the application program's responsibility to determine 
when a new solicit request should be issued. 

The application program can designate that, for each solicit request, ACF/VTAM is to: 

• Solicit only a block of data from the terminal. For start-stop terminals, a block ends 
with an EOB character; for BSC terminals, a block ends with an ETB character. 

• Solicit a message from the terminal. Messages do not apply to start-stop terminals; for 
BSC terminals, a message ends with an ETX character. Messages consist of one or more 
blocks. (A BSC "message" is not to be confused with the more general ''message" that 
is exchanged with logical units.) 

• Solicit a transmission from the terminal. For both start-stop and BSC terminals, a 
transmission ends with an EOT character. A transmission consists of one or more 
messages (for start-stop terminals, one or more blocks). 

• Solicit the terminal continuously until the application program cancels the solicitation. 

When data is solicited one block at a time and an error occurs during transmission, only a 
limited amount of data need be recovered by the terminal. However, since the application 
program must frequently reissue a solicit request (to acknowledge the previous block and 
obtain a new one), data throughput over the communications line is reduced. Block 
solicitation is appropriate when an unusually high number of line errors is expected and 

Appendix A. Communicating with BSC and Start·Stop Terminals 243 



when the length of retransmitted data must be kept to a minimum, even if at the expense 
of slower response times and poorer line utilization. The installation must authorize, in 
the application's APPL definition statement, the solicitation of blocks. 

Soliciting Messages and Transmissions 

Continuous Solicitation 

Special 1/0 Operations 

244 

The lengths of messages and transmissions are not as closely dependent on the type of 
terminal as are block lengths. Message and transmission lengths are usually established by 
the terminal's operator and the nature of the application. The lengths of messages and 
transmissions from a remote job-entry station, for example, are determined by the 
number of cards in each job deck and the number of job decks available for transmission 
at one time. 

Since messages and transmissions tend to be much longer than blocks, message and 
transmission solicitation means more data has to be recovered when an 1/0 error is 
detected. However, with these forms of solicitation, data transmission is much more 
efficient, because the acknowledgments and resolicitations needed to obtain the blocks 
are performed by the communications controller, not the application program. 

Message and transmission solicitation is appropriate for applications that require short 
response times but can tolerate lengthy transmissions when required. 

The choice between message solicitation and transmission solicitation (which can be made 
only for BSC terminals) depends on how undesirable delays between messages would be. 
With tnmsmission, delays between messages are minimized, although more data must be 
recovered if errors occur. 

The advantages and disadvantages of continuous solicitations are the opposite of those of 
block solicitation. By soliciting continuously, the application program can obtain data 
with a minimum of programming. However, the application program must determine 
when solicitation should cease, and must explicitly tell ACF/VTAM when to do so. If the 
solicitation must be interrupted frequently, the efficiency is lost. 

Continuous solicitation is appropriate for batch input applications, where transmissions 
are relatively frequent and delays between blocks, messages, and transmissions must be 
minimized. 

The application program can initiate the following 1/0 operations with one request: 

• Copy a remotely attached 3277 Display Station's buffer into the buffer of any printer 
or display station attached to the same cluster control unit (COPYLBM or COPYLBT 
operation) 

• Read the entire contents of any 3270 display station buffer (READBUF operation) 

• Send a positive response with leading graphic characters to a System/3 or System/370 
CPU and then read the terminal's next block of data (WRTPRLG and READ 
operations); or send a negative response with leading graphic characters to one of these 
terminals and then reread the block of data (WRTNRLG and READ operations) 

• Write data beginning with a block of heading characters to a System/3 or System/370 
CPU (WR THDR and WRITE operations) 

• Write data to a terminal from separate output data areas (gather-write) or read from a 
terminal into separate input data areas (scatter-read) 

To use tliese facilities, the application program builds a set of logi.cal device orders 
(LDOs). Each LDO indicates the specific type of 1/0 operation (such as COPYLBM or 
READBUF), the data area to be used, and an optional indicator that links the LDO to a 



Special Processing Options 

following one. Jn both form and manner of use, LOOs resemble channel command word 
(CCW) programs. A set of LDOs is executed with a DO macro instruction. 

By using LOOs, the application program can request I/O operations that are not available 
via the conventional macro instructions like READ and WRITE. 

When connection is established with a terminal, the application program can designate a 
set of ground rules that ACF/VTAM. is to follow during subsequent communication with 
that terminal. The extent of solicitation described above-block, message, transmission, or 
continuous-is one example. Other options, most of which relate to NCP processing, can 
be selected by the application program (some options are not available for all types of 
terminals): 

• ACF/VT.AM can treat the receipt of leading graphic characters as either a normal 
condition or as an error condition. These options are called the LGIN and LGOUT 
options. (The names of these options, like those which follow, are the names coded as 
part of the PROC operand of the terminal's NIB.) 

• The application program can allow the communications controller 'to insert idle 
device-control characters into output data, or it can prevent the insertion of these 
charactars (TMFLL option). 

If the communications controller is prepared to receive intermediate transmission 
blocks (ITBs) from a terminal, the application program can allow the communications 
controller to insert an error information byte (EIB) into each block, or it can prevent 
the insertion of EIBs (BIB option). The application program can use the EIBs to 
perform error recovery (retries) on a subblock basis, rather than on a block basis. 

• The application program can override any text time-out limitation that the 
communications controller might otherwise use with the terminal (TIMEOUT option). 

• The application program can prevent the communications controller from employing 
error recovery procedures if an error is detected during output to the terminal, during 
input from the terminal, or during either input or output (ERPIN and ERPOUT 
options). 

• For some start-stop terminals, the application program can determine whether the 
communications controller is to monitor the terminal for attention interruptions and 
whether it is to notify the application program when the attention interruption is 
detected (MONITOR option). ACF/VT.AM notifies the application program by 
scheduling its ATTN exit routine. (These are attention interruptions detected when 
the application program is not communicating with the terminal; attention interrup­
tions that occur during an I/O operation are always brought to the attention of the 
application program by an RPL return code.) 

• The application program can insert its own line-control characters into output data, or 
it can allow ACF/VT.AM to do so (ELC option). 

• The application program can send all data to the terminal in transparent text mode 
(BINARY option). 

Unless the application program issues a request to change the ground rules, they remain in 
effect as long as the terminal is connected. 

Using the Basic-Mode Macro Instructions 

This section describes ways in which the basic-mode macro instructions can be used to 
connect and communicate with BSC and start-stop terminals. 

Appendix A. Communicating with BSC and Start-Stop Terminals 245 



Connecting BSC and Start-Stop Terminals 
See Chapter S, "Connecting and Disconnecting Logical Units." In addition, these options 
must be specified in the NIB used when a terminal is connected: 

Options Set by PROC: The processing options in a NIB determine the attributes to be 
applied to the terminal represented by that NIB. These options are dependent on each 
terminal's specific characteristics. These options are defined with the PROC operand of 
the NIB macro instruction before a terminal is connected. 

These options can be changed after connection by using the MODCB macro instruction to 
modify the PROC operand of the NIB and then issuing the CHANGE macro instruction 
to make the change permanent. 

TRUNC or KEEP specifies how ACF/VTAM will handle an incoming message that is too 
large ·for a specified input area. TRUNC specifies that the input will be truncated to fit 
the area. KEEP specifies that any input that does not fit into the area will be held for a 
subsequent read request. KEEP is assumed if neither is chosen. 

BLOCK, MSG, TRANS, or CONT specifies the. amount of read-ahead to be used with the 
terminal. If BLOCK, MSG, or TRANS is coded, the SOLICIT macro instruction solicits a 
block, message, or transmission. If CONT is coded, SOLICIT continues to solicit data 
from the terminal until a RESET macro instruction is issued to stop the read-ahe;id 
operation. TRANS is assumed if no option is chosen. A program must be authorized to 
specify PROC=BLOCK. 

MONITOR or NMONITOR specifies whether ACF/VT.AM is to detect attentions 
generated by the terminal. If an ATTN exit routine is coded, it is invoked each time the 
terminal generates an attention. NMONITOR is assumed if neither is chosen. 

Modifying Terminal, Characteristics 

246 

The CHANGE macro instruction modifies the characteristics of a terminal that has 
already been connected by a program. CHANGE is used to change the processing options, 
mode, and user data associated with the terminal. 

Before a terminal is connected, it is defined in a NIB. The mode (MODE=BASIC), any 
processing options {PROC), and any user data {USERFLD) are specified. When the 
OPNDST is issued, these characteristics are put into ACF/VTAM's internal tables, and the 
NIB is not used again for that terminal. 

To change these characteristics, CHANGE can be used. A new NIB is built or the same 
NIB used for connection is reused. The symbolic name of the terminal must be in the 
NIB. Then, using MODCB, the PROC, USERFLD, or MODE field of the NIB is set. The 
RPL referred to by the CHANGE macro instruction must point to the modified NIB. 
When the CHANGE macro is issued, ACF /VT AM's internal tables are modified. 

For example, if a terminal is connected to ACBl, using NIBl as shown here: 

NIBl NIB NAM.E=TERMl,MODE=BASIC,PROC=MSG 

and you want to change MSG to BLOCK, use MODCB: 

MODCB AM=VTAM.,NIB=NIBl,PROC=BLOCK 

The RPL refers to NIBl : 

RPLl RPL AM=VTAM,ACB=ACBl ,NIB=NIBl 

Issue the CHANGE macro to effect the change: 

CHANGE RPL=RPLl 



Reading Data 

READ SPEC 

There are three ways in which data can be read from a terminal: 

A READ can be issued to a specific terminal, which causes ACF /VT AM to solicit and 
read data from the terminal, and pass it to your program. 

A SOLICIT can be issued to initiate input from a specific terminal connected to your 
program; a READ can be issued to read data from any solicited terminal that has sent 
data in response to the SOLICIT. 

A conversational WRITE can be issued as discussed later in "Writing Data." 

Using this method, the program issues READ macros directed to specific terminals. 
Before the READ is issued, the ARG field of the accompanying RPL must contain the 
CID of the terminal. Because ACF/VTAM puts the CID into the ARG field of the RPL 
when the terminal is connected, the connection RPL can be. used for issuing the READ. 
For example, if a terminal has just been connected using the RPL whose address is in 
register 5, the READ macro can also use that RPL: 

RPLl 
AREAi 

READ 

RPL 
DS 

RPL=(S),OPTCD=SPEC 

ACB=ACBl ,AM=VT AM,AREA=AREAl ,AREALEN=lOO 
CLlOO 

This example reads one block of input from the terminal whose CID is currently in the 
RPL. The data is read into AREAi. When the READ is completed, the RECLEN field of 
the RPL will contain the actual length of the data read in. Note that each READ reads 
only one block of data. 

To use ACF NT AM's read-ahead facility, PROC=TRANS or PROC=MSG should be set in 
the NIB when the terminal is connected. This means that the first time a READ SPEC is 
issued to a terminal, ACF/VTAM reads blocks until a message or transmission has been 
read. A block is received each time READ is issued to that terminal. After each READ, 
TESTCB can be used to inspect the RPL's feedback information to see if the last block of 
the message or transmission was read. (See Chapter 8, "Manipulating Control Blocks," for 
how to use TESTCB.) 

LOOP READ RPL=(S),OPTCD=SPEC 

(Process input block.) 

TESTCB 
BNE 

AM=VTAM,RPL=(S),DAT AFLG=EOT 
LOOP 

*SAMPLE RPL AND I/O AREA 
RPLl RPL ACB=ACBl ,AM=VTAM,AREA=AREAl ,AREALEN=lOO 
AREAi DS CLl 00 

In this example, each input block is processed as it is read so that a single input area can 
be reused. To process a complete message or transmission at one time, multiple data areas 
are required. 

Appendix A. Communicating with BSC and Start-Stop Terminals 247 



248 

One input area can be defined to be large enough to accommodate a message or 
transmission. This example assumes that input will be no longer than 500 bytes. After 
each READ, a pointer can be updated to point to the next position in the input area. 

LOOP 
LA 
READ 
TESTCB 
BE 
SHOW CB 

L 
AR 
B 

5,AREAI 
RPL=( 6},AREA=(5) 
AM=VTAM,RPL=(6},DATAFLG=EOT 
OUT 
AM=VTAM,RPL=(6}, 
FIEIDS=RECLEN,AREA=INCR, 
LENGTH=4 
7,INCR 
5,7 
LOOP 

OUT (Process input data.) 

*SAMPLE RPL AND I/O AREA 
RPLl RPL ACB=ACBl,AM=VTAM,OPTCD=SPEC,AREA=AREAl, 

AREAi 
INCR 

DS 
DS 

AREALEN=IOO 
CLSOO 
F 

The total input area (AREAi} should be large enough to handle the longest message or 
transmission, or the area can be filled, the data processed, and the same area reused to 
finish the message or transmission. 

Here is another example. In this example, messages are read asynchronously from three 
terminals. First, here are some assumptions: 

• When each terminal is connected, the USERFID of the NIB is set to contain the 
address of a data area to be used only with that terminal. 

NIBl NIB ... USERFID=A(AREAl) 
NIB2 NIB ... USERFID=A(AREA2} 
NIB3 NIB ... USERFLD=A(AREA3} 

• A system WAIT macro is used to await completion of all READ requests. Since the 
WAIT macro is implemented differently for DOS/VS and OSNS, it is shown only as 
WAIT in this example. And, while the ECBs are shown, the system-dependent means 
of constructing an ECB list are not shown here. 

• TESTCB is used to inspect the FDBK field of the RPL to see if a message has been 
completely received. 

• The program communicates with three terminals in message mode; the maximum 
length of a message is 500 bytes. 

READ 
READ 
READ 

WAITl WAIT 

RPL=RPLl 
RPL=RPL2 
RPL=RP13 

* GET ADDRESS OF POSTED ECB INTO REGISTER 1 
* ZERO ECB FOR NEXT WAIT 



LAST 

LA 
CHECK 
TESTCB 
BE 
SHOW CB 

L 
L 
AR 
SHOW CB 

L 
A 
CR 
BL 
READ 
B 
SHOW CB 

2,4(1} 
RPL=(2) 
AM=VTAM,RPL=(2),DATAFLG=EOM 
LAST 
AM=VT AM,RPL=(2),FIELDS=(AREA,RECLEN), 
AREA=AREAO,LENGTH=8 
4,AREAO 
5,AREAOO 
4,5 
AM=VTAM,RPL=(2),FIELDS=USER,AREA=AREAO, 
LENGTH=4 
6,AREAO 
6,=A(400) 
6,4 
OVERFLOW 
RPL=(2),AREA=(4) 
WAITl 
AM=VT AM,RPL=(2),FIELDS=USER,AREA=AREAO, 
LENGTH=4 

L 6,AREAO 
(The data area address is now in register 6. Process the input message.) 

ARE AO 
AREAOO 
EC Bl 
RPLl 

AR.BAI 
ECB2 
RPL2 

AREA2 
ECB3 
RPL3 

AREA3 

READ 

DS 
DS 
DC 
RPL. 

DS 
DC 
RPL 

DS 
DC 
RPL 

DS 
END 

RPL=(2),AREA=( 6) 

CL4 FOR SHOWCB 
CL4 FOR SHOWCB 
A(O) 
ACB=ACBl ,AM=VTAM,OPTCD=(SPEC,ASY),ECB=ECBl, 
AREA=AREAl ,AREALEN=500 
CL500 
A(O) 
ACB=ACBl ,AM=VTAM,OPTCD=(SPEC,ASY),ECB=ECB2, 
AREA=AREA2,AREALEN=500 
CL500 
A(O) 
ACB=ACBl ,AM=VT AM,OPTCD=(SPEC,ASY),ECB=ECB3, 
AREA=AREA2,AREALEN=500 
CL500 

Here is a brief explanation of this example: 

• The program issues three READs, one to each terminal. Each terminal has been 
connected with PROC=MSG, and with its USERFLD pointing to its data area. 
Whenever a READ is completed, its accompanying RPL will contain the address of 
that data area in the RPL's USER field; this will always be the address of the beginning 
of the data area. 

• The program then waits for any READ to be completed. The coding for the WAIT 
macro and its accompanying ECB list depends on the system being used; it is not 
shown here. When any ECB is posted, the WAIT is completed. The address of the 
posted ECB is obtained and, because each ECB immediately precedes its RPL, 4 is 
added to it to get the,address of the RPL. 

• After issuing a CHECK to test for errors, TESTCB is used to see if the last block of a 
message was read. If so, a branch is made to process the message and reinitiate 
read-ahead to the terminal. If the message is not completed, the next block is read 
from the terminal. 

Appendix A. Communicating with BSC and Start-Stop Terminals 249 



READ ANY 

250. 

• Using SHOWCB, the current data area address is obtained from the RPL, as well as the 
length of the last input block. They are added and the AREA operand is reset to the 
next available location in the data area, ensuring that there is enough room to read the 
next block. (The example does not show the processing if there is no more room.) 

• To test for overflow, SHOWCB is used to get the address of the beginning of the data 
area from the USER field of the RPL. If 400 is added to this, there should be 100 
bytes left in the area; enough for another block. If the current data area pointer (the 
AREA field of the RPL) shows less than 100 bytes left, there may not be enough 
room to read another block. 

• If there are no overflow problems, another READ is issued to get the next block and a 
branch is made back to WAIT to await the next block from any terminal. 

• When beginning to process the input data (after the message has been read), the 
address in the RPL's USER field is used to determine the beginning of the data area 
for that terminal. (The AREA address in the RPL was changed as each block was read. 
It no longer points to the beginning of the data area.) 

The READ SPEC method in the previous example is useful for a fixed number of 
terminals. The READ ANY method provides a way of communicating with a varying 
number of terminals. 

There are two steps in using READ ANY. First, SOLICIT macros are issued to have 
ACF /VT AM poll the terminals connected to the program. Second, a READ ANY macro 
is issued to read one block of data from any terminal that sent data in response to the 
SOLICIT. Here is a simplified example: 

RPLl 

.SOLICIT RPL=RPLl ,OPTCD=ANY 
READ RPL=RPLl ,OPTCD=ANY 

RPL ACB=ACBl,AM=VTAM,AREA=AREAl,AREALEN=lOO 

A loop can be used to reexecute the READ ANY. 

READ ANY can be used in a program that accepts logons. A LOGON exit routine is used 
to process each logon. After connecting a terminal, a SOLICIT SPEC is issued for that 
terminal. The main program issues READ ANY macros to read data obtained by any of 
the SOLICIT requests. A READ ANY may be issued before terminals are connected; it 
becomes effective when input is available. Here is a simplified example: 

Main Program LOGONExit 

OPEN ACBl 
SETLOGON OPTCD=START 

OPNDST RPL=RPLO,NIB=NIBO, 
OPTCD=(ACCEPI' ,ANY) 

LOOP READ RPL=RPLl, 
OPTCD=ANY SOLICIT RPL=RPI.D,OPTCD=SPEC 

(Branch to process input BR 14 
and respond.) 

SOLICIT RPL=RPLl, 
OPTCD=SPEC 

B LOOP 

RPLO RPL ACB=ACBl,AM=VTAM 
NIBO NIB MODE=BASIC 



RPLl RPL ACB=ACBI, 
AM=VTAM, 
AREA= AREAi, 
AREALEN=IOO 
CLIOO AREAi DS 

END 

If PROC=MSG or PROC=TRANS is set for the terminal, the READ ANY can be followed 
with enough specific READs to get the entire message or transmission. Or the READ 
ANY loop can continue, but the data is processed only when a complete message or 
transmission has been received from a terminal. The example under READ SPEC 
illustrates this procedure. 

With some further modification, this sample program can service three terminals 
concurrently, and many terminals over a period of time. A LOGON exit routine is used 
(not shown below, but it would be the same as that in the previous example) to connect 
the terminals and solicit input. This example adds a new exit routine, an RPL exit 
routine. This routine, whose address is coded in an RPL, is scheduled when any READ 
ANY is completed. It processes the input data and initiates another input request. (This 
routine can also write replies; for this logon, see "Writing Data" below.) Here is the 
example: 

MAINP OPEN 

READ 
REM) 
READ 

ACBI 

RPL=RPLl ,OPTCD=ANY 
RPL=RPL2,0PTCD=ANY 
RPL=RPL3,0PTCD=ANY 

EXl BALR 3,0 
USING *,3 
ST 14,SAVEI 
LA 13,SAVE2 
CHECK RPL=(l) 
(Branch to process the input.) 

TESTCB AM=VTAM,RPL=(l),DAT AFLG=EOT 
BE REPLY 

READA READ REPL=(l) 
L 14,SAVEI 
BR 14 

REPLY (Write the reply; then resolicit and reissue a READ ANY.) 

RPLl RPL ACB=ACBl ,AM=VTAM,OPTCD=ASY,EXIT=EXl, 
AREA=AREAI ,AREALEN=IOO 

RPL2 RPL ACB=ACBl ,AM=VTAM,OPTCD=ASY,EXIT=EXI, 
AREA=AREA2,AREALBN=IOO 

RPL3 RPL ACB=ACBI ,AM=VTAM,OPTCD=ASY,EXIT=EXl, 
AREA=AREA3,AREALEN=100 

SAVEi DS F 
SAVE2 DS 18F 

Appendix A. Communicating with DSC and Start-Stop Tenninals 2S 1 



::.···' 

''<: 

Writing Data 

Simple Writes 

,'lSl ',, 

After each terminal is connected in the LOGON exit routine, it is solicited. Then as each 
of the first three terminals responds with data, one of the READ ANYs in the main 
program is completed. When any READ· ANY is completed, the RPL exit routine (EXl) 
is scheduled. EXl checks and processes the input block and, using TESTCB, determines 
whether this is the last block of a transmission:. If not, EXl issues another READ ANY 
that, when completed, causes EXl to be scheduled again. If the input block is the last of 
a transmission, EXl prepares a response to the terminal. An example shown later under 
"Writing Data" uses another RPL exit routine to resolicit the terminal when the WRITE 
is completed. 

Multiple-Block Processing: When using READ ANY macros to read the first block of a 
message or transmission, the remaining blocks can be read with READ SPEC macros. 
Since data from a terminal will normally satisfy an outstanding READ ANY as well as a 
'READ SPEC, it must be specified that subsequent data from a terminal is to satisfy only 
a READ SPEC macro directed to that terminal. The CA and CS option codes in an RPL 
control this: 

CA specifies that data from a terminal will satisfy either a READ ANY or a READ 
SPEC macro. 

CS specifies that data from a terminal will satisfy only a READ SPEC macro . 

. Wheq CA or CS is specified in a macro, it applies to the subsequent READ request. 

OPTCD=CA {the assumed value) can be specified in the RPL when a terminal is 
connected. Any data from that terminal will satisfy a READ ANY macro. When the 
READ ANY macro is issued, OPTCD=CS is specified: 

READ RPL=(2),0PTCD=(ANY ,CS) 

Any subsequent blocks from the terminal can now be read only with a READ SPEC 
macro. As each block is read, it is tested for end-of-message or end-of-transmission: 

TESTCB . AM=VTAM,RPL=(2),DATAFLG=EOT 

If a full message or transmission has not been read, READ SPEC macros are 
issued-OPTCD={SPEC,CS)-to read the remainder. When all the data has been read, 
OPTCD=CA is respecified and the terminal is resolicited. 

This section discusses how to use ACF/VTAM to transmit the output data stream to a 
terminal. It shows how to write simple one-block messages, how to send multiple-block 
messages, and how to write conversationally. 

Many output requests will probably be simple, one-block answers to input data received 
from terminals. For example, an input block might be read and processed, and then a 
short answer prepared using the same data area. Using the RPL that was used for input, 
the reply is sent. 

READ RPL=(S) 
(Branch to process input data and build a SO-byte data stream.) 
WRITE RPL={S),RECLEN=SO 

*SAMPLERPL 
RPLl RPL ACB=ACBl,AM=VTAM,AREA=AREAl,AREALEN=lOO 



When the terminal was connected (again, using RPLl), ACF/VTAM put the CID into the 
ARG field of the RPL. Since the same RPL is then used for both the READ and the 
WRITE, the CID is maintained to indicate the terminal's address. And, since block mode 
is used, the output mode OPTCD=LBT is assumed: after each output block is sent, 
ACF/VTAM provides an BOB or ETX. When the terminal acknowledges receipt of the 
data, ACF/VTAM sends the terminal an BOT. 

Still using block mode, the WRITE can be made asynchronous. An RPL exit routine is 
scheduled whenever the WRITE is completed. In the exit routine, the terminal is 
resolicited or another READ is issued. 

RPLl 

EX2 

SAVEl 
SAVE2 

READ RPL=(S) 
(Branch to process input and prepare a response.) 

WRITE RPL=(S),EXIT=EX2,RECLEN=SO,OPTCD=ASY 

RPL 

BALR 
USING 
ST 
LA 
LR 
CHECK 
READ 

L 
BR 
DS 
DS 

ACB=ACBl,AM=VTAM.,AREA=AREAl,AREALEN=lOO 

3,0 ENTRY PROCEDURE 
*,3 
14,SAVEl 
13,SAVE2 
2,1 
RPL=(2) 
RPL=(2),EXIT= ... 

14,SAVEl 
14 
F 
18F 

Here is an example with the READ ANY processing (see "Reading Data") that uses a 
LOGON exit routine (not shown) and two RPL exit routines, one for READs and one for 
WRITEs. 

MAINP OPEN ACBl 

EXl 

READ 
READ 
READ 

BALR 
USING 
ST 
LA 
LR 
CHECK 

RPL=RPLl ,OPTCD=(ANY,ASY),EXIT=EXl 
RPL=RPL2,0PTCD=(ANY,ASY),EXIT=EX1 
RPL=RPL3,0PTCD=(ANY,ASY),EXIT=EX1 

3,0 
*,3 
14,SAVEl 
13,SAVE2 
2,1 
RPL=(2) 

Appendix A. Communicating with BSC and Start-Stop Tenninala 253 



Multiple Writes 

254 

(Branch to process input.) 

TESTCB AM=VTAM,RPL=(2),DATAFLG=EOT 
BE WRITE I 

READl READ RPL=(2),EXIT=EX1,0PTCD=ANY 
L 14,SAVEl 
BR 14 

WRITEl (Branch to prepare reply.) 

EX2 

RPLl 
RPL2 
RPL3 
AREAi 
AREA2 
AREA3 
SAVEi 
SAVE2 

WRITE 
L 
BR 
BALR 
USING 
ST 
LA 
LR 
CHECK 
SOLICIT 
READ 
L 
BR 

RPL 
RPL 
RPL 
DS 
DS 
DS 
DS 
DS 

RPL=(2),RECLEN=SO,EXIT=EX2 
14,SAVEl 
14 
3,0 
*,3 
14,SAVEl 
13,SAVE2 
2,1 
RPL=(2) 
RPL=(2),0PTCD=(SYN ,SPEC) 
RPL=(2),0PTCD=(ANY ,ASY),EXIT=EXl 
14,SAVEI 
14 

ACB=ACBl,AM=VTAM,AREA=AREAl,AREALEN=lOO 
ACB=ACB1,AM=VTAM,AREA=AREA2,AREALEN=l00 
ACB=ACB1,AM=VTAM,AREA=AREA3,AREALEN=100 
CLlOO 
CLIOO 
CLIOO 
F 
18F 

A program may have to send multiple-block messages or transmissions in response to 
inquiries received from terminals or, for example, a request for a large report from a data 
base. The entire message can be put into an output area and written one block at a time, 
or each block could be transmitted immediately after it was built. In either case, the last 
block is written with OPTCD=LBT in the RPL; the preceding blocks are written with 
OPTCD=BLK or LBM in the RPL. Here is a simplified example: 

FIRST (Build one block of output in AREA I.) 

(Last block in message or transmission ?) 

NO WRITE RPL=(S),OPTCD=BLK 
CHECK RPL=(S) 
B FIRST 

YES WRITE RPL=(S),OPTCD=LBT 
CHECK RPL=(S) 



Conversational Write 
Requests for input and output can be combined in a single macro. The conversational 
option of the WRITE macro is used to write a block of data to a terminal and then read a 
block from the same terminal. The conversational WRITE uses the AREA field of the 
RPL to contain the address of the output data and the AAREA field to contain the 
address of the input data. Here is an example: 

WRITE 

RPLl RPL 

AREAi DC 
AREA2 DS 

RPL=RPLl 

ACB=ACBI ,AM=VTAM,OPTCD=(CONV,LBT), 
AREA=AREAI ,RECLEN=l2, 
AAREA=AREA2,AAREALN=100 
CLIOO'GOOD MORNING' 
CLIOO 

The program writes a GOOD MORNING message from AREAi; ACF/VTAM then reads 
one block from the same terminal into AREA2. 

This method works well with an acquired list of terminals. After connection, a 
conversational WRITE is issued to each terminal. If block mode and short responses are 
used, this method can be used throughout the program. 

The following expands this example. Assume that three terminals have been connected 
using three different RPLs. Each terminal uses the RPL with which connection was made, 
and a system WAIT macro is used to await completion of any outstanding WRITE macro. 
When any conversational WRITE is completed, the input is processed and another 
conversational WRITE issued. If message or transmission mode is used, the conversational 
WRITE is followed with READ SPECs to read in a complete message or transmission. 
Here is the example: 

WAITl 

WRITE 
WRITE 
WRITE 
WAIT 

RPL=RPLl 
RPL=RPL2 
RPL=RPL3 

(Put the address of the posted ECB into register 1.) 

LA 2,4{1) 
CHECK RPL=(2) 

(Branch to process input block. 
Issue READ SPECs if using message or transmission mode. 
Prepare reply in area field. 
Zero ECB for next WAIT.) 

WRITE RPL=(2),RECLEN=100 
B WAIT I 

ECBI DC A(O) 
ACB=ACB1,AM=VTAM,AREA=AREAI,RECLEN=12, 
AAREA=AAREAl,AAREALN=IOO,ECB=ECBl, 
OPTCD=(CONV,ASY) 

RPLl RPL 

AREAi DC 
AAREAi DS 
ECB2 DC 
RPL2 RPL 

CLIOO'GOOD MORNING' 
CLIOO 
A(O) 
ACB=ACBI,AM=VTAM,AREA=AREA2,RECLEN=l2, 
AAREA=AAREA2,AAREALN=100,ECB=ECB2, 
OPTCD=(CONV,ASY) 

Appendix A. Communicating with DSC and Start·Stop Terminals 255 



AREA2 DC 
AAREA2 DS 
ECB3 DC 
RP13 RPL 

AREA3 DC 
AAREA3 DS 

END 

CLlOO'GOOD MORNING' 
CLlOO 
A(O) 
ACB='ACBl ,AM=VTAM,AREA=AREA3,RECLEN•l2, 
AAREA=AAREA3,AAREALN=100,ECB=ECB3, 
OPTCD=(CONV ,ASY) 
CLlOO'GOOD MORNING' 
CLlOO 

Omcellng Data-Transfer Requests 

Handling Anentions 

Active or pending data-transfer requests are canceled using the RESET macro. RESET 
can also be used to reset an error lock for a terminal. 

If, for example, a series of WRITE macros is issued to a terminal, and, when the tint 
WRITE is completed, the RPL FDBK2 field indicates that the terminal has been 
disconnected, RESET can be issued to cancel the remaining WRITEs. Or, if a SYNAD or 
LERAD exit is taken after an 1/0 operation, RESET can be used to turn off the error 
lock that ACF/VT AM sets when an 1/0 error occurs. 

To use RESET, an RPL that is not currently active is used. This means that a request 
cannot be canceled by using the RPL that was used for the request being canceled. In 
some exit routines, an RPL might be set aside (or obtained from a pool) to be used only 
for RESET. 

Terminal users operating with 1050s or 2741s can generate attentions with the attention 
key or break feature of their terminals as soon as an NCP session is in progress. An 
attention usually means that the user wants to "get the attention of" the program to 
enter some special comment or request. If ACF /VT AM detects an attention while the 
program is reading from or writing to a terminal, the FDBK field of the data-transfer RPL 
will indicate that an attention was detected. If working with terminals that can generate 
attentions, the FDBK field should be checked after each data-transfer request. If an 
attention is detected while not communicating with the terminal, there is no RPL in 
which to set a flag. For these instances, ACF/VTAM schedules the program's ATTN exit 
routine. (If there isn't one, ACF/VTAM. ignores the attention.) 

When an attention is detected and there is an ATTN exit routine, ACF/VT AM sets a lock 
so that further communication with that terminal is not possible until the lock is reset. 
Data-transfer requests issued to a "locked" terminal are queued until the lock is reset. 
The ATIN exit routine decides whether to reset the lock. At the same time, any 
data-transfer requests that have been queued since the lock was set can be canceled. The 
RESET macro can be used to do both. RESET OPTCD=LOCK resets the lock; RESET 
OPTCD=UNCOND both resets the lock and cancels queued requests for the tenninal. 

The ATIN exit routine is entered with register 1 pointing to a 3-word parameter list: 

Word 1 contains the address of the ACB to which the terminal is connected. 

Word 2 contains the terminal's CID. 

Word 3 contains the terminal's USERFID data. 



Handling Release Requests 

In the ATTN exit routine, the CID can be loaded into a register, the lock reset and a 
READ SPEC issued to see what the terminal wants. Here is an example: 

ATTN I BALR 3,0 
USING *,3 
ST 14,SAVEl 
LA 13,SAVE2 
L 2,4(1) GET CID 
RESET RPL=RPLl ,OPTCD=(UNCOND,SYN),ARG=(2) 
READ RPL=RPLI ,OPTCD=(SPEC,SYN),ARG=(2) 
CHECK RPL=RPLI 

L 14,SAVEl 
BR 14 

RPLI RPL ACB=ACBl,AM=VTAM,AREA=AREAl,AREALEN=lOO 
AREAi DS CLIOO 
SAVE! DS F 
SAVE2 DS 18F 

If a program is connected to a terminal an4 another program wants to use that terminal, 
the other program is notified that the terminal is unavailable. If there is a RELREQ exit 
routine in your program, it is scheduled when another program requests connection. to 
one of your program's terminals. In the RELREQ exit routine, a CLSDST macro is issued 
to disconnect the terminal and make it available for the requesting program. 

When a RELREQ exit routine is entered, register 1 points to a 2-word parameter list: 

Word 1 contains the address of the ACB to which the terminal is connected. 

Word 2 contains the address of the terminal's symbolic name. 

The RELREQ exit routine may release the terminal. First it is necessary to be sure that 
there is no pending data-transfer request for the terminal. In the main program, a 
terminal-status flag can be set in a terminal's status save area (whose address is in the 
terminal's user data) indicating whether the terminal is currently being solicited. This 
information is used in the RELREQ exit routine. 

The RELREQ exit routine: 

• Converts the terminal's symbolic name to a CID for use with the RESET macro. 

• Issues a conditional RESET to cancel any pending SOLICIT request for the terminal. 
On return from RESET, the USER field of the RPL points to the terminal's status save 
area. Now, the status save area is tested to see if the terminal is being solicited. 

• If the terminal was being solicited, the terminal is disconnected and control returned 
to the main program. 

• If the terminal is not being solicited, the RESET may have canceled a pending WRITE 
macro. The main program will handle this condition when the WRITE completion 
code indicates that it was canceled by a RESET. The main program can reissue the 
WRITE, and then disconnect the terminal. 

• If the terminal is not being solicited, or if the RESET failed, a switch is set indicating 
to the main program that another program has requested use of the terminal, but has 
not yet been disconnected. 

Appendix A. Communicating with BSC and Start-Stop Terminals 257. 



Basic-Mode Sample Programs 

258 

RREQl BALR 3,0 
USING *,3 
ST 14,SAVEl 
LA 13,SAVE2 
L 4,4(1) 
MO DCB AM=VTAM,NIB=NIBl, GETTHENAME 

NAME=(*,4(4)) INTO THE NIB 

INQUIRE RPL=RPLI ,OPTCD=CIDXLATE, CONVERT NAME 
NIB=NIBl,AREA=CIDAREA INTO CID 

L 4,CIDAREA 

RESET RPL=RPLI ,OPTCD=COND,ARG=(4) 
LTR 15,15 
BNZ SSW 
(Examine the terminal status save area where address is in the USER field 
to see if the terminal is being solicited. 
Is the terminal being solicited? 
Yes, issue CLSDST. 
No, go to SSW.) 
CLSDST RPL=RPLI ,ARG=(4) 
B OUT 

SSW (Set a switch to indicate that the terminal is requested; the main 
program should release it.) 

OUT L 
BR 

SAVEl DS 
SAVE2 DS 
CIDAREA DS 
NIBl NIB 
RPLl RPL 

14,SAVEl 
14 
F 
18F 
F 

AM=VTAM,OPTCD=SYN 

A situation to guard against is when one program tries to acquire a list of connected 
terminals and has OPTCD=CONANY in his connection request. He wants connection to 
only one of the terminals. Suppose all terminals on the list are already connected to other 
programs having RELREQ exit routines. Further, suppose that each program chooses to 
give up a requested terminal. In this case, only one terminal is connected to the 
requesting program; the rest are not longer connected to any program; they have been 
released, but not reconnected. The program can attempt to reconnect the terminal after 
releasing it by coding OPTCD=NQ in the RPL used for connection. If the terminal was 
not connected to the requesting program, the releasing program will get it back. If it was 
connected, the OPNDST will be completed with a terminal-unavailable return code. The 
OPTCD=NQ operand indicates that no RELREQ exit routine is to be scheduled to get 
this terminal; if it is busy, it is not to be taken away. 

Here are three basic-mode sample programs. These sample programs are designed to 
illustrate the principles of basic-mode communication rather than to be complete 
programs that a particular installation would want to use. 



Basic-Mode Sample Program 1: LOGON Exit, RPL Exit, 
and READ ANY 

This sample program illustrates the use of a LOGO N exit routine to connect terminals as 
they log on. The program does not know which terminals will log on, so it accepts logons 
from an infinite number of terminals. As terminals begin to log on, the program 
communicates with three terminals in parallel. As each terminal is satisfied, another is 
serviced on a rotating basis. Although only three terminals are handled at a time, all get 
their chance to communicate with the main program. Each time a terminal logs on, the 
LOGON exit routine connects and solicits data from the terminal; it then reads from and 
writes to each terminal. The overall program flow is shown in Figure A-4. 

The main program opens an ACB to link itself to ACF /VT AM and to indicate that logons 
are to be queued. The SETLOGON macro is used to initiate queuing of logons. Then the 
program issues three read requests (with OPTCD=ANY): each read request reads one 
block of data from any one terminal that has been connected and that has responded to a 
solicit request. These three read requests cannot be completed until the LOGON exit 
routine has connected and solicited data from terminals. The main program then waits for 
a specific ECB to be posted. The user's program, in the READ exit routine, posts this 
ECB when it wants to terminate. It then closes the ACB (disconnecting the terminals) and 
returns control. 

The main program uses five exit routines: 

LOGONJ receives control when a terminal logs onto the program. This routine 
connects the terminal and solicits data from the connected terminal. 

READJ receives control when a READ is completed. This routine processes input data 
and writes an appropriate response. 

WRITEJ receives control when a WRITE (in READl) is completed. This routine 
resolicits the terminal to which the response has just been written. 

LERADJ abnormally terminates on logical errors. 

SYNADJ disconnects a failing terminal and returns control to the program on physical 
errors. 

* SIMPLE INQUIRY PROGRAM 
*WITH LOGON (REAL OR SIMULATED) 
*WITH MULTIPLE READ ANYS AND RPL EXITS 
*INITIALIZATION 

SAMPLEl CSECT 
SAVE 
BALR 

BASE EQU 

USING 
ST 

ST 
LA 
SR 
OPEN 
LTR 
BZ 
ABEND 

(14,12) 
3,0 

* 

*,3 
3,BASESAV 

13,SAVE0+4 
13,SAVEO 
15,15 
ACBO 
15,15 
OPEN OK 

SAVE REGISfERS 
ESTABLISH BASE 
GLOBAL 
ADDRESSABILITY 
POINT 
ESTABLISH ADDRESSING 
SAVE 
GLOBAL 
ADDRESSABILITY 
POINT 
SA VE SAVE AREA Pl'R 
OUR SAVE AREA 
CLEAR REGISTER 15 
CONNECT WITH ACF/VfAM. 
TEST FOR ERRORS 

IF BAD OPEN 

Appendix A. Communicatiq with RSC and Start-Stop Terminals 259 



260 

Main Program 

OPENACB 
SETLOGON START 

READ ANY 

WAIT 

CLOSE ACB 

Return 

Figure A4. The Logic of Basic-Mode Sample Program 1 

Exit Routines 

LOGON Exit 

Connect 
Terminal 

SOLICIT 
Terminal 

READ Exit 

Process 
Input 

WRITE 
Reply 

Return 

WRITE Exit 

SOLICIT 
Again 

READ ANY 

Return 



OPENOK EQU * 
SETLOGON 
READ 
READ 
READ 

RPL=RPLO,OPTCD=START 
RPL=RPLl READ FROM ANY TERMINAL 
RPL=RPL2 READ FROM ANY TERMINAL 
RPL=RPL3 READ FROM ANY TERMINAL 

*WAIT FOR CLOSE TIME 
* ECBO SHOULD BE POSTED BY PROCESSING RTN WHEN APPROPRIATE 

WAIT ECB=ECBO 

* CLOSE ROUTINE 

CLOSE 
L 
RETURN 

* EXLST /LOGON EXIT 

ACBO 
13,SAVE0+4 
(14,12) 

ACF /VT AM CLOSE 
GET OS SAVE AREA PTR 

*WILL BE ENTERED WHEN TERMINAL LOGS ON 

LOGONl USING *,15 TEMPORARY ADDRESSABLE SPACE 
L 3,BASESAV ESTABLISH GLOBAL 

ADDRESSABILITY BASE 
USING BASE,3 ESTABLISH ADDRESSABILITY 
ST 14,SAVEl SAVE RETURN ADDRESS 
LA 13,SAVE2 OUR SAVE AREA 

*HERE COULD LOOK AT TERM NAME, TERM TYPE, AND LOGON MSG 

OPNDST RPL=RPLO, ALLOCATE TERMINAL 
OPTCD=(ACCEPT, 
ANY), WHICHEVER LOGGED ON 
NIB=NIBO NIB ADDRESS 

SOLICIT RPL=RPLO, START INPUT FROM TERMINAL 
OPTCD=SPEC THE ONE JUST ALLOCATED 

L 14,SAVEl RETURN ADDRESS 
BR 14 TO ACF/VTAM 

* ERROR ANALYSIS ROUTINES 
*WHEN THE PROGRAM IS DEBUGGED 
*ENOUGH TO DO PRODUCTION WORK 
* REPLACE THE FOLLOWING ABEND 
*WITH A DUMP AND CONTINUE 

LERADl ABEND 
SYNADl USING *,15 

L 3,BASESAV 

USING BASE,3 

* GET STORAGE FOR SAVE AREAS 
ST 13,SAVE214 
ST 14,SAVEl 
LA 13,SAVE2 
CLSDST RPL=(l) 
L 13,4(13) 
L 14,SAVEl 

* RELEASE STORAGE FOR SAVE AREAS 

BR 14 

* READ RPL/EXIT 

ABEND ON LOGICAL ERRORS 
TEMPORARY ADDRESSABLE SPACE 
ESTABLISH GLOBAL 
ADDRESSABILITY BASE 
ESTABLISH ADDRESSABILITY 

SAVE OLD SAVE AREA ADDR 

LOAD NEW SAVE AREA ADDR 
DISCONNECT TERMINAL 
RESTORE OLD SAVE AREA ADDR 
RETURN ADDRESS 

TO ACF/VTAM 

*WILL BE ENTERED WHEN ANY READ COMPLETES 
* REGISTER 1 POINTS TO RPL 

Appendix A. Communicating with DSC and Start-Stop Terminals 261 



262 

READl USING *,15 TEMPORARY ADDRESSABLE SPACE 
L 3,BASESAV ESTABLISH GLOBAL 

ADDRESSABILITY BASE 
USING BASE,3 ESTABLISH ADDRESSABILITY 
ST 14,SAVEl SAVE RETURN ADDRESS 
LA 13,SAVE2 OUR SAVE AREA 
LR 2,1 
CHECK RPL=(2) FOR ERRORS ON READ 

* RPL HAS CID OF TERM AND INPUT DATA ADDR AND LENGTH 
* CAN DO PROCESSING OF INPUT MESSAGE HERE 
* AND PREPARE AN OUTPUT MSG AND PUT LENGTH OF MSG IN RPL 

WRITE RPL=(2), REUSE SAME RPL 
EXIT=WRITEl WRITE COMPLETE EXIT 

L 14,SAVEl RETURN ADDRESS 
BR 14 TO ACF/VTAM 

* REGISTER 1 POINTS TO RPL 
* WRITE RPL/EXIT 
* WILL BE ENTERED WHEN ANY WRITE IS COMPLETE 

WRITEl USING *,15 TEMPORARY ADDRESSABLE SPACE 
L 3,BASESAV ESTABLISH GLOBAL 

USING 
ST 
LA 
LR 
CHECK 
SOLICIT 

READ 

BASE,3' 
14,SAVEl 
13,SAVE2 
2,1 
RPL=(2) 
RPL=(2), 
OPTCD=(SYN, 
SPEC) 
RPL=(2), 
EXIT=READl, 
OPTCD=(ASY, 
ANY) 

L 14,SAVEl 
BR 14 

* CONST ANTS AND WORK AREAS 

SAVEO DS 18F 

ADDRESSABILITY BASE 
ESTABLISH ADDRESSABILITY 
SAVE RETURN ADDRESS 
OUR SAVE AREA 

FOR ERRORS ON WRITE 
REUSE SAME RPL 
WAIT FOR ACCEPTANCE 
START INPUT FROM SAME TERMINAL 
REUSE SAME RPL 
READ COMPLETE EXIT 
DON'T WAIT HERE 
READ FROM ANY SOLICITED TERM 
RETURN ADDRESS 
TOACF/VTAM 

FOR MAINLINE MACROS 

*ESTABLISH DSECT FOR LABELS SAVEl AND SAVE 2 

SAVEl DS F FOR EXIT RETURN ADDRESS 
SAVE2 DS 18F FOR EXIT RTN MACROS 

* CONST ANTS RESUME HERE 

ACBO ACB AM=VTAM, ACBTYPE 

APID DC 
DC 

EXLSTO EXLST 

NIBO NIB 

APPLID=APID, 
MACRF=LOGON, 
EXLST=EXLSTO 
X'04' 
CL4'PGM2' 
AM=VTAM, 

PGM IDENTIFIER ADDRESS 
TO ACCEPT LOGONS 
EXIT LIST PTR 
LENGTH BYTE 
APPLICATION ID 

f.OGON=LOGONl, LOGON EXIT 
SYNAD=SYNADl, I/O ERROR RTN 
LERAD=LERADl LOGICAL ERROR RTN 
PROC=BLOCK, READ TO BLOCK 
MODE= BASIC 



RPW RPL 

RPLl RPL 

RPL2 RPL 

RPL3 RPL 

AREAi DS 
AREA2 DS 
AREA3 DS 
BASESAV DS 
ECBO DC 

END 

AM=VTAM, 
ACB=ACBO 
AM=VTAM, 
ACB=ACBO, 
AREA=AREAl, 
AREALEN=lOO, 
EXIT= READ I, 
OPTCD=(ASY, 
ANY) 
ACB=ACBO, 
AM=VTAM, 
AREA=AREA2, 
AREALEN=lOO, 
EXIT= READ I, 
OPTCD=(ASY, 
ANY) 
AM=VTAM, 
ACB=ACBO, 
AREA=AREA3, 
AREALEN= 100, 
EXIT=READl, 
OPTCD=(ASY, 
ANY) 
lOOC 
lOOC 
lOOC 
F 
A(O) 

OPNDST AND SOLICIT 
ACCESS METHOD ID 
RPL FOR READ ANY TERM 
INPUT/OUTPUT AREA 
AREA SIZE 
READ COMPLETE EXIT 
NOW AIT INCLUDED 
READ FROM ANY TERMINAL 
RPL FOR READ FROM ANY TERM 

INPUT/OUTPUT AREA 
AREA SIZE 
READ COMPLETE EXIT 
NOW AIT INCLUDED 
READ FROM ANY TERMINAL 
ACCESS METHOD ID 
RPL FOR READ ANY TERM 
INPUT/OUTPUT AREA 
AREA SIZE 
READ COMPLETE EXIT 
NOW AIT INCLUDED 
READ FROM ANY TERMINAL 

The following diagram shows the key operations in the main program and in the exit 
routines. Use the numbers in parentheses to find descriptive text following the diagram. 

SAMPLE 1 

(1) OPEN ACBO 
SETLOGON 
READ RPL1 

(2l READ RPL2 
READ RPL3 

(3) WAIT ECBO 
(4) CLOSE ACBO 

Return 

(5) LOGON1 

(6) OPNDST 
(7) SOLICIT 

Return 

(8) READ1 

(9) Process 
(10) WRITE 

Return 

(11) WRITE1 

(12) SOLICIT 
(13) READ 

Return 

1. The program opens ACBO to initiate queuing oflogons, which will be handled by the 
LOGONl routine. ACBO specifies that an exit list, labeled EXLSTO, will be used. 

EXLSTO specifies three exit routines: 

LOGONl Processes logon requests. 

SYNADl Handles synchronous errors. 

LERADl Handles logical errors. 

When ACBO is opened and SETLOGON is issued, ACF/VTAM begins queuing logons 
to be handled by LOGONl (Step 5). 

Appendix A. Communicating with DSC and Start-Stop Tenninals 263 



2. The program issues three asynchronous READ macros with OPTCD=ANY. Each 
READ uses a different RPL (RPLl, RPL2, RPI3). 

Each RPL specifies an 1/0 area and an exit (READI) to be taken whenever one of 
the read operations is complete. 

None of the read operations will be completed until a terminal is connected and 
solicited by LOGONI. 

3. The program waits until ECBO is posted. This ECB will be posted at some time 
during the execution of the program. 

4. When this wait is over, the program closes ACBO which disconnects all terminals. The 
program gives up control. 

5. LOGONI is the LOGON' exit routine, which is entered to process each logon. 

6. LOGONI uses RPLO to issue an OPNDST to connect whichever terminal logged on 
to the program. RPLO points to NIBO, which is blank. When the OPNDST is 
completed, ACF /VT AM puts the symbolic name and CID of the connected terminal 
into NIBO, and puts the CID into the ARG field of RPLO. The NIB is only used for 
connection and is therefore free for another connection request each time the 
OPNDST is completed. 

7. LOGONl uses RPLO to solicit data from the terminal just connected. Once a 
terminal responds to the SOLICIT, a pending READ request will be completed. 

8. READl is invoked each time a READ operation is completed. READ I first issues a 
CHECK. to see if an error occurred on the READ. If so, LERADl processes logical 
errors, and SYNADI processes synchronous errors. 

9. READl next processes the data brought in by the completed READ. When entered, 
READI receives the address of the appropriate RPL in register I. The RPL contains 
the CID of the terminal from which data was read. READ I then prepares a response 
to the terminal. 

10. READl writes a response to the same terminal, using the RPL whose address was 
passed in register I. When this WRITE is completed, WRITEl is invoked. Meanwhile, 
control is returned to the part of the program that was interrupted when the READ 
was completed. 

11. WRITEl is invoked when a WRITE operation (requested in READI) is completed. 
On entry, register 1 contains the address of the RPL associated with the completed 
WRITE. WRITE! first issues a CHECK. to test for errors. 

12. WRITE! then uses SOLICIT to resolicit the terminal for more data. It uses the RPL 
whose address was passed in register 1. In this way, the terminal to which a message 
is written can immediately enter data. 

13. WRITEI then issues a READ with OPTCD=ANY to get another block of data into 
the program. Again, when this READ is completed, the READl routine is invoked. 

Using the three READ macros in the main program and the one in the WRITE! routine, 
this program continuously reads and responds to data entered from each of the connected 
terminals. 

Basic-Mode Sample Program 2: ACQUIRE, SOUCIT, 
andRPLEXJT 

264 

Figure A-5 shows the general logic of basic-mode sample program 2. In this example, a 
series of synchronous OPNDST macros connect the terminals by acquiring them. There is 
one OPNDST and one NIB for each terminal. The USERFLD field of each NIB is set to 
contain the address of the RPL. This RPL address will be used later for output requests to 
the terminal. When data is received, the RPL for the READ ANY contains the address of 



1 

2 

3 

4 

5 

OPEN ACB 

OPNDST ACQUIRE 

• 
One OPNDST per terminal. 
One RPL and NIB per 

e +----- terminal. USERFLD field of 
OPNDST ACQUIRE each NIB points to 
(one per terminal) terminal's RPL. 

SOLICIT ANY 

READ OPTCD=(SYN, 
ANY) 

Process Input, 
Disk 1/0, 
Prepare 
Reply 

WRITE OPTCD=(ASY, 
SPEC), 
EXIT=WR1 -

Write using terminal's RPL. 

6 
WR1r------, 

Terminal's - - - ~ · RPL Exit I 
-------- I Routine for I /~PL ~ddress 

· Completed /."'" in register 1 -------- L-~~TE~ __ J 

7 

Figme A-S. The Logic of Basic-Mode Sample Program 2 

SOLICIT 
OPTCD=SYN 

Return 

Appendix A. Communicating with BSC and Start-Stop Terminals 265 



266 

the terminal-dedicated RPL in its USER field. The input is processed, and a response is 
prepared in the output area whose address is contained in the terminal's RPL (the one 
used for connection). 

The WRITE request is asynchronous. When it is completed, an RPL exit routine is 
scheduled. Meanwhile, a branch is taken back to the READ ANY to get the next block of 
input. When the WRITE is completed, the RPL exit routine is entered. Register 1 
contains the address of the completed RPL. The same terminal is then solicited again. 

In this example, a separate RPL is used to connect each terminal. The USERFLD field of 
the NIB for a specific terminal is set to contain the address of the RPL used to connect 
that terminal. The RPL is set to contain the address of an output area used only for that 
terminal. 

NIB1 

Output 
Area 

The SOLICIT ANY and READ ANY macros use the same RPL to get input from all 
terminals. This RPL is used only for input requests. For output and connection requests, 
a different RPL is assigned to each terminal. When the READ ANY is completed, its RPL 
contains, in the USER field, the address of the terminal's RPL for the responding 
terminal. This happens because the terminal's RPL address was put in the USERFLD field 
of the NIB at connection. A response is prepared in the output area pointed to by the 
terminal's RPL. When the asynchronous WRITE is completed, the RPL exit routine is 
entered with the address of a terminal's RPL in register 1. This RPL address is used to 
resolicit the terminal. 

Notes to Sample Program 2: 

1. The ACB is opened to begin processing. MACRF=NLOGON specifies that logons are 
not to be accepted. A LOGON exit routine is not required. 

2. An OPNDST is coded for each terminal to be connected (or a loop to reexecute a 
single OPNDST). A separate NIB and RPL are used for each terminal. In the 
USERFLD field of each NIB, the address of the corresponding RPL is coded. 

NIBl NIB 

RPLl RPL 

AREAi DS 

NAME=TBRMl ,LISTBND=YES,MODE=BASIC, 
PROC=BLOCK,USERFLD=A(RPLl) 
ACB=ACBl ,AM=VTAM,NIB=NIBl ,AREA=AREAl, 
AREALEN=lOO,OPTCD=(ACQUIRE,SPEC,SYN) 
CLlOO 

Notice ·that the USERFLD field of NIBl points to RPLl. The contents of this 
USERFLD field are returned whenever data from this terminal is received by a READ 
ANY macro. When this terminal responds to a READ ANY, the USERFLD of the 
READ ANY's RPL will contain the address of RPLl. 

3. Using a separate RPL, this SOLICIT solicits data from all connected terminals. 

4. Using the same RPL as did the SOLICIT, this READ ANY reads one block of data 
from any responding terminal. The RPL for SOLICIT and READ ANY can be coded 
as: 

RPL99 RPL 

INAREA DS 

ACB=ACBI ,AM=VTAM,AREA=INAREA, 
AREALEN=IOO,OPTCD=(SYN,ANY) 
CLlOO 



Whenever a READ ANY is completed, RPL99 will contain the CID and user data for 
the responding terminal. After processing the input data, contained in INAREA, a 
reply is prepared in the output area pointed to by the RPL whose address is in the 
USER field of RPL99. 

5. After preparing the reply, the contents of RPL99's USER field is put into a register, 
and a reply written using that register for the RPL address: 

WRITE RPL=(3),0PTCD=ASY,EXIT=WR1 

Then, a branch is made back to the READ ANY. When the WRITE is completed, WRI 
is scheduled. 

6. WRl, an RPL exit routine, is invoked when a WRITE is completed. On entry, register 
I contains the address of the terminal's RPL used for the completed WRITE. 

7. Using this RPL address, the terminal is resolicited: 

SOLICIT RPL=(l ),OPTCD=SPEC 

Basic-Mode Sample Program 3: ACCEPT, LOGON Exit, 
SOLICIT, and RPL Exits 

Figure A-6 shows the general logic of basic-mode Sample Program 3. This is a more 
complex program to handle dynamic connection. The program uses a LOGON exit 
routine to connect terminals that have issued logons for the program. This LOGON 
routine will also handle simulated logons. The program uses exit-dedicated RPLs for only 
those terminals that have been connected. This is similar to the previous example in that 
terminal-dedicated RPLs are used for connection and output data transfer; a fixed RPL is 
used for input requests. But, the terminal-dedicated RPLs are obtained dynamically, from 
a pool, as they are needed. (Chapter 3, "Organizing Program," suggests how to handle and 
construct storage pools.) 

To connect terminals, a LOGON exit routine is used that is invoked each time a terminal 
logs on. The LOGON exit routine gets an RPL and an output area from a pool. Using one 
fixed NIB, the program issues an asynchronous OPNDST to connect the terminal. As in 
the previous example, the USERFLD field of the NIB is set to contain the address of the 
terminal-dedicated RPL that was gotten from a pool, and the terminal-dedicated RPL is 
set to contain the address of the output storage area. 

The asynchronous OPNDST uses and RPL exit routine, which is scheduled whenever the 
request is completed. The RPL exit routine uses the RPL passed in register I to issue a 
SOLICIT macro to the terminal just connected. 

Notes to Sample Program 3: 

1. The OPEN macro opens an ACB that specifies that logon requests will be accepted. 
The ACB points to an exit list, which specifies a LOGON exit routine: 

ACB 

OPEN ACB 

ACB AM=VTAM,APPLID=DA VE, 
EXLST=EXLSTl,MACRF=LOGON 

DA VE DC X'08' 
DC CL8'HELPS' 

EXLSTl EXLST AM=VTAM,LOGON=LOGONl 

The SETLOGON macro initiates queuing of logons for the main program. 

Appendix A. Communicating with BSC and Start-Stop Tenninals 267 



1 LOGON1 
OPEN ACB, 
MACRF=LOGON 

. ·-----~ - - - - - - - - __....,. LOGON exit I 

5 

6 

7 

8 

SETLOGON 
OPTCD=START 

READ 
OPTCD=(SYN,ANY) 

Get terminal's 
. RPL from USER 
field 

Process input, 
disk 1/0, prepare 
response 

WRITE 
OPTCD=ASY, 
EXIT=WR1 

Sync:hronous 
READ uses 
separate RPL. 

For later 
output 
request. 

In input 
area of 
READ ANY RPL. 

In output area 
of terminal RPL. 

--, 
I 
I 
I 

WR1 j 
r-- -·--1 

___.... RPL Exit for 
Register 1 I WRITE I 
has address L completion I 
of terminal - - "- - ..J 
RPL. 

9 
SOLICIT 
OPTCD=(SPEC,SYN) 

Return 

Figure A-6. The Logic of Basic-Mode Sample Program 3 

268 

2 

3 

I routine I 
I named in I 
L exit list ..J -- --

Get RPL and 
output area 
from pool; 
put RPL address 
in NIB USERFLD 

OPNDST 
OPTCD=(ASY ,ANY), 
EXIT=LG1 

Return 

As shown in 
Chapter 5. 

To be returned 
at completion of 
READ ANY. 

-, 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Register 1 has LG1 i_ 
address of -r -- - -, 
terminal's RPL. I RPL Exit I 

4 

I for OPN_DST I 
completion L.-- __ ...J 

SOLICIT 
OPTCD=(SPEC,SYN) 

Return 



2. When a logon is queued, LOGONl is entered; the terminal's symbolic name is passed 
in the parameter list whose address is in register 1. LOGONl uses a fixed NIB for all 
connection requests. An RPL and output area are obtained from a storage pool. The 
address of that RPL is put in the USERFLD field of the NIB. 

3. LOGONl issues an asynchronous OPNDST macro and returns control to the point of 
interruption. 

Instructions can be added for handling the situation where no more elements are left 
in the storage pool. For this, a fixed RPL and output area are reserved. Then, the 
terminal is connected and a "no resources available" message is written, and then, the 
terminal is disconnected. The reserved RPL and output area are then free in case this 
situation should again arise. 

4. Whenever an OPNDST is completed, the LGl RPL exit routine is entered. Register 1 
contains the address of the RPL used for connection. LGl uses this RPL to solicit the 
terminal: 

SOLICIT RPL=(l),OPTCD=SPEC 

5. Back in the main program, the synchronous READ ANY macro waits until some data 
comes in from a solicited terminal. The READ ANY uses the same RPL in all its 
iterations. When it is completed, the USER field of that RPL contains the the address 
of the RPL that is dedicated to the responding terminal. This RPL contains the 
address of the terminal's output area. 

6. The main program gets the address of the terminal's RPL for the subsequent WRITE 
macro. This RPL address is put into a register. 

7. After processing the input, which is in the input area named in the RPL for the READ 
ANY, the program prepares a response in the output area named in the terminal's 
RPL. The program can also test the input to see if it is a logoff message. When one is 
received, the program can disconnect the terminal and free any storage elements. 

8. The asynchronous WRITE uses the terminal's RPL, and names an RPL exit routine to 
be invoked when the WRITE is completed. Meanwhile, control is returned to the 
READ ANY to begin processing more input. 

9. The WRl RPL exit routine is invoked at the completion of a WRITE macro. Using the 
terminal's RPL, whose address is passed in register 1, WRl resolicits the terminal. 

Appendix A. Communicating with BSC and Start-Stop Tenninals 269 . 





Appendix B. Summary of Commands and Indicators 

This appendix contains tables (Figure B-1 through B-7) that summarize the commands 
and indicators that can be sent and received by ACF /VT AM application programs. The 
table summarize these commands and indicators: ' 

Normal-flow commands 

Expedited-flow commands 

SESSIONC commands 

Change-direction indicators 

Bracket indicators 

For normal-flow commands, expedited-flow commands, and SESSIONC commands, the 
infonnation for each command is provided on facing pages. On the left-hand page is 
infonnation about sending the command, including the purpose of each command, who 
can send it, the macro instruction used by an application program to send it, the type of 
data flow on which the command travels, and the next action to be taken by the sender. 
On the right-hand page is information about receiving the command, including who can 
receive it, how it is received by an application program, who sends the rest;>onse to the 
command, and the next action to be taken by the receiver. 

For the change-direction and bracket indicators, the information is summarized on a 
single page, with the entry for each indicator providing information on both sending and 
receiving the indicator. 

The ability to send and receive the indicators and commands described in this appendix is 
detennined by the session parameters agreed on by the application program and the 
logical unit when connection is established. For detailed information on session 
parameters, see Appendix J of ACF/VTAM Macro Language Reference. 

Appendix B. Summary of Commands and Indicators 271 



Macro Used by 
Application Program Data· Flow 

Command Function Who Can Send to Send Type Next Action by Sender 
Sent 
Bid Asks receiver for Primary application SEND with STYPE=REQ DFSYN Expects response from 

permission tn begin program and CONTROL=BID receiver! Response indicates 
a bracket. Secondary application whether or not the sender can 

program begin a bracket. 
Lqgical unit 

--
Bracket Tells the receiver that Primary application SEND with STYPE=REQ DFSYN Expects response from 
Initiation the sender will not prqgram and CONTROL=BIS receiver.I Refrains from 
Stopped begin any new Secondary application beginning any new brackets. 
(BIS) brackets. program 

Logical unit 

Cancel Tells receiver to purge Primary, application SEND with STYPE=REQ DFSYN Expects response from 
elements of program and CONTROL=CANCEl.j receiver! Positive response 
incomplete chain it Secondary application indicates that chain elements 
is receiving. prqgram have been purged. 

Logical unit 

Chase Tells receiver to send Primary application SEND with STYPE=R EQ DFSYN Expects response from 
responses to any program and CONTRQLaCHASE receiver.1 When response to 
data· message or Secondary application Chase command is received, 
command it has not program the sender of the command 
yet responded to. Logical unit knows that all responses are 

accounted for. 

Logical Unit Informs receiver of an Primary application SEND with STYPE=REQ DFSYN Expects response from 
Status ( LUSI unexpected condition program and CONTROL=LUS receiver.1 

encountered at the Secondary application 
sender's end of the program 
session. Codes indicat- Logical unit 
ing reason for sending 
the command are 
placed in the 
SSENSEO, SSENSMO 
and USENSEO fields 
of the RPL. 

Quiesce Tells receiver that the Primary application SEND with STYPE=REQ DFSYN Expects response from 
Complete (QC) sender has quiesced program and CONTROL=QC receiver.• Refrains from send· 

itself (as the result of Secondary application ing any normal-flow messages 
receipt of a Quiesce at program until a Release Quiesce 
End of Chain Lqgical unit command is received. 
command) and will 
not send any normal-
flow messages until 
released. 

Ready to Tells the receiver that Primary application SEND with STYPE=REQ DFSYN Expects response from 
Receive ( RTR) the sender has program and CONTROL=RTR receiver.1 After receiving 

finished a bracket and Secondary application the response, an application 
that the receiver can program program issues RECEIVE with 
now send a request to Lqgical unit RTYPE=DFSYN to receive 
begin a bracket. Bid command or normal-flow 

message with BB indicator. 

1 An application program can receive the response in one of the following ways, depending on how the program has been coded: 

1. By specifying POST=RESP in the SEND macro (macro is not completed until response is received) 
2. By issuing a RECEIVE with RTYPE=RESP (a RESP response) 
3. In a RESP exit routine 
4. By issuing a RECEIVE with RTYPE=DFSYN (a DFSYN response) 

Figure B· l. Summary of Sending Normal-Flow Commands 

272 



Command How Received by 
Received Who Can Receive Application Program Who Sends Response Next Action by Receiver 

Bid Primary application RECEIVE with Application program or Sends positive response to indicate bidder 
program RTYPE=DFSYN logical unit can start a bracket. Sends negative response 
Secondary application CONTROL field in RPL to deny permission to start a bracket. 
program will contain BID. Application program sends response with 
Logical unit SEND ... ,STYPE=RESP,CONTROL=BID, 

RESPOND=(response operands). 

Bracket Primary application RECEIVE with Application program Sends response to Bracket Initiation 
Initiation program RTYPE=DFSYN or logical unit Stopped command. Application 
Stopped Secondary application CONTROL field in RPL program sends response by using SEND ... , 
(BIS) program will contain BIS. STYPE=RESP, CONTROL=BIS, 

Logical unit RESPON D=(response operands). 

Cancel Primary application RECEIVE with Application program or Purges any elements of incomplete chain 
program RTYPE=DFSYN logical unit that have been received. Then sends positive 
Secondary application CONTROL field in RPL response. Application program sends 
program will contain CANCEL. response with SEND ... ,STYPE=RESP, 
Logical unit CONTROL=CANCEL,R ESPOND=(response 

operands). 

Chase Primary application RECEIVE with Application program or If any responses to previously received 
program RTYPE=DFSYN logical unit messages or commands have not been sent, 
Secondary application CONTROL field in RPL sends those responses. Then sends response 
program will contain CHASE. to Chase command. Application program 
Logical unit sends response to Chase command with 

SEND ... ,STYPE=R ESP ,CONTROL=CHASE, 
RESPOND=(response operands). 

Logical Primary application RECEIVE with Application program or Examines codes in SSENSEI, SSENSMI, and 
Unit (LUS) program RTYPE=DFSYN logical unit USENSEI fields of RPL and takes action 

Secondary application CONTROL field in RPL based on those codes. Then sends response 
program will contain LUS. to LUS command. Application program 
Logical unit Codes indicating reason sends response with SEND ... ,STYPE=RESP, 

for the command are in CONTROL=LUS,RESPOND=(response 
the SSENSEI, SSENSMI, operands). 
and USENSEI fields of 
the RPL. 

Quiesce Primary application RECEIVE with Application program or Sends response to Quiesce Complete 
Complete program RTYPE=DFSYN logical unit command. Application program sends 
(QC) Secondary application CONTROL field in RPL response with SEND ... ,STYl!E =RESP, 

program will contain QC. CONTRO L=QC,R ESPOND=(response 
Logical unit operands). Then starts sending to receiver. 

Ready to Primary application RECEIVE with Application program Sends response to Ready to Receive 
Receive program RTYPE=DFSYN command by using SEND ... ,STYPE=RESP, 
(RTR) Secondary application CONTROL field in RPL CONTROL=RTR,RESPOND=(response 

program will contain RTR. operands). Then, according to session 
Logical unit parameters, sends either a Bid command or 

sends a message that includes BRACKET= 
BB. 

Figure B-2. Summary of Receiving Normal-Flow Commands 

Appendix B. Summary of Commands and Indicators 273 



Macro Used by 
Command Applieation Program Data-Flow 
Sent Function Who Can Send to Send Type Next Action by Sender 

Quiesce at End Tells the receiver to Primary application SEND with STYPE=REQ DFASY Expects response from 
of Chain (QEC) quit sending normal- program and CONTRO L=QEC receiver.1 Response indicates 

flow messages now, Secondary application that command has been 
or if chaining, at the program properly received. After 
end of the chain Logical unit receiving positive response, 
being sent. sends normal-flow input. 

Release Tells the receiver that Primary application SEND with STYPE=REQ DFASY Expects response from 
Quiesce (RELQ) it can resume sending program and CONTROL=RELQ receiver.1 After receiving 

normal-flow messages. Secondary application positive response, prepares to 
program receive normal-flow input. An 
Logical unit application program issues a 

RECEIVE with RTYPE= 
DFSYN. 

Request Asks the primary Secondary application SEND with STYPE=REQ DFASY Expects response from 
Shutdown application program program or logical and CONTROL=RSHUTD receiver.1 Response indicates 
(RSHUTD) to disconnect the unit only that command has been 

secondary application properly received. 
program or logical 
unit. 

Shutdown Tells the primary Secondary application SEND with STYPE=REQ DFASY Expects response from 
Complete application program program or logical and CONTROL=SHUTC receiver.1 Response indicates 
(SHUT Cl that shutdown opera- unit only that command has been 

tions (requested properly received. 
previously in a 
Shutdown command 
from the primary 
application program) 
have been completed. 

Shutdown Tells the secondary Primary application SEND with STYPE=REQ DFASY Expects response from 
(SHUTD) application program program only and CONTROL=SHUTD receiver.1 Response indicates 

or logical unit to that command has been 
quiesce itself and to properly received. Then, 
perform all prepare- expects to receive Shutdown 
tions for Shutdown. Complete command from 

receiver. 

Signal Passes a 4-byte Primary application SEND with STYPE=REQ DFASY Expects response from 
message with an program and CONTROL=SIGNAL receiver.1 Response indicates 
agreed-upon meaning. Secondary application that command has been 
Message is placed in program properly received. 
the SIGDATA field of Logical unit 
of the APL. 

Stop Bracket Tells receiver not Primary application SEND with STYPE=REQ DFASY Expects response from 
Initiation to begin any new program and CONTROL=SBI receiver.1 Response 
(SBI) brackets. Secondary application indicates that the 

program command has been 
Logical unit properly received. 

1 An application program can receive the response in one of the following ways, according to how the program has been coded: 

1. By specifying POST=RESP in the SEND macro (macro is not completed until response is received) 
2. By issuing a RECEIVE with RTYPE=RESP 
3. In a RESP exit routine 

Figure B-3. Summary of Sending Expedited-Flow Commands 

274 



Command How Received by 
Received Who Can Receive Applicetion Program Who Sends Response Next Action by Receiver 

Quiesce at Primary application Either: When command is Halts sending of normal-flow messages 
End of program RECEIVE with directed to application immediately or at end of chain. Then 
Chain (QEC Secondary application RTVPE=DFASV program, either ACF/ sends Quiesce Complete (QC) command to 

program or in DFASY exit VT AM or the program sender of QEC command. 
Logical unit routine sends the response.' 

CONTROL field in RPL Otherwise, logical unit. 
will contain OEC. 

Release Primary application Either: When command is Sends a normal-flow message to sender of 
Quiesce program RECEIVE with directed to application RELQ command, if desired. 
(RELQ) Secondary application RTVPE=DFASY program, either ACF/ 

program or in DFASY exit VT AM or the program 
Logical unit routine sends the response.1 

CONTROL field in RPL Otherwise, logical unit. 
will contain RELO. 

Request Primary application Either: Either ACF/VTAM or Disconnects the secondary application 
Shutdown program only RECEIVE with the application program.' program or logical unit by issuing the 
(RSHUTD) RTVPE=DFASY CLSDST macro. Cleanup operations, 

or in DFASY exit including normal-flow communications, 
routine can be performed before the CLSDST is 
CONTROL field in RPL issued. 
will contain RSHUTD. 

Shutdown Primary application Either: Either ACF/VTAM or Issues a Chase command to ensure that 
Complete program only RECEIVE with the application program.1 all responses have been received. Then 
(SHUTC) RTYPE=DFASV disconnects the secondary application 

or in DFASY exit program or logical unit by issuing the 
routine CLSDST macro. 
CONTROL field in RPL 
will contain SHUTC. 

Shutdown Secondary application Either: When command is If necessary, stops normal-flow transmission 
(SHUTD) program or logical RECEIVE with directed to application to primary application program. Performs 

unit only RTYPE=DFASY program, either ACF I all preparations for shutdown. Then sends 
or in DFASY exit VT AM or the program the Shutdown Complete command to 
routine sends the response.1 primary application program. 
CONTROL field in RPL Otherwise, logical unit. 
will contain SHUTD. 

Signal Primary application Either: When command is Depends on the content of the 4-byte 
program RECEIVE with directed to application message. The Signal messages are defined 
Secondary application RTYPE=DFASV program, either ACF/ by Systems Network Architecture (SNA). 
program or in DFASV exit VT AM or the program 
Logical unit routine sends the response.' 

CONTROL field in RPL Otherwise, logical unit. 
will contain SIGNAL. 

Four-byte message is in 
the SIGDATA field ot 
the APL. 

Stop Primary application Either: When command is Sends a Bracket Initiation Stopped 
Bracket program RECEIVE with directed to application (BIS) command to sender and then 
Initiation Secondary application RTYPE=DFASY program, either ACF/ refrains from initiating any new 
(SBI) program or in DFASY exit VT AM or the program brackets. 

Logical Unit routine sends the response . l 

CONTROL field in RPL Otherwise, logical unit. 
will contain SB/. 

1 The r·esponder to an expedited-flow command is determined by the setting of a PROC option in the NIB when the connection is made: 

If PROC=APPLR ESP was specified in the NIB at connection, the application program sends the response, using SEND ... ,STVPE= 
RESP,CONTROL=command code of received command,RESPOND=(response ~perands). 

If PROC=SYSRESP was specified in the NIB at connection, ACF/VTAM automatically sends the response before presenting the 
command to the application program. 

Figure B-4. Summary of Receiving Expedited-Flow Commands 

Appendix 8. Summary of Commands and Indicators 275 



Macro Used by 
Command1 Application Program 
Sent Function Who Can Send to Send Next Action by Sender 

Bind Informs the receiver that the Primary application Indirectly, by issuing ACF/VTAM handles response and does not 
sender wants to go into program the OPNDST macro complete the OPNDST until response is 
session with the receiver. (Command is sent by received. Positive response causes ACF/ 
Session parameters are. sent ACF/VTAM when VT AM to complete setting up the session. 
as part of the Bind command. primary program Negative response negates the session. After 

issues an OPNDST positive response, either ACF/VT AM or the 
macro.) primary application program sends the Start 

Data Traffic command. 

Clear Tells ACF /VT AM and the Primary application Application program Response reflected in RPL on completion 
receiver to stop sending program will send uses SESSIONC with of SESSIONC macro. ACF/VTAM handles 
normal-flow and expedited- command as first step STYPE=REQ and response. 
flow messages and responses. in sequence number CONTROL=CLEAR 
Causes ACF/VT AM to recovery. ACF/VTAM ACF/VTAM sends 
discard any messages and may send command as command as a result 
responses still in the network part of disconnection of issuance of the 
and not yet delivered. Resets process. CLSDST macro 
outbound and inbound 
sequence numbers at both 
ends of the session to 0. 

Request Informs primary end of Secondary application SESSIONC with In a secondary application program, 
Recovery session that sequence num- program or logical STYPE=R EQ and response reflected in RPL on completion of 
(RQR) ber recovery action or unit CONTROL=RQR SESSIONC macro. After receiving positive 

message recovery action is response, awaits next command from the 
needed. primary end of the session (usually the 

Clear command). 

Set and Exchanges information with Primary application SESSIONC with Response reflected in RPL on completionof 
Test secondary application program STYPE=REQ and SESSIONC macro. Tests IBSOAC and 
Sequence program or logical unit so CONTROL=STSN OBSQAC fields and IBSQVAL and/or 
Numbers that sequence numbers can and settings in OBSOVAL fields to determine answers to 
(STSN) be determined and/or set. IBSOAC and/or action codes and values sent in the 

OBSQAC fields and command. 
IBSQVAL and/or 
OBSQV AL fields 

Start Data Informs secondary applica- Primary application Application program Depending on session parameters, may send 
Traffic tion program or logical unit program uses SESSIONC with first message or wait for secondary end to 
(SOT) that session setup is complete STYPE=REQ and send message. Either the secondary 

and flow of messages and CONTROL=SDT application program or ACF/VTAM 
responses can begin. ACF/VTAM sends may respond.2 

command at beginning 
of session if SOT= 
SYSTEM was set in 
NIB at connection. 

Unbind Informs ACF/VTAM and the Primary application Indirectly, by issuing Continues communications with other 
receiver that the primary program the CLSDST macro secondary application programs or logical 
end of the session is (Command is sent by units, or closes program. 
terminating the session. ACF/VTAM when 

primary application 
program issues a 
Cl..SDST macro.) 

1 These commands control session-related functions and are sent separately from normal- and expedited-flow messages and their 
responses. Bracket and change-direction indicators cannot be sent with SESSION,C commands or responses. 

2 If the secondary application program specified SDT=APPL for the NIB used in OPNSEC processing, the secondary application will 
respond. Otherwise (SDT=SYSTEM), ACF/VTAM will respond. 

Figure B-5. Summary of Sending Session-Control Commands 

276 

I 



Command How Received by 
Received Who Can Receive Application Program Who Sends ReSPOnse Next Action by RICl!iver 

Bind Secondary application For a secondary Application program or Examines session parameters in Bind 
program application program, logical unit command and determines whether or not 
Logical unit receipt of command the complete set of parameters is acceptable. 

causes scheduling of If acceptable, sends positive response. (For 
the SCIP exit secondary application program, positive 
routine. response results from issuance of the OPNSEC 

macro.) If not acceptable, sends negative 
response. (Secondary application program 
sends negative response with SESSIONC •.. , 
STYPE=RESP,CONTROL=BIND, 
RESPOND=(response.operands).) 

Clear Secondary application For a secondary When command is Stops sending messages and responses, and 
program application program, directed to a secondary awaits next command from the primary end 
Logical unit receipt of command application program, ACF/ of the session. 

causes scheduling of VT AM sends response. 
the SCIP exit routine. Otherwise, logical unit. 

Request Primary application In SCIP exit routine. ACF/VTAM Initiates recovery action, usually by sending 
Recovery program the Clear command followed by a Set and 
(RORI Test Sequence Numbers command. 

Set and Test Secondary application For a secondary Application program or Examines action codes and sequence 
Sequence program application program, logical unit number values provided with the command. 
Numbers Logical unit receipt of command Prepares answering action codes and values 
(STSN) causes scheduling of and puts them in IBSOAC and/or OBSQAC 

the SCIP exit routine. fields and IBSOVAL and/or OBSOVAL fields. 
Then, sends response with SESSIONC ... , 
STYPE=RESP,CONTROL=STSN. 

Start Data Secondary application For a secondary Depending on the SOT field Depending on session parameters, may send 
Traffic program application program, in the NIB used during first message or wait for primary end to send 
(SOT) Logical unit receipt of command OPNSEC processing, either send message. 

causes scheduling of the secondary application 
the SCIP exit routine. program or ACF/VTAM 

lllll'L res_1!ond. 
Unbind Secondary application For secondary ACF/VTAM Continues communication with other 

program application program, primary application programs or logical 
Logical unit receipt of command units, or closes program. 

causes scheduling of 
the SCIP exit routine. 

Figure 8-6. Summary of Receiving Session-COntrol Commands 

Appendix B. Swnmary of Commands and Indicaton 277 



Primary or Secondary 
Application Program Macro Used or Data-Flow 

Indicator Function Can Send/Receive RPL Field Set Type Next Action Expected 

Change-Direction Indicators 
The Change Direction Command indicator can be sent in a normal-flow message or with a Cancel, Chase, Quiesce Complete, or LU 
Status command. The element containing the Change Direction Command indicator must be a single-element message (only-in-chain) 
or the last element in a chain. 
The Change Direction Request indicator is a non..SNA indicator supported by ACF/VTAM and certain logical units. It may be sent in a 
normal-flow data message and with a Cancel, Chase, Quiesce Complete, or LU Status command. It is recommended that this 
indicator not be used, because its use is incompatible with SNA. SNA uses the Signal command to request a Change Direction 
Command indicator. 

Change Tells the receiver that Send SEND with DFSYN Start receiving from the 
Direction it may now send. CHNGDIR=CMD opposite end of the session. 
Command 
(CHO) 

Receive CHNGDIR field in DFSYN Start sending to the opposite 
APL contains CMD end of the session. 

Change Asks receiver to send Send SEND with DFASY or Checks incoming messages and 
Direction a Change Direction CHNGDIR=REQ RESP responses for CMD in 
Request ( R EQ) Command indicator. CHNGDIR field of RPL. 
(This is a non-
SNA indicator) 

Receive CHNGDIR field DFASY or Sends the Change Direction 
in APL contains RESP Command indicator when it 
REQ can. 

Bracket Indicators 
The normal-flow commands Bid and Ready to Receive are used by the ACF /VT AM application program to determine whether it can 
send a Begin Bracket indicator. 
The bracket indicators can be sent in a message that contains data. In addition, the End Bracket indicator can be sent with a Cancel, 
Chase, Quiesce Complete, or LU Status command. A change-direction indicator can also be sent in the same message. The element 
containing the Begin Bracket or End Bracket indicator must be a single-element message (only-in-chain) or the first element in a chain. 

Begin Bracket Indicates first message Send SEND with DFSYN Continues to send or waits to 
(BBi in a bracket. BRACKET=BB receive, according to user 

conventions. 

Receive BRACKET field DFSYN None. 
in RPL contains 
BB 

End Bracket Indicates last message Send SEND with DFSYN Attempts to start a new 
(EB) in a bracket. BRACKET=EB bracket, or waits for other end 

to start a bracket, according 
to user conventions. 

Receive BRACKET field DFSYN Can mean "end of 
in RPL contains transaction." 
EB 

Figure B-7. Summary of Indicators 

./ 
278 



Appendix C. Examples of Message, Response, and Command 
Exchanges for Typical Communication Operations 

1hls appendix contains diagrams that show the sequence in which messages, responses, 
and commands are exchanged to perform typical data communication operations using 
ACF/VT AM. The diagrams can be useful in coding application programs that perform the 
operations. 

Figures C-1 through C-14 are oriented primarily toward communication between a 
primary application program and a logical unit other than a secondary application 
program, although some of these diagrams apply also when the logical unit is a secondary 
application program. In Figures C-1 through C-14, the "reads" and "writes" shown in the 
"Logical Unit" column represent logic that may be performed by a control program in 
the logical unit, a user-written program that operates in the logical unit, or both. It is a 
general representation of the input and output from the logical unit. The primary 
program's side of the exchange is shown in more detail. The language elements in the 
"Primary Application Program" column show all of the alternatives that are possible (for 
example, when a SEND with STYPE=REQ and RESPOND= EX is specified, the ways of 
receiving a negative response are with a RECENE with RTYPE=REP or with a RESP exit 
routine, and both ways are mentioned in the diagrams). 

Figures C-15 through C-24 are oriented toward operations between a primary application 
program and a secondary application program. 

In any diagram showing a negative response being sent to an application program, a 
SYNAD exit routine would be scheduled with an exception condition return code. This is 
not shown. 

To help you find the diagram you want, here is a list of the figures that appear in this 
appendix: 

Figure C-1. A Logical Unit (Other Than a Secondary Application Program) Initiates 
Connection with a Primary Application Program 

Figure C-2. A Primary Application Program Acquires a Logical Unit 

Figure C-3. After a Warm Start, a Primary Application Program Reestablishes 
Connection and Resynchronizes Sequence Numbers 

Figure C-4. A Primary Application Program and a Logical Unit Exchange Messages: (A) 
with No Responses, (B) with Negative Responses Only If an Exception Occurs, (C) 
with Definite Response 1 (Positive or Negative) and (D) with Definite Responses 1 and 
2 Sent at the Same Time 

Figure C-5. The Logical Unit Sends a Chain of Messages to the Primary Application 
Program: (A)without a Negative Response, and (B) with a Negative Response 

Figure C-6. The Application Program and Logical Unit Use Quiesce Protocol: (A) the 
Application Program Quiesces the Logical Unit, and (B) the Logical Unit Quiesces the 
Application Program 

Figure C-7. The Application Program and Logical Unit Use Bracket Protocol: (A) 
Where the Logical Unit Begins the Bracket, (B) Where the Primary Application 
Program Begins the Bracket, (C) Where the Primary Application Program Gets a 
Positive Response to Its Bid and Begins the Bracket, and (D) Where Bid Produces a 
Later Ready to Receive Command 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 279 



280 

Figure C-8. The Application Program and the Logical Unit Use Change-Direction 
Protocol: (A) Where Only Change Direction Command Indicators Are Used, and (B) 
Where, in Addition, Change Direction Request Indicator (or Signal Command) Is Used 

Figure C-9. The Primary Application Program Resynchronizes Sequence Numbers with 
the Logical Unit 

Figure C-10. The Application Program and Logical Unit Use the Signal Command: (A) 
Sent by the Logical Unit, and (B) Sent by the Primary Application Program 

Figure C-11. The Application Program and Logical Unit Use the WS Command: (A) 
Sent by the Logical Unit, and (B) Sent by the Primary Application Program 

Figure C-12. Operations Are Shut Down in an Orderly Fashion: (A) the Logical Unit 
Requests Shutdown, and (B) the Primary Application Program Orders Shutdown 

Figure C-13. The Logical Unit Initiates Disconnection: (A) Conditionally, and (B) 
Unconditionally 

Figure C-14. The Primary Application Program Disconnects the Logical Unit 

Figure C-15. The Secondary Application Program Requests Connection to the Primary 
Application Program 

Figure C-16. The Primary Application Program Acquires the Secondary Application 
Program 

Figure C-17. The Primary Application Program Issues a SIMLOGON Macro Instruction 
to Acquire the Secondary Application Program 

Figure C-18. The Primary Application Program Resynchronizes Sequence Numbers 
with the Secondary Application Program 

Figure C-19. A Primary Application Program and Secondary Application Program Use 
Bracket Protocol (a Bid Command Is First Rejected, Then Accepted) 

Figure C-20. A Primary Application Program and Secondary Application Program Use 
Bracket Protocol (Bid by Primary Program Is Rejected, But a Ready to Receive 
Command Follows) 

Figure C-21. The Secondary Application Program Sends a Conditional Request for 
Disconnection 

Figure C-22. The Secondary Application Program Sends an Unconditional Request for 
Disconnection 

Figure C-23. The Secondary Application Program Sends a Request Shutdown 
Command 

Figure C-24. The Primary Application Program Shuts Down the Secondary Applica­
tion Program 



Primary 
Application 
Program ACF/VT AM Message Flow 

1 

Logical Unit (Other Than a 
Secondary Application Program) 

(For initiating connection from a secondary 
application program, see Figure C-15.) 

Write, specifying the name of the primary appli­
cation program with which connection is de­
rived and providing optional user logon message. 

Initiate Command This produces a logon for the primary applica-
..,.H-.;_~.;_.;_ ______ --t tion program. Suggested session parameters 

c~e~~~~g2!!; ___ _ 
Read ----------3 

Negative Respanse 

No 

2 
Positive Response 

LOGON Exit Routine .... ~--+---4t----+----_..;.-------... 3 Read 

4 

Network Services 
Procedure Error 5 Read 

>-""-----l~------1~-----------1~ 

Bind (including 
6 
OPNDST ACCEPT 

___________ se_ss_io_n_p_ar_a_me_t_er_s_) ____ 7 Determine name of primary application 
program that sent Bind command and check 
session parameters. NAME field in NIB contains 

symbolic name of logical 
unit that sent Initiate 
command. 

9 
Ol?NDST completed 
unsuccessfully 

OPNDST completed ~ Yes 
successfully 

10 t 
SESSIONC 

STYPE=REO 
CONTROL=SDT 

13 
OPNDST or SESSIONC 
completed successfully 

... 

9 
SDT =APPL 

in NIB 

10 
t No 

SDT = 
SYSTEM 
in NIB 

Negative Response 

Positive Response 
8 Write 

Start Data Traffic 11 Read 

Positive Response ...... H-------------t 12 Write 

Yes 

Figure C-1. A Logical Unit (Other Than a Secondary Application Program) Initiates Connection with a Primary Application Program 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 281 



1 

Primary 
Application 
Program -

OPNDST ACQUIRE 
NAME field in NIB contains 
symbolic name of logical 

~!!:,_ _____ 

4 
OPNDST completed 
unsuccessfully 

ACFNTAM Message Flow 
.-. -

Bind (including 
session parameters) .... -

---------
Negative Respanse -

Logical Unit (Other Than a 
Secondary Application Program) 

.-. 
(For initiating connection from a primary to 
a secondary application program, see Figures 
C-16 and C-12.) 

2 Determine name of primary application 
program that sent Bind command and 
check session parameters. 

--------- --1 3 
No Session 

parameters 
OK? 

Yes i---------·- ~---1--------1---,-1-------
Positive Respanse 

3 Write 
4 ---SOT =APPL 

in NIB 

Yes I I .... 
OPNDST completed No 
successfully 

+ 5 + 5 Start Data Traffic 
SESSIONC - SOT= --.., 6 Read 

STYPE=REQ. SYSTEM 
CONTROL=SDT in NIB 

8 Positive Response 
OPNDST or SESSIONC - 7 Write 

completed successfully 

Fiple C-2. A P.rim8ly Application Progmm Acquhes a Logical Unit 

282 



Primary 
Application 
Program 

..A 

Status of Message 
Sequence Numbers 

Last message sent: 95 

Last message received 
and successfully 
processed (positive 
response sent): 10 

ACF NT AM 
A 

Message Flow 
A 

Logical Unit (Other Than a 
Secondary Application Program) 

A 

(For sequence number synchronization between 
a primary and a secondary application program, 
see Figure C-18.) 

Status of Message 
Sequence Numbers 

Last message sent: 10 
Last message received 
and successfully 
processed (positive 
response sent): 90 

!------------' ___ .___. ________ __._ ____ ----------1 
1 Session Initialization (through response to Bind) from Figure C-1 or C-2. (SDT=APPL must be specified in the NIB.) !-----------.,---- .---------, ____________ _, 

Set and Test · 
2 SESSIONC 

STYPE=REQ 
CONTROL=STSN 
QBSOAC=TESTSET 
QBSOVAL=95 
I BSOAC=TESTSET 
IBSOVAL=10 (Note 1) 

Sequence Numbers 3 Read STSN command -!------+--..:....---------- Disagrees with OBSQVAL and agrees 
with IBSOVAL. 

5 SESSIONC completed 
successfully (POST = 
RESP assumed) 

_ Positive Response ..,.-H------1-------------.._ 4 Write 
OBSOAC = TESTNEG 
OBSOVAL= 90 
I BSOAC = TESTPOS 

Set and Test IBSOVAL = 10 

6 SESSIONC 
STYPE=REQ 
CONTROL=STSN 
QBSQAC=SET 
QBSQVAL=90 (Note 2) 
IBSQAC=IGNORE 

-1------+--Se_q.:..u_e_n_c_e_N_u_m_b_e_r_s ---I.,_ 7 Read STSN command 
Agrees with OBSOVAL. 

(The inbound sequence 
number was set to 10 
above.) 

9 SESSIONC completed 
successfully (POST= 
RESP assumed) 

..,.-11+------+---Po_s_it_ive __ R_es_po_n_se ____ +- 8 Write 
-i OBSOVAL = TESTPOS 

Status of Sequence 
Numbers 

Last message sent: 90 
Last message received: 10 

(See Notes 2 and 3) 

10 SESSIONC 
STYPE=REQ 
CONTROL=SDT 

Start Data Traffic 

Status of Sequence 
Numbers 

Last message sent: 10 
Last message received: 90 
(See Notes 2 and 3) 

-1-------t------------:: ... ~11 Read 

Positive Response 
13 SESSIONC completed 

successfully (POST = 
RESP assumed) 

.... -lt------1------------+ 12 Write 

Notes: 
1. Notice that, in this figure, the mnemonic OB stands for outbound from ACF/VTAM (therefore, inbound to the logical unit) 

and the mnemonic IB stands for inbound to ACFNTAM (therefore, outbound from the logical unit). 
2. Outbound messages 91-95 from the application program were lost and will have to be resent. 
3. The positive response sent by the application program for inbound message 10 may never have reached the logical unit, but 

it can be inferred from the first Set and Test Sequence Numbers command. 

Fagure C-3. After a Warm Start, a Primaiy Application Program Reestablishes Connection and Resynchronizes Sequence NumbeIS 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 283 



A 

B 

Primary 
Application 
Program 

.-.. 

(Italics indicate RPL fields 
after receipt of message) 

.rl 

2 
RECEIVE 

RTYPE=DFSYN 
CONTROL=DA TA 
RESPOND=(NFME, 

NRRN) 

< 
3 
SEND 

STYPE=REQ 
CONTROL=DATA 
RESPOND=(NFME, 
NRRN) 

> 2 
RECEIVE --

RTYPE=DFSYN 
CONTROL=DATA 
RESPOND=(EX,FMEJ 

~ s 

SEND 
STYPE =RESP 
RESPOND = (EX,FMEl 

• SSENSEI and SSENSMI 
set by ACF /VT AM in 
case of ACF/VTAM-
detected failures and 
moved to SSENSEO 
and SSENSMO by 
program. Otherwise, in 
examining the data, pro-
gram detects error and 
sets up SSENSEO and ,, SSENSMO. 

(Don't send 
· resoonse.) 

1 
SEND 

STYPE=REQ 
CONTROL=DATA 
RESPOND=(EX,FME) 

"" 
(continued) 

ACFNTAM Message Flow 
...... --

Data 

Data .. --

Erroneous data or 
exceQtion message 

Negative Response .. --

Erroneous data or 
exception message '__.. -

Logical Unit, Including a 
Secondary Application Program --

1 
Write data I 
I Data I 

4 Read data\ 

I I 
1 
Write data 

1 

I Data I 

4Read~ 

l Sense information J 

2 

Read completes with status indicated 

Figure C-4 (Part 1 of 3). A Primary Application Program and a Logical Unit Excluulge Messages: (A) with No Responses, ~) with 
Negative Responses Only If an Ex.ct)ption Occms, (C) with Definite Response 1 (Positive or Negative), and (D) 
with Definite Responses 1 and 2 Sent at the Same Tune 

284 



r 

B < 

> 

c c 

'--

Primary 
Application 
Program -

(Italics indicate RPL fields 
after receipt of message) 

4 

RECEIVE 
RTYPE=RESP 
(or) RESP exit routine 
CONTROL=DATA 
RESPOND=(EX,FME) 

2 
RECEIVE 

RTYPE=DFSYN 
CONTROL=DATA 
RESPOND=(NEX, 

FME) 

No 
Error? 

Yes 
3 
SEND 

STYPE =RESP 
RESPOND= (EX,FME) 
• SSENSEI and SSENSMI 

set by ACF/VTAM in 
case of ACF/VTAM-
detected failures and 

--

--..... 

moved to SSENSEO and 
SSENSMO by program. 
Otherwise, in examining 
the data, program detects 
error and sets up 
SSENSEO and 
SSENSMO. 

• Optionally program sets 
USENSEO. ---------·-3 

SEND 
STYPE =RESP 
RESPOND= (NEX,FME) 

1 
SEND 

STYPE=REQ 
CONTROL=DAT A 
RESPOND=(NEX,FME) 
POST=SCHED or RESP 

4 
-i 

RECEIVE 
RTYPE =RESP 

ACF NT AM Message Flow - -. 

Negative Response 

Data or exception message 

Negative Response ..... . 

---· t-------
Positive Response _,, -

Data or exception message _... 

t-·---·-1 I-·------·-

Negative Response 

3 
Write 

1 
Write 

Logical Unit, Including a 
Secondary Application Program 

.-.. 

4 Read (Sense information) 

r----------------
4 Read 

2 
Read 

t----------------
3 

No Received 
and processed 

OK? 

or { ~--·-----------·--- -------·-
Positive Response Yes 

RESP exit routine - 3 Write ~1 

or only SEND completion 
if POST= RESP 

Figure C-4 (Part 2 of 3). A Primary Application Program and a Logical Unit Exchange Messages: (A) with No Responses, (B) with 
Negative Responses Only If an Exception Occurs, (C) with Definite Response 1 (Positive or Negative), and (D) 
with Definite Responses 1 and 2 Sent at the Same Time 

APpendix C. Examples of Message, Response, and Command: Exchanges for Typical Communication Operations 285 



D 

Primary 
Application 
Program 

A 

(Italics indicate RPL fields 
after receipt of message) 

ACFNTAM 
A 

Message Flow 
A 

Logical Unit, Including a 
Secondary Application Program 

j._ 

Data or exception message 
2 RECEIVE RTYPE=DFSYN•-i•-----+----.;__ __ __::~--1 1 Write · 

CONTROL= DATA 
RESPOND= (NEX,FME, 
RRNJ 

No 
Error? 

Yes 
3 SEND 

Negative Response 1 and 2 _ -+-----+-.;....--------1 .. ...i 4 Read (Sense information) 
STYPE =RESP 
RESP= (EX,FME,RRN) 

• SSENSEI and SSENSMI 
set by ACFNTAM in 
case of ACFNTAM­
detected failures and 
moved to SSENSEO 
SSENSMO by program. 
Otherwise, in examin­
ing the data, program 
detects error and sets 
up SSENSEO and 
SSENSMO. 

• Optionally, program 

~,r--~~S!_N!E..Q:_ -+- --------___ -----_____ --- ---1 

3 SEND Positive Response 1 and 2 • 4 Read 

STYPE =RESP 
RESPOND = (NEX,FME, 
RRN) 

1 SEND 
STYPE=REQ 
CONTROL=DATA 

Data 
-+------+----------1-:.~ 2 .. Read 

RESPOND=(NEX,FME, 
RRN) 
POST=SCHED or RESP 

!----------·+---- ---------- ------- -------
3 Write 

r .- Negative Response 1 and 2 -- No Received 
and processed 

OK? 

4 RECEIVE ~ 1-----~---------1------- ------
Yes RTYPE=RESP or 

RESP exit routine or .,..-t+-------lf-'-Po_s_it_iv_e_R_e...;spo;.._n_se_1 _a_nd_2_-+--------..J 
only SEND comple- \... --
tion if POST=RESP 

Figme C-4 (Part 3 of 3). A Primary Application Progmm and a Logical Unit Exchange Messages: (A) with No Responses, (B) with 
Negatiw Responses Only If an Exception Occms, (C) with Definite Response 1 (Positive or Negative), and (D) 
with Definite Respomes 1 and 2 Sent at the Same 1bne 

286 



A 

B 

2 

4 

6 

8 

Primary 
Application 
Program -

(Italics indicate RPL fields 
after receipt of message) 

RECEIVE with 
RTYPE = DFSYN. 

CHAIN field contains 
FIRST. RESPOND field 
contains EX, FME. 

Same as 2 except 
CHAIN contains 
MIDDLE. 

Same as 2 except 

CHAIN contains 
MIDDLE. 

Same as 2 except 

CHAIN contains 
MIDDLE. 

10 Same as 2 except 

Chain contains LAST 
and RESPOND contains 
NEX. 

11 SEND with 
STYPE = RESP, 
RESPOND= (NEX,FME) 

2 RECEIVE with 
RTYPE = DFSYN. 
Chain contains FIRST. 
RESPOND contains EX, 
FME. 

4 Same as 2 except 
CHAIN contains MIDDLE 
and feedback information 
indicates an exception 
message. 

5 SEND with STYPE = 
RESP, RESPOND= 
(EX,FME) and one or 
more of SSENSEO, 
SSENSMO, and 

ACFNTAM Message Flow - ....... 

-- Data (first in chain) --

-- Data (middle of chain) --
.. Data (middle of chain) ... 

Data (middle of chain) ..... -
-- Data (last in chain) 

Positive Response ...... -

--
Failure L 

~---i---r 

Negative 
Response .. ,. 

I 
I 
I - l 

1 

3 

5 

7 

9 

12 

1 

3 

6 

Logical Unit, Including a 
Secondary Application Program -

Write 

"'1 Part 1 of data 

Write 

"1 Part 2 of data 

Write 

"i Part 3 of data 

Write"'i 

Part 4 of data 

Write 

"'i 
Part 5 (last) of data 

Read 

Write"'i 
Part 1 of data 

Write"'i 
Part 2 of data 

I 

I 

I 

I 

I 

I 

I 

USEN~ Write"'i 

T Part 3 of data I 
I This 

message will be L __ ...,. 
received and, along with 7 Read 

the first message of the 
chain, should be - 8 Writes Cancel command to end the ... 
disregarded. chain or sends an end-of-chain 

indication. 

I Part 4 of data 

(Not sent) 

I Part 5 of data 

(Not sent) 

Figure C·S. The Logical Unit Sends a Chain of Messages to the Primaiy Application Program: (A) without a Negative Response, and (B) 
with a Negative Response 

I 

I 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 287 



A 

B 

Primary 
Application 
Program 

...... 
(Italics indicate RPL fields 
after receipt of message) 

1 SEND with 
STYPE=REQ 
CONTROL=QEC 

4 SEND completed --.....-

6 RECEIVE with ... -RTYPE = DFSYN. 

CONTROL field 
contains ac. 

7 SEND with 
STYPE =RESP 
RESPOND = (NEX,FME) 

• 
• 
• 

9 SEND with 
STYPE=REQ 
CONTROL=RELQ 

12 SEND completed ---
2 RECEIVE with ---RTYPE = DFASY or 

DFASYexit. 
CONTROL field contains --· QEC.e 

• 
• 

5 SEND with 
CONTROL= QC, 
STYPE = REO 

8 SEND completed ---
10 RECEIVE with --

RTYPE = DFASY 
CONTROL field 
contains RELQ. 

• ---• 
• 

13 SEND with 
STYPE = REO 

ACFNTAM Message Flow 
.-. ...... 

Quiesce at End of Chain 

Positive Response 

Quiesce Complete 

Positive Response 

Release Quiesce 

Positive Response 

Quiesce at End of Chain 

3 l1see 
I Note) 

.. l Positive Response 
p 

Quiesce Complete 

Positive Response 

Release Quiesce 

11 I (See 
I Note) 

I 
I 

I- .. J Positive Response -

.. 2 -
3 

5 

_., 
8 r 

_., 10 r 

11 

1 

_., 4 p 

-""- 6 r 

7 

9 

. 12 

_., 14 

Logical Unit, Including a 
Secondary Application Program 

.-

Read 

Write 

Write 

Read 

Read 

Write 

Write 

Read 

Read 

Write 

Write 

Read 

Read 

Note: The response to the Quiesce at End of Chain command and the Release Quiesce command (both expedited-flow 
commands) is sent either by ACF/VTAM or the application program, depending on the setting of a PROC option in the 
NIB when the connection was made: 

• If PROC=APPLRESP was specified in the NIB at connection, the application program sends the response, using 
SEND ... ,STYPE=RESP ,CONTROL=command code of received command, RESPOND=(response operands). 

• If PROC=SYSRESP was specified in the NIB at connection, ACF/VT AM automatically sends the response before 
presenting the command to the application program. 

Figme C-6. The Application Program an:d Logical Unit Use Quiesce Protocol: (A) the Application Program Quiesces the Logical Unit, 
and (B) the Logical Unit Quiesces the Application Program 

288 



A ·< 

B \ 
I"' 

c ( 

'-1 

Primary 
Application 
Program -

{Italics indicate RPL fields 
after receipt of message) 

2 RECEIVE with ... .... 
RTYPE = DFSYN. 

BRACKET field 
contains BB,NEB. 

3 SEND with 
STYPE=REQ 
CONTROL=DATA 
BRACKET=(NBB,NEB) 

6 RECEIVE with --..... 
RTYPE=DFSYN 
BRACKET field contains 
NBB,NEB. 

8 RECEIVE with ... ..... 
RTYPE = DFSYN. 

BRACKET field contains 
EB,NBB. 

9 SEND with 
STYPE =RESP, 

RESPOND= (NEX, FME) 

1 SEND with 
STYPE=REQ 
CONTROL= DAT A 
BRACKET=(BB,EB) 

1 SEND with 
STYPE=REQ 
CONTROL=BID 
(POST=RESP assumed) 

4 SEND completed .. .... 
RESPOND field contains 
NEX,FME 

5 SEND with 
STYPE=REQ 
CONTROL=DATA 
BRACKET=(BB,NEB) 

• 
• 
• 

(Application program 
continues sending) 

ACF/VT AM Message Flow -- --
Begin Bracket and Data 

Data .... 

Data 

End Bracket and Data 

Positive Response .... -

Begin Bracket.~nd ... -Bracket, and Data 

Bid _..., -

Positive Response 

Begin Bracket and Data _... --

Logical Unit, Including a 
Secondary Application Program ..... 

(For more details on using brackets with a 
secondary application program, see Figures 
C-19 and C-20.) 

1 Write 

4 Read 

5 Write 

7 Write 

10 Read 

2 Read 

2 Read 

3 Write 

6 Read 

• 
• 
• 

Figure C-7 (Part 1of2). The Application Program and Logical Unit Use Bncktit Protocol: (A) Where the Logical Unit Begins the 
Bracket, (B) Where the Primary Application Program Begins the Bracket, (C) Where the Primary Application 
Program Gets a Positive Response to Its Bid and Begins the Bracket, and (D) Where Bid Produces a Later 
Ready to Receive Command 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Opentions 289 



,.. 

D -c 

'-; 

Primary 
Application 
Program 

A 

(Italics indicate RPL fields 
after receipt of message.) 

1 SEND with 
STYPE=REQ 
CONTROL=BID 
(POST= RESP assumed) 

4 SEND completed 

6 RECEIVE with 
RTYPE = DFSYN 
BRACKET field 
contains 88, EB. 

8 RECEIVE with 
RTYPE = D FSYN 
CONTROL field 
contains RTR. 

9 SEND with 
STYPE =RESP 
CONTROL= RTR 
RESPOND = (NEX, FME) 

11 SEND with 
STYPE = REQ 
CONTROL= DATA 
BRACKET= (BB, NEB) 

• 
• 
• 

(Application program 
continues sending) 

ACF/VT AM Message Flow 
A A 

Bid 

Negative Response 

Begin Bracket, End 
Bracket, and Data 

Ready to Receive 

Positive Response 

Begin Bracket 
and Data 

.. 

. 

.... 
~-

Logical Unit, Including a 
Secondary Application Program 

.A 

2 Read 

3 Write 

5 Write 

7 Write 

10 Read 

12 Read 

• 
• 
• 

Figure C-7 (Part 2 of 2). The Application Program and Logical Unit Use Bracket Protocol: (A) Where the Logical Unit Begins the 
Bracket, (B) Where the Primary Application Program Begins the Bracket, (C) Where the Primary Application 
Program Gets a Positive Response to Its Bid and Begins the Bracket, and (D) Where Bid Produces a Later 
Ready to Receive Command 

290 



r 

A < 

.,. 

B < 

" 

2 

4 

5 

7 

1 

3 

6 

Primary 
Application 
Program -

(Italics indicate RPL fields 
after receipt of message) 

RECEIVE with 
RTYPE = DFSYN. 

CONTROL field is set 
to DATA and 

~ .... 

CHNGDIR field contains 
NCMD. 

RECEIVE with .... .... 
RTYPE = DFSYN. 

CONTROL field is set 
to DATA and 
CHNGDIR field contains 
CMD. 

SEND with 
STYPE=REQ 
CONTROL=DAT A 
CHNGDI R=NCMD 

SEND with 
STYPE=REQ 
CONTROL=DATA 
CHNGDI R=CMD 

SEND with 
STYPE=REQ 
CONTROL=DATA 
CHNGDI R=NCMD 

SEND with 
STYPE=REQ 
CONTROL=DATA 
CHNGDI R=NCMD 

RECEIVE with ---RTYPE=DFASY or 
DFSYN (see Note 1 ) 
CHNGDI R field contains 
REQ. 

r-- -----
I SNA Alternative: 

I 6 RECEIVE with --
I RTYPE=DFASY -

ACF/VT AM 
....... 

----

ltSee 
I ... l Note 2) 

---~ t- .. 
I 
L-------- ----

7 SEND with 
CONTROL= DATA 
CHNGDIR = CMD 

*Or completion of 
SEND with 
POST=RESP. 

Notes: 

Message Flow 
,,,,.. 

Data 

Data/Change Direction 
Command Indicator 

Data -"" 
p 

Data/Change Direction 
Command Indicator --
Data .. --
Data _ ... 

p 

Change Direction 
Request Indicator 

Signal Commandoontaining -
request for Change Direction 
Command Indicator 

Positive Response ... 
p 

Data7Change0irecti0ri--
Command Indicator .. --

1. Indicator could also be received on completion of SEND with POST= RESP. 

1 

3 

6 

8 

2 

4 

5 

Logical Unit, Including a 
Secondary Application Program --

Write 

Write 

Read 

Read 

Read 

Read 

Write (Use of the Change Direction 
Request indicator is not recog-
nized by Systems Network 
Architecture. SNA uses the 
Signal command as shown in 
the next alternative.) --------------, 

I 
5 Write I 

I 
Sa Read I ____________ _J 

8 Read 

• • • 
(Logical unit sends next 
normal-flow message.) 

2. Either ACF/VT AM or the application program responds to the Signal command, depending on whether 
PROC=SYSRESP or PROC=APPLRESP was specified in the NIB at connection. 

FllW'l C-8. The Application Program and the Logical Unit Use Change-Direction Protocol: (A) Where Only Change Direction Command 
Indicators Are Used, and (8) Where, in Addition, Change Direction Request Indicator (or Signal Command) Is Used 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 291 



Primary 
Application 
Program -

(Italics indicate RPL fields 
after receipt of message) 

SCIP Exit Routine 
scheduled 

CONTROL field in 
read-only RPL 
contains RQR. 

4 SESSIONC with 

STYPE=REQ 
CONTROL=CLEAR 
(POST= RESP assumed) 

8 SESSIONC completed 

9 SESSIONC 
STYPE=REQ 
CONTROL=STSN 
(Example of values: 
OBSOV AL=100 
OBSOAC=SET 
IBSOVAL=110 
I BSOAC=SET) 

13 SESSIONC completed 

ACFNTAM Message Flow - ...... 

,.
1 

Request Recovery r- -1 

Logical Unit (Other Than a 
Secondary Application Program) 

...... 
(For resynchronization of sequence numbers 
between a primary and a secondary application 
program, see Figure C-18.) 

Write 

1--r21:------t--------------
~~~ Negative Response ..- 3 Read rY/f p 

Yes 
t--- -·-t--------·--------------

--

(Reset 
sequence 
numbers 
to 0) 

7 

12 .... 

2 Positive Response 

Clear 

Positive Response 

Set and Test Sequence 

Numbers 

Positive Response 

.. 3 Read -
... 5 Read p 

(Reset sequence numbers to 0) 

6 Write 

_ .. 10 Read p 

(Set logical unit's inbound sequence 
number to 100 and outbound sequence 
number to 110.) 

11 Write 

,..------------------------------------~ 

I A dialog may occur between the primary application program and the logical unit to establish sequence numbers I 
~~~e ~both. The~ of STSN and any dialog is at the descretion~the us~ See steps 2-9 in Figure c.::_ ____ J 

14 SESSIONC with 
Start Data Traffic .. 15 Read --STYPE=REQ 

CONTROL=SDT 

17 SESSIONC completed .. Positive Response 
16 Write 

Figuie C-9. The Primary Application Program Resynchronizes Sequence Numbers.with the Logical Unit 

292 



A 

B 

r 

2 

-< 

5 

Primary 
Application 
Program 

.-. 

(Italics indicate RPL fields 
after receipt of message) 

-RECEIVE 
with RTYPE = DFASY ....-
completes or DFASY 
exit routine is scheduled. 
CONTROL field --
contains SIGNAL. 
SIGOA TA field contains 
4 bytes of infonnation. 

Perform action related to 
information. 

ACF/VT AM Message Flow 
.-. .-

Signal 

1!See I Note) 

3 I Positive Response 
~-- --1. . 

1 

__. 4 -

Logical Unit, Including a 
Secondary Application Program 

--. 

Need to send user-defined 

information ahead of regular data o~ 
when quiesced. So write, specifying a 

Signal command and 4 bytes of 
information. 

Read 

>t---------- t-----· 1--------- t--- ------------

1 Need to send installation Signal ...... 2 Read . 
defined Signal data· 
flow control command 
containing 4 bytes of 
information to the logical 
unit. So, SEND with 

"i STYPE=REQ, 3 
CONTROL=SIGNAL, (See Note) 

SIGDATA=4 bytes of No Signal 
received 

information OK? 

SEND completes -- Negative Response 
4 - Yes 

t--------- ------- ---------- 3 
4 SEND completes Positive Response 

"" -
5 Perform action related to 

information. 

Note: When a Signal command is received by an application program, either ACF/VTAM or the application 
program sends the response, depending on whether PROC=SYSRESP or PROC=APPLRESP was specified 
in the N 18 at connection. 

Figuie C-10. The Application Program and Logical Unit Use the Signal Command: (A) Sent by the Logical Unit, and (B) Sent by the 
Primary Application Progmm 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 293 



Primary Application Logical Unit, Including a 
Program ACF/VT AM Message Flow Secondary Application Program 

(Italics indicate RPL fields 
after nJCeipt of message) 

1 A situation occurs requiring ACF/VTAM 
application program attention, and the 
ACF/VTAM application is not sending or 

2 RECEIVE with LUS and sense information not requesting responses. So write, 

RTYPE = DFSYN. 
specifying sense information. (LUS is 
sent in sequence with other normal-flow 

CONTROL field contains messages.) 
LUS. SSENSEI and 
SSENSMI can contain 
status information. 
Optionally, USENSEI may 
contain 2 bytes of user 

A 
status information. 

No Negative Response 4 Read 

--- --------------Yes 

3 Positive Response 
4 Read 

5 Act based on status 
information. ------- ------- -----------

1 A situation occurs 
requiring logical unit 
attention (such as a 
resource becoming avail-
able or unavailable). The 
logical unit is either not 
presently sending or is 
not requesting a response. 

LUS and sense informatio So, SEND with STYPE = 2 Read 
REO, CONTROL= LUS, 
and information in one 

No 

B 
or more of the USENSEO, r 
SSENSEO, and SSENSMO I 
fields. (POST= RESP I 
is assumed.) I (LUS ~sent in sequence I 
with other normal- I flow messages.) 

I 
4 

Negative Response 3 Write 
5 SEND completes. 

Positive Response 
Write---J 4 3 

6 Act based on status information 
received. 

Figure C-11. The Application Program and Logical Unit Use the LUS Command: (A) Sent by the Logic:al Unit, and (B) Sent by the 
Primary Application Program P'. •· 

294 



r 

A 

>-

B -< 

.... 

Primary 
Application 
Program 

A 

(Italics indicate RPL fields 
after receipt of message.) 

2 RECEIVE with 
RTYPE = OF ASY 
or DFASY exit routine. 
CONTROL field 
contains RSHUTD. 

5 CLSDST 

12 CLSDST completed 

1 SEND with 
STYPE=REQ 
CONTROL=SHUTD 

4 SEND completed 

6 RECEIVE with 
RTYPE = DFSYN, 
CONTROL field 
contains CHASE. 

7 SEND with 
STYPE=RESP 
RESP ONO= (positive 
response operands) 

10 RECEIVE with 
RTYPE=DFASY or 
DFASY exit routine. 
CONTROL field 
contains SHUTC. 

13 SEND with 
STYPE=REQ 
CONTROL=CHASE 

16 SEND completed 

17 CLSDST 

24 CLSDST completed 

Notes: 

ACF/VT AM 
.A 

.. - I 

1 (See I Note 1) 

31 - I- .. -
_.. -

8. ---
9 

----- (See Note 2) 

--...... 

--

.. 
1-

.. 1 .J (See -
- _!.1 l Note 1 ) -

..._ 

- ~ 
20 .. 

---
21 ---i (See Note 2) 

Message Flow 
.A. 

Request Shutdown 

Positive Response 
r' 

Clear _.. 

Positive Response 

Unbind . .. 
Positive Response 

Shutdown 

----
Positive Response 

Chase 

Positive Response -
Shutdown Complete 

Positive Response 

Chase 

-
Positive Response 

Clear (See Note 3) ---Positive Response 

Unbind ---
Positive Response 

Logical Unit, Including a 
Secondary Application Program 

.A. 

1 Write 

4 Read 

6 Read 

7 Write 

10 Read 

11 Write 

2 Read 

3 Write 

5 Write 

} Opt;o"'I 

8 Read 

9 Write 

12 Read 

} Opfo"'I 

14 Read 

15 Write 

18 Read 

19 Write 

22 Read 

23 Write 

1. When an application program receives an expedited-flow command (including Request Shutdown and Shutdown Complete), 
either ACF!VTAM or the application program sends the response to the command, depending on whether PROC=SYSRESP 
or PROC=APPLRESP was specified in the NIB at connection. 

2. At this point, any outstanding RECEIVE with OPTCD=SPEC is posted complete as "cleared". 

3. It permitted by the transmission services profile in the session parameters, the Clear command is sent before the Unbind 
command if (1) the logical unit is in a different domain from the primary application program, or (2) the ligical unit is in 
the same domain but is attached to a communications controller containing NCP5. 

Figure C-12. Operations Are Shut Down in an Ordedy Fashion: (A) the Logical Unit Requests Shutdown, and (B) the Primary 
Application Program Orders Shutdown 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 295 



A"'I 

B-< 

Primary 
Application 
Program 

A 
ACF/VT AM Message Flow 

.A 

Terminate (Cond1t1onal) 

Logical Unit (Other Than a 
Secondary Application Program) 

(For termination requests from a secondary 
application program, see Figures C-21 and C-22.) 

r - -. 1 Write specifying ACF/VTAM application 

t-- -------- ~?-~ -+---_ ------ ..£!"Ogra~n~e_!?r~1as) ---- __ 

~~~~ Yes Negative Response _.. 

t-------- - ctio'""'?j ________ : ,__'~'"' -----------
No 

2 LOSTERM Exit ...J Pos1t1ve Response ..... 3 Read 

Routine scheduled 

4 CLSDST 

12 CLSDST completed 
...._ 

!Af this ;;;i;' the ;;plicati;;°n~ogra;;and ~logi~n-;-ca~d~clean:-p operations:-11 I including exchange of normal-flow messages. The application program does not issue 
L..!h.:..._CLSDST ~n:!:_it_'.: ready_:o ~ s~ _ --, __________ J 

Clear 
5 

_... 
6 Read .. 

Positive Response 
8 -. 7 Write 

* 
Unbind 

9 10 Read 

Positive Response 

(See Note 1) 
11 Write 

Terminate (Unconditional) 
r _..,...._H-------------+- 1 Write specifying ACF/VTAM application 

t--------i-;--:::l-1 _______ _, _P~r~~~o~lias). _____ _, 

V.:~~~ Yes Negative Response _., 3 Read 

--------- ~========~===-=-===-=--=--=--=-.--I Since ACF/VTAM 1m_med1ately issues the Clear and Unbind commands, no cleanup I 

2 LOSTERM Exit 
Routine scheduled 

~peration~r~ossible bet~e~h~~catio~rogr~ and the logic~unit. ___ _J 

Clear (See Note 2) 
----t-----------1~ 4 Read 

Positive Response 
6 """..._I---+------------+ 5 Write 

Unbind 
7 -"*'-----+------------91,~8 Read 

Positive Response 
10 """'*1---+-------------+ 9 Write 

11 C LSD ST -------t--(_S,_ee Note 1) 

Build! return 
code and does 
other process-

12 CLSDST 
completed 

Notes: 

ing J 
..._ Return Code 

1. At this point, any outstanding RECEIVE with OPTCD=SPEC is posted complete as "cleared". 

2. If permitted by the transmission services profile in the session parameters, the Clear command is sent before the Unbind 
command if (1) the logical unit is in a different domain from the primary application program, or (2) the logical unit is 
in the same domain but is attached to a communications controller containing NCP5. 

Figure C-13. The Logical Unit Initiates Disconnection: (A) Conditionally, and (B) Unconditionally 

296 



1 

9 

Primary 
Application 
Program 

.-. 

CLSOST 

CLSOST 
completed 

-....... 

ACF/VTAM 
.-.. 

2 

5 .. ._. 

6 * 

Message F.low 
.-. 

Clear . ....... 
Positive Response 

Unbind .. 
Positive Response 

Logical Unit (Other Than a 
Secondary Application Program) 

(For disconnection of a secondary application 
program, see Figures C-21, C-22, C-23, and 
C-24.) 

3 Read 

4 Write 

7 Read 

8 Write 

* At this point, any outstanding RECEIVE with OPTCD='SPEC is posted complete as "cleared". 

Figure C-14. The Primuy Application Program Disconnects the Logical Unit 

Appendix C. Examples of Message, Response; and C.Ommand Exchanges for Typical Communication Operations 297 



Primary 
Application 
Program 

2 

ACF/VT AM 
for Primary 

Message 
Flow 

Initiate Command 
(accompanied by 
session parameters) 

ACF/VTAM 
for Secondary 

Second•Y 
Application 
Program 

r- _ ~+-----__,1--------+- 1 REOSESS 
NAME field in NIB must 

I contain symbolic name of 
desired primary application 

I program 

Negative 
Response 

----- ---~---

>-+-------+--------... 3 REQSESS completed 
unsuccessfully 

4 LOGON exit routine 
Positive Response ...... ~----'----+--------+-------~ 3 REQSESScompleted 

scheduled 
Other problem 
after positive 
response 

I Network Services 
Procedure Error 

successfully 

">----1-+--l~'------1--------11---------llt- 5 NSEXIT exit routine 

Yes 

Bind (including 
session parameters) 

6 OPNDST ACCEPT --++--... ----+------Ill-< 
NAME field in NIB 
must contain symbolic 
name of secondary 
application program 
that sent REOSESS 

Negative Response 
9 OPNDST completed ..... lr-t-------+-------+-----'....­

unsuccessfully 

scheduled 

I ~~;;s-;at "";""eq:;st-;-or l 
I session has been rejected or I 
I next step in session will not I 

occur _J L.:: _____ _ 

r-------, 

8 SESSIONC 
STYPE=RESP 
CONTROL=BIND 
RESPOND=( EX,FM E) 
(optionally, values can 
be provided in 
SSENSEO, SSENSMO, 
and USENSEO.) 

Figure C-15 (Part 1of2). The Secondllly Application Program Reqeusts Connection to the Primuy Application Prognm 

~ 298. 



Primary 
Application 
Program 

12 OPNDST 
completed 
successfully 

I 
I 
I 
I 
I 
I 
I 

ACFNTAM 
for Primary 

Message 
Flow 

ACF/VT AM 
for Secondary 

Secondary 
Application 
Program 

I Part 1 I 
I CA) I 

,.. _ .... H-_Pos_it_ive_R_es_p_o_nse_+----y-----+ 110 OPNSEC ....___J I 
I I . , NAME field in NIB must I 

I I be set to symbolic name I 
I I of primary application I 

I Yes 
I I program that sent Bind I 
I command 

No 

13 ACFIVTAM 
sends SOT 
(SOT= 
SYSTEM in 
NIB) 

Start Data 
Traffic 

I I 
L _ - - 111 OPNSEC completed I 

L~~~1~ ___ _J 

14 SESSIONC ----i-+--~ .... --~------r-+-----,---_,.,._ 15 SCIP exit routine scheduled 
STYPE=REQ again 
CONTROL=SDT r- - - - - - - - , 
RESPOND=(NEX, I Informs mainline program I 

FME) I tha! message flow can I 
Yes begin 

ACF/VT AM 
automatically sends 
response 

L-------_J 
If SDT=APPL is specific 
in OPNSEC NIB, send 
response to SOT. 

SESSIONC 
STYPE=RESP 
CONTROL=SDT 
RESPOND= 

.... ~....i.-1--------1~P-o_s_it_iv_eR_es~p-on_se_1-----.... 1----+----(NEX,FME) 16 OPNDSTor 
SESSIONC completed 
successfully 

OPNDSTor 
SESSIONC completed I 

L _::n~c~~ _ _J 

Negative Response 

or 
..------1to----(EX,FMEl 

Aguie C·lS (Part 2 of 2). The Secondary Application Program Requests Connection to the Primary Application Program 

Appendix c. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 299 



Primary 
Application 
Program 

PC.F/VTAM 
for Primary 

Message 
Flow 

Bind (including 
session parameters) 

OPNDST ACOUIRE--,.--lt--_,.. ----+---------~ 
NAME field in NIB must 
contain symbolic name 
of secondary application 
program 

4 OPNDST completed 
u nsu cc es sf u II y 

Yes 

5 OPNDST completed ..,.t--t--< 
successfully 

6 ACF/VTAM 
sends SDT 

(SDT= 
SYSTEM in 
NIB) 

Negative Response 

Positive Response 

Start Data 
Traffic 

ACF/VTAM 
for SecoiKlary 

I 
I 
I 
I 
I 
L __ _ 

Secondary 
Application 
Program 

2 SCIP exit routine scheduled 

r-"-----, 

3 SESSIONC 
STYPE=RESP 
CONTROL=BIND 
RESPOND=(EX,FME) 

(Values must be 

provided in 
SSENSEO,SSENSMO, 
and USENSEO.I 

3 OPNSEC NAME 
field in NIB must contain 
symbolic name of 
primary application 
program that sent Bind 
command 

4 OPNSEC completed 

L ~c~ss~ll:_ ___ _J 

6 SESSIONC -----+-----'---+-------+--------.--.,- 7 SCIP exit routine scheduled 
S';YPE=REQ 
CONTROL=SDT 
RESPOND=(NEX,FME) 

8 OPNDST or 
SESSI ONC completed 
successfully 

OPNDST or 
SESSI ONC completed 
unsuccessfully 

Positive Response 

Negative Response 

ACF/VT AM 
automatically 
responds 

again r-------..., 
I Informs mainline program I 

L ~a::''.:~ ~w ~_: ~~ 
If SDT=APPL in 
OPNSEC NIB, send 
response to S DT. 

SESSIONC 
STYPE=RESP 
CONTROL=SDT 
RESPOND= 

(NEX, FME) 
or ..-----+---- (EX,FME) 

Figure C-16. The Primary Application Program Acquires the Secondary Application Program 

300 



1 

2 

3 

4 

Primary 
Application 
Program 

~ 

SIMLOGON 
NAME field in NIB 
contains symbolic name 
of secondary application 
program to be connected 

SIMLOGON completed --
unsuccessfully 

SIMLOGON completed ---successfully 

LOGON exit routine --scheduled 

N;FNTAM 
for Primary 

~ 

, 

No Secondary 
program 
known? 

Yes 

• 
Build and queue logon 

Massage 
Flow 
~ 

N;FNTAM 
for Secondary 

.-6. 

' 

Secondary 
Application 
Program 

.A 

Figure C-17 (Part 1 or 2). The Pdmary Application Propm blues a SIMLOGON Macro Instruction to Acquire the Seconcluy 
Application Program 

Appendix C. Examples of Message, Response, and Command Exchlnges for Typical Conununication Operations 301 



Primary 
Application 
Program 

4 LOGON exit routine 
scheduled 

N;F/VTJIM 
for Primary 

Message 
Flow 

Bind (including r- --- ---, 
5 OPNDST ACCEPT --o-+.----1- ----1-s-•s_s_io_n_p_a_ra_m_e_t_e_,.rs•l-< 

NAME field in NIB 
must contain symbolic 
name of secondary 
application program 

ACF/VTAM 
for Secondary 

Secon~ry 

Application 
Program 

6 SC!P exit routine scheduled r---------, 
I 
I 
I 
I 
I 
I 
I 

Yes 

7 SESSIONC 
STYPE=RESP 
CONTROL= BIND 
RESPDND=tEX,FMEl 

(Optionally, values can 
be provided in 
SSENSEO,SSENSMO, 
and USENSEO.I 

7 OPNSEC NAME 
field in NIB must 
contain symbolic name of 
primary application 
program that sent Bind 
command 

OPNSEC completed 

L successfully 
----- ___ ..J 

----....i----..._----1,_------tf----r-----r--10 SCIP exit routine scheduled 

11 OPNDST or 
SESSIONC completed 
successfully 

OPNDST or 
SESSIONC completed I 

L _ u_:u=s~ll'.".._ _ _J 

Positive Response 

Negative Response 

ACF/VTAM 
automatically 
responds 

again 

r---------, 
I Informs mainline program I 
I that message flow can I 
L~g'.: _____ ..J 

If SDT=APPL in 
OPNSEC NIB, send 
response to SD T. 

SESSIONC 
STYPE=RESP 
CONTROL=SDT 
RESPOND= 

(NEX, FME} 
or 

..-----1---- (EX,FMEl 

. _Figule C-17 (Part 2 of 2). The Primuy Application Program Issues a SIMLOGON Macro Instruction to Acquhe the Seco.ncluf 
Application Program 

302 



Primary 
Application 
Program 

JI. 

(Italics indicate RPL fields 
after receipt of message J 

Status of Message 
Sequence Numbers 

Last message sent: 196 
Last message received 
and successfully 
processed (positive 
response sent!: 70 

1 SEND 
STYPE=REQ 
CONTROL=DATA 
POST=RESP 
AESPOND=(NEX,FME) 

-4 SCIP exit routine --scheduled 
CONTROL field in 
read-only RPL contains 
ROR. 

6 SESSIONC 
STYPE=REO 
CONTROL=CLEAR 

8 SESSIONC completed ... -
9 SESSIONC 

STYPE=REQ 
CONTROL=STSN 
OBSOAC=TESTSET 
OBSOVAL=196 
I BSOAC=TESTSET 
IBSOVAL=70 

ACF/VT AM 
for Primary 

J... 

' ACF/VT AM 
automatically 
sends ref ponse 

(Resets sequence 
numbers to 0.) 

Message 
Flow 

J... 

(Message 196 
never reached the 
secondary appli-
cation program.) 
Data with 
sequence number 
197 

Request Recovery 

Positive Response 

Clear 

Positive Response 

Set and Test 
Sequence Numbers 

ACF/VT AM 
for Secondary 

JI. 

• -. 

lA;-/VT~M -1 
I recognizes I 
I sequence number 

discrepancy and I 
I converts data I 
I message to excep- I 
I tion request with I 
1 sense data I 
~0~0000:......:. _ _J 

-~ 
,.. 

(Resets sequence 
numbers to 0.) 

I 

' ACF/VTAM 
automatically sends 
responsJ 

. ...... 

2 

Secondary 
Application 
Program 

.A 

{Italics indicate RPL fields 
after receipt of message) 

Status of Message 
Sequence Numbers 

Last message sent: 70 
Last message received 
and successfully 
processed (positive 
response ~~mt): 195 

RECEIVE 
RTYPE=DFSYN 
CONTROL field 
contsins DATA. 
RESPOND field contains 
NEX,FME. 

Secondary application program 
recognizes sequence number 
discrepancy. Sends no response. 
Instead, issues ... 

3 SESSIONC 
STYPE=REQ 
CONTROL=RQR 

5 SESSIONC completed 

7 SCIP exit routine scheduled 

10 SCIP exit routine scheduled 
again 

CONTROL field in read-
only RPL contains STSN. 
Read-only RPL fields 
contain: 

IBSQAC=TESTSET 
IBSOVAL=196 
OBSOAC=TESTSET 
OBSOVAL=lO 

SEQNO=sequence number 
of STSN request 

(Disagrees with I BSOV AL. 
Agrees with OBSOVAL.) 

Figme C-18 (Part 1 of 2). The Pdmaiy Application Program Resynchronizes Sequence Numbers with the Secondary Application Program 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 303 



Primary 
Application 
Program 

{Italics indicate RPL fields 
after receipt of message} 

12 SESSIONC completed ...... 
Read-only RPL fields 
contain: 

OBSOAC=TESTNEG 
OBSOVAL=195 
IBSOAC-TESTPOS 
18SOVAL=70 

(Primary application program 
decides to accept 195 as the 
proper outbound sequence 
number and will resend 
message 196.) 

13 SESSIONC 
STYPE=REQ 
CONTROL=STSN 
OBSOAC=SET 
OBSOVAL=195 
I BSOAC=IGNORE 
(The inbound sequence 
number was set to 70 by 
the previous SESSI ONC 
sent by the primary 
application program.) 

16 SESSIONC completed --Read-only RPL fields 
contain: 

OBSOAC= TESTPOS 
OBSOVAL=195 
IBSOAC-TESTPOS 

Status of Sequence 
Numbers 

Last message sent: 195 

Last message received: 70 
(This program will resend 
message 196) 

17 SESSIONC 
STYPE=REO 
CONTROL=SDT 

19 SESSIONC completed 
successfully 

SESSIONC completed ---
unsuccessfully 

20 SEND to send 
message 196 

• 
• 
• 

ACF/VTAM 
for Primary 

I 

~ 

Response 

Set and Test 
Sequence Numbers 

Response 

Start Data 
Traffic 

Positive Response 

Negative Response 

__ ...,.. 

ACF/VT AM 
for Secwldary 

~ 

SOT= 
APPL in 
OPNSEC 

NIB? 

No 

ACF/VT AM 
automatically resp!.._ 

-

..... 

Yes 

11 

Secondary 
Application 
Program 

(Italics indicate RPL fields 
after receipt of message} 

SESSIONC 
STYPE=RESP 
CONTROL=STSN 
IBSOAC=TESTNEG 
IBSOVAL=195 
OBSOAC=TESTPOS 
OBSOVAL=70 
SEONO=sequence number 
from STSN request 

14 SCIP exit routine scheduled 
again 

CONTROL field in read· 
only RPL contains STSN. 
Read-only RPL fields 
contain: 

IBSOAC-SET 
IBSOVAL=195 
OBSOAC=/GNORE 
SEONO=sequence num· 
ber of STSN request 
(Agrees with IBSOVAL.) 

15 SESSIONC 
STYPE=RESP 
CONTROL=STSN 
IBSOAC=TESTPOS 
IBSOVAL=195 
OBSOAC=TESTPOS 
SEONO=sequence number 
from STSN request 

Status of Sequence 
Numbers 

Last message sent: 70 
Last message received: 195 

18 SCIP exit routine scheduled 
again 

CONTROL field in read· 
only RPL con rains SD T. 

11 SDT=APPL in 
OPNSEC NIB, send 
response to SOT. 

SESSIONC 
STYPE=RESP 
CONTROL=SDT 
RESPOND= 

(NEX,FME) 
or 

(EX, FME) 

Figure C-18 (Part 2 of 2). The Prillluy Application Pmpam llesyncJuonizes Sequence Numbers with the Secondary Application Program 

304 



Primary 
Application 
Program 

.A 

{Italics indicate RPL fields 
aner receipt of message) 

2 RECEIVE with -
RTYPE=DFSYN 
BRACKET field contains 
BB,NEB. 

3 SEND 
STYPE=REQ 
BRACKET=(NBB,NEB) 

6 RECEIVE with --RTYPE=DFSYN 
BRACKET field contains 
NBB,NEB. 

7 SEND 
STYPE=REQ 
CONTROL=BID 
(POST=RESP assumed) 

-10 SEND completed -(Program finds negative 
response, indicating Bid 
was rejected.) 

-12 RECEIVE with -RTYPE=DFSYN 
BRACK ET field contains 
NBB,EB. 

13 SEND 
STYPE=REQ 
CONTROL= BID 
(POST=RESP assumed) 

16 SEND completed -(Program finds positive 
response, indicating Bid 
was accepted.) 

17 SEND 
STYPE=REO 
CONTROL=DATA 
BRACKET=(BB,NEB) 

• • 
• 

ACF/VT AM 
for Primary 

.A 

Message 
Flow 

..... 

Begin Bracket 
and Data 

Data 

Data 

Bid 

Negative Response 

End Bracket 
and Data 

Bid 

Positive Response 

Begin Bracket 
and Data 

ACF/VT AM 
for Secondary _.... 

Note: The CONTROL=BID operand is not needed if the APL being used for this SEND 
is the same as the one that was used to receive the Bid .. 

_.. -

-

_.. -

.... 
""I 

Secondary 
Application 
Program 

(Italics indicate RPL fields 
after receipt of message) 

1 SEND 
STYPE=REQ 
BRACKET=(BB,NEB) 

4 RECEIVE with 
RTYPE=DFSYN 
BRACKET field contains 
NBB,NEB. 

5 SEND 
STYPE=REQ 
BRACKET=(NBB,NEB) 

8 RECEIVE with 
RTYPE=DFSYN 
CONTROL field contains 
BID. 

9SEND 
STYPE=RESP 
CONTROL=BI D 
RESPOND=(EX,FME) 
(See Note) 

11 SEND 
STYPE=REQ 
BRACKET=(NBB,EB) 

14 RECEIVE with 
RTYPE=DFSYN 
CONTROL field contains 
BID. 

15 SEND 
STYPE=RESP 
CONTROL=BI D 
RESPOND=(NEX,FME) 

18 RECEIVE 
RTYPE=DFSYN 
CONTROL field contains 
BB,NEB . 

• 
• • 

Figure C-19. A Primuy Application Program and Seconduy Application Program Use Bracket Protocol (a Bid Command Is First 
Rejected, Then Accepted) 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 305 



Primary 
Application 
Program 

A 

(Italics indicate RPL fields 
after receipt of message) 

2 RECEIVE .. -RTYPE=DFSYN 
BRACKET field contains 
BB,EB. 

3 SEND 
STYPE=REQ 
CONTROL=BI D 
(POST=RESP assumed) 

6 SEND completed ..... ~ 
(Program finds negative 
response, indicating Bid 
was rejected.) 

.. 8 RECEIVE -RTYPE=DFSYN 
BRACKET field contains 
BB,EB. 

10 --RECEIVE -RTYPE=DFSYN 
CONTROL field contains 
RTR. 
(RTR tells this program 
that it can begin a 
bracket.I 

11 SEND 
STY PE= RESP 
CONTROL=RTR 
RESPOND=(NEX,FMEI 
(Primary program now 
begins bracket.I 

13 SEND 
STYPE=REQ 
BRACKET=(BB,NEBI 

• • • 
(Primary application 
program continues 
sending.) 

ACFNTAM 
for Primary 

.A. 

Message 
Flow 

A 

Begin Bracket, 
End Bracket, 
and Data 

Bid 

Negative Response 

Begin Bracket, 
End Bracket, 
and Data 

Ready to Receive 

Positive Response 

Begin Bracket 
and Data 

/CFNTAM 
for Secondary 

A 

Note: The CONTROL=BID operand is not needed if the RPL being used for this SEND 
is the same as the one that was used to receive the Bid. 

_.. 
r 

.. . 

Secondary 
Application 
Program 

(Italics indicate RPL fields 
after receipt of message) 

1 SEND 
STYPE=REQ 
BRACKET=(BB,EB) 

4 RECEIVE 
RIYPE=DFSYN 
CONTROL field contains 
BID. 

5SEND 
STYPE=RESP 
CONTROL=BID 
RESPOND=(EX,FME) 
(See Note) 

7 SEND 
STYPE=REQ 
BRACKET=(BB,EBI 

9SEND 
STYPE=REQ 
CONTROL=RTR 
(POST=RESP assumed) 

12 SEND completed 

14 RECEIVE 
RTYPE=DFSYN 
BRACKET field contains 
BB.NEB 

• • • 

Figme C-20. A Prinuuy Application Propam and Secondary Application Propam Use Bracket Protocol (Bid by Primuy Propam Is 
Rejected, But a Ready to Receiw Command Follows) 

306 



Primary 
Application 
Program 

PCF/VTAM 
for Primary 

Message 
Flow 

Terminate 
(Conditional) 

PCF/VTAM 
for Secondary 

Secondary 
Application 
Program 

r - - .... -+------+---------t- 1 TERMSESS 
OPTCD=COND 

I (NAME number field in 
I NIB must contain symbolic 
I name of primary applica­

tion program) 

Yes Negative Response 
>---l~...;..-----+----------t- 3 TERMSESS completed 

unsuccessfully 

No 

Positive Response 
.... 1----+--...L----+-------+-------_,~ 3 TERMSESS completed 2 LOSTERM exit 

routine scheduled successfully 

-- --- ---- ---, r At this point, the primary and secondary application programs I 
I can do cleanup operations, including exchange of normal-flow 
I messages and commands. The primary application program I 
f __ ~es not~~e.::S~T unt~ i~ady t~ so. ___ _J 

Clear 

4 CLSDST -----+1- (See Note 1) 5 -----+...;.;;.;.;;..;.;;..;.;.;;...;..;...._-+----r-----tiit- 6 SCIP exit routine scheduled 

Positive Response 

PCF/VTAM 
automatically 
sends response 

7 ..... .._ __ +-------+---' 

8 (See Note 2) Unbind 

Positive Response 

T 
/!CF/VTAM 
automatically 
sends response 

r-:- --- --- ..., 
1 Ensures that no more I 
I messages or commands are I 
L.5~t- - - - __ _J 

9 SCIP exit routine scheduled 
again 

r--------, 
Cleans up any remaining I I ~ession_co~trol information I 

Ln~~c~o.:;_:g~- _J 

(Possibility) 

4 SEND 5 DFASY exit routine 
scheduled (SIGDATA bytes 
tell secondary program why 
session is not being term­
inated) 

Notes: 

STYPE=REQ 
CONTROL=SI GNAL 
SIGDATA=4 bytes 
of code or data 

1. If permitted by the transmission services profile in the session parameters, the Clear command is sent before the 
Unbind command if the secondary application program is in a different domain from the primary application 
program. 

2. At this point, any outstanding RECEIVE with OPTCD=SPEC is posted complete as "cleared". 

· Jllapare C·21. The Seconduy Application Program Sends a Conditional Request for Disconnection 

< _,. 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 307 ''· 



Primary 
Application 
Program 

.A 

PCFNTAM 
for Primary 

.A 

Message 
Flow 

.A 

Terminate 

ACF NT AM 
for Secondary .... 

Secondary 
Application 
Program 

.A 

... (Unconditional) r- - -4--+------+-------+-1 TERMSESS 
OPTCD=UNCOND 

I (NAME number field in 
I NIB must contain symbolic 
I name of primary applica­

tion program) 
I- ---i--- --- --1----.- - - - ---------

2 

Error Yes Negative Response 
or unknown ~--+--...;;..----''---+---------1~• 3 TERMSESS completed 
f"\:urce? unsuccessfully 

No 
1------! ____ . _ _, ----- -1------- --

Positive Response 
-----+--------+---------~-3 TERMSESS completed 

t successfully ---- -~----'----------, I Since this ACF/VTAM immediately issues the Clear and Unbind commands, no I 

Tcleanup operations are possible· between the application programs. . _J 
---...--- -- r---- ---r-----

Clear 

-..---+-- 4 (See Note 1 l 5 LOSTERM exit ~ . 5 SCIP exit routine scheduled 
routine scheduled 

r-------1 
I 

ACF/VT AM 
automatically 
sends response 

r-------, 
I Ensures that no more 
I messages or commands I 
La~~----_J 

I 
I 
I 
I 

Positive Response J 
6~--r--------1---~ 

1 (See Note 21 Unbind 

I 
I 
I 9 -

10 CLSDST-----.-1-i----.t 
l AC.F/VTAM buildS" 

I return code and 
does other 

I processing 

I 
I 
I 

Positive Response 
' ACF/VTAM 

Automatically 
sends response 

. J 

..... 8 SCIP exit routine scheduled 
again 

~------· 
I Cleai:is up any remaining I 
I session control informa-
l tion in application I 
~~a.:__ - - _J 

Notes: 1. If permitted by the transmission services profile in the session parameters, the Clear command is sent before the 
Unbind command if the secondary application program is in a different domain from the primary application program. 

2. At this point, any outstanding RECEIVE with OPNDST=SPEC is posted complete as cleared. 

FigUie C-22. The Secondary Application Program Sends an Unconditional Request for Disconnection 

308 



Primary 
Application 
Program 

.A 

ACF/VTAM 
for Primary 

.A 

Message 
Flow 

.A 

/JiCF/VTAM 
for Secondary 

Secondary 
Application 
Program 

.A 

{Italics indicate RPL fields 
after receipt of message) 

2 
Request Shutdown 

RECEIVE with - -: (See 
1 SEND 

RTYPE=DFASY STYPE=REQ 
or DF ASY exit routine I Note CONTROL=RSHUTD 
scheduled I 1 l (POST= RESP assumed) 
CONTROL field in RPL 

t-- :-J 
Positive Response 

contains RSHUTD. - - .. 3 SEND completed 

Clear (See Note 2) _... 
4 CLSDST 5 

_.. 
6 SCIP exit routine scheduled --

' ACF/VTAM 
automatically 
sends response 

7 -- Positive Response J 
Unbind ... 8 

' 
9 SCIP exit routine scheduled 

again 

ACF/VT AM 
automatically 
sends response 

10 CLSDST completed .. _ 
(See Note 3) Positive Response J -

Notes: 1. When an application program receives an expedited-flow command (including the Request Shutdown command), 
either ACF/VTAM or the application program sends the response to the command, depending on whether 
PROC=SYSRESP or PROC=APPLRESP was specified in the NIB at connection. 

2. If permitted by the transmission services profile in the session parameters, the Clear command is sent before the 
Unbind command if the secondary application program is in a different domain from the primary application program. 

3. At this point, any outstanding RECEIVE with OPTCD=SPEC is posted complete as "cleared". 

Figure C-23. The Secondary Application Program Sends a Request Shutdown Command 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 309 



Primary 
Application 
Program 

J<... 

(Italics indicate RPL fields 
after receipt of message) 

1 SEND 
STYPE=REO 
CONTROL=SHUTD 

3 SEND completed -
~--- -- ----

(Steps 4-7 are optional) 

5 RECEIVE with -RTYPE=DFSYN 
CONTROL field 
contains CHASE. 

6 SEND 
STYPE=RESP 
RESPOND=(NEX,FME) 

ACFIVTAM 
for. P11mary 

JI. 

I-----

1--------·-!-·----
9 RECEIVE -~ I (See 

RTYPE=DFASY I Note 1) 
or DFASY exit routine 

I scheduled 
CONTROL field I 
contains SHUTC. I 

• I ---- - - .. 
1--------- - ----

(Steps 11-14 are optional) 

11 SEND 
STYPE=REQ 
CONTROL=CHASE 
(POST=RESP assumed) 

--14 SEND completed --
1------ ---------

Message 
.Flow 

_A 

Shutdown 

- --
Chase 

--

Positive Response 

--- --

Positive Response 

ACF/VTAM 
for Secondary 

A 

I 
I 
I (See 

I 
Note 1) 

I 

r 

_l -- ----1 I-

2 

Secoiidary 
Application 
Program 

A 

(Italics indicate RPL fields 
after receipt of TJ}f1S$'age} 

RECEIVE with 
RTYPE=DFASY 
or DFASY exit routine 
scheduled 
CONTROL field contains 
SHUTD. 

-- t-- - ----··--, ---, 

4 SEND 
STYPE=REO 
CONTROL=CHASE 
(POST=RESP assumed) 

. 7 SEND completed 

------+----~~----
8 SEND 

STYPE=REO 
CONTROL=SHUTC 
(POST=RESP assumed) 

..... 10 SEND completed . 
----1------ t---- ------
Chase _. 12 RECEIVE 

RTYPE=DFSYN 
CONTROL field contains 
CHASE. 

Positive Response 
13 SEND 

STYPE=RESP 
RESPOND=(NEX,FME) 

------ r---. - -- --- - ___, 
_____ _, 

Figure C-24 (Part 1 of 2). The Primary Application Program Shuts Down the Secondary Application Program 

310 



Primary 
Application 
Program 

J... 

N:.F/VTAM 
for Primary 

.A 

Message 
Flow 

.A. 

Clear (See Note 2) 

ACF/VTAM 
for Secondary 

.A 

Secondary 
Application 
Program 

i 

15 CLSDST ~ 16 ..... 
I - 17 SCIP exit routine scheduled 

' ACF/VT AM 
automatically 
sends response 

18 -- Positive Response J 
19 

Unbind 
20 SCIP exit routine scheduled I -

' 
again 

ACF/VT AM 
automatically 
sends response 

21 CLSDSTcompleted - (See Note 31 Positive Response J -
Notes: 1. When ~n application program receives an expedited-flow command (including Shutdown or Shutdown Complete), 

either ACF/VT AM or the application program sends the ~esponse to the command, depending on whether 
PROC=SYSRESP or PROC=APPLRESP was specified in the NIB at connection. 

2. If permitted by the transmission services profile in the session parameters, the Clear command is sent before the 
Unbind command if the secondary application program is in a different domain from the primary application 
program. 

3. At this point, any outstanding RECEIVE with OPTCD=SPEC is posted complete as "cleared". 

Figw:e C-24 (Part 2 of 2). The Primuy Application.Program Shuts Down the Secondary Application Program 

Appendix C. Examples of Message, Response, and Command Exchanges for Typical Communication Operations 311 



• 



Appendix D. Example of a Primary Application Program 

What SAMPl Does 

This appendix contains the assembler language instructions for an ACF/VTAM 
application program, SAMPl. The logic for this program is similar to the logic for Sample 
Program 1 discussed in Chapter 11. The instructions shown in the listing on the following 
pages are written for a DOS/VS system. The program includes DSECTs for the ACB, 
EXLST, NIB, and RPL control blocks. Three other versions of the program can be 
obtained by substituting instructions that are shown in the listing as comments. The other 
versions are: 

DOS/VS with manipulative macros (instead of DSECTs) 

OS/VS with manipulative macros 

OS/VS with DSECTs 

The program is presented primarily to provide sets of integrated examples, showing how 
the ACF/VTAM macro instructions are used in real coding. The program is not intended 
to be coded and used by an installation. 

SAMPl is designed to communicate with one or more logical units in a network. SAMPl 
is activated by input from a logical unit. (The logical unit may have created the input 
message as the result of terminal operator input received by the logical unit.) Depending 
on the code at the beginning of each message, SAMPl performs a simple action, such as 
sending the message back to the logical unit. 

Although SAMPl can communicate with a number of different logical units during its 
execution, it is synchronous in its operation; that is, a reply is sent to one logical unit 
before a message is accepted from another logical unit. The use of synchronous processing 
simplifies program design but makes logical units unnecessarily interdependent, particu­
larly during the I/O associated with OPNDST and CLSDST. 

A program that would be executed in a logical unit with which SAMPl might 
communicate is not shown. 

How SAMPl Relates to Sample Program 1 (Chapter 11) 

SAMPl is based on the general logic of Sample Program 1 described in Chapter 11. To 
understand the general logic of SAMPl, you should first read Chapter 11. 

The logic of SAMPl differs slightly from the logic of Sample Program 1. The request to 
receive input from any logical unit is specified as asynchronous in SAMPl. This allows the 
TPEND ECB to be checked following each issuance of a RECEIVE macro instruction and 
the program to be closed if the TPEND ECB has been posted. In the logic in Sample 
Program 1 in Chapter 11, there is no opportunity to notice that the TPEND ECB has 
been posted while waiting for input to arrive and the synchronously-specified RECENE 
to complete. Although the RECENE in SAMPl is specified as asynchronous, it is 
effectively synchronous as far as handling logical unit input and output is concerned; the 
multiple wait waits only for posting of the one RECEIVE ECB or the TPEND ECB. (Note 
that a CHECK macro is required to test for successful completion of the RECENE and 
to free the RPL for reuse.) 

Appendix D. Example of a Primary Application Program 313 



The TPEND, LERAD, SYNAD, and LOSTERM exit routines are not shown in Chapter 
11 in order to simplify the example. They are included here since a complete program 
requires them. Although SAMPl 's LOSTERM, LERAD, and SYNAD exit routines are not 
as complete in their ability to handle errors and special conditions as some installations 
may require, they provide an idea of the linkage and processing instructions that a 
LOSTERM, LERAD, or SYNAD exit routine might contain. 

Sample Program 1 in Chapter 11 demonstrates general logic that a simple program might 
contain; no data or message interface is described. Since SAMPl is a complete program 
that can be assembled and executed with online logical units, it requires a defined 
message interface. 

Note that this version of SAMPl uses codes in binary rather than hexadecimal, in order to 
simplify the LU to LU operator interface. This is implemented in SAMPl by means of 
TM and BO instructions in place of CLI and BE instructions. 

The Message Interface between SAMPl and Logical Units 

314 

Input: SAMPl expects to receive a message in this format from any logical unit to which 
it has become connected: 16 bytes _ .. ...,., ... ._...._ ___________ 94 

Header Data 

...... 1~------100-------..+~I 
The header is in this format: 

4 
T 

Code Reserved Sense information 

I 

The code can contain: 

B•xxxx xxxx 1': Means return a negative response as specified in the sense informa­
tion message header. 

B•xxxx xlxx': Means send this message back to the logical unit. 



Notes on SAMPl 

The sense information is present on input only if the code is B'xxxx xx.xi'. The sense 
information is in this format: 

2 

System System User 
sense modifier sense 
information information information 

l...__'4 -4-~~I 
The sense information in the header allows the receiving of an exception message by 
SAMPl to be simulated when the logical unit (or the terminal operator associated. with 
the logical unit) requests it. The code will contain B'xxxx xxxl' and the sense 
information in the header will contain what ACF/VTAM would place in the SSENSEI, 
SSENSMI, and USENSEI fields of the RPL if a real exception message were to be 
received. To send the response to the simulated exception message, SAMPI must move 
the sense information from the message header to the SSENSEO, SSENSMO, and 
USENSEO fields of the RPL that is used to send the response. 

If the code contains B'xxxx xlxl' (that is, deliberate exception and echo), the logical 
unit not only expects a negative response to be returned, but wants a message sent that 
includes the sense information in the header of the message that just arrived (the 
simulated exception message). This will cause the message sent now by SAMPl to be 
interpreted by the logical unit as an exception message, in turn causing the logical unit to 
return a negative response back to SAMPl, driving the RESP exit routine (which will call 
the SYNAD exit routine). 

In addition to the header information, up to 94 bytes of data can be received in the input 
message (excess data is truncated and ignored). 

When SAMPl receives a response to an output message it has sent, A CF /VT AM schedules 
its RESP exit routine. Whether the response is positive or negative, no input area is 
required; the information is present in fields of the read-only RPL. 

Output: SAMPl sends a message using the same area and format that is used for input. 
On output, it sets the code to: 

B'lxxx xOl l ': Means this is the exception message that you requested. 

B'IOOO 0100': Means forward this message to the terminal operator and then send 
it back to me. (This is used only from the LOGON exit routine and 
ensures that the main program RECENE will be driven whether or 
not there is a terminal operator.) 

No output area is required when sending either a positive or a negative response. 

The following notes supplement the general logical description of Sample Program 1 in 
Chapter 11 and the prologue and comments provided with the source listing of SAMPl, 
shown on the following pages. 

Appendix D. Example of a Primary Application Program 315 



Notes on the Main Program 

316 

The message input area, AREAl, is initialized to asterisks to aid in debugging. The 
message length as well as the content will be evident if asterisks (rather than blanks) are 
printed when the message is presented to the terminal operator who is driving the 
programs. (Other printable nonalphabetic characters could have been used as well.) 

After the RECEIVE is completed, a CHECK is issued. If an error or special condition has 
occurred, the LERAD or SYNAD exit routine is entered. If the exit routine is able to 
recover successfully, it sets register 15 to O; the main program is unaware that the exit 
routine was entered. If the exit routine is not able to recover successfully, it disconnects 
the logical unit or performs a SESSIONC CLEAR and SDT, and sets register 15 to 
nonzero. The main program continues with other input, looping back to reissue the 
RECEIVE. 

The RECEIVE can be completed by receipt of an expedited-flow (DFASY) or 
normal-flow (DFSYN) message. For example, receipt of a Request Shutdown command 
(RSHUTD) causes SAMPl to issue a CLSDST for that logical unit before reissuing the 
RECEIVE. Previous versions of SAMPl provided no method of accepting expedited-flow 
messages, which meant that a logical unit would never get the response it was expecting. 

A check is made to see if a simulated exception message has arrived; if so, a deliberate 
negative response must be returned. If a real exception message were to be received 
(requiring a negative response), the SYNAD exit routine would be scheduled as a result of 
the CHECK. In this case, the SYNAD exit routine would send a negative response, use the 
SESSIONC macro to clear data traffic, reset the logical unit to CA mode, and set an 
unsuccessful recovery indication in register 15 so that the main program will reissue its 
RECEIVE. 

Responses: SAMPl is intended to handle all the valid combinations of no responses, 
exception response only, and definite responses. When instructed to echo the data 
(B'xxxx xlxx' in the first byte of the data header), it leaves the response types 
(RESPOND=values) unchanged, making it possible to force SAMPl to send a message to 
the logical unit asking for no response or exception response only. In such a case, SAMPl 
makes sure that the logical unit's session is in continue-any mode on completion of the 
SEND rather than on receipt of a response by the RESP exit routine. When SAMPl asks 
for a definite response, it leaves the logical unit's session in continue-specific mode until 
that response is processed by the RESP exit routine. The next message (or messages) may 
already be queued in ACF/VTAM.'s pageable buffers but will be ignored until the 
response has been handled. 

Function Management Protocols: SAM.Pl does not modify the settings related to FM 
protocol in the RPu, except when requested to send an exception response. This means 
that fields like FMHDR, CHAIN, BRACKET, CODESEL, and CHNGDIR are echoed back 
to the logical unit, ignoring the fact that this may be a protocol violation. In addition, 
SAMPl processes (for example, by echoing) each chain element separately. 

Ending the Program: There are two ways to end the program. Either a message can be 
sent from the logical unit that says, "CLOSE ACB", or the ACF /VT AM network operator 
can halt the network, causing the TPEND exit routine to be driven. In the first case, a 
TPEND flag is set; in the second, a TPEND ECB is posted. The main program checks both 
of these during each of its loops, branching to close the AC B if a close indication is 
found. Prior to closing the ACB, the TPEND flag is set to hex FF to prevent any 
undesired activity while the CLOSE macro instruction is being executed by ACFNTAM. 
The TPEND flag is checked by the LOGON, RESP, and LOSTERM exit routines when 
each is entered to make sure the exit routine has not been scheduled while closing the 
ACB is in progress. If the flag is set, the exit routine returns immediately to ACF NTAM. 



Notes on the LOGON Exit Routine 
Notice in the manipulative macro version how the symbolic name of the logical unit for 
which a logon request has been received is placed in the NIB prior to connecting it. 
NAME=(* ,0(4)) is specified in the MODCB macro. 

The last four bytes of the 8-byte symbolic name are placed in the USERFLD of the NIB 
{USERFLD={*,4(4)) specified in the MODCB macro) for aid in debugging. These bytes 
will identify the specific logical unit more easily than will the CID {located in the RPL 
ARG field). This part of the symbolic name will be available in the USER field of the 
RPL except in the case of the RPL used for OPNDST. 

An arbitrary validation of the logical unit is used: a check for a symbolic name that 
begins with the characters "CT" {the name of each LU statement would be specified 
CT:xxxxx.x in the ACF/VTAM definition process). 

The IBM-supplied macro, ISTDNIB, is used to generate a dummy control section for the 
NIB. This enables SAM.Pl to check the device characteristics field for a logical unit 
device-type indication. The CLI DEVTCODE,DEVLU statement is possible only if the 
NIB DSECT has been used, generating the labels DEVTCODE and DEVLU in the 
assembled output. Note that a CSECT statement must follow the ISTDNIB statement in 
the constants area so that the SAM.Pl CSECT can be resumed. Note also that none of the 
field names in SAMPl begins with any of the reserved combinations {NIB, RPL, ACB, 
etc.). 

A conditional completion code of nonzero following the INQUIRE at label INQUIRE, 
indicating no logon data, causes the logical unit to be disconnected. Since the logon data 
has already been determined to have a length of nonzero, a conditional completion code 
of nonzero here would be contradictory. 

After the logical unit has been connected with an OPNDST, a message is sent to the 
logical unit confirming that the logical unit has been connected. (Note that OPTCD=SYN 
is used on the OPNDST. This, coupled with the fact that the macro is issued in an exit 
routine, means that all processing waits for the responses involved.) The message sent to 
the logical unit is initialized to contain hex 84 in the code byte of the header, meaning 
"Forward this message to the terminal operator and then send it back to the ACF /VT AM 
application program." Note that this version of SAM.Pl includes the symbolic name of 
the logical unit in this message. This may help in cases where symbolic names are assigned 
dynamically. 

Notes on the RESP Exit Routine 
Since the read-only RPL whose address is provided on entry to the RESP exit routine 
cannot be used to reset the logical unit to CA mode, an RPL {PRPLR) is reserved in the 
RESP exit routine for this purpose. The address of the ACB is obtained from the 
parameters passed on entry. Note that, since only one exit routine can be executing at a 
time and all RPL-based requests in SAM.Pl 's exit routines are synchronous, one RPL 
could have been shared among all the exit routines. 

In the event a negative response is received, the RESP exit routine sets up the correct 
linkage and calls the SYNAD exit routine directly. If the SYNAD exit routine is able to 
recover successfully (SAM.Pl does not attempt to resend any messages), it sets register 15 
to 0 and the RESP exit routine restores registers 1-12 and resets the logical unit to CA 
mode. If it is not able to recover successfully, any necessary action, such as disconnecting 
the logical unit, is taken in the SYNAD exit routine. The RESP exit routine need only 
return to ACF /VT AM. 

Appendix D. Example of a Primary Application Program 317 



Notes on the LERAD and SYNAD Exit Routines 
SAMPl 's LERAD and SYNAD exit routines are reenterable because the LERAD and 
SYNAD exit routines can be entered as the result of RPL-based requests issued by both 

. the main program and exit routines other than LERAD and SYNAD. For example, the 
RECENE in the main program could cause the SYNAD exit routine to be entered. While 
the SYNAD is being executed as an extension of the main program, it could be 
interrupted and the LOGON exit routine given control. The OPNDST in the LOGON exit 
routine could cause the SYNAD exit routine to be reentered, thus destroying any storage 
that might have values for the SYNAD exit routine as an extension of the main program. 
For this reason, SAMPl 's LERAD and SYNAD exit routines obtain unique storage areas 
each time they are entered. 

If the SYNAD exit routine is scheduled as the result of an RPL-based request that is 
issued within the SYNAD exit routine (that is, if the SYNAD exit routine is entered 
recursively), SAMPl terminates with a dump.. To determine recursion, SAMPl uses the 
leftmost bit of register 1, which also contains the RPL address on entry to the SYNAD 
exit routine. Before issuing any RPL-based macro in the exit routine, this bit is set on; on 
entry, if this bit is found to have been set, the program terminates. 

In the manipulative macro version, a series of TESTCB and MODCB macros are used to 
determine the SSENSEI setting so that it can be set in the SSENSEO field before sending 
a negative response. This is required because the value for SSENSEO cannot be specified 
using register notation or in the FIELDS parameter of SHOWCB because it is a 
bit-encoded field. 

The LERAD exit routine illustrates three cases that cause entry to LERAD but are not 
logical errors in the context of SAMPl, which is programmed to ignore them. These are 
cases that can arise due to the use of asynchronous exits. 

Notes on the LOSTERM Exit Routine 

318 

The LOSTERM exit routine determines why the logical unit was lost and takes 
appropriate action. 

Upon entry, the exit-routine tests the TPEND f1ag to see if the system is being shut down. 
If the flag is set, the routine returns to ACF /VT AM to allow the closing operations to be 
completed. Otherwise, the routine inspects the code that was passed to the exit routine in 
the fourth word of the parameter list pointed to by register 1 when LOSTERM was 
entered. 

The exit-routine then takes action on the basis of the decimal reason code. For code 24 
(ACF/VTAM. is attempting to restart the unit), the exit-routine merely returns to 
ACF/VTAM., knowing that control will be returned to the exit-routine at the end of the 
restart attempt. (Note that, in the context of SAMPl, which uses only logical-unit­
initiated logons, it would be more natural to CLSDST immediately but the code used is 
intended to be illustrative.) When the exit routine is again entered, the fourth word of the 
parameter list will contain either code 16 (logical unit was successfully restarted) or code 
12 (restart was unsuccessful and logical unit was lost). At this point, a CLSDST is 
required, but a program might use INQUIRE OPTCD=CIDXLATE to find out the 
symbolic name of the logical unit in order to send a suitable message to the network 
operator (for example, a message asking for a VARY LOGON). If the program knew that 
it normally acquires the lost logical unit, it could use OPTCD=PASS on the CLSDST 
(assuming it was properly authorized to do that in the APPL statement). 

The other possible reasons for entering LOSTERM are equally application and 
environment dependent and CLSDST may not always be the most suitable action to take. 
For more information on the reason codes passed to the LOSTERM exit routine, see the 
general description of the LOS TERM exit routine in Chapter 7. 



The Source Statements for SAMPl 

********************************************************••············· 
**************************************************•••·················· 
* * SAHP1 (SAMPLE PROGRAM 1) IS DESIGNED TO BE 
* RELATIVELY EASY TO UNDERSTAND. IT ILLUSTRATES: 

* * 0 OPENING AND CLOSING A PROGRAM, INCLUDING A TPEND 
* EXIT-ROUTINE • 
• * 0 CONNECTING LOGICAL UNITS IN A LOGON EXIT-ROUTINE. 

* * 0 RECEIVING AND SENDING MESSAGES AS SYNCHRONOUS 
* OPERATIONS. NOTE THAT THE RECEIVE USES OPTCD=ASY 
* AND AN ECB FOLLOWED BY A MULTIPLE WAIT, IN ORDER TO ALLOW 
* WHAT TPEND DOES (E.G. SET A CLOSEDOWN SWITCH FOR KAIBLIIE) 
* TO TAKE EFFECT EVEN DURING A LULL IN I/O ACTIVITY. 

* * 0 RESETTING A LOGICAL UNIT TO CONTINUE-ANY BODE. 
* 0 RECEIVING AND SENDING RESPONSES TO MESSAGES. 

* * 0 RESP, TEPDN, LOSTERM, LERAD, AND SYBAD EXIT-ROUTINES. 

* * 0 THE LINKAGE BETWEEN THE MAIN PROGRAM, VTAM, AND 
* EXIT-ROUTINES. 

* 
* * ALTHOUGH DOS/VS CODE IS SHOWN, IT 
* DIFFERS ONLY IN MINOR RESPECTS FROM OS/VS CODE. 

* * SAMP1 (SAMPLE PROGRAM 1) IS ORGANIZED INTO: 

* * 0 HAIN PROGRAM. 
* 0 LOGON EXIT-ROUTINE. 
* 0 RESP EXIT-ROUTINE. 
* 0 LERAD EXIT-ROUTINE. 
* 0 SYNAD EXIT-ROUTINE. 
* 0 TPEND EXIT-ROUTINE. 
* 0 LOSTERM EXIT-ROUTINE. 

* *********************************************************************** 

Appendix D. Example of a Pdmuy Application Proplllil 319 



*********************************************************************** 
* * BAME = MAIN PROGRAM 

* * FUNCTION = OPENS THE ACB, RECEIVES INPUT FROM ANY CONNECTED LOGICAL 
* UNIT, SENDS A RESPONSE IF REQUESTED, FORWARDS INPUT TO A PRO-
* CESSOR, SENDS A REPLY PREPARED BY THE PROCESSOR, AND LOOPS BACK 
* TO RECEIVE MORE INPUT AFTER SENDING THE REPLY. CLOSES THE 
* ACB (CLOSES THE PROGRAM) IF A TPEND ECB IS POSTED BY VTAM HALT 
* OR IF 'CLOSE ACB' IS ENTERED AS A MESSAGE. 
* NOTE: THE PROGRAM HANDLES ONE ELEMENT OF AN INPUT CHAIN AT A 

* * TIME~ BE CAREFUL WITH HDX-FF PROTOCOLS. 
* ENTRY POINT=SAMP1 

* * INPUT = MESSAGES RECEIVED FROM CONNECTED LOGICAL UNITS; A POSTED 
* TPEND ECB. EACH MESSAGE CONTAINS A SIX-BYTE HEADER DESCRIBING 
* THE ACTION TO BE TAKEN (SEE EQUATES IN MAIN PROGRAM CONSTANTS). 
* NOTE THAT DFASY INPUT CAUSES A CLSDST. BRACKET PROTOCOL IS HOT 
* SUPPORTED AND CAUSES UNPREDICTABLE RESULTS. 

* * OUTPUT = MESSAGES AND RESPONSES SENT TO LOGICAL UNITS AS A RESULT 
* OF INPUT MESSAGES. PROGRAM TERMINATION AND A DUMP IF THE PRO-
* GRAM CANNOT CONTIBUE. 

* * EXTERNAL REFERENCES = OPEN, DUMP, SETLOGON, RECEIVE, CLSDST, TESTCB, 
* WAITM, CHECK, MODCB, AND SEND~ 

* * EXIT, NORMAL = BR 14 

* * EXIT, ABNORMAL= DUMP (DIRECTLY OR VIA SYNAD OR LERAD). 
* ATTRIBUTES = NOT SERIALLY REUSABLE 

* * REGS USED 

* 
* 
* 
* 
* 
* 

3 
4 
5 

13 

= 
= 
= 
= 

BASE 
WORK REG 
A(PRPL) 
A(SAVEO) 

*********************************************************************** 
SAMP1 CSECT 
*OS STM R14,B12,12(R13) 

*OS 

*OS 

* OPNACB 

320 

BALR R3,RO 
USING *,R3 
ST R13,SAVE0+4 
LA R15,SAVEO 
ST R15,8(R13) 
LR R13,R15 

OPEN THE ACB 
EQU * 

SR R15,R15 
OPEN PACB 
LTR R15,R15 
BZ OPEN OK 

SAVE REGISTERS FOR CALLER 
ESTABLISH BASE 
ESTABLISH ADDRESSABILITY 
STORE HIGH-SAVEAREA POINTER 

STORE LOW-SAVEAREA POINTER 
POINT R13 TO OUR SAVEAREA 

CLEAR REGISTER 15 (DOS/VS) 
CONNECT THE PROGRA! TO VTA! 
TEST FOB ERRORS 



* IT WOULD BE NORMAL HERE TO TEST FOR INVALID APPLID AND COMMUNICATE 
* WIT~ THE OPERATION RATHER THAN TO DUMP. 
DUMP ST R1,R1CONTS SAVE THE CONTENTS OF REG 1 

DUMP IF UNSUCCESSFUL REQUEST 
VZRSION DC C'DATE OF LAST CHANGE MAY 3 76.• 
OPENOK EQU * 

LA RS,PRPL SET UP BASE FOR RPL DSECT ~ 
USING IFGRPL,RS ~ 
SETLOGON RPL=PRPL,OPTCD=START ALLOW LOGON REQUESTS 
LTR R15,R15 TEST FOR ERRORS 
BNZ DUMP 

* REQUEST INPUT FROM ANY LOGICAL UNIT 
RECANY MVI AREA1,C'*' SET ASTERISK IN 1ST BYTE OF 
* AREA1 (FOR DEBUGGING PURPOSES) 

MVC AREA1+1 (99),AREA~ ROLL IT 
RECEIVE RPL=PRPL,AREA=AREA1,AREALEN=100, 

OPTCD=(ASY,ANY,CS) ,ECB=RCVECB, RESP HANDLED BY EXIT 
RTYPE=(DFSYB,DFASY) 

* OPTCD=CS IS USED TO FORCE ROTATION OF THE CONNECTIONS WHICH 
* SATISFY RECANY. OTHERWISE A BUSY CONNECTION MIGHT LOCK OUT 
* OTHER CONNECTIONS. 

LTR R15,R15 TEST FOR ACCEPTANCE 
BNZ DUMP DUMP IF NOT ACCEPTED 
TM RCVECB+2,x•so• IS RECEIVE ALREADY POSTED? 

*OS TM RCVECB,1'40 1 

BO CHECK YES, BYPASS WAITM SVC 
MWAIT WAITM RCVECB,TPENDECB WAIT FOR RECEIVE ANY OR TPEND 
*OS WAIT ECBLIST=ECBLST 

TM TPENDECB+2,X'80 1 IS POSTED ECB THE TPEND ECB? 
*OS TM TPENDECB,X'40' 

BO RETURN1 YES, GO TO CLOSE ACB 
CHECK EQU * 

OI RESETCAF,X 1 FF 1 INIT RESETSR CA NEEDED FLAG 
CHECK RPL=PRPL NO, CHECK COMPLETION OF RECEIVE 
LTR R15,R15 TEST FOR SUCCESSFUL COMPLETION 
BNZ RECANY NO, CONTINUE WITH NEXT INPUT 

* SYNAD WILL HAVE EITHER CLSDST THE FAILING CONNECTION OR HAVE CLEARED 
* THE EXCEPTION MESSAGE AND RESTORED THE CONNECTION TO CA MODE. 

TM RPLSRTYP,RPLDFASY DFASY RECEIVED? 
BNO TESTBRB NO 

** TE$TCB AM=VTAM,RPL=PBPL,RTYPE=DFASY,ERET=DUMP 
** BNE TESTRRN 

CLSDST RPL=PRPL,OPTCD=SYN 
* IGNORE POSSIBLE FAILURE OF CLSDST. SYNAD/LERAD COPE 

B CHCKTPND ALLOW FOR PROGRAM CLOSEDOWN 
TESTRRN EQU * 

TM RPLVTFL2,RPLRRN RRN RESPONSE WANTED 
BO TESTEXCP 

** TESTCB AM=VTAM,RPL=PRPL,RESPOND=RRN,ERET=DUMP 
** BE TESTEXCP 

TM RPLVTFL2,RPLNFME TEST FOR NO RESPONSE • 
BO PROCESS + 

** TESTCB AM=VTAM,RPL=PRPL,ERET=DUMP, TEST FOR NO RESPONSE * 
** RESPOND=NFME REQUESTED 
** BE PROCESS BYPASS RESPONSE SENDING 

Appendix D. Example of a Primary Application Program 321 



TESTEXCP EQU * *P 
DELIBERATE EXCEPTIOB RESP WANTED?I 

FROM CLI TO ALLOW EBCDIC HEADERS. 
TM AREACODE,AEXCEPT 

* TH~ PRECEDING TEST CHANGED TO TM 
BNO RESPTEST NO, CHECK FOR DEFINITE RESPONSE 

SET SYS SENSE OUTPUT 

** 

** 
** 
** 
** 
** 

MVC RPLSSEO,AREASENS 
MVC RPLSSMO,AREASENS+1 
IC R7,AREASENS+1 PICK UP SSENS!O 
MVC RPLUSNSO,AREASENS+2 
OI RPLVTFL2,RPLEX 

NI RPLOPT5,X 1 FF 1 -RPLDLGIN SET OPTCD=CA FOR SENDD 
LH R8,AREASENS+2 PICK UP USENSEO 
MODCB AM=VTAM,RPL=PRPL,RESPOND=EX, SET EX 

SSENSMO=(R7) ,USENSEO=(R8),0PTCD=CA 
LTR R15,R15 
BNZ DUMP 
B SEND RESP GO TO SEND THE EXCEPTION RESPOISE 

+ 
+ 

+ 
• 
I 

• 

RESPTEST TM RPLVTFL2,RPLEX + 

** 
** 
** 

BNO SENDRESP DEFINITE RESP SO LEAVE OPTCD=CS 
NI RPLOPT5,X'FF 1 -RPLDLGIN SET OPTCD=CA FOR SENDD 

MODCB AM=VTAM,RPL=PRPL,OPTCD=CA 
LTR R15,R15 
BNZ DUMP 
B PROCESS 

I 
I 

**SPTEST TESTCB AM=VTAM,RPL=PRPL,RESPOND=NEX, DEFINITE RESPONSE 
REQUESTED? * ** 

** 
SENDRESP 

* 
*** THE 
PROCESS 

* 
* 
* TEST1 
CLOSET ST 

TEST2 

* SENDDATA 
SENDD 

322. 

BNE 
EQU 

SEND 
LTR 
BNZ 

ERET=DU.MP 

* 
PROCESS NO 

RPL=PRPL,STYPE=RESP,OPTCD=(SYN,SPEC) SEND PREPARED RESI 
R15,R15 TEST FOR SUCCESSFUL COMPLETION 
DUMP DUMP IF SEND COULD NOT BE 

SCHEDULED 
NI RESETCAF,X 1 00' TURN OFF RESETSR CA NEEDED FLAG 

PROCESS ROUTINE HAS BEEN MODIFIED TO SUPPORT INPUT CHAINS. 
EQU * 

PROCESS INPUT AND PREPARE REPLY 

EQU 
CLC 

BNE 
OI 

EQU 
OI 
TM 
BNO 
OI 
NI 

* 
AREADATA(9),=C 1 CLOSE ACB' IS CLOSE ACB REQUESTED 

TEST2 
TPENDFLG,X 1 80' 

* AREACODE,ASAD 
AREACODE,AECHOB 
TEST3 

SET ON TPEND FLAG TO CLOSE ACB 

IS AN ECHO WANTED TO THE TERMINAL 

AREACODE,AECHO YES SET ON HERE IS YOUR ECHO FLAG 
AREACODE,X 1 FF'-AECHOB TURN OFF PLEASE ECHO BACK FLG 

SEND THE REPLY (SCHEDULE ITS SENDING) 
EQU * *P 

NOTE THAT THIS*P* 
LEAVES CA,CS AS SET ABOVE. 

SEND RPL=PRPL,STYPE=REQ, 

LTR 
BNZ 

NI 

OPTCD=SYN,POST=SCHED 
R15,R15 

DUMP 
RESETCAF,X'00' 

TEST FOR SUCCESSFUL COftPLETIOB 
DUftP IF SEND COULD NOT BE SCHED 

TURN OFF RESETSR CA FLAG 



TEST3 EQU * 
*** THIS ROUTINE ALLOWS THE NEXT INPUT CHAIN ELEMENT FROM THIS LU TO 
*** SATISFY THE RECEIVE ANY. IT IS NEEDED WHEN NO OR ONLY EXCEPTIOI 
*** RESPONSES ARE EXPECTED. 

TEST4 

CLI RESETCAF,X 1 FF 1 

BBE TEST4 
IS A RESETSR CA NEEDED 

RESETSR RPL=PRPL,OPTCD=(CA,SYN) 
LTR R15,R115 
BlfZ DUMP 
EQU * 

* CHECK TPEND FLAG FOR CLOSEDOWN 
CHCKTPND CLI TPENDFLG,1 1 80 1 SEE IF TPEND IS SIGNALLED 

* RETURN1 

*OS 
*OS 
*OS 
*** 

BNE RECANY IF NOT, BRANCH BACK TO RECEIVE 
CLOSE THE PROGRAM, DISCONNECTING ALL LOGICAL UNITS 

MVI TPENDFLG,X 1 FF 1 SIGNAL CLOSE IN PROGRESS TO EXITS 
CLOSE PACB CLOSE THE ACB 
EOJ 
L 
LB 
BR 

R13,SlVE0+4 
R14,R12,12(R13) 
R14 

PICK UP BIGB-SlVElREA ADDRESS 
RESTORE CALLER'S REGISTERS 
RETURN TO CALLER (OS) 

* MAIN PROGRAM CONSTABTS 

*** PACB 
EXLST1 

PRPL 
R1CONTS 
ECBLST 

RCVECB 
TPENDECB 
TPEBDFLG 
RESETCAF 
SAVEO 
APPL1 

1REA1 
AR El BEAD 
AREACODE 

* A EXCEPT 

* AECHOB 

* ASAD 
A ECHO 

AREASEBS 
AREADATA 
AREAOFLO 
RO 
R1 

ACB 1M=VTAM,1PPLID=APPL1,EXLST=EXLST1,MACRF=LOGON THE 
EXLST 1M=VTAM,LOGON=LOGON1,SYNAD=SYNAD1,LER1D=LERAD1, 

ACB 
* 

RPL 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

DC 
DC 
DC 
DC 
DS 
DS 
DS 
DS 

EQU 

EQU 

EQU 
EQU 
DS 
DS 
DS 
DC 
EQU 
EQU 

RESP=RESP1,TPEND=TPEND1,LOSTERM=LOSTERM1 
AM=VTlM,ACB=PlCB 
F 1 0 1 

1 (RCVECB) 
x•ao• 
AL3 (TPENDECB) 
F 1 0 1 

F 1 0 1 

x•oo• 

SAVE AREA FOR REG 1 IN DUMP 

OS END OF ECB LIST MARKER 

ECB USED FOR RECANY 
ECB POSTED BY TPEND EXIT 

*OS 
*OS 
*OS 

x•oo• 
18F·1 0' 
x•oa• 

RESETSR 
FLAG SET BY MAINLINE TO FORCE CLOSE 
CA REEDED IF 00 

CL8' PROG1' 
OB 
OCL100 
0CL6 
XL1 

EQUATES FOR 
1 1 01 1 

1 1 04 1 

EQUATES FOR 
x•ao• 
x•o2• 
IL1 
XL4 
CL94 

C'*TBIS SHOULD BOT 
0 
1 

SAVE AREA NEEDED FOR BAIN PROGRAB 
APPLIED FOR lCB 

I/O DATA AREA 
HEADER 

Ilf PUT 
PLEASE RETURN Alf EXCEPTION RESPONSE 
AS SPECIFIED IN AREASENS 
PLEASE ECHO THIS BACK TO ME 

OUTPUT 
SEID THIS MESSAGE TO THE SCREEN 
THIS IS THE ECHO YOU REQUESTED 
RESERVED 
SEISE FIELD WHEN AREACODE=•oa•1•01• 
DATA FIELD 

BE DISPLAYED: CHECK RECLEN' 

Appendix D. Example of a Primuy Application Program 323 



R2 EQU 2 
R3 EQU 3 
R4 EQU 4 
RS EQP 5 
R6 EQU 6 
R7 ~QU 7 
RS EQU 8 
R9 EQU 9 
R10 EQU 10 
R11 EQU 11 
R12 EQU 12 
R13 EQU 13 
R14 EQU 14 
R15 EQU 15 

LTORG 
EJECT 
IFGRPL AM=VTAM 
EJECT 
ISTUSFBC 
EJECT 
IFGACB All=VTAB 
EJECT 

,IFGEILST All=VTAM, 
SAMPn CSECT RESTART CSECT 
*********************************************************************** 

( . 

,324 



***********************•··············································· • * NAME = LOGOB EXIT ROUTIIE 
* * FUNCTION = CONNECT AND SEND 1 GOOD MORNING MESSAGE TO ll!TBIIG 
* THAT LOGS ON IF IT IS A LOGICAL UIIT, ITS SYMBOLIC 
* NAME BEGINS WITH ~CT' AID lit LOGON DATA STARTS WITH ~xyz•: 
* OTHERWISE, REJECT IT. 
* * ENTRY POINT = LOG011 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

IIPUT 
REGISTERS 

0 
1 
2-13 
14 
15 

PARAMETER 
1 
2 
3 
4 

= UIPREDICTABLE 
= POIITER TO 4-WORD PlRA!ETER LIST 
= UNPREDICTABLE 
= ADDRESS TO RETURI COITROL TO 
= ENTRY ADDRESS OP THIS ROUTINE 

LIST - 4 WORDS 
= lCB ADDRESS 
= POIRTER TO SY!BOLIC IA!E OP RODE 
= UNPREDICTABLE 
= LENGTH OP LOGOI !ESSlGE 

* OUTPUT 
* A REQUEST TO VTAM TO COINECT OR BEJECT THE LOGICAL UIIT 
* OR PROGRAM TERMINATIOI AID 1 DUMP IF UIABLE TO COITIIUE. 
* IF SUCCESSFUL CONIECTIOI A GOOD MORIIIG MESSAGE IS SEIT 
* TO THE LOGICAL UNIT SPECIFYIIG EXCEPTIOR RESPOISE OILY. 

* * EXTERBAL REFERENCES = MODCB, INQUIRE, OPIDST, CLSDST, SEID, 
* AID DUMP. 
* * EXIT, NORMAL = BR 14 
* * EXIT, ABNORMAL = DU!P 
* * ATTRIBUTES = SERIALLY REUSABLE 
* 
* 
* 
* 
* • 
* 
* 
* 
* 
* 
* 

REGS USED 

3 = BASE 
4 = A(SYMBOLIC NAME OP LU) 
5 = A(PRPLCONI) ,IFGRPL 
6 = A(LOGOI EXIT PARM LIST) 
7 = A (PBIB) ,ISTDlUB 
8 = LENGTH OF LOGOI BES SAGE 
9 = ACB ADDRESS 

13 = A (SAVE2) 

•*******************************•······································ LOGON1 BALR R3,RO 
USING •,R3 ESTABLISH ADDRESSABILITY 
LA R13,SAYE2 PROVIDE SAVE lREl FOR !lCROS 

Appac&x D. Example of a Primal)' Application Pmpmn 325 



ST 
L 
TM 
BO 
LR 
L 
L 

* 
LA 
USING 
USING 
LA 
MVC 
MVC 
MVC 

R14,SAVE1 
R6 ,=A (TPENDFLG) 
O(R6),X 1 FF 1 

RETURN2 
R6,R1 
R9,0 (R6) 
R4,4(R6) 

R5,PRPLCONN 
IFGRPL,RS 
ISTDNIB,R7 
R7,PBIB 
NIBSYM, 0 (R4) 
NIBUSER,4 (R4) 
RPLUSFLD,4 (R4) 

SAVE RETURN ADDRESS TO VTAM 
POINT TO TPENDFLG 
IS CLOSE ACB IR PROGRESS 
YES, ALLOW CLOSE TO REJECT LOGONS 
SAVE THE PARAMETER LIST ADDRESS 
PICK UP ACB ADDRESS 
POINT TO THE SYMBOLIC NAME OF 
THE LOGICAL UNIT 
SET UP BASE FOR RPL DSECT + 

LOAD BASE FOR NIB DSECT 

.. 
+ 
+ 

* 
* * 

THE ABOVE MVC IS USEFUL IF 

PUT USER FIELD IN OPNDST RPL ~~~ 
VTAM DOES NOT SET IT ON OPNDST 

OPTCD=ASY USED. NOTE THAT IT CANNOT 
BE DONE WITH MODCB. 

** 
** 
** 
** 
CABCEL2 

MVC FIRSTMID(8),0(R4) PUT ID IB GOOD MORNING MESSAGE 
B VALIDATE 
MODCB AM=VTAM,NIB=PNIB,BAME=(*,O(R4)), PUT IN NIB 

USERFLD=(*,4{R4)) MAY HELP DEBUGGING (UNIQUE 
R15,R15 MODCB OK? 

+ 

* PER LU) 
LTR 
BZ 
ST 

VALIDATE YES, GO TO VALIDATE LOGON MESSAGE 
R1,R1COBTS2 SAVE THE CONTENTS OF REGISTER 1 

DUMP 
* VALIDATE THE LOGON MESSAGE 
VALIDATE EQU * 

* 

INQUIRE 

COMPARE 

* CORRECT 

326 

INQUIRE RPL=PRPLCONN,OPTCD=DEVCHAR, 
AREA=DEVCHAR,AREALEB=S, 
ACB=(R9),NIB=PNIB 

.PUT INQUIRE 
OUTPUT 

INTO PNIB 
LTR R15,R15 
BBZ DISCONB 
CLI DEVTCODE,DEVLU 
BNE DISCONI 
L R8,12(R6) 
LTR R8,R8 
BZ CONNECT 

CLEAR LOGON MESSAGE AREA 
MVI MSGAREA,C'*' 
MVC MSGAREA+1(79),MSGAREA 

IS THIS A LOGICAL UNIT? 
IF BOT, REJECT LOGOR 
PUT LENGTH OF LOGON MSG IN 8 
IS LOGOIMSG LENGTH ZERO? 
YES -- CONNECT 

INQUIRE RPL=PRPLCONN,OPTCD=LOGOBMSG,BIB=PNIB, 
AREA=MSGAREA,AREALEN=L 1 MSGAREA, 

OBTAIN 
LOG ON 
MESSAGE ACB=(R9) 

LTR R15,R15 
BNZ CABCEL2 
LTR RO,RO IS CONDITIONAL COMPLETION CODE O? 
BZ COMPARE YES, CHECK MESSAGE 
B DISCOBN BO, SHOULD BOT OCCUR 
CLC MSGAREA(3),=C 1 XYZ 1 CHECK PASSWORD IN USER LOGOB DATA 
BNE DISCONN IF NOT, CARNOT GRANT REQUEST 

CONNECT THE LOGICAL UNIT~· 

OPNDST RPL=PRPLCOBN,OPTCD=(SYN,ACCEPT,CA) 
LTR R15,R15 CONNECTED SUCCESSFULLY 
BZ SlfDFIRST· 

* 
* 

* 
* 



*** IF THE OPNDST FAILS DO NOT ATTEMPT CLSDST AS THAT WILL DRIVE LERADI 

SNDFIRST 

* RETURN2 

B RETURN2 
EQU * 

SEND RPL=PRPLCONN,AREA=FIRSTMSH, SEND FIRST MESSAGE. 

LTR 
BNZ 

RECLEN=L 1 FIRSTMSG+6+L 1 FIRSTMID, OPTCD=CA STILL SET • 
RESPOND=(EX,FME) INPUT MAY SATISFY RECANY. 

R15,R15 
RETURN2 ABANDON THIS CONNECTION ••••• 

SYNAD WILL HAVE CLSDST FOR US 
L R14,SAVE1 RESTORE REG 14 
BR R14 RETURN TO VTAM 

* DISCONNECT THE LOGICAL UNIT 
* IT MIGHT BE BETTER TO SEND A REJECTION MESSAGE TO THE VTAM OPERATOR 
* BEFORE CLOSING. 
DISCONN EQU * 

CLSDST RPL=PRPLCONN,OPTCD=SYN 

* 
* 

IF CONTROL RETURNS HERE THERE IS NO NEED TO TEST FOR SUCCESS OR 
FAILURE SINCE LERAD OR SYNAD COPE WITH FAILURE. 

B RETURN2 IF SO, BRANCH TO RETURN 
*** 
* LOGON EXIT-ROUTINE CONSTANTS 

*** SAVE1 
SAVE2 
R1CONTS2 
SAVESENS 
PNIB 

PRPLCONN 
MSG AREA 
FIRSTMSH 

* FIRSTMID 
FIRSTMSG 

SAMP1 

DS F 
DS 18F 
DC F'0 1 

DC F•o• 
NIB MODE:RECORD, 

PROC=(RESPX,TRUNC) 
RPL AM=VTAM 
DC CLSO• ' 
DC XL6'840000000000' 

DC CL9'********- 1 

DC C1 LOGON ACCEPTED. 
LTORG 
EJECT 
ISTDNIB 
CSECT 

SAVEAREA FOR REG14 RETURN ADDRESS 
SAVEAREA FOR MACROS IN VTAM EXITS 
SAVEAREA FOR REG 1 FOR DUMP 
SENSE FROM FAILED OPNDST 

ALLOW USE OF RESP EXIT FOR LU 
AND TRUNCATE EXCESS INPUT DATA 

AREA FOR LOGON MESSAGE 
HEADER CODE FOR DISPLAY ON TERMINAL 

AND ECHO BACK TO PROG1. 

VTAM PROG READY FOR FIRST INPUT' 

,INVOKE NIB, DEVCH, AND PROC DSECT 
CONTINUE SAMP1 CSECT 

Appendix. D. Example of a Primary Application Program 327 



*********************************************************************** 
* 
* NAME = RESP EXIT ROUTINE 

* * FUNCTION = RECEIVE A RESPONSE TO THE MESSAGE SENT IN THE MAIN 
* PROGRAM. IF THE RESPONSE IS NORMAL (POSITIVE), RESET THE 
* LOGICAL UNIT TO CONTINUE-ANY MODE SO THAT THE MAIN PROGRAM 
* RECEIVE WITH OPTCD=ANY SPECIFIED WILL ACCEPT INPUT FROM IT. 
* IF THE RESPONSE IS AN EXCEPTION, CALL SYNAD1 TO ANALYZE THE 
* EXCEPTION ABD TAKE WHATEVER ACTION IS POSSIBLE. SYNAD1S' ACTION 
* WILL BE EITHER TO CLSDST THE FAILING CONNECTION OR TO PERFORM A 
* SESSIONC CLEAR AND SDT. IN BOTH CASES CONTROL IS RETURNED TO 
* THIS EXIT AT LABEL SYNRTURN. 

* * ENTRY POINT = RESP1 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

INPUT 
REGISTERS 

0 
1 
2-13 
14 
15 

PARAMETER 
1 
2 
3 

4 
5 

= UNPREDICTABLE 
= ADDRESS OF A 5-WORD PARAMETER LIST 
= UNPREDICTABLE 
= ADDRESS TO RETURN CONTROL TO 
= ENTRY ADDRESS TO THIS ROUTINE 

LIST - 5 WORDS 
= ADDRESS OF THE lCB 
= THE CID OF THE LOGICAL UNIT 
= THE CONTENTS OF THE USERFLD (FROM 

THE NIB SPECIFIED AT OPNDST) 
= UNPREDICTABLE 
= THE ADDRESS OF A READ-ONLY RPL THAT IS 

USED TO DETERMINE WHAT KIND OF RESPONSE 
HAS BEEN RECEIVED 

* OUTPUT = A RESETTING TO CONTINUE-ANY MODE FOR ANY 
* LOGICAL UNIT FROM WHICH A RESPONSE IS RE-
* CEIVED. 

* * EXTERNAL REFERENCES = TESTCB, MODCB, RESETSR, SYNAD1, AND DUMP. 
* * EXIT, NORMAL = BR 14 

* * EXIT, ABNORMAL = DUMP 

* * ATTRIBUTES = SERIALLY REUSABLE 

* * REGS USED 

* * 3 = BASE 
* 4 = A(PRPLR),IFGRPL 
* 5 = A(VRPL)~IFGRPL 
* 6 = WORK,l(RESP1 PARM LIST) 
* 8 = CID 
* 9 = A(ACB) 
* 13 = A(SAVE2) 

* 

\ 

*********************************************************************** 

328 



RESP1 

** 
** 
** 

** 
** 
** 
•* 
** 
CANCEL3 

* 
* 
* 
* 
* RESET 

RETURN3 

* EXCEPTN 

BALR R3,RO 
USING *,R3 
L R13,=A(SAVE2) 
ST R14,SAVE4 
L R6,=A(TPENDFLG) 

ESTABLISH BASE 
ESTABLISH ADDRESSABILITY 
POINT TO EXIT ROUTINE SAVEAREA 
SAVE RETURN ADDRESS 

TM O(R6),X 1 FF' IS CLOSE ACB IN PROGRESS? 
BO RETURN3 YES, IGNORE RESPONSES 
LR R6,R1 SAVE PARAMETER LIST ADDRESS 
L R9, 0 (R6) PICK UP ACB ADDRESS 
L R5,16(R6) PUT ADDRESS OF READ-ONLY RPL IN 5 
LA R4,PRPLR INITIALIZE R4 
DROP RS FROM LOGON EXIT USE 
USING IFGRPL,R4 BASE ON PRPLR 
MVC RPLARG,4(R6) MOVE CID TO PRPLR FOR RESETSR 
NI RPLEXTDS,X 1 FF 1 -RPLNIB TURN OFF NIB FLAG 
DROP R4 
USING IFGRPL,RS 
TM RPLVTFL2,RPLEX 

BASE ON READY-ONLY RPL 
NORMAL RESPONSE? 

+ 

+ 
BO EXCEPTN + 
TESTCB AM=VTAM,RPL=(R5) ,RESPOND=NEX, TEST FOR NORMAL RESPONS* 

ERET=CANCEL3 
BNE 
B 

EXCEPTN 
RESET 
R8,4 (R6) 

NOT NEX SO EXCEPTION (EX) 

L IF NORMAL, PUT IDENTITY OF 
LOGICAL UNIT IN REGISTER 8 

MODCB AM=VTAM,RPL=PRPLR,ARG=(R8) PUT IDENTITY INTO PRLPR 
LTR R15,R15 MODCB WORK OK 
BZ RESET YES, BRANCH TO RESETSR 
ST R1,R1CONTS3 OTHERWISE, MUST TERMINATE AND 
DUMP DUMP THE PROGRAM 

RESET THE MODE TO CONTINUE-ANY MODE 
THIS RESETSR WILL BE EXECUTED WITH NULL EFFECT IF THE LU 

IS ALREADY IN CA MODE. EG AS A RESULT OF MAINLINE CODE,. 

+ 

NOTE THAT THIS PROGRAM MAKES NO ATTEMPT TO RESEND A MESSAGE 
WHEN A NEGATIVE RESPONSE IS RECEIVED. 

RESETSR RPL=PRPLR,OPTCD=CA, RESET THE LOGICAL UNIT FOR 
RTYPE=DFSYN,ACB=(R9) DFSYN INPUT. OPTCD=(SYN,SPEC) 

LTR 
BNZ 
L 
BR 

R15,R15 SEE IF RESETSR REQUEST ACCEPTED 
CANCEL3 IF NOT, GO TO TERMINATE AND DUMP 
R14,SAVE4 RESTORE REG 14 RETURN ADDRESS 
R14 RETURN TO VTAM 

EQU * 
STM R14,R12,12(R13) 
LA R0,4 
L R15,=A(SYNAD1) 
LR R1,R5 
BALR R14,R15 

SET UP LINKAGE FOR SYNAD1 
SAVE REGISTERS 
INDICATE EXTRAORDINARY COMPLETION 

POINT TO READ-ONLY RPL 

SYNRTURN LM R1,R12,24(R13) 
CALL SYNAD ROUTINE 
RESTORE RESP EXIT REGS 
SUCCESSFUL RECOVERY? 

* 

LTR R15,R15 
BZ RESET 

SYNAD1 SETS R15=12 IF 
NO RESETSR SHOULD BE 

B RETURN3 

YES, ALLOW NEXT TRANSACTION 
CLSDST WAS NECESSARY IN WHICH CASE 
EXECUTED. 

RETURN TO VTAM. 

IN 

Appendix D. Eµmple of a Primary Application Program 32~ 



PRPLR 
* 
* SAVE4 
R1CONTS3 

330 

RPL lll=VTAll 

DS F 
DC F 1 0' 
LTORG 

COULD BE SlftE OIE AS PRPLCONN 
SIICE BOTH lRE USED SYNCBROBOUSLY 
II VTll! EXITS. 

SlVEAREl FOR EXIT RETURB ADDRESS 
SlVBlRBl FOR REG 1 lT DU!P 



*********************************************************************** 
* * NAME = LERAD EXIT ROUTINE 
* * FUNCTION = HANDLE TELEPROCESSING-ORIENTED LOGICAL ERRORS 

* * ENTRY POINT = LERAD1 

* * INPUT 
* REGISTERS 
* 0 = RECOVERY ACTION RETURN CODE 
* 1 = RPL ADDRESS 
* 2-12 = UNPREDICTABLE 
* 13 = ADDRESS OF SAVE AREA SUPPLIED TO MACRO 

* • 
* 
* 

14 
15 

* OUTPUT = NONE 

* 

= 
= 

CAUSED LERAD ENTRY 
RETURN ADDRESS 
ADDRESS OF THIS ROUTINE'S ENTRY POINT 

* EXTERRAL REFERENCES = TESTCB, GETVIS, FREEVIS, DUMP. 
* 
* EXIT, RORMAL = BR 14 

* * EXIT ABBORBAL = DUMP 

* * ATTRIBUTES = SERIALLY REUSABLE, • 
• • REGS USED 
• 
* 2 = ADDRESS OF PlRMLIST FOR TESTCB 

* 3 = BASE 

* 6 = A(RPL),IFGRPL 

* 12 = RETURN ADDRESS 
• 13 = A(SAVEAREA) 
• 

TBlT 

*********************************************************************** 
LERAD1 EQU * LERAD EXIT-ROUTINE ENTRY POINT 

••• 
*OS 

* • 

LR R3,R15 REG 15 HAS ADDRESS OF LER1D1 
USING LERAD1,R3 SPECIFY BASE REGISTER 
LR R12,R14 SAVE RETURN ADDRESS 
LR R6,R1 SAVE RPL ADDRESS 
LA R0,96 SAVElREl SIZE • 
LA R0,96+LTESTLE SAVEAREA • TESTCB PARBLIST SIZE 
GETVIS lDDRESS=(R1),LENGTH=(RO) GET STORAGE FOR SlVElREA 
GETMAIB R,LV=(RO) (ROT TESTED) 
LTR R15,R15 
BNZ LEOVERID 
ST R13,4(R1) 
LR R13,R1 

DROP RS 
USING IFGRPL,R6 

DUMP IF NO STORAGE AVAILABLE 
SAVE HIGH SAYEAREl ADDRESS IN 
POINT TO NEW SAVElREl 

USED IN RESP EXIT 

THE FOLLOWIBG TESTCBS AVOID DUMPIBG OR ERRORS CAUSED BY 
CLOSING A CONNECTION OR THE lCB • 

CLI RPLFDB2,X'12 1 

NEW 

Appendix D. Example of a Primary Application Propam 331 



** LA R2,96(R13) 
** TESTCB AM=VTAM,RPL=(R6),ERET=LEOVERID, * 
** FDBK2=18,MF=(G,(R2) ,LTESTLE) CLSDST IN PROGRESS? 

BE IGNORE 
CLI RPLFDB2,X'13' I 

** TESTCB AM=VTAM,RPL=(R6),ERET=LEOVERID, * 
** FDBK2=19,MF=(E, (R2)) IS CID INVALID? 

BE IGNORE 
CLI RPLFDB2,X'60 1 CLSDST WITH SYMBOLIC NAME FAILED? I 

** TESTCB AM=VTAM,RPL=(R6),ERET=LEOVERID, * 
** FDBK2=96,MF=(E, (R2)) 

BE IGNORE YES SO iGNORE 
B LEOVERID BRANCH AROUND DUMP ID 
DC C'LERAD1 1 DUMP ID 

R1DUMP DC F 1 0 1 REG 1 CONTENTS AT DUMP 
LEOVERID EQU * 

ST R1,R1DUMP SAVE REG 1 FOR DUMP 
DUMP 

IGNORE EQU * 
FREEVIS ADDRESS=(R1),LENGTH=(R0) FREE SAVEAREA 

*OS FREEMAIN R,LV=(RO),A=(R1) (NOT TESTED) 
LTR R15,R15 
BNZ LEOVERID 
SR R15,R15 INDICATE SUCCESSFUL 
SR RO,RO COMPLETION OF LERAD. 
LR R14,R12 RESTORE RETURN ADDRESS 
BR R14 RETURN TO CALLER VIA VTAM 
LTORG 

332 



*********************************************************************** 
* * NAME = TPEND EXIT ROUTINE 

* * FUNCTION = SET AN INDICATION FOR THE MAIN PROGRAM 
* TO CLOSE THE ACB AND TERMINATE 

* * ENTRY POINT = TPEND1 

* * INPUT 
* REGISTERS 
* 0 = UNPREDICTABLE 
* 1 = ADDRESS OF A 2-WORD PARAMETER LIST 
* 2-13 = UBPREDICTABLE 
* 14 = RETURN ADDRESS 
* 15 = ADDRESS OF THIS ROUTIBE 1 S ENTRY POINT 
* PARAMETER LIST - 2 WORDS 
* 1 = ADDRESS OF THE ACB 
* 2 = A VALUE INDICATING WHY TPEND WAS ENTERED 

* * OUTPUT = INDICATION TO CLOSE ACB SET FOR MAIN PROGRAM 

* * EXTERNAL REFERENCES = POST. 

* * EXIT, NORMAL = BR 14 

* * EXIT, ABNORMAL = NONE 

* * ATTRIBUTES = SERIALLY REUSABLE. 

* * REGS USED 

* * 3 = BASE 
* 4 = A(TPENDECB) 

* *********************************************************************** 
TPEND1 BALR R3,RO 

USING *,R3 
ST R14,TPEBDS14 
LR R6,R1 
L R4,=A(TPENDECB) 
POST (R4) 

L R14,TPENDS14 

SAVE PARMLIST ADDRESS 
POINT TO MAINLINE 1 S CLOSEDOWN ECB 
INDICATE TPEND REQUIRED 

BR R14 RETURN TO VTAM 
TPENDS14 DC F 1 0 1 SAVE AREA FOR VTAM RETURN ADDRESS 

LTORG 

Appendix D. Example of a Primary Application Program 333 



*********************************************************************** 

* * NAME = SYNAD EXIT ROUTINE 

* * FUNCTION = HANDLE ERRORS AND SPECIAL COBDITIONS OTHER THAR 
* TELEPROCESSING LOGICAL ERRORS. ATTEMPTS TO CLEAR 
* THE CONDITION OR CLOSE THE CONBECTION. 

* * ENTRY POINT = SYBAD1 

* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 
* 

INPUT 
REGISTERS 

OUTPUT 

0 
1 

2-12 
13 

= 
= 
= 
= 

RECOVERY ACTION RETURN CODE 
RPL ADDRESS (HIGH-ORDER BIT OB IF RECURSIVE ENTRY) 
UNPREDICTABLE 
ADDRESS OF SAVE AREA SUPPLIED PRIOR TO CAUSING 
SYNAD ENTRY 

14 = RETURN ADDRESS 
15 = ADDRESS OF THIS ROUTINE'S ENTRY POINT 

= A VALUE SET IN REGISTER 15: 
0 = SUCCESSFUL RECOVERY 
8 = EXCEPTION REQUEST RECEIVED 

12 = CLSDST PERFORMED 

* EXTERNAL REFERENCES = SHOWCB, TESTCB, SESSIONC, ftODCB, SEND, 
* RESETSR, CLSDST, GETVIS, GEBCB, FREEVIS, DUMP, AND EXECRPL. 

* * EXIT, IORMAL = BR 14 

* * EXIT, ABNORMAL = DUMP 

* * ATTRIBUTES = QUAS~-REENTERABLE~ THIS ROUTINE IS REENTERED IF 
* A MACRO IT ISSUES FAILS. IN THIS CASE, INDICATED BY THE 
* HIGH-ORDER BIT OF REG 1 BEING OB OB EBTRY TO SYIAD1, 
* THE PROGRAM TERMINATES AND A DUMP IS REQUESTED .• 
* OTHERWISE IF SYNA-D rs REENTERED PROCESSING CONTINUES. 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

REGS USED 

2 = A(PARMLIST FOR MANIP MACROS) 
3 = BASE 
5 = A(RPL),IFGRPL 
6 = A(GETVIS RPL),IFGRPL 
7 = REGO RETURB CODE 
8 = REG15 RETURN CODE, A(PARMLIST FOR MANIP MACROS) 
9 = A (PACB) 

10 = LINKAGE TO SESSIONC 
11 = CID 
12 = RETURN ADDRESS 
13 = A(GETVIS SAVEARE~ 1 SAVE5 

* 
*********************************************************************** 
SYNAD1 BALR R3,RO 

USING *,R3 

334 



LR R4,RO SAVE PROGRAMMER ACTION CODE 
LR R5,R1 SAVE RPL ADDRESS 
LR R12,R14 SAVE RETURN ADDRESS 
LA R0,96 + 

** L RO,SGWORKL SAVEAREA I MANIP MACRO PARMLISTS 
GETVIS ADDRESS=(R1),LENGTH=(RO) GET STORAGE 

*OS GETMAIN R, LV= (RO) (HOT TESTED) 
LTR R15,R15 
BNZ CANCEL4 

•ST R13,4(R1) SAVE HIGH SAVEAREA ADDRESS 
LR R13,R1 POINT TO NEW SAVEAREA 
DROP R6 USED IN LERAD EXIT 
USING IFGRPL,R5 
USING SDSECT,R13 SET BASE FOR REENTRANT WORKAREA 

* CHECK FOR RECURSIVE ENTRY TO SYNAD1 
ST R5,REGNWORK 
TM REGNWORK,X 1 80' IS THIS RECURSIVE ENTRY TO SYNAD? 
BO CANCEL4 YES -- CANCEL 
OI REGNWOBK,X 1 80' NO -- INDICATE RECURSION 
L R5,REGNWORK SAVE RPL ADDRESS 

* IF WE LEAVE SYNAD1 CORRECTLY THE RECURSION FLAG WILL 
* BE OVERWRITTEN BY THE NEXT RPL-BASED MACRO EXECUTED 
* OUTSIDE OF SYNAD. 

LA RO,SRPLEND-SRPL SET LENGTH OF RPL IN RO + 
GETVIS ADDRESS=(R1), GET ENOUGH STORAGE FOR +* 

LENGTH=(RO) AN RPL. + 
*OS GETMAIB R,LV=(RO) 
** GENCB AM=VTAM,BLK=RPL GET A NEW RPL 

LTR R15,R15 
BNZ CANCEL4 
MVC O(SRPLEND-SRPL,R1) ,SRPL COPY SRPL TO GETVIS STORAGE • 
ST RO,SAVE6 SAVE LENGTH FOR FREEVIS 
ST R1,REGNWORK POINT TO SYNAD1 1 S OWN RPL 
OI REGNWORK,x•ao• SET HIGH-ORDER BIT OF R6 
L R6,REGNWORK (RPLSYN ADDRESS) FOR RECURSION .• 
L R9,=A(PACB) PICK UP ADDRESS OF ACB 
L R11,RPLARG + 

** LA R1,SHOWL1 POINT TO 1ST PARMLIST WORKAREA 
** SHOWCB AM=VTAM,RPL=(RS) ,AREA=(S,SARG), * 
** LENGTH=4,FIELDS=ARG, MOVE CID TO SARG * 
** MF=(G,(R1),SHOWL1E) 
** LTR R15,R15 
** BNZ CANCEL4 
** L R11,SARG PICK UP CID OF THE LU 

* SIORM 

CB R4,=H 1 16 1 IS IT OVER MAX FOR SYNAD? 
BH CANCEL4 YES, GIVE UP 
B *~4(R4) USE ACTION CODE IN BRANCH TABLE 
B SNORM CODE=x•oo• SHOULD NOT OCCUR 
B SITRA CODE=X 1 04 1 EXTRAORDINARY COMPLETION 
B SRETRY CODE=x•oa• RETRYABLE 
B SDABAGE CODE=x•oc• DAMAGE 
B SEHYIR CODE=X 1 10 1 ENVIRONMENT ERROR 

SR 
SR 

R7,R7 
R8,R8 

INDICATE SUCCESSFUL 
COMPLETION. 

Appendix D. Example of a Primary Application Program 335 



SABNORM 

* 

** 

*OS 

* SITRA 
* THIS 

** 
** 

** 
** 

** 
** 
** SXPATHE 

...... ' 

**PATHE 

** 
** 

** 
** 
* 
* 

L RO,SAVE6 LENGTH OF STORAGE TO BE FREED 
SLL R6,1 GET RID OF HIGH-ORDER.BIT 
SRL R6,1 FRO! R6 FOR FREEVIS. 
LA R6,0(R6) THIS DOES THE SAME AS THE SLL,SRL. 
FREEVIS ADDRESS=(R6),LENGTB=(RO) FREE SYNAD'S RPL 
FREEMAIR R,LV=(RO),A=(R6) (NOT TESTED) 
LTR R15,R15 
BNZ CANCEL4 
LR R1,R13 
L R13,SAVE5+4 

POINT TO SlVEAREA TO BE FREED 
RESTORE HIGH SAVE AREA ADDRESS 

LA R0,96 
L RO,SGWORKL 
FREEVIS ADDRESS=(R1),LENGTH=(RO) FREE SAVEAREA 
FREEMAIN R,LV=(RO),A=(R1) (NOT TESTED) 
LTR R15,R15 
BNZ CARCEL4 
LR RO,R7 
LR R15,R8 
LR R14,R12 
BR R14 

RESTORE RETURN ADDRESS 
RETURN TO NSI VIA VTAM 

EQU * EXTRAORDINARY COMPLETION 
SHOWCB IS NOT NECESSARY WITH DSECTS 

LA R2,SHOWL1 
SHOWCB AM=VTAB,RPL=(RS), DISPLAY FEEDBACK FIELDS 

AREA=(S,SHOWWORK). 
FIELDS=(FDBK2,SSENSMI), 
LENGTB=8,BF=(G~(R2) ,SBOWL2E) 

LTR R15,R15 
BRZ CANCEL4 
TM RPLSSEI,BPLPATHI 
BO SDISCONN 
TESTCB AM=VTAB,RPL=(R5), WAS IT PATH ERROR? 

SSENSEI=PATH, 
ERET=CANCEL4,BF=(G, (R2) ,TESTL1E) 

SDISCONN YES--GO TO DISCONNECT LU 

'• 

BE 
CLI 
CLC 
BE 

LA 

RPLFDB2,I 1 03 1 

SFDBK2,=F'3' 
EX MSG 

R10,SNORM 

NO, IS REASON CODE 3? 
YES--EXCEPTION MESSAGE RECEIVED 
RO--EXCEPTION RESPONSE RECEIVED 
PREPARE FOR NORMAL RETURN 

DROP RS 
USING IFGRPL,R6 

+ 

* 
* 
* 

+ 
+ 

* 
* 

SESSIONC SESSIONC RPL=(R6),ACB=(R9),ARG=(R11), CLEAR SESSION * 
CONTROL=CLEAR,STYPE=REQ,OPTCD=SYN 

LTR R15,R15 
BNZ SDISCONN 

*** THE FOLLOWING STSN IS REDUNDANT NOW CLEAR RESETS SEQUENCE TO 0. 
* THE STSN AVOIDS OUT OF SEQUENCE SITUATIONS. 

336 

SESSIONC RPL=(R6),CONTROL=STSN, * 
OBSQAC=SET,OBSQVAL=O,IBSQAC=SET,IBSQVAL=O 

LTR R15,R15 
BNZ SDISCONN 
SESSIONC RPL=(R6),CONTROL=SDT START DATA TRAFFIC 
LTR R15,R15 SUCCESSFUL RECOVERY? 
BNZ SDISCONN NO, DISCONNECT 



BR R10 YES, RETURN TO CALLER 
DROP R6 
USING IFGRPL,RS 

* 
EXMSG EQU * THIS CANNOT BE REACHED FROM THE RESP EXIT 

TM RPLVTFL2,RPLNFME • 
BO ST BAL + 

** LA R1,SHOWL1+TESTL1E POINT TO NEXT AVAILABLE SPACE 
** TESTCB AM=VTAM,RPL=(RS),ERET=SDISCONN, NO RESPONSE * 
** RESPOND=NFME,MF=(G, (R1),TESTL2E) WANTED? 
** BE STBAL YES--BYPASS SENDING RESPONSE 
* MOVE SSENSEI TO SSENSEO 

MVC RPLSSEO,RPLSSEI + 
** LA R8,SHOWL1+TESTL1E POINT TO NEXT AVAILABLE SPACE 
** SET UP LIST FORM OF MODCB 
** MODCB AM=VTAM,RPL=(R5),SSENSEO=CPM,MF=(L,(R8),MODL1E) 
** TESTCB AM=VTAM,RPL=(RS) ,ERET=SDISCONN,SSENSEI=CPM, * 
** MF=(E,(R2)) 
** BNE ST2 
** MODCB AM=VTAM,RPL=(RS),SSENSEO=CPM,MF=(E, (R8)) 
** LTR R15,R15 
** BNZ SDISCONN 
** B STEND 
**2 TESTCB AM=VTAM,RPL=(R5),ERET=SDISCONN,SSENSEI=STATE, * 
** MF=(E,(R2)) 
** BNE ST3 
** MODCB AM=VTAM,RPL=(R5),SSENSEO=STATE,MF=(E, (R8)) 
** LTR R15,R15 
** BNZ SDISCONN 
** B STEND 
**3 TESTCB AM=VTAM,RPL=(R5),ERET=SDISCONN,SSENSEI=FI, * 
** MF=(E,(R2)) 
** BNE ST4 
** MODCB AM=VTAM,RPL=(R5),SSENSEO=FI,MF=(E,(R8)) 
** LTR R15,R15 
** BNZ SDISCONN 
** B ST END 
**4 TESTCB AM=VTAM,RPL~(RS) ,ERET=SDISCONN,SSENSEI=RR, * 
** MF=(E,(R2)) 
** BNE STE ND 
** MODCB AM=VTAM,RPL=(R5),SSENSEO=(RR,MF=(E, (RS)) 
** LTR R15,R15 
** BNZ SDISCONN 
ST END EQU * 

MVC RPLSSMO,RPLSSMI 
** L R7,SSENSMI PICK UP SSENSMI FOR EXCEPTION RESP 

SEND RPL=(RS),STYPE=RESP, SEND THE EXCEPTION RESPONSE * 
OPTCD=SYN • 

** SSENSMO=(R7), USING THE RECEIVE RPL * 
** OPTCD=SYN (RECANY HAS OPTCD=ASY) 

LTR R15,R15 
BNZ SDISCONN 

* THE NEXT OPERATION WILL BE A SESSIONC CLEAR WHICH MAY OVERTAKE THE 
* RESPONSE WE HAVE JUST SENT. HOWEVER THE LU SHOULD UNDERSTAND. 

DROP RS 

Appendix D. Example of a Primuy Application Program 337 



ST BAL 

* 

USING IFGRPL,R6 
BAL R10~SESSIONC GO THROUGH CLEAR AND SDT 
RESETSR RPL:(R6),RTYPE=DFSYN, RESTORE TO CA MODE. 

OPTCD= (SYN,CA) 
LTR R15,R15 
BNZ CANCEL4 
LA R8,8 SIGNAL UNSUCCESSFUL COMPLETION 
B SABNORM RETURN TO RECANY 

* 

SDISCONN EQU * UNRECOVERABLE ERRORS 
CLSDST RPL=(R6),ACB=(R9),ARG=(R11) 
LTR R15,R15 
BIZ CABCEL4 
LA R8,12 SIGNAL UNSUCESSFUL RECOVERY 
B SABB ORM 

* C1NCEL4 DUMP 
SRETRY EQU * 
*** IF POSSIBLE A PROGRAM SHOULD PAUSE BEFORE RETRY TO GIVE TIME FOR 
*** VTAM STORAGE TO BE FREED. IDEALLY DO A RECEIVE FIRST. 

I 
I 

BEENI 
I 

*** A PROGRAM MUST BE DESIGNED TO KNOW THAT NO RPL PARMS CAB HAVE 
*** ALTERED BY VTAM BEFORE INDICATING RETRY IS POSSIBLE. I 

* SDAMAGE 

** 

** 
** 

* 
* SE NV IR 

** 
** 

** 

** 
** 

* **WORKL 

* SDSECT 
SAVES 
SHOWWORK 

338 

EXECRPL RPL=(RS) RETRY FAILED MACRO 
LTR R15,B15 
BBZ CABCEL4 
B SN ORM RETURN TO ORIGINAL NSI 

EQU * 
CLI RPLREQ,RPLRCVCD + 
LA R2,SHOWL1 POINT TO PARMLIST SPACE 
TESTCB AM=VTAM,RPL=(RS),ERET=SDISCONN, IS IT A RECEIVE * 

REQ=35,BF=(G,(R2),TESTL3E) THAT IS FAILING? 
BN! SNORM NO, PRETEND COMPLETION WAS OK 
LA R8,16 YES, SET R15 CODE REG NON-ZERO 
B SABNORM RETURN TO NSI, WHICH MAY BE ABLE 

TO IGNORE THE ERROR 

EQU * 
CL! RPLREQ,RPLSNDCD 
LA R2,SHOiL1 POINT TO NEXT AVAILABLE SPACE 
TESTCB AM=VTAM,RPL=(RS),ERET=CANCEL4, IS IT A SEND? 

REQ=34,MF=(G, (R2),TESTL4E) 
BE SDISCONR ATTEMPT TO CLSDST 
CLI RPLREQ,RPLRSRCD 
TESTCB AM=VT1M,RPL=(R5),ERET=CANCEL4, IS IT A RESETSR? 

REQ=36,MF=(E, (R2)) 
ATTEMPT TO CLSDST LU 

* 

+ 

* 
BE 
LA 
B 

SDISCONN 
R8,20 
SABNORM 

SET NON-ZERO CODE AND ALLOW IN-LINE 
CODE TO RECOVER. (MAY BE AN OPNDST 
OR INQUIRE) 

DC A(96+TESTL1E+TESTL2E) SGWORKL MAX SIZE NEEDED 

DSECT 
DS 18F NEW SAVEAREA 
DS OF 



SFDBK2 DS F SPECIFIC REASOR CODE 
SSSEBSMI DS p SYSTEM SERSE MODIFIER IR PUT 
REG NW ORK DS F FOR RETRYABLE ERRORS 
S1VE6 DS F LEBGTB OF RPL FROM GEBCB 
SARG DS F ARG - CID VALUE 
**OWL1 DS OF SHOWL1 - START OF l!llBIP PlRl!ILISTS 
SAl!IP1 CSECT 
SRPL RPL ll!=VTlll RPL TO BB COPIED TO GBTVIS STORAGE+ 
SRPLEID EQU • EID OF SRPL FOR LENGTH CALC. • 

LTORG 

Appendix D. Example of a Primary Application Program 339 



******************••·····························•********************* 
* * NAME = LOSTERM EXIT ROUTINE 

* * FUNCTION = HANDLE SITUATIONS IN WHICH A LOGICAL UBIT HAS 
* UNEXPECTEDLY BECOME UNAVAILABLE 

* * EITRY POINT = LOSTERM1 
* * IIPUT 
* REGISTERS 
* 0 
* 1 * 2-13 
* 14 
* 15 * PARAMETER 
* 1 
* 2 
* 3 
* 
* 
* 

4 

= UNPREDICTABLE 
= ADDRESS OF A 4-WORD PARAMETER LIST 
= UNPREDICTABLE 
= RETURN ADDRESS 
= ADDRESS OF THIS ROUTINE'S EBTRY POINT 
LIST - 4 WORDS 
= ADDRESS OF THE ACB 
= THE CID OF THE LOGICAL UNIT 
= THE CONTENTS OF THE USERFLD (FROM THE NIB 

SPECIFIED AT OPRDST) 
= A VALUE INDICATING WHY LOSTERM WAS ENTERED 

* OUTPUT = DISCONNECTION OF THE LOGICAL UNIT 

* * EXTERNAL REFERENCES = CLSDST, DUMP. 
* 
* EXIT, NORMAL = BR 14 
* · .. =:. 

~. EXIT, 'ABNORMAL = DUMP 
* 
* ATTRIBUTES = SERIALLY REUSABLE. 
* 
* REGS USED 
* 
* 3 = BASE 
* 4 = A (PRPLCONN) 
* 5 = A (ACB) 
* 6 = CID 
* 7 = A (TPENDFLG) 
* 13 = A (SAVE2} 
* 
* 
*********************************************************************** 
LOSTERM1 

340 

BALR 
USING 
L 
ST 
L 
L 
USING 
MVC 
L 
L 
TM 

R3,RO 
*,R3 
R13,=A (SAVE2) 
R14,SAVELOST 
R4 ,=A (PRPLCONN) 
RS, 0 (R1) 
IFGRPL,R4 
RPLUSFLD,8(R1) 
R6, 4 (R1) . 
R7 ,=A (TPENDFLG) 
O(R7),X'FF' 

POINT TO EXIT-ROUTINE SAVEAREA 

POINT TO OPNDST/CLSDST RPL 
PICK UP ACB ADDRESS 
BASE ON PRPLCONN 
MOVE USER FIELD FOR PJWM 
PICK UP CID OF LOST TERMINAL 

IS CLOSE ACB IN PROGRESS? 



BO RETURNL YES, IGNORE LOSTERM BOTIFICATION 
LR R8,R1 POINT TO PARBLIST 

*** THE FOLLOWING ALLOWS FOR POSSIBLE RECOVERABLE ERRORS. IDEALLY THE 
*** PROGRAM SHOULD CLSDST AT CODE 18 IF THE LU INITIATES LOGONS. 

CLI 15(R8) ,X 1 18 1 IS RESTART IN PROGRESS? 
BE RETURNL 

*** THE PROGRAM MIGHT CHOOSE TO TEST OTHER VALUES AND TAKE SPECIAL 
*** ACTIONS. EG. NOT ISSUING CLSDST FOR THE FIRST OCCURRENCE OF CODE 
*** X1 24 1 IF IT MAY HAVE BEEN A TEMPORARY HOLD UP THAT CAUSED THE 
*** BUFFER LIMIT TO BE EXCEEDED. ALL SUCH CHOICES ARE APPLICATION 
*** ENVIRONMENT DEPENDENT. 
LOSTCLOS EQU * 

CLSDST RPL=(R4),ACB=(R5),ARG=(R6),0PTCD=(RELEASE,SYN) 
LTR R15,R15 
BZ RETURNL 
DUMP 

RETURNL L R14,SAVELOST 
BR R14 RETURN TO VTAM 

* SAVELOST DC F 1 0 1 

LTORG 
END SAMP1 

Appendix D. Example of a Primuy Application Program 341 





Appendix E. Example of Authorized Path 

Notes about SAMP2 

This sample program, SAMP2, shows an application program in an OS/VS2 system using 
the authorized path feature under the control of both a TCB (task control block) and an 
SRB (service request block). The logic for this sample application program is similar to 
the logic for Sample Program 1 in Chapter 11. Chapter 11 also lists coding rules for using 
authorized forms of SEND, RECEIVE, RESETSR, and SESSIONC. 

SAMP2 uses the authorized forms of the SEND, RECEIVE, and RESETSR macro 
instructions to perform I/O processing. SAMP2 shows: 

How to enter supervisor state 

Which OS/VS2 MYS system macro instructions to use 

This sample can be used as a guideline for coding application programs that plan to use 
authorized path; the program is not intended to be coded and used by an installation. 

SAMP2 physically consists of one program, but logically consists of two programs. The 
first logical program is labeled "AUTHPATH," and the second logical program is labeled 
"AUTHEXIT." 

AUTHPATH begins by opening an ACB and connecting itself to a logical unit. In order to 
use the authorized forms of SEND, RECEIVE, RESETSR, or SESSIONC, the application 
program must have authorization to change from problem program state to supervisor 
state. (See the publication OS/VS2 SPL: Supervisor for a description of how to become 
an authorized program.) 

SAMP2 changes into supervisor state by issuing the OS/VS2 MYS system macro 
instruction MODESET. The MODESET obtains the zero protection key needed to use 
authorized path. To schedule an SRB, an application must be in supervisor state with a 
key of zero. SAMP2 has now met these requirements. 

At this point, SAMP2 departs from normal ACF/VTAM application programming. It is 
now operating as a system program, using a system key. The application program issues 
the RECEIVE macro instruction in its asynchronous form with an exit routine specified. 
The operand BRANCH=YES causes authorized path to be used. The exit routine will run 
under control of an SRB. 

The exit routine, AUTHEXIT, issues the CHECK macro, which delimits processing of the 
RECEIVE macro issued in the main program. Then the input is tested for three 
possibilities: 

Echo 

No echo 

An error condition 

If an echo is desired, the SEND macro instruction is used to return the data just received. 
This SEND uses the authorized path because it is issued under control of the SRB under 
which the exit routine was scheduled. The main program is then posted to continue 
issuing the RECEIVE. 

Appendix E. Example of Authorized Path 343 



If no echo is desired, and an error has not been encountered, the RESETSR macro is 
issued to change the logical unit back to continue-any mode so that it can be addressed 
by the next issuance of the RECEIVE macro. RESETSR takes the authorized path 
because it is issued under control of the SRB under which the exit routine was scheduled. 

If an error condition was encountered, the main program is posted to issue CLSDST and 
CLOSE ACB after offering the user the option of an ABEND dump. 

Otherwise, the main program is posted to continue issuing the RECEIVE ANY to accept 
data from the logical unit. Since the exit routine runs under an SRB, the branch entry to 
POST, rather than the POST SVC, must be used, which in tum requires obtaining and 
releasing the local lock via the SETLOCK macro. 

The main program checks the input for the string "LOGOFF" and, if it finds it, issues 
CLSDST and CLOSE ACB to shut down the application program. (Notice that the 
CLSDST macro uses the BRANCH=NO operand to tum off the RPLBRANC flag turned 
on by the RECEIVE using the BRANCH=YES operand.) If the "LOGOFF" string is not 
found, the main program continues issuing the RECEIVE and the exit will again get 
control. 

SAMP2 Assembler Language Code 

AUTHPATB 

R15 
R14 
R13 
R12 
R11 
R10 
R9 
RS 
R4 
R1 
RO 

* 
* • 

• • • 

CSECT 
PR I RT 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
EQU 
SAVE 
LR 
USING 
LR 
LA 
ST 
ST 
LA 
USING 
WTO 

HOGEN 
15 
14 
13 
12 
11 
10 
9 
5 
4 
1 
0 
( 14 , 1 2) , T, * 
R12,R15 * GET BASE 
AUTBPATH,R12 * COYER 
R9,R1l * BOYE SAYE PTR 
R~3,SAYE * PT TO SAVE AREA 
R13,8(0,R9) *FORWARD PTR 
R9,4(0,R13) *BACKWARD PTR 
R4,AUTHRPL * BASE FOR RPL 
IFGRPL,R4 * COVER RPL 
1 AUTHPATH APPLICATION ENTERED' * TELL OPER WERE HERE 

OPEi THE ACB 

OPEN 
MYI 
LTR 
BIZ 

AUTHACB 
TBRU+3,4 
R15,R!15 
BAD 

CORRECT TO TERMINAL 

* OPEi VTA! ACB 
* OUTPUT MSG 1, OPEN FAILED 
* GOOD 
* RO 



* 
* 
* 
* 
* 
* 
* 

OPNDST RPL=AUTHRPL,OPTCD=(SYN,ACQUIRE) *CONNECT UP 
MVI THRU+3,8 * OUTPUT MSG 2, OPEN DEST FAILED 
LTR R15,R~5 * GOOD 
BBZ BAD * RO 

MODESET TO SUP STATE 

MODESET MODE=SUP * SUPERVISOR STATE 

ISSUE RECEIVE MACRO . 

AUTHRECV RECEIVE RPL=AUTHRPL,OPTCD=(ASY,Q,ANY,CS) ,BRABCH=YES, 
AREA=INPUTOO,AREALEN=100,EXIT=AUTHEXIT,RTYPE=DFSYN 

MVI THRU+3,12 * OUTPUT MSG 3, RECEIVE VALID CHECK FAIL 
LTR R15,R15 * CHECK RETURN CODE FROM RECEIVE 
BNZ BAD * NOT 0, GO HANDLE SITUATION 

* * HERE THIS APPLICATION COULD BE DOING SOME TYPE 
* OF PROCESSING BEFORE NOTIFICATION FROM AUTHEXIT. 

* 
* 

* 
* 
* CLOSE1 
CLOSE2 
CLOSE3 

BAD 

CHEKCLOS 

AUTHEXIT 

WAIT 1,ECB=THRU * WAIT FOR AUTH EXIT 
CLI THRU+3,0 * EVERYTHING OK IN EXIT? 
BNZ BAD * NO, HANDLE IT. 
CLC LOGMSG,INPUT00+6 * USER WANT TO LOG OFF? 
BE CLOSE1 * HE WANTS TO QUIT 
XC THRU,THRU * CLEAR ECB 
MVI IRPUTOO,X 1 40 1 

MVC INPUT00+1(99),INPUTOO *CLEAR INPUT AREA 
B AUTHRECV * REPEAT RECEIVE 

CLOSE UP AND GO HOME 

CLSDST RPL=AUTHRPL,OPTCD=SYN,BRANCH=NO * DISCONNECT FROM TERM 
CLOSE AUTHACB * CLOSE ACB 
LA R1,MSGO * ISSUE ENDED MESSAGE 
WTO MF= (E, (1)) 
L R13,4(0,R13) *POINT 
RETURN (14~12),T,RC=O 
L R5,THRU * USE POST CODE AS INDEX 
L R1,MSGS(R5) *PT TO APPROPRIATE MSG 
WTO MF=(E,(1)) 
WTOR 'ENTER ''Y'' ~OR ABEND DUMP 1 ,REPLY,1,WTORECB 
WAIT 1,ECB=WTORECB 
CLI REPLY,C 1 Y1 

BNE CHEKCLOS 
ABEND 100,DUMP,STEP 
CLI THRU+3,8 
BH CLOSE1 
BE CLOSE2 
BL CLOSE3 
DS OH 
USING AUTHEXIT,R15 
STM 14,12,SAV2+12 
LR R12,R15 

* DOES HE WANT A DUMP? 
* DETERMINE PROPER CLOSE 
* KILL IT 
* HOW FAR DID 
* PRETTY FAR, 
* SO SO, JUST 
* TCH TCH 

* TEMPORARY BASE 

WE GET 
CLOSE EVERYTHING 
CLOSE ACB 

* SAVE CALLERS REGS 
* LOAD BASE 

Appendix E. Example of Authorized Path 345 



* 

* 
* 
* 
* 
* 

* 

DROP 15 
USING AUTHEXIT,R12 
LA R13,SAV3 

CHECK 
MVI 
LTR 
BNZ 

RPL=AUTHRPL 
POSTCODE+3,16 
R15,R15 
GO POST 

* VTAM DOES NOT PASS A SAVE AREA 
* SO SKIP STANDARD LINKAGE 
* CHECK STATUS OF REQUEST 
* SET CODE NOT EQUAL O? 
* RETURN CODE EQUAL O? 
* NO, GO HANDLE SITUATION 

THE SEND BELOW WILL USE THE AUTHORIZED PATH BECAUSE 
IT IS ISSUED UNDER CONTROL OF THE SRB SCHEDULED BY 
VTAM AS THE EXIT FOR THE AUTHORIZED PATH RECEIVE. 

MYC OUTPUT01,INPUTOO * MOYE WHAT WE READ TO OUTPUT AREA 
TM INPUT00,1 1 01 1 * ERROR RESPONSE REQUESTED? 
BC 1,CLOSIT * YES, CLOSE DEST AND QUIT 
TM INPUTOO,X 1 04 1 * DOES APB WANT AN ECHO? 
BC 8,NOECHO * NOPE 

* ECHO WAS REQUESTED 

* MVI 
IC 
CLC 
BNE 
MVC 

OUTPUT01,X 1 82 1 * SET ECHO RESPONSE CODE 
OUTPUT01+1(5) ,OUTPUT01+1 *CLEAR OTHER CONTROL 
LOGMSG,INPUT00+6 * USER WANT TO LOGOFF? 
CONTINUE * NO 

CONTINUE DS 
OUTPUT01+13(35),0UTPUT02 *MOYE IN FINAL MSG 
OH 

* 

AOK 

* 
* 
* GO POST 
LOCK 

UNLOCK 

AUTHEXO 

346 

SEND OPTCD=(SYN,CA) ,CONTROL=DATA,STYPE=REQ,RTYPE=DFSYN, 
RECLEN=100,AREA=OUTPUT01,RPL=AUTHRPL,POST=SCHED, 
RESPOND=(NEX,NFME,NRRN) * SEND SOME DATA OUT 

MVI POSTCODE+3,20 * SET UP MSGS, SEND VALIDITY FAILED 
LTR R15,R15 * RC=O? 
BNZ GOPOST * NO, POST MAINLINE 
MV POSTCODE+3,24 * SET MSG6- RPL RETURN CODE 
CLI RPLRTNCD,0 * RETURN CODE OF ZERO? 
BNE GOPOST * POST MAINLINE 
CLI RPLFDB2,0 * CHECK FEEDBACK CODE 
BNE GOPOST * POST MAINLINE 
IC POSTCODE,POSTCODE * MADE IT THRU WITHOUT A HITCH 

BRANCH ENTRY TO POST REQUIRES LOCAL LOCK 

DS OH 
SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=USE, 

RELATED=(LOCAL,AUTHPATH(UNLOCK)) 
L R10,POSTCODE * GET POST CODE 
LA R11,THRU * POINT TO ECB 
L R15,16 * CYT PTR 
L R15,CVTOPT02-CYT(O,R15) * BR ENT TO POST 
BALR R14,R15 * POST ECB 
SETLOCK RELEASE,TYPE=LOCAL,REGS=USE, 

RELATED={LOCAL,AUTHPATH(LOCK)) 
L R13,4(0,R13) *PT TO SAVE AREA 
RETURN (14,12),T,RC=O 

I 
x 

I 

I 



NOECHO DS OH * APB DOES NOT WANT AN ECHO 
* MUST ISSUE RESETSR TO SWAP MODE BACK TO CONTINUE ANY 

RESETSR RPL=AUTHRPL,OPTCD=(SYN,CA),RTYPE=DF~YN 

CLOSIT 

THRU 
WTORECB 
SY SD ATE 
SAVE 
SAV2 

SAV3 

REPLY 
LOG MSG 
POSTCODE 
OUTPUT01 
INPUTOO 
OUTPUT02 
APPLSID 

MSGS 
MSGO 
l!SG1 
MSG2 
MSG3 
MSG4 
MSGS 
MSG6 
l!SG7 
MSG8 

PATCH 
AUTHRPL 
AUTHACB 
AUTHNIB2 

POSTCODE+3,28 
R15,R15 
GO POST 
AOK 
OH 
POSTCODE+3,32 
GO POST 
F'0' 
F'0' 
CL8'&SYSDATE' 
18F'0' 
OF 
2F 1 0' 
A (SAV3) 
15F 1 0 1 

OF 
F'0' 
A(SAV2) 
16F'0' 
c' • 
CL7 1 LOGOFF ' 
F 1 0 1 

CL 100 1 ' 

CL 100 1 ' 

* MESSAGE 7 
* RESET OK? 
* NOPE 
* OK, CONTINUE 
* ERROR RESPONSE- CLOSE DEST 
* SET SPECIAL CLOSE DEST CODE 
* POST MAINLINE 
* ECB TO WAIT ON SRB 
* ECB FOR WTOR 
* DATE OF ASSEMBLY 

* USERS REPLY TO DUMP MSG 
* USER WANTS TO LOGOFF 
* POST CODE GOES HERE 

MVI 
LTR 
BNZ 
B 
DS 
MVI 
B 
DC 
DC 
DC 
DC 
DS 
DC 
DC 
DC 
DS 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 
DC 

CL35' *** AUTHPATH WORKS, PASS IT ON ***' 
x•os•,CL5 1 APPL5 1 *ID AND PASSWORD 

DC A(MSGO,MSG1,MSG2,MSG3,MSG4,MSG5,MSG6,MSG7,MSG8) 
WTO 1 AUTHPATH ENDED 1 ,ROUTCDE=(1},DESC=(5) ,MF=L 
WTO 'OPEN ACB FAILED 1 ,ROUTCDE=(1) ,DESC=(5),MF=L 
WTO 'OPEN DESTINATION FAILED 1 ,ROUTCDE=(1),DESC=(S),MF=L 
WTO 'RECEIVE VALIDITY CHECK FAILED 1 ,ROUTCDE=(1),DESC=(5) ,MF=L 
WTO 'RECEIVE FAILED, EXIT EBTERED 1 ,ROUTCDE=(1},DESC=(5} ,MF=L 
WTO 'SEND VALIDITY CHECK FAILED 1 ,ROUTCDE=(1},DESC=(5)~MF=L 
WTO 'SEND FAILED 1 ,ROUTCDE=(1),DESC=(5} 1 MF=L 
WTO 1 RESETSR FAILED 1 ,ROUTCDE=(1) ,DESC=(S) ,MF=L 
WTO 'APB REQUESTED CLOSE DEST 1 ,ROUTCDE=(1},DESC=(5),MF=L 
DS OH 
DC 10CL8 1 PATCHES 1 

RPL ACB=AUTHACB,AM=VTAM,NIB=AUTHNIB2 
ACB AM=VTAM,APPLID=APPL5ID,PASSWD=APPL5ID,MACRF=NLOGON 
NIB NAME=CTJ10LU1,MODE=RECORD,USERFLD=C 1 NEW 1 ,LISTEND=YES 
IFGRPL 
IFGRPLVT 
IHASRB 
I HAP SA 
IHAFRRS 
CVT DSECT=YES,LIST=YES 
END 

Appendix E. Exampte'of Authorized Path 347 





Glo~ary 

This glossary defines terms and abbreviations that are 
important in this book. It does not include terms previously 
established for IBM operating systems and IBM products 
used with ACF/VTAM. Additional terms can be found by 
referring to the index, to prerequisite and corequisite 
books, and to the IBM Data Processing Glossary, 
GC20-1699. 

IBM is grateful to the American National Standards 
Institute (ANSI) for permission to reprint its definitions 
from the American National Standard Vocabulary for 
Information Processing (Copyright © 1970 by American 
National Standards Institute, Incorporated), which was 
prepared by Subcommittee X3K5 on Terminology and 
Glossary of the American National Standards Committee 
X3. A complete commentary taken from ANSI is identified 
by an asterisk that appears between the term and the 
beginning of the commentary; a definition taken from 
ANSI is identified by an asterisk after the item number for 
that definition. 

The symbol ISO at the beginning of a definition indicates 
that it has been discussed and agreed upon at meetings of 
the International Organization for Standardization Tech­
nical Committee 97 /Subcommittee 1 (Data Processing), and 
has also been approved by ANSI. 

The symbol SCJ at the beginning of a definition indicates 
that it is reprinted from an early working document of ISO 
Technical Committee 97 /Subcommittee 1 and that final 
agreement has not yet been reached among its participating 
members·. 

A 

ACB. Access method control block. 

ACB name. (1) The name of an ACB macro instruction. (2) A name 
that can be specified in the ACBNAME parameter of an APPL 
statement. This name allows an ACF/VTAM application program 
that is used in more than one domain to specify the same 
application program identification (pointed to by the APPLID 
parameter of the program's ACB statement) in each copy. ACF/ 
VTAM knows the program by both its ACB name and its network 
name (the name of the APPL statement). Program users within the 
domain can request logon using the ACB name or the network 
name; program users in other domains must use the network name 
(which must be unique in the network). Contrast with network 
name. 

accept. In ACF /VT AM, to connect a terminal to a primary 
application program as the result of a logon. The logon may be 
originated by the terminal, the network operator, another primary 
application program, or ACF/VTAM. Contrast with acquire (1). 

access method control block (ACB). A control block that links an 
application program to VSAM or ACF/VTAM. 

accounting exit routine. In ACF/VTAM, an optional, user-written 
routine that collects statistics about connections and disconnections 
in the communication network. 

ACF. Advanced Communications Function. 

ACF/VTAM. Advanced Communications Function for the Virtual 
Telecommunications Access Method. 

ACF/VTAM application program. A program that has opened an 
ACB to identify itself to ACF/VTAM. It can now issue ACF/VTAM 
macro instructions. 

ACF/VTAM definition. The process of defining the communication 
network to ACF/VTAM (which is called "network definition") and 
modifying lBM-defined characteristics to suit the needs of the user. 

ACF/VTAM defmition library. The DOS/VS files or OS/VS data 
sets that contain the definition statements and start options filed 
during ACF/VTAM definition. 

ACF/VTAM system. The resources defined to and controlled by 
ACF/VTAM. 

acquire. (1) In relation to an ACF/VTAM application program, to 
connect a terminal to the application program in the absence of a 
logon. The connection occurs at the primary application program's 
initiative. Contrast with accept. (2) In relation to ACF/VTAM 
resource control, to take over resources (communications con· 
trollers or physical units) that were formerly controlled by a data 
communication access method in another domain, or to assume 
control of resources that were controlled by this domain but 
released. Contrast with releaBe. See also re1ource takeover. 

active. Pertaining to a major node that has been made known to 
ACF/VTAM by operator command and is available for use or 
pertaining to a minor node that is connected to, or available for 
connection to, an ACF/VTAM application program. Contrast with 
inactive. 

adjacent domain. A domain that is physically connected to another 
domain by a single cross-domain link or by a shared local 
communications controller. 

adjacent node. A node that is physically connected to another node 
by a single data link. 

Advanced Communications Function (ACF). A group of program 
products for users of DOSNS and OSNS that can provide 
unproved single-domain and, optionally, multidomain data com· 
munication capability. 

Advanced Communications Function for the Virtual Telecommuni­
cations Access Method (ACF/VTAM). A program product that 
provides improved Bingle-domain data communication capability 
and, optionally, multidomain capability. 

any-mode. In ACF/VTAM: (1) The form of a read or receive 
request that obtains data from one unspecified terminal. (2) The 
form of solicit request that solicits data from all eligible connected 
terminals. (3) The form of connection request that connects one 
unspecified terminal that has logged on. (4) Contrast with specijic­
mode. See a1so continue-any mode. 

application layer. In SNA, the functional layer of each individual 
session in which the end user's application program is executed. See 
also /Unction management, tran1mi1sion rub1y1tem. 

application program identification. The symbolic name by which an 
application program is identified to ACF/VTAM. It is specified in 
the APPLID parameter of the ACTS macro instruction. It corre­
sponds to the ACBNAME parameter in the APPL statement or, if 
the ACBNAME is defaulted, to the name of the APPL statement. 

application program major node. In ACF /VT AM, a member 
(OS/VS) or book (DOS/VS) of the ACF/VTAM definition h"brary 

Glossary 349 



that contains one or more APPL statements, each representing an 
application program. 

APPLID routine. Synonym for logon-interpret routine. 

asynchronous operation. In ACF/VTAM, an operation such as 
connection or data transfer ii:J. which the application program is 
allowed to continue execution while ACF/VTAM performs the 
operation. ACF/VTAM interrupts the program as soon as the 
operation is completed. 

asynchronous request. In ACF/VTAM, a request for an asynchro­
nous operation. 

authorization exit routine. In ACF/VTAM, an optional, user­
written routine that approves or disapproves requests for connection 
and disconnection. 

authorized path. In ACF/VTAM for OS/VS2 MVS, a facility that 
enables an authorized application program to specify that a data 
transfer or related operation be carried out in a faster manner than 
usual. 

automatic logon. A process by which ACF/VTAM creates a logon 
for a termii:J.al or logical unit to a designated application program 
whenever the terminal or logical unit is not connected to another 
program. Specifications for the automatic logon can be made when 
the termii:J.al or logical unit is defined or can be made by the 
network operator ii:J. the VARY LOGON command. See also 
controlling application program. 

available. In ACF/VTAM: (1) Pertaining to a terminal that supports 
only one session, is active, is not connected to an application 
program, and for which there is no pending logon. (2) Pertainii:J.g to 
an exit routine that has been specified by an application program 
and that is not being executed. 

B 

basic information unit (BIU). In SNA, the unit of data and control 
information that is passed between connection point managers. It 
consists of a request/response header (RH) followed by a request/ 
response unit (RU). 

basic mode. In ACF/VTAM, a mode of data transfer in which the 
application program can communicate with non-SNA terminals. 
Contrast with record mode. 

basic transmission unit (BTU). (1) In the network control program, 
the unit of exchange between the host processor and the communi­
cations controller. It consists of control information and may also 
include data. The control information consists of a basic trans­
mission header (BTH) and a basic device unit (BDU). All data 
transferred between the host and the communications controller is 
preceded by a BTU. (2) In SNA, the unit of data and control 
information passed between path control components. The BTU can 
consist of one or more path information units (PIUs), depending on 
whether blocking is done by the path control that builds the BTU. 

block. In the basic mode of ACF/VTAM, a unit of data that is 
transmitted between an ACF/VTAM application program and a 
terminal. 

boundary function. In SNA: (1) A general term used for any one of 
several capabilities of a host node or a communications controller 
node: (a) transforming the network address form to a local address 
form, and vice versa, for attached terminals or cluster controller 
nodes; (b) performing physical unit services and sequence number­
ing for attached, low-function termii:J.als within its subarea; and (c) 
providing pacing of the data flows for secondary LUs within a 
subarea. (2) The programming component and functional structure 
that performs the above capabilities. 

bracket. In ACF/VTAM, an uninterruptible unit of work, consisting 
of one or more chains of request units and their responses, 

350 

exchanged between an application program and a terminal. Exam­
ples are data base inquiries/replies, update transactions, remote job 
entry output sequences to work stations, and similar applications. 

bracket protocol. In SNA, a data flow control protocol ii:J. which 
exchanges between logical units (LUs) are achieved through the use 
of brackets, with one logical unit designated at session ii:J.itiation as 
the first speaker, and the other logical unit as the bidder. The 
bracket protocol involve~ bracket initiation and termination rules. 

c 
cancel closedown. A closedown in which ACF/VTAM is abnormally 
terminated as the result of an operator command. 

CDRSC. Cros&<lomain resource. 

CDRM. Cros&<lomain resource manager. 

change-direction protocol. In ACF/VTAM, a method of communi­
cation in which the sender stops sending on its own initiative, having 
signaled this fact to the receiver on the last request sent, and 
prepares to receive. 

character-coded. In ACF/VTAM, pertaining to a logon or logoff 
command usually entered by a terminal operator from a keyboard 
and sent by a logical unit ii:J. character (unformatted) form. Contrast 
with field-formatted. 

checkpoint. A point in time at which the status of a data 
communication system is recorded. The system can then be 
reconstructed to its status at or near the time of failure. 

CID. Communication identifier. 

closedown. The deactivation of a .device, program, or system. See 
also cancel closedown, orderly closedown, and quick closedown. 

cluster controller. See cluster control unit and SDLC cluster 
controller. 

cluster control unit. A device that can control the input/output 
operations of more than one device. A remote cluster control unit is 
attached to a host computer only through a communications 
controller. A local cluster control unit is attached through a 
channel. A cluster control unit may be controlled by a program 
stored and executed in the unit; for example, the IBM 3601 Finance 
Communication Controller. Or it may be controlled entirely by 
hardware; for example, the IBM 2972 Station Control Unit. See also 
communications controller and SDLC cluster controller. 

command. (1) A request from a termii:J.al for the performance of an 
operation or the execution of a particular program. (2) In SNA, a 
request unit initiating an action or beginning a protocol; it is used in 
contrast with reply, which is a request unit (not a response) that is 
sent in reaction to a command. For example: Quiesce (a data flow 
control request), is a command, while Quiesce Complete is the 
reply. (3) In SNA, a data flow control or session control request 
that may be sent or received by an application program using record 
mode. 

common network. In SNA, the network consisting of path control 
and data link control elements that routes and moves path 
information units between any two transmission control elements. 

communication control character. *A control character intended to 
control or facilitate transmission of data over communication 
networks. 

communication control unit. A communication device that controls 
the transmission of data over lines in a telecommunication network. 
Communication control units include transmission control units and 
communications controllers. 



communication identifier (CID). In ACF/VTAM, a key for locating 
the control blocks that represent a session. The key is created 
during . the session establishment procedure and deleted when the 
session ends. 

communication line. Any physical link, such as a wire or a 
telephone circuit, that connects one or more remote terminals to a 
communication control unit, or connects one communication 
control unit with another. 

communications controller. A type of communication control unit 
whose operations are controlled by a program stored and executed 
in the unit. Examples are the IBM 3704 and 3705 Communications 
Controllers. 

configuration restart. In ACF/VTAM, the facility for immediate 
recovery after a failure in the NCP or communications controller or 
after a loss of contact with a physical unit or logical unit, or for 
delayed recovery after a failure or deactivation of a major node, 
ACF/VTAM, or the host computer. Recovery may include reloading 
the NCP or restoring the network by means of a checkpoint. 
Restarting by means of a checkpoint requires the user to specify one 
or more VSAM data sets in which ACF/VTAM keeps a record of 
changes to initial configuration data. 

connection. (1) In ACF/VTAM, the linking of control blocks in 
such a way that an application program is in session with a terminal. 
Connection includes establishing and preparing the networkpath 
between the program and the terminal. (2) A physical capability of 
communicating between two end points. Also called physical con­
nection. See also queued for connection. 

connection point manager (CP manager). In SNA, one of the three 
components of transmission control; it provides a common mecha­
nism by which session control, network control, and network 
addressable units communicate with their corresponding elements 
through the common network. The unit of information handled by 
the connection point manager is a request/response unit (RU). The 
unit of control information built by the sending connection point 
manager and interpreted by the receiving connection point manager 
is a request/response header (RH). See also session control, network 
control. 

continue-any mode. In ACF/VTAM, a state into which a terminal is 
placed that allows its input to satisfy an input request issued in 
any-mode. While this state exists, input from the terminal can also 
satisfy input requests issued in specific-mode. Contrast with 
continue-specific mode. 

continue-specific mode. In ACF/VTAM, a state into which a 
terminal is placed that allows its input to satisfy only input requests 
issued in specific-mode. 

controlling application program. An application program to which a 
terminal (other than a secondary application program) is automati­
cally logged on whenever the terminal is active and available. See 
also automatic logon. 

conversational write operation. In the basic mode of ACF/VTAM, 
an operation wherein data is first sent to a terminal and data is then 
read from that terminal. 

converted command. An intermediate form of a character-coded 
logon or logoff command produced by ACF/VTAM through use of 
an unformatted system services definition table. The format of a 
converted logon or logoff command is fixed; the unformatted 
system services definition table must be constructed so that the 
character-coded command (as entered by a logical unit) is converted 
into the predefined, converted command format. See also 
character-coded. 

cross-domain. Pertaining to control or resources involving more 
than one domain. 

cross-domain link. A data communication line physically connect­
ing two domains. See also local-to-local link. 

cross-domain resource (CDRSC). A resource owned by another 
domain but known in this domain by name and associated 
cross-domain resource manager. 

cross-domain resource manager (CDRM). The portion of the system 
services control point (SSCP) that controls cross-domain sessions. 

cross-domain session. A session between network addressable units 
in different domains. 

D 

data communication. The transmission, reception, and validation of 
data. 

data flow. In SNA, any of four flows in a given session, character­
ized as either primary-to-secondary or secondary-to-primary, each of 
which may be normal or expedited. 

data flow control. In SNA, a set of protocols and control functions 
used by the network addressable unit to assist in controlling the 
flow of requests and responses within a session. Contrast with 
session control. 

data flow control protocol. In SNA, the sequencing rules for 
requests and responses by which network addressable units in a 
communication network coordinate and control data transfer and 
other operations. For example, see bracket protocol. 

data link. (1) (SCl) An assembly of those parts of two data 
terminal equipments that define the protocol together with their 
interconnecting data circuit. This assembly enables a data source to 
transfer data to a data sink. (2) The communication channel, 
modem, and communication controls of all stations connected to 
the communication channel, used in th.e transmission of information 
between two or more stations. (3) The physical connection and the 
connection protocols between the host and communication control­
ler nodes via the host data channel. (4) Contrast with communic­
ation line. 

Note: A communication line is the physical medium; for example, a 
telephone wire, a microwave beam. A data link includes the physical 
medium of transmission, the protocol, and associated communica­
tion devices and programs-it is both logical and physical . . 

data link control (DLC). (l) The noninformation exchanges that set 
up, control, check, and terminate the information exchange(s) 
between two stations on a data link. (2) In SNA, one of the 
constituent parts of the transmission subsystem, and one of two 
constituent parts of the common network. It initiates, controls, 
checks, and terminates the data transfer over a data link between 
two nodes. Two distinct DLCs are defined in SNA: the DLC for the 
System/370 data channel, and SDLC for serial-by-bit data links. See 
also path control and transmission control. 

data link control protocol. A set of rules used by two nodes on a 
data link to accomplish an orderly exchange of information. 
Synonymous with line discipline. 

data transfer. In data communication, the sending of data from one 
point in a communication network and the receiving of the data at 
another point in the network. 

data transmission. The sending of data from one point in a 
communication network for reception elsewhere. 

definite response. In SNA, a form of response requested in the 
request header for a request unit; the receiver is requested to return 
a response whether positive or negative. Contrast with exception 
response and no response. 

Glossary 351 



definition statement. In ACF/VTAM., the means of describing an. 
element of the communication network. 

device control character. (ISO) A control character used for the 
control of ancillary devices associated with a data processing system 
or data communication system, for example, for switching such 
devices on or off. 

device-type logical unit. A logical unit residing in a physical unit 
other than a host computer. 

disconnection. (1) In ACF/VTAM, the dissociation of control 
blocks in such a way as to end a session between an application 
program and a connected terminal. The disconnection process 
includes suspending the use of the network path between the 
program and the terminal. (2) A physical dissociation between two 
end points. 

DLC. Data link control. 

domain. In a data communication system, the portion of the total 
network that is controlled by the SSCP in one telecommunication 
access method. 

E 

emulation mode. A function of the network control program that 
enables a 3704 or 3705 Communications Controller to perform 
activities equivalent to those performed by an IBM 2701 Data 
Adapter Unit or an IBM 2702 or 2703 Transmission Control Unit. 
See also network control mode. 

end user. The ultimate source or destination of information flowing 
through a system. An end user may be an application program, an 
operator (such as a terminal user or a network operator/ 
administrator), or a data medium (such as cards or tapes). 

error lock. In the basic mode of ACF/VTAM, a condition in which 
communication with a non-SNA terminal is suspended until a reset 
operation occurs. 

exception message. See exception request. 

exception request. In communicating with a logical unit, a message 
that indicates an unusual condition such as a sequence number being 
skipped. When ACF/VTAM. detects such a condition, it notifies the 
application program. ACF /VTAM. or the application program 
provides sense information which is included in the response that is 
sent to the logical unit. 

exception response. (1) In SNA, a response requested in the RH for 
a request unit; the receiver is requested to return a response only if 
it is negative. Contrast with definite response. (2) Synonym for 
negative response. 

exit list (EXLST). In VSAM or ACF/VTAM, a control block that 
contains the addresses of user-written routines that receive control 
when specified events occur during execution; for example, routines 
that process logons or I/O errors. 

exit routine. In ACF /VT AM, any of several types of special-purpose 
user-written routines. See accounting exit routine, authorization 
exit routine, EXLST exit routine, logon-interpret routine, and RPL 
exit routine. 

EXLST exit routine. In ACF/VTAM, a type of user-written routine 
whose address has been placed in an exit list (EXLST) control 
block. See also RPL exit routine. 

expedited Oow. In SNA, a data flow that is independent of and 
controls the normal flow. Data flow is split into normal and 
expedited flows. Requests and responses on a given flow (normal or 
expedited) are usually processed sequentially within the path, but 
the expedited flow traffic may be moved ahead of the normal flow 
traffic within the path. Contrast with normal flow. 

352 

external domain. A domain controlled by a different system 
services control point (SSCP). 

F 

FID. Format identification. FIDO, FIDl, FID2, FID3. See format 
identification. 

field-formatted. In ACF/VTAM, pertaining to a logon or logoff 
command that is encoded into fields, each having a specified format 
such as binary codes, bit-significant flags, and symbolic names. 
Contrast with character-coded. 

format identification (FID) field. In SNA, a field in a transmission 
header (TH) that defines the subsequent format of the header and 
the type of TH fields involved with a transmission. FIDO (for 
pre-SNA product support) and FIDl are the header formats used 
between host and communications controller nodes and between 
two communications controller nodes. FID2 and FID3 are the 
header formats used between communications controller nodes with 
boundary function and cluster controller and terminal nodes. 

formatted system services (FSS). A portion of ACF/VTAM. that 
provides certain system services as a result of receiving a field­
formatted command, such as an Initiate or Terminate command. 
Contrast with unformatted system services (USS). See also 
field-[ ormatted. 

function management (FM). (1) In SNA, the layer of functional 
capability between the application layer and the transmission 
subsystem. It includes data flow control and function management 
data (FMD) services. See also application layer, transmission· 
subsystem. (2) In ACF/VTAM., the insertion of control information 
within messages so that the messages sent to a particular type of 
terminal are in the required format and so that messages received 
from that type of terminal are handled properly. 

function management data (FMD) services. In SNA, the component 
of function management responSiole for request/response units 
marked as "FM data." This includes presentation services and logical 
unit services (within the logical unit), physical unit services (within 
the physical unit), and network services (within the system services 
control point). Contrast with data flow control. 

H 

host computer. (1) The primary or controlling computer in a 
multiple computer operation. (2) A computer used to prepare 
programs for use on another computer or on another data 
processing system; for example, a computer used to compile, 
link-edit, or test programs to be used on another system. (3) In a 
data processing system that includes ACF/VTAM or ACF/TCAM., 
the computer in which ACF/VTAM or ACF/TCAM resides. 

host system. (1) A data processing system that is used to prepare 
programs and the operating environments for use on another 
computer or controller. (2) The data-processing system to which a 
communication system is connected and with which the system can 
communicate. 

inactive. In ACF/VTAM, pertaining to a major node that has not 
been made known to ACF/VTAM and is unavailable for use, or 
pertaining to a minor node that is not connected to nor available for 
connection to an application program. Contrast with active. 

intermediate node. In SNA, a physical unit that is capable of 
routing path information units to another subarea. 

interpret table. In ACF /VT AM, a user-defined correlation list that 
translates an argument into a string of eight characters. Interpret 
tables can be used to translate logon data into the name of an 
application program for which the logon is intended. 



L 

LOO. Logical device order. 

leading graphics. From one to seven graphic characters that may 
accompany an acknowledgment sent to or from a BSC terminal in 
response to the receipt of a block of data. 

line. See communication line. 

line control. The scheme of operating procedures and control 
signals by which a communication network is controlled. 

line discipline. Synonym for data link control protocol. 

line group. A collection of one or more communication lines of the 
same type. 

local. (1) Pertain!ng to the attachment of devices direct}y by 1/0 
channels to a host computer. Contrast with remote. (2) In data 
communication, pertaining to devices that are attached to a 
controlling unit by cables, rather than by data links. 

local address. In SNA, an address transformed to or from a network 
address by the boundary function (for example, in a communica­
tions controller node) for use by a cluster controller node or 
terminal node. See also network address, boundary function. 

local NCP. An NCP that is channel-attached to a Host computer. 
Contrast with remote NCP. 

local non-SNA major node. In ACF/VfAM, a major node whose 
minor nodes are locally attached non-SNA terminals. 

local SNA major node. In ACF/VTAM. a major node whose minor 
nodes are locally attached physical and logical units. 

local-to-local link. A data communication link between two local 
communications controllers. The link can be either a cross-domain 
link (communications controllers in different domains) or it can 
exist within a domain between local communications controllers 
controlled by the same system services control point. 

local 3270 major node. See local non-SNA major node. 

logical device order (LDO). In ACF/VfAM, a set of parameters that 
specify a data-transfer or data-control operation to local non-SNA 
3270 Information Display Systems and certain kinds of start/stop cir 
BSC terminals. 

logical error. In ACF/VTAM, an error condition that results from 
an invalid request; a program logic error. 

logical unit. In SNA, one of three types of network addressable 
units (NAUs). It is the port through which an end user accesses 
function management in order to communicate with another end 
user. It is also the port through which the end user accesses the 
services provided by the system services control point (SSCP). It 
must be capable of supporting at least two sessions - one with the 
SSCP, and one with another logical unit. It may be capable of 
supporting many sessions with other logical \Ulits. ACF/VTAM 
application programs must communicate with logical units in record 
mode. See also physical unit, system services control point. 

log off. In ACF/VfAM, to request that a terminal be disconnected 
from an application program. 

logoff. In ACF/VTAM. a request that a terminal be disconnected 
from an application program. 

log on. In ACF/VTAM. to request that' a terminal be connected to 
an application program. 

logon. In ACF /VTAM. a request that a terminal be connected to an 
application program. See also automatic logon and simulated logon. 

logon data. In ACF/VfAM: (1) The data portion of a field­
formatted or character-coded logon from an SNA terminal or from a 
non-SNA 3270 terminal for which PU=YES has been specified. (2) 
The entire logon sequence or message from a non-SN A terminal. 

logon-interpret routine. In ACF/VTAM, a user-written exit routine 
associated with a logon-interpret table entry that translates logon 
data. It may also verify the logon. Synonymous with APPLID 
routine. 

logon message. Synonym for logon data. 

logon mode. In ACF/VTAM, the communication protocols that 
govern a session between a logical unit and an ACF/VTAM 
application program or between two application programs. Synony­
mous with seBsion parameters. 

logon mode name. In ACF /Vf AM, the symbolic representation of a 
logonmode. 

logon mode table. In ACF /VT AM, a set of macro-generated 
constants making up one or more logon modes. Each logon mode is 
associated with a logon mode name. 

LU-LU session. In SNA, a session between two logical units in the 
network. It allows communication bet;ween two end users, each 
associated with one of the logical units. 

M 

major node. In ACF /VTAM, a set of minor nodes that is filed as a 
member or book of a definition data set and that can be activated 
and deactivated as a group. See also minor node. 

message. (1) *An arbitrary amount of information whose beginning 
and end are defined or implied. (2) For BSC devices, the data unit 
from the beginning of a transmission to the first ETX character, or 
between two ETX characters. For start/stop devices "message" and 
"transmission" have the same meaning. (3) (SCl) A sequence of 
characters used to convey data. The sequence usually consists of 
three parts: the heading, the text, and one or more characters used 
for control or error-detection purposes. (4) A combination of 
characters and symbols transmitted from one point to another. (5) 
In SNA, a request/response ·header and its associated request/ 
response unit. In some ACF/VTAM publications, a distinction is 
made between messages, responses, and commands, where 
"message" is used to mean a data request. 

minor node. In ACF/VTAM, a uniquely-defined resource within a 
major node that can be activated or deactivated by the VARY 
command. Synonymous with specific node. See also major node. 

MT A. Multiple terminal access. 

multiple-channel-attached communications controller .. A communi­
cations controller that can be channel-attached to more than one 
host computer. 

multiple terminal access (MTA). A feature of the network control 
program that permits it to communicate with a variety of dissimilar, 
commonly used start-stop terminals over the same switched network 
connection. 

Multisystem Networking Facility. In ACF/VTAM, a feature that 
supports communication among multiple host computers operating 
with DOS/VS, OS/VSl, and OS/VS2 (SYS and MYS). 

multithread application prog[am. An ACF/VTAM application pro­
gram that processes many requests from many terminals concur­
rently. Contrast with single-thread application program. 

N 

NAU. Network addressable unit. 

Glossary 35 3 



NCP. Network control program. 

NCP major node. In ACF/VTAM, a major node defined through 
NCP generation. 

negative response. A response indicating that a request did not 
arrive successfully or was not processed successfully by the receiver 
in a session. Synonymous with exception response. Contrast with 
positive response. 

negative response to polling limit. For a start-stop or BSC terminal, 
the maximum number of consecutive negative responses to polling 
that the communications controller accepts before suspending 
polling operations. 

network. (1) (SCI) The assembly of equipment through which 
physical connections are made between terminal installations. (2) In 
data communication, a configuration in which two or more 
locations are physically connected for the purpose of exchanging 
data. 

network address. In SNA, the address, consisting of subarea and 
element subfields, that uniquely identifies a link or the location of a 
network addressable unit. The conversion from a local address to a 
network address, or vice versa, is accomplished as part of the 
boundary function in the node attached to a cluster controller node 
or a terminal node. See local address. See also network name. 

network addressable unit (NAU). In SNA, a logical unit, a physical 
unit, or a system services control point. It is the origin or the 
destination of information transmitted in the transmission sub­
system. Each NAU has a network address that represents it to the 
transmission subsystem. The transmission subsystem and the NAUs 
collectively constitute the communication system. See also network 
name, network address. 

network control (NC). In SNA, a transmission control component 
that permits logically adjacent connection point managers to 
communicate through the common network, using sessions estab­
lished for other purposes and thereby avoiding special session 
establishment. See also connection point manager, session control. 

network control mode. The functions of a network control 
program that enable it to direct a communications controller to 
perform activities such as polling, device addressing, dialing, and 
answering. See also emulation mode. 

network control program (NCP). A program, generated by the user 
from a library of IBM-supplied modules, that controls the operation 
of a communications controller. 

network control program generation. The process, performed in a 
host system, of assembling and link-editing a macro instruction 
program to produce a network control program. 

network definition. In ACF/VTAM, the process of defining the 
identities and characteristics of each node in the network and the 
arrangement of the nodes. Network definition is part of ACF/ 
VT AM definition. 

network name. In SNA, the symbolic identifier by which a network 
addressable unit or a data link is referred to by end users. See also 
network address. In ACF/VTAM, for multidomain users, the name 
of the APPL statement is the network name and must be unique 
across domains. Contrast withACB name. 

network operator. (1) A person responsible for controlling the 
operation of a communication network. (1) An ACF /VTAM applica­
tion program authorized to issue network operator commands. 

network operator command. A command used to monitor or 
control the communication network. 

network operator console. A system console or terminal in the 
network from which a network operator controls a communication 
network. 

354 

network operator logon. A logon requested on behalf of a terminal 
by means of a network operator command. 

NIB. Node initialization block. 

NIB list. A series of contiguous node initialization blocks. 

no response. In SNA, an indication in the RH for a request unit 
that no response is to be returned to the request, whether or not it 
is received and processed successfully. Contrast with definite 
response and exception response. 

node. (1) An addressable point in a data communication network. 
(2) In ACF/VTAM, a point in a communication network defined by 
a symbolic name. See also major node and minor node. 

node initialization block (NIB). In ACF/VTAM, a control block 
associated with a particular terminal that contains information used 
by the application program to identify the terminal and indicate 
how communication requests directed at the terminal are to be 
processed. 

node name. In ACF /VT AM, the symbolic name assigned to a 
specific major or minor node during network definition. 

non-SNA terminal. A terminal supported by ACF/VTAM that uses 
start-stop or BSC protocol or that is part of a local non-SNA 3270 
Information Display System. 

normal flow. In SNA, a data flow that is used for most requests and 
responses. Data flow is split into normal and expedited flows. The 
expedited flow is independent of and used to control the normal 
flow. Requests and responses on a given flow (normal or expedited) 
are usually processed sequentially within the path, but the expedi­
ted flow traffic may be moved ahead of the normal flow traffic 
within the path. Contrast with expedited flow. 

0 

orderly closedown. The orderly deactivation of ACF/VTAM and 
the communication network. An orderly closedown does not take 
effect until all application programs have been disconnected from 
ACF/VTAM. Until then, all data transfer operations continue. 
Contrast with cancel closedown and quick closedown. 

p 

pacing. In data communication, a technique by which a receiving 
connection point manager or boundary controls the rate of 
transmission of a sending function connection point manager to 
prevent overrun. 

partitioned emulation programming (PEP). A feature of the net­
work control program, versions 2 and later, that allows a local 3704 
or 3705 controller to operate as an IBM 2701, 2702, or 2703 
control unit (or any combination of the three) for certain data links, 
while performing network control functions for other links in the 
communication network. 

path. (1) In ACF/VTAM, the intervening nodes and data links 
connecting a terminal and an application program in the host 
computer. (2) In defining a switched SNA major node, a potential 
dial-out port that can be used to reach a physical unit. (3) In 
defining ACF/VTAM or ACF/NCP routing tables, a route through 
an adjacent subarea to one or more destination subareas. (4) In 
SNA, the series of nodes, data links, and common network 
components (path control and data link control) that form the 
complete route traversed by the information exchanged between 
two network addressable units in session. 

path control (PC). In SNA, one of the components of the transmis­
sion subsystem, and one of two components of the common net· 
work. It is responsible for managing the sharing of data link 
resources of the common network and for routing basic information 
units (BIUs) through it. It is aware of the location of NA Us in the 
network and of the paths between them. It maps the BIUs, handled 



by transmission control, into path information units (PIUs), and 
then into basic transmission units (BTUs) that are passed between 
path control and data link control. The unit of control information 
built by the sending path control component and interpreted by the 
receiving path control component is a transmission header (1H). See 
also data link control, transmission control. 

path information unit (PIU). In SNA, the unit of transmission 
consisting of a transmission header (TII) and either a basic 
information unit (BIU) or a BIU segment. 

path table. A table, contained in a network node, whose entries 
contain path information. For example, the ACF/VTAM table 
constructed from PATH statements, that lists the communications 
controllers adjacent to the host computer (called adjacent subareas) 
that are used for cross-domain communication and indicates for 
each controller the subareas in other domains (called destination 
subareas) for which messages are to be routed through that 
controller. 

peer NCP. An NCP that is attached to another NCP through a 
local-to-local link. Contrast with remote NCP. See also local-to-local 
link. 

PEP. Partitioned emulation programming. 

physical unit. (1) The control unit or cluster controller of an SNA 
terminal. (2) The part of the control unit or cluster controller that 
fulfills the role of a physical unit as defined by systems network 
architecture. 

PIU. Path information unit. 

positive response. A response that indicates a request was received 
and processed successfully. Contrast with negative response. 

primary application program. ln a session, an application program 
that adheres to predefined primary protocols. Contrast with 
secondary application program. 

primary end of a session. A network addressable unit (for example, 
a primary application program) that adheres to predefined primary 
protocols. 

program operator. An ACF/VTAM application program that is 
authoriz.ed to issue network operator commands and receive 
ACF/VTAM. network operator awareness messages. See also solici­
ted messages and unsolicited messages. 

protocol. A set of rules used by the network entities to accomplish 
an orderly exchange of information and control. See also data flow 
control protocol. 

a 
queued for connection. In ACF/VTAM, the state of a terminal that 
has logged on to an application program but has not yet been 
accepted by that application program. See also connection. 

quick closedown. In ACF /VT AM., a closedown in which current 
data-transfer operations are completed, while new connection and 
data-transfer requests are canceled. Contrast with cancel closedown 
and orderly closedown. 

quiesce protocol. In ACF/VTAM, a method of communicating in 
one direction at a time. Either the application program or the logical 
unit assumes the exclusive right to send normal-flow requests, and 
the other node refrains from sending such requests. When the sender 
wants to receive, it releases the other node from its quiesced state. 

R 

RDT. Resource definition table. 

record mode. In ACF/VTAM, a mode of data transfer in which the 
application program can communicate with logical units or with 
local noii-SNA or remote 3270 Information Display Systems. Con­
trast with basic mode. 

release. In ACF/VTAM. resource control, to relinquish control of 
resources (communications controllers or physical units). See also 
resource takeover. Contrast with acquire (2). 

remote. In ACF/VTAM, pertaining to devices that are physically 
connected through a communications controller. 

remote NCP. An NCP that is not attached directly through a 
channel, but is attached through a data link to a local NCP that is 
channel-attached. Contrast with local NCP and peer NCP. 

reply. In SNA, a request unit sent in reaction to a previously 
received request unit (command). See also command (2). 

request. (1) A directive that causes a data transfer or related 
operation to be performed. Contrast with response. (2) In SNA, 
synonym for request unit. 

request header. In SNA, a request/response header that indicates a 
request. 

request parameter list (RPL). In ACF/VTAM, a control block that 
contains the parameters necessary for processing a request for data 
transfer, for connecting or disconnecting a terminal, or for some 
other operation. 

request/response header (RH). In SNA, a control field, attached to 
a request/response unit (RU), that specifies the type of RU being 
transmitted-request or response-and contains control information 
associated with that RU. See also request/response unit. 

request/response unit (RU). In SNA, the basic unit of information 
entering and exiting the transmission subsystem. It may contain 
data, acknowledgment of data, commands that control the flow of 
data through the network, or responses to commands. 

request unit. In SNA, the request/response unit following a request 
header. Synonymous with request. See also request/response unit. 

resource definition table (RDT). In ACF /VT AM, a table that 
descn'"bes for a major node the characteristics of each node available 
to ACF/VTAM. and associates each node with an address. 

resource takeover. In ACF/VTAM., the action of a network opera­
tor to transfer control of resources from one domain to another. See 
also acquire (2) and release. 

responded output. In ACF /VT AM, a type of output request that is 
completed when a response is returned. Contrast with scheduled 
output. 

response. (1) An answer to an inquiry. (2) The unit of information 
that is exchanged between ACF/VTAM or an ACF/VTAM applica­
tion program and an. SNA terminal to descn"be how a request 
arrived. (3) In SNA, synonym for response unit. (4) Contrast with 
request. 

response header. In SNA, a request/response header that indicates a 
response. 

response unit. In SNA, the request/response unit following a 
response header; it is sent in response to a request unit. Synony­
mous with response. See also request/response unit. 

RH. Request/response header. 

RPL Request parameter list. 

Glossary 355 



RPL-based macro instruction. In ACF/VTAM., a macro instruction 
whose parameters are specified by the user in a request parameter 
list. 

RPL exit routine. In ACF/VTAM., a user-written routine whose 
address has been placed in the EXIT field of a request parameter 
list. ACF/VTAM invokes the routine to indicate that an asynchro­
nous request has been· completed. See also EXLSTexit routine. 

RU. Request/response unit. 

s 
scheduled output. In ACF/VTAM., a type of output request that is 
completed, as far as the application program is concerned, when the 
program's output data area is free. Contrast with responded output. 

SDLC. Synchronous data link control. 

SDLC cluster controller. A cluster control unit for a teleprocessing 
subsystem. 

secondary application program• In a session, an application program 
that adheres to secondary session protocols. Contrast with primary 
application program. 

secondary end of a session. A logical unit, secondary application 
program, or non-SNA terminal. 

sequence number. A numerical identifier assigned by ACF/VTAM 
to each message exchanged between two nodes. 

session. (1) The period of time during which a user of a terminal 
can communicate with an interactive system; usually, the elapsed 
time from when a terminal user logs on the system until the user 
logs off the system. (2) The period of time during which programs 
or devices can communicate with each other~ (3) In SNA, a logical 
connection, established between two network addressable units 
(NAUs), that allows them to communicate. The session is uniquely 
identified by a pair of network addresses, identifying the origin and 
destination NAUs of any transmissions exchanged during the 
session. (4) In the NCP, a line-scheduling period. See LU-LU session, 
SSCP-L U session, SSCP-PU session. 

session control. In SNA, one of the components of transmission 
control. It is responsible for allocating resources necessary for a 
session, for purging data flowing in a session if an unrecoverable · 
error occurs, and for resynchronizing the data flow after such an 
error. 

session limit. (1) ·In the network control program, the maximum 
number of concurrent line-scheduling sessions on a non-SDLC, 
multipoint line. (2) In SNA, the maximum number of simultaneous 
sessions a particular network addressable unit can support. 

session parameters. S)'nonym for logon mode. 

share limit. The limit of the number of SSCPs that can simulta­
neously share a resource. 

shared. Pertaining to the availability of a resource to more than one 
user at the same time. 

simulated logon. A logon generated for a terminal by ACF/VTAM. 
at the primary application program's request. The primary applica­
tion program accepts or rejects the terminal as if it had logged on. 

single-channel-attached communications controller. A communica­
tions controller that is channel-attached, to only one host computer. 

single-thread application program. An ACF/VTAM application pro­
gram that processes ·requests from terminals one at a time. Such a 
program usually requests synchronous operations from ACF/VTAM, 
waiting until each operation is completed before proceeding. 
Contrast with multithread application program. 

356 

SNA. Systems network architectlire. 

SNA terminal. In ACF/VTAM: (1) A physical unit, logical unit, or 
secondary application program. (2) A terminal that is compatible 
with systems network architecture. · 

SNBU. Switched network backup. 

solicit. In ACF/VTAM, to obtain data from a BSC or start-iltop 
terminal or from a local non-SNA 3270 terminal and move the data 
into ACF/VTAM buffers. 

solicited message. A response from ACF/VTAM to a network 
operator command entered by a program oper;ttor. Contrast with 
unsolicited message. 

specific-mode. In ACF/VTAM: (1) The form of read, receive, or 
solicit request that obtains data from one specific terminal. (2) The 
form of connection request that connects a· specific terminal that 
has logged on. (3) Contrast with any-mode. See also continue­
specific mode. 

specific node. See minor node. 

SSCP. System services control point. 

SSCP ID. An identifying number associated with an SSCP (that 
must be unique in a multidomain system) that enables a· device 
(especially a dial-in device) to identify an SSCP at a particular 
location and enables another SSCP to identify this SSCP when 
establishing a session with it. 

SSCP-LU session. A session during which ACF/VTAM. (the system 
services control point, SSCP) and a logical unit (LU) can communi­
cate. 

SSCP-PU session. A session during which ACF/VTAM. (the system 
services control point, SSCP) and a physical unit (PU) can 
communicate. 

start options. In ACF/VTAM, the useMpecified or IBM-iiupplied 
options that determine certain conditions that are to exist during 
the time an ACF/VTAM system is operating. F0r example: the si7.e 
of ACF /VT AM. buffer pools, which major and minor nodes are to be 
traced by the ACF/VTAM trace facility, and which major nodes are 
to be initially active. Start options can be predeimed or specified by 
the network operator when ACF/VTAM is started. 

subarea. A group of addressable elements in the network that have 
the same subarea ID. 

subarea ID. A subfijild of network address. 

switched network backup (SNBU). An optional facility that allows 
a user to specify, for certain types of stations, a switched line to be 
used as an alternate path (backup) if the primary line becomes 
unavailable or unusable. 

switched SNA major node. In ACF/VTAM., a major node whose 
minor nodes are physical and logical units attached by switched 
SDLClinks. 

synchronous operation. In ACF /VTAM., .a connection, commuiuca­
tion, or other operation in which ACF/VTAM; after receiving the 
request for the operation, does not return control to the program 
until the operation is completed. Contrast with asynchronous 
operation. 

synchronous request. In ACF/VTAM, a request for a synchronous 
operation. Contrast with asynchronous request. 

system services control point (SSCP). In SNA, a network address­
able unit that provides services via a set of command processors 
(network services) supporting physical units and logical units. The 
SSCP must be in session with each logical unit and each physical 



unit for which it provides services. It also provides services for the 
network operators or administrators who control the configuration. 
The SSCP is commonly located at a host node. 

systems network architecture (SNA). The total description of the 
logical structure, formats, protocols, and operational sequences for 
transmitting information units through the communication system. 
Communication system functions are separated into three discrete 
areas: the application layer, the function management layer, and the 
transmission subsystem layer. The structure of SNA allows the 
ultimate origins and destinations of information-that is, the end 
users-to be independent of, and unaffected by, the specific com­
munication-system services and facilities used for information 
exchange. 

T 

TC. Transmission control. 

teleprocessing subsystem. In ACF/VTAM., a secondary or subordi· 
nate network and set of programs that are part of a larger 
teleprocessing system; for example, the combination consisting of 
an SDLC cluster controller, its stored programs, and its attached 
terminals. 

teleprocessing system. A data processing system in combination 
with data communication facilities. 

terminal. (1) A device, usually equipped with a keyboard and some 
kind of display, capable of sending and receiving information over a 
communication channel. (2) In ACF/VTAM, the secondary end of a 
session; that is, a logical unit, a start-stop or BSC device, a local 
non-SNA 3270 device, or an application program. 

terminal compooent. A separately addressable part of a terminal 
that performs an input or output function, such as the display 
component of a keyboard-display device or a printer component of 
a keyboard-printer device. 

terminal system. In a data communication network, a terminal 
control unit or a cluster control unit and its attached devices. 
Synonymous with teleprocessing subsystem. 

TH. Transmission header. 

transit node. An intermediate node that is capable of routing path 
information units to another domain. 

transmission. In data communication, one or more blocks or 
messages. For BSC and start-stop devices, a transmission is termi· 
nated by an EOT character. See also block and message. 

transmission control (TC). In SNA, one of three components of the 
transmission subsystem. It has three subcomponents: the connec­
tion point manager, session control, and network control. It 
establishes, controls, and terminates sessions, and also controls the 
flow of information into and out of the common network for a 
session between network addressable units. It provides access to the 
transmission subsystem; this direct access is used by function 
management components. A transmission control element exists for 
each active session. See also data link control, path control. 

transmission header (TH). In SNA, a control field attached to a 
basic information unit (BIU) or to a BIU segment, and used by path 
control. It is created by the sending path control component and 
interpreted by the receiving path control component. See also path 
information unit. 

transmission subsystem. In SNA, the innermost layer of the 
communication system. It provides the control in each session to 
route and move data units between NAUs, and to manage the NAUs 
and their interconnecting paths. Its three constituent parts are data 
link control, path control, and transmission control See also 
application layer jUnction management. 

u 
unfonnatted system services (USS). A portion of ACF/VTAM that 
translates a character-coded command, such as a logon or logoff 
command, into a field-formatted command for processing by 
formatted system services (FSS). Constrast with formatted system 
services (FSS) and character-coded. 

unsolicited message. A network operator message, from ACF/ 
VTAM. to a program operator, that is unrelated to any command 
entered by the program operator. Contrast with solicited message. 

user logon data. Synonymous with logon data (1). 

Glossary 357 





Index 

Where more than one page reference is given, the major reference 
is first. 

abnormal end (ABEND) 
completion code, as a debugging aid 208 
in multitasking 49 
of application program, using special code for 207 
of VTAM, causing entry to TPEND exit routine 165 
pattern of abnormal termination processing 202 
saving register 1 during 208 
writing a debugging record for 208 

ACB (see access method control block) 
ACB macro instruction 

address of application program name in 55-56 
address of password in 56 
basic functions of 55-57 
examples of 56,213 
identification of exit list in 56 
logon indication in 56 

ACF/VTAM 
general functions of 5 

ACF/VTAM application program (see application program) 
ACF /VTAM macro instructions 

distinctive characteristics of 21 
general descriptions of 21-25 
in comparison to the VSAM language 

acceptance 
of a macro instruction request 35 
of a logical unit by a primary application program 61 
of a logon 76-78,61-62 

accepting a logical unit 
definition of 349 
general description of 61-62 
in a LOGON exit routine, example of 77-78 
in a main program, example of 76-77 
message flow for 281 

access method control block (ACB) 
basic function 23 
closing an 57-58,42 
contents of 55 
definition of 349 
ERROR field in 190 
identification of application program in 55-56 
identification of exit list in 56 
identification of password in 56 
IFGACB DSECT for 185 
opening an 57 
opening more than one with same OPEN macro 

instruction 25 ,57 
testing OFLAGS field in, to see whether open or 

closed 189,190 
accounting exit routine, definition of 349 
acquiring a logical unit by a primary application program 

by using 
an OPNDST macro instruction 64 
a SIMLOGON macro instruction 64 

definition of 349 
examples of 73-75 
general description of 63-64 

active, definition of 349 
addressability in exit routines 177 
any-mode in a RECEIVE operation 124-126,40,349 
APPL statement, name of application program in 55-56 
application program 

as a logical unit 5 
as part of ACF /VTAM system 3 
asynchronous operations in 35-38 
authorized path for, in OS/VS2 MVS 50-55 
basic-mode operations in 239-269 

application program (cont.) 
coexistence of basic-mode and record-mode operations in 239 
communication part of 5,47-48 
debugging an 205-209 
decisions that affect organization 

of 41-44 (Fig. 3-6) 
definition of 349,3 
identification, definition of 349 
in relation to program in logical unit 5,105 
job name or job step name for 55 
major functions of 12-19 
multitasking in an 47-50 
multithread operations in 34 
name of 55 ,56 
opening an 14,25,55-57 
organization of 31-54 
password for 56 
processing part of 5,4 7 
record-mode operations in 22,239 
schematic picture of 14 (Fig. 1-5) 
separation of parts of 3 
sharing resources among 3,5 
sharing routines among 34 
single-thread operations in 33 
synchronous operation in 34-35 
using multiple ACBs with 49-50 

application program logon (see simulated logon) 
APPLID field of ACB 55 
ARG field in RPL 40,77,216,252 
assembler language, use of, in writing an application 
program 3 

assembly errors, checking for 205 
asynchronous operation 

advantages and disadvantages of 39 (Fig. 3-5) 
definition of 350 
errors for 191-195,196 
general description of 35-38 
in RPL exit routines 38 (Fig. 3-4) 
versus synchronous 120 

asynchronous request, definition of 350 
attention interruptions, monitoring of 256 
ATTN exit routine (see also exit routines) 

basic function of 245 ,28 
example of 257 
to handle unsolicited attentions from basic-mode 

terminals 256-257 
authorization exit routine, definition of 350 
authorization needed in APPL statement 

to pass a logical unit to another program 68-69 
to simulate logons 65 

authorized path, in OS/VS2 MVS 
definition of 350 
description of 50-55 
sample programs for 

example of coded program 343-347 
example of logic 52-55 

automatic logon 94,69,76,350 
available, definition of 350 

basic-mode communication 
definition of 350 
description of, with BSC and start-stop terminals 239-269 

basic-mode concepts 
data blocks 242 
solicitation 242-244 
special 1/0 operations 244 
special processing options 245 

basic-mode macro instructions, functions of 241-242 

Index 359 



batch function, communication with 5 
batch input application, continuous solicitation for 244 
BB (see Begin Bracket indicator) 
Begin Bracket (BB) indicator, 

position of, in chain 278 
shown in message flow 389,290 
summary of 27 8 
use of 141 

Bid command 
shown in message flow 289,290,298,300,306 
summary of 272,273 

bidder, in bracket protocol 140,289,290 
BINARY option of NIB 245 
bindarea 

building session parameters in, example of 99 
definition of 90 
effect on session parameters 96 
session parameters in 92,95 

Bind command 
in establishing an LU-LU session 11 
in message flow 281,282 
need for SCIP exit to process 171 
session parameters in 89,11,281 
summary of 276,277 

block 
definition of 242,350 
reading a 24 7 ,250 
writing a 25 2 

BNDAREA operand in NIB macro instruction (see bind area) 
bracket 

definition of 350 
description of 139-142 
indicators for 278 
started by application program 289 
started by logical unit 289 

bracket indicators 
shown in message flow 289,290,305 
summary of 278 

bracket protocol 139-142,289,290,350 
BSC terminal, communicating with 239-269 
BTAM (basic telecommunication access method), communication 

through 239 

cancel closedown 58,60,159 
Cancel command 

summary of 272,273 
to tell receiver to discard incomplete chain 130 

chaining of messages 
description of 129-133 
example of 130 
message flow for 287 

CHANGE (basic-mode) macro instruction 
basic function of 241 
example of 246 
to change PROC (processing) options, mode, or user field in 

NIB 246 
Change Direction Command (CMD) indicator 

shown in message flow 291 
summary of 278 
use of 138-139 

change-direction indicators 
shown in message flow 291 
summary of 278 

change-direction protocol 
definition of 350 
description of 138-139 
indicators for 278 
message flow for 291 

Change Direction Request (REQ) indicator 
shown in message flow 291 
summary of 278 
useof 139 
use of Signal command for, inSNA 138,291 

360 

Chase command 
shown in message flow 295 
summary of 272,273 
to ensure all responses have been received 134,118 
use of 118 

CHECK macro instruction 
basic function of 24 
in an RPL exit routine 145 
in authorized path 53 
issuance of, after an asynchronous request 37 ,206,224 
to test for errors in OPNDST 74 

OD (see communication identifier) 
Oear command 

causing discarding of messages, responses, and commands 87 
need for SCIP exit routine to process 169 
shown in message flow 295,296,297 
summary of 276,277 
to stop flow of messages and responses 116 

CLOSE macro instruction 
basic function of 22,27,57 
causing issuance of CLSDST macro instructions 102,57 ,27 
conditions leading to issuance of 58-60 
errors and special conditions for 189-190 
example of 57 
in relation to HALT operator command 58-60 
prohibition on issuance in exit routine 59,60,206 

closedown of ACF/VTAM 58,350 
closing a program 57 ,58,18,42 
CLSDST macro instruction 

basic function of 22,27 
examples of 101 
for a fast closedown 5 8 
issuance of, by ACF/VTAM, at CLOSE ACB 102,57,58 
PASS and RELEASE options in 68 
using a pool of control blocks and work areas with 46 
with a NIB 100-101 
with a CID 101 

CMD (see Change Direction Command indicator) 
COBOL 

use of, in writing the processing parts of an application 
program 5 

commands (in messages) 
definition of 106,350 
in a message 107 
summary of 271-278 

communicating with a BSC or start-stop terminal 
using BTAM 239,240 
using ACF/VTAM 239,240 

communication identifier (CID) 
definition of 351 
returned in RPL and NIB after OPNDST 76,27 
use of CLSDST with 100,101 
used for communication with logical unit 119 

commurii.cation line, def"mition of 351 
communication part of an application program 5 
communication with logical units 105-143 

introduction to 26 
communications controller 

definition of 351 
general function of 5 

compression of data 142 
CONALL option 

example of 75 
in connecting logical units 64,67 

CONANY option, in connecting logical units 64,67 
configuration restart, defmition of 351 
connecting to a logical unit 61-103,281-288,26 
connection, definition of 351 
connection requests, from secondary application 
programs 80-89 

queuing of device-type logical units 66 
contention 138 
continue-any mode for a RECEIVE operation 125-126,351 



continue-specific mode for a SEND or RE~IVE 
operation 125-126,40,351 

control blocks 
building of, with GENCB macro instruction 181-183 
getting values from, with SHOWCB macro instruction 184 
handling of, in Sample Program 2 219 
modifying the contents of, with MODCB macro 
instruction 183-184 

pool of 45-46 
setting values in 181 
techniques for handling 

element per logical unit at assembly 44 
element per logical unit at connection 4546 
element per request 47 
element per transaction 47 

testing values in 184-185 
using DSECTs with 185-186 

controlling flow of messages and responses 116-119,134,142 
conversational write operation (basic mode) 

definition of 351 
description of 255 

data area 
associating with logical unit 4445 
associating with a request 47 
associating with a transaction 47 

data flow, definition of 351 
data flow control, definition of 351 
data in a message 106 
data transfer, definition of 351 
data transmission, definition of 351 
debugging an application program 

adding debugging aids to 207-208 
after execution 208-209 
before execution 205-208 
for assembly errors 205 
for program logic errors 205-206 
list of possible errors to check 206 
using the ABEND completion code 208 
writing a debugging record 208 

definite response (types 1 and 2) 
definition of 351 
exchanging data, using 285,286 
meaning of 108 
need for requesting, with SEND POST=RESP 120 
receiving of 108-111 
requesting a 108 
sending a 108 
types 1 and 2 108 

definition statement, definition of 352 
delayed control mode 133 
delayed request mode 133 
delayed response mode 133 
device control character, definition of 352 
DFASY exit routine (see also exit routines) 

advantages and disadvantages of 151 
basic function of 150,28 
example of, in logic of Sample Program 2 234 . 
parameters passed to 152 (Fig. 7-5) 
read-only RPL provided to 151 
specifying in ACB or NIB 151 
used to receive expedited-flow messages and 

commands 150-153 
disconnecting from logical units by primary application 

program 100-102,27,68 
disconnecting from primary application program by a secondary 
.mplication program 102-103 · 
~>0 (basic-mode) macro instruction, basic function of 241 
·lomains, SNA concept of 12 
DSECTs 

defining of 185-186 
names of 185 
using 186 

dump 
important information in 209 
replacing a, with a programmer message 209 
saving register 1 in 208 
using a special code to appear in 208 

DUMP macro, use of in debugging 208 

EB (see End Bracket indicator) 
ECB (see event control block) 
ECB posting 122,35-37 ,145 
E!B option of NIB 245 
ELC option of NIB 245 
End Bracket (EB) indicator 

position of, in chain 278 
shown in message flow 289,290 
summary of 278 
use of 141 

EOB (end-of-block) character 242 
EOT (end-of-transmission) character 243 
ERPIN and ERPOUT options of NIB 244 
error information byte (EIB) 244 
error lock, definition of 352 
errors and special conditions 

analyzing, 
for manipulative macro instructions 190-191 
for OPEN and CLOSE macro instructions 189-190 
for RPL-based macro instructions 191-195 

for asynchronous operations 196 
for scheduling of messages 198 
for synchronous operations 194 
handling of 202 

for data integrity damages 202 
for environment errors 202 
for exception messages 200 
for logical errors 202 
for negative responses 201 
for retriable completion 201 
procedure for, 189-203, 

using LERAD and SYNAD exit routines for 191-203 
ACF/VTAM software errors 202 

ESTAE exit routine (for OS/VS2 MVS) 203 
ETB (end-of-transmission-block) character 242 
EXT (end-of-transmission) character 243 
event control block (ECB) 

internal, in ECB-EXIT field of the RPL 35-37 
use of, with asynchronous operations 122,35-37 

exception message, definition of 352 
exception response (see negative response) 
exchanging data, message and response flows for 284-286 
EXECRPL macro instruction 

basic function of 24 
for retriable conditions 201 

exit list (EXLST), def"mition of 352 
. exit-list exit routines, specification and function of 145-147 
exit routines (see also names of particular exit routines) 

addressability and save area requirements for 177 (Fig. 7-11) 
avoiding issuance of a synchronous request within 34 
cautions, restrictions, and techniques for 1 72 
defmition of 352 
entry procedures to 1 72 
exit procedures from 173 
general functions of 145,27 
identified by means of ACB 56,147 ,150 
identified by means of NIB 147 ,150 
identified in RPL-based macro instruction 145 
in relation to multiple ACBs 50 
list of 28 (Fig. 2-1) 
parameters passed to 155 (Fig. 7-5) 
requirements for reenterability of 178,27 ,179 
serial execution of 221 ' 
summary of 28 (Fig. 2-1),149 (Fig. 7-2) 

Index 361 



exit routines (cont.) 
types of 

exit-list exit routines 146-150,27 
RPL-specified exit routines 150,27 

with multiple tasks 48,172 
EXLST exit routine, definition of 352 

(see ATTN exit routine, DFASY exit routine, LERAD exit 
routine, LOGON exit routine, LOSTERM exit routine, 
NSEXIT exit routine, RELREQ exit routine, RESP exit 
routine, SCIP exit routine, SYNAD exit routine, TPEND exit 
routine) 

EXLST macro instruction 
basic function of 23 
named in EXLST operand of ACB 56,147 
named in EXLST operand of NIB 14 7 
names of exit routines in 56,147 

expedited flow, definition of 352 
expedited-flow commands, summary of 274-275 
expedited-flow messages 

ability to send, during quiesced state 137 
ability to send, in change-direction protocol 138 
definition of 112,113,27 
sequence numbers in 113 
ways of receiving 

with a DFASY exit routine 127,150 
with a RECENE RTYPE=DFASY 127 

field-formatted logon or logoff, definition of 352 
first speaker, in bracket protocol 141 
FME response (see definite response) 
full-duplex devices 137 
function management header option 142 

GENCB macro instruction 
advantage of 181 
baisc function of 24 
errors and special conditions for 190-191 
examples of 182 
use of 182 

half"duplex contention communication 138 
half-duplex devices 134 
half-duplex flip-flop communication 138 
HALT operator command 58-60 
heading characters for System/3 or System/370 244 
host computer, definition of 352 
host system, definition of 352 

idle device-control characters 244 
IFGACB DSECT for ACB 185 
IFGEXLST DSECT for EXLST 185 
IFGRPL DSECT for RPL 185 
immediate control mode 130 
immediate request mode 133 
immediate response mode 133 
inactive, definition of 35 2 
inbound sequence number 

description of 115 
setting of, in message flow 283,292,303 

indicators (in messages and responses) 
definition of 105 
in a message 106 
summary of 278 

Initiate Self command 
transmitted to initiate a session 11,281 

INQUIRE macro instruction 
basic functions of 25 
OPTCD=LOGONMSG 79 
OPTCD=SESSPARM 97,98,223 
OPTCD=TERMS 75,186 

362 

INQUIRE macro instruction (cont.) 
used to determine type of logical unit being connected 221 
used to rill in a NIB list 7 5 
used to get a logon message in a logon 78,215 
used to obtain session parameters 97 ,223 
used to translate a CID into a symbolic name 119 

intermediate transmission blocks (ITBs) 244 
internal ECB in ECB-EXIT field of the RPL 35-37 
INTRPRET macro instruction, basic function of 25 
ISTDBIND DSECT, used to build or examine session 
parameters 185,71 

ISTDNIB DSECT for NIB 185 
ISTDPROC macro for processing options fields of the NIB 185 
ISTDVCHR macro for device characteristics field of the 

NIB 185 

job name for application program 55 
job step name for application program 55 

KEEP option for overlength input data 
in basic-mode operations 246 
in record-mode operations 128 

LDO (see logical device order) 
LDO (basic-mode) macro instruction, basic function of 241 
leading graphic characters for System/3 or 

System/370 244,353 
LERAD exit routine (see also exit routines) 

advantage of 155 
basic function of 28 
considerations in coding 158 
in logic of Sample Program 2 226,221 
linkage conventions for 177,155 ,206 
parameters passed to 155 (Fig. 7-5) 
purpose of 155 

LGIN and LGOUT options of NIB 245 
line control, definition of 35 3 
line-control characters, insertion of 245 
LISTEND operand in NIB macro 72,75 
local, definition of 35 3 
LOGAPPL parameter of LU statement 94 
logical device order (LDO), definition of 245,353 
logical error, definition of 353 

(see also LERAD exit routine) 
logical unit (see also terminal) 

accepting a 61 
acqumng a 73,63 
associating an RPL with 

at assembly 44 
at connection 4546 

available 64,67 
communicating with 119 
connecting to 61-99,14 
definition of 35 3,5 
disconnecting from 100-103,68 
general types of 5 
identifying 119 
inactive, effect on connection 64,67 
passing of 68 
releasing of 68 
SSCP session with 10 
sessions between 11 
transmitting session parameters to 88-99 
unavailable 64,67 
3270 terminals as a 5 

Logical Unit Status (LUS) command 
shown in message flow 294 
summary of 272,273 

logical unit table, to associate an RPL with each logical unit 44 



LOGMODE operand, 
effect on session parameters 96 
to identify a logon mode 89-99 

logoff, definition of 353 
logon 

acceptance of 
in LOGON exit routine 77-78,61 
in main program 76-77,61 

automatic 94,68,76 
definition of 353 
logon mode name in 92,93 
preventing action on 63 
queuing of 62 
sequence of processing queued logons 68 
simulated 79,64,62 
source of 76,62 

logon data, definition of 353 
LOGON exit routine (see also exit routines) 

accepting connections in 76-78,62,158 
advantages of 158 
basic function of 28,11 
delay in scheduling of, until SETLOGON 63 
examples of 

in logic of Sample Program 1 214,215 
in logic of Sample Program 2 221-224 
sample in text 77 

in comparison to identifying an RPL exit routine in 
OPNDST 158 

in relation to message flow for opening a 
session 281,298,300 

parameters passed to 155 (Fig. 7-5) 
relationship to OPNDST OPTCD=ACCEPT 158 
using INQUIRE macro instruction in 78,159 

logon mode name 
definition of 89,353 
specification of, in statements and commands 90-98 
used, 

to get session parameters, example of 89 
with a device-type logical unit 93 
with a secondary application program 93 
with a SIMLOGON or CLSDST (PASS) macro 

instruction 93 
with VARY LOGON command or an automatic logon 94 

logon mode table 
default table 92 
definition of 91,35 3 
specification of, with MODETAB, MODEENT, and 

MODEEND macro instruction 91 
logon mode table name 

definition of 90 
in logic 92 

LOSTERM exit routine (see also exit routines) 
basic functions of 28 
entry codes for 160-161 
in logic of Sample Program 2 226,221 
in relation to Terminate commands 296 
parameters passed to 155 (Fig. 7-5) 
reasons for entry to 159-160 
reentry to, as a result of restart 160 

LU definition statement 
identifying logon mode table in (MODETAB) 90 
LOGAPPL parameter of 94 
symbolic name oflogical unit in 70-71 

LU-LU session 11,353 
LUS (see Logical Unit Status command) 

macro-instruction request 
acceptance of 35 
association of an ECB with 35 
association of an RPL exit routine with 35 
completion of 35 
scheduling of 40 

macro instruction (Refer also to names of particular macro 
instructions) 
summaries of 

basic mode 145,146 
record mode 21-25 

types of 
basic mode 22 
record mode 22 

manipulating control blocks 181-189 
master/slave devices 134 
messages (see also expedited-flow messages and normal-flow 

messages) 
chaining of 129-133 
contents of 106 
overlength data in 128 
quiescing the sending of 133-134 
responses to 107-111 
sequence numbers in 115-118 
sequence relationship between normal-flow and 

expedited-flow 112-113 
message-switching program, as an ACFNTAM application 
program 3 

MODCB macro instruction 
basic function of 24 
errors and special conditions for 190,191 
use and examples of 183-184 

MODESET supervisor macro instruction, for authorized 
path 50-54 

MONITOR and NMONITOR options in NIB 245 
multitasking, in an application program 47-50 
multithread application program 

definition of 353 
characteristics of 34 
example of: Sample Program 2 219-234 

negative response 
definition of 354 
effect of, within chain of messages 287 
exchanging data, using negative responses only 284,285 
receiving of 108-111 
requesting a 108 
sending of 108 
transferring sense fields before sending 200 

negative response to polling limit, definition of 354 
network addressable units (NAUs), SSCP knowledge of 6 
network, definition of 354 
network control program (NCP) 

definition of 354 
general functions of 5 

network definition, definition of 354 
network operator, definition of 354 
network operator command, definition of 354 
network operator logon, definition of 354 
network services procedure error 281,298 
NIB (see node initialization block) 
NIB list 

definition of 354 
example of 75 
specification of 72 

NIB macro instruction 
basic function of 23 
BNDAREA operand in 92 
examples of 72 
information specified in 70 

no response 108-111,284 
node initialization block (NIB) 

basic or record mode specified in 71 
bind area address (BNDAREA) in 71,92 
definition of 354 
DEVCHAR field in 241 
information in 70-71 
ISTDNIB DSECT for 185 

Index 363 



node initialization block (NIB) (cont.) 
ISTDPROC macro for processing options in 185 
ISTDVCHR macro for device characteristics field in 185 
logon mode name (LOGMODE) in 71,90-98 
pool of 4546 
processing options (PROC) in 

for basic-mode operations 245 
for record-mode operations 71 

relationship to RPL 71-72 
symbolic name of logical unit in 70-71 
use of CLSDST with 100 
use of, in connecting a logical unit 70-72,241 
USERFLD field in, use of 71,39 ,44 

nonswitched lines, SSCP-PU session on 10 
normal-flow commands, summary of 272-273 
normal-flow messages 

definition of 354,112,27 
quiescing the sending of 133-134 
sequence numbers in 112,115-118 

NSEXIT exit routines 
formats of RUs received by 164,166 (Fig. 1-6 and Fig. 7-7) 
role in a REQSESS operation 162 
use of 162,28 

OPEN macro instruction 
basic function of 22,25,55 
errors and special conditions for 189-190 
examples of 57 ,213 
general relationship to A CB, EXLST, and APPL definition 

statement · 25,55-51 
requirements for 55 

opening a program 14,25,55-57 
OPNDST macro instruction 

acquiring session parameters during execution of 92-97 
asynchronous 

examples of 74 
need for CHECK or WAIT with 77 

basic function of 22,14 
' examples of 215 
general relationship to RPL and NIB 26,215 
PROC=TRUNCIKEEP 128 
sending of Start Data Traffic command as part of 116 
to accept a logical unit, message flow for 281,298 
to accept a logon in a LOGON exit routine, example 

of 77-78 
to accept a logon in a main program, example of 76-77 
to acquire a logical unit, message flow for 282,300 
to acquire terminal characteristics 215 
using pool of control block and work areas with 4546 

OPNSEC macro instruction 
basic function of 22 
message flow 299 

orderly closedown, definition of 354 
organization of an application program 33-54 

decisions that affect 4244 (Fig. 3-6) 
into multiple tasks 47-50 

outbound sequence number 
description of 115 
setting of, in message flow 283,292,303 

passing logical units 68,92 
path, definition of 354 
physical unit 

definition of 355 
SSCP session with 10 

PL/I, use of in writing the processing parts' of an application 
program 3 

polling, initiated by ACF/VTAM 242 
pool of control blocks and work areas 4546 

364 

positive response 
definition of 355 
meaning of 108,40 
requesting and receiving 108-111 
use of, with scheduled output . 40 

primary application program (see also application program) 
accepts connection request from a secondary application 

program 298 
acquires a secondary application program 300 
role in connection and disconnection 61 

processing part of an application program 5 
program logic errors, checking for 205-206 
protocol 

bracket 139-142 
change-direction 138-139 
definition of 355 
quiesce 133-134 
secondary and primary 18 (Fig. 5-2) 
SNA 40,110 

QC (see Quiesce Complete command) 
QEC (see Quiesce at End of Chain command) 
queuing 

of connection requests 62,67 (Fig. 5-1) 
oflogons 62 

quick closedown 59,159,355 
Quiesce at End of Chain (QEC) command 

position of, in message flow 288 
summary of 274,275 
use of 133 

Quiesce Complete (QC) command 
position of, in message flow 288 
summary of 272,273 
use of 134 

quiesce protocol 
definition of 355 
description of 133-137 
message flow for 288 

RCVCMD macro instruction 
basic function of 23 

READ (basic-mode) macro instruction 
basic function of 241 
example of, 

for a read-any basic-mode operation 250,251 
for a read-specific basic-mode operation 24 7 ,248 

in continue-any mode 252 
in continue-specific mode 25 2 
to accept logons in basic-mode operations 251 
to read remaining blocks of a message 25 2 
use of RPL exit routine with 251-252 

read-any operation for basic-mode terminal 250-252 
read-specific operation for basic-mode terminal 247-250 
Ready to Receive (R TR) command 

shown in message flow 290,306 
summary of 272,273 
useof 140 

receive-any operation 
general characteristics of 40 
in a separate task 48 
versus receive-specific 124 

RECEIVE macro instruction 
authorized path for 50-54 
basic function of 22,16-17 
continue-any mode for 125-126 
continue-specific mode for 125-126 
examples of, for synchronous operations 
examples of, for asynchronous operation~' 
for a receive-any operation 124-125,40 

120,215 
222 



RECEIVE macro instruction (cont.) 
for a receive-specific operation 124-125 
handling overlength data in 128 
in exchanging data, message flow for 284-286 
in receiving a chain of messages, message flow for 287 
keeping or truncating overlength data for 128 
to receive expedited-flow input (RTYPE=DFASY) 127 
to receive a response (RTYPE=RESP) 108,124,127 
versus DFASY or RESP exit routine 127 

record mode, definition of 355 
recovery action return codes 193 
register conventions for an ACF/VTAM application 

program 28 
register 1, saving when dumping 208 
registers 15 and 0, testing for return codes 189-203 
Release Quiesce (RELQ) command 

position of, in message flow 288 
summary of 274,275 
use of 134 

releasing logical units 68 
RELQ (see Release Quiesce command) 
RELREQ exit routine (see also exit routines) 

basic function of 28 
entry to 167-168 
for notifying a program of release 

request 167-168,68,257-258 
parameters passed to 155 (Fig. 7-5) 
possible actions in 168 

remote, definition of 355 
reply, definition of 355 
REQ (see Change Direction Request indicator) 
REQSESS macro instruction 

basic function 22 
example of 87 ,298 
NIB used with 82 
RPL used with 82 

request, definition of 355 
request header (RH) in SNA 105,355 
request modes 130-133 
request parameter list (RPL) 

address of NIB or NIB list in 206 
ARG field in 40,247 
basic function 24 
command and response information in 27 
definition of 355 
error and special condition information in 192 
example of, for a connection request 69 
FDBK2 field in 192 
for CLSDST 100-102 
for OPNDST 70,26,74 
for READ 245-246 
for RECEIVE 26,215 
for REQSESS 82 
for SEND 27 
IFGRPL DSECT for 185 
pool of 45-46 
possible ways of associating with operations 41 
predefined for each logical unit 45 
RECLEN field in 206 
RESPOND field in 216 
RPLBRANC flag in 51 
RTNCD field in 192 
sense fields in i92,200,201,284-286 
USER tieid in, use of 45 
ways in which RPL can point to NIB 71·72 

Request Recovery command 
need for SCIP exit routine to process 170 
shown in message flow 292 
summary of 276,277 
waiting for, before sequence number recovery 200 

request/response unit, definition of 355 

Request Shutdown (RSHUTD) command 
shown in message flow 295 
summary of 274-275 
used in disconnection 102 

request unit (RU) in SNA 105,355 
requests 

definition of 355 
division of, among multiple tasks 47-49 
for connection 66 
using pool elements with 45-46 

RESET (basic-mode) macro instruction 
basic function of 241 
to cancel data-transfer requests 256 
use of inactive RPL with 256 

RESETSR macro instruction 
authorized path for 50-54 
basic function of 22 
examples of 218 

RESP exit routine (see also exit routines) 
advantages and disadvantages of 153 
basic function of 28 
examples of 

in logic of Sample Program 1 214,217,218 
in logic of Sample Program 2 234 

parameters passed to 155 (Fig. 7-5) 
read-only RPL provided to 153 
scheduling of, after receiving a response 153,127 ,108 
specifying in ACB or NIB 153 

responded output 122-124,355 
response (see also definite response, no response, negative 
response, positive response) 

contents of 107 
inOuence of SNA protocols on 40,110 
receiving a 108-111 
requesting a 108 
sequence number in 115 
typesof 110 
ways of receiving 

with a RECEIVE RTYPE=DFSYN 114 
with a RECEIVE RTYPE=RESP 127 
with a RESP exit routine 127 ,15 3 

response header indicators in SNA 105 
response modes 130-133 
response unit (RU) in SNA 105 
resynchronizing sequence numbers, message flow 

for 283,292,303 
RPL (see request parameter list) 
RPL-based macro instruction, definition of 356 
RPL exit routine (see also exit routines) 

advantage of 224 
definition of 356 
example of using 146 (Fig. 7-1) 
parameters on entry, when running under an SRB 5 3 
parameters passed to 155 (Fig. 1-5) 
specification and functions of 145 
use of, compared to ECB posting 145,150 
use of, with asynchronous operations 35-37 ,122 
with authorized path 50-54 

RPL macro instruction 
basic function of 24 

RQR (see Request Recovery command) 
RRN response (see definite response) 
RSHUTD (see Request Shutdown command) 
RTR (see Ready to Receive command) 

sample programs 
Basic-Mode Sample Program 1 258-264 
Basic-Mode Sample Program 2 264-267 
Basic-Mode Sample Program 3 267-269 
for authorized path (OS/VS2 MVS) 343-347 

Index 365 



sample programs (cont.) 
Sample Program 1 (record mode) 

coded version of 313-341 
logic of 213-218 

Sample Program 2 (record mode) 
DF A.SY exit routine in 234 
organization and flow of 219-227 
RESP exit routine in 234 
3270 1/0 routine in 230-233 
3600 1/0 routine in 227-229 
3600 output routine in 230 

scheduled output 122-124,40,195,356 
SCIP exit routine (see also exit routines) 

basic function of 28,169 
parameters passed to 155 (Fig. 7-5) 
read-only RPL provided to 169 
resynchronization of sequence numbers in 170 
role in session establishment 83,298 
specifying in ACB or NIB 150 

SOT (see Start Data Traffic command) 
secondary application program (see also application program) 

connection requests by 80-88,298 
secondary logical unit 

SNA concept of 9 
SEND macro instruction 

authorized path for 50-54 
basic function of 22,17 
examples of, for asynchronous operations 121 
examples of, for synchronous operations 120,216,217 
in exchanging data, message flow for 284-286 
in sending a response, message flow for 284-286 
POST=RESP 120-121 
POST=SCHED 120-121,217 
RESPOND operand in 108,217 
scheduling of 40,120-121 
specific mode for 126 
specifying ECB posting in 121,122 
specifying execution of RPL exit routine in 121,122 
STYPE=REQ 120,121 
STYPE=RESP 108,216 

SENDCMD macro instruction, basic function of 23 
sense fields in the RPL 192,200,201,294,298 
sequence numbers 

definition of 356 
in messages and responses 115-118 
resetting of, to zero, with Ciear command 116 
resynchronization of 

examples of 283,292 
general description of 116 
message flow for 283,292,303 

session 
definition of 356 
LU-LU 11 
SNA concept of 9 
SSCP-LU 10 
SSCP-PU 10 

session control, definition of 356 
session limit, definition of 356 
session parameters 

controlling, when establishing connection 89-99 
default set of 91,92 
definition of 89 
example of, 

associated with a logon 
in a bind area 

NIB fields which effect 95-96 
processing by, 

the primary application program 94 
the secondary application program 99 

role in establishing which commands and indicators can be 
sent 271 

specification of, in logon mode tables 90-91 
during acquisition 98 

366 

SESSIONC command 
summary of 276-277 
to respond to a Bind command 298,300 
to resyncluonize sequence numbers 283 
to send SDT command 281,282,299,301 

SESSIONC macro instruction 
authorized path for 50-54 
basic function of 22 
to respond to a Bind command 298,300 
to send Set and Test Sequence Number command 87 
to send Start Data Traffic and Clear commands 87 ,88 

Set and Test Sequence"Num her (STSN) command 
example of use of 283 
need for SCIP exit routine to process 170 
summary of 276,277 
use of 116-118,283,292,303 

SETLOGON macro instruction 
basic function of 25 
effect of, on starting acceptance of logons 63 
examples showing use of 76-78,215 

SHOWCB macro instruction 
basic function of 24 
errors and special conditions for 190-191 
use and examples of 184 

SHUTC (see Shutdown Complete command) 
SHUTD (see Shutdown command) 
Shutdown (SHUTD) command 

shown in message flow 295 
summary of 274-275 

Shutdown Complete (SHUTC) command 
shown in message flow 295 
summary of 274-275 

Signal command 
shown in message flow 293,291 
summary of 274-275 
use of 0 138 

SIMLOGON macro instruction 
basic function of 25 
example of 80 
logon mode (LOG MODE) named in 93 
to acquire a secondary application program 301 
to generate a simulated logon 79,64-67 

simulated logon 
advantage of, in comparison to acquiring a logical unit 79-80 
by means of a SIMLOGON macro instruction 64,80 
definition of 356 
example of 80 
logon message in 80 
uses of 64-67 ,80 

single-thread application program 
characteristics of 3 3 
definition of 356 
example of: Sample Program 1 213-218,313-341 

SNA (see Systems Network Architecture) 
SOLICIT (basic-mode) macro instruction 

basic function of 241 
in basic-mode LOGON exit routine 250 

solicitation 
as first step of a read-any basic-mode operation 250 
continuous 244 
definition of 356 
explicit 242 
implicit 242 
initiated by READ 242 
of a block 243 
ofa message 243 
of a transmission 243 
performed by communications controller 244 
processing options in NIB for 246 
with SOLICIT macro instruction 243 
with specific-mode READ macro instructions 243 

specific-mode in a SEND or RECEIVE operation 124-126,356 
SRB, running under, for authorized path 51 



SSCP (see system services control point) 
SSCP-LU session 10,356 
SSCP-PU session 10,356 
STAE exit routine (for OS/VSl and OS/VS2 SYS) 203 
Start Data Traffic (SDT) command 

in command flow 281,282 
need for SCIP exit routine to process 170 
sent by a primary application program to begin flow 281-282 
summary of 220 
to restart flow of messages and responses 87,224,233 
to start flow of messages and responses 87 
when SDT=APPL in NIB 222,223,224 
when SDT=SYSTEM in NIB 222,223 

start options, definition of 256 
start-stop terminals, communicating with 139-169 
status save area 44-47 
STSN (see Set and Test Sequence Number command) 
STXIT AB exit routine (for DOS/VS) 203 
subtasks 

using the same ACB, considerations in using 48-49 
using separate ACBs, considerations in using 49 

supervisor state, for use of authorized path in OS/VS2 
MVS 50-54 

switched lines (see also nonswitched lines) 
SSCP-PU session on 10 

symbolic name 
of an application program 55-56 
of a logical unit 70-71 

SYNAD exit routine (see also exit routines) 
advantage of 157 
basic function of 28 
considerations in coding 158 
in logic of Sample Program 2 226,221 
linkage conventions for 177,155,206 
parameters passed to 155 (Fig. 7-5) 
purpose of 157 

synchronous operation 
advantages and disadvantages of 39 (Fig. 3-5) 
definition of 356 
errors for 194 
general description of 34-35 
versus asynchronous 120 

system services control point 
definition of 356 
role of, in ACF/VTAM 7 

Systems Network Architecture (SNA) 
concepts of, in ACF/VTAM 6-12 
definition of 356 
example of session establishment in Sample Program 2 223 
protocols for ensuring orderly communication 134-142 

TCB (task control block) 
multiple, for an application program 47-48 
running under, for authorized path 50 

techniques for handling control blocks and work areas 
element per logical unit at assembly 44 
element per logical unit at connection 45-46 
element per request 4 7 
element per transaction 4 7 

terminal, definition of 357 ,241 
Terminate (conditional), shown in message flow 296 
Terminate (unconditional), shown in message flow 296 
TERMSESS macro instruction 

basic function of 22 
message flow for 307,308 
used in disconnection 103 

TESTCB macro instruction 
basic function of 24 
errors and special conditions for 190-191 
to determine whether last block of message has been 
read 247 

use and examples of 184,185 

time-Qut limitation 245 
TIMEOUT option of NIB 245 
TMFLL option of NIB 245 
TPEND exit routine (see also exit routines) 

action of, for HALT CANCEL 60 
action of, for HALT QUICK 60 
action of, for standard HALT 59 
action of, for ACF/VTAM termination 58 
basic function of 28 
entry to, after HALT commands 58,165-167 
in logic of Sample Program 2 226,221 
parameters available, on entry to 155 (Fig. 7-5),58 
use of common one, with multiple ACBs 50 

transaction, using a pool element with a 4 7 
transmission, definition of 357 
transparent text mode 245,357 
TRUNC (truncate) option for overlength input data 

in basic-mode operations 246 
in record-mode operations 128 

Unbind command, 
need for SCIP exit routine to process 171 
shown in message flow 295,296,297,308,309 
summary of 276,277 

USERFLD field of the NIB 
use of, to associate a storage area with a logical unit 45 
use of, to track status of a logical unit 39 

VARY LOGON operator command 
effect on session parameters 94 
logon mode (LOGMODE) named in 92 
to generate a logon 76 

wait routine 
in logic of Sample Program 2 225,221,219 
use of, to "drive" program 33 

work areas 
techniques for handling 

element per logical unit at assembly 44 
element per logical unit at connection 4546 
element per request 47 
element per transaction 47 

WRITE {basic-mode) macro instruction 
basic function of 241 
examples of 

for an asynchronous basic mode operation 252 
for a conversational write 255 
to write a one-block answer 252 
to write multiple blocks 254 
with an RPL exit routine specified 253 

1050 terminals, attentions from 256 
2741 terminals, attentions from 256 
3270 display stations 

communicating with 142-143 
in Sample Program 2 230-233,219,220 

3704/3705 .Communications Controller, general functions of 5 

Index 367 



Advanced Communications 
Function for VTAM 
(ACF/VTAM) 
Macro Language Guide 

SC38-0256-0 

This manual is part of a library that serves as a reference source for systems analysts, programmers, and 
operators of IBM systems. This form may be used to communicate your views about this publication. 
They will be sent to the author's department for whatever review and action, if any, is deemed appropriate. 

IBM shall have the nonexclusive right, in its discretion, to use and distribute all submitted information, 
in any form, for any and all purposes, without obligation of any kind to the submitter. Your interest 
is appreciated. 

Note: Copies of IBM publications are not stocked at the location to which this form is addressed. 
Please direct any requests for copies of publications, or for assistance in using your IBM system, to 
your IBM representative or to the IBM branch office serving your locality. 

How did you use this publication? 

I I 
I I 
I I 

As an introduction 

As a reference manual 

For another purpose (explain) 

I I 
I I 

As a text (student) 

As a text (instructor) 

Is there anything you especially like or dislike about the organization, presentation, or writing in this manual? 
Helpful comments include general usefulness of the book; possible additions, deletions, and clarifications; 
specific errors and omissions. 

Page Number: Comment: 

READER'S 
COMMENT 
FORM 

What is your occupation? --------------------------------

Newsletter number of latest Technical Newsletter (if any) concerning this publication: 

If you wish a reply, give your name and address: 

IBM branch office serving you 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy tc> forward your comments.) 



SC38-0256-0 

Reader's Comment Form 

Fold Fold 

0 s 

~ 
a: 
> 
0 
" .. 
r-:;· 
• 
I 
I 
I 
I 
I ..................................................................................................................................................................... ····· ·t 

111111 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

Postage will be paid by: 

loternational Business Machines Corporation 
Department 63T 
Neighborhood Road 
Kingston, New York 12401 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

' ........................................................................................................................................................................ . 
Fold 

--.. -. ------ ----- ~--- ~ ----- -- _.._. _ ___ .. _ 
--- - . -e 
International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y. 10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A. 10591 

IBM World Trade Europe/Middle East/Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A.10601 

Fold 



SC38-0256-0 

----- - ------ ------ -------. ------ - ----___ ..., _ _ _.._. -
e 

International Business Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, N.Y.10604 

IBM World Trade Americas/Far East Corporation 
Town of Mount Pleasant, Route 9, North Tarrytown, N.Y., U.S.A.10591 

IBM World Trade Europe/Middle East/ Africa Corporation 
360 Hamilton Avenue, White Plains, N.Y., U.S.A.10601 

C/) 
(") 
w c:p 
0 
I\.) 

~ 
0 


