
--------- --------- -. ---- -- _ .. ----------_.-
<Il

NetView™

Customlzatlon: Using PL/I and C

Release 3

File Nuni>er
S370/4300/30XX-50

Program Number
5665-362 (MVSIXA)

8031-6037-0

First Edition (May 1989)

This edition applies to Release 3 of the NetView™ licensed program, which runs under the following oper
ati ng systems:

MVS/XA (NetView program number 5665-362)
MVS/ESA in compatibility mode (NetView program number 5665-362)

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the Agreement for IBM Licensed Programs. Changes are made periodically to the
information herein; before you use this document in connection with the operation of IBM systems, consult
the latest IBM Systeml370, 30XX, 4300, and 9370 Processors Bibliography, GC20-0001, for the editions that
are applicable and current.

Any reference to an IBM licensed program in this document is not intended to state or imply that only IBM's
program may be used.

IBM may have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not of itself constitute or imply a grant of any license or immunity
under any patents, patent applications, trademarks, copyrights, or other similar rights of IBM or of any third
party, or any right to refer to IBM in any advertising or other promotional or marketing activities. IBM
assumes no responsibility for any infringement of patents or other rights of third parties that may result
from use of the subject matter disclosed in this document or for the manufacture, use, lease, or sale of
machines or programs described herein, outside of any responsibilities assumed via the Agreement for
Purchase of IBM Machines and the Agreement for IBM Licensed Programs.

Licenses under IBM's utility patents are available on reasonable and nondiscriminatory terms and condi
tions. IBM does not grant licenses under its appearance design patents. Inquiries relative to licensing
should be directed in writing to the IBM Director of Commercial Relations, International Business Machines
Corporation, Armonk, New York, 10504.

It is possible that this material may contain reference to, or information about, IBM products (machines and
programs), programming, or services that are not announced in your country. Such references or informa
tion must not be construed to mean that IBM intends to announce such products, programs, or services in
your country.

Publications are not stocked at the address given below. If you want more IBM publications, ask your IBM
representative or write to the IBM branch office serving your locality.

A form for your comments is provided at the back of this document. -If the form has been removed, you may
address comments to IBM Corporation, Department E15, P.O. Box 12195, Research Triangle Park, North
Carolina 27709, U.S.A. IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

NetView is a trademark of International Business Machines Corporation.

© Copyright International Business Machines Corporation 1989
All Rights Reserved.

Contents

Part 1. Overview .. ".. 1

Chapter 1. NetView High-Level Language Services 3
Synchronous Command Execution 3
Sending Commands (Asynchronous Command Execution) 4
Client/Server Request/Response Handling 4
Operator Interaction .. 4
Data Access 5
Communications Network Management Interface .. 6
NetView Partitioned Data Sets 6
NetView Storage Access 6
User-Defined Lock Management 7
Parsing Character Strings 7
Scope Checking ... 7
NetView Message Logging 7
Debugging Support ... 7

Chapter 2. HLL User Exit Routines 9
Overview of User Exit Routines 9

Chapter 3". HLL Data Services Command Processors 21

Part 2. Coding Your PL/I Program ... 25

Chapter 4. Coding Your PLII Program - Interfaces and Restrictions 27

Chapter 5. PL/I High-Level Language Services 37

Chapter 6. Using KnowledgeTool Programs in NetVlew 77

Chapter 7. Compiling, Link-Editing, and Running Your PLII Program 87

Part 3. Coding Your C Program ... 89

Chapter 8. Coding Your C Program -Interfaces and Restrictions 91

Chapter 9. C High-Level Language Services 107

Chapter 10. Compiling, Link-Editing, and Running Your C Program 163

Part 4. HLL Debugging and Service Routine Reference 165

Chapter 11. Testing And Debugging
Remote Interactive Debugger (RID)

167
167

Chapter 12. Command and Service Reference 173
Notational Conventions 173
CompOSite Return Codes 174

Contents iii

Command Reference " 177
HLL Service Routine Reference 190

Appendixes 243

Appendix A. PL/I Control Blocks and Include Flies 245

Appendix B. PL/I Samples 263
PLII Samples Table .. 264
PLII Samples Description 265
PL/I Coded Samples 269

Appendix C. C Control Blocks and Include Files 279

Appendix D. C Samples 295
C Samples Table ... 296
C Samples Description 297
C Coded Samples ... 300

Glossary, Bibliography, and Index 315

Glossary ... 317

Bibliography .. 337
NetView Publications . 337
Other Network Program Products Publications 338
Related Publications 339

Index 341

Iv NetView Customization: USing PLI and C

Figures

1. Using Pointer Variables in PLII 31
2. Using Integer Variables in PL/I 32
3. Using Pointer Variables in C 94
4. Using Integer Variables in C 95
5. PLII Entry Screen for YOURPGM 170
6. Entry Screen for CNMSMSG 171
7. Exit Screen for CNMSMSG 172
8. PL/I Exit Screen for YOURPGM 172
9. Example 1 of Command Procedure Cancelling 181

10. Example 2 of Command Procedure Cancelling 181
11. Example 3 of Command Procedure Cancelling 182
12. Example 4 of Command Procedure Cancelling 182
13. Example of a Language Statement '. 321
14. NCP Examples 321
15. VTAM Examples 321
16. Links and Path Controls 325

Tables

1. User Exit Environments 11
2. Invalid Message and Destination Type Combinations 236

Figures V

vi NetView Customizatlon: Using PLI and C

About This Book

NetView Customization: Using PLII and C describes how a system programmer can
tailor or supplement the NetView™ program to satisfy unique requirements or
operating procedures.

This manual discusses the usage and advantages of user-written programs (exit
routines, command processors, and subtasks.) It provides instructions that guide
the programmer through the mechanics of designing, writing, and installing these
programs.

This book primarily contains general-use programming interfaces, which allow the
customer to write programs that use the services of NetView. However, the book
also provides the following types of information, which are explicitly identified
where they occur:

Installation exits and other product-sensitive interfaces are provided to allow the
customer installation to perform tasks such as product tailoring, monitoring, mod
ification or diagnosis. They are dependent on the detailed design or implementa
tion of the product. Such interfaces should be used only for these specialized
purposes. Because of their dependencies on detailed design and implementation,
it is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

The following is a list of common terms used in this book.

Command List
A list of commands and statements designed to perform a specific function for
the user. Command lists can be written in REXX or in NetView command list
language.

Command Procedure
Either a command processor written in a high-level language (HLL) or a
command list. See command processor and command list for further explana
tion.

Command Processor
A user-written module designed to perform a specific function. Command
processors, which can be written in assembler or a high-level language (HLL),
are invoked as commands.

High-Level Language (HLL)
A programming language that does not reflect the structure of any particular
computer or operating system. For NetView Release 3, the high-level lan
guages are PLII and c.

NetVlew Command List Language
An interpretive language unique to NetView that is used to write command
lists.

TM NetView is a trademark of International Business Machines Corporation.

About This Book vii

REXX
Restructured Extended Executor Language. An interpretive language used to
write command lists.

User Exit Routine
A user-written routine that receives control at predefined user exit points.
User exit routines can be written in assembler or a high-level language (HLL).

Who Should Use This Book
This book is intended for experienced system programmers who are knowledge
able in PLII or c. It is assumed that the user is already familiar with the functions
that NetView provides.

Secondary users include operators, network planners, designers, and systems
analysts, as well as IBM marketing representatives and instructors.

viii NetView Customization: Using Pli and C

Where To Find More Information
The following list shows all of the publications in the NetView Release 3 library,
arranged according to related tasks. For more information on these and other
related publications, see "Bibliography" on page 337.

Evaluation and Education

Network Program Products General Information

Bibliography and Master Index for NetView, NCP, and VTAM

Learning about NetView: Operator Training (pc Diskettes)

Planning

Network Program Products Planning

NetView Storage Estimates (PC Diskettes)

Console Automation Using NetView: Planning

Installation and Administration

NetView Installation and Administration Guide

NetView Administration Reference

Network Program Products Samples

NetView Tuning Guide

Custom Ization

NetView Customization Guide

NetView Customization: Writing Command Lists

NetView Customization: Using PLII and C

NetView Customization: Using Assembler

Operation

NetView Operation Primer

NetView Operation

NetView Command Summary

Diagnosis

NetView Problem Determination and Diagnosis

NetView Resource Alerts Reference

NetView Problem Determination Supplement for
Management Services Major Vectors 0001 and 0025

GC30-3350

GC31-6081

SK2T-0292

SC30-3351

SK2T-1988

SC31-6058

SC31-6018

SC31-6014

SC30-3352

SC31-6079

SC31-6016

SC31-6015

SC31-6037

SC31-6078

SC31-6020

SC31-6019

SX75-0026

LY43-0001

SC31-6024

LD21-0023

About This Book ix

X NetView Customization: Using PLI and C

Part 1. Overview

Chapter 1. NetVlew High-Level Language Services 3
Synchronous Command Execution 3
Sending Commands (Asynchronous Command Execution) 4
Client/Server Request/Response Handling 4
Operator Interaction .. 4

Line Mode Output .. 4
Line Mode Input ... 4
Full-Screen Input/Output 5

Data Access 5
Message Trapping 5
Message Automation 5
Command List Variable Access 5
NetView Information 5
VSAM Files .. 5
Data Queue Manipulation 6

Communications Network Management Interface 6
NetView Partitioned Data Sets 6

Dynamic File Allocation/Deallocation 6
NetView Storage Access 6

Storage Copying ... 6
Named Storage ... , 7

User-Defined Lock Management 7
Parsing Character Strings 7
Scope Checking ... 7
NetView Message Logging 7
Debugging Support ... 7

Remote Interactive Debugger (RID) 8
First Failure Data Capture Trace (FFDCT) 8

Chapter 2. HLL User Exit Routines 9
Overview of User Exit Routines 9

Coding Restrictions 9
General Return Codes 10
User Exits ... 12

Chapter 3. HLL Data Services Command Processors 21
Data Services Task Installation 21
Initialization .. 21
Data Services Command Processors 22
CNM Data Services 22
VSAM Services .. 23
User Defined Services 24
Scheduling Commands Under the DST 24

Part 1. Overview 1

2 NetView Customization: Using PLI and C

Chapter 1. NetView High-Level Language Services

Before reading this chapter, you should have read the chapters on designing user
written functions and the NetView™ customization facilities in the NetView
Customization Guide. You should also have NetView experience as well as pro
gramming experience in PLII or c.

To use this manual most effectively, you should have in mind a specific command
processor or user exit routine that you want to write in PLII or c. For example, you
might want to write a command processor to run under a Data Services Task (OST)
to store data in a VSAM file or a command processor to run on an Operator Station
Task (OST) to display information on an operator's screen. The NetView
Customization Guide contains information to help you decide the command
processors and user exit routines you need to write in order to build your applica
tion and the appropriate language to use for each of these routines.

This chapter discusses the NetView services available to you for designing your
command processor or user exit routine. The following is the list of services dis
cussed in this chapter:

• Synchronous Command Execution
• Sending Commands (Asynchronous Command Execution)
• Client/Server Request/Response Handling
• Operator Interaction
• Data Access
• Communications Network Management Interface
• NetView Partitioned Data Sets
• NetView Storage Access
• User-Defined Lock Management
• Parsing Character Strings
• Scope Checking
• NetView Message Logging
• Debugging Support

Synchronous Command Execution
High-Level Language (HLL) command processors may invoke any NetView
command, including simple commands, command lists, REXX command proce
dures, assembler command processors, NetView applications such as Session
Monitor, and other HLL command processors. The command must be executable in
the calling environment. For example, data services commands can only be
invoked from a data services command processor.

TM NetView is a trademark of International Business Machines Corporation.

Chapter 1. NetView High-Level Language Services 3

Sending Commands (Asynchronous Command Execution)
HLL user exit routines cannot invoke NetView commands directly. However, all HLL

command processors and user exit routines can schedule NetView commands to
be executed asynchronously under any NetView task.

Client/Server Request/Response Handling
NetView currently supports server tasks that service and reply to requests from
one or more operator tasks. The current level of support is accomplished by:

• Allowing the requesting command processor to wait pseudo-synchronously for
the reply. This means that the requesting command processor suspends proc
essing while waiting for the reply. The task is not suspended and may con
tinue processing other commands. The suspended command processor'
resumes processing after receiving the reply.

• Allowing the requests and replies to be sent over NetView-to-NetView cross
domain operator sessions.

• Correlating the reply with the correct activation of the requesting HLL command
processor. This in turn allows multiple active instances of the requesting
command processor under a single operator task.

Operator Interaction
The following describes operator interaction in line mode and full-screen mode.

Line Mode Output

Line Mode Input

HLL command processors and most user exit routines can send output to the fol
lowing destinations:

• A NetView operator

• The operating system console

• Another task

• The authorized receiver

• A group of operators defined by the NetView ASSIGN command.

Multi-line messages may be serit as a single unit (MLWTO) so an operator will
receive them in a sequence without messages from other sources interspersed.
This type of output will appear on the command facility screen or on the operating
system console.

HLL command processors running under an OST, NNT, or PPT task may accept line
mode input from an operator. This function is similar to that provided by the
NetView command list language &PAUSE statement, except that the HLL command
processor may continue to run while waiting for operator input. To avoid forcing
the operator to know what language a command procedure is written in, the GO

command is used to provide input to a command procedure written in the NetView
command list language, REXX, and High-Level Language.

Full-Screen Input/Output

Data Access

HLL command processors may invoke the NetView VIEW command to provide full
screen interaction with an operator. This function is similar to the use of the VIEW

command from a command list. The capability to ROLL among NetView applica
tions, including HLL command processors, is also available. HLL command
processors are treated like command lists when determining ROLL groups. The
capability to asynchronously update a panel while it is being displayed is provided.

The following is an overview describing data access techniques available to an HLL

command processor or user exit routine. These techniques include:

• Message Trapping
• Message Automation
• Command List Variable Access
• NetView Information
• VSAM Files
• Data Queue Manipulation

Message Trapping
Command procedures frequently need to intercept or trap and process messages
that would ordinarily go to an operator. The NetView HLL Application Programming
Interface (API) provides this function for single and multi-line messages.

Message Automation
NetView allows HLL command processors to be invoked upon receipt of messages
and provides the command processor with access to both the command, and to the
message that invoked it. MUlti-line messages are supported here as well. NetView
also provides services to alter the contents of the messages.

Command List Variable Access
Command procedures frequently store data in task global and common global
command list variables which can be accessed by other command procedures. HLL

command processors and user exit routines can access and update these vari
ables.

NetView Information

VSAM Files

HLL command processors and user exit routines may query certain information
(such as domain 10, message attributes, etc.) about the current NetView environ
ment. The information provided by this function is similar to that provided by
control variables in the NetView command list language and control block fields in
Assembler.

HLL data services command processors may read, write, update, and delete
records in VSAM files associated with the task under which the command processor
is running. All requests are pseudo-synchronous allowing other command
processors to execute while file I/O requests are executing.

Chapter 1. NetView High-Level Language Services 5

Data Queue Manipulation
This function allows an HLL command processor or user exit routine to manipulate
HLL data queues. Each HLL command processor and user exit routine has a set of
queues from which it may receive data. There is a queue for each of the following
types of input data:

• Input from a NetView operator

• Operator messages trapped for processing

• Data from another HLL command processor or user exit routine

• Initial data associated with a message that caused an HLL command processor
or user exit routine to be executed.

• Data sol icited over the CNMI.

Communications Network Management Interface
HLL data services command processors can send and receive data over the Com
munications Network Management Interface (CNMI). The CNMI is used to forward
commands to and collect data from devices in the network. For example, RTM data
is collected from PU2 control units using the CNMI. Unsolicited data received over
the CNMI may be processed by HLL command processors as well. Solicited
requests are pseudo-synchronous.

NetView Partitioned Data Sets
HLL command processors and user exit routines have read access to the NetView
partitioned data sets. This allows you to write a program that uses the information
that is in the NetView partitioned data sets. This function is completely synchro
nous.

Dynamic File Aliocation/Dealiocation
NetView provides facilities to dynamically allocate/deallocate files by the use of
NetView ALLOCATE/FREE commands. (Refer to the NetView Operation manual for
more details). Once allocated, these files may be accessed using the file I/O facili
ties present in the language being used.

NetView Storage Access

Storage Copying

An HLL command processor or user exit routine will be able to allocate and free a
named storage pool from the NetView subtask under which it is running. A storage
pool is composed of a primary storage block and related secondary blocks. Once a
pool is allocated, individual storage cells within the pool may be accessed as
needed by the HLL command processor or user exit routine. The storage should be
referenced only from the task associated with it.

This function allows HLL command processors and user exit routines to make a
copy of any area of virtual storage in the NetView address space in which the HLL

command processor or user exit routine is running. If a request is made to copy an
area of storage that is not currently addressable, a return code is generated
instead of an OC4 ABEND. This function is useful for debugging. The user must exer-

6 NetView Customization: Using PLI and C

Named Storage

cise great care to insure that the storage to which the copy is made belongs to
their program.

This function allows HLL command processors or user exit routines to obtain an
area of virtual storage and associate a name with it, so that other HLL command
processors and user exit routines running under the same task may access this
area of storage. This function can be used by transaction-oriented applications to
save data across transactions.

User-Defined Lock Management
HLL command processors and user exit routines will be able to obtain, release and
test the control of a named lock. The lock management scheme uses a simple
alphanumeric hierarchy. Locking is useful when updating common global vari
ables or to serialize any other common resource.

Parsing Character Strings
A parsing service is provided as part of the PLII language. This service is similar to
the SSCANF function available in the C language. It is intended to facilitate the
parsing of commands and messages.

Scope Checking
HLL command processors and user exit routines can invoke the NetView scope
checking facility to determine whether a particular operator is authorized to issue a
command with restricted operands or operand values.

NetView Message Logging
All HLL command processors and most user exit routines can send message output
to the following logs:

• The network log

• An external log (such as SMF)

• A sequential log

Debugging Support
The NetView HLL API provides two debugging aids for users: an interactive
debugger that displays the parameters and results of all HLL API service routine inv
ocations, and a continuous First Failure Data Capture trace for ABEND debugging.
In addition, the NetView internal trace may be used (see NetView Problem Determi
nation and Diagnosis for further detail).

Chapter 1. NetView High-Level Language Services 7

Remote Interactive Debugger (RID)
The remote interactive debugger (RIO) allows NetView HLL service routine calls to
be trapped and displayed to the programmer. RIO is implemented using NetView
commands and messages so that debugging procedures may be created using
NetView command list language, REXX, or HLL command procedures. In addition,
since NetView provides facilities to route commands and messages to remote
systems, RIO may be used from one system to debug an HLL command processor or
user exit routine running on another system.

RIO operates at the subtask level, so using RIO to stop an HLL command processor or
user exit routine running under one subtask will not effect other subtasks in the
same NetView address space.

First Failure Data Capture Trace (FFDCT)
Each HLL command processor or user exit routine maintains an eight-entry
continuously-wrapping trace area. Trace entries are recorded at entry to and exit
from HLL service routines and at other key points inside the HLL routines. In the
event of an ABEND, this area will give some indication of what was going on before
the ABEND. Refer to the First Failure Data Capture Trace in the NetView Problem
Determination and Diagnosis manual for further detail.

8 NetView Customization: Using PLI and C

Chapter 2. HLL User Exit Routines

You can write iJser exit routines to view, delete, or replace data flowing to, from, or
through NetView. For example, your code can examine the messages passing
through NetView, record relevant data, and initiate work requests based on the
data. In addition, your code can delete any unnecessary message from further
processing or substitute a modified message in place of the original message.
Thus, user exit routines can handle a specific event with non-standard processing
and automate processes based on message information.

This chapter contains product-sensitive programming interfaces provided by
NetView. Installation exits and other product-sensitive interfaces are provided to
allow the customer installation to perform tasks such as product tailoring, moni
toring, modification or diagnosis. They are dependent on the detailed design or
implementation of the product. Such interfaces should be used only for these spe
cialized purposes. Because of their dependenCies on detail design and implemen
tation, it is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

Overview of User Exit Routines
NetView provides two types of user exits for which you may write routines:

• Global user exits (DsIExnn), which apply to all NetView tasks. The global user
exit routines are loaded when NetView starts. See Table 1 on page 11 for a
list of user exits.

• Data Services Task (DST) user exits (xlTnn and BNJPALEX), which apply only to
DST subtasks. The DST user exit routines are loaded when their DST starts.
Each DST can have its own set of user exit routines.

Note: DST user exits should not be used under the Network Product Support (NPS)
task named DSIGDS.

You should avoid coding user exits for frequently executed functions, such as VSAM
I/O, since performance can be degraded significantly.

Each user exit handles a particular event, such as the reception of data from the
system console. When that event occurs, NetView passes control to the appro
priate user exit routine for processing. After processing, the user exit routine
returns control and passes a return code to NetView. Optionally, up to 10 DST exit
routines can be concatenated. If the first exit did not indicate USERDROP, NetView
then calls the next one in the sequence. This process continues until the last DST
exit has returned control to NetView. For more information on input to the user exit
routines see Chapter 4 on page 27 or Chapter 8 on page 91.

Coding Restrictions
The following HLL service routines cannot be invoked from any user exit:

• CNMCMD

• CNMCNMI

• CNMKIO

Chapter 2. HLL User Exit Routines 9

CNMSMSG cannot be issued from OSIEX04 and DSIEX09. Only CNMSMSG with a destina
tion type of TASK can be issued from DSIEX02A. DSIEX02A, DSIEX04, and DSIEX09 will only
be invoked in the mainline environment if written in HLL. If written in assembler
these exit routines can be invoked in both the mainline and IRB exit environments.
See NetView Customization: Using Assembler for additional information on exits
running in the IRB exit environment.

General Return Codes

Deleting Messages

Unless otherwise noted, user exit routines can pass the following return codes to
NetView in the return code field (HLBRC for PUI or Hlbrc for c) to indicate that the
messages are to be unchanged, deleted, or replaced:

Return Code

USERASIS (0)

USERDROP (4)

USERSWAP (8)

Meaning

Use the message as presented to the user exit; do not delete or
replace it.

Delete the message from the terminal and from the network log,
system log, and hardcopy log; stop processing before the
message appears on the screen. For more information on how
to delete messages, see "Deleting Messages."

Replace the message with the modified CMDBUF (Cmdbuf). For
more information on how to replace messages, see "Replacing
Messages."

To delete a message entirely, use return code USERDROP.

When NetView receives a USERDROP return code, no further exit routines are called.
Thus, if you have concatenated DST exit routines, a USERDROP return code prevents
the next exit routine from being called.

Replacing Messages
To replace a message, use return code USERSWAP and set the input CMDBUF

(Cmdbuf) data to the desired data. The replacement data must be less than or
equal in length to the original CMDBUF (Cmdbuf) data; otherwise it will be truncated
to the original length of the CMDBUF (Cmdbuf) data.

User exit DSIEX02A provides a more flexible interface for replacing messages using
CNMALTD. See "CNMALTD (CNMALTDATA) - Alter Data On A Queue" on
page 190.

You can concatenate DST user exit routines when replacing messages. In this case,
the buffer containing the replacement message becomes the input for the subse
quent DST user exit routine. Refer to NetView Customization: Using Assembler for
message flows.

10 NetView Customization: Using PLI and C

The following table lists all HLL user exits and the task environments they can be
called under.

Table 1. User Exit Environments

Exit Description Applicable Tasks

BNJPALEX Not supported in HLL

DSIEX01 Not supported in HLL

DSIEX02A Message Output this Domain or NNT, OST, PPT
Message Output Cross-Domain NNT,OST,

CNMCSSIR

DSIEX03 Input Before Command Processing NNT, OST, PPT
HDRTYPEX Cross-Domain Return NNT
Command Receive

DSIEX04 Log Output for Buffers not Processed Main Task or Any
by DSIEX02A Subtask

DSIEX05 Before VT AM Command Invocation* NNT,OST,PPT

DSIEX06 Solicited VT AM Messages* NNT, OST, PPT

DSIEX07 Cross-Domain Command Send NNT,OST

DSIEX09 Output to the System Console Main Task or Any
Subtask

DSIEX10 Input from the System Console Main Task

DSIEX11 Unsolicited VT AM Messages* PPT

DSIEX12 Logon Validation NNT,OST

DSIEX13 OST/NNT Message Receiver NNT, OST, PPT

DSIEX14 Before Logoff NNT,OST

DSIEX16 Not supported in HLL

XITBN BSAM Empty File DST

XITBO BSAM Output DST

XITCI CNM Interface Input DST

XITCO CNM Interface Output DST

XITDI DST Initialization DST

XITVI VSAM Input DST

XITVN VSAM Empty File DST

XITVO VSAM Output DST

XITXL External Logging DST

Note:

* When using NetView POI only. Does not include VTAM messages from other
sources; for example MVS/XA SSI. You can process these messages in
DSIEX02A.

Chapter 2. HLL User Exit Routines 11

User Exits
NetView provides a number of user exits. This section describes each of these
user exits. For a discussion of message flows and interception pOints in OST, NNT,

and PPT tasks see NetView Customization: Using Assembler.

DSIEX01: Input from the Operator
This exit is only available through assembler language. See NetView
Customization: Using Assembler.

DSIEX02A: Output to the Operator
Description: NetView calls DSIEX02A for standard output to an operator's terminal.
DSIEX02A runs before the device-dependent output is inserted and the data is
logged. If DSIEX02A is called, DSIEX04 is not called since logging options may be
specified in either DSIEX02A or in the message automation table.

Example of Use: Since the message has been formatted but not yet displayed or
logged, you can use DSIEX02A to delete or replace the message before it is auto
mated, logged, or displayed.

If your messages will be translated (such as to Kanji), changes to the message text
may affect the translations. (See NetView Installation and Administration Guide for
more information.)

Coding Considerations: Message automation is invoked after this exit routine has
been called; therefore, any changes made for messages in this user exit may affect
message automation. Message automation is not invoked for a message that has
been deleted by this exit routine.

Do not use the USERSWAP return code to replace messages. Use the CNMALTD

service. See "CNMALTD (CNMALTDATA) - Alter Data On A Queue" on page 190.

DSIEX02A is supported only in 31-bit addressing mode.

CNMSMSG can be issued from DSIEX02A but only with the destination type of 'TASK'.

The message resulting from the CNMSMSG call will not redrlve DSIEX02A.

DSIEX03: Input Before Command Processing
Description: All regular commands call DSIEX03. Regular commands include the
following:

• Commands issued by a command procedure
• Commands received from another subtask
• Commands used to start the hardcopy log at logon
• Commands used as the initial command
• Commands entered as simulated terminal input
• Commands resulting from the message automation table
• Commands entered for an MVS console operator task
• Commands entered from a terminal
• Commands received as HDRTYPEX messages from an NNT

• Commands queued using the EXCMD command.

Before running, all commands are passed to either DSIEX01 or DSIEX03. Immediate
commands are passed to DSIEX01. Regular commands entered from a command
facility screen are passed to DSIEX01 and DSIEX03. The remaining command types
previously listed are passed to DSIEX03.

Example of Use: You can use DSIEX03 to restrict usage of particular, regular com~
mands if your conditions are more complex than those provided by scope
checking.

Coding Considerations: None.

DSIEX04: Log Output
Description: NetView calls DSIEX04 during the logging and tracing process. DSIEX04

is located within log services and applies to messages logged on the network log,
the external trace log, the MVS system log, and the hardcopy log. It runs before the
message is reformatted and sent to the log. DSIEX04 is not called if DSIEX02A is called
since logging options may be specified either in DSIEX02A or in the message auto
mation table.

Example of Use: You can use DSIEX04 to edit information sent to the network log, to
the MVS system log, or to the hardcopy log. You can use DSIEX04 to send certain
messages to a specific log or to no log at all.

Coding Considerations: DSIEX04 can run under any subtask that initiates message
logging. Be sure that any HLL services you request are supported by the subtask
under which the routine is running. To determine the subtask you are running
under see TASK in "CNMINFC (CNMINFOC) - Query NetView Character
Information" on page 209.

Return Code Considerations: DSIEX04 may pass four other return codes in addition
to USERASIS. USER DROP. and USERSWAP.

Return Code Meaning

USERLOG Write the message to the network or MVS system log only.

USERLOGR Write the substituted message to the network or MVS system log
only.

USERHCL Write the message to the hardcopy log only.

USERHCLR Write the substituted message to the hardcopy log only.

DSIEXOS: Before VT AM Command Invocation
Description: NetView calls DSIEX05 when preparing to pass a command to VTAM

through the POI interface; domain qualifiers have been removed and all span
checking has been completed.

Example of Use: You' can use DSIEX05 to verify that an operator is authorized to
issue a particular command.

Coding Considerations: This exit applies only to commands entered directly, not
using the 'MVS' prefix, which are passed through NetView's POI.

Command passed to DSIEX05 have already been processed under DSIEX03 (and
perhaps, DSIEX01).

Chapter 2. HLL User Exit Routines 13

DSIEX06: Solicited VT AM Messages
Description: NetView calls DSIEX06 when it receives a solicited VTAM message
(which is generated in response to a VTAM command the user or the PPT issued).
The message has not yet been processed or logged.

Example of Use: You can use DSIEX06 to change the message number or text of a
VTAM message or to process VTAM messages.

Coding Considerations: This exit applies only to responses to commands entered
directly, not using the 'MVS' prefix, which are passed through NetView's POI.

Message automation is invoked after this exit routine has been called. Therefore,
any changes made to messages in this user exit may affect message automation.
Message automation is not invoked for a message that has been deleted by this
exit routine.

Messages processed (and not dropped) in DSIEX06 will subsequently be processed
by DSIEX02A.

DSIEX07: Cross-Domain Command Send
Description: NetView calls DSIEX07 before commands are sent cross-domain to an
NNT.

Example of Use: You can use DSIEX07 to monitor cross-domain traffic through the
network.

Coding Considerations: None.

DSIEX09: Output to the System Console
Description: NetView calls DSIEX09 when a message is written to the system
console operator using macro DSIWCS. See DSIWCS in NetView Customization: Using
Assembler. The message has not been formatted for transmission.

Example of Use: You can use DSIEX09 to edit messages sent to the system console.

Coding Considerations: DSIEX09 is called as a result of DSIWCS macro calls. The
output of the MVS console operator task (OST) is processed by DSIEX02A instead of
DSIEX09.

DSIEX10: Input from the System Console
Description: NetView calls DSIEX10 when input is received from the system console
operator. The exit is called after the command has been entered but before it is
invoked or logged.

Example of Use: You can use DSIEX10 to allow the system console operator to
enter command abbreviations and synonyms. These could then be expanded in
the user exit routine.

Coding Considerations: DSIEX10 can only be-called from the main task, not from a
subtask.

DSIEX10 is not called for commands entered by an operator using an MVS console
operator task (OST). DSIEX03 is called instead.

14 tIJ~tVipw C!1l~tomization: Usina Pli and C

DSIEX11: Unsolicited VT AM Messages
Description: NetView calls DSIEX11 when an unsolicited VTAM message is received
via the POI interface. In addition, when VTAM'S PPOLOG =YES modify or start option is
used, copies of the messages are presented to DSIEX11. This user exit is called
before the resource name is analyzed and before the message is logged.

Example of Use: DSIEX11 can issue CNMSMSG to send a copy of the message buffer
prior to processing by NetView.

Coding Considerations: Message automation is invoked after this exit routine has
been called; therefore, any changes made for messages in this user exit can affect
message automation. Message automation will not be invoked for a message that
has been deleted by this exit routine.

DSIEX12: Logon Validation
Description: NetView calls DSIEX12 at the completion of the logon process, after the
logon has been accepted by NetView.

Example of Use: You can use DSIEX12 to perform additional checking of authori
zation and environmental customization. DSIEX12 can also send messages to other
operators.

Coding Considerations: If the user exit routine issues a return code of zero, the
logon proceeds. If specified, your hardcopy log starts and the initial command
runs. If the issued return code is nonzero, the operator is logged off.

This exit is called under all OST and NNT tasks including unattended operator and
MVS console operator tasks.

The following structure maps the header information in the CMDBUF (Cmdbuf)
passed to the DSIEX12 exit. OFFSET and LENGTH values are given in bytes.

OFFSET LENGTH FUNCTION

0 8 OPERATOR ID NAME
8 8 OPERATOR LU NAME

12 8 PASSWORD
20 8 HARDCOPY DEVICE NAME
28 8 PROFILE NAME
36 8 NEW PASSWORD

DSIEX13: OST/NNT Message Receiver
Description: NetView calls DSIEX13 when either a message buffer or a user-defined
internal function request (IFRCODUS) is received through macro DSIMOS. DSIEX13 is
called within the message receiver for subtask-to-subtask communication. A
message buffer is any nOn-HDRTYPEI (IFR) buffer. See IFRCODUS and DSIMOS in
NetView Customization: Using Assembler.

Example of Use: You can use DSIEX13 in conjunction with IFRCODUS to initiate a user
function with a buffer. Code DSIEX13 to perform the user function specified by
IFRCODUS.

Coding Considerations: When DSIEX13 returns, these buffers are written to the
operator terminal unless return code USERDROP is issued. The messages are
logged after user exit DSIEX02A is called.

Chapter 2. HLL User Exit Routines 15

DSIEX14: Before Logoff
Description: NetView calls DSIEX14 when an OST or NNT subtask is preparing to end
for any of these reasons:

• If LOGOFF is entered at the operator's terminal
• If the subtask LOSTERM exit is driven (VTAM)

• If the subtask is posted to terminate.

The subtask cannot communicate with the operator's terminal at this point. It is
possible, however, to write to the system console and to write entries to the log.

Example of Use: You can use DSIEX14 to save accounting information or update
tables.

Coding Considerations: Because there is no buffer associated with logoff proc
essing, DSIEX14 does not receive an input buffer (the length of the command buffer
will be zero).

Return Code Considerations: NetView ignores any return code received from this
user exit routine.

DSIEX16: Post-Message Automation Table Exit
Available through an assembler interface only. See NetView Customization: Using
Assembler.

XITBN: BSAM Empty File
Description: The DST calls XITBN if the DST encounters a BSAM open failure because
of an empty data set or file.

Example of Use: You can use XITBN to place a record in the empty data set. You
should code this user exit only if you wish to write your own BSAM subtask using DST

as a base.

Coding Considerations: XITBN can only use the service facilities available to the
DST subtask.

Return Code Considerations: To initialize the BSAM data set or file, return the
USERSWAP return code and set the command buffer to the record to be used. A
return code other than USERSWAP causes the DST to end.

XITBO: BSAM Output
Description: The DST calls XITBO immediately before the record is written to the
BSAM data base.

Example of Use: You can use XITBO to modify the record before it is sent to the
BSAM data set or file.

Coding Considerations: XITBO can only use the service facilities available to the
DST subtask.

You should avoid coding user exits for frequently executed functions, such as BSAM

I/O, since performance can be degraded significantly.

16 NetView Customization: Using PLI and C

XITCI: CNM Interface Input
Description: The DST calls XITCI after CNM data is received.

Example of Use: You can use XITCI to modify CNM interface input data (Deliver RU).

Coding Considerations: XITCI can only use the service facilities available to the DST

subtask.

If a substitute buffer is returned, the data must be a valid SNA request unit (RU). See
Systems Network Architecture Product Formats for a discussion of RU formats.

XITCI invoked under the DSICRTR subtask allows access to unsolicited CNM data prior
to NetView routing (except for cross domain alerts, which are only accessible
under the BNJDSERV subtask). XITCI invoked under a DST other than DSICRTR will allow
access to unsolicited CNM data particular to the invoking DST.

Network Services Request Units are routed as follows:

Request Header Value Responsible Subtask Name

RECMS X'010381' BNJDSERV

RECFMS X'410384' BNJDSERV and AAUTSKLP

ROUTE-INOP X'410289' AAUTSKLP

CNM X'810814' AAUTSKLP

NMVT X'41038D'

NMVT Request Units are routed based upon the Major Vector Key: .

Major Vector Key Responsible Subtask Name

X'OOOO' BNJDSERV

X'0001 ' BNJDSERV

X'OO10' AAUTSKLP

X'OO2S' BNJDSERV

X'OO6F' DSIGDS

X'OO80' AAUTSKLP

X'13FF' BNJDSERV

If the data is a cross domain alert, the first 44 bytes of the data are mapped by the
Focal Point Transfer RU (see NetView Customization: Using Assembler for a com
plete mapping) and the remainder of the data is the actual NMVT. The first two
bytes of the Focal Point Transfer RU contain the length of the entire buffer (FPT RU +
NMVT). The next two bytes contain the header id which is always X'1040'. The 16th
byte contains the length of the originating domain id and the 17th through 24th
bytes contain the actual originating domain id. When returning a substitute buffer

Chapter 2. HLL User Exit Routines 17

do not modify the Focal Point Transfer RU (the first 44 bytes); replace only the NMVT

portion of the buffer (it must be replaced with a valid NMVT).

XITCO: CNM Interface Output
Description: The DST calls XITCO prior to a request for CNM interface output.

Example of Use: You can use XITCO to modify the request for CNM data (Forward
RU).

Coding Considerations: XITCO can use only the service facilities available to the
DST subtask.

If a substitute buffer is returned, the data must be a valid SNA request unit (RU). See
Systems Network Architecture Technical Overview for a discussion of RU formats.

XITOI: Data Services Task (OST) Initialization

XITVI: VSAM Input

Description: The DST calls XITDI for each statement read by the DST during initializa
tion. When end-of-file is reached, this user exit is entered and the length of the
input command buffer is zero. You can code up to 10 module names for each user
written exit routine. See Chapter 3 on page 21 for more information on XITDI

during DST initialization.

Example of Use: You can add XITDI to the DST initialization deck to provide user
initialization values to DST initialization.

Coding Considerations: Do not replace NetView provided DST XITDI exits.

XITDI can use only the service facilities available to the DST subtask.

Note: If all initialization data is to be processed by XITDI, specify the DST initializa
tion statement that identifies XITDI as the first statement in the DST initialization
member.

Return Code Considerations: XITDI can prevent the DST from processing a defi
nition statement by passing return code USERDROP.

When called for an end-of-file situation, a nonzero return code indicates that the
DST should be stopped.

Description: The DST calls XITVI after a CNMKIO call for input is issued. The record
has been read from the VSAM data base, but it is not yet passed to the requesting
data services command processor.

Example of Use: You can use XITVI to modify the record after it has been retrieved
from a VSAM data set or file.

Coding Considerations: XITVI can only use the service facilities available to the DST

subtask.

You should avoid coding user exits for frequ-ently executed functions, such as VSAM

110, since performance can be degraded significantly.

18 NetView Customization: Using Pli and C

XITVN: VSAM Empty File
Description: The DST calls XITVN if the DST encounters a VSAM open failure because
of an empty data set or file.

Example of Use: You can use XITVN to place a record in the empty data set.
NetView provides its own XITVN for VSAM logs generated under DST. You should
code this user exit only if you wish to write your own VSAM subtask using DST as a
base.

Coding Considerations: XITVN can only use the service facilities available to the
DST subtask.

Notes:

1. Only VSAM key-sequenced data sets (KSDS) are supported.

2. Do not replace NetView provided XITVN exits for the DSILOG and DSITRACE sub
tasks.

Return Code Considerations: To initialize the VSAM data set or file, return the
USERSWAP return code and set the command buffer to the record to be used. A
return code other than USERSWAP causes the DST to end.

XITVO: VSAM Output
Description: The DST calls XITVO immediately before the record is written to the
VSAM data base via the CNMKIO service.

Example of Use: You can use XITVO to modify the record before it is sent to the
VSAM data set or file.

Coding Considerations: XITVO can use only the service facilities available to the
DST subtask. The text portion is mapped by DSILOGDS when using this exit for the
DSILOG task.

You should avoid coding user exits for frequently executed functions, such as VSAM

110, since performance can be degraded significantly.

XITXL: External Logging
Description: The DST calls XITXL whenever data is to be sent to an external log
using CNMSMSG with the EXTLOG parameter. For example, session monitor performs
external logging of response time and configuration data.

Example of Use: Write user defined data to a user defined log.

Coding Considerations: XITXL can use only the service facilities available to the
DST subtask.

The following offsets (in byte values) can be used to access the CMDBUF (Cmdbuf).

Chapter 2. HLL User Exit Routines 19

OFFSET LENGTH NAME FUNCTION

e 2 ELBLENG Unsigned length of
header

2 2 ELBRLENG Unsigned length of
record

4 1 ELBTYPE Log type
5 3 ELBLOG EBCDIC log type
8 4 Reserved by NetView

12 Start of record

J

20 NetView Customization: Using PLI and C

Chapter 3. HLL Data Services Command Processors

HLL command processors that use the CNMCNMI and CNMKIO services must run under
a Data Services Task (DST). The OST provides the underlying interfaces required by
both CNMCNMI and CNMKIO.

A Data Services Task (OST) is a set of NetView interfaces built on top of the NetView
optional task base. The NetView optional task is discussed in NetView
Customization: Using Assembler. A DST provides a subtask processing module
(DSIZDST) along with the following:

• An initialization exit interface

• A Data Services Command Processor (OScp) interface that provides support for
VSAM (via CNMKIO) and CNMI (via CNMCNMI).

• Various user exit interfaces. (see Table 1 on page 11)

Note: For further information on the TASK and DSTINIT statements referenced in this
chapter see NetView Administration Reference.

Data Services Task Installation

Initialization

A TASK statement for the DST subtask must be coded in the DSIOMN member of the
DSIPARM data set. The TASK statement has the following format:

TASK MOD=DSIZDST,TSKID=taskname,MEM=usermem,PRI=n,INIT=YIN

• MOD keyword - Must specify OSIZDST as the subtask processing module. DSIZDST

is provided by NetView and provides the necessary initialization, processing,
and termination routines to use the DSCP interfaces.

• TSKID keyword - The task name. Each task in NetView must have a unique task
name.

• MEM keyword - Specifies the user-defined initialization member found in
OSIPARM to be used by this task. The initialization dataset member must
contain DSTINIT statements to provide various initialization parameters required
by DSIZDST. The statements will be discussed under their respective interfaces.
User-defined statements can also be processed by the initialization exit.

• PRI keyword - Specifies the relative task priority (1-9). 1 is the highest task pri
ority that can be assigned, and 9 is the lowest.

• INIT keyword - Specifies whether the task is to be started during NetView initial
ization (INIT=Y) or through the START command only (INIT=N).

When the DST is started the initialization data set specified by the MEM keyword on
the TASK statement is read, and the DSTINIT statements are processed.

• DSTINIT Keywords - Related to initialization.

FUNCT - Specifies which DST services will be required. In all cases, the
ability to call HLL DSCPS is provided. The function choices are:

- OTHER - The DST does not require the CNMI or VSAM interfaces.

Chapter 3. HLL Data Services Command Processors 21

BOTH - Both the VSAM and CNMI interfaces are required.

CNMI - Only the CNMI interface is required.

VSAM - Only the VSAM interface is required.

XITOI keyword - Specifies the name of the user provided initialization exit.
The exit is called with the standard NetView user exit interface as docu
mented in Chapter 2 on page 9 and is called once for every statement in
the specified initialization member (MEM keyword of TASK statement). When
End-Of-File has been reached, the length of CMOBUF (Cmdbuf) will be zero.
For each statement (except End-Of-File condition), the standard user exit
return codes will cause the following actions:

USERASIS (0) The statement will be processed by the NetView OST

module (OSIZOST). If it is not a valid OSTINIT statement,
OSIZOST will reject it with an error message and con
tinue processing.

USERDROP (4) The statement will not be processed by OSIZOST. This
return code should be used if your user exit is going to
process the statement (you can define your own initial
ization statements).

USERSWAP (8) The swapped buffer will be processed by OSIZOST. If the
swapped buffer does not contain a valid OSTINIT state
ment, it will be rejected by OSIZOST and processing will
continue.

When returning from the last call (for End-Of-File), any non-zero return
code will terminate the OST. This should only be done if the initializa
tion process has failed.

Data Services Command Processors
Command processors that run under OSTS are called data services command
processors. They must be defined as TYPE=O (OST only) or TYPE=RO (Regular or
OST). The following services are available to data services command processors
(oscP).

CNM Data Services
An APPL definition with AUTH= CNM must be defined to VTAM for the OST (use the TSKIO

name as the APPL name). The OST provides access to both solicited and unsolicited
CNM data. CNMCNMI can be issued to sol icit CNM data from the Network. An HLL OSCP

can be defined to receive unsolicited CNM data from VTAM.

• Unsolicited CNM Data Interface

VTAM provides a default table (ISTMGC01) that controls the routing of unsolicited
CNM RUS. You can write a supplemental table (ISTMGCOO) to override the default
routing information provided by VTAM. The routing information consists of a
particular RU type and the name of,an application which is to receive the partic
ular type of data. When a OST is defined with CNMI services, an ACB is opened
with an ACB name (the application name) equivalent to the task name as
defined by the TSKIO parameter in the OSTTASK definition statement (the one
exception is Hardware Monitor whose CNMI OSTS task name is BNJOSERV, but the
application name is BNJHWMON). If the OST task name is entered as the applica
tion name in the VTAM routing table, the unsolicited data RU will be passed to
the unsolicited data services command processor for that OST.

22 NetView Customization: Using Pli and C

VSAM Services

OSTINIT Keywords - Related to unsolicited CNM data interface.

UNSOL - Specifies the command verb name of the module that is to
serve as the unsolicited OSCP for this OST. The unsolicited OSCP should
not issue the CNMCNMI macro, but may issue the CNMKIO macro.

OSRBU - Specifies the number of unsolicited Data Services Request
Blocks (OSRBS) which are to be allocated to this OST. If unsolicited CNM

data is not going to be processed by this OST, then this value should be
set to zero; otherwise it should be set to one.

HLL OSCP Interface

When the unsolicited HLL OSCP receives control, CNMOBUF (Cmdbuf) will
contain the unsolicited data RU.

• Solicited CNM Data Interface

CNMCNMI can be used by an HLL OSCP to acquire Communications Network Man
agement data from the network.

OSTINIT Keywords - Related to the solicited CNM Data Interface.

OSRBO - Specifies the number of solicited OSRBS that will be required by
this task and 1imits the number of concurrent CNMCNMI and/or CNMKIO

requests. This value must be at least 1 (a OSCP will not be called
unless a solicited OSRB is available) and no greater than 862.

The CNMKIO service routine can be invoked by a OSCP to perform I/O for a specified
VSAM data set.

• OSTINIT Keywords - Related to CNMKIO service routine.

OSRBO - Specifies the number of solicited OSRBS that will be required by this
task and limits the number of concurrent CNMCNMI and/or CNMKIO service
routine. This value must be at least 1 and no greater than 862, (a OSCP will
not be called unless a solicited OSRB is available).

POONM - Specifies the DO name of the primary data set to be used by VSAM

services.

PPASS - Specifies the VSAM password to be used when the primary data set
ACB is opened.

SOONM - Specifies the DO name of the secondary data set to be used by
VSAM services. The NetView SWITCH command is used to control which data
set is currently the active data set.

SPASS - Specifies the VSAM password to be used when the secondary data
set ACB is opened.

MACRF - Specifies local resource sharing.

XITVN - Specifies a user exit to receive control when an empty VSAM data set
has been opened for processing. This exit allows you to put an initializa
tion record into the data set.

XITVI - Specifies a user exit to receive control upon input from the VSAM data
set before the input record is passed to the requesting SCPo

XITVO - Specifies a user exit to receive control before output of a record to
the VSAM data set.

Chapter 3. HLL Data Services Command Processors 23

User Defined Services
HLL command processors defined as TYPE=O or TYPE=RO can be invoked under the
OST to perform user defined functions in addition to CNMKIO or CNMCNMI functions.

Scheduling Commands Under the DST
The CNMSMSG service routine can be used to schedule a oSCP and, in conjunction
with the WAIT command, can wait for the OSCP to send back the results of the sched
uled work. For samples of data services, command processors, and user exit rou
tines, see Appendix B on page 263 for PLII, and Appendix 0 on page 295 for c.

24 NetView Customization: Using PLI and C

Part 2. Coding Your PL/I Program

Chapter 4. Coding Your PL/I Program -Interfaces and Restrictions 27
Initial Parameters .. 27
HLL Run-Time Options 27
PLII Run-time Options 28
Parameters Passed to HLL Service Routines 30
Pointer Variables .. 30
Integer Variables .. 32
Fixed Length Character Strings 33
Varying Length Character Strings 33
Control Blocks and Include Files 34
PLII I/O Considerations 34
PLII Run-Time Considerations
Considerations for HLL Command Processors
Return Codes .. .
Restrictions for HLL Programs Written in PLII

35
36
36
36

Chapter 5. PLII High-Level Language Services 37
PLII Sample Template 37
Data Queue Management 40
Sending Information 41
Parsing Input Strings 42
Synchronous Commands 46
Sending Commands 47
Waiting and Trapping 48
Retrieving Information 50
Command List Variable Access 51
Usi ng Locks .. 52
Operator Input .. 53
VIEW Command Processor 54
Message Processing ~ 56
Scope Checking ... 57
Alteri ng Data ... 60
Storage Access ... 62
Data Set Access ... 64
CNMI .. 65
VSAM (Keyed File Access) 69
DST User Exit ... 71
User Exit .. 72
Wait for Data ... 73

Chapter 6. Using KnowledgeTool Programs in NetView 77
Knowledge Applications in the NetView Environment 77
Sample Knowledge Application 77
Developing Knowledge Applications 81
Example of Standard Input System Extension 82
Example of Standard Output System Extension 84
Example of Standard Error System Extension 85

Chapter 7. Compiling, Link-Editing, and Running Your PL/I Program 87
. Compiling ... 87

Link-editing .. 87
Running ... 88

Part 2. Coding Your PLII Program 25

26 NetView Customization; Using PLI and C

Chapter 4. Coding Your PL/I Program - Interfaces and
Restrictions

This chapter provides necessary information for coding HLL command processors
and user exits in PLII. The appropriate interfaces and language dependent
restrictions are discussed.

Initial Parameters
Three parameters are passed to an HLL program upon invocation. Chapter 5 con
tains a sample template for coding the main procedure statement and the initial
parameter declarations in PLII. The descriptions of the initial parameters are as
follows:

HLBPTR
A 4-byte pointer field containing the address of the HLB control block (DSIPHLB).

The HLB control block is the HLL API interface block that is used to communicate
between the HLL service routines and HLL programs in the NetView environ
ment. This pointer is required on all HLL service routine invocations.

CMDBUF
A varying length character string that contains the command or message that
drove this program.

If this program was driven as a user exit (other than DSIEX02A), this string con
tains the message that drove this exit. If driven as DSIEX02A, CMDBUF will not
contain any useful information. The user will have to retrieve the message
from the Initial Data Queue (IDATAO).

ORIGBLCK
A 40-byte structure that describes the origin of the request that caused exe
cution of this program. ORIGBLCK is mapped by DSIPORIG.

HLL Run-Time Options
HLL run-time options can be specified by declaring and initializing the external vari
able named HLLOPTS. If the user does not code HLL run-time options, the default HLL

run time options are assumed. The default value for HLLOPTS is zero. The following
bits are defined in HLLOPTS:

Chapter 4. Coding Your PlIl Program - Interfaces and Restrictions 27

Bit
Position
o

2-31

Field Name
HLL_ QUEUED JNPUT

Description
Determines if an HLL program will accept
QUEUEd input. Refer to the QUEUE command
in the NetView Operation manual for further
detail.
g, = HLL program will NOT accept QUEUEd
input
1 = HLL program will accept QUEUEd input
Determines if an HLL program will terminate
on CANCEURESET. Refer to RESET command
in the NetView Operation manual for further
detail.
~ = Cancellable
1 = Non-cancellable
RESERVED for internal use. Do not assign
any values to these fields.

The following example illustrates how the default HLL run-time options can be over
ridden in an HLL program written in PL/I. In this case, the user has chosen to make
this PLII program non-cancellable.

DCl HLLOPTS BIT(32) STATIC EXTERNAL
INIT('01000000000000000000000000000000 I B);

PL/I Run-time Options
PUI run-time options can be specified by declaring and initializing the external vari
ables named PLiOPTS, ISASIZ and HEAPSIZ. If the user does not code PUI run-time
options, the default PUI run-time options are assumed. Values for the PUI run-time
options are displayed on the entry screen (HAPIENTR) into your PUI program
(ID=PLlENTRY) when monitoring execution of your program using the Remote Inter
active Debugger (RID). This is explained in detail in Chapter 11 on page 167.

Run-time options are passed to PUI using the PLICALLB entry pOint conventions.
Refer to the PLII Programming Guide for a detailed description of each option. The
following bits are defined in PLIOPTS.

28 NetView Customization: Using PLI and C

Bit
Position
o
1
2
3
4
5
6
7
8
9
10
11
12
13
14-31

Field Name
REPORT
NOREPORT
SPIE
NOSPIE
STAt:
NOSTAE
COUNT
NOCOUNT
FLOW
NOFLOW
KEEPHEAP
FREE HEAP
ANYHEAP
BELHEAP
Map to the bits
defined for PLiCALLB

entry poi nt con
ventions.

PLII programs must run with the NOSTAE and NOSPIE options when running in the
NetView environment. Running with the STAE or SPIE options will cause unpredict
able results in cases where error recovery is necessary. The following example
illustrates how the default PLII run-time options (PLIOPTS) can be overridden in an
HLL program written in PLII. In this case, the user has chosen to run this program
with the REPORT option on. Note that the other PLII run-time options defined in
PLIOPTS (NOSTAE, NOSPIE, etc.) are still specified.

DCl PlIOPTS BIT(32) STATIC EXTERNAL
INIT ('10010101011010000000000000900000'B);

External variables ISASIZ and HEAPSIZ correlate to the ISASIZE and HEAP(size param
eter) run-time options discussed in the PLII Programming Guide. The default
values for ISASIZ (4000) and HEAPSIZ (512) are obtained from the NetView Constants
Module (CNMS0055). These values can be tailored for your environment. Refer to
the NetView Installation and Administration Guide for details on how to change the
default values in the constants module.

The following example illustrates how the default values for ISASIZ and HEAPSIZ can
be overridden in the user's program.

DCl (ISASIZ
HEAPSIZ

INIT(4096) , /* Override ISA size
INIT(256)) /* Override HEAP size
STATIC EXTERNAL FIXED BIN(31);

*/
*/

To achieve optimum performance, it is recommended to run with the REPORT option
until accurate ISA and HEAP sizes are determined. Refer to the run-time storage
section of the PLII Programming Guide for further details.

Chapter 4. Coding Your PUI Program - Interfaces and Restrictions 29

Parameters Passed to HLL Service Routines

Pointer Variables

There are four different types of parameters that can be passed to HLL service rou
tines. Each of the parameters described throughout Chapter 12 fall into one of
these categories:

• Pointer Variables

• Integer Variables

• Fixed Length Character Strings

• Varying Length Character Strings

A discussion of each of these parameter types follows. This section describes how
each of these parameter types can be declared, initialized and passed to the HLL

service routines. Examples and recommendations for writing HLL programs in PLII

have been provided in this chapter. Note that these examples are not complete.
They have been included here to emphasize how the HLL service routine parame
ters should be declared, initialized and passed. For complete examples of user
written HLL programs, see the HLL samples shipped with NetView. Refer to
Appendix B on page 263.

A pointer variable is a 4-byte pOinter field containing an address. All HLL service
routines require at least one argument of this type, HLBPTR. HLBPTR is required for
all HLL service routine invocations. The value of HLBPTR is calculated by NetView
and passed to the HLL command processor or user exit. Therefore, it only needs to
be declared in PUI. The user should NEVER assign a value to this variable. This is
the only parameter of this type which does not have to be assigned by the user.

Note: The user does not need to specify the HLBPTR parameter when coding the
HLL service routine invocation in the PUI macro format. When an HLL service
routine is invoked using the PUI macro format, HLBPTR is inserted for the user before
the HLL service routine is actually invoked.

If an HLL service routine is expecting an address in a pOinter field, the user is
responsible for assigning a value to that pointer field before invoking the HLL

service routine. HLBPTR is the only exception to this rule. In PUI, it is advised to use
the ADDR function when passing pointer variables to HLL service routines rather
than creating a separate pointer variable for this purpose. This will ensure that the
pointer variable has been assigned a value before invoking the HLL service routine.

30 NetView Customization: Using PLI and C

II DCl VARTOVAR CHAR(8) INIT('VARTOVAR '); /* VARTOVAR constant */

I DCl HlBPTR PTR; /* HlB pointer MUST BE DECLARED! */
DCl SRCPTR PTR; /* Source pointer */
DCl DSTPTR PTR; /* Destination pointer */

D DCl DSTlEN FIXED BINARY(31,O); /* length of Destination */

H DCl SRCBUF CHAR(255) VARYING; /* Source buffer */
DCl DSTBUF CHAR(255) VARYING; /* Destination buffer */

B SRCPTR = ADDR(SRCBUF); /* Address of source buffer */
DSTPTR = ADDR(DSTBUF); /* Address of destination buffer */

DSTlEN = lENGTH(DSTBUF); /* length of destination buffer */
SRCBUF = (255)'A'; /* Initialize source buffer */
DSTBUF = (255)1 I; /* Initialize destination buffer */

III CAll CNMCPYS(HlBPTR,SRCPTR,DSTPTR,DSTlEN,VARTOVAR); /* Copy buffer*/

Figure 1. Using Pointer Variables in PLII

HLBPTR is declared as a pointer (PTR) variable to be used in the CNMCPYS invoca
tion. The user did not assign a value to HLBPTR. HLBPTR is specified for this
invocation because the user has chosen to invoke CNMCPYS using the PLII call
format rather than the PUI macro format of the invocation. Chapter 12 contains
examples of how to invoke HLL service routines using the PUI macro format.

SRCPTR is declared as a pointer (PTR) variable.

SRCPTR is assigned the address of the source buffer (SRCBUF) to be used in the
CNMCPYS invocation.

Both HLBPTR and SRCPTR have been passed as parameters to CNMCPYS.

Replacing with the following step illustrates the use of the ADDR function in
PUI. Using the AD DR function eliminates the need to declare pointer (PTR) vari
ables and is advisable whenever possible. Note the use of a character con
stant instead of the VARTOVAR variable.

CAll CNMCPYS(HlBPTR,ADDR(SRCBUF) ,ADDR(DSTBUF) ,DSTlEN, 'VARTO VAR');

Note: If the AD DR function is used to represent a pointer to a varying length char
acter string, warning message IEL05481 will be generated at compile time.

Chapter 4. Coding Your PLII Program - Interfaces and Restrictions 31

Integer Variables
Several of the HLL service routines require the user to pass a 4-byte integer value
to be used as a length, count, queue number, etc.. Figure 2 illustrates the use of
integer variables in the PLII environment.

DCL HLBPTR PTR; /* HLB pointer MUST BE DECLARED! */
DCl SPNAME CHAR(8) VARYING INIT{'POOlNAME'); /* Subpool name */
DCl SPFUNC CHAR(8); /* Subpool function */
DCl SPTOKEN FIXED BIN(31,0); /* Subpool token (returned) */
DCL SPlENG FIXED BIN(31,0); /* Cell size */
DCL SPPRICNT FIXED BIN(31,0); /* Number of cells in primary */
DCl SPSECCNT FIXED BIN(31,0); /* Number of cells in secondary */
DCl SPClASS FIXED BIN{31,0); /* Class of storage */

SPFUNC = 'AllOC';
SPTOKEN ::i 0;
SPlENG = 256;
SPPRICNT = 3;
SPSECCNT = 2;
SPClASS = 1;

/* Function is AllOCATE
/* Initialize subpool token
/* Cell size = 256 bytes
/* Primary count = 3
/* Secondary count = 2
/* Class = 31 bit addressable

*/
*/
*/
*/
*/
*/

CAll CNMPOOl(HlBPTR,SPFUNC,SPTOKEN,SPNAME,SPlENG,SPPRICNT,SPSECCNT,
SPClASS); /* Allocate subpool */

Figure 2. USing Integer Variables in PUI

SPTOKEN is declared as a 4-byte integer (FIXED BIN(31,O».

SPLENG is declared as a 4-byte integer (FIXED BIN(31,O)).

SPTOKEN is initialized to zero. A value will be returned in SPTOKEN upon suc
cessful completion of the CNMPOOL invocation.

SPLENG is assigned a value of 256 to be used in the call to CNMPOOL.

SPTOKEN and SPLENG have been passed to CNMPOOL. The value of SPTOKEN will
be returned to the user upon successful completion of the call to CNMPOOL.

32 NetView Customization: USing Pli and C

Fixed Length Character Strings
The majority of the HLL service routines require the user to pass one or more fixed
length character strings as arguments. Most of these fixed length character
strings, except adorigin and gdorigin, are eight characters long. These exceptions
are discussed below.

PLII constants for most of the fixed length character strings have been provided in
DSIPCONS. DSIPCONS is optional and can be tailored to the specific needs of the user.
The following steps correlate to the steps outlined in Figure 2.

SPFUNC is declared as an 8-byte character field (CHAR(8)).

Character string' ALLOC' is assigned to SPFUNC to be used in the call to CNMPOOL.

SPFUNC is passed to CNMPOOL. SPFUNC could have been initialized (see VARTOVAR

in Figure 1 step [I) or passed to CNMPOOL as a character constant as shown
here. In all cases, it is important to note that PLII automatically pads fixed
length character fields with blanks.

CALL CNMPOOL(HLBPTR,'ALLOC',SPTOKEN,SPNAME,SPLENG,SPPRICNT,SPSECCNT,
SPCLASS); /* Allocate subpool */

The only fixed length character fields required for HLL services that are not 8 bytes
in length are origin blocks. The mapping structure for an origin block resides in
file DSIPORIG which is included by DSIPLI. There are two types of origin blocks used
by the HLL service routines.

The first type of origin block (ORIGBLCK) is a 40-byte structure which must be
declared by the user. This is a required initial parameter which was previously
described in the 'Initial Parameter' section of this chapter. The user is responsible
for declaring this 40-byte structure but should never need to alter it. Refer to the
PLII coding template in Chapter 5 on page 37 for an example of how to declare
ORIGBLCK.

The second type of origin block (adorigin, gdorigin) is specified by the user.
adorigin and gdorigin must be at least 38 bytes long and must map to the first 38
bytes of the origin block structure (DSIPORIG). The user MUST declare these origin
blocks separately from the origin block which is required as an initial parameter.
The initial parameter origin block (ORIGBLCK) should NOT be used in place of
adorigin or gdorigin.

Varying Length Character Strings
I Several of the HLL service routines require the user to pass a varying length char

acter string as an argument. The following steps correlate to the steps outlined in
Figure 2 on page 32.

SPNAME is declared as a varying length character field with a maximum length
of 8 bytes (CHAR(8) VARYING). SPNAME is also initialized in this step.

SPNAME is passed to CNMPOOL.

Chapter 4. Coding Your PLII Program - Interfaces and Restrictions 33

Control Blocks and Include Files
There are a number of control blocks and include files that are required for exe
cution of an HLL program (written in PLII) in the NetView environment. OSIPLI is the
main file that includes the rest of the files and is necessary to compile HLL pro
grams written in PL/I. Optional include files have been provided to assist the user
in coding and maintaining HLL programs. OSIPLI, OSIPCNM and OSIPCONS may be tai
lored to the user's needs.

Note: Tailoring files can lead to better performance in many cases. This is espe
cially helpful in performance sensitive environments such as the user exit environ
ment.

Appendix A on page 245 contains the following list of control blocks and include
files:

DSIPLI

DSIPCNM

DSIPCONS

DSIPHLB

DSIPHLLS

DSIPORIG

PL/I 110 Considerations

(Required) Must be included by all HLL programs written in PL/I.

OSIPLI includes all of the external HLL control blocks and include
files needed to compile and run PL/I programs in the NetView
environment. Refer to the PLII coding template in Chapter 5 on
page 37 for usage.

(Optional) Declares HLL return code constants for PL/I.

(Optional) Declares constants that are helpful when coding
High-Level Language programs in PLII.

(Required) PLII mapping of internal control block OSIHLB.

(Required) PL/I definitions for HLL service routines.

(Required) PLII mapping of the origin block of the request that
caused the execution of the program currently running.

PL/I provides several input and output statements that allow the user to transmit
data between main storage and auxiliary storage of a computer. PL/I programs uti
lizing such file 110 capabilities will run in the NetView environment. However, there
are some important things to consider when dOing file 1/0 in PLII.

Each file referenced from your PLII program correlates to a physical data set in
auxiliary storage. Before opening a file for 1/0, the user must ensure that the
appropriate data set has been allocated. Allocation can be performed under TSO or
by using the NetView ALLOCATE command described in NetView Operation.
NetView also provides a FREE command to deallocate a data set.

If the data set is allocated from TSO, the user must also add a corresponding data
definition (~o) statement to the NetView start up procedure. The data definition
name (ddname) must match the name of the PL/I file. The DO statement specifies a
physical data set name (dsname) and gives its characteristics:

//OUTFILE DO DSN=MVPROG.OUTFILE, •••

A DO statement is not necessary if the data set is allocated using the NetView ALLO

CATE command.

The following example illustrates the use of file 1/0 in an HLL program written in PLII.

Note the use of the ON UNOEFINEOFILE statement to protect against an OPEN failure.
Check for this condition before opening a file for 1/0.

34 NetView Customization: Using Pli and C

DCl OUTFIlE FILE STREAM; /* Declare output file */

/**/
/* Check for error before opening file for I/O. If UNDEFINEDFllE */
/* condition is raised, issue an error message end exit program. */
/**/
ON UNDEFINEDFILE(OUTFILE)

BEGIN; .
CALL CNMSMSG(HLBPTR,'OUTPUT FILE IS UNDEFINED','MSG','OPER',");
HLBRC = CNM_GOOD;
STOP;

END;

OPEN FILE(OUTFILE) OUTPUT;

PUT SKIP FIlE(OUTFILE)
CLOSE FILE(OUTFILE);

/* Open file for output

/* Write to output file
/* Close output file

*/

*/
*/

If the user chooses to write to a common output file from two or more PLII pro
grams, access to the common file must be coordinated by the programs. This can
be accomplished using NetView's CNMLK routine if desired. If access is not coordi
nated, the user may experience a system ABEND 213.

Special care should be taken when attempting to share open files between two or
more HLL programs. Sharing of open files must be coordinated between the
sharing programs. PL/I and C cannot share an open file. However, a C program can
read a file created by PLII.

If the user chooses to code a GET or PUT statement without the FILE option, the com
piler will insert the file names SYSIN and SYSPRINT. By default, SYSIN and SYSPRINT
are directed to the terminal. These defaults are not valid and will cause undeter
mined results if used in the NetView environment. Terminal I/O can be done using
WAIT FOR OPINPUT and CNMSMSG as described in Chapter 12.

Refer to PLII Programming: Language Reference and PLII Programming Guide for
a more detailed discussion on files and PLlII/O.

PL/I Run-Time Considerations
All errors detected at run-time are associated with PLII conditions that can be
handled by oN-units written by the programmer. An oN-unit is a user written state
ment that establishes an action to be executed when a particular PLII error condi
tion is raised. PLII error conditions can be detected by the operating system or by
PLII. If a PLlt program is running with the NOSTAE or NOSPIE options, only the condi
tions detected by PLII can be handled by oN-units. Since PLII programs running in
the NetView environment must run with the NOSTAE and NOSPIE options, the user will
not be able to code oN-units for operating system detected conditions. While
debugging a PLII program in the NetViewenvironment, it is allowable to run with
the STAE and SPIE options until the run-time problems have been resolved. Most
run-time errors are represented by diagnostic messages written to the SYSPRINT file.
See PLII Programming Guide for a complete discussion on error and condition
handling.

Chapter 4. Coding Your PUI Program - Interfaces and Restrictions 35

Considerations for HLL Command ~rocessors

Return Codes

It is necessary to code a CMDMDL statement in DSICMD for each HLL command
processor that you have written. CMDMDL TYPE will be dependent on the functions
that your command processor performs. Keep in mind that some of the HLL ser
vices are only useful when executed under a Data Services Task (DST). There is no
support for HLL command processors running as immediate commands (TYPE = I).

The CMDMDL statement is described in NetView Administration Reference.

Upon completion of an HLL service routine, the completion code from that service
routine is stored in the return code field (HLBRC) of the HLB control block. This field
should be checked after each HLL service routine invocation. It is recommended
that this field be utilized when passing return codes between HLL programs.

For a complete list of HLL API return codes, see DSIPCNM in Appendix A. Refer to
Chapter 12 for a list of return codes that apply to each HLL service routine.

PLlRETV and PLIRETC should not be used when passing return codes between HLL

programs written in PUI. Both of these routines could yield unpredictable results in
the NetView environment. Normal termination of a PUI program can be achieved
by assigning a value to HLBRC and issuing a RETURN statement as shown here.

HlBRC = CNM_GOOD; /* Successful completion */
RETURN; /* Return to call er * /

Restrictions for HLL Programs Written in PLII
The following commands should not be used when coding PUI programs to run in
the NetView environment:

DISPLAY
WAIT, DELAY

ON FIXEDOVERFLOW
ON OVERFLOW
ON UNDERFLOW
ON ZERODIVIDE

PLlRETV
PLIRETC

36 NetView Customization: Using PLI and C

Use NetView's CNMSMSG service routine.
Use NetView's WAIT command.

These condition codes will not work
in NetView since they require SPIE
and STAE.

Return codes should be passed via
HLBRC.

Chapter 5. PL/I High-Level Language Services

This chapter is an example-oriented discussion of commands and services pro
vided by NetView in support of PLII. The complete syntax and usage of each
command and service routine can be found in Chapter 12.

Note: When you are compiling PLII programs you will receive a warning message
IEL05481. This message should be ignored.

PL/I Sample Template
The following is a coding template sample to be used when coding HLL programs in
PLlt. This template can be used, with your enhancements, to utilize NetView func
tions and commands. Further examples in this chapter should be used in conjunc
tion with this template.

PTMPPLT: PROe(HLBPTR,CMDBUF,ORIGBLeK) OPTIONS(MAIN,REENTRANT);
/**/
/* */
/* (e) COPYRIGHT IBM CORP. 1989 */
/* */
/* IEBeOpy SELECT MEMBER=«eNMS42ee,PTMPPLT,R» */
/* */
/* (Explanations included in parentheses should be deleted) */
/* (after the pertinent information has been filled in.) */
/* */
/* Descriptive Name: High-Level Language PL/I Template */
/* (This is the more descriptive name or title of the module.) */
/* */
/* Function: */
/* Template for writing HLL modules in PL/I. */
/* (This is the description of what the module does.) */
/* (It may be paragraph or pseudocode form.) */
/* */
/* Dependencies: */
/* (List conditions that must be met in order for this) */
/* (module to perform. An example of this might be a) */
/* (key data area that must already have been built.) */
/* */

Chapter 5. PLII High-Level Language Services 37

/* Restrictions: */
/* (list any limitations this module may have.) */
/* */
/* language: Pl/I */
/* */
/* Input: */
/* 1) A pointer to a 4-byte field containing the address of */

./* the HlB control block. */
/* 2) A varying length character string containing the */
/* command or message which invoked this program. */
/* If this program was invoked as a command processor, */
/* this will be a command string. */
/* If this program was invoked as a user exit (other than */
/* DSIEX02A), this will be a message string. When driven */
/* as DSIEX02A, this string will be empty and the message */
/* must be retrieved from the Initial Data Queue (IDATAQ). */
/* 3) A 40-byte structure which describes the origin of the */
/* request that caused execution of this program. */
/* */
/* Output: */
/* (Describe any output from this module.) */
/* */
/* Return Codes: returned in Hlbrc */
/* For Command Processors: */
/* 0 = normal exit */
/* -5 = cancelled */
/* (list any other return codes meaningful to this module.) */
/* For User Exits: */
/* 0 = USERASIS (leave the contents of the message buffer */
/* unchanged) * /
/* 4 = USERDROP (Drop the message buffer) * /
/* 8 = USERSWAP (Change the contents of the message buffer) */
/* */
/* External Module References: */
/* (list modules that are called by this module.) */
/* */
/* Change Activity: */
/* date,author: description of changes */
/* (Keep a log of the changes made to this module for) */
/* (future reference.) */
/**/

/**/
/* NetView High-Level language include files */
/**/
%INClUDE DSIPlI; /* Include the Hll macros */

/**/
/* Parameter declarations */
/**/
DCl HlBPTR PTR; /*Pointer to the HlB */
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the command */
DCl ORIGBLCK CHAR(40); /* Area for the Origin Block */

38 NetView Customization: Using PLI and C

/**/
/* Other declarations */
/**/
DCl ORIGIN PTR; /* Pointer to the Origin Block */
DCl ADDR ~UIlTIN; /* Builtin function */

/**/
/* Initialization */
/**/
ORIGIN=ADDR(ORIGBlCK); /* Address of the Origin Block */

/**/
/* Execution */
/**/
HlBRC = CNM_GOOD; /* Successful completion */
END PTMPPlT;

Chapter 5. PLII High-Level Language Services 39

Data Queue Management
NetView utilizes several data and message queues to work in conjunction with HLL

service routines. Information retrieved from these queues, by the GETDATA function,
can be manipulated to enhance your network manageability. The following five
queues are defined for data and message management.

TRAPQ

OPERQ

DATAQ

IDATAQ

CNMIQ

40 NetView Customization: Using PLI and C

Queue 1

Queue 2

Queue 3

Queue 4

Queue 5

This queue enables the user to access mes
sages placed on it after being trapped as a
result of an issuance of the TRAP command for
messages.
This queue enables the user to access oper
ator input, entered by the GO or QUEUE

command.
This queue enables the user to access DATA

type messages placed on it by the send
message HLL service routine (CNMSMSG).

The initial data queue enables the user to
access the message that invoked the HLL

command processor by the message auto
mation table or which drove DSIEX02A.

This queue enables the user to access CNMI

solicited data which was solicited by an issu
ance of the HLL CNMI service routine (CNMCNMI).

Sending Information
The following is an example of sending messages to different destinations.

/**/
/* SEND A MULTILINE MESSAGE TO USER */
/**/
CALL CNMSMSG(HLBPTR, 1 Line 1 of 3 I, 1 MSG_C 1,1 OPER I, ");
CALL CNMSMSG(HLBPTR,'Line 2 of 3 ','MSG_D','OPER',' I);
CALL CNMSMSG(HLBPTR,'Line 3 of 3 ','MSG_F','OPER',' I);

/**/
/* SEND A MULTILINE MESSAGE TO A TASK */
/**/
CALL CNMSMSG(HLBPTR,'Line 1 of 3 ','MSG C' ,'TASK ' ,'OPER2 1

);

CALL CNMSMSG(HLBPTR,'Line 2 of 3 ','MSG-D ' ,'TASK ' ,'OPER2 1
);

CALL CNMSMSG(HLBPTR,'Line 3 of 3 ','MSG=F ' ,'TASK ' ,'OPER2 1
);

/****************~***/

/* SEND A MESSAGE TO THE CONSOLE (only l-liners)*/
/**/
CALL CNMSMSG(HLBPTR,'Hello Sysop ','MSG','SYSOP',' I);

/**/
/* SEND A MESSAGE TO THE AUTHORIZED RECEIVER */
/**/
CALL CNMSMSG(HLBPTR,'Hello Authrcvr ','MSG','AUTHRCV',' I);

/**/
/* SEND A MESSAGE TO THE NETWORK LOG */
/**/
CALL CNMSMSG(HLBPTR,'This should only be in log','MSG','NETVLOG',' I);

/**/
/* SHOW THAT YOU CAN SEND TO SEQLOG */
/**/
CALL CNMSMSG(HLBPTR, Itest msg','MSG', 'SEQLOG','SQLOGTSK ');

/**/
/* SHOW THAT YOU CAN SEND TO A GROUP */
/**/
CALL CNMSMSG(HLBPTR,'hello group','MSG','OPCLASS','+GROUPl');

Chapter 5. PLII High-level language Services 41

Parsing Input Strings

Parsing Input String Similar to NetView Command List Language
The following is an example of parsing the input string similar to the NetView
command list language. It will parse the first 10 tokens individually, just as
NetView command list language would parse them into &1, &2, etc .. It will also set
an equivalent variable to &PARMSTR.

/**/
/* */
/* Other Declarations */
/* */
/**/
DCL (CLISTl,CLIST2,CLIST3,

CLIST4,CLIST5,CLIST6,
CLIST7,CLIST8,CLIST9,
CLIST10,PARMSTR)

CHAR(255) VARYING;
DCL PARMCNT FIXED BIN(31,8); /* Number of tokens parsed */
/**/
/* */
/* Execution */
/* */
/**/
CNMSSCAN /* Parse like NetView Command

..• List Language parses */
DATA (CMDBUF) /* .•• input is in cmdbuf */
FORMAT('%*S%S%S%S%S%S%S%S%S%S%S')/* ... parse each token by blanks */

COUNT (PARMCNT)
Pl(CLISTl)
P2(CLIST2)
P3 (CLIST3)
P4(CLIST4)
P5(CLIST5)
P6(CLIST6)
P7 (CLIST?)
P8(CLIST8)
pg (CLIST9)
P10(CLIST18);

CNMSSCAN

DATA (CMDBUF)
FORMAT('%*S%{~}')

COUNT (PARMCNT)
Pl(PARMSTR);

42 NetView Customization: Using PLI and C

/* •.. but skip the command */
/* .•. number of tokens parsed */
/* .•• first token */
/* ..• next token */
/* ... next token */
/* ..• next token */
/* ..• next token */
/* ... next token */
/* •.. next token */
/* •.. next token */
/* ... next token */
/* •.. last token */

/* Parse like NetView Command
.•. List Language parses */

/* ... input is in cmdbuf */
/* ... skip over command, then */
/* ... put all parms in a target */
/* •.. number of tokens parsed */
/* ... first token */

Parsing Input String Similar to REXX
The following is an example of parsing input strings. Using the following example,
PLII will parse the first 4 tokens individually, and then put the rest of the input into
the fifth token. The REXX language parses the following statement in this way.

arg tokenl token2 token3 token4 token5

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl (TOKENl,TOKEN2,TOKEN3,

TOKEN4,TOKEN5,MSGSTR)
CHAR(255) VARYING;

DCl PARMCNT FIXED BIN(31,0); /* Number of tokens parsed */
/**/
/* */
/* Execution */
/* */
/**/
CNMSSCAN

DATA(CMDBUF)
FORMAT('%*S%S%S%S%S%{~}')

COUNT (PARMCNT)
PI (TOKENl)
P2(TOKEN2)
P3(TOKEN3)
P4(TOKEN4)
P5 (TOKEN5) ;

CNMSSCAN
DATA (CMDBUF)
FORMAT('%*S%{~}')

COUNT (PARMCNT)
Pl(MSGSTR);

/* Parse like TOKEN parses... */
/* •.• input is in cmdbuf */
/* •.. parse each token by blanks */
/* •.• but skip the command and */
/* ... last token gets rest of */
/* ..• the input. */
/* •.• number of tokens parsed */
/* •.• first token */
/* ••• next token */
/* ..• next token */
/* •.• next token */
/* ••• last token gets the rest

••• of the input string */

/* Parse like ARG parses... */
/* ••• input is in cmdbuf */
/* .•. skip over command, then */
/* •.. put all parms in a target */
/* ••. number of tokens parsed */
/* ••. first token */

Chapter 5. PUt High-level language Services 43

Parsing Input String
The following is another example of parsing. Based upon the C SSCANF function,
CNMSCAN allows for both parsing and conversion in a single step, and allows delim
iting the input on any character desired.

/**/

/* */
/* Other Declarations */
r ~
/**/
DCl CNT FIXED BINARY(31,0); /* Number of strings parsed */
DCl INPUT_STR CHAR(256) VARYING; /* Sscan input string */
DCl FORMAT CHAR(256) VARYING; /* Sscan format string */
DCl MSGBUF CHAR(256) VARYING; /* Message buffer */
DCl (CH1,CH2,CH3,CH4,CH5,CH6)

CHAR(S) VARYING; /* Char vars */
DCl (FX1,FX2,FX3)

FIXED BINARY (31,0); /* Fixed vars */

/**/

/* */
/* Execut ion * /
/* */
/**/

/**/
/* Parse out a stri ng * /
/**/
INPUT_STR=l parml III /* Set input string up */

Iparm2 III
Iparm3 III
110000 III
1200 III
IFFFFF III
101XYZ2 11\

I parm41;

44 NetView Customization: Using PlI and C

FORMAT=
'%S' II
'%4S' II

'%S'· II
'%*S' 1.1

'%0' II
'%20' II

'%*SI II

'%XI II
I%{ Qle}'11

'%{2ZYX} , II

'%{"'4}';

CALL CNMSCAN(HLBPTR,
INPUT_STR,
FORMAT,
CNT,
CHI,
CH2,
CH3,
FX1,
FX2,
FX3,
CH4,
CH5,
CH6,
II };

/* The format string says to:
/* (1) Find a character string */
/* (2) Find a 4-byte character

string */
/* (3) Find a character string */
/* (4) Skip over a character

string */
/* (5) Find a decimal string */
/* (6) Find a 2-byte decimal

string */
/* (7) Skip over a character

string */
/* (8) Find a hex string */
/* (9) Find a string that contains

one of the bracketed
characters, stop scanning
when a non-bracketed
character is found */

/* (Ie) Find a string that contains
one of the bracketed
characters, stop scanning
when a a non-bracketed
character is found */

/* (11) Find a string that
does NOT contain a 4, stop
scanning when a 4 is found */

/* Scan can the input string •.. */
/* ••• input is in here */
/* ••• format string */
/* ••• number of string parsed */
/* •.• character string */
/* ..• character string */
/* ••. character string */
/* .•• decimal string */
/* ••• decimal string */
/* ••. hex string */
/* ••• character string */
/* ••• character string */
/* ••• character string */
/* ••• not used */

/**/
/* After executing, the variables have the following values: */
/* */
/* CHI = "pannI" * /
/* CH2 == "pann" * /
/* CH3 = "2/1 */
/* FXl = l88aa Decimal, 2718 Hex */
/* FX2 = 28 Decimal, 14 Hex */
/* FX3 = 1848575 Decimal, FFFFF Hex */
/* CH4 = 1\ alII */
/* CH5 = "XYZ2" * /
/* CH6 = " pann" */
/* */
/* */
/**/

Chapter 5. PUI High-Level Language SerVif'DC>

Synchronous Commands
The following is an example of an HLL command processor invoking another
command. The command could be another HLL command, a VTAM command, or a
NetView command.

/**/
r ~
/* Execution */
/* */
/**/

/* Issue the VTAM command 0 NET,APPLS */

CALL CNMCMO(HLBPTR,
10 NETtAPPLS 1);

46 NetView Customization: Using PLI and C

/* Invoke the command... */
/* ... text of the command to run */

Sending Commands
The following is an example of sending a command to execute under another task.
The command to be run under the other task could be another HLL command, a
VTAM command, or a NetView command.

You can use this process to execute commands under data services tasks (OST),

other operator station tasks (OST), or the primary POI task (PPT).

/**/
/* */
/* Execut ion * /
/* */
/**/

/* Issue the LOGOFF command on a task called OPERl */

*/ CALL CNMSMSG(HLBPTR,
'LOGOFF' ,
'COMMAND',
'TASK' ,
'OPERl');

SELECT;
WHEN (HLBRC=CNM_GOOD)

/* Send the command .••
/* ••• text of the command to
/* ••• this is a command
/* ••• run it on a task
/* ••• task name is OPERl

run */
*/
*/
*/

CALL CNMSMSG(HLBPTR, /* Inform user of success... */
'OPERl logoff successfully scheduled', /* ••• text of msg*/
'MSG', /* ••. this is a message */
lOPER', /* ••• to the operator */
II); /* ••• not used */

WHEN (HLBRC=CNM_TASK_INACTIVE)
CALL CNMSMSG(HLBPTR, /* Inform user task not

/* ••• text of message
/* ••• this is a message
/* ••. to the operator
/* •.. not used

active ... */
*/
*/
*/
*/

OTHERWISE

'OPERl not active',
'MSG',
lOPER' ,
") ;

CALL CNMSMSG(HLBPTR, /* Inform user bad rc... */
'Unexpected RC from CNMSMSG', /* ••• text of message */
'MSG', /* ••• this is a message */
lOPER', /* ••• to the operator */
"); /* ••• not used */

END; /* of select */

HLBRC=CNM_GOOD; /* Clear RC */

Chapter 5. PLII High-Level Language Services 47

Waiting and Trapping
The following is an example of how to issue a command, trap the output of the
command, and respond depending on the output that is encountered. It will acti
vate the given LU and issue an appropriate message.

The syntax that it checks for is:

PACTLU luname

Where luname is the name of the LU to be activated

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl GETBlOCK CHAR(40); /* Area for the Orig Block */
DCl GETPTR PTR; /* Pointer to the Orig Block */
DCl INBUF CHAR(256) VAR; /* Buffer area for messages */
DCl NODENAME CHAR(8) VAR; /* Nodename to be activated */
DCl STATUS CHAR(8) VAR; /* Status of the resource */
DCl CNT FIXED BIN(31,O); /* Number of elements parsed */
/**/
/* */
/* Execution * /
/* */
/**/
GETPTR=ADDR(GETBlOCK); /* Address the Orig Block */
/**/
/* Scan the input for the lu name to activate */
/**/
CAll CNMSCAN(HlBPTR, /* Parse the input ••. */

CMDBUF, /* .•• command line is the input */
1%*S%8S I

, /* ••• skip over command name */
CNT, /* ••. returned */
NODENAME); /* •.. nodename */

48 NetView Customization: Using PLI and C

IF CNT=1 THEN /* Nodename specified? */
DO; /* Yes... */

CALL CNMCMD(HLBPTR, /* Trap the following VTAM msgs */
, TRAP AND SUPPRESS ONLY MESSAGES IST*');

CALL CNMCMD(HLBPTR,' V NET,ACT,ID='! !NODENAME); /* Activate node*/
CALL CNMCMD(HLBPTR,' WAIT 10 SECONDS FOR MESSAGES'); /* Wait •.. */
CALL CNMGETD(HLBPTR, /* Get the first trapped msg •.• */

'GETMSG', /* ••• function is get a msg */
INBUF, /* ..• result goes here */
256, /* ... max input length */
GETBLOCK, /* •.• must provide a work area */
TRAPQ, /* ... message is trapped */
1); /* .•• get the first one */

/**/
/* Loop through messages until IST0931 is found or no more */
/* ..• messages are left */
/**/
DO WHILE(GETPTR->ORIG_BLOCK.ORIG_PROCESS~='IST0931' &

HLBRC=CNM_GOOD);
CALL CNMCMD(HLBPTR,' WAIT CONTINUE'); /* Wait for next msg ••. */
CALL CNMGETD(HLBPTR, /* Get the next trapped msg... */

'GETMSG', /* .•. function is get a msg */
INBUF, /* ••• result goes here */
255, /* ..• max input length */
GETBLOCK, /* ... must provide a work area */
TRAPQ, /* •.• message is trapped */
1); /* ... get the top one on queue */

END;
IF (HLBRC=CNM_GOOD /* Did we find IST0931? */

GETPTR->ORIG BLOCK.ORIG PROCESS='IST0931') THEN
CALL CNMSMSG(HLBPTR, - /* Inform user activation worked */

'RESOURCE'! I NODENAMEI I' NOW ACTIVE',

'MSG' ,
'OPER' ,
, ,) ;

/* .•. text of message
/* ... single line message
/* ... to the operator
/* ... not needed

*/
*/
*/
*/

ELSE /* IST0931 not found, must be

END;

.•• an error */
CALL CNMSMSG(HLBPTR, /* Inform user activation failed */

'ERROR - ACTIVATION UNSUCCESSFUL',

'MSG' ,
'OPER' ,
") ;

/* ... text of message
/* ... single line message
/* ... to the operator
/* ... not needed

*/
*/
*/
*/

ELSE /* Nodename not specified */
CALL CNMSMSG(HLBPTR, /* Inform user need more args */

'ERROR - NODENAME NOT SPECIFIED',
/* ... text of message */

'MSG', /* ... single line message */
'OPER' , /* ... to the operator * /
I'); /* ... not needed */

Chapter 5. PUI High-Level Language Services 49

Retrieving Information
The following gives an example of how an HLL command processor or user exit
routine can retrieve information from NetView. Assembler language command
processors and user exit routines need DSECTs to access information about
NetView. HLL command processors and user exit routines can access some of this
information as shown below. Many variables are available. Please refer to the
command and service routine reference "CNMINFC (CNMINFOC) - Query NetView
Character Information" on page 209 and "CNMINFI (CNMINFOI) - Query NetView
Integer Information" on page 211 for an exhaustive list of the values supported.

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl CDATA CHAR(18) VAR; /* Character information holder */
DCl IDATA FIXED BIN(31,G}; /* Integer information holder */

/**/
/* */
/* Execution */
/* */
/**/

CALL CNMINFC(HlBPTR, /* Retrieve the date & time... */
'DATETIME', /* ... specify the variable */
CDATA, /* ... result goes here */
18); /* ... at most 18 bytes */

CALL CNMINFI(HLBPTR, /* Retrieve the number of colors */

'COLORS' ,
IDATA);

50 NetView Customization: Using PLI and C

/* ... that the terminal supports */
/* ... specify the variable */
/* ... result goes here */

Command List Variable Access
The following example illustrates the capability of updating common global vari
ables. This example simply increments a global variable named "GVARIABLEH by 1.

Task globals are updated and read the same way. The only difference is the pool
name that is specified.

/**/
/* */
/* Other Declarations */
/* */
/**/
DCL DATA_IN CHAR(24) VAR; /* Holds the input data */
DCL DATA_IN_LEN FIXED BIN(31,0) INIT(24); /* Max length of input*/
/**/
/* */
/* Execution */
/* */
/**/

/**/
/* Find the value of the variable */
/**/
CALL CNMVARS(HLBPTR,

'GET' ,
DATA_IN,
DATA_IN_LEN,
'GVARIABlE',
'CGLOBAL');

/* Read the global variable... */
/* ••. function is read */
/* ... result goes here */
/* ... truncate after 24-bytes */
/* ..• variable name is GVARIABLE */
/* ... variable pool is CGLOBAL */

/* Increment Variable */

/**/
/* Set the global variable */
/**/
CALL CNMVARS(HLBPTR, /* Update the global variable ••• */

'PUT', /* ... function is write */
DATA_IN, /* ••• data is here */
" /* ••• not used */
'GVARIABLE', /* ... variable name is GVARIABLE */
'CGLOBAL'); /* ... variable pool is CGLOBAL */

Chapter 5. PLlt High-Level Language Services 51

Using Locks
The previous example illustrated the capability of updating common global vari
ables, but it did not protect the updating of the variable named "GVARIABLE" by using
a lock. The need for protecting the updating needs to be assessed on a case-by
case basis. This example has been modified to obtain a lock before attempting the
update.

The lock name can be the same as the global variable, or it can be different.

If you decide that it is important to synchronize the updating of a variable, you can
use the lock method shown below or you may wish to run all the updates on a
given task. Since only one process can occur on a task at a time, the updates will
be serialized. Note that this could be any task, including the PPT.

DCL DATA_IN CHAR(24) VAR; /* Holds the input data */
DCL DATA_IN_LEN FIXED BIN(31,0) INIT(24); /* Max length of input */
/**/
/* Obtain the lock to secure the accuracy of the update */
/**/
CALL CNMLK(HLBPTR, /* Obtain the Lock ••• */

ILOCK I, /* ... function is obtain lock */
I GVARIABLE I , /* ... name of the lock */
II, /* ... not used */
IWAIT I); /* ... wait if not available */

/**/
/* Find out the value of the variable */
/**/
CALL CNMVARS(HLBPTR, /* Read the global variable... */

IGETI, /* ... function is read */
DATA_IN, /* ... resul t goes here * /
DATA_IN_LEN, /* ... truncate after 24-bytes */
I GVARIABLEI , /* ... variable name is GVARIABLE */
ICGLOBAL I); /* ... variable pool is CGLOBAL */

/* Increment Variable */

/**/
/* Set the global variable */
/**/
CALL CNMVARS(HLBPTR, /* Update the global variable .•• */

IPUTI, /* ... function is write */
DATA_IN, /* ... data is here */
II /* ... not used */
IGVARIABLEI, /* ... variable name is GVARIABLE */
ICGLOBAL I); /* ... variable pool is CGLOBAL */

/**/
/* Release the lock to let other tasks update GVARIABLE */
/**/
CALL CNMLK(HLBPTR, "/* Free the Lock •.• */

I UNLOCKI, /* ~ •• function is free lock */
I GVARIABLEI , /* .•• name of the lock */
II /* ••• not used */ ,
") ; /* ••• not used */

§2 NetView Customization: Using PLI and C

Operator Input
The following is an example of how to code an HLL command processor to accept
operator input in single-line mode. The interface is similar to the &PAUSE function
of the NetView command list language. Input is requested by the application us'ing
the WAIT FOR OPINPUT command, input is retrieved by the application using the
CNMGETD service routine and the operator can respond by using the GO command.

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl GETBlOCK CHAR(40); /* Area for the Orig Block */
DCL GETPTR PTR; /* Pointer to the Orig Block */
DCL DATA_INCHAR(256) VAR; /* Buffer area for messages */
/**/
/* */
/* Execution */
/* */
/**/

GETPTR=ADDR(GETBLOCK); /* Address the Orig Block */

CALL CNMSMSG(HLBPTR, /* Send a message... */
'ENTER OPERATOR INPUT DATA', /* ••• text of message */
'MSG', /* ... single line message */
'OPER', /* ... to the invoking operator */
"); /* •.• not used */

CALL CNMCMD(HLBPTR,' WAIT 10 SECONDS FOR OPINPUT'); /* Wait... */

IF HLBRC=CNM_OPINPUT_ON_WAIT THEN
DO; /* Operator input supplied... */

/* Get the first trapped msg ... */ CALL CNMGETD(HLBPTR,
'GETMSG' ,
DATA_IN,
256,
GETBLOCK,
OPERQ,
1);

/* •.. function is get a msg */
/* •.• result goes here */
/* •.. max input length */
/* •.. must provide a work area */
/* ••. message is on OPINPUT QUEUE*/
/* ••. get the first one */

CALL CNMSMSG(HLBPTR, /* Send a message... */
'OPERATOR INPUT IS:IIDATA_IN, /* .•• text of message */
'MSG', /* •.. single line message */
'OPER ' , /* ..• to the invoking operator */
"); /* .•. not used */

END;
ELSE /* No operator input supplied */

CALL CNMSMSG(HLBPTR, /* Send a message... */
'NO OPERATOR INPUT SUPPLIED', /* .•. text of message */
'MSG', /* ••• single line message */
'OPER', /* .•• to the invoking operator */
I.); /* ••• not used */

Chapter 5. PlIl High-Level Language Services 53

VIEW Command Processor
The following is an example of using the full-screen VIEW command processor.
First it creates the local variable called PARM1, and the variable is initialized. The
VIEW command processor is invoked, displaying a full-screen panel. The following
panel is used as input by the VIEW command. For more information on VIEW see the
NetView Customization Guide.

The panel that is invoked by the following example appears below:

54 NetView Customization: Using PLI and C

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl DATA_INCHAR(48) VAR; /* Input buffer for results */ .

/**/
/* */
/* Execut ion * /
/* */
/**/
CNMVARPOOl FUNC('DCl') /* Declare to local pool... */

NAME (I PARMI I)
POOl('lOCAl ');

/* ... prior to invoking VIEW */
/* ... name is ParmI */
/* ... the pool is local */

CNMVARPOOL FUNC('PUT ') /* Initialize PARMI... */
DATA('the contents of parmI go here') /* ... data */
NAME('PARMl ') /* ... name of local variable */
POOl(I lOCAL I); /* ... the pool is local * /

/* Invoke the VIEW command. Give the task name as a unique */
/* name to go on the View Stack. */

CNMCOMMAND DATA('VIEW I I I ORIGIN->ORIG_TASKI II TESTHLL NOMSG NOINPUT ');

Chapter 5. PLII High-Level Language Services 55

Message Processing
The following example lists the message attributes of a message. The invocation
must be as a result of an entry in the message automation table, which is docu
mented in the NetView Administration Reference. This example will function cor
rectly for both single line messages and multiple line messages.

DCl GETBlOCK CHAR(49); /* Area for the Orig Block */
DCl GETPTR PTR; /* Pointer to the Orig Block */
DCl INBUF CHAR(256) VAR; /* Buffer area for messages */
DCl DATA_IN CHAR(12) VAR; /* Attribute result */
DCl ATTR(12) CHAR(8) INIT(/* 12 message attributes: */

'AREAID' ,'DESC ' ,'JOBNAME ' ,'JOBNUM ' , 1 MCSFLAG 1 ,'MSGTYP ' ,
'REPLYID','ROUTCDE','SESSID ' ,'SMSGID','SYSCONID','SYSID ');

/**/
/* */
/* Execut ion * /
r ~
/**/
GETPTR=ADDR(GETBLOCK); /* Address the Orig Block */
CALL CNMGETD(HlBPTR, /* Get the first line of the msg */

'GETMSG', /* ... function is get a msg */
INBUF, /* ... result goes here */
256, /* ... max input 1 ength * /
GETBLOCK, /* ... must provide a work area */
IDATAQ, /* ... message from automation */
1); /* ... get the first line of msg */

DO WHILE(HLBRC=CNM_GOOo /* Loop through the messages .•• */
HlBRC=CNM_DATA_TRUNC); /* ... ignoring truncation */

00 1=1 TO 12; /* For 12 possible attributes ••• */
CALL CNMGETA(HLBPTR, /* Get the Ith attribute... */

ATTR(I), /* ... Ith member of array */
DATA_IN, /* ... result goes here */
12, /* ... at most 12 bytes */
IDATAQ); /* ... on the initial data queue */

CALL CNMSMSG(HlBPTR,ATTR(I)I I 1 = 1 I IDATA_IN,'MSG','OPER',' I);
END;
CALL CNMSMSG(HLBPTR,'LINETYPE = 1 I IGETPTR->ORIG_BLOCK.ORIG_lINE_TYPE,

'MSG','OPER',' I);
CALL CNMSMSG(HLBPTR,'HoRMTYPE = 1 I IGETPTR->ORIG_BLOCK.ORIG~MSG_TYPE,

'MSG','OPER',' I);
CALL CNMSMSG(HLBPTR,'MSGID = 1 I IGETPTR->ORIG_BLOCK.ORIG_PROCESS,

'MSG','OPER',' I);
CALL CNMSMSG(HLBPTR,'MSGSTR = 1 I IINBUF,

'MSG','OPER',' I);
CALL CNMGETD(HLBPTR,

'GETLINE',
INBUF,
255,
GETBLOCK,
IDATAQ,
1) ;

END;
HLBRC=CNM_GOOD;

56 NetVlew Customization: Using PLl and C

/* Get next line of message... */
/* ... function is get next line */
/* ... result goes here */
/* ... max input length */
/* ... must provide a work area */
/* ... message is from automation */
/* .. :get the next line */
/* Of DO WHILE */
/* Clear RC */

Scope Checking
The following is an example of the scope checking capabilities provided by
NetView. In this example, the user is required to set up the following elements for
the command (shown below):

1. operator id

2. operator classes that can access the command

3. operator profile

The command gives the return code that the scope check service routine returned
to the operator.

The syntax that this command checks for is:

PSPCCKO PARMx(VALx}

The following is the setup for the scope check example.

In DSIPARM(DSICMD}:

• Define the operator classes that can access the command, its keywords, and
its keyword values.

• The example below says that the command PSPCCKO can be executed by
operators in scope class 1 and 2. Scope class 1 can issue any keyword or
keyword value, but scope class 2 cannot use the value of VAL 1 with keyword
PARM2, and scope class 2 cannot issue PARM3 at all.

PSPCCKO

PARM2
VALl
PARM3
VAll

CMDMDL
CMDCLASS
KEYCLASS
VALCLASS
KEYCLASS
VALCLASS

In DSIPARM(DSIOPF}:

MOD=PSPCCKO,RES=N,TYPE=RD
1,2
1,2
1
1
1

• Define the operator ids and the profiles that the operator ids can use.

JOE OPERATOR PASSWORD=USER
PROFILEN DSIPROF3

In DSIPRF(profilename}:

• Define the operator class value that will correspond to the profile that the oper
ator logs on with.

DSIPROF3 PROFILE
OPCLASS 3
END

Chapter 5. PL/I High-Level Language Services 57

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl INBUF CHAR(SG) VAR; /* Buffer area for messages */
DCl CMDNAMEV CHAR(S) VAR; /* Command that invoked us */
DCl KEYWORDV CHAR(S) VAR; /* Keyword of invocation */
DCl KEYVAlUEV CHAR(S) VAR; /* KeyValue of invocation */
DCl CMDNAME CHAR(S); /* Command that invoked us */
DCl KEYWORD CHAR(S); /* Keyword of invocation */
DCl KEYVAlUE CHAR(S); /* KeyValue of invocation */
DCl CNT FIXED BIN(31,G); /* Number of elements parsed */
/**/
/* */
/* Execution */
/* */
/**/

/**/
/* Scan the keyword and the value */
/**/
CAll CNMSCAN(HlBPTR,

CMDBUF,

I%SI II
I%*{ } III
I%{"",O I II
I%*CIII
I%{"",)} I ,
CNT,
CMDNAMEV,
KEYWORDV,
KEYVALUEV);

CMDNAME=CMDNAMEV;
KEYWORD=KEYWORDV;
KEYVALUE=KEYVALUEV;
IF CNT=3 THEN

CALL CNMSCOP(HLBPTR,
CMDNAME,
KEYWORD,
KEYVALUE);

ELSE
HLBRC=CNM_BAD_INVOCATION;

58 NetVlew Customizatlon: Using PLI and C

/* Parse the input ••• */
/* ... command line is the input */

/* SYNTAX OF COMMAND IS: */
/* CMDNAME KEYWORD(KEYVAlUE) */
/* */
/* Scan for the: */
/* ... command name */
/* ... skip over leading blanks */
/* ... keyword up to 11(" */
/* ... skip over 11(11 */
/* ... keyvalue up to ")" */
/* ... number strings parsed */
/* ... command goes here */
/* ... keyword goes here */
/* ... keyvalue goes in here */
/* Get fixed length value */
/* Get fixed length value */
/* Get fixed length value */
/* Enough parms specified? */
/* Scope check the input... */
/* ... the command */
/* ... the keyword */
/* ... the value */

/* Not enough parms specified
/* Set rc

*/
*/

/**/
/* Inform user of the return code results... */
/**/

SELECT;
WHEN (HLBRC=CNM_GOOD)

DO;

END;
WHEN (HLBRC=CNM_KEYWORD_NA)

/* Operator
/* has
/*
/*

passed
scope checking

*/
*/
*/
*/

CALL CNMSMSG{HLBPTR, , Not authorized to use KEYWORD' I I KEYWORD,
'MSG','OPER',' '};

WHEN (HLBRC=CNM_VALUE_NA)
CALL CNMSMSG(HLBPTR,' Not authorized to use VALUE 'IIKEYVALUE,

'MSG','OPER',"};
WHEN (HLBRC=CNM_BAD_INVOCATION)

CALL CNMSMSG(HLBPTR, , Not enough parms specified',
'MSG','OPER',' ');

OTHERWISE
CALL CNMSMSG(HLBPTR,' RC not recognized ••• ' I IHLBRC,

'MSG','OPER ' ,' '};
END;
HLBRC=CNM_GOOD; /* Clear RC */

Chapter 5. PUt High-Level Language Services 59

Altering Data
This DSIEX02A exit routine changes the echoed command message (MSGTYPE=*) to
be more informative by giving the time as well as the fact that the command was
entered.

Example output with input of WHO:

Without exit:
WHO

With exit:
COl1l11and entered was: "WHO" at 12:00:00

DSIEX2A: PROC(HlBPTR,CMDBUF,ORIGBlCK) OPTIONS(MAIN,REENTRANT);
/**/
/* */

/* Change Activity: */
/* date,author: description of changes */
/**/

/**/
/* */
/* Parameter Declarations */
/* */
/**/
DCl HlBPTR PTR; /* Pointer to the HlB */"
%INClUDE DSIPlI; /* Include the Hll macros */
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the cOl1l11and */
DCl ORIGBlCK CHAR(40); /* Area for the Orig Block */
DCl ORIGIN PTR; /* Pointer to the Orig Block */
DCl ADDR BUILTIN; /* Builtin function */
ORIGIN=ADDR(ORIGBlCK); /* Address the Orig Block */
/**/
/* */
/* Other Declarations */
/* */
/**/
DCl GETBlOCK CHAR(40); /* Area for the Orig Block */
DCl DATAIN CHAR(255) VAR; /* Old cOl1l11and text */
DCl TIME CHAR(256) VAR; /* Area for time */

60 NetVlew Customization: Using PLl and C

/**/
/* */
/* Execution * /
r ~
/**/
GETPTR=ADDR(GETBLOCK); /* Address the Orig block */ .
CNMINFOC /* Retrieve the time... * /

ITEM('TIME') /* ••• variable is time of day */
DATA(TIME) /* ••• the result goes here */
LENG(256); /* •.. max length of 256 */

CNMGETDATA /* Peek the msg before altering */
FUNC('PEEKLINE ') /* ••• subfunction is PEEK */
QUEUE(IDATAQ) /* ••• initial data queue */
DATA (DATAIN) /* ••• result goes here */
LENG(256) /* .•• max length is 256 */
ORIGIN (GETBLOCK) /* ••• use new Orig block */
LINE(l); /* ••• check the first line */

IF GETPTR->ORIG_MSG_TYPE =1*1 THEN /* Echo'ed message? */
CNMALTDATA /* Replace the text •.. */

FUNC('REPLINE ') 1* ... function is replace */
QUEUE (IDATAQ) /* ••• initial data queue */
DATA('COI11IIand entered was: II'IIDATAINII'II at 'IITIME)

ORIGIN (GETBLOCK)
LINE(1) ;

HLBRC=CNM_GOOD;
END DSIEX2A;

/* ••• text of new message
1* ... use Peeked Orig block
1* ... replace the first line
1* Clear RC

*/
*1
*/
*/

Chapter 5. PUI High-Level Language Services 61

Storage Access
The following example illustrates how to display the character representation of
the contents of the storage that NetView can access. For example, after locating
the address of the main vector table using DISPMOD DSIMNTEX, you can display the
first 4 bytes of the DSIMVT control block. For NetView R3 this will contain the char
acter string NV13.

DCL NUM_PARMS FIXED BIN(31);
DCL XADDR FIXED BIN(31);
DCL NUM_BYTES FIXED BIN(31);
DCL INPUT_BFR CHAR(4096);
DCL SOURCE_PTR PTR;
DCL I FIXED BIN(31);

/* Number of parms passed */
/* Hex value of source_ptr */
/* Number of bytes to display */
/* Buffer where data is copied */
/* Address to copy from */
/* Work counter */

/**/
/* */
/* Execut; on * /
/* */
/**/
CNMSSCAN DATA(CMDBUF) /* Scan the command for: */

FORMAT ('%*S I II /* ••. skip the command * /
I%XI I I /* ••• save the source address */
'%XI) /* ••. save the length */

COUNT (NUM_PARMS) /* .•. number of parms scanned */
PI (XADDR) /* ... the address to display */
P2(NUM_BYTES); /* ••• for this number of bytes */

SELECT;
WHEN(NUM_PARMS~=2) /* Did they give an address and

..• a length? */
CNMSENDMSG /* No, give error message... */

DATA{'INVALID NUMBER OF PARAMETERS ') /* ••• text */
MSGTYPE{'MSG ') /* ..• message */
DESTTYPE{'OPER '); /* .•. to the operator */

WHEN (NUM_BYTES<=0) /* Did they give a valid length 1*/
CNMSENDMSG /* No, give error message... */

DATA{'INVALID LENGTH GIVEN ') /* ••• text */
MSGTYPE{'MSG ') /* ••• message */
DESTTYPE('OPER'); /* ••• to the operator */

WHEN (NUM_BYTES>=4096) /* Did they give a valid length ?*/
CNMSENDMSG /* No, give error message... */

DATA('INVALID LENGTH GIVEN, MUST BE LESS THAN I I I
lOR EQUAL TO FFF') /* ••• text of message

MSGTYPE('MSG') /* message
DESTTYPE('OPER '); /* •.• to the operator

*/
*/
*/

62 NAtViAW Customization: Usina PU and C

OTHERWISE
DO;

UNSPEC(SOURCE_PTR) = UNSPEC(XADDR); /* assign value into a ptr */
CNMCOPYSTR /* Copy storage */

FROM (SOURCE_PTR) /* ••. from the address given*/
TO(ADDR(INPUT_BFR» /* ••• to the internal buffer*/
LENG(NUM_BYTES) /* ••. for up to FFF bytes */
COPYTYPE('FIXTOFIX '); /* ••. data is fixed len vars*/

IF HLBRC = CNM_GOOD THEN /* Good RC ? */
DO 1=1 TO NUM_BYTES BY 64; /* Display storage */

CNMSENDMSG DATA(SUBSTR(INPUT_BFR,I,64» /* •.. 64-byte */
MSGTYPE('MSG ') /* •.• in a message */
DESTTYPE('OPER'); /* ••• to the operator */

END;
ELSE /* Bad RC -- * /

CNMSENDMSG /* Send message ••. * /
DATA('INVALID OR PROTECTED ADDRESS') /* ••• text */
MSGTYPE('MSG ') /* ••• in a message */
DESTTYPE('OPER '); /* ••• to the operator */

END; /* of otherwi se * /
END; /* of sel ect * /

Chapter 5. PLII High-Level Language Services 63

Data Set Access
The following is an example of opening (using CNMMEMO), reading (using CNMMEMR)

and closing (using CNMMEMC) NetView partitioned data sets. This example reads a
member of DSIPARM called DSIDMN, and displays it to the operator.

DCl MEMBER CHAR(S); /* Member name to read */
DCl DDNAME CHAR(S); /* DDNAME to read */
DCl TOKEN FIXED BIN(31,e); /* Token used to match open to

••• read and close */
DCl MRDATA CHAR(Se) VAR; /* line that is read */
/**/
/* */
/* Execution */
/* */
/**/
DDNAME='DSIPARM';
MEMBER='DSIDMN';
/**/
/* OPEN THE MEMBER * /
/**/
CAll CNMMEMO(HlBPTR, /* Open the data set member ••• */

TOKEN, /* token returned by Hll */
DDNAME, /* ddname of PDS */
MEMBER); /* member name of PDS */

IF HlBRC~=CNM_GOOD THEN
CAll CNMSMSG(HlBPTR, /* OPEN failed... */

'OPEN FOR DATA SET FAILED RC=' I ICHAR(HlBRC) ,
'MSG', /* .•• single line message */
, OPER' , /* ••. to the operator * /
, ,) ; /* ..• taskname ignored * /

ELSE
DO; /* Open was successfuL.. * /

/**/
/* READ THE MEMBER * /
/**/
CALL CNMMEMR(HLBPTR, /* Read the first record... */

TOKEN, /* provide token from OPEN */
MRDATA, /* ... resul t goes here * /
se); /* ... read se bytes */

DO WHILE (HLBRC=CNM_GOOD); /* Read til EOF */
CAll CNMSMSG(HlBPTR, /* Write out last record read .•• */

SUBSTR(MRDATA,I,72),/* ..• write first 72 bytes */
'MSG', /* ... single line message */
lOPER', /* ... to the operator */
"); /* .•• taskname ignored */

CALL CNMMEMR(HLBPTR, /* Read the next record... */
TOKEN, /* provide token from OPEN */
MRDATA, /* result goes here */
se); /* read se bytes */

ENO;
/**/
/* CLOSE THE MEMBER * /
/**/
CALL CNMMEMC(HLBPTR, /* Close the PDS member... */

TOKEN); /* ••• using the token from OPEN */
END; /* End of Open was successful ••• */

64 NetView Customization: Using PLI and C

CNMI
NetView provides the CNMCNMI service routine for use in communicating with
devices in the network via the Communications Network Management Interface
(CNMI). Any data that is returned may be accessed using the CNMGETD service
routine to retrieve records from the CNMI solicited data queue (CNMIQ).

The following example uses the CNMCNMI service routine to send a request product
set id data request to a specified PU. Any data returned is sent as a message to
the operator.

The syntax of the command is:

PNMVTPU puname <OWNIALL>

where:

puname is the name of the PU to be retrieved (requi red)

OWN implies that vital product data is to be
retrieved for the PU only (default)

ALL- implies that vital product data is to be
retrieved for the PU and its attached ports

Chapter 5. PLII High-Level Language Services 65

/**/
/* */
/* Other Declarations */
/*, */
/**/
DCl RCODE FIXED BIN(31,O); /* Return code */
DCl COUNT FIXED BIN(31,O); /* Count of Scanned args */
DCl PUNAMEV CHAR(8) VAR; /* PUNAME varying length */
DCl PUNAME CHAR(8); /* PUNAME fixed length */
DCl GETBlOCK CHAR(40); /* Area for the work orig block */
DCl GETPTR PTR; /* Pointer to the work Orig Block*/
DCl DATAIN CHAR(1024) VAR; /* Buffer for the RU */
DCl OWNORAll CHAR(8) VAR; /* Own or all placeholder */

/**/
/* */
/* Vital Product Data RU definitions */
/* */
/* From the VTAM Programming Manual, a forward RU is defined below */
/* */
/* Byte Value Description */
/* 0 81 Network services, logical services */
/* 1 e8 Management services */
/* 2 10 Request code */
/* 3 eo Format 0 */
/* 4 eo Ignore target names, */
/* Solicit a reply, and */
/* No CNM header contained */
/* 5 eo Reserved * /
/* 6-7 eeOE Length of NS RU */
/* 8-15 NS RU -- NMVT -- documented in SNA Ref Sum */
/* 8-A 410380 NS Header for NMVT */
/* B-C eeeo Retired */
/* D-E e111 PRID */
/* F eo unsolicited NMVT, */
/* only NMVT for this PRID */
/* 1e-16 One MS major vector */
/* 10-11 ee06 length field of PSID (Product Set 10) vector */
/* 12-13 8egO Code point for PSID */
/* 14-15 length of subvector */
/* 14 e2 length of subvector */
/* 15 81 Request information on control unit only */
/* 15 83 Request information on control unit and its */
/* attached devi ces * /
/* 16 Fl From VTAM programming, PU */
/* 17 e8 Length of PU name */
/* 18 PUNAME Eight byte PUNAME, left justified */
/* 2e ee End of RU */
/**/

DCl FORWARD_RU CHAR(lee) VAR INIT(
'81081eeOeOeOeeeE41e38DeeeeOll1eOOee68ege02'X);

DCl OWN CHAR(l) VAR INIT('81'X);
DCl ALL CHAR(l) VAR INIT('83'X);
DCl PUNAME_HDR CHAR(2) VAR INIT('F1e8'X);
DCl ENDOFRU CHAR(l) VAR INIT('ee'X);

66 NetView Customization: Using PLI and C

/**/
/* */
/* Execut ion * /
/* */
/**/

RCODE=0; /* Initialize return code */
GETPTR=ADDR(GETBLOCK); /* Address the work Orig Block */

CALL CNMSCAN(HLBPTR, /* Scan the command line ••• */
CMDBUF, /* ••• input in in command line */
I%*S%S%SI, /* ••• skip over the command */
COUNT, /* .•• number of args parsed */
PUNAMEV, /* ••• puname */
OWNORALL); /* ..• own or all specified */

PUNAME=PUNAMEV; /* Get fixed length PU name */

SELECT;
WHEN (COUNT=l) /* Own or All not specified */

FORWARD_RU=FORWARD_RUIIOWNI IPUNAME_HDRI !PUNAME!IENDOFRU;
/* Default is OWN */

WHEN(OWNORALL='OWN ') /* Own or All not specified */
FORWARD_RU=FORWARD_RUI !OWN! IPUNAME_HDRI !PUNAME! IENDOFRU;

/* Process OWN */
WHEN(OWNORALL='ALL ') /* Own or All not specified */

FORWARD_RU=FORWARD_RUI IALLI IPUNAME_HDRI I PUNAME I IENDOFRU;
OTHERWISE /* Invalid parm ••• tell user */

DO;
CALL CNMSMSG(HLBPTR, 'INVALID COMMAND SYNTAX', /* wrong... */

'MSG','TASK',ORIGIN ->ORIG_TASK); /* ••• syntax */

END;

RCODE=8;
END;

IF RCODE = e THEN
DO;

CALL CNMCNMI(HLBPTR,
'SENDRPLY' ,
FORWARD_RU,
PUNAME,
180);

IF HLBRC=CNM_GOOD THEN
DO;

CALL CNMGETD(HLBPTR,
'GETLINE' ,
DATAIN,
H)24 ,
GETBLOCK,
CNMIQ,
1) ;

/* Bad syntax */

/* Of Select */
/* Good so far? */
/* Yes, continue */
/* Send RU over the CNMI... */
/* ••• expect a reply */
/* ••• RU built above */
/* ••• to the PUNAME specified */
/* ... timeout after 3 minutes */
/* Everything OK? */
/* Yes, continue */
/* Read in the first RU returned */
/* .•• a single RU */
/* ••. into here * /
/* ... truncate after 1024-bytes */
/* ..• provide a new origblock */
/* ... on the CNHI queue */
/* •.• the first RU */

Chapter 5. PUI High*Level Language Services 67

DO WHIlE(HlBRC=CNM_GOOD); /* End of queue reached? */
CAll CNMSMSG(HlBPTR, /* Send info to the operator ••• */

DATAIN, /* .•• from here */
'MSG', /* .•• issue message */
'TASK', /* ... to the task */
ORIGIN ->ORIG_TASK); /* ••• that originated request*/

CAll CNMGETD{HlBPTR, /* Read in the next RU returned */

END;
END;

ELSE

'GETlINE', /* ••• a single RU */
DATAIN, /* ••. into here */
1024, /* ••• truncate after 1024-bytes */
GETBlOCK, /* ••• provide a new origblock */
CNMIQ, /* ••. on the CNMI queue */
1); /* ... the next RU */

/* of DO WHILE */
/* Of everything ok */

DO; /* CNMI error * /
SElECT(HlBRC);

WHEN (CNM_BAD_INVOCATION) '1* Not invoked under a DST * /
CAll CNMSMSG(HlBPTR,'Must run under a DST',

'MSG','TASK',ORIGIN ->ORIG_TASK);

WHEN (CNM_BAD_TIMEOUT) /* PU never answered request*/
CAll CNMSMSG(HlBPTR,'PU never answered',

'MSG','TASK',ORIGIN ->ORIG_TASK);

WHEN (CNM_NEG_RESPONSE) /* PU gave a negative response*/
CAll CNMSMSG(HlBPTR,'PU gave a negative response',

'MSG','TASK',ORIGIN ->ORIG_TASK};
OTHERWISE

CAll CNMSMSG(HlBPTR,'CNMI request failed RC=' I I

END;
END;

END;
HlBRC=RCODE;

68 NetView Customization: Using PLI and C

CHAR(HlBRC) ,'MSG','TASK',ORIGIN->ORIG_TASK);
/* Of Select
/* of CNMI error
/* of Good so far
/* Issue rc

*/
*/
*/
*/

VSAM (Keyed File Access)
The following is an example of coding a Netvlew HLL command processor that
allows 110 to a VSAM file through the CNMKIO service routine.

The command processor must execute on a DST. Use either the CNMSMSG service
routine (with a type of COMMAND) or the EXCMD command.

This example will create a data base that contains 5 records with the following
keys and data:

KEY DATA
01 A
02 B
03 C
04 0
05 E

DCl REC CHAR(lG) VAR;
DCl INREC CHAR(lG) VAR;
DCl KEY CHAR(2) VAR;
DCl OUTDATA(5) CHAR(8) VAR INIT(

'A', 'B', 'C', '0', 'E');
DCl KEYDATA(5) CHAR(2) VAR INIT(

'01','02','03','04','05');

/* Record that is output
1* Input record
/* Key to record
1* Data

1* Keys

*1
*1
*1
*1

*1
1**1
1* Execution -- WRITE OUT 5 RECORDS... *1
/* *1
1* Put Direct must be used for new records, and put update must *1
/* be used for existing records. Therefore, we use GET equal *1
1* to determine if the record is new or not. If new, then a Put *1
/* Direct will follow ••• if not, then a put update follows *1
1* *1
1**1

DO I = 1 TO HBOUND(OUTDATA,l);
KEY=KEYDATA(I) ;
REC=KEYIIOUTDATA(I);
CAll CNMKIO(HlBPTR,

'GET_EQ' ,
INREC,
10,
KEY,
'UPDATE');

IF HLBRC=CNM_NOT_FOUND THEN
DO;

CAll CNMKIO(HlBPTR,
'PUT' ,
REC,
0,
KEY,
'DIRECT');

1* For 5 records
1* Set key portion of record
1* Record must have key first
1* Provide HlB pointer •••
1* requesting a get
1* data is in inrec
1* 10 bytes max input
1* key is in key
1* this is an update

1* Provide HlB pOinter •••
1* requesting a put
1* data is in rec
1*
1*
1*

not used
key is in key
this is not an update

*1
*1
*1
*1
*1
*1
*1
*1
*1

*1
*1
*1
*1
*1
*1

Chapter 5. PLII High-Level Language Services 69

IF HLBRC~=CNM GOOD THEN
CALL CNMSMSG(HLBPTR, /* Issue error message... */

'CNMKEYIO PUT REQUEST FAILED, RC=' I ICHAR(HLBRC),
/* text of message */

'MSG', /* ••. single line message */
'TASK', /* ••• to the task */
ORIGIN->ORIG_BLOCK.ORIG_TASK); /* ••• that invoked*/

END;
ELSE

END;

CALL CNMKIO(HLBPTR,
'PUT' ,
REC,
0,
KEY,
'UPDATE'};

IF HLBRC~=CNM_GOOD THEN

/* Provide HLB pointer •••
/* requesting a put
/* data is in rec
/* not used
/* key is in key
/* this is an update

CALL CNMSMSG{HLBPTR, /* Issue error message •••
'CNMKEYIO PUT REQUEST FAILED, RC=' I !CHAR(HLBRC),

*/
*/
*/
*/
*/
*/

*/

/* text of message */
'MSG', /* ••• single line message */
'TASK', /* ••• to the task */
ORIGIN->ORIG_BLOCK.ORIG_TASK); /* ••• that invoked */

/**/
/* READ IN THE 5 RECORDS... */
/**/

DO I = 1 TO HBOUND(OUTDATA,l); /* For 5 records */
KEY=KEYDATA(I); /* Set key portion of record */
CALL CNMKIO(HLBPTR, /* Provide HLB pointer... */

'GET_EQ', /* requesting a get */
INREC, /* data is in inrec */
10, /* 10 bytes max input * /
KEY, /* key is in key */
'NOUPDATE'}; /* this is not an update */

IF HLBRC~=CNM_GOOD THEN
CALL CNMSMSG(HLBPTR, /* Issue error message... */

'CNMKEYIO GET REQUEST FAILED, RC='! !CHAR(HLBRC),
/* text of message */

'MSG', /* •.• single line message */
'TASK', /* .•• to the task */

ORIGIN->ORIG_BLOCK.ORIG_TASK); /* ..• that invoked*/
END;

HLBRC=CNM_GOOD; /* Issue clean rc */

70 NetView Customization: Using PLI and C

DST User Exit
The following is an example of coding a Netview HLL user exit routine that primes
an empty VSAM data base for a DST. If a VSAM data base has not been primed (has at
least one record). subsequent 110 requests will fail.

PPRMVDB: PROC(HlBPTR,CMDBUF,ORIGBlCK) OPTIONS(MAIN,REENTRANT);
/**/
/* */
/* Descriptive Name: High level language Pl/I DSIXITVN Example */
/* */

/* Change Activity:
/* date,author: description of changes

*/
*/
/ /

/**/

/**/
/* */
/* Parameter Declarations */
/* */
/**/
DCl HlBPTR PTR;
%INClUDE DSIPlI;
DCl CMDBUF CHAR(*) VARYING;
DCl ORIGBlCK CHAR(40);
DCl ORIGIN PTR;
DCl ADDR BUILTIN;
ORIGIN=ADDR(ORIGBlCK);

/* Pointer to the HlB
/* Include the Hll macros
/* Buffer for the command
/* Area for the Orig Block
/* Pointer to the Orig Block
/* Builtin function
/* Address the Orig Block

*/
*/
*/
*/
*/
*/
*/

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl KEY CHAR(2) VAR; /* 2 byte key of the record */
/**/
/* */
/* Execution - */
/* */
/* Create the record to initialize the VSAM data base. The */
/* record wi 11 have a key of 0000 and a value of II low rec ". * /
/* Setting the HlBRC to USERSWAP (8) will cause the contents */
/* of CMDBUF to be swapped into the database, thereby giving */
/* it an initial value, and enabling the subsequent VSAM I/O. */
/* */
/**/
KEY='0000'X; /* Set key to low values */
CMDBUF=KEY!! 'low rec'; /* Build the data record */
HlBRC=USERSWAP; /* Set USERSWAP rc */
END PPRMVDB;

Chapter 5. PLlt High-Level Language Services 71

User Exit
The following is an example of coding a user exit routine DSIEX03 that sets a task
global variable equal to the last time a command was entered on the system. If the
last command was the PSNDDAT command, the task global variable will not be set.
The PSNDDAT command (see "SEND Side" on page 75) is used to interrogate the
variable value.

PSETTG: PROC(HlBPTR,CMDBUF,ORIGBlCK) OPTIONS(MAIN,REENTRANT);
/**/
r ~
/* Descriptive Name: High level language Pl/I DSIEX03 Example */

/* Change Activity: */
*/
*/

/* date,author: description of changes
/*
/**/

/**/
/* */
/* Parameter Declarations */
/* */
/**/
DCl HlBPTR PTR; /* Poi nter to the HlB * /
%INClUDE DSIPlI; /* Include the Hll macros */
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the command */
DCl ORIGBlCK CHAR(40); /* Area for the Orig Block */
DCl ORIGIN PTR; /* Pointer to the Orig Block */
DCl ADDR BUILTIN; /* Builtin function */
ORIGIN=ADDR(ORIGBlCK); /* Address the Orig Block */

/**/
/* */
/* Other Declarations *1
/* *1
/**/
DCl TIME CHAR(256) VAR; /* Time last command entered *1
/**1

/* *1
/* Execution *1
/* *1
/**1
IF INDEX(CMDBUF,'PSNDDAT')~=l THEN /* Command other than PSNDDAT? *1

DO; /* Yes... *1
CNMINFOC /* Gather Netview information ••. */

ITEM('TIME') /* •.• what time is it? *1
DATA(TIME) /* ••• answer goes here *1
lENG(256); /* ..• length of time */

CNMVARPOOl FUNC('PUT')
NAME('lAST COMMAND TIME')
POOL (, TGlOBAl') -
DATA(TIME) ;

END;
HlBRC=USERASIS;
END PSETTG;

/* Put answer in task global ••. *1
/* .•• by the name of... */

/* •.• task global pool */
/* .•• information in TIME */

/* Clear RC */

72 NetView Customization: Using Pli and C

Wait for Data

WAIT Side
The following is part of an example of sending messages with a type of request,
waiting on the response, and parsing the results.

The purpose of the example is to find the last time that a command was entered on
the given OST. A task global variable, LAST_COMMAND_TIME is set by DSIEX03, (see
~IUser Exit" on page 72) and this value is retrieved by the PSNDDAT command(see
"SEND Side" on page 75) that is invoked on the target task. The code in this
example is the PWATDAT command.

The syntax of the command is:

PWATDAT taskname

The flow of the wait for data function is:

OST

Invokes
PWATDAT command
and specifies the
target task to
send the request

TARGET
OST

PWATDAT using
CNMSMSG sends a ----- >
request to the
OST specified

OST issues a WAIT
FOR DATA

OSTwait is
satisfied --- wake up
and issue message
to the operator

PSNDDAT command is
invoked on the
OST. It finds the
task global variable
set by DSIEX03.

CNMSMSG type of
<--- DATA is invoked with

the value retrieved

Chapter 5. PLII High-Level Language Services 73

/**/
/* */
/* Other Declarations */
/* */
/**/
DCl GETBlOCK CHAR{40), /* Area for the Orig Block */

NEWMSG CHAR{256) VAR, /* Message sent from PSNDDAT */
TARGTASK CHAR(S) VAR, /* Task of inquiry */
TARGTASKF CHAR(S); /* Task of inquiry */

DCl PARMCNT FIXED BIN(31); /* Number of parms scanned */
/**/
/* */
/* Execution */
/* */
/**/
CNMSSCAN DATA (CMDBUF) - /* Scan the input command... */

FORMAT{'%*S%S') /* ••. skip the command */
COUNT (PARMCNT) /* ••. number of parms */
Pl(TARGTASK); /* •.. target task */

IF PARMCNT=l THEN /* Was the target task entered? */
DO; /* Syntax ok... */

TARGTASKF=TARGTASK; /* Put into fixed length string */
CNMSENDMSG DATA('PSNDDAT') /* Invoke PSNDDAT command */

MSGTYPE('REQUEST') /* •.. type is request */
DESTTYPE{'TASK') /* ••• on a task */
DEST(TARGTASKF); /* •.• specified by input */

CNMCOMMAND DATA('WAIT 120 SECONDS FOR DATA');

IF HlBRC ~= CNM_DATA_ON_WAIT THEN /* Wait successful? */
CNMSENDMSG /* No... * /

DATA('Wait for data abnormally ended') /* ... text */
MSGTYPE('MSG') /* .•. message */
DESTTYPE('OPER'); /* ••. to the operator */

ELSE /* Wait was successful */
DO; /* Process the results */

CNMGETDATA FUNC('GETMSG') /* Read in the response... */
QUEUE(DATAQ) /* •.. on the data queue */
DATA(NEWMSG) /* •.. read into NEWMSG variable */
LENG(256) /* ••. give plenty of room */
ORIGIN{GETBLOCK); /* .•• provide a different org blk*/

/* REMOVE PROCESS ID FROM THE BUFFER I!!! */
/* First S bytes must be removed */

NEWMSG = SUBSTR(NEWMSG,9);
CNMSENDMSG /* Inform user ..•

DATA(NEWMSG) /* ... message is in NEWMSG
MSGTYPE('MSG') /* •.. message
DESTTYPE('OPER'); /* .•. to the operator

END;
END;

ELSE
CNMSENDMSG

OATA{'Target task required')
MSGTYPE ('MSG')
OESTTYPE('OPER');

74 NetView Customization: Using PLI and C

/* of process the results
/* of Syntax ok
/*0 Target task not entered ...
/* Inform user ...
/* ... Syntax error
/* ... message
/* .•• to the operator

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

SEND Side
The following is part of an example for sending messages with a type of request,
waiting on the response, and parsing the results.

The purpose of the example is to find the last time that a command was entered on
the given task. -A task global variable, LAST_COMMAND_TIME is set by DSIEX03, (see
"User Exit" on page 72). This value is retrieved by the PSNDDAT command that is
invoked by the PWATDAT command (see "Wait for Data" on page 73) on the target
task. This command processor is executed when the PSNDDAT command is entered.

/**/
/* */
/* Other Declarations */
r ~
/**/
DCl TIME CHAR(256) VAR; /* Time the last command was

••• entered */
DCl MYOPID CHAR(8) VAR; /* Operator 10 that we are running

••• under */
/**/
/* */
/* Execut ion * /
/* */
/**/

CNMINFOC
ITEM(' OPID')
DATA(MYOPID)
LENG(8);

/* Determine my opid ...
/* ... variable is opid
/* ... put result here
/* ... truncate after 8 bytes

*/
*/
*/
*/

IF MYOPID=ORIGIN->ORIG_BLOCK.ORIG_TASK THEN /* Command issued ..•
.•• directly or target task

CNMSENDMSG

ELSE
DO;

DATA('Invalid syntax')
MSGTYPE('MSG')
DESTTYPE('OPER');

CNMVARPOOL
FUNC(GET)
NAME('LAST_COMMAND_TIME')
POOL (, TGLOBAL ')
DATA (TIME)
LENG(256);

••• was same as operators task */
/* Not allowed... */
/* ... text of message */
/* ... mes~age is a single line */
/* ... to a operator */

/* Retrieve last time variable */
/* ... read in the value */

/* ... of the variable */
/* ... in the task global pool */
/* ... into time */
/* ... truncate at 256 */

Chapter 5. PUI High-Level Language Services 75

IF (HLBRC=CNM_GOOD) THEN /* Variable set? */
CNMSENDMSG /* Yes, continue... */

DATA(ORIGIN->ORIG_PROCESS I I /* .•. must put the process id in*/
'Last cOl11Jland entered at : III I I /* ••• text of message */
TIMEII'II') /* ••. more text */

MSGTYPE('DATA ') /* ••• message is data */
DESTTYPE('TASK ') /* .•• to a task */
DEST(ORIGIN->ORIG_TASK); /* ••• that invoked us */

ELSE

END;

CNMSENDMSG /* No, inform user... */
DATA(ORIGIN->ORIG_PROCESS I I /* ••. must put in process id*/

'Must install DSIEX03 to set TIME variable OR no I I I
'col11Jland entered yet on that task ')

MSGTYPE('DATA ') /* ... message ;s data */
DESTTYPE('TASK ') /* •.. to a task */
DEST(ORIGIN->ORIG_TASK); /* •.. that invoked us */

76 Netview Customization: Using PLI and C

Chapter 6. Using KnowledgeTool Programs in NetView

This chapter explains how you can use KnowledgeTool™ Version 2 to provide.
knowledge applications that interact with NetView.

Detailed guidance for developing knowledge applications can be found in the
KnowledgeTool Application Development Guide (SH20-9262).

Knowledge Applications in the NetView Environment
KnowledgeTool is a PLII extension and to NetView, a knowledge application is an
HLL command processor. Within the knowledge application, NetView functions can
be invoked anywhere normal procedural calls can be made - for example, in the
right-hand side of rules, in ON ENTRY blocks, in ON IDLE blocks, and in ON CYCLE

blocks. Functions that invoke HLl services can be used on the left-hand side of
rules.

After the HlL program has been written according to KnowledgeTool conventions, it
is compiled and link-edited using commands supplied with KnowledgeTool. The
KTCOMP command puts the program through several compilation steps that produce
an object file ready for linkage. The KTUNK command uses the linkage editor to
create the application load module using options specified in the knowledge appli
cation profile.

The KTRUN command is not used under NetView. Instead, after you specify the
application load module name as the MOD parameter of a CMDMDl statement in the
DSICMD member of DSIPARM, you can invoke the knowledge application like any
NetView command.

Applications created with KnowledgeTool Version 2 run as command processors
under OST, NNT, or Autotasks. Every knowledge application is initialized when it is
invoked. If the application uses a loop waiting for an event, for example the arrival
of a message, the initialization overhead can be avoided.

Sample Knowledge Application
The following example issues the MAPCl command to monitor usage of loaded
command lists. The following figure shows a display resulting from MAPCL.

9
3

2
5

BYTES DATE TIME DPRIC

259293/3G/89 11:26:37 . R
5234 93/3(;)/89 11:26:37R

If a loaded command list has not been used for 10 or 20 minutes, depending on its
size, it is dropped. This example is intended to illustrate some capabilities of
knowledge applications. Message automation could also perform this simple task,
but using a knowledge application would allow you to include more complex deci-

™ KnowledgeTool is a trademark of International Business Machines Corporation

Chapter 6. Using KnowledgeTool Programs in NetView 77

sions and actions making full use of the expert system technology available with
KnowledgeTool.

The profile for this example can be developed by following the instructions in the
NetView section of KnowledgeTool Application Development Guide (SH20-9262).

The sample contains the following KnowledgeTool blocks:

ON ENTRY

ON IDLE

Run once during the initialization of the rule block.

Run whenever the conflict set is empty.

SAMPKT: PROC(HLBPTR,CMDBUF,ORIGBLCK) OPTIONS(MAIN,REENTRANT);
/**/

/* */
/* Descriptive Name: Sample KnowledgeTool Program */
/* */
/* Functi on: * /
/* Monitor usage of loaded command lists and drop */
/* those that are unused */
/* IF SIZE> 2,000 bytes drop if idle more than 10 minutes */
/* IF SIZE<= 2,000 bytes drop if idle more than 20 minutes */
/* */
/* Dependencies: None */
/* */
/* Restrictions: None */
/* */
/* Language: PL/I (KT) */
/* */
/* Input: */
/* 1) A pointer to a 4-byte field containing the address of */
/* the HLB control block. */
/* 2) A varying length character string containing the */
/* command or message which invoked this program. */
/* 3) A 40-byte structure which describes the origin of the */
/* request that caused execution of this program. */
/* */
/* Output: None * /
/* */
/* Return Codes: returned in Hlbrc */
/* 0 = normal exit */
/* */
/* External Module References: None */
/**/

78 NetView Customization: USing PLI and C

/**/
/* NetView High-level language include files */
/**/
%INClUDE DSIPlI; /* Include the Hll macros */
/**/
/* Parameter declarations */
/**/
DCl HlBPTR PTR; /* Poi nter to the HlB * /
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the command */
DCl ORIGBlCK CHAR(40); /* Area for the Origin Block */
/**/
/* Class declarations */
/**/
DCl 1 ClIST CLASS,

2 ClNAME CHAR(8) VARYING,
2 ClBYTE FIXED BIN(31),
2 ClCOUNT FIXED BIN(31),
2 ClTIME FIXED BIN(31),
2 IDlETIME FIXED BIN(31);

DCl Cl_SEl SELECTOR;
DCl 1 CTIME CLASS,

DCl T
2 CURTIME FIXED BIN(31);

SELECTOR;

/* Command list name */
/* Command list size in bytes */
/* Use Count */
/* Time of last element update */
/* Time Command list not in use */
/* ClIST selector */

/* Current time in minutes
/* Time SELECTOR

*/
*/

/**/
/* Other declarations */
/**/
DCl 1 ORIGTEMP lIKE ORIG_BlOCK; /* ORIGBlOCK for read operations */
DCl (COUNT1, /* count for SSCAN service */

I, /* DO loop control */
MAPCOUNT, /* Use count for SSCAN servi ce * /
MAPBYTE, /* Command list size in bytes */
PREVTIME) /* Time of previous MAPCl */

FIXED BIN (31);
DCl MSGBUF VARYING CHAR(80); /* Buffer for incoming messages */
DCl MAPNAME VARYING CHAR(08); /* Command list name from MAPCl */
DCl (SUBSTR,ADDR,TIME,MATCH) BUILTIN;
/**/
/* ON ENTRY Define messages to be trapped */
/**/
ON ENTRY BEGIN;

CAll CNMCMD(HlBPTR, 'TRAP MESSAGES CNM429I');
AllOCATE CTIME SET (T);

END;

Chapter 6. Using KnowledgeTool Programs in NetView 79

/**/
/* RULE to cleanup working memory */
/**/
RULl: WHEN (CL_SEL=>CLIST & T=>CTIME

(CL_SEL=>CLTIME ~=T=>CURTIME» BEGIN;
FREE CL_SEL=>CLIST;

ENDRUL1: END;
/**/
/* RULE to drop large Command lists */
/**/
RUL2: WHEN (CL_SEL=>CLIST (CL_SEL=>CLBYTE > 20000,

CL_SEL=>IDLETIME>10 » BEGIN;
CALL CNMCMD (HLBPTR,'DROPCL I I \CL_SEL=>CLNAME);
FREE CL_SEL=>CLIST;

ENDRUL2: END;
/**/
/* RULE to drop small Command lists */
/**/
RUL3: WHEN (CL_SEL=>CLIST (CL_SEL=>CLBYTE <= 20000,

CL_SEL=>IDLETIME>20 » BEGIN;
CALL CNMCMD (HLBPTR,'DROPCL 1\ \CL_SEL=>CLNAME);
FREE CL_SEL=>CLIST;

ENDRUL3: END;
/**/
/* ON IDLE */
/**/
ON IDLE BEGIN; /* wait for incoming message */

CALL CNMCMD(HLBPTR,'WAIT 2 MINUTES FOR MESSAGES ');
IF HLBRC = CNM TIME OUT WAIT THEN CALL CNMCMD(HLBPTR,'MAPCL ');

/**/
/* Convert time in CHAR to numeric. Add 24 hours if time wrapped */
/**/

T=>CURTIME = SUBSTR(TIME(),3,2)+60*SUBSTR(TIME(),1,2);
IF (T=>CURTIME < PREVTIME) THEN T=>CURTIME = T=>CURTIME + 24*60;
PREVTIME = T=>CURTIME;
HLBRC=0;
DO 1=1 TO 4 WHILE (HLBRC=0); /* Read past header records */
CNMGETDATA FUNC('GETLINE ') DATA(MSGBUF) LENG(80)

ORIGIN(ORIGTEMP) QUEUE(l);
END;

80 NetView Customization: Using PLI and C

/**/
/* Process to first trailer record */
/**/

DO WHILE «HLBRC=0)&(SUBSTR(MSGBUF,1,4)~='----'»;
CNMSSCAN OATA(MSGBUF) /* Parse MAPCL results */

FORMAT('%S%O%*O%O') /* Skip number of records */
COUNT(COUNT1)
Pl(MAPNAME) /* Command list name */
P2(MAPCOUNT) /* Command list use count */
P3(MAPBYTE); /* Command list size */

IF MATCH(CL_SEL=>CLIST(CL_SEL=>CLNAME=MAPNAME» THEN DO;
IF MAPCOUNT=CL_SEL=>CLCOUNT THEN 00;/* Command list was idle

CL_SEL=>IOLETIME = CL_SEL=>IOLETIME + T=>CURTIME -
CL_SEL=>CLTIME;

END; /* END Command list was idle */
ELSE DO; /* Command list was used */

CL_SEL=>IOLETIME = 0; /* Reset Idle time */
CL_SEL=>CLCOUNT = MAPCOUNT;/* Set new use count */

END;
END; /* End match * /
ELSE DO; /* No match * /

ALLOCATE CLIST SET(CL_SEL);/* allocate new Command list */
CL_SEL=>CLNAME = MAPNAME;
CL_SEL=>CLBYTE = MAPBYTE;
CL_SEL=>CLCOUNT = MAPCOUNT;
CL_SEL=>IOLETIME = 0;

END; /* End no match * /
CL_SEL=>CLTIME = T=>CURTIME;
CNMGETOATA FUNC('GETLINE ') /* Read next line of response */

DATA (MSGBUF) LENG(80) ORIGIN(ORIGTEMP) QUEUE(l);
END; /* end Do whil e * /
CNMGETOATA FUNC('FLUSHQ') QUEUE(l); /* Flush trailer records */

END; /* End ON IDLE * /
END; /* End Procedure * /

Developing Knowledge Applications
Information on developing knowledge applications is given in the Know/edgeToo/
Application Development Guide. To use the KnowledgeTool debugger under
NetView you must provide the appropriate system extensions.

There are three system extensions (sometimes called knowledge routines) that
control input and output when using the KnowledgeTool debugger (in line mode, as
required under NetView). These are called STDIN, STDOUT, and STDERR, but they are
also known by their internal names as EWCCSINO, EWccsouo, and EWCCMDSO respec
tively. The person who manages the NetView environment must change the
content of these system extensions, so they direct input, output, and messages to
the correct destinations for NetView. The sample system extensions that follow
can be compiled by PUI with a compile SYSlIB for the Netview Maclib. Compiler
options of INCLUDE and MACRO should be specified. Unlike NetView applications,
extensions should not include DSIEXKT or DSIHSTUB when they are linked by KTlINK.

Chapter 6. Using KnowledgeTool Programs in NetView 81

Example of Standard Input System Extension
This example defines NetView operator terminal as a standard input device, STDIN.

*PROCESS MARGINS(2,72);
/**/
/* Descriptive Name: Standard Input System Extension */
/* */
/* */
/* Funct ion: * /
/* Defines NetView operator terminal as a standard input */
/* device, STDIN. */
/* */
/* Dependencies: None */
/* Restrictions: None */
r ~
/* Language: Pl/I */
/* */
/* Input: None * /
/* */
/* Output: None * /
/* */
/* Return Codes: returned in HlBRC */
/* 0 = normal exit */
/* */
/* External Module References: None */
r ~
/**/

%INCLUDE EWCDPlI0;
INVOKED_KR(EWCCSIN,IPARM,OPARM);
%INCLUDE DSIPlI;

DCl IPARM POINTER;
DCl (STG,UNSPEC) BUILTIN;
DCl OPARM FIXED BIN(31);
DCl IBUF CHAR(512) BASED(IPARM);
DCl ISTRING CHAR(511) VARYING;
DCl 1 IORIGIN lIKE ORIG_BlOCK;

DCl NULl_NUM FIXED BIN(8) INIT(0);

/* Frame definitions */
/* STDIN Knowledge Routine */

/* Hll control blks & macros*/

/* Ptr to buffer pointer */

/* Return code */
/* Input buffer * /

/* Control block for input
services

DCl NUll_CHAR CHAR; /* Null string

*/

*/

DCl HlBPTR PTR;
DCl HLBPTR_MAP PTR BASED;

82 NetView Customization: Using PLI and C

UNSPEC(NULL_CHAR)=UNSPEC(NULL_HUM);/* Initialize null string */
INIT_FS(KR); /* Initialize enviornment */
HLBPTR=EWCDPARM_PTR->HLBPTR_MAP /* Extract HLBPTR for use by */

->HLBPTR_MAP->HLBPTR_MAP; /* CHM ..• commands */
CALL CNMSMSG(HLBPTR, /* Display prompt message */

'ENTER KNOWLEOGETOOL COMMAND: (GO XXX) ','MSG','OPER',' ');
CALL CNMCMD(HLBPTR,'WAIT FOR OPIHPUT'); /* Wait for operator input */
CALL CNMGETD(HLBPTR,'GETLIHE',ISTRIHG, /* Get operator input */

STG(ISTRING)-2,IORIGIN,2,e);
IF HLBRC = 0 THEN /* Test GET return code */

DO; /* Get Successful */
IBUF=ISTRING! !NULL_CHAR; /*Place oper input in buffer */
CALL CNMSMSG(HLBPTR,'-->'I!ISTRING, /* Echo input */

'MSG','OPER',' ');
OPARM=0; /* Set return code * /

END;
ELSE

DO;
IBUF=NULL_CHAR;
OPARM=0;

END;

END EWCCSIN;

/* Get unsuccessful */
/* Set Buffer to null string */

/* Set Return code */

Chapter 6. Using KnowledgeTool Programs in NetView 83

Example of Standard Output System Extension
This example defines NetView operator terminal as a standard output device,
STDOUT.

*PROCESS MARGINS(2,72),SOURCE,INSOURCE;
/**/
/* Descriptive Name: Standard Output System Extension */
/* */
/* */
/* Function: */
/* Defines NetView operator terminal as a standard output */
/* device, STDOUT */
/* */
/* Dependencies: None */
/* Restrictions: None */
/* */
/* Language: Pl/I */
/* */
/* Input: None * /
/* */
/* Output: None * /
/* */
/* Return Codes: returned in HlBRC */
/* 0 = normal exit */
/* */
/* External Module References: None */
/* */
/**/
%INCLUDE EWCDPlI0; /* Frame Definitions */
INVOKED_KR(EWCCSOU,IPARM,OPARM); /* STDOUT Knowledge Routine */
%INCLUDE DSIPlI; /* Hll control blks & macros*/

DCl STR CHAR(256) VARYING;
DCl IPARM POINTER; /* ptr to input buffer * /
DCl OPARM POINTER; /* dummy poi nter * /
DCl IBUF CHAR(256) BASED(IPARM); /* input buffer */
DCl NUll_NUM FIXED BIN(S) INIT(0); /* used to init null char */
DCl NUll_CHAR CHAR; /* null character */
DCl (INDEX,MIN,SUBSTR,UNSPEC) BUILTIN;
DCl HlBPTR PTR;
DCl HlBPTR_MAP PTR BASED;

INIT_FS(KR); /* initialize enviornment' */
UNSPEC(NUll_CHAR)=UNSPEC(NUll_NUM);/* initialize null character */
STR=SUBSTR(IBUF,1,MIN(256, /* extract msg from IBUF */

INDEX(IBUF,NUll_CHAR)-l»;

HlBPTR=EWCDPARM_PTR->HlBPTR_MAP /* extract HlBPTR for use by */
->HLBPTR_MAP->HlBPTR_MAP; /~ CNMSENDMSG */
CALL CNMSMSG(HlBPTR,STR,'MSG','OPER',' I); /* send msg to operator */

END EWCCSOU;

84 NetView Customlzation: Using PLI and C

Example of Standard Error System Extension
This example defines NetView operator terminal as a standard error device,
STDERR.

*PROCESS MARGINS(2,72);
/**/
/* Descriptive Name: Standard error System Extension */
/* */
/* */
/* Function: */
/* Defines NetView operator terminal as a standard error */
/* device, STDERR */
/* */
/* Dependencies: None */
/* Restrictions: None */
/* */
/* language: Pl/I */
/* */
/* Input: None * /
/* */
/* Output: None * /
/* */
/* Return Codes: returned in HLBRC */
/* 0 = normal exit */
/* */
/* External Module References: None */
/* */
/**/
%INClUDE EWCDPlI0; /* frame definitions */
INVOKED_KR(EWCCMDStIPARMtOPARM); /* STDERR Knowledge routine */
%INCLUDE DSIPlI; /* HLl control blks & macros*/

DCl STR CHAR(256) VARYING;
DCl IPARM POINTER; /* ptr to input buffer */
DCl OPARM POINTER; /* dunmy poi nter * /
DCl IBUF CHAR(256) BASED(IPARM); /* input buffer */
DCl NUll_NUM FIXED BIN(8) INIT(0); /* used to init null char */
DCl NULL_CHAR CHAR; /* null character */
DCl (INDEX,MIN,SUBSTR,UNSPEC) BUILTIN;
DCl HlBPTR PTR;
DCl HlBPTR_MAP PTR BASED;

INIT_FS(KR); /* initialize env;ornment */
UNSPEC(NUlL_CHAR)=UNSPEC(NULl_NUM);/*initialize null character */
STR=SUBSTR(IBUF,ltMIN(256t /* extract msg from IBUF */

INDEX(IBUF,NUlL_CHAR)-l»;
HLBPTR=EWCDPARM_PTR->HLBPTR_MAP /* extract HlBPTR for use by */

->HLBPTR_MAP->HlBPTR_MAP; /* CNMSENDMSG */
CAll CNMSMSG(HlBPTR,STRt'MSG','OPER't"); /* send msg to operator */
END EWCCMDS;

Chapter 6. Using KnowledgeTool Programs in NetView 85

86 NetView Customization: Using PLI and C

Chapter 7. Compiling, Link-Editing, and Running Your PL/I
Program

Compiling

Link-editing

Once you have a PLII compiler installed, you can modify the PUI compile and link
edit JCL for use with NetView. The objective of this chapter is to provide the infor
mation necessary to make these modifications.

Several examples of compile and link-edit JCL will be provided in this chapter.
These are given as examples only. You are responsible for modifying the compile
and link-edit JCL samples that were shipped with the PUt compiler.

You must have completed the installation steps for HLL as described in the NetView
Installation and Administration Guide before attempting to execute PUI programs in
the NetView environment.

In order to compile PUI programs using NetView services, it is necessary to modify
the compile step in the JCL to reference the NetView macro library(s}. You will
need to include in the compiled JCL a SYSLIB statement for SYS1.MACLIB. An example
of modifications to the compile step JCL is shown below.

IICOMPILE EXEC PGM=IEL0AA,REGION=1000K,
II PARM='OBJECT,MACRO,LIST'

IISYSLIB DO OSN=SYS1.MACLIB,OISP=SHR

Note: When you are compiling PUt programs, you will receive a warning message
IEL05481. This message should be ignored.

The following rules apply when link-editing PUt modules:

• All PUt load modules must be REENTRANT.

• PUI load modules can reside in 24 or 31 bit storage and can be entered in
either addressing mode.

• All PUt load modules must be link-edited with DStHSTUB and DSIEXPLI. DSIHSTUB

must be the ENTRY point. For KnowledgeTool applications, DStEXPLI should be
replaced by DStEXKT.

In order to link-edit a PUI module to run with NetView, you must modify the PUt link
edit step in the JCL to reference the appropriate NetView Ubrary(s). This will allow
you to include DSIHSTUB and DStEXPLI at link-edit time. Add SYS1.LtNKLIB to the list of
automatic call libraries already defined by SYSLIB in the put link-edit step of the JCL.

An example is shown below:

Chapter 7. Compiling, Link-Editing, and Running Your PLII Program 87

Running

IILKED EXEC PGM=IEWL,
II PARM='XREF,RENT,LET,LIST,AMODE=&AMODE,RMODE=&RMODE ' ,
II REGION=4096K,COND=(8,LE,COMPILE)

II DO
IISYSLIB DO

INCLUDE
INCLUDE
ORDER
ENTRY
MODE
NAME

DSN=SYSl.PLIBASE,DISP=SHR
DSN=SYSl.LINKLIB,DISP=SHR

SYSLIB(DSIHSTUB)
SYSLIB(DSIEXPLI)
DSIHSTUB
DSIHSTUB
AMODE(31),RMODE(ANY)
LMODNAME(R)

Note: All HLL modules must be compiled and link-edited with the REENTRANT option.
For PLII, you will have to include the REENTRANT option on the PUt procedure state
ment. The resulting object deck(s) must then be link-edited with the RENT option.

A set of run-time libraries will be shipped with the compiler. In order to execute a
put program in the NetView environment, you must modify your NetView start up
procedure to reference the appropriate PUI run-time libraries. Refer to the NetView
Installation and Administration Guide for more information.

HLL command processors require a CMDMDL statement in member DStCMD of the
DStPARM dataset. User exits are loaded at initialization and need to conform to user
exit naming conventions. For more information on user exits see Chapter 2 on
page 9.

88 NetView Customization: Using PLI and C

Part 3. Coding Your C Program

Chapter 8. Coding Your C Program -Interfaces and Restrictions 91
Initial Parameters ;. 91
HLL Run-Time Options 91
C Run-time Options 92
Parameters Passed to HLL Service Routines 92
Pointer Variables .. 93
Integer Var.iables .. 95
Fixed Length Character Strings 96
Varying Length Character Strings 97
Cnmvlc - Convert string to varying length character string 99
Cnmnvlc - Convert string to varying length character string using length .. 101
Control Blocks and Include Files 102
C I/O Considerations 102
Considerations for HLL Command Processors 103
C Run-time Considerations 104
Return Codes .. 104
Restrictions for HLL Programs Written in C 104

Chapter 9. C High-Level Language Services 107
C Sample Template 107
Varying Length Character Strings 110
Data Queue Management 114
Sending Information 115
Synchronous Commands 117
Sending Commands 118
Waiting and Trapping 120
Retrieving Information 123
Command List Variable Access 125
Usi ng Locks ... 127
Operator Input ... 130
VIEW Command Processor 132
Message Processing 134
Scope Checki ng .. 136
Altering Data .. 139
Storage Access .. 141.
Data Set Access .. 143
CNMI ... 145
VSAM (Keyed File Access) 150
DST User Exit .. 153
User Exit ... 155
Wait for Data .. 157

Chapter 10. Compiling, link-Editing, and Running Your C Program 163
Compiling .. 163
Link-editing ... 163
Running 164

Part 3. Coding Your C Program 89

90 NetView Customization: Using PLI and C

Chapter 8. Coding Your C Program - Interfaces and
Restrictions

This chapter will provide necessary information for coding HLL command
processors and user exits in c. The appropriate interfaces and language
dependent restrictions will also be discussed.

Initial Parameters
Every HLL program written in C must have exactly one function main that declares
the parameters arge and argv. The first parameter, arge, is an integer value that
indicates the number of pointers in the array argv. arge is not used by NetView.
argv is an array of pointers. In the normal C environment, each element in argv
points to an argument in the command line. In the NetView environment, elements
one through three point to the EBCDIC representation of the initial parameters
(Hlbptr, Cmdbuf and Origblek) passed to main from NetView. The initial parame
ters must be converted to hex using sseanf. The original command line will be
passed to the user's program in Cmdbuf. Chapter 9 contains a sample template
for coding the main function and defining and converting the initial parameters.
The descriptions of the initial parameters are as follows:

Hlbptr
A 4-byte pointer field containing the address of the HLB control block (DSICHLB).

The HLB control block is the HLL API interface block that is used to communicate
between the HLL service routines and HLL programs in the NetView environ
ment. This pointer is required on all HLL service routine invocations.

Cmdbuf
A pointer to a varying length character string that contains the command or
message that drove this program.

If this program was driven as a user exit (other than OSIEX02A), this string con
tains the message which drove this exit. If driven as OSIEX02A, Cmdbuf will not
contain any useful information. The user will have to retrieve the message
from the Initial Data Queue (IDATAQ).

Origblck
A pointer to a 40-byte structure which describes the origin of the request that
caused execution of this program. Origb/ek is mapped by DSICORIG.

ILL Run-Time Options
HLL run-time options can be specified by declaring and initializing the external vari
able named HLLOPTS. If the user does not code HLL run-time options, the default Hll

run-time options are assumed. The default value for HllOPTS is zero. The following
bits are defined in HlLOPTS:

Chapter 8. Coding Your C Program -Interfaces and Restrictions 91

Bit
Position
o

2-31

Field Name
HLL_ QUEUED JNPUT

Description
Determines if an HLL program will accept
QUEUEd input. Refer to the QUEUE command
in the NetView Operation manual for further
detail.
2 = HLL program will NOT accept QUEUEd
input
1 = HLL program will accept QUEued input
Determines if an HLL program will terminate
on CANCEL/RESET. Refer to RESET command
in the NetView Operation manual for further
detail.
2 = Cancellable
1 = Non-cancellable
RESERVED for internal use. Do not assign
any values to these fields.

The following example illustrates how the default HLL run-time options can be over
ridden in an HLL program written in C. In this case, the user has chosen to make
this C program non-cancellable.

#pragma variable(HLLOPTS,NORENT)
extern unsigned int HLLOPTS = 0X4000eeee;

The #pragma variable preprocessor directive shown above indicates that the vari
able named HLLOPTS is to be used in a non-reentrant fashion. This does not have
any effect on the reentrancy of the HLL program.

C Run-time Options
The run-time options for a C program can be specified using the following pre
processor directive. Refer to the CI370 User's Guide for a detailed explanation of
each of the options. The run-time options for executing C programs in the NetView
environment are shown in the C coding template provided in Chapter 9. C pro
grams must run with the NOSTAE and NOSPIE options when running in the NetView
environment. Running with the STAE or SPIE options will cause unpredictable
results in cases where error recovery is necessary.

#pragma runopts (NOEXECOPS,NOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K))

To achieve optimum performance, it is recommended to run with the REPORT option
until accurate ISA and HEAP sizes are determined. Refer to the run-time storage
section of the CI370 User's Guide for further details.

Parameters Passed to HLL Service Routines
There are four different types of parameters that can be passed to HLL service rou
tines. Each of the parameters described throughout Chapter 12 fall into one of
these categories:

Pointer Variables

Integer Variables

Fixed Length Character Strings

Varying Length Character Strings

92 NetView Customization: Using PLI and C

Pointer Variables

A discussion of each of these parameter types follows. The intent of this section is
to describe how each of these parameter types can be declared, initialized and
passed to the HLL service routines. Examples and recommendations for writing HLL

programs in C have been provided in this chapter. Note that these examples are
not complete. -They have been included here to emphasize how the HLL servi~e

routine parameters should be declared, initialized and passed. For complete
examples of user written HLL programs, see the HLL samples shipped with NetView.
(See Appendix 0 on page 295.)

A pOinter variable is a 4-byte pOinter field containing an address. All HLL service
routines require at least one argument of this type, Hlbptr. Hlbptr is required for all
HLL service routine invocations. The value of Hlbptr is calculated by NetView and
passed to the HLL command processor or user exit. Therefore, it only needs to be
defined in c. The user should NEVER assign a value to this variable. This is the
only parameter of this type which does not have to be assigned by the user.

Note: The user does not need to specify the Hlbptr parameter when coding the HLL

service routine invocations in c. Hlbptr is inserted for the user before the HLL

service routine is actually invoked.

If an HLL service routine is expecting an address in a pointer field, !he user is
responsible for assigning a value to that pointer field before invoking the HLL

service routine. Hlbptr is the only exception to this rule. For c, it is advised to use
the & (address) operator when passing pointer variables to HLL service routines
rather than creating a separate pointer variable for this purpose. This will ensure
that the pOinter variable has been assigned a value before invoking the HLL service
routine.

Chapter 8. Coding Your C Program - Interfaces and Restrictions 93

I
#define VARTOVAR "VARTOVAR II /* VARTOVAR constant */
Dsihlb *Hlbptr; /* HLB pointer MUST BE DEFINED */
Dsivarch *srcptr; /* Pointer to source buffer */
Dsivarch *dstptr; /* Pointer to destination buffer */

g int dstlen; /* Length of destination buffer */

I Dsivarch srcbuf; /* Source buffer */
Dsivarch dstbuf; /* Destination buffer */

I srcptr = &srcbuf; /* Address of source buffer */
dstptr = &dstbuf; /* Address of destination buffer */

1m dstlen = 255;

III Cnmcpys(srcptr,dstptr,dstlen,VARTOVAR); /* Copy buffer */

Figure 3. U.sing Pointer Variables in C

m

Hlbptr is defined as a pointer variable. The user does not need to assign a
value to Hlbptr or include it in the Cnmcpys invocation. The value of Hlbptr is
calculated by NetView and inserted in the parameter list for the user during the
preprocessor phase of the compilation.

srcptr is defined as a pointer to a structure of type Dsivarch (varying length
character string).

srcptr is assigned the address of the source buffer (srcbuf) to be used as a
parameter to Cnmcpys.

srcptr is passed as a parameter to Cnmcpys.

Replacing with the following step illustrates the use of the & (address)
operator in c. Use of this operator will eliminate the need to define pointer var
iables and is advisable whenever possible. Note the use of a string constant
instead of the VARTOV AR constant.

Cnmcpys(&srcbuf,&dstbuf,dstlen,"VARTOVAR II
); /* Copy buffer */

94 NetView Customization: Using PLI and C

Integer Variables
Several of the HLL service routines require the user to pass a 4-byte integer value
to be used as a length, count, queue number, etc .. Figure 4 illustrates the use of
integer variables in the HLL environment.

struct Vchar12 {.
short int size;
char buffer [13];

};

/* Size of buffer
/* Text buffer

*/
*/

Dsihlb *Hlbptr
Vchar12 spname;
char spfunc[9];
int sptoken;
int spleng;
int sppricnt;
int spseccnt;
int spclass;

/* HLB pointer MUST BE DEFINED */
/* Subpool name */
/* Subpool function */
/* Subpool token (returned) */
/* Cell size */
/* Number of cells in primary */
/* Number of cells in secondary */
/* Class of storage */

spfunc = "ALLOC "; /* Function is ALLOCATE */
Cnmvlc(&spname,NOHEXCNV,"POOLNAME"); /* Initialize subpool name */
sptoken = 0; /* Initialize subpool token */
spleng = 256; /* Cell size = 256 bytes */
sppri cnt = 3; /* Primary count = 3 * /
spseccnt = 2; /* Secondary count = 2 */
spclass = 1; /* Class = 31 bit addressable */

IIICnmpool(spfunc,&sptoken,&spname,spleng,sppricnt,spseccnt,
spclass); /* Allocate Subpool */

Figure 4. Using Integer Variables in C

m

ED

m

sptoken is defined as a 4-byte integer (int).

spJeng is defined as a 4-byte integer Ont).

sptoken is initialized to zero. A value will be returned in sptoken upon suc-
cessful completion of the CnmpooJ invocation.

spJeng is assigned a value of 256 to be used in the call to CnmpooJ.

CnmpooJ is invoked using &sptoken and spJeng as parameters. The value of
sptoken will be returned to the user upon successful completion of the
CnmpooJ service.

Note: All of the integer variables are specified by name except for sptoken.
sptoken is specified using the & (address) operator. In c, all parameter fields
that return values to the the user's program must specify a pointer to that
parameter field when invoking an HLL service routine. Otherwise, the user will
not see the changes made to that variable upon successful completion of the
HLL service routine. Using the & (address) operator ensures that the value is
returned to the calling program.

Chapter 8. Coding Your C Program - Interfaces and Restrictions 95

The & (address) operator is also used for spname. This is explained in detail
in the section on varying length character strings.

Fixed Length Character Strings
The majority of the HLL service routines require the user to pass one or more fixed
length character strings as arguments. Most of these fixed length character
strings, except adorigin and gdorigin, are eight characters long. These exceptions
are discussed below.

C string constants for most of the fixed length character strings have been provided
in DSICCONS. DSICCONS is optional and can be tailored to the specific needs of the
user. The following steps correlate to the steps in Figure 4 on page 95.

spfunc is defined as a 9-byte character array (8 bytes + \0 character).

spfunc is assigned a value of "ALLOC "to be used in the Cnmpoo/ invocation.

Cnmpool is invoked using the spfunc parameter. spfunc could have been
defined with a preprocessor define statement (see VARTOVAR in Figure 3 step
II), or passed as a string constant.

Cnmpool("ALLOC 1I,&sptoken,&spname,spleng,sppricnt,spseccnt,
spclass); /* Allocate Subpool */

C does not pad character strings with blanks. It is the responsibility of the user to
pad character strings with blanks.

Also, all character strings must be delimited by the null character (\0) which is the
'end of string' character in c. Enclosing text in double quotes will ensure that the
null character is appended to the last byte of the character string. As a result,
when using a character array to represent a fixed length character string, the user
must define the character array's length to be 1 character greater than the length
expected by the HLL service routine. The use of character arrays to represent fixed
length character strings should be avoided whenever possible. Any of the alterna
tive methods mentioned above can be used to ensure that the fixed length char
acter string is padded with blanks and delimited by the null character (\0). For
further explanation, refer to the C documentation.

The only fixed length character fields required for HLL services that are not 8 bytes
in length are origin blocks. The mapping structure for an origin block resides in
file DSICORIG which is included by OSIC.

There are two types of origin blocks used by the HLL service routines. The first
type of origin block (Origblck) is a 40-byte structure which must be declared by the
user. This is a required initial parameter which was previously described in 'Initial
Parameter' section of this chapter. The u~er is responsible for defining this 40-byte
structure but should never need to alter it. Refer to the C coding template in
Chapter 9 on page 107 for an example of how to define Origblck.

The second type of origin block (adorigin, gdorigin) is specified by the user.
adorigin and gdorigin must be at least 38 bytes long and must map to the first 38
bytes of the origin block structure (OSICORIG). The user MUST define these origin
blocks separately from the origin block which is required as an initial parameter.

96 NetView Customization: Using PLI and C

The initial parameter origin block (Origblck) should NOT be used in place of
adorigin or gdorigin.

Varying Length Character Strings
Several of the HLL service routines require the user to pass a varying length char
acter string as an argument. Varying length character strings are currently sup
ported in the PLII environment but not in c. As a result, a structure must be defined
to map the internal representation of a varying length character string as shown
below.

IF""""

1,;:Ll
~r .. .;,

Where:

LL

TEXT

2-byte integer field containing the length of TEXT

the character string

Dsivarch is an example of a structure that maps a varying length character string.
The maximum size of the buffer portion of this particular structure is 256 bytes; 255
bytes (maximum) of text plus one byte for the end of string character (\0). Dsivarch
resides in DSICVARC and is included by DSIC. The structure consists of two parts:

size

buffer

A 2-byte (short) integer field which contains the size of the character
array represented by buffer. The end of string character (\0) is not
included in this size but should delimit the character array.

A 255-byte null-terminated (delimited by the end of string character
(\0)) character array.

The user is responsible for creating structures like Dsivarch to represent varying
length character strings to be passed to HLL service routines. The size portion of
the buffer can be used to manipulate buffers that contain hex data. The presence
of the null character at the end of the buffer enables the user to use the buffer
portion of the structure in other C functions that require the end of string character
as a delimiter. The user is responsible for ensuring that the end of string character
delimits the buffer portion of the structure when necessary.

Note: HLL service routines that return data in varying length character strings do
not delimit the data with the end of string character.

NetView has provided two functions to enable the user to easily manipulate varying
length character strings in the c environment. Cnmvlc and Cnmnvlc calculate the
value of the 2-byte size field and ensure that the buffer portion of the varying length
character string is delimited by the end of string character (\0). These are the
ONLY functions that should be used when initializing or altering the buffer portion
of a varying length character string. If the user chooses to alter the contents of a
varying length character string without using Cnmvlc or Cnmnvlc, they are respon
sible for updating the size field and ensuring that the buffer is null-terminated.
Cnmnvlc and Cnmvlc are described in this chapter because they are specific to c
support only.

The following steps correlate to the steps in Figure 4 on page 95.

spname is defined as a varying length character string.

Chapter 8. Coding Your C Program -Interfaces and Restrictions 97

1m
spname is assigned the value POOLNAME using the Cnmvlc function.

Cnmpool is invoked with the parameter &spname. When passing a structure
as a parameter, the user must pass a pointer to the structure rather than the
structure itself. In this example, the & (address) operator is used when
passing spname to Cnmpool.

The user could have defined a pointer variable, assigned the address of the
structure to that pointer variable and passed the pointer variable to Cnmpool.
However, this approach introduces the possibility that the user could forget to
assign the pOinter variable before passing it to the HLL service routine.

98 NetView Customization: Using PLI and C

Cnmvlc - Convert string to varying length character string
Cnmvlc enables the user to convert a C string to a varying length character string
to be used in the NetView HLL environment.

You can choose to provide a simple null-terminated string or a format string as
input. If formatting, is specified, you are responsible for providing a valid argument
list. Cnmvlc will also convert the input string to hex if desired. This option may be
helpful when coding command processors that invoke CNMCNMI and CNMKIO.

Cnmvlc calculates the length of the converted string (not including null terminator)
and stores it in the 2-byte size field of the varying length character string structure.
The null terminator is actually copied into the buffer portion of the structure even
though it is not included in the size calculation. This ensures that the buffer portion
of the structure is null-terminated so that it can be used by other C library routines.

A pointer to the converted varying length character string structure will be returned
to the caller on successful completion of this routine. If an error condition occurs,
Cnmvlc will return a null pointer. Examples illustrating the use of Cnmvlc can be
found in Chapter 9.

Where:

vslrlng
A varying length character string to receive the converted string. A varying
length character string structure consists of a 2-byte size field (short integer)
followed by a null-terminated buffer (character array). Refer to the HVarying
Length Character Strings" section of this chapter for further detail.

convert
A two byte integer field containing the value 0 or 1, indicating whether or not
the input string should be converted to hex. Constants NOHEXCNV and CNVTOHEX

have been defined in DSICCONS.

o (NOHEXCNV) Do not convert input string to hex.

1 (CNVTOHEX) Convert input string to hex.

islring
An input string which follows the conventions specified for the format-string
parameter of the print(function in c. istring must be null-terminated and may
or may not contain format specifications (designated by %). The user must
provide an argument list if formatting is desired. Refer to the printf library
routine in Common Programming Interface - C Reference for further detail.

Usage Noles:

If the user specifies conversion to hex, all of the characters in the input string must
represent valid hex data. Cnmvlc will return a void pointer if it encounters a char
acter which cannot be converted to hex.

A null pointer will also be returned if the user has specified an invalid value for
convert or if the format specifications cannot be resolved.

Chapter 8. Coding Your C Program - Interfaces and Restrictions 99

Some of the HLL services routines (Cnmcnmi and Cnmkio in particular) require the
user to move hex data into varying length character strings. This can often create
a problem for the c programmer because of the probability that the null terminator
(represented as hex zeros) will be interspersed throughout the hex data stream.
NetView has provided Cnmnvlc (also discussed in this chapter) to alleviate this
problem.

100 NetView Customization: Using PLI and C

Cnmnvlc - Convert string to varying length character string using length
Cnmnvlc enables the user to convert a C string to a varying length character string
to be used in the NetView HLL environment. This function is primarily used for
moving hex data into varying length character strings and is particularly useful
when coding HLL command processors which invoke Cnmcnmi or Cnmkio.

The function provided by Cnmnvlc is very similar to that of Cnmvlc except that the
user is required to pass a length field. Cnmnvlc uses the length field to determine
how many characters to copy from the input string. Also, Cnmnvlc will not accept
format specifications or an argument list. The user can choose to convert an input
string to hex if desired. If hex conversion is specified, the length parameter should
represent the length of the input string before it is converted.

Once the copy function has completed, Cnmnvlc stores the value of the length
parameter in the structure. The null terminator is actually copied into the buffer
portion of the structure even though it is not included in size.

A pointer to the converted varying length character string structure will be returned
to the caller on successful completion of this routine. If an error condition occurs,
Cnmnvlc will return a null pOinter. Examples illustrating the use of Cnmnvlc can
be found in Chapter 9.

Where:

Ystrlng
A varying length character string to receive the converted string. A varying
length character string structure consists of a 2-byte size field (short integer)
followed by a null-terminated buffer (character array). Refer to the "Varying
Length Character Strings" section of this chapter for further detail.

convert
A two byte integer field containing the value 0 or 1, indicating whether or not
the input string should be converted to hex. Constants NOHEXCNV and CNVTOHEX

have been defined in DSICCONS.

o (NOHEXCNV) Do not convert input string to hex.

1 (CNVTOHEX) Convert input string to hex.

length
A four byte integer field specifying the number of bytes to copy from the input
string. If hex conversion is required, length is ·the length of the input string
before it is converted. length must be greater than zero.

istring _
An input string. If hex conversion is required, all of the characters in the input
string must represent valid hex data.

Usage Notes:

If the user specifies conversion to hex, all of the characters in the input string must
represent valid hex data. Cnmnvlc will return a void pointer if it encounters a char
acter which cannot be converted to hex.

Chapter 8. Coding Your C Program - Interfaces and Restrictions 101

A null pointer will also be returned if the user has specified an invalid value for
convert or length.

Control Blocks and Include Files
There are a number of control blocks and include files that are required for exe
cution of an HLL program (written in c) in the NetView ~nvironment. DSIC is the main
file that includes the rest of the files and is necessary to compile HLL programs
written in c. Optional include files have been provided to assist the user in coding
and maintaining HLL programs. DSIC, DSICCNM and DSICCONS may be tailored to the
user's needs.

Note: Tailoring files can lead to better performance in many cases. This is espe
cially helpful in performance sensitive environments such as the user exit environ
ment.

The following list of control blocks and include files reside in Appendix C on
page 279.

DSIC

DSICCALL

DSICCNM

DSICCONS

DSICHLB

DSICORIG

DSICVARC

ClIO Considerations

(Required) Must be included by all HLL programs written in c. DSIC

includes all of the external HLL control blocks and include files
needed to compile and run C programs in the NetView environ
ment. Refer to the C coding template in Chapter 9 for usage.

(Required) C definitions for HLL service routines.

(Optional) Defines HLL return code constants for c.

(Optional) Defines constants that are helpful when coding
High-Level Language programs in c.

(Required) C mapping of internal control block DSIHLB.

(Required) C mapping of the origin block of the request that
caused the execution of the program currently running.

(Required) C mapping of a varying length character string.

C provides several input and output routines that allow the user to transmit data
between main storage and auxiliary storage of a computer. C programs utilizing
such file 1/0 capabilities will run in the NetView environment. However, there are
some important things to consider when doing file 1/0 in c.

Each file referenced from your C program correlates to a physical data set in auxil
iary storage. The user can specify the file name or a data definition name
(ddname) when opening a file using fopen. If a ddname is specified, the user must
ensure that the appropriate data set has been allocated before attempting the
open. Allocation can be performed under TSO or by using the NetView ALLOCATE

command described in NetView Operation. NetView also provides a FREE

command to deallocate a data set.

If the data set is allocated from TSO, the user n:'ust also add a corresponding data
definition (DD) statement to the NetView start up procedure. The data definition
name (ddname) in the DD statement must match the ddname specified in the call to
the fopen library routine. The DD statement specifies a physical data set name
(dsname) and gives its characteristics:

//OUTFILE DD DSN=MYPROG.OUTFILE, ..•

102 NetView Customization: Using Pli and C

A DD statement is not necessary if the data set is allocated using the NetView ALLO

CATE command.

The following example illustrates the use of file 1/0 in an HLL program written in c.
The check for a NULL pointer has been added to protect against a failure in fopen.
This check is recommended when opening a file for 1/0.

FILE *Outfd; . /* Define file */

/**/
/* Check for error opening file for I/O. If fopen error occurred, */
/* issue an error message end exit program. */
/**/
if «Outfd = fopen("dd:OUTFILE","w"» == NULL)

{
Cnmvlc(&msgbuf,NOHEXCNV,"ERROR OPENING DATA FILE.");
Cnmsmsg(&msgbuf,MSG,SYSOP,NULLCHAR);
Hlbptr->Hlbrc = CNM GOOD;
exitO; -

}

fprintf(Outfd,
fclose(Outfd);

/* Write to output file
/* Close output file

*/
*/

If the user chooses to write to a common output file from two or more C programs,
access to the common file must be coordinated by the programs. This can be
accomplished using NetView's CNMLK service routine if desired. If access is not
coordinated, the user may experience a system ABEND 213.

Special care should be taken when attempting to share open files between two or
more HLL programs. Sharing of open files must be coordinated between the
sharing programs. PL/I and C cannot share an open file. However, a C program can
read a file created by PLII.

Certain C routines (such as getchar and putchar) are designed to perform functions
on stdin and stdout. By default, stdin and stdout are directed to the terminal. These
defaults are not valid and will cause undetermined results if used in the NetView
environment. Terminal 1/0 can be done using WAIT FOR OPINPUT and CNMSMSG as
described in Chapter 12.

Refer to Common Programming Interface C Reference and C/370 User's Guide for
a more detailed discussion on files and CliO.

Considerations for HLL Command Processors
It is necessary to code a CMDMDL statement in DSICMD for each HLL command
processor that you have written. CMDMDL TYPE will be dependent on the functions
that your command processor performs. Keep in mind that some of the HLL ser
vices are only useful when executed under a Data Services Task (DST). There is no
support for HLL command processors running as immediate commands (TYPE = I).

The CMDMDL statement is described in NetView Administration Reference.

Chapter 8. Coding Your C Program - Interfaces and Restrictions 103

C Run-time Considerations

Return Codes

Most of the run-time errors detected in the C environment are handled by passing a
return code or a NULL pOinter back to the caller. Run-time errors that are detected
by the operating system generate an interrupt signal which could normally be
handled by coding a signal function in your program. However, since c programs
must run with the NOSTAE and NOSPIE options when running in the NetView environ
ment, the operating system is unable to generate such interrupts. While debugging
a C program in the NetView environment, it is allowable to run with the STAE and
SPIE options until the run-time problems have been resolved. Run-time errors that
are not detected by the operating system will cause a diagnostic message to be
written to stderr. See Common Programming Interface C Reference for more detail
on error handl i ng. .

Upon completion of an HLL service routine, the completion code from that service
routine is stored in the return code field (Hlbrc) of the HLB control block. This field
should be checked after each HLL service routine invocation. It is recommended
that this field be utilized when passing return codes between HLL programs.

Note that a return type of void is specified for each of the HLL service routines
defined in OSICCALL. This indicates that the HLL service routines do not return
values to the user. The completion code can only be checked by evaluating the
return code field (Hlbrc) in the HLB.

For a complete list of HLL API return codes, see OSICCNM in Appendix C. Refer to
Chapter 12 for a list of return codes that apply to each HLL service routine.

In C, normal termination can be achieved by assigning a value to Hlbrc and issuing
a return() statement as shown here.

Hlbptr->Hlbrc = CNM_GOOO;
returnO;

/* Successful completion
/* Return to caller

*/
*/

Restrictions for HLL Programs WriHen in C
The following restrictions apply when using C in a NetView environment:

The following C functions are not supported in the NetView environment:

C function Recommended HLL alternative

system Cnmcmd

The following functions cannot be used without re-directing stdin, stdout, and
stderr:

C function

getchar
getenv
gets
printf
putchar
puts
scanf

104 NetView Customization: Using PlI and C

Recommended HLL alternative

Cnmgetd
Cnminfi, Cnminfc, Origblck, Cnmvars

Cnmgetd
Cnmsmsg
Cnmsmsg

Cnmsmsg
Use Cnmgetd to fetch data and sscanf

perror
ferror

to parse data

Check return code and use Cnmsmsg
to put out message

Special Considerations:

1. The c signal function will not work for errors detected by the operating system.

2. Cnmsmsg cannot be used to display wide character strings. If you need to
process wide character strings, you will have to redirect stdout and use a c
function. (printf)

3. When passing return codes between HLL command procedures it is recom
mended that you use Hlbrc in the HLB control block (see Appendix C). Using
EXIT and RETURN with a return code to pass return codes between HLL command
procedures does not work; however, RETURN and EXIT can be used to pass
return codes between your main c program and any procedures it may call.

Chapter 8. Coding Your C Program - Interfaces and Restrictions 105

106 NetView Customization: Using Pli and C

Chapter 9. C High-Level Language Services

This chapter is an example-oriented discussion of commands and services pro·
vided by NetView in support of c. The complete syntax and usage of each
command and servi.ce routine can be found in Chapter 12 on page 173.

C Sample Template
The following is a coding template sample to be used when coding HLL programs in
c. This template can be used, with your enhancements, to utilize NetView func
tions and commands. Further examples in this chapter should be used in conjunc
tion with this template. To see a fully functional sample of a NetView c command
procedure refer to Appendix 0 on page 295.

Chapter 9. C High-Level Language Services 107

/**/
/* */
/* (C) COPYRIGHT IBM CORP. 1989 */
/* */
/* IEBCOPY SELECT MEMBER=«CNMS4201,CTMPPLT,R» */
/* */
/* (Explanations included in parentheses should be deleted) */
/* (after the pertinent information has been filled in.) */
/* */
/* Descriptive Name: High-Level Language C Template */
/* (This is the more descriptive name or title of the module.) */
/* */
/* Function: */
/* Template for writing HLL modules in C. */
/* (This is the description of what the module does.) */
/* (It may be paragraph or pseudocode form.) */
/* */
/* Dependencies: */
/* (List conditions that must be met in order for this) */
/* (module to perform. An example of this might be a) */
/* (key data area that must already have been built.) */
/* */
/* Restri ct ions: * /
/* (List any limitations this module may have.) */
/* */
/* Language: C * /
/* */
/* Input: */
/* 1) A pointer to a 4-byte field containing the address of */
/* the HLB control block. */
/* 2) A varying length character string containing the */
/* command or message which invoked this program. */
/* If this program was invoked as a command processor, */
/* this will be a command string. */
/* If this program was invoked as a user exit (other than */
/* DSIEX02A), this will be a message string. When driven */
/* as DSIEX02A, this string will be empty and the message */
/* must be retrieved from the Initial Data Queue (IDATAQ). */
/* 3) A 40-byte structure which describes the origin of the */
/* request that caused execution of this program. */
/* */
/* Output: */
/* (Describe any output from this module.) */
/* */
/* Return Codes: returned in Hlbrc */
/* For Command Processors: */
/* 0 = normal exit */
/* -5 = cancelled * /
/* (List any other return codes meaningful to this module.) */
/* For User Exits: */
/* 0 = USERASIS (Leave the contents of the message buffer */
/* unchanged) * /
/* 4 = USERDROP (Drop the message buffer) */
/* 8 = USERSWAP (Change the contents of the message buffer) */
/* */

108 NetView Customization: Using PLI and C

1* External Module References: *1
1* (List modules that are called by this module.) *1
1* *1
1* Change Activity: *1
1* date,~uthor: description of changes *1
1* (A log of the changes made to this module for) *1
1* (future reference can be kept.) * I
1**1
#pragma runopts (NOEXECOPS,NOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K»

1**1
1* Standard include files
1**1
#include <stdio.h> 1* Standard 1/0 header *1
#inc1ude <string.h> 1* String functions- *1
#inc1ude <stdefs.h> 1* Standard definitions *1
#inc1ude <std1ib.h> 1* Standard library *1
#inc1ude <stdarg.h> 1* Standard args *1

1**1
1* NetView High-Level Language include files *1
1**1
#inc1ude "dsic.h" 1* Include HLL macros *1

1**1
1* External data definitions *1
1**1
Dsih1b *H1bptr; 1* Pointer to the HLB *1
Dsivarch *Cmdbuf; 1* Pointer to command buffer *1
Dsiorig *Origb1ck; 1* Pointer to Origin block *1

main(int argc, char *argv??(??»
{

}

1**1
1* Internal data definitions *1
1**1

1**1
1* Convert parameter pointers from character to hex addresses *1
1**1
sscanf(argv??(1??),"%x",&H1bptr);
sscanf(argv??(2??), "%x" ,&Cmdbuf);
sscanf(argv??(3??),"%x",&Origblck);

1**1
1* Initialization *1
1**1 .

1**1
1* Execut ion * I
1**1
Hlbptr->Hlbrc = CNM_GOOD; 1* Successful completion *1

Chapter 9. C High-Level Language Services 109

Varying Length Character Strings

Cnmvlc

In Chapter 8 the use of varying length character strings with HLL command proce
dures was discussed. Cnmvlc and Cnmnvlc have been provided for the c user for
convenience when dealing with varying length character strings. Cnmvlc is espe
cially useful when copying NULL-terminated text into a varying length character
string, and building RU'S for the CNMI. Cnmnvlc is especially useful when dealing
with data that has NULLS in it, and data that is not NULL-terminated.

In several of the samples and examples we have defined our varying length char
acter strings as type Dsivarch. This is only for convenience. It is actually more
efficient to use a varying length character string with a buffer size closer to that of
your own data. The following examples show how to use Cnmvlc, Cnmnvlc, and
how to define varying length character strings with different buffer sizes.

Cnmvlc is used to copy a C character string into a varying length character string.

The following example copies "Hello World" into a varying length character string
for use with Cnmsmsg. msg is defined as a varying length character string.

Cnmvlc(&msg,
NOHEXCNV,
"Hello World");

Cnmsmsg(&msg,
MSG,
OPER,
NULLCHAR);

/* put message in varying length */
/* character string... */
/* ... varying len char strng */
/* ... do not convert to hex */
/* ... message */
/* display message... */
/* ... message text */
/* ... type is message */
/* ... send message to oper */
/* ... not used */

Cnmvlc returns a pointer to the varying length character string that data is being
copied into, and therefore can be imbedded directly into calls to HLL service rou
tines. The following example shows a call to Cnmvlc imbedded in a call to the
Cnmsmsg service routine.

Cnmsmsg(Cnmvlc(&msg,NOHEXCNV,"Hello World"),MSG,OPER,NULLCHAR);

110 NetView Customization: Using PLI and C

The following example copies an RU into a varying length character string and con
verts it to hex. ru is defined as a varying length character string and puname is a c
character string containing the name of the PU that the RU is to be sent to.

/* put RU in varying length */
/* character string... */

Cnmvlc(&ru, /* ... varying length char strng */
CNVTOHEX, /* ... convert to hex */
"81e81eeeeeeeeeeE41e380eeeee11100eOe68090e281F108D7E4DSC1D4CSOO");

/* ... the RU */

Cnmcnmi(SENDRPLY,
&ru,
puname.buffer,
18e);

/* Send RU over the CNMI... */
/* ... expect a reply */
/* ... RU built above */
/* ... to the PU name specified */
/* ... timeout after 3 minutes */

The following is an example of using a format string with Cnmvlc. The following
example copies "Day 1 of five" into a varying length character string. num is
defined as an integer with a value of 1 and string is defined as a character string
with a value of "five".

Cnmvlc(&msg,
NOHEXCNV,
"Day %d of %s",
num,
string);

Cnmsmsg(&msg,
MSG,
OPER,
NULLCHAR);

/* put message in varying length */
/* character string... */
/* ... varying len char strng */
/* ... do not convert to hex */
/* ... format string */
/* ... substitute for %d */
/* ... substitute for %s */
/* display message... */
/* ... message text */
/* ... type is message */
/* ... send message to oper */
/* ... not used */

Chapter 9. C High-Level Language Services 111

Cnmnvlc
Cnmnvlc is used to copy C character strings containing null data into varying length
character strings.

The following example copies an RU returned by the CNMI into another varying
length character string. data is defined as a varying length character string.
getblock is defined as a structure of type ORIGBLCK, and message is defined as a
varying length character string.

Note: The RU in the following example may contain null data. Cnmnvlc copies for
the length specified regardless of the presence of NULLS.

Cnmgetd(GETlINE,
&datain,
1024,
&getblock,
CNMIQ,
1);

Cnmnvlc(&msg,
NOHEXCNV,
data.size,
data.buffer);

/* Read in the first RU returned */
/* .•• a single RU */
/* ••. inti here */
/* •.• truncate after 1024 bytes */
/* ••. provide a new origin block */
/~ ••. on the CNMI queue (5) */
/* •.. the first RU */
/* copy varying length character */
/* string to another varying */
/* length character string... */
/* ••. dest varying len char strng*/
/* •.• do not convert to hex */
/* .•• numbers of chars to move */
/* ••. RU to copy */

Defining Varying Length Character Strings
Sometimes it will be necessary to create varying length character strings other
than Dsivarch.

The following example copies "Hello World" into a user-defined varying length
character stri ng.

typedef struct
{
short size;
char buffer??(12??);
} myvlc;

mainO
{
myvlc msg;

/* create your own varying
/* character string •.•
/* ••• 2 byte size field
/* ••. 12 byte buffer
/* .•. data type

length*/
*/
*/
*/
*/

/* msg is a varying length */
/* character string of type myvlc*/

/* copy Hello World into user */
Cnmvl c(&msg, noconvert, "Hell 0 Worl d"); /* defi ned varyi ng 1 ength * /

/* character string */
Cnmsmsg(&msg,MSG,OPER,NUllCHAR); /* send message to operator */
}

Sometimes it is necessary to pass a command buffer larger than 256 characters to
a C program. In these cases you must change the declaration for Cmdbuf provided
in the C template. The following example excepts a command buffer larger than
256 characters and displays it on the MVS operator console.

112 NetView Customization: Using PLI and C

typedef struct
{
short size;
char buffer??(300??);
} myvlc;

myvlc *Cmdbuf;

main(int argc, char *argv??(??»
{
sscanf(argv??(2??),"%x",&Cmdbuf);
Cnmsmsg(Cmdbuf,MSG,SYSOP,NULLCHAR);
}

/* create your own varying length*/
/* character string... */
/* .•• 2 byte size field */
/* ••• 300 byte buffer */
/* ••• data type */

/* Cmdbuf is a varying length */
/* character string of type myvlc*/
/* receive paramater list from ••. */
/* •.• Netview */
/* Convert Cmdbuf ptr to hex */
/* display message */

Chapter 9. C High-Level Language Services 113

Data Queue Management
NetView utilizes several data and message queues to work in conjunction with HLL

service routines. Information retrieved from these queues, via the GETDATA func
tion, can be manipulated to enhance your network manageability. The following
five queues are defined for data and message management.

TRAPQ

OPERQ

DATAQ

IDATAQ

CNMIQ

Queue 1

Queue 2

Queue 3

Queue 4

Queue 5

This queue enables the user tQ, access mes
sages placed on it after being trapped as a
result of an issuance of the TRAP command for
messages.
This queue enables the user to access oper
ator input, entered via the GO or QUEUE

command ..
This queue enables the user to access DATA

type messages placed on it via the send
message HLL service routine (Cnmsmsg).
The initial data queue enables the user to
access the message that invoked the HLL

command by the message automation table or
the message which drove DSIEX02A.

This queue enables the user to access CNMI

solicited data which was solicited via an issu
ance of the HLL CNMI service routine (CNMCNMI).

Examples of how the above queues are used with HLL command procedures follow.

114 NetView Customization: Using Pli and C

Sending Information
The following is an example of sending messages.

/***/
/* Internal data definitions */
/***/

Dsivarch msgbuf; /* var len char strng for messages */

/***/
/* Send a multiline message to user. */
/***/

Cnmvlc(&msgbuf,a,"LINE 1 OF 3");
Cnmsmsg(&msgbuf,MSG C,OPER,NULLCHAR);
Cnmvlc(&msgbuf.a."Line 2 of 3");
Cnmsmsg(&msgbuf,MSG D,OPER,NULLCHAR);
Cnmvlc(&msgbuf ,a, II Line 3 of 3");
Cnmsmsg(&msgbuf,MSG_F,OPER,NULLCHAR);

/***/
/* Send a multiline message to a task. */
/***/

Cnmvlc(&msgbuf,e,"Line 1 of 3");
Cnmsmsg(&msgbuf,MSG_C,TASK, "OPERI ");
Cnmvl c(&msgbuf, a, /lLi ne 2 of 3/1);
Cnmsmsg(&msgbuf,MSG_D,TASK,"OPERl ");
Cnmvlc(&msgbuf,e,"LINE 3 OF 3");
Cnmsmsg(&msgbuf,MSG_F,TASK,"OPERl ");

/***/
/* Send a message to the system console (only 1-liners). */
/***/

Cnmvlc(&msgbuf,e,"HELlO SYSOp lI
);

Cnmsmsg(&msgbuf,MSG,SYSOP,NULLCHAR);

/***/
/* Send a message to the authorized receiver. */
/***/

Cnmvlc(&msgbuf,O,"HELLO AUTHRCV II);
Cnmsmsg(&msgbuf,MSG,AUTHRCV,NULLCHAR);

/***/
/* Send a message to the log. */
/***/

Cnmvlc(&msgbuf,O,IIThis should only be in the 10g");
Cnmsmsg(&msgbuf,MSG,NETVLOG,NULLCHAR);

/***/
/* Send to the sequential log */
/***/

Cnmvlc(&msgbuf,O,"Test message ll
};

Cnmsmsg(&msgbuf,MSG,SEQLOG,"SQLOGTSK");

/***/
/* Send to a group */
/***/

Cnmvlc(&msgbuf,O,"Hell0 group");
Cnmsmsg(&msgbuf,MSG,OPCLASS,II+GROUPl ");

11 R tlJAtViAW ~11!=:.tnmi:zation: Usina PlI and C

Synchronous Commands
The following is a simple example of an HLL command processor invoking another
command. The command could be another HLL command, a VTAM command, or a
NetView command.

/**/
/* Internal data definitions */
/**/

Dsivarch command,
message;

/* varying len char strng for cmds */
/* varying len char strng for msgs */

/**/
/* */
/* Execut ion * /
/* */
/**/

/* copy vtam command dnet,appls into varying length character */
/* string using cnmvlc */

Cnmvlc(&command,
a,
"0 NET,APPLS II

);

/* issue the command

Cnmcmd(&command);

if (Hlbptr->Hlbrc != CNM_GOOD)
{

Cnmvlc(&message,
a,

/* varying length character string */
/* do not convert to hex */
/* command to copy into varying */
/* length character string */

*/

/* always check rc from Cnmcmd */
/* if bad return code from Cnmcmd */
/* place message in varying length */
/* character string... */
/* ... do not convert to hex */

"Command not scheduled successfullyll); /* ... message */

Cnmsmsg(&message,
MSG,

}

OPER,
NULLCHAR);

/* issue message... */
/* ... message text */
/* ... type is message */
/* ... send to invoking operator */
/* ... not used */

Sending Commands
The following is an example of sending a command to execute on another task. The
command to be run under the other task could be another HLL command, a VTAM

command, or a NetView command.

This process can be used to execute commands under data services tasks (OST),
other operator station tasks (OST), or the primary POI task (PPT).

/**/
/* Internal data definitions */
/**/

char operl??{9??) = "OPERl
Dsivarch logoff,

msgbuf;

"; /* 8 char task name for Cnmsmsg */
/* used to store logoff command */
/* var len char strng for messages */

/**/
/* */
/* Execut ion * /
/* */
/**/

Cnmvlc{&logoff,
0,
"LOGOFfU) ;

Cnmsmsg(&logoff,
COMMAND,
TASK,
operl);

118 NetView Customization: Using PLl and C

/* copy command into varying */
/* lengt~ character string... */
/* ... varying length string */
/* ... do not convert to hex */
/* ... command to be copied */

/* send the command ..• */
/* ••• text of the command to run */
/* ••• thi sis a command */
/* ••• run it on a task */
/* ••• tas k name is operl */

if (Hlbptr->Hlbrc == CNM_GOOD)
{

/* inform user of success */

/* copy message into varying */
/* length character string... */

Cnmvlc(&msgbuf, /* ... varying length string */
0~ /* ... do not convert to hex */ .
"OPER! Logoff scheduled successfully"); /* ... message */

Cnmsmsg(&msgbuf,
MSG,

}

OPER,
NULLCHAR);

/* issue message •••
/* ... text of message
/* ... this is a message
/* ... to the operator
/* ... not used

*/
*/
*/
*/
*/

else

}

{ /* inform user task not active */
if (Hlbptr->Hlbrc == CNM_TASK_INACTIVE)

{
/* copy message into varying */
/* length character string... */

Cnmvlc(&msgbuf, /* ... varying length string */
0, /* ... do not convert to hex * /
"OPER! Not Active"); /* ... message */

Cnmsmsg(&msgbuf,
MSG,

}
else

OPER,
NULLCHAR);

/* issue message .•.
/* ... text of message
/* ... this is a message
/* ... to the operator
/* ... not used

*/
*/
*/
*/
*/

{ /* inform user bad rc * /
/* copy message into varying */
/* length character string... */

Cnmvlc(&msgbuf, /* ... varying length string */
0, /* ... do not convert to hex * /
"Unexpected rc from Cnmsmsg"); /* ... message */

Cnmsmsg(&msgbuf,
MSG,

}

OPER,
NULLCHAR);

/* issue the message .••
/* ... text of message
/* ... this is a message
/* ... to the operator
/* ... not used

*/
*/
*/
*/
*/

Hlbptr->Hlbrc = CNM_GOOD; /* clear rc */

Chapter 9. C High-Level Language Services 119

Waiting and Trapping
The following is an example of how to issue a command, trap the output of the
command, and respond differently depending on the output that is encountered. It
will activate the given LU, and issue an appropriate message.

The syntax that it checks for is:

CACTLU luname

Where luname is the name of the LU to be activated.

/**/
/* Internal data definitions */
/**/
DSiorig origptr; /* work block for Cnmgetd */
char *token, /* used to parse command buffer */

nodename11(911); /* LU to activate */
Dsivarch command, /* varying len char strng for cmds */

msgbuf; /* varying len char strng for msgs */

/**/
/* retrieve node name from command buffer */
/**/

token = strtok«char *) &(Cmdbuf->buffer),1/ II); /* parse command */
token = strtok(NULL, II "); /* buffer for LU name * /
strcpy(nodename,token);

if (strlen(token) > 8)
token = NULL;

/* node name invalid */

if (token != NULL) /* if nodename specified */
{ /* copy command into varying length */

/* character string... */
Cnmvlc(&command, /* •.. varying length string */

e, /* .•. do not convert to hex * /
IITRAP AND SUPPRESS ONLY MESSAGES IST*"); /* ... command */

Cnmcmd{&command); /* issue command to trap vtam messages*/

120 NetView Customization: Using PLI and C

1**1
1* build vtam command to activate node *1
1**1

1* copy command into varying length *1
1* character string... *1

Cnmvlc(&command, 1* .•• varying length string *1
0, 1* .•• do not convert to hex *1
"V NET,ACT,ID=%s",nodename); 1* .•. command *1

Cnmcmd(&command); 1* issue command to activate node *1

1* put command to wait for 5 sec in *1
1* varying length character string ••• *1

Cnmvlc(&command, 1* ..• varying length string *1
0, 1* ..• do not convert to hex *1
"WAIT 10 SECONDS FOR MESSAGES"); 1* .•• command * I

Cnmcmd(&command);

Cnmgetd(GETMSG,
&msgbuf,
255,
&origptr,
TRAPQ,
1) ;

1* issue command to wait for 5 secs *1

1* get first trapped message... *1
1* ... function is get a message *1
1* .•. result goes here *1
1* .•• max input length *1
1* ... must provide a work area *1
1* ..• message is trapped *1
1* ... get the first one *1

1**1
1* *1
1* Loop through messages until IST093I is found or until no more .*1
1* messages are left *1
1* *1
1**1

Cnmvlc(&command,
0,
"WAIT CONTINUE");

1* put wait continue command in *1
1* varying length character string ••• *1
1* .•• varying length string *1
1* ... do not convert to hex *1

1* •.. command *1

whil e((strncmp(ori gptr. Ori g_process, II IST093I II ,7) ! = 0) &&
(Hlbptr->Hlbrc == CNM_GOOD)

{
Cnmcmd(&command);

Cnmgetd(GETMSG,
&msgbuf,
255,
&origptr,
TRAPQ,
1) ;

}

1* issue wait continue
1* get next trapped message .••
1* ..• function is get a message
1* ... result goes here
1* ••• max input length
1* ..• must provide a work area
1* ... message is trapped
1* ••• get the first one

*1
*1
*1
*1
*1
*1
*1
*1

Chapter 9. C High-Level Language Services 121

if (Hlbptr->Hlbrc == CNM_GOOD) 1* did we find IST093I? *1
{ 1* inform user activation worked *1

1**1
1* build message to inform user activation worked *1
1**1

1* copy message into varying length *1
1* character string... *1

Cnmvlc(&msgbuf, 1* .•• varying length string *1
0, 1* ••• do not convert to hex * I
"RESOURCE %s NOW ACTIVE",nodename); 1* •.• message *1

Cnmsmsg(&msgbuf,
MSG,

}

OPER,
NUllCHAR);

1* issue message •••
1* ... message to issue
1* •.• type is message
1* ..• issue to operator
1* ... unused

*/
*1
*1
*1
*1

else
{ 1* IST093I not found, must be error *1

1* copy message into varying length *1
1* character string... *1

Cnmvlc(&msgbuf, 1* .•• varying length string *1
0, 1* •.• do not convert to hex * I
"ERROR - ACTIVATION UNSUCCESSFUl"); 1* •.. message *1

}
}

else
{

Cnmsmsg(&msgbuf,
MSG,
OPER,
NUllCHAR);

1* •.. message * I
1* issue message... *1
1* •.. message to issue *1
1* •.. type is message *1
1* ... issue to operator *1
1* ... unused *1

1* nodename not specified
1* inform user he needs more args

*1
*1

1* copy message into varying length *1
1* character string... *1
1* ••. varying length string *1
1* ..• do not convert to hex *1

Cnmvlc(&msgbuf,
0,
"ERROR - INVALID NODENAME"); 1* ... message * I

Cnmsmsg(&msgbuf,
MSG,

}

OPER, -
NUllCHAR);

122 NetView Customization: Using PLI and C

1* ... message *1
1* issue the message... *1
1* •.. message to issue *1
1* .•. type is message *1
1* .•• issue to operator *1
1* ... unused *1

Retrieving Information
The following gives an example of how an HLL command processor or user exit
routine can retrieve information from NetView. Assembler language command
processors and user exit routines need DSECTS to access information about
NetView. HLL command processors and user exit routines can access some of this
information as shown below. Many variables are available. Please refer to the
command and service routine reference on Cnminfc and Cnminfi for an exhaustive
list of the values supported ("CNMINFC (CNMINFOC) - Query NetView Character
Information" on page 209 and "CNMINFI (CNMINFOI) - Query NetView Integer
Information" on page 211).

/**/
/* Internal data definitions */
/**/
Osivarch cdata, /* store data returned by Cnm;nfc */

msgbuf; /* var len char strng for messages */
int idata; /* store data returned by Cnminfi */

/**/
/* */
/* Execut ion * /
/* */
/**/

Cnm; nfc ("DATETIMEII,
&cdata,
18);

/* retrieve date and time... */
/* ... specify the variable */
/* ... result goes here */
/* ... at most eight bytes */

cdata.buffer??(cdata.s;ze??) = '\0'; /* terminate data with null */

Chapter 9. C High~Level Language Services 123

1***1
1* build message to display results *1
1***1

Cnmvlc(&msgbuf,
a,
"DATE/TIME IS:

Cnmsmsg(&msgbuf,
MSG,
OPER,
NULLCHAR);

Cnminfi("COLORS
&idata);

1* put message in varying length
1* character string •••
1* varying length string •••
1* do not convert to hex •••

%s",cdata.buffer); 1* ••• message

1* display results •••
1* ••• text of message
1* ••• is a massage
1* ••• to invoking operator
1* ••• not used

1* retrieve the number of colors
1* that the terminal supports •••
1* ••• specify the variable
1* ••• result goes here

*1
*1
*1
*1
*1

*1
*1
*1
*1
*1

*1
*1
*1
*1

/***1
1* build message to display results *1
1***1

1* put message in varying length *1
1* character string... *1

Cnmvlc(&msgbuf, 1* ••• varying length string *1
a, 1* ••• do not convert to hex * I
"NUMBER OF COLORS SUPPORTED ARE: %d",idata); 1* ••• message*1

Cnmsmsg(&msgbuf,
MSG,
OPER,
NULLCHAR);

124 NetView Customlzatlon: Using PLI and C

1* display results •••
1* ••• message text
1* ••• is a message
1* ••• to the invoking operator
1* ••• not used

*1
*1
*1
*1
*1

Command List Variable Access
The following example illustrates the capability to update common global vari
ables. This example simply declares, initializes, and alters a variable named
n GVARIABLEH.

Task globals are updated and read the same way. The only difference is the pool
name that is specified.

/**/
/* Internal data definitions */
/**/
Dsivarch datain, /* store data returned by Cnmvars */

variable; /* store variable name for Cnmvars */
int length = 24, /* max len of data returned by Cnmvars */

x; /* used to increment value returned*/
/* ..• by cnmvars */

/**/
/* */
/* Execut ion * /.
/* */
/**/
/**/
/* Initialize the variable */
/**/

Cnmvlc(&datain,
a,
"Initial value");

Cnmvlc(&variable,
a,
"GVARIABLE"};

Cnmvars(PUT,
&datain,
length,
&variable,
"CGLOBAL ");

/* copy initial value into varying */
/* length character string... */
/* ••• varying length string */
/* ... do not convert to hex */
/* ••• initial value */

/* copy variable name into varying */
/* length character string... */
/* .•• varying length string */
/* ••. do not convert to hex */
/* •.• variable name */

/* put an initial value in
/* •.• function is write
/* .•• data is here
/* ••. length not used

variable*/
*/
*/
*/

/* ••• variable name
/* .•• variable pool is cglobal

*/
*/

Chapter 9. C High-Level Language Services 125

/**/
/* Find out the value of the variable */
/**/

Cnmvars(GET,
&datain,
length,
&variable,
CGLOBAL);

Cnmsmsg(&datain,
MSG,
OPER,
NULLCHAR);

Cnmvlc(&datain,
a,
"New value");

/* read the global variable... */
/* ... function is read */
/* ... data goes here */
/* ... truncate after 24 bytes */
/* ... variable name */
/* ... variable pool is cglobal */

/* show operator value •••
/* ... data obtained from varpool
/* ... type is message
/* ... send message to operator
/* ... not used

/* put new in varying length
/* character string .••
/* ... do not convert to hex
/* ... new value

*/
*/
*/
*/
*/

*/
*/
*/
*/

/**/
/* set the global variable */
/**/

Cnmvars(PUT,
&datain,
length,
&variable,
CGLOBAL) ;

/* update the global variable... */
/* ... function is write */
/* ... data is here */
/* ... datalen is not used */
/* ... variable name */
/* ... variable pool is CGLOBAL */

/**/
/* verify variable has been changed */
/**/

Cnmvars(GET,
&datain,
length,
&variable,
CGLOBAL);

Cnmsmsg(&datain,
MSG,
OPER,
NULLCHAR);

126 NetView Customization: Using PLI and C

/* read the global variable
/* ... function is read
/* ... data goes here
/* ... truncate after 24 bytes
/* ... variable name
/* ... variable pool is CGLOBAL
/* show value to operator .••
/* ... data to be displayed
/* ... type is message
/* ... send message to operator
/* ... not used

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Using Locks
The previous example illustrated the capability to update common global vari
ables, but it did not protect the updating of the variable named "GVARIABLE" by using
a lock. This example has been modified to obtain a lock before attempting the
update.

The lock name can be the same as the global variable, or it can be different. The
need for protecting the updating needs to be assessed on a case-by-case basis.

If you decide that it is important to synchronize the updating of a variable, you can
use the lock method shown below or you may wish to run all the updates on a
given task. Since only one process can occur on a task at a time, the updates will
be serialized. Note that this could be any task, including the PPT.

/**/
/* Internal data definitions */
/**/
Dsivarch datain, /* store data returned by cnmvars */

variable, /* store variable name for Cnmvars */
msg; /* var len char strng for messages */

int length = 24, /* max len of data from Cnmvars */
X; /* used to increment value returned*/

/* ... by Cnmvars */

/**/
/* */
/* Execut ion * /
/* */
/**/
/**/
/* Initialize the variable */
/**/

Cnmvlc(&datain,
0,
"Initial value");

Cnmvlc(&variable,
0,
"GVARIABLP) ;

/* copy initial value into varying */
/* length character string... */
/* ... varying length string */
/* ... do not convert to hex */
/* ... initial value */

/* copy variable name into varying */
/* length character string... */
/* .•• varying length string */
/* ... do not convert to hex */
/* .•• variable name */

Chapter 9. C High-Level Language Services 127

/**/
/* Obtain the lock to secure the accuracy of the update */
/**/
Cnmlk(LOCK, /* obtain the lock... */

&variable, /* ••• function is obtain lock */
.. " , /* •.• not used * /
WAIT); /* ••• wait if not available */

if (Hlbptr->Hlbrc == CNM_GOOD)
Cnmsmsg(Cnmvlc(&msg,a,"got lock"),MSG,OPER,NULLCHAR);

Cnmvars(PUT,
&datain,
length,
&variable,
"CGLOBAL ");

/* put an initial value
/* ••• function is write
/* ••. data is here
/* ••• length not used
/* ••• variable name
/* ••• variable pool is

in variable*/
*/
*/
*/
*/

cglobal */

/**/
/* Find out the value of the variable */
/**/

Cnmvars(GET,
&datain,
length,
&variable,
CGLOBAL);

Cnmsmsg(&datain,
MSG,
OPER,
NULLCHAR);

Cnmvlc(&datain,
a,
"New Value");

/* read the global variable... */
/* ••• function is read */
/* ••• data goes here */
/* .•• truncate after 24 bytes */
/* .•• variable name */
/* •.. variable pool is cglobal */

/* show operator value... */
/* ••• data obtained from varpool */
/* ••• type is message */
/* ••• send message to operator */
/* .•. not used */

/* put new value in varying
/* character string •••
/* ••• do not convert to hex
/* ••. new value

length */
*/
*/
*/

/**/
/* set the global variable */
/***.*** /

Cnmvars(PUT,
&datain,
length,
&variable,
CGLOBAL);

128 NetView Customization: Using PLI and C

/* update the global variable... */
/* ••• function is write */
/* .•. data is here */
/* .•• datalen is not used */
/* •.. variable name */
/* •.. variable pool is CGLOBAL */

/**/
/* verify variable has been changed */
/**/

Cnmvars(GET,
&datain,
length,
&variable,
CGLOBAL);

Cnmsmsg(&datain,
MSG,
OPER,
NULLCHAR);

/* read the global variable */
/* ... function is read */
/* ... data goes here */
/* ... truncate after 24 bytes */
/* ... variable name */
/* ... variable pool is CGLOBAL */
/* show value to operator ••• */
/* ... data to be displayed */
/* ... type is message */
/* ... send message to operator */
/* ... not used */

/**/
/* Release the lock to let other tasks update GVARIABLE */
/**/
Cnmlk(UNLOCK, /* obtain the lock... */

&variable, /* ... function is obtain lock */
II, /* ... not used * /
II) ; /* ... not used * /

if (Hlbptr->Hlbrc == 0)
Cnmsmsg(Cnmvlc{&msg,0,"got rid of lock"),MSG,OPER,NULLCHAR);

Chapter 9. C High-Level Language Services 129

Operator Input
The following is an example of how to code an HLL command processor to accept
operator input in single-line mode. The interface is similar to the &PAUSE function
of the NetView Command List Language. Input is requested by the application
using the WAIT FOR OPINPUT command, input is retrieved by the application using the
CNMGETD service routine, and the operator can respond using the GO command.

/**/
/* Internal data definitions */
/**/
Dsivarch msgbuf, /* var len char strng for messages */

command, /* var len char strng for cmds */
inbuf; /* store data returned by Cnmgetd */

/**/
/* */
/* Execut ion * /
/* */
/**/

/* copy message into varying */
Cnmvlc(&msgbuf, /* length message string ••• */

a, /* ... do not convert to hex */
"Enter operator input data"); /* ... message */

Cnmsmsg(&msgbuf,
MSG,
OPER,
NUllCHAR);

/* send a message... */
/* ... text of message */
/* ... single line message */
/* ... to the invoking oper */
/* ... not used */
/* copy command to varying */

Cnmvlc(&command, /* length character string ••• */
a, /* ... do not convert to hex */
"WAIT 3a SECONDS FOR OPINPUT"); /* ... command * /

Cnmcmd(&command);
/* issue command to wait for */
/* 3a seconds... */

130 NetView Customization: Using PLI and C

/* get first trapped msg... */
if (Hlbptr->Hlbrc == CNM_OPINPUT_ON_WAIT)

{ /* Operator input supplied ••• */
Cnmgetd(GETMSG, /* ••• function is get message*/

&inbuf, /* ... result goes here */
255, /* ... max input length */
Origblck, /* ••• must provide work area */
2, /* ... msg is on OPINPUT queue*/
1); /* •.• get the first one */

inbuf.buffer??(inbuf.size?1) = '\0';
/* copy opinput into varying */

Cnmvlc(&msgbuf, /* length character string ••• */
0, /* ... do not convert to hex */
"OPERATOR INPUT IS: %s·,inbuf.buffer); /* ... message */

Cnmsmsg(&msgbuf,
MSG,

}
else

{

OPER,
NULLCHAR);

/* send a message... */
/* ... text of'messgage */
/* ... single line message */
/* ... to the invoking oper */
/* ••• not used */

/* No operator input supplied*/
/* copy message into varying */

Cnmvlc(&msgbuf, /* length character string ••• */
0, /* ••• do not convert to hex */
"NO OPERATOR INPUT SUPPLIED"); /* ••• message */

Cnmsmsg(&msgbuf,
MSG,

}

OPER,
NULLCHAR);

/* send a message... */
/* ... text of messgage */
/* ... single line message */
/* ... to the invoking oper */
/* ••• not used */

Chapter 9. C High-Level Language Services 131

VIEW Command Processor
The following is an example of using the full-screen VIEW command processor.
First it creates the local variable called PARM1, and the variable is initialized. The
VIEW command processor is invoked, displaying a full-screen panel. For more
information on VIEW see the NetView Customization Guide.

The panel that is invoked by the following example appears below:

132 Netview Customization: Using Pli and C

/**/
/* Internal data definitions */
/**/
Dsivarch variable, /* store variable name for Cnmvars */

data, /* store returned data from Cnmvars*/
command; /* varying len char strng for cmds */

/**/
/* */
/* Execut ion * /
/* */
/**/

Cnmvlc(&variable,
0,
"PARMI"};

Cnmvars(DCL,
&data,
48,
&variable,
LOCAL);

Cnmvlc(&data,
0,
"the contents

Cnmvars(PUT,
&data,
48,
&variable,
LOCAL);

/* copy variable name into variable */
/* length character string... */
/* ••• do not convert to hex */
/* ••• variable name */

/* declare variable to local pool ••• */
/* ••• not used */
/* .•. not used */
/* ••. name is parmI */
/* ..• the pool is local */
/* copy initialization data to */
/* variable length character strng .. */
/* .•• do not convert to hex */

of parmI go here"}; /* ••. the data */

/* initialize parmI .••
/* ••• result goes here
/* •.. max length is 48 bytes
/* ••. name of variable is parmI
/* •.. the pool is local

*/
*/
*/
*/
*/

/**/
/* Issue the view command. Give the task name as a unique name */
/* to go on the View stack. */
/**/

/* copy command to variable length */
Cnmvlc(&command, /* character string... */

0, /* ••. do not convert to hex * /
"VIEW %.85 TESTHLL NOMSG INPUT",Origblck->Orig_task};/* cmd*/

Cnmcmd(&command); /* issue the command */

Chapter 9. C High-Level Language Services 133

Message Processing
The following example lists the message attributes of a message. The invocation
must be as a result of an entry in the message automation table, which is docu
mented in the NetView Administration Reference. This example will function cor
rectly for both single line messages and multiple line messages.

/**/
/* Internal data definitions */
/**/
Dsiorig getblock; /* orig block for Cnmgetd */
Dsivarch inbuf, /* returned data from Cnmgetd */

datain, /* returned data from Cnmgeta */
message, /* var len char strng for messages */
temp; /* temp var len char strng used .•• */

/* ... to build messages */
i nt i; /* counter * /

char *attr??(12??) = {
"AREAID
"DESC
IIJOBNAME
"JOBNUM
IIMCSFLAG
"MSGTYP
IIREPLYID ,
II ROUTCDE",
"SESSID ",
IISMSGID ",
"SYSCONID",
"SYSID II};

/* array of message attributes... */
/* ... to be obtained by Cnmgeta */

/**/

/* */
/* Execution */
/* */
/**/
Cnmgetd(GETMSG, /* ... function is get a message */

&inbuf, /* ... result goes here */
255, /* ... max input length */
&getblock, /* ... must provide a work area */
IDATAQ, /* ... message on automation queue */
1); /* ... get the next line */

134 NetView Customization: Using PLI and C

while«Hlbptr->Hlbrc==CNM_GOOD) I I (Hlbptr->Hlbrc==CNM_DATA_TRUNC»

}

{ /* do while no probs... */

for(i=O;i<=ll;i++)
{
Cnmgeta(attr??(i??),

&datain,
12,
IDATAQ);

Cnmnvlc(&temp,
0,
datain.size,
datain.buffer);

/* ... ignoring truncation */
/* for 12 possible attributes... */
/* get the ith attribute... */
/* ... ith member of the array */
/* ... result goes here */
/* ... at most 12 bytes */
/* ... on initial data queue */

/* put result of above cnmgeta in */
/* varying length char string... */
/* ... do not convert to hex */
/* ... size of result */
/* ... result to be copied */
/* build msg to display results in */

Cnmvlc(&message, /* varying length char string... */
0, /* ... do not convert to hex */
II%S = %s",attr??(i??),temp.buffer); /* ... message */

Cnmsmsg(&message,
MSG,

}

OPER,
NULLCHAR);

/* print that message... */
/~ .•• message text */
/* ... single line message */
/* ... to invoking operator */
/* ... not used */

Cnmvlc(&message,O,"LINETYPE = %c",getblock.Orig_line_type);
Cnmsmsg(&message,MSG,OPER,NULLCHAR);
Cnmvlc(&message,0,"HDRMTYPE = %c",getblock.Orig_msg_type);
Cnmsmsg(&message,MSG,OPER,NULLCHAR);

Cnmvlc(&message,O,"MSGID = %.8s",getblock.Orig_process);
/* orig fields not NULL •• */
/* ... terminated */

Cnmsmsg(&message,MSG,OPER,NULLCHAR);

inbuf.buffer??(inbuf.size??) = '\0'; /* append NULL to end of */
/* ... data retrieved by Cnmgetd */

Cnmvlc(&message,O,"MSGSTR =%s",inbuf.buffer);
Cnmsmsg(&message,MSG,OPER,NULLCHAR);

Cnmgetd(GETLINE,
&inbuf,
255,
&getblock,
IDATAQ,
1) ;

/* get first trapped message... */
/* ... function is get a message */
/* ... result goes here */
/* ... max input length */
/* ... must provide a work area */
/* ... message is from automation */
/* ... get the next line */

Hlbptr->Hlbrc == CNM_GOOD;

Chapter 9. C High·Level Language Services 135

Scope Checking
The following is an example of the scope checking capabilities provided by
NetView. In this example, the user is required to set up the. following elements for
the command (shown below):

1. operator id

2. operator classes that can access the command

3. operator profile

The command gives the return code that the scope check service routine returned
to the operator.

The syntax that this command checks for is:

CSCOPCK PARMx(VAlx)

The following is the setup for the scope check example.

In DSIPARM(DSICMD):

• Define the operator classes that can access the command, its keywords, and
its keyword val ues.

• The example below says that the command CSCOPCK can be executed by opera ..
tors in scope class 1 and 2. Scope class 1 can issue any keyword or keyword
value, but scope class 2 cannot use the value of VAL 1 with keyword PARM2, and
scope class 2 cannot issue PARM3 at all.

CSCOPCK

PARM2
VAll
PARM3
VAll

CMDMDl
CMDClASS
KEYClASS
VAlClASS
KEYClASS
VAlClASS

In DSIPARM(DSIOPF):

MOD=CSCOPCK,RES=N,TYPE=RD
1,2
1,2
1
1
1

• Define the operator ids and the profiles that the operator ids can use.

JOE OPERATOR PASSWORD=USER
PROFIlEN DSIPROF3

In DSIPRF(profilename}:

• Define the operator class value that will correspond to the profile that the oper
ator logs on with.

DSIPROF3 PROFILE
OPClASS 3
END

136 NetView Customization: Using PU and C

/**/
/* Internal data definitions */
/**/
Dsivarch datain, /* store data returned by cnmvars */

variable, /* store variable name for Cnmvars */
msg; /* var len char strng for messages */

int length = 24, /* max len of data from Cnmvars */
X; /* used to increment value returned*/

/* .•• by Cnmvars */

/**/
/* */
/* Execut ion * /
/* */
/**/
/**/
/* Initialize the variable */
/**/

Cnmvlc(&datain,
0,
"Initial value");

Cnmvlc(&variable,

° , "GVARIABLE");

/* copy initial value into varying */
/* length character string... */
/* ... varying length string */
/* .•. do not convert to hex */
/* .•• initial value */

/* copy variable name into varying */
/* length character string... */
/* .•. varying length string */
/* ••• do not convert to hex */
/* .•. variable name */

/**/
/* Obtain the lock to secure the accuracy of the update */
/**/
Cnmlk(LOCK, /* obtain the lock... */

&variable, /* .•. function is obtain lock */
", /* .•• not used * /

WAIT); /* •.• wait if not available */

if (Hlbptr->Hlbrc == CNM_GOOD)
Cnmsmsg(Cnmvlc(&msg,0,"got 10ck"),MSG,OPER,NULLCHAR);

/* put an initial value in
/* .•• function is write
/* •.. data is here
/* .•. length not used
/* ••• variable name

variable*/
*/
*/
*/

Cnmvars(PUT,
&datain,
length,
&variable,
"CGLOBAL "); /* .•• variable pool is cglobal

*/
*/

Chapter 9. C High-Level Language Services 137

/**/
/* Find out the value of the variable */
/**/

Cnmvars{GET,
&datain,
length,
&variable,
CGLOBAL);

Cnmsmsg(&datain,
MSG,
OPER,
NULLCHAR);

Cnmvlc{&datain,
a,
II New Val ue ll

) ;

/* read the global variable... */
/* ... function is read */
/* ... data goes here */
/* ... truncate after 24 bytes */
/* ... variable name */
/* ... variable pool is cglobal */

/* show operator value •••
/* ... data obtained from varpool

*/
*/

/* ... type is message
/* ... send message to operator

*/
*/
/ / ... not used

/* put new value in varying
/* character string •••
/* ... do not convert to hex
/* ... new value

length */
*/
*/
*/

/**/
/* set the global variable */
/**/

Cnmvars{PUT,
&datain,
length,
&variable,
CGLOBAL);

/* update the global variable... */
/* ... function is write */
/* ... data is here */
/* ... datalen is not used */
/* ... variable name */
/* ... variable pool is CGLOBAL */

/**/
/* verify variable has been changed */
/**/

Cnmvars(GET,
&datain,
length,
&variable,
CGLOBAL);

Cnmsmsg(&datain,
MSG,
OPER,
NULLCHAR);

/* read the global variable */
/* ... function is read */
/* ... data goes here */
/* ... truncate after 24 bytes */
/* ... variable name */
/* ... variable pool is CGLOBAL */
/* show value to operator ••• */
/* ... data to be displayed */
/* ... type is message */
/* ... send message to operator */
/* ... not used */

/**/
/* Release the lock to let other tasks update GVARIABLE */
/**/
Cnmlk(UNLOCK, /* o.btain the lock... */

&variable, /* ... function is obtain lock */
II II, /* ... not used * /
II II); /* ... not used */

if (Hlbptr->Hlbrc == a)
Cnmsmsg(Cnmvlc(&msg,e,"got rid of lockll),MSG,OPER,NULLCHAR);

138 NetView Customization: Using PLI and C

Altering Data
This DSIEX02A exit routine changes the echoed command message (MSGTYPE=-) to
be more informative by giving the time as well as the fact that the command was
entered.

Example output _with input of WHO:

Without exit:
WHO

With exit:
COl1lJland entered was: "WHO" at 12:00:00

/**/
/* */
/* Descriptive Name: High level language C Dsiex02a Example */

/* Change Activity: */
/* date,author: description of changes */
/**/
Ipragma runopts (NOEXECOPS,NOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K})

/**/
/* Standard include files
/**/
linclude <stdlib.h> /* Standard library */
linclude <stdarg.h> /* Standard args */

/**/
/* NetView high level language include files */
/**/
linclude "dsic.h" /* Include Hll macros */

/**/
/* External data definitions */
/**/
Dsihlb *Hlbptr; /* Pointer to the HlB */
Dsivarch *Cmdbuf; /* Pointer to command buffer */
Dsiorig *Origblck; /* Pointer to Origin block */

Chapter 9. C High-Level Language Services 139

main(int argc, char *argv??(??))
{

/**/
/* Internal data definitions */
/**/
DSiorig getblock; /* Area for the Origin Block */
Dsivarch datain; /* Old cOl1l11and text */
Dsivarch time; /* Area for time */
Dsivarch msgbuf; /* message buffer */

/**/
/* Convert parameter pOinters from character to hex addresses */
/**/
sscanf(argv??(1??),"%x",&Hlbptr);
sscanf(argv??(2??) ,"%x",&Cmdbuf);
sscanf(argv??(3??) ,"%x",&Origblck);

/**/
/* Initialization */
/**/

/**/
/* */
/* Execut ion * /
/* */
/**/

Cnminfc ("TIME
&time,
255);

Cnmgetd(PEEKLINE,
&datain,
255,
&getblock,
IDATAQ,
1) ;

II ,
/* Retrieve the time... */
/* ••. variable is time of day */
/* •.• the result goes here */
/* ••• max length of 255 */

/* Peek the msg before altering */
/* ••• subfunction is peek */
/* ••• result goes here */
/* ••. max length is 255 */
/* .•• use new Origin block */
/* .•. initial data queue (4) */
/* ••• check the first line */

datain.buffer??(datain.size??) = 1\01; /* put null at end of data*/
/* Echoled message? */

if (getblock.Orig_msg_type == 1*1) {
Cnmvlc(&msgbuf,0,"Col1l11and entered was: %s at %.8s",datain.buffer,

time.buffer);

}

Cnmaltd(REPLINE,
&msgbuf,
&getblock,
IDATAQ,
1) ;

Hlbptr->Hlbrc = CNM_GOOO;
}

140 NetView Customization: Using Pli and C

/* Replace the text •••
/* •.• subfunction is replace
/* .•• text of new message
/* .•. used peeked Origin block
/~ •.• initial data queue
/* .•• replace the first line

/* clear rc

*/
*/
*/
*/
*/
*/

*/

Storage Access
The following example illustrates how to display the character representation of
the contents of the storage that NetView can access. For example, after locating
the address of the main vector table using DISPMOD DSIMNTEX, you can display the
first four bytes of the DSIMVT control block, which for NetView R3 this will contain
the character string NV13.

/**/
/* Internal data definitions */
/*********************************.********************************/
int numpanms; /* Number of panms scanned */
int *xaddr; /* Hex value of srce_ptr */
int numbytes; /* Number of bytes to display */
char *inbufr p;
char inputbfr17(4097??) = " "; /* Buffer where data is copied

/* Address to copy from
*/
*/
*/
*/

char *srceptr;
int i,x;
Dsivarch msgbuf;

/* Work counter
/* Buffer for Cnmsmsg

/**/
/* */
/* Execut i on * /
/* */
/**/
inbufr_p = inputbfr;
numbytes = 0;
numpanms = sscanf({char *) &(Cmdbuf->buffer), /* parse cmd buffer */

"%*s%x%x",
&xaddr,
&numbytes);

if (numpanms != 2)
{

}

Cnmvlc(&msgbuf,e, "Invalid
Cnmsmsg{&msgbuf,

MSG,
OPER,
NULLCHAR);

Hlbptr->Hlbrc = 1;
return;

/* Format string */
/* The address to display */
/* For this number of bytes */

/* Address and length given 1 */

number of parameters");
/* No, display error message ••• */
/* ••• message */
/* .•• to the operator */
/* •.• not used */
/* set return code */
/* Terminate processing */

Chapter 9. C High-Level Language Services 141

if (numbytes <= O)
{

/* A valid length given? */

Cnmvlc(&msgbuf,0,"Invalid length given");
Cnmsmsg(&msgbuf, /* No, display error message ••. */

MSG, /* ••. message */
OPER, /* ••. to the operator */
NULLCHAR); /* ..• not used */

Hlbptr->Hlbrc = 1; /* set return code */
return; /* Terminate processing */

}

if (numbytes >= 4096)
{

/* A valid length given? */

Cnmvlc(&msgbuf,0,"Invalid length given, must be less than FFF");
Cnmsmsg(&msgbuf, /* No, display error message ••• */

MSG, /* ... message */
OPER, /* ... to the operator * /
NULLCHAR); /* •.. not used */

Hlbptr->Hlbrc = 1; /* set return code */
return; /* Terminate processing */

}

if (xaddr != NULL)
{

/* If valid address then... */
/* Copy storage... * /

}

Cnmcpys(&xaddr,
&inbufr_p,
numbytes,
FIXTOFIX) ;

/* .•• from the address given */
/* ... to the internal buffer */
/* ••. for up to FFF bytes */
/* •.. data is fixed length type */

if (Hlbptr->Hlbrc == CNM_GOOD)
{

/* Good rc? */

}

for(i=1; i <= (x=ceil(numbytes/64.0)*64); = i + 64)
{
if «(numbytes - i) + 1) >= 64)

{
memmove(msgbuf.buffer,inputbfr+(i-1),64);
msgbuf.size = 64;
}

else

}

{
memmove(msgbuf.buffer,inputbfr+(i-1),numbytes % 64);
msgbuf.size = numbytes % 64;
}
Cnmsmsg(&msgbuf,

MSG,
OPER,
NULLCHAR);

/* Display 64 bytes of storage ... */
/* .•. message */
/* ... to the operator */
/* .•. not used */

else /* Else bad return code */
{

Cnmvlc(&msgbuf,0,"Invalid or protected address");
Cnmsmsg(&msgbuf, /* Send error message... */

MSG, /* ... message * /
OPER, /* ... to the operator */
NULLCHAR); /* .•• not used */

}

142 NetView Customization: Using PLI and C

Data Set Access
The following is an example of opening (using CNMMEMO), reading (using CNMMEMR)

and closing (using CNMMEMC) NetView partitioned data sets. This example reads a
member of DSIf'ARM called DSIDMN, and displays it to the operator.

/**/
/* Internal data definitions */
/**/
int token; /* Token used to match open to */

/* ... read and close */
Dsivarch msgbuf; /* Line that is read */

/**/
/* Open the member * /
/**/

Cnmmemo(&token,
"DSIPARM ",
"DSIDMN ") ;

/* Open the data set member... */
/* ... token returned by Cnmmemo */
/* ... ddname of PDS */
/* ... member name of PDS */

if (Hlbptr->Hlbrc != CNM_GOOD)
{

}
else

Cnmvlc(&msgbuf,
0,
"OPEN FOR DATASET

Cnmsmsg(&msgbuf,
MSG,
OPER,
NULLCHAR);

/* Put error message in msgbuf... */
/* ... do not convert to hex */
FAILED RC= %d",Hlbptr->Hlbrc); /* msg */
/* Send message... */
/* ... member in DDNAME not found */
/* ... single line message */
/* ... to the operator */
/* ... taskname ignored */

Chapter 9. C High-Level Language Services 143

{
/**/
/* Read the member * /
/**/

Cnl11llemr(token,
&msgbuf,
Sa);

while (H1bptr->H1brc ==
{

msgbuf.size = 72;

Cnmsmsg(&msgbuf,
MSG,
OPER,
NUllCHAR);

Cnl11llemr(token,
&msgbuf,
Sa);

}

/* Read the first record... */
/* ... provide token from OPEN */
/* ... resu1t goes here */
/* ... read sa bytes */

CNM_GOOO) /* Read until EOF */

/* only write 72 bytes of record */
/* Write out last record read ••• */
/* ••• write first 72 bytes */
/* ••• sing1e line message */
/* ••• to the operator */
/* ••• taskname ignored */
/* Read the next record ••• */
/* ••• provide token from OPEN */
/* ••• resu1t goes here */
/* ••• read sa bytes */

/**/
/* Close the member * /
/**/

/* Close the P~S member... */
Cnmmemc(token); /* ... provide token from OPEN */

}

144 NetView Customization: Using PU and C

CNMI
NetView provides the Cnmcnmi service routine for use in communicating with
devices in the network via the Communications Network Management Interface
(Cnmi). Any data that is returned may be accessed using the Cnmgetd service
routine to retrieve records from the Cnmi solicited data queue (CNMIO).

The following example uses the Cnmcnmi service routine to send a request
product-set-id data request to a specified pu. Any data returned is sent as a
message to the operator.

The syntax of the command is:

CCNMI puname <OWNIALL>

where:

puname is the name of the PU to be retrieved (required)

OWN implies that vital product data is to be
retrieved for the PU only (default)

ALL implies that vital product data is to be
retrieved for the PU and its attached ports

/**/
/* External data definitions */
/**/
typedef struct
{
short size;
char buffer??(1025??);
} Bigvlc;

Chapter 9. C High-Level Language Services 145

main(int argc, char *argv??(??»
{

/**/
/* Internal data definitions */
/**/
int rcode;
int count;
Dsivarch puname;
Dsivarch msgbuf;
DSiorig getblock;
Bigvlc datain;
char ownorall??(41?);
Dsivarch fwdru;
Dsivarch ru;
Dsivarch own;
Dsivarch all;
Dsivarch puhdr;
Dsivarch endofru;
char *ptr;

/* Return code */
/* Count of scanned args */
/* puname varying length */
/* Message buffer */
/* Area for the work orig block */
/* Buffer for the RU */
/* Own or all placeholder */
/* Forward RU * /
/* RU data */
/* 81 if own specified */
/* 83 if all specified */
/* puname header */
/* end of RU */
/* ptr used to build fwdru */

/**/
/* */
/* Vital Product Data RU definitions */
/* */
/* From the VTAM Progamming Manual, a forward RU is defined below */
/* */
/* Byte Value Description */
/* a 81 Network services, logical services */
/* 1 a8 Management services */
/* 2 1a Request code */
/* 3 aa Format a */
/* 4 aa Ignore target names, */
/* Solicit a reply, and */
/* No CNM header contained */
/* 5 ae Reserved * /
/* 6-7 aaaE Length of NS RU */
/* 8-15 NS RU -- NMVT -- documented in SNA Ref Sum */
/* 8-A 41a38D NS Header for NMVT */
/* B-C aaae Retired */
/* D-E alII PRID */
/* F ae unsolicited NMVT, */
/* only NMVT for this PRID */
/* 1a-16 One MS major vector */
/* la-II aaa6 Length field of PSID (Product Set 10) vector */
/* 12-13 8a9a Code point for PSID */
/* 14-15 Length of subvector */
/* 14 a2 Length of subvector */
/* 15 81 Request information on control unit only */
/* 15 83 Request information on control unit and its */
/* attached devices */
/* 16 F1 From VTAM programming, PU */
/* 17 a8 Length of PU name */
/* 18 PUNAME Eight byte PUNAME, left justified */
/* 2a ae End of RU */
/**/

146 NetVlew Customization: Using PLI and C

/**/
/* Initialization */
/**/
Cnmvlc(&ru,l,1I810810000000000E41038D00000111000006809002");
Cnmvlc(&own,1,"81 1l

);

Cnmvlc(&all,l,1I83");
Cnmvlc(&puhdr,l,"Fl08 11

);

Cnmvlc(&endofru,l,1I00");
rcode = 0;

/**/
/* */
/* Execut ion * /
/* */
/**/
ptr = (char *) &fwdru.buffer;
count = sscanf«char *) &(Cmdbuf->buffer),II%*s%s%s",

puname.buffer,ownorall);

puname.size = strlen(puname.buffer);
if (puname.size < 8) /* Pad with blanks if needed */

strncat(puname.buffer," ",8 - puname.size);

if «count == 1) II (strncmp(ownorall, "OWN" ,3) = 0»
{

}

memmove(ptr,ru.buffer,ru.size);
ptr=ptr+ru.size;
memmove(ptr,own.buffer,own.size);
ptr=ptr+own.size;
memmove{ptr,puhdr.buffer,puhdr.size);
ptr=ptr+puhdr.size;
memmove(ptr,puname.buffer,puname.size);
ptr=ptr+puname.size;
memmove(ptr,endofru.buffer,endofru.size);
fwdru.size = ru.size+own.size+puhdr.size+puname.size+endofru.size;

else
if (strncmp(ownorall,"ALL II ,3) == 0) /* ALL specified */

{
memmove(ptr,ru.buffer,ru.size);
ptr=ptr+ru.size;
memmove(ptr,all.buffer,all.size);
ptr=ptr+all.size;
memmove(ptr,puhdr.buffer,puhdr.size);
ptr=ptr+puhdr.size;
memmove(ptr,puname.buffer,puname.size);
ptr=ptr+puname.size;
memmove(ptr,endofru.buffer,endofru.size);
fwdru.size = ru.size+all.size+puhdr.size+puname.size+endofru.size;
}

else /* Else invalid panm infonm user */
{
Cnmvlc(&msgbuf,O,"Invalid command syntax");
Cnmsmsg{&msgbuf,MSG,TASK,Origblck->Orig_task};
rcode = 8;
}

Chapter 9. C High-Level Language Services 147

if (rcode == 0) {

Cnmcnmi(SENDRPLY,
&fwdru,
puname.buffer,
180);

/* Good so far? */
/* Send RU over the CNMI... */
/* ... expect a reply */
/* ... RU built above */
/* ... to the PU name specified */
/* ... timeout after 3 minutes */

if (Hlbptr->Hlbrc == CNM_GOOD) /* Everything ok? */
{ /* Yes, continue */

}

Cnmgetd(GETLINE,
&datain,
1024,
&getblock,
CNMIQ,
1) ;

while (Hlbptr->Hlbrc == 0)
{

/* Read in the first RU returned */
/* ... a single RU */
/* ... inti here */
/* ... truncate after 1024 bytes */
/* ... provide a new origin block */
/* ... on the CNMI queue (5) */
/* ... the first RU */

/* End of queue reached? */

/* Send info to the operator ••• */
Cnmsmsg(&datain, /* ... from here */

}

MSG, /* ... issue message * /
TASK, /* ... to the task * /

Origblck->Orig_task); /* ... that originated request */

Cnmgetd(GETLINE,
&datain,
1024,
&getblock,
CNMIQ,
1);

/* Read in the next RU returned */
/* ... a single RU */
/* ... inti here */
/* ... truncate after 1024 bytes */
/* ... provide a new origin block */
/* ... on the CNMI queue (5) */
/* ... the first RU */

else /* CNMI error */

148 NetVlew Customization: Using PLI and C

{

}
}

/* Not invoked under a OST */
if (Hlbptr->Hlbrc == CNM BAD INVOCATION)

Cnmvlc(&msgbuf, - /* Buffer for message text */
a, /* Do not convert to hex */
"Must run under a OST"); /* Error message */

else
/* PU never answered request */

if (Hlbptr->Hlbrc == CNM_TIME_OUT)
Cnmvlc(&msgbuf, /* Buffer for message text */

a, /* Do not convert to hex */
"PU never answered"); /* Error message */

else
/* PU gave a negative response */

if (Hlbptr->Hlbrc == CNM_NEG_RESPONSE)
Cnmvlc(&msgbuf, /* Buffer for message text */

a, /* Do not convert to hex */
"PU gave negative response");

else
/* Cnmi failure */

Cnmvlc(&msgbuf, /* Buffer for message text */
a, /* Do not convert to hex */
"CNMI request failed rc = %d",
Hlbptr->Hlbrc); /* Rc from CNMI routine */

Cnmsmsg(&msgbuf, /* Send error message to user ••• */
MSG, /* ... single line message */
TASK, /* ... dest. type task */
Origblck->Orig_task); /* ... dest. id origin task */

Hlbptr->Hlbrc = rcode;

/* End of CNMI error
/* End of Good so far
/* Issue rc

*/
*/
*/

Chapter 9. C High-Level Language Services 149

VSAM (Keyed File Access)
The following is an example of coding a Netview HLL command processor that
allows 110 to a VSAM file via the Cnmkio service routine.

It must execute on a DST. To run this command on a DST, either use the Cnmsmsg
service routine (with a type of COMMAND) or use the EXCMD command.

This example will create a data base that contains 5 records with the following
keys and data:

KEY DATA
01 A
02 B
03 ·C
04 D
05 E

150 NetView Customization: Using PLI and C

/**/
/* Internal data definitions */
/**/
Dsivarch rec; /* store output data for Cnmkio */
Os i varch inrec; /* store data returned by Cnmki 0 * / .
Dsivarch key; /* store key for Cnmkio */
Dsivarch msg; /* store messages to be displayed*/
char outdata??(6??) = "ABCDE"; /* output data */
char keydata??(ll??) = "8182838485"; /* data for building keys */
char *keyptr; /* pointer to key data */
char *outptr; /* pointer to output data */
int i; /* counter * /

/**/
/* */
/* Executi on * /
/* */
/**/

/**/
/* WRITE OUT 5 RECORDS... * /
/* */
/* PUT DIRECT must be used for new records, and PUT UPDATE */
/* must be used for old records. Therefore, we will use GET */
/* EQual to determine if the record is new or not. If new, */
/* then a PUT DIRECT will follow ••• if not, then a put update */
/* follows. */
/* */
/**/
keyptr = keydata;
outptr = outdata;
for (; = 8; i <= 4; i++) /* For 5 records */
{

memmove(key.buffer,keyptr,2); /* Set key portion of record */
key.size = 2; /* Set size of key buffer */
keyptr = keyptr+2; /* Get next key ;n table */
memmove(rec.buffer,key.buffer,2); /* Record must have key 1st */
memmove(rec.buffer+2,outptr,1);/* attach data to key */
rec.size = 3; /* Set size of record */
outptr = outptr+1; /* Set pointer to record */

Cnmkio(GET_EQ,
&inrec,
18,
&key,
UPDATE);

/* Call KEYIO •••
/* ••• requesting a get
/* ••• data goes in here
/* ••• 18 bytes max input
/* ••• key is in key
/* •.• this is an update

*/
*/
*/
*/
*/
*/

Chapter 9. C High-Level Language Services 151

}

if (Hlbptr->Hlbrc == CNM_NOT_FOUND)

Cnmkio(PUT,
&rec,
9,

else

&key,
DIRECT) ;

Cnmkio(PUT,
&rec,
9,
&key,
UPDATE);

/* Call KEYIO .••
/* ••• requesting a put
/* ••• data goes in here
/* ••• not used
/* ••• key is in key
/* ••• this is an update

/* Call KEYIO •••
/* ••• requesting a put
/* .•• data goes in here
/* ••• not used
/* ••• key is in key
/* ••• this is an update

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

if (Hlbptr->Hlbrc 1= CNM_GOOD)
{ /* if put fa il ed * /

/* put message in varying length */
Cnmvlc(&msg, /* character string... */

9, /* do not convert to hex */
"Cnmkeyio PUT request failed with RC: %d",Hlbptr->Hlbrc);

/* put out error message... */
Cnmsmsg(&msg, /* ••• message text * /

}

MSG,
OPER,
NULLCHAR);

/* ••• type is message */
/* ••• send to issuing operator */
/* ••• not used */

/**/
/* Read in the 5 records... */
/**/
keyptr = keydata;
for (i = 9; i <= 4; i++) /* For 5 records */
{

}

memmove(key.buffer,keyptr,2}; /* Set key portion of record */
key. s ize = 2;
keyptr = keyptr+2;

Cnmkio(GET_EQ,
&inrec,
19,
&key,
NOUPDATE);

/* Call KEYIO •••
/* ••• requesting a put
/* .•. data goes in here
/* ••• not used
/* ••• key is in key
/* ••• this is an not update

*/
*/
*/
*/
*/
*/

inrec.buffer??(inrec.size??) = 1\91; /* add NULL to end of */
/* ..• data */

Cnmvlc(&msg,9,"Key: %.2s Record: %s",key.buffer,inrec.buffer);
Cnmsmsg(&msg,MSG,SYSOP,NULLCHAR};/* display key and record */

Hlbptr->Hlbrc = CNM_GOOD; /* Issue clean rc */

152 NetView Customization: Using PLI and C

DST User Exit
The following is an example of coding a Netview HLL user exit routine that primes
an empty VSAM data base for a DST. If a VSAM data base has not been primed (has
at least one record), subsequent 1/0 requests will fail.

/**/

/* */
/* Descriptive Name: High Level Language C DSIEX82A Example */

/* Change Activity: */
/* date,author: description of changes */
/**/
#pragma runopts (NOEXECOPS,NOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K»

/**/
/* Standard include files
/**/
#include <string.h> /* String functions */
#include <stdlib.h> /* String functions */
#include <stdarg.h> /* String functions */

Chapter 9. C High-Level Language Services 153

/**/
/* NetView high level language include files */
/**/
'include "dsic.h" /* Include HLL macros */

/**/
/* External data definitions */
/**/
Dsihlb *Hlbptr; /* Pointer to the HLB */
Dsivarch *Cmdbuf; /* Pointer to command buffer */
Dsiorig *Origblck; /* Pointer to Origin block */

main(int argc, char *argv??(??»
{

}

/**/
/* Internal data definitions */
/**/

/**/
/* Convert parameter pOinters from character to hex addresses */
/**/
sscanf(argv??(l??),"%x",&Hlbptr);
sscanf(argv??(2??),"%x",&Cmdbuf);
sscanf(argv??(3??),"%x",&Origblck);

/**/
/* Initialization */
/**/

/**/
/* */
/* Execut ion * /
/* */
/**/

Cnmvlc(Cmdbuf,
1,
"0000");

memmove«&(Cmdbuf->buffer??(0??»+2),
"l ow rec II , 7) ;

Cmdbuf->size = 9;

Hlbptr->Hlbrc = USERSWAP;

/* Set key •••
/* ••• convert to hex
/* ... hex zeroes

/* Set rest of key ••.
/* ... move in 7 bytes

/* set new Cmdbuf size

/* Set USERSWAP rc

*/
*/
*/

*/
*/

*/

*/

154 NetView Customization: Using PLI and C

User Exit
The following is an example of coding a user exit routine DSIEX03 that sets a task
global variable equal to the last time a command was entered on the system. If the
last command was the CSNDDAT command, the task global variable will not be set.
The CSNDDAT command (see "SEND Side" on page 160) is used to interrogate the
variable value.-

/**1
/* *1
/* Descriptive Name: High Level Language PL/I DSIEX03 Example *1

1* Change Act i vi ty: * I
1* date,author: description of changes *1
1* *1
1**1

#pragma runopts (NOEXECOPS,NOSTAE,NOSPIE.ISASIZE(4K),ISAINC(4K»

/**1
1* Standard include files
1**1
#include <stdlib.h> 1* Standard library *1
'include <stdarg.h> /* Standard args *1

1**1
/* NetView high level language include files *1
1**1
'include "dsic.h" 1* Include HLL macros *1

Chapter 9. C High-Level Language Services 155

/**/
/* External data definitions */
/**/
Dsihlb *Hlbptr; /* Pointer to the HLB */
Dsivarch *Cmdbuf; /* Pointer to command buffer */
Dsiorig *Origblck; /* Pointer to Origin block */

Dsivarch time;
Dsivarch cvname; .

/* Time last command entered */
/* Name of variable for Cnmvars */

main(int argc, char *argv??{??»
{

/**/
/* Internal data definitions */
/**/

/**/
/* Convert parameter pointers from character to hex addresses */
/**/
sscanf(argv??{l??),"%x",&Hlbptr);
sscanf(argv??{2??),"%x ll ,&Cmdbuf);
sscanf(argv?? (3??), ,,%x·1I ,&Origbl ck);

/**/
/* Initialization */
/**/

/**/
/* */
/* Execution */
/* */
/**/

/* Command other than CSNDDAT? */
if (strstr(Cmdbuf->buffer,"CSNDDATII) == NULL)
{ /* Yes... */

Cnminfc{"TIME II, /* ••• what time is it? */
&time, /* ••• answer goes here * /
255); /* ••• length of time */

}

Cnmvlc{&cvname,
a ,
IILAST_COMMAND_TIMEII);

Cnmvars{PUT,
&time,
a,
&cvname,
TGLOBAL);

Hlbptr->Hlbrc = USERASIS;
}

156 NetView Custpmization: Using PLI and C

/* Set name of variable •••
/* •.. do not convert to hex

/* ••• name of variable

/* Put answer in task global •••
/* .•. information in TIME
/* •.• length of time
/* •.• by the name of
/* ••. task global pool

/* clear rc

*/
*/
*/

*/
*/
*/
*/
*/

*/

Wait for Data

WAIT Side
The following is part of an example of sending messages with a type of request,
waiting on the. response, and parsing the results.

The purpose of the" example is to find the last time that a command was entered on
the given OST. A task global variable, LAST_COMMAND_TIME is set by DSIEX03, (see
"User Exit" on page 155) and this value is retrieved by the CSNDDAT command(see
"SEND Side" on page 160) that is invoked on the target task. The code in this
example is the CWATDAT command.

The syntax of the command is:

CWATDAT taskname

The flow of the wait for data function is:

OST

Invokes
CWATDAT command
and specifies the
target task to
send the request

CWATDAT using
CNMSMSG sends a ---- >
request to the
OST specified

OST issues a WAIT
FOR DATA

TARGET
OST

CSNDDAT command is
invoked on the
OST. It finds the
task global variable
set by DSIEX03.

CNMSMSG type of
< --- DATA is invoked with

the value retrieved

OSTwait is
satisfied --- wake up
and issue message
to the operator

Chapter 9. C High-Level Language Services 157

/**/
/* Internal data definitions */
/**/
Osiorig getblock; /* Area for the Orig Block */
Osivarch time; /* Time last command entered */
char targtask?1(9?1); /* Task of inquiry */
int len; /* length of targtask */
Osivarch msgbuf; /* Message buffer */
char *token; /* used to parse command */

/**/
/* */
/* Execut ion * /
/* */
/**/

token = strtok«char *) &(Cmdbuf->buffer)," "); /* parse command */
token = strtok(NULL, II "); /* buffer for target task name */

if (strlen(token) > 8)
token = NULL;

strcpy(targtask,token);

len = strlen(targtask);

/* node name invalid */

strncat(targtask," ",8 - len);

if (token != NULL) /* Was target task entered? */
{ /* Syntax ok... * /
if (strncmp(targtask,(char *) &(Origblck->Orig_task),

strlen(targtask}) == a)
{ /* is operator who issued CWATOAT being queried?*/

/* put error message in a varying*/
Cnmvlc(&msgbuf, /* length character string... */

a, /* •.• do not convert to hex * /
"Target task cannot be task invoking CWATOAT");

Cnmsmsg(&msgbuf,
MSG,

}
else
{

OPER,
NULLCHAR};

Cnmvlc(&msgbuf,
a,
"CSNDDAT");

Cnmsmsg(&msgbuf,
REQUEST,
TASK,
targtask);

158 NetView Customization: Using PLI and C

/* display the message... */
/* ••• the message text */
/* .•• type is message */
/* .•. send to invoking operator */
/* ••• not used */

/* Put command in msgbuf
/* ••• do not convert to hex
/* ••• command

*/
*/
*/

/* Invoke CSNOOAT command */
/* ••. type is request */
/* ••• on a task */
/* ••• specified by input command */

Cnmvlc(&msgbuf, /* Put WAIT command in msgbuf */
a, /* •.• do not. convert to hex */
"WAIT 12a SECONDS FOR DATA");

Cnmcmd(&msgbuf); /* Invoke WAIT command */

if (Hlbptr->Hlbrc != CNM_DATA_ON_WAIT) /* Wait successful?*/
{ /* No... * /

}

Cnmvlc(&msgbuf, /* Put error message in msgbuf */
a, /* ••• do not convert to hex */
"Wait for data abnormally ended");

Cnmsmsg(&msgbuf,
MSG,
OPER,
NULLCHAR);

/* Send error message •••
/* .•• type is message
/* ••• to the operator
/* ••• not used

*/
*/
*/
*/

else /* Wait was successful */
{

Cnmgetd(GETMSG,
&time,
256,
&getblock,
DATAQ,
a);

/* Process the results */
/* Read in the response */
/* ••• read into time variable */
/* ••• give plenty of room */
/* ••. provide own origin block */
/* ... on the data queue (3) */
/* .•. index not used */

/**/
/* Remove process and task id from the buffer I!!! */
/* First 8 bytes and the last 8 bytes */
/**/

}

}
}

else
{

strncpy(msgbuf.buffer,time.buffer+8,time.size-8);
msgbuf.size = time. size - 8;

Cnmsmsg(&msgbuf,
MSG,
OPER,
NULLCHAR);

/* Inform user •••
/* ••• type is message
/* ••• to the operator
/* ••. not used

/* Target task not entered

*/
*/
*/
*/

*/

Cnmvlc(&msgbuf, /* Put error message in msgbuf */

}

a, /* ••• do not convert to hex * /
"Irivalid Target Task");

Cnmsmsg(&msgbuf,
MSG,
OPER,
NULLCHAR);

/* Inform user of syntax error */
/* ..• type is message */
/* •.• to the operator */
/* ••• not used */

Chapter 9. C High-Level Language Services 159

SEND Side
The following is part of an example for sending messages with a type of request,
waiting on the response, and parsing the results.

The purpose of the example is to find the last time that a command was entered on
the given task. A task global variable, LAST_COMMAND_TIME is set by DSIEX03, (see
"User Exit" on page 155) This value is retrieved by the CSNDDAT command that is
invoked by the CWATDAT command(see "Wait for Data" on page 157) on the target
task. This command processor is executed when the CSNDDAT command is entered.

160 NetView Customization: Using PLI and C

/**/
/* Internal data definitions */
/**/
Dsivarch time, /* Date the last command was */

msgbuf,
cvname,
myopid;

/* ... was entered */
/* Buffer for Cnmsmsg */
/* Buffer for name of variable */
/* operator id we are running */
/* ... under */

/**/
/* */
/* Execution */
/* */
/**/

Cnminfc("OPID
&myopid,
8);

II ,
/* determine my opid */
/* ... variable is opid */
/* ... put result here */
/* ... truncate after 8 bytes */

if (strncmp«char *) &(myopid.buffer),(char *) &(Origblck->Orig_task),
myopid.size) == a)

{ /* CSNDDAT invoked directly? */
/* put error message in a varying*/
/* length character string... */
/* ... do not convert to hex */

Cnmvlc(&msgbuf,
a,
"Cannot issue CSNDDAT directly"); /* CSNDDAT command •.. */

Cnmsmsg(&msgbuf,
MSG,

}
else

{

OPER,
NULLCHAR);

Cnmvlc(&cvname,
a,
"LAST_COMMAND_TIME");

Cnmvars(GET,
&time,
256,
&cvname,
TGLOBAL);

/* .•• issued directly */

/* display the message... */
/* ••• the message text */
/* ••• type is message */
/* .•. send to invoking operator */
/* ... not used . */

/* Set variable name
/* ••• do not convert to hex

/* ••. variable name

/* Retrieve last time variable
/* ••• read in the value
/* ... into time
/* ••• truncate at 256
/* ••• of the variable
/* ••• in the task global pool

*/
*/
*/

*/
*/
*/
*/
*/
*/

Chapter 9. C High-Level Language Services 161

}

if (Hlbptr->Hlbrc == CNM_GOOD) 1* Variable set? */
{ 1* Yes, continue... */

}

Cnmvlc(&msgbuf, 1* Put data in msgbuf... */
e, 1* ... do not convert to hex * 1
U%.8sLast cOl1llland entered at: %.8s",I* ••• must precede*/
Origblck->Orig_process, 1* data with origin process id*/
time.buffer); 1* ... put in time */

1* Send data back to requestor *1
Cnmsmsg(&msgbuf, 1* ... text of message *1

DATA, 1* ... message is data * /
TASK, 1* ... to a task * 1
Origblck->Orig_task); 1* ... that invoked this *1

else 1* No inform user... *1
{

}

Cnmvlc(&msgbuf, 1* Put error message in msgbuf *1
e, 1* ... do not convert to hex * 1
U%.8sMust install DSIEXG3 to set time variableu

,

Origblck->Orig_process);

1* Send message to requestor *1
Cnmsmsg(&msgbuf, 1* ... text of error message *1

DATA, 1* ... message is data *1
TASK, 1* ... to a task *1
Origblck->Orig_task); 1* ... that invoked this *1

162 NetView Customization: Using PLI and C

Chapter 10. Compiling, Link-Editing, and Running Your C
Program

Compiling

Link-editing

Once you have a C compiler installed, you can modify the C compile and link-edit
JCL to use with NetView. The objective of this chapter is to provide the information
necessary to make these modifications.

Several examples of compile and link-edit JCL are provided in this chapter. These
are given as examples only. You are responsible for modifying the compile and
link-edit JCL samples that were shipped with the C compiler.

You must have completed the installation steps for HLL as described in the NetView
Instal/ation and Administration Guide before attempting to execute C programs in
the NetView envi ronment.

In order to compile C programs using NetView services, it is necessary to modify
the compile step in the JCL to reference the NetView macro library(s). You will
need to include in the compile JCL a SYSLIB statement for SYS1.MACLIB. An example
of modifications to compile step JCL is shown bel?w:

//COMPILE EXEC PGM=EDCCOMP,PARM=('RENT'),REGION=&CREGSIZ

//SYSLIB DO DSN=SYS1 •• MACLIB,DISP=SHR

The following rules apply when link-editing C modules:

• All C load modules must be REENTRANT.

• C load modules can reside in 24 or 31 bit storage and can be entered in either
addressing mode.

• All C load modules must be link-edited with DSIHSTUB and DSIEXC. DSIHSTUB must
be the ENTRY poi nt.

In order to link-edit a C module to run with NetView, you must modify the link-edit
step in the JCL to reference the appropriate NetView Library(s). This will allow you
to include DSIHSTUB and DSIEXC at link-edit time. Add SYS1.NVULIB and SYS1.LINKLIB to
the list of automatic call libraries already defined by SYSLIB in the C link-edit step of
the JCL. An example is shown.

Chapter 10. Compiling, Link-Editing, and Running Your C Program 163

Running

IILKED EXEC PGM IEWL,
II PARM='XREF,RENT,LET,LIST,AMODE=&AMODE,RMODE=&RMODE ' ,
II REGION=4096K,COND=(8,LE,COMPILE)

IISYSLIB DO
II DO

INCLUDE
INCLUDE
ORDER
ENTRY
MODE
NAME

DSN=SYSl.NVULIB,DISP=SHR
DSN=SYSl.LINKLIB,DISP=SHR

SYSLIB(DSIHSTUB)
SYSLIB(DSIEXC)
DSIHSTUB
DSIHSTUB
AMODE(31),RMODE(ANY)
LMODNAME(R)

Nole: All HLL modules must be compiled and link-edited with the RENT option. For
IBM C/370, you will have to execute the PRE-LINKEDIT step and code the RENT compiler
option. The resulting object deck(s) must then be link-edited with the RENT option.

A set of run-time libraries will be shipped with the compiler. In order to execute a
C program in the NetView environment, you must modify your NetView start up pro
cedure to reference the appropriate C run-time libraries. Refer to the NetView
Installation and Administration Guide for more information.

HLL command processors require a CMDMDL statement in member DSICMD of the
DSIPARM data set. User exits are loaded at initialization and need to conform to
user exit naming conventions. For more information on user exits see Chapter 2
on page 9.

164 NetView Customization: Using PLI and C

Part 4. HLL Debugging and Service Routine Reference

Chapter 11. Testing And Debugging 167
Remote Interactive Debugger (RID) 167

Using RID to Monitor a Task 167
RID Command ... , 167
Remote Interactive Debugger RID Scenarios 169

Chapter 12. Command and Service Reference 173
Notational Conventions 173
Composite Return Codes 174
Command Reference 177

GO Command .. 177
QUEUE Command 179
RESET Command 180
TRAP Command .. 183
WAIT Command .. 186

HLL Service Routine Reference 190
CNMALTD (CNMALTDATA) - Alter Data On A Queue 190
CNMCELL (CNMSTRCELL) - Storage Cell 193
CNMCMD (CNMCOMMAND) - Execute NetView Commands 195
CNMCNMI (CNMI) - CNMI Access Under a DST 199
CNMCPYS (CNMCOPYSTR) - Copy Storage 201
CNMGETA (CNMGETATTR) - Query Message Attributes 203
CNMGETD (CNMGETDATA) - Data Queue Manipulation 206
CNMINFC (CNMINFOC) - Query NetView Character Information 209
CNMINFI (CNMINFOI) - Query NetView Integer Information 211
CNMKIO (CNMKEYIO) - Keyed File Access Under a DST 213
CNMLK (CNMLOCK) - Control A Lock 216
CNMMEMO (CNMOPENMEM) - Open NetView Partitioned Data Set 218
CNMMEMR (CNMREADMEM) - Read NetView Partitioned Data Set 220
CNMMEMC (CNMCLOSMEM) - Close NetView Partitioned Data Set 222
CNMNAMS (CNMNAMESTR) - Named Storage 223
CNMPOOL (CNMSTRPOOL) - Storage Pool 226
CNMSCAN (CNMSSCAN) - Parse and Convert a Character String-(PL/I) . 229
CNMSCOP (CNMSCOPECK) - Scope Check for Security 232
CNMSMSG (CNMSENDMSG) - Send Message or Command 234
CNMVARS (CNMVARPOOL) - Set or Retrieve Variables 238

Part 4. HLL Debugging and Service -Routine Reference 165

166 NetView Customization: Using PLI and C

Chapter 11. Testing And Debugging

It is assumed that your HLL module has been compiled and link-edited successfully
upon entry into this chapter. Upon completion of this chapter, the user should be
familiar with the Ne~View Remote Interactive Debugger (RID) and how it can be
used to debug HLL programs.

Remote Interactive Debugger (RID)
NetView's Remote Interactive Debugger (RID), gives you the ability to checkpoint
entry and exit parameters to HLL service routines and display storage at various
predetermined debug pOints in the code.

Using RID to Monitor a Task

RID Command

NetView's interactive debug facility gives you the ability to monitor and debug HLL

modules during execution. It is necessary to determine a monitoring task and a
target task to debug HLL modules effectively. The monitoring task must be an OST.

It is from this task that you will issue the RID commands which control the execution
of the HLL module running under the target task. The target task may be an OST,

PPT, NNT, or a DST.

RID begins to monitor the target task immediately after the RID command is issued
from the monitoring task. If RID is invoked in step mode the monitoring task con
trols the execution of the HLL module running under the target task. The monitoring
task will continue to control the execution of HLL modules running under the target
task until RID is invoked with the RUN or END option.

The most common use of the debugger is the default option which will display
parameters upon entry to (HAPIENTR) and exit from (HAPIEXIT) HLL service routines.

The following syntax describes the RID command as it is issued from the monitoring
or debugging task.

Where:

STEP
When the STEP option is specified, the target task will be stopped whenever
control is given to a debug point that matches the criteria specified by the
MODNAME or OPTION operand. Messages providing data captured at the debug
point are displayed at the operator station that invoked RID to monitor the target
task. STEP is the default.

Chapter 11. Testing And Debugging 167

RUN
The RUN option is similar to the STEP option, except that the target task con
tinues to execute after issuing the messages at the debug point(s). The RUN

option will resume execution of a task stopped in STEP mode.

CONTINUE
The CONTINUE option is used to resume execution of a task that was stopped by
the STEP option of RID. New debug point match criteria may be specified in con
junction with the CONTINUE option. The CONTINUE keyword is provided for read
ability only. Execution can be resumed by reissuing the RID command with its
original operands.

END
The END option will cause RID debugging of a task to cease and allow other
operators to invoke RID for the target task. If the target task is stopped and RID

is invoked with the END option, the HLL program running under the target task is
resumed.

MODNAME
Name of the module being monitored by RID. If * is specified, RID will monitor
all HLL programs running under the target task. * is the default.

OPTION
Specifies the type of debug point. * is the default.

*

HAPIENTR

HAPIEXIT

Usage Notes:

All debug points will be displayed.

Entry to HLL API service routine

Exit from HLL API service routine

A NetView task can only be monitored (using RID) by one NetView operator at a
time.

It is not recommended to use RID to monitor or debug HLL command processors
running under the PPT. Running RID against the PPT causes the PPT to get sus
pended which could cause undesirable results if timer sensitive functions (such as
AT or EVERY) are being performed.

The user is required to code a list of parameters for each HLL service routine invo
cation. When activated, RID will display these parameters and their values on entry
to and exit from each HLL service routine. The maximum number of data fields that
RID is capable of displaying is ten. This is important when using RID to monitor
calls to and from CNMSCAN. The user can specify a maximum of 14 arguments on a
call to CNMSCAN. This means that the user may not be able to view the complete
parameter list when monitoring CNMSCAN invocations.

The default value (*) for MODNAME and OPTION will be used until a value is specified.
Once a value has been specified, it will be used on all successive RID invocations
unless explicitly overridden. MODNAME and OPTION will be reset to the default values
once RID is invoked with the END option.

168 NetView Customization: Using PLI and C

Return Codes:

CNM_GOOD 0 Everything OK

CNM_NOT _F9UND 20 Task not found

CNM_NO_STORAGE 24 Non-zero return code from
OSIGET macro. (See
NetView Customization:
Using Assembler for more
information on the OSIGET

macro).

CNM_BAD_OPTION 128 Invalid option

CNM_BAD _ TASKNAME 164 Task name too long

CNM_BAD_MODNAME 168 Module name too long

CNM_BAD_COMBO 176 Invalid combination of
options

CNM_TVBJNUSE 180 TVB in use

CNM_RID JNUSE 184 RIO in use

CNM_RID_SELF 188 Debug task and target task
can not be the same.

CNM_BAD_PUSH + X 4000 + X Non-zero return code X
from OSIPUSH macro. (See
NetView Customization:
Using Assembler for more
information on the OSIPUSH

macro).

CNM_BAD_SNTXS + X 17000 + X Non-zero return code X.
See values for X below.

Values for X:

4 Invalid syntax.

Remote Interactive Debugger RID Scenarios
The following scenario describes how RIO can be used to monitor or debug an HLL

module. For the purpose of this example, we have assumed that the user has
chosen to debug an HLL program that has already been compiled and link-edited
into NetView. The process for debugging HLL modules written in c and PUI are
similar except for some slight differences in the RIO panels that are displayed. For
this example, YOURPGM is the name of the HLL command processor that will be mon
itored while executing under target task OPER1. OPER2 has been chosen as the mon
itoring or debugging task.

Invoke RIO by issuing the following command from OPER2:

RID TASK=OPERI

The following shows the system response. RIO defaults to step mode operation.
Execution of YOURPGM will be halted at each debug point.

Chapter 11. Testing And Debugging 169

From OPER1, type the name of the HLL program which you have chosen to debug.

YOURPGM

The following screen is displayed on OPER2'S console. This is the entry screen
(HAPtENTR) for your PLlt program (10= PLIENTRY). The 10 for the entry screen for a C

program is CENTRY.

Figure 5. PLII Entry Screen for YOURPGM

The numbered boxes in Figure 5 are described as follows:

o

170 NetView Customization: Using PLI and C

Message CNM9871 displays the following information:

TASK
Name of the target task being monitored by RID

MOD
Name of the module being monitored by RID

TYPE
Type of debug point currently being displayed

10
Unique identifier for the debug point being displayed.

SEa
The sequence number of this RID panel.

Message CNM988t disp"lays the addresses of the MVT, TVB, TIB,

TRB, and the contents of Register 13 which points to your
SAVEAREA. MVT, TVB and TIB are described in the control block
reference section of the NetView Customization: Assembler
manual. TRB is the Transaction Block and is used only by IBM

service.

IJ HLBPTR, BUFFER, ORIGBLCK are the initial parameters passed to
your command processor from NetView. ISASIZ, HEAPSIZ and
PLiOPTS are the default PUI run-time values unless you have
overridden these values in your'HLL program.

Describes how each of the variables in D is declared: H-Hex,
. D-Dump, C-Character, S-String, U-Unsigned, I-Integer
A-Address.

Lengths of the variables in D that are expected by the HLL
service routi nes.

Addresses in storage where the values for the variables in D
are stored.

Values associated with each of the variables in g.

Continue to the next debug point by entering the following RID command from
OPER2:

RID TASK=OPERl,CONTINUE

Since OPTION was not specified, RID will display panels upon entrance to (HAPIENTR)
and exit from (HAPIEXIT) all HLL service routines invoked from 1* the HLL program
being debugged. In Figure 6, RID is displaying the parameters on entry to
(HAPIENTR) the CNMSMSG service routine. The parameters for each HLL service
routine are explained in Chapter 12.

Figure 6. Entry Screen for CNMSMSG

Continue to the next debug point by entering the following RID command from
OPER2:

RID TASK=OPERI

Notice that it is not necessary to issue the RID command with the CONTINUE operand
when you want to resume execution of a task. CONTINUE is used for readability.
Figure 7 on page 172 displays the parameters on exit from the CNMSMSG service
routine. Note that RETCODE has been added. RETCODE is the value of HLBRC (Hlbrc
for C programs) on exit from an HLL service routine. \

Chapter 11. Testing And Debugging 171

Figure 7. Exit Screen for CNMSMSG

Continue to the next debug point by entering the following RID command from
OPER2:

RID TASK=OPERI

The final RID panel displayed in Figure 8 is a PUI exit panel that corresponds to the
PLIENTRY panel in Figure 6 on page 171. Notice that TYPE = HAPIEXIT and 10=PLlEXIT.

If this were a c program, 10 would be CEXIT. Notice that RETCOoE has been added but
ISASIZ, HEAPSIZ and PLIOPTS are no longer displayed.

Figure 8. PUI Exit Screen for YOURPGM

172 NetView Customization: Using PLI and C

Chapter 12. Command and Service Reference

This chapter assumes that you have an understanding of the information discussed
in the previous chapters. Upon completion of this chapter, you should have an'
understanding of each of the HLL commands and service routines and their associ
ated parameters.

It primarily contains general-use programming interfaces, which allow the cus
tomer to write programs that use the services of NetView. However, this chapter
also provides the following types of information, which are explicitly identified
where they occu r:

Installation exits and other product-sensitive interfaces are provided to allow the
customer installation to perform tasks such as product tailoring, monitoring, mod
ification, or diagnosis. They are dep,endent on the detailed design or implementa
tion of the product. Such interfaces should be used only for those specialized
purposes. Because of their dependencies on detailed design and implementation,
it is to be expected that programs written to such interfaces may need to be
changed in order to run with new product releases or versions, or as a result of
service.

Notational Conventions
The following notational conventions apply to the commands and service routines
described in this chapter.

lowercase item
Lowercase bold-faced letters represent parameters for which you must
supply the value, address, or name, rather than the literal information.

UPPERCASE Item
Uppercase bold-faced letters represent the valid literal values for a
specified parameter.

underscored Item

Braces { }

An underscored item represents the default value of a particular param
eter. If you specify no parameter, NetView uses the default value.

Small braces enclose the different options for a parameter. Large
braces enclose mutually exclusive parameters; you must select one,
and only one, of these parameters. Do not include the braces when
coding the information.

Brackets []

OR-sign I

Brackets enclose an optional parameter. Optional parameters can be
included or omitted independently of other parameters. Do not include
the brackets when coding the information.

The OR-sign separates the options for a required (brace-enclosed)
parameter or for an optional (bracket-enclosed) parameter. For a
required parameter, one of the options must be coded. For an optional
parameter, none of the options have to be coded. Do not type the
OR-sign when coding the information.

Chapter 12. Command and Service Heference 173

Composite Return Codes
Most of the NetView commands, command lists, and High-Level Language (HLL)

service routines generate return codes upon completion. There are two types of
return codes; simple and composite. A simple return code is a constant value that
requires no computation. A composite return code is a calculated value that con
sists of known (constant) and one or more unknown values.

The return code section at the end of each HLL command and service routine pro
vides a chart of the following:

1. the return code represented in terms of constants and unknown values (if
applicable)

2. the return code represented in terms of resolved constants and unknown
values (if applicable)

3. a description of why the return code was issued.

Several of the descriptions will refer the user to a NetView macro. Each of these
macros is referenced in NetView Customization: Using Assembler.

The unknown values of a composite return code can be resolved in the following
manner.

1. Start with the following equation:

HLBRC = Composite return code equation

2. Resolve all known values. The first and most obvious known value is that of
HLBRC. All other known values are represented as constants in DSIPCNM (see
Appendix A) and DSICCNM (see Appendix C). In the case where there is more
than one unknown value to resolve (x and v), the remaining calculated value
will be split into a major and minor return code.

Example (1)

Upon completion of a call to CNMNAMS, HLBRC=4004. A return code value in the 4000
range implies that the composite return code equation is:

CNM_BAD_PUSH + X

After resolving the known values, we see that the unknown value X, is equal to 4.
The user should refer to the return code section of CNMNAMS, which would indicate
that the return code was actually generated by the DSIPUSH macro. See this macro
in NetView Customization: Using Assembler for the description of the return code.

HLBRC = CNM_BAD_PUSH + X
4004 = 4000 + X

4004 - 4000 = X
4 = X

174 NetView Customization: Using PLI and C

Example (2)

Upon completion of a call to CNMCMD, HLBRC=-310B. A return code value in the -3000
range implies that the composite return code equation is:

X - CNM_BAD_EXCMS

Resolve the known val ues:

HLBRC = X - CNM_BAD_EXCMS
-3108 = X - 3000

-3108 + 3000 = X
-108 = X

A value of -108 for X implies that X = SWBEXCNF - V. (See the return code section
of CNMCMD.) After resolving the known values, the user will see that the unknown
value V, is 8. The user should again refer to the return code section of CNMCMD

which would indicate that the return code was actually generated by the DSICES

macro. See this macro in NetView Customization: Using Assembler for the
description of the return code.

-108 = SWBEXCNF - Y
-108 = -100 - Y

-108 + 100 = -y
-(-108+100) = y

8 = y

Example (3)

Upon completion of a call to CNMCNMI, HLBRC = 21600. A return code value greater
than 20000 for CNMCNMI implies that the composite return code equation is:

CNM_BAD_ZCSMS + (X * 100) + Y

After resolving the known values, the user will see that the unknown values X and
Yare 16 and 0 respectively. The user should refer to the return code section of
CNMCNMI which would indicate that the return code was actually generated by the
DSIZCSMS macro. See this macro in NetView Customization: Using Assembler for
the description of the major and minor return codes.

HLBRC = CNM_BAD_ZCSMS + (X * 100) + Y
21600 = 20000 + (X * 100) + Y

21600 - 20000 = (X * 100) + Y
1600 = (X * 100) + Y

=> 1600 / 100
MAJOR_RC is the quotient => 16
MINOR_RC is the remainder => 0

This can also be seen visually:

16 00 => 16 = MAJOR_RC
00 = MINOR_RC

Chapter 12. Command and Service Reference 175

Example (4)

Upon completion of a call to CNMCNMI service routine, HLBRC=20408. A return code
value in the 20000 range implies that the composite return code equation is:

CNM_BAD_ZCSMS + (X * lee) + Y

After resolving the known values, the user will see that the unknown values X and
Yare 4 and 8 respectively. The user should refer to the return code section of
CNMCNMI which would indicate that the return code was actually generated by the
DSIZCSMS macro. See this macro in NetView Customization: Using Assembler for
the description of the major and minor return codes.

HLBRC = CNM_BAD_ZCSMS + (X * lee) + Y
2e4e8 = 2eeee + (X * lee) + Y

2e4e8 - 2eeee = (X * lee) + Y
4e8= (X * lee) + Y

=> 408 / 10e
MAJOR_RC is the quotient => 4
MINOR_RC is the remainder => 8

This can also be seen visually:

4 08 => 4 = MAJOR_RC
8 = MINOR_RC

Example (5)

Upon completion of a call to CNMKIO, HLBRC = 28692. Only two composite return codes
are issued from CNMKIO. See the return code section of CNMKIO. Since the return
code value is NOT in the 2000 range (this would indicate a DST failure), the value of
28692 implies that the composite return code equation is:

(CNM_BAD_ZVSMS + X) * 256 + Y

This equation is difficult to resolve without knowing either x or Y. Use the following
equations to determine the major and minor return codes:

MAJOR_RC = (HLBRC / 256) - lee
= (28692 / 256) - 10e (keep only the quotient)
= 112 - lee
= 12

MINOR_RC = HLBRC - «CNM BAD ZVSMS + MAJOR RC) * 256}
= 28692 - «lee-+ 12) * 256} -
= 28692 - (112 * 256)
= 28692 - 28672
= 20

You should refer to the return code section of CNMKIO which would indicate that the
return code was actually generated by the DSIZVSMS macro. See this macro in
NetView Customization: Using Assembler tor the description of the major and
minor return codes.

176 NetView Customization: Using PLI and C

Command Reference

GO Command

The following commands are useful when executing HLL command processors. The
GO, QUEUE, and RESET commands are operator commands and may be issued from
the operator console or from an HLL command processor via CNMCMD. The TRAP and
WAIT commands must be issued from within an HLL command processor via
CNMCMD. Refer to NetView Customization: Writing Command Lists for information
about using TRAP and WAIT in a command list.

The GO command allows you to resume running a command procedure that is in a
PAUSE or WAIT state. You can also use the GO command to pass values to a
command procedure that is in a PAUSE state.

HLL Usage Notes

The GO command can be entered from a terminal to satisfy a WAIT or PAUSE. A
return code of CNM_GO_ON_WAIT will be generated when GO is entered in the fol
lowing situations:

1. The event specified on the WAIT command is MESSAGES (timer mayor may not
be set)

2. The event specified on the WAIT command is DATA (timer mayor may not be set)

3. The timer is set for the WAIT command with no specified events.

A return code of CNM_OPINPUT_ON_WAIT will be generated if one of the events speci
fied on the WAIT command is OPINPUT. GO may be entered alone or operator input
may follow the GO. See "WAIT Command" on page 186 for more information on
satisfying a WAIT.

Chapter 12. Command and Service Reference 177

Return Codes:

CNM_GOOD 0 Everything OK.

CN M_NO_STO RAGE 24 Non-zero return code from
the DSIGET macro. (See
NetView Customization:
Using Assembler for more
information on the DSIGET

macro).

CNM_BAD_MQS + X 1000 + X Non-zero return code (X)
from the DSIMOS macro.
(See NetView
Customization: Using
Assembler for more infor-
mation on the DSIMOS

macro).

CNM_BAD _LCS + X 13000 + X Non-zero return code (X)
from the DSILCS macro.
(See NetView
Customization: Using
Assembler for more infor-
mation on the DSILCS

macro).

Refer to NetView Operation for more information on the GO command.

178 NetView Customization: Using PLI and C

QUEUE Command
The QUEUE command adds a text message to the operator input queue (OPERQ) of an
HLL command processor or user exit routine running with the HLL QUEUED INPUT bit
of HLLOPTS turned on.

Return Codes:

CNM_GOOD 0 Everything OK.

CNM_NO_STORAGE 24 Non-zero return code from
the DSIGET macro.

CNM_BAD_MQS + X 1000 + X Non-zero return code (X)
from the DSIMQS macro.

Refer to NetView Operation for information about the QUEUE command.

Chapter 12. Command and Service Reference 179

RESET Command
High-level language support gives the user the option of specifying whether or not
a command procedure is cancellable. Refer to the HLL run-time options (HLLOPTS)

section of this manual for further detail.

If a command procedure is cancellable, it will behave according to the rules speci
fied under the RESET command in the NetView Operations manual. The description
for RESET NORMAL states that a command will be stopped at its next break point
whenever RESET NORMAL is issued. A break point occurs in an HLL command proce
dure whenever an HLL service routine is invoked.

If a cancellable command procedure is reset via RESET NORMAL, it will terminate
with a -5 return code, which will in turn, cancel its caller if the caller is also
cancellable.

If the command procedure is non-cancellable, it will only be reset when RESET

IMMED and RESET DUMP are issued. In the case where RESET NORMAL is issued, reset
will behave as follows:

Whenever reset is issued, NetView turns on a "reset flag" which remains on until it
is acted upon (a command procedure is reset). So, if RESET NORMAL is issued while a
non-cancellable command procedure is running, the reset flag will remain on until
the non-cancellable command procedure either calls or returns to a cancellable
command procedure or uses the CNMINFI service routine to check RESETREO.

A non-cancellable command procedure can check to see if an operator has
attempted to reset it by using the RESETREO function of the CNMINFI service routine.
If a command procedure uses CNMINFI to check RESETREO, the reset flag is set off
and the decision to cancel becomes the responsibility of the command procedure
checking RESETREO. If the command procedure wishes to cancel itself, it must do so
by returning with a -5 return code. If the command procedure terminates with a -5
return code, it will also cancel its caller if the caller is cancellable. If the caller is
not cancellable, however, the caller will not be cancelled and the reset flag will not
be set on. The reset flag is only set on as a result of RESET, LOGOFF, or CLOSE IMMED

being issued.

Note: In the following examples, boxes represent command procedures, the
words "can be cancelled" within the boxes means the command procedure is
cancellable, and the words "cannot be cancelled" within the boxes means the
command procedure is non-cancellable.

Examples:

In the following example, cancellable command procedure x calls cancellable
command procedure y which calls cancellable command procedure Z. RESET

NORMAL is entered while command procedure z is running.

180 NetView Customization: Using PLI and C

Procedure
X

(can be
cancelled) (RC=-5)

(reset)

Procedure
y

(can be
cancelled)

(reset)

(RC=-5)

Procedure
Z

(can be
cancelled)

(reset
entered)

Figure 9. Example 1 of Command Procedure Cancelling

As a result of entering RESET NORMAL, Z is reset, Z returns -5 to Y. Y is reset, Y returns
-5 to x, and x is reset.

Keep in mind that the HLL command procedures have to invoke HLL service routines
in order for the reset bit to be checked. So, Y and x will continue executing if they
do not invoke any more HLL service routines.

In the following example, cancellable command procedure x calls non-cancellable
command procedure Y which calls cancellable command procedure Z. RESET is
entered when command procedure Z is running.

Procedure Procedure Procedure
X y Z

(can be (cannot be (can be
cancelled) cancelled) (RC=-5) cancell ed)

(not reset) (not reset) (reset entered)

Figure 10. Example 2 of Command Procedure Cancelling

As a result of entering RESET NORMAL, Z is reset. Y receives a -5 return code from
the call to z.

In the following example, non-cancellable command procedure x calls non
cancellable command procedure Y, non-cancellable command procedure Y returns
control to non-cancellable command procedure x, and non-cancellable command
procedure x then calls cancellable command procedure z. Reset is entered just as
x begins execution.

Chapter 12. Command and Service Reference 181

Procedure Procedure
X y

(cannot (cannot
be cancelled) be cancelled)

(not reset)

Procedure
Z

(can be
(RC=-5) cancelled)

(reset entered) (reset)

Figure 11. Example 3 of Command Procedure Cancelling

As a result of entering reset normal, x is not cancelled because it is non
cancellable, x goes ahead and calls Y, Y is not cancelled because Y is non
cancellable, Y returns control to x, and then x calls z which is reset. z returns
control to x with a -5 return code. In this case, the reset flag was turned on when
the user tried to reset x but was not turned off until it was acted upon. (z was reset)

In the previous example, command procedure x could have checked the reset flag
using the HLL service routine CNMINFI. If x had done this, the reset flag would have
been turned off and z would not have been reset.

IMPORTANT: It is recommended that you make your command procedures
cancellable whenever possible. The non-cancellable option of high-level language
support has been provided so that a user can code command procedures to do
cleanup (such as free storage) before being cancelled.

Note: When a High-level language command procedure is cancelled, the clean-up
done is equivalent to that done by STOP in PLII and EXIT in C. See your PLII or C

manual to see what cleanup is done for you in these cases.

Recommended scenario when cleanup is needed:

Procedure Procedure
X y

(cannot be (can be
cancelled) (RC=-5) cancelled)'

(not reset) (reset entered)

Figure 12. Example 4 of Command Procedure Cancelling

In this scenario, if reset is issued while y is executing, y will be terminated and X
will stick around to do cleanup.

182 NetView Customization: Using PLI and C

TRAP Command
The TRAP command lets the user specify message trapping criteria for HLL and REXX

command procedures designed to trap messages. Once issued, all subsequent
messages that match the conditions defined by the trapping criteria will be added
to the message queue (TRAPQ). When used in conjunction with the WAIT FOR ME~

SAGES command and the CNMGETD service routine, the TRAP command allows the
user to code commoand procedures to intercept and process (automate, display,
suppress, etc.) certain messages. The message trapping criteria specified in the
TRAP command defines the set of conditions that will satisfy subsequent WAIT FOR

MESSAGES commands. TRAP can only be issued from command procedures written
in a high-level language or REXX. All operands are order dependent.

Where:

AND
Can be used to make the TRAP command more readable. You can only use AND

between TRAP and SUPPRESS or TRAP and DISPLAY.

SUPPRESSIDISPLAY

SUPPRESS

DISPLAY

MOREIONLY

MORE

MESSAGES

Indicates that any message matching a specified token
should not be displayed on the operator's screen when
received by NetView.

Indicates that any message matching a specified token
should be displayed on the operator's screen when
received by NetView. DISPLAY is the default.

Indicates that the specified tokens should be added to the
list of tokens that was specified on a previous TRAP

command.

Note: Each message in the resulting list retains its own
individual setting of the SUPPREsslDISPLAY option. This will
allow some messages in the list to be suppressed while
others are displayed.

Indicates that the specified tokens replace the list of tokens
on a previous TRAP command. ONLY is the default.

This is a required operand which indicates that the trapped items are mes
sages. domainid (1 to 8 characters) is the domain 10 of the message or mes
sages to be trapped. token (1 to 10 characters) identifies the first token of the
message or messages to be trapped. Most special characters are valid for
token. However, the equal sign (=) is invalid for token and will result in a
syntax error. There is no limit on the number of tokens that can be specified.

Chapter 12. Command and Service Reference 183

NO

Note: You may use a trailing asterisk (*) in the domainid or token as a
wildcard character. Asterisk (*) can also be used as a character in a token.

For example, TRAP MESSAGES A*B* traps on tokens beginning with A*B followed by
any characters. If the (*) is followed by a character, then it is considered to be
part of the token.

Indicates that the list of tokens that was specified on all previous TRAP com
mands should be removed. TRAP NO MESSAGES will clear the command proce
dure's list of messages to trap. No other operands are valid with NO.

Following are examples of how you can specify the messages you want to trap:

domainid.token

dom*.token

*.token

token

tok*

Usage Noles:

The command procedure traps any message whose
domain identifier matches the 1 to 8 character
domainid, and whose first token matches token.

The command procedure traps any message whose
domain identifier matches the partial domain identifier
specified by dom* and whose first token matches
token. For example, NCCF*.OSI6041 means trap a 0516041
message from any domain with an identifier that starts
with NCCF (such as NCCFA or NCCFB).

The command procedure traps any message whose
first token matches token. The message can be from
any domain.

The command procedure traps any message whose
first token matches token. (domainid is assigned the
wildcard character (*)).

The command procedure traps any message whose
first token matches the partial token specified by tok*.
For example, 051* means trap any messages whose
first token begins with oSI,such as OSI6041 or 0510281.

The command procedure traps all messages.

Each TRAP command without the MORE operand cancels and replaces the previous
TRAP command. To add tokens to a previous TRAP command, use the MORE
operand.

The issuance of a TRAP command does not clear the queue of messages trapped by
the previous TRAP command. To clear the message queue, issue a FLUSHQ (See
"CNMGETD (CNMGETDATA) - Data Queue Manipulation" on page 206).

The TRAP command must be issued from a command procedure running under an
OST or NNT.

Immediate messages are not trapped; they will not be added to the message queue
(TRAPQ).

TRAP AND SUPPRESS MESSAGES * is NOT the same as TRAP NO MESSAGES. TRAP AND SUP
PRESS MESSAGES * traps all messages but does not display them on the operator's
console.

184 NetView Customization: Using PLI and C

Message trapping (TRAP command) takes precedence over message automation.

When trapping TAF messages, the domain 10 is actually the session 10 for that TAF

session.

Return Codes: ..

CNM_GOOD

CNM_BAD _INVOCATION

CNM_BAD_SYNTAX

CNM_BAD_COMMAND

CNM_BAD_MRBLD + X

Values for X:

0

4

12

144

18000 + X

8

Everything OK.

TRAP was NOT issued from
an HLL or REXX command
procedure.

Syntax error. When OSI0281

is issued, check
domainid.token syntax.
When OSI6041 is issued,
check the format of the TRAP

command according to the
operand specified.

TRAP was NOT issued from
a command procedure
running under an CST or
NNT.

Non-zero return code X.
See values for X below.

Request for storage has
failed.

Chapter 12. Command and Service Reference 185

WAIT Command
When issued from a command procedure, the WAIT command will temporarily
suspend processing of that command procedure until a specified event occurs. For
an HLL command procedure, the event can be (1) one or more messages, (2) oper
ator input, (3) data, (4) a certain period of time, or any combination of the four. The
first occurrence of one of these events will satisfy the wait and processing will be
resumed.

where:

n
The number of SECONDS or MINUTES that the command procedure waits for
receipt of the messages specified on the TRAP command, receipt of operator
input, or receipt of data before processing is resumed. The command proce
dure may also wait only for the specified time (no specified events) before
processing is resumed. Valid ranges for n are 0 to 2,678,400 and 0 to 44,640 for
SECONDS and MINUTES respectively.

SECONDSIMINUTES

SECONDS

MINUTES

FOR

The specified unit of time is seconds.

The specified unit of time is minutes.

Can be used to make the WAIT command more readable.

event
The event or events that the command procedure is waiting for.

MESSAGES

OPINPUT

DATA

CONTINUE

The command procedure waits for one or more messages
before processing is resumed. The message criteria is
specified using the TRAP command. See "TRAP
Command" on page 183.

The command procedure waits for operator input. Both
the QUEUE and GO command queue data to the operator
input queue. See "GO Command" and "QUEUE
Command" on page 179 of this manual.

The command procedure waits for data sent by CNMSMSG

with smmsgtyp = DATA. See "CNMSMSG (CNMSENDMSG)
- Send Message or Command" on page 234.

Continue waiting for additional messages, operator input, or data before
command procedure processing is resumed.

Usage Notes:

In REXX, only messages are valid events.

186 NetView Customization: Using PLI and C

The NetView operator's screen is refreshed whenever a message arrives or the
enter key is pressed. If the screen is refreshed while an HLL command procedure
is in a wait state, the pause and wait status indicators (p and w) are displayed in
the upper right hand corner of the current command facility screen. The W indi
cator notifies the operator that the command procedure has halted its processing
and is waiting for one or more messages, data, or a specified period of time. The P

indicator notifies the operator that the command procedure has halted its proc
essing and that one of the events it is waiting for is operator input. When the wait
is satisfied, processing resumes and the indicators are cleared from the screen.

The operator input queue should always be flushed (FLUSHO) after a WAIT command
has been satisfied with operator input. Otherwise, subsequent WAIT FOR OPINPUT

commands will not wait for operator input. See "CNMGETD (CNMGETDATA) -
Data Queue Manipulation" on page 206 for more information on FLUSHO.

The WAIT command can only be issued from an HLL or REXX command procedure
running under an OST or NNT.

The WAIT command with no operands is invalid.

The following example illustrates the use of the TRAP and WAIT commands. If the
initial WAIT command is satisfied after 5 seconds, the WAIT CONTINUE command will
get control and the command procedure will continue to wait for the remainder of
the time specified (15 seconds) in the previous WAIT COMMAND.

CNMCOMMAND DATA('TRAP MESSAGES MSGl MSG2 MSG3');
/* Trap messages with tokens MSG1, MSG2, MSG3 */

CNMCOMMAND DATA('WAIT 20 SECONDS FOR MESSAGES');
/* Wait up to 20 seconds for the first trapped message */

CNMGETDATA FUNC(FLUSHQ) QUEUE(TRAPQ);
/* Remove messages from the message queue */

CNMCOMMAND DATA('WAIT CONTINUE');
/* Continue waiting for the next trapped message */

Unlike REXX, an HLL command procedure that issues the WAIT CONTINUE command
can continue waiting for operator input and data. The following example illustrates
this. If operator input is received within 12 seconds, the first wait will be satisfied
and the command procedure will continue to wait for operator input for the
remaining 18 seconds. The same is also true when waiting for data.

CNMCOMMAND DATA('WAIT 30 SECONDS FOR OPINPUT');
/* Wait up to 30 seconds for operator input */

CNMGETDATA FUNC(FLUSHQ) QUEUE(OPERQ);
/* Remove the operator input from the queue */

CNMCOMMAND DATA('WAIT CONTINUE');
/* Continue waiting for more operator input */

A WAIT CONTINUE command will satisfy the previous valid WAIT command. In the fol
lowing example, the command procedure will continue to wait using the wait cri
teria from the initial WAIT command because the second WAIT command is invalid. If
the initial WAIT command is satisfied after 3 seconds, the command procedure will
continue to wait for messages for the remaining 7 seconds (since the WAIT 20

SECONDS FOR DATAA was invalid).

Chapter 12. Command and Service Reference 187

CNMCOMMAND DATA C TRAP MESSAGES *');
/* Trap all messages */

CNMCOMMAND DATA('WAIT 10 SECONDS FOR MESSAGES');
/* Wait up to 10 seconds for the first trapped message */

CNMGETDATA FUNC(FLUSHQ) QUEUE(TRAPQ);
/* Remove messages from the message queue */

CNMCOMMAND DATA('WAIT 20 SECONDS FOR DATAA');
/* Invalid wait for data (misspelled data) */

CNMGETDATA FUNC(FLUSHQ) QUEUE(DATAQ);
/* Remove data from the data queue */

CNMCOMMAND DATA('WAIT CONTINUE');
/* Continue waiting for the next trapped message */

Note: CNMGETD must complete successfully (HLBRC = 0) before a WAIT CONTINUE will
process correctly.

188 NetVlew Customlzatlon: Using PLI and C

Return Codes:

CNM_BAD -,NVOCATION 4 WAIT was NOT issued from
an HLL or REXX command
procedure.

CNM_TOO_MANY 8 Too many operands.

CNM_BAD_SYNTAX 12 Syntax error.

CNM_BAD_COMMAND 144 WAIT was NOT issued from
a command procedure
running under an OST or
NNT.

CNM_NO_TRAP 152 WAIT issued but TRAP was
not issued. Must issue
valid TRAP before issuing
wait for messages.

CNM_NO_PREV_WAIT 248 No previous WAIT; WAIT CON-

TINUE invalid.

The following return codes are issued when a WAIT is satisfied. They are generated
in place of a zero return code to inform the operator which event satisfied the WAIT.

CNM_TIME_OUT_WAIT 224 WAIT timed out.

CNM_GO_ON_WAIT 228 GO satisfied WAIT.

CNM_MSG_ON_WAIT 232 Message received during
WAIT.

CNM_OPINPUT_ON_WAIT 236 OPINPUT received during
WAIT.

CNM_DATA_ON_WAIT 240 DATA received during WAIT.

Chapter 12. Command and Service Reference 189

l

HLL Service Routine Reference
The following service routines may be invoked from a command processor or user
exit routine written in PUt or c. A description of each service routine is give.n, along
with its associated parameters, usage notes, and return codes.

When writing a command processor or user exit routine in PLII, the user may invoke
an HLL servtce routine using the call or macro format. The PUt macro format has
been provided for those users that wish to code only the required parameters for a
particular HLL service routine invocation. The user must code all of the parameters
when using the PUt call format or C invocation.

When invoking a service routine from an HLL command processor or user exit
routine written in c, the first letter of the service routine name must be capitalized
and the remaining letters must be lowercase. This restriction is a result of c being
case-sensitive. PLJI does not have this restriction.

CNMALTD (CNMALTDATA) - Alter Data On A Queue
CNMALTD enables the user to alter the contents of the top message on the initial
data queue. Lines may be inserted, replaced or deleted.

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

adfunc
An eight byte character field which specifies the function to be performed.
Required for all CNMALTD calls.

INSLINE

REPLINE

190 NetView Customization: Using PLI and C

Insert a new line in the message in the specified queue.
adindex specifies the line number that the new line will
have after it has been inserted. The index value may be
one greater than the number of lines currently in the
message in order to add a line on the end. All parameters
are required for this function.

Replace a line of the current message in the specified
queue (if it exists). All parameters are required for this
function.

DELLINE

adbuf

Delete a line of the current message in the specified
queue. The line specified by adindex (the index value) is
physically removed from the queue. It is possible to delete
all lines of a message. If the line that was last returned
from GETLINE or GETMSG is deleted, the message pointer is
moved back to the line pr~ceding the deleted line. (See
"CNMGETD (CNMGETDATA) - Data Queue Manipulation"
on page 206). adqueue and adindex are required parame
ters for DELLINE. adorigin and adbuf are NOT required
parameters for this function.

A varying length character field containing the buffer to be inserted. Required
with INSLINE and REPLINE but not used with DELLINE.

adorlgln
A character field of fixed length n (where n > = 38) to contain an origin block.
The user must define an origin block (adorigin) to be passed as a parameter to
CNMALTD. This must be a separate structure from the origin block (ORIGBLCK)

that was passed to the HLL command processor or user exit routine as an initial
parameter. ORIG_BLOCK_LENGTH cannot be less than 38. Refer to DSIPORIG

(Appendix A) or DSICORIG (Appendix C) for the PLII and C mappings of an origin
block. The user is responsible for updating the origin block (adorigin) to reflect
changes made by CNMALTD. Required for INSLINE and REPLINE. Not required for
DELLINE.

adqueue
A four byte integer field containing the number (index) of the queue on which
the operation is to be performed. The only queue allowed for CNMALTD is the
initial data queue (IDATAQ). The full message which invoked the HLL command
processor through message automation or the message which drove DSIEX02A

is on the initial data queue. Required for all functions.

adindex
A four byte integer field containing the number of the line of the message at the
head of the queue to be manipulated. Required for all functions.

Usage Notes:

CNMALTD was primarily designed for use in DSIEX02A where it enables the user to
alter messages before they are automated or displayed.

Reference "CNMSMSG (CNMSENDMSG) - Send Message or Command" on
page 234 for the definitions of line types.

Chapter 12. Command and Service Reference 191

Return codes:

CNM_GOOD 0 Everything OK.

CNM_NO_STORAGE 24 Non-zero return code from
DSIGET macro.

CNM_BAD _FUNC 52 Invalid adfunc value.

CNM_BAD _QUEUE 72 Invalid adqueue value.

CNM_BADJNDEX 76 Invalid adindex value.

CNM_QUEUE_EMPTY 80 The specified queue is
empty.

CNM_BAD_ORIGBLOCK 84 Invalid value in
ORIG_BLOCK_LENGTH.

CNM_BAD_LENGTH 88 The length of (adbuf) is
greater than (» 32729.

CNM_NOT_MLWTO 92 Message is not a multi-line
message.

CNM_BAD_LlNETYPE 96 Invalid line type. Must be
C,D,E,L,F, or I I.

192 NetView Customization: Using PlI and C

CNMCELL (CNMSTRCELL) - Storage Cell
CNMCELL can be used to allocate and free storage cells from a previously allocated
storage pool. The token obtained by CNMPOOL must first be passed to CNMCELL to
identify the storage pool.

'PLII MACRO FORMAT:
CNMSTRCELl FUNC(pcfunc) TOKEN(pctoken) STRPTR(pcstrptr)

:'." ":".;"-,,

::CINVOCATION: \'.~": ..

void Cnmcell(char *pcfunc, intpctoken,Yoid*pcstrptr);'
,.,:...... . : : ... : .. ,."'

2;;~.:·~ .. L»;>L~<~\;:...;,.:;;;~~:(.·~.:;Jj;>;, .. ~~/·.~·;.~'<~ :·~.;ri:.;>,/::,,:>;;,:~; k.~ ~,,: .. ,~,.;,:..=\~~

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

pcfunc
An eight byte character field which specifies the function to be performed.

ALLOC

FREE

pctoken

Allocate cell

Free cell

A four byte integer field containing the token identifying the storage pool. Pro
vided by caller for all functions (token returned from CNMPOOL).

pcstrptr
A four byte pointer field to contain the address of the cell. Returned to caller
for ALLoe, provided by caller for FREE.

Usage Notes:

A storage cell within a pool is associated with the NetView subtask under which it
was allocated. It cannot be referenced from a task other than the one with which it
is associated.

Chapter 12. Command and Service Reference 193

Return codes:

CNM_GOOD 0 Everything OK.

CNM_NO_STORAGE 24 Non-zero return code from
OSIGET macro.

CNM_BAD_ TOKEN 32 Invalid pctoken.

CNM_BAD_FUNC 52 Invalid pcfunc.

CNM_BAD _CLASS 112 Possible storage overlay.
Report to IBM service.

CNM_BAD _ADDR 160 The storage poi nted to by
pcstrptr is not addressable.

CNM_NOT -'N_POOL 204 Cell not in storage pool.

CNM_BAD _CELL_ADDRESS 256 Address is not on valid cell
boundary.

CNM_CELL_ALREADY_FREE 260 Cell has al ready been
freed.

194 NetView Customization: Using PLI and C

CNMCMD (CNMCOMMAND) - Execute NetView Commands
CNMCMD enables the user to execute a NetView command from an HLL command
processor. If the called command is a long running command, then the caller is
suspended until the long running command has completed. The caller regains
control at the instruction following the CNMCMD invocation.

Where:

hlbptr
A four byte pOinter field containing the address of the HLB control block.

cmdstr
A varying length character field containing the NetView command (including its
parameters) to be executed.

Usage Notes:

Commands are invoked with a HDRMTYPE of HDRTYPEC. This is consistent with the
NetView command list language and REXX.

The return code from HLL command processors and NetView long running com
mands will be returned properly to HLL command processors through the CNMCMD

interface. If you wish to call a long-running command and allow it to be separately
rollable, you can prefix the command with CMD HIGH. For example, CNMCOMMAND

DATA('CMD HIGH BROWSE NETLOGA') would allow the BROWSE screen to ROLL independ
ently from the calling HLL command processor. See NetView Operation for more
information on the CMD command.

CNMCMD will not process immediate commands (type = I in DSICMD). If an HLL

command processor issues CNMCMD and the command to be executed is an imme
diate command, the command will fail with a return code of -3108. Refer to
Example 2 in the Composite Return Code section of this chapter for an explanation
of this return code.

A negative return code generated from CNMCMD indicates a failure in the CNMCMD

service routine. Refer to the following list of return codes for further explanation.
A positive return code generated from CNMCMD indicates a failure in the NetView
command that was to be executed by CNMCMD. Refer to the return codes listed for
the NetView command in NetView Operation. A (-5) return code generated from
CNMCMD indicates that the NetView command currently executing was cancelled. In
this case, it is recommended that the command processor do any necessary
cleanup and exit setting of HLBRC to -5 to pass the RESET information to its caller.
Refer to the "RESET Command" on page 180.

Chapter 12. Command and Service Reference 195

A (-1) return code generated from CNMCMD indicates an unexpected error in the
called command procedure.

CNMCMD cannot be invoked from an HLL user exit routine.

CNMCMD cannot be invoked from an HLL command processor while holding a lock.

The NetView Service Point Command Service (spcs) commands are not supported
under the HLL API and must not be invoked by CNMCMD. See NetView Customization:
Writing Command Lists for more information on spcs commands.

196 NetView Customization: Using PLI and C

Return codes:

CNM_GOOD 0 Everything OK.

- CNM_BAD -,NVOCATION -4 Not invoked from a
command processor.

-CNM_NO_STORAGE -24 Non-zero return code from
DSIGET macro. (See
NetView Customization:
Using Assembler for more
information on the DSIGET

macro).

-CNM_BAD_LENGTH -88 Command length is invalid.

- CNM_LOCKED -208 CNMCMD issued while
holding a lock.

X-CNM_BAD_EXCMS X-3000 Non-zero return code X.
See values for X below.

Z Return code from executed
command. See usage
notes for return codes (-5)
and (-1).

Values for X:

Chapter 12. Command and Service Reference 197

-4 Non-zero return code, 4
(drop), from user exit.

-100-Y Non-zero retun code, Y,
from DSICES macro. (See
NetView Customization:
Using Assembler for more
information on the DSICES

macro).

-200-Y Non-zero return code, Y,
from DSllCS (eW8) macro.
(See NetView
Customization: Using
Assembler for more infor-
mation on the DSllCS

macro).

-300-Y Non-zero return code, Y,
from DSIGET macro. (See
NetView Customization:
Using Assembler for more
information on the DSIGET

macro).

-400-Y From either DSIGET or DSllCS

indicates storage failure.
The user exit is not
invoked. (See NetView
Customization: Using
Assembler for more infor-
mation on the DSIGET or
DSllCS macro).

-500-Y Non-zero return code, Y,
from either DSIGET or DSllCS

indicates storage failure.
The user exit is not
invoked. (See NetView
Customization: Using
Assembler for more infor-
mation on the DSIGET or
DSllCS macro).

-600-Y Non-zero return code, Y,
from DSllCS (SW8) macro.
(See NetView
Customization: Using
Assembler for more infor-
mation on the DSllCS

macro).

198 NetView Customization: Using PLI and C

CNMCNMI (CNMI) - CNMI Access Under a DST
NetView's CNMI service enables HLL command processors (running under a DST with
CNMI capability) to send and receive data across the CNMI. This service can be used
in conjunction with CNMGETD to manipulate data on the CNMI solicited data queue
(CNMIQ).

CAll CNMCNMI(hlbptr,cnfunc,cndata,cndest,cntimout)

PLII MACRO FORMAT:
CNMI FUNC(cnfunc) DATA(cndata) DEST(cndest) TIMEOUT(cntimout)

C INVOCATION:
void Cnmcnmi(char*cnfunc, void *cndata, char ·cndest, int cntimout)

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

enfunc
An eight byte character field which specifies the function to be performed.
Required for all CNMCNMI calls.

SENDRESP
Send RU and expect only positive or negative response.

SENDRPLY
Send RU and expect reply RU or negative response.

endata
A varying length character field containing the RU to be sent (beginning with
an RH header). Required for all functions. RU length must be at least 3 bytes
and no longer than 32,729 characters.

endest
An eight byte character field which specifies the PU name. Required for all
functions.

entimout
A four byte integer field specifying the number of seconds to wait for
reply/response. This is an optional parameter. If cntimout is not specified, the
default is O. If a timeout is specified, the RH header must indicate that the
embedded NS RU solicits a reply. This will cause NetView to generate a PRID.

(See VTAM Programming). For requests that generate multiple RU (chained)
replies, cntimout only applies to the first RU in the chain.

Usage Notes:

CNMCNMI cannot be invoked from an HLL command processor while holding a lock.

HLL command processors enter a wait state when sending requests over the CNMI.

The wait ends when a response or reply is received or when the specified timeout
expires.

CNMCNMJ cannot be issued from an HLL user exit routine.

Chapter 12. Command and Service Reference 199

Responses to CNMI solicited data requests will be placed on the CNMI solicited data
queue (CNMIO).

The XITCI user exit routine will be invoked for both solicited and unsolicited data.
Refer to Chapter 2 for more information on this exit. Also refer to Chapter 3 for a
discussion on Unsolicited HLL Data Services Command Processors (oscP). It is
important to note that when the Unsolicited HLL OSCP receives control, the command
buffer (CMOBUF) will contain the unsolicited data RU.

For more information on installing a OST, refer to Chapter 3 on page 21 in this
manual.

Return Codes:

CNM_GOOD 0 Everything OK.

CNM_BAD -,NVOCATION 4 Not invoked from a
command processor or not
under a OST.

CNM_NO_STORAGE 24 Non-zero return code from
OSIGET macro.

CNM_BAD _RULENG 48 Invalid cndata length.

CNM_BAD _FUNC 52 Invalid cnfunc.

CNM_BAD _TIMEOUT 56 cntimout less than «) O.

CNM_NEED_PRID 60 Timeout specified but PRIO

not generated. The PRIO

generation bit in the RU

must be set if a timeout is
specified.

CNM_NEG_RESPONSE 64 Negative response
received. (Sense code in
HLBSENSE).

CNM_TIME_OUT 68 Timeout occured.

CNM_LOCKED 208 CNMI issued while holding a
lock.

CNM_DST _FAILURE + X 2000 + X Non-zero return code, X,
which is the OSRB minor
return code for solicited
CNMI data. See NetView
Customization: Using
Assembler.

CNM_BAD _ZCSMS + (X * 20000 + (X * Non-zero return code
100) + V 100) + ':f (major), X, and non-zero

return code (minor), V, from
OSIZCSMS.

200 NetView Customization: Using PLI and C

CNMCPYS (CNMCOPYSTR) - Copy Storage
CNMCPYS enables the user to copy storage from one address to another address.
This service routine allows the copy operation to process without ABENDing if the
source or destination is not addressable. However, the service routine will not
protect you from overwriting storage if it is addressable.

PUI CALL FORMAT:
CALL CNMCPYS (hlbptr, cstrom, csto, es/en, cstype)

PLII MACRO FORMAT:
CNMCOPYSTR FROM(esfrom) TO(csto) LENG(eslen) COPYTYPE(estype}

Cnmcpys(void westrom, void ·esto. int eslen, char *estype)

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

csfrom
A four byte pointer field containing the address of the source data.

cslo
A four byte pointer field to contain the address of the destination.

cslen
A four byte integer field containing the number of bytes of storage to be copied.
Length = 0 to 16777215.

If the value specified by eslen is greater than the actual length of the specified
csto buffer, a storage overlay could occur. Special care should be taken when
deciding the value of es/en.

cstype
The type of copy to perform. Valid types follow:

FIXTOFIX

FIXTOVAR

VARTOFIX

VARTOVAR

Usage Noles:

Copy cslen bytes of storage from a fixed length buffer to
another fixed length buffer.

Copy cs/en bytes of storage from a fixed length buffer to a
varying length buffer.

Copy cs/en bytes of storage from a varying length buffer to
a fixed length buffer.

Copy cs/en bytes of storage from a varying length buffer to
another varying length buffer.

The length field of varying length buffers will not be set or altered by CNMCPYS.

When using CNMCPYS with C and when copying FIXTOFIX, FIXTOVAR or VARTOFIX, you
must pass CNMCPYS a pointer to a pointer to your fixed length buffer. This can be
done by designating a variable as a pointer to a string, and then passing CNMCPYS
the address of that pointer.

Chapter 12. Command and Service Reference 201

Return codes:

CNM_GOOD 0 Everything OK.

CNM_BAD_LENGTH 88 cslen greater than (»
16777215 or less than «)
O. Copy not performed.

CNM_BAD _ADDR 160 The storage poi nted to by
csto is not addressable.

CNM_BAD _ CSTYPE 252 Invalid cstype.

CNM_BAD _ESTAE 15000 Non-zero return code from
ESTAE macro. Refer to MVS
Extended Architecture
Supervisor Services and
Macro Instructions for more
detail.

202 NetView Customization: Using PlI and C

CNMGETA (CNMGETATTR) - Query Message Attributes
CNMGETA can be used to obtain attributes of messages on the initial data queue
(IDATAQ). Values of attributes are returned to the user in character string form.

PUI CALL FORMAT:
CAll CNMGET A(hlbptr,ganame,gadata,gadatlen,gaqueue)

PL/I MACRO FORMAT:
CNMGETATTR ITEM(ganame) DATA(gadata) lENG(gadatlen) aUEUE(gaqueue)

INVOCATION:
void Cnmgeta(char '*ganame, void *gadata,intgadatlen, intgaqueue)

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

ganame
An eight byte character field which specifies the attribute. Following is a list of
valid attributes:

AREAID

DEse

JOBNAME

JOBNUM

MCSFLAG

MSGTYP

REPLYID

ROUTCDE

SESSID

SMSGID

SYSCONID

Equivalent to &AREAIO which provides a one-letter (A-Z)
identifier for the area on the console screen that displays
the message.

Equivalent to &DESC which provides the system descriptor
codes in a binary series of on (1) and off (0) characters,
representing the descriptor code bits in order.

Equivalent to &JOBNAME which provides the 1 to 8 character
MVS JOB name.

Equivalent to &JOBNUM which provides the 8 character MVS

JOB number.

Equivalent to &MCSFLAG which provides the system
message flags in a binary series of on (1) and off (0) codes.

Equivalent to &MSGTYP which provides the system message
type as three consecutive binary characters.

Equivalent to &REPL YIO which provides a three character
reply identifier for WTOR command replies.

Equivalent to &ROUTCDE which provides the system routing
codes in a binary series of on (1) and off (0) characters,
representing the routing code bits in order.

Equivalent to &SESSID which is the TAF session 10 where the
message originated.

Equivalent to &SMSGID which provides an 8 character value
that identifies a particular instance of a message.

Equivalent to &SYSCONIO which provides the console
number (in decimal) that receives the message.

Chapter 12. Command and Service Reference 203

SYSID

gadata

Equivalent to &SYSID which provides the identifier of the MVS

system that sent the message.

A varying length character field to contain the resulting value for the specified
attribute. .

gadatlen
A four byte integer field containing the length of gadata. This is the maximum
length of the area provided to receive the returned data. gadatlen is provided
by the user.

If the value specified by gadatlen is less than the length of the data to be
returned, the truncated data will be returned in gadata and a return code of
CNM_DATA_TRUNC will be generated. The full length of the data that was trun
cated is stored in HLBLENG (Hlbleng).

If the :value specified by gadatlen is equal to or greater than the length of the
data to be returned, and HLBRC (Hlbrc) = CNM_GOOD, the length of the returned
data will be stored in HLBLENG (Hlbleng).

If the value specified by gadatlen is greater than the length of the receiving
data buffer (gadata), a storage overlay could occur. Special care should be
taken when deciding the value of gadatlen.

gaqueue
A four byte integer field containing the number of the queue holding the
message. Only attributes for the initial data queue (IDATAO) are useful at this
time.

Usage Notes:

The following NetView command list language variables are available in either the
message buffer or the origin block. They are not accessible through CNMGETA.

&HDRMTYPE

&LlNETYPE

&MSGID

&MSGORIGIN

&MSGSTR

Provides the 1 character NetView message type of the
message and is equivalent to ORIG_MSG_TYPE.

Provides the multi-line write-to-operator (MLWTO) line type
and is equivalent to ORIG_LlNE_TYPE.

Is the message identifier of the message most recently
received by NetView and is equivalent to ORIG_PROCESS.

Is the domain where the message most recently received
by NetView orginated and is equivalent to ORIG_DOMAIN.

Is the message text of the message most recently
received by NetView and is equivalent to the message
stri ng itself.

Note: Refer to NetView Customization: Writing Command Lists for further
description of the NetView command list language variables.

Some of the attributes apply to all types of messages, while others apply to only
certain types of messages. For example, JOSNAME is only meaningful for messages
received from MVS via the subsystem interface.

204 NetView Customization: Using PLI and C

Return codes:

CNM_GOOD 0 Everything OK.

CNM_DATA_TRUNC 40 gadatlen was too small.
Data truncated.

CNM_BAD _FUNC 52 Invalid ganame.

CNM_BAD_QUEUE 72 Invalid gaqueue value.

CNM_QUEUE_EMPTY 80 The specified queue is
empty.

CNM_BAD _LENGTH 88 gadatlen less than «) O.

CNM_BAD _ADDR 160 The storage pointed to by
gadata is not addressable.

Chapter 12. Command and Service Reference 205

CNMGETD (CNMGETDATA) - Data Queue Manipulation
CNMGETD can be used to manipulate input queues that may consist of single and
mUlti-line messages.

PLlI·MACRO· FORMAT:
CNMGETDj\ TA FUNC(gdfunc) 0

.;;: PlJEUE(gdqueuel LlNE(gdiJrtC1eX)

CflNVOCATION

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

gdfunc
An eight byte character field which specifies the function to be performed.

GETMSG
Returns the first line of the next message in the specified queue. If one or
more lines of a multi-line message has already been returned by GETLINE or
GETMSG, the current GETMSG skips to the next message in the queue, dis
carding any skipped lines.

GETLINE
Returns the next line in the specified queue. This will cross message
boundaries until the queue is empty. The user must check ORIG_LlNE_TYPE

to determine which line is last.

PEEKLINE
Returns a line from the message at the head of the specified queue whose
line number is specified by gdindex. Flushed and gotten lines can be
peeked unless the message was flushed or a line in a subsequent
message was gotten.

FLUSHLIN
Skips over the next line of the specified queue. This will cross message
boundaries until the queue is empty.

FLUSHMSG
Skips to the next message in the specified queue.

FLUSHQ
Discards all messages in the specified queue.

gdbuf
A varying length character field containing the buffer to be returned for GETMSG,

GETLlNE, and PEEKLINE. Required for GETLlNE, GETMSG, PEEKLINE. Not required for
FLUSHLlN, FLUSHMSG, FLUSHQ.

206 NetView Customization: USing PLI and C

gdbuflen
A four byte integer field containing the length of gdbuf. This is the maximum
length of the area provided to receive the returned message. gdbufJen is pro
vided by the user. Required for GETMSG. GETLINE. PEEKLINE. Not required for
FLUSHLlN, FLUSHMSG, FLUSHO.

If the value specified by gdbufJen is less than the length of the message to be
returned, the truncated message will be returned in gdbuf and a return code of
CNM_DATA_TRUNC will be generated. The full length of the message that was'
truncated is stored in HLBLENG (Hlbleng).

Note: GET requests continue to advance the cursor independent of the trun
cation. A combination of PEEKLINE and FLUSHLINIFLUSHMSGIFLUSHO should be
used when retrieving complete lines of unknown length.

If the value specified by gdbufJen is equal to or greater than the length of the
message to be returned, and HLBRC (Hlbrc) = CNM_GOOD, the length of the
returned message will be stored in HLBLENG (Hlbleng).

If the value specified by gdbuf/en is greater than the length of the receiving
data buffer (gdbuf), a storage overlay could occur. Special care should be
taken when deciding the value of gdbuflen.

gdorigin
A character field of fixed length n (where n > = 38) to contain an origin block.
The user must define an origin block (gdorigin) to be passed as a parameter to
CNMGETD. This must be a separate structure from the origin block (ORIGBLCK)

that was passed to the HLL command processor or user exit routine as an initial
parameter. ORIG_BLOCK_LENGTH cannot be less than 38. Refer to DSIPORIG

(Appendix A) and DSICORIG (Appendix C) for the PLII and c mappings of an origin
block. Required for GETLlNE, GETMSG. PEEKLINE. Not required for FLUSHLIN.

FLUSHMSG, FLUSHO.

gdqueue
A four byte integer field containing the number (index) of the queue on which to
perform the operation. Required for all functions. Following is a list of valid
values:

TRAPQ Queue 1

OPERQ Queue 2

DATAQ Queue 3

IDATAQ Queue 4

CNMIQ Queue 5

Message queue. Contains trapped messages.
Refer to "TRAP Command" on page 183.
Operator input queue. Refer to "GO
Command" and "QUEUE Command" on
page 179.
Data queue. Contains data sent from another
HLL command processor or user exit routine.
Refer to "CNMSMSG (CNMSENDMSG) - Send
Message or Command" on page 234.
Initial data queue. Contains the full message
which invoked the HLL command processor
through message automation or the message
which drove DSIEX02A.

CNMI solicited data queue. Contains RU'S solic
ited via the CNMI service routine. Chained RU'S

are treated like mUlti-line messages. Refer to
"CNMCNMI (CNMI) - CNMI Access Under a
DST" on page 199.

Chapter 12. Command and Service Reference 207

gdlndex
A four byte integer field containing the number (index) of the line of the
message at the head of the queue to be manipulated. Required only for
PEEKLINE.

Return codes:

CNM_GOOD 0 Everything OK.

CNM_DATA_TRUNC 40 gdbuflen was too small.
Data truncated.

CNM_BAD _FUNC 52 Invalid gdfunc value.

CNM_BAD _QUEUE 72 Invalid gdqueue value.

CNM_BAD JNDEX 76 Invalid gdindex value.

CNM_QUEUE_EMPTY 80 The specified queue is
empty.

CNM_BAD _LENGTH 88 gdbuflen less than (<) O.

CNM_BAD_ADDR 160 The storage pointed to by
either gdbuf or gdorigin is
not addressable.

CNMINFC (CNMINFOC) - Query NetView Character Information
CNMINFC allows you to obtain information about the current NetView environment.
CNMINFC returns character data.

PL/I CALL FORMAT:
CAll CNMINFC (hlbptr,icname1icdata,icdatlen)

PL/I MACRO FORMAT:
CNMINFOC ITEM(icname) DATA(icdata) LENG(icdatlen)

C INVOCATION:
f.void Cnminfc(char *icname, void *icdata. int icdatlen)
;
it<:"";

Where:

hlbplr
A four byte pointer field containing the address of the HLB control block.

icname
An eight byte character field which specifies the name of a variable. Following
is a list of allowable names:

APPLID

CLOCK

DATE

DATETIME

DOMAIN

HCOPY

LU

NVVER

OPID

OPSYSTEM

PID

STARTIME

Equivalent to &APPLIO which is the NetView domain 10

appended with a 3-character alphanumeric value assigned
by NetView.

Current value returned by STCK instruction (not display
able).

Equivalent to &OATE which is the current date in the format
mm/dd/yy.

Equivalent to &OATE followed by &TIME.

Domain 10.

Equivalent to &HCOPY which is the name of the hardcopy
log task started by the operator.

Equivalent to &LU which is the logical unit name for the
operator terminal.

NetView version and release.

Equivalent to &OPIO which is the 10 of the operator issuing
the call to CNMINFC.

Equivalent to &OPSYSTEM which is a character string that
indicates the operating system under which the HLL

command processor or user exit routine is running.

Process 10 for this HLL command processor or user exit
routine. Used for CNMSMSG with smmsgtyp=DATA (not dis
playable).

NetView start time (not displayable).

Chapter 12. Command and Service Reference 209

TASK

TASKNAME

TIME

VTAM

Icdata

Equivalent to &TASK (OSTINNTIPPTIMNTIDSTloPTIHCT) which is
the 3-character string depending on the task under which
the HLL command processor or user exit routine is running.

Name of the task under which the HLL command processor
or user exit routine is running.

Equivalent to &TIME which is the CPU time in the format
hh:mm.

VTAM level.

A varying length character field to contain the character data to be returned.

Icdatlen
A four byte integer field containing the length of icdata. This is the maximum
length of the area provided to receive the returned data. icdatlen must be
greater than zero and less than 32729 and is provided by the user.

If the value specified by icdatlen is less than the length of the data to be
returned, the truncated data will be returned in icdata and a return code of
CNM_DATA_TRUNC will be generated. The full length of the data that was trun
cated is stored in HLBLENG (Hlbleng).

If the value specified by icdatlen is equal to or greater than the length of the
data to be returned, and HLBRC (Hlbrc) = CNM_GOOD, the length of the returned
data will be stored in HLBLENG (Hlbleng).

If the value specified by icdatlen is greater than the length of the receiving data
buffer (icdata), a storage overlay could occur. Special care should be taken
when deciding the value of icdatlen.

Usage Notes:

Refer to NetView Customization: Writing Command Lists for a description of the
NetView command list language variables.

CLOCK, PID, and STARTIME are eight character representations of the Too-clock (time
of-day) value returned by the STCK instruction.

Return codes:

CNM_GOOD 0 Everything OK.

CNM_DATA_TRUNC 40 icdat/en was too small.
Data truncated.

CNM_BAD _FUNC 52 Invalid icname. Value
unchanged.

CNM_BAD_LENGTH 88 icdatlen less than «) O.

CNM_BAD_ADDR 160 The storage poi nted to be
icdata is not addressable.

210 NetView Customization: Using Pli and C

CNMINFI (CNMINFOI) - Query NetView Integer Information
CNMINFI enables the user to obtain information about the current NetView environ
ment. CNMINFI returns integer data.

lUI CA~~RMAT:
ftCALL CNMINFI(hlbptr,iiname,iinumb)

IpLII MACRO FORMAT: .•••••• /'.i,':.

l<:NMINFOIITEM(liname) DATA(lin;Tjr; • r,~:'~"" £+;;!;~.
Ire INVOCATION: ,"". . ..<,/,;,;.,.<; ,;",."" ?,'~: "';:"'.;'
l;,void Cnminf;{ohar~iiname. int ~iinumb)"':,F:. Y>\:'/c ,./,;} ;:':,'/:" .• ;::;> , .. ' ~-. - - -# - - -. , - '>/ ,', -\::'.", ;~r';({ "

It~;~i~~.::;~~ ~;,::i,~.·,~~;: ... :~~·>:;.~;:';~:.L:.:~~.~:.i{:~~::· .. ~~~,~~;\;;~~,0.,~~<:~~;;~).·;:~:i::·j .. ~i2·,~,·:l:;.~~;·.': ;.).,\'·);.~;~:::·~·~;;~~:L~.:;~;::~::;:;';d~::~:~~t~ A~;;~~~;;:~;;j;i~;/' 51;til;,r:(ih:;i8;;;~~;2~;i ii:.~l/i;i~:~~J2~£;;jf'i··:i;~#i$~i#~:l:~:lj~\;':.:·~;

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block .

. ~

IIname
An eight byte character field which specifies the name of the variable. Fol
lowing is a list of allowable names:

ABENDRTN*
If processing as a long running command ABEND routine, then return true.
From DSITVB NetView control block (TVBABEND). This field is a product
sensitive programming interface.

ATTENDED*
If there is an operator associated with this task, then return true. An
AUTOTASK is attended if it has been assigned to a console using the
AUTOTASK command.

AWAITINP*
If waiting for operator input, then return true. From DSITVB NetView control
block.

CLOSING*
If NetView is terminating, then return true. From DSIMVT NetView control
block (MVTCLOSE). This field is a product-sensitive programming interface.

COLORS
Number of oolors that can be displayed.

LOGOFRTN*
If processing as a long running command LOGOFF routine, then return true.
From DSITVB NetView control block (TVBLOGOF). This field is a product
sensitive programming interface.

MVTUFLD
User field. From DSIMVT NetView control block (MVTUFLD). This field is a
product-sensitive programming interface.

OPER3270*
If OST with a 327x display terminal attached, then return true.

Chapter 12. Command and Servi~A RAfAr.::an,."" ~11

RESETREQ*
If RESET or CANCEL was requested, then return true. From DSITVB NetView
control block (TVBRESET). TVBRESET will be turned off as a result of this
query. This field is a product-sensitive programming interface. R~fer to
"RESET Command" on page 180 for further detail.

SCRNSER
Return serial number of the screen update. From DSITIB NetView control
block (TIBSCRSN). This field is a product-sensitive programming interface.

USER EXIT
If the integer value is 0, the environment is that of a command processor.

If the integer value is 2 through 15, the environment is that of a user exit.

If the integer value is one of the following, the environment is that of a user
exit running under a DST. Following is a list of values of the user exits
running under a DST.

USERDINT 233 DSM Initialization Exit

USERVINT 234 VSAM Initialization Exit

USERVINP 235 VSAM Input Exit

USERVOUT 236 VSAM Output Exit

USERCINP 237 CNMI Input Exit

USERCOUT 238 CNMI Output Exit

USERXLOG 240 External Log Exit

USERBINT 241 Sequential Log Initialization Exit

USERBOUT 242 Sequential Log Output Exit

Refer to DSIPCONS (Appendix A) or DSICCONS (Appendix C) for a list of con
stants useful when coding user exit routines.

Note: The iinames followed by an (*) contain Boolean values. 0 = False and
1 =True.

linumb
A four byte integer field to contain the integer value returned.

Return codes:

CNM_GOOD 0 Everything OK.

CNM_BAD_FUNC 52 Invalid iiname. Value
unchanged.

CNM_BAD_ADDR 160 The storage pointed to by
iinumb is not addressable.

212 NetView Customization: Using PLI and C

CNMKIO (CNMKEYIO) - Keyed File Access Under a OST
CNMKIO provides access to OST managed key-sequenced VSAM files from an HLL

command processor. This service routine will only perform its function when
invoked from an HLL command processor running under a OST task. Calls from'
other environments will be rejected.

~;.'

Ii

t
~,'PL/I CALL FORMAT:
;: CALL CNMKIO(hlbptr, vsfunc, vsdata, vsdatlen, vskey, vsoption}

~:
~,.,'PLIIMACRO FORMAT:
t CNMKEYIO FUNC(vsfunc) DATA(vsdata) LENG(vsdatlen) KEY(vskey)
f;\.i: OPTIONS(vsoption)
[t:
f
'"

rc INVOCATION: '. "
t" ..." '

t,·, voidCnmkio(char *,vsfunc, void*vsdata, intvsdat/en, void *vskey,
;. ,char ·vsoption)
~y "
R: ", »',':. ,: . . : ... ;, .. : .. ; ,.y., .. ; .. ;.

Where:

hlbplr
A four byte pointer field containing the address of the HLB control block.

vsfunc
An eight byte character field which specifies the function to performed.

GET_EH

GET_NEXT

GET_PREV

PUT

ERASE

ENDREQ

vsdala

Get record equal to key.

Note: The key field must match exactly, including blanks.

Get record equal to or higher than key.

Get next record in ascending sequence.

Get next record in descending sequence.

Write/rewrite record.

Erase record.

Cancel a request for update.

A varying length character field to contain the buffer to be returned/written.
Provided by the user for PUT, returned for GET, and is not required for ERASE or
ENOREQ.

vsdatlen
A four byte integer field containing the length of vsdata. This is the maximum
length of the area provided to receive the returned data. vsdat/en is provided
by the user. Required only for GET.

If the value specified by vsdatJen is less than the length of the data to be
returned, the truncated data will be returned in vsdata and a return code of
CNM_OATA_TRUNC will be generated. The full length of the data that was trun
cated is stored in HLBLENG (Hlbleng).

If the value specified by vsdatlen is equal to or greater than the length of the
data to be returned, and HLBRC (Hlbrc) = CNM_GOOO, the length of the returned
data will be stored in HLBLENG (Hlbleng).

Chapter 12. Command and Service Reference 213

If the value specified by vsdatlen is greater than the length of the receiving
data buffer (vsdata), a storage overlay could occur. Special care should be
taken when deciding the value of vsdat/en.

vskey
A varying length character field containing the VSAM key used for access to the
requested data. Required for GET_EO, GET_EH or ERASE/DIRECT. Not required for
GET_NEXT, GET_PREV, PUT, ERASE/UPDATE, or ENDREO.

vsoptlon
An eight byte character field that specifies the type of access to the file. Pro
vided by user for all functions except ENDREO.

UPDATE

NOUPDATE

DIRECT

Usage Notes:

Get record for update or replace. Erase record that was
gotten for update. PUT/UPDATE and ERASE/UPDATE must be
preceded by a successful GET/UPDATE. UPDATE can only be
used with GET, PUT, and ERASE.

Record will not be updated. NOUPDATE can only be used
with GET.

Put a new record directly to the file or erase a record
directly from the file (without invoking GET first). PUT/DIRECT

can only be used for a new record. If the record already
exists, CNM_DUPL_KEY will be returned. For an existing
record, ERASE/DIRECT gives the same result as GET/UPDATE

followed by ERASE/UPDATE. If the record does not exist,
CNM_NOT_FOUND will be returned. DIRECT can only be used
with PUT and ERASE.

CNMKIO cannot be issued from an HLL user exit routine.

CNMKIO cannot be invoked from an HLL command processor while holding a lock.

For more information on VSAM files, refer to VSAM Programming.

For more information on installing a DST, refer to Chapter 3 on page 21 of this
manual.

214 NetView Customization: Using PLI and C

Return codes:

CNM_GOOD 0 Everything OK.

CNM_BAD _INVOCATION 4 Not invoked from a
command processor.

CNM_NOT _FOUND 20 Record with requested
vskey not found.

CNM_NO_STOR~GE 24 Non-zero return code from
DSIGET macro.

CNM_END_FILE 36 End of file encountered.

CN M_DAT A_ TRUNC 40 vsdatlen was too small.
Data truncated.

CNM_BAD_FUNC 52 Invalid vsfunc.

CNM_BAD_LENGTH 88 vsdatlen less than «) O.

CNM_BAD_OPTION 128 Invalid vsoption.

CNM_BAD_ADDR 160 The storage pointed to by
vsdata is not addressable.

CNM_BAD_COMBO 176 Invalid combination vsfunc
and vsoption.

CNM_DUPL_KEY 200 Record with requested key
already exists. Existing
record is not changed.

CNM_LOCKED 208 CNMKIO issued while
holding a lock.

(CNM_BAD_ZVSMS + X) * (100 + X) * 256 Non-zero return code from
256 + Y +Y DSIZVSMS. X is the major

return code from DSIZVSMS.

Y is the minor return code
from DSIZVSMS.

CNM_DST_FAILURE + X 2000 + X Non-zero return code, X,
which is the DSRB minor
return code for solicited
CNMI data. See NetView
Customization: Using
Assembler.

Chapter 12. Command and Service Reference 215

CNMLK (CNMLOCK) - Control A Lock
CNMLK can be used to obtain, release, and test the control of a named lock. This
service can be used to serialize access to resources shared by multiple tasks.
CNMLK does not allow for serialization within a task. HLL command processors
holding a lock may not use any services that can cause execution of an HLL

command processor to be suspended.

pur MACRO FORMAT:
CNMlOCK FUNC(lkfunc) ~AME(lkname) SCOPE(lkscope) OPTION(/koption)

void Cnmlk(char *Ikfunc, 'void *Ikname" cht:lr *Ikscope, char *lkoptlo(1)

Where:

hlbptr
A four byte pointer field containing the HLB control block.

Ikfune
An eight byte character field which specifies the function to be performed.

UNLOCK

LOCK

TEST

Ikname

Release control of lock name.

Obtain control of lock name.

Test if lock name is available.

A varying length character field to hold the user-defined name of lock. (Length
is 1-12 characters). Required for all functions.

Ikseope
An eight byte character field. This field is reserved for future use. The user
should provide a null or blank value for all functions.

Ikoptlon
An eight byte character field which specifies if the HLL command processor or
user exit routine should wait for the lock to become available. Required only
for LOCK.

WAIT

NOWAIT

Usage Notes:

Wait until the lock is available. The task will be sus
pended.

Do not wait if LOCK is not available. An appropriate return
code will be issued (CNM_LOCKED or CNM_LOCK_INUSE).

It is not recommended to invoke CNMSMSG with smdestyp = OPER while holding a
lock. There is a possibility that the operator task may be running with autowrap off
and the HLL command processor or user exit routine might hang waiting for the
operator to clear the screen, thus holding the lock for an indefinite period of time.

216 NetView Customization: Using PlI and C

A hierarchical order on lock requests is used to prevent deadlock. The alphabet
ical order of the lock names defines the hierarchy. For example, assume the last
lock request was for Ikname = GVARIABLE. A new lock request for Ikname =
TVARIABLE will be successful since TVARIABLE is alphabetically greater than
GVARIABLE. However, a new lock request for Ikname = CVARIABLE will be unsuc
cessful since CVARIABLE is alphabetically less than GVARIABLE. Retu~n code
CNM_LOCKED will b~ generated and the lock request will fail.

Return codes:

CNM_GOOD 0 Everything OK.

CNM_NO_STORAGE 24 Non-zero return code from
DSIGET macro. (See
NetView Customization:
Using Assembler for more
information on the DSIGET
macro).

CNM_BAD_FUNC 52 Invalid Ikfunc.

CNM_BAD_NAME 108 Length of Ikname greater
than (» 12 or the specified
Ikname was not LOCKed.

CNM_BAD _ O'PTION 128 Invalid Ikoption.

CNM_LOCKED 208 A previous request for
control of Ikname has been
made for the same task.
The task has control of the
specified Ikname.

CNM_LOCK-,NUSE 212 Ikname is not available;
currently held by another
task.

CNM_BAD_ENQ + X 21000 + X Non-zero return code X
from DSIENQ macro. See
MVS Extended Architecture
Supervisor Services and
Macro Instructions for
values for X.

Chapter 12. Command and Service Reference 217

CNMMEMO (CNMOPENMEM) - Open NetView Partitioned Data Set
CNMMEMO enables the user to open members of NetView partitioned data sets. A
token identifying the open member is returned to the user. This token is passed to
CNMMEMR to read records from the member and to CNMMEMC to close the member.

,·t(·:·~{~:;:~'J{

~ipLii&[F6~~~~r "" '0'''0'': ~,
CAt.LCNMMEMO(hlbptr~motok9h:;noddnarne;mbrnemllami?«

, ,.,

, . ":~i<": .:~./

~>PLlI.MACRO .FORMAT:..•..... '" . .• ' .. >"•......•............ > <,;>./. ' .

. " CNMOPENMEM TOKEN(motoken) DATASET(moddname)
;<.~;. MEMBER(momemnam):

•.•
•..• ~ •. : ...••...•• ; •.. ~; ...•....• :.~~ ...• :.:; ..•.. ~ •. ; .•.. :.::: •... !':.~.\.·.i .. ·.; .. · .. ;.:.··.·.· : :;< ~ ... > : ::. ;: '.":.:':.,\::~

,:'CINVOCATION:

Where:

hlbptr

.. /:: ,{; .. :, ..
/,' .,: ".,

, ~\ '

A four byte pointer field containing the address of the HLB control block.

motoken
A four byte integer field to contain the token to be used by subsequent
CNMMEMR and CNMMEMC requests.

moddname
An eight byte character field which specifies the DO name of the partitioned
data set. The NetView predefined partitioned data sets are:

• BNJMISC

• BNJPNL1

• BNJPNL2

• CNMPNL1

• DSICLD

• DSIMSG

• DSIPARM

• DSIPRF

• DSIVTAM

momemnam
An eight byte character field which specifies the name of the member.

Return codes:

218 NetView Customization: Using PlI and C

CNM_GOOD 0 Everything OK.

CNM_BAD_DDNAME 16 Invalid moddname (not
found).

CNM_NOT J=OUND 20 momemnam not found.

CNM_NO_STORAGE 24 Non-zero return code from
DSIGET macro. (See
NetView Customization:
Using Assembler for more
information on the DSIGET

macro).

CNM_BAD_ADDR 160 The storage poi nted to by
motoken is not address-
able.

CNM_BAD_DKS + X 10000 + X Non-zero return code, X,
from DSIDKS macro. (See
NetView Customization:
Using Assembler for more
information on the DSIDKS

macro).

Chapter 12. Command and Service Reference 219

CNMMEMR (CNMREADMEM) - Read NetView Partitioned Data Set
CNMMEMR allows you to read a record from a member of a NetView partitioned data
set that was previously opened by CNMMEMO. The token returned by CNMMEMO must
be passed to CNMMEMR to allow the read.

Where:

hlbptr
A four byte pointer field containing the address of the HLB control block.

mrtoken
A four byte integer field containing the token returned by CNMMEMO.

mrdata
A varying length character field to contain the received record.

mrdatlen
A four byte integer field containing the length of mrdata. This is the maximum
length of the area provided to receive the returned record. mrdatlen is pro
vided by the user.

If the value specified by mrdatlen is less than the length of the record to be
returned, the truncated record will be returned in mrdata and a return code of
CNM_DATA_TRUNC will be generated. The full length of the record that was trun
cated is stored in HLBLENG (Hlbleng).

If the value specified by mrdatlen is equal to or greater than the length of the
record to be returned, and HLBRC (Hlbrc) = CNM_GOOD, the length of the
returned record will be stored in HLBLENG (Hlbleng).

If the value specified by mrdatlen is greater than the length of the receiving
data buffer (mrdata), a storage overlay could occur. Special care should be
taken when deciding the value of mrdatlen.

220 NetView Customization: Using Pli and C

Return codes:

CNM_GOOD 0 Everything OK.

CNMJOERROR 28 1/0 error occurred.

CNM_BAD_ TOKEN 32 Token not found.

CNM_END_FILE 36 End of fi Ie encountered.

CNM_DATA_TRUNC 40 mrdatlen was too small.
Data truncated.

CNM_BAD _LENGTH 88 mrdatlen less than «) o.

CNM_BAD_ADDR 160 The storage pointed to by
mrdata is not addressable.

CNM_BAD_DKS + X 10000 + X Non-zero return code, X,
from DSIDKS macro. (See
NetView Customization:
Using Assembler for more
information on the DSIDKS

macro).

Chapter 12. Command and Service Reference 221

CNMMEMC (CNMCLOSMEM) - Close NetView Partitioned Data Set
CNMMEMC enables the user to close a member of a NetView partitioned data set
that was previously opened by CNMMEMO. The token returned by CNMMEMO must be
passed to CNMMEMC to allow the close. All members opened by CNMMEMO will auto
matically be closed at program termination.

Where:

hlbptr
A four byte pOinter field containing the address of the HLB control block.

mctoken
A four byte integer field containing the token returned by CNMMEMO.

Return codes:

CNM_GOOD 0 Everything OK.

CNM_BAD_TOKEN 32 Token not found.

CNM_BAD_DKS + X 10000 + X Non-zero return code, X,
from DSIDKS macro. (See
NetView Customization:
Using Assembler for more
information on the DSIDKS

macro).

~~~ NAtViAW ~1I~tnmi7~tinn~ U~in('] PLI and C 



CNMNAMS (CNMNAMESTR) - Named Storage 
CNMNAMS allows the user to allocate, free, locate, and reallocate named areas of 
vi rtual storage. 

Where: 

hlbptr 

i· ", ;=:' ::~,~ ';.' ~.: . ',', " ,; 
. :" : '" "-;'. "'. .,' ~ ": ::' ' 

" :,.: .~/'",:"::.~,:.:,,.~ .. ,=,.:;:." 
~'.> ,".', '::.>:.; \:.'<~'~":.'.:'::: "' 

~': :l~;/ ':~""~ >,' , " .. ," .:., .; ... ~,>.:>~,,:' :;;.~'~::"'.~.~: .,:: ,' .. h: "./;/ ., ',~ }.'>' 

A four byte pointer field containing the address of the HLB control block. 

nsfunc 
An eight byte character field which specifies the function to be performed: 

ALLOC 

FREE 

LOCATE 

REALLOC 

nsptr 

Allocate named storage area. 

Free/deallocate named storage area. 

Locate existing named storage area. 

Reallocate named storage area. Old data is preserved. 

A four byte pointer field containing the address of the named storage. 
Returned to caller for ALLOC, REALLOC, and LOCATE. Not required for FREE. 

nsname 
A varying length character field to contain the name of the storage area. 
Requi red for all functions (provided by the caller). 

nsleng 
A four byte integer field containing the size of the named storage area. 
Required by caller for ALLOC and REALLOC. Returned to caller for LOCATE. Not 
required for FREE. 

nsclass 
A four byte integer field containing the class of the named storage area. 
Required by caller for ALLOC and REALLOC. Not required for FREE or LOCATE. 

o = residency of caller 

1 = 31 bit storage 

2 = 24 bit storage 

Usage Notes: 

Named storage areas provide a way of sharing data among different HLL command 
processors and user exit routines or among multiple invocations of a HLL command 
processor or user exit routine. Once allocated, a named storage area remains 

Chapter 12. Command and Service Reference 223 



allocated until it is either explicitly freed or the task under which it was allocated 
terminates. 

A named storage area is associated with the NetView subtask under which it was 
allocated. Named storage areas can only be manipulated (locate, free, reallocate) 
by HLL command processors and user exit routines running under the mainline of 
that task. You cannot reference a named storage area from a task other than the 
one with which it is associated. 

If ALLoe is requested for a name that has already been allocated, the address of the 
existing area is returned along with a non-zero return code. 

If a previously allocated named storage area is reallocated to be larger than the 
original area, the content of the original area is preserved. If a previously allo
cated named storage area is reallocated to be smaller than the original area, the 
content of the original area is preserved up to the length specified by the ns/eng 
parameter. 

Return codes: 

224 NetView Customization: Using PLI and C 



CNM_GOOD 0 Everything OK. 

CNM_NOT _FOUND 20 REALLOC, FREE, or 
LOCATE requested but no 
previous ALLOC was done. 

CNM_NO _STORAGE 24 Non-zero return code from 
DSIGET macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSIGET 

macro). 

CNM_BAD_FUNC 52 Invalid function. 

CNM_BAD _LENGTH 88 ns/eng less than «) o. 
CNM_DUPL_NAME 104 nsname already allocated. 

Allocation not done. 

CNM_BAD _NAME 108 Length of nsname greater 
than (» 12. 

CNM_BAD_CLASS 112 Invalid nsclass. 

CNM_BAD_ADDR 160 The storage poi nted to by 
nsname or ns/eng is not 
addressable. 

CNM_BAD_PUSH + X 4000 + X Non-zero return code, X, 
from DSIPUSH macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSIPUSH 

macro). 

CNM_BAD _POP + X 5000 + X Non-zero return code, X, 
from DSIPOP macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSIPOP 

macro). 

Chapter 12. Command and Service Reference 225 



CNMPOOL (CNMSTRPOOL) - Storage Pool 
CNMPOOL can be used to allocate, free, and locate storage pools. A storage pool is 
composed of one primary and zero or more secondary blocks of storage. Each 
block of storage consists of a specified number of cells (of equaJ size) which can be 
allocated/freed using CNMCELL. Storage pool services provide a way to effectively 
manage large numbers of fixed size storage elements. 

voidCnmpool(char *spfuncp int "'sptoken. 
i nt spprlcnt, int spseccnt, 

Where: 

hlbptr 
A four byte pointer field containing the address of the HLB control block. 

spfunc 
An eight byte character field which specifies the function to be performed. 

A Ll-OC 

FREE 

LOCATE 

sptoken 

Allocate pool 

Free pool 

Locate pool 

A four byte integer field to contain the token identifying the storage pool. 
Returned for ALLOC and LOCATE for use with CNMCELL service. Not required for 
FREE. 

spname 
A varying length character field containing the name of the storage pool. 
Required for all functions and provided by the caller. 

spleng 
A four byte integer field containing the size of each cell in the pool. Required 
for ALLOC. Not required for FREE or LOCATE. 

spprlcnt 
A four byte integer field containing the number of cells in the primary block. 
Required only for ALLOC. 

spseccnt 
A four byte integer field containing the number of cells in the secondary block. 
Required only for ALLOC. 

spclass 
A four byte integer field containing the storage class of the pool. Required for 
ALLOC. Not required for FREE or LOCATE. 

22& NetView Customization: Using PLI and C 



o = residency of caller 

1 -= 31 bit addressable 

2 - 24 bit addressable 

Usage Notes: ' 

A storage cell within a pool is associated with the NetView subtask under which it 
was allocated. It cannot be referenced from a task other than the one with which it 
is associated. 

All storage pool names must be unique within a given task. 

Chapter 12. Command and Service Reference 227 



Return codes: 

CNM_GOOD 0 Everything OK. 

CNM_NOT _FOUND 20 spname not found. 

CNM_NO_STORAGE 24 Non-zero return code from 
DSIGET macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSIGET 

macro). 

CNM_BAD_FUNC 52 Invalid spfunc. 

CNM_BAD _LENGTH 88 spleng less than ( <) 4. 

CNM_DUPL_NAME 104 spname already allocated. 
Allocation not done. 

CNM_BAD_NAME 108 Length of spname greater 
than (» 12. 

CNM_BAD_CLASS 112 Invalid spclass. 

CNM_BAD_ADDR 160 The storage pointed to by 
sptoken is not addressable. 

CNM_BAD _PRI_COUNT 192 Invalid sppricnt. 

CNM_BAD_SEC_COUNT 196 Invalid spseccnt. 

228 NetView Customization: Using PLI and C 



CNMSCAN (CNMSSCAN) - Parse and Convert a Character String-(PL/I) 
CNMSCAN can be used to extract data from an input string and assign the extracted 
data to one or more receiving variables. The input string is scanned from left to 
right and is interpreted according to the specifications defined by the format string. 
Each of the receiving variables must have the same data type as its corresponding 
type specifier in the format string. The user can specify up to ten receiving vari
ables in the argun:tent list. The number of fields successfully parsed and converted 
is returned to the user in panumfld. 

When the first format specification is found, the value of the first input field is con
verted according to the first format specification and stored in the first receiving 
variable in the argument list. When the second format specification is found, the 
value of the second input field is converted according to the second format specifi
cation and stored in the second receiving variable in the argument list. This con
tinues until all of the format specifications in the format string have been 
processed. 

PLII CALL FORMAT: 
CALL CNMSCAN(hlbptr,pastring,pattern,panumfld,pafield1 , •.• ,pafield10) 

PLII MACRO FORMAT: 
CNMSSCAN DATA(pastring} FORMAT(pattern) COUNT(panumfld) 

P1 (pafieJd1), ... ,P1 O(pafjeld1 0) 

Where: 

hlbptr 
A four byte pointer field containing the address of the HLB control block. 

pastring 
A varying length character field containing the input string to be parsed and 
converted. 

pattern 
A varying length character field containing the format specifications. The 
format string (pattern) determines how the data elements in the input string 
(pastring) will be parsed and converted. 

panumfld 
A four byte integer field to contain the number of fields successfully parsed and 
converted. This field is returned to the user. 

pafield1 , ... ,pafield1 0 
List of receiving variables. The last variable named in this list will receive the 
value of the last input field parsed and converted according to the last specifi
cation in the format string. Each of the variables named in this list must be 
declared to have the same data type as its corresponding type specifier in the 
format string. The user can specify up to ten variables to receive parsed and 
converted data. 

Usage Notes: 

The format string consists of a series of format specifications which are defined as 
follows: 

Chapter 12. Command and Service Reference 229 



• The character % that designates the beginning of each format specification. 
(Required for each format specification). 

• The character * that indicates the data in the input string for this format specifi
cation should be read from the input string but not assigned to a receiving vari
able. (Optional) 

• A numerical value that defines a maximum field width to scan in the input 
string. (Optional) 

• The character h (halfword) or I (long or full-word) that indicates the size of the 
argument that the value of the parsed or converted input data will be assigned. 
(Optional) 

• Any number of white space characters can be interspersed within or between 
format specifications for readability. However, blanks should not be inserted 
between { } unless this is the desired effect. (Optional) 

• The type specifier that specifies the data type of the parsed or converted input 
data to be stored in the receiving variable. (Required) 

The type specifier directs the conversion of the next input field. CNMSCAN places the 
result in the receiving variable, unless assignment suppression was specified with 
an *. An input field is a string of characters other than spaces, unless the type 
specifier is a c or n. The input field extends to the next character that doesn't 
meet the criteria of the type specifier or until the width of the field, if specified, is 
reached. 

The type specifier determines the interpretation of the next input field. If the input 
field does not meet this expectation, CNMSCAN returns to its caller. The following 
type specifiers are valid: 

c Expect any character. Space characters that are ordinarily skipped are 
read. Specify a field width to parse and convert more than one character. 
For example, %3c will retrieve the next three characters of the input string. 
To skip over spaces before obtaining a character, use % 1s. Refer to the dis
cussion below on the type specifier s. 

Note: The receiving variable to contain the character string result must be 
declared as a fixed length character string. 

d Expect decimal value. Input is an optionally signed sequence of decimal 
digits. Any spaces in the input string preceding the decimal digits will be 
skipped. The decimal digits are delimited by the next non-decimal character 
in the input string. 

n A data element is not parsed and converted from the input string. The value 
stored is the number of characters successfully read (including blanks) from 
the input string up to that point in the call to CNMSCAN. 

Note: If the end of the input string occurs before the %n has been reached, 
the value stored will be zero. 

s Expect a character string. Any spaces in the input string preceding the 
character string will be skipped. The character string is delimited by a 
space. If a field width is not specified, the field width will default to the 
length of the string. 

Note: The receiving variable to contain the character string result must be 
declared as a varying length character string. 

230 NetView Customization: Using PLI and C 



u Expect an unsigned decimal value. Any spaces in the input string preceding 
the decimal digits will be skipped. The decimal digits are delimited by the 
next non-decimal character in the input string. 

x Expect a hexadecimal value. Input is an optionally signed sequence of 
hexadecimal digits. Any spaces in the input string preceding the 
hexadecimaJ digits will be skipped. The hexidecimal digits are delimited by 
the next non-hexadecimal character in the input string. 

n Expect a string that is not delimited by spaces. Follow the { with a set of 
characters followed by a}. The corresponding input field is read to the first 
character that does NOT appear between n. If the first character is a -, (or 
'5f'x), the effect is reversed; the input field is read to the first character that 
appears between n. 
{..,} parse until the end of the string. 

{..,a} parse until the character 'a' is found. 

{a} parse until any character other than an 'a' is found. 

{} parse until any character is found. 

Note: The receiving variable to contain the character string result must be 
declared as a varying length character string. 

If your format string specifies more data elements to be parsed and converted than 
your input string contains, the results are unpredictable. . 

If your format string specifies fewer data elements to be parsed and converted than 
your input string contains, the remaining data elements in the input string are 
ignored. 

CNMSCAN returns when it encounters a format specification it does not expect or 
when it reaches the end of the input string. 

If CNMSCAN is invoked using the PLII call format and all ten pafieJds are not speci
fied, a warning message will be issued at compile time. 

CNMSCAN can only be used in an HLL command processor or user exit routine 
written in PLII. 

The PARSEL2R command provides a function similar to CNMSCAN and remains avail
able for use. However, because of its conversion capabilities, CNMSCAN is more 
suitable to HLL command processors. 

Return Codes: 

CNM_GOOD 0 Everything OK. 

CNM_BAD_ADDR 160 The storage pointed to by 
panumfld or 
pafield1, ... ,pafieJd10 is not 
addressable. 

Chapter 12. Command and Service Reference 231 



CNMSCOP (CNMSCOPECK) - Scope Check for Security 
CNMSCOP determines if the user is authorized to issue a specific 
command/keyword/value combination from a particular operator 10. The scope 
check is based on the scope of authority of the operator 10 of the task executing 
CNMSCOP. Only NetView scope checking is performed. No attempt is made to 
determine if a resource is in the task (operator's) span of control. 

Where: 

hlbptr 
A four byte pointer field containing the address of the HLB control block. 

sccmd 
An eight byte character field which specifies the verb of the command to be 
scope checked. Blanks or (*) imply that the command verb that invoked the HLL 

command processor will be used. 

sckwd 
An eight byte character field which specifies the keyword of the command to 
scope check. Blanks or (*) imply that no specific keyword is checked. 

scvalue 
An eight byte character field which specifies the value of sckwd to be scope 
checked. Blanks or (*) imply that no specific keyword value is to be checked. 

Usage Notes: 

If CNMSCOP is issued from an HLL user exit routine, sccmd must be specified. Other
wise, return code CNM_BAO_COMMANO will be generated. 

Scope of commands, keywords, and keyword values is defined in DSICMO. Operator 
class is defined in each operator's profile. For further information see NetView: 
Installation and Administration Guide. 

CNMSCOP will not check the validity of a command. It should only be used to verify 
if an operator has authorization to issue a particular command. 

232 NetView Customization: Using Pli and C 



Return codes: 

CNM_GOOD 0 Everything OK. 

CNM_NO_STORAGE 24 Non-zero return code from 
OSIGET macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSIGET 

macro). 

CNM_COMMAND_NA 132 sccmd not authorized. 

CNM_KEYWORD_NA 136 sckwd not authorized. 

CNM_ VALUE_NA 140 scvalue not authorized. 

CNM_BAD_COMMAND 144 Invalid syntax of sccmd or 
sccmd was not found. 
Check for length greater 
than (» 8 or invalid char-
acters in sccmd. sccmd 
may be incorrectly defined 
in DSICMO. See usage notes 
if CNMSCOP was invoked 
from an HLL user exit 
routine. 

CNM_BAD_KEYWORD 148 VALUE (scvalue) was speci-
fied without a keyword 
(sckwd). sckwd must be 
specified when scvalue is 
specified. 

CNM_BAD_CES + X 9000 + X Non-zero return code, X 
from DSICES macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSICES 

macro). 

CNM_BAD_KVS + X 11000 + X Non-zero return code, X 
from OSIKVS macro. (See 
NetView Customization: 
Using Assembler for more 
information on the OSIKVS 

macro). 

Chapter 12. Command and Service Reference 233 



CNMSMSG (CNMSENDMSG) - Send Message or Command 
CNMSMSG enables the user to send a message or command to specific destinations 
in your network. 

,PU'· MACRO FORMAT: .....• ".; 
CNMSENOMSG DATA(smtext). MSGTYPE{smmsgtypj, DESTTYPE(smdestyp) 

·peST(smdestidl 

'c INVOCATION: 

." ... i:'" ".;,: .. , 

l>\ 'j\~0;:~3~;~:"&~ > ,;x:{::Y\;}:i;K.i;(;~;'Ji>t;Mi,,<)::t iA:lil, .• 'YX' 

Where: 

hlbptr 
A four byte pointer field containing the address of the HLB control block. 

smtext 
A varying length character field containing the message text. Required param
eter. 

• If smmsgtyp is MSG. MSG_C. MSG_L. MSG_D. MSG_E. or MSG_F then smtext is the 
text of the message. 

• If smmsgtyp is COMMAND then smtext is either a command procedure name 
or a NetView command. 

• If smmsgtyp is REQUEST then smtext is the name of the HLL command 
processor that should send the data. 

• If smmsgtyp is DATA then the process 10 must be concatenated with the 
data. smtext must be specified as follows: 

smtext = ORIGIN->ORIG_PROCESSI I 'text' 

smmsgtyp 
An eight byte character field which specifies the message type. Required 
parameter. Values are: 

MSG 

MSG_C 

MSG_L 

MSG_D 

MSG_E 

MSG_F 

COMMAND 

234 NetView Customization: Using PLI and C 

Single line message. ORIG_LlNE_ TYPE =' '. 

Control line message. ORIG_LlNE_TYPE= 'C'. 

Label line message. ORIG_LlNE_ TYPE = 'L I. 

Data line message. ORIG_LlNE_ TYPE = 10 1. 

End of multi-line message. ORIG_LlNE_ TYPE = 'E I. 

MSG_D and MSG_E combined. ORIG_LlNE_ TYPE = 'F'. 

Command to be executed. 

Note: The command is asynchronously scheduled for exe
cution. 



REQUEST 

DATA 

smdestyp 

Request for data. 

Note: REQUEST is similar to COMMAND except the command 
to execute is the name of the HLL command processor that 
is to return data through CNMSMSG with smmsgtyp = DATA. 

Non-printable data in response to REQUEST. 

Note: NetView places a process 10 in the origin block 
(ORIGBLCK). This 10 MUST be included at the beginning of the 
returned data. This process id is used to route data to the 
correct instance of an HLL command processor or user exit 
routine if there are multiple activations of the same HLL 
command processor or user exit routine. The data 
returned from CNMSMSG with smmsgtyp=DATA can be 
read by CNMGETO from the data queue (OATAQ). 

An eight byte character field which specifies the destination type. Required 
parameter. Values are: 

OPER 

TASK 

SYSOP 

NETVLOG 

EXTLOG 

SEQ LOG 

AUTHRCV 

OPCLASS 

smdestld 

Operator task invoking this service routine 

Another task 

System console 

NetView log 

External log (e.g. SMF) 

Sequential log 

Authorized receiver 

All operators in group 

Destination 10. Required when smdestyp is EXTLOG, SEQLOG, TASK or OPCLASS. 

When smdestyp is EXTLOG, SEQLOG or TASK, smdestid is the name of the destina
tion task. An asterisk (*) may be used to imply 'self' when smdestyp = TASK. 
Specifying smdestid = * is the same as issuing CNMSMSG with smdestyp = 
OPER and smdestid = nUll. 

When smdestyp is OPCLASS, smdestid is the group 10 of a particular group of 
operators defined by the ASSIGN command. Refer to the ASSIGN command in the 
NetView Operation manual for further detail. 

Note: PPT is accepted as a synonym for the PPT task (xXXXXPPT) where XXXXX is 
the domain 10 in the local NelView. 

The following table shows message and destination type combinations which are 
not allowed: 

Chapter 12. Command and Service Reference 235 



Table 2. Invalid Message and Destination Type Combinations 

OPER 

MSG 

MSG_C 

MSG_L 

MSG_D 

MSG_E 

MSG_F 

COMMAND x 

REQUEST x 

DATA x 

TASK SYSOP NETVLOG EXTLOG SEQLOG AUTHRCV OPCLASS 

x x x 

x x x 

x x x 

x x x 

x x x 

x x x x x x 

x x x x x x 

x x x x x x 

Usage Notes: 

Approximately 32K of data may be sent by CNMSMSG. 

CNMSMSG will generate a return code of CNM_BAD_INVOCATION when invoked from 
DSIEX04 or OSIEX09. CNMSMSG can be invoked from DSIEX02A if smdestyp is TASK. All 
other invocations of CNMSMSG from DSIEX02A will generate a return code of 
CNM_BAO-,NVOCATION. 

The EXCMD command queues a NetView command to another task where it is exe
cuted. CNMSMSG also allows the user to send a command to another task in a 
similar way by specifying smmsgtyp=COMMAND, smdestYP=TASK, and the desired 
smtext and smdestid. 

Messages sent to a console with smmsgtyp = MSG_C, MSG_D, MSG_E, MSG_F or MSG_l 

will be truncated if they are longer than the screen width of that console. 

The user can display as many control (MSG_C) and label (MSG_l) lines on a console 
as desired. However, a maximum of six control or label lines will be held on the 
screen if the data lines for that mUlti-line message cause the screen to wrap. 

It is not recommended to invoke CNMSMSG with smdestyp = OPER while holding a 
lock. There is a possibility that the operator task may be running with autowrap off 
and the Hll command processor or user exit routine might hang waiting for the 
operator to clear the screen, thus holding the lock for an indefinite period of time. 

236 NetView Customization: Using Pli and C 



Return codes: 

CNM_GOOD 0 Everything OK. 

CNM_BADJNVOCATION 4 Not invoked from an 
allowed user exit. 

CNM_NO_STORAGE 24 Non-zero return code from 
DSIGET macro. (See 
NetView Customization: 
Using Assembler for more 
information on the DSIGET 

macro). 

CNM_BAD _LENGTH 88 smtext is too long. 

CNM _BAD _MSGTYP 116 Invalid message type. 

CNM_BAD _DESTYPE 120 Invalid destination type. 

CNM_TYP _CONFLICT 124 Conflict between message 
and destination type. 

CNM_LOGJNACTIVE 216 WLS failure--Iog was inac-
tive. 

CNM_ TASKJNACTIVE 220 MQS failure--task was inac-
tive. 

CNM_BAD_MQS + X 1000 + X Bad return code, X, from 
DSIMQS message queue 
macro. (See NetView 
Customization: Using 
Assembler for more infor-
mation on the DSIMQS 

macro). 

CNM_BAD_WLS + X 6000 + X Bad return code, X, from 
DSIWLS write to log macro. 
(See NetView 
Customization: Using 
Assembler for more infor-
mation on the DSIWLS 

macro). 

CNM BAD PSS + X 7000 + X Bad return code, X, from 
DSIPSS presentation ser-
vices macro. (See NetView 
Customization: Using 
Assembler for more infor-
mation on the DSIPSS 

macro). 

CNM_BAD_WTO + X 8000 + X Bad return code, X, from 
DSIWCS write to operator 
macro. (See NetView 
Customization: Using 
Assembler for more infor-
mation on the DSIWCS 

macro). 

Chapter 12. Command and Service Reference 237 



CNMVARS (CNMVARPOOL) - Set or Retrieve Variables 
A variable pool is a collection of named variables whose values can be set or 
retrieved by NetView command procedures and HLL user exit routines. The fol
lowing types of variable pools can be accessed from HLL command processors or 
HLL user exit routi nes: 

• The HLL command processor or user exit routine's own pool. 

• The variable pool of the calling command procedure if the current HLL 

command processor or user exit routine was called from a command proce
dure. 

• The task global pool shared by all command procedures and HLL user exit rou
tines running under a NetView task. 

• The common global pool shared by all command procedures and HLL user exit 
routines running in a NetView address space. 

Where: 

hlbptr 
A four byte pointer field containing the address of the HLB control block. 

cvfunc 
An eight byte character field which specifies the function to be performed. 
Requi red for all CNMVARS calls. 

PUT 

GET 

Del 

cvdata 

Set variable value. 

Get variable value. 

Declare local variable to belong to one of the global pools, or 
reset it to the local pool. (You cannot declare a variable to 
belong to the caller's pool). 

A varying length character field containing the value of the named variable. 
Required for PUT and GET. Not used for DCL. 

cvdatlen 
A four byte integer field containing the length of cvdata. This is the maximum 
length of the area provided to receive the returned data. cvdat/en is provided 
by the user. Required only for GET. 

If the value specified by cvdatlen is less than the length of the data to be 
returned, the truncated data will be returned in cvdata and a return code of 

238 NetView Customization: Using Pli and C 



CNM_DATA_TRUNC will be generated. The full length of the data that was trun
cated is stored in HLBLENG (Hlbleng). 

If the value specified by cvdatlen is equal to or greater than the length of the 
data to be returned, and HLBRC (Hlbrc) = CNM_GOOD, the length of the returned 
data will be st~red in HLBLENG (Hlbleng). 

If the value specified by cvdatlen is greater than the length of the receiving 
data buffer (cvdata), a storage overlay could occur. Special care should be 
taken when deciding the value of cvdatlen. 

cvname 
A varying length character field which specifies the name of variable. 
Required for all functions. 

Valid characters are A-Z, 0-9, @, #, $, ¢, ., !, ?, and underscore. The first char
acter of cvname must not be a number or a period. 

cvpool 
An eight byte character field which specifies the variable pool. Required for all 
functions. 

LOCAL 

TGLOBAL 

CGLOBAL 

CALLER 

Usage Notes: 

The local pool of the current HLL command processor or 
user exit routine. 

Task global. 

Common global. 

The local pool of the calling command procedure or HLL 

user exit routine (if one exists). 

The user has the ability to access all existing NetView command list language and 
REXX global variables (both task and common) using CNMVARS. In the NetView 
command list language, all variable names (local and global) are restricted to a 
length of 1 to 11 characters. In REXX, local variable names can be 1 to 250 charac
ters while global variables must be 1 to 31 characters. In HLL, all variable names 
(local and global) are restricted to a length of 1 to 31. 

If you are accessing REXX or HLL global variables from the NetView command list 
language, the REXX and HLL variable names must adhere to NetView command list 
language rules. The character set allowed for variable names in NetView 
command list language is also smaller than in REXX and HLL. The valid characters 
for REXX variable names are the same as HLL; refer to the parameter cvname 
above. 

You must have a calling NetView command list language, REXX, or HLL command 
procedure before you can PUT or GET to a CALLER pool. Otherwise, a return code of 
CNM_BAD_POOL will be issued. 

You do not have to initially PUT a value into the calling HLL command processor or 
user exit routine's LOCAL pool before issuing a PUT in the called HLL command 
processor or user exit routine's CALLER pool. When control is returned back to the 
calling HLL command processor or user exit routine, a GET can be issued for the 
same variable name in the LOCAL pool to retrieve the value set in the called HLL 

command processor or user exit routine's CALLER pool. 

Chapter 12. Command and Service Reference 239 



~Aft 

Any PUT'S in an HLL command processor or user exit routine's CALLER pool will 
change the value of the same variable name in the calling command procedure or 
HLL user exit routine's LOCAL pool. 

You can get three different values (cvdata) in the same variable name (cvname) if 
you specify different pools (cvpoo/). For example: 

CNMVARS FUNC('PUT ' ) NAME(x) POOL('LOCAL ' ) DATA('cvdatal ' ); 
CNMVARS FUNC('PUT') NAME(x) POOL('CGLOBAL') DATA(' cvdata2 1

); 

CNMVARS FUNC('PUT ' ) NAME(x) POOL{'TGGLOBAL ' ) DATA('cvdata3 1
); 

The calling HLL command processor or user exit routine's LOCAL pool is the same 
as the called HLL command processor or user exit routine's CALLER pool. 

DCL can be useful when a HLL command processor or user exit routine invokes VIEW. 

The user must insure that the variables are properly declared to the corresponding 
common or task global pools. Otherwise, the variables used may be from the 
LOCAL pool and the VIEW screen will not be automatically updated. 

Task and common global variables must be declared to their respective pools 
before invoking VIEW from an HLL command processor or user exit routine. Other
wise, VIEW will not pick up the values. See the following examples: 

Example 1: 

REXX or NetView command list language has declared variables to the task or 
common global pool and values have been aSSigned to these variables. These 
values need to be displayed on a VIEW panel from an HLL command processor or 
user exit routine. Before invoking VIEW, the following MUST be coded in the HLL 

command processor or user exit routine: 

CNMVARS FUNC('DCL') NAME (cvname) POOL('CGLOBAL') 
or CNMVARS FUNC{'DCL') NAME(cvname) POOL('TGLOBAL'). 

Example 2: 

REX~ or NetView command list language has declared variables to the task or 
common global pool and values have been assigned to these variables. These 
values need to be changed within an \:iLL command processor or user exit routine 
and then displayed on a VIEW panel. Before invoking VIEW, the following MUST be 
coded in the HLL command processor or user exit routine: 

or 

CNMVARS FUNC('PUT') NAME{cvname) POOL('CGLOBAL') DATA(cvdata) 
CNMVARS FUNC('DCL') NAME(cvname) POOL('CGLOBAL'} 

CNMVARS FUNC('PUT') NAME(cvname) POOL('TGLOBAL') DATA(cvdata) 
CNMVARS FUNC('DCL') NAME (cvname) POOL('TGLOBAL') 

Note: The DCL may precede the PUT. 

Example 3: 

An HLL command processor or user exit routine has set values for either task or 
common variables. Before invoking VIEW, the following must be coded in the HLL 

command processor or user exit routine: 

CNMVARS FUNC('DCL') NAME(cvname) POOL('CGLOBAL') 
or 

CNMVARS FUNC('DCL') NAME(cvname) POOL('TGLOBAL') 



Note: If only a DCl is done (with no PUT), the VIEW panel will be blank for that vari
able. 

Example 4: 

It may be necessary to declare (DCl) a variable back to the local pool. For 
example, assume ·you have the same variable name in both the local and common 
global pool. If you have just invoked VIEW, the variable is declared to the common 
global pool. If you want to change the value of the variable in the local pool, issue 
the following: 

CNMVARS FUNC{'DCL ' ) NAME{cvname) POOL('LOCAL ' ) 

Return codes: 

CNM_GOOD 0 Everything OK. 

CNM_NOT _FOUND 20 cvname not found. 

CNM_DATA_TRUNC 40 cvdatlen was too small. 
Data truncated. 

CNM_BAD_FUNC 52 Invalid cvfunc. 

CNM_BAD_LENGTH 88 cvdatlen less than «) 0 or 
cvdata greater than (> ) 
255. 

CNM_BAD_NAME 108 Invalid cvname. 

CNM_BAD_POOL 156 Invalid cvpool. 

CNM_BAD_ADDR 160 The storage poi nted to by 
cvdata is not addressable. 

CNM_BAD_CDS + X 14000 + X Non-zero return code, X. 
See val ues for X below. 

Values for X: 

4 Invalid variable name. 

8 Variable name already 
defined in dictionary. 

12 Insufficient storage. 

20 Value length limit was 
exceeded. 

28 No command procedure 
related to current action. 

32 Data was truncated. 

Chapter 12. Command and Service Reference 241 



242 NetView Customization: Using PLI and C 



Appendixes 

Appendix A. PL/I Control Blocks and Include Flies .................. 245 
DSIPLI ..... o •••••••••••••••••••••••••••••••••••••••••• 245 
DSIPCONS ............................................ 246 
DSIPHLB ............................................. 250 
DSIPORIG ............................................ 252 
DSIPHLLS ............................................ 253 
DSIPCNM ............................................. 260 

Appendix B. PL/I Samples ................................... 263 
PUI Samples Table ........................................ 264 
PUI Samples Description .................................... 265 

PTMPPL T (CNMS4200) .................................... 265 
PEXIT3 (CNMS4210) ..................................... 265 
PSNDDAT (CNMS4211) ................................... 265 
PWATDAT (CNMS4212) ................................... 265 
PEXIT2A (CNMS4213) .................................... 266 
PCNMI (CNMS4214) ...................................... 266 
PKEYIO (CNMS4215) ..................................... 266 
PSCOPCK (CNMS4216) ................................... 266 
PFL VIEW (CNMS4217) .................................... 267 
PACTLU (CNMS4218) ..................................... 267 
PSEQLOG (CNMS4219) ................................... 267 
PXITDI (CNMS4220) ...................................... 267 
PXITVN (CNMS4221) ..................................... 267 
PSNDDST (CNMS4222) .................................... 267 
PDOVSAM (CNMS4223) .............. 0..................... 267 
PPRIME (CNMS4224) ..................................... 268 

PUI Coded Samples ....................................... 269 
Sample User Exit ....................................... 269 
Sample Command Processor for Scope Checking ................. 272 
Sample Command Processor for Sequential Logging ............... 276 

Appendix C. C Control Blocks and Include Flies .................... 279 
DSIC ................................................ 279 
DSICCONS ............................................ 280 
DSICVARC ............................................ 284 
DSICHLB ............................................. 285 
DSICORIG ............................................ 287 
DSICCALL ............................................ 288 
DSICCNM ............................................ 292 

Appendix D. C Samples .................................... 295 
C Samples Table ......................................... 296 
C Samples Description ..................................... 297 

CTMPPL T (CNMS4201) .................................... 297 
CEXIT3 (CNMS4240) ..................................... 297 
CSNDDAT (CNMS4241) ................................... 297 
CWATDAT (CNMS4242) ................................... 297 
CEXIT2A (CNMS4243) .................................... 297 
CCNMI (CNMS4244) ...................................... 298 
CKEYIO (CNMS4245) ..................................... 298 
CSCOPCK (CNMS4246) ................................... 298 

Appendixes 243 



CFLVIEW (CNMS4247) .................................... 298 
CACTLU (CNMS4248) .................................... , 298 
CSEQLOG (CNMS4249) ................................. ~ . 299 
CXITDI (CNMS4250) ...................................... 299 
CXITVN (CNMS4251) ..................................... 299 
CSNDDST (CNMS4252) ................................... 299 
CDOVSAM (CNMS4253) ................................... 299 
CPRIME (CNMS4254) ..................................... 299 

C Coded Samples ......................................... 300 
Sample User Exit ....................................... 300 
Sample Command Processor for Scope Checking ................. 304 
Sample Command Processor for Sequential Logging ............... 309 

244 NetVlew Customizatlon: Using Pli and C 



Appendix A. PL/I Control Blocks and Include Files 

DSIPLI 

This appendix -describes the PLII Control Blocks and Include files needed to write in 
PLII. 

/********************************************************************/ 
/* */ 
/* NAME = DSIPLI */ 
/* */ 
/* DESCRIPTIVE NAME = Main HLL PL/I Include File */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* 5664-204 for VM */ 
/* 5666-343 for VSE */ 
/* THIS PRODUCT CONTAINS */ 
/* IIRESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView V1R3 */ 
/* */ 
/* FUNCTION = DSIPLI is required and must be included by all HLL */ 
/* programs written in PL/I. DSIPLI includes all of the */ 
/* external HLL control blocks and include files needed to run */ 
/* PL/I programs in the NetView environment. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = include file */ 
/* */ 
/* PROCESSOR = PL/I */ 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY */ 
/* */ 
/********************************************************************/ 
%INCLUDE DSIPCONS; /* Constants */ 
%INCLUDE DSIPHLB; /* Mapping of HLB */ 
%INCLUDE DSIPORIG; /* Mapping of Origin block */ 
%INCLUDE DSIPHLLS; /* HLL service rtn. definitions */ 
%INCLUDE DSIPCNM; /* HLL return code constants */ 

Appendix A. PLII Control Blocks and Include Files 245 



DSIPCONS 

/********************************************************************/ 

/* */ 
/* NAME = OS I PCONS * / 
/* */ 
/* DESCRIPTIVE NAME = HLL PL/I Constants */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED * / 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file contains the definitions for constants */ 
/* that are helpful when coding HLL modules in PL/I. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = constants */ 
/* */ 
/* PROCESSOR = PL/I * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 

'l4A ~C.tViAW ~Il~tomization: Using PLI and C 



/********************************************************************/ 
/* Constants common across HLL services */ 
/********************************************************************/ 
DCl TRAPQ FIXED BIN(31,O) INIT(l), 

OPERQ FIXED BIN(31,O) INIT(2), 
DATAQ . FIXED BIN(31,O} INIT(3}, 
IDATAQ FIXED BIN(31,O) INIT(4), 
CNMIQ FIXED BIN(31,O) INIT(S); 

/********************************************************************/ 
/* Constants for calls to CNMAlTD */ 
/********************************************************************/ 
DCl INSLINE CHAR(S) INIT('INSlINE I), 

REPlINE CHAR(S) INIT('REPlINE I), 
DElLINE CHAR(S} INIT('DEllINE I}; 

/********************************************************************/ 
/* Constants for CNMCPYS */ 
/********************************************************************/ 
DCl FIXTOFIX CHAR(S} INIT('FIXTOFIX ' }, 

FIXTOVAR CHAR(S} INIT('FIXTOVAR ' }, 
VARTOFIX CHAR(S) INIT('VARTOFIX ' ), 
VARTOVAR CHAR(S) INIT('VARTOVAR ' }; 

/********************************************************************/ 
/* Constants for calls to CNMGETD */ 
/********************************************************************/ 
DCl GETMSG CHAR(S) INIT('GETMSG I), 

GETlINE CHAR(S) INIT('GETlINE I), 
PEEKlINE CHAR(S) INIT('PEEKlINE'), 
FlUSHlIN CHAR(S) INIT('FlUSHlIN'), 
FlUSHMSG CHAR(S} INIT('FlUSHMSG ' ), 
FlUSHQ CHAR(S) INIT('FlUSHQ I); 

/********************************************************************/ 
/* Constants for CNMCNMI */ 
/********************************************************************/ 
DCl SENDRESP CHAR(S) INIT('SENDRESP'), 

SENDRPlY CHAR(S) INIT('SENDRPlY '); 

/********************************************************************/ 
/* Constants for CNMlK */ 
/********************************************************************/ 
DCl UNLOCK CHAR(S) INIT('UNlOCK I), 

lOCK CHAR(S) INIT('lOCK I}, 
TEST CHAR(S) INIT('TEST I), 
WAIT CHAR(S) INIT('WAIT I}, 
NOWAIT CHAR(S) INIT('NOWAIT I}; 

Appendix A. PUI Control BlockS' and Include Flies 247 



/********************************************************************/ 
/* Constants for CNMNAMS, CNMPOOL and CNMCELl */ 
/********************************************************************/ 
DCl AllOC CHAR(S) INIT(IALlOC I), 

FREE CHAR(S) INIT(IFREE I), 
lOCATE CHAR(S) INIT(llOCATE I), 
REAllOC CHAR(S) INIT(IREAllOC I); 

DCl RESIDENT FIXED BIN(31,e) INIT(e), 
STORAG31 FIXED BIN(31,e) INIT(l), 
STORAG24 FIXED BIN(31,e} INIT(2}; 

/********************************************************************/ 
/* Constants for CNMSMSG */ 
/********************************************************************/ 
DCl MSG CHAR(S} INIT(IMSG I), 

MSG C CHAR(S} INIT('MSG CI}, 
MSG-l CHAR(S} INIT('MSG-l ' ), 
MSG=D CHAR(S) INIT('MSG=D ' }, 
MSG E CHAR(S) INIT('MSG E' }, 
MSG-F CHAR(S} INIT(IMSG-F ' ), 
COMMAND CHAR(S) INIT(ICOMMAND I), 
REQUEST CHAR(S} INIT(IREQUEST I), 
DATA CHAR(S) INIT('DATA I}, 
OPER CHAR(S} INIT('OPER I), 
TASK CHAR(S) INIT('TASK I), 
SYSOP CHAR(S) INIT('SYSOP I), 
NETVlOG CHAR(S) INIT('NETVlOG I}, 
EXT lOG CHAR(S} INIT('EXTlOG I), 
SEQlOG CHAR(S) INIT('SEQlOG I}, 
AUTHRCV CHAR(S) INIT(IAUTHRCV I), 
OPClASS CHAR(S) INIT('OPCLASS I); 

/********************************************************************/ 
/* Constants for CNMVARS */ 
/********************************************************************/ 
DCl PUT CHAR(S) INIT('PUT I), 

DCl CHAR(S} INIT('DCl I), 
GET CHAR(S} INIT (I GET I) , 
LOCAL CHAR(S) INIT('lOCAl I), 
TGlOBAl CHAR(S) INIT('TGlOBAl I), 
CGlOBAl CHAR(S) INIT('CGlOBAl I), 
CAllER CHAR(S} INIT('CAllER I); 

/********************************************************************/ 
/* Constants for CNMKIO */ 
/********************************************************************/ 
DCl GET EQ CHAR(S) INIT('GET EQ I), 

GET-EH CHAR(S) INIT('GET-EH I), 
GET-NEXT CHAR(S) INIT('GET-NEXT'), 
GET=PREV CHAR(S) INIT('GET=PREV ' ), 
ERASE CHAR(S) INIT (I ERASE I), 
ENDREQ CHAR(S) INIT('ENDREQ I), -
UPDATE CHAR(S) INIT('UPDATE I), 
NOUPDATE CHAR(S) INIT('NOUPDATE 1

), 

DIRECT CHAR(S) INIT('DIRECT I); 

248 NetView Customization: Using PlI and C 



/********************************************************************/ 
/* Constants for user exits running under a DST */ 
/********************************************************************/ 
DCl USERASIS 

USERDROP 
USERSWAP 
USERlOG 
USERlOGR 
USERHCl 
USERHClR 
USERDINT 
USERVINT 
USERVINP 
USERVOUT 
USERCINP 
USERCOUT 
USERXlOG 
USERBINT 
USERBOUT 

FIXED BIN(31,0) INIT(0), 
FIXED BIN(31,0) INIT(4), 
FIXED BIN(31,0) INIT(8), 
FIXED BIN(31,0) INIT(12), 
FIXED BIN(31,0) INIT(16), 
FIXED BIN(31,0) INIT(20), 
FIXEDBIN(31,0) INIT(24), 
FIXED BIN(31,0) INIT(233), 
FIXED BIN(31,0) INIT(234) , 
FIXED BIN(31,0) INIT(235), 
FIXED BIN(31,0) INIT(236), 
FIXED BIN(31,0) INIT(237), 
FIXED BIN(31,0) INIT(238), 
FIXED BIN(31,0) INIT(240), 
FIXED BIN(31,0) INIT(241), 
FIXED BIN(31,0) INIT(242); 

Appendix A. PUI Control Blocks and Include Files 249 



DSIPHLB 

/********************************************************************/ 
/* */ 
/* NAME = DSIPHLB */ 
/* */ 
/* DESCRIPTIVE NAME = HLL PL/I Mapping of DSIHLB */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This files contains a PL/I mapping of DSIHLB, an */ 
/* internal control block. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = PL/I */ 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY */ 
/* */ 
/********************************************************************/ 

250 NetView Customization: Using PLI and C 



DCl 1 DSIHlB BASED(HLBPTR), 
3 HLBLEN FIXED BIN(31), 
3 HLBWKA PTR t 

3 HlBHLLS PTR t 

3 HLBTIB PTR, 
3 HLBUSER PTR, 
3 HLBRC FIXED BIN(31}, 
3 HLBLENG FIXED BIN(31), 

3 HLBSENSE 
3 HLBRSRV 
3 HLBFFDCA 

BIT(32}, 
BIT(32), 
CHAR(48); 

/* Length of HLB */ 
/* Pointer to WKA for API modules*/ 
/* Pointer to HLLS */ 
/* Pointer to TIB */ 
/* User Word */ 
/* Return code from last API call*/ 
/* Length of data returned if 

HLBRC = 0. Otherwise, length 
of data that would have been 
returned if truncation had 
not occurr~d. 

/* Sense code from CNMI 
/* Reserved 
/* First failure data capture 

*/ 
*/ 
*/ 
*/ 

Appendix A. PLII Control Blocks and Include Files 251 



DSIPORIG 

/********************************************************************/ 
r ~ 
/* NAME = DSIPORIG */ 
/* */ 
/* DESCRIPTIVE NAME = HLL PL/I Origin Block Mapping */ 
r ~ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 19S9 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-20S3 * / 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file defines the mapping of the origin block */ 
/* of the request that caused the execution of the procedure */ 
/* currently running. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = PL/I */ 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
r ~ 
/********************************************************************/ 

DCL 1 ORIG BLOCK BASED, 
3 ORIG BLOCK LENGTH FIXED BINARY(31,0), 
30RIG=DUMMYl CHAR(S), /* Reserved */ 
3 ORIG_DOMAIN CHAR(8), /* Origin domain 10 */ 
3 ORIG_TASK CHAR(8), /* Origin task 10 */ 
30RIG_PROCESS CHAR(S), 
3 ORIG_MSG_TYPE CHAR, /* Message type from HDRMTYPE */ 
3 ORIG_LINE_TYPE CHAR, /* Line type */ 
3 ORIG_DUMMY2 CHAR(2); /* Reserved */ 

252 NetView Customization: Using PLI and C 



DSIPHLLS 

/********************************************************************/ 
/* */ 
/* NAME = DSIPHLLS * / . 
/* */ 
/* DESCRIPTIVE NAME = PL/I Definitions for HLL Service Routines */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = Define entry points for HLL service routines for */ 
/* PL/I. A macro definition is also provided for each HLL */ 
/* service routine. */ 
/* */ 
/* High-Level Language Service Routine Address Table */ 
/* */ 
/* This DSECT must correspond exactly to PART I of DSIHLLAR */ 
/* which contains the actual addresses of the service routines */ 
/* or, in XA, the address of a branch instruction that */ 
/* branches to a Linkage Assist Routine (LAR) that insures */ 
/* the service routine is called with AMODE=31. */ 
/* */ 
/* NOTES = see below * / 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = PL/I */ 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 

Appendix A. PUI Control Blocks and Include Files 253 



DCL 1 DSIHLLS BASED(HLBHLLS), 
3 HLLSHEAD CHAR(2S), /* Skip over header information */ 
3 HLLSLINK POINTER, /* PTR to Linkage Service Routine*/ 
3 HLLSFILl CHAR(S), 
3 CNMCMD ENTRY(PTR, CHAR(*) VARYING) 

OPTIONS (ASM,INTER,RETCODE), 
3 HLLSFIL2 CHAR(4) , 
3 CNMVARS ENTRY(PTR, CHAR(S), CHAR(*) VARYING, FIXED BIN(3l), 

CHAR(*) VARYING,CHAR(S» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFIL3 CHAR(4), 
3 CNMNAMS ENTRY(PTR, CHAR(S), PTR, CHAR(*) VARYING, 

FIXED BIN(3l),FIXED BIN(3l» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFIL4 CHAR(4) , 
3 CNMGETD ENTRY(PTR, CHAR(S), CHAR(*) VARYING, FIXED BINARY(3l) , 

*, FIXED BINARY(3l) , FIXED BINARY(3l» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFIL5 CHAR(4), 
3 CNMSMSG ENTRY(PTR, CHAR(*) VARYING, CHAR(S), CHAR(S), CHAR(S» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFIL6 CHAR(4), 
3 CNMINFC ENTRY(PTR, CHAR(S), CHAR(*) VARYING, FIXED BIN(3l» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFIL7 CHAR(4), 
3 CNMINFI ENTRY(PTR, CHAR(S), FIXED BIN(3l» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFILS CHAR(4) , 
3 CNMGETA ENTRY(PTR, CHAR(S), CHAR(*) VARYING, 

FIXED BIN(3l), FIXED BIN(3l» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFIL9 CHAR(4), 
3 CNMMEMO ENTRY(PTR, FIXED BIN(3l), CHAR(S), CHAR(S» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFILA CHAR(4), 
3 CNMMEMR ENTRY(PTR, FIXED BIN(3l), CHAR(*) VARYING, 

FIXED BIN (31» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFILB CHAR(4) , 
3 CNMMEMC ENTRY(PTR, FIXED BIN(3l» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFILC CHAR(4), 
3 CNMCNMI ENTRY (PTR, CHAR(S), CHAR(*) VARYING, CHAR(S), 

FIXED BIN(3l» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFILD CHAR(4), 
3 CNMSCAN ENTRY(PTR, CHAR(*) VARYING, CHAR(*) VARYING, 

FIXED BIN(31),*,*,*,*,*,*,*,*,*,*) 
OPTIONS(ASM,INTER,RETCODE), 

254 NetVlew Customizatlon: Using PLI and C 



3 HLLSFILE CHAR(4), 
3 CNMKIO ENTRY (PTR, CHAR(S), CHAR(*) VARYING, FIXED BIN(31), 

CHAR(*) VARYING, CHAR(S) ) 
OPTIONS(ASM, INTER,RETCODE) , 

3 HLLSFILF CHAR(4), 
3 CNMSCOP ENTRY(PTR, CHAR(S), CHAR(S), CHAR(S» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFILGCHAR(4), 
3 CNMCPYS ENTRY(PTR, PTR, PTR, FIXED BIN(31),CHAR(S» 

OPTIONS(ASM,INTER,RETCODE) , 
3 HLLSFILH CHAR(4), 
3 CNMLK ENTRY (PTR, CHAR(S), CHAR(*) VARYING, CHAR(S),CHAR(S» 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFILI CHAR(4), 
3 CNMPOOL ENTRY (PTR, CHAR(S), FIXED BIN (31 ,e) ,CH.AR(*) VARYING, 

FIXED BIN(31,e), FIXED BIN(31), 
FIXED BIN(31),FIXED BIN(31» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFILJ CHAR(4) , 
3 CNMALTD ENTRY(PTR, CHAR(S), CHAR(*) VARYING, *, FIXED BIN(31), 

FIXED BIN(31» 
OPTIONS(ASM,INTER,RETCODE), 

3 HLLSFILK CHAR(4) , 
3 CNMCELL ENTRY(PTR, CHAR(S), FIXED BIN(31), PTR) 

OPTIONS(ASM,INTER,RETCODE), 
3 HLLSFILL CHAR(4); 

/***************************.***************************************** / 
/* Macro definitions */ 
/* Each of the HLL service routines has a macro definition which */ 
/* inserts the hlb pointer (HLBPTR) into the parameter list. */ 
/********************************************************************/ 
%DCL CNMCOMMAND ENTRY; 
%CNMCOMMAND:PROC(DATA) STATEMENT RETURNS(CHAR); 
DCL (DATA,RTNSTR) CHAR; 
RTNSTR = 'CALL CNMCMD(HLBPTR,' I I DATAl I I);'; 
RETURN(RTNSTR); 
%END; 

%DCL CNMVARPOOL ENTRY; 
%CNMVARPOOL:PROC(FUNC,DATA,LENG,NAME,POOL) STATEMENT RETURNS(CHAR; 
DCL (FUNC,DATA,LENG,NAME,POOL,RTNSTR) CHAR; 
IF ~PARMSET(LENG) THEN LENG = Ie'; 
IF ~PARMSET(DATA) THEN DATA = "" 'I; 
RTNSTR = 'CALL CNMVARS(HLBPTR,' I IFUNCI I ',I I I DATA I I',' I ILENGI I',' 

II NAME II ' , ' II POOL II ' ) ; , ; 
RETURN(RTNSTR); 
%END; 

Appendix A. PUI Control Blocks and Include Files 255 



%DCL CNMNAMESTR ENTRY; 
%CNMNAMESTR:PROC(FUNC,STRPTR,NAME,LENG,CLASS) STATEMENT RETURNS(CHAR); 
DCL (FUNC,STRPTR,NAME,LENG,CLASS,RTNSTR) CHAR; 
IF "PARMSET(LENG) THEN LENG = '0'; 
IF "PARMSET(STRPTR) THEN STRPTR = '(NULL(»'; 
IF .,PARMSET(CLASS) THEN CLASS = '0'; 
RTNSTR = 'CALL CNMNAMS(HLBPTR,' I IFUNCI I',' I ISTRPTRI I I,' I I NAME I II,' 

IILENG II' , ' II CLASS II' ) ; , ; 
RETURN(RTNSTR); 
%END; 

%DCL CNMGETDATA ENTRY; 
%CNMGETDATA:PROC(FUNC,DATA,LENG,ORIGIN,QUEUE,LINE) 

STATEMENT RETURNS(CHAR); 
DCL (FUNC,DATA,LENG,ORIGIN,QUEUE,LINE,RTNSTR) CHAR; 
IF "PARMSET(DATA) THEN DATA = "'" '; 
IF .,PARMSET(ORIGIN) THEN ORIGIN = "'" '; 
IF .,PARMSET(LENG) THEN LENG = '0'; 
IF .,PARMSET(LINE) THEN LINE = '0'; 
RTNSTR = 'CALL CNMGETD(HLBPTR,' I IF~NCI I I,' I IDATAI I I,' I ILENGI I',' 

IIORIGINII', 'IIQUEUEII', 'IILINEII');'; 
RETURN(RTNSTR); 
%END; 

%DCL CNMSENDMSG ENTRY; 
%CNMSENDMSG:PROC(DATA,MSGTYPE,DESTTYPE,DEST) STATEMENT RETURNS(CHAR); 
DCL (DATA,MSGTYPE,DESTTYPE,DEST,RTNSTR) CHAR; 
IF .,PARMSET(DEST) THEN DEST = "" II; 
RTNSTR = 'CALL CNMSMSG(HLBPTR,' I IDATAI I I,' I IMSGTYPEI I',' 

II DESTTYPE II' , ' II DESTII') ; , ; 
RETURN(RTNSTR); 
%END; 

%DCL CNMINFOC ENTRY; 
%CNMINFOC:PROC(ITEM,DATA,LENG) STATEMENT RETURNS(CHAR); 
DCL (ITEM,DATA,LENG,RTNSTR) CHAR; 
RTNSTR = 'CALL CNMINFC(HLBPTR,' I IITEMI I ',I I IDATAI I',' I ILENGI II);'; 
RETURN(RTNSTR); 
%END; 
%DCL CNMINFOI ENTRY; 
%CNMINFOI:PROC(ITEM,DATA) STATEMENT RETURNS(CHAR); 
DCL (ITEM,DATA,RTNSTR) CHAR; 
RTNSTR = 'CALL CNMINFI(HLBPTR,' I IITEMI I I,' I IDATAI I I);'; 
RETURN(RTNSTR); 
%END; 

%DCL CNMGETATTR ENTRY; 
%CNMGETATTR:PROC(ITEM,DATA,LENG,QUEUE) STATEMENT RETURNS(CHAR); 
DCL (ITEM,DATA,LENG,QUEUE,RTNSTR) CHAR; 
RTNSTR = 
'CALL CNMGETA(HLBPTR,' I IITEMI I',' I IDATAI I I,' I ILENGI I I,' I IQUEUEI I I);'; 
RETURN(RTNSTR); 
%END; 

256 NetView Customization: Using PLI and C 



%DCl CNMOPENMEM ENTRY; 
%CNMOPENMEM:PROC(TOKEN,DATASET,MEMBER) STATEMENT RETURNS(CHAR); 
DCl (TOKEN,DATASET,MEMBER,RTNSTR) CHAR; 
RTNSTR = 
'CAll CNMMEMO{HlBPTR,' I ITOKENI I ',I I I DATASET I I',' I IMEMBERI I ');'; 
RETURN(RTNSTR); . 
%END; 

%DCl CNMREADMEM ENTRY; 
%CNMREADMEM:PROC(TOKEN,DATA,lENG) STATEMENT RETURNS(CHAR); 
DCl (TOKEN,DATA,lENG,RTNSTR) CHAR; 
RTNSTR = 'CAll CNMMEMR(HlBPTR,' I I TOKEN I I ',I I IDATAI I ',I I IlENGI I ');1; 
RETURN(RTNSTR); 
%END; 

%DCl CNMClOSMEM ENTRY; 
%CNMClOSMEM:PROC(TOKEN) STATEMENT RETURNS(CHAR); 
DCl (TOKEN,RTNSTR) CHAR; 
RTNSTR = ICAll CNMMEMC(HlBPTR,' I ITOKENI I ');1; 
RETURN(RTNSTR); 
%END; 

%DCl CNMI ENTRY; 
%CNMI:PROC(FUNC,DATA,DEST,TIMEOUT) STATEMENT RETURNS(CHAR); 
DCl (FUNC,DATA,DEST,TIMEOUT,RTNSTR) CHAR; 
IF "'PARMSET(TIMEOUT) THEN TIMEOUT = '0'; 
RTNSTR = ICAll CNMCNMI(HlBPTR,' I IFUNCI I ',I I I DATA I I I,' I IDESTI I ',' 

II TIMEOUT III) ; , ; 
RETURN(RTNSTR); 
%END; 

%DCl CNMSSCAN ENTRY; 
%CNMSSCAN:PROC(DATA,FORMAT,COUNT,PI,P2,P3,P4,P5,P6,P7,P8,P9,PI0) 

STATEMENT RETURNS(CHAR); 
DCl (DATA,FORMAT,COUNT,PI,P2,P3,P4,P5,P6,P7,P8,P9,PI0,RTNSTR) CHAR; 
IF "'PARMSET(Pl) THEN PI = '0'; 
IF "'PARMSET(P2) THEN P2 = '0'; 
IF "'PARMSET(P3) THEN P3 = '0'; 
IF "'PARMSET(P4) THEN P4 = '0'; 
IF "'PARMSET(P5) THEN P5 = '0'; 
IF "'PARMSET(P6) THEN P6 = '0'; 
IF "'PARMSET(P7) THEN P7 = '0'; 
IF "'PARMSET(P8) THEN P8 = '0'; 
IF "'PARMSET(P9) THEN P9 = '0'; 
IF "'PARMSET(PI0) THEN P10 = '0'; 
RTNSTR = 'CAll CNMSCAN(HlBPTR,' I I DATA I I ',I I I FORMAT I I ',I I ICOUNTI I ',I 

II PIli' , , II P211' , , II P3111' , , II P411' , ' II P511' , I II P611' , ' 
II P711 1 

, ' II P811' , I II P911 ' , , II P1011' ) ; , ; 
RETURN(RTNSTR); 
%END; 

Appendix A .. PUI Control Blocks and Include Files 257 



%DCl CNMKEYIO ENTRY; 
%CNMKEYIO:PROC(FUNC,DATA,lENG,KEY,OPTIONS) STATEMENT RETURNS(CHAR); 
IF ~PARMSET(DATA) THEN DATA = 111'11; 

IF ~PARMSET(lENG) THEN lENG = lei; 
IF ~PARMSET{KEY) THEN KEY = I I 'I"; 
IF ~PARMSET(OPTIONS) THEN OPTIONS = 'I' 'II; 
DCl (FUNC,DATA,lENG,KEY,OPTIONS,RTNSTR) CHAR; 
RTNSTR = ICAll CNMKIO(HlBPTR,' I IFUNCII ',I I I DATAl I',' I IlENGII',' 

I IKEYI I',' I 10PTIONSI I ');'; 
RETURN(RTNSTR); 
%END; 

%DCl CNMSCOPECKENTRY; 
%CNMSCOPECK:PROC(VERB,KEYWORD,VAlUE) STATEMENT RETURNS(CHAR); 
DCl (VERB,KEYWORD,VAlUE,RTNSTR) CHAR; 
IF ~PARMSET(VERB) THEN VERB = "" II; 

IF ~PARMSET(KEYWORD) THEN KEYWORD = 'III II; 

IF ~PARMSET(VAlUE) THEN VALUE = "'" '; 
RTNSTR = 'CAll CNMSCOP(HlBPTR,'ltVERBII ','I I KEYWORD I 1','1 IVAlUEI I');'; 
RETURN(RTNSTR); 
%END; 

%DCl CNMCOPYSTR ENTRY; 
%CNMCOPYSTR:PROC(FROM,TO,lENG,COPYTYPE) STATEMENT RETURNS(CHAR); 
DCl (FROM,TO,lENG,COPYTYPE,RTNSTR) CHAR; 
RTNSTR = 
'CAll CNMCPYS(HlBPTR,' I I FROM I I',' I ITOI I ','I IlENGI I I,' I ICOPYTYPEI I I);'; 
RETURN(RTNSTR); 
%END; 

%DCl CNMlOCK ENTRY; 
%CNMlOCK:PROC{FUNC,NAME,SCOPE,OPTION) STATEMENT RETURNS{CHAR); 
DCl (FUNC,NAME,SCOPE,OPTION,RTNSTR) CHAR; 
IF ~PARMSET(SCOPE) THEN SCOPE = "'" '; 
IF ~PARMSET(OPTION) THEN OPTION = I'll II; 
RTNSTR = 
'CAll CNMlK(HlBPTR,' I IFUNCII ',' I INAMEII',' I ISCO~EI I',' I 10PTIONI I I);'; 
RETURN(RTNSTR); 
%END; 

%DCl CNMSTRPOOl ENTRY; 
%CNMSTRPOOl:PROC(FUNC,TOKEN,NAME,lENG,PRICEllS,SECCEllS,CLASS) 

STATEMENT RETURNS(CHAR); 
DCl (FUNC,TOKEN,NAME,lENG,PRICEllS,SECCEllS,CLASS,RTNSTR) CHAR; 
IF ~PARMSET(TOKEN) THEN TOKEN = 'eli 
IF ~PARMSET(LENG) THEN lENG = 'eli 
IF ~PARMSET(PRICEllS) THEN PRICELlS = 'eli 
IF ~PARMSET(SECCELlS) THEN SECCEllS = 'el; 
IF ~PARMSET(tLASS) THEN CLASS = 'e'; 
RTNSTR = 'CAll CNMPOOl(HlBPTR,' I IFUNCI I',' I ITOKENI I ','I INAMEI I',' 

II LENG II' , ' II PRICEllSII' , ' IlsECCEllS II' , 'II CLASS II'); , ; 
RETURN(RTNSTR); 
%END; 

258 NetView Customization: Using Pli and C 



%DCL CNMALTDATA ENTRY; 
%CNMALTDATA:PROC(FUNC,DATA,ORIGIN,QUEUE,LINE) STATEMENT RETURNS(CHAR); 
)CL (FUNC,DATA,ORIGIN,QUEUE,LINE,RTNSTR) CHAR; 
:F ~PARMSET{DATA) THEN DATA = '" "'; 
F ~PARMSET(ORIGIN) THEN ORIGIN = """; 
TNSTR = 'CALL CNMALTD(HLBPTR,' IIFUNCI I ',' I 1 DATA I I','IIORIGINII ',I 

II QUEUE II' , I II LINE II ' ) ; , ; 
'TURN (RTNSTR) ; 
NO; 

:L CNMSTRCELL ENTRY; 
MSTRCELL:PROC{FUNC,TOKEN,STRPTR) STATEMENT RETURNS(CHAR); 

(FUNC,TOKEN,STRPTR,RTNSTR) CHAR; 
.TR = 'CALL CNMCELL(HLBPTR,' I IFUNel I',' I I TOKEN I I',' I ISTRPTRI I '}j'; 
IRN (RTNSTR) ; 

Appendix A, PUI Control Blocks and Include Files 259 



DSIPCNM 

/********************************************************************/ 
/* */ 
/* NAME = DSIPCNM */ 
/* */ 
/* DESCRIPTIVE NAME = HLL PL/I Return Codes */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file defines the HLL return codes for PL/I. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 

. /* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = constants */ 
/* */ 
/* PROCESSOR = PL/I */ 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY */ 
/* */ 
/********************************************************************/ 
%DCL CNM_GOOD FIXED; %CNM_GOOD =0; 
%DCL CNM_BAD_INVOCATION FIXED; %CNM_BAD_INVOCATION =4; 
%DCL CNM_TOO_MANY FIXED; %CNM_TOO_MANY =8; 
%DCL CNM_BAD_SYNTAX FIXED; %CNM_BAD_SYNTAX =12; 
%DCL CNM_BAD_DDNAME FIXED; %CNM_BAD_DDNAME =16; 
%DCL CNM_NOT_FOUND FIXED; %CNM_NOT_FOUND =20; 
%DCL CNM_NO_STORAGE FIXED; %CNM_NO_STORAGE =24; 
%DCL CNM_IOERROR FIXED; %CNM_IOERROR =28; 
%DCL CNM_BAD_TOKEN FIXED; %CNM_BAD_TOKEN =32; 
%DCL CNM_END_FILE FIXED; %CNM_END_FILE =36; 
%DCL CNM_DATA_TRUNC FIXED; %CNM_DATA_TRUNC =40; 
%DCL CNM_NOT_IN_ASYNC FIXED; %CNM_NOT_IN_ASYNC =44; 

260 NetView Customization: Using PLI and C 



%DCL CNM_BAD_RULENG 
%DCL CNM_BAD_FUNC 
%DCL CNM_BAD_TIMEOUT 
%DCL CNM_NEED_PRID 
%DCL CNM_NEG_RESPONSE 
%DCL CNM_TIME_OUT 
%DCL CNM_BAD~QUEUE 
%DCL CNM_BAD_INDEX 
%DCL CNM_QUEUE_EMPTY 
%DCL CNM_BAD_ORIGBLOCK 
%DCL CNM_BAD_LENGTH 
%DCL CNM_NOT_MLWTO 
%DCL CNM_BAD_LINETYPE 
%DCL CNM_NOCUR_LINE 
%DCL CNM_DUPL_NAME 
%DCL CNM_BAD_NAME 
%DCL CNM_BAD_CLASS 
%DCL CNM_BAD_MSGTYP 
%DCL CNM_BAD_DESTYP 
%DCL CNM_TYP_CONFLICT 
%DCL CNM_BAD_OPTION 
%DCL CNM_COMMAND_NA 
%DCL CNM_KEYWORD_NA 
%DCL CNM_VALUE_NA 
%DCL CNM_BAD_COMMAND 
%DCL CNM_BAD_KEYWORD 
%DCL CNM_NO_TRAP 
%DCL CNM_BAD_POOL 
%DCL CNM_BAD_ADDR 

FIXED; %CNM_BAD_RULENG 
FIXED; %CNM_BAD_fUNC 
FIXED; %CNM_BAD_TIMEOUT 
FIXED; %CNM_NEED_PRID 
FIXED; %CNM_NEG_RESPONSE 
FIXED; %CNM_TIME_OUT 
FIXED; %CNM_BAD_QUEUE 
FIXED; %CNM_BAD_INDEX 
FIXED; %CNM_QUEUE_EMPTY 
FIXED; %CNM_BAD_ORIGBLOCK 
FIXED; %CNM_BAD_LENGTH 
FIXED; %CNM_NOT_MLWTO 
FIXED; %CNM_BAD_LINETYPE 
FIXED; %CNM_NOCUR_LINE 
FIXED; %CNM_DUPL_NAME 
FIXED; %CNM_BAD_NAME 
FIXED; %CNM_BAD_CLASS 
FIXED; %CNM_BAD_MSGTYP 
FIXED; %CNM_BAD_DESTYP 
FIXED; %CNM_TYP_CONFLICT 
FIXED; %CNM_BAD_OPTION 
FIXED; %CNM_COMMAND_NA 
FIXED; %CNM_KEYWORD_NA 
FIXED; %CNM_VALUE_NA 
FIXED; %CNM_BAD_COMMAND 
FIXED; %CNM_BAD_KEYWORD 
FIXED; %CNM_NO_TRAP 
FIXED; %CNM_BAD_POOL 
FIXED; %CNM_BAD_ADDR 

=48; 
=52; 
=56; 
=60; 
=64; 
=68; 
=72; 
=76; 
=80; 
=84; 
=88; 
=92; 
=96; 
=100; 
=104; 
=108; 
=112; 
=116; 
=120; 
=124; 
=128; 
=132; 
=136; 
=140; 
=144; 
=148; 
=152; 
=156; 
=160; 

%DCL CNM_BAD_TASKNAME FIXED; %CNM_BAD_TASKNAME =164; 
%DCL CNM_BAD_MODNAME FIXED; %CNM_BAD_MODNAME =168; 
%DCL CNM_BAD_ID FIXED; %CNM_BAD_ID =172; 
%DCL CNM_BAD_COMBO FIXED; %CNM_BAD_COMBO =176; 
%DCL CNM_TVB_INUSE FIXED; %CNM_TVB_INUSE =180; 
%DCL CNM_RID_INUSE FIXED; %CNM_RID_INUSE =184; 
%DCL CNM_RID_SELF FIXED; %CNM_RID_SELF =188; 
%DCL CNM_BAD_PRI_COUNT FIXED; %CNM_BAD_PRI_COUNT =192 
%DCL CNM_BAD_SEC_COUNT FIXED; %CNM_BAD_SEC_COUNT =196 
%DCL CNM_DUPL_KEY FIXED; %CNM_DUPL_KEY =200; 
%DCL CNM_NOT_IN_POOL FIXED; %CNM_NOT_IN_POOL =204; 
%DCL CNM_LOCKED FIXED; %CNM_LOCKED =208; 
%DCL CNM_LOCK_INUSE FIXED; %CNM_LOCK_INUSE =212; 
%DCL CNM_LOG_INACTIVE FIXED; %CNM_LOG_INACTIVE =216; 
%DCL CNM_TASK_INACTIVE FIXED; %CNM_TASK_INACTIVE =220; 
%DCL CNM_TIME_OUT_WAIT FIXED; %CNM_TIME_OUT_WAIT =224; 
%DCL CNM_GO_ON_WAIT FIXED; %CNM_GO_ON_WAIT =228; 
%DCL CNM_MSG_ON_WAIT FIXED; %CNM_MSG_ON_WAIT =232; 
%DCL CNM_OPINPUT_ON_WAIT FIXED; %CNM_OPINPUT_ON_WA=236; 
%DCL CNM_DATA_ON_WAIT FIXED; %CNM_DATA_ON_WAIT =240; 
%DCL CNM_NO_TRAP_SET FIXED; %CNM_NO_TRAP_SET =244; 
%DCL CNM_NO_PREV_WAIT FIXED; %CNM_NO_PREV_WAIT =248; 
%DCL CNM_BAD_CSTYPE FIXED; %CNM_BAD_CSTYPE 52; 
%DCL CNM_BAD_CELL_ADDRESS FIXED; %CNM_BAD_CELL_ADDRESS=256; 
%DCL CNM_CELL_ALREADY_FREE FIXED; %CNM_CELL_ALREADY_FREE=260; 

Appendix A. PLII Control Blocks and Include Files 261 



%DCl CNM_BAD_MQS 
%DCl CNM_DST_FAIlURE 
%DCl CNM_BAD_EXCMS 
%DCl CNM_BAD_PUSH 
%DCl CNM_BAD_POP 
%DCl CNM_BAD_WlS 
%DCl CNM_BAD_PSS 
%DCl CNM_BAD_WTO 
%DCl CNM_BAD_CES 
%DCl CNM_BAD_DKS 
%DCl CNM_BAD_KVS 
%DCl CNM_BAD_lOAD 
%DCl CNM_BAD_lCS 
%DCl CNM_BAD_CDS 
%DCl CNM_BAD_ESTAE 
%DCl CNM_BAD_PAS 
%DCl CNM_BAD_SNTXS 
%DCl CNM_BAD_MRBlD 

%DCl CNM_BAD_ZCSMS 
%DCl CNM_BAD_ENQ 

262 NetView Customization: Using Pli and C 

FIXED; %CNM_BAD_MQS 
FIXED; %CNM_DST_FAIlURE 
FIXED; %CNM_BAD_EXCMS 
FIXED; %CNM_BAD_PUSH 
FIXED; %CNM_BAD_POP 
FIXED; %CNM_BAD_WLS 
FIXED; %CNM_BAD_PSS 
FIXED; %CNM_BAD_WTO 
FIXED; %CNM_BAD_CES 
FIXED; %CNM_BAD_DKS 
FIXED; %CNM_BAD_KVS 
FIXED; %CNM_BAD_LOAD 
FIXED; %CNM_BAD_LCS 
FIXED; %CNM_BAD_CDS 
FIXED; %CNM_BAD_ESTAE 
FIXED; %CNM_BAD_PAS 
FIXED; %CNM_BAD_SNTXS 
FIXED; %CNM_BAD_MRBLD 

FIXED; %CNM_BAD_ZCSMS 
FIXED; %CNM_BAD_ENQ 

=U100; 
=2000; 
=3000; 
=4000; 
=5000; 
=6000; 
=7000; 
=8000; 
=9000; 
=10000; 
=11000; 
=12000; 
=13000; 
=14000; 
=15000; 
=16000; 
=17000; 
=18000; 

=20000; 
=21000; 



Appendix B. PL/I Samples 

This appendix contains a table of the PL/I samples that are shipped with NetView in 
SYS1.CNMSAMP. -When data set names are referred to in this appendix, two nam.es 
are given, such as PTMPPLT (CNMS4200). The first name is the alias name, and the 
name in parenthesis is in the NetView samples library. You can use either name to 
access the samples. DSICMD has definitions for the alias names to allow those 
names to be entered as commands. 

The following steps allow you to enter the member names as commands: 

1. Compile and link edit the samples using the alias name. 

2. Delete the (*) in column one of the appropriate CMDMDL statement in DSICMD to 
be able to execute the alias name as a command. No entries are needed in 
DSICMD for user exits. 

3. NetView must be recycled to pick up the DSICMD changes. 

Notes: 

1. See the prologues of the samples for information about how certain samples 
are related and special cases for user exit routines. 

2. Each alias name for PUI begins with the letter P. 

3. The alias name is the same as the procedure name, which is limited to seven 
characters, in PUI. 

This appendix also contains a description of each sample, and coded samples of a 
user exit routine and two command processors. 

Appendix B. PLII Samples 263 



PL/I Samples Table 
The following table refers to the PLII samples that are shipped with NetView. The 
table contains the function, the alias name, and the name of the member in 
SYS1:CNMSAMP. 

Sample function 

. Template for commands and user exit routines 
Sample DSIEX03 to set a global variable 
Uses CNMSMSG to send data 
Uses WAIT FOR DATA 
Sample DSIEX02A changes a WTO to an MLWTO 
Uses CNMCNMI to forward RUs to a PU 
Uses CNMKIO for I/O to VSAM 
HLL command using CNMSCOP for scope checking 
Display full screen VIEW panel 
Activates LU and uses TRAP and WAIT to 
determine if activation is successful 
Uses CNMSMSG to log text to a sequential log 
DST initialization exit USERVSAM DST 
Primes VSAM empty data set for USERVSAM DST 
Sends a request to USERVSAM DST 
Processes VSAM requests under USERVSAM DST 
Primes VSAM empty data set for PKEYIO 

264 NetView Customization: Using PLI and C 

PL/I Sample 
Alias CNMSAMP 

PTMPPLT 
PEXIT3 
PSNDDAT 
PWATDAT 
PEXIT2A 
PCNM! 
PKEYIO 
PSCOPCK 
PFLVIEW 
PACTLU 

PSEQLOG 
PXITDI 
PXITVN 
PSNDDST 
PDOVSAM 
PPRIME 

CNMS4200 
CNMS4210 
CNMS4211 
CNMS4212 
CNMS4213 
CNMS4214 
CNMS4215 
CNMS4216 
CNMS4217 
CNMS4218 

CNMS4219 
CNMS4220 
CNMS4221 
CNMS4222 
CNMS4223 
CNMS4224 



PL/I Samples Description 
For each sample, a description of the function and the HLL service routines utilized 
are given. 

PTMPPL T (CNMS4200) 
This sample is a template for commands and user exit routines in PLII. 

This sample is included in Chapter 5 on page 37. 

PEXIT3 (CNMS4210) 
This is a sample DSIEX03 that sets a task global variable. This global variable will 
contain the value of the last time that a command other than PSNDDAT was entered 
under an OST. PWATDAT and PSNDDAT are used to interrogate this value. 

The HLL service routines utilized in this sample are: CNMINFC (CNMINFOC). CNMVARS 

(CNMVARPOOL). 

PSNDDAT (CNMS4211) 
This sample uses CNMSMSG to send data. The sample is part of an example of 
sending messages with a type of request, waiting on the response, and parsing the 
results. 

The purpose of the example is to find the last time that a command was entered on 
a given OST. A task global variable is set by PEXIT3 every time a command is 
entered on an OST. PWATDAT uses CNMSMSG to issue a PSNDDAT on the task in ques
tion. PWATDAT then goes into a wait state. PSNDDAT retrieves the value of the global 
variable and uses CNMSMSG to send the data back to the task that issued the 
PWATDAT. PWATDAT breaks out of the wait state (it has received the data it was 
waiting for), and parses and displays the data. . 

The HLL service routines utilized in this sample are: CNMVARS (CNMVARPOOL). 

CNMSMSG (CNMSENDMSG), CNMINFC (CNMINFOC). 

PWATDAT (CNMS4212) 
This sample uses WAIT FOR DATA. The sample is part of an example of sending mes
sages with a type of request, waiting on the response, and parsing the results. 

The purpose of the example is to find the last time that a command was entered on 
a given OST. A task global variable is set by PEXIT3 every time a command is 
entered on an OST. PWATDAT uses CNMSMSG to issue a PSNDDAT on the task in ques
tion. PWATDAT then goes into a wait state. PSNDDAT retrieves the value of the global 
variable and uses CNMSMSG to send the data back to the task that issued the 
PWATDAT. PWATDAT breaks out of the wait state (it has received the data it was 
waiting for), and parses and displays the data. 

The HLL service routines utilized in this sample are: CNMSMSG (CNMSENDMSG). 

CNMSCAN (CNMSSCAN). CNMCMD (CNMCOMMAND). CNMGETD (CNMGETDATA). 

Appendix B. PLII Samples 265 



PEXIT2A (CNMS4213) 
This sample exit converts a WTO to an MLWTO by adding two lines to the single-line 
WTOS that are driving the exit. 

The HLL service routines utilized in this sample are: CNMGETD (CNMGETDATA), CNMALTD 

(CNMALTDATA). 

This sample is included in "Sample User Exit" on page 269. 

PCNMI (CNMS4214) 
This sample uses CNMCNMI to forward RUS to a pu. NetView provides the CNMCNMI 

service routine for use in communicating with devices in the network through the 
Communications Network Management Interface (CNMI). Any data that is returned 
may be accessed using the CNMGETD service routine to retrieve records from the 
CNMI solicited data queue (CNMIQ). 

This sample uses the CNMCNMI service routine to send a product set 10 data request 
to a specified pu. Any data returned is sent as a message to the operator. The 
prologue of the sample contains instructions for set up. 

The HLL service routines utilized in this sample are: CNMSCAN (CNMSSCAN), CNMCNMI 

(CNMI), CNMGETD (CNMGETDATA), CNMSMSG (CNMSENDMSG). 

PKEYIO (CNMS4215) 
This sample illustrates how to code a NetView HLL command processor that allows 
110 to a VSAM file via the CNMKIO service routine. It must execute on a DST. To run 
this command on a DST, either use the EXCMD command or the CNMSMSG service 
routine (with a type of COMMAND). The prologue of the sample explains how to set 
up a DST. 

The HLL service routines utilized in this sample are: CNMKIO (CNMKEYIO), CNMSMSG 

(CNMSENDMSG). 

PSCOPCK (CNMS4216) 
This sample illustrates the scope checking capabilities provided by NetView. This 
sample scope checks keywords and values of the PSCOPCK command. In this 
sample, the user is required to set up the following elements for the command: 
operator ID, operator classes that can access the command, and operator profile. 
See the prologue of the sample for more information. This command yields a 
message informing the operator if he is not authorized to use the keyword and 
value specified when invoking the command. 

The HLL service routines utilized in this sample are: CNMSCAN (CNMSSCAN), CNMSCOP 

(CNMSCOPECK), CNMSMSG (CNMSENDMSG). 

This sample is included in "Sample Command Processor for Scope Checking" on 
page 272. 

266 NetView Customization: Using PLI and C 



PFLVIEW (CNMS4217) 
This sample illustrates the usage of the full screen VIEW command processor. 

The HLL service routines utilized in this sample are: CNMCMD (CNMCOMMAND), 

CNMVARS(CNMVARPOOW. 

PACTLU (CNMS4218) 
This sample illustrates how to issue a VTAM command to activate an LU, trap the 
VTAM messages that result, and respond depending on the messages received. 

The HLL service routines utilized in this sample are: CNMSCAN (CNMSSCAN), CNMCMD 

(CNMCOMMAND), CNMGETD (CNMGETDATA), CNMSMSG CNMSENDMSG). 

PSEQLOG (CNMS4219) 
This sample uses CNMSMSG to log text to a sequential log. The prologue of the 
sample contains instructions for set up. 

The HLL service routines utilized in this sample are: CNMSCAN (CNMSSCAN), CNMINFC 

(CNMINFOC), CNMSMSG (CNMSENDMSG). 

This sample is included in "Sample Command Processor for Sequential Logging" 
on page 276. 

PXITDI (CNMS4220) 
This sample is a DST initialization exit. The sample illustrates the DST initialization 
exit that is used by the USERVSAM DST. 

The HLL service routines utilized in this sample are: CNMVARS (CNMVARPOOL), 

CNMSMSG (CNMSENDMSG). 

PXITVN (CNMS4221) 
This sample primes a VSAM empty data set for the USERVSAM DST. 

PSNDDST (CNMS4222) 
This sample sends a 'PUT' or 'GET' request to the sample HLL Data Services 
Command Processor named PDOVSAM to store and retrieve a given value for a 
specified key (key and value limited to 11 characters in length). The sample also 
allows a specified NetView Command List Language variable (defined by the 
caller) to be set to the retrieved value. 

The HLL service routines utilized in this sample are: CNMSCAN (CNMSSCAN), CNMSMSG 

(CNMSENDMSG). CNMVARS (CNMVARPOOL). CNMGETD (CNMGETDATA), CNMCMD (CNMCOMMAND). 

PDOVSAM (CNMS4223) 
This sample is an HLL Data Services Command Processor which runs under the 
sample Data Services Task (task ID 'USERVSAM'). It processes 'PUT' or 'GET' requests 
sent by the PSNDDST sample, and will write or read an 11 character value associ
ated with an 11 character key to the sample DST'S VSAM data set. The prologue of 
PDOVSAM contains instructions on installing the sample 'USERVSAM' Data Services 
Task. 

Appendix B. PUI Samples 267 



The HLL service routines utilized in this sample are: CNMSCAN (CNMSSCAN). CNMSMSG 

(CNMSENDMSG). CNMKIO (CNMKEYIO). 

PPRIME (CNMS4224) 
This sample primes a VSAM empty data set for PKEYIO. 

268 NetView Customization: Using PlI and C 



PL/I Coded Samples 

Sample User Exit 

This section contains an example of a user exit routine and two command 
processors. 

This sample is an example of user exit DSIEX02A. 

PEXIT2A: PROC(HLBPTR,CMDBUF,ORIGBLCK) OPTIONS(MAIN,REENTRANT); 
/********************************************************************/ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

(C) COPYRIGHT IBM CORP. 1989 

IEBCOPY SELECT MEMBER=«CNMS4213,PEXIT2A,R)) 

Descriptive Name: High Level Language PL/I DSIEX02A 
Example 

Function: 

This DSIEX02A adds two lines to the single line WTOs 
that are driving the exit. 

Introduction: 

To convert a single line WTO into a multi-line WTO, 
you must change the line types accordingly: 

In Out 

msg_type = "E",msg_type="=" line_type="C" (Control) 
and a msg type="=" line type="D" (Data) 

line_type of II II msg_typ~="=" line_typ~=IF" (Final) 

Note: 
A Msg_type of "E" implies that the message was externally 
generated via a WTO. For example MVS D T would send· 
a Msg_type of "E". The Msg_type of "=" implies a user 
generated MLWTO was issued. 

Dependencies: None 

Restrictions: Only processes messages issued under mainline 
processing. 

Language: PL/I 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

Appendix B. PLII Samples 269 



/* */ 
/* Input: */ 
/* 1) 4-byte pointer to the HlB control block */ 
/* 2) varying length character string of command (or message */ 
/* for user exits) that invoked this procedure */ 
/* 3) 40-byte parameter list which describes the origin of */ 
/* the request that caused execution of this procedure. */ 
/* */ 
/* Output: * / 
/* Messages to various tasks. */ 
/* */ 
/* Return Codes: returned in HlBRC */ 
/* 0 = normal exit */ 
/* */ 
/* External Module References: None */ 
/* */ 
/* Change Activity: */ 
/* date,author: Description of changes */ 
/* */ 
/********************************************************************/ 

/********************************************************************/ 
/* */ 
/* Parameter Declarations */ 
/* */ 
/********************************************************************/ 
DCl HLBPTR PTR; /* Pointer to the HlB */ 
%INClUDE DSIPlI; /* Include the Hll macros "*/ 
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the command */ 
DCL ORIGBlCK CHAR(40); /* Area for the Orig Block */ 
DCl ORIGIN PTR; /* Pointer to the Orig Block */ 
DCl ADDR BUILTIN; /* Builtin function */ 
ORIGIN=ADDR(ORIGBlCK); /* Address the Orig Block */ 

/********************************************************************/ 
/* */ 
/* Other Declarations */ 
/* */ 
/********************************************************************/ 
DCl GETBLOCK CHAR(40); /* Area for the Orig Block" */ 
DCl DATAIN CHAR(255) VAR; /* Message that drove the exit */ 

270 NetView Customization: Using Pli and C 



/********************************************************************/ 
/* */ 
/* Execution */ 
/* */ 
/********************************************************************/ 
GETPTR=ADDR(GETBLOCK); /* Address the Orig block */ 
CNMGETDATA /* Peek the msg before altering */ 

FUNC('PEEKLINE ' ) /* ... subfunction is PEEK */ 
QUEUE(IDATAQ) /* ••• initial data queue */ 
DATA(DATAIN) /* ••• result goes here */ 
LENG(256) /* ••• max length is 256 */ 
ORIGIN(GETBLOCK) /* ••• use new Orig block */ 
LINE(l); /* •.• check the first line */ 

IF GETPTR->ORIG_MSG_TYPE ='E ' THEN /*WTO response to MVS command */ 
DO; 

GETPTR->ORIG_MSG_TYPE =1=1; /* Set msg type to MLWTO */ 
GETPTR->ORIG_LINE_TYPE='C ' ; /* Set line type to control */ 
CNMALTDATA /* Replace the text ••• */ 

FUNC('REPLINE ' ) /* ... function is replace */ 
QUEUE(IDATAQ) /* ... initial data queue */ 
DATA('Change WTO to MLWTO t WTO=H' I IDATAINI I IHI) 

/* ... text of new message */ 
ORIGIN{GETBLOCK) /* ... use Peeked Orig block */ 
LINE{l); /* ... replace the first line */ 

GETPTR->ORIG_LINE_TYPE='D ' ; /* Set line type to data */ 
CNMALTDATA /* Insert a new line... */ 

FUNC{'INSLINE ' ) /* ... function is insert */ 
QUEUE (IDATAQ) /* ... initial data queue */ 
DATA('Add a data line to the MLWTO ' ) 
ORIGIN(GETBLOCK) /* ... use Peeked Orig block */ 
LINE(2); /* ... add a line */ 

GETPTR->ORIG_LINE_TYPE='F ' ; /* Set line type to final line */ 
CNMALTDATA /* Insert a new line... */ 

FUNC('INSLINE ' ) /* ... function is insert */ 
QUEUE(IDATAQ) /* ... initial data queue */ 
DATA{'Add an end of MLWTO msg') 
ORIGIN (GETBLOCK) /* ... use Peeked Orig block */ 
LINE(3); /* ... add a line */ 

HLBRC=CNM_GOOD; /* Issue clean rc... */ 
END; 

END PEXIT2A; 

Appendix B. PLII Samples 271 



Sample Command Processor for Scope Checking 
This sample is an example of a command processor for scope checking. 

PSCOPCK: PROC(HLBPTR,CMDBUF,ORIGBLCK) OPTIONS(MAIN,REENTRANT); 
/********************************************************************/ 
/* */ 
/* (C) COPYRIGHT IBM CORP. 1989 */ 
/* */ 
/* IEBCOPY SELECT MEMBER=«CNMS4216,PSCOPCK,R» */ 
/* */ 
/* Oescriptive Name: High Level Language PL/I */ 
/* Scope Check Example */ 
/* */ 
/* Function: */ 
/* */ 
/* The following is an example of the scope checking capabilities */ 
/* provided by NetView. In this example, the user is required to */ 
/* set up the following elements for the command (shown below): */ 
/* (1) operator id */ 
/* (2) operator classes that can access the command */ 
/* (3) operator profile */ 
/* */ 
/* The command gives the return code that the scope check service */ 
/* routine returned to the operator. */ 
/* */ 
/* The syntax that this command checks for is: */ 
/* */ 
/* PSCOPCK PARMx(VALx) */ 
/* */ 
/* The following is the setup for the scope check example: */ 
/* */ 
/* In DSIPARM(DSICMD): */ 
/* Define the operator classes that can access */ 
/* the command, its keywords, and its keyword values.*/ 
/* . */ 
/* The example below says that the command HLLSCOPE */ 
/* can be executed by operators in scope class */ 
/* 1 and 2. Scope class 1 can issue any keyword */ 
/* or keyword value, but scope class 2 cannot use */ 
/* the value of VALl with keyword PARM2, and scope */ 
/* class 2 cannot issue PARM3 at all. */ 
/* */ 
/* Example: */ 
/* */ 
/* HLLSCOPE CMDMDL MOD=HLLMOD,RES=N,TYPE=RO */ 
/* CMDCLASS 1,2 */ 
/* PARM2 KEYCLASS 1,2 * / 
/* VALl VALCLASS 1 */ 
/* PARM3 KEYCLASS 1 */ 
/* VALl VALCLASS 1 * / 
/* */ 

272 NetView Customization: Using PlI and C 



/* In DSIPARM(DSIOPF) */ 
/* Define the operator ids and the profiles that the operator */ 
/* ids can use. */ 
/* */ 
/* Example; */ 
/* JOE OPERATOR PASSWORD=USER */ 
/* PROFILEN DSIPROF3 */ 
r ~ 
/* In DSIPRF(profi1ename) */ 
/* Define the operator class value that will correspond to the */ 
/* profile that the operator logs on with. */ 
/* */ 
/* Example: */ 
/* In the DSIPRF dataset, member name DSIPROF3, */ 
/* */ 
/* DSIPROF3 PROFILE */ 
/* OPCLASS 3 * / 
/* END * / 
/* */ 
/* Restrictions: None */ 
/* */ 
/* Language: PL/I */ 
/* */ 
/* Input: */ 
/* 1) 4-byte pointer to the HLB control block */ 
/* 2) varying length character string of command (or message */ 
/* for user exits) that invoked this procedure */ 
/* 3) 40-byte parameter list which describes the origin of */ 
/* the request that caused execution of this procedure. */ 
/* */ 
/* Output: .*/ 
/* Messages describing the scope of the operator. */ 
/* */ 
/* Return Codes: returned in HLBRC */ 
/* 0 = normal exit */ 
/* -5 = cancelled */ 
r ~ 
/* External Module References: None */ 
r ~ 
/* Change Activity: */ 
/* date,author: description of changes */ 
/********************************************************************/ 

Appendix B. PLII Samples 273 



/********************************************************************/ 
/* */ 
/* Parameter Declarations */ 
/* */ 
/********************************************************************/ 
DCl HlBPTR PTR; /* Pointer to the HlB */ 
%INClUDE DSIPlI; /* Include the Hll macros */ 
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the command*/ 
DCl ORIGBlCK CHAR(4e); /* Area for the Orig Block */ 
DCl ORIGIN PTR; /* Pointer to the Orig Block */ 
DCl ADDR BUILTIN; /* Builtin function */ 
ORIGIN=ADDR(ORIGBlCK); /* Address the Orig Block */ 

/********************************************************************/ 
/* */ 
/* Other Declarations */ 
/* */ 
/********************************************************************/ 
DCl INBUF CHAR(Se) VAR; /* Buffer area for messages */ 
DCl CMDNAMEV CHAR(S) VAR; /* Command that invoked us */ 
DCl KEYWORDV CHAR(S) VAR; /* Keyword of invocation */ 
DCl KEYVAlUEV CHAR(S) VAR; /* KeyValue of invocation */ 
DCl CMDNAME CHAR(S); /* Command that invoked us */ 
DCl KEYWORD CHAR(8); /* Keyword of invocation */ 
DCl KEYVAlUE CHAR(8); /* KeyValue of invocation */ 
DCl CNT FIXED BIN(31,e); /* Number of elements parsed */ 

/********************************************************************/ 
/* */ 
/* Execution */ 
/* */ 
/********************************************************************/ 

/********************************************************************/ 
/* Scan the keyword and the value */ 
/********************************************************************/ 
CAll CNMSCAN(HlBPTR, /* Parse the input .•• */ 

CMDBUF, /* ••• command line is the input */ 
/* SYNTAX OF COMMAND IS: */ 
/* CMDNAME KEYWORD(KEYVAlUE) */ 
/* */ 

274 NetView Customization: Using PU and C 



'%S'II 
'%*{ } I II 
'%{"O I II 
'%*c'll 
I%{.,)} I , 
CNT, . 
CMDNAMEV, 
KEYWORDV, 
KEYVALUEV); 

CMDNAME=CMDNAMEV; 
KEYWORD=KEYWORDV; 
KEYVALUE=KEYVALUEV; 
IF CNT=3 THEN 

CALL CNMSCOP(HLBPTR, 
CMDNAME, 
KEYWORD, 
KEYVALUE); 

ELSE 
HLBRC=CNM_BAD_INVOCATION; 

/* Scan for the: * / 
/* ... command name */ 
/* ••• skip over leading blanks */ 
/* ... keyword up to "(" */ 
/* ... skip over "(" */ 
/* ... keyvalue up to ")" */ 
/* ... number strings parsed */ 
/* ... command goes here */ 
/* ... keyword goes here */ 
/* ... keyvalue goes in here */ 
/* Get fixed length value */ 
/* Get fixed length value */ 
/* Get fixed length value */ 
/* Enough panms specified? */ 
/* Scope check the input... */ 
/* ... the command */ 
/* ... the keyword */ 
/* ... the value */ 

/* Not enough panms specified */ 
/* Set rc */ 

/********************************************************************/ 
/* Inform user of the return code results... */ 
/********************************************************************/ 

SELECT; 
WHEN (HLBRC=CNM_GOOD) 

00; /* Operator 
/* has 
/* passed 

END; /* scope checking 

*/ 
*/ 
*/ 
*/ 

WHEN (HLBRC=CNM_KEYWORD_NA) 
CALL CNMSMSG(HLBPTR, I Not authorized to use KEYWORD 

'MSG','OPER',"}; 
WHEN(HLBRC=CNM VALUE NA} 

CALL CNMSMSG(HLBPTR,' Not authorized to use VALUE 
'MSG','OPER',"}; 

WHEN(HLBRC=CNM BAD INVOCATION) 
CALL CNMSMSG(HLBPTR,' Not enough parms specified', 

'MSG','OPER',"); 
OTHERWISE 

CALL CNMSMSG(HlBPTR, , RC not recognized ••• I I IHLBRC, 
I MSG 1 , I OPER I , II}; _ 

END; 
HlBRC=CNM_GOOD; 

END PSCOPCK; 
/* Clear RC 

I II KEYWORD, 

I II KEYVALUE, 

*/ 

Appendix B. PUI SamDle~ 



Sample Command Processor for Sequential Logging 
This sample is an example of a command processor to log text to a sequential log. 

PSEQLOG: PROC(HLBPTR,CMDBUF,ORIGBLCK) OPTIONS(MAIN,REENTRANT); 
/********************************************************************/ 
/* */ 
/* (C) COPYRIGHT IBM CORP. 1989 */ 
/* */ 
/* IEBCOPY SELECT MEMBER=«CNMS4219,PSEQLOG,R» */ 
/* */ 
/* Descriptive Name: High Level Language PL/I Sequential */ 
/* Loggi ng Example * / 
/* */ 
/* Function: */ 
/* */ 
/* Write the text passed to this command procedure via the */ 
/* command line to the log. */ 
/* */ 
/* The syntax of this command is: */ 
/* */ 
/* PSEQLOG LOGTEXT */ 
/* */ 
/* Dependencies: NONE */ 
/* */ 
/* Restrictions: NONE */ 
/* */ 
/* Language:: PL/I */ 
/* */ 
/* Installation: */ 
/* */ 
/* (1) ASSEMBLE AND LINKEDIT THIS MODULE AMODE=31,RMODE=ANY */ 
/* TYPE=RENT * / 
/* (2) ALLOC PRIMARY AND SECONDARY SEQUENTIAL DATA SET */ 
/* (3) USE DO NAMES IN NETVIEW PROC OR THE ALLOCATE COMMAND */ 
/* TO ALLOCATE THE DATA SETS TO NETVIEW. */ 
/* ALLOCATE THE DATA SETS AS */ 
/* SQLOGP & SQLOGS */ 
/* (4) ADD THE FOLLOWING STATEMENT TO DSIDMN */ 
/* TASK MOD=DSIZDST,TSKID=SQLOGTSK,MEM=SQLOGMEM,PRI=3,INIT=Y*/ 
/* (5) ADD THE FOLLOWING MEMBER (SQLOGMEM) TO DSIPARM */ 
/* DSTINIT FUNCT=OTHER,DSRBO=l */ 
/* DSTINIT PBSDN=SQLOGP */ 
/* DSTINIT SBSDN=SQLOGS */ 
/* LOGINIT AUTOFLIP=YES,RESUME=NO */ 
/* (6) ADD THE FOLLOWING CMDMDL TO DSICMD */ 
/* PSEQLOG CMDMDL MOD=PSEQLOG,TYPE=R,RES=N */ 
/* */ 

276 NetView Customization: USing PLI and C 



/* Input: */ 
/* I} 4-byte pointer to the HlB control block */ 
/* 2} varying length character string of command (or message */ 
/* for user exits) that invoked this procedure */ 
/* 3} ~0-byte parameter list which describes the origin of */ 
/* the request that caused execution of this procedure. */ 
/* */ 
/* Output: */ 
/* Writes input to a sequential log */ 
/* */ 
/* Return Codes: returned in HLBRC */ 
/* 0 = normal exit */ 
/* -5 = canceled */ 
/* */ 
/* External Module References: None */ 
/* */ 
/* Change Activity: . */ 
/* date,author: description of changes */ 
/* */ 
/********************************************************************/ 
DCl HlBPTR PTR; /* Poi nter to the HlB * / 
%INClUDE DSIPlI; /* Include the Hll macros */ 
DCl CMDBUF CHAR(*) VARYING; /* Buffer for the command */ 
DCl ORIGBlCK CHAR(40); /* Area for the Orig Block */ 
DCl ORIGIN PTR; /* Pointer to the Orig Block */ 
ORIGIN=ADDR(ORIGBlCK); /* Address the Orig Block */ 
/********************************************************************/ 
r ~ 
/* Customization starts here..... */ 
/* */ 
/********************************************************************/ 

/********************************************************************/ 
/* */ 
/* Declares */ 
/* */ 
/********************************************************************/ 
DCl logtask CHAR(8) 

INIT(ISQlOGTSK 1); 
DCl domain CHAR(8) varj 
DCl logtime CHAR(8) varj 
DCl opid CHAR(8) varj 
DCl logtext CHAR(229} varj 
DClloghdr CHAR(27) INIT«27)1 
DCl logbfr CHAR(256} varj 
DCl errmsg CHAR (80) varj 
DCl rc CHAR(16) varj 
dcl parmcnt fixed bin(31)j 

/* Sequential log task id - */ 
/* specified in DSIDMN */ 
/* Domain name */ 
/* Time */ 
/* Operator name */ 
/* Holds text to be logged */ 

I)j /* Holds some header info */ 
/* Holds the buffer to be logged */ 
/* Holds error message */ 
/* Character form of return code */ 
/* Number of elemets parsed */ 

Appendix 8. PLfI Samples 277 



/********************************************************************/ 
/* */ 
/* Execut ion * / 
/* */ 
/********************************************************************/ 

CNMSSCAN oATA(cmdbuf) 
FORMAT('%*S%*C%{~}') 

COUNT(panncnt) 
Pl(logtext) ; 

CNMINFOC ITEM('DOMAIN') 
DATA(domain) LENG(8); 

CNMINFOC ITEM('TIME') 
oATA(logtime) LENG(8); 

CNMINFOC ITEM('OPIo') 
DATA(opid) LENG(8); 

substr(loghdr,l) = domain; 
substr(loghdr,le) = logtime; 
substr(10ghdr,19) = opid; 

logbfr = loghdr I I logtext; 

CNMSENoMSG DATA(logbfr) 
MSGTYPE( 'MSG') 
oESTTYPE('SEQLOG') 
oEST(logtask); 

/* Scan the input */ 
/* skipping the cmd name %*S */ 
/* and the following blank %*C */ 
/* the remainder is the text */ 
/* to be logged %{~} */ 
/* number of elements scanned */ 
/* scan text into logtext */ 

/* Get the domain name 

/* and the time 

/* and the operator id 

/* Put domain name in header 
/* ditto for time 
/* and opid 

/* Con cat header and text 

*/ 

*/ 

*/ 

*/ 
*/ 
*/ 

*/ 

/* Text is in logbfr */ 
/* message type is 'MSG' */ 
/* destination is sequential log */ 
/* name of task is in logtask */ 

/********************************************************************/ 
/* Infonn user of the return code results... */ 
/********************************************************************/ 
if hlbrc ~= e then do; 

rc = char(hlbrc); 
ernnsg = 'SLOGeee ERROR, RC from SENoMSG = 'II 

substr(rc,length(rc)-4); 
CNMSENoMSG DATA(ernnsg) MSGTYPE('MSG') 

oESTTYPE('TASK') oEST(origin->orig_task); 
end; 

END PSEQLOG; 

278 NetView Customizatlon: Using Pli and C 



Appendix C. C Control Blocks and Include Files 

DSIC 

This appendix describes the C Control Blocks and Include files needed to write in c. 

/********************************************************************/ 
/* */ 
/* NAME = DSIC * / 
/* */ 
/* DESCRIPTIVE NAME = Main HLL C Include File */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = DSIC is required and must be included by all HLL */ 
/* programs written in C. DSIC includes all of the external */ 
/* HLL control blocks and include files needed to run C */ 
/* programs in the NetView environment. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = include file */ 
/* */ 
/* PROCESSOR = C * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY */ 
/* */ 
/********************************************************************/ 
#include "dsiccons.h" /* Constants */ 
#include "dsicvarc.h" /* Varying length char structure */ 

#include "dsichlb.h" 
#include "dsicorig.h" 
#include "dsiccall.h" 
linclude "dsiccnm.h" 

/* Mapping of HLB 
/* Mapping of Origin block 
/* HLL function definitions 
/* HLL return code constants 

*/ 
*/ 
*/ 
*/ 

Appendix C. C Control Blocks and Include Files 279 



DSICCONS 

/********************************************************************/ 
r ~ 
/* NAME = DSICCONS */ 
r ~ 
/* DESCRIPTIVE NAME = HLl C Constants */ 
r ~ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBMII * / 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* All RIGHTS RESERVED */ 
/* lICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file contains the definitions for constants */ 
/* that are helpful when coding Hll modules in C. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = constants */ 
/* */ 
/* PROCESSOR = C * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 

/********************************************************************/ 
/* Constants common across Hll services */ 
/********************************************************************/ 
'define ZERO 0x00 
'define TRAPQ 1 
'define OPERQ 2 
'define DATAQ 3 
'define IDATAQ 4 
'define CNMIQ 5 

280 NetVlew Customlzation: Using PLI and C 



/**************************************~*****************************/ 

/* Constants for calls to Cnmaltd */ 
/********************************************************************/ 
'define INSLINE "INSLINE" 
'define REPLINE "REPLINE" 
#define DELLINE "DELLINE" 

/********************************************************************/ 
/* Constants for Cnmcpys */ 
/********************************************************************/ 
#define FIXTOFIX "FIXTOFIX" 
'define FIXTOVAR "FIXTOVAR" 
'define VARTOFIX "VARTOFIX" 
Idefine VARTOVAR "VARTOVAR" 

/*******************************************************************/ 
/* Constants for calls to Cnmgetd */ 
/*******************************************************************/ 
Idefine GETMSG "GETMSG" 
Idefine GETLINE "GETLINE II 

Idefine PEEKLINE "PEEKLINE" 
Idefine FLUSHLIN "FLUSHLIN" 
Idefine FLUSHMSG "FLUSHMSG" 
Idefine FLUSHQ "FLUSHQ 

/*******************************************************************/ 
/* Constants for Cnmcnmi */ 
/*******************************************************************/ 
Idefine SENDRESP "SENDRESP" 
Idefine SENDRPLY "SENDRPLY" 

/********************************************************************/ 
/* Constants for Cnmlock */ 
/********************************************************************/ 
Idefine UNLOCK "UNLOCK II 

Idefine LOCK II LOCK 
Idefine TEST "TEST 
Idefine WAIT "WAIT 
Idefine HOWAIT "NOWAIT 

/********************************************************************/ 
/* Constants for Cnmnams, Cnmpool and Cnmcell */ 
/********************************************************************/ 
Idefine ALLOC "ALLOC" 
Idefine FREE II FREE II 

Idefine LOCATE II LOCATE 
Idefine REALLOC "REALLOC II 

Appendix C. C Control Blocks and Include Files 281 



Idefine RESIDENT a 
Idefine STORAG31 1 
#define STORAG24 2 

/********************************************************************/ 
/* Constants for Cnmsmsg */ 
/********************************************************************/ 
#define MSG IIMSG II 
#define MSG_C II MSG_C II 
#define MSG_L II MSG_L II 

#define MSG_D II MSG_D II 
#define MSG_E IIMSG_E II 

#define MSG_F II MSG_F II 

#define COMMAND II COMMAND 
#define REQUEST IIREQUEST 
#define DATA II DATA 
#define OPER IIOPER 
#define TASK IITASK 
#define SYSOP IISYSOP 
#define NETVLOG IINETVLOG 
#define EXTLOG II EXTLOG 
#define SEQLOG IISEQLOG 
#define AUTHRCV IIAUTHRCV 
#define OPCLASS IIOPCLASS 
#define NULLCHAR II 

/********************************************************************/ 
/* Constants for Cnmvars */ 
/********************************************************************/ 
#define PUT II PUT 
#define DCL IIDCL 
#define GET IIGET 
#define LOCAL II LOCAL 
#define TGLOBAL IITGLOBAL 
#define CGLOBAL IICGLOBAL 
#define CALLER IICALLER 

/********************************************************************/ 
/* Constants for Cnmkio */ 
/********************************************************************/ 
#define GET_EQ IIGET_EQ II 
#defi ne GET _EH IIGET _EH II 

#define GET_NEXT IIGET_NEXTII 
#define GET_PREV "GET_PREV" 

282 NetView Customization: Using PLI and C 



'define ERASE 
'define ENDREQ 
'define UPDATE 
'define NOUPDATE 
'define DIRECT 

"ERASE " 
tlENDREQ II 

"UPDATE " 
"NOUPDATE" 
"DIRECT II 

/***********~********************************************************/ 
/* Constants for user exits running under a DST */ 
/********************************************************************/ 
#define USERASIS 9 
#define USERDROP 4 
'define USERSWAP 8 
'define USERLOG 12 
Idefine USERLOGR 16 
'define USERHCL 29 
'define USERHCLR 24 
'define USERDINT 233 
'define USERVINT 234 
'define USERVINP 235 
'define USERVOUT 236 
'define USERCINP 237 
'define USERCOUT 238 
'define USERXLOG 249 
'define USERSINT 241 
'define USERSOUT 242 

/********************************************************************/ 
/* Constants for Cnmvlc and Cnmnvlc */ 
/********************************************************************/ 
'define NOHEXCNV 9 
'define CNVTOHEX 1 

Appendix C. C Control Blocks and Include Files 283 



DSICVARC 

/********************************************************************/ 
/* */ 
/* NAME = DSICVARC */ 
/* */ 
/* DESCRIPTIVE NAME = HLL C Varying Length Character Stings */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = DSIVARCH is a structure type which represents */ 
/* varying length character strings for use in NetView High */ 
/* Level Language service routine invocations. */ 
r ~ 
/* The structure consists of two parts: */ 
/* short int size - A 2 byte field which holds the size of */ 
/* the character string. The end of string */ 
/* character (\0) is not included in this */ 
/* size but MUST deli mi t the character * / 
/* string. */ 
/* */ 
/* char *buffer - A character string delimited by the end */ 
/* of string character (\0). */ 
/* */ 
/* NOTES = see below * / 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = C * / 
r ~ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 
typedef struct { 

short int size; 
char buffer??(256??); 

} Dsivarch; 

/* Length of buffer 
/* Varying length buffer 

*/ 
*/ 

284 NetView Customization: Using Pli and C 



DSICHLB 

/********************************************************************/ 
/* */" 
/* NAME - DSICHLB */ 
/* */ 
/* DESCRIPTIVE "NAME = HLL C Mapping of DSIHLB */ 
/* */ 
/* 5665-362 for MVS/XA * / 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G12a-2G83 * / 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file contains a C mapping of DSIHLB t an */ 
/* internal control block. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = C * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 

Appendix C. C Control Blocks and Include Files 285 



typedef struct { 
int Hlblen; 
int *Hlbwka; 
int *Hlbhlls; 
int *Hlbtib; 
int *Hlbuser; 
int Hlbrc; 
int Hlbleng; 

unsigned int Hlbsense; 
unsigned int Hlbrsrv; 
char Hlbffdca??(48??}; 

} Dsihlb; 

288 NetVlew Customization: Using PLI and C 

/* Length of HLB */ 
/* Pointer to WKA for API modules*/ 
/* Pointer to HLLS (~ used by C) */ 
/* Pointer to TIB */ 
/* User word * / 
/* Return code from last API call*/ 
/* Length of data returned if 

Hlbrc = 8. Otherwise, length 
of data that would have been 
returned if truncation had 
not occurred. */ 

/* Sense code from CNMI */ 
/* Reserved */ 
/* First failure data capture */ 



DSICORIG 

/********************************************************************/ 
/* */ 
/* NAME = DSICORIG */ 
/* */ 
/* DESCRIPTIVE NAME = HLL C Origin Block Mapping */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G120-2083 * / 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file defines the mapping of the origin block */ 
/* of the request that caused the execution of the procedure */ 
/* currently running. */ 
r ~ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = C * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 
typedef struct { 

int Orig block length; 
char Orig=dummyl??(8??); 
char Orig domain??(8??); 
char Orig=task??(8??); 
char Orig_process??(8??); 
char Orig_msg_type; 
char Orig line type; 
char Orig=dummy2??(2??); 

} Dsiorig; 

/* Reserved 
/* Origin domain id 
/* Origin task id 

*/ 
*/ 
*/ 

/* Message type from HDRMTYPE */ 
/* Line type */ 
/* Reserved */ 

Appendix C. C Control Blocks and Include Flies 287 



DSICCALL 

/********************************************************************/ 
/* */ 
/* NAME = DSICCALL */ 
/* */ 
/* DESCRIPTIVE NAME = HLL C Service Routine Definitions */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G129-2983 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This files defines the following service routines */ 
/* for C: */ 
/* 1. Preprocessor directives */ 
/* 2. Function declarations */ 
/* 3. Macro definitions */ 
/* */ 
/* NOTES = see below * / 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = structure map */ 
/* */ 
/* PROCESSOR = C * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 

288 NetView Customization: Using PLI and C 



/********************************************************************/ 
/* Preprocessor directives */ 
/* Each of the HLL service routines uses as linkage. */ 
/********************************************************************/ 
#pragma linkage(Cnmaltd, aS) 
#pragma linkage(Cnmcell, OS) 
#pragma linkage(Cnmcmd, OS) 
#pragma linkage(Cnmcnmi, OS) 
#pragma linkage(Cnmcpys, OS) 
#pragma linkage(Cnmgeta, OS) 
#pragma linkage(Cnmgetd, OS) 
#pragma linkage(Cnminfc, OS) 
#pragma linkage(Cnminfi, OS) 
#pragma linkage(Cnmkio, OS) 
#pragma linkage(Cnmlk, OS) 
#pragma linkage(Cnmmemo, OS) 
#pragma linkage(Cnmmemr, OS) 
#pragma linkage(Cnmmemc, OS) 
#pragma linkage(Cnmnams, OS) 
#pragma linkage(Cnmpool, OS) 
#pragma linkage(Cnmscop, OS) 
#pragma linkage(Cnmsmsg, OS) 
#pragma linkage(Cnmvars, OS) 

/********************************************************************/ 
/* Function declarations */ 
/* Each of the HLL service routines has a function declaration */ 
/* defining its parameter list. */ 
/********************************************************************/ 
void Cnmaltd(Dsihlb **hlbptr, char *adfunc, void *adbuf, 

void *adorigin, int adqueue, int adindex); 
void Cnmcell(Dsihlb **hlbptr, char *pcfunc, int pctoken, 

void *pcstrptr); 
void Cnmcmd(Dsihlb **hlbptr, void *cmdstr); 
void Cnmcnmi(Dsihlb **hlbptr, char *cnfunc, void *cndata, 

char *cndest, int cntimout); 
void Cnmcpys(Dsihlb **hlbptr, void *csfrom, void *csto, int cslen, 

char *cstype); 
void Cnmgeta(Dsihlb **hlbptr, char *ganame, void *gadata, 

int gadatlen, int gaqueue); 
void Cnmgetd(Dsihlb **hlbptr, char *gdfunc, void *gdbuf, 

int gdbuflen, void *gdorigin, int gdqueue, int gdindex); 
void Cnminfc(Dsihlb **hlbptr, char *icname, void *icdata, 

int icdatlen); 
void Cnminfi(Dsihlb **hlbptr, char *iiname, int *iinumb); 
void Cnmkio(Dsihlb **hlbptr, char *vsfunc, void *vsdata, 

int vsdatlen, void *vskey, char *vsoption); 
void Cnmlk(Dsihlb **hlbptr, char *lkfunc, void *lkname, 

char *lkscope, char *lkoption); 
void Cnmmemo(Dsihlb **hlbptr, int *motoken, char *moddname, 

char *momemnam); 

Appendix C. C Control Blocks and Include Files 289 



void Cnmmemr{Dsihlb **hlbptr, int mrtoken, void *mrdata, int mrdatlen); 
void Cnmmemc{Dsihlb **hlbptr, int mctoken); 
void Cnmnams{Dsihlb **hlbptr, char *nsfunc, void *nsptr, 

void *nsname, int *nsleng, int nsclass); 
void Cnmpool{Dsihlb **hlbptr, char *spfunc, int *sptoken, void *spname, 

int spleng, int sppricnt, int spseccnt, int spclass); 
void Cnmscop{Dsihlb **hlbptr, char *sccmd, char *sckwd, char *scvalue); 
void Cnmsmsg(Dsihlb **hlbptr, void *smtext, char *smmsgtype, 

char *smdestyp, char *smdestid); 
void Cnmvars(Dsihlb **hlbptr, char *cvfunc, void *cvdata, 

int cvdatlen, void *cvname, char *cvpool); 

/********************************************************************/ 
/* Function declarations */ 
/* Functions provided for use with varying length character */ 
/* strings. */ 
/********************************************************************/ 
void *Cnmvlc(void *vstring, short convert, char *istring, ••• ); 
void *Cnmnvlc(void *vstring, short convert, int length, char *istring); 

/********************************************************************/ 
/* Macro definitions */ 
/* Each of the Hll service routines has a macro definition which */ 
/* inserts the hlb pointer (&Hlbptr) into the parameter list. */ 
/********************************************************************/ 
#define Cnmaltd(adfunc,adbuf,adorigin,adqueue,adindex) \ 

Cnmaltd(&Hlbptr,adfunc,adbuf,adorigin,adqueue,adindex) 

#define Cnmcell{pcfunc,pctoken,pcstrptr) \ 
Cnmcell(&Hlbptr,pcfunc,pctoken,pcstrptr) 

#define Cnmcmd(cmdstr) \ 
Cnmcmd(&Hlbptr,cmdstr) 

#define Cnmcnmi(cnfunc,cndata,cndest,cntimout) \ 
Cnmcnmi(&Hlbptr,cnfunc,cndata,cndest,cntimout) 

#define Cnmcpys(csfrom,csto,cslen,cstype) \ 
Cnmcpys{&Hlbptr,csfrom,csto,cslen,cstype) 

#define Cnmgeta(ganame,gadata,gadatlen,gaqueue) \ 
Cnmgeta(&Hlbptr,ganame,gadata,gadatlen,gaqueue) 

#define Cnmgetd(gdfunc,gdbuf,gdbuflen,gdorigin, \ 
gdqueue,gdindex) \ 

Cnmgetd(&Hlbptr,gdfunc,gdbuf,gdbuflen,gdorigin, \ 
gdqueue,gdindex) 

#define Cnminfc(icname,icdata,icdatlen) \ 
Cnminfc(&Hlbptr,icname,icdata,icdatlen) 

290 NetView Customization: Using PLI and C 



Idefine Cnminfi(iiname,iinumb) 
Cnminfi(&Hlbptr,iiname,iinumb) 

\ 

'define Cnmkio(vsfunc,vsdata,vsdatlen,vskey,vsoption) \ 
Cnmkio(&Hlbptr,vsfunc,vsdata,vsdatlen,vskey,vsoption) 

Idefine Cnmlk(lkfunc,lkname,lkscope,lkoption) \ 
Cnmlk(&Hlbptr,lkfunc,lkname,lkscope,lkoption) 

'define Cnmrnemo(motoken,moddname,momemnam) \ 
Cnmmemo(&Hlbptr,motoken,moddname,momemnam) 

Idefine Cnmrnemr(mrtoken,mrdata,mrdatlen) \ 
Cnmrnemr(&Hlbptr,mrtoken,mrdata,mrdatlen) 

'define Cnmrnemc(mctoken) \ 
Cnmrnemc (&Hl bptr,mctoken) 

'define Cnmnams(nsfunc,nsptr,nsname,nsleng,nsclass) \ 
Cnmnams(&Hlbptr,nsfunc,nsptr,nsname,nsleng,nsclass) 

'define Cnmpool(spfunc,sptoken,spname,spleng, \ 
sppricnt,spseccnt,spclass) \ 

Cnmpool(&Hlbptr,spfunc,sptoken,spname,spleng, \ 
sppricnt,spseccnt,spclass) 

'define Cnmscop(sccmd,sckwd,scvalue) \ 
Cnmscop(&Hlbptr,sccmd,sckwd,scvalue) 

'define Cnmsmsg{smtext,smrnsgtype,smdestyp,smdestid) \ 
Cnmsmsg(&Hlbptr,smtext,smrnsgtype,smdestyp,smdestid) 

'define Cnmvars{cvfunc,cvdata,cvdatlen,cvname,cvpool) \ 
Cnmvars(&Hlbptr,cvfunc,cvdata,cvdatlen,cvname,cvpool) 

Appendix C. C Control Blocks and Include Files 291 

l 



DSICCNM 

/********************************************************************/ 
/* */ 
/* NAME = DSICCNM */ 
/* */ 
/* DESCRIPTIVE NAME = HLL C Return Codes */ 
/* */ 
/* 5665-362 for MVS/XA */ 
/* THIS PRODUCT CONTAINS */ 
/* "RESTRICTED MATERIAL OF IBM" */ 
/* (c) COPYRIGHT IBM CORP 1989 */ 
/* ALL RIGHTS RESERVED */ 
/* LICENSED MATERIALS-PROPERTY OF IBM */ 
/* REFER TO COPYRIGHT INSTRUCTION FORM */ 
/* NUMBER G12a-2a83 */ 
/* */ 
/* STATUS = NetView Release 3 */ 
/* */ 
/* FUNCTION = This file defines the HLL return codes for C. */ 
/* */ 
/* NOTES = see below */ 
/* */ 
/* DEPENDENCIES = none */ 
/* */ 
/* RESTRICTIONS = none */ 
/* */ 
/* REGISTER CONVENTIONS = not applicable */ 
/* */ 
/* PATCH LABEL = not applicable */ 
/* */ 
/* MODULE TYPE = constants */ 
/* */ 
/* PROCESSOR = C * / 
/* */ 
/* EXTERNAL REFERENCES = none */ 
/* */ 
/* CHANGE ACTIVITY * / 
/* */ 
/********************************************************************/ 

292 NetView Customization: Using PLI and C 



Idefine CNM_GOOD 9 
Idefine CNM_BAD_INVOCATION 4 
Idefine CNM_TOO_MANY 8 
Idefine CNM_BAD_SYNTAX 12 
Idefine CNM_BAD_DDNAME 16 
'define CNM_NOT_FOUND 29 
'define CNM_NO_STORAGE ,24 
Idefine CNM_IOERROR 28 
Idefine CNM_BAD_TOKEN 32 
Idefine CNM_END_FILE 36 
Idefine CNM_DATA_TRUNC 49 
Idefine CNM_NOT_IN_ASYNC 44 
'define CNM_BAD_RULENG 48 
Idefine CNM_BAD_FUNC 52 
'define CNM_BAD_TIMEOUT 56 
Idefine CNM_NEED_PRID 69 
Idefine CNM_NEG_RESPONSE 64 
Idefine CNM_TIME_OUT 68 
Idefine CNM_BAD_QUEUE 72 
'define CNM_BAD_INDEX 76 
Idefine CNM_QUEUE_EMPTY 89 
'define CNM_BAD_ORIGBLOCK 84 
Idefine CNM_BAD_LENGTH 88 
Idefine CNM_NOT_MLWTO 92 
Idefine CNM_BAD_LINETYPE 96 
Idefine CNM_NOCUR_LINE 190 
'define CNM_DUPL_NAME 104 
Idefine CNM_BAD_NAME 198 
'define CNM_BAD_CLASS 112 
'define CNM_BAD_MSGTYP 116 
'define CNM_BAD_DESTYP 120 
'define CNM_TYP_CONFLICT 124 
Idefine CNM_BAD_OPTION 128 
'define CNM_COMMAND_NA 132 
Idefine CNM_KEYWORD_NA 136 
'define CNM_VALUE_NA 149 
'define CNM_BAD_COMMAND 144 
#define CNM_BAD_KEYWORD 148 
#define CNM_NO_TRAP 152 
'define CNM_BAD_POOL 156 
'define CNM_BAD_ADDR 160 
'define CNM_BAD_TASKNAME 164 
Idefine CNM_BAD_MODNAME 168 
Idefine CNM_BAD_ID 172 
'define CNM_BAD_COMBO 176 
'define CNM_TVB_INUSE 180 
Idefine CNM_RID_INUSE 184 

Appendix C. C Control Blocks and Include Files 293 



#define CNM_RID_SElF 188 
#define CNM_BAD_PRI_COUNT 192 
#define CNM_BAD_SEC_COUNT 196 
#define CNM_DUPl_KEY 2ee . 
#define CNM_NOT_IN_POOl 2e4 
'define CNM_lOCKED 2e8 
#define CNM_lOCK_INUSE 212 
'define CNM_lOG_INACTIVE 216 
#define CNM_TASK_INACTIVE 22e 
'define CNM_TIME_OUT_WAIT 224 
#define CNM_GO_ON_WAIT 228 
#define CNM_MSG_ON_WAIT 232 
#define CNM_OPINPUT_ON_WAIT 236 
'define CNM_DATA_ON_WAIT 24e 
#define CNM_NO_TRAP_SET 244 
#define CNM_NO_PREV_WAIT 248 
#define CNM_BAD_CSTYPE 252 
#define CNM_BAD_CEll_ADDRESS 256 
'define CNM_CEll_AlREADY_FREE 26e 

#define CNM_BAD_MQS 1eee 
#define CNM_DST_FAIlURE 2eee 
#define CNM_BAD_EXCMS 3eee 
'define CNM_BAD_PUSH 4eee 
#define CNM_BAD_POP seee 
#define CNM_BAD_WlS 6eee 
'define CNM_BAD_PSS 7eee 
'define CNM_BAD_WTO 8eee 
#define CNM_BAD_CES geee 
#define CNM_BAD_DKS 1eeee 
#define CNM_BAD_KVS 1Ieee 
'define CNM_BAD_lOAD I2eee 
#define CNM_BAD_lCS I3eee 
'define CNM_BAD_CDS 14eee 
'define CNM_BAD_ESTAE ISeee 
#define CNM_BAD_PAS 16eee 
#define CNM_BAD_SNTXS 17eee 
#define CNM_BAD_MRBlD 18eee 

#define CNM_BAD_ZCSMS 2eeee 
#define CNM_BAD_ENQ 2Ieee 

294 NetView Customization: Using PLI and C 



Appendix D. C Samples, 

This appendix contains a table of the C samples that are shipped with NetView,in 
SYS1.CNMSAMP. -When data set names are referred to in this appendix, two names 
are given, such as .CTMPPLT (CNMS4201). The first name is the alias name, and the 
name in parenthesis is in the NetView samples library. You can use either name to 
access the samples. DSICMD has definitions for the alias names to allow those 
names to be entered as commands. 

The following steps allow you to enter the member names as commands: 

1. Compile and link edit the samples using the alias name. 

2. Delete the (*) in column one of the appropriate CMDMDL statement in DSICMD to 
be able to execute the alais name as a command. No entries are needed in 
DSICMD for user exits. 

3. NetView must be recycled to pick up the DSICMD changes. 

Notes: 

1. See the prologues of the samples for information about how certain samples 
are related and special cases for user exit routines. 

2. Each alias name for C begins with the letter C. 

This appendix also contains a description of each sample, and coded samples of a 
user exit routine and two command processors. 

Appendix D. C Samples 295 



C Samples Table 
The following table refers to the c samples that are shipped with NetView. The 
table contains the function, the alias name, and the name of the member in 
SYS1.CNMSAMP. 

Sample function 

Template for commands and user exit routines 
Sample DSIEX03 to set a global variable 
Uses Cnmsmsg to send data 
Uses WAIT FOR DATA 
Sample DSIEX02A changes a WTO to an MLWTO 
Uses Cnmcnmi to forward RUs to a PU 
Uses Cnmkio for I/O to VSAM 
Hll command using Cnmscop for scope checking 
Display full screen VIEW panel 
Activates LU and uses TRAP and WAIT to 
determine if activation is successful 
Uses Cnmsmsg to log text to a sequential log 
DST initialization exit for USERVSAM OST 
Primes VSAM empty data set for USERVSAM OST 
Sends a request to USERVSAM DST 
Processes VSAM requests under USERVSAM DST 
Primes VSAM empty data set for CKEYIO 

296 NetView Customization: Using PLI and C 

C sample 
Alias CNMSAMP 

CTMPPlT 
CEXIT3 
CSNOOAT 
CWATOAT 
CEXIT2A 
CCNMI 
CKEYIO 
CSCOPCK 
CFlVIEW 
CACTLU 

CSEQlOG 
CXITDI 
CXITVN 
CSNDDST 
CDOVSAM 
CPRIME 

CNMS4201 
CNMS4248 
CNMS4241 
CNMS4242 
CNMS4243 
CNMS4244 
CNMS4245 
CNMS4246 
CNMS4247 
CNMS4248 

CNMS4249 
CNMS4250 
CNMS4251 
CNMS4252 
CNMS4253 
CNMS4254 



C Samples Description 
For each sample, a description of the function and the HLL service routines utilized 
are given. 

CTMPPL T (CNMS4201) 
This sample is a template for commands and user exit routines in c. 

This sample is included in Chapter 9 on page 107 

CEXIT3 (CNMS4240) 
This is a sample DSIEX03 that sets a task global variable. This global variable will 
contain the value of the last time that a command other than CSNDDAT was entered 
under an OST. CWATDAT and CSNDDAT are used to interrogate this value. 

The HLL service routines utilized in this sample are: Cnminfc, Cnmvars. 

CSNDDAT (CNMS4241) 
This sample uses Cnmsmsg to send data. The sample is part of an example of 
sending messages with a type of request, waiting on the response, and parsing the 
results. 

The purpose of the example is to find the last time that a command was entered on 
a given OST. A task global variable is set by CEXIT3 every time a command is 
entered on an OST. CWATDAT uses Cnmsmsg to issue a CSNDDAT on the task in ques
tion. CWATDAT then goes into a wait state. CSNDDAT retrieves the value of the global 
variable and uses Cnmsmsg to send the data back to the task that issued the 
CWATDAT. CWATDAT breaks out of the wait state (it has received the data it was 
waiting for), and parses and displays the data. 

The HLL service routines utilized in this sample are: Cnmvars, Cnmsmsg, Cnminfc. 

CWATDAT (CNMS4242) 
This sample uses WAIT FOR DATA. The sample is part of an example of sending mes
sages with a type of request, waiting on the response, and parsing the results. 

The purpose of the example is to find the last time that a command was entered on 
a given OST. A task global variable is set by CEXIT3 every time a command is 
entered on an OST. CWATDAT uses Cnmsmsg to issue a CSNDDAT on the task in ques
tion. CWATDAT then goes into a wait state. CSNDDAT retrieves the value of the global 
variable and uses Cnmsmsg to send the data back to the task that issued the 
CWATDAT. CWATDAT breaks out of the wait state (it has received the data it was 
waiting for), and parses and displays the data. 

The HLL service routines utilized in this sample are: Cnmsmsg, Cnmcmd, Cnmgetd. 

CEXIT2A (CNMS4243) 
This sample exit converts a WTO to an MLTWO by adding two lines to the single-line 
WTOS that are driving the exit. 

The HLL service routines utilized in this sample are: Cnmgetd, Cnmaltd. 

This sample is included in "Sample User Exit" on page 300. 

Appendix D. C Samples 297 



CCNMI (CNMS4244) 
This sample uses Cnmcnmi to forward RUS to a pu. NetView provides the Cnmcnmi 
service routine for use in communicating with devices in the network through the 
Communications Network Management Interface (CNMI). Any data that is returned 
may be accessed using the Cnmgetd service routine to retrieve records from the 
CNMI solicited data queue (CNMIQ). 

This sample uses the Cnmcnmi service routine to send a product set 10 data 
request to a specified pu. Any data returned is sent as a message to the operator. 
The prologue of the sample contains instructions for set up. 

The HLL service routines utilized in this sample are: Cnmcnmi, Cnmgetd, 
Cnmsmsg. 

CKEYIO (CNMS4245) 
This sample illustrates how to code a NetView HLL command processor that allows 
110 to a VSAM file via the Cnmkio routine. It must execute on a OST. To run this 
command on a OST, either use the EXCMO command or the Cnmsmsg service routine 
(with a type of COMMAND). The prologue of the sample explains how to set up a OST. 

The HLL service routines utilized in this sample are: Cnmkio, Cnmsmsg. 

CSCOPCK (CNMS4246) 
This sample illustrates the scope checking capabilities provided by NetView. This 
sample scope checks keywords and values of the CSCOPCK command. In this 
sample, the user is required to set up the following elements for the command: 
operator 10, operator classes that can access the command, and operator profile. 
See the prologue of the sample for more information. This command yields a 
message informing the operator if he is not authorized to use the keyword and 
value specified when invoking the command. 

The HLL service routines utilized in this sample are: Cnmscop, Cnmsmsg. 

This sample is included in "Sample Command Processor for Scope Checking" on 
page 304. 

CFLVIEW (CNMS4247) 
This sample illustrates the usage of the full screen VIEW command processor. 

The HLL service routines utilized in this sample are: Cnmcmd, Cnmvars. 

CACTLU (CNMS4248) 
This sample illustrates how to issue a VTAM command to activate an LU, trap the 
VTAM messages that result, and respond depending on the messages received. 

The HLL service routines utilized in this s.ample are: Cnmcmd, Cnmgetd, Cnmsmsg. 

298 NetView Customization: Using PLI and C 



CSEQLOG (CNMS4249) 
This sample uses Cnmsmsg to log text to a sequential log. The prologue of the 
sample contains instructions for set up. 

The HLL service routines utilized in this sample are: Cnminfc, Cnmsmsg. 

This sample is included in "Sample Command Processor for Sequential Logging" 
on page 309. . 

CXITDI (CNMS4250) 
This sample is a OST initialization exit. The sample illustrates the OST initialization 
exit that is used by the USERVSAM OST. 

The HLL service routines utilized in this sample are: Cnmvars, Cnmsmsg. 

CXITVN (CNMS4251) 
This sample primes a VSAM empty data set for the USERVSAM OST. 

-;SNDDST (CNMS4252) 
This sample sends a 'PUT' or 'GET' request to the sample HLL Data Services 
Command Processor named COOVSAM to store and retrieve a given value for a 
specified key (key and value limited to 11 characters in length). The sample also 
allows a specified NetView Command List Language variable (defined by the 
caller) to be set to the retrieved value. 

The HLL service routines utilized in this sample are: Cnmsmsg, Cnmvars, Cnmgetd, 
Cnmcmd. 

lVSAM (CNMS4253) 
This sample is an HLL Data Services Command Processor that runs under the 
sample Data Services Task (task 10 'USERVSAM'). It processes 'PUT' or 'GET' 

requests sent by the CSNDOST sample, and will write or read an 11 character value 
associated with an 11 character key to the sample OST'S VSAM data set. The pro
logue of COOVSAM contains instructions on installing the sample 'USERVSAM' Data 
Services Task. 

The HLL service routines utilized in this sample are: Cnmsmsg, Cnmkio. 

: (CNMS4254) 
This sample primes a VSAM empty data set for CKEYIO. 

Appendix D. C Samples 29g 

l 



C Coded Samples 

Sample User Exit 

This section contains an example of a user exit routine and two command 
processors. 

This sample is an example of user exit DSIEX02A. 

/********************************************************************/ 
/* */ 
/* (C) COPYRIGHT IBM CORP. 1989 */ 
/* */ 
/* IEBCOPY SELECT MEMBER=«CNMS4243,CEXIT2A,R» */ 
/* */ 
/* Descriptive Name: High Level Language C DSIEX02A Example */ 
/* */ 
/* Function: */ 
/* */ 
/* This DSIEX02A adds two lines to the single line WTOs */ 
/* that are driving the exit. */ . 
/* */ 
/* Introduction: */ 
/* */ 
/* To convert a single line WTO into a multi-line WTO, */ 
/* you must change the line types accordingly: */ 
/* */ 
/* In Out */ 
/* */ 
/* msg_type = lip, msg_type="=" line_type="C" (Control) */ 
/* and a msg_type="=" line_type=ID" (Data) */ 
/* line_type of II II msg_type="=" line_type="P (Final) */ 

. /* */ 
/* Note: */ 
/* A Msg_type of "E" implies that the message was externally */ 
/* generated via a WTO. For example MVS D T would send */ 
/* a Msg_type of "E". The Msg_type of "=" implies a user */ 
/* generated MLWTO was issued. */ 
/* */ 
/* Dependencies: None */ 
/* */ 
/* Restrictions: Only processes messages issued under */ 
/* mainline processing. */ 
/* */ 
/* Language: C * / 
/* */ 
/* Input: */ 
/* 1) 4-byte pOinter to the HLB control block */ 
/* 2) varying length character string of command (or message */ 
/* for user exits) that invoked this procedure */ 
/* 3) 40-byte parameter list which describes the origin of */ 
/* the request that caused execution of this procedure. */ 
/* */ 

300 NetView Customization: Using PLI and C 



1* Output: * / 
1* Messages to various tasks. *1 
1* *1 
1* Return Codes: returned in HLBRC *1 
1* e = nonnal exit */ 
1* *1 
1* External Module References: None *1 
1* *1 
1* Change Activity: *1 
1* datetauthor: description of changes *1 
1* *1 
I******************~*************************************************1 

Ipragma runopts (NOEXECOPS tNOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K» 

1********************************************************************1 
1* Standard include files 
1********************************************************************1 
linclude <stdlib.h> 1* Standard library *1 
linclude <stdarg.h> 1* Standard args *1 

1***************************************************************~****I 
1* NetView high level language include files *1 
/********************************************************************1 
#include "dsic.h" 1* Include HLL macros *1 

1********************************************************************1 
1* External data definitions *1 
/********************************************************************1 
Dsihlb *Hlbptr; 1* Pointer to the HLB *1 
Dsivarch *Cmdbuf; 1* Pointer to command buffer *1 
Dsiorig *Origblck; 1* Pointer to Orig block *1 

main(int argc, char *argv??(??» 
{ 

/******************************************************************1 
1* Internal data definitions *1 . 
1******************************************************************1 
Dsivarch datain, /* data returned by cnmgetd *1 

workbuf; 1* replacemnt buf passed to cnmaltd*1 

Dsiorig getblock; 1* orig block *1 

Appendix D. C Samples 301 



/******************************************************************/ 
/* Convert parameter pointers from character to hex addresses */ 
/******************************************************************/ 

sscanf (argv11(111),"%x",&Hlbptr); 
sscanf(argv?1(2??),"%x",&Cmdbuf); 
sscanf(argv??(3??),"%x ll ,&Origblck); 

/******************************************************************/ 
/* Initialization */ 
/******************************************************************/ 

/******************************************************************/ 
/* */ 
/* Customization starts here ••• */ 
/* */ 
/******************************************************************/ 

/******************************************************************/ 
/* */ 
/* Execution */ 
/* */ 
/******************************************************************/ 

Cnmgetd(PEEKLINE, 
&datain, 
256, 
&getblock, 
IDATAQ, 
1) ; 

/* ••• function is get a message */ 
/* ••• result goes here */ 
/* ••• max input length */ 
/* •.. must provide a work area */ 
/* ••• get the first line of message*/ 
/* ••• get the first line of message*/ 

if (getblock.Orig_msg_type -- lEI) /* WTO response to MVS command */ 
{ 
getblock.Orig_msg_type = 1=1; /* set msg type to MLWTO */ 
getblock.Orig_line_type = IC I; /* set line type to control */ 

datain.buffer??(datain.size?1) = 1\0 1; /* append null to data */ 

Cnmvlc(&workbuf, 
0, 
"Change WTO to MLWTO, 

302 NetView Customization: USing PLI and C 

/* ..• retrieved by cnmgetd */ 

/* put replacement buffer in */ 
/* varying length character strng •• */ 
/* do not convert to hex */ 
WTO= I%sl",datain.buffer); 



Cnmaltd(REPLINE, 
&workbuf, 
&getblock, 
IOATAQ, 
1) ; 

/* replace the text ••• 
/* ... function is replace 
/* ... text of new message 
/* ... use peeked Origin block 
/* ... initial data queue 
/* ... replace the first line 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

getblock.Orig_line_type = '0'; /* set line type to data */ 

/* put line to add to MLWTO in */ 
Cnmvlc(&workbuf, /* varying length character strng .• */ 

a, /* do not convert to hex */ 
"Add a data line to MLWTO"); /* line to add */ 

Cnmaltd(INSLINE, 
&workbuf, 
&getblock, 
IOATAQ, 
2); 

/* ... function is insert 
/* ... text of new message 
/* ... use peeked Origin block 
/* ... initial data queue 
/* ... add a line 

*/ 
*/ 
*/ 
*/ 
*/ 

getblock.Orig_line_type = 'F';/* set line type to final line */ 

/* put line to add to MLWTO in */ 
Cnmvlc(&workbuf, /* varying length character strng •• */ 

a, /* do not convert to hex */ 
"Add an end of MLWTO message"); /* line to add */ 

Cnmaltd(INSLINE, 
&workbuf, 
&getblock, 
IOATAQ, 
3); 

} 
Hlbptr->Hlbrc == CNM GOOD; 
} -

/* ... function is insert 
/* ... text of new message 
/* ... use peeked Origin block 
/* ... initial data queue 
/* ... add a line 

*/ 
*/ 
*/ 
*/ 
*/ 

Appendix D. C Samples 303 



Sample Command Processor for Scope Checking 
This sample is an example of a command processor for scope checking. 

/********************************************************************/ 
/* */ 
/* (C) COPYRIGHT IBM CORP. 1989 */ 
/* */ 
/* IEBCOPY SELECT MEMBER=«CNMS4246,CSCOPCK,R» */ 
/* */ 
/* Descriptive Name:High Level Language C Scope Check */ 
/* Example */ 
/* */ 
/* Function: */ 
/* */ 
/* The following is an example of the scope checking capabilities */ 
/* provided by NetView. In this example, the user is required to */ 
/* set up the following elements for the command (shown below): */ 
/* (1) operator id */ 
/* (2) operator classes that can access the command */ 
/* (3) operator profile */ 
/* */ 
/* The command gives the return code that the scope check service */ 
/* routine returned to the operator. */ 
r ~ 
/* The syntax that this command checks for is: */ 
/* */ 
/* CSCOPCK PARMx(VAlx) */ 
/* */ 
/* The following is the setup for the scope check example: */ 
/* */ 
/* In DSIPARM(DSICMD): */ 
/* Define the operator classes that can access */ 
/* the command, its keywords, and its keyword values.*/ 
/* */ 
/* The example below says that the command CSCOPCK */ 
/* can be executed by operators in scope class */ 
/* 1 and 2. Scope class 1 can issue any keyword */ 
/* or keyword value, but scope class 2 cannot use */ 
/* the value of VAll with keyword PARM2, and scope */ 
/* class 2 cannot issue PARM3 at all. */ 
/* */ 
/* Example: */ 
/* */ 
/* CSCOPCK CMDMDl MOD=CSCOPCK,RES=N,TYPE=RD */ 
/* CMDClASS 1,2 * / 
/* PARM2 KEYClASS 1,2 * / 
/* VALl VALCLASS 1 */ 
/* PARM3 KEYClASS 1 * / 
/* VALl VALClASS 1 */ 
/* */ 

304 Netview Customization: Using Pli and C 



/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

In DSIPARM(DSIOPF) 
Define the operator ids and the profiles that the operator 

ids can use. 

Example: 
JOE OPERATOR PASSWORD=USER 

PROFILEN DSIPROF3 

In DSIPRF(profi1ename) 
Define the operator class value that will correspond to the 
profile that the operator logs on with. 

Example: 
In the DSIPRF dataset, member name DSIPROF3, 

DSIPROF3 PROFILE 
OPCLASS 3 
END 

Restrictions: None 

Language: C 

Input: 
1) 4-byte pointer to the HLB control block 
2) varying length character string of command (or message 

for user exits) that invoked this procedure 
3) 40-byte parameter list which describes the origin of 

the request that caused execution of this procedure. 

Output: 
Messages describing the scope of the operator. 

Return Codes: returned in HLBRC 
o = nonna1 exit 

-·5 = cance 11 ed 

External Module References: None 

Change Activity: 
date,author: description of changes 

*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ . 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 
*/ 

/********************************************************************/ 
#pragma runopts (NOEXECOPS,NOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K» 

Appendix D. C Samples 305 



/********************************************************************/ 
/* Standard include files 
/********************************************************************/ 
#include <string.h> /* String functions */ 
#include <stdlib.h> /* Standard library */ 
#include <stdarg.h> /* Standard args */ 

/********************************************************************/ 
/* NetView high level language include files */ 
/********************************************************************/ 
#include "dsic.h" /* Include Hll macros */ 

/********************************************************************/ 
/* External data definitions */ 
/********************************************************************/ 
Dsihlb *Hlbptr; /* Pointer to the HlB */ 
Dsivarch *Cmdbuf; /* Pointer to command buffer */ 
Dsiorig *Origblck; /* Pointer to Origin block */ 

main(int argc, char *argv??(??» 
{ 

/******************************************************************/ 
/* Internal data definitions */ 
/******************************************************************/ 
Dsivarch msgbuf; /* Buffer area for messages */ 
char *cn; /* Ptr to cmd that invoked us */ 
char *kw; /* Ptr to keyword of invocation*/ 
char *kv; /* Ptr to keyvalue of invocation*/ 
char *token; /* Ptr to keyvalue of invocation*/ 
char cmdname??(9??) ";/* Command that invoked us */ 
char keyword??(9??) = ";/* Keyword of invocation */ 
char keyvalue??(9??)= II ";/* Keyvalue of invocation */ 
int 1 en; /* Length * / 

/******************************************************************/ 
/* Convert parameter pointers from character to hex addresses */ 
/******************************************************************/ 
sscanf(argv??(l??),"%x",&Hlbptr); 
sscanf(argv??(2??),"%x",&Cmdbuf); 
sscanf(argv??(3??),"%x",8tOrigblck); 

/******************************************************************/ 
/* */ 
/* Execut ion * / 
/* */ 
/******************************************************************/ 

306 NetView Customization: Using PLI and C 



/******************************************************************/ 
/* Scan the keyword and the value */ 
/******************************************************************/ 

/* Syntax of command is: */ 
/* CMDNAME KEYWORD(KEYVALUE} */ 

/* Parse the command buffer for: */ 

token = strtok«char *) 
if (token != NULL) 

&(Cmdbuf->buffer)," "); /* ... COMMAND */ 

{ 
len = strlen(token); 
strcpy(cmdname,token); 
if (len < 8) 

strncat(cmdname," 
} 

token = strtok(NULL,"{"); 
if (token != NULL) 

{ 
len = strlen(token); 
strcpy(keyword,token); 
if (len < 8) 

strncat(keyword," 
} 

token = strtok(NULL,"}"}; 
if (token != NULL) 

{ 
len = strlen(token); 
strcpy(keyvalue,token}; 
if (len < 8) 

strncat{keyvalue," 
} 

. /* Get length of command name */ 
/* Save command name */ 
/* Pad with blanks? */ 

",8 - 1 en) ; 

/* ... keyword 

/* Get length of keyword 
/* Save keyword 
/* Pad with blanks? 

",8-len); 

/* •.. value 

/* Get length of keyvalue 
/* Save keyvalue 
/* Pad with blanks? 

",8 - len); 

*/ 

*/ 
*/ 
*/ 

*/ 

*/ 
*/ 
*/ 

if (token != NULL) /* enough parms? */ 
/* Scope check the input... */ 

Cnmscop(cmdname, /* ... the command */ 
keyword, /* ... the keyword * / 
keyvalue}; /* ••• the value */ 

else /* not enough parms specified */ 
Hlbptr->Hlbrc = CNM_BAD_INVOCATION;/* set bad rc */ 

Appendix D. C Samples 307 



/******************************************************************/ 
/* Inform user of the return code results... */ 
/******************************************************************/ 
if (Hlbptr->Hlbrc == CNM_BAD_INVOCATION) 
{ 

} 

Cnmvlc(&msgbuf,O,"Not enough parms specified"); 
Cnmsmsg(&msgbuf,MSG,OPER,NULLCHAR); 

else 
if (Hlbptr->Hlbrc == CNM_GOOD) 
{ 

} 

Cnmvlc(&msgbuf,O,"Operator has passed scope checking"); 
Cnmsmsg(&msgbuf,MSG,OPER,NULLCHAR); 

else 
if (Hlbptr->Hlbrc == CNM_KEYWORD_NA) 
{ 

} 

Cnmvlc(&ntsgbuf,O,IINot authorized to use KEYWORD %s", 
keyword) ; 

Cnmsmsg(&msgbuf,MSG,OPER,NULLCHAR); 

else 
if (Hlbptr->Hlbrc == CNM_VALUE_NA) 
{ 

} 

Cnmvlc(&msgbuf,O,IINot authorized to use value %S", 
keyvalue); 

Cnmsmsg(&msgbuf,MSG,OPER,NULLCHAR); 

else 
{ 

Cnmvlc(&msgbuf,O,"RC not recognized ••• %d",Hlbptr->Hlbrc); 
Cnmsmsg(&ntsgbuf,MSG,OPER,NULLCHAR); 

} 
Hlbptr->Hlbrc == CNM_GOOD; 
} 

308 NetView Customization: Using PLl and C 

/* clear return code */ 



Sample Command Processor for Sequential Logging 
This sample is an example of a command processor to log text to a sequential log. 

/********************************************************************/ 
/* */ 
/* (C) COPYRIGHT IBM CORP. 1989 */ 
/* */ 
/* IEBCOPY SELECT MEMBER=«CNMS4249,CSEQLOG,R» */ 
/* */ 
/* Descriptive Name: High Level Language C sequential */ 
/* Logging Example */ 
r ~ 
/* Functi on: * / 
/* */ 
/* Write the text passed to this command procedure via the */ 
/* command line to the log. */ 
/* */ 
/* The syntax of this command is: */ 
/* */ 
/* CSEQLOG logtext */ 
/* */ 
/* Dependencies: None */ 
/* */ 
/* Restrictions: The length of the text to be logged combined */ 
/* with the command name (CSEQLOG) can be no more */ 
/* than 255 characters. */ 
/* */ 
/* Language: C * / 
r ~ 
/* Iinstallation: */ 
/* */ 
/* (1) ASSEMBLE AND LINKEDIT THIS MODULE AMODE=31,RMODE=ANY */ 
/* TYPE=RENT * / 
/* (2) ALLOC PRIMARY AND SECONDARY SEQUENTIAL DATA SET */ 
/* (3) USE DO NMAES IN NETVIEW PROC OR THE ALLOCATE COMMAND */ 
/* TO ALLOCATE THE DATA SETS TO NETVIEW. */ 
/* ALLOCATE THE DATA SETS AS */ 
/* SQLOGP & SQLOGS */ 
/* (4) ADD THE FOLLOWING STATEMENT TO DSIDMN */ 
/* TASK MOD=DSIZDST,TSKID=SQLOGTSK,MEM=SQLOGMEM,PRI=3,INIT=Y*/ 
/* (5) ADD THE FOLLOWING MEMBER (SQLOGMEM) TO DSIPARM */ 
/* DSTINIT FUNCT=OTHER,DSRBO=l */ 
/* DSTINIT PBSDN=SQLOGP */ 
/* DSTINIT SBSDN=SQLOGS */ 
/* LOGINIT AUTOFLIP=YES,RESUME=NO */ 
/* (6) ADD THE FOLLOWING CMDMDL TO DSICMD . */ 
/* CSEQLOG CMDMDL MOD=CSEQLOG,TYPE=R,RES=N */ 
/* */ 

Appendix D. C Samples 309 



/* Input: */ 
/* 1) 4-byte pointer to the HLB control block */ 
/* 2) varying length character string of command (or message */ 
/* for user exits) that invoked this procedure */ 
/* 3) 40-byte parameter list which describes the origin of */ 
/* the request that caused execution of this procedure. */ 
r ~ 
/* Output: * / 
/* Writes input to a sequential log */ 
/* */ 
/* Return Codes: returned in HLBRC */ 
/* 0 = normal exit */ 
/* -5 = canceled */ 
/* */ 
/* External Module References: None */ 
/* */ 
/* Change Activity: */ 
/* date,author: description of changes */ 
/* */ 
/********************************************************************/ 
#pragma runopts (NOEXECOPS,NOSTAE,NOSPIE,ISASIZE(4K),ISAINC(4K» 

/********************************************************************/ 
/* Standard include files 
/********************************************************************/ 
#include <stdlib.h> /* Standard library */ 
#include <stdio.h> /* Standard i/o library */ 
#include <stdarg.h> /* Standard args */ 
#include <string.h> /* Standard args */ 

#define DOMAIN "DOMAIN II 

#define DATETIME "DATETIME" 
#define OPID "OPID " 
#define SQTASK "SQLOGTSK" /* sequential log task id */ 
/********************************************************************/ 
/* NetView high level language include files */ 
/********************************************************************/ 
#include "dsic.h" /* Include HLL macros */ 

310 NetView Customization: Using PLI and C 



/********************************************************************/ 
/* External data definitions */ 
/********************************************************************/ 
Dsihlb *Hlbptr; /* Pointer to the HLB */ 
Dsivarch *Cmdbuf; /* Pointer to command buffer */ . 
DSiorig *Origblck; /* Pointer to Orig block */ 

main(int argc, char *argv??{??» 
{ 

/******************************************************************/ 
/* Internal data definitions */ 
/******************************************************************/ 
Dsivarch domain, /* store domain name */ 

logtime, /* store time */ 
opid, /* store operator name */ 
logbfr, /* store the buffer to be logged */ 
message; /* store error message */ 

char 10gtext??(256??), 
*token, 

/* store text passed on cmd line */ 
/* used to parse command buffer */ 

*textptr; 

int size; 

/******************************************************************/ 
/* Convert parameter pointers from character to hex addresses */ 
/******************************************************************/ 
sscanf (argv??(l??),"%x",&Hlbptr); 
sscanf(argv??(2??),"%x",&Cmdbuf); 
sscanf(argv??(3??),"%x",&Origblck); 

/******************************************************************/ 
/* Initialization */ 
/******************************************************************/ 

/******************************************************************/ 
/* */ 
/* Customization starts here 000 */ 
/* */ 
/******************************************************************/ 

/******************************************************************/ 
/* */ 
/* Execut ion * / 
/* */ 
/******************************************************************/ 

Appendix O. C Samples 311 



1******************************************************************1 
1* Parse command buffer for text to log *1 
1******************************************************************1 

textptr = strchr«char *) &(Cmdbuf->buffer) , I I); 
size = a; 

if (textptr 1= NUll) 
{ 
textptr++; 

1* no text provided? *1 

size = Cmdbuf->size - (textptr - «char *) &(Cmdbuf->buffer»); 
} 

if «size> a) && (Cmdbuf->size < 255)} 
{ I*if text provided and not too big*1 

Cnminfc(DOMAIN,&domain,8}; 1* get the domain name 
Cnminfc(DATETIME,&10gtime,8);I* get the time 
Cnminfc(OPID,&opid,8}; 1* get the opid 

*1 
*1 
*1 

memmove(&logtext??(a??),&(domain.buffer),domain.size); 
logtext??(domain.size??) = I I; 

memmove(&10gtext11(domain.size+l11),&(10gtime.buffer},1ogtime.s;ze}; 
10gtext?1(domain.size+logtime.size+l11) = I I; 

memmove(&10gtext11(domain.size+logtime.size+21?), 
&(opid.buffer),opid.size); 

10gtext?1(domain.size+10gtime.size+opid.size+2??) = I I; 

memmove(&10gtext?1(domain.size+logtime.size+opid.size+311), 
textptr,size); 

1* build the 10gtext in a varying *1 
Cnmnvlc(&logbfr, 1* length character string... *1 

a, 1* ••• do not convert to hex *1 
domain.size+10gtime.size+opid.size+size+3, 1* ••• size *1 
10gtext); 1* ••• text to be logged *1 

Cnmsmsg(&logbfr, 
MSG, 
SEQlOG, 
SQTASK); 

1* log the buffer ••• 
1* ••• text to be logged 
1* ••• type is message 
1* ••• dest type is sequential 
1* ••• task defined by SQTASK 

*1 
*1 
*1 

log *1 
*1 

1********************************************************************1 
1* Inform user of the return code results if Cnmsmsg fails *1 
1********************************************************************/ 

312 NetVlew Customization: Using PLI and C 



} 

} 

if (H1bptr->H1brc ~= CNM_GOOD)/*if the return code was not zero */ 
{ 

Cnmv1c(&message, 
0, 
"SLOGOOO Error: 
H1bptr->H1brc); 

Cnmsmsg(&message, 
MSG, 

} 

OPER, 
NULLCHAR); 

/* build message in varying length */ 
/* chararacter string... */ 
/* ••. do not convert to hex */ 

Return code from Cnmsmsg = %d", 
/* ••• message text */ 

/* display message... */ 
/* ••. type is message */ 
/* ... send to oper that issued sl~g*/ 
/* ••. not used */ 

else 
if (size <= 0) 

} 

{ /* No text to log * / 
/* put error message in varying */ 

Cnmv1c(&message, /* length character string... */ 
0, /* .•. do not convert to hex * / 
"No text has been provided for loggingll); /* message text*/ 

Cnmsmsg(&message, 
MSG, 
OPER, 
NULLCHAR); 

/* display'message ••• 
/* ... message to display 
/* •.• type is message 
/* ••• send to invoking operator 
/* ..• not used 

*/ 
*/ 
*/ 
*/ 
*/ 

else if (Cmdbuf->size > 255) 

} 

{ /* text too long * / 
/* put error message in varying */ 

Cnmv1c(&message, /* length character string... */ 
0, /* ••• do not convert to hex */ 
"Text to be logged is too 10ng"); /* message text*/ 

Cnmsmsg(&message, 
MSG, 
OPER, 
NULLCHAR); 

/* display message ••• 
/* •.• message to display 
/* .•• type is message 
/* ••• send to invoking operator 
/* •.• not used 

*/ 
*/ 
*/ 
*/ 
*/ 

Appendix D. C Samples 313 



314 NetView Customization: Using PLI and C 



Glossary, Bibliography, and Index 

Glossary 317 

Bibliography ............................................ 337 
NetView Publications ................................. . . . . . . 337 

NetView/PC Publications .................................. 338 
Other Network Program Products Publications ..................... 338 

VT AM Publications ...................................... 338 
NCP, SSP, and EP Publications .............................. 338 

Related Publications ....................................... 339 

Index 341 

Glossary, Bibliography, and Index 315 



316 NetView Customization: Using PLI and C 



Glossary 

This glossary defines important NCP, NetView, 
NetView/PC, SSP, and VTAM abbreviations and terms. 
It includes information from the IBM Dictionary of Com
puting, SC20-1699. Definitions from the American 
National Dictionary for Information Processing are 
identified by an asterisk (*). Definitions from draft pro
posals and working papers under development by the 
International Standards Organization, Technical Com
mittee 97, Subcommittee 1 are identified by the symbol 
(TC97). Definitions from the CCITT Sixth Plenary 
Assembly Orange Book, Terms and Definitions and 
working documents published by the Consultative Com
mittee on International Telegraph and Telephone of the 
International Telecommunication Union, Geneva, 1980 
are preceded by the symbol (CCITT/ITU). Definitions 
from published sections of the ISO Vocabulary of Data 
Processing, developed by the International Standards 
Organization, Technical Committee 97, Subcommittee 1 
and from published sections of the ISO Vocabulary of 
Office Machines, developed by subcommittees of ISO 
Technical Committee 95, are preceded by the symbol 
(ISO). 

For abbreviations, the definition usually consists only of 
the words represented by the letters; for complete defi
nitions, see the entries for the words. 

Reference Words Used in the Entries 

The following reference words are used in this 
glossary: 

Deprecated term for. Indicates that the term should 
not be used. It refers to a preferred term, which is 
defined. 

Synonymous with. Appears in the commentary of a 
preferred term and identifies less desirable or less 
specific terms that have the same meaning. 

Synonym for. Appears in the commentary of a less 
desirable or less specific term and identifies the 
preferred term that has the same meaning. 

Contrast with. Refers to a term that has an opposed 
or substantively different meaning. 

See. Refers to multiple-word terms that have the 
same last word. 

See a/so. Refers to related terms that have similar 
(but not synonymous) meanings. 

abend. Abnormal end of task. 

abnormal end of task (abend). Termination of a task 
before its completion because of an error condition that 
cannot be resolved by recovery facilities while the task 
is executing. 

Ace. (1) In VTAM, access method control block .. 
(2) In NCP, adapter control block. 

Ace name. (1) The name of an ACB macroinstruction. 
(2) A name specified in the ACBNAME parameter of a 
VTAM APPL statement. Contrast with network name. 

accept. For a VTAM application program, to establish 
a session with a logical unit (LU) in response to a CINIT 
request from a system services control point (SSCP). 
The session-initiation request may begin when a ter
minal user logs on, a VTAM application program issues 
a macroinstruction, or a VT AM operator issues a 
command. See also acquire (1). 

access method control block (ACe). A control block 
that links an application program to VSAM or VTAM. 

accounting exit routine. In VTAM, an optional installa
tion exit routine that collects statistics about session 
initiation and termination. 

ACF/NCP. Advanced Communications Function for the 
Network Control Program. Synonym for NCP. 

ACF/SSP. Advanced Communications Function for the 
System Support Programs. Synonym for SSP. 

ACF/VTAM. Advanced Communications Function for 
the Virtual Telecommunications Access Method. 
Synonym for VTAM. 

acquire. (1) For a VT AM application program, to ini
tiate and establish a session with another logical unit 
(LU). The acquire process begins when the application 
program issues a macroinstruction. See also accept. 
(2) To take over resources that were formerly con
trolled by an access method in another domain, or to 
resume control of resources that were controlled by 
this domain but released. Contrast with release. See 
also resource takeover. 

activate. To make a resource of a node ready to 
perform the functions for which it was designed. Con
trast with deactivate. 

active. (1) The state a resource is in when it has been 
activated and is operational. Contrast with inactive, 
pending, and inoperative.. (2) Pertaining to a major or 
minor node that has been activated by VTAM. Most 
resources are activated as part of VTAM start proc
essing or as the result of a VARY ACT command. 

adapter control block (ACe). In NCP, a control block 
that contains line control information and the states of 
110 operations for BSC lines, SS lines, or SOLC links. 

Glossary 317 



adaptive session pacing. Synonym for adaptive 
session-level pacing. 

adaptive session-level pacing. A form of session-level 
pacing in which session components exchange pacing 
windows that may vary in size during the course of a 
session. This allows transmission to adapt dynamically 
to variations in availability and demand of buffers on a 
session by session basis. Session pacing occurs 
within independent stages along the session path 
according to local congestion at the intermediate 
nodes. Synonymous with adaptive session pacing. 
See pacing, session-level pacing, and virtual route 
pacing. 

alert. (1) In SNA, a record sent to a system problem 
management focal point to communicate the existence 
of an alert condition. (2) In the NetView program, a 
high priority event that warrants immediate attention. 
This data base record is generated for certain event 
types that are defined by user-constructed filters. 

alias name. A name defined in a host used to repre
sent a logical unit name, logon mode table name, or 
class-of-service name in another network. This name 
is defined to a name translation program when the 
alias name does not match the real name. The alias 
name translation program is used to associate the real 
and alias names. 

allocate. A logical unit (LU) 6.2 application program 
interface (API) verb used to assign a session to a con
versation for the conversation's use. Contrast with 
deallocate. 

API. Application program interface. 

application program. (1) A program written for or by a 
user that applies to the user's work. (2) A program 
used to connect and communicate with stations in a 
network, enabling users to perform application-oriented 
activities. 

application program interface (API). (1) The formally 
defined programming language interface between an 
IBM system .control program or licensed program and 
its user. (2) The interface through which an application 
program interacts with an access method. In VTAM, it 
is the language structure used in control blocks so that 
application programs can reference them and be identi
fied to VTAM. 

attaching device. Any device that is physically con
nected to a network and can communicate over the 
network. 

authorization exit routine. In VTAM, an optional instal
lation exit routine that approves or disapproves 
requests for session initiation. 

authorized receiver. In the NetView program, an 
authorized operator who receives all the unsolicited 

318 NetView Customization: Using PLI and C 

and authorized-receiver messages not assigned to a 
specific operator. 

automatic logon. (1) A process by which VTAM auto
matically creates a session-initiation request to estab
lish a session between two logical units (LUs). The 
session will be between a designated primary logical 
unit (PLU) and a secondary logical unit (SLU) that is 
neither queued for nor in session with another PLU. 
See also controlling application program and control
ling logical unit. (2) In VM, a process by which a 
virtual machine is initiated by other than the user of 
that virtual machine. For example, the primary VM 
operator's virtual machine is activated automatically 
during VM initialization. 

available. In VTAM, pertaining to a logical unit that is 
active, connected, enabled, and not at its seSSion limit. 

begin bracket. In SNA, the value (binary 1) of the 
begin-bracket indicator in the request header (RH) of 
the first request in the first chain of a bracket; the value 
denotes the start of a bracket. Contrast with end 
bracket. See also bracket. 

BIU segment. In SNA, the portion of a basic informa
tion unit (BIU) that is contained within a path informa
tion unit (PIU). It consists of either a request/response 
header (RH) followed by all or a portion of a 
request/response unit (RU), or only a portion of an RU. 

blocking of PIUs. In SNA, an optional function of path 
control that combines multiple path information units 
(PIUs) into a single basic transmission unit (BTU). 

boundary function. (1)A capability of a subarea node 
to provide protocol support for attached peripheral 
nodes, such as: (a) interconnecting subarea path 
control and peripheral path control elements, (b) per
forming session sequence numbering for low-function 
peripheral nodes, and (c) providing session-level 
pacing support. (2) The component that provides these 
capabilities. See also boundary node, network 
addressable unit (NAU), peripheral path control, 
subarea node, and subarea path control. 

boundary node. (1) A subarea node with boundary 
function. See subarea node (including illustration). 
See also boundary function. (2) The programming 
component that performs FID2 (format identification 
type 2) conversion, channel data link control, pacing, 
and channel or device error recovery procedures for a 
locally attached station. These functions are similar to 
those performed by a network control program for an 
NCP-attached station. 

bracket. In SNA, one or more chains of request units 
(RUs) and their responses that are exchanged between 
the two LU-LU half-sessions and that represent a trans
action between them. A bracket must be completed 
before another bracket can be started. Examples of 
brackets are data base inquiries/replies, update trans-



actions, and remote job entry output sequences to work 
stations. See also begin bracket and end bracket. 

browse. A way of looking at a file that does not allow 
you to change it. 

buffer. A portion of storage for temporarily holding 
input or output data. . 

call. (1) * (ISO) The action of bringing a computer 
program, a routine, or a subroutine into effect, usually 
by specifying the entry conditions and jumping to an 
entry point. (2) To transfer control to a procedure, 
program, routine, or subroutine. (3) The actions nec
essary to make a connection between two stations. 
(4) To attempt to contact a user, regardless of whether 
the attempt is successful. 

CALLOUT. The logical channel type on which the data 
terminal equipment (OTE) can send a call, but cannot 
receive one. 

calling. * (ISO) The process of transmitting selection 
. signals in order to establish a connection between data 
stations. 

CCP. Configuration control program facility. 

CDRM. Cross-domain resource manager. 

CDRSC. Cross-domain resource. 

chain. (1) A group of logically linked records. (2) See 
RU chain. 

channel. * A path along which signals can be sent, for 
example, data channel, output channel. See data 
channel and input/output channel. See also link. 

channel-attached. (1) Pertaining to the attachment of 
devices directly by input/output channels to a host 
processor. (2) Pertaining to devices attached to a con
trolling unit by cables, rather than by telecommuni
cation lines. Contrast with link-attached. Synonymous 
with local. 

character-coded. Synonym for unformatted. 

class of service (COS). In SNA, a designation of the 
path control network characteristics, such as path 
security, transmission priority, and bandwidth, that 
apply to a particular session. The end user designates 
class of service at session initiation by using a sym
bolic name that is mapped into a list of virtual routes, 
anyone of which can be selected for the session to 
provide the requested level of service. 

cleanup. A network services request, sent by a system 
services control unit (SSCP) to a logical unit (LU), that 
causes a particular LU-LU session with that LU to be 
ended immediately and without the participation of 
either the other LU or its SSCP. 

CLiST. Command list. 

CNM. Communication network management. 

code point. In the NetView/PC program and in the 
NetView program, a 1- or 2-byte hexadecimal value that 
indexes a text string stored at an alert receiver and is 
used by the alert receiver to create displays of alert 
information. 

command. (1) A request from a terminal for the per
formance of an operation or the execution of a partic
ular program. (2) In SNA, any field set in the 
transmission header (TH), request header (RH), and 
sometimes portions of a request unit (RU), that initiates 
an action or that begins a protocol; for example: (a) 
Bind Session (session-control request unit), a 
command that activates an LU-LU session, (b) the 
change-direction indicator in the RH of the last RU of a 
chain, (c) the virtual route reset window indicator in a 
FID4 transmission header. See also VTAM operator 
command. 

command facility. The component of the NetView 
program that is a base for command processors that 
can monitor, control, automate, and improve the opera
tion of a network. 

command list. A list of commands and statements 
designed to perform a specific function for the user. 
Command lists can be written in REXX or in NetView 
command list language. 

command procedure. Either a command processor 
written in a high-level language (HLL) or a command 
list. See also command list and command processor. 

command processor. (1) A program that performs an 
operation specified by a command. (2) In the NetView 
program, a user-written module designed to perform a 
specific function. Command processors, which can be 
written in assembler or a high-level language (HLL), 
are invoked as commands. 

communication line. Deprecated term for telecommu
nication line and transmission line. 

communication management configuration host node. 
The type 5 host processor in a communication manage
ment configuration that does all network-control func
tions in the network except for the control of devices 
channel-attached to data hosts. Synonymous with com
munication management host. Contrast with data host 
node. 

communication management host. Synonym for com
munication management configu.ration host node. Con
trast with data host. 

communication network management (CNM). The 
process of designing, installing, operating, and man-

Glossary 319 



aging the distribution of information and controls 
among end users of communication systems. 

communication network management (CNM) applica
tion program. A VT AM application program that issues 
and receives formatted management services request 
units for physical units. For example, the NetView 
program. 

communication network management (CNM) Interface. 
The interface that the access method provides to an 
application program for handling data and commands 
associated with communication system management. 
CNM data and commands are handled across this inter
face. 

communication network management (CNM) 
processor. A program that manages one of the func
tions of a communications system. A CNM processor is 
executed under control of the NetView program. 

component. A command that (a) controls the termi
nal's screen (using the DSIPSS macro 
(TYPE = ASYPANEL) or the VIEW command), (b) allows 
the operator to enter NetView commands" and (c) can 
resume when such commands are complete. 

composite end node (CEN). A group of nodes made up 
of a single type 5 node and its subordinate type 4 nodes 
that together support type 2.1 protocols. To a type 2.1 
node, a CEN appears as one end node. For example, 
NCP and VT AM act as a composite end node. 

configuration. (1) (TC97) The arrangement of a com
puter system or network as defined by the nature, 
number, and the chief characteristics of its functional 
units. The term may refer to a hardware or a software 
configuration. (2) The devices and programs that 
make up a system, subsystem, or network. (3) In CCP, 
the arrangement of controllers, lines, and terminals 
attached to an IBM 3710 Network Controller. Also, the 
collective set of item definitions that describe such a 
configuration. 

configuration control program (CCP) facility. An SSP 
interactive application program facility by which config
uration definitions for the IBM 3710 Network Controller 
can be created, modified, and maintained. 

configuration restart. In SNA, one of the types of 
network services in the control point (CP) and in the 
physical unit (PU); configuration services activate, 
deactivate, and maintain the status of physical units, 
links, and link stations. Configuration services also 
shut down and restart network elements and modify 
path control routing tables and address-translation 
tables. See also maintenance services, management 
services, network services, and session services .. 

connection. Synonym for physical connection. 

320 NetView Customization: USing PLI and C 

control block. (1) (ISO) A storage area used by a 
computer program to hold control information. (2) In 
the IBM Token-Ring Network, a specifically formatted 
block of information provided from the application 
program to the Adapter Support Interface to request an 
operation. 

control program (CP). The VM operating system that 
manages the real processor's resources and is respon
sible for simulating System/370s for individual users. 

contrOlling application program. In VTAM, an applica
tion program with which a secondary logical unit (other 
than an application program) is automatically put in 
session whenever the secondary logical unit is avail
able. See also automatic logon and controlling logical 
unit. 

controlling logical unit. In VTAM, a logical unit with 
which a secondary logical unit (other than an applica
tion program) is automatically put in session whenever 
the secondary logical unit is available. A controlling 
logical unit can be either an application program or a 
device-type logical unit. See also automatic logon and 
controlling application program. 

converted command. An intermediate form of a 
character-coded command produced by VTAM through 
use of an unformatted system services definition table. 
The format of a converted command is fixed; the unfor
matted system services definition table must be con
structed in such a manner that the character-coded 
command (as entered by a logical unit) is converted 
into the predefined, converted command format. See 
also unformatted. 

COS. Class of service. 

cross-domain. In SNA, pertaining to control of 
resources involving more than one domain. 

cross-domain resource (CORSC). A resource owned 
by a cross-domain resource manager (CORM) in 
another domain but known by the CORM in this domain 
by network name and associated CORM. 

cross-domain resource manager (CORM). In VTAM, 
the function in the system services control pOint (SSCP) 
that controls initiation and termination of cross-domain 
sessions. 

data channel. Synonym for input/output channel. See 
channel. 

data flow control (OFC) layer. In SNA, the layer within 
a half-seSSion' that (1) controls whether the half-session 
can send, receive, or concurrently send and receive 
request units (RUs); (2) groups related RUs into RU 
chains; (3) delimits transactions via the bracket pro
tocol; (4) controls the interlocking of requests and 
responses in accordance with control modes specified 



at session activation; (5) generates sequence numbers; 
and (6) correlates requests and responses. 

data host. Synonym for data host node. Contrast with 
communication management configuration host. 

data host node. In a communication management con
figuration, a type 5 host node that is dedicated to proc
essing applications and does not control network 
resources, except for its channel-attached or communi
cation adapter-attached devices. Synonymous with 
data host. Contrast with communication management 
configuration host node. 

data link. In SNA, synonym for link. 

data link control (OLC) layer. In SNA, the layer that 
consists of the link stations that schedule data transfer 
over a transmission medium connecting two nodes and 
perform error control for the link connection. Examples 
of data link control are SDLC for serial-by-bit link con
nection and data link control for the System/370 
channel. 

data services command processor (OSCP). A compo
nent that structures a request for recording and 
retrieving data in the application program's data base 
and for soliciting data from a device in the network. 

data services manager (OSM). A function in the 
NetView program that provides VSAM services for data 
storage and retrieval. 

data services task (OST). The NetView subtask that 
gathers, records, and manages data in a VSAM file 
and/or a network device that contains network manage
ment information. 

data set. The major unit of data storage and retrieval, 
consisting of a collection of data in one of several pre
scribed arrangements and described by control infor
mation to which the system has access. 

ddname. Data definition name. 

deactivate. To take a resource of a node out of 
service, rendering it inoperable, or to place it in a state 
in which it cannot perform the functions for which it was 
designed. Contrast with activate. 

deallocate. A logical unit (LU) 6.2 application program 
interface (API) verb that terminates a conversation, 
thereby freeing the session for a future conversation. 
Contrast with aI/ocate. 

definite response (DR). In SNA, a value in the 
form-of-response-requested field of the request header. 
The value directs the receiver of the request to return a 
response unconditionally, whether positive or negative, 
to that request. Contrast with exception response and 
no response. 

definition statement. (1) In VTAM, the statement that 
describes an element of the network. (2) In NCP, a 
type of instruction that defines a resource to the NCP. 
See Figure 13, Figure 14, and Figure 15. See also 
macroinstruction. 

I 
suboperands 

rL, 

operands 
i 

I 
suboperands 
~ 

START A. (B. C) • 
Iii 

KEYWORDl=D. KEYWORD2= (E. F) 
~ I i I 

statement 
identifier 

I 

posi tiona1 
operands 

I 
statement 

keyword 
operands 

Figure 13. Example of a Language Statement 

definition statement 
i 

suboperands 
iii 

BUILD CA=(ca0[.cal] [.ca2] [.ca3]) 
L,---J I I i 

definition keyword 
statement operand 
identifier 

Figure 14. NCP Examples 

definition 
statement 
identifier 
~ 

keyword operand 
i 

suboperands 
i 

I I 
DISCNT=([YESINO][.FINF] PU 

I 
I 

definition statement 

VARY NET ,ACT, ID=name.RNAME= (namel •••• ,name13) 
~ L-.,---J I i I 
operator positional suboperands 
cOl1l1land operands 
operator I i 

operands 
I 

operator conmand 

Figure 15. VTAM Examples 

device. An input/output unit such as a terminal, 
display, or printer. See attaching device. 

directory. In VM, a control program (CP) disk that 
defines each virtual machine's normal configuration. 

display. (1) To present information for viewing, 
usually on a terminal screen or a hard-copy device. 
(2) A device or medium on which information is pre
sented, such as a terminal screen. (3) Deprecated 
term for panel. 

Glossary 321 



domain. (1) An access method, its application pro
grams, communication controllers, connecting lines, 
modems, and attached terminals. (2) In SNA, a system 
services control point (SSCP) and the physical units 
(PUs), logical units (LUs), links, link stations, and all the 
associated resources that the SSCP has the ability to 
control by means of activation requests and deacti
vation requests. See system services control point 
domain and type 2.1 node control point domain .. See 
also single-domain network and multiple-domain 
network. 

domain operator. In a multiple-domain network, the 
person or program that controls the operation of the 
resources controlled by one system services control 
point. Contrast with network operator (2). 

double-byte character set (DBCS). A character set, 
such as Japanese, in which each character is repres
ented by a two-byte code. 

downstream. In the direction of data flow from the host 
to the end user. Contrast with upstream. 

drop. In the IBM Token-Ring Network, a cable that 
leads from a faceplate to the to the distribution panel in 
a wiring closet. When the IBM Cabling System is used 
with the IBM Token-Ring Network, a drop may form part 
of a lobe. 

DSCP. Data services command processor. 

DSM. Data services manager. 

DST. Data services task. 

dump. (1) Computer printout of storage. (2) To write 
the contents of all or part of storage to an external 
medium as a safeguard against errors or in connection 
with debugging. (3) (ISO) Data that have been 
dumped. 

EBCDIC. * Extended binary-coded decimal inter
change code. A coded character set consisting of a-bit 
coded characters. 

echo. The return of characters to the originating SS 
device to verify that a message was sent correctly. 

ED. Enciphered data. 

element. (1) A field in the network address. (2) The 
particular resource within a subarea identified by the 
element address. See also subarea. 

Emulation Program (EP). An IBM control program that 
allows a channel-attached 3705 or 3725 communication 
controller to emulate the functions of an IBM 2701 Data 
Adapter Unit, an IBM 2702 Transmission Control, or an 
IBM 2703 Transmission Control. See also network 
control program. 

322 NetView Customization: Using PLI and C 

enciphered data (ED). Data whose meaning is con
cealed from unauthorized users. 

end bracket. In SNA, the value (binary 1) of the end 
bracket indicator in the request header (RH) of the first 
request of the last chain of a bracket; the value denotes 
the end of the bracket. Contrast with begin bracket. 
See also bracket. 

end node. A type 2.1 node that does not provide any 
intermediate routing or session services to any other 
node. For example, APPC/PC is an end node. See 
composite end node, node, and type 2.1 node. 

entry point. An SNA node that provides distributed 
network management support. It may be a type 2, type 
2.1, type 4, or type 5 node. It sends SNA-formatted 
network management data about itself and the 
resources it controls to a focal point for centralized 
processing, and it receives and executes focal point ini
tiated commands to manage and control its resources. 

EP. Emulation Program. 

ER. (1) Explicit route. (2) Exception response. 

ESTAE. Extended specify task abnormal exit. 

event. (1) In the NetView program, a record indicating 
irregularities of operation in physical elements of a 
network. (2) An occurrence of significance to a task; 
typically, the completion of an asynchronous operation, 
such as an input/output operation. 

exception response (ER). In SNA, a value in the 
form-of-response-requested field of a request header 
(RH). An exception response is sent only if a request is 
unacceptable as received or cannot be processed. 
Contrast with definite response and no response. See 
also negative response. 

EXEC. In a VM operating system, a user-written 
command file that contains CMS commands, other 
user-written commands, and execution control state
ments, such as branches. 

exit routine. Any of several types of special-purpose 
user-written routines. See accounting exit routine, 
authorization exit routine, logon-interpret routine, 
virtual route selection exit routine, EXLST exit routine, 
and RPL exit routine. 

EXLST exit routine. In VTAM, a routine whose address 
has been placed in an exit list (EXLST) control block. 
The addresses are placed there with the EXLST macro
instruction, and the routines are named according to 
their corresponding operand; hence DFASY exit 
routine, TPEND exit routine, RELREQ exit routine, and 
so forth. All exit list routines are coded by the VTAM 
application programmer. Contrast with RPL exit 
routine. 



explicit route (ER). In SNA, the path control network 
elements, including a specific set of one or more trans
mission groups, that connect two subarea nodes. An 
explicit route is identified by an origin subarea 
address, a destination subarea address, an explicit 
route number, and a reverse explicit route number. 
Contrast with virtual route (VR). See also path and 
route extension. 

extended specify task abnormal exit (ESTAE). An MVS 
macroinstruction that provides recovery capability and 
gives control to the user-specified exit routine for proc
essing, diagnosing an abend, or specifying a retry 
address. 

fleld·formatted. Pertaining to a request or response 
that is encoded into fields, each having a specified 
format such as binary codes, bit-significant flags, and 
symbolic names. Contrast with character-coded. 

flow control. In SNA, the process of managing the rate 
at which data traffic passes between components of the 
network. The purpose of flow control is to optimize the 
rate of flow of message units, with minimum congestion 
in the network; that is, to neither overflow the buffers at 
the receiver or at intermediate routing nodes, nor leave 
the receiver waiting for more message units. See also 
adaptive session-level pacing, pacing, session-level 
pacing, and virtual route pacing. 

focal point. An entry pOint that provides centralized 
management and control for other entry pOints for one 
or more network management categories. 

formatted system services. A portion of VTAM that 
provides certain system services as a result of 
receiving a field-formatted command, such as an Ini
tiate or Terminate command. Contrast with unfor
matted system services (USS). See also 
field-formatted. 

frame. (1) The unit of transmission in some local area 
networks, including the IBM Token-Ring Network. It 
includes delimiters, control characters, information, 
and checking characters. (2) In SOLC, the vehicle for 
every command, every response, and all information 
that is transmitted using SOLC procedures. 

full-screen mode. A form of panel presentation in the 
NetView program where the contents of an entire ter
minal screen can be displayed at once. Full-screen 
mode can be used for fill-in-the-blanks prompting. Con
trast with line mode. 

generation. The process of assembling and link 
editing definition statements so that resources can be 
identified to all the necessary programs in a network. 

generic alert. Encoded alert information that uses 
code pOints (defined by IBM and possibly customized 
by users or application programs) stored at an alert 
receiver, such as the NetView program. 

group. In the NetView/PC program, to identify a set of 
application programs that are to run concurrently. 

half-session. In SNA, a component that provides func
tion management data (FMO) services, data flow 
control, and transmission control for one of the ses
sions of a network addressable unit (NAU). See also 
primary half-session and secondary half-session. 

hard copy. A printed copy of machine output in a visu
ally readable form; for example, printed reports, 
listings, documents, summaries, or network logs. 

hardware monitor. The component of the NetView 
program that helps identify network problems, such as 
hardware, software, and microcode, from a central 
control point using interactive display techniques. 

help panel. An online display that tells you how to use 
a command or another aspect of a product. See task 
panel. 

high-level language (HLL). A programming language 
that does not reflect the structure of any particular com
puter or operating system. For NetView Release 3, the 
high-level languages are PUI and C. 

hierarchy. In the NetView program, the resource 
types, display types, and data types that make up the 
organization, or levels, in a network. 

host node. A node providing an application program 
interface (API) and a common application interface. 
See boundary node, node, peripheral node, subarea 
host node, and subarea node. See also boundary func
tion and node type. 

immediate command. In the NetView program, a 
command (such as GO, CANCEL, or RESET) that can be 
executed while a regular command is being processed. 

Inactive. Describes the state of a resource that has not 
been activated or for which the VARY INACT command 
has been issued. Contrast with active. See also inop
erative. 

information (I) format. A format used for information 
transfer. 

Initiate. A network services request sent from a logical 
unit (LU) to a system services control pOint (SSCP) 
requesting that an LU-LU session be established. 

Inoperative. The condition of a resource that has been 
active, but is not. The resource may have failed, 
received an INOP request, or is suspended while a 
reactivate command is being processed. See also 
inactive. 

Input/output channel. (1) (ISO) In a data processing 
system, a functional unit that handles the transfer of 

Glossary 323 



data between internal and peripheral equipment. (2) In 
a computing system, a functional unit, controlled by a 
processor, that handles the transfer of data between 
processor storage and local peripheral devices. Syn
onymous with data channel. See channel. See also 
link. 

interface. * A shared boundary. An interface might be 
a hardware component to link two devices or it might 
be a portion of storage or registers accessed by two or 
more computer programs. 

item. In CCP, any of the components, such as commu
nication controllers, lines, cluster controllers, and ter
minals, that comprise an IBM 3710 Network Controller 
configuration. 

JCL. Job control language. 

job control language (JCL). if A problem-oriented lan
guage designed to express statements in a job that are 
used to identify the job or describe its requirements to 
an operating system. 

Kanji. An ideographic character set used in Japanese. 
See also double-byte character set. 

keyword. (1) (TC97) A lexical unit that, in certain con
texts, characterizes some language construction. (2) * 
One of the predefined words of an artificial language. 
(3) One of the significant and informative words in a 
title or document that describes the content of that doc
ument. (4) A name or symbol that identifies a param
eter. (5) A part of a command operand that consists of 
a specific character string (such as oSNAME =). See 
also definition statement and keyword operand. Con
trast with pOSitional operand. 

keyword operand. An operand that consists of a 
keyword followed by one or more values (such as 
oSNAME = HELLO). See also definition statement. 
Contrast with positional operand. 

keyword parameter. A parameter that consists of a 
keyword followed by one or more values. 

LCS. Link connection subsystem. 

line. See communication line. 

line mode. A form of screen presentation in which the 
information is presented a line at a time in the message 
area of the terminal screen. Contrast with full-screen 
mode. 

link .. In SNA, the combination of the link connection 
and the link stations joining network nodes; for 
example: (1) a System/370 channel and its associated 
protocols, (2) a serial-by-bit connection under the 
control of Synchronous Data Link Control (SoLC). A 
link connection is the physical medium of transmission. 

324 NetView Customization: Using PLI and C 

A link, however, is both logical and physical. Synony
mous with data link. See Figure 16 on page 325. 

link-attached. Pertaining to devices that are physically 
connected by a telecommunication line. Contrast with 
channel-attached. Synonymous with remote. 

link connection subsystem (LCS). The sequence of link 
connection components (LCCs) that belong to a link 
connection and are managed by one LCSM. 

load module. (ISO) A program unit that is suitable for 
loading into main storage for execution; it is usually the 
output of a linkage editor. 

local. Pertaining to a device that is attached to a con
trolling unit by cables, rather than by a telecommuni
cation line. Synonymous with channel-attaChed. 

local address. In SNA, an address used in a peripheral 
node in place of an SNA network address and trans
formed to or from an SNA network address by the 
boundary function in a subarea node. 

logical unit (LU). In SNA, a port through which an end 
user accesses the SNA network and the functions pro
vided by system services control points (SSCPs). An 
LU can support at least two sessions-one with an 
SSCP and one with another LU-and may be capable of 
supporting many sessions with other LUs. See also 
network addressable unit (NAU) , peripheral LU, phys
ical unit (PU), system services control point (SSCP), 
primary logical unit (PLU). and secondary logical unit 
(SLU). 

logical unit (LU) services. In SNA, capabilities in a 
logical unit to: (1) receive requests from an end user 
and, in turn, issue requests to the system services 
control point (SSCP) in order to perform the requested 
functions, typically for session initiation; (2) receive 
requests from the SSCP, for example to activate LU-LU 
sessions via Bind Session requests; and (3) provide 
session presentation and other services for LU-LU ses
sions. See also physical unit (PU) services. 

logical unit (LU) 6.2. A type of logical unit that sup
ports general communication between programs in a 
distributed processing environment. LU 6.2 is charac
terized by (1) a peer relationship between session part
ners, (2) efficient utilization of a session for multiple 
transactions, (3) comprehensive end-to-end error proc
essing, and (4) a generic application program interface 
(API) consisting of structured verbs that are mapped 
into a product implementation. 

logmode tab~e. Synonym for logon mode table. 

logoff. In VTAM, an unformatted session termination 
request. 

logon. In VTAM, an unformatted session initiation 
request for a session between two logical units. See 



Subarea Host Node 

Type 5 PU 

Channel Subarea Link 
Subarea Path Control 

Peripheral Host Node 

Type 2.1 PU 

LU 

Channel Peripheral Link 
Peripheral Path Control 

Figure 16. Links and Path Controls 

automatic logon and simulated logon. See also 
session-initiation request. 

logon mode table. In VTAM, a set of entries for one or 
more logon modes. Each logon mode Is identified by a 
logon mode name. Synonymous with logmode table. 

Another 
Subarea Node 

Communication Controller 

Type 4 PU 

Subarea Path Control 

Boundary 
Function 

SOLC 
Subarea 
Link 

Peripheral Path Control 

SOLe Peripheral 
Links 

logon-Interpret routine. In VTAM, an installation exit 
routine, associated with an interpret table entry, that 
translates logon information. It may also verify the 
logon. 

LU. Logical unit. 

Glossary 325 



LU type. In SNA, the classification of an lU-lU session 
in terms of the specific subset of SNA protocols and 
options supported by the logical units (LUs) for that 
session, namely: 

The mandatory and optional values allowed in the 
session activation request. 

The usage of data stream controls, function man
agement headers (FMHs), request unit (RU) param
eters, and sense codes. 

Presentation services protocols such as those 
associated with FMH usage. 

lU types 0, 1, 2, 3, 4, 6.1, 6.2, and 7 are defined. 

LU-LU session. In SNA, a session between two logical 
units (lUs) in an SNA network. It provides communi
cation between two end users, or between an end user 
and an lU services component. 

LU-LU session type. A deprecated term for LU type. 

LU 6.2. logical unit 6.2. 

macroinstruction. (1) An instruction that when exe
cuted causes the execution of a predefined sequence of 
instructions in the same source language. (2) In 
assembler programming, an assembler language state
ment that causes the assembler to process a prede
fined set of statements called a macro definition. The 
statements normally produced from the macro defi
nition replace the macroinstruction in the program. 
See also definition statement. 

maintenance services. In SNA, one of the types of 
network services in system services control points 
(SSCPs) and physical units (PUs). Maintenance ser
vices provide facilities for testing links and nodes and 
for collecting and recording error information. See 
also configuration services, management services, 
network services, and session services. 

major node. In VT AM, a set of resources that can be 
activated and deactivated as a group. See node and 
minor node. 

management services. In SNA, one of the types of 
network services in control points (CPs) and physical 
units (PUs). Management services are the services 
provided to assist in the management of SNA networks, 
such as problem management, performance and 
accounting management, configuration management 
and change management. See also configuration ser
vices, maintenance services, network services, and 
session services. 

Medium Access Control (MAC). The sublayer of OlC 
that supports medium-dependent functions and uses 
the services of the physical layer to provide services to 
logical Link Control (LlC). The MAC sublayer includes 
the medium access port. 

326 NetView Customization: Using PlI and C 

medium access control (MAC) procedure. (TC97) In a 
local area network, the part of the protocol that governs 
access to the transmission medium independently of 
the physical characteristics of the medium, but takes 
into account the topological aspects of the network, in 
order to enable the exchange of data between data 
stations. 

message. (1) (TC97) A group of characters and 
control bit sequences transferred as an entity. (2) In 
VTAM, the amount of function management data (FMO) 
transferred to VTAM by the application program with 
one SEND request. 

migration. Installing a new version or release of a 
program when an earlier version or release is already 
in place. 

minor node. In VTAM, a uniquely-defined resource 
within a major node. See node and major node. 

module. * A program unit that is discrete and identifi
able with respect to compiling, combining with other 
units, and loading; for example, the input to or output 
from an assembler, compiler, linkage editor, or execu
tive routine. 

monitor. In the IBM Token-Ring Network, the function 
required to initiate the transmission of a token on the 
ring and to provide soft-error recovery in case of lost 
tokens, circulating frames, or other difficulties. The 
capability is present in all ring stations. 

multiple-domain network. In SNA, a network with more 
than one system services control point (SSCP). Con
trast with single-domain network. 

Multiple Virtual Storage (MVS). An IBM licensed 
program whose full name is the Operating 
System/Virtual Storage (OS/VS) with Multiple Virtual 
Storage/System Product for System/370. It is a soft
ware operating system controlling the execution of pro
grams. 

Multiple Virtual Storage for Extended Architecture 
(MVS/XA). An IBM licensed program whose full name 
is the Operating System/Virtual Storage (OS/VS) with 
Multiple Virtual Storage/System Product for Extended 
Architecture. Extended architecture allows 31-bit 
storage addressing. MVS/XA is a software operating 
system controlling the execution of programs. 

MVS. Multiple Virtual Storage operating system. 

MVS/XA. Multiple Virtual Storage for Extended Archi
tecture operating system. 

NAU. Network addressable unit. 

NC. Network control. 

NCCF. Network Communications Control Facility. 



NCP. (1) Network Control Program (IBM licensed 
program). Its full name is Advanced Communications 
Function for the Network Control Program. Synony
mous with ACF/NCP. (2) Network control program 
(general term). 

negative response (NR). In SNA, a response indicating 
that a request did not arrive successfully or was not 
processed successfully by the receiver. Contrast with 
positive response. See exception response. 

NetView. A system 370-based IBM licensed program 
used to monitor a network, manage it, and diagnose its 
problems. 

NetVlew command list language. An interpretive lan
guage unique to the NetView program that is used to 
write command lists. 

NetView-NetView task (NNT). The task under which a 
cross-domain NetView operator session runs. See 
operator station task. 

NetView/PC. A PC-based IBM licensed program 
through which application programs can be used to 
monitor, manage, and diagnose problems in IBM 
Token-Ring networks, non-SNA communication 
devices, and voice networks. 

network. (1) (lC97) An interconnected group of 
nodes. (2) In data processing, a user application 
network. See path control network, public network, 
SNA network, subarea network, type 2.1 network, and 
user-application network. 

network address. In SNA, an address, consisting of 
subarea and element fields, that identifies a link, a link 
station, or a network addressable unit. Subarea nodes 
use network addresses; peripheral nodes use local 
addresses. The boundary function in the subarea node 
to which a peripheral node is attached transforms local 
addresses to network addresses and vice versa. See 
local address. See also network name. 

network addressable unit (NAU). In SNA, a logical unit, 
a physical unit, or a system services control point. It is 
the origin or the destination of information transmitted 
by the path control network. Each NAU has a network 
address that represents it to the path control network. 
See also network name, network address, and path 
control network. 

Network Communications Control Facility (NCCF). An 
IBM licensed program that is a base for command 
processors that can monitor, control, automate, and 
improve the operations of a network. Its function is 
included and enhanced in NetView's command facility. 

network control (NC). In SNA, an RU category used for 
requests and responses exchanged for such purposes 
as activating and deactivating explicit and virtual 
routes and sending load modules to adjacent peri ph-

eral nodes. See also data flow control layer and 
session control. 

Network Control Program (NCP). An IBM licensed 
program that provides communication controller 
support for single-domain, multiple-domain, and inter
connected network capability. Its full name is 
Advanced Communications Function for the Network 
Control Program. 

network control program. A program, generated by 
the user from a library of IBM-supplied modules, that 
controls the operation of a communication controller. 

network log. A file that contains all messages proc
essed by the NetView program. 

network management vector transport (NMVT). A 
management services request/response unit (RU) that 
flows over an active session between physical unit 
management services and control point management 
services (SSCP-PU session). 

network name. (1) In SNA, the symbolic identifier by 
which end users refer to a network addressable unit 
(NAU), a link, or a link station. See also network 
address. (2) In a multiple-domain network, the name 
of the APPL statement defining a VTAM application 
program is its network name and it must be unique 
across domains. Contrast with ACB name. See unin
terpreted name. 

network operator. (1) A person or program respon
sible for controlling the operation of all or part of a 
network. (2) The person or program that controls all 
the domains in a multiple-domain network. Contrast 
with domain operator. 

network product support (NPS). The function of the 
NetView program that provides operations control for 
the IBM 3710 Network Controller, 5860 family of 
modems, and the NCP; and configuration of 3710s and 
the 5860 family of modems. NPS provides operator 
commands to run diagnostics for link problem determi
nation and to change product operating parameters. 

network services (NS). In SNA, the services within 
network addressable units (NAUs) that control network 
operation through SSCP-SSCP, SSCP-PU, and SSCP-LU 
sessions. See configuration services, maintenance 
services, management services, and session services. 

network services (NS) header. In SNA, a 3-byte field in 
a function management data (FMO) request/response 
unit (RU) flowing in an SSCP-LU, SSCP-PU, or 
SSCP-SSCP session. The network services header is 
used primarily to identify the network services category 
of the request unit (RU) (for example, configuration ser
vices, session services) and the particular request 
code within a category. 

NMVT. Network management vector transport. 

Glossary 327 



NNT. NetView-NetView task. 

node. (1) In SNA, an endpoint of a link or junction 
common to two or more links in a network. Nodes can 
be distributed to host processors, communication con
trollers, cluster controllers, or terminals. Nodes can 
vary in routing arid other functional capabilities. See 
boundary node, host node, peripheral node, and 
subarea node (including illustration). (2) In VTAM, a 
point in a network defined by a symbolic name. See 
major node and minor node. 

node name. In VTAM, the symbolic name assigned to 
a specific major or minor node during network defi
nition. 

node type. In SNA, a designation of a node according 
to the protocols it supports and the network address
able units (NAUs) that it can contain. Five types are 
defined: 1, 2.0, 2.1, 4, and 5. Type 1, type 2.0, and type 
2.1 nodes are peripheral nodes; type 4 and type 5 
nodes are subarea nodes. See also type 2.1 node. 

no response. In SNA, a value in the 
form-of-response-requested field of the request header 
(RH) indicating that no response is to be returned to the 
request, whether or not the request is received and 
processed successfully. Contrast with definite 
response and exception response. 

NPS. Network product support. 

NS. Network services. 

online. Stored in a computer and accessible from a 
terminal. 

open. (1) In the IBM Token-Ring Network, to make an 
adapter ready for use. (2) A break in an electrical 
circuit. 

operand. (1) (ISO) An entity on which an operation is 
performed. (2) * That which is operated upon. An 
operand is usually identified by an address part of an 
instruction. (3) Information entered with a command 
name to define the data on which a command 
processor operates and to control the execution of the 
command processor. (4) An expression to whose 
value an operator is applied. See also definition state
ment, keyword, keyword parameter, and parameter. 

operator. (1) In a language statement, the lexical 
entity that indicates the action to be performed on oper
ands. (2) A person who operates a machine. See 
network operator. See also definition statement. 

operator profile. In the NetView program, the 
resources and activities a network operator has control 
over. The statements defining these resources and 
activities are stored in a file that is activated when the 
operator logs on. 

328 NetView Customization: Using PlI and C 

operator station task (OST). The NetView task that 
establishes and maintains the online session with the 
network operator. There is one operator station task 
for each network operator who logs on to the Netview 
program. See NetView-NetView task. 

OST. Operator station task. 

pacing. In SNA, a technique by which a receiving com
ponent controls the rate of transmission of a sending 
component to prevent overrun or congestion. See 
session-level pacing, send pacing, and virtual route 
(VR) pacing. See also flow control. 

pacing response. In SNA, an indicator that signifies a 
receiving component's readiness to accept another 
pacing group; the indicator is carried in a response 
header (RH) for session-level pacing, and in a trans
mission header (TH) for virtual route pacing. 

page. (1) The portion of a panel that is shown on a 
display surface at one time. (2) To move back and 
forth among the pages of a multiple-page panel. See 
also scroll. (3) (ISO) In a virtual storage system, a 
fixed-length block that has a virtual address and that 
can be transferred between real storage and auxiliary 
storage. (4) To transfer instructions, data, or both 
between real storage and external page or auxiliary 
storage. 

panel. (1) A formatted display of information that 
appears on a terminal screen. See also help panel and 
task panel. Contrast with screen. (2) In computer 
graphiCS, a display image that defines th,e locations and 
characteristics of display fields on a display surface. 

parameter. (1) (ISO) A variable that is given a con
stant value for a specified application and that may 
denote the application. (2) An item in a menu for 
which the user specifies a value or for which the 
system provides a value when the menu is interpreted. 
(3) Data passed to a program or procedure by a user 
or another program, namely as an operand in a lan
guage statement, as an item in a menu, or as a shared 
data structure. See also keyword, keyword parameter, 
and operand. 

partitioned data set (PDS). A data set in direct access 
storage that is divided into partitions, called members, 
each of which can contain a program, part of a 
program, or data. 

path. (1) In SNA, the series of path control network 
components (path control and data link control) that are 
traversed by the information exchanged between two 
network addressable units (NAUs). See also explicit 
route (ER), route extension, and virtual route (VR). 
(2) In VTAM when defining a switched major node, a 
potential dial-out port that can be used to reach that 
node. (3) In the NetView/PC program, a complete line 
in a configuration that contains all of the resources in 



the service point command service (SPCS) query link 
configuration request list. 

path control (PC). The function that routes message 
units between network addressable units (NAUs) in the 
network and provides the paths between _them. It con
verts the SIUs from transmission control (possibly seg
menting them) into path information units (PIUs) and 
exchanges basic transmission units (STUs) and one or 
more PIUs with data link control. Path control differs 
for peripheral nodes, which use local addresses for 
routing, and subarea nodes, which use network 
addresses for routing. See peripheral path control and 
subarea path control. See also link, peripheral node, 
and subarea node. 

path control (PC) layer. In SNA, the layer that 
manages the sharing of link resources of the SNA 
network and routes basic information units (SIUs) 
through it. See also 8IU segment, blocking of PIUs, 
data link control layer, and transmission control layer. 

path control (PC) network. In SNA, the part of the SNA 
network that includes the data link control and path 
control layers. See SNA network and user application 
network. See also boundary function. 

PC. (1) Path control. (2) Personal Computer. Its full 
name is the ISM Personal Computer. 

peripheral host node. A node that provides an applica
tion program interface (API) for running application 
programs but does not provide SSCP functions and is 
not aware of the network configuration. The peripheral 
host node does not provide subarea node services. It 
has boundary function provided by its adjacent 
subarea. See boundary node, host node, node, periph
eral node, subarea host node, and subarea node. See 
also boundary function and node type. 

peripheral LU. In SNA, a logical unit representing a 
peripheral node. 

peripheral node. In SNA, a node that uses local 
addresses for routing and therefore is not affected by 
changes in network addresses. A peripheral node 
requires boundary-function assistance from an adja
cent subarea node. A peripheral node is a physical 
unit (PU) type 1, 2.0, or 2.1 node connected to a 
subarea node with boundary function within a subarea. 
See boundary node, host node, node, peripheral host 
node, subarea host node, and subarea node. See also 
boundary function and node type. 

peripheral path control. The function in a peripheral 
node that routes message units between units with 
local addresses and provides the paths between them. 
See path control and subarea path control. See also 
boundary function, peripheral node, and subarea node. 

peripheral PU. In SNA, a physical unit representing a 
peripheral node. 

Personal Computer (PC). The ISM Personal Computer 
line of products including the 5150 and subsequent 
models. 

physical connection. In VTAM, a pOint-to-point con
nection or multipoint connection. Synonymous with 
connection. 

physical unit (PU). In SNA, a type of network address
able unit (NAU). A physical unit (PU) manages and 
monitors the resources (such as attached links) of a 
node, as requested by a system services control pOint 
(SSCP) through an SSCP-PU session. An SSCP acti
vates a session with the physical unit in order to indi
rectly manage, through the PU, resources of the node 
such as attached links. See also peripheral PU and 
subarea PU. 

physical unit (PU) services. In SNA, the components 
within a physical unit (PU) that provide configuration 
services and maintenance services for SSCP-PU ses
sions. See also logical unit (LU) services. 

PLU. Primary logical unit. 

POI. Programmed operator interface. 

positional operand. An operand in a language state
ment that has a fixed position. See also definition 
statement. Contrast with keyword operand. 

positive response. A response indicating that a 
request was received and processed. Contrast with 
negative response. 

POST. Power-on self test. A series of diagnostic tests 
that are run each time the computer's power is turned 
on. 

PPT. Primary POI task. 

primary half-session. In SNA, the half-session that 
sends the session activation request. See also primary 
logical unit. Contrast with secondary half-session. 

primary logical unit (PLU). In SNA, the logical unit (LU) 
that contains the primary half-session for a particular 
LU-LU session. Each session must have a PLU and 
secondary logical unit (SLU). The PLU is the unit 
responsible for the bind and is the controlling LU for 
the session. A particular LU may contain both primary 
and secondary half-sessions for different active LU-LU 
sessions. Contrast with secondary logical unit (SLU). 

primary POI task (PPT). The NetView subtask that 
processes all unsolicited messages received from the 
VTAM program operator interface (POI) and delivers 
them to the controlling operator or to the command 
processor. The PPT also processes the initial 
command specified to execute when the NetView 

Glossary 329 



program is initialized and timer request commands 
scheduled to execute under the PPT. 

problem determination. The process of identifying the 
source of a problem; for example, a program compo
nent, a machine failure, telecommunication facilities, 
user or contractor-installed programs or equipment, an 
environment failure such as a power loss, or a user 
error. 

product-set identification (PSID). (1) In SNA, a tech
nique for identifying the hardware and software pro
ducts that implement a network component. (2) A 
management services common subvector that trans
ports the information described in definition (1). 

profile. In the Conversational Monitor System (CMS) 
or the group control system (GCS), the characteristics 
defined by a PROFILE EXEC file that executes automat
ically after the system is loaded into a virtual machine. 
See also operator profile. 

programmed operator interface (POI). A VT AM func
tion that allows programs to perform VT AM operator 
functions. 

PSID. Product-set identification. 

PU. Physical unit. 

public network. A network established and operated 
by communication common carriers or telecommuni
cation Administrations for the specific purpose of pro
viding circuit-switched, packet switched, and 
leased-circuit services to the public. Contrast with 
user-application network. 

PU-PU flow. In SNA, the exchange between phYSical 
units (PUs) of network control requests and responses. 

receive pacing. In SNA, the pacing of message units 
that the component is receiving. See also send pacing. 

RECFMS. Record formatted maintenance statistics. 

RECMS. Record maintenance statistics. 

record. (1) (ISO) In programming languages, an 
aggregate that consists of data objects, possibly with 
different attributes, that usually have identifiers 
attached to them. In some programming languages, 
records are called structures. (2) (TC97) A set of data 
treated as a unit. (3) A set of one or more related data 
items grouped for processing. (4) In VTAM, the unit of 
data transmission for record mode. A record repres
ents whatever amount of data the transmitting node 
chooses to send. 

record formatted maintenance statistics (RECFMS). A 
statistical record built by an SNA controller and usually 
solicited by the host. 

330 NetView Customization: Using PLI and C 

record maintenance statistics (RECMS). An SNA error 
event record built from an NCP or line error and sent 
unsolicited to the host. 

reentrant. The attribute of a program or routine that 
allows the same copy of the program or routine to be 
used concurrently by two or more tasks. For example, 
the 3710 Network Controller routines may be reentrant. 

regular command. In the NetView program, any VTAM 
or NetView command that is not an immediate 
command and is processed by a regular command 
processor. Contrast with immediate command. 

release. For VTAM, to relinquish control of resources 
(communication controllers or physical units). See also 
resource takeover. Contrast with acquire (2). 

remote. Concerning the peripheral parts of a network 
not centrally linked to the host processor and generally 
using telecommunication lines with public right-of-way. 

remove. In the IBM Token-Ring Network, to take an 
attaching device off the ring. 

request header (RH). In SNA, control information pre
ceding a request unit (RU). See also request/response 
header (RH). 

request unit (RU). In SNA, a message unit that con
tains control information, end-user data, or both. 

request/response header (RH). In SNA, control infor
mation, preceding a request/response unit (RU), that 
specifies the type of RU (request unit or response unit) 
and contains control information associated with that 
RU. 

request/response unit (RU). In SNA, a generiC term for 
a request unit or a response unit. See also request unit 
(RU) and response unit. 

reset. On a virtual circuit, reinitialization of data flow 
control. At reset, all data in transit are eliminated. 

resource. (1) Any facility of the computing system or 
operating system required by a job or task, and 
including main storage, input/output devices, the proc
essing unit, data sets, and control or proceSSing pro
grams. (2) In the NetView program, any hardware or 
software that provides function to the network. 

resource takeover. In VTAM, action initiated by a 
network operator to transfer control of resources from 
one domain to another. See also acquire (2) and 
release. See takeover. 

response. A reply represented in the control field of a 
response frame. It advises the primary or combined 
station of the action taken by the secondary or other 
combined station to one or more commands. See also 
command. 



response header (RH). In SNA, a header, optionally 
followed by a response unit (RU), that indicates 
whether the response is positive or negative and that 
may contain a pacing response. See also negative 
response, pacing response, and positive response. 

response time. (1) The amount of time it takes after a 
user presses the enter key at the terminal untH the 
reply appears at the terminal. (2) For response time 
monitoring, the time from the activation of a transaction 
until a response is received, according to the response 
time definition coded in the performance class. 

response unit (RU). In SNA, a message unit that 
acknowledges a request unit; it may contain prefix 
information received in a request unit. If positive, the 
response unit may contain additional information (such 
as session parameters in response to Bind Session), or 
if negative, contains sense data defining the exception 
condition. 

Restructured Extended Executor (REXX). An interpre
tive language used to write command lists. 

return code. * A code [returned from a program] used 
to influence the execution of succeeding instructions. 

REXX. Restructured Extended Executor. 

RH. Request/response header. 

route. See explicit route and virtual route. 

route extension (REX). In SNA, the path control 
network components, including a peripheral link, that 
make up the portion of a path between a subarea node 
and a network addressable unit (NAU) in an adjacent 
peripheral node. See also path, explicit route (ER) and 
virtual route (VR). 

routing. The assignment of the path by which a 
message will reach its destination. 

RPL exit routine. In VTAM, an application program exit 
routine whose address has been placed in the EXIT 
field of a request parameter list (RPL). VTAM invokes 
the routine to indicate that an asynchronous request 
ha~ been completed. See EXLST exit routine. 

RU. Request/response unit. 

RU chain. In SNA, a set of related request/response 
units (RUs) that are consecutively transmitted on a par
ticular normal or expedited data flow. The request RU 
chain is the unit of recovery: if one of the RUs in the 
chain cannot be processed, the entire chain is dis
carded. Each RU belongs to only one chain, which has 
a beginning and an end indicated by means of control 
bits in request/response headers within the RU chain. 
Each RU can be designated as first-in-chain (FIC), 
last-in-chain (LlC), middle-in-chain (MIC), or 

only-in-chain (OIC). Response units and expedited-flow 
request units are always sent as only-in-chain. 

scope of commands. In the NetView program, the 
facility that provides the ability to assign different 
responsibilities to various operators. 

screen. An illuminated display surface; for example, 
the display surface of a CRT or plasma panel. Contrast 
with panel. 

scroll. To move all or part of the display image verti
cally to display data that cannot be observed within a 
single display image. See also page (2). 

secondary half-session. In SNA, the half-session that 
receives the session-activation request. See also sec
ondary logical unit (SLU). Contrast with primary 
half-session. 

secondary logical unit (SLU). In SNA, the logical unit 
(LU) that contains the secondary half-session for a par
ticular LU-LU session. An LU may contain secondary 
and primary half-sessions for different active LU-LU 
sessions. Contrast with primary logical unit (PLU). 

secondary logical unit (SLU) key. A key-encrypting key 
used to protect a session cryptography key during its 
transmission to the secondary half-session. 

send pacing. In SNA, pacing of message units that a 
component is sending. See also receive pacing. 

sequence number. A number assigned to a particular 
frame or packet to control the transmission flow and 
receipt of data. 

service point (SP). An entry pOint that supports appli
cations that provide network management for 
resources not under the direct control of itself as an 
entry point. Each resource is either under the direct 
control of another entry point or not under the direct 
control of any entry point. A service point accessing 
these resources is not required to use SNA seSSions 
(unlike a focal point). A service point is needed when 
entry pOint support is not yet available for some 
network management function. 

service point command service (SpeS). An extension 
of the command facility in the NetView program that 
allows the host processor to communicate with a 
service point by using the communication network 
management (CNM) interface. 

session. In SNA, a logical connection between two 
network addressable units (NAUs) that can be acti
vated, tailored to provide various protocols, and deacti
vated, as requested. Each seSSion is uniquely 
identified in a transmission header (TH) by a pair of 
network addresses, identifying the origin and destina
tion NAUs of any transmissions exchanged during the 
session. See half-session, LU-LU session, SSCP-LU 

Glossary 331 



session, SSCP-PU session, and SSCP-SSCP session. 
See also LU-LU session type and PU-PU flow. 

session control (SC). In SNA, (1) One of the compo
nents of transmission control. Session control is used 
to purge data flowing in a session after an unrecover
able error occurs, to resynchronize the data flow after 
such an error, and to perform cryptographic verifica
tion. (2) A request unit (RU) category used for requests 
and responses exchanged between the session control 
components of a session and for session activation and 
deactivation requests and responses. 

session-initiation request. In SNA, an Initiate or logon 
request from a logical unit (LU) to a control point (CP) 
that an LU-LU session be activated. 

session-level pacing. In SNA, a flow control technique 
that permits a receiver to control the data transfer rate 
(the rate at which it receives request units) on the 
normal flow. It is used to prevent overloading a 
receiver with unprocessed requests when the sender 
can generate requests faster than the receiver can 
process them. See also pacing and virtual route 
pacing. 

session monitor. The component of the NetView 
program that collects and correlates session-related 
data and provides online access to this information. 

session services. In SNA, one of the types of network 
services in the control point (CP) and in the logical unit 
(LU). These services provide facilities for an LU or a 
network operator to request that the SSCP initiate or 
terminate sessions between logical units. See config
uration services, maintenance services, and manage
ment services. 

shared. Pertaining to the availability of a resource to 
more than one use at the same time. 

simulated logon. A session-initiation request gener
ated when a VTAM application program issues a 
SIMLOGON macroinstruction. The request specifies a 
logical unit (LU) with which the application program 
wants a session in which the requesting application 
program will act as the primary logical unit (PLU). 

single-domain network. In SNA, a network with one 
system services control point (SSCP). Contrast with 
multiple-domain network. 

SLU. Secondary logical unit. 

SMF. ~ystem management facility. 

SNA. Systems Network Architecture. 

SNA network. The part of a user-application network 
that conforms to the formats and protocols of Systems 
Network Architecture. It enables reliable transfer of 
data among end users and provides protocols for con-

332 Netview Customization: Using PLI and C 

trolling the resources of various network configura
tions. The SNA network consists of network 
addressable units (NAUs), boundary function compo
nents, and the path control network. 

SP. Service point. 

spes. Service point command service. 

span. In the NetView program, a user-defined group of 
network resources within a single domain. Each major 
or minor node is defined as belonging to one or more 
spans. See also span of control. 

span of control. The total network resources over 
which a particular network operator has control. All 
the network resources listed in spans associated 
through profile definition with a particular network 
operator are within that operator's span of control. 

SSCP. System services control point. 

SSCP-LU session. In SNA, a session between a 
system services control point (SSCP) and a logical unit 
(LU); the session enables the LU to request the SSCP to 
help initiate LU-LU sessions. 

SSCP-PU session. In SNA, a session between a 
system services control point (SSCP) and a physical 
unit (PU); SSCP-PU sessions allow SSCPs to send 
requests to and receive status information from indi
vidual nodes in order to control the network configura
tion. 

SSCP-SSCP session. In SNA, a session between the 
system services control point (SSCP) in one domain 
and the SSCP in another domain. An SSCP-SSCP 
session is used to initiate and terminate cross-domain 
LU-LU sessions. 

ssP. System Support Programs (IBM licensed 
program). Its full name is Advanced Communications 
Function for System Support Programs. Synonymous 
with ACFISSP. 

start option. In VTAM, a user-specified or 
IBM-supplied option that determines certain conditions 
that are to exist during the time a VTAM system is 
operating. Start options can be predefined or specified 
when VT AM is started. 

statement. A language syntactic unit consisting of an 
operator, or other statement identifier, followed by one 
or more operands. See definition statement. 

station. (1) One of the input or output points of a 
network that uses communication facilities; for 
example, the telephone set in the telephone system or 
the pOint where the business machine interfaces with 
the channel on a leased private line. (2) One or more 
computers, terminals, or devices at a particular 
location. 



Bubarea. A portion of the SNA network consisting of a 
subarea node, any attached peripheral nodes, and their 
associated resources. Within a subarea node, all 
network addressable units, links, and adjacent link 
stations (in attached peripheral or subarea nodes) that 
are addressable within the subarea share a common 
subarea address and have distinct element addresses. 

Bubarea host node. A host node that provides both 
subarea function and an application program interface 
(API) for running application programs. It provides 
system services control pOint (SSCP) functions, 
subarea node services, and is aware of the network 
configuration. See boundary node, communication 
management configuration host node, data host node, 
host node, node, peripheral node, and subarea node. 
See also boundary function and node type. 

subarea node. In SNA, a node that uses network 
addresses for routing and whose routing tables are 
therefore affected by changes in the configuration of 
the network. Subarea nodes can provide gateway func
tion, and boundary function support for peripheral 
nodes. Type 4 and type 5 nodes are subarea nodes. 
See boundary node, host node, node, peripheral node, 
and subarea host node. See also boundary function 
and node type. 

subarea path control. The function in a subarea node 
that routes message units between network address
able units (NAUs) and provides the paths between 
them. See path control and peripheral path control. 
See also boundary function, peripheral node, and 
subarea node. 

subarea PU. In SNA, a physical unit (PU) in a subarea 
node. 

subsystem. A secondary or subordinate system, 
usually capable of operating independent of, or asyn
chronously with, a controlling system. 

subvector. A subcomponent of the MAC major vector. 

supervisor. The part of a control program that coordi
nates the use of resources and maintains the flow of 
processing unit operations. 

system management facility (SMF). A standard feature 
of MVS that collects and records a variety of system 
and job-related information. 

system services control point (SSCP). In SNA, a 
central location point within an SNA network for man
aging the configuration, coordinating network operator 
and problem determination requests, and providing 
directory support and other session services for end 
users of the network. Multiple SSCPs, cooperating as 
peers, can divide the network into domains of control, 
with each SSCP having a hierarchical control relation
ship to the physical units and logical units within its 
domain. 

system services control point (SSCP) domain. The 
system services control pOint and the physical units 
(PUs), logical units (LUs), links, link stations and all the 
resources that the SSCP has the ability to control by 
means of activation requests and deactivation 
requests. 

Systems Network Architecture (SNA). The description 
of the logical structure, formats, protocols, and opera
tional sequences for transmitting information units 
through and controlling the configuration and operation 
of networks. 

System Support Programs (SSP). An IBM licensed 
program, made up of a collection of utilities and small 
programs, that supports the operation of the NCP. 

TAF. Terminal access facility. 

takeover. The process by which the failing active sub
system is released from its extended recovery facility 
(XRF) sessions with terminal users and replaced by an 
alternate subsystem. See resource takeover. 

task. A basic unit of work to be accomplished by a 
computer. The task is usually specified to a control 
program in a multiprogramming or multiprocessing 
environment. 

task panel. Online display from which you communi
cate with the program in order to accomplish the pro
gram's function, either by selecting an option provided 
on the panel or by entering an explicit command. See 
help panel. 

telecommunication line. Any physical medium such as 
a wire or microwave beam, that is used to transmit 
data. Synonymous with transmission line. 

terminal. A device that is capable of sending and 
receiving information over a link; it is usually equipped 
with a keyboard and some kind of display, such as a 
screen or a printer. 

terminal access facility (TAF). In the NetView 
program, a facility that allows a network operator to 
control a number of subsystems. In a full-screen or 
operator control session, operators can control any 
combination of such subsystems simultaneously. 

TERMINATE. In SNA, a request unit that is sent by a 
logical unit (LU) to its system services control point 
(SSCP) to cause the SSCP to start a procedure to end 
one or more deSignated LU-LU sessions. 

time-out. (1) (ISO) 'An event that occurs at the end of 
a predetermined period of time that began at the occur
rence of another specified event. (2) A time interval 
allotted for certain operations to occur; for example, 
response to polling or addressing before system opera
tion is interrupted and must be restarted. 

Glossary 333 



time sharing option (TSO). An optional configuration of 
the operating system that provides conversational time 
sharing from remote stations. 

token. A sequence of bits passed from one device to 
another along the token ring. When the token has data 
appended to it, it becomes a frame. 

transmission control (TC) layer. In SNA, the layer 
within a half-session that synchronizes and paces 
session-level data traffic, checks session sequence 
numbers of requests, and enciphers and deciphers 
end-user data. Transmission control has two compo
nents: the connection point manager and session 
control. See also half-session. ' 

transmission line. Synonym for telecommunication 
line. 

TSO. Time sharing option. 

type 2.1 node (T2.1 node). A node that can attach to an 
SNA network as a peripheral node using the same pro
tocols as type 2.0 nodes. Type 2.1 nodes can be 
directly attached to one another using peer-to-peer pro
tocols. See end node, node, and subarea node. See 
also node type. 

type 2.1 node (T2.1 node) control point domain. The 
CP, its logical units (LUs), links, link stations, and all 
resources that it activates and deactivates. 

unformatted. In VTAM, pertaining to commands (such 
as LOGON or LOGOFF) entered by an end user and 
sent by a logical unit in character form. The 
character-coded command must be in the syntax 
defined in the user's unformatted system services defi
nition table. Synonymous with character-coded. Con
trast with field-formatted. 

unformatted system services (USS). In SNA products, 
a system services control point (SSCP) facility that 
translates a character-coded request, such as a logon 
or logoff request into a field-formatted request for proc
essing by formatted system services and translates 
field-formatted replies and responses into 
character-coded requests for processing by a logical 
unit. Contrast with formatted system services. See 

. also converted command. 

un Interpreted name. In SNA, a character string that a 
system services control point (SSCP) is able to convert 
into the network name of a logical unit (LU). Typically, 
an uninterpreted name is used in a logon or Initiate 
request from a secondary logical unit (SLU) to identify 
the pri"mary logical unit (PLU) with which the session is 
requested. 

upstream. In the direction of data flow from the end 
user to the host. Contrast with downstream. 

334 NetView Customization: Using PLI and C 

user. Anyone who requires the services of a com
puting system. 

user-application network. A configuration of data proc
essing products, such as processors, controllers, and 
terminals, established and operated by users for the 
purpose of data processing or information exchange, 
which may use services offered by communication 
common carriers or telecommunication Adminis
trations. Contrast with public network. 

user exit. A pOint in an IBM-supplied program at which 
a user routine may be given control. 

user exit routine. A user-written routine that receives 
control at predefined user exit pOints. User exit rou
tines can be written in assembler or a high-level lan
guage (HLL). 

USS. Unformatted system services. 

value. (1) (TC9?) A specific occurrence of an attri
bute, for example, "blue" for the attribute "color." (2) A 
quantity assigned to a constant, a variable, a param
eter, or a symbol. 

variable. In the NetView program, a character string 
beginning with & that is coded in a command list and is 
assigned a value during execution of the command list. 

vector. The MAC frame information field. 

verb. (1) In SNA, the general name for a transaction 
program's request for communication services. (2) In 
VTAM, a programming language element in the logical 
unit (LU) 6.2 application program interface (API) that 
causes an LU 6.2 function to be performed. 

Virtual Machine (VM). A licensed program whose full 
name is the Virtual Machine/System Product (VM/SP). 
It is a software operating system that manages the 
resources of a real processor to provide virtual 
machines to end users. As a time-sharing system 
control program, it consists of the virtual machine 
control program (CP), the conversational monitor 
system (CMS), the group control system (GCS), and the 
interactive problem control system (IPCS). 

virtual route (VR). In SNA, a logical connection (1) 
between two subarea nodes that is physically realized 
as a particular explicit route, or (2) that is contained 
wholly within a subarea node for intranode sessions. A 
virtual route between distinct subarea nodes imposes a 
transmission priority on the underlying explicit route, 
provides flow control through virtual-route pacing, and 
provides data -integrity through sequence numbering of 
path information units (PIUs). See also explicit route 
(ER), path, and route extension. 

virtual route (VR) pacing. In SNA, a flow control tech
nique used by the virtual route control component of 
path control at each end of a virtual route to control the 



rate at which path information units (PIUs) flow over the 
virtual route. VR pacing can be adjusted according to 
traffic congestion in any of the nodes along the route. 
See also pacing and session-level pacing. 

virtual route selection exit routine. In VTAM, an 
optional installation exit routine that modifies the list of 
virtual routes associated with a particular class of 
service before a route is selected for a requested 
LU-LU session. 

virtual storage. (ISO) The notion of storage space that 
may be regarded as addressable main storage by the 
user of a computer system in which virtual addresses 
are mapped into real addresses. The size of virtual 
storage is limited by the addressing scheme of the 
computer system and by the amount of auxiliary 
storage available, not by the actual number of main 
storage locations. 

Virtual Storage Access Method (VSAM). An access 
method for direct or sequential processing of fixed and 
variable-length records on direct access devices. The 
records in a VSAM data set or file can be organized in 
logical sequence by a key field (key sequence), in the 
physical sequence in which they are written on the data 
set or file (entry-sequence), or by relative-record 
number. 

Virtual Storage Extended (VSE). An IBM licensed 
program whose full name is the Virtual Storage 
Extended/Advanced Function. It is a software oper
ating system controlling the execution of programs. 

Virtual Telecommunications Access Method (VTAM). 
An IBM licensed program that controls communication 
and the flow of data in an SNA network. It provides 
single-domain, multiple-domain, and interconnected 
network capability. 

vital product data. Product identification information 
such as machine type, model number, and serial 

number for hardware products. For software products, 
vital product data can be version and release level. 

VM. Virtual Machine operating system. Its full name is 
Virtual Machine/System Product. Synonymous with 
VM/SP. 

VM SNA console support (VSCS). A VTAM component 
for the VM environment that provides Systems Network 
Architecture (SNA) support. It allows SNA terminals to 
be virtual machine consoles. 

VM/SP. Virtual Machine/System Product operating 
system. Synonym for VM. 

YR. Virtual route. 

VSAM. Virtual Storage Access Method. 

VSCS. VM SNA console support. 

VSE. Virtual Storage Extended operating system. Syn
onymous with VSEIAF. 

VSE/AF. Virtual Storage Extended/Advanced Function 
operating system. Synonym for VSE. 

VTAM. Virtual Telecommunications Access Method 
(IBM licensed program). Its full name is Advanced 
Communications Function for the Virtual Telecommuni
cations Access Method. Synonymous with ACF/VTAM. 

VTAM operator command. A command used to 
monitor or control a VTAM domain. See also definition 
statement. 

wrap. In general, to go from the maximum to the 
minimum in computer storage. For example, the con
tinuation of an operation from the maximum value in 
storage to the first minimal value. 

Glossary 335 



336 NetView Customization: Using PlI and C 



Bibliography 

NetView Publications 

Learning About NetView: Operator Training 
(SK2T -0292) is an interactive PC-based operator 
training package that teaches SNA and basic network 
management concepts to new and inexperienced 
NetViewoperators. This training package uses 
graphics, animation and interactive NetView product 
simulations in a series of lessons to teach the basics of 
NetView operation. 

NetView Installation and Administration Guide 
(SC31-6018) helps system programmers install and 
prepare the NetView program for operation. It is 
arranged in a simplified, step-by-step style and is 
meant to be used in conjunction with the sample 
network documented in Network Program Products 
Samples. 

NetView Administration Reference (SC31-6014) is for 
system programmers and network operators who need 
a complete understanding of the NetView resource defi
nition statements. This book lists each statement in 
alphabetical order giving its purpose and location. 

NetView Tuning Guide (SC31-6079)1 describes methods 
for controlling and improving the performance of the 
NetView Release 3 program. It is designed for system 
programmers who need to understand how NetView 
tuning values are determined and optimized. 

NetView Customization Guide (SC31-6016) is designed 
for system programmers and others who want to cus
tomize the NetView program to reflect their network's 
needs or operating procedures. This book focuses on 
the different application programming interfaces that 
can be customized and explains how to modify NetView 
help panels and problem determination displays. 

NetView Customization: Using PLiI and C (SC31-6037) 
describes the ways system programmers can tailor the 
NetView program to satisfy unique requirements or 
operating procedures. It discusses the uses and 
advantages of user-written programs (exit routines, 
command processors, and subtasks). It also provides 
instructions in designing, writing, and installing user
written programs in PL/I and C. 

NetView Customization: Using Assembler (SC31-6078) 
describes the ways system programmers can tailor the 
NetView program to satisfy unique requirements or 
operating procedures. It discusses the uses and 

1 When available. 

advantages of user-written programs (exit routines, 
command processors, and subtasks). It also provides 
instructions in designing, writing, and installing user
written programs in Assembler. 

NetView Customization: Writing Command Lists 
(SC31-6015) explains how to simplify network operator 
tasks by using command lists. It provides step-by-step 
instructions for writing simple and advanced command 
lists and for migrating from NCCF message automation 
to NetView message automation. 

NetView Operation Primer (SC31-6020) provides a 
basic description of the network management task for 
new network operators. Topics include starting and 
stopping a network, controlling resources, monitoring a 
network, and gathering the necessary data to report a 
problem. 

NetView Operation (SC31-6019) provides system pro
grammers and experienced network operators a com
prehensive explanation of network management using 
the NetView program. Topics include detailed 
command explanation and panel flows, as well as infor
mation on how the various components interact with 
each other. 

NetView Command Summary (SX75-0026) is a refer
ence card that provides network operators with the 
format of all the commands and the commonly used 
NetView command lists. The commands are listed in 
alphabetical order by component. 

NetView Problem Determination and Diagnosis 
(L Y 43-0001) aids system programmers in identifying a 
NetView problem, classifying it, and describing it to an 
IBM Support Center. 

NetView Problem Determination Supplement for Man
agement Services Major Vectors 0001 and 0025 
(LD21-0023) describes major vectors 0001 and 0025 for 
system programmers and network operators involved 
in problem determination or diagnosis. The supple
ment may be used for the generiC alert option and 
other problem determination tasks. 

NetView Resource Alerts Reference (SC31-6024) lists 
the messages sent by NetView-supported hardware 
and software resources. It helps system programmers 
analyze the messages into their component parts: 
action codes, event types, message text, and qualifiers. 
The book is a reference for those who need more infor
mation than online help provides. 

Bibliography 337 



NetView Storage Estimates (SK2T-1988) is an interac
tive PC-based tool that helps the user estimate storage 
requirements for NetView. This tool can be used for 
planning, installation, and tuning purposes. It is 
intended for network planners, system programmers, 
and IBM service personnel. 

Console Automation Using NetView: Planning 
(SC31-6058) describes an approach to automate the 
way a system handles messages and responses to 
alerts. It includes information you should know before 
beginning such automation, as well as sample plans 
and proposals you might find useful in promoting your 
automation concept. This book includes planning infor
mation for MVS, VM, and VSE users of the NetView 
program. 

NetView fPC Publications 

NetView/PC Planning, Installation, and Customization 
(SC31-6002) provides planning, installation, and 
customization information on NetView/PC and explains 
the communication requirements upstream to the host 
and downstream to supported devices. Information 
relating to the required PC environment and host pro
ducts that support NetView/PC is also provided. It also 
discusses topics that are of general interest when you 
are ordering your equipment. 

NetView/PC Application Program 
Interface/Communications Services Reference 
(SC31-6004) is a reference for 05/2 prograrr.mers who 
use the APIICS and for system programmers who write 
command processors to run under NetView. The APIICS 

provides a means for vendor and other external appli
cations to use the communication services of 
NetView/PC. 

NetView/PC Operation (SC31-6003) describes how to 
operate the program and diagnose problems in 
NetView/PC. 

NetView/PC Quick Reference (SX75-0016) describes all 
of the functions of the F-keys throughout the 
NetView/PC program. 

Other Network Program 
Products Publications 

For more information about the books listed in this 
section, see Bibliography and Master Index for 
NetView, NCP, and VTAM. 

2 When available. 

338 NetView Customization: Using PLI and C 

Network Program Products General Information 
(GC30-3350) 

Network Program Products Planning (SC30-3351) 

Network Program Products Samples (S030-3352) 

Bibliography and Master Index for NetView, NCP, and 
VTAM (GC31-6081)2 

VT AM Publications 

The following list shows the books for VTAM V3A2. For 
information about the books for VTAM V3A1. V3R1.1. or 
V3R1.2. see any VTAM V3A2 book or the Network Program 
Products Bibliography and Master Index. 

VTAM Installation and Resource Definition (SC23-0111) 

VTAM Customization (LY30-5614) 

VTAM Directory of Programming Interfaces for Cus
tomers (GC31-6403) 

VT AM Operation (SC23-0113) 

VTAM Messages and Codes (SC23-0114) 

VTAM Programming (SC23-0115) 

VTAM Programming for LU 6.2 (SC30-3400) 

VTAM Diagnosis Guide (L Y30-5601) 

VTAM Data Areas for MVS (L Y30-5592) 

VTAM Data Areas for VM (L Y30-5593) 

VTAM Data Areas for VSE (L Y30-5594) 

VTAM Reference Summary (L Y30-5600) 

NCP, SSP, and EP Publications 

The following list shows the related books for NCP V4 

and NCP VS. 

NCP, SSP, and EP Generation and Loading Guide 
(SC30-3348) 

NCP, SSP, and Related Products Directory of Program
ming Interfaces for Customers (GC31-6202) 

NCP Migration Guide (SC30-3252 for NCP V4 and 
SC30-3440 for NCP V5) 



NCP, SSP, and EP Resource Definition Guide 
(SC30-3349 for NCP V4 and SC30-3447 for NCP V5) 

NCP, SSP, and EP Resource Definition Reference 
. (SC30-3254 for NCP V4 and SC30-3448 for NCP V5) 

NCP and EP Reference Summary and Data Areas 
(L Y30-5570 for NCP V4 and L Y30-5603 for NCP V5) 

NCP Customization Guide (L Y30-5571 for NCP V4 
LY30-5606 for NCP V5) 

NCP Customization Reference (LY30-5612 for NCP V4 
and LY30-5607 for NCP V5) 

SSP Customization (LY43-0021) 

NCP, SSP, and EP Messages and Codes (SC30-3169) 

NCP, SSP, and EP Diagnosis Guide (L Y30-5591) 

NCP and EP Reference (LY30-5569 for NCP V4 and 
L Y30-5605 for NCP V5) 

Related Publications 

PLII Programming Guide (SC26-4307) 

PLII Programming: Language Reference (SC26-4308) 

PLII Programming: Messages and Codes (SC26-4311) 

C/S70 User's Guide (SC09-1264) 

SAA: Common Programming Interface C Reference 
(SC26-4353) 

KnowledgeTool Application Development Guide 
(SH20-9262) 

Bibliography 339 



340 NetView Customization: Using PLI and C 



Index 

A 
AAUTSKLP 17 
accept QUEUEd input 28, 92 
adbuf parameter 191 
ADDR function 30,31 
addressing mode 163 
adfunc parameter 190 
adindex parameter 191 
adorigin 33 
adorigin parameter 96, 191 
adqueue parameter 191 
ALLOCATE command 6,34,102 
altering data 60, 139 
argc parameter 91 
argv parameter 91 
assembler 12 
asterisk (*) 

uses of 184 
asynchronous command execution 4 
authorized receiver 235 

B 
before logoff 16 
BNJDSERV 17 
BNJMISC data set 218 
BNJPALEX 11 
BNJPNL 1 data set 218 
BNJPNL2 data set 218 
BSAM data base 16 
BSAM empty file 11,16 
BSAM I/O 16 
BSAM open failure 16 
BSAM output 11, 16 
buffer 97,171 

c 
C commands and service routines 

examples of 107 
altering data 139 
CNMI 145 
command list variable access 125 
data queue management 114 
data set access 143 
OSIEX03 user exit 155 
DST user exit 153 
message processing 134 
operator input 130 
retrieving information 123 
scope checking 136 
sending commands 118 
sending information 115 
storage access 141 

C commands and service routines (continued) 
examples of (continued) 

synchronous commands 117 
using locks 127 
varying length character strings 110 
VIEW 132 
VSAM (keyed file access) 150 
wait for data 157 
waiting and trapping 120 

C compile 163 
C control blocks and include files 102 

OSIC 279 
OSICCALL 288 
OSICCNM 292 
OSICCONS 280 
DSICHLB 285 
OSICORIG 287 
OSICVARC 284 

C I/O considerations 102 
C module, coding 

interfaces 91 
restrictions 91 

C run-time considerations 104 
C run-time options 92 
C sample template 107 
C samples 

descriptions 
CACTLU (CNMS4248) 298 
CCNMI (CNMS4244) 298 
CDOVSAM (CNMS4253) 299 
CEXIT2A (CNMS4243) 297, 300 
CEXIT3 (CNMS4240) 297 
CFLVIEW (CNMS4247) 298 
CKEYIO (CNMS4245) 298 
CPRIME (CNMS4254) 299 
CSCOPCK (CNMS4246) 298, 304 
CSEQLOG (CNMS4249) 299, 309 
CSNDDAT (CNMS4241) 297 
CSNDDST (CNMS4252) 299 
CTMPPL T (CNMS4201) 297 
CWATOAT (CNMS4242) 297 
CXITDI (CNMS4250) 299 
CXITVN (CNMS4251) 299 

example of 
DSIEX02A 300 
scope checking 304 
sequential logging 309 

table of 296 
CACTLU 298 
CANCEL 212 
CCNMI 298 
CDOVSAM 299 
CEXIT2A 297, 300 

Index 341 



CEXIT3 297 
CFlVIEW 298 
character 230 
character string 230 
CKEYIO 298 
close capability 64, 143 
Cmdbuf 10, 15, 27, 91 
CMDMDl 164 
CMDMDl statement 36,77,103 
cmdstr parameter 195 
cndata parameter 199 
cndest parameter 199 
cnfunc parameter 199 
CNM 17 
CNM data 17 
CNM interface 11 
CNM interface input 17 
CNM interface output 18 
CNMAlTD 10 
CNMAl TD service routine 190 
CNMAlTD (CNMAlTDATA) service routine 190 
CNMAl TDATA 60,139 
CNMCEll 226 
CNMCEll service routine 193 
CNMCEll (CNMSTRCEll) service routine 193 
CNMCMD 36,46,48,53,117,120,130 
CNMCMD service routine 9, 195 
CNMCMD (CNMCOMMAND) service routine 195 
CNMCNMI 66,99, 101, 145, 175, 176, 199 
CNMCNMI service routine 9,65,114,199 
CNMCNMI (CNMI) 199 
CNMCOPYSTR 62, 141 
CNMCPYS service routine 201 
CNMCPYS (CNMCOPYSTR) 201 
CNMCSSIR 11 
CNMGETA 56, 134 
CNMGETA service routine 203 
CNMGETA (CNMGETA ITR) service routine 203 
CNMGETD 48,53,56,66, 120, 130, 134, 145, 184, 187, 

199, 235 
CNMGETD service routine 65, 206 
CNMGETD (CNMGETDATA) service routine 206 
CNMGETDATA 60, 139 
CNMI 65,145 
CNMI solicited data queue 40,114,207 
CNMI solicited data queue (CNMIO) 65, 199, 200 
CNMINFC 50, 123 
CNMINFC service routine 209 
CNMINFC (CNMINFOC) service routine 209 
CNMINFI 50, 123 
CNMINFI service routine 211 
CNMINFI (CNMINFOI) 211 
CNMINFOC 60,72, 139, 155 
CNMIO 40, 66, 114, 145, 207 
CNMKIO 18,69,99,101,176 
CNMKIO routine service 19 
CNMKIO service routine 9,69,150,151,213 

342 NetView Customization: Using Pli and C 

CNMKIO (CNMKEYIO) service routine 213 
CNMlK 52, 127 
CNMlK routine 35, 103 
CNMlK service routine 216 
CNMlK (CNMlOCK) service routine 216 
CNMMEMC 64, 143 
CNMMEMC service routine 222 
CNMMEMC (CNMClOSMEM) 222 
CNMMEMO 64, 143 
CNMMEMO service routine 218 
CNMMEMO (CNMOPENMEM) 218 
CNMMEMR 64, 143 
CNMMEMR service routine 220 
CNMMEMR (CNMREADMEM) service routine 220 
Cnmnams 223 
CNMNAMS service routine 223 
CNMNAMS (CNMNAMESTR) 223 
Cnmnvlc 97 
Cnmnvlc (converting string to varying length character 

string using length) 101 
CNMPNl1 data set 218 
CNMPOOl 193 
CNMPOOl service routine 226 
CNMPOOl (CNMSTRPOOl) 226 
CNMSCAN 44, 58 
CNMSCAN service routine 229 
CNMSCAN (CNMSSCAN) service routine 229 
CNMSCOP 58 
Cnmscop service routine 232 
CNMSCOP (CNMSCOPECK) service routine 232 
CNMSCOPECK service routine 232 
CNMSMSG 10,15,19,35,40,41,47,69,103,110,114, 

115,118,150,186,207,209 
CNMSMSG service routine 36, 234 
CNMSMSG (CNMSENDMSG) service routine 234 
CNMSSCAN 42 
CNMSSCAN service routine 229 
CNMS4200 265 
CNMS4201 297 
CNMS4210 265 
CNMS4211 265 
CNMS4212 265 
CNMS4213 266,269 
CNMS4214 266 
CNMS4215 266 
CNMS4216 266,272 
CNMS4217 267 
CNMS4218 267 
CNMS4219 267,276 
CNMS4220 267 
CNMS4221 267 
CNMS4222 267 
CNMS4223 267 
CNMS4224 268 
CNMS4240 297 
CNMS4241 297 
CNMS4242 297 



CNMS4243 297,300 
CNMS4244 298 
CNMS4245 298 
CNMS4246 298,304 
CNMS4247 298 
CNMS4248 298 
CNMS4249 299, 309 
CNMS4250 299 
CNMS4251 299 
CNMS4252 299 
CNMS4253 299 
CNMS4254 299 
CNMVARPOOL 55,72,133,155 
CNMVARS 51,52,125,127 
CNMVARS service routine 238 
CNMVARS (CNMVARPOOL) service routine 238 
Cnmvlc 97 
Cnmvlc (converting string to varying length character 

string) 99 
CNM9871 170 
CNM9881 170 
cntimout parameter 199 
CNVTOHEX 99, 101 
coding template 37,107 
command 46, 117, 232 
command abbreviations 14 
command list variable access 5,51, 125 
command lists 77 
command processor 212 
command processors 164 
common global 52,127,238,239 
common global pool 240 
common global variables 51,125 
Communications Network Management Interface 

(CNMI) 65 
completion code 36,104 
composite return codes 

examples of 174-176 
console number 203 
control line message 234 
convert parameter 99, 101 
converting input string to hex 99 
CPRIME 299 
CPU time 210 
cross-domain command 11 
cross-domain command send 14 
CSCOPCK 298, 304 
CSEOLOG 299, 309 
csfrom parameter 201 
cslen parameter 201 
CSNOOAT 297 
CSNOOST 299 
csto parameter 201 
cstype parameter 201 
CTMPPLT 297 
current date 209 
cvdata parameter 238 

cvdatlen parameter 238 
cvfunc parameter 238 
cvname parameter 239 
cvpool parameter 239 
CWATOAT 297 
CXITOI 299 
CXITVN 299 

D 
data 40,186 
data definition name (ddname) 102 
data definition (00) statement 34, 102 
data line message 234 
data queue 40, 114,207 
data queue management 40, 114 
data queue (OATAO) 235 
data queues 114 
data services command processor 18 
data services task (OST) initialization 18 
data services tasks (DST) , 47,118 
data set access 64, 143 
DATAQ 40,114,207 
debug 167 
debugging a C program 104 

, debugging a PUI program 35 
decimal value 230 
deleting messages 10 
Deliver RU 17 
descriptor codes 203 
DISPLAY command 36 
domain 204 
domain 10 209 
domainid 183 
domainid.token 184 
DSIC 96, 97, 102, 279 
DSICCALL 102, 104,288 
DSICCNM 102, 104, 174,292 
DSICCONS 96,99,101,102,212,280 
DSICES macro 198, 233 
DSICHLB 102, 285 
DSICLO data set 218 
DSICMD 36,57,77,103, 136, 164, 195,232,233,263, 

295 
DSICORIG 96,102,191,207,287 
DSICRTR 17 
DSICVARC 97,102,284 
DSIDKS macro 221,222 
DSIEXC 163 
DSIEXKT 81 
DSIEXPLI 87 
DSIEX01 11 
DSIEX01 user exit 12 
DSIEX02A 10, 11, 13, 14, 15,40,60, 114 ., 
DSIEX02A uer exit 139 
DSIEX02A user exit 12,191,207,236 
DSIEX03 11, 14,72 

Index 343 



DSIEX03 user exit 12, 155 
DSIEX04 10, 11 
DSIEX04 user exit 13,236 
DSIEX05 11 
DSIEX05 user exit 13 
DSIEX06 11 
DSIEX06 user exit 14 
DSIEX07 11 
DSIEX07 user exit 14 
DSIEX09 10, 11 
DSIEX09 user exit 14,236 
DSIEX10 11 
DSIEX10 user exit 14 
DSIEX11 11 
DSIEX11 user exit 15 
DSIEX12 11 
DSIEX12 user exit 15 
DSIEX13 11 
DSIEX13 user exit 15 
DSIEX14 11 
DSIEX14 user exit 16 
DSIEX16 11 
DSIEX16 user exit 16 
DSIGDS 9,17 
DSIGET macro 179, 192, 194, 197, 198, 200, 215, 217, 

219,225,228,233,237 
DSIHSTUB 81, 87, 163 
DSILCS macro 198 
DSILOG task 19 
DSILOGDS 19 
DSIMQS macro 15, 179,237 
DSIMSG data set 218 
DSIMVT 211 
DSIOPF 57, 136 
DSIPARM 57,64,77, 136, 143 
DSIPARM data set 218 
DSIPCNM 34, 36, 174,260 
DSIPCONS 33, 34, 212, 246 
DSIPHLB 34, 250 
DSIPHLLS 34, 253 
DSIPlI 33,34,245 
DSIPORIG 33,34,191,207,252 
DSIPRF 57, 136 
DSIPRF data set 218 
DSIPUSH macro 225 
DSITIB 212 
DSITRACE task 19 
DSITVB 211,212 
Dsivarch 97,110 
Dsivarch (varying length character string) 94 
DSIVTAM data set 218 
DSIWCS 14 
DSIZCSMS macro 176, 200 
DSIZVSMS macro 215 
DS10281· 184, 185 
DSI6041 184, 185 
DST 16,17,18,36,69,103,150,199,200,212 

344 NetView Customization: Using PlI and C 

DST initialization 11 
DST user exit 71,153 
DST user exit routine 

concatenated 9 
concatenated DST user exit routines 10 
XITBN 16 
XITBO 16 
XITCI 17 
XITCO 18 
XITDI 18 
XITVI 18 
XITVN 19 
XITVO 19 
XITXL 19 

DST user exit routines 9 
dynamic file allocation/deallocation 6 

E 
ELBLENG 20 
ELBLOG 20 
ELBRLENG 20 
ELBTYPE 20 
empty data set 16, 19 
end of multi-line message 234 
end of string character (\O) 97 
end-of-file 18 
event 186 
EWCCMDSO 

See STDERR 
EWCCSINO 

See STDIN 
EWCCSOUO 

See STDOUT 
EXCMD command 236 
external log 235 
external logging 11, 19 
external trace log 13 
EXTLOG parameter 19 

F 
file 110 capability 34, 102 
FILE option 35 
first failure data capture trace (FFDCT) 8 
flushed 206 
FLUSHQ 184, 187 
fopen 102 
format specifications 99 
format-string parameter 99 
Forward RU 18 
FREE comm~nd 6, 34, 102 
full-screen input/output 5 

G 
gadata parameter 204 



gadatlen parameter 204 
ganame parameter 203 
gaqueue parameter 204 
gdbuf parameter 206 
gdbuflen parameter 207 
gdfunc parameter 206 
gdindex parameter 208 
gdorigin 33 
gdorigin parameter 96, 207 
gdqueue parameter 207 
GET statement 35 
getchar routine 103 
GETDATA function 40,114 
global user exit routines 9 

DSIEX01 12 
DSIEX02A '12 
DSIEX03 12 
DSIEX04 13 
DSIEX05 13 
DSIEX06 14 
DSIEX07 14 
DSIEX09 14 
DSIEX10 14 
DSIEX11 15 
DSIEX12 15 
DSIEX13 15 
DSIEX14 16 
DSIEX16 16 

GO command 4,40,53, 114, 130, 177, 207 

H 
HAPIENTR 171 
HAPIEXIT 171 
hardcopy device name (function) 15 
hardcopy log 13,209 
HDRMTYPE field 195 
HDRTYPEX cross-domain 11 
HDRTYPEX message 12 
HEAP size 29, 92 
HEAPSIZ 28,171 
hex conversion 101 
hexadecimal value 231 
HLB control block 36, 104 
HLBLENG 204,207,210,213,220,239 
HLBPRT 171 
HLBPTR 27,91 
HLBRC 10, 174 
HLBRC field 36, 104 
HLL C constants 280 
HLL C mapping of DSIHLB 285 
HLL C return codes 292 
HLL C service routine definitions 288 
HLL C varying length character strings 284 
HLL command processors 

considerations for 36, 103 
created with KnowledgeTool 77 

HLL commands 
GO 177 
overview of 177 
QUEUE 179 
RESET 180 
TRAP 183 
WAIT 186 
WAIT CONTINUE 187 

HLL PUI constants 246 
HLL PUI mapping of DSIHLB 250 
HLL PUI origin block mapping 252,287 
HLL PUI return codes 260 
HLL procedure invoking 46,117 
HLL programs written in C 

restrictions 104 
HLL programs written in PLII 

restrictions 36 
HLL run-time options 27, 91 
HLL service routines 

CNMALTD (CNMALTDATA) 190 
CNMCELL (CNMSTRCELL) 193 
CNMCMD (CNMCOMMAND) 195 
CNMCNMI (CNMI) 199 
CNMCPYS (CNMCOPYSTR) 201 
CNMGETA (CNMGETA TTR) 203 
CNMGETD(CNMGETDAT~ 206 
CNMINFC (CNMINFOC) 209 
CNMINFI (CNMINFOI) 211 
CNMKIO (CNMKEYIO) 213 
CNMLK (CNMLOCK) 216 
CNMMEMC (CNMCLOSMEM) 222 
CNMMEMO (CNMOPENMEM) 218 
CNMMEMR (CNMREADMEM) 220 
CNMNAMS (CNMNAMESTR) 223 
CNMPOOL (CNMSTRPOOL) 226 
CNMSCAN (CNMSSCAN) 229 
CNMSCOP (CNMSCOPECK) 232 
CNMSMSG(CNMSENDMSG) 234 
CNMVARS~NMVARPOOW 238 
overview of 190 

HLL user exit routines 
HLLOPTS 179 
HLLOPTS variable 92 
HLL_NO_CANCEL field 28,92 
HLL_QUEUED-,NPUT 179 
HLL_QUEUED-,NPUT field 28,92 

icdata parameter 210 
icdatlen parameter 210 
icname parameter 209 
IDATAQ 40,60,114,139,207 
IFRCODUS 15 
iiname parameter 211 
iinumb parameter 212 
immediate command 36, 103 

Index 345 



immediate commands 195 
initial command 12 
initial data queue 40, 114, 191,203,207 
initial data queue (IDATAQ) 204 
initial parameters 27, 91 
input before command processing 12 
input from the operator 12 
input from the system console 14 
integer variables in C, using 95 
integer variables in PLlI, using 32 
internal function request (IFR) 15 
IRB exit environment 10 
ISA size 29, 92 
ISAINC run-time option 92 
ISASIZ 28, 171 
ISASIZE run-time option 92 
istring parameter 99, 101 

K 
Kanjii 12 
key-sequenced data set (KSDS) 19 
key-sequenced VSAM files 213 
keyword 232 
knowledge applications 

developing 81 
sample 77 
within NetView 77 

knowledge routines 
See system extensions 

KnowledgeTool 
commands 

KTCOMP 77 
KTLlNK 77 
KTRUN 77 

debugger 81 
sample 78 
within NetView 

See knowledge applications 
KTCOMP command 77 
KTLlNK 81 
KTLlNK command 77 
KTRUN command 77 

L 
label line message 234 
line mode output 4 
link-edit JCL 163 
Ikfunc parameter 216 
Ikname parameter 216 
Ikoption parameter 216 
Ikscope parameter 216 
local pool 

of calling command procedure or HLL user exit 
routine 239 

of current HLL command processor or user exit 
routine 239 

346 NetView Customization: USing PLI and C 

lock management 7 
log output 11, 13 
logical unit name 209 
logoff 11 
LOGOFF command 16 
LOGOFF routine 211 
logon validation 11,15 
long running cC1rnmand 195 
LOSTERM exit 16 

M 
macro library 163 
main HLL C include file 279 
main HLL PLII include file 245 
major vector 17 
MAPCL command 77 
mctoken parameter 222 
member name 218 
message 

automation 5, 12, 13, 14, 15,207 
logging 7 
multi-line 4, 5 
translated 12 
trapping 5 

message automation 40,56,77,114,134,191 
message identifier 204 
message output 11 
message processing 56, 134 
message queue (TRAPQ) 183 
message queues 40, 114 
message receiver 11 
message text 204 
messages 186 
moddname parameter 218 
momemnam parameter 218 
motoken parameter 218 
mrdata parameter 220 
mrdatlen parameter 220 
mrtoken parameter 220 
multi-line messages 206 
multi-line write-to-operator (MLWTO) line type 204 
multiple line messages 56, 134 
MVS console 12 
MVS console operator task 15 
MVS JOB name 203 
MVS JOB number 203 
MVS system 204 
MVS system log 13 
MVTCLOSE 211 
MVTUFLD 211 

N 
named storag_e 7 
negative response 199 
NetView command list language 42, 239 



NetView command list language variables 
&HDRMTYPE 204 
&LlNETYPE 204 
&MSGID 204 
&MSGORIGIN 204 
&MSGSTR 204 

NetView data sets 64, 143 
NetView domain ID 209 
NetView message type 204 
NetView start time 209 
NetView version and release 209 
network log 13,235 
new passwOrd (function) 15 
NMVT 17,66,145 
NNT 11,14,15' 
NOHEXCNV 99, 101 
non-cancellable 28, 92 
NORENT variable 92 
NOSPIE option 29, 35, 104 
NOSPIE run-time option 92 
NOSTAE option 29,35, 104 
NOSTAE run-time option 92 
notational conventions 

braces 173 
brackets 173 
lowercase 173 
OR sign I 173 
underscored 173 
uppercase 173 

nsclass parameter 223 
nsfunc parameter 223 
nsleng parameter 223 
nsname parameter 223 
nsptr parameter 223 
null character (\0) 96 
null terminator 99, 101 

o 
ON CYCLE blocks 77 
ON ENTRY blocks 77, 78 
ON FIXEDOVERFLOW 36 
ON IDLE blocks 77, 78 
ON IDLE ENTRY 78 
ON OVERFLOW 36 
ON UNDEFINEDFILE statement 34 
ON UNDERFLOW 36 
ON ZERODIVIDE 36 
ON-UNIT statement 35 
open capability 64, 143 
operating system 209 
operatorlD 209,232 
operator ID name (function) 15 
operator input 53,130,186,187,211 
operator input queue (OPERO) 179 
operator LU name (function) 15 
operator station tasks (OST) 47,118 

operator terminal 209 
operators in group 235 
OPERa 40,114,207 
OPINPUT 53, 130, 177, 186 
ORIGBLCK 27,91,171 
origin block 33,96, 191,207 
origin block (ORIGBLCK) 33, 96 
OST 11,15 
OST/NNT message receiver 15 
output to the operator 12 
output to the system console 14 

p 
P indicator 187 
PACTLU 267 
pafield1 , ... ,pafield10 parameter 229 
panumfld parameter 229 
parameters passed to HLL service routines (HLL 

service routine parameters) 
fixed length character strings 33, 96 
integer variables 32, 95 
pointer variables 30, 93 
varying length character strings 33, 97 

parsing character strings 7 
parsing input strings 

like NetView command list language 42 
like REXX 43 
PUI 44 

password (function) 15 
pastring parameter 229 
pattern parameter 229 
PAUSE 177 
pcfunc parameter 193 
PCNMI 266 
pcstrptr parameter 193 
pctoken parameter 193 
PDOVSAM 267 
performance 16 
period of time 186 
PEXIT2A 266, 269 
PEXIT3 265 
PFLVIEW 267 
PKEYIO 266 
PLiOPTS 28, 171 
PLiRETC 36 
PLlRETV 36 
PUI commands and service routines 

examples of 
altering data 60 
CNMI 65 
command list variable access 51 
data queue management 40 
data set access 64 
DSIEX03 user exit 72 
DST user exit 71 
message processing 56 
operator input 53 
parsing input strings 42-45 

Index 347 



PUI commands and service routines (continued) 
examples of (continued) 

retrieving information 50 
scope checki ng 57 
sending commands 47 
sending information 41 
storage access 62 
synchronous commands 46 
using locks 52 
VIEW 54 
VSAM (keyed file access) 69 
wait for data 73 
waiting and trapping 48 

PUI control blocks and include files 34 
DSIPCNM 260 
DSIPCONS 246 
DSIPHLB 250 
DSIPHLLS 253 
DSIPLI 245 
DSIPORIG 252 

PUI definitions for HLL service routines 253 
PUI error conditions 35 
PUI I/O considerations 34 
PUI module, coding 

interfaces 27 
restrictions 27 

PUI run-time considerations 35 
PUI run-time options 28 
PUI sample template 37 
PUI samples 

descriptions 
PACTLU (CNMS4218) 267 
PCNMI (CNMS4214) 266 
PDOVSAM (CNMS4223) 267 
PEXIT2A (CNMS4213) 266,269 
PEXIT3 (CNMS4210) 265 
PFLVIEW (CNMS4217) 267 
PKEYIO (CNMS4215) 266 
PPRIME (CNMS4224) 268 
PSCOPCK (CNMS4216) 266,272 
PSEQLOG (CNMS4219) 267,276 
PSNDDAT (CNMS4211) 265 
PSNDDST (CNMS4222) 267 
PTMPPL T (CNMS4200) 265 
PWATDAT (CNMS4212) 265 
PXITDI (CNMS4220) 267 
PXITVN (CNMS4221) 267 

example of 
DSIEX02A 269 
scope checking 272 
sequential logging 276 

how to access 263 
table of 264 

POI 13, 15 
pOinter variables in C, using 94 
pointer variables in PUI, using 31 
post-message automation table exit 16 

348 NetView Customization: Using PLI and C 

PPRIME 268 
PPT 11,235 
pragma 92 
primary POI task (PPT) 47,118 
printf function 99 
process 10 209 
profile name (function) 15 
PSCOPCK 266, 272 
PSEQLOG 267,276 
pseudo-synchronously 4 
PSNDDAT 265 
PSNDDST 267 
PTMPPLT 265 
PU name 199 
PUT statement 35 
putchar routine 103 
PWATDAT 265 
PXITDI 267 
PXITVN 267 

Q 
QUEUE command 40,114,179,207 
queue of messages 184 

R 
read capabi I ity 64, 143 
RECFMS 17 
RECMS 17 
reentrant 163 
regular command 12 
remote interactive debugger (RID) 8, 28, 157 
replacing messages 10 
reply identifier 203 
reply RU 199 
REPORT option 92 
RESET 212 
RESET command 180 
RETCODE 171 
retrieving information 50, 123 
return code field (HLBRC) 36, 104 
return codes 10, 36, 104 
REXX 239 
RH header 199 
RID 8,171 
RID command 167, 169 

options 
CONTINUE 168 
END 168 
MODNAME 168 
OPTION 168 
RUN 168 
STEP 167 

RID scenarios 169 
RID, using -167 
ROUTE-INOP 17 



RU 17,18 
RULE 78 
rules 77 
run-time libraries 164 

S 
sccmd parameter 232 
sckwd parameter 232 
scope checking 7, 57, 136 
scope class 57,136 
scvalue parameter 232 
see =' 174, 175 

SEND side 75, 160 
sending commands 47, 118 
sending information 41, 115 
sending messages 41,115 
sequential log 235 
serial number of the screen update 212 
serialize access 216 
signal function 104 
simulated terminal input 12 
single line message 234 
smdestid parameter 235 
smdestyp parameter 235 
smmsgtyp 186, 209 
smmsgtyp parameter 234 
smtext parameter 234 
solicited VTAM messages 14 
span checki ng 13 
spclass parameter 226 
spfunc parameter 226 
SPIE option 35, 104 
spleng parameter 226 
spname parameter 226 
sppricnt parameter 226 
spseccnt parameter 226 
sptoken parameter 226 
SSCANF 44 
ST AE option 35, 104 
standard error device 

See STDERR 
standard input device 

See STDIN 
standard output device 

See STDOUT 
STCK instruction 209,210 
STDERR 81,104 
STDIN 81,103 
STDOUT 81,103 
storage access 62, 141 
storage cell 227 
storage copying 6 
storage overlay 204,207,210,220,239 
storage pool 6,227 

allocate 226 
free 226 
locate 226 

string 231 
synchronous command execution 3 
synchronous commands 46,117 
synonyms 14 
SYSCONID 203 
SYSIN 35 
SYSPRINT 35 
SYSPRINT file 35 
system ABEND 213 35,103 
system console 11, 235 
system extensions 

See also STDlN, STDOUT, STDERR 
example of 

standard error system extension 85 
standard input system extension 82 
standard output system extension 84 

system message flags 203 
system message type 203 
system routing code 203 
SYS1.LlNKLIB 163 
SYS1.MACLIB 163 
SYS1.NVULIB 163 

T 
TAF session ID 203 
task global 238, 239 
task global pool 240 
task global variable 72,155 
task globals 51, 125 
task name 210 
terminating 211 
TIBSCRSN control block 212 
token 183,193,218,220 
TRAP 48,120 
TRAP command 40,114,183,186,207 
TRAP NO MESSAGES 184 
TRAPQ 40,114,184,207 
TVBABEND 211 
TVBLOGOF 211 
TVBPAUSE 211 
TVBRESET 212 

U 
unattended operator task 15 
unsolicited VT AM messages 15 
user exit 34, 71,72, 102, 153, 155,212 
user exit routine 199, 214 
user exit routines 10 

purpose of 9 
return codes 10 
types 

DST user exit routines 9 
global user exit routines 9 

user exits 164 
USERASIS 10 

Index 349 



USERBINT 212 
USERBOUT 212 
USERCINP 212 
USERCOUT 212 
USERDINT 212 
USERDROP 9, 10 
USERHCL 13 
USERHCLR 13 
USERLOG 13 
USERLOGR 13 
USERSWAP 10 
USERSWAP return code 16, 19 
USERVINT 212 
USERVOUT 212 
USERXLOG 212 
using locks 52, 127 

V 
value 232 
varying length character strings 

Cnmnvlc 112 
Cnmvlc 110 
defining 112 

VIEW command 5 
VIEW command processor 

full-screen capability 54, 132 
VSAM data base 18, 71, 153 
VSAM data set 19 
VSAM empty file 11, 19 
VSAM files 5, 214 
VSAM input 11, 18 
VSAM I/O 9, 18, 19 
VSAM open failure 19 
VSAM output 11, 19 
VSAM (keyed file access) 69, 150 
vsdata parameter 213 
vsdatlen parameter 213 
vsfunc parameter 213 
vskey parameter 214 
vsoption parameter 214 
vstring parameter 99, 101 
VTAM command invocation 11, 13 
VTAM level 210 
VT AM messages 11 
VT AM PPOLOG 15 

w 
W indicator 187 
WAIT 48, 53, 120, 130, 177 
WAIT command 36, 186 
WAIT CONTINUE command 187 
WAIT FOR MESSAGES command 183 
WAIT FOR OPINPUT 35, 103 
WAIT side 73, 157 
waiting and trapping 48, 120 

350 NetView Customization: Using PLI and C 

wildcard character 184 
WTOR command 203 

X 
XITBN 11 
XITBN user exit 16 
XITBO 11 
XITBO user exit 16 
XITCI 11 
XITCI user exit 17 
XITCO 11 
XITCO user exit 18 
XITDI 11 
XITDI user exit 18 
XITVI 11 
XITVI user exit 18 
XITVN 11 
XITVN user exit 19 
XITVO 11 
XITVO user exit 19 
XITXL 11 
XITXL user exit 19 

Numerics 
31-bit addressing mode 12 

Special Characters 
& (address) operator 93, 94 
&HDRMTYPE variable 204 
&LlNETYPE variable 204 
&MSGID variable 204 
&MSGORIGIN variable 204 
&MSGSTR variable 204 
&PARMSTR 42 
&PAUSE function 53,130 



Reader's Comment Form 

NetVlew™ 
Customizatlon: PL/I and C 
Release 3 

Publication No. SC31-6037-0 

This manual is part of a library that serves as a reference source for systems 
analysts, programmers, and operators of IBM systems. You may use this form to 
communicate your comments about this publication, its organization, or subject 
matter, with the understanding that IBM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM Publications are not stocked at the location to which this form 
is addressed. Please direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM 
branch office serving your locality. 

Possible topics for comment are: clarity, accuracy, completeness, organization, 
coding, retrieval, and legibility. 

Comments: 

What is your occupation? 

If you wish a reply, give your name, company, mailing address, and date: 

Thank you for your cooperation. No postage stamp necessary if mailed in the 
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your 
comments or you may mail directly to the address in the Edition Notice on the back 
of the title page.) 



SC31-6037 -0 

Reader's Comment Form 

Fold and tape Please Do Not Staple Fold and tape 

..... , .. , ... , , , , , , , , , . , , , , , , , , , , , , , , , , . , , , , , , , , , , , , , , , , , , , , , , . '" '" , . , . , , , , , . , ..... , 
NO POSTAGE 
NECESSARY 

IF MAILED 
IN THE 

UNITED STATES 

BUSINESS REPLY MAIL 

Fold and tape 

--------- -------- - ---- -- ----~------,-
~ 

FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Dept. E15 
P.O. Box 12195 
Research Triangle Park, N.C. 27709-9990 

Please Do Not Staple Fold and tape 



Reader's Comment Form 

NetVlew™ 
Customlzatlon: PLII and C 
Release 3 

Publication No. SC31-6037-0 

This manual is part of a library that serves as a reference source for systems 
analysts, programmers, and operators of IBM systems. You may use this form to 
communicate your comments about this publication, its organization, or subject 
matter, with the understanding that IBM may use or distribute whatever information 
you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM Publications are not stocked at the location to which this form 
is addressed. Please direct any requests for copies of publications, or for 
assistance in using your IBM system, to your IBM representative or to the IBM 
branch office serving your locality. 

Possible topics for comment are: clarity, accuracy, completeness, organization, 
coding, retrieval, and legibility. 

Comments: 

What is your occupation? 

If you wish a reply, give your name, company, mailing address, and date: 

Thank you for your cooperation. No postage stamp necessary if mailed in the 
U.S.A. (Elsewhere, an IBM office representative will be happy to forward your 
comments or you may mail directly to the address in the Edition Notice on the back 
of the title page.) 



SC31-6037-0 

Reader's Comment Form 

Fold .nd '.pe Please Do Not Staple 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Oep.t. E15 
P.O. Box 12195 
Research Triangle Park, N.C. 27709-9990 

Fold .nd '.pe 

'1' ................ . 
NO POSTAGE 
NeCESSARY 

IF MAILED 
IN THE 

UNfTED' STATES 

••••••••••••••••••••••••••••••••••• ' ••••••••••••••••••••••••••••••••• o· •••••••••• S" •• ~ , ... ,,, • ..- ... 

Fold .nd t.pe Please Do Not Staple Fold.nd .... : 

--------- -------- - ---- -- -----------,-$ 










