o

rl:g——r’. R -
¢

— e RS T

VII. Full Screen Processing, Summary,
and Examples

Learning System/23 BASIC

VII. Full Screen Processing, Summary,
and Examples

]
(I
1

Learning System/23 BASIC

First Edition (January 1981)
Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, IBM products
(machines and programs), programming, or services that are not announced in your country.
Such references or information must not be construed to mean that IBM intends to announce
such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publications
should be made to your IBM representative or the IBM branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. A form for readers’
comments is provided at the back of this publication. If the form has been removed, address your
comments to IBM Corporation, Systems Publications, Department 27T, P.O. Box 1328, Boca
Raton, Florida 33432. IBM may use and distribute any of the information you supply in any
way it believes appropriate without incurring any obligation whatever. You may, of course,
continue to use the information you supply.

©Copyright International Business Machines Corporation 1981

O

VIl. Full screen processing, summary and

examples

Contents

About this bOOKcooiiiiiii iv
Chapter 1. Full screen processingc..cccoeeevieeennn... 1-1
INTrOdUCTION ..ccuiii e 1-1
Displaying or inputting one line of data............................ 1-2
Displaying or inputting several lines of data..................... 1-7
Chapter SUMIMATY . sivisssssveisss casvssoinss sos s 63560 50 ass annsin s cmme 1-13
EXEICISES .ottt 1-14
ANSWETS ..ottt 1-17
Chapter 2. Organizing a program...............cceeevveeennnnnn.. 2-1
o) deTo [¥To) (o] o TP 2-1
Solving @ problem ... 2-2
Going from a flowchart to a programcccceevviiieiinnennnn. 2-8
INPULEING DALA usunsinsssumon spmmmns s punmimssas ssassss sesssossassamisms 2-12
OQutputting Gata: cisississsionmsisevammnesionsinais tesiniminmtian mbnnsasann 2-14
Processing data.........coouuiiiiiiiiiiiii e 2-16
Chapter SUMMArYoeiiiiieiieeeie e 2-20
EXBTCISES i sossusssminsnnismmesmismbnssasssmssnssnssionssns s maasesasans 2-21
ADNSWETS sowsscasssnsnins covmnsssss samss simss s s msassis s 550 i Soawn s 5553 2-23
Chapter 3. Programming examplesc...cceeeeeee. 3-1
INTrOdUCTION ...eiiti e 3-1
EXAMPIE: 1 cunavinsonmsssvvumes smmmmans smmmsss sammss douss o555 57 ooy ssss smems 3-2
EXAMNPIC) 12..c.cuiomnsmunss mnnsass sssimmnnmnnsmpinmannnnsassisstnsinsinnnssonsnmnsas smwe 3-12
EXAMIPIE! B..eovreiniivnensammananes o sosmaramusevssisas saenensasse s sowonssinsonss 3-16
Chapter 4. Example inventory program 4-1
INtrOAUCHION . csenssvamsusssnsssmmamsnssssuinsmamssnsnsssss snasansas swave sa s 4-1
FlowceChart ... 4-2
Program .. 4-6

Full screen processing, summary and examples il

VII. Full screen processing, summary and
examples

About this book

This is the seventh in your series of seven books on
Learning System/23 BASIC. By now, you should be familiar
with the fundamental statements and commands that are
used to program your System/23.

In Chapter 1 of this book, we will show you one more
feature that is available on your System/23. You will learn
how to use full screen processing. Full screen processing
allows you to input data from or output data to specific
areas on the screen

In the remaining chapters of this book, we will review what
you have learned. Chapter 2 is about organizing a program
and solving a problem. It includes flowcharts, which are
diagrams showing the solutinn to a problem.

Chapter 3 contains three example programs. These
programs use the BASIC statements you have studied.
Notes are included to explain the programs.

Chapter 4 contains a flowchart and example program. This
program is an inventory control program. Notes are included
to explain each section of the program.

iv SA34-0127

O

B

Chapter 1. Full screen processing

Introduction

0 Up to this point, you have used only one line of the screen
at a time in your programs. You know how to display data
on the screen and input data from the screen, one line at a

< time.

In this chapter, you will learn how to use the entire screen
. to input or output data. You will learn how to place the
cursor in any position on the screen.

v If you have run any of the IBM supplied application
programs, you have already used full screen processing. The
Customer Support Functions also use full screen processing.

6 Now you will learn how to use it in your programs, too.
Objectives
0 Upon completion of this chapter, you should be able to do

the following:

. Display data in a specific area on the screen by using
the PRINT FIELDS statement.

« Input data from a specific area on the screen by using
the INPUT FIELDS statement.

If you are familiar with these tasks, try the exercises located

at the end of this chapter. If not, read through the chapter
before going on to the exercises.

Full screen processing 11

Full screen processing

Displaying or inputting one line of data

22-1" jonn poE

1-2

By I

1 10

SA34-0127

You already know how to display information on your
screen. Remembering what you have already learned about
PRINT, enter a 2-line program to display your name. Use
line numbers 10 and 20, and don’t forget to enter CLEAR.

Answer:

If your name is John Doe, your answer should look like this:

Now run your program:

Your name should be displayed at the bottom of the screen
on line 23. Your name moves up, and the cursor appears.
Then the words READY INPUT should appear beneath the
cursor.

If you had wanted to display your name on a clear screen,
your answer would have looked like this:

CLEAR
10 PRINT NEWPAGE; "JOHN DOE"
20 END

With either program, your name is always displayed on line
23, because the PRINT statement always causes data to be
displayed there. Then your name moves up, and the cursor
appears.

O

O

01-1|

o 02-1
03-1

04-1
05-1
06-1
07-1

Now we’ll show you how to display your name in a specific
location on the screen. Enter the following program. (Don’t
forget to enter your name in place of John Doe.)

CLEAR

1§ As="5,7,C 18"

20 NAME$="JOHN DOE"
PRINT NEWPAGE

PRINT FIELDS AS$:NAMES
0 END

U W
QS

Remember that what you enter for NAMES$ can not have
more than 18 characters. Now run the program:

RUN

Your name should be displayed on the fifth line of the
screen, starting in column seven. This placement of data on
the screen is called ful/l screen processing.

Full screen processing allows you to use specific areas of
the screen to input or display data. You specify the location
of the data by defining fields. A field is one or more

consecutive positions on the screen.

When defining a field, you specify the line and column of
the first position. In our example,

10 A$="5,7,C 18"
Line Column

This field begins in line 5, column 7 of the screen.

Full screen processing 1-3

Full screen processing

Displaying or inputting one line of data (continued)

1-4

SA34-0127

The fields of the screen in full screen processing are similar
to the fields of a record in a record 1/0 file. They both
describe the location of data.

Line 40 of your program could also look like this:
40 PRINT #0,FIELDS A$:NAME$

Because the #0 is not necessary, we will not include it in
any of the examples in this book.

Let’s look again at the statement that describes the field.

10 A$="5,7,C 18"
A

Character Line Column Typ’e of
variable data

The A$ can be any character variable, including any element
of a character array.

This field begins in line 5, column 7 of the screen.
The data item to be displayed is a character string of up to
18 characters. As with data specifications in a FORM

statement, C specifies a character string.

You can also use N or PIC in a field definition. They have
the same meaning that they have in a FORM statement.

C

N

What field would this statement define?
. 60 FULLS$(1)="11,24,N 7.2"
It defines a field beginning in line 11, column 24. The data

item would be a number with up to seven digits, with two
digits to the right of the decimal point.

Your turn!

Where would the field defined by B$ begin?

80 B$="23,1,C 10"

Answer:
It would begin in line 23, column 1, the same place where
the output from a regular PRINT statement begins.

Let’s see what happens when we input your name from the
field beginning in line 5, column 7. Enter the following:

DEL 20
40 INPUT FIELDS AS$:NAMES

List your new program:

LIST

Now run your program:

RUN

Full screen processing 1-5

o ————————————————————— T e e e —

Full screen processing

Displaying or inputting one line of data (continued)

o1- |
02-1
03- |
04- |
05- | JOHN DOE
06- e =i i
07-1

PRINT NAMES
JOHN DOE

1-6 SA34-0127

The NEWPAGE should clear the screen, and the cursor
should now be positioned at line 5, column 7. Go ahead and
enter your name.

Note: The way you enter data with full screen processing is
different from the way you normally enter data. With full
screen processing, you press either the Field Exit key, the
New Line key, or the Field Advance key after each input
field to get to the next input field. You press the Enter key
after the last input field on the screen.

In this program, you are entering data from only one input
field. Therefore, you can press the Enter key after you type
your name.

Now enter:
PRINT NAME

to see that your name really did get input into the variable
NAME.

Later in this chapter, we will show you how to write a
program that uses more than one input field. Then, you will
need to use both the Field Exit or Field Advance key and
the Enter key.

O‘

-

L YU

Displaying or inputting several lines of data

O

Now let’s look at an example that displays data on more
than one line. Enter the following program. (Enter your
name and address in lines 40-60. Notice that you are
limited to a maximum of 18 characters for each variable.)

ND

The statement in line 110 causes three lines of data to be
displayed. The three fields are defined in the three elements
of the FS$ array.

FIELDS MAT FS$ tells your System/23 to use the elements
of the FS$ array to define the fields for the items being
displayed. N$ uses FS$(1). S$ uses FS$(2). C$ uses FS$(3).

The first item to be displayed uses the first field defined in
the array. The second item uses the second field, etc. If an
array has more elements than the number of items being
displayed, the extra elements are ignored.

If you try to display more data items than the number of
elements defined in the array, you will get an error.

Full screen processing 1-7

Full screen processing
Displaying or inputting several lines of data (continued)

Now run the program: o

RUN

Using our example name and address, the screen should
look like this:

1 10 20 30 40 50 60 70 80

01- ;“ Wi
02-
03-1
04~
05-
06-
07-
08-
09-
10-1
11-
12-1
13-
14~
15-
16-1
17-
18-
19-
20-|
21-
22~
23-
26~

1-8 SA34-0127

®= - -

[

You’ve seen how to display data and how to input data by
using full screen processing. Now let’s look at a program
that does both. Enter the following:

You may have noticed that each of our full screen
processing examples included a PRINT NEWPAGE. Use this
statement to clear the screen before displaying data.
Otherwise, the new data will be mixed up with whatever
was on the screen before.

When a normal PRINT statement is executed, the data is
displayed on line 23. Then lines 2 through 23 are moved up
up into lines 1 through 22, and line 23 is cleared. This
allows the new data to be entered on line 23.

When a PRINT FIELDS statement is executed, data is
displayed on the screen in the specified location, without
moving any data that is currently on the screen.

Therefore, when you write a program that uses both PRINT

and PRINT FIELDS, you may want to use NEWPAGE to
separate non-full screen from full screen processing.

Full screen processing 19

Full screen processing

Displaying or inputting several lines of data (continued)

1-10

SA34-0127

When you run this program, four lines of prompts will be
displayed. Remember that a prompt is a word or words on
the screen that tell you what input is requested.

For example, NAME: __ tells you to enter your name.
STREET:__ tells you to enter your street address.

The cursor appears where the next character will be
displayed. When we tell you to run the program, enter your
responses in the indicated fields.

Remember to press either the Field Exit key, the New Line
key, or the Field Advance key after each input field except
the last. Press the Enter key after the last field.

Before we run the program, let’s look at one more thing.
We have added something to the field definition in line 30.

Position 12345
30 A$(1)="5,10,C 10,U0,N"
N —

This is different 1

The U in the fourth position of the field definition tells the
System /23 to underline the field. The N in the fifth position
returns the screen to normal (no underline) where the field
ends. This N is different from an N in the third position:

A$(1)= "10,12,N 7.2"
The N in the third position indicates a numeric data item.

Remember that N 7.2 has up to seven digits, with two
digits to the right of the decimal point.

Now run the program:

RUN

When you finish entering your address, your screen should
look something like this:

1 10 20 30 40 50 60 70 80

0l1-

19-

Full screen processing 1-11

Full screen processing

Displaying or inputting several lines of data (continued)

112

SA34-0127

Let’'s look at one of the input fields. C
J
90 B$(1)="10,12,C 18,U0,N"

Line Column Type of Underline Normal

data

This field begins in line 10, column 12. It will contain a
character string of up to 18 characters. The U specifies
underline, and the N returns the display to normal.

The first data item entered is NAMES. It is entered from the

first field that is defined, B$(1). STREETS$ uses B$(2), and
CITY$ uses B$(3).

Your turn!

Where does your street address begin on your screen? {
}y

Answer:

It should begin in line 13, column 12.

Other full screen characteristics, in addition to U and N, are
available on your System/23. Refer to “‘Full screen
processing’’ in your Basic Language Reference manual for
more information.

Chapter summary

Full screen processing allows you to display data and input

O data in specific areas of the screen. Data items are
positioned in fields, which you define in your program.
When you define a field, you must include the line and
column in which the field starts. You must also include the
type of data item and any special characteristics.

To display data with full screen processing, you enter
PRINT FIELDS. To input data with full screen processing,
you enter INPUT FIELDS.

To input data with full screen processing, press either the
the Field Exit key after each input field on the screen except
the last. Press the Enter key after the last input field.

Full screen processing 1-13

e

Full screen processing

Exercises

Question 1

What would you enter on line 50 of the following program
to display ENTER OPTION NUMBER beginning in line 4,
column 12?

10 DIM MSG$*19

20 ABC$="4,12,C 19"

30 MSG$="ENTER OPTION NUMBER"
40 PRINT NEWPAGE

60 END

Answer:

Question 2

What would you enter on line 20 of the following program
to display FEBRUARY 1 beginning in line 8, column 6?

10 DATE$="FEBRUARY 1"

30 PRINT NEWPAGE

40 PRINT FIELDS FS$:DATES
50 END

Answer:

1-14 SA34-0127

o

Question 3

Using the numeric variable X, what would you enter on line
30 to be able to input the value 100.05 from line 10,
column 2?

10 FS$="10,2,N 6.2"
20 PRINT NEWPAGE
40 END

Answer:

Question 4

What will be displayed on line 11 of the screen if you run
the following program?

10 OPTION BASE 1

20 DIM B$(2)*8

30 DATA "11,3,C 5","11,9,C 6"
40 READ MAT BS$

50 D1$="DATE:"

60 D2$="JULY 1"

70 PRINT NEWPAGE

80 PRINT FIELDS MAT B$:D1$,D2$
90 END

Answer:

Full screen processing 1-15

Full screen processing

Exercises (continued)

Question 5

Using the character variable DS, what should you enter on (V

4

line 60 to be able to input the value JULY 1 from line 5,
column 8?

10
.20
30
40
50
70

Answer:

1-16 SA34-0127

OPTION BASE 1

DIM B$(2)*7

READ MAT BS$

DATA "5,2,C 5","5,8,C 6"
PRINT FIELDS B$(1):"DATE:"
END

Answers

0 Question 1

50 PRINT FIELDS ABCS$:MSGS

Question 2

20 Fs$="8,6,C 10"

Question 3

30 INPUT FIELDS FS$:X

Question 4

DATE: JULY 1

o Question 5

60 INPUT FIELDS B$(2) :D$

Full screen processing 117
e —————————— et

1-18 SA34-0127

Chapter 2. Organizing a program

Introduction

been solutions to problems. Without the programs, your
System /23 can’t do much more than a pocket calculator
can.

o All of the programs you have written in this course have

In this chapter, you will learn how to use your System/23
and the BASIC language to solve problems. You will see the
importance of breaking problems down into manageable
parts and then organizing those parts in a program to
produce a solution.

One way to organize these parts is to use a flowchart. A
flowchart is a diagram of a solution to a problem. A
flowchart can be a very useful tool, because it helps you
organize your thoughts in a logical fashion.

Once your thoughts are organized, it is then much easier to

O write a program.

Objectives

Upon completion of this chapter, you should be able to do
the following:

« Identify the standard symbols used in a flowchart.
« Draw a flowchart of a solution to a problem.
« Write a program by translating a flowchart.
« Recognize common programming methods.
o If you are familiar with these tasks, try the exercises located

at the end of this chapter. If not, read through the chapter
before going on to the exercises.

Organizing a program 2-1

T —— e e e T

Organizing a program

Solving a problem

You have learned the fundamentals of System/23 BASIC. It
is time now to advance from knowing BASIC to using
BASIC to solve problems. The solution to a problem can be
broken down into three main parts:

« The input, or information required to produce the
results. In the accumulated savings program, the input
included the principal, the interest rate, and the number
of years.

« The processing, or manipulation of data to produce the
results. This can include initializing variables and
performing calculations. Processing turns input into
output. In the accumulated savings program, the
processing was the calculation of A=P*(1+1)**N.

« The output, or results. The primary reason for a
program to exist is the output. In the accumulated
savings program, the output was the amount of
accumulated savings.

Each of these three parts may consist of one or more
statements. And, some short programs may have only one
part, such as the output, in:

10 PRINT "System/23 BASIC"
20 END

In recent years, another form of program organization has
been designed. The chart used is called an “"N-S"’ chart or
a “'star’’ chart, and it was designed by |. Nassi and B.
Schneiderman. For more information, you can refer to
“Flowchart Techniques for Structured Programming’ in
Volume 8 of the Association for Computing Machines,
August 1973.

2-2 SA34-0127

C

o

Processing

Decision
(Yes-No)

Input or
Output

On-page

O
() o

Direction

To organize the parts of a program, we use a flowchart.
Here are the standard flowcharting symbols we will use in
this course. These symbols are common throughout the
computer industry.

This is used to show where a program begins or ends.

This shows a program instruction to manipulate data or
initialize values.

This shows a decision being made. Arrowheads will point in
different directions depending on the results.

This shows data to be input or output. It applies to both the
display and data files.

This shows printed output, such as a report.

These two symbols show a connection between two
separate sections in a flowchart.

This shows direction from one symbol to the next.

Organizing a program 2-3

Organizing a program

Solving a problem (continued)

Flowchart

2-4 SA34-0127

Let's look at a few examples of flowcharts. First, consider
the first program we wrote in this course. It was a short, G
simple program to display THIS IS EASY.

If you had been given this problem, how would you solve it?
The first thing you do when you solve a problem is break
the problem down into manageable parts. In this problem,
you are only concerned with output. You want to display a
message.

Let’s organize the problem in a flowchart. This flowchart is
short and simple. It looks like this:

Program
O
J
10 PRINT "THIS IS EASY" {
i
{
20 END .

Flowchart

R s d

 ——

Some people prefer to draw flowcharts that contain actual
program statements and formulas. This flowchart could also

look like this:

Program

10 PRINT "THIS IS EASY"

20 END

You can use whichever method you prefer: general
instructions or specific statements. Just make sure that you
draw flowcharts that you can understand and use.

This problem was a simple problem with a simple solution.
Most of the problems you will be solving with your
System /23 will not be so simple. Let's look at a more
complicated example.

Organizing a program 2-5

Organizing a program

Solving a problem (continued)

Flowchart

Input the
principal

Input the
number of
years

Calculate
the savings

Display
the results

2-6 SA34-0127

Do you remember the accumulated savings problem? This
problem has input (principal, interest rate, and number of
years). It has output (accumulated amount). And it has
processing (calculation of accumulated amount). What does
the flowchart look like for this problem?

Program

10

10
15

20

20
25

30

30
35

50

60

P=100
(@ha

PRINT
INPUT

I=.08
or

PRINT
INPUT

or
PRINT
INPUT

"ENTER PRINCIPAL"
P

"ENTER INTEREST RATE"
I

"ENTER YEARS"
N

A=P* (1+1) **N

PRINT

END

A

Flowchart

Initialize
a counter

\/
> Read a record
from the file
\/
Display
the data
\/

- Increment
the counter

\/

<>

No
- \/

We have shown two programs for this problem. The only
difference between them is the method used to input your
values. There is no set solution to any problem. You must
use the statements and methods that seem best to you. We
could have written a program that reads a file in two
different ways:

Program
10 OPTION BASE 1
20 DIM NAME$*25,ADDRESS$*65
30 OPEN #1:"NAME=CUST", INTERNAL,OUTIN
40 FOR I=1 TO 2
or
40 I=0
50 READ #1,USING 60:NAME$,ADDRESS$
60 FORM POS 1,C 25,POS 26,C 65
70 PRINT USING 60:NAME$,ADDRESS$
80 NEXT I
or
80 I= I+1
82 IF I<2 THEN GOTO 50
90 END

Organizing a program 2-7

Organizing a program

Going from a flowchart to a program

Display the
Instructions

Enter the
old balance

Enter the
amount of

check, deposit,
etc.

Does the
amount=0?

Adjust the
balance

Display the

new balance

2-8 SA34-0127

Suppose you were asked to write a program to balance a
checkbook. Where would you start? The first thing you
should do is draw a flowchart.

In the first part of your program you should include a
remark that tells what the program does.

Next, you should include instructions for when you run the
program. These instructions should be displayed on the
screen.

The first data item required is the old account balance.

Now you are ready to adjust the balance for any deposits or
withdrawals. Set up a loop to process each transaction.

Display a prompt to enter the amount of each check or
deposit or withdrawal.Branch out of the loop when you
enter O for the amount.

If you enter any amount other than O, add the amount to
the balance.

Display each new balance on the screen, and then ask for
the next transaction.

O

O

CLEAR
. PROGRAM TO BALANCE A CHECKBOOK

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

PRINT
PRINT
PRINT
PRINT
PRINT
INPUT
PRINT
INPUT

IF X=

The hard part is done. You have organized each part of the
program in a flowchart. Now all you have to do is translate
the flowchart into BASIC. One possible solution would be
as follows:

"ENTER DEPOSITS AS POSITIVE NUMBERS"
"ENTER CHECKS, CHARGES, WITHDRAWALS AS NEGATIVE"
"ENTER AN AMOUNT OF 0 TO END THE PROGRAM"

"ENTER OLD ACCOUNT BALANCE"
BALANCE

"ENTER CHECK OR DEPOSIT"

X

0 THEN STOP

BALANCE=BALANCE+X

PRINT
PRINT

GOTO
END

"NEW BALANCE= ";BALANCE

80

Organizing a program 2-9

e e e e e —————

Organizing a program

Going from a flowchart to a program (continued)

D

@

Ye:

2-10

No

SA34-0127

Your turn!

Now we want you to try it. Draw a flowchart for this
problem.

Add the odd numbers from 1 through 15. Display the total.

We will help you with this problem by supplying the
required flowchart symbols. You will also find helpful notes
beside each symbol. Just fill in the instructions in each
symbol.

The standard symbol to show the beginning of a program is

The first number to be added is 1. You should initialize
some variable to 1. Use the variable NUMBER.

To add numbers one at a time, you can use the formula
SUM=SUM+NUMBER.

You want to keep adding until after NUMBER equals 15.
Test the value of NUMBER. If it is less than 15, add 2 to
NUMBER and go back to SUM=SUM+NUMBER.

If NUMBER is greater than 15, stop adding and display the
sum.

The standard symbol to show the end of a program is

C

O

0

\/

Initialize the
number
to be added

—D

Add the number

to the sum

Add 2 to
the number

Going from a flowchart to a program

Here's our solution and a program that performs the
indicated instructions.

General instruction flowchart

10
20
30
40
50
60
70
80

or Specific statement flowchart

REM PROGRAM
ADDS 0DD NO's
\/

NUMBER=1

v

SUM=SUM+
NUMBER

NUMBER=
NUMBER+2

! PROGRAM ADDS ODD NUMBERS 1-15
NUMBER=1

SUM=SUM+NUMBER

IF NUMBER>=15 THEN GOTO 70
NUMBER=NUMBER+2

GOTO 30
PRINT SUM
END

Organizing a program

e e

2-11

Organizing a program

Inputting data

2-12

SA34-0127

You have already seen that one problem can have more
than one solution. How do you decide which programming
method to use in a program? There is no set answer. But
here are some suggestions to keep in mind.

Whenever a program requires input data, you need some
way to get that data into the computer. The most common
methods are:

Make the data a part of the program. You can do this
with LET statements or READ and DATA statements,
like this:

5 DIM M$(12)

10 LET X=10

20 DATA "JANUARY","FEBRUARY","MARCH"
30 READ M$ (1) ,M$(2),M$(3)

Either of these methods can be used when you know
the data values when you are writing your program, and
the values are not changing.

Enter the data from the keyboard as you run the
program. You can do this with INPUT statements, like
this:

100 PRINT "ENTER NAME"

200 INPUT N$%$

300 2$="12,5,C 15"

400 PRINT FIELDS Z$: "ENTER ADDRESS"
500 INPUT FIELDS "13,5,C 18,U,N":A$

This method can be used when the data may change
each time you run the program. Remember to use

prompts on the screen to tell you what input is required.

Read the data from a data file as you run the program.
You can do this with READ statements, like this:

1000 READ #1,USING 50:X,Y,Z
2000 READ #3,REC=4:A$

This method can be used when you have a lot of data,
and when the same data may be required more than
once or by more than one program.

Organizing a program 2-13

e e e e e B

Organizing a program

Outputting data

After a program produces results, you must have some way
to access those results. Your program must produce output
SO you can access those results. Three common methods to
output data are:

. Display the results on the screen. You can do this with
PRINT statements or PRINT FIELDS statements, like
this:

100 PRINT "THE NAME IS ";NAMES$
200 PRINT FIELDS MAT A$:X,Y,Z

This is a good method when you do not need a copy of
the results on paper. The results are lost when the

screen is cleared.

« Print the results with your printer. You can do this with
PRINT #255 statements, like this:

10 PRINT #255:COST,NUMBER, TOTAL
20 PRINT #255:NEWPAGE,HEADING$

This is a good method to use when you want a copy of
the results on paper, such as in a report.

2-14 SA34-0127

« Write the results to a data file. You can do this with
WRITE statements, like this:

10 WRITE #1:A,B,C
20 WRITE #3,USING 50:N$,A$

This is a good method to use when you want to keep
the data and update it later. You cannot see the output.
Instead, it is stored in a file on your diskette. Some
typical uses include customer lists, account balances,
and inventories.

Organizing a program 2-15

Organizing a program

Processing data

2-16

SA34-0127

The processing part of a program is usually the most n
complicated part. It includes statements that initialize (}
counters, perform calculations, test values, and direct N
program control. .
Often you need to perform the same job several times in a
program. This is especially true when you want to produce a :
chart or report. It was also true when we wrote the program
to balance a checkbook. Here are three common methods
to repeat operations in a program:
« Use a function. You can use a function to perform the
same calculation on different variables, like this:
10 DEF FNT(X)=(1+4.06) *X
20 DEF FNM(X)=(1+4+.40) *X
These functions, or similar functions, can be used to (
find the cost of an item plus sales tax, or to find the ‘
value of an item with a percentage markup.
« Use a FOR/NEXT or IF/THEN loop, like this:
10 FOR X=1 TO 90
20 IF LINES <30 THEN GOTO 50
30 PRINT #255:NEWPAGE
40 LINES=0
50 PRINT #255:A(X),P(X)
60 LINES=LINES+1
70 NEXT X =
This example uses a FOR/NEXT loop to print 90 lines
of output. An IF/THEN loop controls paging, allowing .
only 30 lines per page. (\

o « Use a subroutine. You can use a short program section,

like this:

- 10 GOSUB PAGEOUT
20 PRINT A$,A(X)
30 L1=L1+1

700 GOSUB PAGEOUT
710 PRINT B$,B(X)

.

éOOO PAGEOUT: IF L1<30 THEN GOTO 8040
8010 PRINT #255:"PAGE NUMBER ";P1
8020 P1=P1+1

o 8030 L1=1
8040 RETURN

This example controls paging with a simple subroutine. If
you place a subroutine near the end of a program, it is
easier to trace actual calculations in a program listing.

Here's another example of how you can use a subroutine.
The following program reads names and addresses from the
CUST file we created in Book VI. It prints the names and
addresses on labels with pre-printed return addresses.

This program is designed for 3-inch forms. These forms are
designed to be printed with the printer set for six lines per
inch. You can order forms from a computer supply store, or
. you can run the program with plain paper.

o If you want to print these labels, enter this program:

Organizing a program 2-17

Organizing a program

Processing data (continued)

2-18

SA34-0127

CLEAR

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220

OPEN #1:"NAME=CUST", INTERNAL, INPUT
DIM N$*20,55*%20,Cs*20
FORM POS 1,C 20,C 20,C 20
FORM SKIP 8,POS 7,C 20
FORM POS 7,C 20
FORM POS 7,C 20,SKIP 7
PRINT BELL
PAUSE
PRINT #255:HEXS$ ("2B0205000A1042")
FOR X=1 TO 4

READ #1,USING 30:N$,S$,C$ IOERR 190
GOSUB 150

NEXT X

STOP

PRINT #255,USING 40:N1$

PRINT #255,USING 50:S1$

PRINT #255,USING 60:C1$

RETURN

PRINT "ERROR IN DATA FILE"

PRINT "FREE CUST FILE AND"

PRINT "RERUN PROGRAM TO CREATE FILE"

END

Before you run this program, notice the IOERR in line 110.
If your CUST file was incorrectly entered, you will get an
error. If so, free your CUST file and rerun the program that
creates the file. Change the paper in your printer, and then
enter RUN:

RUN

When the asterisks appear on the screen, set the paper in
the printer to top of form, and enter:

GO

O

O

——=—="=— = P.O. Box 1328
= =_—: -_-_—_-_E Boca Raton, FL 33432

ST

First Class
Mail

———=— — P.0O.Box 1328
e e s — Boca Raton, FL 33432

GOLIPr SN

First Class
Mail

Organizing a program 2-19

Organizing a program

Chapter summary

The solution for a problem can be broken down into three
main parts:

« The input, or information required to produce the results

« The processing, or manipulation of data to produce the
results

« The output, or results

The three parts of a program must be organized to form a
solution. A flowchart is a diagram of the solution to a
problem.

The most common methods of entering data are to enter
the data from the keyboard, to make the data a part of the
program, or to read the data from a file.

Processing in a program includes initializing variables,
performing calculations, testing values, and directing
program control. Some common processing methods for
repeating operations include loops, subroutines, and
functions

The most common methods of outputting data are to

display the data on the screen, to print the data with the
printer, or to write the data to a file.

2-20 SA34-0127

o

(\“
i
v

[—

Exercises

Question 1

Match the following flowchart symbols with their meanings.
a. Processing of data
b. Input or output data using display or data file
c. Making a decision
d. The beginning or end of a program

e. Printed output

Question 2

Using three symbols, draw a flowchart for this problem:
Print the letter A with your printer.

Answer:

Organizing a program 2-21

Organizing a program

Exercises (continued)

Question 3

Write a program with line numbers 10 and 20 by using the
flowchart you drew in Question 2.

Answer:

Question 4

Match the following programming statements with their
common uses. Each letter can be used more than once.

—LET a. input data
—INPUT b. output data
—PRINT #255 c. repeat an operation
—FOR and NEXT

—DEF

—READ #5

—IF and THEN

—WRITE #10

2-22 SA34-0127

Answers

Question 1

PW-=0N
®©O Q0 T

Question 2

Organizing a program 2-23

Organizing a program

Answers (continued)

2-24

SA34-0127

Question 3

10 PRINT #255:"A"
20 END

Question 4

LET

INPUT

PRINT #255
FOR and NEXT
DEF

READ #5

IF and THEN
WRITE #10

[Tlalylalololy|w

BN

@

Chapter 3. Programming examples

Introduction

In this chapter we present three example programs. These
programs use all of the information you have studied in this
course. Therefore, you should find them useful for review
and future reference.

We think you will find it useful to enter and run these
programs. Entering these programs on your System/23 and
working with them will give you the practice and experience
all beginning programmers need.

The first program is the easiest. The second program builds
on the first, and the third program builds on the first two
programs and is the most complex. If you enter and run
these programs as they are presented, you will have a good
foundation to build upon in Chapter 4.

Programming examples 31

Programming examples

Example 1

Program example 1 records names and addresses and
stores them in an array. After you enter the last name and
address, a customer information list is printed.

The program uses full screen processing. It displays six
prompts for you to enter data. If you enter and run this
program, the first screen will look like this:

O

32 SA34-0127

name, street address, city, state, and zip code. After you

' You should press the Field Exit key after you enter the
enter the telephone number, press the Enter key.

After you have entered all of your data, press the Enter key
again. Then, you will get a formatted printout of all the data

o stored in the array. Your printout should look something like
this (this copy has been reduced): ‘

Programming examples 3-3
e e .

Programming examples

Example 1 (continued)

SA34-0127

-

) ©

Lines

00010

00020

00030-00050

00060-00080

00090-00110

00120-00190

00200

00210

Description

The first line is a remark. You can change this statement to
any comment that will help you identify the program.

OPTION BASE 1 specifies that the lowest array subscript
allowed is 1. If you leave this line out, the beginning array
subscript is 0.

These lines dimension the arrays for the data items and full
screen processing. Notice that these are all character
arrays.

Line 80 reads the data in lines 60 and 70 into array L$.
These describe the fields used in the full screen processing
to display the prompts.

Array M$ contains the data to describe the input fields.
Array D$ contains the prompts for full screen processing.
Notice that we are using the LET statement to assign values

to this array.

S is used to set the left margin for the printed report. You
may want to change this value.

The numeric variable C will be used to count the number of
customers. Here we initialize it to zero.

Note: This line is not necessary, since System/23 will
automatically initialize variables to zero for you.

Notice that we have used two different methods to assign

values: the LET statement and READ/DATA. These
statements are covered in Books | and Il.

Programming examples 3-5

Programming examples

Example 1 (continued)

36 SA34-0127

) ©

Lines

00220

00230

00240

00250

00260

00270

00280

Description

This remark tells you that this is the part of the program
where you put information into the array.

This line clears the screen. You will want to start with a
clear screen before full screen processing.

This line displays the prompts.

Here we add 1 (one) to the number of customers. This
number is used as the subscript in the data arrays.

This line inputs data from the screen into the data array
elements. Remember that you press the Field Exit key after
each input field to get to the next input field. You press the
Enter key after all of the data has been entered.

This line checks to see if any more data is to be inputted. if
you press the Enter key without entering a name, program
control goes to line 300.

If you enter a name and other data, the data is stored in the
arrays, and program control goes to the next statement, line
280.

This line sends program control back to line 240. There, the
prompts are displayed again, and you are ready for more
input.

You studied the IF-THEN and GOTO statements in Book II.

READ MAT is covered in Book 1V, and you learned about
full screen processing in Chapter 1 of Book VII.

Programming examples 3-7

Programming examples

Example 1 (continued)

38 SA34-0127

) ©

Lines

00290

00300

00310

00320-00330

00340

00350

00360

Description

This remark statement starts the section that prints the
report.

This statement sends control to the OVERFLOW subroutine.
Notice that we are using the label OVERFLOW instead of
the line number 390.

This statement starts a FOR-NEXT loop. The loop prints the
information for the array elements with subscripts of 1 to
C-1. C-1 is the number of elements in each array, because
C is incremented in line 250, before the value of NAMES is
tested in line 270.

These lines print (on the printer) the information in the
arrays. If you do not have a printer, you should leave out
the #255: and change the 17 to a 1 in line 200. Or, you can
run the program by using the RUN DISPLAY command.
Then, the results will be displayed instead of being printed.

This statement keeps track of the number of lines printed
on each page. Every time a line is printed, LINE1 is
incremented by 1.

This statement sends program control to the OVERFLOW
subroutine (line 390), if you print more than 40 lines of

information.

NEXT X causes the loop to execute again, until all of the
information in the arrays is printed.

You learned about FOR-NEXT loops in Book Il. Subroutines
are covered in Book V.

Programming examples 39

Programming examples

Example 1 (continued)

310 SA34-0127

O

Ll S

) ©

) ©

Lines

00370

00380

00390

00400-00450

00460

00470

00480

Description
This line stops the program after the report.

This remark starts the OVERFLOW subroutine. This
subroutine is used to start a new page.

This line skips to a new page on the printer.
These lines print the title and headings at the top of the
page. Notice how we use tabs to leave spaces between the

columns. This makes the report easier to read.

This statement sets the line counter (LINE1) to O. LINE1 is
used to limit the number of lines on a page to 40.

The RETURN statement sends program control back to line
310 or line 360. This RETURN statement marks the end of
the OVERFLOW subroutine.

The END statement tells your System/23 that it has
reached the end of your program.

Programming examples 3-11

Programming examples
Example 2

program example 2 creates a file on diskette and stores the

data in the file. This program is written to use diskette drive

1. If you are using another diskette drive, you will have to o
modify your OPEN statement.

Program example 2 is similar to example 1. However, ° ‘

Because this program performs almost the same functions
as example 1, we will describe only the new lines in
example 2. Again, we have numbered the lines in
increments of 10. Because example 2 has more lines, the
line numbers in this example will not match the line
numbers in example 1 exactly.

As in example 1, the following screen is used for data input.
It looks like this after you input each data item.

312 SA34-0127
T — e

Programming examples 3-13

Programming examples

Example 2 (continued)

3-14 SA34-0127

' 0 Lines Description

00290 This remark statement lets you know that this part of the
4 program creates your data file.

00300 This line opens the file called MASTER on diskette drive 1.
Remember, if you are using drive 3, you will need to enter
MASTER/ /3.

This file is a new, internal file, opened for output only.

00310 This FOR-NEXT loop continues until all of the records are
written to the MASTER file.

’ 00320 This line writes the array elements to the file. Notice that
the subscripts of the array elements are specified by the
variable X, from the FOR statement.

' o 00330 This line tells your System/23 how to write the data to the
file. Notice the repetition factor on the C 20 specification.

00340 This NEXT statement completes the loop in lines 310-340.

00350 This statement closes the MASTER file while you are still
running the program.

You may want to go back to Book VI at this point to review
what you have learned about data files. If not, go on to the
next example.

Programming examples 3-15

Programming examples

Example 3

3-16

SA34-0127

Program example 3 adds more features to examples 1 and
2. It is much longer, and you should enter the lines
carefully.

Examples 1 and 2 allowed you to do certain tasks, but

always in a certain order. Program example 3 allows you to
perform additional tasks, and it lets you change the order to
suit your needs. You can change the order by using a menu.

As in example 2, you will be able to create records and
store them in a data file. You will also be able to update, or
change the records you have created.

Example 3 again allows you to create a file called MASTER.
So, if you want to run this option, you may first have to free
the file you created in example 2.

As with example 2, we will only describe the new lines in
this example. The menu will look like this:

Jdobi MATN MFNU
fMiptions Avajlabie:

Create MASTFR File

i

T Inauive Ttems

X, Frint MASTER File
4. Fond Firoavranm

Enteyr Option No. 2

C

™
{ {
»
]
¥
£ y
B
»
]

) (

' ‘ The INQUIRE screen looks like this:

<
L
¥
v
' ’ On this screen you enter the number corresponding to the
operation you want to perform. For example, if you wanted
to add a new record to the file, you would enter a "*1"" after
OPERATION. If you want to update (2) or delete (3) a
record, you would also need to enter the relative record
number of the record to be changed or deleted.
The screens that allow you to add records or change
records are similar to the screen used in examples 1 and 2.
-
Y

Programming examples 3-17

Programming examples

Example 3 (continued)

3-18 SA34-0127

' ‘ Lines

00060

00130-00190

00200-00250

00260-00320

Description

This line dimensions more arrays for the menu screen in full
screen processing.

Here the data is read into the new arrays for full screen
processing. MAT N$ will display the INQUIRE screen,
including the job name. MAT O%$ is used to input data on
the INQUIRE screen, and MAT K$ is used to display the
menu.

The first two of these lines are prompts. The next four are
displayed on the screen to tell you which job you are
performing.

These lines define the B$ array. Array B$ contains the
prompts for the menu screen.

Note: You can enter all of lines 200—420 without the word

LET. But, the word LET will be inserted when you list the
program.

Programming examples 3-19

Programming examples

Example 3 (continued)

3-20 SA34-0127

) @

Lines

00450

00460

00470

00480

00440

Description
This line displays the menu on the screen.

This is the line where you input the number of the job you
want. You input the job number in the variable G.

This is a computed ON GOSUB, which you learned about in
Book V. The value of G determines which subroutine you
use.

The subroutines return to here. Then program control goes
back to line 440, where the screen is cleared, and you can
enter another job.

This message is displayed before the program stops (line
500). ENDMENU is a label.

Programming examples 3-21

Programming examples

Example 3 (continued)

3-22 SA34-0127

' ‘ Lines Description

00530-00540 These lines display a description of the job being
® performed. This is the subroutine to create the master file.
00550-00650 These lines are just like examples 1 and 2.
.
00660 This is where we return from the CREATE subroutine.
00680 This line opens the file MASTER on drive 1. The file is
opened with OUTIN, which allows both OUTPUT and
INPUT.
L)
This is the start of the INQUIRE subroutine used to check
on a record.
' 00700 The prompts for operation and record number are displayed.
' o 00710 You input the action you want to perform and the record

number, if required.

00720 This is a computed GOTO. The action you want to perform
directs program control to specific line numbers.

Notice the spelling DILETE. Because DELETE is a reserved
system keyword, we can not use DELETE as a label.

00730 You close the file before returning to the MAIN MENU from
the subroutine.

00740 This line sends control back to the menu, at line 480.

Programming examples 3-23
— - s — — e —_———,———————_—_—_—_—_,e—e—,——

Programming examples

Example 3 (continued)

3-24 SA34-0127

’ o Lines
00760-00770

00780-00790

00820

. 00830
00840-00850
00880-00910
00920
00930

00940

00950

00970-00980

Description

These lines close the file, and then in line 770, the file is
opened for the ADD routine with OUTPUT. We need to do
this in order to open the file for SEQUENTIAL access,
instead of RELATIVE. The reason for this is that, at this
point, we don’t know the record number of the last record
in the file.

These lines display a description of the job being
performed. This is the routine to add a record.

If you don’t enter any data, we return you th the MAIN
MENU instead of writing a blank record to the file. ENDINQ
is the label of line 730.

The data is written to the file by using the FORM statement
in line 630.

After we've added the record, we close the file and go back
to the INQUIRE routine.

The record is read from the file, and the current information
is displayed on the screen.

This line accepts any changes you make to the current
information.

If you erase the data on the screen, we return you to the
MAIN MENU rather than erasing the data in the file.

The record is rewritten with your changes.

This line sends control back to the INQUIRE routine at line
690.

This is the DELETE routine. The specified record is deleted
from the file, and control goes back to the INQUIRE routine.

Programming examples 3-25

Programming examples

Example 3 (continued)

3-26 SA34-0127

Lines

00100

00102-01040

01050

01060-01080

01090-01150

01160

01280-01290

Description

For the report, we open the file for input. This means that
we are only going to read records from the file.

This loop reads all of the records from the file into the data
arrays and counts the number of records read.

When the last record is read, control goes to line 1050 (EOF
CONTPRNT).

The file is closed after the last record is read.
These lines display a message to set top of forms. The
dummy variable Q$ accepts the entry when you press the

Enter key.

You saw these lines in Examples 1 and 2. They are used to
print the reports and control paging.

This line ends the PRINT subroutine and sends control back
to the MAIN MENU.

These lines display a message if an error occurs when you
create the file in line 520.

You have seen three different programs that print the same

report. In the next chapter, we will show you another
example program, which is even more complex.

Programming examples 3-27

Chapter 4. Example inventory program

Introduction

In this chapter, we will present an example inventory

° program. You have studied, in Books |-VII, each of the
statements and programming methods used in this program.
Therefore, you should find this program useful for review
and future reference.

You are not required to enter this program on your
System/23. However, we think you will find it helpful.
Entering the program and working with it will give you
additional practice, something every beginning programmer
needs.

You can change parts of this program for your use. For
example, you may want to enter the name of your company
in line 790. You may also want to change line 880 to print
more lines on each page.

We do not expect you, at this point, to be able to write a
o program as complex as this example. We are including this

program to show you what you can do with your

System /23 after more study and more practice, practice,

practice.

A flowchart is included for this program. Also, you will find
pages of notes describing each section of the program.

Example inventory program 4-1

e ———————— e —————

Example inventory program

Flowchart

Display the
main menu

N

o
\/
Option Yes
=1or2?
No
\/

Display error
message

Entire program

Open file,
then add
records

Check item,
update, or
delete

Print report

a2

SA34-0127

This flowchart is an overall view of the entire program. The
program offers five options, plus sign off:

0. Sign off

1. Create master inventory file

2. Add items to master file

3. Inquire items (also update and delete)

4. Status report--all items

5. Status report--zero quantity items

This program uses full screen processing. Messages will be
displayed on the screen if you enter a wrong answer. The
data stored for each item in the file includes item number,
description, unit cost, and quantity on hand.

We will show flowcharts on the next three pages that detail
the program options. As you can see from this general
flowchart, you can return to the Main Menu after each

option. The first symbol in this flow chart represents a
display of the program options.

”~

Create a file or add records

[me] This flowchart is designed for menu options 1 and 2. It
menu shows what happens when you create the inventory file or
add records to the file.

The first symbol in this flow chart represents the Main
Menu. When you enter # for an item number, the program
branches back to the Main Menu.

You enter an item number, description, unit cost, and
quantity on hand. If you enter any data incorrectly, you are
given a chance to correct it.

Each item is written to a data file. If you are creating the
file with option 1, the OPEN statement will include the size
of the file.

Write record
at beginning
of file

Write record
at end,of
file

Example nventory program 4-3

Example inventory program

Flowchart (continued)

From
main

menu

Input item
number

from file

Display
contents
of record

Delete
record

Write
record
to file

v

v

4-4

SA34-0127

Inquire about, update, or delete records

This flowchart is designed for menu option 3. It shows what
happens when you check on, update, or delete a record in
your file.

The first symbol represents the Main Menu. When you
enter # for an item number, the program branches back to
the Main Menu.

When you enter an item number, the file is read sequentially
until the record is found. We could have used a
key-indexed file, but we didn’t want to interrupt the
program to run the INDEX Customer Support Function.

Records are read from the file, and the data is displayed on
your screen. |If something needs to be changed, you enter
the correction, and the record is rewritten to the file.

If you want to delete the record, it is deleted from the file.

After checking on, updating, or deleting a record, you go on
to check on, update, or delete another record.

&

Print reports

main

menu shows what happens when you print the inventory status
reports.

[F'°"‘ This flowchart is designed for menu options 4 and 5. It

Print heading
on page

The first symbol represents the Main Menu. At the end of
the report, the program branches back to the Main Menu.

The program uses subroutines to print the headings and to
advance the paper to a new page.

Read record
from file

Records are read from the file in sequential order. When
you reach the end of the file, you are ready to print the

Page filled? totals.
The data for all items will be printed when you enter option
4. The data for only zero-quantity items will be printed
Should record Starta)
be printed? new page when you enter option 5.
Print line Print heading
on report on page
Accumulate Print totals,
tmallls e enld of rep:m Q

To

main

menu
~

Start a
new page

Example inventory program 4-5

e e e ————

Example inventory program

Program

4-6 SA34-0127

Lines Description

00010-00030 The first three lines are used for remarks. You can change
these statements to any comments that will help you
identify the program.

00040 OPTION BASE 1 specifies that the Ioweét array subscript
allowed is 1.
00050 If an error occurs anywhere in the program, control goes to

ERREND (line 2800), and the program ends.

00060-00090 These lines are remark statements. They are used to
separate sections of the program. They also tell you what
the different sections do in the program.

00100-00120 These lines dimension the arrays that will be used for full
screen processing.

00130-00160 These lines dimension the data arrays and tell how long the
character variables can be.

Example inventory program 4-7

Example inventory program

Program (continued)

4-8 SA34-0127

Lines Description

00180-00210 The DSPFSP$ array contains the fields that display the data
in a record during INQUIRY.

00230-00250 The INPFSP$ array contains the fields that input data during
CREATE/ADD and INQUIRY.

00270-00290 The MSGFSP$ array contains the fields that display the
instructions and error messages at the bottom of the
screen.

00310-00330 The QTYFSP$ array contains the fields that rewrite the
quantity line during UPDATE.

00350-00380 The SCRFSP$ array displays the prompts for the MAIN
MENU, INQUIRY, and ADD/CREATE.

00400-00420 The TTLFSPS array displays the headings at the top of the
screen.

Example inventory program 4-9

Example inventory program

Program (continued)

4-10 SA34-0127

Lines Description

00440-00460 The FLDNMS$ array contains the prompts, which are
displayed by using the SCRFSPS$ fields.

00480-00540 The MENUS$ array contains the list of menu options, which
are displayed by using the SCRFSPS$ fields.

00560-00760 The MSGS$ array contains all of the instructions and error
messages, which are displayed by using the MSGFSP$
fields.

Notice that we are assigning values to the MSG$ array by
using LET statements. The LET statements allow easy
reference when tracing a program listing.

All of the arrays prior to MSG$ were assigned values by
using READ/DATA statements. Because we are using BASE
1 in our OPTION statement, the first element in each of
these arrays has a subscript of (1).

Notice lines 590 and 630. We are using the RPT$ function,

which repeats the blank string " ** either 12 or 14 times.
We use this technique to line up the messages on the
screen.

Also notice that several lines in this section contain the &
sign. Remember that this is how you join two strings
together.

Example inventory program 4-11

e ———

Example inventory program

Program (continued)

412 SA34-0127 .

‘ Lines
00780-00850

00870
00880

00900-00930

. 00950

Description

The STATRPTS array contains some lines that are printed
on the status reports.

Notice that we are using the & sign again. Also, look at
lines 790 and 850. These statements have been printed on
more than one line, because the statements are longer than
80 characters.

APS is the name of the application. The name is displayed
by using the TTLFSPS fields.

PAGELEN is the number of lines printed on a report page.
You may want to change this number.

Lines 900, 920, and 930 are FORM statements that are
used to print the reports. The first word on each of these
lines is a statement label.

Line 910 (FILEFORM) is used to read data from and write
data to the ITEM file.

This EXIT statement contains error conditions that should

never happen. If any of them does happen, control goes to
line 2800.

Example inventory program 4-13

Example inventory program
Program (continued)

414 SA34-0127

Lines Description
° 00990-01020 These lines clear the screen and display the Main Menu.

01030 This line enters the option number, beginning in line 17,
column 33. Notice that the input field is highlighted.

01040-01070 These lines test OPT to see if it is a valid entry for the
option. If the entry is invalid, return to line 1030. Then
reenter the option number.

If OPT is a valid entry, OPTNAMES$ becomes the job title.
The job title is found in the MENUS array.

Notice that we use character positions in line 1070 to find
the correct title.

01080 Using a computed ON-GOTO, we direct program control to
the correct section for each option.

01120-01140 These lines open the file ITEM.MASTER. Two different
statements are required, because the OPEN statement
differs for old and new files.

01160-01190 These lines display the prompts, as well as a default value
for each entry. Then the cursor is placed in the first field,
where you enter the item number.

Example inventory program 4-15

————— e

Example inventory program

Program (continued)

4-16 SA34-0127

i

i

e e g

-

-,

e e e Y

Lines

01210

01220-01280

01290-01340

01360-01370

01380

01390

01400-01410

01430-01440

01470-01480

Description

This line inputs each field of data. If a conversion error
occurs, go to statement INPCONV (line 2620).

If you enter an item number of #, go to statement ADEND
(line 1470). If the cost is incorrect, display an error
message, position the cursor, and reenter. Otherwise, go on
to check the quantity.

If the quantity is entered correctly, go to statement AD2
(line 1360). If not, display an error message, place the
cursor in the quantity field, and reenter.

Compute and display the total value for the item.

Ask if everything is okay, and input the answer. This allows
you to check your entries.

If everything is okay, go to statement WRITEIT (line 1430),
and write the data to the file. If it's not okay, go to THERE
(line 1180) so everything can be reentered.

The question was answered incorrectly, so answer the
question again.

Write the data to the file. Go back to statement ADTNEXT
(line 1170), and enter another time.

You entered an item number of # which indicates the end

of data entry. Close the file and return to the Main Menu
(line 990).

Example inventory program 4-17

e e ————

Example inventory program

Program (continued)

418 SA34-0127

Lines

01520

01530-01540

01570

01580

01600-01620

01640-01670

01680

01690

01700-01710

01730-01740

Description

Open the file for INQUIRY. Since the file should already
exist, don’'t state RECL or SIZE.

Display the prompts and instructions for INQUIRY.
Enter an item number.

If the record number is #, the INQUIRY is finished. Go to
statement INEND (line 2060).

Read the file sequentially until you find the correct item
number. We could find the record quicker with a
key-indexed file, but we didn't want to run the INDEX
Customer Support Function.

Display the data and ask if everything is okay.

Input the answer.

If everything is okay, go to statement IN1 (line 1530) to ask
for another item. If not, go to IN3 (line 1760) to update
item. If you want to delete the record, go to INDEL (line

1730).

The question was answered incorrectly, so answer the
question again.

Delete the item (record just read), and go back for the next
item.

Example inventory program 4-19

Example inventory program '

Pfogram (continued)

-

i
-

i

e

4-20 SA34-0127

Lines Description

01760-01770 Display prompts and instructions for UPDATE.
01780-01800 Position the cursor and enter new data for the item.
01810 If the cost is okay, go on to test the quantity(line 1870).
01820-01860 If the cost is incorrect, display an error message. Place the

cursor in the cost field and reenter. HEREIN (line 1800), is
where you go to reenter your data.

01870 Test the new quantity. If it's okay, go to statement IN4 (line
1940).
01890-01920 The new quantity is too large or too small. Display an error

message, and enter new data.

01940-01970 Display the new data and total value. Ask if everything is
okay.

01980 Answer the question.

01990 If everything is okay, go to statement INWRITE (line 2030).

If not, go to IN3 (line 1760) to correct the information.

02000-02010 The question was answered incorrectly, so answer the
question again.

02030-02040 Rewrite the record with the new data, and go back for the
next item.
02060-02070 You entered a record number of #, which indicates the end

of INQUIRY. Close the file and return to the Main Menu.

Example inventory program 4-21

Example inventory program

Program (continued)

4-22 SA34-0127

o Lines Description
02110 Display a message before starting reports. Notice that this
statement is not full screen processing.

02120-02140 Initialize the totals to O.

02150 Open the file for input. In this section of the program you
will never write to the file, you will just read from it.

02160 Go to the subroutine (line 2510) that prints the heading on
your reports.

02180-02240 This loop reads the file and prints data for the items we
want. If you choose option 5, only zero-quantity items will
be printed. The totals are accumulated for the report on
both options, but they’'ll always be zero for option 5.

o 02250-02260 When the loop ends, advance the paper to a new page, and
start the loop over again. Continue the loop until you reach
the end of the file. Notice the EOF RPTEND, which sends
control to line 2280 when you reach the end of the file.

02280-02360 After you reach the end of the file, print the totals line. If
there is not enough room on the page, skip to the next

page. Skip a line between the items and the totals.

02370-02380 Close the file and return to the Main Menu line (990).

Example inventory program 4-23

e ———————— e

Example inventory program

Program (continued)

4-24 SA34-0127

Lines Description

02420-02460 PAGEND is a subroutine that skips blank lines between the
totals line and the bottom line of the report page. This
subroutine keeps all the pages the same size.

02480-02580 PAGESKIP is a subroutine that ends the current page, by
using the PAGEND subroutine lines (2420-2460). Then the
page advances, and the headings are printed.

02510-02580 PAGEHEAD is a subroutine that prints the headings for a
report. This subroutine is actually a part of the PAGESKIP
subroutine. PAGEHEAD prints the headings without
skipping a page first.

02570 You set LINENO=1, in case a page is skipped immediately
before printing the totals.

02580 Notice that PAGESKIP and PAGEHEAD use the same
RETURN.

Example inventory program 4-25

Example inventory program

Program (continued)

4-26 SA34-0127

Lines Description
02620-02650 If there is a conversion error on ADD or INQUIRE, display

an error message, position the cursor to the field with the
error, and return to the statement where the error occurred.

02670-02680 If we can’t find the desired record during INQUIRY, we
‘display an error message and return to INQUIRY to reenter.

02720-02750 This subroutine repositions the cursor to the input field
where an error occurs.

02790-02820 The program ends here and a message is displayed if you
have an IOERR. (Remember the ON ERROR in line 50.)

02830-02850 The program ends here -on normal program termination
(when you select option O from the menu).

Congratulations! You have completed your course in
Learning System/23 BASIC.

To learn more about System/23 BASIC, you can refer to
your BAS/C Lanuage Reference manual.

Example inventory program 4-27

4-28 SA34-0127

O

Index

< less than 11.3-4

<>/<>notequal to 11.3-4

<=or =< less than or equal to 11.3-4

> greater than 11.3-4

>= or => greater than or equal to 11.3-4
? prompt 11.1-5

=equal to 11.34

accessing a file V1.4-8
accessing records directly VI1.3-3
action code 11.5-5
adding 1.4-2
adding ELSE to IF-THEN 11.3-13
adding statements to programs 1.3-2
advancing to a new page |11.2-7
array
definition 1V.1-2
dimensioning (DIM statement) V.14
displaying (PRINT MAT) IV.4-3
elements of 1V.1-2
indicating starting position of (OPTION) 1V.1-3
initial value of elements in 1IV.1-5, IV.2-11
naming 1V.1-2, 1V.2-2
one-dimensional arrays 1V.1-2
printing an (PRINT #255: MAT) I1V.4-3
specifying number of elements in 1V.14
subscripted variables 1vV.1-2
two-dimensional arrays V.32
used in programs 1V.1-7
assigning line numbers
automatically (using AUTO) 1.2-7
line by line 1.2-5
assigning more than one value 11.1-6
assigning values from a file VI1.1-8
assigning values from the keyboard
character values 11.1-4
DISPLAY file VI.1-8
INTERNAL files — relative access VI1.3-6
INTERNAL files — sequential access VI.2-9
more than one value 11.1-6
numeric values 11.1-2, 11.1-4
using INPUT statement 11.1-3
using LET statement [1.1-2
assigning values to arrays (see MAT assignment)
assigning values to variables 1.5-4

AUTO command
entering a data file VI.1-2
entering a program 1.2-2
stopping the AUTO operation 1.2-7, 1.2-9
variations of (see BASIC Language Ref)

BASE 0 and OPTION STATEMENT IV.1-3
BASE 1 and OPTION statement 1V.1-3
BASIC character set (see BASIC Language Ref)
BELL (see PRINT BELL)
branching

conditional 11.3-2

IF-THEN 11.34

IF-THEN/ELSE 11.3-3

labels 11.2-5
test conditions 11.34
unconditional 11.3-2

used with 11.3-2

calling subroutines V.1-2
changing a line in a program
changing a program
adding a statement 1.3-6
changing line numbers 1.3-2
deleting a statement 1.3-9
RENUM command 1.3-2
replacing a statement 1.3-11
changing a record in a file VI1.4-11
changing order of execution 11.2-2
using GOSUB/RETURN V.1-2
using GOTO 11.2-2
using labels with GOTO 11.2-5
using ON GOSUB V.28
using ON GOTO V.2-3
character
definition 1.1-2
character arrays
dimensioning (using DIM statement)
elements of 1V.2-2
naming 1.2-2
starting position of elements (OPTION) V.2-3
subscripts 1V.2-2
character strings
dimensioning (using DIM statement)
elements of 1V.2-2
naming 1V.2-2

11.3-7

V.24

V.24

Index

starting position of elements (OPTION) V.2-3
subscripts 1V.2-2
character strings
joining two strings with & V.3-9
maximum number of characters (default) 1V.2-12
quotation marks used with 1V.2-6
spaces within 1V.2-6
specifying character positions V.3-9
specifying length of in arrays 1V.2-5, IV.3-6
character variables
default dimension value of V.29
definition 1.5-6
dimensioning 1V.2-4
internal constants 1.5-8
maximum length of V.29
string overflow in 1V.2-8
using $ with 1.5-6
CLEAR ALL VI1.6-5
CLEAR command 1.2-2, VI.1-3
clearing the work area 1.2-2, 1.6-4
CLOSE statement VI1.4-16
closing an open file (CLOSE) VI1.4-16
CMD key 1.3-4
s V.39
combining numbers and words |.1-7
command keys 1.3-4
commas 11.1-10
computed GOSUB V.2-9
computed GOTO V.23

conditional branches 11.3-2
conditional tests 11.3-4
continuous loops 11.4-3

controlling displayed/printed data

FORMC 11.3-4

FORM N [11.3-2

FORM PIC 111.3-6

FORM POS 111.3-13

FORM SKIP 111.3-15
copying data into a file VI.2-7
copying data into relative record file V1.3-4
creating a data file VI1.1-3
creating an index file

data files VI.5-4

workfile VI1.5-10

X-2 SA34-0127

data

formatting 111.3-13

positioning data for display 111.3-15
DATA command VI.1-3
data file

copying data into VI1.1-7
creating within a running program VI1.1-5
entering into a work area VI1.1-5 .
file reference number VI1.1-6
file-id VI.1-6
naminga VI.1-4
savinga VI.1-4
data file/program file VI1.1-1
DATA statement 11.5-2

assigning values using 11.5-2
character values in 11.5-6
error 0054 (1.5-4

location in program 11.5-3

order of DATA values 11.5-8
RESTORE statement 11.3-8
RESTORE statement 11.5-8
using more values than variables 11.5-4
using strings with 11.5-6
using too few values 11.5-4
deactivating a file (CLOSE statement) V1.4-16
DEF statement V1.3-7
DEF/LET/FNEND statement V.3-9
defining a function (DEF statement) V1.3-7
defining data within VI1.1-3
field definition VII.1-4
underlining in full screen processing VI11.1-10
using multiple input fields VI1.1-6
defining the location of data VI1.1-3
DEL command 1.3-9
DELETE statement V1.4-15
DELETE/KEY= statement VI1.5-19
deleting a record from a data file V1.4-15
deleting a statement
line by line 1.3-2
multiple lines 1.3-10
device address 1.6-3
DIM statement
including numeric and character arrays 1V.2-4
specifying length of character string V.24
used with FOR/NEXT loop 1V.2-11
used with FORM statement 1V.2-6

[

used with one dimensional arrays 1V.1-4
° used with two dimensional arrays 1V.3-3
with character arrays 1V.2-2
with numeric arrays 1V.1-4
- DIR command 1.6-4, VI.1-5
direct or relative access V|1.3-2
directing the GOTO statement 11.2-5
display
* listing the contents of VI.1-7
loadinga VI.1-7
openinga VI.1-6
saving a copy of VI.1-7
displaying an entire array 1V.4-2
displaying data 111.3-2
one line of data VI1.1-2
several lines of data VI1.1-7
using full screen processing VII1.1-9
displaying numbers 1.1-2
displaying words and numbers 1.1-6

- -

displaying/printing character strings 111.3-4
displaying/printing numbers 111.3-2
ivision 1.4-3

elements

definitions [1V.1-4
setting value of 1V.1-5
specifying a number in an array 1V.1-4
start position in arrays 1V.1-3
END statement 1.2-3
ending a program
using END 11.3-15
using STOP 11.3-15
ending subroutines V1.2-4
enter key 1.1-4
entering a display file
CLEAR DATA and SAVE VI.1-11
OPEN statement and PRINT VI1.1-11
entering a statement [.1-4
entering line numbers |.2-5
entering something wrong 11.1-9
Ontering values to program 11.1-2
error codes 11.1-9
error conditions
CONV VI1.4-18
EOF VI.4-18
IOERR VI1.4-18

NOREC V1.4-18

SOFLOW VI1.4-18
error 0054 11.5-4
errors/recovering from 11.1-9
Example address programs

arrays VII1.3-2

example 1 VII.3-4

example 2 VII1.3-13

example 3 VI11.3-16

file VII.3-12

menu VII1.3-16

prompts VI1.3-2

report VI1.3-3
example inventory program

flowchart of VI11.4-2

line by line description of VI11.4-7
executing a program 1.2-3
exiting from a subroutine V.1-1

nesting subroutines V.1-8
exponentiation 1.4-4
exponents 1.4-4
expressions

definition 1.4-6

order of oerations within 1.4-6
EXTERNAL parameter (see OPEN)

feature printer
opening the 11.1-4
printing with the 111.1-5
field
definition (full screen processing) Vil.1-3
definition (in a data file) V1.2-2
field advance key VI1.1-6
fields VI1.2-2
file 1.6-3
fileid (see OPEN)
file name 1.6-3
file names
longer than eight characters VI1.1-4
number of characters in VI.1-4
simple VI.1-4
file reference number VI.1-6
File sharing
Closing an open file VI1.6-9
how to determine VI1.6-3
how to specify VI1.6-2
what to do if busy VI.6-5

Index

X-3

file-id VI.1-6 GO (line number) 11.1-10

filename (see OPEN) GO END 11.1-9

files VI.2-2 going bach to the beginning of a file VI1.4-3
flashing status line 1.1-5 GOSUB/RETURN V.1-2

flowchart GOTO statement 11.2-2

definition VII.2-1
example VIIl.2-4

symbols VI1.2-3 identifying a file on diskette V.1-6
flowchart of example program IF-THEN
create a file or add records VI1.4-3 adding a statement to 11.3-10
entire program VI1I.4-2 adding ELSE to 11.3-13
general description of program VII1.4-1, VI1.4-7 discussion of 11.3-4
inquire about, update, or delete record 11.4-4 test conditions using 11.3-4
print report VII.4-5 using STOP with 11.3-15
flowcharting a program in a specific area VII.1-5
going from a flowchart to a program 1.2-8 from a specific area VI1.1-5
organizing parts of a problem V11.2-2 including dollar signs in data (PIC($)) 111.3-10
symbols VI11.2-3 completing the OPTION MENU VI1.5-7
flowcharting template i Customer Support Function diskette V1.5-6
FOR statement 11.4-6 duplicate key count VI1.5-12
FOR-NEXT statements 11.4-6 key totals VI1.5-12
FOR/NEXT loop OPEN/KFNAME=/key= statement VI1.5-15
using subscripts and arrays with 1V.1-8 INDEX program VI.5-6
FORMC 111.3-4 master file V1.5-8
form n statement 111.3-2 initializing counters (see FOR/NEXT)
FORM statement initializing variables 11.4-2
FORMC 111.34 INPUT FIELDS VII.1-5
FORM N [11.3-2 INPUT MAT IV.1-5,1V.4-10
FORMNn,n 111.3-2 INPUT parameter (see OPEN)
FORMPIC 111.3-6 INPUT statement
FORMPIC IV.3-7 with character variables 11.1-4
FORM SKIP 111.3-15 with multiple variables 11.1-7
FORM X 111.3-14 with numeric variables 11.1-3
used with PRINT USING 111.3-2 inputting data
formatting data output on printer [11.3-15 (see also INPUT)
formatting output on the screen or print 111.1-2 (see also LET READ/DATA)
formatting strings 1.1-8 (see also READ)
FREE command VI.1-6 entering data from the keyboard VI11.2-12
full screen processing making data part of the program V11.2-12
field definition V:l.1-3 reading data from a record 1/0 file VII1.2-13
INPUT FIELDS VII.1-5 using prompts VI11.2-12
inputting data VI1.1-6 inputting data to a program
PRINT FIELDS VII.1-3 character variables 11.1-4
defining V.3-7, V.3-10 numeric variables 11.1-3
system V.3-2 using the ? prompt 11.1-5

X-4 SA34-0127

B e

s ik

inputting data
from a specific area VII.1-5
into a specific area VII.1-9

one line of data VII.1-2

several lines of data VI11.1-7

using full screen processing VI11.1-9
inputting data within a program VI1.1-10
inserting a line or statement 1.3-6
internal constants 1.5-8
internal files

assigning values from a file VI1.2-9

copying data into VI1.2-7

creating a file VI1.2-1, VI.2-6

making available to programs V1.2-6

opening for relative access VI1.3-3

opening for sequential access V1.2-6

organization of V1.2-2

overview VI.2-1

reading multiple variables from a file V1.2-13

retrieving data from V1.2-11

sequential access VI.2-13
o writing data to V1.2-6
INTERNAL parameter (see OPEN)

inventory program VI11.4-3
ISH VI.1-5
ISI VI.1-5

joining two character strings (&) V.3-9

key

definition VI1.5-2

using more than one key V1.5-21, V1.5-3
key indexed file

L4 accessing a specific record VI1.5-2
activating VI.5-15
adding records to VI1.5-17
creatinga VI.5-6

» creating on a diskette VI.5-8
definition VI.5-2

o deleting a record from VI1.5-19

reading a record from VI1.5-15
retrieving data from VI1.5-15
settingupa VI.54
sort sequence V/1.5-2
updating a record in VI1.5-18

]

writing records to V1.5-17
KEYED parameter VI.5-15

labels
naming 11.2-6
use of 11.2-5
leading zeroes 1.2-7
leading zeroes in data (PIC(#)) 111.3-8
LET statement 1.5-2
line numbers 1.2-2
LINK command VI.5-6
LINPUT statements VI1.1-9
LIST command 1.2-10

listing 1.2-10

listing programs
displaying on the printer 111.1-6
displaying on the screen 111.1-6
LISTP command 111.1-6

LISTP command |I11.1-6, 1-7

LOAD command 1.6-5

file name VI1.1-8

type-of-file indicator VI1.1-8
LOAD/DATA command VI1.1-8
loading a program 1.6-5

loops
definition 11.4-1
discussion 11.4-2
endless 11.4-4

nested 11.4-10
using FOR-NEXT 11.4-6
using IF-THEN and GOTO 11.4-2

making and correcting mistakes 11.1-9
MAT assignments
assigning values from array to array [V.4-9
in two-dimensional arrays 1V.4-8
matrix operations 1V.4-10
READ MAT statement V.44
matrix operations
MAT assignments V.46, 1V.4-10
matrices (see also Arrays) 1V.4-2
PRINT #255: MAT statement 1V.4-3
PRINT MAT statement 1V.4-2
READ/DATA and INPUT statements |V.4-4
maximum length of character strings 1V.2-5, IV.2-6

Index X-5

multiple line functions
DEF/LET/FNEND statement V.3-10
defining a function V.3-11
multiplication 1.4-3

nested loops

inner loop 11.4-10
outer loop 11.4-10
using 11.4-10

NEWPAGE with PRINT statement 111.2-7
NEWPAGE with PRINT #255: statement
PAUSE statement 111.2-8
TAB with PRINT statement 111.2-2

NEXT statement 11.4-6

NS VI.1-5

numeric arrays
dimensioning (DIM statement) 1V.1-4
elements in 1V.1-2
initial value of (0) IV.1-5
one dimensional 1V.1-2
OPTION statement 1V.1-2

setting values to zero (ZER function) 1V.4-

two-dimensional 1V.3-2
numeric variables

assigning values to 1.5-3

definition 1.5-2

LET statement 1.5-3

used in arrays IV.1-7

ON/GOSUB/RETURN V.2-8
ON/GOTO V.2-3
one dimensional arrays [V.1-2
one-dimensional arrays
DIM statement 1V.1-4
elements in 1V.1-2
OPTION statement 1V.1-3
subscripted variables 1V.1-2
OPEN statement
file reference number 1V.1-6
file-id VI.1-5
KEYED= parameter VI.5-15
KFNAME= parameter V1.5-15
OUTPUT/INPUT/OUTIN indicator VI1.1-7
relative access V|1.3-3
sequential access V1.2-13
type of file indicator VI.1-7

X-6 SA34-0127

11.2-7

8

opening a display file VI1.1-11

opening a relative record 1/0O file VI.3-3

opening internal files (relative access) V1.3-3
BASE Oor BASE 1 IV.1-3
RD 1V.1-10

order of execution
ascending 11.2-2
changing 11.2-2

order of operations |.4-6

OSH VI.1-5

Osl VI.1-5

OUTIN parameter (see OPEN)

output 111.2-1

OUTPUT parameter (see OPEN,READ)

outputting data
(see also PRINT PRINT FIELDS)
displaying results on the screen VI11.2-14
printing results with the printer VI11.2-14
writing the results to a data file VI1.2-15

passing control to a line number V.2-3
passing control to subroutines V.2-8
PAUSE 111.2-9
performing arithmetic
adding and subtracting 1.4-2
arithmetic operations 1.4-2
deciding order of operations 1.4-6
in programs 1.4-6
multiplying and dividing 1.4-3
raising a number to a power 1.4-4

performing calculations (see arithmetic operation)

PIC statement

discussion of 111.3-6

formatting data on printer 111.3-2
including decimals in 111.3-6
including dollar signs ($) 111.3-10
leading zeros in format (#) 111.3-6

zero suppression in format (Z) 111.3-6
POS V.34
position of data output 111.3-13

leaving blanks in data items (FORM X) 111.3-14

skipping lines (FORM SKIP) 111.3-15

specifying position of (FORM POS) 111.3-13

prepared diskette vi
preparing a diskette 1.6-2
PRINT #255: 111.1-2
PRINT BELL 111.2-8

-—

RINT FIELDS VII.1-3
INT statement [11.1-2
combining numbers and words 1.1-6

displaying numbers using 1.1-2

displaying words 1.1-4

syntax 1.1-2

using commas and colons with 1.1-8
PRINT USING statement

order of formats and output items 111.3-5
used with FORM statement [11.3-2
using commas with 111.3-5

print zones 1.1-6

printing
NEWPAGE statement 111.2-5
PRINT #255: 111.1-2
PRINT statement 111.1-2
print zones 111.1-3
TAB statement [11.2-2
to feature printer |11.1-4

using LISTP 111.1-6
rinting an entire array 1V.4-3

Orinting data (PRINT USING) 111.3-2

printing with the printer 111.1-2

printing/displaying character strings 111.3-4

priority of operations 1.4-6

processing data (see individual type of)

program L.iii

program branches 11.3-2

program file 1.6-3

program listing 1.2-10

program (definition) 1.2-2

programming language |.iii

prompts 11.1-5

PROTECT RELEASE VI.1-6

putting a program into the work area 1.6-5

quotation marks 1.1-5, 1.1-7
including commas and semicolons 11.1-11
with character strings 11.1-11

oraising a number to a power 1.4-4

RD in OPTION statement 1V.1-10
reaccessing the same record V1.4-13
READ MAT 1V.4-4,1V.4-10
READ statement VI.2-13

READ statement 11.5-2, IV.2-10
assigning values using 11.5-2
location in program 11.5-3
order of DATA values 11.5-8
RESTORE with data file V1.4-3
RESTORE with DATA statements 11.5-7
using more values than variables 11.5-4
using too few values 11.5-4
reading a file VI.2-6
reading a record from a key-index file VI1.5-16
reading data from a file V1.4-4
reading multiple variables V1.2-1, V1.2-6
reading multiple variables from files V1.2-13
reading records
sequentially VI1.2-13
specific records V1.3-8
reading specific records V1.3-8
READY INPUT message 1.1-2
REC= parameter V1.3-8
RECL= parameter (see OPEN)
records VI.2-2
recovering from an access error V1.4-17
recovering from errors 11.1-9
relative or direct access V1.3-2
RELATIVE parameter V1.3-3
REM statement 1.5-10
remark statements
definition 1.5-10
entering remarks 1.5-10
including special characters in 1.5-11
using REM in a program 1.5-10
removing a program from the work area
switching off the power 1.6-4
using CLEAR 1.6-4
removing a record from a file (DELETE) VI1.4-15
RENUM command 1.3-2
renumbering lines of a program 1.3-2
repeating operations in a program
using a function VI11.2-16
using FOR/NEXT or IF/THEN VII.2-16
using subroutines (see also subroutines) V11.2-16
REPLACE command 1.6-6
replacing a program 1.6-6
replacing a program in storage 1.6-6
replacing leading zeros in data (PIC Z) 11.3-9
replacing statements 1.3-11
repositioning a file using RESTORE VI1.4-3

Index X-7

REREAD statement V1.4-12

RESTORE statement V1.4-3

retrieving data from display file VI.1-6

retrieving data from files V1.2-6
LOAD DATA and LIST V1.1-8
OPEN DISPLAY and LINPUT VI.1-19

RETURN V.1-2

REWRITE statement V1.4-14

REWRITE/KEY= statement VI1.5-18

ROUND function V.3-3

ROUND system function V.3-3

RPT$ V.3-5

SAVE command

SAVE command 1.6-2
diskette drive number VI1.1-6
file-id VI1.1-10

saving a program |.6-2

scroll up key 1.2-9

second printer (see feature printer)

semicolons 11.1-11
sequential access files VI.2-11
setting up a format 111.3-2

share state

definition VI1.6-2

ISI VI.6-2

NOSHR VI1.6-2

NS VI.6-2

RESERVE VI.6-7

SHR VI.6-2

SHRI VI.6-2
signed numbers

displaying 1.1-3

order of operation 1.1-3
simple file name VI.1-4
simple variables 1V.1-3
single line functions

discussion of V.3-6

dummy variable in V.3-6
SIZE= parameter (see OPEN)
skipping lines 1.2-6, |11.1-5
skipping lines in data (FORM SKIP) 111.3-15
solving a problem

flowcharting VI11.2-2

input VII.2-2

inputting data VI11.2-12

output VII.2-2

X-8 SA34-0127

outputting data VII.2-14

processing VII.2-2

processing data VII1.2-16
spacing program output

skipping lines 111.2-5

using commas |11.2-2

using NEWPAGE and PRINT 111.2-7

using PAUSE and PRINT 111.2-8

using semicolons 11.2-2

using TAB and PRINT 111.2-2
special characters in remarks 1.5-11
special keys for commands 1.3-4

specifying format of data 111.3-13
specifying position of data (FORM POS) 111.3-13
SQR system function V.3-2
starting a new page 111.2-7
statement 1.1-1
statements
ascending order of 11.2-2

changing order of 11.2-2
labels for 11.2-5
status line
action codes 1.1-5
definition 1.1-2
error codes 1.1-5
stopping the flashing 1.1-5
STEP
inner loop 11.4-11
outer loop 11.4-10
STOP statement 11.3-15
storage 1.6-1
string
definition 1.1-4
displaying using PRINT [.1-4

strings 11.5-6
using commas with 11.1-11
using semicolons with 11.1-11

subroutines
calling using GOSUB V.1-2
definition of V.1-2
exiting from using RETURN V.1-2
nested V.1-8
returning program control V.1-2
subroutine/calling subroutines V.1-8
writing a program containinga V.1-2

subscripted variables 1V.1-2

subscripts 1V.1-2

subscripts and ar. '/ na' 1V.1-2,1V.2-2

O

subtracting 1.4-2 work area 1.2-3
OVmbols WRITE statement V1.2-8

examples used with IF-THEN 11.3-5 writing a program
used with IF-THEN 11.3-4 automatic line numbering 1.2-7
symbols/flowcharting VI11.2-3 clearing the work area 1.2-4
system functions END statement 1.2-2
POS V.3-5 entering a program 1.2-3
ROUND V.3-3 executing a program [.2-3
RPT$ V.36 listing the program 1.2-10
SQR(X) V.32 loading a program 1.6-4
system printer 111.1-4 replacing a program 1.6-6

saving a program 1.6-2
writing data to files VI.2-6

template |,vi writing records to key-index files VI1.5-17
testing values (see IF/THEN)
testing values of an expression V.2-3, V.2-8
transferring program control V.2-3, V.2-7 ZER function 1V.3-9
two dimensional arrays zero suppression in data (PIC (Z)) 111.3-9

assigning values from array to array 1V.4-8

character arrays 1V.3-4

DIM statement 1V.3-5
elements in 1V.3-2
MAT assignments 1V.4-7

numeric arrays 1V.3-2

OPTION statement 1V.3-2

specifying the size of (DIM statement) 1V.3-5
storing variables in 1V.3-3

subscripted variables 1V.3-2

unconditional branches 11.3-2

updating a key-index file VI1.6-17

updating a record in a file V1.4-14

updating a record using REWRITE VI1.4-14

using item numbers more than once V1.5-9
display and print INDEX messages V1.5-11
ending INDEX VI.5-14
INDEX workfile VI1.5-10

using remarks 5-10

using tabs 111.2-2

using variables and remarks

o assigning values to 1.5-4

LET statement 1.5-5

variables
character 1.5-6
numeric 1.5-2, 5-8

Index X-9

e ———————————

X-10 SA34-0127

Cut or Fold Along Line

READER’S COMMENT FORM

SA34-0127-0

VII. Full Screen Processing, Summary,
and Examples

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. |BM may
use and distribute any of the information you supply in any way it believes appro-
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your |BM representative or the IBM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader’'s Comment Form

Fold and tape

Please Do Not Staple

Fold and tape

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, NEW YORK

Fold and tape

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation

Systems Publications, Dept 27T
P.O. Box 1328

Boca Raton, Florida 33432

Please Do Not Staple

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

Fold and tape

SA34-0127-0
Printed in U.S.A.

SA34-0127-0
Printed in U.S.A.

