

. .

1
I

VII. Full Screen Processing, Summary,
and Examples

--- -----= =-= === - - ---- - - ----------_ .-

Learning System/23 BASIC

First Edition (January 1981)

Use this publication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be reported in
subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about, I BM products
(machines and programs), programming, or services that are not announced in your country.

Such references or information must not be construed to mean that IBM intends to announce

such IBM products, programming, or services in your country.

Publications are not stocked at the address given below. Requests for copies of IBM publications

should be made to your IBM representative or the IBM branch office serving your locality.

This publication cou ld contain technical inaccuracies or typographical errors. A form for readers'
comments is provided at the back of this publication. If the form has been removed, address your

comments to IBM Corporation, Systems Publi cations, Department 27T, P.O. Box 1328, Boca
Raton, Florida 33432. IBM may use and distribute any of the information you supply in any

way it believes appropriate without incurring any obligation whatever. You may, of course,
cont inue to use the information you supply.

© Copyright Internationa l Business Machines Corporation 1981

•

n

VII. Full screen processing, summary and
examples
Contents

About this book iv

Chapter 1. Full screen processing 1 -1
Introduction 1-1
Displaying or inputting one line of data 1- 2
Displaying or inputting several lines of data 1 - 7
Chapter summary 1-13
Exercises 1 -14
Answers 1 -17

Chapter 2. Organizing a program 2-1
Introduction 2- 1
Solv ing a problem 2-2
Going from a flowchart to a program 2 - 8
Inputting data 2-12
Outputting data 2-14
Processi ng data 2 - 16
Chapter summary 2-20
Exercises 2-21
Answers 2 - 23

Chapter 3 . Programming examples 3- 1
Introduction 3 - 1
Example 1 3-2
Example 2 3-12
Example 3 3- 16

Chapt er 4 . Example invent ory program 4- 1
Introduction4-1
Flowchart 4- 2
Program 4-6

Full screen processing, summary and examples I II

VII. Full screen processing, summary and
examples
About this book

IV SA34-01 27

This is the seventh in your series of seven books on
Learning System / 23 BASIC. By now, you should be familiar
with the fundamental statements and commands that are
used to program your System / 23.

In Chapter 1 of th is book, we will show you one more
feature that is available on your System / 23. You will learn
how to use full screen processing. Full screen processing
allows you to input data f rom or output data to specific
areas on the screen

In the remaining chapters of this book, we will review what
you have learned. Chapter 2 is about organizing a program
and solving a problem. It includes flowcharts, which are
diagrams showing the solutirln to a problem.

Chapter 3 contains three example programs. These
programs use the BASIC statements you have studied.
Notes are included to explain the programs.

Chapter 4 contains a flowchart and example program . This
program is an inventory control program . Notes are included
to explain each section of the program .

•

•

»

Chapter 1. Full screen processing

Introduction

Up to this point, you have used only one line of the screen
at a time in your programs. You know how to display data
on the screen and input data from the screen, one line at a
time.

In this chapter, you will learn how to use the entire screen
to input or output data . You will learn how to place the
cursor in any position on the screen .

If you have run any of the IBM supplied application
programs, you have already used full screen processing . The
Customer Support Functions also use full screen processing .
Now you wi!1 learn how to use it in your programs, too .

Objectives

Upon completion of this chapter, you should be able to do
the following :

Display data in a specific area on the screen by using
the PRINT FIELDS statement.

Input data from a specific area on the screen by using
the INPUT FIELDS statement.

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises .

Full screen processing 1-1

Full screen processing
Displaying or inputting one line of data

19-1'------~----------~

20-1

21-1

22-1

23-1

24-1

JOHN DOE

LI
1
-___ -~-I-

10 20

'-2 SA34-0127

You already know how to display information on your
screen . Remembering what you have already learned about
PRINT, enter a 2 - line program to display your name. Use
line numbers 10 and 20, and don't forget to enter CLEAR .

Answer:

If your name is John Doe, you r answer should look like this:

'I '

o
)0

"

Now run your program:

RIH,

Your name should be displayed at the bottom of the screen
on line 23. Your name moves up, and the cursor appears.
Then the words READY INPUT should appear beneath the
cursor.

If you had wanted to display your name on a clear screen,
your answer would have looked like this:

CLEAR
10 PRINT NEWPAGE i"JOHN DOE"
20 END

With either program, your name is always displayed on line
23, because the PRINT statement always causes data to be
d isplayed there. Then your name moves up, and the cursor
appears.

•

to

1 10 20

rl----~ -------1--
01- I
02- I

03- I
04- I
05- I
06-1

07-1

JOHN DOE

Now we' ll show you how to display your name in a specific
location on the screen. Enter the following program . (Don 't
forget to enter your name in place of John Doe.)

CLEAR
10 A$="5,7,C 18"
20 NAME$="JOHN DOE"
30 PRINT NEWPAGE
40 PRINT FIELDS A$:NNqE$
50 END

Remember that what you enter for NAM E$ can not have
more than 18 characters. Now run the program :

RUN

Your name should be displayed on the fifth line of the
screen, starting in column seven. This placement of data on
the screen is called full screen processing.

Full screen processing allows you to use specific areas of
the screen to input or display data. You specify the location
of the data by defining fields. A field is one or more
consecutive positions on the screen.

When defining a field , you specify the line and column of
the first position. In our example,

1 0 A$ = " 5 , 7 , C 1 8 "

/1
Line Column

This field begins in line 5, column 7 of the screen.

Full screen processing 1-3

Full screen processing
Displaying or inputting one line of data (continued)

1-4 SA34-0127

The fields of the screen in full screen processing are similar
to the fields of a record in a record I/ O file. They both
describe the location of data .

Line 40 of your program could also look like this:

40 PRINT #O,FIELDS A$:NAME$

Because the #0 is not necessary, we will not include it in
any of the examples in this book .

Let's look again at the statement that describes the field .

10 A$ =" 5 7 C 18 "
I / ': " / I

Character Line Column Type of
variable data I

The A $ can be any character variable, including any element
of a character array.

This field begins in line 5, column 7 of the screen .

The data item to be displayed is a character string of up to
18 characters. As with data specifications in a FORM
statement, C specifies a character string .

You can also use N or PIC in a field definition. They have
the same meaning that they have in a FORM statement.

..

J
00010 LET A$="5,7,C 18"
00030 PRINT NEWPAGE
00040 INPUT FIELDS A$:NAHE$
00050 END

What field would this statement define?

60 FULL$(1)="11,24,N 7 . 2 "

It defines a field beginning in line 11 , column 24. The data
item would be a number with up to seven digits, with two
digits to the right of the decimal point.

Your turn!

Where would the field defined by B$ begin?

80 B$="23, 1 , e 1 0 "

Answer:

It would begin in line 23, column 1, the same place where
the output from a regular PRINT statement begins.

Let's see what happens when we input your name from the
field beginning in line 5, column 7. Enter the following :

DEL 20
40 INPUT FIELDS A$:NAME$

List your new program:

LIST

Now run your program :

RUN

Full screen processing 1-5

Full screen processing
Displaying or inputting one line of data (continued)

1 10 20

rl------I-
01- I
02- I
03- I
04- I
05-1

06-1

07-1

JOHN DOE

PRINT NAME$
JOHN DOE

1-6 SA34-0127

The NEWPAGE should clear the screen, and the cursor
should now be positioned at line 5, column 7. Go ahead and
enter your name.

Note: The way you enter data with full screen processing is
different from the way you normally enter data . With full
screen processing, you press either the Field Exit key, the
New Line key, or the Field Advance key after each input
field to get to the next input field. You press the Enter key
after the last input field on the screen.

In this program, you are entering data from only one input
field. Therefore, you can press the Enter key after you type
your name.

Now enter:

PRINT NAME

to see that your name really did get input into the variable
NAME.

Later in this chapter, we will show you how to write a
program that uses more than one input field. Then, you will
need to use both the Field Exit or Field Advance key and
the Enter key.

.,

..

..

1

,

Displaying or inputting several lines of data

.,
\

Now let's look at an example that displays data on more
than one line. Enter the following program. (Enter your
name and address in lines 40-60. Notice that you are
limited to a maximum of 18 characters for each variable.)

CLEAR
10 Of'T :::ON B]'I.SE 1
20 RLM DISPLAY NAME AND ADDRESS
JU DIM FS$(3)*8
10 N$="']OHN DOE"
SO S$="125 1ST ST."
60 C$="CHICAGO, IL"
70 FS$(1)="3,4,C 25"
80 FS$(2)="4,4,C 25"
90 FS$(3)="S,4,C 25"
100 PRINT NEWPAGE
ll0 PRINT FIELDS MAT FS$:N$,S$,C$
120 END

The statement in line 110 causes three lines of data to be
displayed. The three fields are defined in the three elements
of the FS$ array.

FIELDS MAT FS$ tells your System/23 to use the elements
of the FS$ array to define the fields for the items being
displayed. N$ uses FS$(1). S$ uses FS$(2). C$ uses FS$(3).

The first item to be displayed uses the first field defined in
the array. The second item uses the second field, etc. If an
array has more elements than the number of items being
displayed, the extra elements are ignored.

If you try to display more data items than the number of
elements defined in the array, you will get an error.

Full screen processing 1-7

Full
.

screen processing
Displaying or inputting several lines of data (continued)

Now run the program:

RUN

Using our example name and address, the screen should
look like this:

1 10 20 30 40 50 60 70 80

rl I -I- I.,
01- 1 I
02- I
03- JOHN DOE

04-1 125 1ST ST. .
05-1 CHICAGO. IL •
06- ,

07-1

08-1

09-1

10- I
11-1
12- I
13-

14- I
15- I
16-1

~ 17-

18-1

19-

20-

21-

22-1

23-

24-

LI ~I ~. I..J
10 20 30 40 50 60 70 80

1-8 SA34-0127

•

•
• ·
J •

CLEAR
10 OPTION BASE 1
20 D 1M A $ (4) , B $ (3)

You 've seen how to display data and how to input data by
using full screen processing. Now let 's look at a program
that does both. Enter the following:

30 A$(1)="5,10,C 8,U,N"
40 A$(2)="10,4,C 5"
50 A$(3)="13,4,C 7"
60 A$(4)="16,4,C 5"
70 PRINT NEWPAGE
80 PRINT FIELDS MAT A$:"EMPLOYEE","NAME:","STREET:","CITY:"
90 B$(1)="10,12,C 18,U,N"
100 B$(2)="13,12,C 18,U,N"
110 B$(3)="16,12,C 18,U,N"
120 INPUT FIELDS MAT B$:NAME$,STREET$,CITY$
130 END

You may have noticed that each of our full screen
processing examples included a PRINT NEWPAGE. Use this
statement to clear the screen before displaying data.
Otherwise, the new data will be mixed up with whatever
was on the screen before.

When a normal PRINT statement is executed, the data is
displayed on line 23. Then lines 2 through 23 are moved up
up into lines 1 through 22, and line 23 is cleared. This
allows the new data to be entered on line 23.

When a PRINT FIELDS statement is executed, data is
displayed on the screen in the specified location, without
moving any data that is currently on the screen.

Therefore, when you write a program that uses both PRINT
and PRINT FIELDS, you may want to use NEWPAGE to
separate non-full screen from full screen processing.

Full screen processing 1-9

Full screen processing
Displaying or inputting several lines of data (continued)

1-10 SA34-0127

When you run this program, four lines of prompts will be
displayed. Remember that a prompt is a word or words on
the screen that tell you what input is requested.

For example, NAM E: tells you to enter your name.
STREET : tells you to enter your street address .

The cursor appears where the next character will be
displayed . When we tell you to run the program, enter your
responses in the indicated fields.

Remember to press either the Field Exit key, the New Line
key, or the Field Advance key after each input field except
the last. Press the Enter key after the last field .

Before we run the program, let's look at one more thing.
We have added something to the field definition in .Iine 30.

Position 1 2 3 4 5

3 0 A$ (1) = " 5 , 1 0 , C 1 0 , U , N"
~

This is different ______ ...Jt

The U in the fourth position of the field definition tells the
System /23 to underline the field . The N in the fifth position
returns the screen to normal (no underline) where the field
ends. This N is different from an N in the third position :

A$ (1) = "1 0 , 1 2 ,N 7 . 2 "
, I ,

The N in the third position indicates a numeric data item.
Remember that N 7 .2 has up to seven digits, with two
digits to the right of the decimal point.

Now run the program :

RUN

When you finish entering your address, your screen should
look something like this :

1 10 20 30 40 50 60 70 80

rl .J 1-,
01- I I
02- I
03- I
04-1

05-1

06-1 EMPLOYEE

07-1

08-

09-1
10-1

11-1 HAI1E: JOHN DOE

12- I
13-1
14-1 STREET: 125 1ST ST.

15-1
16-1

17- I CITY: C~ICAGOI IL

18-1

19-1

20-1

21-1

22-1

23-1
24-1

L, 1.-1

10 20 30 40 50 60 70 80

Fu ll screen processin g 1-11

Full screen processing
Displaying or inputting several lines of data (continued)

'-'2 SA34-0127

Let's look at one of the input fields .

90 B$(1) ="1 0 , 12 , C 18 , U , N"

-------:::;::--~ ,/ t
Line Column Type of Underline Normal
data

This field begins in line 10, column 12. It will contain a
character string of up to 18 characters . The U specifies
underline, and the N returns the display to normal.

The first data item entered is NAM E$. It is entered from the
first field that is defined, 8 $(1). STREEn uses 8 $(2). and
CITY$ uses 8$(3).

Your turn!

Where does your street address begin on your screen?

Answer :

It should begin in line 13, column 12.

Other full screen characteristics, in addition to U and N, are
available on your System/23. Refer to "Full screen
processing" in your Basic Language Reference manual for
more information .

..

Chapter summ'ary

•

Full screen processing allows you to display data and input
data in specific areas of the screen. Data items are
positioned in fields, which you define in your program .

When you define a field , you must include the line and
column in which the field starts. You must also include the
type of data item and any special characteristics.

To display data with full screen processing, you enter
PRINT FIELDS. To input data with full screen processing,
you enter INPUT FIELDS.

To input data with full screen processing, press either the
the Field Exit key after each input field on the screen except
the last. Press the Enter key after the last input field.

Full screen processing 1-13

Full screen processing
Exercises

1-14 SA34-0127

Question 1

What would you enter on line 50 of the following program
to display ENTER OPTION NUMBER beginning in line 4,
column 127

10 DIM MS G$*19
20 ABC$=" 4 , 12 , C 19 "
30 MSG$ =" ENTER OPTION NUMBER "
4 0 PRINT NEWPAGE
60 END

Answer:

Question 2

What would you enter on line 20 of the following program
to display FEBRUARY 1 beginning in line 8, column 67

10 DATE$ =" FEBRUARY 1"
30 PRINT NEWPAGE
40 PRINT FIELDS FS$: DATE$
50 END

Answer :

..

Question 3

Using the numeric variable X, what would you enter on lin e
30 to be able to input the value 100.05 from line 10,
column 2?

10 FS$ =" 10 , 2 , N 6 . 2 "
20 PRINT NEWPAGE
4 0 END

Answer :

Question 4

What will be displayed on line 11 of the screen if you run
the following program?

10 OPTI ON BASE 1
20 DIM B$ (2)*8
30 DATA "11, 3 , C 5 ","11, 9 , C 6 "
40 READ MAT B$
50 D1$=" DATE :"
60 D2 $=" JULY 1"
70 PRINT NEWPAGE
80 PRINT FIELDS MAT B$: D1$, D2$
90 END

Answer :

Full screen processing 1-15

Full screen processing
Exercises (continued)

1-16 SA34-0127

Question 5

Using the character variable DS, what should you enter on
line 60 to be able to input the value JULY 1 from line 5,
column 8?

10 OPTION BASE
20 DIM B$(2)*7
30 READ MAT B$
40 DATA " 5 , 2 , C 5 "," 5 , 8 , C 6 "
SO PRINT FIELDS B$ (l) : " DATE: "
70 END

Answer :

..

Answers

Question 1

50 PRINT FIELDS ABC$:MSGS

Question 2

20 FS$ =" 8 , 6 , C l O"

Question 3

30 INPUT FIELDS FS$: X

Question 4

DATE : JULY

Question 5

60 INPUT FIELDS B$(2) : 0$

Full screen process ing 1-17

1-18 SA34-0127

Chapter 2. Organizing a program

Introduction

All of the programs you have written in this course have
been solutions to problems. Without the program s, your
System /23 can ' t do much more than a pocket calculator
can.

In this chapter, you will learn how to use your System / 23
and the BASIC language to solve problems. You will see the
importance of breaking problems down into manageable
parts and then organizing those parts in a program to
produce a solution.

One way to organize these parts is to use a flowchart . A
flowchart is a diagram of a solution to a problem . A
flowchart can be a very useful tool, because it helps you
organize your thoughts in a logical fashion .

Once your thoughts are organized , it is then much easier to
write a program .

Objectives

Upon completion of this chapter, you should be able to do
the following :

Identify the standard symbols used in a flowchart.

Draw a flowchart of a solution to a problem .

Write a program by translating a flowchart.

Recognize common programming methods.

If you are familiar with these tasks, try the exercises located
at the end of this chapter. If not, read through the chapter
before going on to the exercises .

Organizing a program 2-1

Organizing a program
Solving a problem

2-2 SA34-0127

You have learned the fundamentals of System/23 BASIC . It
is time now to advance from knowing BASIC to using
BASIC to solve problems. The solution to a problem can be
broken down into three main parts :

The input, or information required to produce the
results . In the accumulated savings program, the input
included the principal, the interest rate , and the number
of years.

The processing, or manipulation of data to produce the
results. This can include initializing variables and
performing calcurations. Processing turns input into
output. In the accumulated savings program, the
processing was the calculation of A=P*(1 +I)**N .

The output, or results. The primary reason for a
program to exist is the output. In the accumulated
savings program, the output was the amount of
accumulated savings.

Each of these three parts may consist of one or more
statements . And, some short programs may have only one
part, such as the output, in:

10 PRINT " Sys t e m/ 23 BAS I C"
2 0 END

In recent years, another form of program organization has
been designed . The chart used is called an "N-S" chart or
a "star" chart, and it was designed by I. Nassi and B.
Schneiderman. For more information, you can refer to
"Flowchart Techniques for Structured Programming" in
Volume 8 of the Association for Computing Machines,
August 1973.

..

\ .

•

Processing

D
o On-page

V OH·page

V Direction

To organize the parts of a program, we use a flowchart .
Here are the standard flowcharting symbols we will use in
this course. These symbols are common throughout the
computer industry.

This is used to show where a program begins or ends.

This shows a program instruction to manipulate data or
initialize values.

This shows a decision being made. Arrowheads will point in
different directions depending on the results .

This shows data to be input or output. It applies to both the
display and data files .

This shows printed output, such as a report.

These two symbols show a connection between two
separate sections in a flowchart .

This shows direction from one symbol to the next.

Organizing a program 2-3

Organizing a program
Solving a problem (continued)

Flowchart

2-4 SA34-0127

Let's look at a few examples of flowcharts . First, consider
the first program we wrote in this course . It was a short,
simple program to display THIS IS EASY.

If you had been given this problem, how would you solve it?
The first thing you do when you solve a problem is break
the problem down into manageable parts. In this problem,
you are only concerned with output. You want to display a
message.

Let's organize the problem in a flowchart . This flowchart is
short and simple . It looks like this :

Program

10 PRI NT "THI S I S EASY "

20 END

I
f
t

Flowchart

1
J

Some people prefer to draw flowcharts that contain actual
program statements and formulas. This flowchart could also
look like this :

Program

10 PRINT " THIS IS EASY "

20 END

You can use whichever method you prefer : general
instructions or specific statements. Just make sure that you
draw flowcharts that you can understand and use.

This problem was a simple problem with a simple solution .
Most of the problems you will be solving with your
System/23 will not be so simple . Let's look at a more
complicated example.

Organi zing a prog ram 2-5

Organizing a program
Solving a problem (continued)

Flowchart

Calcul ate
the savings

2-6 SA 34-0127

Do you remember the accumulated savings problem? This
problem has input (principal, interest rate , and number of
years) . It has output (accumulated amount). And it has
processing (calcu lation of accumulated amount). What does
the flowchart look like for this problem ?

Program

lO P= lO O
o r

l O PRINT " ENTER PRI NCI PAL"
l 5 INPUT P

20 1= . 08
o r

20 PRI NT " ENTER INTEREST RATE"
25 INPUT I

30 N= 2
o r

30 PRINT " ENTER YEARS "
35 I NPUT N

4 0 A=P* (l +I) ** N

50 PRINT A

60 END

..

Flowchart

We have shown two programs for this problem. The only
difference between them is the method used to input your
values. There is no set solution to any problem . You must
use the statements and methods that seem best to you . We
could have written a program that reads a file in two
different ways :

Program

10 OPTION BASE 1
20 DIM NAME$*25,ADDRESS$*65
30 OPEN #l:"NAME=CUST",INTERNAL,OUTIN

40 FOR 1=1 TO 2
or

40 1=0

50 READ #l ,USING 60:NAME$,ADDRESS$
60 FORM POS 1,C 25,POS 26,C 65

70 PRINT USING 60:NAME$,ADDRESS$

80 NEXT I
or

80 1= 1+1
82 IF 1<2 THEN GOTO 50

90 END

Organizing a program 2-7

Organizing a program
Going from a flowchart to a program

2-8 SA34-0127

Suppose you were asked to write a program to balance a
checkbook. Where wou ld you start? The first thing you
should do is draw a flowchart .

In the first part of your program you should include a
remark that tells what the program does.

Next, you should include instructions for when you run the
program . These instructions should be displayed on the
screen.

The first data item required is the old account balance.

Now you are ready to adjust the balance for any deposits or
withdrawals. Set up a loop to process each transaction.

Display a prompt to enter the amount of each check or
deposit or withdrawal. Branch out of the loop when you
enter 0 for the amount.

If you enter any amount other than 0, add the amount to
the balance.

Display each new balance on the screen, and then ask for
the next transaction .

•

•

The hard part is done. You have organized each part of th e
program in a flowchart . Now all you have to do is translate
the flowchart into BASIC . One possible solution would be
as follows :

CLEAR
10 ! PROGRAM TO BALANCE A CHECKBOOK
20 PRINT "ENTER DEPOSITS AS POSITIVE NUMBERS"
30 PRINT "ENTER CHECKS, CHARGES, WITHDRAWALS AS NEGATIVE"
40 PRINT "ENTER AN AMOUNT OF 0 TO END THE PROGRAM"
50 PRINT
60 PRINT "ENTER OLD ACCOUNT BALANCE"
70 INPUT BALANCE
80 PRINT "ENTER CHECK OR DEPOSIT"
90 INPUT X
100 IF X=O THEN STOP
110 BALANCE=BALANCE+X
120 PRINT "NEW BALANCE= ";BALANCE
130 PRINT
140 GOTO 80
150 END

Organizing a program 2-9

Organizing a program
Going from a flowchart to a program (continued)

2-10 SA34-01 27

Your turn!

Now we want you to try it . Draw a flowchart for this
problem .

Add the odd numbers from 1 through 15. Display the total.

We will help you w ith this problem by supplying the
required flowchart symbols . You will also find helpful notes
beside each symbol. Just fill in th e instru ct ions in each
symbol.

The standard symbol to show the beginning of a program is

(}
The first number to be added is 1. You should initialize
some variable to 1. Use the variable NUMBER.

To add numbers one at a time, you can use the formula
SUM=SUM+NUMBER.

You want to keep adding until after NUMBER equals 15.
Test the value of NUMBER. If it is less than 15, add 2 to
NUMBER and go back to SUM=SUM+NUMBER.

If NUMBER is greater than 15, stop adding and display the
sum .

The standard symbol to show the end of a program is

(}

•

•

Going from a flowchart to a program

General instruction flowchart

Here' s our solution and a program that pe rforms th e
indicated instructions.

or Specific statement flowchart

10 PROGRAM ADDS ODD NUMBERS 1- 15
20 NUMBER=l
30 SUM=SUM+NUMBER
40 IF NUMBER>=15 THEN GO TO 70
50 NUMBER=NUMBER+2
60 GOTO 30
70 PRINT SUM
8 0 END

Organizing a program 2-11

Organizing a program
Inputting data

2-12 SA34-01 27

You have alread y see n th at one problem ca n have more
th an one solution. How do you dec ide whi ch programming
method to use in a program? Th ere is no set answer. But
here are some suggestions to keep in mind .

Whenever a program requires input data , you need some
way to get that data into the computer . The most common
methods are:

Make the data a part of th e program . You can do t his
with LET statements or READ and DATA statements,
like this :

5 DIM M$(12)
10 LET X= 10
20 DATA " JANUARY "," FEBRUARY "," MARCH "
30 READ M$(l) , M$(2) , M$(3)

Either of these methods can be used when you know
the data values when you are writing your program, and
the values are not changing.

Enter the data from the keyboard as you run the
program . You can do this with I N PUT statements, like
this :

100 PRINT " ENTER NAME "
200 INPUT N$
300 Z$= "1 2 , S , C 15 "
4 00 PRINT FIELDS Z$: " ENTER ADDRESS "
500 INPUT FIELDS "1 3 , 5 , C 18 , U, N" :A$

This method can be used when the data may change
each time you run the program. Remember to use
prompts on the screen to tell you what input is required .

Read the data from a data file as you run the program .
You can do this with READ statements, like this :

1000 READ #l , USING SO: X, Y, Z
2000 READ # 3 , REC=4:A$

This method can be used when you have a lot of data,
and when the same data may be required more than
once or by more than one program.

Organizing a program 2-13

Organizing a program
Outputting data

2-14 SA34-0127

After a program produces results , you must have some way
to access those results . Your program must produce output
so you can access those results . Three common methods to
output data are :

Display the results on the screen . You can do this with
PRINT statements or PRINT FIELDS statements, like
this :

100 PRINT " THE NAME I S " ;NAME$
200 PRINT FIELDS MAT A$: X, Y, Z

This is a good method when you do not need a copy of
the results on paper. The results are lost when the
screen is cleared .

Print the results with your printer. You can do this with
PRINT #255 statements, like this :

10 PRINT # 255 : COST,NUMBER ,TOTAL
20 PRINT # 255 :NEWPAGE ,HEAD I NG$

This is a good method to use when you want a copy of
the results on paper, such as in a report .

Write the results to a data file . You can do this with
WRITE statements. like this:

10 WRITE #l : A,B, C
20 WRITE # 3 , USING 50 :N$, A$

This is a good method to use when you want to keep
the data and update it later. You cannot see the output.
Instead. it is stored in a file on your diskette. Some
typical uses include customer lists. account balances.
and inventories.

Organizing a program 2-15

Organizing a program
Processing data

2-16 SA34-0127

The processing part of a program is usually the most
complicated part. It includes statements that initialize
counters, perform calculations, test values, and direct
program control.

Often you need to perform the same job several times in a
program. This is especially true when you want to produce a
chart or report . It was also true when we wrote the program
to balance a checkbook. Here are three common methods
to repeat operations in a program :

Use a function. You can use a function to perform the
same calculation on different variables, like this :

10 DEF FNT (X)=(1+. 06) *X
20 DEF FNM(X)=(1+.40)*X

These functions, or similar functions, can be used to
find the cost of an item plus sales tax, or to find the
value of an item with a percentage markup.

Use a FOR/NEXT or IF /THEN loop, like this:

10 FOR X=l TO 90
20 IF LINES <30 THEN GOTO 50
30 PRINT #255:NEWPAGE
40 LINES=O
50 PRINT #255 : A(X) , P(X)
60 LINES=LINES+1
70 NEXT X

This example uses a FOR/NEXT loop to print 90 lines
of output. An IF /THEN loop controls paging, allowing
only 30 lines per page.

•

,

•

Use a subroutine. You can use a short program section ,
like this :

10 GOSUB PAGEOUT
20 PRINT A$, A(X)
30 Ll=Ll+l

700 GOSUB PAGEOUT
710 PRINT B$, B(X)

8000 PAGEOUT: IF Ll<30 THEN GOTO 8040
80 10 PRINT #255 :"PAGE NUMBER "; Pl
8020 Pl=Pl+l
8030 Ll=l
80 40 RETURN

This example controls paging with a simple subroutine. If
you place a subroutine near the end of a program, it is
easier to trace actual calculations in a program listing.

Here's another example of how you can use a subroutine.
The following program reads names and addresses from the
CUST file we created in Book VI. It prints the names and
addresses on labels with pre-printed return addresses.

This program is designed for 3-inch forms. These forms are
designed to be printed with the printer set for six lines per
inch. You can order forms from a computer supply store, or
you can run the program with plain paper .

If you want to print these labels, enter this program :

Organizing a program 2-17

Organizing a program
Processing data (continued)

2·18 SA34-0127

CLEAR
10 OPEN #l:"NAME=CUST",INTERNAL,INPUT
20 DIM N$*20,S$*20,C$*20
30 FORM POS 1,C 20,C 20,C 20
40 FORM SKIP 8,POS 7,C 20
50 FORM POS 7,C 20
60 FORM POS 7,C 20,SKIP 7
70 PRINT BELL
80 PAUSE
90 PRINT #255:HEX$("2B0205000Al042")
100 FOR X=l TO 4
110 READ #l,USING 30:N$,S$,C$ IOERR 190
120 GOSUB 150
130 NEXT X
140 STOP
150 PRINT #255,USING 40:Nl$
160 PRINT #255,USING 50:S1$
170 PRINT #255,USING 60:Cl$
180 RETURN
190 PRINT "ERROR IN DATA FILE"
200 PRINT "FREE CUST FILE AND"
210 PRINT "RERUN PROGRAM TO CREATE FILE"
220 END

Before you run this program, notice the IOERR in line 110.
If your CUST file was incorrectly entered, you will get an
error. If so, free your CUST file and rerun the program that
creates the file. Change the paper in your printer, and then
enter RUN :

RUN

When the asterisks appear on the screen, set the paper in
the printer to top of form, and enter:

GO

..

•

•

•

-------- - ---- ---- ~ ---- - - --------------- - . -

•

1
-.-...-... - ---_ - - ---... -.-. ---.-- -. ---, - - - -----------_.-

1

P. O. Box 1328
Boca Raton, FL 33432

First Class
Mail

P. O. Box 1328
Boca Raton, FL 33432

First Class
Mail

Organizing a program 2-19

Organizing a program
Chapter summary

2-20 SA34- 01 27

The solution for a problem can be broken down into three
main parts :

The input, or information required to produce the results

The processing , or manipulation of data to produce the
results

The output, or results

The three parts of a program must be organ ized to form a
solution . A flowchart is a diagram of the solution to a
problem .

The most common methods of entering data are to enter
the data from the keyboard , to make the data a part of the
program, or to read the data from a file .

Processing in a program includes initializing variables,
performing calculations, testing values, and directing
program control. Some common processing methods for
repeating operations include loops, subroutines, and
functions

The most common methods of outputting data are to
display the data on the screen, to print the data with the
printer, or to write the data to a file .

..

1

..

1

,
J

Exercises

<>
C,,-------,)

CJ
o

Question 1

Match the following flowchart symbols with th ei r meanings.

a. Processing of data

b. Input or output data using display or data file

c. Making a decision

d . The beginning or end of a program

e. Printed output

Question 2

Using three symbols, draw a flowchart for this problem :
Print the letter A with your printer.

Answer :

Organizing a program 2-21

Organizing a program
Exercises (continued)

2-22 SA34-0127

Question 3

Write a program with line numbers 10 and 20 by using the
flowchart you drew in Quest ion 2.

Answer :

Question 4

Match the following programming statements with their
common uses. Each letter can be used more than once.

_LET
_INPUT
_PRINT #255
_FOR and NEXT
_DEF
_READ #5
_IF and THEN
_WRITE # 10

a. input data
b. output data
c. repeat an operation

« ,.

,
•

I

Answers

•

•

Question 1

2 a.
5 b.
1 c.
3 d.
4 e .

Question 2

Organizing a program 2-23

Organizing a program
Answers (continued)

2-24 SA34-0127

Question 3

10 PRINT #255 :" A"
20 END

Question 4

a LET
-
a INPUT
b PRINT #255
c FOR and NEXT
-
c DEF
-
a READ #5
-
c IF and THEN
b WRITE #10

•

•

"

•

•

..

Chapter 3. Programming examples

Introduction

In this chapter we present three example programs. These
programs use all of the information you have studied in this
course. Therefore, you should find them useful for review
and future reference.

We think you will find it useful to enter and run these
programs. Entering these programs on your System/23 and
working with them will give you the practice and experience
all beginning programmers need .

The first program is the easiest. The second program builds
on the first, and the third program bu ilds on the f irst two
programs and is the most complex. If you enter and run
these programs as they are presented, you will have a good
foundation to build upon in Chapter 4 .

Programming examples 3-'

Programming examples
Example 1

3-2 SA34-0127

Program example 1 records names and addresses and
stores them in an array. After you enter the last name and
address, a customer information list is printed .

The program uses full screen processing. It displays six
prompts for you to enter data . If you enter and run this
program, the first screen will look like this :

lIter NAME' (I dst Ilrlmf' f i)"<.t):
Sh'ept Adol-pss:
r'i t y :
State:
7ip Coop:
Telephone Number:

Input al I ite.s usina Fipld Fxit hf'forp pnterinq.
Press Enter with no input data to print report.

-

•

,

•

•

•

NAME

GftnE'ral Sy-;tplf'lc,
Officp Produ{"tr,
Gpn£1 at Bu~inp~s

You should press the Field Exit key after you enter the
name, street address, city, state, and zip code, After you
enter the telephone number, press the Enter key,

After you have entered all of your data, press the Enter key
again , Then, you will get a formatted printout of all the data
stored in the array, Your printout should look something like
this (this copy has been reduced) :

r II S T n H F R T N F n R HAT r n N

r.ny

4111 North50dp Pkwy Atlanta
400 P.,'"on" Pond n,' . Frankl, n I.ab'"
1133 Wp<;tchp<;ter Avp Whote Pldons

STATE

GA
N.I
NY

I T f; f

71P r.OnE

~01?7

074\7
]0604

F'HnNE NUHflFR

23fl"2000
848,,1900
6%,-1900

Programming examples 3-3

Programming examples
Example 1 (continued)

00010 ! ******* INPUT ANn PRINT ARRAY *******
00020 OF'TTON liASE 1
00030 DTH NAHE$ (SO) *20 ,AltflRH50 >*20 ,e] TH(SO) *20. STATfS (SO) *3 ,.ZIP$ (SO)*5
00040 DIH PHONF.$(~O)*8
00050 DIM l$(B)*9,MS(6)*13,D$(S)*50
00060 DATA "6,5,c 501 ,"7,S c SO","B,S,c ~iou.1I9,5,c SOI,"l0,S,C SO"/'ILS,c 50"
00070 DATA "14,S,c SO","ts,S,c 50"
OOOBO READ HAT L$
00090 DATA "b}36,c 20,u,n","7 1?8,(?O,u,n","B,l8,c 20,IJ,n","9d9,c 3,U,II"

t-00l00 DATA "10,22,c 5,u,n' ,'IL30.c S,u,n"
OOUO REA[I rlAT tiS
OO~20 LET ll$(1)="Enfer NAHf <last lIaMf' first):"
00130 LET D$(21=" strept Addrpss:"
00140 LET D$(3)=" City:"
00150 LET 0$(4)=" Stdt~!"
00160 LET D$(S)=" lip Code:"
00t70 LET 0$(61=" Telp.phllnp Nllmber: ..
00180 LET D$(7)="Input ~II ite~~ usinq Field Exit befnre enterinq,"
00190 lET D.<8i="Press Enter with nt) inpltf data to print rPflort."
00200 LET 8=17
00210 lET C=O

3-4 SA34-0127

•

..

•

I •

Lines

00010

00020

00030-00050

00060-00080

00090-00110

00120-00190

00200

00210

Description

The first line is a remark . You can change this statement to
any comment that will help you identify the program .

OPTION BASE 1 specifies that the lowest array subscript
allowed is 1. If you leave this line out, the beginning array
subscript is O.

These lines dimension the arrays for the data items and full
screen processing . Notice that these are all character
arrays.

Line 80 reads the data in lines 60 and 70 into array L$.
These describe the fields used in the full screen processing
to display the prompts .

Array M$ contains the data to describe the input fields .

Array D$ contains the prompts for full screen processing .
Notice that we are using the LET statement to assign values
to this array.

S is used to set the left margin for the printed report . You
may want to change this value .

The numeric variable C will be used to count the number of
customers. Here we initialize it to zero.

Note: This line is not necessary, since System / 23 will
automatically initialize variables to zero for you.

Notice that we have used two different methods to assign
values: the LET statement and READ/DATA. These
statements are covered in Books I and II.

Programm ing examples 3·5

-~-.~. -

Programming examples
Example 1 (continued)

00?20 REM -- --- - --------------------------------- CRfATE ARRAY
o 30 PRINT EWPA6E
O{l240 PIUtn FHUIS HAr it'HAT D$
00250 LET C-C+1
00260 INPUT FIf.LDS HAT "$,NAK[t(r)IADr~$(r.)/CrTY$(C),STATF.(C),ZJP$(C),PHOH£.(C)
00270 IF NAH£$(C)-RpT$(I ",i-O> THEN GOTO 300
00280 60TO 740 "

3·6 SA34-0127

•

Lines Description

00220 This remark tells you that this is the part of the program

• where you put information into the array .

00230 This line clears the screen. You will want to start with a
clear screen before full screen processing.

00240 This line displays the prompts.

00250 Here we add 1 (one) to the number of customers. This
number is used as the subscript in the data arrays.

00260 This line inputs data from the screen into the data array
elements . Remember that you press the Field Exit key after
each input field to get to the next input field . You press the

• Enter key after all of the data has been entered.

- 00270 This line checks to see if any more data is to be inputted . If
you press the Enter key without entering a name, program
control goes to line 300.

If you enter a name and other data, the data is stored in the
arrays, and program control goes to the next statement, line
280.

00280 This line sends program control back to line 240. There, the
prompts are displayed again, and you are ready for more
input .

.-
You studied the IF-THEN and GOTO statements in Book II.
READ MAT is covered in Book IV, and you learned about

,j full screen processing in Chapter 1 of Book VII.

-
Programming examples 3-7

Programming examples
Example 1 (continued)

OO~90 QFH --------------------- --------------------- PR1NT ARR4Y
00300 GOSUB OVFRFLOW
00310 FOR X=l TO C-l
00320 PRINT ~25~,: TAB(S) ;NAHE$', X) ; TAB (!;+;1) iArtllRi(X}: TAB(S+42) ,CITY$ (Xl i
00330 PRINT ~?'55:TA£l(S+6:{) IS ATf$(X) ;TAll(S+74) ;ZIPfi(Xl ,TAB(S+RR) :PHONEi(X)
00340 LET IINF1=LJNF1+1
00350 IF LINE1>40 THEN GOSUS 390
00360 NEXT X

3-8 SA34-Q 127

' -

(

•

'I •

-
Lines Description

00290 This remark statement starts the section that pr ints th e .. report .

00300 This statement sends control to the OVERFLOW subroutine.
Notice that we are using the label OVERFLOW instead of
the line number 390.

00310 This statement starts a FOR-NEXT loop. The loop prints the
information for the array elements with subscripts of 1 to
C-1 . C-1 is the number of elements in each array, because
C is incremented in line 250, before the value of NAME$ is
tested in line 270.

00320-00330 These lines print (on the printer) the information in the
" arrays. If you do not have a printer, you should leave out - the #255 : and change the 17 to a 1 in line 200. Or, you can

run the program by using the RUN DISPLAY command .
Then , the results will be displayed instead of being printed .

00340 This statement keeps track of the number of lines printed
on each page. Every time a line is printed, LlNE1 is
incremented by 1.

00350 This statement sends program control to the OVERFLOW
subroutine (line 390). if you print more than 40 lines of
information.

'. 00360 N EXT X causes the loop to execute again , until all ·of the
information in the arrays is printed .

• You learned about FOR-NEXT loops in Book II. Subroutines

t
are covered in Book V .

Programmin g ex amples 3-9

Programming examples
Example 1 (continued)

00370 !HOP
003f10 REH -------.--- •. --------- ------------ F'Mjr OVrRFI ow 1\'00HlHF
00390 OVERFLOW: f'tWH t:~1) ~ NEWPAGE
00400 PRINT t255:TA~(4~);"C U S r n Ii E k r N F n R Ii A 1 r 0 H I J S T"
004tO PRINT ~2~~~
004/0 PRINT ~?55:
00430 PRIN"r ~255:TAlHS) i"NAHE" iTAfI(S+21) ;"!1TRFET MlfIRFSf-i" ; TAIHS+'I?) ;"CJTY" i
00440 PRINT :25S:TAB(S+63) ; "STATE"; TABHl+74) i"7[P CI)OP' :TAB(S+R8) : "f'HONE NUMBER"
00450 PRINT ~/55:
00460 LET UNt1=O
;()0470 RETURN
00480 END '

3·10 SA34-0127

.'

-
Lines Description

00370 This line stops the program after the report .

•
00380 This remark starts the OVERFLOW subroutine. This

subroutine is used to start a new page.

- 00390 This line skips to a new page on the printer.

00400-00450 These lines print the title and headings at the top of the
page. Notice how we use tabs to leave spaces between the
columns . This makes the report easier to read .

~

~ 00460 This statement sets the line counter (LlNE1) to o. LlNE1 is

• used to limit the number of lines on a page to 40 . ,
,

00470 The RETURN statement sends program control back to line

t 310 or line 360. This RETURN statement marks the end of
the OVERFLOW subroutine.

00480 The EN 0 statement tells your System / 23 that it has
reached the end of your program.

Programming examples 3-11

Programming examples
Example 2

3-12 SA34-0127

Program example 2 is similar to example 1. However,
program example 2 creates a file on diskette and stores the
data in the file. This program is written to use diskette drive
1. If you are using another diskette drive, you will have to
modify your OPEN statement.

Because this program performs almost the same functions
as example 1, we will describe only the new lines in
example 2 . Again, we have numbered the lines in
increments of 10. Because example 2 has more lines, the
line numbers in this example will not match the line
numbers in example 1 exactly.

As in example 1, the following screen is used for data input.
It looks like this after you input each data item.

Enter NAMF (last namp first): Gpnpr~1 Bu~inp~s

Street Arldrpss: 1113 Wpstrhpstpr Ave
f:ity: White Plelins
Statf~: NY
lip Coop: .lQ.6.Q.i
Tplpphonp NltlOhpl-: 69A'-19()Q

Tnput all iiPfn"'. Itc.inq Fiplrl F~it hpfol'(' pntpl inq.
P r f' s sE II t p 1- IJ i t h n 0 i n p "t rl a tat 0 p 1- i n t 1- p P 0 r t.

s

I

•

00010 ! ~****** INPUT, PRJNT ANn SlGR~ ARRAY
00020 OPHON BASE 1
OO(l:~O DIH NAHH (~())*20, ATtnr.:$ (~i(l) *20 ,n lV$ (50 i*;:>() , STAiH (50) *3, 7TH(~O) *5
00040 OIH PHONEi(iO)*8
OO~50 fllH L$(B)*9,H$(6)*13,Tt$(R)*~O
\)oot\O nA1A /16.5,(50"."i,~,(~i(j","8,~"c 50","9.5.c 50","10,~,c 50","11.5,(50"
00070 DATA "14,5,c 50",/l15,5,c 50/1
00080 REAli HAT I $
00090 DATA /l6,36,c ?O,u.n/l,"7.?B.c 20,u,n/l,/lB,18,r ?O,u,n"."9,J9,(3,u,n/l
00100 DATA "IO,22,c 5,u,n",/ll1,30,c 8,ij,n/l
00110 REATt HAl H$
00120 LET D$(l)=/lEntpr NAHE (last na_p first):"
00130 LET D$(2)=/I Street Arldress:"
00140 LET D$(3)=/I City:/I
00150 LET D$(4)=" Stat~:/I

00160 LET D$(5)=" Zip Code:/I
00170 LET D$(6)=/I T~lephone NUlllber: -/I
00180 LET D$(7)="}"nput all itellls u~ing Fipld Exit beforf' enterillQ."
00190 LET D$(8)=/lPress Enter with no inpqt data to print report."
00200 LET S=17
00210 LET C=O
00220 REH ----------~------------------------------- CREATF ARRAY
00230 PRINT NEWPAGE
00240 INI.OOP: PRINT FIEl.flS HAl L$:HAT [1$

00250 LET C=C+I
002{'0 INPUl FIELOS HAT H$:NAHH(C) ,AfIDRHr:) ,CITH(c) .STAiH(C) ,lJP$(C) ,PHONH(C)
00270 IF NAHH(c)=RPU(" ",20) THEN GO(/) STORE
OO?80 GOTO INlOOP

--~

Programming examples 3-13

Programming examples
Example 2 (continued)

')0290 REM -------------------------------- STORE DATA ON DISKETTE
00300 STORE: OPEN ~l:"NAttE= last~rll1.SI7E= Q,RF.CL= l()()II,HHERNAL ,OUTPUT
1J0310 FOR X=l TO C-1 .
00320 WRITf ~l,USjNG 330:NMiEHX) ,ADDR$(X) .rITY$(X) ,STATH(X) ,7.IP$(X) ,PHONE$(X)
00330 FORM 3fe 20,C J/t 5,C 8
Q0340 NEXT X
003S0 CLf}SE ~1:

00360 REM ----~-------------------------------------- PRINT ARRAY
00370 (JOSUB OVERFI.OW
00380 FOR X-I TO C-1
003S'O PRINT ~255: TAR(~; iNAHF.$(X) :TA[I(S+?1) jAnrIR~(x) iTAIHS+42) ;f.ITV$(X};
00400 PlUtH ~25!):TAB(S+63} i!1TATB(X) iTAIHS+7'li ;7!P$(Xl iTA'9(S+R~) iPHOHH(X)
()()410 I F.T l INE1 =I.1NU + 1
00420 tF LINE! }40 THEN I30SU'9 4AO
()()430 NEXT X
()0440 STOP
00450 REH --------------------------------- F'A{iF OVFRFl OW ROIITTNF
00460 OVERFLOW I F'R I HT ~?5;: NfLlPAGE
00470 PfaHl ~25~.:TAf{(4S) ;"e 1.1 5 T (j H F Ii: 1 N FOR i'\ A T I {i N I J R T"
00480 PRINT ~2S5:
~0490 PRINT ~?55:
OOSOO PlUtH t255:TAIHS) j"HAHF" ;TAlI(S+21} ;"51RFET ATtDRE~Stt ;TAIHS+42} ; "CJTY" i
005lO PRUH ~2!55:TAB(S+h3) ; "STATE:" ;TAS(S+74) ;"7.tP (;OOE" rTAB(S+SS) j"PHONE NlJH9ER"
OOS?O PR]HT ~255:
0053() I,ET UHf1 =0
00540 RETURN

L-O()5.')O FNTI _

3-14 SA34- 0127

II ,
,

•

Lines

00290 ..
00300

00310

00320

00330

00340

00350

Description

This remark statement lets you know th at this part of the
program crea t es your data file .

This line opens the file called MASTER on diskette drive 1.
Remember, if you are using drive 3, you will need to enter
MASTER/ / 3 .

This file is a new, internal file , opened for output only .

This FOR-NEXT loop continues until all of the records are
written to the MASTER file .

This line writes the array elements to the file . Notice that
the subscripts of the array elements are specified by the
variable X, from the FOR statement.

This line tells your System /23 how to write the data to the
file . Notice the repetition factor on the C 20 specification.

Th is NEXT statement completes the loop in lines 310-340.

This statement closes the MASTER file while you are still
running the program .

You may want to go back to Book VI at th is point to review
what you have learned about data files. If not, go on to the
next example.

Prog ramming examples 3-15

Programming examples
Example 3

3-16 SA34-0127

Program example 3 adds more features to examples 1 and
2. It is much longer, and you should enter the lines
carefully.

Examples 1 and 2 allowed you to do ,certa in tasks, but
always in a certain order. Program example 3 allows you to
perform additional tasks, and it lets you change the order to
suit your needs. You can change the order by using a menu .

As in example 2, you will be ab le t o create records and
store them in a data file . You will also be able to update, or
change the records you have created .

Example 3 again allows you to create a file called MASTER.
So, if you want to run this option, you may first have to free
the file you created in example 2.

As with example 2, we will only describe the new lines in
this example. The menu will look like this :

, Ioh: M.HN MFNII

1. CI-patpM~lSTFRFilp

2. InQuirp TtpffiS

3. Pr' i nt MASTFR F i If!

Fnter Option No. ?

..

..

•

•

'/ •

The INQUIRE screen looks like th is :

.Inh: TN(llllF;'F

OPERATION (l=add. ~=updatp. ~~dplptp. 4=return)

On this screen you enter the number corresponding to the
operation you want to perform. For example. if you wanted
to add a new record to the file. you would enter a " ' " after
OPERATION . If you want to update (2) or delete (3) a
record. you would also need to enter the relative record
number of the record to be changed or deleted.

The screens that allow you to add records or change
records are similar to the screen used in examples' and 2 .

Programming examples 3-17

Programming examples
Example 3 (continued)

')0010 ! lI'****** INPUT ,prmn .SHIf\F. ANII OF'fIAIF rTlJ *'******
00020 OPTION BAS~ 1
OO()30 nIH HAlif$(~;(})*20 • AftftRS (50) ,,20 /eJTn(~O) *7.(), SlATES (50) *1.ZIP$ (50) *5
00040 DIH PHONE$(~0)*8
00050 DIH '$(f()*9,H$(6>*13,D$(R)*50
00060 DIH Nt(3)*9/0$(2)1!t3,A$ (6)*4a! S$(7) *I.2,K$(7)i!10
00070 nATA "6,5,(' 50","7,5,c 50"/"8 15,c 50","9,5,(50","10,S,c 501 /"H,S/c 50"
00080 DATA "14/5,c 52","tS,S,c 50"
00090 REA~ HAT LS
00100 DATA "6,361c 20,u,0","7,28,(" 20,u,n","B,18,r 20,u,n","9,19,c 3,u,n"
00110 DATA "10,22,c 5,u,n","l1,30,c B,u,n"
00120 READ HAT H$
00130 DATA "4,20,c 48","5.5,< 49",1114,5,(. 4£("
00140 READ HAT N$
00150 nATA "5,21,0 4,u.nl,"14.5~,n l,u/n"
00160 READ HAT 0$
00170 DATA "4/20,e 22" ,"6,2~! ,e 2/" ,liB ,/S,C 21" ,"9 ,15 Ie ?/ n , "10 '/~ ,(21"
00lBO DATA "11,25/c 22"."13 12S.c n"
00190 REAlI HAl ~:$

M::!OO I.ET A$(1) ="Recortf NUlllber:"
00210 lET A$(2}="OPFR4T JON (1:;~dd, I=UPti<ltf' . 3=df'if'tf'. 4=TPturn):"
002?0 LET A$(3)="Job: INGUIRE"
GOnO tEl A$(4)="Job: Ann F:FWRrt"
00240 LET A$(S)="Job: UPDAfE RECORD"
O()2ti() lET A$(6)=".1oh: tf.:EAlf MASlFR"
00260 LET [lH 1)="Job: MAIN MEHU"
(iono LEi a~ \ 2,.:;"Opt ions illla i lail i (>;::

002ao I.ET B$(3)="1. r:r~.lte MASTER Fi I~"
00790 LET B$(4)="2. Inquire ltems"
00300 LET [1$(5)="3. Print KASTER File"
00310 LET 8$(6)="4. Fnd Proqrdlll"
00120 LET Bt(7)="F.nter Opti on No. ?,.

3-18 SA34-0127

•

•

•

Lines

00060

00130-00190

00200-00250

• 00260-00320

..

Description

This line dimensions more arrays for the menu screen in full
screen processing.

Here the data is read into the new arrays for full screen
processing. MAT N$ will display the INQUIRE screen,
including the job name. MAT 0$ is used to input data on
the INQUIRE screen, and MAT K$ is used to display the
menu.

The first two of these lines are prompts. The next four are
displayed on the screen to tell you which job you are
performing.

These lines define the B$ array. Array B$ contains the
prompts for the menu screen.

Note : You can enter all of lines 200-420 without the word
LET. But, the word LET will be inserted when you list the
program .

Programming examples 3-19

Programming examples
Example 3 (continued)

P0330 LEl {t,(j)="f. nif'r ~AHr (f ~~ t MilE' first):"
~0140 LF.T D$(2)=" Street Address:"
00350 LET [ISCH=" fi tv:"
00360 LET t)S(4)=" State:"
~0370 lET D$(5)=" Zip" Cooe:"
00380 LH (IS (6) =" Tel eph 0 np. NUlber: -"
00390 LET [t$(7)="lIlpui all itE·.~. uSIng Field Exit beforE' entering."
~0400 LET D$(S)="Press Enter with no ddta to return to MAIN MENU."
00410 lfT 5=17
P0420 LET C=O
00430 REI'! -- ItISPLAY MENU
00440 PRINT NEWPAGE
00450 PRINT FIElDS MAT K$:HAT B$
00460 INPUT FIELDS "11,42,n 1":6
00470 ON 6 GOSU[I CRfAIE,INGlIJRF,REPOkT,ENJ.lMENU NONE 450
100480 GOTO 440
100490 FNftHEN\I: PRINT NEWPAGE,"Returned to MSlr"
~OJOO STOP

3-20 SA34-0127

,.

Programming examples 3-21

Programming examples
Example 3 (continued)

00510 RFH -- ~RFATF ARRAY
0(521) CREATE: opn~ ~l:IIHAliF=ftI~c;ter/It.S£7.F:=O,RtCI=1.(){)II,TNTH:Nftl ,tlIlTPUT tI}F.RR 1290
/)O~i:{O PRHH NFWPAGF
00540 PFJNT FIF.lflS IiAT H~: A~ (6)
005~,O HlUI(lP: f'R1NT FIEtHS MAT L$:MAT ft$
00560 LET C=C+1
00570 INf'U1 FlElOS, MAT M$:NAliB«(:) ,AD£tk$(C) ,CITY$«(:) ,STATH(c) ,lJP$(C) ,PHONH(c)
005130 IF NAMH(C)-:RPH(" 1I,20} THEN GOTO STORE
00590 GO TO lNLOOP
00600 REM -------------------------------- ~TORF [tATA ON n I SKETTE
00610 STORE: FOR X=l TO C-1
00620 WRITE ~l,USIN6 630:NAHE$(X} ,ArtftR$(X) ,CITH(X) ,STATH(X) ,7.IP~(X) ,PHONH(X)
00610 FORM 3*C 20,C 3,C S,C 9
00640 NEXT X
00650 CLOSE ~1:
00660 RETURN
00670 REH --- lNOlIlRf
00680 HIQIJI RE: OPEN ~ t : II NAME = ilia s t e r / I t II I ! NTERNAI, OIJT f N , RFlA TI VE:
00690 PRINT NEWPAGF.
00700 PRINT FJEL[lS IiAT N~ :A$(3) ,A$(1) ,A,*(2)
00710 INPUT FJFlftS HAT 0$:01 ,n?
001'20 ON 02 I3OTO ~On,Uf'l.iATr. .Ttru::TF:,F.~Wnm NONE 690
00130 fNrmm: ClOSF ~1:

00740 RETURN

3-22 SA34-0127

•

•

~
lines Description

00530-00540 These lines display a description of the job being

• performed. This is the subroutine to create the master file.

00550-00650 These lines are just like examples 1 and 2.

" 00660 This is where we return from the CREATE subroutine.

00680 This line opens the file MASTER on drive 1. The file is
opened with OUTIN , which allows both OUTPUT and
INPUT.

This is the start of the INQUIRE subroutine used to check
on a record.

00700 The prompts for operation and record number are displayed.

~ 00710 You input the action you want to perform and the record
number, if required .

00720 This is a computed GOTO. The action you want to perform
directs program control to specific line numbers.

Notice the spelling DILETE. Because DELETE is a reserved
system keyword, we can not use DELETE as a label.

00730 You close the file before returning to the MAIN MENU from
the subroutine.

•
00740 This line sends control back to the menu, at line 480.

•

~

Programming examples 3-23

Programming examples
Example 3 (continued)

00750 REK - - --------- - - - -------- --------------- --- - - -- AOh RfCORD
00760 ADD: CLOSE t1:
00770 OPEN U:"NAKF= .~sterfl,lHTF.f\HALOllTPlJT

00780 PRINT NEWPAGE
00,90 PRlNT FIF.l£tS HAT NS:AS(4)
00900 PRINT FIElllS HAT L S: KAT liS
00810 I1WUT FJ £L [IS .KAT HS: NAKF S (1) ,AMRS (J l, r. nY$ (J), Sl ArB (n ,71 f'$ (l) ,PHONE $ (1)

00820 IF HAHE$(t)=RPH(" ",~~o) THFH EH[IIHG
00830 WRJ Tf ., ,usn~(; 6:<0: HAHF S(1) ,AImh'. (I) ,rITY$(1) ,Sl ATf$ (I) Ii TF'S(1) I~'HONH(1)
00840 CLOSE ~1:
00850 fiOTO JHQUIR~
00860 REH --- UF'liA1F RfCORD
00870 UPOATE: ! REM FILE ANO OISPI.AY F.:XISHNr, OATA
OOfifiO RI:AD ~l,US}NG 630!R~r.::Ol:HAHB(j),Altnh'~(J),rt1YH1J,sTATF.$<1,,7JP$(J),PHONf$(n NfII<Ff. Anll
00~90 PR£HT FJELDS HAT H':A$(~)
009(10 Pin HT F If.HlS HAT l f : HAT It.
00910 PRINT FIElDS HAT HS: NAHf$(1) ,ADl:If<$(1) ,[ITYS (1\ ,STAlES(1) 17J P$(1) ,PHOHft (1)

00920 tNPIH FIELDS HAT H$:HAHI-:$(U ,ADOR$(1) ,C!TY$(l)'SlATt:f(1) ,ZTP$(1),PHrJHfi(1)
()O930 If HAHf$(l):;kPT$(fI ",20) lHfH EHftIHO
00940 REWRITE tl,USIHG 630: HAHES< 1) ,A[lOIU(t) ,CITYS(t) ,STftTE$(1) ,ZlP$(1) ,PHOHF.$(1)

009~0 601 0 690
00960 REM --- fHfTF f\FCORlt
00970 DII.ElE: (IflElE ;l,RF.C=Gl: MOREe 690
O()9S0 GOTO 690

3-24 SA34- 01 27

•

•

•

c

Lines

00760-00770

...

•

00780-00790

00820

00830

00840- 00850

00880- 00910

00920

00930

00940

00950

00970- 00980

Description

These lines close the file , and then in line 770, the file is
opened for the ADD routine with OUTPUT. We need to do
this in order to open the file for SEQUENTIAL access,
instead of RELATIVE. The reason for this is that, at this
point, we don't know the record number of the last record
in the file.

These lines display a description of the job being
performed. This is the routine to add a record.

If you don ' t enter any data, we return you th the MAIN
MENU instead of writing a blank record to the file. ENDINQ
is the label of line 730.

The data is written to the file by using the FORM statement
in line 630.

After we' ve added the record, we close the file and go back
to the INQUIRE routine.

The record is read from the file, and the current information
is displayed on the screen.

This line accepts any changes you make to the current
information .

If you erase the data on the screen, we return you to the
MAIN MENU rather than erasing the data in the file .

The record is rewritten with your changes.

This line sends control back to the INQUIRE routine at line
690.

This is the DELETE routine . The specified record is deleted
from the file, and control goes back to the INQUIRE routine.

Programming examples 3-25

Programming examples
Example 3 (continued)

00 90 REM ---------- ----- --- ------ --------------- PRINT·ARRAY
() () Ij REPORT OPEN tt, "NAME= ''1stpr'', HHF/i:NA! ,INPUT
o OlO LET (:1
010::>0 READ f ,mUNG JO:HAKBtLl AfIIIRS,(f) ,t IH(,STATFHC) JJPl(rl PHON[lCrJ FOF (0/./11= 'H
o 31\ lET (-(+1

0111'0 PRHH ¢/~';:" M{(!H riME (Xl:lAlhS+/J) l-I/fil<$IX):IAB(C,+4?}:fTTH("
01120 PRINT :?'55:TA8(S+~j),5TATF$\XI :TARfS+74) lfPf(X):rAa(S+S8iiPHONf$(X)

1130 l T l HltJ=LH4F1+ I
01t40 If tl tl}40 THEN GIlHIJB Wj(}

~O R Xl X
01160 R T JRN
011 0 REM ------ ---------- --- -------- f'Af:if OVfRFI (lW kOIlTHIF
OltSO OVERflOW' PRINT ~255:NEWPAGE

1.9'0 PRIN ~2,~:rAII{45};"C II S 1 (\ Ii ~ R J H F (t R MAT] 0 N L r S Til
01200 PRINT ~25S:
tJ210 PRINT 1255:
01220 p un ~:?55: TAB(S) ; "NAME" nM(c.+2l) i"STRfFl MHIRfSS" .:TAB(S+4?); "CHY" ,
01230 PRINT t?55:TAB(S+61l '''STATE'' i AB{S+74} j"ztp COOE" ITA£I(S+99) i"PHONE NIJHSER"
01~4u PR!NT ~255:
01250 LET Lt E 0
Ot26~ RF:TURN
01 ,7() REt! -- ----------~------------------------- ------ JiG FRROR
01280 PlUtH NF.WPA6E,"I/O (rror h-lS m:r.:lJrr~<1. Progru terl'IMteti!"
()1290 PRINT "If creat IlII MASTER fj Ie. ",nh'r 'FRff MqFf< illld rerull prOQrilll."
OUOO END

3-26 SA34-0127

•

..

lines

00100

00102-01040

01050 ,
01060-01080

~ 01090-01150

I 01160

01280-01290

Description

For the report , we open the file for input . This means that
we are only going to read records from the file .

This loop reads all of the records from the file into the data
arrays and counts the number of records read .

When the last record is read, control goes to line 1050 (EOF
CONTPRNT) .

The f ile is closed after the last record is read .

These lines display a message to set top of forms. The
dummy variable Q$ accepts the entry when you press the
Enter key .

You saw these lines in Examples 1 and 2 . They are used to
print the reports and control paging.

This line ends the PRINT subroutine and sends control back
to the MAIN MENU .

These lines display a message if an error occurs when you
create the file in line 520.

You have seen three different progr3ms that print the same
report . In the next chapter, we will show you another
example program, which is even more complex.

Programming examples 3-27

3-28 SA34-0127

,
J

(

I

Chapter 4. Example inventory program

Introduction

In this chapter, w e will present an exa mple inventory
program . You have studied , in Books I-VII , each of th e
statements and programming method s used in this program .
Therefore, you should find this program useful for review
and future reference .

You are not required to enter this program on your
System / 23. However, we think you will find it helpful.
Entering the program and working with it will give you
additional practice, something every beginning programmer
needs.

You can change parts of this program for your use. For
example, you may want to enter the name of your company
in line 790. You may also want to change line 880 to print
more lines on each page.

We do not expect you, at this point, to be able t o write a
program as complex as this example. We are including this
program to show you what you can do with your
System / 23 after more study and more practice, practice,
practice .

A flowchart is included for this program . Also, you will find
pages of notes describing each section of the program .

Ex ample Inven tory program 4-1

Example inventory program
Flowchart

4-2 SA34-0127

Open file .
then add
records

Check item ,
update, or
delete

Entire program

This flowchart is an overall view of the entire program . The
program offers five options, plus sign off :

o. Sign off

1. Create master inventory file

2. Add items to master file

3 . Inquire items (also update and delete)

4 . Status report- -all items

5. Status report- -zero quantity items

This program uses full screen processing. Messages will be
displayed on the screen if you enter a wrong answer. The
data stored for each item in the file includes item number,
description, unit cost, and quantity on hand .

We will show flowcharts on the next three pages that detail
the program options. As you can see from this general
flowchart, you can return to the Main Menu after each
option . The first symbol in this flow chart represents a
display of the program options.

..

•

(F'Om]
maIn
menu

..

•

Create a file or add records

This flowchart is designed for menu options 1 and 2 . It
shows what happens when you create the inventory file or
add records to the file .

The first symbol in this flow chart represents the Main
Menu . When you enter # for an item number, the program
branches back to the Main Menu .

You enter an item number, description, unit cost. and
quantity on hand . If you enter any data incorrectly, you are
given a chance to correct it.

Each item is written to a data file . If you are creating the
file with option 1, the OPEN statement will include the size
of the file .

Example Inve n to ry prog rilm 4-3

Example inventory program
Flowchart (continued)

[
FrOm]
main
menu

4-4 SA34-0127

Inquire about, update, or delete records

This flowchart is designed for menu option 3. It shows what
happens when you check on, update, or delete a record in
your file.

The first symbol represents the Main Menu . When you
enter # for an item number, the program branches back to
the Main Menu.

When you enter an item number, the file is read sequentially
until the record is found . We could have used a
key-indexed file, but we didn ' t want to interrupt the
program to run the INDEX Customer Support Function .

Records are read from the file , and the data is displayed on
your screen . If something needs to be changed, you enter
the correction, and the record is rewritten to the file .

If you want to delete the record, it is deleted from the file .

After checking on, updating, or deleting a record, you go on
to check on , update, or delete another record .

•

•

•

(
FrOm]
mam
menu

Accumulate
totals

Start a
new page

Print reports

This flowchart is designed for menu options 4 and 5. It
shows what happens when you print the inventory status
reports.

The first symbol represents the Main Menu . At the end of
the report, the program branches back to the Main Menu .

The program uses subroutines to print the headings and to
advance the paper to a new page.

Records are read from the file in sequential order. When
you reach the end of the file , you are ready to print the
totals.

The data for all items will be printed when you enter option
4. The data for only zero-quantity items will be printed
when you enter option 5 .

Exam ple inventory p rog ram 4-5

Example inventory program
Program

00010 ! * EXAMPLE INI,IENTuRY P'HIGF:AM ~
00020 ! * FOR BOOK VIr OF *
00030 ! I LEARNING SYSTEM!23 BASIC •
00040 OPTION BASE 1
OOO~O ON ERROR GOTO H:PENft Iy 00060 ! ------ ---__ _

00070 : INITIALIZATION
00080 ! ---
00090 ! --- DIMS
00100 IiI M DSPFSPf.{ 5)l.25 , INPFSH (4}lf 15 '
00110 DIM MSGFSP$(5)*10
00120 DIM OTYFSPS(4)lf15,SCRFSPS(B)114;TTlFSP$(4 1110
00130 DIM FLDNM$(Slf12,MENUS(8)*38,HSG$(19)*5°
00140 DIM STATRPT$(4)195
00150 DIM ANSSll,AP$139,DESCR$120,ITEH$*5,ITEM1$f5
00160 nlM OPTNAME$*35

4-6 SA34-0127

•

Lines

00010-00030

00040

00050

00060-00090

00100-00120

00130-00160

Description

The first three lines are used for remarks . You can change
these statements to any comments that will help you
identify the program.

OPTION BASE 1 specifies that the lowest array subscript
allowed is 1.

If an error occurs anywhere in the program, control goes to
ERREND (line 2800), and the program ends.

These lines are remark statements. They are used to
separate sections of the program. They also tell you what
the different sections do in the program.

These lines dimension the arrays that will be used for full
screen processing.

These lines dimension the data arrays and tell how long the
character variables can be.

Example inventory program 4-7

Example inventory program
Program (continued)

00170 ! --- FSP DATA
00180 DATA "10/:38/c 20,0"}"lL38}n 7.2!n"
00190 DATA "12,38,0 6,n","13;38,pic($SS,$$$,$$I.II)"
00200 DATA" a/38,c 5,0"
00210 READ MAT DSPFSP$
00220 !
00230 DATA "lO,38 f c 20,u ,n","11)38,0 71tl ,r,"
00240 DATA "12138/n 6,u ,n"," 8,38}c Sfll In"
00250 READ MAT INPFSP$
00260 !
00270 MTA "17,12,c 53"!,'18,12,c 51"!"19,24 I c 27"
00280 DATA "20 124,c 39","21,24,>c 44"
00290 READ MAT MSGFSF'$
00300 !
0(1310 DATA "12,24,c 12","12 138,n 61 1l ,0","12!54)c 8"
00320 DATA "12,63,0 6"
00330 READ HAT t1TYFSP$
00340 !
00350 MTA 1!10,24,c 34"1"11 124,c 38","12)24)c 45"
00360 DATA H13 J 24Jc 3B"}1f 8,24)[19"}1I 9l 24 l c 35"
00370 DATA" 6}24,c 18"," 3,24/c 35,h!n"
00380 READ MAT SCRFSPS
00390 !
00400 !lATA" 1}10,c 39"," L58,c ~;")" 1,64,c B"
00410 DATA" 3}18,c 4"
00420 REALI MAT lTLFEH

4-8 SA34-0127

Lines

00180-00210

00230-00250

00270-00290

00310-00330

00350-00380

00400-00420

•

Description

The DSPFSP$ array contains the fields that display th e data
in a record during INQUIRY.

The INPFSP$ array contains the fields that input data during
CREATE / ADD and INQUIRY.

The MSGFSP array contains the fields that display the
instructions and error messages at the bottom of th e
screen .

The QTYFSP$ array contains the fields that rewrite the
quantity line during UPDATE.

The SCRFSP$ array displays the prompts for the MAIN
MENU, INQUIRY, and ADD / CREATE.

The TTLFSP$ array displays the headings at the top of the
screen .

Example In ve nt o ry prog ram 4-9

Example inventory program
Program (continued)

00430 ! ----.--.---------------~---.--- - --_. ------ AI~PAt n~TA
0044(; DATA "Descrlption'" II U;'iJ. Cost,' "Ltl or. Hand:'
004:;0 PATA "Total Vaiue:","ItelT. I.umbel;'
00460 REALI MAT FLDfJMl
00470 !
00480 BATA 2. ADD ITEMS TO MASTER FILE
00490 ~ATA 3. iNOUIPE ITEMS (+ UPDATE & uELETEI
00500 DATA 4. STATUS REPORT - rlL ITEM~
00510 DATA 5. STATUS REPORT - ZEF'D fHJANTlP FEMS
00520 DATA 0, SIGN OFF /'1. * SREATE MAqEF: ~ lJtJHJTORf f :LE it··

00530 DATA "Options a'J.3\!able:",MAIN MENU
00:;·10 READ MAT MENU*'
00550 !
00560 LET MS6$ill="Enter optlDn numbpl
00570 LET I'!SG$(2)="Enter; Ite!H N1lmbe" (or ~ to rehrrl I

00:580 LET MSG$(2)=MSG$(2ib"tc; MtllN MEIJUi"
00590 LET MSG$(.3)=PPH(" "!12J&"Itescr' o ti(!f of item"
00600 LET MSGt(41="Unlt Cost"
00610 LET MSf:i$(S)::"Guant It/' on Hand"
00620 LET MSG$i~)="Oty 'D Hand - Enter reCEIved qtv 141 't'
00.530 LET MSG$(7)=RPH(" /I 14H."sold qti i-) or 0 If "0 ch"nge'
00640 LET MSG$(8)=/lMay change:"
00650 LET MSG~(9) =" Is e'JEryth i n<; okay""
00660 LET 11SG$W)):: lI Is Iteff! ok a i<)I'
00670 LET MSGH11)="" := Ie:."
00680 LEl MSG$(12)="N :: No/l
00690 LfT "56$(13)="0 = Delete Item"
00700 LET M56$·(14)="H INVALID [NTkt - REEflTE~: nil
00710 LET MSG$(1S)="Fle!d must be iii I number;/I
00720 LET MSG$(16)="Heb.1 tHy ma~'t's (Hi liP Hand! 0 or '199("y"

00730 LET MSG~\l7)="UnJt Cost is (0 c'(} 99Q9.99"
00740 LET MSG$(18)="0 ITEM NOT c-OUHlt Hi"

00~50 LET MSGS(19)="Enter new Item Number (or I to leturn
00760 LET r1SG$(19)=MSGH19)b to MAW hENU)"

4·10 SA34-01 27

lines

00440-00460

00480-00540

00560-00760

•

Description

The FLDNM $ array contains the prompts, which are
displayed by using the SCRFSP$ fields.

The MENU $ array contains the list of menu options, which
are displayed by using the SCRFSP$ fields .

The MSG $ array contains all of the instructions and error
messages, which are displayed by using the MSGFSP$
fields.

Notice that we are assigning values to the MSG $ array by
using LET statements. The LET statements allow easy
reference when tracing a program listing.

All of the arrays prior to MSG $ were assigned values by
using READ / DATA statements . Because we are using BASE
1 in our OPTION statement, the first element in each of
these arrays has a subscript of (1) .

Notice lines 590 and 630. We are using the RPT$ function,
which repeats the blank string" " either 12 or 14 times .
We use this technique to line up the messages on the
screen.

Also notice that several lines in this section contain the &
sign . Remember that th is is how you join two strings
together.

Exa mple invent ory program 4-11

Example inventory program
Program (continued)

00770 !
00780 LET STATRPH(1)="+"~RF'T$("-",93)~"+"
00790 LET STATRPH(Z)="I"M<F'H(" ",15)~"kl 0 R l. D 101 I [I E HAN U F ACT U kIN G CO.} L T D."&RF'H(" ",15H"I"
00800 LET STATF:PT$(3)=STATRPH 1)

00810 LET STATRPT$(3)(15:15)="+"
00820 LET STATRPH(3)(3S:38)="+"
00830 LET STATRPH(3)(S2:S2)="t"
00840 LET STATRPT$(3)(Wb4)="+"
00850 LET STATRPT$(4)="1 Item Nu.ber I Description llty on Hand I Unit Cos t I Total Value of On-Hand Items I"
00860 ! ------------------ ---------------------- SCALAF: nATA
00870 LET AF'$="Appl ication: EXAMPLE INVENTORY PROGRAM"
00880 LET PAGELEN=5
00890 ! ------------------------------------ FORM STATEMENTS
00900 DATEFORM: FORM"I [late: ",e 8,POS 35}C 35}POS 84/'Paqe: "}N 3}" I"
00910 FlLEFORM: FORM C S}C 20}N 7.2}N S}N 11.2
00920 RPTFORi:: FOkM "1" }POS B,C 5} X 4}C 20 }POS 45,PIC<ZZ ,ZB) } X 3}PIC(U } H~ .~~) }POS 80 }F'IC($iS} HS} $$~ .:~) }" I"
00930 TOTFORM: FORM "I"}POS 27}"TOTALS"}POS 4LPIC(ZZ}ZZZ,ZZ~)}POS 76}F'IC(H$}$H}$H}$$L~:)}" I"
00940 ! ------ --------------------- UNIVERSAL EXIT STATEMENT
00950 ERREX: EXIT EOF ERREND} CONV ERREND} SOFLOW ERREND

4-12 SA34-0 127

..

Lines

00780-00850

00870

00880

00900-00930

00950

Description

The STATRPT$ array contains some lines that are printed
on the status reports .

Notice that we are using the &: sign again . Also, look at
lines 790 and 850. These statements have been printed on
more than one line, because the statements are longer than
80 characters.

AP$ is the name of the application . The name is displayed
by using the TTLFSP$ fields .

PAGELEN is the number of lines printed on a report page.
You may want to change this number.

Lines 900, 920, and 930 are FORM statements that are
used to print the reports . The first word on each of these
lines is a statement label.

Line 910 (FILEFORM) is used to read data from and write
data to the ITEM file.

This EXIT statement contains error conditions that should
never happen . If any of them does happen, control goes to
line 2800.

Example inve ntory p rO~Fam 4-13

Example inventory program
Program (continued)

00960 I ---

00970 BEGIN H:OCESSING - BHING UP MAIN MErJIj
00980 ---
00990 START: PRINT NEWPAGE
01000 PRINT FIELDS nAT T1LFSP$~iiPSj"Date:" DAiH·"Job:1/
01010 PRINT FIELDS MAT SCRFSPt:MAT MENUS
01020 PRlNT FIELDS MSGFSP'(l):MSG$(l)
01030 INPUT FI£LDS "17!32,n Lh nl/:OPT C!3rH.' 10~,j

01040 IF OPT)=O AND OPT(6 THEN 1070
01(51) ! ERROR
01060 GOTO 1030
01070 IF OPT<2 THEN LET OPTNAMEi=MENUHOP-1 +5)(4: 38) ELSE Lf.l OPTrH1MH=MENU$ (OPT--l H 4 ~Ql
01080 ON OPT GO TO N£W,AOrt;WO,REPORT!REPORT NONE FIN
01090 ~ ---
01100 ! AD)) OR CREATE - MENU OPTIONS 1 ANO 2
01110 ! ---
01120 NEW: OPEN 01:"NAME= item.master!/I,SIlE= 512,RECL= 6j",INTERNAL,OUTPUT
01130 GOTO ADI
01140 ADD: OPEN 01:"NAME= ifem.ffiaster",INTERNAL.OUTPUT
OllSO ! -------------------------------- PUT UP INPUT SCREEN
01160 AD1: F'RINl FIELDS MAT SCRFSPf·:t1AT FLItNM$!"",""·OPTi~AME:$
01170 ADlNEXT: PRINT FIELDS MAT nWFSP'$:I/I/!(l,O,I/~"

01180 THERE: PRINT FIELDS MAT MSGFSPS:MSGI(2l,MSGS(3),HSG$i4),MSG$(S),"1/ DIRECTIONS
01190 LET INPFSF'H4)(15:U)::"c" ! PUT CURSOF: IN ITEMS FIELB

4-14 SA34-0127

Lines

00990-01020

01030

01040-01070

01080

01120-01140

01160-01190

Description

These lines clear the screen and display the Main Menu .

Th is line enters the opt ion number, beginning in line 17,
column 33. Notice that the input field is highlighted .

These lines test OPT to see if it is a valid entry for the
option. If the entry is invalid , return to line 1030. Then
reenter the option number.

If OPT is a valid entry, OPTNAME$ becomes the job title .
The job title is found in t he MENU $ array.

Notice that we use character positions in line 1070 to find
the correct title .

Using a computed ON-GOTO, we direct program control to
the correct section for each option.

These lines open the file ITEM . MASTER. Two different
statements are required, because the OPEN statement
differs for old and new files .

These lines display the prompts, as well as a default value
for each entry. Then the cursor is placed in the first field ,
where you enter the item number.

Exam pl e inventory prog ram 4-15

Example inventory program
Program (continued)

01200 ! --- INPUT DATA
01210 HERE: INPUT FIELDS MAT INPFSP$:DESCR'/CUST,QTY/ITEM' CONU INPCONV
01220 IF 11'£M$(1: 1)="~" THU! ADENf! ! END OF INPUT
01230 IF [OST)=O AND C05T(10000 THEN TO
01240 ! ERROR IN COST
01250 PRIN1 FIELDS MAT MSGFSP$:HSGi(1'l)/MSGHl7)i""!I",""
01260 LET ClJRSPAF:M=2
01270 GOSUl! CURSPOS
01280 GO TO H£F:E
01290 TO: IF GTY}=O AND OTY(100000 THEN AD2
01300 ! ERROR IN QUANTITY
OBI0 PRINT FIELDS MAT MSGFSP$:MSG$(14) ,M%$(16) ,""! "",""
01320 LET CURSPAF:M=3
01330 GOSUB CUF:SPOS
01340 GOTO HERE
01350 ! ------------------------------------- EVERYTHING OK'
01360 AD2: PRINT FIELDS DSPFSP$(4):GTY*COST
01370 PRINT FIELDS MAT MSGFSP$:r1SG$(9) ,"",M%$(11) !MSG$(12) ;""
01380 INPUT FIEL[IS "17! 33 1 C L h! n" : ANS.
01390 ON POS ("YyNn",ANS'd) GO TO WF:ITEIT ,WRlTEILTHERLTHEF:E N@E 1400
01400 ! ERROR
01410 GOTO 1380
01420 ! --------------------------------------- WRITE RECORD
01430 WRITEIT: WRITE ~IIUSrNG FILEFORM:ITEM'/DESCR',COST,QfY!QTY*COST EXIT ERREX
01440 PRINT FlEUlS SCRFSPH4) :FL[tNMt:(4) ! ERASE re.!TAl !)ALUE
01450 GOTO AD1NEXT
01160 ! ---------------------------- END OF ADD!CREATl lNPUT
01470 ABEND: CLOSE ~1:

01480 GO TO START

4-16 SA34-0127

Lines

01210

01220-01280

01290-01340

01360-01370

01380

01390

f 01400-01410

r
~

i 01430-01440

01470-01480

Description

This line inputs each fi eld of dat a. If a conversion error
occurs, go to statement INPCONV (line 2620) .

If you enter an item number of #, go to statement ADEND
(line 1470) . If the cost is incorrect, display an error
message, position the cursor, and reenter . Otherwise, go on
to check the quantity.

If the quantity is entered correctly, go to statement AD2
(line 1360). If not, display an error message, place the
cursor in the quantity field , and reenter.

Compute and display the total value for the item.

Ask if everything is okay, and input the answer. This allows
you to check your entries .

If everything is okay, go to statement WRITEIT (line 1430),
and write the data to the file . If it's not okay, go to THERE
(line 1180) so everything can be reentered .

The question was answered incorrectly, so answer the
question again .

Write the data to the file. Go back to statement AD1 NEXT
(line 1170), and enter another time.

You entered an item number of # , which indicates the end
of data entry. Close the file and return to the Main Menu
(line 990).

Example Inve nto ry p rog ram 4-17

Example inventory program
Program (continued)

01490 ! ----------------.---------- --------------------------
01~OO ! INQUIRE - OPTION 3
01~10 ! ------------------------------- ---- --- ------- ---
01520 nm: OPEN ~1: "NAi'lE= i telll.IDdster") INTfIi'NAL,OUTIN
01530 IN1: PRINT FIEUtS MAT SCRFSP$:fllf,fll',""/""/FLDNM$(5) f!",'lIf,OPTNAMEf INITIA Hi
01540 PRINT FIEl[tS MAT MSGFSF'$~MSG$(2)i""ilfll/'''/f!f! ! DIRr.CTIONS
01550 PRINT FIELItS INPFSP$(4l: "~" ! [I[FAULT
01560 ! -------------------- GET ITEM NUMBEp AND ~I~P RECORt
01570 INOINP: INPUT FIELDS INPFSP$(4):ITEM1!
01580 IF ITEM1'!1:!}="I" THEh INrND ! END or INQUIRY
01590 ! SEARCH FILE FOF: I H.1t tWMBER
01600 ITEST: RESTORE ~1: ! START SEARCH AT BEGINNING OF FILE
01610 READ ~1,USING FILEFOF:M~ITEM$/[lESCF:~.COST!aTY)TOTAL EOF NF:£I.:R
01620 IF ITEMS>< ITEMU THEN 1610
01630 ! ----------------------- DISPLAY DATA FROM FOUND ITEM
01640 IN2: PRINT FIELDS MAT SCRFSP$:MAT FLIINM$! PROf'1PTS
01650 PRINT FIELItS MAT DSF'FSP$:DESCR$!COST10TY,TOTAL,lTE:M$
01660 ! --- ITEM OK~
01670 PRINT FIELDS MAT HSOFSP$:t~G$(10),"",MSG$(11\,MSG'112)IMSG'(lJ) ! ~IRECTIONS
01680 INPUT FIELDS "17,27 ,e l,h 1 n"'ANS$
01690 ON POS ("YyNnDd",ANS',l) GOTO IN1,IN1!lN3,IN3 I INDEL,INDEL NONE 1700
01700 ! ERR OF:
01710 GOrO 1680
01720 ! --- JUETE ITEM
01730 INDEL: DELETE ~1:
01740 GOTO IN1

4-18 SA34-0127

•

\ .

Lines

01520

01530-01540

0 1570

01580

01600-01620

01640-01670

01680

01690

01700-01710

01730-01740

Description

Open the file for INQUIRY. Since the file should already
exist, don't state RECl or SIZE.

Display the prompts and instructions for INQUIRY.

Enter an item number.

If the record number is #, the INQUIRY is finished . Go to
statement INEND (line 2060) .

Read the file sequentially until you find the correct item
number. We could find the record quicker with a
key-indexed file, but we didn't want to run the INDEX
Customer Support Function .

Display the data and ask if everything is okay.

Input the answer.

If everything is okay, go to statement IN 1 (line 1530) to ask
for another item. If not, go to IN3 (line 1760) to update
item. If you want to delete the record, go to I N DEL (line
1730).

The question was answered incorrectly, so answer the
question again .

Delete the item (record just read). and go back for the next
item.

Exampl e inventory program 4-19

Example inventory program
Program (continued)

01750 ! -- CHAN&E ITEM
01760 1N3: PRINT FIELDS MAT (lTYFSP$:" (luantity:",O}"On Haod:",OTY ! REW,,:ITE OUilNTITY LINE FOR INPUT
01770 PRINT FIELDS MAT SG~SP$:MSG$(8),MS&$(3),MSG'(4J,MSG$(6)!MSG$(7) ! DIRECTIONS
01780 LET CUF:SPARM=l
01190 GOSUa CURSf'OS ! POSllION CUF:SOR TO 1ST FIELD
01800 HEREIN: INPUT FIELDS MT INPFSP$: [IESCRS ,COST, NEWlHY CONV INPCONV
"1810 IF COST}=O AND COST<10000 THEN TESHlIN
01820 ! EF:ROR IN COST
01830 PRINT FIELDS MAT MSGFSP':MSG$(14) ,MSG$(17) ,"","",""
01840 LET CUF:SPARM=2
01850 GOSUB CURSPOS
01860 GOTO HH:EIN
01870 TESTOIN: IF OTYtNEWQTY)=O AND QTYtNEWQ1Y(100000 THEN IN4
01880 ! ERROR IN QUANTI TY
01890 PRINT FIEL[tS hAT MSGFSP$:MSG$(14),.MSG$(16),"","",""
01900 LET CURSPARM=3
01910 GOSUa CURSPOS
01920 GOTO HEREIN
01930 ! ------------------------------ ------- EVERYTHING OK'
01940 IN4: LET QTY=OTYtNEWOTY
01950 PRINT FIELDS SCRFSP$(3) :FLftNM$(3) ! REWRITE PROMPT
01960 PRINT FIELBS MAT DSPFSP$:[tESCR$,COST,OTY,COST*OTY
01970 PRINT FIEL[tS MAT MSGFS~'$:MSG$(9), IOU ,MSG$(11) ,MSG$(12), "" ! DIRECTIONS
01980 INPUT FIELDS "17,33,c l,h, n": ANS$
01990 ON POS ("YyNn",ANS$,I) GOTO m~JRlTE,INWRlTE,1N3,IN:S NONE 2000
02000 ! ERROR
02010 Goro 1980
02020 ! ------------------ ------------- WRITE CHANGED R!:CORD
02030 INWRlTE: REWRITE ~l,USING FILEFORM: IfEM$,DESCR$,COST ,OTY ,QrY*COST EXIT ERF:EX
02040 GOTO IN1
02050 ! --------------.. ----------------------' EN[I OF INQUIRY
02060 HIENIt: CLOSE H:
02070 GOTO START

4·20 SA34-01 27

Lines

01760-01770

01780-01800

01810

01820-01860

01870

01890-01920

01940-01970

01980

01990

02000-02010

02030-02040

02060-02070

Description

Display prompts and instructions f or UPDATE.

Position the cursor and enter new data for the item.

If the cost is okay, go on to test the quantity(line 1870).

If the cost is incorrect display an error message . Place the
cursor in the cost field and reenter . HEREIN (line 1800). is
where you go to reenter your data .

Test the new quantity . If it's okay, go to statement IN4 (line
1940).

The new quantity is too large or too small. Display an error
message, and enter new data .

Display the new data and total value . Ask if everything is
okay.

Answer the question.

If everything is okay, go to statement INWRITE (line 2030) .
If not, go to IN3 (line 1760) to correct the information .

The question was answered incorrectly, so answer the
question again.

Rewrite the record with the new data, and go back for the
next item.

You entered a record number of # , which indicates the end
of INQUIRY. Close the file and return to the Main Menu .

Example inventory program 4-21

Example inventory program
Program (continued)

02080 ! -.------------------- --------- --------- - -- --
02090 ! REPuRTS - OPTIONS 4 AND 5
02100 ! --------------.------------ -- -.------.-~--
02110 REPOF:T: f'PfNT NEWPAGE "!:;epo" iTI FfogrP'·.s - P e1 e H~ to'
i)21:20 lET TQTQH=O
021~O LEr TorAMT=O
021>10 LlT PAGENO=(i
(!~150 OPEN 11: "NAME= Item .mas tel''' ,H1TE~:NAL INf/.lT
'J:216 i1 ::i1i.:iUB FAI.lE.HEf,n
02170 t --------- --.---- kEA[tiLE A~l PPIIT r~IAIL lIhE~
02180 LOOP: FOR L!NENO 1 TO FA6~L~~
02190 READ 11,USING fILlFORH'ITEM$ DESCPf,rOS1,QTY T~TAL EO~ P~TEID
02200 IF OPT=5 AND UTY)'O fHEN ~190
02210 PRINT 1255,USING RPTFORM'lTEMS,DEsrPf OTY COSr,TOTAf
02220 LET TOTOTY=TOTQT~+QTY
0223(i LET TOTAr'T=TOT~iM"I+TO({jl

02240 MEXT LINENO
02250 bOSUB PAGEtiKIP
02260 Bora LOtJP
02270 !----.. --------.. ------- .. END O~ r\EPQ~:1 .. F'RHI TOi Al.S
02280 RF'rEND: IF UNENO)f'i~GELEN-2 THEN GOSIIB F'AGESI',IP
02290 IF LINENO::1 TI-IEN 2330
02300 ! NOT STA~:T OF NEW F'AG£ sa f'F:INT DIVIDING LIHES
02310 PRINT ~255:"I",TAP.(41!;"----------II,:TAPi77);~:!"'T$("- ,17);" I"

02320 LET LIN£NO=LINENO+l
023~~O PUNT ~2C5'IT')TAB(95)"I;1 ! SHP A LINE
O~340 PP[~T l~c5/USING fOTFOR ,TGTDT),TJIAMf
02350 [ET LINENO=LINENO+2
02360 GO'3UB F'AGHJ[I
,::',70 CLOSE ~1:

Ol3tlO GOTD START

4·22 SA34-0127

Lines

02110

02120-02140

02150

02160

02180-02240

02250-02260

02280-02360

02370-02380

Description

Display a message before starting reports. Notice that this
statement is not full screen processing .

Initialize the totals to O.

Open the file for input. In this section of the program you
will never write to the file, you will just read from it .

Go to the subroutine (line 2510) that prints the heading on
your reports .

This loop reads the file and prints data for the items we
want. If you choose option 5, only zero-quantity items will
be printed. The totals are accumulated for the report on
both options, but they' ll always be zero for option 5.

When the loop ends, advance the paper to a new page, and
start the loop over again. Continue the loop until you reach
the end of the file . Notice the EOF RPTEND, which sends
control to line 2280 when you reach the end of the file.

After you reach the end of the file, print the totals line. If
there is not enough room on the page, skip to the next
page. Skip a line between the items and the totals.

Close the file and return to the Main Menu line (990) .

Example inventory program 4-23

Example inventory program
Program (continued)

02390 f

02400 ! S RKOUTINES USED IN REPORTS
02410 !
02420 PAGEt-iD' FOP I=LINENO TO f'flGEU:.1oi
02430 PF:INT ;255:"1" 1TAS(s,sI' ." ! SUF' A LINE
02440 HEX I •
024~O PRINT ;255'STATRPT$(1)
>') '40) RETliF:N
02470 t

02480 PAGESKIP: GOSUB ~'fIGtNII
0249() PRINT ;255: NEVIPAGE

02510 PAGEHEAu LET PAGENu=PHGEND+l
02520 PRINT ;255.STATRpT$(11.TAB!11;STATRPTS.21
(\.:;'30 PRINT ;;';55: I" iHB!95i;"I" ! ~.t\F· A LINt
J~540 PHIN T ;255} USING [IMEFORM. DATB }OPTNAi1Ei ,PAGENO
O?S50 PRINT ;255 STATRPT$(31)TAB(1);STATRPT$(4)
02560 PRINT ;255:STATPPT$(3)
02570 LET LINEHO=l
02580 RE! UF:N

4·24 SA34-0127

Lines

02420-02460

02480-02580

02510-02580

02570

02580

Description

PAGEND is a subroutine that skips bl ank lines between the
totals line and the bottom line of th e report page. Thi s
subroutine keeps all the pages the same size.

PAGESKIP is a subroutine that ends the current page, by
using the PAGEND subroutine lines (2420-2460). Then th e
page advances, and the headings are printed .

PAGEHEAD is a subroutine that prints the headings for a
report . This subroutine is actually a part of th e PAGESKIP
subroutine. PAGEHEAD prints the headings w ithout
skipping a page first .

You set LlNENO=1 , in case a page is skipped immediately
before printing the totals.

Notice that PAGESKIP and PAGEHEAD use the same
RETURN.

Exa mple In ve nt o ry [) rO(l'<1I11 4-25

Example inventory program
Program (continued)

02590 ----.----------.------------------------------------.. --.-
026{)O ERROR ACTfONS
02610 -----------~--------.------------------- ------------
02620 I NPCONIJ : LET CtJF:SPARM=CNT + 1
02630 PRINT nELIIS MAT MSGFSP$:hSGf(14! 11SG$(!'5!/"I1,","!"11
02640 GOSUB CURSF'OS
02650 F:El RY
02660 !
02670 NRERR: PRINT FIELDS MAT MSGFSf'$:MSG$(18),HSG$(19};"11 "11,."11
fl2680 GOrO INOINF'
02690
02700 ! SUBROUTINE USED FOR ERF:DF: ACtIONS
02710 !
02720 CURSPOS: FOr: 1=1 TO .d

02730 IF I=CURSPAF:M THEN LU INf'fSP$'l)(1i:t3,""c" tLSE LET ItWfSH;{l)'!..i:Bl- 1I
,

02740 NEXT I
()2750 RETURN
02~,t60 _________________ ~ .. ____ ._ .. ___________ J ______________ • • _-

02770 END OF PROGRAM
02780 ------------------------- ---------------------.-----
02790 --------------------------------------- ABNORMAL END
(2800 ER~:ENn: PRINT NEWPAGE, "EUF ~r I/O error ()ccurfed."
02810 PRINT "Program terminated."
0282iJ STOP
()2830 ! -----.------------------.-------- --.-------- NOPI1AL END
02840 FIN: PRUlT NEt4PAGL"Proglam ended normall!."
02850 EHli

4-26 SA34-0127

Lines

02620-02650

... "' ,

02670-02680

02720-02750

02790-02820

02830-02850

r

Description

If there is a conversion error on ADD or INQUIRE, displ.ay
an error message, position the cursor to the field with the
error, and return to the statement where the error occurred .

If we can ' t find the desired record during INQUIRY, we
display an error message and return to INQUIRY to reenter.

This subroutine repositions the cursor to the input field
where an error occurs .

The program ends here and a message is displayed if you
have an IOERR. (Remember the ON ERROR in line 50.)

The program ends hereon normal program termination
(when you select option 0 from the menu) .

Congratulations! You have completed your course in
Learning System/23 BASIC.

To learn more about System/23 BASIC, you can refer to
your BASIC Lanuage Reference manual.

Exa mple inventory prog ram 4-27

.,

4-28 SA34-01 27

Index

< less than 11 .3-4
<>/<> not equal to 11 .3-4
<; or ; < less than or equal to 11 .3-4
> greater than 11.3-4
>; or ; > greater than or equal to 11.3-4
? prompt 11.1 -5
; equal to 11.3-4

accessing a file VI.4-8
accessing records directly V1.3 -3
action code 11.5-5
adding 1.4-2
adding ELSE to IF-THEN 11.3-13
adding statements to programs 1.3-2
advancing to a new page 111.2-7
array

definition I V.1-2
dimensioning (DIM statement) IV .1-4
displaying (PRINT MAT) IV.4-3
elements of I V.1-2
indicating startinQ position of (OPTION) IV .1-3
initial value of elements in IV .1-5,IV.2-11
naming IV.1-2,IV.2-2
one-dimensional arrays IV.1-2
printing an (PRINT # 255 : MAT) IV.4-3
specifying number of elements in IV.1-4
subscripted variables IV .1-2
two-dimensional arrays I V.3:2
used in programs IV.1-7

assigning line numbers
automatically (using AUTO) 1.2-7
line by line 1.2-5

assigning more than one value 11 .1-6
assigning values from a file V1.1-8
assigning values from the keyboard

character val ues 11.1 -4
DISPLAY file V1.1 -8
INTERNAL files - relative access V 1.3-6
INTERNAL files - sequential access V1.2-9
more than one value 11.1-6
numeric values 11.1-2, 11 .1-4
using I NPUT statement 11.1 -3
using LET statement 11.1 -2

assign ing values to arrays (see MAT assignment)
assigning va lues to variables 1.5-4

..

AUTO command
entering a data file V 1.1 -2
entering a program 1.2-2
stopping the AUTO operat ion 1.2-7 , 1.2-9
var iations of (see BASIC Language Ref)

BASE 0 and OPTION STATEMENT IV.1-3
BASE 1 and OPTION sta tement IV .1-3
BASIC charac ter set (see BASIC Language Ref)
BELL (see PRINT BELL)
branching

conditional 11 .3-2
IF -THEN 11.3-4
IF -THEN / ELSE 11.3-3
labels 11 .2-5
test conditions 11 .3-4
unconditional 11 .3 -2
used with 11.3-2

ca lling subroutines V .1-2
changing a l ine in a program
changing a program

111.3-7

add i ng a statement
changing line numbers
deleting a statement
RENUM command
replacing a statement

1.3-6
1.3-2

1.3-9
1.3-2

1.3-11
changing a record in a file V1.4 -11
changing order of execution 11.2-2

using GOSUB /RETURN V .1-2
using GOTO 11.2-2
using labels w ith GOTO 11 .2-5
using ON GOSUB V.2-8
using ON GOTO V .2-3

character
definition 1.1-2

character arrays
dimensioning (using DIM statement) IV .2-4
elements of IV .2-2
naming 1.2-2
starting posit ion of elements (OPTION) V.2-3
subscripts IV .2-2

character str ings
dimensioning (using DIM statement) IV .2-4
elements of IV.2 -2
naming IV .2-2

Index X-1

starting position of elements (OPTION) V .2-3
subscripts IV.2-2

character strings
joining two strings with & V.3-9
maximum number of characters (default) IV.2-12
quotation marks used with I V .2-6
spaces within IV .2-6
specifying character positions V .3-9
specifying length of in arrays IV .2-5, IV .3-6

character variables
default dimension value of IV .2-9
definition 1.5-6
dimensioning IV.2-4
internal constants 1.5-8
maximum length of IV.2-9
string overflow in IV.2-8
using $ with 1.5-6

CLEAR ALL V 1.6-5
CLEAR command 1.2-2, V 1.1-3
clearing the work area 1.2-2, 1.6-4
CLOSE statement V 1.4-16
closing an open file (CLOSE) V1.4-16
CMD key 1.3-4

V .3-9
combining numbers and words 1.1-7
command keys 1.3-4
commas 11.1-10
computed Go.SUB V .2-9
computed GOTO V .2-3
conditional branches 11.3-2
conditional tests 11 .3-4
continuous loops 11.4-3
controlling displayed/printed data

FORM C 111.3-4
FORM N 111.3-2
FORM PIC
FORM pas

111.3-6
111.3-13

FORM SKIP 111.3-15
copying data into a file V1.2-7
copying data into relative record file V1.3-4
creating a data file V1.1-3
creating an index file

data files V 1.5-4
workfile V1.5-10

X-2 SA34-0127

data
formatting 111.3-13
positioning data for display 111.3-15

DATA command V1.1-3
data file

copying data into V1.1-7
creating within a running program V1.1 -5
entering into a work area V1.1-5
file reference number V1.1-6
fi le-id V 1.1-6
naming a V1.1 -4
saving a V1.1-4

data file/program file VI .1-1
DATA statement 11.5-2

assigning values using 11.5-2
character values in 11.5-6
error 0054 11.5-4
location in program
order of DATA val ues
RESTOR E statement
RESTOR E statement

11 .5-3
11 .5-8

11.3-8
11 .5-8

using more values than variables 11.5-4
using strings with 11.5-6
using too few values 11 .5-4

deactivating a file (CLOSE statement) V1.4-16
DEF statement V1.3-7
DEF/LET/FNEND statement V.3-9
defining a function (DEF statement) V1.3-7
defining data within V11.1-3

field definition V11.1-4
underlining in full screen processing V 11.1-1 0
using multiple input fields V11.1-6

defining the location of data V11.1-3
DEL command 1.3-9
DELETE statement V1.4-15
DELETE/KEY= statement V1.5-19
deleting a record from a data file V1.4-15
deleting a statement

line by line 1.3-2
multiple lines 1.3-10

device address 1.6-3
DIM statement

including numeric and character arrays IV .2-4
specifying length of character string IV .2-4
used with FOR/NEXT loop IV.2-11
used with FORM statement IV.2-6

•

. •

used with one dimensional arrays IV .1-4
used with two dimensional arrays IV.3-3
with character arrays IV .2-2
with numeric arrays I V .1-4

DIR command 1.6-4, V1.1 -5
direct or relat ive access V 1.3-2
directing the GOTO statement 11.2-5
display

listing the contents of V1.1 -7
loading a V1.1-7
opening a V1.1-6
saving a copy of V1.1-7

displaying an entire array IV A-2
displaying data 111 .3-2

one line of data V11.1 -2
several lines of data V11.1 -7
using full screen processing V11.1-9

displaying numbers 1.1-2
displaying words and numbers 1.1-6
displaying/printing character strings 111 .3-4
displaying/printing numbers 111 .3-2

ivision IA-3

NOREC V1.4-18
SOFLOW VIA-18

error 0054 11.5-4
errors/recovering from 11.1-9
Example address programs

arrays V 11.3-2
example 1 V11.3-4
example 2 VII .3-13
example 3 VII.3-16
file V11.3-12
menu V 11 .3-16
prompts V 11 .3-2
report V 11 .3-3

example inventory program
flowchart of V IIA-2
line by line description of VI 1.4-7

executing a program 1.2-3
exiting from a subroutine V .l-l

nesti ng subroutines V.1 -8
exponentiation IA-4
exponents 1.4-4
expressions

definition IA-6
order of oerations within IA-6

elements EXTERNAL parameter (see OPEN)
definitions IV.1-4
setting value of IV.1-5
specifying a number in an array IV.l-4
start position in arrays IV.1 -3

EN D statement 1.2-3
ending a program

using END 11.3-15
using STOP 11 .3-15

endi ng subrouti nes V 1.2-4
enter key 1.1-4
entering a display file

CLEAR DATA and SAVE Vl.l-ll
OPENstatementandPRINT Vl.l-ll

entering a statement 1.1-4
entering line numbers 1.2-5
entering something wrong 11.1-9
.ntering values to program 11 .1-2
error codes 11.1-9
error conditions

CONV VIA-18
EOF VIA-18
IOERR V1.4-18

feature printer
opening the 11.1-4
printing with the 111.1-5

field
definition (full screen processing) Vi1.1-3
definition (in a data file) V 1.2-2

field advance key V 11.1-6
fields V1.2-2
file 1.6-3
file id (see OPEN)

file name 1.6-3
file names

longer than eight characters VI.1-4
number of characters in VI.l-4
simple V1.1-4

file reference number V 1.1 -6
File sharing

Closing an open file VI .6-9
how to determine V 1.6-3
how to specify V1.6-2
what to do if busy V1.6-5

Index X-3

file-id V1.1-6
filename (see OPEN)
files V1.2-2
flashing status line 1.1-5
flowchart

defin i tion V 11.2-1
example VII.2-4
symbols VI 1.2-3

flowchart of example program
create a file or add records VII.4-3
ent.ire program VI 1.4-2
general description of program VII .4-1, VII.4-7
inquire about, update, or delete record 11.4-4
print repor t V 11.4-5

flowcharting a program
going from a flowchart to a program 1.2-8
organizing parts of a problem V11.2-2
symbols VI 1.2-3

flowcharting template vi
FOR statement 11.4-6
FOR-NEXT statements 11.4-6
FOR/NEXT loop

using subscripts and arrays with IV.1-8
FORM C 111 .3-4
form n statement 111.3-2
FORM statement

FORM C 111.3-4
FORM N 111.3-2
FORM N n,n 111.3-2
FORM PIC 111.3-6
FORM PIC IV .3-7
FORM SKIP 111.3-15
FORM X 111.3-14
used with PRINT USING 111.3-2

formatting data output on printer 111.3-15
formatting output on the screen or print 111.1-2
formatting strings 1.1 -8
FREE command V1.1-6
full screen processing

field definition V ~ 1.1-3
INPUT FIELDS V11.1-5
inputting data V 11.1-6
PRINT FIELDS V11.1-3
defining V.3-7, V.3-10
system V .3-2

X-4 SA34-0127

GO (line number) 11 .1-10
GO END 11.1 -9
going bach to the beginning of a file V 1.4-3
GOSUB/RETURN V.1-2
GOTO statement 11 .2-2

identifying a file on diskette V.1 -6
IF-THEN

addi ng a statement to 11.3-10
adding ELSE to 11.3-13
d iscussion of 11 .3-4
test conditions using 11.3-4
using STOP with 11.3-15

in a specific area V 11.1 -5
from a specific area V 11.1-5

including dollar signs in data (PIC($)) 111.3-10
completing the OPTION MENU V 1.5-7
Customer Support Function diskette V 1.5-6
duplicate key count V1.5-12
key totals V 1.5-12
OPEN/KFNAME;/key; statement V1.5-15

INDEX program V 1.5-6
master fi Ie V 1.5-8

initiali zing counters (see FOR/NEXT)
initializing variables 11.4-2

INPUT FIELDS V11.1 -5
INPUT MAT IV.1-5,IV.4-10
INPUT parameter (see OPEN)
INPUT statement

with character variables 11.1 -4
with multiple variables 11.1-7
with numeric variables 11 .1-3

inputting data
(see also INPUT)
(see also LET READ/DATA)
(see also READ)
entering data from the keyboard V11.2-12
making data part of the program V 11 .2-12
reading data from a record I/O file V11.2-13
using prompts V11.2-12

inputting data to a program
character variables 11 .1-4
numeric variables 11 .1-3
using the ? prompt 11.1-5

1

1

..

..

inputting data
from a specific area V11.1-5

into a specific area V 11.1-9

one line of data V11.1-2
several lines of data V11.1-7
using full screen processing V11.1 -9

inputting data within a program Vl.l-l0
inserting a I ine or statement 1.3-6

internal constants 1.5-8
internal files

assigning values from a file V 1.2-9

copying data into V1.2-7

creating a file VI.2-1, V1.2-6

making available to programs V1.2-6

opening for relative access V1.3-3

opening for sequential access V 1.2-6
organization of V 1.2-2

overview V1.2-1

reading multiple variables from a file V1.2-13

retrieving data from V 1.2-11

sequential access V1.2-13

writing data to V 1.2-6
INTERNAL parameter (see OPEN)
inventory program V 11.4-3

ISH V1.1-5
lSI V1.1-5

jOining two character strings (&) V .3-9

key

definition V 1.5-2
using more than one key V 1.5-21, V 1.5-3

key indexed file
accessing a specific record VI .5-2

activating V1.5-15
adding records to V1.5-17

creating a V1.5-6
creating on a diskette V 1.5-8
definit ion V1.5-2

deleting a record from V1.5-19

reading a record from V 1.5-15
retrieving data from V1.5-15
setting up a V1.5-4

sort sequence \11.5-2
updating a record in V1.5-18

writing records to V 1.5-17
KEYED parameter V1.5-15

labels
naming 11.2-6

use of 11 .2-5
leading zeroes 1.2-7
leading zeroes in data (PIC(#)) 111.3-8

LET statement 1.5·2

line numbers 1.2-2
LINK command V 1.5-6

LlNPUT statements V1.1-9

LIST command 1. 2-10
listing 1.2-10

listing programs
displaying on the printer 111.1 -6

displaying on the screen 111 .1-6

LlSTP command 111.1-6

LlSTP command 111.1 -6,1-7
LOAD command 1.6-5

file name V1.1 -8
type-of-file indicator V1.1-8

LOAD/DATA command V1.1 -8
loading a program 1.6-5
loops

definition 11.4-1
discussion 11.4-2
endless 11.4-4
nested 11.4-10
using FOR-NEXT 11.4-6
using IF ·THEN and GOTO 11.4-2

making and correcting mistakes 11.1 -9

MAT assignments
assigning values from array to array IV.4-9
in two-dimensional arrays IV.4-8

matrix operations I V .4-1 0
READ MAT statement I V.4-4

matrix operations
MAT assignments IV.4-6,IV.4-10
matrices (see also Arrays) IV.4-2

PR I NT # 255: MAT statement I V.4-3
PRINT MAT statement IV.4-2

READ/DATA and INPUT statements IV.4-4
maximum length of character strings IV.2-5.IV.2-6

Index X-5

multiple line functions
DEF/LET/FNEND statement V .3-1 0
defining a function V.3-11

multiplication 1.4-3

nested loops
inner loop 11.4-10
outer loop 11.4-10
using 11.4-10

NEWPAGE with PRINT statement 111.2-7
NEWPAGE with PRINT # 255: statement 111.2-7
PAUSE statement 111.2-8
TAB with PR I NT statement 111.2-2

NEXT statement 11.4-6

NS V1.1-5
numeric arrays

dimensioning (DIM statement) IV .1-4

elements in IV.1-2
initial value of (0) IV.1-5
one dimensional IV.1-2
OPTION statement IV.1-2
setting values to zero (ZER function) IV.4-8
two-dimensional IV .3-2

numeric variables
assigning values to 1.5-3
definition 1.5-2
LET statement 1.5-3
used in arrays IV.1-7

ON/GOSUB/RETURN V .2-8
ON/GOTO V.2-3
one dimensional arrays IV.1-2
one-dimensional arrays

DIM statement IV.1-4
elements in IV.1 -2
OPTION statement IV.1 -3
subscripted variables IV .1-2

OPEN statement
file reference number IV.1-6
file-id V1.1-5
KEYED= parameter V1.5-15
KFNAME= parameter V1.5-15
OUTPUT/INPUT/OUTIN indicator V1.1-7
relative access V 1.3-3
sequential access V1.2-13
type of file indicator V1.1-7

X-6 SA34-0127

open ing a display file V1.1 -1 1
opening a relative record I /O file V 1.3-3
opening internal files (relative access) V 1.3-3

BASE Oor BASE 1 IV.1-3
RD IV .1-10

order of execution
ascending 11 .2-2
changing 11.2-2

order of operati ons 1.4-6
OSH V1.1-5
OSI VI .1-5
OUTIN parameter (see OPEN)

output 111.2-1
OUTPUT parameter (see OPEN,READ)
outputti ng data

(see also PR INT PR INT FIELDS)
displaying results on the screen V11.2-14
printing results with the printer V 11.2-14
writing the results to a data file V11.2-15

passing control to a line number V.2-3
passing control to subroutines V.2-8
PAUSE 111.2-9
performing arithmetic

adding and subtracting 1.4-2
arithmetic operat ions 1.4-2
deciding order of operations 1.4-6
in programs 1.4-6
multiplying and dividing 1.4-3
raising a number to a power 1.4-4

performing calculations (see arithmetic operation)
PIC statement

discussion of 111 .3-6
formatting data on printer 111.3-2
including decimals in 111.3-6
including dollar signs ($) 111.3-10
leading zeros in format (#) 111.3-6
zero suppression in format (Z) 111.3-6

POS V .3-4
position of data output 111.3-13

leaving blanks in data items (FORM X) 111.3 -1 4
skipping lines (FORM SKIP) 111.3-1 5
specifying position of (FOR M POS) 111.3-13

prepared diskette vi
preparing a diskette 1.6-2
PRINT # 255: 111.1-2
PRINT BELL 111.2-8

..

V11.1 -3

I NT statement 111 .1-2
combining numbers and words 1.1 -6
displaying numbers using 1.1-2
displaying words 1.1 -4
syntax 1.1-2

using commas and colons with 1.1-8
PRINT USING statement

order of formats and output items 111 .3-5

used with FORM statement 111.3-2
using commas with 111 .3-5

print zones 1. 1-6
printing

NEWPAGE statement 111.2-5

PRINT # 255: 111.1 -2
PR I NT statement 111.1 -2
print zones 111.1-3
TAB statement 111.2-2
to feature printer 111.1-4

using LlSTP 111.1 -6

rinting an entire array IV.4-3
rinting data (PR I NT USI NG) 111.3-2

printing with the printer 111.1 -2
printing/displaying character strings 111 .3-4

priority of operations 1.4-6

processing data (see individual type of)

program I.iii

program branches 11.3-2
program file 1.6-3

program listing 1.2-10

program (definition) 1.2-2

programming language I.iii

prompts 11 .1-5
PROTECT RELEASE V1.1-6
putting a program into the work area 1.6·5

quotation marks 1.1-5, 1.1-7
including commas and semicolons 11.1-11
with character strings 11.1 -11

raising a number to a power 1.4-4
RD in OPTION statement IV.1 -10
reaccessing the same record VI.4-13
READ MAT IV.4-4,IV.4-10

READ statement V1.2·13

READ statement 11.5-2,IV .2-10

assigning values using 11.5-2
location in program 11.5-3

order of DATA values 11.5·8
RESTORE with data file VI.4-3
RESTORE with DATA statements 11.5-7
using more values than variables 11.5-4
using too few values 11 .5-4

reading a file V1.2-6
reading a record from a key·index file VI .5-16
readi ng data from a fi Ie V 1.4-4
reading multiple variables VI.2-1, V 1.2-6
reading multiple variables from files V 1.2-13

reading records
sequentially V 1.2-13
specific records V1.3-8

reading specific records V1.3-8

READY INPUT message 1.1 -2
REC; parameter V 1.3-8
RECl; parameter (see OPEN)

records V 1.2-2
recovering from an access error VI.4-17
recovering from errors 11.1·9
relative or direct access VI.3-2

RELATIVE parameter V 1.3-3

REM statement 1.5-10

remar k statements
definition 1.5-10

entering remarks 1.5-10
including special characters in 1.5-11

using REM in a program 1.5-10
removing a program from the work area

switch ing off the power 1.6-4
using CLEAR 1.6-4

removing a record from a file (DELETE) VI.4-15

RENUM command 1.3-2
renumbering lines of a program 1.3·2
repeating operations in a program

using a function V11.2-16
using FOR/NEXT or IF/THEN V11.2-16
using subroutines (see also subroutines) V11.2-16

REPLACE command 1.6·6

replacing a program 1.6·6
replacing a program in storage 1.6-6
replacing leading zeros in data (PIC Z) 11.3-9

replacing statements 1.3·11
repositioning a file using RESTORE VI.4 -3

Index X-7

REREAD statement VI.4-12
RESTORE statement V 1.4-3
retrieving data from display file V 1.1 -6
retrieving data from files V1.2-6

LOAD DATA and LIST VU-8
OPEN DISPLAY and LlNPUT V1.1-19

RETURN V .1-2
REWRITE statement V1.4-14
R EWR ITE/KEY= statement V 1.5-18
ROUND function V.3-3
ROUND system function
RPT$ V .3-5

SA V E command
SAVE command 1.6-2

V.3-3

diskette drive number V1.1-6
file-id Vl.l-l0

saving a program 1.6-2
scroll up key 1.2-9
second printer (see feature printer)
semicolons 11.1-11
sequential access files VI .2-11
setting up a format 111.3-2
share state

definition V 1.6-2
lSI V1.6-2
NOSHR V1.6-2
NS V 1.6-2
RESERVE V1.6-7
SHR V1.6-2
SHRI V 1.6-2

signed numbers
displaying 1.1-3
order of operation 1.1-3

simple file name V1.1-4
si mple variables I V.1-3
single line functions

discussion of V.3-6
dummy variable in V.3-6

SIZE= parameter (see OPEN)
skipping lines 1.2-6,111.1-5
skipping lines in data (FORM SKIP) 111.3-15
solving a problem

flowcharting V 11.2-2
input V11.2-2
inputting data V11.2-12
output VI 1.2-2

X-8 SA34-0127

outputting data V11.2-14
processing V11.2-2
processing data V11.2-16

spacing program output
skipping lines 111.2-5
using commas 111 .2-2
using NEWPAGE and PRINT 111.2-7
using PAUSE and PR INT 111.2-8
using semicolons 111.2-2

using TAB and PRINT 111.2-2
special characters in remarks
special keys for commands

1.5-11
1.3-4

specifying format of data 111.3-13
specifying position of data (FORM POS) 111.3-13
SQR system function V.3-2
starti ng a new page 111.2-7
statement 1.1-1
statements

ascending order of 11 .2-2
changing order of 11.2-2
labels for 11.2-5

status line
acti on codes I. 1-5
definition 1.1-2
error codes 1.1-5
stoppi ng the flashing 1.1-5

STEP
inner loop 11.4-11
outer loop 11.4-10

STOP statement 11.3-15
storage 1.6-1
string

definition 1.1-4
displaying using PRINT 1.1-4

stri ngs 11.5-6
using commas with 11.1-11
using semicolons with 11 .1-1 1

subroutines
calling using GOSUB V .1-2
definition of V .1-2
exiting from using R ETUR N V.1-2
nested V.1-8
returning program control V.1 -2
subroutine/call ing subroutines V.1-8
writing a program containing a V.1 -2

subscripted variables IV.1-2
subscripts IV .1-2
subscripts and ar, ., na' IV.1-2, IV .2-2

•

•

subtracting 104-2
ymbols

examples used with I F-TH EN 11.3-5
used with IF-THEN 11.3-4

symbols/flowcharting VI 1.2-3
system functions

pas V .3-5

ROUND V.3-3
RPT $ V .3-6
SQR(X) V.3-2

system printer 111.1-4

template I,vi
testing values (see IF/THEN)
testing values of an expression V .2-3, V .2-8
transferring program control V .2-3 , V.2-7
two dimensional arrays

assigning values from array to array IV 04-8
character arrays I V .3-4
DIM statement IV.3-5
elements in IV.3-2
MAT assignments IVA-7
numeric arrays IV.3-2

OPTION statement IV.3-2

specifying the size of (DIM statement) IV.3-5

storing variables in IV .3-3

subscripted variables IV .3-2

unconditional branches 11.3-2

updating a key-index file V1.6-17

updating a record in a file V1.4-14
updating a record using REWRITE VIA-14

using item numbers more than once V1.5-9
display and print I NDEX messages V1.5-11

ending INDEX V1.5-14

INDEX workfile V1.5-10
using remarks 5-10

using tabs 111.2-2
using variables and remarks

assigning values to 1.5-4
LET statement 1.5-5

variables

character 1.5-6
numeric 1.5-2, 5-8

work area 1.2-3

WR ITE statement V 1.2-8

writing a program
automatic line numbering 1.2-7

clearing the work area 1.2-4
END statement 1.2-2
entering a program 1.2-3
executing a program 1.2-3
listing the program 1.2-10
loading a program 1.6-4
replacing a program 1.6-6
saving a program 1.6-2

writing data to files V1.2-6
writing records to key-index files V1.5-17

ZER function I V .3-9
zero suppression in data (PIC (Z)) 111.3-9

Index X-9

•

X-10 SA34-0127

•
Q)
c
:.J
Ol
c
o
<
:2
o
u.
~

o ...
:l
U

READER'S COMMENT FORM

VII. Full Screen Processing, Summary,
and Examples

SA34-Q127-Q

Your comments assist us in improving the usefulness of our publ ications; they are an

important part of the input used in preparing updates to the publ ications. I BM may

use and distribute any of the information you supply in any way it bel ieves appro

priate without incurring any obligation whatever. You may , of course, continue to
use the information you supply .

Please do not use this form for technical questions about the system or for requests

for additional publications; this only delays the response . Instead, direct your

inquiries or requests to your I BM representative or the I BM branch office serving

your locality.

Corrections or clarifications needed :

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape Pl ease Do Not Staple

Fold and tape

--- ------ - ---- ---- - ---- -- ----------_ . -

IIII
BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Systems Publications, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Pl ease Do Not Staple

(')

S

I
Fold and tape I

- - - --I
NO POST AG E
NECESSA R Y
IFM A ILED

IN THE
UNITED ST ATES

I

I
1

I
I

- - - --I
Fo ld and tape

SA34-0127-0
Pr in ted in U .S .A.

6

