

BASIC Language Reference
(Section One)

--- ------ - ---- ---- - ---- - - ---
=~=~=

System/23

Second Edition (July 1981)

This is a major revision of, and obsoletes SA34-0109-0. The significant changes
are to the Customer Support Functions. The three new Customer Support Func
tions are:

• List diskette
• List file
• List sto rage

Use th is pub I ication only for the purpose stated in the Preface.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions or Technical Newsletters.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be con
strued to mean that IBM intends to announce such IBM products, programming,
or services in your country.

Publ ications are not stocked at the address given below. Requests for copies of
IBM publications should be made to your IBM representative or the IBM branch
office serving your locality.

This publication could contain technical inaccuracies or typographical errors_ A
form for readers' comments is provided at the back of this publication. If the
form has been removed, address your comments to IBM Corporation, Information
Development, Department 27T, P.O. Box 1328, Boca Raton, Florida 33432.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1981

Preface
About this book

f

Prerequisites

This reference manual provides specific information about
the System/23 BASIC language. It was prepared with the
assumption that you wish to write or change BASIC
programs. If you are not an experienced BASIC
programmer, you should complete Learning System/23
BASIC before using this book. This book is a precise
reference which will supplement Learning System/23
BASIC, but not replace it.

How to use this book

The information in this book is in encyclopedic format and
presents topics in alphabetic order. To make it easy to use,
this book uses cross-referencing that leads you to other
topics which may be of interest to you. The
cross-referencing takes the following form:

Dimensioning arrays see "Declaring arrays"

This tells you that the information on dimensioning arrays
can be found in the section titled "Declaring arrays".

You should be experienced in programming the BASIC
language or should have completed Learning System/23
BASIC.

Preface iii

Preface
Related publications

iv SA34-0109

Operator Reference, SA34-0108

Learning System/23 BASIC
- SA34-0121--Book I

SA34-0122--Book II
SA34-0123--Book III
SA34-0124--Book IV
SA34-0125--Book V
SA34-0126--Book VI
SA34-0127--Book VII

System Messages, SA34-0 141

5110 Conversion Aid Program User's Guide,
SA34-0114

Customer Support Functions, Volume 1, SA34-0175
and Volume II, SA34-0176

Introduction

Introduction

This book contains detailed descriptions of the system
commands, statements, concepts, data constants, variables,
and the BASIC syntax. This is a complete reference of the
BASIC language as used in System/23 and was designed
so that each topic can be found quickly. Each topic stands
by itself and, as in an encyclopedia, the topics are in
alphabetic order by topic name.

A comprehensive program is included in Appendix A in the
back of this manual. It is suggested that this program be
reviewed.

BASIC reference information

Syntax

Syntax description

When syntax formats are described in this manual,
capitalized expressions, lowercase expressions, and special
characters (such as a comma, colon, exclamation point, or
an asterisk) have special meaning.

Syntax of the BASIC commands and statements is
presented in the following format:

Statement or [' optional parameter] C choice Of~
Command--- requi red parameter-r-... ----tllllt-----........ -r-I
Keyword + I required parameters I

2 SA34-0109

L - - - - - - 7 _..J indicates the end of the

indicates the parameter statement or command

may be re peated

Where:

Statement or Command keyword is a BASIC statement
such as LET or a command such as RUN.

required parameter is an item that must be included such
as the line reference in GOTO 100.

optional parameter is an item that may be included if
desired such as ELSE in an IF, THEN, ELSE statement.

indicates that the parameter may be repeated means that
more than one parameter can be included such as the
variables in INPUT A, B, C ...

choice of required parameters means that one of the
parameters must be included such as the choice between
numeric or character constants in a DATA statement.

Syntax

indicates the end of the statement or command refers to
the block that indicates the end of the syntax.

To read the syntax of a command or statement, read from
left to right along the main line. When you reach an optional
parameter, you can either include that parameter or continue
along the main line. When you reach a choice of required
parameters, you must include one of the parameters with
your command or statement.

If a parameter is shown in uppercase letters, you must enter
it exactly as it appears. You must also enter any special
character (such as a comma or colon) that appears in the
diagram.

All lines entered in BASIC program entry mode and
command entry mode are converted to English uppercase
prior to syntax checking.

To prevent remarks or character data on DATA statements
from being converted to English uppercase, they must be
enclosed in quotation marks.

If you do not include an optional parameter, the System / 23
provides a default value or action. The defaults are listed in
the description of the statement or command. The syntax
diagrams include a number (such as II) that corresponds to
the defaults listed.

In the case of the MERGE, REPLACE, and VOLID
commands only, you must include a comma to indicate that
you have omitted an optional parameter.

BASIC reference information 3

Syntax

Syntax description (continued)

Here are two examples using the REREAD statement:

RESULTS INl

REREAD #20: NAME$, ADDRESS$

,,,I'USING,~ ~h","~ ~ .. ~; f~ljne~ref"<""':/;:: if: .~'

REREAD~ #file-ref_-:~' . '. - ••. -:fdata-item!911io._----....tyI---~~ .. RESULTS INl

REREAD #20, USING 50: NAME$ EXIT 400

4 SA34-0109

L_, __ J

In these examples, you must include the file-ref parameter
following the keyword REREAD. You may choose to include
the USING parameter in which case you must also include
either the char-var or line-ref parameter. You must include
the colon, followed by at least one data-item. Note that you
may list more'than one data-item. You may choose to
include either EXIT line-ref or error-cond line-ref.

In the first example, the optional parameters are omitted.
Therefore the default actions are taken.

Syntax

The syntax for a BASIC statement is as shown:

I
rlabel :l r' remark1

line number __ L ____ _statement_ _____ __

A keyword in a BASIC statement or system command must
be followed by a blank except where a comma, parenthesis,
or other appropriate delimiter is defined. Also a blank must
follow the leading line number in a BASIC statement.

A label can be added to any BASIC statement except a DEF
statement (see "Labels").

A remark can be added at the end of any system command
or BASIC statement except a DATA statement (see
"Remarks").

Because they can be used on most BASIC statements,
labels and remarks are not shown in the diagrams that
follow.

BASIC reference information 5

Absolute value

Absolute value

ABS(X)

6 SA34-0109

see "ABS(X)"

Returns the absolute value of X. The result is always
positive. For example:

10 X=-S.2
20 Y=ABS(X)

y contains +5.2

10 X=+13.7
20 Y=ABS(X)

Y contains +13.7

AIDX and DIDX

'f

('

AIDX, DIDX

The MAT assignment AIDX or DIDX statement creates an
index to the elements of an array which will rearrange the
original array with the elements in ascending or descending
order. Character arrays are indexed alphabetically, and
numeric arrays are indexed numerically.

MAT _ array-name- = {AI DXJ- (array-name) __ -I ••
DIDX

The syntax of the statement is as shown above, where:

array-name is the name of a one-dimensional array.

AIDX indicates the ascending index function.

DIDX indicates the descending index function.

When a MAT AIDX or DIDX statement is executed, index
values are assigned to the array on the left of the equal
sign, according to the order of the values entered into the
array on the right of the equal sign.

BASIC reference information 7

AIDX, DIDX

AIDX and DIDX (continued)

8 SA34-0109

Example (AIDX)

20 OPTION BASE 1
30 DIM A (10), B (1 0)
40 MAT B=AIDX(A)

If array A is 9 array B will be
5
6
o (position four)
2
7
8
4
1
3

4 (position one)
9
5
10
8
2
3
6
7

The numbers in array B show the position of the numbers in
ascending order as they appear in array A (0 is the fourth
position in array A, and is shown as a 4 in position 1 of
array B).

Example (DIDX)

20 OPTION BASE 1
30 DIM A(10), B(10)
40 MAT B=DIDX(A)

AIDX, DIDX

If array A is 9 array B will be 1
5
6
o (position four)
2
7
8
4
1
3

7
6
3
2
8
10
5
9
4 (position ten)

The numbers in array B show the position of the numbers in
descending order as they appear in array A (0 is the fourth
position in array A, and is shown as a 4 in position 10 of
array B).

Programming considerations

The array on the left of the equal sign must be numeric.

The results of using AIDX or DIDX are dependent on the
collating sequence that is in effect. See "OPTION
statement" and "IF, THEN, ELSE statement." See also
"COLSEQ" in the Customer Support Functions, Volume II.

Each element of the array on the right is compared to every
other element in that array to determine the index for that
element. The index is then stored in the array on the left.
Operation continues until the indexes for all elements of the

BASIC reference information 9

AIDX, DIDX

AIDX and DIDX (continued)

10 SA34-0109

array on the right are determined. No check is made to
assure that the target array is not the source array.

ALERT command

ALERT

The ALERT command indicates that the operator's attention
is needed during the operation of a procedure file (see
"Procedure file"). Remarks are not allowed, they are
interpreted as part of the message.

[message]
ALERT~--------~---••

The syntax of the ALERT command is shown above. When
executed, the ALERT command:

Halts the system operation

Sounds the alarm

Displays the word ALERT and an optional message on
line 22 of the display screen

The following is what the ALERT command with an optional
message might look like:

ALERT REPLACE DISKETTE1 WITH DISKETTE2

The operator is informed that the diskettes must be
changed.

BASIC reference information 11

ALERT

ALERT command (continued)

Any command may be issued, and when the command has
finished processing, the keyboard is reopened for input. To
continue executing the procedure file type GO and press
Enter.

To exit the procedure that issued the ALERT command
enter one of the following:

GO END

CLEAR PROC

PROC (for another procedure)

CLEAR ALL

Alphabetic character set

see
"Character seC

Arc tangent

see "ATN(X)"

12 SA34-0109

/

Arithmetic arrays

Arithmetic arrays

An arithmetic array contains only numeric data and can have
one or two dimensions. A one-dimensional array is a list of
data items. A two-dimensional array is a matrix of rows and
columns.

A(O) 8(0,0) 8(0,1) 8(0,2) 8(0,3)

A(l) 8(1,0) 8(1,1) 8(1,2) 8(1,3)

A(2) 8(2,0) 8(2,1) 8(2,2) 8(2,3)

A(3) 8(3,0) 8(3,1) 8(3,2) 8(3,3)

Note: In the above example BASE 0 is being used. For
information about BASE 0 and BASE 1, see "OPTION
statement" .

All elements of a numeric array (except an array received
from a chaining program) are initially set to zero during the
execution of the first statement that references the array.

Before being used in any of the matrix handling statements
(MAT statements), an arithmetic array must be declared or
dimensioned. For information on dimensioning arrays, see
"DIM statement." "Declaring arrays," "Redimensioning
arrays", or "MAT assignment statements".

If an array is not explicitly declared in a DIM statement, the
highest subscript it can have is 1 O. The first reference to
the array determines if the array is one- or
two-dimensional.

BASIC reference information 13

Arithmetic data

Arithmetic data

14 SA34-0109

Arithmetic data is data with a numeric value. All numbers in
BASIC are decimal numbers (base 10).

Magnitude

The magnitude of a number is its absolute value. In BASIC,
a power of 10 is represented by the letter E. The E is
written between the first and second constant so that
10**126 becomes 1 E+ 126 or 1 E126. 1 E-126 and 1 E+ 126
are called floating-point numbers or notations.
Floating-point notation is simply a shorthand way of
expressing very large or very small numbers. See
"Floating-point format" under "Arithmetic data". The range
of numbers permitted in a BASIC program are numbers that
are greater than 1 E-126 and less than 1 E+ 126.

Significance

The significance of a number is the number of digits it
contains excluding leading and trailing zeros. For the
System/23, the number is 15 digits. Numbers that are
entered, are truncated to 15 digits. Numbers that are the
result of an arithmetic operation, are rounded to 15 digits.

Accuracy

Additions and subtractions are accurate to 15 digits.
Multiplications and divisions return 15 digits accurate to 14
digits. EXP, SQR, and exponentiation return 13 digits
accurate to 12 digits. LOG, SIN, COS, TAN, and ATN return
15 digits accurate to at least 10 digits. The remaining
system functions are accurate to 15 digits.

(--

Arithmetic data

Arithmetic data formats

There are three data formats available for entering,
displaying, and printing numbers: integer, fixed-point, and
floating-point. Numbers in any of the formats can be
positive or negative. Negative numbers must be preceded
by a minus sign. Positive numbers mayor may not have a
plus sign.

Integer format. An integer is a whole number with no
decimal point. The integer format is the same as
conventional representation. A positive number mayor may
not be preceded by a sign.

Integer format

E+~ ---+-O··-+-"""Ti-digit -"'1--

.. Positive number

Here are some examples:

a
+2
-23
266

L ___ J

BASIC reference information 15

Arithmetic data

Arithmetic data (continued)

16 SA34-0109

Fixed-point format. Numbers expressed in fixed-point
format are written as a number of digits preceded by a sign
and followed by a decimal point (+3.). The decimal point
may also be followed by digits which express the decimal
fraction (+3.56).

Fixed point format

r---,
r----'

-----IE~~~--+----f!di9it........L..
~ L.""Tdi9it""T"""-----~

L.. __ J

D Positive number

Examples of fixed point are:

-.3
+3.56
33.00
33.

(/

Arithmetic data

Floating-point format. When working with very large or
very small numbers, the floating-point format is the easiest
to use. Floating-point numbers are written with a
fixed-point number, followed by the letter E (E stands for
multiplied by ten to the power of}' and followed by a one,
two, or three-digit exponent.

r---.,
.----'--digit-.&..---------.,

r---,

E+J r---..,
_L...-__ --~---...&...+-- E -+ DIIJI-+---t~di9it......l...-

r---,
--___ tlo--digit--'--....

.. Positive number

An example of floating-point format is:

-3.1 E7

The value of the floating-point number is -3.1 multiplied by
10 to the power of 7.

-3.1 E7 is the same as -3.1 x 107

-3.1 E7 is the same as -31,000,000

Note that the number E7 is not a valid floating-point
number. The value 107 must be expressed as 1 E7 in BASIC
floating-point format.

BASIC reference information 17

Arithmetic data

Arithmetic data (continued)

18 SA34-0109

Selecting an arithmetic format. An arithmetic value
can be entered at the keyboard in the most convenient
format for the application. The number one million, for
example, can be entered in any of the following ways:

1000000
1000000.00
1E6
+10E5
+100E+4

Arithmetic constant

An arithmetic constant is either an integer, a fixed-point, or
a floating-point value appearing in a BASIC statement. The
value of the constant remains the same within the program.
For example, the integer 1 is a constant in the statement

100 LET X=X+1

/

('

('

Arithmetic expressions

Arithmetic expressions and operations

Syntax

Numeric expression

~j-tactor-.----,--,-__ ---.-.

• } tactor I ~ } tactor~-------r-'-I
L_~ ___ J '}tactor :

/ : I
I L ______ J l
L ______________ ...J

Factor

numeric constant -1 numeric variable

numeric system function -+_,-_________________ -,.-__

numeric user function

(numeric expression) 1\ numeric constant 11 numeric variable

*'O numeric user function I
numeriC. system function

I (numenc expression) : L ____________ --'

.. Positive number

A numeric expression can be an arithmetic variable, array
element, constant, or operational reference; or it can be a
series of these items connected by operators and
parentheses. Examples of arithmetic expressions are:

ALPHA+l
BETA-3/(-6)
x+y+z
A7* (B*3+3)

BASIC reference information 19

Arithmetic expressions

Arithmetic expressions and operations (continued)

20 SA34-0109

BASIC performs addition, subtraction, multiplication,
division, and exponentiation. The five operators used in
most formulas are:

Function Meaning Example

+ add, positive 10+2=12

- subtract, negative 10-2=8

* multiply 10*2=20

I divide 10/2=5

** or 1\ exponentiation 10**2=100

(10 raised to the power of 2) 10/\2=100

Rules for the arithmetic operators and the resulting actions
are as follows:

Addition and multiplication: A+B and A*B are both
commutative; or, A+B=B+A and A*B=B*A. However,
addition and multiplication are not always associative
because of rounding; for example, A*(B*C) does not
necessarily give the same results as (A*B)*C.

Arithmetic expressions

Example:

5 FOR 1=1 to 3
10 LET A=RND
20 LET B=RND
25 LET C=RND
26 LET D=A*B*C
27 LET E=A*(B*C)
30 PRINT USING 35:D,E,D-E
35 FORM 3*N 25.17
40 NEXT I

Results of three typical loops:

Contents of D
.04558553601442990 (first time)
.00548795587029670 (second time)
.43103396752564700 (third time)

Contents of E
.04558553601443000 (first time)
.00548795587029669 (second time)
.43103396752564700 (third time)

Difference (D-E)
.0000000000000001 0 (first time)
.00000000000000001 (second time)
.00000000000000000 (third time)

Subtraction: A-B is defined as A minus B.

Division: AlB is defined as A divided by B. If B=O and A is
not 0, an error (zero divide) occurs.
If A=O and B=O the result is 1.

BASIC reference information 21

Arithmetic expressions

Arithmetic expressions and operations (continued)

22 SA34-0109

Exponentiation: The expression A**B or A t\ B is defined
as the value of the variable A raised to the B power. The
following rules apply to exponentiation:

If A=O and B<O, a zero divide error is returned

If A<O and 8 is not an integer, an error occurs because
of a negative number to a fractional power

If 8=0, A**8 equals 1

If A=O and 8>0, A**8 equals 0

Considerations:

Exponentiation returns 13 digits accurate to 12.

• The circumflex(t\ lcan also be used for exponentiation;
however, the system converts the circumflex to **. The
circumflex key on the keyboard does not advance the
cursor.

('

Arithmetic expressions

Positive/Negative Operations: The + and - signs can also
be used as positive/negative operators. These
positive / negative operators can be used in only two
situations. They are:

Following a left parenthesis and preceding an arithmetic
expression

• As the leftmost character in an entire arithmetic
expression

For example:

-A+(-8) and 8-(-2) are valid

A+-8 and 8--2 are invalid

For more information on arithmetic expressions and
operations, see "Arithmetic hierarchy".

Subjects related to arithmetic expressions

A8S DISPLY LINE RND
AIDX ERR LOG ROUND
ATN EXP MAX SGN
CEIL FILE MIN SIN
CMDKEY FILENUM ORD SQR
CNT FREESP PI SRCH
CODE INT pas TAN
CON KLN PROCIN UDIM
COS KPS REC VAL
DIDX LEN RLN ZER

BASIC reference information 23

Arithmetic hierarchy

Arithmetic hierarchy

24 SA34-0109

Expressions with two or more operations are performed
according to the hierarchy of the operations involved.
BASIC performs the operations in the following order:

1. Parentheses receive top priority. When parentheses are
nested (within another set of parentheses). the operation
in the innermost pair is performed first.

2. If there are no parentheses, the order of priority is:
a. Exponentiation (/\ or **).
b. Positive and negative.
c. Multiplication (*) and division (/) have equal priority.
d. Addition (+) and subtraction (-) have equal priority.

3. If the items are of equal priority, then the evaluation of
the operators is from left to right. The following are
examples of arithmetic hierarchy, showing how
expressions are evaluated:

Parentheses ()
70 -(25 + 15) = 70 - 40 = 30

• Exponentiation **
10 + 10**2 = 10 + 100 = 110

Multiplication * or Division /
10 + 10*2 = 10 + 20 = 30
10 + 10/2 = 10 + 5 = 15
10 + 10*2/5 = 10 + 20/5 = 10 + 4 = 14

Addition + or Subtraction -
10 + 10 = 20
10 - 5 = 5
10 + 10 - 5 = 20 - 5 = 1 5

/

(,

Arithmetic hierarchy

Nested Parentheses
150/(2*(13 + 12)) = 150/(2*25) = 150/50 = 3

The entire hierarchy would be as described below:

In Step 1, the nested parentheses (13 + 12) is performed.

Step 1. 50 + 10**2/(2*(13 + 12)) - 2 =

In Step 2, the parentheses (2*25) is performed.

Step 2. 50 + 10**2/(2*25) - 2 =

In Step 3, the exponentiation 10**2 is performed.

Step 3. 50 + 10**2/50 - 2 =

In Step 4, the division 100/50 is performed.

Step 4. 50 + 100/50 - 2 =

In Step 5, because addition and subtraction have equal
priority, the priority is from left to right. The addition 50+2
is performed.

Step 5. 50 + 2 - 2 =

In Step 6, the final step, the subtraction 52-2 is performed
and the answer is shown.

Step 6. 52 - 2 = 50

See "Arithmetic expressions and operations".

BASIC reference information 25

Arithmetic variables

Arithmetic variables

Array expressions

26 SA34-0109

A variable represents a number whose value is subject to
change during the execution of the program. Arithmetic
variables have names consisting of from one to eight
alphabetic or numeric characters, with the first being
alphabetic. Examples of valid variable names are:

AS
BASIC
DATAl
BYTE12

Arithmetic variables are stored internally as decimal floating
point.

An arithmetic variable is initially set to zero during the
execution of the first statement that references the variable
(except when the variable is received from a chaining
program).

Some names are reserved by the system and cannot be
used for variables or labels. See "Reserved words." The
term variable includes array elements (see "Arithmetic
arrays").

see "MAT assignment statements"

Arrays

(,

(

Arrays

An array is a collection of data items (elements) that is
referred to by a single name. Only data items of the same
type (numeric or character) can be grouped together to form
an array. It is a convenient tool that provides a fast and
organized way of handling large amounts of data within a
program.

Arrays can be either one- or two-dimensional. A
one-dimensional array can be thought of as a list of
successive data items. A two-dimensional array can be
thought of as a matrix of rows and columns.

Each element in an array is referred to by the name of the
array followed by a subscript enclosed in parenthesis. Array
subscripts can begin with either zero (BASE 0 indexing) or
one (BASE 1 indexing). You can select the base by using
the OPTION statement (see "OPTION statemenC). The
default is BASE O.

Array name Subscript

l _-__ 7

B (1~) /,
Row Column

OPTION BASE 0 indicates that the first element of an array
has a subscript of O.

OPTION BASE 1 indicates that the first element of an array
has a subscript of 1.

BASIC reference information 27

Arrays

Arrays (continued)

28 SA34-0109

There are two types of subscripts. One is specified by a
single number after the array name, such as A(3).

For example:

10 OPTION BASE
20 DIM A(3) !DEFINES A ONE-DIMENSIONAL ARRAY

•
•
•

60 LET A(3)=468.45 !REFERENCES THIRD ELEMENT

A(a) A(l)

A(l) A(2)

A(2) A(3)

A(3)

Base a Base 1
(default)

Note: If OPTION BASE 1 was not specified, then statement
60 would be referencing the fourth element.

f ..

Arrays

The other type of subscript has two numbers after the
variable name, such as 8(3,3).

For example:

10 OPTION BASE
20 DIM B(3,3) !DEFINES TWO-DIMENSIONAL ARRAY
30 LET B(2,2)=9.6 !REFERENCES ROW 2, COLUMN 2

B(O,O)

B(1,0)

B(2,0

B(3,0)

Base °
(default)

B(1,1)

B(2,1)

B(3,1)

Base 1

B(O,l)

B(1,1)

B(2,1)

B(3,1)

B(1,2)

B(2,2)

B(3,2)

B(0,2) B(0,3)

B(1,2) B(1,3)

B(2,2) B(2,3)

B(3,2) B(3,3)

B(1,3)

B(2,3)

B(3,3)

BASIC reference information 29

Arrays

Arrays (continued)

Arrays, arithmetic

30 SA34-0109

When referencing an element in a one-dimensional array,
the position of the element is obtained by counting from top
to bottom. Thus, assuming BASE 0, the fourth element of a
one-dimensional array named A can be referenced by the
symbol:

A(3)

The first value in a subscript of a two-dimensional array
gives the number of the row containing the referenced
element. Rows are numbered from top to bottom. The
second value in the subscript gives the number of the
column. Columns are numbered from left to right. Thus,
assuming BASE 0, the third element in the fifth row of a
two-dimensional array named B can be referenced by the
symbol:

B(4,2)

Each subscript value can also be an arithmetic expression.
For example, if 1=3 then row 5, column 3 of the array
named B can be referenced by the symbol:

B(I+1,2)

The maximum subscript is 9999.

See "Sample program 1" in Appendix A.

see "Arithmetic arrays"

Arrays

Arrays, character

see "Character arrays"

Arrays, declaring

see "Declaring arrays" under "DIM statement"

Arrays, redimensioning

see "Redimensioning arrays"

Ascending index

(.\
/ see "AIDX and DIDX"

Assignment statements

see "LET statement"

ATN(X)

Returns the arc tangent of X. where X is in radians.

(,

BASIC reference information 31

Attention

Attention and Inquiry (continued)

32 SA34-0109

A BASIC program may be interrupted by the operator in one
of two ways:

• Cmd/ Attn (press and hold Cmd key and press Attn
key)

Inq (Inquiry) key.

Cmd/ Attn can be used at any time and will stop the
execution of a BASIC program following the statement
during which it is pressed. The System/23 goes into "split
screen mode".

If the Cmd/ Attn is detected during a user defined function,
the program gets an error indicating that a user function
was interrupted. The operator resumes normal execution
with Error Reset or may terminate the user function with
Cmd/Error Reset which abandons execution of the function.
(GO will continue execution following the line which invoked
the function.) See "DEF, FNEND statement".

If a procedure is running, the procedure is interrupted
following the command being executed.

If Cmd/ Attn is pressed during the execution of a RUN
command in a procedure, the program interrupts the same
as without a procedure. To interrupt the procedure when
the program ends, cause the program to end with a PAUSE
statement. Then enter commands and / or restart the
procedure.

The commands LOAD, SAVE, and REPLACE cannot be
interrupted.

, /

(

Attention

During an interrupt any system commands or calculator
statements can be entered. Some statements will prevent
resumption of the interrupted program or procedure (for
example, CLEAR, LOAD, and LINK).

Some statements will be rejected if their execution would
cause ambiguous results (editing OPTION, DIM, FOR, or
NEXT statements).

Normal execution can be resumed by entering GO.

No error code is set by Cmd/ Attn.

The Inq key also interrupts a BASIC program. The response
to the Inq key is controlled by the ON statement (see "ON
statement"). The default action is to interrupt execution with
a 0001 error. The ON statement may also specify that the
Inq key be IGNORED or cause a GOTO when it is pressed.
The inquiry key is ignored during execution of a GOTO
statement. It is not advisable to execute a one-statement
loop (10 GOTO 10) while waiting for the Inq key to be
pressed. The CONTINUE statement may be used to return
control to the interrupted task (see "CONTINUE
statement").

The Inq key is not checked while a defined function is
executing. It is processed normally after all defined
functions are completely executed.

Inadvertantly pressing the HOLD or TEST keys may result in
entering system diagnostic mode.

See "Sample program 1" in Appendix A.

BASIC reference information 33

AUTO

AUTO command

34 SA34-0109

The AUTO command provides automatic numbering of
program lines or DATA statements. The starting line number
and the increment can be specified. If a beginning line
number or increment value are not specified, a beginning
line number of 10 and an increment of 10 is generated for
BASIC programs or data statements.

Be sure that the AUTO command does not replace existing
lines if not desired.

r line-num - u
--,-L'incr:e~nt

AUTO~D-------------L--~ ••

D AUTO 10,10
D AUTO line-num,10

The syntax of the AUTO command is as shown where:

line-num is a positive number specifying the first line
number to be generated. The range of this number is from 1
to 99999. The default is 10.

increment is a positive integer from 1 to 99998 used to
increment succeeding line numbers. If a beginning line
number is not specified, the increment cannot be specified.
The default is 10.

Each line number generated by the AUTO command for a
BASIC program is followed by a blank, then the cursor.

00010

(-~'

AUTO

When working with a data file, the line number is followed
by a colon and then the cursor.

00010:

Examples:

AUTO
AUTO 15
AUTO 15,5
AUTO 150,25

To use line numbers

10,20,30,40,etc.
15,25,35,45,etc.
15,20,25,30,etc.
150,175,200,225,etc.

Programming considerations

Ending AUTO
Automatic line numbering continues until the line
number put on the screen is overwritten or an empty
line is scrolled up.

Procedures
Automatic line numbering cannot be done from a
procedure file.

Entering DATA
If AUTO is used to enter data, CLEAR DATA or
LOAD ... ,DATA must be issued first.

Adding lines
- To find the last line for continued entry: LIST 99999

Be sure that the AUTO command does not replace existing
lines if not desired.

BASIC reference information 35

BASIC

BASIC statements

36 SA34-0109

A BASIC program is made up of BASIC statements. BASIC
statements allow you to enter data, specify how that data is
to be manipulated, and determine what is the output.
BASIC statements are either executable or descriptive
(nonexecutable). Executable statements cause a program
action such as value assignment or printing. Descriptive
statements provide information needed by the program or
the user, but they cause no visible action.

BASIC statements can be up to 255 characters including six
for the line number and following blank. The maximum
number of statements permitted in a single BASIC program
is limited by the work area size of the system, the
statement types, and the maximum line number (99999).

The statements and a brief description are listed here.

CHAIN

CLOSE
CONTINUE

DATA
DEF

DELETE

DIM

END
EXIT

FNEND

Ends a program, then loads and begins
executing another program or a
procedure
Closes a file that is open
Transfers control to the statement
following the one causing the
ON-condition transfer or I/O exit
Creates an internal data table of values
Defines a function to be used in the
program
Marks a specific record in an internal
I/O file as unavailable (deleted)
Specifies the size of an array or
character variable length
Ends a program
Specifies error exits for corresponding
error conditions
Ends a function defined in a DEF
statement

BASIC

FOR Begins a loop and determines when

('-\ loop is exited (as used with a NEXT
statement)

FORM Specifies format for displayed / printed
input/ output and records in files

GOSUB Transfers control to the beginning of a
subroutine

GOTO Transfers control to a specific statement
IF,THEN,ELSE Transfers program control or executes a

statement according to the results of
the logical expression

INPUT Assigns values from the keyboard or
other device to variables or array
elements during program execution

LET Assigns values to variables
LlNPUT Performs unformatted character string

input
MAT Assign values to all elements of an

(array.
NEXT Last statement in a loop (see FOR)
ON Specifies a transfer of control on the

detection of specified events
OPEN Activates internal or display files for

input or output
OPTION Set global parameters of BASIC

program
PAUSE Halts program execution
PRINT Transfers DISPLAY data to a specified

device
RANDOMIZE Sets a new starting point in random

number generator
READ Assigns values from the internal table

(see DATA) or internal I/O files to
variables or array elements

C
REM Defines comments or remarks in a

program

BASIC reference information 37

BASIC

BASIC statements (continued)

38 SA34-0109

REREAD

RESTORE

RETRY

RETURN
REWRITE
STOP
TRACE

USE

WRITE

Allows access to the last record
obtained from a file
Causes values in the internal data table
(see DATA) to be assigned starting with
the first table value, resets the data file
to the beginning or to a specific record
Transfers control to the statement
causing the most recent error
Ends a current subroutine
Updates existing record in a file
Stops execution of program statements
Traces all or part of a program's
execution
Defines the names of the variables
passed by the CHAIN statement
Adds a record to an internal I/O file

Note: More information on individual statements may be
found by locating the statement, which is in alphabetic
order, in this manual.

• "-.. /

Blanks

Byte

(\

Blanks

The following rules apply to the use of blanks:

Blanks can be used within quoted character strings.

A blank or other syntactically defined delimiter is
required after a keyword.

Blanks are not allowed within keywords, variable names,
numeric constants, function names, line numbers, and
labels.

Non-significant blanks will be deleted when the
program is listed (see "LIST command").

Blanks are required after leading line numbers in BASIC
statements.

• To retain blanks, the program must be entered/edited in
DATA mode.

Blanks are significant in relational compares.

Throughout this reference manual the symbol 1) will
represent a blank.

The unit of machine and diskette storage. For example, one
character takes one byte.

BASIC reference information 39

Catenation

Catenation

CEIL(X)

Ceiling

40 SA34-0109

see "Concatenation"

Returns the smallest whole number (integer) greater than or
equal to X. For example:

10 CEIL (-1.2)=-1

20 CEIL (+2.3)=3

see "CEIL(X)"

CHAIN statement

(

CHAIN

The CHAIN statement ends the program currently being
executed, loads another program, and starts executing the
new program. The CHAIN statement may also be used to
start a procedure or a subprocedure from a BASIC program.

r F'LES1 r data.item]

CHAIN--pgmname~ I •

a All files are closed
II No data is passed

I I L ______ ...J

The syntax of the CHAIN statement is as shown above,
where:

pgmname is a character expression representing the
program name (see "File specifications"). If the first five
characters of pgmname are PROC=, then the file is invoked
as a procedure. If the first eight characters are SUBPROC=,
then the file is invoked as a subprocedure. In either case,
FILES and data-item may not be specified.

FILES indicates that all files of the current program remain
open and at their current positions. If the keyword FILES is
not specified, all files except procedure files are closed
when the CHAIN statement is executed.

data-item is the name of a variable or array (without the
keyword MAT).

The data items define the names of the variables that are to
retain their data when the chain occurs. All other variables
are destroyed during the chaining operation. The list of data

BASIC reference information 41

CHAIN

CHAI N statement (continued)

42 SA34-0109

items is not syntax checked until the CHAIN statement is
executed.

Examples

In the following example, the current program is terminated,
all files are kept open, PGM3 from VOL 1 is loaded, and the
values of variables A and B$ are copied into the chained-to
program.

10 CHAIN "PGM3/VOL1", FILES, A, B$

In the following example, the system chains to the
procedure file "PROC4". In statement 70, the "PROC=" is
necessary to indicate that "PROC4" is a procedure and not
a program.

70 B$ =."PROC=PROC4"
80 CHAIN B$

If a procedure was already in effect, it is replaced with the
new procedure, PROC4.

An example of CHAIN specifying the subprocedure is

90 CHAIN "SUBPROC=SET.TIME"

If a procedure was already in effect, it resumes control
when the subprocedure is finished.

f/

CHAIN

Programming considerations

USE
The chained program must contain a USE statement
that specifies the same variables in the same order as
the CHAIN statement (see "USE statement").

Dimensioning
The chaining and the chained program must be
dimensioned the same as all the arrays and the
character variables that are passed. The programs can
redimension the arrays in any valid manner (see
"Redimensioning arrays").

Options
The options specified on an OPTION statement in the
chained-from program must match the options
specified in the chained-to program.

IF, THEN, ELSE
There cannot be an ELSE clause when the CHAIN
statement is the object of a THEN clause. Only a
remark can follow the data items in a CHAIN
statement.

CHAIN interrupt
If CHAIN processing gets interrupted for any reason
while LOAD appears on the status line (for example,
file not found) and if termination is desired, CLEAR
ALL must be entered.

See "Sample program 7" in Appendix A.

BASIC reference information 43

Character arrays

Character arrays

44 SA34-0109

A character array contains only character data and can have
one or two dimensions. '-

Character arrays, like simple character variables, are named
by a single letter of the alphabet followed by zero to seven
alphabetic or numeric characters, followed by the dollar sign
$.

For example:

D$(S) = "JONES"
AS$(10) = "SMITH"

Character arrays can be used in input, output, and simple
matrix assignment statements and can be redimensioned
(except for maximum string length). The maximum string
length of each element of a character array cannot changed.

For more information, see:

"Arrays"

"Character variables"

"Redimensioning arrays"

"DIM statement"

"VAL(A$)"

Character constants

(,\,

(/

Character data

Character constants

A character constant is a string of characters enclosed in
quotation marks. Any letter, digit, or special character can
be in a character constant. For example "THE PRICE IS
$6.95." represents THE PRICE IS $6.95.

The character constant, including blanks but excluding the
delimiting quotation marks, may be from zero through 255
characters long. The following are examples of valid
character constants:

"YES"
"HE SAID ""HELLO"""
"123456"

Lowercase characters within quotes (constants) are not
changed to uppercase.

To represent quotes within character strings, two
consecutive quotes (....) are required.

Character data in BASIC is data with a character value. It
can be in the form of constants or variables (see "Character
constants" and "Character variables").

BASIC reference information 45

Character expressions

Character expressions

46 SA34-0109

Syntax

[(star:ndl l
character variable ________ ...1 ____ .. _I--..a.,... --~

user defined function ---------------~

--r---~- "character constant" ----------------+--...... --l-.
system function ~ -

I I I system variable I
L ____________ & __________ J

.. Entire variable

Start and End are numeric expressions.

A character expression is a character constant, a character
variable, a character operation reference, a single element of
a character array, a character substring, or a combination of
these. The only operators ever associated with character
expressions are the substring and the concatenation symbol.
For more information, see "Concatenation" and "Substring
referencing." The following are examples of character
expressions:

"ABCDEFG123456"
ALPHA$ 1; BETA$
"SER" 1; "IAL"
ZEBRA$(2:6)

(~'

('

Character expressions

Subjects related to character expressions

This section lists and summarizes subjects related to
character expressions. For additional information, refer to
the specific subject in this manual.

Character set See charts under this topic
CHR$ Returns character for specified

position within collating
sequence

Concatenation Joins character strings together
DATE$ Returns date set by DATE

command
FILE$ Returns file specification
FORM statement Specifies format for

displayed/printed input/output
and for records in files

HEX$ Returns hexadecimal value
KSTAT$ Returns the most recent

keystroke
LEN Returns the length of a string
LPAD$ Returns a string padded on the

left with blanks
LTRM$ Returns a string with leading

blanks removed
ORD Returns ordinal value
PIC$ Returns / changes the current

currency symbol
pas Returns position of matching

substring

BASIC reference information 47

Character expressions

Character expressions (continued)

48 SA34-0109

RPAD$

RPT$
RTRM$
SRCH
SREP$

STR$

TIME$

WSID$

Returns a string padded on the
right with blanks
Returns repeated character
Removes trailing blanks
Searches array for a value
Replaces strings past a specified
position with another string
Converts a specified value to a
character string
Returns time of day (set initially
by TIME command)
.Returns which port of the 5246
Diskette Unit the 5322
Computer is attached to

'''--./

Character set

Character set

The System/23 character set is used to represent arithmetic
and character data as data constants and variables and to
represent the BASIC program.

The character set consists of the following:

Alphabetic characters (English)

Alphabetic characters (non-English)

Numeric characters

Special characters

Graphic characters

Alphabetic characters (English)

The uppercase and lowercase letters of the alphabet (A
through Z make up the System/23 alphabetic characters).
See "Character set."

Alphabetic characters (non-English)

Characters of the alphabet that are non- English may not be
used for BASIC variable names and file names.

Numeric characters

In BASIC, the numeric characters are the digits 0 through 9.

BASIC reference information 49

Character set

Character set (continued)

50 SA34-0109

Special characters

There are 21 characters that have special meaning in
System/23 BASIC:

Character Name

Blank or space

= Equal sign

+ Plus sign

- Minus sign

* Asterisk

I Slash

A Circumflex

(Left parenthesis

) Right parenthesis

, Comma

Period or decimal point

, Semicolon

: Colon

& Ampersand, concatenation

? Question mark

> Greater than

< Less than

! Exclamation point

$ Currency symbol

" Quote

:# Number sign

,/"

(

Character set

The cursor does not move to the right when using the
circumflex. The cursor right key must be used.

There are other special characters but they do not have
special meaning in System/23 BASIC. They are used within
character strings.

Graphic characters

There are 11 graphic characters in System /23 BASIC:

Vertical bar

Lower right corner

Lower tee

Left tee

• Upper tee

Upper left corner

Lower left corner

Upper right corner

Right tee

Horizontal bar

Intersection

I
J

1..

f

T
I
L
I
~

+
Note: On the printers, small gaps may be visible between
graphics.

BASIC reference information 51

Character set

Character set (continued)

Column 0 1
-+ 00 Bit

~
Ptto 0 00 01 a:

0 0000

1 0001

2 0010

3 0011

4 0100 H Norm

5 0101

6 0110

7 0111 B UR

8 1000 R URH

9 1001 URB

A 1010 HB URBH

B 1011 RB I

C 1100 UH

D 1101 UB

E 1110 UBH

F 1111

52 SA34-0109

Display attributes, highlight and blink, do not affect these
graphic characters.

The following chart lists all of the EBCDIC characters and
their hexadecimal representation used in System/23 BASIC.

2 3 4 5 6 7 8 9 A B C D E F

01 10 11

10 11 00 01 10 11 00 01 10 11 00 01 10 11

..J -, SP & - <P
0 ¢ (} \ 0 '" J.l.

...L -i RSP e / E j - £ A J NSP, 1 a

I- a e A E b k s 1 B K S 2

U ii e A E c 1 t Pt C L T 3

a e A
,

ND - E d m u f D M, U 4

RHB a I A i e n v § E N V 5

a i A i f 0 w 1f F 0 W 6

RH a "i A OJ
9 P x % G P X 7

T ~ 1 c; i h q y % H Q Y 8

r n (3 N ,
i % I R Z 9 r z

[I I
I

: {(!!. i --. SHY I 2 3

$ # » i 0 Q 6 " . , 2 l U

L (* % ~ d" {) - 0 U 0 0 a:

()
,

y .. 0 u 6 U - ~ Y

+ +) = ± ...£ I
,

6 U 6 U

! A ? " ± :« ® 0 Y 5 EO =

Character set

Notes:

BASIC reference information 53

Character set

Character set (continued)

54 SA34·01 09

Special use characters

The following shows characters that perform a special
function on the display screen and/or printer. An X
indicates that the device supports the function.

Character set

Hex 10 Screen Printer Use

f-~~ 04 H X Highlight
, -' 06 New line Blank X Start output in column 1,

next line
07 B X Blink
08 R X Reverse image
OA HB X Highlight blink
OB RB X Reverse image,blink
OC New Page X X Screen=clear,

printer=eject page
OD CR X X Carrier return
11 Blank X System use only
12 Blank X System use only
13 Blank X System use only
14 N X X Screen=normal image,no

blink,highlight,underline
Printer=stop underline

15 New line X X Start output in column
l,next line

17 UR X Underline,reverse
'(image

-- - 18 URH X Underline,reverse
image,highlight

19 URB X Underline,reverse
image,blink

lA URBH X Underline,reverse,
blink, highlight:

lC UH X Underline,highlight
ID UB X Underline,blink
IE UBH X Underline,blink, highlight
23 U X X Underline
24 I X Invisible
25 Line feed Blank X Start _ output in same

column,next line
27 RH X Reverse,highlight
2B Format Blank X Set printer
35 RHB X Reverse image,

highlight, blink

(' 3A Page End Blank X Eject page
3B Blank X System use only
3C Blank X System use only

BASIC reference information 55

Character set

Character set (continued)

56 SA34-0109

Characters not displayable

Not all graphics can be displayed at the same time (see "'-.,
"DISPL Y"). Characters that are not displayable show up as
"blobs." All graphics always print on the printer (except
1 /4, 1/2, and 3/4 on some printers).

The following charts show which characters are not
displayed for each setting of DISPL Y. Non-displayable
characters are shown in the shaded boxes.

DISPL YO) - United States character set:

0123456789 ABCDEF

~ I \ 0

- £ A J

k • .. B K S 2

PtsCLT3

mufDMU4

§ E N V 5

G P X 7

q V Hay B

ii ~ N R Z 9

A « !

C

o

A

c •
o

DISPL Y(3) - Europe (except Spain) character set:

A C 0

& • A

.. K

• C T

o M U

N V

a w

x

a y

A

(#

c

o

. !

BASIC reference information 57

Character set

Character set (continued) DISPLY(4) - Nordic (including Iceland) character set:

58 SA34-0 1 09

&

A

A

C

o

A C 0 ..
A

o

wi F

x G

K

T

M U

N V

o w

x

H Q Y

R Z

DISPL Y(5) - Spain (Spanish speaking) character set:

&

I
A

C

D

A C 0

A

o

I:
M U

N V

o w

x

Q Y

R Z

(0

1

2

3

4

5

6

7

8

9

10

11

(12

13

14

15

16

17

18

19

20

21

22

23

24

25 (

0 1 2 3 4

Note
2

.-J ..L f-
T

Note L
r 1

-
+

- a n [a C

& e '" e e e

1 $ *) ,

A A A A C

> ? 1> E '" E

1 '-
@

b c d e f

d Y t ±

0 p q r ~

J1
~ s t u

I l {) f I

S' § ~ Yo 'h
,. { A B -

H I '" 0 0

K L M N a
U U U Y \

w x y z 2

0 1 2 3 4
3 A-

U U U u

5 6 7

Note
1

I

'"
..

a a

< (

f A-
I I

1\ - /

N I
I .. r: f E

= "

9 h i

j k I

Q <e
~

v w x

® ¢ £

%
---,

I
C D E

0 6 a
P Q R

s T
A

0 a a
5 6 7

8

-,

il

+

I
1\
%

A-

I

cf>

~

m

,.£

y

l

F

}
I

U

6
8

9

-l

a
!

(3

A

-

I

a

~

n
, /

/0,

z

~
..

G

J
A
u

V

a
9

Character set

Notes:
1. Unprintable character
2. Page advance

Use table from left to right

Examples:
decimal code 193 prints A
decimal code 91 prints $

The information in this
table is used with CHR$

Decimal representation of characters

BASIC reference information 59

Character variables

Character variables

60 SA34-0109

A character variable is a named item of character data
whose value is subject to change during program execution.
Character variables are named by a single letter of the, j
alphabet, followed by from zero to seven alphabetic or
numeric characters, followed by the dollar sign $.

When the program is executed, the initial value of character
variables is set to null (zero length).

When a character expression value is assigned to a
character 'Variable, the resulting length of the character
variable is that of the expression.

For example:

A$="ABC"

A$ is now 3 characters long.

The maximum length a character variable can be
dimensioned to is 255 characters. Examples of character
variables are:

A$
DATA$
NAME$
M211$

The maximum length of a character variable is 18 unless
specified in a DIM statement (see "DIM statement").

CHR$(X)

c

CHR$

Returns the one-character string occupying the ordinal
position X within the native System/23 collating sequence.
X must be in the decimal range a through 255. If X is
outside this range, an error occurs. The change collating
sequence Customer Support Function does not affect the
result of C H R$. For additional information, see "Character
set."

Example:

10 X=247
20 A$=CHR$(X)

A$ contains "7"

BASIC reference information 61

CLEAR

CLEAR command

62 SA34-0109

The CLEAR command deletes the program or data file from
the work area, or cancels the active procedure(s).

£A::A

PROC

CLEAR D ---'1....-___

.. CLEAR to PROGRAM mode.

The syntax for the CLEAR command is as shown above,
where:

ALL clears the work area of the program or data and any
active procedure files. In effect, it puts the machine in an
initial power-on status.

DA T A sets the work area to OAT A mode for entering
keyboard generated data files. Closes all files (except
procedure files) left open by the program in the work area.
All contents of the work area are erased.

PROC resets the system to keyboard input and eliminates
any active procedure file hierarchy. Closes all procedure files·
left open. The contents of the work area are not erased.

If no parameter is specified, PROGRAM is the default. It
sets the work area to PROGRAM mode for program entry.
This closes all files (except procedure files) left open by the
program in the work area. All contents of the work area are
erased. c

Clear display screen

(

CLEAR

The status line will display READY INPUT when the
command is complete.

CLEAR should be used whenever a new program is entered.
Otherwise. existing lines in the work area may become part
of the new program.

see "NEWPAGE" under "PRINT statement"

BASIC reference information 63

CLOSE

CLOSE statement

The CLOSE statement specifies the file to be closed.
CLOSE is automatically executed for each active file at the
end of program execution.

r - - -,- --,
I I

I

[::::ASE I
CLOSE--#file-ref ~:--''------tl'AI---'-----_

EXIT line-ref

64 SA34-0109

.. Keep file, maintain reserve status
II Interrupt on error unless ON is active

The syntax of the CLOSE statement is shown above, where:

file-ref is a numeric expression. See "File-reference
pa ra meter."

RELEASE will reset any reserve control status. See "File
sharing."

FREE will free the file if it is opened NOSHR. See
"DROP /FREE command."

error-cond line-ref specifies the line number or label that
the program should transfer to for one of the following error
conditions:

IOERR - input/output error
EOF - end of volume

-- ,

c

CLOSE

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs (see "EXIT
statement").

Examples

Sample CLOSE statements:

20 CLOSE # 1 :
30 CLOSE #2: IOERR 200
40 CLOSE #3: EXIT CLOSEXT
50 CLOSE #5, FREE: EXIT 400
60 CLOSE #6, RELEASE:

Programming considerations

CLOSE #0 and CLOSE #255
CLOSE #0 and CLOSE #255 may be issued even if
there was no prior OPEN #0 or OPEN #255.
CLOSE #0 and CLOSE #255 may be used to ensure
that all screen and printer operations have completed.

SEQUENTIAL
If a DISPLAY I/O file is used for both input and
output operations during execution of a single
program, the file must be closed and reopened
between input and output references.

Output last data
The output file must be closed to make sure that the
last records are written. If the diskette is removed
without a CLOSE, END, or STOP-data may be lost.

BASIC reference information 65

CLOSE

CLOSE statement (continued)

CMDKEY

CNT

66 SA34-0109

.• Extents
- Any unused portion of the file extents remains

assigned to the file after it is closed.

CMDKEY is a system variable that returns the identity of
the last key used to terminate the last INPUT or LlNPUT
statement.

-1 is returned if no I N PUT or LI N PUT was executed in
this program.

• 0 is returned if the Enter key was used.
1-9 is returned if the Cmd key plus one of the
numeric-pad keys was used.

CNT is a system variable that returns the number of data
items successfully processed by the last I/O statement
executed. The CNT value is set according to the following:

CNT is set to 0 before the I/O statement starts
executing.

• For INPUT, READ, and PRINT each item is counted as
one.

• For LlNPUT, the value is set to 1 if data was read.
• For MAT variables, each element is counted separately.

CNT

.(-"

(-~ CODE

Commands

Example:

10 OPTION BASE
20 DIM A(4)
30 INPUT MAT A

•
•

CNT

• (CNT=4 if successful)

•

Note: CNT should be assigned to a variable if its value will
be printed. This is because if used in a PRINT statement,
CNT will be reset to 0 before the value of CNT is printed.
Continuing the above example:

40 X = CNT
50 PRINT X

CODE is a system variable that can be set by the program
with a STOP or END statement to any value 0 through
9999. It is available to a procedure for testing with the SKIP
command.

see "System commands"

BASIC reference information 67

Comments

Comments

See "Remarks"

CON

Sets the entire array to a constant (see "ZER and CON").

68 SA34-0109

Concatenation

(

(

{

Concatenation

Concatenation is joining two or more character strings into
one. The symbol used for concatenation is the ampersand
(&). For example:

10 DIM A$*4
20 DIM B$*3
30 DIM C$*7
40 A$="FLOR"
50 B$="IDA"
60 C$=A$&B$
70 PRINT C$

In this example, the character string A$ is concatenated (&)
with the character string B$ to form string C$ (FLORI DA).

Another example of how to use concatenation is as follows:

10 LET A$="MIKE"
20 LET B$="//1"
30 OPEN #1:"NAME="&A$&B$&",SIZE=O,

RECL=127",INTERNAL,OUTPUT
40 CLOSE #1:

Line 30, above (using concatenation) is the same as line 1 0,
in the following:

10 OPEN #1:"NAME=MIKE//1,SIZE=O,
RECL=127", INTERNAL, OUTPUT

20 CLOSE #1:

The result of concatenation must be 255 characters or less.
For more information, see "Character expression."

BASIC reference information 69

CONTINUE

CO NTI N U E statement

70 SA34-0109

The CONTINUE statement transfers control to the
statement following the one causing the most recent
ON-condition transfer or I/O exit.

CONTINUE---------I ••

CONTINUE is useful following an ON GOTO transfer or I/O
exit. If an ON event is specified to be IGNORED, the return
statement specification used by CONTINUE is not changed.
See "ON statement".

If a second ON GOTO or I/O exit occurs before CONTINUE
is executed, the first occurrence is lost. Avoid operations
that cause such occurrences or use ON ... IGNORE.

If no error has occurred since RUN, execution of
CONTINUE causes an error and interrupts execution of the
program.

Any event that causes an ON GOTO transfer or I/O exit
including the Inq key (ON ATTN), sets the CONTINUE
target line.

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF,FNEND
statement."

\",-.-"..-/

COS(X)

(- \

Cross reference

(

cos

Returns the cosine of X, where X is in radians. The absolute
value of X must be less than 1 E10. For best accuracy
specify a value for X greater than - 2*PI or less than 2*PI.

see

"LIST label" under "LlST,LlSTP command"

BASIC reference information 71

Customer Support Functions

Customer Support Functions

72 SA34-0109

The Customer Support Functions are supplied by IBM
Marketing Support on diskettes. For detailed information
about Customer Support Functions, see Customer Support
Functions, Volume I and Volume II. The Customer Support
Functions are:

Select Machine Update
Load Machine Update
Prepare Diskette
Copy Diskette or File
Display Diskette Label
Recover Diskette
Create Index File
Change Collating Sequence
Replace Customer Support Function
Prepare Sort Control File
Sort
List Diskette
List File
List Storage

The foliowing Customer Support Functions are part of the
Communications Licensed Programs:

Set Up Asynchronous Communications
Set Up Binary Synchronous Communications
Prepare Batch Data Transfer
Batch Data Transfer
Asynchronous Communications Terminal
Diagnostic Analysis
Online Test

Note: Some Customer Support Functions may be called and
controlled from Procedure Files

(

(

Customer Support Functions

Select Machine Update-LINK SELECT

The Select Machine Update function creates a file of
machine updates to be used by the Load Machine Update
function. This must be done before the load machine update
features can be performed.

Load Machine Update-LINK UPDATE

The Load Machine Update function is used to load machine
updates (supplied by IBM) into the system.

Prepare Diskette-LINK PREPARE

The Prepare Diskette function is used to prepare a new
diskette or erase a used one. A new diskette cannot be
used as it is received, it must be prepared to the format
required by the system.

BASIC reference information 73

Customer Support Functions

Customer Support Functions (continued)

Copy Diskette-LINK COpy
/~'.

The Copy Diskette function does any of the following: \,,--j

74 SA34-0109

Copies an exact image of an input diskette to an output
diskette

Copies a group of files from an input diskette to an
output diskette

Copies a selected input file to an output file

Copies a selected input file or group of files to the
printer

Copies all files from an input diskette to an output
diskette

Compresses files by eliminating deleted records or
unused extents

Display Diskette Label-LINK LABEL

The Display Diskette Label function is used to display the
contents of the diskette labels for use in recovery
procedures. The contents of these labels can also be
printed. Labels on any access-protected diskettes cannot be
displayed or printed. See "DIR command" and "VOLID
command."

Customer Support Functions

Recover Diskette-LINK RECOVER

The Recover Diskette function is used to recover a file when
a read error occurs on the label or data portion of the file.
The function will save as much of the data on the file as
possible. Accidentally freed or dropped files can be
recovered even though no read error occurred.

Create Index File-LINK INDEX

The Create Index File function is used to create index files
for use in accessing master data file records (see
"Key-indexed files").

Change Collating Sequence-LINK COLSEQ

The Change Collating Sequence function is used to replace
the memory-resident collating sequence with an alternate
collating sequence. It also is used to modify the active
collating sequence from the keyboard.

For related BASIC subjects see:

"I F statement"
"AIDX and DIDX"
"OPTION statement"

Replace-LINK REPLACE

The Replace function is used to find obsoleted versions of
the Customer Support Functions and replace them with the
newer versions.

BASIC reference information 75

Customer Support Functions

Customer Support Functions (continued)

76 SA34-0109

Prepare Sort-liNK PRESORT

The Prepare Sort function is used to define the files, sort',-./,~
fields, and other information to be used by the Sort
function. This must be performed before the Sort function
can be used.

Sort-SORT sort-control-file

The Sort function is used to perform a Record Out Sort or
an Address Out Sort. Record out sort creates a new file
with the records sorted. Address out sort creates a new file
with the address (positions) of the record in the sorted
order.

List Diskette-liNK lISTDISK

The List Diskette function provides you with information
about the files on the diskette you specify. It provides you
with information about the diskette and about the files on
the diskette.

List File-liNK lISTFILE

The List File function allows you to investigate the records
in a file. It uses your answer to prompts to list records and
summary information about the records.

(

(

Customer Support Functions

List Storage-LINK LlSTSTOR

The List Storage function is a helpful tool that you can use
to help you debug a BASIC program. It will print and / or
display various parts of storage that were previously saved
on diskette using the built-in diagnostic dump. The storage
is interpreted in terms of the BASIC program which was
resident at the time of the dump.

Set Up Asynchronous Communications - LOAD
SETUP.ASC

The Set Up Asynchronous Communications function creates
a file containing the communications environment data. This
must be done before Communications can be run.

Set Up Binary Synchronous Communications -
LOAD SETUP.BSC

The Set Up Binary Synchronous Communications function
creates a file containing the binary synchronous
communications environment data. This must be done
before Communications can be run.

Prepare Batch Data Transfer - LOAD PREBDT

The Prepare Batch Data Transfer communications function
builds a control file that directs the operation of Batch Data
Transfer.

BASIC reference information 77

Customer Support Functions

Customer Support Functions (continued)

78 SA34-0109

Batch Data Transfer - LOAD BDT

The Batch Data Transfer communications function transfers
data files to and from a remote system.

Asynchronous Communications Terminal - LOAD
ACT

The Asynchronous Communications Terminal function
operates as an interactive terminal for asynchronous
communications.

Diagnostic Analysis - LOAD DIAG

The Diagnostic Analysis communications function displays
trace and statistical information from a communications
session.

Online Test - LOAD OL TST

The Online Test function performs Binary Synchronous
Communications online tests to verify the communications
link.

DATA files

(

DATA files

Type 05 (DISPLAY) files are used in the System/23 for
procedures, as input to programs (INPUT and LlNPUT), and
for any other data in the form of keyed input or printed
output.

System/23 provides a convenient method of creating,
viewing, and editing DISPLAY files. To create a DISPLAY
file, enter:

CLEAR DATA
AUTO

CLEAR deletes any previous data or program from the work
area. AUTO puts a line number and colon on the input line.
Now enter any desired data, such as procedure file
commands or data. All normal editing facilities are available.

When finished, enter:

SAVE file-spec

This puts the new file on the diskette. Remember to include
either a VaLID or device address in the file specification. To
edit an existing DISPLAY file, enter:

LOAD file-spec, DATA

Next, edit the file as usual, then enter:

REPLACE

For additional information see, "CLEAR command" and
"Editing a program."

BASIC reference information 79

DATA files

DATA files (continued)

80 SA34-0109

The following BASIC program will print the DATA file (type
05) on the system printer.

10 DIM LINE$*255
20 OPEN #1: "NAME=file-spec", DISPLAY, INPUT
30 LOOP: LINPUT #l:LINE$ EOF QUIT
40 PRINT #255: LINE$
50 GOTO LOOP
60 QUIT: STOP

DATA statement

(

DATA

The DATA statement creates an internal data table. The
data table constants are assigned to the variables and/ or
array elements by the READ statement (see "READ
statement").

---.I"' num.constantJ DATA tl r-.---; ••
I char·constant

I I L ____ • ____ .J

The syntax of the DATA statement is as shown above,
where:

num-constant is any numeric value (see "Arithmetic
constant" under "Arithmetic data").

char-constant is any character string value. The character
string may be quoted or unquoted. In the quoted character
string, any characters are allowed. In the unquoted
character string, leading and trailing blanks are ignored,
commas and quotes are not allowed.

When program execution begins, a pointer is set to the first
constant in the table. The pointer is advanced as data is
read by the READ statement. (The RESTORE statement may
be used to restore the pointer to the first constant.)

BASIC reference information 81

DATA

DATA statement (continued)

82 SA34-0109

Example

100 OPTION BASE 1
110 DATA "DEBIT",21.60,"CREDIT",15.40
120 DATA MONTH, DAY, YEAR
130 READ A$,N,B$,C
140 DIM Z$(3)
150 READ MAT Z$

Programming considerations

• Location
The DATA statements may be placed anywhere in the
program regardless of the position(s) of the READ
statement(s).

• Too few values
If the DATA statement does not contain enough
constants for the READ statement issued, an EOF
error is generated.

Character data
Ch<!racter data does not have to be enclosed in
quotation marks unless leading blanks, embedded
commas, or lowercase characters are significant.
Unquoted lowercase letters and graphic characters
are converted to uppercase.

Numeric data
Numeric values may be accessed and read as either a
numeric or character value.

• Remarks
A remark is not permitted on DATA statements. It is
interpreted as part of the data. ((-,

\l.../

DATE command

DATE$

Declaring arrays

(

DATE

The DATE command assigns the specified date to the
system variable DATE$.

DATE-yy/mm/dd •

The syntax of the DATE command is shown above, where:

yy is in the range 00 to 99
mm is in the range 01 to 12
dd is in the range 01 to 31

An example of the DATE command with a remark is:

DATE 81/01/01 ! Happy New Year

DATE$ returns an eight character string that is set by the
DATE command. At power-on, it is set to (1)1>/1>1>/1>1>).

The date is not updated by the system.

see "DIM statement"

BASIC reference information 83

DEF,FN·END

DEF,FNEND statement

FNname

DEF

The DEF statement is used to define an arithmetic or
character valued function for reference elsewhere in the
program. The FNEND statement indicates the end of a
multiple-line function. The syntax of the DEF statement can
be either a one-line or multiple-line function.

One-line function

r------'---i

iIarith-var I
('length I

[,h"-,,, D [;Jll]
arith-expression ------,

I---'---~

L[arith-var I
, 'length I

FN",m,' [";'"J [' ,h"", ~ ;JlIJ
char-expression

84 SA34-0109

.. No input parameters
II Length is 18

The syntax for the one-line function is shown above,
where:

FNname is any valid variable name. This name, preceded by
the letters FN is the name of the defined function. For
character valued functions, this name must be followed by
the dollar sign $.

(

DEF,FNEND

length is the length of the character variable used as input
or output. The length may range from 1 to 255 characters.

arith-var is an arithmetic variable name to which a value will
be assigned when the function is called.

char-var is a character variable name to which a value will
be assigned when the function is called. Values assigned to
the character variable cannot exceed the maximum length of
the variable. Loss of data will result.

arith-expression is an arithmetic expression that specifies
the value to be returned for the function. If the function
name is an arithmetic variable, an arithmetic expression
must be specified. See "Arithmetic expressions."

char-expression is a character expression that specifies the
value to be returned for the function. If the function name is
a character variable, a character expression must be
specified. See "Character expressions."

Example one-line DEF statements

Arithmetic function:

120 DEF FNA(R)=2*R+100

Character function:

120 DEF FNA$(R)=STR$(R+5)

BASIC reference information 85

DEF,FNEND

DEF,FNEND statement (continued)

DEF

Multiple-line function

r------'---,
L[arith-var I

("length I ,",,'" [.111,
FNnam~~~--------~~--------------~---------------------,

r---'---~

l[arith-var • :;Jl1.
r lengt I

()
char-var·_-L __ __ L *length

FNnam~ " __ -L~ __________ ~~ ____________ ~ ____________ ~

.. No input parameters
II Length is 18

The syntax for the multiple-line function is shown, where:

FNname is any valid variable name. This name, preceded by
the letters FN, is the name of the defined function. For
character valued functions, this name must be followed by
the dollar sign ($).

length is the length of the character variable used as input
or output. The length may range from 1 to 255 characters.

arith-var is an arithmetic variable to which a value will be
assigned when the function is called.

char-var is a character variable to which a value will be
assigned when the function is called. Assigned values for

86 SA34-0109

(

DEF,FNEND

the character variables cannot exceed the maximum length
of the variable.

The LET statement assigns the value of an expression as
the result of the function.

The FNEND statement is descriptive and indicates the end
of a multiple-line function. The value of the function is
specified in an expression in the LET statement.

Example multiple-line DEF statement

10 LET A 5
20 LET B 2
30 LET C -5
40 DEF FNA(X,Y)
50 IF X > 0 THEN LET FNA X+Y ELSE LET FNA =X-Y
60 FNEND
70 LET D = FNA(A,B)
80 LET E = FNA(C,B)
90 PRINT D,E

In this example, when these statements are executed, D will
have a value of 7 and E will have a value of -7.

The use of functions

When a user function reference appears in an executable
BASIC statement, any expressions that follow the function
name must be separated by commas and enclosed in
parentheses. These expressions are evaluated and passed
by the system to the user function in order to initialize the
corresponding variables in the DEF statement. These values
must agree in number, length, and type with the

BASIC reference information 87

DEF,FNEND

DEF,FNEND statement (continued)

88 SA34-0109

corresponding variables in the DEF statement. If the DEF
expression is present, the function is defined on the same
line and its value is the value of that expression. This is a
one-line function. If no expression is specified in the DEF
statement, the DEF statement is the start of a multiple-line
function. In this case, the FNEND statement indicates the
end of the function and the value of the function is
specified by the value of the variable FNname assigned in
the LET statement.

Programming considerations

Use of functions
A function reference to a user-defined function may
appear anywhere in a BASIC program that a constant,
variable, subscripted array element reference, or
system function reference can appear (see
"Arithmetic expressions").

Location
A function can be defined anywheie in a BASIC
program either before or after it is referenced.

Name localization
The variables named in the DEF statement are local
to the function. Consequently, it is possible to have a
variable in the DEF statement with the same name as
a variable used elsewhere in the program. Each
variable is recognized as being unique, and no conflict
of names or values results from this duplicate usage.
All variables which are not DEF arguments have the
same value/meaning for all statements.

(

(

(

DEF,FNEND

On CONDITION localization
When execution of a multiple-line defined function
begins, all ON CONDITION settings are stacked and
set to SYSTEM. New settings for the ON
CONDITION may be specified within the function. If
an ON event occurs within the function and the
specification is IGNORE, it will be ignored. If the
specification is GOTO, the transfer will occur, and the
function will remain active. CONTINUE and RETRY
will return execution to the appropriate line within the
function. If SYSTEM is active, the function execution
is abandoned. The ON conditions are unstacked and
whatever was specified for the event preceding the
current function will occur (IGNORE, SYSTEM,
GOTO).

BASIC reference information 89

DEF,FNEND

DEF,FNEND statement (continued)

90 SA34-0109

Bypass function
After control is passed to a DEF statement without
reference to the function, control goes to the first
executable statement following the function definition
(the DEF statement for one-line functions, or the
FNEND statement for multiple-line functions).

Cmd/ Attn
If Cmd / Attn is pressed during the execution of a
defined function, execution will be interrupted. If Error
Reset is pressed, execution of the function will
resume normally. If Cmd/Error Reset is pressed the
function is abandoned and the system enters split
screen mode at the line which invoked the defined
function.

I/O exits
Exit clauses specified in I/O statements within a
multiple-line defined function causes the specified
transfer of control when the event occurs. The
function remains active and CONTINUE and RETRY
will return to the appropriate line within the function.

Inq
If the Inq key is pressed during execution of a
defined function, it is ignored until all currently
executing defined functions have completed
execution. At that time whatever ON action specified,
prior to entering the function, occurs. (IGNORE,
SYSTEM, GOTO).

Single definition
A function of a given name can be defined only once
in a given program.

(

DEF,FNEND

Recursion
A function cannot contain references to itself or to
other functions that refer to it.

FOR/NEXT
A FOR/NEXT loop beginning in a function must also
end in the same function.

Nesting
- DEF function definitions cannot be nested.

• Input/Output

•

User-defined functions that are referred to during an
input or output operation cannot themselves perform
any input or output operation.

Modification of variables
If a function definition alters the value of a variable
that is referenced in the same statement that calls the
function, the results may not be as expected.

Termination
A program may not be terminated when a defined
function is still in execution. An FNEND must be
issued for each invoked DEF before program
termination.

EXIT and FORM
EXIT and FORM statements inside a multiple-line
DEF function can be referenced from outside the
function; those outside the function can be
referenced from inside a DEF function.

• Be sure that the first line of a multiple-line function
(DEF) is not the last line of the program.

BASIC reference information 91

DEL

DEL command

92 SA34-0109

The DEL command is used to delete one or more
consecutive lines from a BASIC program or DATA work
area.

r,last line-nUml
DEL- first line-num~D --....1..----1 ••

.. Delete only one line number

The syntax of the DEL command is shown above, where:

first-line num is a number specifying the first line number
of several consecutive line numbers to be deleted. It may
also be the only line number to be deleted.

last-line num is a number specifying the last line number of
several line numbers to be deleted.

The numbers used in the first-line and last-line numbers
must be integers in the range of 1 through 99999. The
first-line number must be less than the last-line number.

No additional storage becomes available as a result of using
the DEL command. The additional storage will become
available when the program is SAVEd in SOURCE format
and LOADed.

(-

f

DEL

Example

To delete line 20 from a program or data work area:

DEL 20

To delete lines 20 through 90 from a program or data work
area:

DEL 20,90

If line 20 or 90 does not exist in the workspace, then the
range of lines that do exist between 20 and 90 will be
deleted. If no line exists, an error is presented.

Programming considerations

Comments should not be used on the DEL command.

BASIC reference information 93

DELETE

DELETE statement

The DELETE statement deletes either the last record read
from the file or the record specified by the position
specification. After the record is deleted, the file is
positioned to a location immediately following the deleted
record.

...-----,----,
I I

, R EC=arith-expression error-cond line-ref

, KEY=char-expression EXIT line-ref __ -t

DELETE- #file-ref_.L-__ -IIt-__ --L_ -...1..----&---...1..-----1.

94 SA34-0109

.. DELETE last record accessed READ/REREAD
D Interrupt on error unless ON is active

The syntax of the DELETE statement is shown, where:

file-ref is a numeric expression (see "File reference
parameter").

REC=arith-expression specifies that the record having a
record number equal to the arithmetic expression is to be
deleted.

KEY=char-expression specifies that the first record in the
file having a key equal to the character expression is to be
deleted.

error-cond line-ref is the error action for one of the
following: NOREC, IOERR, or NOKEY

;-

For information on the error actions see "EXIT statement". ("-

~-

«

(

DELETE

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

Example

A sample DELETE statement is shown here:

80 A$="ZEPOL"
90 DELETE #8, KEY = A$:

In this example, the first record with a key field equal to
ZEPOL is deleted.

Programming considerations

The file must have been opened as INTERNAL, OUTIN.
The file organization may be SEQUENTIAL, RELATIVE,
or KEYED.

The SEARCH parameter is not permitted.

If no KEY or REC parameter is specified, the previous
access to this file must have been a successful READ or
REREAD statement.

Descending index (MAT assignment)

see "AIDX and DIDX"

BASIC reference information 95

Device address

Device address parameter

Computer

D JJ JJ
V ,

Diskette I
I unit
I

11 ~
Printer Feature printer
(first printer) (second printer)

Device sharing

96 SA34-0109

Many BASIC statements and system commands require
entry of a device address parameter. This address identifies
the input/output device being used. Valid device addresses
(in decimal) for System/23 are:

1 Diskette drive 1
2 Diskette drive 2
3 Diskette drive 3
4 Diskette drive 4
10 Printer
11 Feature printer
40 Communications

See "0 PEN statement", "File specification parameter".

Device sharing means that two 5322 Computers are
connected to the same 5246 Diskette Unit and both have
different open files on the 5246. This situation is handled
entirely by the system and never produces any new logical
or data integrity questions.

The 5246 can only service one computer at a time and thus
each computer may experience additional waiting time when
the other computer is already using the 5246. For this
reason, only data that is to be shared by both computers
should be located on the 5246. Files which are to be used
only by one of the computers should be located on that
computer's inboard drive.

During the computer power up testing, an attempt is made
to access the 5246 to establish its presence and the
computer work station identification (WSID$).

Device sharing

f

(

Device sharing

If the 5246 is in use by the other processor, +0 will
appear on the status line. In this case the operator may
simply wait for the 5246. If the operator does not wish
to wait, then he may press Cmd/ Attn, producing an
action code 21 and error code 6009. ERROR RESET will
now return the processor to waiting for the 5246.

Cmd/Error Reset will terminate the wait. The 5246 is
now logically detached from the processor and all future
references to it will cause an error 4153 (device not
attached). To attach the 5246 you must now power the
processor down and up again, with the 5246 power on.

If the 5246 is not powered on, action code 21, error
code 6009 is displayed. To attach the 5246, power it up
and press Error Reset. If the 5246 is not plugged in or
has a blown fuse, action 21, error 6009 will reappear.
To ignore the 5246, press Cmd/Error Reset.

The state of the shared 5246 is indicated on the status line
in columns 53 and 54 by the following codes:

blank

+0

+1

The 5246 is not required by this processor.

The other processor is currently using the
5246, or the 5246 was powered up before
the processor but is now powered down;
this processor is waiting to use it. If the
5246 is powered on and you wish to wait
for it, ---DO NOTHING---.

This processor is now using the 5246.

When the processor is waiting to use the 5246 (+0), the
operator may interrupt this wait with Cmd/ Attn. To
continue with the original operation, press Error Reset. To
terminate the current operation with I/O error 6009 or

BASIC reference information 97

Device sharing

Device sharing (continued)

98 SA34-0109

6011, press Cmd / Error Reset. The latter action would be
used to terminate a program (with GO END) or command if ~ ..
the other processor will continue using the 5246 for a long
time.

If the program has open files when you do this, data may
be lost.

For some operations, multiple I/O accesses may be
attempted following the interrupt of the +0 wait. After the
first Cmd / Attn, Cmd / Error Reset cycle, another +0 may
appear. Continue with the Cmd/ Attn, Cmd/Error Reset
cycle until the +0 is cleared.

Share and Reserve status may be left on for the file which
was being accessed. Use the PROTECT command to
remove them.

If the operator presses Hold while + 1 is displayed, this
prevents completion of the current 5246 access and
prevents the other processor from accessing it.

The 5246 is also unavailable for the duration of an action
code 10 (waiting for diskette to be inserted), if drive 3 or 4
or no drive is given in the file specification. This will also
occur if the diskette contains an open file, the diskette has
been removed, and is now required.

Each of the two cables connecting a processor to the 5246
identifies the connected processor with respect to the use
of the 5246. This identification is provided through the
WSID$ system variable.

If the processor is connected to cable 1, or is not attached
to the 5246, or the 5246 power was off during the
processor power up, then WSID$= "01".

DI DX (array name)

Dimensioning arrays

(

Device sharing

If the processor is connected to cable 2 and the 5246 was
powered up before the processor, then WSID$="02".
WSID$ is useful in establishing unique file names when the
same application is running in both processors.

The following Customer Support Functions secure the 5246
for the entire duration of their execution:

Prepare Diskette

• Copy Diskette (image copy only)

Recover Diskette

Display Diskette Label

See also "File sharing" for information on the simultaneous
use of the same file by two different OPENs.

Returns an array containing the descending index of the
source array. See "AIDX and DIDX". Also see "OPTION
statement" (COLLATE).

see "01 M statement"

BASIC reference information 99

DIM

DIM statement

100 SA34-0109

The DI M (dimension) statement specifies the maximum size
of arrays and character variables, and their original
dimension.

r,columnsl

arith-array-name (rows1--a--L) ------,

f' cOlumnsl

char-array-name (rows-1...-.a--L)L_ I----I.-+~-_---1. DIM

I
I
I
I
I
I

char-var-name ___ .L[_*_le-l~!!Igl-th_J--L. ______ ~
I
I
I
I
I
I L ______________ ,

-----------'

• One-dimensional array (vector)
B Defaults to length of 18

The syntax of the DIM statement is shown above, where:

arith-array-name is an arithmetic array to be dimensioned.

char-array-name is a character array to be dimensioned.

char-var-name is a character variable to which a length will
be assigned.

rows and columns are integers specifying the dimensions of
the arrays (highest subscript(s)). One dimensional arrays
require only the row entry. Two dimensional arrays require
both the row and column entries separated by a comma.
For example:

10 DIM A{20,25)

/ .

('--.

~--

(

DIM

length is the maximum length of a character scalar, or the
maximum length of each element of a character array. This
value may be from 1 to 255. If length is not specified, the
default maximum length is 18 characters.

The initial value of each arithmetic array element is zero.
Each character array element is initialized to null (zero
length). This initialization takes place when the array is first
referenced.

Declaring arrays

Arrays can be declared either by using the DIM statement
or by a reference to an element of an array that has not
been declared.

When an array is declared by using the DIM statement, the
dimension and maximum number of data items are specified
in the DIM statement. For example:

20 DIM A(10)
30 DIM WEEK$(6)*9

Statement 30 dimensions array named WEEK$ to use the
seven array elements WEEK$(O) through WEEK$(6). The
maximum length of each element is 9 characters.

If OPTION BASE 0 is in effect, statement 20 dimensions
the array named A to use 11 array elements A(O) to A(10).

BASIC reference information 101

DIM statement (continued)

When an array is declared by a reference to one of its
elements, it is one- or two-dimensional based upon its use
and has 10 elements in OPTION BASE 1 and 11 elements
in OPTION BASE O. For more information see "OPTION
statement." For example:

40 A(3) = 50

establishes a one-dimensional array containing 10 elements,
if OPTION BASE 1 is in effect, the third element A(3) has
an integer value of 50, and the remaining elements have
values of zero.

50 WEEK$(O)="Sunday"
60 WEEK$(3)="Wednesday"

Arrays requiring more than 1 0 elements (BASE 1) or 11
elements (BASE 0) must be declared explicitly.

,/~

An array can be declared by a DIM statement only once in a "'-_

102 SA34-0109

program.

If an array or character variable is passed as a parameter by
the CHAIN statement, it must be declared in a DIM
statement in both programs, and the same size must be
specified.

For more information see:

"Character arrays"

"Arithmetic arrays"

"Substring referencing"

(

DIM

Example

A sample DIM statement is shown:

10 OPTION BASE 1
20 DIM A$(5)*20,B(4,2)
30 LET X = LEN(P$) ! x is 0
40 LET P$= "ABCDEFGHIJKLMNOPQR"

The result of the DIM statement is:

A$ is a character array with five elements (one-dimensional
array), each has a maximum of 20 characters. All five
elements are initialized to zero length.

B is an array of four rows and two columns
(two-dimensional array).

P$, which is not declared in any DIM statements defaults to
a maximum of 18 characters and is intialized to zero length.
Statement 40 above changes it to length 18.

BASIC reference information 103

DIM

DIM statement (continued)

104 SA34-0109

Programming considerations

Redimensioning "'-_.
If a user wants to change the size of an array during
execution time, redimensioning can be used.
However, the array is allocated to its full
DIMensioned size when first referenced. The storage
will be reused when redimensioning occurs. Another
technique is to create a procedure file to edit a DIM
statement into the program. For example:

LOAD file-spec
10 DIM A$(59)*33
RUN

see "Redimensioning"

*Zero
If a length of 0 is specified, it is interpreted as the
default length of 18.

Duplicate DIM
An array or character variable cannot appear in a DIM
statement if it has been defined in another DIM
statement.

The maximum value that can be specified for row or
column is 9999. If sufficient storage in the work area is
available, the maximum size of an array is 65534 (see
"Storage use").

/

DIR command

, ,

DIR

The DIR command lists a directory of file information.
Information about each file is printed or displayed on one
line per file.

r,PRINTl

DIR- device'id~ D ~

a Displays the directory on the screen

The syntax of the DIR command is shown above, where:

device-id specifies which diskette drive is to have its files
listed. The devices are 1, 2, 3, and 4 (see "Device address
parameter")

Diskette drive 1

Diskette drive 2

Diskette drive 3

Diskette drive 4

PRINT specifies that the listing be printed (device address
10).

The listing can be interrupted by pressing the Hold key
once. To continue with the listing press the Hold key once
again. To terminate the commands press the Cmd/ Attn key.
Since printer operations overlap other System/23
operations, after pressing the Cmd / Attn key, the printer will
print the data remaining in the print buffer.

BASIC reference information 105

DIR

DIR command (continued)

106 SA34-0109

Example

The following information is displayed about each diskette.

.. The VaLID (volume identification) of the diskette
II The diskette type (1. 2, 20)
• The number of bytes not used by files on diskette
a The number of available files
III The number of defective sectors
II The physical record size

Additionally for each file on the diskette, DIR will display:

II
II
II
III • m

File type (see "Diskette file types")
filename (see "File specification parameter")
Number of bytes allocated to the file
Number of bytes of data in the file
The number of extents in the file
Protective information; P means protected, Read
only allowed

The following are File Sharing Status:

ID Station 1 Open status
DI Station 1 Reserve status
III Station 2 Open status
III Station 2 Reserve status

DIR

dir 1

(a II • a II II
CONKLN 2D 0910336 0046 0000 512
05 AUTO 0001024 0000512 0001
05 FAIRWAY 0003072 0003072 0005
05 FSP.SOURCE 0001536 0001024 0001
09 ANIMATE 0008192 0007168 0001
05 PROCl 0000512 0000512 0001
05 DEMO 0000512 0000512 0001 lSI
07 FILE.IND 0000512 0000512 0001
05 CH 0002048 0001024 0001
05 MAKE.SCREEN.SRCE 0002048 0001024 0001
04 NEWFILE 0004096 0000972 0001 P
05 SCREENl 0004096 0002048 0001
05 NEWINDEX 0000512 0000512 0001
05 FSP.TEST 0004096 0001024 0001
05 BUILD.MURPHY 0001024 0000512 0001

(...• 05 MURPHY.FIX 0004096 0001024 0001 OSH OSH
05 MURPHY 0003584 0002048 0001024 0001 ISH
04 MURPHY. FILE 0025088 0024920 0001
04 SCREEN. FILE 0020480 0020480 0001 NS
05 SCREEN 0002560 0001536 0001

II II II II II II II III II II
NS - opened no share
ISH - opened for input, SHR
lSI - opened for input, SHRI
OSH - opened for output, SHR
OSI - opened for output, SHRI

(

BASIC reference information 107

DIR

DIR command (continued)

The preceding information is displayed for System/23 type
diskettes (type Z) and BX and HX diskettes. For diskettes
containing BX or HX files, the volume information (first line)
will contain only VOLlD, diskette type, and physical record

, size. File information will not contain sharing or reserve
status. If other diskettes conforming to IBM diskette data
format are used, only the VOLID and FILEID are accurate.
The rest of the information will be unpredictable.

For related information see:

"File sharing"
"PROTECT command"
"OPEN statement"
"FREESP"
"Prepare diskette" under "Customer Support Functions"

Diskette data buffering

108 SA34·0109

The term buffering means storing data in an intermediate
storage area when coming or going to an I/O device.

The System/23 reserves sufficient storage to perform any
valid I/O operation, once the file has been OPENed.
Substantial improvements in performance can be realized by
allowing (or adding) additional storage which can be
committed to the OPEN operation. This allocation is handled
automatically by the System/23 whenever storage is
available. If the size of your program does not permit this
allocation, it will still function correctly, but slower.

\
".-

(

Diskette data

The maximum space used in this allocation is 512 bytes for
each file that:

is an index file

has more than one extent (see "DIR command")

An additional allocation is made for files that are open as:

DISPLAY,INPUT

DISPLAY,OUTPUT

INTERNAL,INPUT,SEQUENTIAL

INTERNAL,OUTPUT,SEQUENTIAL

PRoe

SUBPRoe

The size of this allocation is the minimum of the following:

7680 bytes for type 2D diskettes and 4096 bytes for
type 1 and 2 diskettes

The extent size to be read

The value of the SIZE= parameter on the OPEN for
output of the file.

BASIC reference information 109

Diskette file

Diskette dynamic file extension

110 SA34-0109

The creation of a System/23 type file requires the
specification of an initial amount of space to be allocated to
the file. The OPEN statement obtains this value from the
SIZE parameter. (The SAVE command computes this value
based upon the approximate size of the workarea to be
saved.) If at any time additional space is required because
the original specification was too small, System/23 will
automatically add additional space (called "extents") to the
file (except as noted below and in "Diskette file size"). Each
additional extent is 10% of the initial allocation rounded up
to the next increment of 512. Up to 99 extents can be
added to a file. If even more space is required, the file must
be copied by the Copy Customer Support Function into
fewer extents.

Note: If FORMAT =BX or HX is specified on an OPEN
INTERNAL statement, the file created will not be extended
beyond its initial allocation.

See also "DIR command" "Diskette data buffering"
"OPEN statement" "Diskette file size"

Diskette file searches

{

Diskette file

When an OPEN (or implied OPEN) is executed, the file that
is OPENed depends on the file specification and the
location of the diskette.

File name only .. file

The search begins on drive 1 and continues on
successively higher drive numbers. The first match is
assumed to be the correct file. If other files of the same
name exist on other diskettes, they are ignored. If not
found, error 4000 is reported on the status line.

File name and drive 10 .. file/ /drive

The search occurs on the specified drive only. If not
found, error 4000 is reported on the status line.

File name and VOLID .. file/VOLID

The search is done on the lowest numbered drive with
the specified VOLID inserted.

File name and VOLID and device .. file/VOLID/drive

The search occurs on the specified drive if the VOLID
matches. If the VOLID matches and the file is not
found, error 4152 is returned. If the VOLID does not
match, error 4000 is reported on the status line. If the
file/VOLID/device specification matches that of an
open file, the found file must be marked OPEN for the
new OPEN to succeed. That is, you cannot open two
different files with the same file/VOLID / device
specification.

BASIC reference information 111

Diskette file

Diskette file searches (continued)

112 SA34-0109

Note the following implications:

If duplicate VOLIDs are inserted, the one mounted in the
lower numbered drive is accessed in the absence of a
drive specification.

If offline data (see "Offline diskette files") is involved in
the application, and open files exist on diskettes with
the same file name and VOLlD, unpredictable results
can occur.

The simplest and safest course is to code all file
specifications with file name and VOLID and use unique
file names and VOLIDs.

Diskette file size

f

(

Diskette file

The following can be used to estimate the diskette storage
used by various file types. See "OPEN statement, SIZE=
parameter" .

Type

BX

HX

04

05

07

08

Size (bytes)

128 per record

256 per record

(1 +RECL) per record

Total number of characters including
blanks and new line characters

512 * CEIL (number of records/(lNT(512/(key
length+4))-1))

Value for type 07 plus
512 * CEIL (number of new records
/INT(510/(key length+10)))

09 (HELP STATUS size at CLEAR)
- (HELP STATUS size when SAVEd)
+ (up to 2048 bytes)

BASIC reference information 113

Diskette file

Diskette file size (continued)

114 SA34-0109

All files are automatically extended for additional output,
except:

Type BX and HX which are fixed at OPEN to the SIZE
value

Files on diskettes with no unallocated space; see "DIR
command"

Files with 100 extents; see "DIR command"

The following chart shows the maximum file size, in bytes,
for each combination of diskette type and diskette format:

Diskette format

Diskette
type System/23 BX HX

1 301,568 242,944 n/a

2 604,672 485,888 n/a

20 1,135,104 n/a 985,088

(

Diskette file

Diskette file types

The following table details the various diskette file types
processed by System /23.

File Contents! Created Record Access
type descri pti 0 n by length Input Output mode Recoverable

BX Basic OPEN INTERNAL RECL - READ WRITE SEQ. Yes
Exchange Format o. BX 1 to 128 (Note)

HX H Exchange OPEN INTERNAL RECL" READ WRITE SEQ. Yes
Format = HX 1 to 256 (Note)

04 Data OPEN INTERNAL RECL~ READ WRITE SEQ/REL Yes
Format = Z 1 to 4096 KEYED (Note)

05 Data QPEN DISPLAY PROC PRINT SEQ. Yes

INPUT REPLACE (Note)

SAVE SOURCE variable LlNPUT SAVE
SAVE (data) o to 255 LOAD \DATAi SOURCE

07 Index file Index GEN READ KEYED
without overflow Create index fi Ie KEY
area

08 Index file with Index GEl'! READ WRITE KEYED No
overflow area OPEN KEYED KEY KEY

OUTPUT

09 Program SAVE LOAD SAVE No
file (internal) REPLACE

10 Customer Support IBM LINK No

Function

11 Feature IBM LINK No

12 Machine update IBM SELECT SELECT No

UPDATE

13 Diagnostics IBM CE diagnostic No

Note. To recover use Recover Diskette (Customer Support Functions).

BASIC reference information 115

DISPLAY

DISPLAY

116 SA34-0109

Display files and data

Display, as a type of data, refers to the input and output of
data that can be printed or displayed. This includes transfer
of data from/to devices such as the keyboard, display,
printer, and diskette. While DISPLAY I/O may be
performed to or from diskette files, data is transferred in a
format similar to that for display devices. The same format
is used for BASIC source programs and procedure files on a
diskette.

Display files are accessed by:

• CLOSE (optional for diskette and system printer)

• INPUT

LlNPUT

LOAD (SOURCE or DATA)

OPEN (DISPLAY) (optional for diskette and system
printer)

PROC

PRINT

REPLACE (SOURCE or DATA)

• RESTORE

SAVE (SOURCE or DATA)

SUBPROC

',,-. '

\ ,,--... -.

DISPLAY

Example

This example directs program output to a selected device.

10 PRINT "Choose one:"
20 PRINT " Printer output"
30 PRINT " 2 Feature printer"
40 PRINT " 3 Diskette output"
50 INPUT CHOICE
60 IF CHOICE 1 THEN FILEID$ "//10"
70 IF CHOICE 2 THEN FILEID$ "//11"
80 IF CHOICE 3 THEN FILEID$ "SAVE.REPORT//l,

SIZE=O"
90 N$ = "NAME="

100 OPEN #1: N$&FILEID$,DISPLAY,OUTPUT
110 PRINT#l: "First line of report"

•
•
•

500 CLOSE #1:

If the operator keys a 1 in response to INPUT statement 50,
the output is directed to the system printer. If 2, the output
is directed to the feature printer. If 3, the output is directed
to the diskette.

BASIC reference information 117

DISPLY

DISPLY (X)

118 SA34-0109

DISPl Y returns the value (1-5) of the current character
group for the display. The X parameter, which is optionat is
used to set the new page (see "Character set").

1 U.S.A.
2 Canada
3 Europe, except Spain
4 Nordic, including Iceland
5 Spain, Spanish speaking countries

DROP/FREE

DROP/FREE command

The DROP command is used to set a file to the empty
state, which sets the end of data pointer equal to beginning
of file. The file space remains allocated.

The FREE command specifies that the file space reserved
for the file is to be freed and may be allocated to another
file. The file is no longer accessible after a FREE command.

For more information, see "Recover diskette" under
"Customer Support Functions" and "CLOSE statement".

Data is not modified on the file by either the DROP or FREE
command. If security is required, the file may be written
over by a BASIC program previous to the DROP or FREE
command.

DROP-file·spec •

FREE--file·spec •

The syntax of the DROP/FREE command is shown above,
where:

file-spec is the file name, optionally followed by the
volume-id, or device-id (see "File specification parameter").
The file must not be OPENed when DROP or FREE is issued
and must not be reserved by the other station in a
dual-station System/23.

BASIC reference information 119

DROP/FREE

DROP/FREE command (continued)

120 SA34-0109

Use FREE if you want to change the record length of an
INTERNAL file.

Use the Copy Diskette function to compress unused space
from the file (see "Customer Support Functions").

Any attempt to DROP an index file will cause an error; use
FREE.

Example

FREE FILEA

Editing

Editing a program or data file

Adding statements

You can add statements simply with the line number
followed by the statement at any time while your program is
in the work area. The following cannot be added while a
program in execution is interrupted: 01 M statement,
OPTION statement, FOR statement, and NEXT.

Changing line numbers

You can change the line numbers in a BASIC program by
entering the RENUM command. RENUM changes the line
numbers to 00010,00020,00030, etc. See "RENUM."

Deleting statements

Enter DEL followed by a line number, or DEL followed by
the first and last line numbers of consecutive statements.
See "DEL command."

Replacing statements

You can replace one statement with another by entering the
new statement using the same line number. You can enter it
by editing the old line or entering a new line. The following
statements cannot be changed while a program in execution
is interrupted: DIM, OPTION, FOR, and NEXT.

BASIC reference information 121

Editing

Editing a program or data file (continued)

ELSE

122 SA34-0109

Several commands and BASIC statements can be entered
by using the Cmd key and a special key. You should refer to
your Keyboard Aids and 'The keyboard" in your Operator
Reference manual for a complete list of special keys.

Programming considerations

• Editing does not reduce the size of the program.

• If extensive editing. is performed, the work area may fill
up and an error will occur; save the program in source
format, then load.

If a label is deleted, its absence will not be detected
until it is referenced at execution time.

If the program exists on a file, do a REPLACE (see
"REPLACE command").

Editing the line following a GOSUB while a program in
execution has been interrupted may cause unexpected
results when program execution resumes.

see "IF, THEN, ELSE statement"

END statement

(

(

END

The END statement specifies the end of a BASIC program
and ends program execution. If the END statement is not
specified, the system will still perform the END functions as
if one were specified at the end of the program.

[arith-expreSSiOnJ
END--~--~--~D~------~--~ ••

D Code is set to 0

The syntax of the END statement is as shown above,
where:

arith-expression is the numeric value from 0 to 9999 which,
after rounding, sets the CODE variable (see "CODE").

Execution of the END statement closes all open files and
ends the program. The actions of the END statement are
identical to those of the STOP statement.

Examples

910
910

END
END 120

!Value of CODE = 0
!Value of CODE = 120

Programming considerations

Location
The EN D statement, if specified, must be the last
statement of the program.

BASIC reference information 123

END

END statement (continued)

ERR

Error handling

Execution order

124 SA34-0109

CODE default
- If the optional arith-expression is not specified, the 0

default value of CODE is zero. ~/

ERR is a system variable that contains the number of the
most recently detected error (see "PROCERR command"
and "System/23 Messages Manual").

see "EXIT statement"
"Interrupt"
"System variables"
"ON statement"
Customer Support Functions, Volume I and Volume /I
System Messages

see "Order of execution"

EXIT statement

(

EXIT

The EXIT statement specifies where control will be
transferred if an error occurs. The EXIT statement is
descriptive and serves as a guide to the program. It
indicates the line reference to which program control will
transfer if an error occurs. The EXIT statement is referenced
by an EXIT parameter on an input/output statement. When
an error occurs, the EXIT statement is referenced. Program
control will transfer to the line reference associated with the
error condition.

EXIT

CONV line-ref

DUPREC line-ref __ -I

EOF line-ref ----4

IOERR line-ref __ -+

NOKEY line-ref __ """,

NOREC line-ref ---+

PAGEFLOW line-ref

I
I
I
I

I SOFLOW line·ref I
L-_____ , _ ___ -.l

The syntax of the EXIT statement is as shown above,
where:

CONY, DUPREC, EOF, IOERR, NOKEY, NOREC,
PAGEOFLOW, and SOFLOW are error conditions for the
various input/output statements.

CONV indicates a conversion error. There are four types of
conversion errors:

BASIC reference information 125

EXIT

EXIT statement (continued)

126 SA34-0109

The I/O list item (numeric versus character) does not
match the type of the FORM data conversion
specification

A numeric I/O list item will not fit within the field length
specified in the FORM data conversion specification

A numeric input field contains non-numeric data

A negative value is being output, the corresponding PIC
data conversion specicification does not contain a
specifier for the sign.

DUPREC this error indicates that a record with the same
relative record number already exists in the file referenced
in the WRITE statement.

EOF this error indicates end of file:

For a READ or INPUT statement. There are no more
records in the file.

For a PRINT or WRITE statement. There is not enough
file space for the data.

/oERR for all input/ output statements, this error indicates
that an error has prevented completion of the statement
which is not one of the other error conditions.

NOKEY this error indicates that no key matching the
specified key can be found in the referenced file.

NOREC this error indicates that the specified relative record
number is two or more greater than the relative number of
the last record in the file or points to a deleted record.

EXIT

PAGEOFLOW this condition indicates that the line printed is
greater than or equal to (>=) the PAGEOFLOW value set in
the OPEN statement (see "OPEN statement").

SOFLOW this error indicates that the number of input data
characters is greater than the length of the I/O list
character variable, or conversly, the length of the output I/O
list character expression is greater than the field width
defined in the FORM data conversion specification.

line-ref is a line number or a label symbol

EXIT Description Value of ERR

CONV Conversion error
0002
0726

SOFLOW String overflow
0004
0058

DUPREC Write to existing record 0054

NOKEY No key found 4272

NOREC No record found 0057

PAGEOFLOW Page overflow 0701

EOF Not enough data items for READ 0054

End of file 4270

End of volume. No data space
4239

available to extend output file

No extents. Maximum number of
extents assigned. Cannot extend 4271
output file

10ERR All other errors that occur on See
110 statement Messages

Manual

BASIC reference information 127

EXIT

EXIT statement (continued)

128 SA34-0109

Example

An EXIT statement is shown below:

80 EXIT EOF 200, IOERR 220,NOKEY 240, NOREC 260

In this example, an input/output statement referencing line
number 80 for the EXIT parameter will cause program
control to transfer to line number:

200 if an EOF condition caused the error

220 if an IOERR. condition caused the error

240 if the key specified could not be found

• 260 if the record specified could not be found

Af'

~ . .J

(

(

EXIT

Programming considerations

Duplicate EXIT
Error conditions can be entered in any order. If a
duplicate specification appears, it is ignored; the first
one will be used.

Arithmetic errors
Overflow, underflow, and zero divide conditions that
are detected during the evaluation of an arithmetic
expression cannot be trapped by exits on I/O
statements. These conditions can be trapped using
the ON statement.

Note: If an I/O list item is being mapped into a PIC
data conversion specification, this rule is overridden.
The overflow, underflow, or zero divide can be trapped
by 10ERR on the I/O statement or 10ERR on the EXIT
statement referenced by the I/O statement.

Example 1:

10 PRINT 1000*1.E+126 IOERR 20
20 END

Results in program interrupt 0003 on line 10
(9.99999999999999E+ 126 is displayed)

BASIC reference information 129

EXIT

EXIT statement (continued)

130 SA34-0109

Example 2:

10 PRINT USING 20: .001*1.E-126 IOERR 30
20 FORM PIC(##.)
25 STOP
30 PRINT ERR
40 END

Results in a transfer to line 30.

Data error
- Overflow and underflow errors that are detected in

data being read/input can be trapped by 10ERR on
the I/O statement (or 10ERR on the EXIT statement
referenced by the I/O statement). If the exponent of
the data item is greater than three digits, this error is
trapped by CONV.

Example 1:

10 INPUT A IOERR 20
15 STOP
20 PRINT ERR
30 STOP

Results in a transfer to line 20.

where 1.E+130 is
the value entered

(

EXP(X)

Exponential

Example 2:

10 INPUT A CONV 20
15 STOP
20 PRINT ERR
30 STOP

Results in a transfer to line 20.

EXIT

where 1.E-9999 is
the value entered

Returns the value of e (2.71828182845905) raised to the X
power. For example:

10 X=1
20 Y=EXP(X)

Statement 20 sets Y to 2.718281828459.

X > = 292 will cause overflow.
X < = - 292 will yield an answer of zero.

see "EXP(X)"

BASIC reference information 131

Expressions

Expressions

132 SA34-0109

An expression in BASIC is a specification of a value using
operators, constants, variables, arrays, array element
references, and function references.

An arithmetic operator specifies an arithmetic operation to
be performed on the data items.

Relational expressions are used with the I F statement to
test the truth of specified relationships between two values.
For example:

30 IF A>B THEN GOTO 100

Expressions referring to entire arrays, rather than individual
array elements, are called array expressions. An expression
that does not contain a reference to an entire array is called
a scalar expression.

For more information on expressions, see:

• "Arithmetic expressions and operations"

• "Character expressions"

• "MAT assignment statements"

"Relational expression" under "IF, THEN, ELSE
statement"

f

(

Expressions

Expressions, arithmetic

see "Arithmetic expressions and operations"

Expressions, array

see "MAT assignment statements"

Expressions, character

see "Character expressions"

Expressions, relational

FIELDS

see "Relational expression" under "IF, THEN, ELSE
statement"

see "Full screen processing"

BASIC reference information 133

FILENUM

FILENUM

134 SA34-0109

FILENUM returns the numeric value of the file reference
with the most recently detected error. -1 is returned jf no
errors have been detected.

Note: FILENUM must be assigned to a variable before
printing or other I/O statement

Example

5 OPEN #2: "NAME=J",INTERNAL,INPUT
10 READ #2: A$ EOF 30
20 GOTO 10
30 A=FILENUM
40 PRINT "FILE"; A; "HAD AN ERROR"
50 CLOSE #A:
60 STOP

(

File reference

File reference parameter

File searches

The file reference parameter associates a logical file with a
physical file or device at OPEN time. It is defined in the
OPEN statement for the file and is then referenced by
subsequent I/O statements using the file or device.

File reference is an integer or numeric expression from 0 to
127 and 255 must be preceded by a # (pound sign). System
assigned file references not requiring an OPEN statement
are:

o Display, keyboard.

255 System printer.

I/O statements such as INPUT, LlNPUT, and PRINT, when
used to direct data to and from the keyboard/display, do
not require a file reference parameter.

10 PRINT "HELLO"! Display message
20 PRINT #255: "TOTALS"! Print message
30 FILEID$="NAME=FIL"
40 OPEN #7:FILEID$,INTERNAL,INPUT! Open file
50 READ #7:A$! Read a record
60 CLOSE #7:! Close the file

see "Diskette file searches"

BASIC reference information 135

File sharing

File sharing

136 SA34-0109

File sharing is used to OPEN a diskette file two or more
times simultaneously.

Within a single 5322 Computer, file sharing permits a
program to use a file by two or more access methods,
simultaneously. For example, you may wish to
simultaneously access a file for sequential and direct input.

Within a System / 23 consisting of two 5322 Computers and
a 5246 Diskette unit, file sharing permits two independently
running programs in each 5322 Computer to share the same
file in the 5246 Diskette unit.

The two 5322 Computers can at any time independently
access two different files with no restrictions, the use of the
5246 Diskette unit cannot be simultaneous. None of the
subsequent discussion applies to this case (see "Device
sharing").

File sharing is regulated by a set of OPEN parameters which
specify what level of sharing is permitted by the other
OPEN which has already, or will in the future attempt to use
the file. When a conflicting use is detected, the second and
subsequent invalid OPENs fail with a 4148 error.

The information required to perform this function is stored
with the file. If an OPEN specifies restricted use of the file
and no corresponding CLOSE is executed to terminate this
restriction (power loss or diskette removal), then the
PROTECT command must be used to cancel these
restrictions. See "PROTECT command". Use of the
PROTECT command to CLOSE or RELEASE open files
presently in use by a program should be avoided, as this
can cause unpredictable results.

(

File sharing

The default (no sharing specification). is no sharing
permitted.

Sharing of Basic or H exchange files is permitted, no logical
restrictions are imposed and any sharing other than input on
both OPENs may produce unpredictable results. Any share
specification is ignored for BX and HX files.

System/23 permits file sharing, it is the responsibility of the
programmer to see that the proper level of sharing
restrictions are imposed to maintain data integrity.
Furthermore, it is the joint responsibility of the application
programmer and the operator to see that the System/23 is
operated in a manner consistent with data integrity. This
includes:

Proper power sequencing
Removal and insertion of diskettes at the correct time
Proper use of system commands
Proper execution of programs and procedures

File sharing is controlled by four parameters in the OPEN
statement; they are SHR, SHRI, NOSHR, and RESERVE.
SHR means the other OPENs may use the file in any way,
with the exception that only one OPEN may be for OUTPUT
or OUTIN. SHRI means the other OPENs may do INPUT
only. NOSHR (default) means no other OPENs are
permitted.

BASIC reference information 137

File sharing

File sharing (continued)

138 SA34-0109

In summary:

First OPEN

SHR,INPUT

SHR,OUTPUT or OUTIN

SHRI,INPUT

SHRI,OUTPUT or OUTIN

NOSHR

Allowed subsequent OPENs

SHRI or SHR, INPUT,
OUTPUT or OUTIN

SHR,INPUT

SHRI or SHR, INPUT

SHR,INPUT

none

RESERVE specifies that whatever sharing restriction is
specified on this OPEN applies to the other 5322 Computer
even after the file is CLOSED. This allows long term
restriction of the file use, particularly when several
programs, commands or Customer Support Functions must
be run in succession without interference. The RESERVE
restriction does not apply to the 5322 Computer which
issued it. Thus, even if a file is OPENed NOSHR,RESERVE,
after the corresponding CLOSE is executed, any subsequent
OPEN may be used by the same 5322- Computer.

The RESERVE status is cleared by the RELEASE keyword
on the CLOSE statement. The last program in a multi-step
process would normally do a CLOSE ... RELEASE to permit
access to the file by the other 5322 Computer (this may be
its only function). See "CLOSE statement".

The level of OPEN and RESERVE share restriction is
indicated by the DIR DISPLAY. See "DIR command".

/-

(

File sharing

Programming considerations

• OPENs using key-indexed access (KEYED). place the
same share restrictions on both the master and key
files. (NAME= and KFNAME=).

Share restrictions are ignored for BX and HX files.

• The RENAME, DROP, and FREE commands are rejected
for a file which is OPEN or has any RESERVE status set
by the other 5322 Computer.

• The RENAME, DROP, and FREE commands keep the
5246 Diskette unit for the entire command. .

• The LINK, LOAD, MERGE, SORT, PROC, and SUBPROC
commands open files INPUT, SHRI.

• The SAVE and REPLACE commands open files
OUTPUT,NOSHR.

The following Customer Support Functions ignore
SHARE and RESERVE status, but secure the 5246
Diskette unit during their entire operation: Prepare
Diskette, Copy Diskette (image copy only). Recover
Diskette, and Display Diskette Label. File Recovery will
copy the SHARE and RESERVE status.

Machine Update Generator, Collation Sequence
Alternator, REPLACE, Presort, SORT and Index
Generator open output files NOSH R.

Presort, SORT, and Index Generator use WSID$ as a
suffix for work file names.

BASIC reference information 139

File sharing

File sharing (continued)

File size

If both 5322 Computers do a LOAD, edit, and REPLACE
of the same file, the last REPLACE will overlay any""-"
preceding REPLACE. To prevent this compromise of \,,,-j
SOURCE files, OPEN the file NOSHR,RESERVE and
then CLOSE it. After editing and REPLACE, then
PROTECT ... RELEASE.

The VaLID command can be used to change the
diskette VaLID at any time. If this is done while a file is
open on the diskette, it may prevent further processing
of the file.

If the copy all files option of the Copy Customer
Support Function is used, the following errors are
possible:
- Use of the FREE, DROP, or RENAME commands

during Copy can lose a file to be copied.
- A file added to the copy from diskette while Copy is

running may not be copied.

Incorrect use of the PROTECT CLOSE or RELEASE
options can compromise data integrity by removing
share restrictions when they are still needed.

see "Diskette file size"

140 SA34-0109

(---

(

(

File specification

File specification parameter

The file specification parameter consists of a file name,
followed by a volume identification (VOLlD) and device
address. File names may be of the following types:

Simple file names may be from one to eight characters
in length. The first character must be alphabetic (A-Z).
The remaining characters may be alphabetic (A-Z) or
numeric (0-9). Blanks are not permitted. Simple file
names are required for Basic and H exchange files.

• The names of the System/23 format (Z) files consist of
one or more simple names separated by periods. The
total number of characters, including periods, is 17.

CUSTOMER. EMPLOYEE
X.Y.Z

VOLID identifies the diskette on which the file is to be
created or found. VOLID is up to six characters long and
may consist of alphabetic or numeric characters.

Device address identifies the I/O device being used (see
"Device address parameter").

File specification can be in one of the following forms:

filename
filename/VOLID
filename /VOLI 0 / device
filename/ / device

• / /device

See "RENAME command" and "VOLID command".

BASIC reference information 141

File specification

File specification parameter (continued)

142 SA34-0109

Examples

CUSTOMER.EMPLOYEE//2
X.Y.Z/TEMP
//10

Note: The file specification / / 1 0 is used in an OPEN
statement to open the system printer.

!/"--~"

~";'

Files, related subjects

(-

(-'

CHAIN statement
CLEAR statement
CLOSE statement
CMDKEY
CNT
CODE
Customer Support Functions
DELETE statement
DIR
DISPLAY
DROP/FREE command
END statement
ERR
EXIT statement
FILENUM
FILE(N)
File reference parameter
File sharing
File sizes
File specification parameter
FILE$(N)
FORM statement
FREESP(N)
I N PUT statement
Internal I/O file formatting
I/O Tables (Appendix B)
Key-indexed files
KLN(N)
KPS(N)
LINE

Files

LI N PUT statement
ON statement
OPEN statement
OPTION statement
PIC$(C$)
PRINT statement
PROC command
Procedure files
Device sharing

PROTECT statement
READ statement
REC(N)
Relative record files
RENAME command
REPLACE command
REREAD statement
RESTORE statement
REWRITE statement
RLN(N)
SAVE command
SORT command
STOP statement
SUBPROC command

USE command
VOLID command
WRITE statement
WSID$

BASIC reference information 143

FILE(N)

FILE(N)

FILE$(N)

Fixed-point format

FILE returns a numeric value to indicate the status of file N.
One of the following values is returned:

Value

-1
o

10
11
20
21

Description

File not opened
Operation occurred successfully
End of file occurred during input
End of file occurred during output
Transmission error occurred during input
Transmission error occurred during output

FILE$ returns a string containing the file specification (file
name, volume identification, and device address) of file N. If
file N is not open, the null string is returned.

see "Arithmetic data"

Floating currency symbol

see

144 SA34-0109

"PIC specification" under "FORM statement"
"PIC$(C$)"

(-\

(

(

FOR and NEXT

Together, a FOR statement and its paired NEXT statement
delimit a FOR loop. A FOR loop is a set of BASIC
statements that can be executed one or more times. The
FOR statement marks the beginning of the loop and
specifies the conditions of its execution and end. The NEXT
statement marks the end of the loop.

FOR syntax

FOR ----arith-var= arith expression TO arith-expression

[STE Pari t;_x_pr_es_si_on_l-'-___

D STEP=1

The syntax of the FOR statement is as shown above,
where:

arith-var is an arithmetic variable (not an array name) used
as the loop control variable and identify the associated
NEXT.

arith-expression is an expression that specifies an initial
value for the control variable, the final value of the control
value (where execution of the loop will end!. and the
amount that the control variable will increment after each
execution of the loop. If STEP and the increment-num are
omitted, an increment of 1 is assumed.

Upon initial entry in the FOR loop, all expressions are
evaluated. The initial value of the control variable is tested
against the final value of the control variable. If the initial

BASIC reference information 145

FOR and NEXT

FOR and NEXT statements (continued)

146 SA34-0109

value is greater than the final value for positive STEP
values, or less than the final value for negative STEP values, ~. "'.
the loop is not executed. In this case, the value of the (j,'

control variable is set to the initial value and control goes to
the statement following the N EXT statement. Otherwise
control is passed to the statement following the FOR.

NEXT syntax

NEXT--arith-vari •

The syntax for the NEXT statement is as shown above,
where:

arith-var is an arithmetic variable used as the loop control \...j
variable. If the loop is executed, the control variable is set
equal to the initial value, and the statements in the loop are
executed. When the NEXT statement is executed, control is
transferred to the associated FOR statement and the STEP
value is added to the control variable, which is then
compared with the final value. If the control variable for
positive increments is less than or equal to the final value,
the loop is executed again and the cycle continues until an
increment is made that makes the control variable greater
than the final value. At that time, control transfers to the
first executable statement following the associated NEXT
statement. If the increment is negative, the loop executes
while the control variable is greater than, or equal to the
final value.

(

(

FOR and NEXT

Examples

The following example shows a simple FOR loop that
increases the control variable A by 2 until the value of 25 is
exceeded.

20 FOR A=l TO 25 STEP 2

•
•
•

90 NEXT A

The following example shows the technique for nesting FOR
loops. The internal loop is executed 100 times for each
execution of the outer loop.

10 FOR J=A TO B STEP C

•
•
•

150 FOR K=l TO 100

•
•
•

250 NEXT K

•
•
•

300 NEXT J

BASIC reference information 147

FOR and NEXT

FOR and NEXT statements (continued)

148 SA34-0109

Programming considerations

• Parameters fixed at loop entry
The value of the control variable can be modified by
statements within the FOR loop, but its initial value,
its final value, and the STEP value are established
during the initial execution of the FOR statement and
are not affected by any statement within the FOR
loop.

• Zero STEP
- If the value of the STEP increment-num is zero, the

FOR loop is executed until the value of the control
variable is purposely set beyond the specified final
value by a statement in the loop.

• Errors
Transfer of control into or out of a FOR loop is
permitted; execution of a N EXT statement without
execution of a corresponding FOR statement causes
an error.
FOR loops can be nested within one another as long
as the internal FOR loop falls entirely within the
external FOR loop. Nested FOR loops should not use
the same control variable, because the inner loop will
modify the value of the outer loop control variable.

()

(-

(

•

FOR and NEXT

The maximum number of nested FOR-NEXT loops is
a variable number (normally around 50). If the
maximum is exceeded, a system error will occur.
Modification of a FOR or NEXT statement during
execution is not permitted.

Exit control value
The value of the control variable at exit from
FOR/NEXT loop is the first unused value.

Example

1 0 FOR 1=1 to 10
20 PRINT "TEST"
30 NEXT I

The value of I is 11

BASIC reference information 149

FORM
FORM statement

150 SA34-0109

The FORM statement is used to describe the way output
should look when the PRINT, WRITE, or REWRITE
statement is used. The FORM statement also describes the
way input looks when using a READ or REREAD statement.

The FORM statement is used to control the number of
output positions taken by a value being displayed. The
following program writes 15151599 in columns 1 through 5 on
line 22 on the screen:

10 PRINT USING 20: 99
20 FORM N 5

where N 5 is a data conversion specification. N specifies
the format type numeric. 5 specifies the field length.

The FORM statement is also used to control the number of
digits displayed in a decimal fraction. For example, the
following program writes 12.35 in columns 1 through 5 on
line 22 on the screen:

10 PRINT USING 20; 12.345
20 FORM N 5.2

where N 5.2 is a data conversion specification. N specifies
numeric. The field length is 5, and the fraction is rounded to
2 decimal digits.

To display character data, use the C data conversion
specification. The following program writes "Number of
parts in stock:" in positions 1 through 25 on line 22:

10 PRINT USING 20: "Number of parts in stock:"
20 FORM C 25

ilf

'4.yi

(

FORM

where C identifies the format type and 25 is the field
length.

The following program shows two I/O list items being
output:

10 PRINT USING 20: "Number of parts in stock:",99
20 FORM C 25,N 5

where C 25 is the data conversion specification for the first
I/O list item and N 5 corresponds to the second. The
output in columns 1 through 30 on line 22 is "Number of
parts in stock:nnn99".

To increase the spacing between I/O list items, use the X
data conversion specification. The following program
outputs "Number of parts in stock:nnnnnnnn99" in
positions 1 through 35 on line 22:

10 PRINT USING 20: "Number of parts in stock:",99
20 FORM C 25,X 5,N 5

where X is the format type and 5 is the field length. X 5
causes five blanks to be inserted in the output. No I/O list
item is associated with X 5.

The above examples show the FORM statement being used
with the PRINT statement. The FORM statement can also
be referenced by the READ, WRITE, REREAD, and
REWRITE statements. When FORM is used with these
statements, output is to a record in an internal I/O file, and
input is from a record in an internal I/O file.

BASIC reference information 151

FORM

FORM statement (continued)

152 SA34-0109

The following example shows three values being written
into a record of an internal I/O file:

10 WRITE #n,USING 20: "XYZ",30,10
20 FORM C 3,N 4,N 4

The previous example assumes the record length of the
records in the file is greater than or equal to 11. If the
record length were less than 11, an error would occur,
because the field length for the third I/O list item would
span the end of the record. If this file were open for input,
the second and third values in the same record could be
read as follows: (The first value is skipped.)

10 READ #n,USING 20: A,B
20 FORM X 3,N 4,N 4

The following example shows an alternative way of reading
the same values from the same record:

10 READ #n,USING 20: A,B
20 FORM X 3,2*N 4

where 2* is a replication factor. It says to use the N 4 data
conversion specification twice.

The FORM statement can be referenced by a line number or
label in a USING clause of an I/O statement. The FORM
statement can also be contained in a character variable. In
the latter case the character variable is referenced in a
USING clause in the I/O statement. Examples showing the
FORM statement referenced by a label and the FORM
statement contained in a character variable are included in
the following program:

FORM

(

pas

x

10 Label Reference
20 PRINT USING LAB1: 99
30 LAB1: FORM N 5

FORM

40 ! FORM Statement Defined in Character Variable
50 A$='FORM N 5'
60 PRINT USING A$: 99

Many additional data conversion specifications are
supported by the FORM statement. The syntax of the
FORM statement (when referenced by a PRINT statement)
and which data conversion specifications are supported, is
shown below:

integer

arith-var

SKIP~----~~D---~-----------------------------------,

" . '" ___ ~r--tI
char-stn ng ~ ,

PIC (pic-spec) --1 I
I

integer' ~ J L field;ngth i
arith-var'

1-. ---field-length ______ ---L ______
NG] C fr:ion I,

, ,
L _____________ , ______________ J

..
II Fraction length=O

Note that a blank is required between a format identifier
(e.g. pas or V) and any integer or variable which follows.

BASIC reference information 153

FORM

FORM statement (continued)

FORM

154 SA34-0109

The syntax of the FORM statement (when referenced by a
READ, WRITE, REREAD, or REWRITE statement) and which
data conversion specifications are supported is shown
below.

integer

pas arith-var

x--~--~--~ __ ~ ______________________________ ~

If char-string ",--1
PIC (pic-spec)---!

integer*

arith-var*

~J
[field-length

-- DI---~~----------~

:O}-field-Iength ______ _L. __ -I~---L.--~
PO

G

I
I
I
I
I
I
I
I
I
I

I L :
L ______________ , _______________ --.J,

..
II Fraction length=O

Note that a blank is required between a format identifier
(e.g. pas or V) and any integer or variable which follows.
The "char-string" and PIC specifications are not supported
on the READ and REREAD statements.

Detailed descriptions of the FORM data conversion
specifications follow.

(

FORM

POS (for a PRINT statement) specifies the position in the
line for the next value to be printed. If POS is less than the
current position, the current line is printed and a new line
started. The next I/O list item will be printed in the new line
at the position specified.

If one or more items have been printed on the current line
and if the value of POS is beyond the end of the current
line, positioning is as follows: Let N equal POS minus the
current line position. The current line is then printed. N
blanks are then written starting at the beginning of the next
line.

The value specified for POS can range from 1 to 4095. The
default is 1. Non-integer values in arithmetic variables are
rounded.

POS (for a READ, REREAD, WRITE, or REWRITE
statement) specifies the position in the record to be
accessed. Positioning can be forwards or backwards in the
record. The value specified for POS can range from 1 to the
smaller of 4095 or the record length. The default is 1.
Non-integer values in arithmetic variables are rounded.

Note: Output records are initialized to blanks by the WRITE
statement and to the current record content by the
REWRITE statement.

'X (for a PRINT statement) specifies the number of blanks to
be printed. If the value specified for X is greater than the
number of positions remaining on the current line, the
current line is printed, and the number of blanks specified
for X is then written starting at the beginning of the next
line.

BASIC reference information 155

FORM

FORM statement (continued)

156 SA34-0109

The value specified for X can range from 1 to 4095. The
default is 1. Non-integer values in arithmetic variables are """'-
rounded. (>
X (for a READ, REREAD, WRITE, or REWRITE statement)
specifies the number of positions to be skipped. The value
specified for X can range from 1 to the smaller of 4095 or
the number of positions remaining in the current record. The
default is 1. Non-integer values in arithmetic variables are
rounded.

Note: Output records are initialized to blanks by the WRITE
statement and to the current record content by the
REWRITE statement.

SKIP (for a PRINT statement) specifies that the current line
is to be printed and that n-1 (where n is the value specified
for SKIP) blank lines should appear in the output. The next
output will begin in the first position of the following line. If
the value specified for SKIP is zero, there will be no line \...c,.l

feed, and overprinting will occur. See example at the end of
this FORM statement section.

The value specified for SKIP can range from 0 to 255. The
default value is one. Non-integer values in arithmetic
variables are rounded.

char-string (for a PRINT, WRITE, or REWRITE statement)
specifies a character string to be output. The field width is
the length of the character string within quotation marks.

integer * and arith-var * specifies the number of times the
data format should be used. The same format can be used
repeatedly. This parameter must range from 1 through 255.
The default value is 1. Non-integer values in arithmetic
variables are rounded. (, "

," -'

J

(

(

(

FORM

C specifies character data. For a READ or REREAD
statement, the number of characters specified by Care
assigned from the input field to the character variable listed
in the READ or REREAD statement. If the maximum variable
length is less than the field-length specified, a string
overflow (SO FLOW) occurs. If the variable length is greater
than the field-length specified, the length of the character
variable is set to field-length.

For input, an example is:

10 READ #n,USING 20:A$
20 FORM C 10

If the input field is

ABC bbbtdJbb

the trailing blanks are kept and the variable A$ is assigned a
length of 10.

For output, the value of the corresponding character
expression in the WRITE, REWRITE, or PRINT statement is
left-justified in the output field and padded with blanks. If
the length of the expression is longer than field-length, a
string overflow (SO FLOW) will occur.

The C parameter is valid for character expressions and will
cause a conversion (CONV) error if used with a numeric
expression. The value specified for field-length can range
from 1 to 255. The default is 1.

BASIC reference information 157

FORM

FORM statement (continued)

158 SA34-0109

N specifies numeric data. For input, the number of record
positions specified by the field-length must contain a
numeric value in character form. The numeric value can
have anyone of the formats described in "Arithmetic data"
(integer, fixed, or floating point). Leading and trailing blanks
are ignored. If the numeric value is an integer, the number
of digits specified by fraction length are used to generate
the decimal fraction. The remaining high order digits in the
field are used to generate the interger portion of the result.
If the input numeric value is fixed or floating point, fraction
length is ignored. For input, the numeric value is truncated
to 15 significant digits. If option INVP is in effect, a comma
in the input field will be treated as a decimal point. If the
input field is left blank, a zero will be the default.

For output, the corresponding numeric value in the output
list is converted to character representation and is
right-justified in the output field. If fraction length is not
specified, the output field will contain the rounded integer
value of the numeric expression. If fraction length is
specified, the decimal fraction is rounded to the length
specified. The result, including the decimal point, will be
placed in the output field. (If option INVP is in effect, a
comma will be output in place of the decimal point.) If the
numeric expression is negative, a minus sign will precede
the numeric value in the output field. Plus signs are not
inserted into the output field. The field-length must be large
enough to contain any minus sign, integer digits, decimal
point, and decimal digits.

The N parameter is valid for a numeric expression and will
cause a conversion error if used with a character
expression. The value specified for field-length can range
from 1 to 26.

c'

(

FORM

The following are examples of N format specifications:

Value to
be written
(decimal)

3.45
3.45

-3.45
-3.45

Specification

N 7.2
N 7.1
N7
N 7.1

Resulting output
(characters)

3.45
3.5
-3

-3.5

ZD specifies the zoned decimal format for numeric values.
A zoned decimal field contains the character representation
of the numbers 0-9 (hex FO-F9). Each byte of a zoned
decimal field contains a high order 4-bit zone (hex F) and a
low order 4-bit digit (0-9). The zone of the rightmost digit
is used to represent the sign of the field. F or C is plus, and
D is minus. No other values are allowed.

For input, the specification ZD field-length specifies that
the next field-length bytes in the record contain a numeric
value in zoned decimal form (one digit per byte). The
optional specification, fraction length, identifies the number
of rightmost digits to be used for decimal positions in the
number. The default value is O. See examples of ZD format
specifications.

For output. an internal numeric value is converted to zoned
decimal. If fraction length is not specified, the rounded
integer value is used to generate the field. If fraction length
is specified, the decimal fraction is rounded to the length
specified. The field length must be large enough to contain
all integer and decimal digits. The decimal point is not
included.

BASIC reference information 159

FORM

FORM statement (continued)

160 SA34-0109

The ZD parameter is valid for numeric expressions and will
cause a conversion (CONV) error if used with a character
expression. The value specified for field-length can range
from 1 to 32.

The following are examples of ZD format specifications:

Value to
be written
(decimal)

3.45
3.45

-3.45
-3.45

Specification

ZD 7.2
ZO 7.1
ZO 7
ZD 7.1

Resulting output
(hexadecimal)

FO FO FO FO F3 F4 F5
FO FO FO FO FO F3 F5
FO FO FO FO FO FO D3
FO FO FO FO FO F3 D5

PO specifies the packed decimal format for numeric values.
Field-length specifies the length of the field in bytes, and
fraction length specifies the number of digits to the right of
the decimal point. Each digit of a PD field occupies one half
of a byte (4 bits). 2 digits per byte. The rightmost four bits
are hexadecimal F or C for plus and hexadecimal D for
minus.

For input, field-length specifies the number of bytes in a
record containing a numeric value in packed decimal format
(two digits per byte, with one digit and a sign in the
rightmost byte). This value will be assigned to a numeric
variable in a READ or REREAD statement. If the fraction
length parameter is not specified, the field is assumed to
contain an integer.

C,,""',' ,'I ,

(

(

FORM

For output, field length specifies the number of record bytes
into which the corresponding numeric expression from the
WRITE or REWRITE statement will be placed. The
expression is converted to packed decimal format. If
fraction length is not specified, the rounded integer value is
used to generete the field. If fraction length is specified, the
decimal fraction is rounded to the length specified. The field
length must be large enough to contain all integer and
decimal digits plus the sign.

The PD parameter is valid for numeric expressions and will
cause a conversion (CONV) error if used with a character
expression. The value specified for field-length can range
from 1 to 32.

The following are examples of PD format specifications:

Value to
be written Resulting output
(decimal) Specification (hexadecimal)

3.45 PD 7.2 00 00 00 00 00 34 5F
3.45 PD 7.1 00 00 00 00 00 03 5F

-3.45 PD 7 00 00 00 00 00 00 3 D
-3.45 PD 7.1 00 00 00 00 00 03 5D

L specifies internal floating-point format (9 bytes) for
numeric values.

For input, L specifies that an internal floating-point format
value in the record is to be assigned to a corresponding
numeric variable specified in the READ or REREAD
statement. The contents of the field is not checked for
validity.

BASIC reference information 161

FORM

FORM statement (continued)

162 SA34-0109

For output, L specifies that the value of a numeric
expression in the WRITE or REWRITE statement will be ,~'"

written in the record in internal floating-point format. \,..,;'

The following are examples of L format specifications:

Value to
be written
(decimal) Specification

3.45 L
-3.45 L

Resulting outputs
(hexadecimal)

01 03 45 00 00 00 00 00 00
01 83 45 00 00 00 00 00 00

V specifies variable length character data.

For input, field-length specifies the length of the field to be
read. The string, excluding trailing blanks, is assigned to the
character variable. The variable assumes that length. If the
field-length is larger than the variable's maximum length, a
string overflow (SO FLOW) will occur. An example of
V-format is as follows:

10 READ #n, USING 20: A$
20 FORM V 10

If the input field is ABCDDDDDDD, the trailing blanks are
dropped and the data ABeD, with a length of 4, is assigned
to the variable.

For output, the value of the corresponding character
expression in the PRINT, WRITE, or REWRITE statement is
left-justified in the output field defined by V and padded
with blanks. If the length of the expression is larger than
the field-width specified, a string overflow (SO FLOW) will
occur.

(--

(

FORM

The V parameter is valid for character expressions and will
cause a conversion (CONV) error if used with a numeric
expression. The value specified for field-length can range
from 1 to 255. The default is 1.

G allows both character and numeric data to be used. If the
I/O list item is numeric, the rules are the same as for N.

If the I/O list item is character, the rules are the same as
for V. If the I/O list item is character, field length and
fraction length are optional. If fraction length is specified, it
is ignored.

BASIC reference information 163

FORM

FORM statement (continued)

PIC specification

PIC is a data conversion specification having the following l,,,;,
syntax:

PIC (-------------------;r-- numeric-spec --.,------,r---) -

~------_r_,-------$------~_,--

..... --separator--__

$ numeric-spec

separator I

-----I
$ +

separator I
_...1 ""-",,,-

- - -
t I I separator

L -..-J
+ • +

I separator I
L _ --.J

$
+

$

I separator l
L ___ - -- _-I

' , C

164 SA34-0109

FORM

The syntax for numeric-spec is as shown:

(
z I C:t~)ec

separator I /\/\/\

L - ---1 /\

* I (Jiq It -spec /\

I separator I

L - - - - --.J
diqi t-spec

The syntax for digit-spec is as shown:

--,r--'"T"""-r---- # -----r---r-,.----------------"'"T'"--
L-__ separator -----'I : L.'T""---------------t

~ I~----#----~~~ i l'--__ separator -----'I i
L _ _ _ _..J

.Tf--,======-s-ep:a-to-r~~-_-_-_-.... .,I-....,:.-------------------~

L _ _ _ _ _-.-1

The syntax for separator is as shown:

(
.....--...- B ---fJ

BASIC reference information 165

FORM

FORM statement (continued)

166 SA34-0109

Each symbol represents one character position in the
output. The output field-width, (the number of symbols
specified) can range from 1 to 32.

The I/O list item being output can be character or numeric.
The following examples show the use of PIC to output
character data:

Character
string to PIC Printed
be output specification output

August PIC(######) August
May PI C(######) Mayt)t)t)
July PIC(ZZZZZ) Julyt)
June PIC($$.##) Junet)

Each # symbol represents one character to appear in the
output. When the character string length is less than the
field-width, the character string is left-justified in the field
and padded with blanks. When the character string length is
greater than the field-width, a string overflow (SO FLOW)
will occur. When character data is being output, the #
symbol and all other PIC symbols defined in the following
paragraphs are character specifiers.

If the I/O list item is numeric, the PIC specification contains
combinations of symbols which represent what the output
should look like. The symbols are divided into the following
four categories:

• Digit specifiers
• Insertion characters

Exponent specifiers
• Trailing characters

(

(

FORM

Digit specifiers

The following digit specifiers can be specified:

Specifier

z

*

$

Meaning

A numeric digit is printed.

A numeric digit is printed. A blank
replaces a leading zero (or conditional
insertion character). Z may not appear to
the right of a decimal point. Z is treated
the same as a # if an exponent specifier is
used.

A numeric digit is printed. An asterisk
replaces a leading zero (or conditional
insertion character). * may not appear to
the right of a decimal point. * is treated
the same as a # if an exponent specifier is
used. For zero value the decimal point is
replaced by an * if the decimal is the last
character of the specification. * will not
float across the decimal point to replace
an insertion character.

A currency symbol is printed. If more than
one $ symbol appears in the PIC
specification, the currency symbol will
appear in the position of the rightmost $
symbol which overlaps a leading zero (or
conditional insertion character). The
character to be printed as the currency
symbol may be set by the PIC$ function.

BASIC reference information 167

FORM

FORM statement (continued)

168 SA34-0109

The default is $. + or - may not precede the $. $ will not
float across the decimal point to replace an insertion
chracter. $ may not follow a decimal point. A specification
of all $, outputs zero as a single $.

+ A plus sign is printed for a positive
number, and a minus sign is printed for a
negative number. If more than one +
symbol appears in the PIC specification,
the plus or minus sign will appear in the
position of the rightmost + symbol which
overlaps a leading zero. + may not
precede a $. A floating + may follow a
single $.

A minus sign is printed for a negative
number, and a blank is printed for a
positive number. If more than one -
symbol appears in the PIC specification,
the minus sign or blank will appear in the
position of the rightmost - symbol which
overlaps a leading zero. A - sign may not
precede a $. A floating - may follow a
single $.

(

i(··

c

FORM

The following are digit specifier considerations.:

A floating +, -, or $ will float to the right across a B,
comma, or a /. If the first significant digit is
immediately to the right of a / or comma, the +, -, or $
will replace the / or comma. A blank (B) is not replaced
and the +, -, or $ appears to the left of the B (blank).

Although the System/23 permits Z or * to follow a
floating $, +, or -, this should be avoided since other
systems may not support this function. For example:

PIC($$$**.##)

should be replaced by:

PIC($$$$$.##)

BASIC reference information 169

FORM

FORM statement (continued)

170 SA34-0109

The following are examples of digit specifiers. Assume the
data value 123456 is to be printed.

PIC specification

PIC(#########)
PIC(ZZZZZZZZZ)
PIC(ZZZZZZ###)
PIC(******###)
PIC($$$$$$###)
PIC(++++++###)
PIC(----#####)

Printed output

000123456
123456
123456

***123456
$123456
+123456

123456

If a currency symbol, plus sign, or minus sign is specified
once in the PIC specification, it is printed in the position
indicated.

PIC specification Printed output

PIC($ZZZZZ###) $flfl123456
PIC(+ZZZZZ###) +flfl123456
PIC(---######) 123456
PIC ($+++#####) $fl+123456

Using the value .05:
PIC($$$./##) flfl$.05
PIC($$$B.##) flfl$fl.05

Using the value 0
PIC(###) flfl$

\ "".,-

(

(

FORM

Insertion characters

Insertion characters insert additional characters into a field,
generally to improve readability. The following insertion
characters can be specified:

Character

B

/

Meaning

A blank is printed.

A comma is printed. If no digit precedes
the comma, the comma is replaced by the
zero suppression character (blank or
asterisk) or currency symbol. If OPTION
I NVP is in effect. a decimal point will
replace the comma in the output.

A slash is printed. If no digit precedes the
slash, the slash is replaced by the zero
suppression character (blank or asterisk)
or currency symbol.

A decimal point is printed. Only one
decimal point may be specified. If option
INVP is in effect, a comma will replace the
decimal point in the output.

A PIC specification cannot begin or end with a B (blank).
comma, or /.

BASIC reference information 171

FORM

FORM statement (continued)

172 SA34-0109

The following are examples of insertion characters. Assume
a data value of 112233 is to be printed: ;"""

PIC specification

PIC(###B##B####)
PIC(ZZZBZZBZ###)
PIC(ZZZ,ZZZ,###)
PIC(ZZzzz/z#/##)
PIC(******#.##)
PIC($$$,$$$,$$$.##)

Printed output

000lJ11lJ2233
11lJ2233
112,233

11/22/33
*112233.00

$112,233.00

(

(

(

FORM

Exponent specifier

The exponent specifier appears in the rightmost positions of
a PIC specification. preceding the trailing characters. if any.
as three. four. or five circumflex characters. The
corresponding output positions are the letter E. the
exponent sign (+ or -l. and the exponent value. If the PIC
specification also includes zero suppression symbols (Z. $.
+. -. or *l. the # symbol is substituted for them. A decimal
point will always appear in the output in the same position
as it appears in the PIC specification.

Values are rounded to the number of digit specifiers before
output. For a floating field of +. -. or $. the first specifier is
not included in this number. All digits will be used. The
leading digit will be non-zero. An error occurs only if the
exponent cannot be accommodated.

The following are examples of exponent specifiers. Assume
a data value of 6.2345E+23 is to be printed:

PIC specification

PIC (# # # # # # # /\/\/\/\)
PIC (##. ###/\/\/\/\/\)
PIC (# # . # # /\/\/\/\)
PIC (. ######/\/\/\/\)
PIC (ZZZ. ZZ/\/\/\/\)
PIC (## ./\/\/\/\/\)

Printed output

6234500E+17
62.345E+022
62.35E+022
.623450E+24

623.45E+21
62.E+022

BASIC reference information 173

FORM

FORM statement (continued)

174 SA34-0109

Trailing characters

The following trailing characters can be specified:

Character

+

CR, DB, or DR

Meaning

A plus sign is printed for a positive
number, and a minus sign is printed for
a negative number.

A blank is printed for a positive number,
and a minus sign is printed for a
negative number.

The characters CR, DB, or DR,
respectively, are printed for a negative
number. For a positive number, either
two blanks or two asterisks are output.
Asterisks are output if * symbols were
specified to suppress leading zeroes.
Leading signs and CR, DB, or DR can
appear simultaneously.

FORM

The following are examples of trailing characters. Assume a

(
data value of -123456 and 123456 are printed in alternating
sequence.

PIC specification Printed output

PIC(##########+) 0000123456-
PIC(##########+) 0000123456+

PIC(##########-) 0000123456-
PIC(##########-) 00001234565

PIC (ZZZZZZZZZCR) 123456CR
PIC (ZZZZZZZZZCR) 12345655

PIC(*********DR) ***123456DR
PIC(*********DR) ***123456**

(PIC($$$$$$###DB) $123456DB
PIC($$$$$$###DB) $12345655

PIC ($++++####DB) $5-12345655
PIC($++++####DB) $5+123456DB

(

BASIC reference information 175

FORM
FORM statement (continued)

176 SA34-0109

Programming considerations

FORM statement
If the number of I/O list items exceeds the number
of FORM data conversion specifications, the FORM
statement is reused. (For a PRINT statement, there is
a default SKIP 1 at the end of the FORM statement.)
Array elements are formatted in row order.
For a PRINT statement, if the field width specified in
a data conversion specification is greater than the
number of positions remaining on the current line, the
current line is printed. The value to be output is then
printed at the beginning of the next line.
FORM statements are non-executable and can be
placed anywhere in a BASIC program; either before
or after the I/O statements that reference them.

PIC data conversion specification (numeric data)
The number of digit specifiers representing the ,/ ",
integer portion of the value being output must equal
or exceed the number of integer digits in the value
itself. When one or more +, -, or $ symbols are used
as digit specifiers, one additional digit specifier is
required.
The PIC specification is not syntax checked until
execution time.
The number of circumflex characters representing an
exponent must equal or exceed the number of digits
in the exponent itself plus two.

(,

«

FORM

If a negative value is being output, the PIC
specification must contain either a leading + or -
specifier or a trailing +, -, CR, DB, or DR symbol.
A PIC specification must contain at least one Z, *, #,
or have at least two $, +, or - specification
characters.
Values are rounded before output for fixed-point
fields (no exponents). The value is rounded into the
digit positions specified. For exponential output, the
value is rounded to the number of digits specified. In
both cases, one digit is deducted for floating $, +, or

If a floating currency string is followed by a decimal
point, it must also be followed by one or more #.
The floating + or - will not be printed for a zero
value if no fractional digits are specified.
If a floating currency string is followed by a trailing
sign or exponent specifier, the currency field must be
followed immediately by at least one #, Z, or *.

BASIC reference information 177

FORM

FORM statement (continued)

Formatting I/O files

178 SA34-0109

Example

The following program is an example of the use of the
FORM statement to format printed output:

10 A=11
20 B$="ABC"
30 C=5
40 D$="DEF"
50 E=16.2
70 PRINT USING 80: A,B$,C,D$,E,"GHI"
80 FORM pas 3,N 3,X 2,C 4,SKIP 1,"COMMENT",

PIC(###),V 4,2*G 4.1

The following output will be displayed in lines 21 and 22,
respectively.

flflfl11flflABC
COMMENT005DEFfl16.2GHI

see "Internal I/O file formatting"

FNEND statement

FREE command

FREESP(N)

see "DEF. FNEND statement"

see "DROP/FREE command"
"CLOSE statement"

FNEND

FREESP returns the number of 512-byte areas available for
allocation on the diskette that contains file N. Space
allocation is made in 512-byte increments. A -1 is returned
if the file is not open. if it is an exchange file. or if the
device is not a diskette.

BASIC reference information 179

Full screen
Full screen processing

Full screen processing is used to display or input data using
the entire screen (except the status line). To display data (-,
with full screen processing PRINT FIELDS must be entered. I., .. ;
To input data with full screen processing INPUT FIELDS
must be entered. If the keyword FIELDS is not included,
standard PRINT and INPUT processing is used. The syntax
of the PRINT/INPUT statement for full screen processing is
as follows:

r-----,
INPUTJ--L#gO J *---error action-l

--........ --FIELDS--field definition: data-item L-.fJ
PRINT •

180 SA34-0109

D #0
D Interrupt on error unless ON is active

where:

#0 is a numeric expression having the value of 0 for full
screen processing (see "File reference parameter").

field definition is either a character expression or a MAT
character array name (where character array name is a
one-dimensional array).

data-item is a simple variable, subscripted array, or a MAT
array name.

error-action is an EXIT line-ref or a CONV, SOFLOW, EOF,
IOERR (see"EXIT statement").

(

(

Full screen

A character expression specified for FI ELDS defines one
field. Multiple fields are defined in a character array. The
array .element or character expression defining a field is a
character string having the following syntax:

, ------, C' trailing attributes~ 1-' leading attributes-....... - -'---------I--I
-row, column, data conv·spec--'--------------------"'---.., ••

The parameters are positional and are delimited by commas.
The insertion of blanks preceding or following individual
parameters is permitted.

The starting location of a field is defined by the row and
column parameters specified in the field definition. Row 1,
column 1 is the upper left-hand corner of the screen. Fields
may be defined on rows 1 through 23. The length of a field
is the length specified either explicitly or implicitly in the
data conversion specification. Fields may not span lines.
The maximum length of a field is 78 (columns 2 through 79)
for a field defined with leading and trailing display
attributes. Leading and trailing display attributes are
required for input fields. The maximum length of an output
field without attributes is 80 (columns 1 through 80).

BASIC reference information 181

Full screen

Full screen processing (continued)

182 SA34-0109

v

The following data conversion specifications are supported
in a field definition:

field-length
C __ L-__ -L ____________ ~ ____________________ ~

GNJL----r- field-length ________ .1....-________ ---1_---'

PIC (pic-spec)-----------------------------..I

v, C, N, G, and PIC have the same syntax and function as
described under the "FORM statement." PIC is not
supported on an INPUT FIELDS statement.

Leading and trailing attributes

Two types of attributes may be associated with fields:
display attributes and control attributes.

,~ ",
\Lj

(

Full screen

Display attributes

Display attributes affect the visual characteristics of the
display screen. The attribute "blink," for example, specified
as a leading attribute for a field, causes the field to blink.
The attribute "normal" specified as a trailing attribute,
returns the screen to normal. Display attributes occupy
screen locations. These locations appear blank. They may
not simultaneously contain data. A display attribute affects
the visual characteristics of the screen starting at the
location following the attribute up through the location
preceding the next display attribute.

The following display attributes are supported:

• I-Invisible

• U-Underline

B-Blink

H-Highlight

R-Reverse (black on green)

• N-Normal (visible, no underline, no blink, no highlight,
green on black)

When specified in combination, attribute I overrides
attributes U, B, H, R. and N. Attributes U, B, H, and R
override attribute N.

BASIC reference information 183

Full screen

Full screen processing (continued)

184 SA34-0109

Example

Underline and blink:

10 PRINT FIELDS "10,10,C 40,UB,N":"HELLO"

Highlight:

20 PRINT FIELDS "10,10,C 20,H,N":"Hi"

Underline input fields:

30 INPUT FIELDS "10,10,C 20,U,N":A$

Control attributes

The second attribute type is the control attribute, which is
used to modify input field operations. The following control
attributes are effective when specified as leading attributes
in an input field definition:

• C-Position the cursor to this input field first. If C is
specified for more than one field, the cursor is
positioned to the last field in the array having the C
attribute.

A-Automatic field exit. An automatic field exit occurs
when the operator keys a character into the last location
within this field.

rf~'
~ .

f

Full screen

E-Automatic enter. An automatic enter occurs when
the operator presses the Field Exit, Field Plus, or Field
Minus key. An automatic enter also occurs when the
operator enters a character into the last position of a
field having the A attribute.

Control attributes do not occupy screen locations.

Any combination of display and/or control attributes may
be specified for leading or trailing attributes in a field
definition. Control attributes are inactive when specified for
a PRINT field or as trailing attributes for an INPUT field.
When an attribute is not recognized, it is ignored. If more
than one display attribute is specified, the combination
occupies one screen location. This location is R, C-1 for
leading attributes and R, C+ L for trailing attributes (R, C,
and L are row, column, and length of the field). Input fields
require both a leading and trailing display attribute. If either
attribute is not explicitly specified in a field definition, the
default for that attribute is N (normal). Output fields require
neither leading nor trailing attributes; none are defaulted.

BASIC reference information 185

Full screen

Full screen processing (continued)

186 SA34-0109

Examples

The following displays a field as defined by line 10.

10 A$=="S,7,C 18"
20 NAME$=="JOHN DOE"
30 PRINT NEWPAGE
40 PRINT FIELDS A$: NAME$
SO B$=="8,2,C 10"
60 INPUT FIELDS B$:DAK$

In this example, statement 40 will display the data on the
fifth line of the screen, starting in column seven. The data
item to be displayed is the character string "JOHN DOE".
Statement 60 will input 1 0 characters from line 8, starting in
column 2.

The following displays data on more than one line.

10 OPTION BASE
20 REM DISPLAY NAME AND ADDRESS
30 DIM FS$(3)
40 NAME$=="JOHN DOE"
SO STREET$=="12S 1ST ST. "
60 CITY$=="CHICAGO IL"
70 FS$(1)=="3,4,C 20"
80 FS$(2)=="4,4,C 2S"
90 FS$(3)=="S,4,C 2S"
100 PRINT NEWPAGE
110 PRINT FIELDS MAT FS$: NAME$, STREET$,CITY$

This example displays the first item of data (NAME$) on the
third line of the screen, starting in column four. The second
item of data (STREET$) is displayed on the fourth line of
the screen, starting in column four, etc.

(

(

(

The following displays data and inputs data.

10 OPTION BASE 1
20 DIM A$ (4), B$ (3)
30 A$(1)="5,10,C 10,U,N"
40 A$(2)="10,4,C 5"
50 A$(3)="13,4,C 7"
60 A$(4)="16,4,C 5"
70 PRINT NEWPAGE

Full screen

80 PRINT FIELDS MAT A$:"PROGRAMMER","NAME:",
"STREET:","CITY:"

90 B$ (1) =" 1 0, 12, C 18, u, N"
100 B$(2)="13,12,C 18,U,N"
110 B$(3)="16,12,C 18,U,N"
120 INPUT FIELDS MAT B$: NAME$,STREET$,CITY$

See 'Appendix A" programs 10, 11, and 12.

Programming considerations

• Number of fields
If an array is specified for FIELDS, the number of
fields is the number of I/O list items, not the number
of elements in the array. The number of elements in
an array specified for FIELDS may exceed the number
of I/O list items. The extra elements are ignored.
The maximum number of input fields is 128.

• Input attributes
When an INPUT FIELDS statement is executed, an
implicit write to the display screen is generated to put
out display attributes. The input fields are not
modified.

BASIC reference information 187

'.

Full screen

Full screen processing (continued)

188 SA34-0109

Order
The fields defined in a FIELDS array may appear in
any order. .J

The first element or field in a FIELDS array
corresponds to the first I/O list item. The second
element or field corresponds to the second I/O list
item, etc.

• Enter
When the operator presses the Enter key, keyboard
input ends and the input field values are processed.
As each value is verified, it is assigned to an I/O list
variable or array element. The number of I/O list
items processed successfully is contained in the
system variable CNT.

Overlapped attributes
Input fields may not overlap. However, the location of
the trailing display attribute of one field may be
overlapped by the leading attribute of the following
field. If leading and trailing attributes overlap, the last
attribute written to the screen will be the one in
effect.

Functions, defined

(

(

Full screen

Mixed operations
Caution should be used when full screen processing
is interspersed with non-full screen processing. There
is no implicit clearing of the display screen when
switching between the two. PRINT NEWPAGE may
be used to perform this function. If the display screen
is not cleared before full screen processing I/O, full
screen processing fields will be interspersed with the
previous contents of the screen. If the display screen
is not cleared after full screen processing I/O, data
and/or display attributes left on line 23 may cause a
syntax error on the next operator entry.

see "DEF, FNEND statement"

BASIC reference information 189

GO
GO command

GO

190 SA34-0109

The GO command resumes or ends processing of a BAsIC
program or procedure. (--"

\ ... -j

If a program or procedure was halted, processing can be
resumed by entering GO. Program execution may continue
with any line specified in the GO command.

Procedure execution may continue with the next procedure
line. In order to continue execution with another line, see
"SKIP command".

RUN

STEP

TRACE ,RUN

TRACEP ,STEP

END ,TRACE

, TRACEP

line-num

.. Resume execution at the current line of the- program or
the next procedure line.

II Remain in previous mode.

The syntax of the GO command is as shown, where:

line-num is the number of the line where processing of a
program is to resume. If the number is omitted, processing
begins with the line logically following the last line executed
successfully, or the next procedure statement.

-- -,

"",j

(

GO

END specifies that all input and output files or the current
procedure file are closed. After files are closed no program
statements are executed (GO END is required for an
interrupted program before issuing another RUN).

RUN specifies that processing is to continue in normal
mode.

STEP specifies that processing is to continue in step mode
(see "RUN command").

TRACE specifies that processing is to continue in trace
mode (see "RUN command"). TRACE data is interspersed
with screen data ..

TRACEP specifies that trace messages are to be printed
only. TRACEP should be used if tracing to screen would
overwrite valid information.

Note: If neither RUN, STEP, TRACE, nor TRACEP is
specified, processing will continue in the mode that was in
operation when processing was interrupted.

If a line number is not specified, RUN, STEP, TRACE, or
TRACEP is not preceded by a comma t).

BASIC reference information 191

GO

GO command (continued)

Examples

To change to normal mode or resume normal operation of a ",.1

192 SA34-0109

BASIC program:

GO RUN (then press Enter)

To change to STEP mode and begin execution at line
number 620:

GO 620, STEP (then press Enter)

Programming considerations

• Resume
- GO may only be used to resume processing and not

to initiate processing (see "RUN command" to
initialize processing).

• TRACEP printing
The data appears only when the line to be printed is
full, the program generates a new line, or the printer
is closed (when the program terminates).

• DISPLAY TRACEP
If the program is started by RUN DISPLAY, the
TRACEP information will be directed to the screen.

For more information see "Split screen" and "TRACE
statement" .

C'·"" . ,

c

. (

GOSUB
GOSUB and RETURN statement

The GOSUB and RETURN statements are used together to
invoke subroutines. The GOSUB statement transfers control
to a specified statement. The RETURN statement transfers
control to the first executable statement following the
GOSUB statement that invoked the subroutine in which the
RETURN occurs.

RETURN •

GOSUB------ line·ref -------t ••

The syntax of the GOSUB statement is either simple or
computed. The simple syntax is shown above, where:

line-ref is the line number or label to which control is to be
transferred.

Execution of a simple GOSUB statement causes transfer of
control to the line or label specified. The maximum nesting
level is 200 .

BASIC reference information 193

GOSUB

GOSUB and RETURN statement (continued)

194 SA34-0109

[NONE line-ref]

ON- arith-expressioll- GOSUB r line-ref 'Tj.L---BIlI----'---__ _

I I
L __ ._..J

.. Interrupt occurs if the expression is out of range

The computed GOSUB syntax is shown above, where:

arith-expression is the arithmetic expression that
determines the statement to which control is passed.

line-ref is a statement number or label. At least one
statement number or label is required.

NONE if none of the line numbers preceding the NONE is
selected, the line number following it is used.' ",

Execution of a computed GOSUB statement causes the
arithmetic expression to be evaluated. Control is then
transferred to the line whose numeric position in the list of
line-num (reading from left to right) is equal to the rounded
integer value of the expression. Thus, an expression with a
value of 2.75 would cause control to be transferred to the
third line in the list. If the expression has a rounded integer
value less than 1 or greater than the total number of lines
listed, the program goes to the statement specified in the
NONE clause. If a NONE clause is not specified, an error
occurs.

When a GOSUB statement points to a descriptive statement
such as DIM, control is transferred to the first executable
statement following the descriptive statement.

(

(

GOSUB

Programming considerations

Subroutines should be preceded by a GOTO to avoid falling
through into them.

Example

The following example shows the execution of GOSUB and
RETURN statements:

Simple GOSUB

E00050 GOSUB 00100

--"00060-

•
•

00100-

•
•

'---- 00140 R ETU R N

Program 1-Line 50 transfers control to line 00100, stacking
line 00060 as a return location. Assuming no further
transfers, lines 00100 to 00140 are executed and line 00140
transfers control to line 00060.

BASIC reference information 195

GOSUB

GOSUB and RETURN statement (continued)

196 SA34-0109

Nested GOSUB

00080 GOSUB NEWYEAR

~--1""""00090-

00100 STOP

•
•

00150 NEWYEAR:

•
•
•

00190 GOSUB NEWMONTH

-"00200-

•
•
•

- -00240 RETURN

00250 NEWMONTH:

•
•
•

'---- 00300 RETURN

Program 2-Assuming no transfer statements other than
those shown, the order of execution is: 00080, 00150 to
00190, 00250 to 00300, 00200 to 00240, 00090 to
00100(STOP).

GOSUB

An example of a computed GOSUB is as follows:

(90 N=5

100 ON (C/N) GOSUB 150,280,370 NONE 420

IF C is 5, line 150 gains control.
IF C is 10, line 280 gains control.
IF C is 15, line 370 gains control.
IF C is less than 2.5 or greater than or equal to
17.5, line 420 gains control.

(

(

BASIC reference information 197

GOTO

GOTO statement

198 SA34-0109

The GOTO statement transfers control to a specified line or
label.

The syntax of the GOTO statement can be simple or
computed.

GOTO--line·ref •

The simple GOTO syntax is shown above, where:

line-ref is the line number or label to which control is to be
transferred.

Execution of a simple GOTO statement causes transfer of
control to the line number or label specified.

The computed GOTO syntax is:

rNONE line-refl

ON-arith-expression -GOTO Tline ref,l---a •

I I
L_._..J

.. Interrupt occurs if expression is out of range

where:

arith-expression is the arithmetic expression that
determines the line to which control is passed.

c-

(

GOTO

line-ref is a statement number or label. At least one
statement number or label is required.

NONE if none of the line numbers preceding the NONE is
selected, the line number following it is used.

Execution of a computed GOTO statement causes the
arithmetic expression to be evaluated and control
transferred to the line whose numeric position in the list of
line numbers (reading from left to right) is equal to the
rounded integer value of the expression. Thus, an
expression with a value of 2.75 would cause control to be
transferred to the third line in the list. If the expression has
a rounded integer value less than 1 or greater than the total
number of lines listed, the program goes to the statement
specified in the NONE clause. If no NONE clause is present
an error occurs.

When a GOTO statement points to a descriptive statement
such as DIM, control is transferred to the first executable
statement following the descriptive statement.

The following statement will transfer control to line number
20:

100 GOTO 20

The following statement will transfer control to the
statement labeled RECOVERY when the variable LIMIT is 1.

100 ON LIMIT GOTO RECOVERY,SOO NONE QUIT

BASIC reference information 199

HELP STATUS

HELP STATUS command (continued)

200 SA34-0109

The HELP STATUS command displays the amount of space
(in bytes) available in the work area, the work area type r'
(PROGRAM or DATA)' and the file specification of the last , .. 0/

file used to load or save the work area.

HELP STATUS •

The syntax of the HELP STATUS is as shown. Between
CLEAR or power on and LOAD/SAVE/REPLACE, only the
mode and number of bytes available are reported.

Example

HELP STATUS

20168 PROGRAM PAYROLL.FDP/PAYROL

(bytes avail) (type) (file specification)

HEX$(A$)

Hierarchy, arithmetic

HOLD

'(

HEX$

Returns a character string containing the hexadecimal value
represented by the content of A$. For example:

10 A$=IF1F2"
20 B$=HEX$(A$)

A$ must contain only the digits a through 9 or the
uppercase letters A through F. The number of hexadecimal
characters must be even.

B$ contains a two character string which is "12".

See"Hexadecimal table" under "Character set".

see "Arithmetic hierarchy"

The HOLD key can be used to stop processing at any time
(for example, to view the screen.) You press HOLD a
second time to continue operation. Pressing the HOLD key
will not immediately stop the printer.

If the 5322 Computer is sharing a 5246 Diskette unit, the
second 5322 Computer may be stopped also. See "Device
sharing" .

If diskettes are removed while in the HOLD state,
unpredictable results may occur.

BASIC reference information 201

IF, THEN, ELSE

IF, THEN, ELSE statement

The IF, THEN, ELSE statement transfers control according
to the result of an evaluated expression or conditionally'\
executes a statement.

r-----------...., tel AoNRD]-relational.expreSSion, I pELSE{line.ref~
{

line.ref staterne:
I F_relational·exoression --''-------Dt-----...... THEN 61------11----1 ••

202 SA34-0109

statement

.. One expression considered
II If expression is false, go to next statement

The syntax of the IF, THEN, ELSE statement is as shown
above, where:

relational expression is a relational expression or a logical " ,,'/
operator (see "Relational expression" and "Logical
operators" under this (IF, THEN, ELSE) statement).

line-ref is the line or label to which control is to be
transferred. It is specified by either a line number or a label
symbol.

(

IF, THEN, ELSE

statement is any of the following BASIC statements:

CHAIN LINPUT READ
CLOSE MAT REREAD
CONTINUE ON RESTORE
DELETE ON GOSUB RETRY
GOSUB ON GOTO RETURN
GOTO OPEN REWRITE
INPUT PAUSE STOP
INPUT FIELDS PRINT TRACE
LET PRINT FIELDS WRITE
LET (implied) RANDOMIZE

If CHAIN follows THEN, no ELSE clause is allowed.

The IF, THEN, ELSE statement either transfers program
control or executes a statement according to the results of a
relational or logical expression. If the expression is true and
a line reference follows the THEN, control is transferred to
that line. If a statement is specified, instead of a line
reference, that statement is executed. If the expression is
false and a line reference follows the ELSE, control is
transferred to that line reference. If a statement follows the
ELSE, that statement is executed. If the execution of this
statement does not result in the transfer of control, or the
ELSE was not specified, then control is passed to the next
executable statement in the program.

BASIC reference information 203

IF, THEN, ELSE
IF, THEN, ELSE statement (continued)

204 SA34-0109

Relational expression

A relational expression compares the value of two arithmetic
expressions or two character expressions. The expressions
are evaluated and then compared according to the definition
of the relational function specified. The relational functions
and their definitions are:

Relational function Definition

Equal
<> or >< Not equal
=> or >= Greater than or equal
=< or <= Less than or equal
> Greater than
< Less than

When comparing numeric values, the value compared is the
full 15 digits of the representation. Results of functions
which are not accurate to 15 digits should be rounded
before making an equal compare. See "Accuracy" under
"Arithmetic data". When character data appears in a
relational expression, it is evaluated according to the
collating sequence, character by character, from left to right.
When character operands of different lengths are compared,
the result is unequal. If all characters of the shorter string
are character-by-character equal to the leading characters
of the longer string, the shorter string is less then the
longer string. Blanks are significant in comparisons.

Example

10 IF A=B THEN 90 ELSE 110

(

(

IF, THEN, ELSE

Logical operators, expressions

To form logical expressions, relational expressions can be
combined.

Logical operators are used between relational expressions.
When the logical operator AND is used between two
relational expressions, the logical expression is true only if
both relational expressions are satisfied. This is illustrated in
the example that follows.

If OR is specified and the first expression is true, or if AND
is specified and the first expression is false, the second
expression will not be evaluated. For example, if the second
expression contains a function, it will not be executed.

Examples

10 IF A$="JOB" AND B$="DATE" THEN 90 ELSE 110
20 IF MONTH=2 AND DAY=28 THEN MONTH=3 ELSE
DAY=DAY+1

In the following example OR is used to specify that either of
the two relational expressions can compare in order for the
logical expression to be true.

10 IF A=e OR B<4 THEN 90 ELSE 110

BASIC reference information 205

IF, THEN, ELSE

IF, THEN, ELSE statement (continued)

206 SA34-0109

The following is an example used for checking a blank field:

100 IF B$=RPT$(" ",LEN(B$)) THEN GO TO BLANK

•
•
•
500 BLANK:STOP

The following examples show a variety of I F statements:

30 IF A(3)<>X+2/Z THEN 100
40 IF R$="CAT" THEN 70
50 IF S2=37.222 THEN 120
60 IF X>Y THEN 90
70 IF A<B OR C<D THEN 110
80 IF A$="JOB" AND B$="DATE" THEN 100
90 IF A=3 OR B=4 THEN C=G ELSE STOP
100 STOP

In line 40, for example, if character variable R$ contains the
word CAT, program control is passed to line 70. In line 70,
if either A<B or C<D, control is passed to line 110.

An example showing the use of labels is as follows:

30 IF MONTH=2 AND DAY=29 THEN LEAP YEAR ELSE LET
MONTH=MONTH+l

•
•
•
70 LEAPYEAR: LASTDAY=366

(Index keys

(-

IF, THEN, ELSE

Programming considerations

When an IF statement has a THEN clause and an ELSE
clause, the THEN clause may not contain a MAT
statement. For example, instead of doing this:

10 IF x=O THEN MAT A=B ELSE MAT A=C
or:
10 IF X=O THEN MAT A=B ELSE Y=10

Do this:
10 IF X=O THEN MAT a+B
or:
10 IF X=O THEN R=S ELSE MAT A=B

For other methods of examining data values, see "SRCH"
and "POS".

see
"Create index file" under "Customer Support
Functions"
"DELETE statement"
"KLN"
"KPS"
"OPEN statement"
"READ statement"
"REREAD statement"
"RESTORE statement"
"REWRITE statement"
"WRITE statement"

BASIC reference information 207

INPUT

I N PUT statement

208 SA34-0109

The INPUT statement allows values to be assigned to
variables from the keyboard (or procedure file) or a display ,£",

file. "L./

I #file-ref:l

r----'---...,
I I

I
error-cond line-ref

EXIT line-ref

INPUT~ data-item '1'-----111---'---__

I I L __ , __ --.J

.. Defaults to #0
II Interrupt on error unless ON is active

The syntax of the I N PUT statement is as shown, where: ~ -"

file-ref is a numeric expression, see "File reference
parameter."

data-item is a simple variable, subscripted array element, or
a MAT array name.

error-cond can be CONY, SOFLOW, EOF, IOERR (see
"EXIT statement").

line-ref is either a line number or a label.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

(

(

INPUT

When an I NPUT statement is executed, and input is
expected from the keyboard, a question mark (?) is
displayed on the screen on line 23, column 1 and the
program execution halts. Input data is entered on the same
line as the question mark. The data must be entered
beginning in column 2 because column 1 is occupied by the
question mark. You must then enter a list of values, that
will be assigned in the order they are entered, to the
variables listed in the INPUT statement or row-by-row to
elements of specified arrays. The Enter key must be pressed
to resume program execution. The number of values entered
must be the same as the number of items in the I/O list.

INPUT is normally used to input data from the keyboard.
However, it may also be used to read data (in keyboard
entry format) from a diskette DISPLAY file (type 05).

Assignment of values occurs after each ENTER or record
delimiter. If the PROC option is entered in the RUN
command, values are supplied from the active procedure file
(see "Procedure file") rather than from the keyboard. Each
INPUT statement will get one line from the display file or
procedure file. If the record supplies too many or not
enough values for the data list, an error is indicated.

BASIC reference information 209

INPUT
INPUT statement (continued)

210 SA34-0109

Examples

To input:

A number or numbers.

10 INPUT X
20 INPUT X,Y

A string or strings.

10 INPUT N$
20 INPUT N$,A$

Numbers and strings.

10 INPUT NAME$,AGE
20 INPUT X,X$

From a file.

10 OPEN #100:"NAME=FILE.NAME",DISPLAY,INPUT
20 INPUT #100:ITEM1,ITEM2

An array (matrix).

CLEAR
10 OPTION BASE 1
20 DIM ITEM$(3)
30 INPUT MAT ITEM$
40 PRINT ITEM$(1) ,ITEM$(2),ITEM$(3)
50 END

(

INPUT

The operator may respond to the following INPUT
statement:

10 INPUT NAME$,AGE,ADDRESS$

in either of the following ways:

? Gabe, 25, Street

or:

? Gabe,
? 25,
? Street

Programming Considerations

Blanks
The only blanks allowed within a numeric field are
leading blanks or trailing blanks.
Enclose a character field in quotes if leading blanks,
trailing blanks, or delimiters are significant.

Data items
- The data types and the number of data items are

verified before any assignment takes place.
The maximum length of each character data item
entered, is 255.

Procedures
Specifying PROC on the RUN command has no effect
on INPUT statements containing a file reference other
than O.

BASIC reference information 211

INPUT
I N PUT statement (continued)

212 SA34-0109

Command keys
- Command function keys, when pressed during

INPUT, cause input to end (same as pressing the
Enter key) and CMDKEY variable to be set.

Cmd/ Attn
Pressing the Cmd/ Attn key while INPUT is pending,
will cause an interrupt when the current INPUT
statement completes execution (after pressing Enter).

LlNPUT
- The unformatted input of a character string is

achieved by using the LlNPUT statement (see
"LlNPUT statement").

EOF
- Input from a procedure (RUN PROC) can cause an

EOF condition at the end of a procedure. An EOF
clause should be coded to account for this. The
program cannot revert to keyboard input when started
by RUN PROC.

Terminating input with a slash
If the input data is terminated with a slash (/), the
number of data items entered can be less than the
number of I/O list items. The values of any remaining
I/O list items are left unchanged.

• CNT
If the input data is terminated with a "/," only items
preceding the" /" are counted.
Each data item is counted as one.
Example: 1 00,200,300,400 (CNT =4)

1,.-;/

(

(

Inquiry key

Integer format

(

INPUT

• Null entries
When constructing a DISPLAY file (type 05) for
processing by INPUT, and the last data item can be a
null character string, end each line with a slash (f).
This will prevent a "ends in comma" error.

Error conditions
Preceding the assignment of any value, a check is made
of all the data values entered. If the check fails at any
point, none of the entered values are assigned. Some
potential errors which can occur are:

CONY means that character data was provided when
numeric data was required.
SOFLOW means that the character string input was
too long.

See "Sample program 5" in "Appendix A" and "Full screen
processing."

see "Attention and Inquiry"

see
"Arithmetic data"
"INT(X)"

BASIC reference information 213

Internal constants
Internal constants

Internal files

214 SA34-0109

An internal constant is a named, pre-defined value. Unlike
arithmetic variables, the value is never altered during
program execution~ An example of the only internal constant
is:

Constant Name Value

pi PI 3.14159265358979

The internal constant name can only be used as a part of an
arithmetic expression. It cannot be the target of an
assignment statement. For example (assume rounding is to
7 digits):

PRINT 2*PI (then press Enter)

The result will be 6.283185.

see
"Relative record files"
"Key-indexed files"
"Internal I/O files"

(

Internal I/O
Internal I/O file formatting

Formatted (with USING)

When a WRITE or REWRITE statement contains a USING
clause, the format of the data is specified by the associated
FORM statement. The output record is generated in the
following manner:

• Allocate a buffer of length specified by RECL= on the
OPEN.

• Set the entire buffer to blank (hex 40). This applies to
the WRITE statement only.

Use the FORM specification and output data list values
to fill in the specified record locations. Unspecified
locations remain either blank or unchanged.

Unformatted (without USING)

When a WRITE or REWRITE statement does not contain a
USI NG clause, the record is "unformatted". The output
record is generated as follows:

• Allocate a buffer of length specified by RECL= on the
OPEN.

• In the first two bytes of the record place the binary
representation of the number of output list items. Each
array element counts as one. The low order byte is first
and the high order byte is second.

Preceding each data value place the binary
representation of the length of the data item. Numeric
items are length 9 and character items are specified by
their current length (0 to 255).

BASIC reference information 215

Internal I/O
Internal I/O file formatting (continued)

Internal I/O files

Following the item length, place the value of the data
item in internal format. See "Arithmetic data" and
"Character set".

The record length must have additional space allocated for
these length fields over and above the aggregate length of
the data. When numeric data items are expected, the length
must be nine bytes. When character data items are
expected, any length is acceptable. No type checking is
performed.

Internal I/O files are used for collecting related numeric and
character data items and storing them as a unit in a
fixed-length logical record. These files must be, opened
before using the WRITE (or REWRITE) statement to store
data items in the file and the READ (or REREAD) statement
to retrieve data items from the file. Internal I/O files can be
accessed sequentially or directly either by key-indexed or
by relative record number. For specific information, see
"Relative record files" and "Key-indexed files." See also
"REC(N)" and "RLN(N)".

Internal representation of characters

see "Character set"

218 SA34-0109

""'--/

Internal variables

«
Interrupt

(

Internal variables

see "System variables"

An interrupt is a condition that stops execution of the
program or the procedure. After the interrupt occurs, the
program or the procedure is allowed to continue. For more
information, see:

"Attention and Inquiry"

"EXIT statement"

"ON statement"

Interrupted programs may not be saved or replaced.
DIM, OPTION, FOR, and NEXT statements may not be
added or modified during an interrupt.

The System Messages manual, order number SA34-0141,
contains a full description of action
codes and error codes with the recommended actions.

BASIC reference information 217

Interrupt

I nterrupt handling

218 SA34-0109

BASIC program interrupts are:

I/O errors
Computational errors

• INa key
• Cmd/ Attn key

These interrupts are handled in the following priority:

• I/O errors with an applicable EXIT clause cause transfer
to the specified line.

• Computational errors and I/O errors with no applicable
EXIT clauses but with an applicable "ON condition
GOTO" active, cause the specified transfer to take
place.

• The INa key is pressed and an ON ATTN GOTO is
active. The INa is detected prior to the execution of the
next statement and the specified GOTO is executed.
Note that Attn should be ignored when other conditions
are being monitored by ON to prevent loss of one of the
interrupts for RETRY and CONTINUE.

• Cmd/ Attn cannot be intercepted and always causes an
interrupt.

If no intercept (ON or EXIT) is specified for I/O errors,
computational errors, or INO key, an interrupt will occur.

For more information, see "ON statement", "Order of
execution" and "Attention and Inquiry."

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF,FNEND
statement. "

Intrinsic functions

(
INT(X)

(

Intrinsic functions

see "System functions"

Returns the largest integer not greater than X. For example:

10 X=-17.4
20 Y=INT(X)

y contains -18

10 X=3.4
20 Y=INT(X)

Y contains 3

BASIC reference information 219

I/O tables

I/O action tables

Keyboard

220 SA34-0109

The tables in Appendix B specify the response of
System/23 to any combination of two I/O statements.
Statements which are not listed on these tables are always
considered errors. Refer to Appendix B for this information.

The keyboard is made up of alphabetic, numeric, and
special character keys. Both uppercase and lowercase
characters can be entered by using the shift key. The
statement keywords and commands can be entered by
using the Cmd key. When any of the keys are pressed, the
characters entered appear in the input line on the display
screen (see "Key description legend and tables").

Each of the keys are described in the Operator Reference,
SA34-0108'''-.oj

!~ '\

"/

(-

Keyboard

Keyboard-generated data files

A data file can be created directly from the keyboard by
entering the CLEAR DATA command to clear the workarea
and define it as data. Next the AUTO command may be
entered to initiate automatic line numbering or lines may be
entered preceded by a line number and a colon. The end of
a data line is indicated when the Enter key is pressed. The
only syntax restriction is the line number followed by a
colon.

The length of the data file line may not exceed 249
characters. The workarea can be saved with the SAVE
command.· Data file lines are saved without line numbers or
colons. They are saved in the DISPLAY file type (05).
Procedure files are an example.

When data file lines are listed. the colon is displayed. Data
in a keyboard-generated file can be accessed as a DISPLAY
file during program execution or it may be a procedure file
to control program execution. With line numbers and colons
removed. the data file is accessed sequentially. one line at a
time.

A saved data file can be changed by loading it back into the
workarea with a LOAD DATA command. When saved. the
line numbers and colon are again removed. When loaded.
data lines are preceded by line numbers. starting with
00010 and incrementing by 10. and the colon.

BASIC reference information 221

Key description

Key description legend· and tables

222 SA34-0109

The key description, legend used in conjunction with the key
description tables, describes the action taken for each key
on the System/23 keyboard.

Key description table legend

The following is a legend of the symbols used in the key
description tables.

A - Display lowercase graphic associated with the key
pressed

B - Display uppercase graphic associated with the key
pressed

C - Display alternate shift graphic associated with the key
pressed

D - Display the command shift keyword associated with
the key pressed

E - Build a value between 0 and 255. The last three
keystrokes between pressing and releasing the
alternate shift key are used to build the value. Treat
the value as follows:

• OsvalueS5

• 6svalues63

change the current CRT
display page

sound the audible alarm,
ignore the value

(

c.

• 64~value~255

Key description

if the keyboard is open,
display the EBCDIC
character associated with
the entered value; set
KSTAT$; else ignore.

F - Set KSTAT$ to the value displayed.

G - Set KSTAT$ to the value that would have been
displayed if the keyboard were open.

H - Set KST AT$ to null.

I - Do nothing to KST AT$.

J - When key is pressed, set case shift state to
uppercase, set to lowercase when released.

K - When key is pressed, set case shift to uppercase. Do
nothing when released.

L - When key is pressed, set data shift to command, when
released, set data shift as follows:

Alt (56) depressed
(alternate)

Alt (56) not
depressed (normal)

M - When key is pressed, set data shift as follows, when
key is released, set data shift to normal.

N - Do not alter data shift state.

BASIC reference information 223

Key description

Key description legend and tables (continued)

224 SA34-0109

0- Terminate INPUT Statement.

P - Set CMDKEY to zero.

Q - Set CMDKEY to 1-9 according to key pressed.

R - Scroll rows 1-23 down one logical line. The last logical
line on the screen is lost. If listing a program, the
preceding line of the program will be displayed at the
top of the screen if it will fit.

S - Scroll rows 1-23 up one line. If any part of the top
logical line leaves the screen, blank the top logical line.
If listing a program, the next line of the program will
be displayed at the bottom of the screen if it will fit.

T - Enter ROS-resident diagnostics.

Cmd/test causes error and action codes on status
line.""····
Cmd/ Attn = diagnostic monitor.

• Error Reset = normal

U - Place machine in the Hold state. All processing stops.
Processing resumes when Hold key is pressed again.
Current I/O operations will run to completion. Copy
Display is active in the Hold state.

v - Copy the contents of the display screen, including the
status line, to the system printer, device 10. Copy
Display is active when the keyboard is open for input
and when the machine is in the Hold state.

W - When an error condition exists, terminate the error
successfully. ;/f"

I
~ .. .,/

Key description

x- When an error condition exists, terminate the error

(unsuccessfully.

y- Set Basic flag for "ON ATTN" condition. If program
doesn't trap, same as Cmd/ Attn

z- Blank from the current cursor position to the end of
the logical line. Scroll down the display screen so that
the cursor is now on the entry row. The cursor is in
the same position relative to the start of the logical line
being operated on.

a- Blank field from current cursor position to end of field.

b- Return control to the system command processor. If
Basic is executing, control is returned before the next
statement is executed. If a Customer Support Function
or SORT is executing, control is returned at break

(points established by each function.

c- Move cursor to the first position of the next defined
field. Cursor goes to first field if currently in the last
field.

d- Move cursor to the last position of the previously
defined field. Cursor goes to last field if currently in
the first field.

e- If cursor is in a numeric field and field is not full,
return an error. Otherwise, position cursor to row 23,
column 1.

f- Move the cursor one position to the right (except for
'BF-acute, '79'-grave, 'A1'-tilde, 'SF'-circumflex,

«- '90' -cedilla, 'BO' -diaeresis).

BASIC reference information 225

Key description

Key description legend and tables (continued)

226 SA34-0109

g - Move the cursor one position to the left.

h - Wrap to the next row when leaving the right side of ...
the screen. Wrap to the beginning of the logical line if
leaving the right side of the screen on the last row of
the line.

i-If the cursor leaves the field that it is in, move it to the
first position of the next defined field. Move to first
defined field if currently in the last defined field.

j - Wrap to the previous row when leaving the left side of
the screen. Wrap to the end of the logical line if
leaving the left side of the first row of the line.

k - If the cursor leaves the field that it currently is in,
move it to the last position of the previous defined
field. Move to the last defined field if leaving the first
defined field.

m - Move the cursor to the first position of the previous
defined field. Move to the last defined field if currently
in the first defined field.

n - Wrap to the next row of the logical line if the cursor
moves off the screen to the right. If there is no next
row, scroll up the screen by one row and put the
cursor at row 23, column 1. If the logical line would be
extended past 23 rows, sound the audible alarm and
leave the cursor at row 23, column 80.

Key description

p- If the field is Automatic Field Exit, then i. If the field is

(
Automatic Field Exit and Automatic Enter, then 0 and
P. If the field is not Automatic Field Exit and the
cursor would normally leave the field, put the keyboard
into the Field Exit Pending state.

q- Move the cursor one position to the right for each
character displayed in the command keyword.

r- Move all the characters, from and above the cursor to
the end of the line, one position to the right. Put a
blank above the cursor. If non blank data on the last
row is shifted off the screen, extend the logical line. If
the line is already 23 rows, return invalid key error.

s- Move all the characters, from and above the cursor to
the end of the field, one position to the right. If the
last position is nonblank before the operation, return

(an invalid key error. Put a blank above the cursor if the
operation is successful.

t- Move all the characters from, but not above the cursor
to the end of the line, one position to the left. Blank
the last position in the line. If the entry row becomes
blank, scroll down the display screen one row.

u- Move all the characters from, but not above, the cursor
to the end of the field, one position to the left. Blank
the last position in the field.

v- If the last position and the first position in the field are
non-blank, return an invalid key error. If the first
position is blank, put a minus sign there. If the first
position is nonblank, shift the entire field right one

C
position and put a minus sign in the first position.

BASIC reference information 227

Key description

Key description legend and tables (continued)

228 SA34-0109

w - If machine is in HOLD, enter C.E. monitor. If not,
ignore.

Key description tables

These tables, used in conjunction with the key description
legend, describe the action taken for each key on the
System/23 keyboard.

+ .) >
Normal data keys: ~/ to =, Q to \, A to (, < to ?/, space
Key numbers: 1-13,16-27,30-41,43-53,57

Keyboard open for input Keyboard

Result for Result for full closed

Shift normal mode screen processing Result

Lower
case A', F, f, n A, F, f, p G
(normal)

Upper
case

B , F, f, n B, F ,f, p G

CMD
key D,q,n D,q,n N/A

ALT C, F, f, n C, F, f, n N/A
key

\,-, "'/

(

(

;!;; Copy 0 key
Key number: 13

Key description

Keyboard
Keyboard open for input closed

Result for
Shift normal mode

Lower
case A, F, f, n
(normal)

Upper
A, F, f, n

case

CMD
key

V

ALT
E

key

_ key (cursor backspace)

Key number: 14

Result for full
screen processing Result

A, F, f, p G

A, F, f, p G

V (press
V

hold first)

E E

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case g, j g,k N/A
(normal)

Upper
g, j g,k N/A

case

CMD
N/A N/A N/A key

ALT
N/A N/A N/A

key

BASIC reference information 229

Key description

Key description legend and tables (continued)

230 SA34-0109

~ Key (field advance, field backspace)

Key number: 15

Keyboard open for input

Result for Result for full
Shift normal mode screen processing

Lower
case O,P c
(normal)

Upper O,P m
case

CMO
N/A N/A

key

ALT
N/A N/A

key

Enter key
Key number: 28

Keyboard open for input

Result for Result for full

Shift normal mode screen processing

Lower
case O,P 0, P, e
(normal)

Upper
O,P 0, P, e

case

CMD
N/A N/A

key

ALT
N/A N/A

key

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

N/A

N/A

N/A

N/A
'1 '

\ ""'/

c

..J}.Key (shift lock)
Key number: 29

Key description

Keyboard
Keyboard open for input closed

Result for
Shift normal mode

Lower
case K
(normal)

Upper
K

case

CMD
K

key

ALT
K

key

-{rKeys (upper shift)
Key numbers: 42, 54

Result for full
screen processing Result

K K

K K

K K

K K

Keyboard

Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case J J J
(normal)

Upper
J J J

case

CMD
J J J

key

ALT
J J J

key

BASIC reference information 231

Key description

Key description legend and tables (continued)

232 SA34-0109

.-J Key (new line)
Key number: 55

Keyboard open for input

Result for Result for full
Shift normal mode screen processing

Lower
case S c
(normal)

Upper
S c

case

CMD N/A N/A
key

ALT N/A N/A
key

Alt key
Key number: 56

Keyboard open for input

Result for Result for full
Shift Normal mode screen processing

Lower
case M M
(normal)

Upper
M M

case

CMD N N
key

ALT
M M

key

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

M

M

N

M

/ ' , \

(

Field
Exit key
Key number: 58

Key description

Keyboard
Keyboard open for input closed

Shift

Lower
case
(normal)

Upper
case

CMD
key

ALT
key

Erase
Attn key

Result for
normal mode

O,P

O,P

N/A

N/A

Key number: 59

Result for full
screen processing Result

a,c N/A

a, C N/A

N/A N/A

N/A N/A

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case Z a N/A
(normal)

Upper
Z a N/A

case

CMD
b b b

key

ALT
Z N/A

key
a

BASIC reference information 233

Key description

Key description legend and tables (continued)

Cmd key
Key number: 60

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case L L L
(normal)

Upper
L L L

case

CMD
L L L

key

ALT
L L L

key

Inq Key
Key number: 61

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case y Y Y
(normal)

Upper y y y
case

CMD y Y Y
key

ALT y Y Y
key

234 SA34-0109

(

Key description

Hold key
Key number: 62

Keyboard
Keyboard open for input closed

Shift

Lower
case
(normal)

Upper
case

CMD
key

ALT
key

Error
Reset key

Result for
normal mode

U

U

U

U

Key number: 63

Result for full
screen processing Result

U U

U U

U U

U U

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case N/A N/A W
(normal)

Upper
N/A N/A W

case

CMD
N/A N/A X

key

ALT
N/A N/A W

key

BASIC reference information 235

Key description

Key description legend and tables (continued)

236 SA34-0109

Test key
Key number: 64

Keyboard open for input

Result for
Shift normal mode

Lower
case W
(normal)

Upper
W

case

CMD
T

key

ALT
W

key

~Key (scroll down)

Key number: 65

Result for full
screen processing

W

W

T

W

Keyboard open for input

Result for Result for full
Shift normal mode screen processing

Lower
case R c
(normal)

Upper
R c

case

CMD N/A N/A
key

ALT N/A N/A
key

/ '

Keyboard
closed

Result

W

W

T

W

Keyboard
closed

Result

N/A

N/A

N/A

N/A

* (scroll up)

Key number: 66

Key description

Keyboard
Keyboard open for input closed

Shift

Lower

case
(normal)

Upper

case

CMD
key

ALT
key

1-

Del key

Result for

normal mode

S

S

N/A

N/A

Key number: 67

Result for full
screen processing Result

m N/A

m N/A

N/A N/A

N/A N/A

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower

case g, j g,k N/A
(normal)

Upper
g, j g,k N/A

case

CMD
N/A

key
t u

ALT N/A N/A N/A
key

BASIC reference information 237

Key descri ption

Key description legend and tables (continued)

238 SA34-0109

----..
Ins key
Key number: 68

Keyboard open for input

Result for Result for full
Shift normal mode screen processing

Lower
case f, h f, i
(normal)

Upper
case

f ,h f , i

CMD
key

r s

ALT
N/A N/A

key

1-9 (ten key pad)
Key numbers: 71-73, 75-77, 79-81

Keyboard open for input

Result for Result for full
Shift normal mode screen processing

Lower
case A, F, f, n A, F, f, P
(normal)

Upper
case

A, F, f, n A, F, f, p

CMD
0,0 o ,O,e

key

ALT
E E

key

Keyboard
closed

Result

N/A

N/A

N/A

N/A

Keyboard
closed

Result

G

G

G

E tf!.- "'-.
'-L>

Key description

Field
key

Key number: 74

Keyboard
Keyboard open for input closed

Result for Result for full
Shift normal mode screen processing Result

Lower
case N/A a, v N/A
(normal)

Upper
N/A a, v N/A

case

CMD
N/A N/A N/A

key

ALT
N/A N/A N/A

key

Field
+ key
Key number: 78

Keyboard
Keyboard open for input closed.

Result for Result for full
Shift normal mode screen processing Result

Lower
case O,P a,c N/A
(normal)

Upper
O,P N/A

case
a, C

CMD
N/A N/A N/A

key

ALT
N/A N/A N/A

key

BASIC reference information 239

Key description

Key description legend and tables (continued)

240 SA34-0109

o key (ten key pad)
Key number: 82

Keyboard open for input

Result for
Shift normal mode

Lower
case A, F, f, n
(normal)

Upper
case

B, F ,f, n

CMD
N/A

key

ALT
E

key

• Key (ten key pad)
Key number: 83

Result for full
screen processing

A, F, f, p

B, F ,f ,p

N/A

E

Keyboard open for input

Result for Result for full
Shift normal mode screen processing

Lower
case A, F, f, n A, F, f, p
(normal)

Upper
case

B, F ,f, n B , F ,f ,p

CMD
N/A N/A

key

ALT
N/A N/A

key

Keyboard
closed

Result

G

G

N/A

E

Keyboard
closed

Result

G

G

N/A

N/A

Key-indexed files

Key-indexed

A key-indexed file is an Internal I/O file with an associated
index file. The index file cannot be used by itself, it must be
used with a master file.

The index file is created by using a Customer Support
Function. You enter LINK INDEX to create the index.

The index includes a key, or set of up to 28 characters,
used to identify each record and the associated relative
record numbers. An index file cannot be DROPed.

Statements used to process a key-indexed file inlcude:

Statement Variation from Record I/O

OPEN KFNAME=key file name, access
method= KEYED

READ KEY="identifying characters"

WRITE do not specify KEY=

REWRITE KEY="identifying characters"

DELETE KEY = "identifying characters"

BASIC reference information 241

Key-indexed

Key-indexed files (continued)

Keys

242 SA34-0109

More than one index can be created for the same master
file. For example, with a master file of names and-
addresses, there could be two different index files: ~,~'

• One with zip codes used as the key.

One with names as the key.

For more information see:

"OPEN statement"
"READ statement"
"WRITE statement"
"REWRITE statement"
"DELETE statement"

see
"Index keys"
"Keyboa rd"

KLN(N)

KPS(N)

KSTAT$

Labels

(

KLN(N)

Returns the key length for file N. If the file is not open
keyed, a -1 is returned.

Returns the key starting position (byte number) for file N. If
the file is not open keyed, a -1 is returned.

Returns the character representing the key most recently
pressed when the keyboard is not open. A reference to
KSTAT$ sets it to a null string. See "Key description legend
and tables".

Any BASIC statement (except a DEF statement) may be
preceded by a label, which may be used in addition to a line
number, to reference the line. The label is a one to eight
character name with the same syntax as a numeric variable
name (see "Line numbers" and "Line reference"). A label
may not be the same as a variable name or a reserved word
(see "Reserved words").

BASIC reference information 243

Labels
Labels (continued)

LEN(A$)

244 SA34-0109

Example

10 START: GOTO IT

•
•
•
500 IT:GOTO START ENDLESS LOOP

Returns the number of characters in A$, including blanks.
For example:

10 DIM A$*100
20 A$="NUTS BOLTS SCREWS"
30 A=LEN(A$)

A contains 17

.,:f"" ,,,,,,,,

LET statement

c

(

LET

The LET statement assigns the value of an expression to a
variable.

ll[ET
arith.Var=arith-expreSSiOnL-

Char-var=Char-eXpression~ -

The syntax of the LET statement is shown above, where:

arith-var, char-var is a variable name, a subscripted
reference to an array element, or a substring reference. The
row and column references to an array element must be
enclosed in parentheses.

arith-expression, char-expression must be an arithmetic
expression when var is an arithmetic variable or an element
of an arithmetic array. It must be a character expression if
var is a character variable or array element, or a substring
reference (see "Expressions").

When the LET statement is executed, the expression is
evaluated and the resulting value is assigned to the
specified variable.

Programming considerations

Data values to the right of the equal sign must be of the
same type as the variable to which they are assigned.

The keyword LET is optional when entering assignment
statements. When LiSTing a program, LET will appear
on all assignment statements.

BASIC reference information 245

LET
LET statement (continued)

246 SA34-0109

Subscripted references to array elements are permitted
in the assignment statement.

• Assignment of substring references are allowed.

Example

10 Z$ = "CAT"
20 X = 9
30 Y(X) = 2
40 A$ = B$(4:5)
50 A$ = A$&B$(3:4)
60 F$(X)(1:2) = B$(4:5)

After execution of line 10, the character variable Z$ will
contain the word CAT. In line 20, variable X receives a value
of 9. "r-",

After execution of line 30, the tenth element (default is
BASE 0) of the one-dimensional arithmetic array (Y) will
have a value of 2.

After execution of line 40, the fourth and fifth character of
the character variable B$ will be assigned to A$.

After execution of line 50, the third and fourth characters of
the character variable B$ are appended to the end of A$. A$
is increased by two characters.

After execution of line 60, the first two characters of the
tenth element in array F$ are replaced by the fourth and
fifth oharacter of B$.

,"" ~j

LINE

(

Line control

LET

When line 10 is listed. it will appear as:

00010 LET Z$ = "CAT"

LINE is the system variable containing the line number
where the last BASIC program error occurred. If no error
has occurred it is zero. Nothing changes the value except
another error.

See:

"CODE"
"ERR"
"Error handling"
"CONTINUE statement"
"RETRY statement"

see "SKIP parameter" under "PRINT statement"

BASIC reference information 247

Line numbers
Line numbers

Line reference

248 SA34-0109

Each line in a BASIC program and data file must begin with
a unique line number. A line number is an integer from 1 to
99999 and tells the System/23 the line number location in a
program or data file. Lines do not have to be entered in line
number sequence. They can be entered in any order since
they are automatically sorted by line number when they are
stored. A line number must not be preceded by a blank. A
BASIC program line number must be followed by a blank; a
data file line number must be followed by a colon. For more
information on line numbering, see "AUTO command" and
"RENUM command."

Each BASIC statement may be referred to in a program by
either a label symbol (a name used to identify a line) or a
line number.

Example

10 GO TO WORK

50 WORK: GO TO 10 !ENDLESS LOOP

.~ ..
~.

LINK command

(-

{

LINK

The LINK command loads and initiates the Customer
Support Functions or Communications Access Method (see
"Communication Guide").

r,PROCl
LlNK-file-spec~ D ~

• Input will be from the keyboard

The syntax of the LINK command is as shown above,
where:

file-spec is the file name, which might optionally include the
volume ID and/or device ID (see "File specification
parameter").

PROC is used to allow certain programs to read input data
from procedure file.

The system returns to CLEAR status when the linked
program is completed.

When the LINK command executes, the system transfers
control to the function specified.

BASIC reference information 249

LINK
LINK command (continued)

250 SA34-0109

Example

A sample LINK command is as shown:

LINK COPY /VOL001

Upon execution of this command. the system will link to the
COPY Customer Support Function diskette.

For more information on LINK. refer to Customer Support
Functions Volume /I under "Using a Procedure File".

LI N PUT statement
LlNPUT

This statement permits unformatted input of a character
string from the keyboard (or procedure file) or from a
display file. The character string may contain commas,
semicolons, leading blanks, and / or other characters which
are delimiters in INPUT statement data. After removing
trailing blanks, the maximum length string LlNPUT will
process is 255 characters.

r#fi le·ref: l
LlNPUT ~-Lchar-var

.. Default is #0

r----·-----,
I I

I

error-cond 1::e:J

EXIT line-re~

II Interrupt on error unless ON is active

The syntax of the LlNPUT statement is as shown above,
where:

file-ref is an integer or numeric variable from 0 to 127 and
must be preceded by the symbol # (number sign). See
"File-reference parameter."

char-var is a character variable into which the characters
entered in the input line will be assigned.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

error-cond line-ref can be CONY, SOFLOW (see "EXIT
statement"). line-ref is either a line number or label.

BASIC reference information 251

UNPUT
UNPUT statement (continued)

252 SA34-0109

LlNPUT can access data written with PRINT #n statement
but not with a WRITE statement. LlNPUT can also be used
for saved data files or programs which were saved in
SOURCE format.

When Enter is pressed. keyboard input is terminated.
LlNPUT can also be ended by pressing the Cmd key and a
number pad key. The CMDKEY variable will be set to the
number pressed.

Specifying PROC on the RUN command has no effect on
LlNPUT statements containing a file reference other than O.

Pressing Cmd/ Attn will cause an interrupt when the
LlNPUT statement completes execution.

If the data for LlNPUT is provided from a procedure file
(RUN PROC) and data is no longer available. an EOF ,4 .. ~
condition will occur. An EOF can be coded in the LlNPUT '",,--,/
statement to prevent an interrupt. The program cannot
revert to keyboard input when started by RUN PROC.

Example

90 DIM ADDR$*255
100 PRINT "Enter full address"
110 LINPUT ADDR$

The full address can be entered as an answer.

See "Program 5-Sample" in Appendix A.

LIST, lISTP command

(

lIST,lISTP

The LIST command displays the contents of the program or
data in the workarea on the screen. The contents of the
workarea are not changed.

The LlSTP command prints the contents of the program or
data in the workarea on the system printer. The contents of
the workarea are not changed.

LlSTP ~ine_num.I:;_numJ
D---------'"-......,.·

LIST

..
II

label •

Screen - first 22 lines in workarea
Printer - entire workarea
Screen - 22 lines preceding and including line-num
Printer - line-num to end of workarea

The syntax of the LIST, LlSTP command is as shown above,
where:

label when specified with LIST causes the line with that
label to appear on the last line of the display screen, the
preceding line will be displayed also (as many as will fit on
the screen).

line-num when specified with LIST causes that line to
appear on the last line of the display screen, with as many
preceding lines as can be contained on the screen being
displayed above that line.

BASIC reference information 253

LlST,LlSTP

LIST, LlSTP command (continued)

254 SA34-0109

line-num specified with L1STP causes that line and all
succeeding lines to be printed on the printer.

last-line-num specifies the last line number to be displayed
or printed. It is used with line-num, and together they
specify that the range delineated by the two line numbers is
to be printed or displayed. That is, all the statements with
line numbers between line-num and last line-num,
inclusive, will be displayed or printed.

If no line number or range is specified, a range consisting of
the entire program is used.

Programming considerations

Cmd/ Attn key
If the program is interrupted by Cmd/ Attn or an
error, LIST uses only the bo;ttom five lines on the
screen, while retaining the other display lines as they
were (see "Split screen"). When execution resumes,
the display screen is returned to the status it had
when interrupted.

• Non-existing line numbers
If the line in the first line-num specification is not
found, the next higher line number in the workarea
will be used.

- If the line in the last line-num specification is not
found, the next lower line number in the workarea will
be used.

- If the label does not exist an error will occur.

• Long lines
If the line length exceeds the screen or printer width, ;tr'"
the next line will contain the excess characters. ~j

(

(.

(

•

LlST,LlSTP

Stopping LIST, LlSTP
Since printer operations occur independently of other
System/23 operations, the printer will not stop
immediately when Cmd/ Attn or Hold key is pressed.
The printer will stop when all the information
transferred to the printer has been printed.
The Cmd/ Attn key is recognized only on a listing
operation to the printer.

Internal editing
When programs are listed, unnecessary blanks and
parentheses will be deleted; line numbers will be
expanded to five characters and LET will be inserted
for implicit LET statement. For example:

2 A = (B+C)

will list as:

00002 LET A B+C

• Scroll
After LIST is issued the screen may be scrolled up to
display the succeeding lines in the workarea. This can
be done until either a line is entered or the scroll
down key is pressed. Scroll down will not display any
previous lines.

Printer errors
Printer errors will not be reported until the next
printer operation is attempted. The listing may be
incomplete when a printing error occurs.

BASIC reference information 255

LlST,LlSTP

LIST, LlSTP command (continued)

256 SA34-01 09

Printing a program with the aid of LIST label
- If you need a printed copy of the program, LIST label

to the screen to determine the line number that label
is on. Then use LlSTP and specify that line number.

Examples

LIST
This will display the first group of workarea lines that fit
on the screen.

LIST 250, 99999
This will display line number 250 and all succeeding
lines that will fit on the screen.

LIST 250
This will display line number 250 and all preceding lines
that will fit on the screen.

LlSTP
This will print the entire program on the printer.

• LlSTP 300, 500
This will print line number 300 through line number 500
on the printer.

• LIST 20,20
This will display one line number, line number 20.

LIST ABC
This will display the line with the label ABC and all
preceding lines that will fit on the screen.

LOAD command

(.

LOAD

The LOAD command is used to load data in a display file
(type 05). a program from a file into the workarea or
Communications Customer Support Functions.

[~:0:LGAM J:T
LOAD- file-spec D

.. PROGRAM

The syntax is as shown above, where:

file-spec is the file specification parameter and is a file
name followed by an optional volume-id and device address
(see "File specification parameter"). File type must be 05
(Display) or 09 (BASIC program).

DA T A specifies that the workarea will be loaded from a file
and each line will be assigned a line number. The file
specified must be a type 05. Line numbers will begin with
10 and increment by 10, for a maximum of 9999 lines.

PROGRAM is the default. If DATA is not specified, the
workarea will be loaded as a program from the file. No line
numbers will be added since the program should already
have line numbers. The file type must be 05 or 09.

Example

LOAD PROG1 / /1
LOAD DISPLAY.FILE,DATA

BASIC reference information 257

LOAD
LOAD command (continued)

Programming considerations
~~

I

Cmd/Attn j

258 SA34-0109

A Cmd/ Attn interrupt will not be honored during a
LOAD operation

Insufficient storage
If insufficient space is available in storage to load the
file specified, an error occurs. Enter CLEAR to restart
operations. The program must be separated into two
or more programs.

Performance
A type 05 (display) file takes longer to load as a
program than a type 09 (program) file, because in a
type 05 file each line is syntax checked, while it
appears on the screen.

Closing Files
LOAD will close all files left open by an interrupted
program.

• LOAD commands
If LOAD PROGRAM is issued to a data file that
contains valid commands or calculator statements
(without line numbers) they will be executed and
LOAD will continue.

• Syntax errors
If a syntax error occurs, the system is put into error
correction mode. The line in error can be manually
corrected at this point. No other errors are
recoverable. Instead of correcting a syntax error, the
CLEAR command may be entered to terminate the
LOADing. If the incorrect line is to be skipped, scroll
down to the previous correct line and press Enter.

Logarithm

(
Logical expressions

LOG(X)

(LPAD$(C$,X)

Logarithm

see "LOG"

see "IF, THEN, ELSE statement"

Returns the natural logarithm (base e) of X. If X is not
greater than zero an error is returned.

Returns a string of characters with a length greater than or
equal to X by placing the required number of blanks before
the first character of C$. For example:

10 C$="ABCD"
20 A$=LPAD$(C$,S)
30 B$=LPAD$(C$,2)
B$ contains "ABCD"

A$ contains" ABCD"

Note: An error will be generated if X is not in the 0 to 255
range.

BASIC reference information 259

LTRM$

LTRM$(C$)

Magnitude

260 SA34-0109

Returns the string of characters contained in C$. Leading
blanks are removed. For example:

10 C$=" AB CD"
20 A$=LTRM$(C$)

A$ contains "AB CD"

see "Arithmetic data"

-/

(-

(-

MAT ,
MAT assignment (addition, subtraction, scalar multiplication)

The MAT assignment statement (addition, subtraction,
scalar multiplication) adds or subtracts the contents of two
arrays and assigns the results to a third array. Or, the
statement multiplies the elements of a numeric array by the
value of an arithmetic expression and assigns the resulting
products to the elements of another numeric array.

MAT _ array-name-= {array-name{ : 1-, array-name •

(arith.expreSSiOn)*~

The syntax of the statement is as shown above, where:

array-name is the name of an array.

arith-expression is the value to be assigned. When the
expression is evaluated, each element is set to that value.

The corresponding elements of the arrays specified to the
right of the equal sign are operated on and assigned to the
corresponding elements in the array specified to the left of
the equal sign. To assign the elements of one array to
another array, see "MAT assignment (simple)."

BASIC reference information 261

MAT

MAT assignment (addition, subtraction, scalar multiplication)

262 SA34-0109

Programming considerations

• All arrays must be numeric

• All arrays specified in the statement must have identical
dimensions

Example (addition)

The following shows execution of a MAT assignment
(addition and subtraction) statement:

10 DIM X(2,2), Y(2,2), Z(2,2)

100 MAT X=Y+Z

Each element of X now has the sum of the corresponding
elements of Y and Z.

()

(

MAT

Example (scalar multiplication)

10 OPTION BASE 1
20 DIM X{2,2), Y{2,2)

100 MAT Y=(4)*X

The expression (4) is evaluated. Each element in array X is
multiplied by the value of the expression (4). The result is
assigned to the corresponding elements of the array Y.

The resulting values are:

I1f2l f4T8l
IfX= ~ thenY= ~

Each element of Y now contains four times the
corresponding values in X. X is unchanged.

MAT assignment (ascending index or descending index)

see "AIDX and DIDX"

BASIC reference information 263

MAT

MAT assignment (scalar value)

264 SA34-0109

This statement assigns a specified scalar value to each
element of an array.

~ (arith-expreSSiOn)]
MAT- array-name= 1-. ---I ••

(char -expressi on)

The syntax of this statement is as shown above, where:

array-name is the name of the array that receives the
values.

arith-expression is the scalar value to be assigned.

char-expression is the character value to be assigned.

Programming considerations

The expression to the right of the equal sign must be of the
same type (arithmetic or character) as the array to which it
is assigned.

c'
Example

20 OPTION BASE
30 DIM Y(3,3)
40 MAT Y=(1)

MAT

The expression (1) is evaluated. Each element in the array Y
is set to the value of the expression (1).

The resulting values are:

1 1 1

y= 1 1 1

1 1 1

Y is now a 3x3 array with all elements equal to 1.

The following example causes all the elements of A$ to be
null:

10 MAT A$=("")

BASIC reference information 265

MAT
MAT assignment (simple)

266 SA34-0109

This statement assigns the elements of one array to another
array.

r,COlum.:J
r(rows~)1

MAT - array-name=array-name --1-..a •

.. No redimensioning
II One-dimensional

The syntax of this statement is as shown above, where:

array-name is the name of the array. The arrays specified
must be the same type (numeric or character)

rows, columns are the redimensioning specifications for the ',/'
receiving array (see "Redimensioning arrays").

Example

20 DIM A(2,2), B(2,2)

100 MAT A=B

Each element of array B is assigned to the corresponding
element of array A.

The result of the above example is, A and B now have the (f~",

same values in corresponding elements.,j

(

MAT

If redimensioning specifications are included with array B,
the rounded integer portion of each expression value in
rows and columns is used to redimension the receiving
array A, before values are assigned to it. Results are
unpredictable if subscripted values are specified for rows
and / or columns.

Programming considerations

• Redimensioning
If redimensioning specifications are included, rules
described under "Redimensioning arrays" must be
followed.
If redimensioning specifications are not included,
arrays specified must have identical dimensions.

Character arrays
If character arrays are used, the maximum character
length of each must be the same.

BASIC reference information 267

Matrix
Matrix

Matrix Operations

Maximum Value

MAX (X1,X2,X3, ...)

268 SA34-0109

see "Arrays"

see

see

"AIDX and DIDX"
"MAT assignment (addition, subtraction,
scalar multiplication)"
"MAT assignment (scalar value)"
"MAT assignment (simple)"
"ZER and CON"

"Magnitude" under "Arithmetic data"

Returns the maximum value specified in the list. For
example:

10 X=MAX{1,2,3,5,8,37,22,-21)

X contains 37

(

MERGE command
MERGE

The MERGE command is used to merge all or part of a
saved file with data or a program in the workarea. In this
way, the same routine can be added to several different
files. Only BASIC statements (in a BASIC source file) and
DISPLAY DATA files can be merged (file type 05) into the
workarea.

Lines from the file are added to the workarea in line number
sequence. If a line from the file and a line in the workarea
have the same line number, the line from the file replaces
the workarea line. If the merged file exceeds the size of the
workarea, an error message will be displayed.

J fmm:"::lC'::J. r~I:'"mJ
MERGE-file.spec.-L D --------------------L.---i ••

.. Merge all lines
II Defaults to 1
II Defaults to 99999
II Must be specified for data. May not be specified for

program.

The syntax of the MERGE command is as shown, where:

file-spec is the name of the file to be merged into the
workarea (see "File specification parameter").

from-line-num is the number of the first line in the saved
file to be merged. If no number is specified, the first line in
the file is the default.

BASIC reference information 269

MERGE
MERGE command (continued)

270 SA34-0109

thru-line-num is the number of the last line in the saved file
to be merged. If no number is specified, the last line in the
file is the default.

new-line-num is a parameter that is used only for DATA
files and must be specified for DATA files. It is the first line
number to be used in renumbering the saved file. If no
number is specified, the merge will not take place. If a new
line number is specified (for a data file), line numbering will
be incremented by 10.

Omitted parameters must be indicated by consecutive
commas.

Programming considerations

Merging commands
If a program is merged and it contains commands or
calculator statements, without line numbers, they will
be executed.

Exceeding workarea
If the merged file exceeds the workarea, an error
message will be displayed.
If the workarea is full, issue a CLEAR.
Deleting lines will not increase the available storage,
unless a SAVE SOURCE command and a LOAD
command are performed.

Renumbering
If renumbering is necessary for a PROGRAM file, the
RENUM command must be used (see "RENUM
command").

(

Minimum value

MERGE

Example

MERGE PGM1.4.200

In this example MERGE command. statements from PGM1
are merged with statements in the workarea. Lines 4
through 200 will be merged.

MERGE DATAFILE.50.80.200

In this example. assume that the workarea is defined as a
DATA workarea and that DATAFILE is a data file to be
merged. The MERGE command logically associates line
numbers (10. 20. 30. etc.) with the records in the data file.
Line 50 is merged into the workarea as line 200. Line 60 is
merged into the workarea as line 210. Line 70 is merged
into the workarea as 220. and line 80 is merged into the
workarea as line 230.

see "Magnitude" under "Arithmetic data"

BASIC reference information 271

MIN

MIN (X1,X2,X3, ...)

Multiple line function

Names, variable

N EXT statement

Numeric data formats

272 SA34-0109

Returns the minimum value specified in the list. For
example:

10 X=MIN{1,2,3,5,8,37,22,-21)

X contains -21

see "DEF,FNEND statement"

see "Variable names"

see "FOR and NEXT statement"

see
"Arithmetic data"
"FORM statement" (N specification)

Offline diskette files

.(

(

Offline diskette

If an application requires that files be open on more
diskettes than can be inserted in the number of available
drives, it can still function correctly, if the operator is
present to insert the required diskette when the System/23
calls for it. This task is greatly simplified if all involved
diskettes have unique VOLIDs to identify them. Each time
the program calls for a file, the System/23 may already
have the required data in storage or on an inserted diskette.
If the program requires data from a diskette that has been
removed, and the file is already OPEN, the status line
shows code 4001 and action code 10. Remove the diskette
from the specified drive (if one is inserted) and insert the
required diskette; press Error Reset. If the file is not already
OPEN, code 4000 and action code 10 are displayed. If a
drive is specified, remove the diskette from that drive. If no
drive is specified, select a drive and remove the diskette
from it. Insert the required diskette and press Error Reset.
In either case, if for any reason you cannot provide the
required diskette, press Cmd/Error Reset and the error will
be returned to the program.

BASIC reference information 273

ON
ON statement

274 SA34-0109

The ON statement causes the system to take a particular
action when the specified condition occurs during execution
of a program.

ATTN

OFLOW GOTO line·ref

SOFLOW IGNORE--............

UFLOW SYSTEM

ON ZDIV

CONV]{ GOTO line·ref

ERROR SYSTEM

The syntax of the 0 N statement is as shown above, where:

ATTN is the condition associated with the depression of
the INO key. Control is passed following execution of the
line in which the INO key was pressed. ERR is set to 1 (see
"Attention and Inquiry". For special considerations within
defined functions, see "DEF,FNEND statement").

Note: Once the ON ATTN (inquiry) condition has been
handled, CONTINUE will cause the program to resume at
the point of interrupt.

OFLOW is the condition of numeric overflow. For example,
an OFLOW error will occur when the system computes a
number having an absolute value greater than the largest
System/23 numeric value (see"Magnitude" under
"Arithmetic data"). The result is replaced with plus or minus
the largest System/23 numeric value.

('

(

ON

SOFLOW is the condition of string overflow. For example, a
SOFLOW will occur when there are more characters in the
string than the variable has been dimensioned to hold, or
the .variable has more characters than the associated FORM
specification. If IGNORE is specified, the string is truncated
on the right. If SOFLOW IGNORE occurs on a substring
assignment, or concatenation the error action is undefined;
therefore no assignment will occur.

UFLOW is the condition of numeric underflow. For example,
a UFLOW error will occur when the system computes a
number having an absolute value less than the smallest
System/23 numeric value (see "Magnitude" under
"Arithmetic data"). The result is replaced with zero.

ZDIV is the condition of division of a non-zero value by
zero. The result is replaced with plus or minus the largest
System/23 numeric value (see "Magnitude" under
"Arithmetic data").

CONV is the failure to map data or change representation.
For example, a CONV error will occur when trying to put
alphabetic characters into a numeric field.

ERROR applies to those errors not covered by any of the
above clauses (for example, I/O errors). ERROR also applies
to any of the above for which an ON statement clause is
not specified.

GOTO specifies that control is to be passed to the line
specified by the line number or label symbol.

IGNORE specifies that the condition is to be ignored and
control passed to the next executable statement.

SYSTEM specifies that the condition is to cause an error.

BASIC reference information 275

ON
ON statement (continued)

276 SA34-0109

Programming considerations

• EXIT
I/O statements having error exit parameters generally
override the ON statement (see "EXIT statement").

ERR
- If an error causes a transfer of control due to an ON

statement, ERR is set and may be referenced

Error routine
To prevent repeated entry into the error routine, the
error routine should begin with an ON condition
SYSTEM statement."

CONTINUE and RETRY
- The statement CONTINUE will return control to the

point following the interruption (see "CONTINUE
statement").
The statement RETRY will re-execute the statement
causing the interruption (see "RETRY statement").

For more information, see "Order of execution", "Interrupt
handling", "EXIT statement", "Attention and Inquiry," and
"DEF,FNEND statement."

Example

10 ON CONV GOTO ERR1

•
•

500 ERR1:PRINT "Conversion error,reenter data"
510 RETRY

OPEN statement

(

«

(

OPEN

OPEN DISPLAY
Activates a diskette file for input or activates a printer or
diskette file for output

OPEN INTERNAL
Permits READ, REREAD, WRITE, REWRITE, and RESTORE
statements to reference the file

The OPEN statement is used to:

• Identify the file specification

• Assign a logical file reference

• Allocate initial space for new files

Specify file usage

Specify file type (DISPLAY or INTERNAL)

An OPEN statement must be issued for a file before any
input or output accesses to that file.

BASIC reference information 277

OPEN
OPEN statement (continued)

OPEN DISPLAY (syntax)

NO
,RECOVER=]

lVES

,PAGEOF LOW=integer

. II
OPEN _#flle-ref::_ NAME=unquoted-char-string ----II~-------........ .L.----tD----..........

, NOSHR

, SHR IOERR line-ref

,RESERVE] [' RECL=integer l 'INPUT~XIT line-r~f~
--'--O.-......... L....L--I(;I----L...L--_IiI----L,,-, DISPLAV,{ ~

,OUTPUT

278 SA34-0109

.. Old file
II No backup label
II Page length = 60 lines
.. No sharing allowed
II Do not change old Reserve status
II 132
II Interrupt on error unless ON ERROR is active

See "OPEN parameter table".

No blanks are allowed between a keyword and the equal
(=) sign. The information in quotes is not syntax checked
until the OPEN statement is executed. A character
expression can be used in place of the information in
quotes.

(

(

The syntax for OPEN DISPLAY is as shown, where:

file-ref is a numeric expression, see "File reference
parameter" .

OPEN

NAME= specifies the file specification for the file to be
opened. The form and content of the file specification is
described under "File specification parameter."

SIZE = specifies the size, in bytes, of a new file to be
created. The SIZE= parameter must be specified for a new
file and must not be used for existing files. The value is
rounded up to the next higher multiple of 512 and the space
is permanently allocated to the file. If the specified file
already exists, an error will occur. The default (SIZE=O)
indicates 4096 bytes. DISPLAY files are dynamically
extended.

RECOVER= YES specifies that an extra copy of the file
label should be created and maintained. In case an I/O
error occurs for this file, the extra label makes it easier to
recover data (see "Customer Support Functions", "Recover
Diskette").

RECOVER= NO specifies that an extra copy of the file
label should not be created.

BASIC reference information 279

OPEN

OPEN statement (continued)

PAGEOFLOW= specifies the line number which when
printed or exceeded, a PAGEOFLOW condition will exist.
When the line being printed is ~ the PAGEOFLOW value,
a page overflow condition exists. The program may trap the
PAGEOFLOW condition by specifying a PAGEOFLOW exit
on a PRINT statement. Otherwise is ignored. Transfer of
control to a PAGEOFLOW exit occurs after all lines have
been printed. A PRINT #file-ref: NEWPAGE;; must be
executed to prevent another overflow condition on the next
PRINT and to reset the PAGEOFLOW counter to 0 (range
1-255). Default is 60.

SHR specifies that any supported level of file sharing with
another OPEN statement is permitted. Two opens for
OUTPUT or OUTIN are not supported.

NOSHR specifies that no sharing is permitted.

SHRI specifies that this OPEN statement permits sharing
files with other OPEN statements for input onIY'\".j

280 SA34-0109

RESERVE specifies that the OPEN sharing status is to be
permanently associated with this file and station. The
RESE RVE will be reset when a CLOSE statement specifying
the RELEASE option is executed for this file. The RESERVE
can also be reset using the PROTECT command.

RECL= specifies the number of columns per physical line of
PRINT output, formatted or unformatted. Range: 1-255.

/"f" ~'. "j

(

("

OPEN

DISPLA Y specifies that the file to be opened is either the
printer or a type 05 diskette file.

INPUT specifies that data will be transmitted from the
device using the INPUT or LlNPUT statements.

OUTPUT specifies that data will be transmitted to the
device using the PRINT statement.

EXIT specifies the line number or label of an EXIT
statement to refer to if an I/O error occurs (see "EXIT
stateme nt").

IOERR specifies the line number or label to receive control if
an error condition prevents the completion of the OPEN
statement

BASIC reference information 281

OPEN
OPEN statement (continued)

282 SA34-0109

Example

100 OPEN #101:"NAME=PROC5/START,SIZE=512",
DISPLAY, OUTPUT

The following example can be used to open a file whether it
exists or not:

100 OPEN #1:"NAME=FILE/VOL,SIZE=1000",DISPLAY,
OUTPUT IOERR EXISTS ! Assume new file

110 GOTO 150
120 EXISTS: IF ERR<>4150 THEN STOP
130 OPEN #l:"NAME=FILE/VOL",DISPLAY,OUTPUT

! Old file
140 RESTORE #1:
150

To OPEN to the system printer. use device address 10:

110 OPEN #55:"NAME=//10,RECL=255",DISPLAY,OUTPUT

To OPEN to the feature printer (second printer). use device
address 11:

120 OPEN #56:"NAME=//11,RECL=192",DISPLAY,OUTPUT

This is the only way to access the feature printer.

See "Device address parameter" and "File specification
parameter".

OPEN

OPEN INTERNAL syntax

{
NO

'RECOVER=
YES

,SIZE=integer -'RECL=integer --... ----&.a.---... t---......,
OPEN-#file-ref:-NAME=unquoted-char-stringlL---IIr----------------------~

, NOSHR

[' KW=integer

,KFNAME=unquoted-char-string II

, SHR

, SHRI ,RESERVEl {,INPUT

'--L------V-------.....L-'---II'iII--"-'--.... ---1" ,INTERNAL 'OUTPUT

'OUTIN

,SEQUENTIAL

,RELATIVE

,KEYED EXIT line-ref

IOERR line-re=jf

~~---m--~--~--~m·I---~~------------------------------~.

a Old file
II Format = Z (System/23)
II No backup label
II Not key accessed
1\1 Key workarea = 0
II No sharing allowed
D Do not change old Reserve status
II Sequential
II Interrupt on error unless ON is active

See "OPEN parameter table".

BASIC reference information 283

OPEN
OPEN statement (continued)

284 SA34-0109

No blanks are allowed between a keyword and the equal
(=) sign. The information in quotes is not syntax checked
until the OPEN statement is executed. A character
expression can be used in place of the information in
quotes.

The syntax for OPEN INTERNAL is as shown, where:

file-ref is a numeric expression, see "File reference
parameter" .

NAME= specifies the file specification for the file to be
opened. The form and content of the file specification is
described under "File specification parameter."

SIZE= specifies the size, in bytes, of a new file to be
created. The SIZE= parameter must be specified for a new
file and must not be used for existing files. Size= is in
multiples of 512 bytes. For example:

Size= 1 through 512 specifies 512 bytes. Size=513 through
1024 specifies 1024 bytes. Size= 1 025 through 1536
specifies 1536 bytes. Size= 1537 through 2048 specifies
2048 bytes, etc.

If the specified file already exists, an error occurs. The
default (SIZE=O) is 4096 bytes. FORMAT =Z files are
dynamically extended.

FORMAT = BX (Basic exchange file), HX (H Exchange file),
Z (System/23). Z is the default.

RECL= specifies the record length of the file being created.
RECl must be specified for a new file and cannot be
specified for an existing file. The maximum values which
can be specified for RECl are 128, 256, and 4096 for

\-'''-:7

(

OPEN

FORMAT=BX, HX, and Z. For performance considerations,
the following record lengths are recommended for
FORMAT=Z files: 15,31,63,127,255,511,1023,2047,
and 4095. An example of an OPEN statement using SIZE=
and RECl= is:

30 OPEN #1:"NAME=CUST//1,SIZE=0,RECL=127",
INTERNAL, OUTPUT

For the Communications feature, the RECl parameter must
be specified and represents the maximum record length for
all data files transmitted or received throughout the
communications session.

Maximum allowable record lengths are:

Asynchronous communications, RECl=512

Binary synchronous communications, RECl= 128

RECOVER= YES specifies that an extra copy of the Data
Set label should be created and maintained.

RECOVER= NO specifies that an extra copy of the Data
Set Label should not be created. RECOVER = NO is the
default.

KFNAME= specifies the index file that is used to access
the master file. This parameter is required when KEYED is
specified. KFNAME is a file specification. See "File
specification parameter."

KW= specifies the amount of workarea to be used for
accessing key indexed files. If KW is not.specified or
assigned the value of zero, no workarea will be allocated.

BASIC reference information 285

OPEN

OPEN statement (contin~ed)

286 SA34-0109

For optimum performance, see "Programming
considerations" at the end of this OPEN statement.

SHR specifies that any supported level of file sharing with
another OPEN statement is permitted. Two opens for
OUTPUT or OUTIN are not permitted (see "File
sharing").

NOSHR specifies that no sharing is permitted.

SHRI specifies that this OPEN statement permits sharing
files with other OPEN statements for input only (see "File
sharing").

RESERVE specifies that the OPEN sharing status is to be
permanently associated with this file and station. The
RESERVE will be reset when a CLOSE statement
specifying the RELEASE option is executed for this file.

INTERNAL specifies that the file to be opened is a type 04
diskette file (see " I nternal I/O files").

INPUT specifies that input operations are performed on
the file.

OUTPUT specifies that output operations are performed
on the file.

OUTIN specifies that both input and output (update)
operations are performed on the file.

SEQUENTIAL specifies that the file being opened is to be
organized sequentially or accessed consecutively.
SEQUENTIAL is the default.

(

(

OPEN

RELA TlVE specifies that the file being opened is a relative
data set. Access to the file is random and is by record
number.

KEYED specifies that the file being opened is a
key-indexed file. Access is made through reference to
user-defined keys which physically exist within each
record in that file, and in an auxiliary key file.

EXIT specifies the line number or label of an EXIT
statement to refer to if an I/O error occurs (see "EXIT
statement").

IOERR specifies the line number or label to receive control
if an error condition prevents the completion of the OPEN
statement.

Example

This example assumes tha"t N$ and KFN$ contain the file
specifications for the master file and key file:

10 OPEN #3:"NAME="&N$&",KFNAME="&KFN$,
INTERNAL,OUTIN,KEYED

Programming considerations

Positioning
- INPUT and OUTIN files are positioned to the

beginning. OUTPUT files are positioned to the end.

BX and HX files
- On an OPEN INTERNAL statement, if FORMAT=BX

or FORMAT = HX is specified, file organization must
be specified or defaulted to SEQUENTIAL:

RECOVER=YES must not be specified; automatic file
extension is not supported.

BASIC reference information 287

OPEN
OPEN statement (continued)

288 SA34·0109

OPEN #0 and #255
- OPEN #0 is ignored.
- OPEN #255 statement may be executed to override

the default value for RECl and PAGEOFlOW.

• Extents
- If additional space is required, up to 99 extents are

created. Each extent is SIZE divided by 10, rounded
up to the next 512 byte multiple.

- System/23 Format files (Z) will be dynamically
extended if necessary.

• OPEN DISPLAY to the printer
- If an OPEN DISPLAY is issued for the printer device,

the file name ot the VOLID in the file specification
parameter will be ignored. The SIZE= and
RECOVER= parameters cannot be specified.

Record length
- The record length of an internal file cannot be

changed without first freeing the file and then
recreating it.

Device definition
- If a new file is created (SIZE= parameter is specified)

either VOLID or device address must be specified in
the NAME= parameter.

- If an old file is opened (SIZE= parameter is not
specified) the VOLID and device address are optional.

Implicit OPEN
- The only implied OPEN statements are for the system

printer (file reference 255), and the system
keyboard/display (file reference 0).

,t<' "

'",/

(

('

OPEN

• File searches
If an old file is opened and no VaLiD or device
number is specified, and there is more than one file
by that name, the file residing on the lowest
numbered diskette is opened (see "File searches").

Key workarea size

KW = Key workarea size
KL = Key length
KS = Keys per sector
NT = Number of tracks
INT = Integer system function
CEIL = Ceiling system function
ST = Number of sectors per track
NR = Number of records (Master File)

The minimum useful workarea for an index file is 4+ KL.
To obtain the maximum useful workarea, specify
KW=65535. The system will allocate only as much as it
needs. The amount allocated by the system, when
KW=65535 is specified, can be calculated as follows:

To find KS

KS = INT(512/(4 + KL))-1

To find NT

NT = CEIL(NR/(KS*ST)

ST = 8 for type 1 and 2 diskettes
15 for type 2D diskettes

BASIC reference information 289

OPEN

OPEN statement (continued)

To find KW

KW = 2+(NT*(KL+2))

Example:

KL = 10, NR = 10000, 2D diskette

KS = INT(512/14)-1 = 35 keys per sector

NT = CEIL(10000/(35*15)) = 20 tracks

KW = 2+(20*(10+2)) = 242 bytes

The upper bound for KW is:

4736 for type 2D and 2 diskettes

18848 for type 1 diskette

See "Appendix A. Sample programs".

290 SA34-0109

(

(

OPEN parameter table

Open internal Open display

Name
filename
volid
device

Size
Format
Reel
Recover
Kfname
Kw
Noshr
Shr
Shri
Reserve
Pageoflow

Internal/display

Input/output/outin
Sequential/relative/keyed
Exit
loerr

Notes:

Diskette file

(new)

R
R
0(1,5)
0(1)

R
0
R
0(2)
E
E
0(12)
0(12)
0(12)
0(12)
E

I
R (9)
0(7,10)
0
0

R required
ignored

1. Either volume or device is required.

Diskette file

(old) (new)

R R
R R
0(5) 0(1,5)
0 0(1)
(6) R
E E
E 0
E 0
0(3) E
0(4) E
0(12) 0
0(12) 0
0(12) 0
0(12) 0
E 0
I D

R R (8,9)
0(7) E
0 0
0 0

o = optional

2. Applicable to FORMAT=Z only. For FORMAT=BX or HX,
RECOVER=YES is an error. RECOVER=NO is ignored.
Required when KEYED specified. 3.

4. Optional when KFNAME specified.
5. Specifying valid without filename is an error.

(old)

R
R
0(5)

0
(6)

E
0(11)
E
E
E
0
0
0
0
0(11)

D
R (8)

E
0
0

E

OPEN

Printer

R
I
1(5)

R
E
E

0
E
E
E
I
I
I
I
0
D

Output
E
0
0

error

6.
7.
8.

SIZE denotes a new file. SIZE must not be specified for an old file.
Specifying RELATIVE or KEYED for a FORMAT=BX or HX file is an error.
OUTIN is invalid on OPEN DISPLAY.

9. INPUT is invalid for new files.
10. KEYED is inval id for new files.

11. Ignored if file open for input.

12. Ignored for a FORMAT=BX or HX file.

BASIC reference information 291

OPTION
OPTION statement

292 SA34-0109

The OPTION statement specifies a set of options to be
applied to the entire BASIC program. The OPTION
statement may be placed anywhere in the program.

[
NATIVE

----I ALTERNATE

OPTION --r-I----U----------..L.-r-----~.
I L _______ , ______ ...J

.. BASE 0
American format
Print all significant digits
Native

The syntax of the OPTION statement is as shown above,
where:

BASE 0 specifies that there is a zero row/column to any
matrix.

BASE 1 specifies that the matrix will start with 1 in the
row / column.

For more information, see "Arrays."

INVP (inverted print) specifies that the decimal point and
the comma are interchanged in the printing of numeric
values (European format). This interchange of decimal point

''''I;. -/

(

(

(

OPTION

and comma affects the output from a PRINT or PRINT
USING statement.

An example using PIC without I NVP is: 123,456.78

The output with I NVP is: 123.456,78

INVP also affects input using the N FORM statement data
conversion specification. A comma in the input field will be
treated as a decimal point.

RD num specifies how many rounded decimal digits are to
be displayed to the right of the decimal point when a PRINT
statement is executed. nn is an integer in the range 0
through 15.

If RD is not specified non-significant zeros will not be
printed.

Note: RD affects only the printing of numbers. Internally the
numbers do not change.

If RD 03 had been specified, 4.5678 would print as 4.568.

COLLATE NATIVE specifies the use of the system collating
sequence, see "Character set".

COLLATE ALTERNATE specifies the use of the user
specified sequence, see "Customer Support Functions"
(change collating sequence,) "IF, THEN, ELSE statement,"
and "AIDX and DIDX."

BASIC reference informa~on 293

OPTION

OPTION statement (continued)

294 SA34-0109

Programming considerations

CHAIN
- When chaining is performed, the options of the

chained-to program must be the same as the
chained-from program, see "CHAI N statement".

Order of execution

(

Order of execution

The order of execution of BASIC statements in System/23
is given by the following rules:

After RUN verifies the global characteristics of the program
(for example conflicting DIMs or OPTIONs), execution
begins with the lowest numbered executable line not in a
defined function.

The next line to be executed is the next higher numbered
executable line, unless:

• A GOTO, GOSUB, Function reference, RETURN, NEXT,
IF, RETRY, or CONTINUE specifies the next line.

• END, STOP or CHAIN terminates the program.
• PAUSE interrupts the program.
• DEF transfers control to the first executable statement

following the function.
• If a computational error is detected (SOFLOW, CONY,

o FLOW, UFLOW, ZDIV) for which an ON ... GOTO is
active, the transfer takes place.

• If an I/O error is detected for which an EXIT is
specified, transfer to the specified line occurs.

• If an I/O error, a computational error or INO key is
pressed and no applicable EXIT or ON condition GOTO
is specified, or the Cmd / Attn key is pressed, the
program interrupts.

See "Interrupt handling", "ON statement", "Arithmetic
hierarchy".

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF, FNEND
statement."

BASIC reference information 295

ORD(A$)

ORD(A$)

Returns the ordinal value of A$, where A$ has a length of 1
(the location in the collating sequence). This is affected by
the Customer Support Function, Collating Sequence. See
"OPTION statement".

Assume the native collating sequence.

A$ ="0"

Overstruck characters

Packed decimal

PAD

296 SA34-0109

ORD(A$) results in 240

See Appendix B and "Character set".

see "FORM statement" (SKIP 0)

see "FORM statement" (PD specification)

see "LPAD$(C$,X)"
"RPAD$(A$,X)"

(

Page overflow

See "OPEN statement"
"EXIT statement"
"PRINT statement"

Parameter, device address

see "Device address parameter"

Parameter, file reference

see "File reference parameter"

Parameter, file specification

Page overflow

see "File specification parameter"

BASIC reference information 297

PAUSE

PAUSE statement

PIC$ (C$)

298 SA34-0109

The PAUSE statement interrupts program execution. It can
be used for manually entering calculator operations or
commands while execution of the program is suspended.

PAUSE •

When a PAUSE statement is encountered during program
execution, execution is interrupted and:

PAUSE

is shown on the status line with the line number of the
PAUSE statement. To resume program operation, issue a
GO command (see "GO command"). Statements must not
be renumbered or a calling statement altered while the
program is interrupted.

When PAUSE is encountered, the screen will be split and
the bottom 5 lines will not appear. If the required function
is simply to stop execution, LlNPUT can be issued instead
(see "Split screens", "LlNPUT statement"). A PAUSE may
not be included within a user defined function.

Returns the current currency symbol. C$, which sets the
new currency symbol is optional. C$ must be one character
in length. If PIC$ is not set. by the program, it will be "$".
This setting is changed by pO\AJer up or by another PIC$
setting.

(

(

POS(A$,B$,X)

PRINT BELL

Print control

Returns the value of the first character position of a
substring in A$ that matches B$.

POS

X contains the character position in A$ where the search for
B$ is to start. If the substring indicated by B$ does not
occur in A$, zero is returned. For example:

10 A$="ABBCABCDE"
20 B$="BC"
30 P=POS(A$,B$,4)

P contains 6

see "PRINT statement"

see
"Printer assignment"
"PRINT statement"

Print data list delimiters

see "PRINT statement"

BASIC reference information 299

Printer

Printer assignment

300 SA34-0109

When a printer is assigned, an association is made between
it and a file reference number. A printer can be assigned to
only one file reference number at a time. The following
table shows the BASIC statements/commands which assign
printers.

Statement/command

PRINT #255 statement
executed in a BASIC
program or in calculator
mode. (See Note)

OPEN #n statement

LlSTP command

DIR n,PRINT
RUN TRACEP

File
reference

255

file
reference
specified

255

255
255

Device address
(10 = system)
(11 = feature)

10

device
address
specified

10

10
10

Note: Except when the program was initiated by RUN
DISPLAY.

A printer is released at the following times:

when the RUN statement is entered (before BASIC
program execution begins)

• when a CLOSE statement is executed to close a printer
file

when a BASIC program ends.

/ "
" oJ

(

(

Printer

Programming considerations

When a program is executed RUN TRACEP, the system
printer cannot be opened to a file reference number
other than 255.

If the operator enters a PRI NT #255 statement, LlSTP,
or DIR n,PRINT command while a BASIC program is
interrupted, the system printer is assigned to file
reference number 255. This will prevent the successful
open of the printer to an alternate file reference number
when BASIC program execution resumes.

Once the BASIC program assigns the system printer to
an alternate file reference number, a PRINT #255
statement, LlSTP, or DIR n,PRINT command entered by
the operator while the BASIC program is interrupted will
fail.

In a BASIC program, when the system printer is
assigned to file reference number 255, a "CLOSE
#255:" statement will release it. It doesn't matter how
the printer was originally assigned. If the system printer
is not assigned, a "CLOSE #255:" is ignored.

BASIC reference information 301

PRINT

PRINT statement

PRINT

302 SA34-0109

The PRINT statement causes the values of specified scalar
expressions or arrays to be displayed or printed. All output (-
is DISPLAY data. .."./

The output of the PRINT statement can be directed to the
screen, diskette file, system printer, or feature printer. In
order to direct the output to the feature printer, file-ref
must have been specified on an OPEN statement with
device-id of 11.

,--1--,
I I

r-"--aJI----'-USI NG { line-ref }...L._-I~_...L...,
char-var

BELL------,

NEWPAGE----I

TAB (arith-expression)

data-item -----I

.. #0
II Use FORM statement
II Null data item

,---1----,
I I

EXIT line-ref

.. Interrupt on error unless ON is active

The syntax of the PRINT statement is as shown, where:

(-

(

PRINT

file-ref is a numeric expression, see "File reference
parameter."

USING must be either a line reference or a character
variable. Line reference is the statement number or label of
the FORM statement that defines how the data is to be
formatted. Character variable is a character variable
containing format information identical to that in a FORM
statement.

data-item is one of the following:

• MAT array-name is the name of a one- or
two-dimensional array. An example to print an entire
array is:

50 PRINT #255: MAT ARRYNAME

"char-expression" is a character expression (see
"Character expressions").

• arith-expression is an arithmetic expression (see
"Expressions").

BELL specifies the alarm will ring for .25 seconds.

NEWPAGE causes printing to begin on the next form, or
clears the screen (see "NEWPAGE function").

TAB allows the alignment of columns of data (see "TAB
function" in this section).

, (comma) if USING is not specified, the comma causes
individual items to be printed in pre-established horizontal
zones called print zones. Each zone is 24 character positions
(see "Print zones" in this section).

BASIC reference information 303

PRINT

PRINT statement (continued)

304 SA34-0109

; semicolon as a delimiter, causes a null string (no extra
blanks or spaces) to be printed between two groups of /'
characters. (See "Print zones" in this section).

error-cond can be CONV, EOF, IOERR, PAGEOFLOW,
SOFLOW (see "EXIT statement"). line-ref may be either a
line number or a label symbol.

EXIT line-ref specifies the line number or label of an EXIT
statement to refer to if an error occurs.

Programming considerations

Printing arrays
When a PRINT statement is executed, each array
element is converted to the output format and
displayed. Each array is displayed in row order. For
an unformatted PRINT each row begins at the start of
a new line. Each array element is displayed or printed
in succeeding print zones. Each element of a
one-dimensional array begins on a new line.
For an unformatted PRINT, if an array is specified in
the I/O list, no additional I/O list item or delimiter
should follow.

Formatted PRINT
When a PRINT USING statement is executed, the
specified expressions or array references are
evaluated. Their values are then edited into the
corresponding format specifications in the specified
FORM.

\~'- .. /

PRINT

Unformatted PRINT
Unformatted output consists of a PRINT statement
with no USING clause. Spacing between displayed
values is controlled by commas, semicolons,
NEWPAGE, and TAB expressions.
When an unformatted PRINT statement is executed,
the value of each specified expression is converted to
the appropriate output format and displayed or
printed in a left-to-right sequence, in the order in
which it appears in the PRINT statement.

Print zones
Each line that is printed or displayed is divided into
print zones. Print zones are 24 character positions in
length and are specified by the comma delimiter. For
example:

200 PRINT A,B,C

The above will cause the value of the variable A to be
displayed beginning in the first position of the new
line. Since A is a positive value, column 1 is a blank
character. The value of B will begin in position 25 of
the same line and the value of C will begin in position
49 of the same line. If a character value is longer
than 24 characters it uses as many zones as
necessary to accommodate it. If a character or
arithmetic value will not fit in the space remaining on
the line, it will start on the next line.

BASIC reference information 305

PRINT

PRINT statement (continued)

306 SA34·0109

160 A 25.3
170B

180 C
66
-250

200 PRINT A, B, C

results in the following line being printed:

25.3 6.6 -250

t t t
column 2 column 26 column 49

• Print data list delimiters

,

,

b

The meaning of comma, semicolon, and blank (tl).
when used in data lists is shown in the following
chart:

Trailing Imbedded

Same line, next zone Same line, next zone

Same line, next character Same line, next character

New line Error

Trailing and imbedded refer to the location of the
comma, the semicolon, and the blank in the PRI NT
statement data list.

",,-.. -/

(

(

PRINT

TAB function
The TAB (expression) function is used to align
columns of data, in a manner similar to the TAB key
on a typewriter. The TAB value must always be
positive and if a non-integer, it is rounded. If TAB is
negative, 1 is assumed. TAB(n) starts the next output
in column n of the line. If the current position in the
line is greater than n, data is put on the next line in
position n.

Printing data-items
Character constants-the actual characters enclosed in
quotation marks are printed or displayed. In order to
represent quotes, two consecutive quotes must be
entered.
Character variables-the actual characters (excluding
trailing blank) are printed or displayed.

• Numeric values
If OPTION RD is not specified and the value is
between IE-6 and IE21, the number is printed in fixed
format.
If OPTION RD is specified and the value is between
IE-RD and (lE20-RD) the number is printed in fixed
format. In all other cases floating format is used.

• NEWPAGE function
On the printer, NEWPAGE causes printing to begin on
the next page or form. PRINT #255:NEWPAGE;; sets
the overflow line counter to zero.

On the display, NEWPAGE clears the screen and
places the cursor in position 1 of line 23 (input line).

• Printer spacing and line control

BASIC reference information 307

PRINT

PRINT statement (continued)

308 SA34·0109

For printer spacing, line control. vertical or horizontal
density, use the following statement:

PRINT #255: HEX$("2B020500hhvvlp")

All numbers must be represented in hexadecimal
format. The numbers in parentheses below are
hexadecimal numbers.
hh (horizontal density) is the number of characters per
inch. The number of characters per inch can be 10 or
15 (Hex OA or OF) only. The default value set by the
system is 10 characters per inch (Hex OA).
vv (vertical density) increments of 1 /96 inch per line
feed. The minimum number specified is 8 (Hex 08)
and the maximum number is 99 (Hex 63). The default
value set by the system is 6 lines per inch (Hex 10).
/p (lines per page) lines per page can be 1-255
(1-FF). The default value set by the system is 66 lines
per page (Hex 42).
Specifying 00 for the above values, hh, vv, or Ip does
not change the current setting. If a value outside the
allowable range is specified, the power-on default is
used.
To turn quality print on/off, use the following
statement:

PRINT #255: HEX$("2BD10705FFxxyyOOOO") where

xx (font) = 00, draft mode
01, text mode

yy (type style) = 00

)

- "

(

Print zones

(

PRINT

The default printer control values can be reestablished
by another PRINT #255 statement specifying the
defaults. The defaults are also reestablished when the
printer is powered on. Neither the CLOSE statement
nor program termination will reestablish the defaults.
To prevent a blank line from being output when
printer control values are printed, specify SKIP 0 on a
FORM statement referenced by the PRINT statement.
For example,

10 PRINT #255,USING 20: HEX$("2B0205000A1042")
20 FORM C 7,SKIP 0

Specify #255 for the system printer. The file
reference number to be specified for a feature printer
is the file reference number associated with that
printer in the OPEN statement.
During quality print mode, the horizontal density
cannot be changed. See "Full screen processing."

see "PRINT statement"

BASIC reference information 309

PROC

PROC command

310 SA34-0109

The PROC command initiates the use of a procedure file
(see "Procedure file"). A procedure file is a DISPLAY (type
05) file on diskette that can contain system commands,
BASIC statements, and data. A procedure file allows the
programmer to set up the steps necessary to load and
execute a series of BASIC programs (including data entry)
without the need for operator intervention. For example,
commands such as LOAD and RUN can be entered by
executing the lines of a procedure file containing these
commands. The lines of a procedure file are executed one
line at a time, just as if they were entered from the
keyboard.

PROC -file-spec •

The syntax of the PROC command is as shown above,
where:

file-spec consists of a file name followed by an optional
volume identification and device address. A procedure file
must be a type 05 file previously created and stored on a
diskette. For more information about file types, see
"Diskette file types." For the methods used to create this
type of file, see "Procedure files."

When the PROC command is executed, the file with the
specified I D is accessed for procedure file data. The PROC
command implicitly opens the procedure file.

See "Sample programs 8 and 9" in "Appendix A"

Procedure file

(

(

(

Procedure

The procedure file is a DISPLAY (type 05) diskette file. A
procedure file can contain commands, statements, and data
to be used by the program for input.

Creating a procedure file

A procedure file can be created in two ways:

From the keyboard using the CLEAR DATA command,
followed by entering data lines containing commands.
Data lines are preceded by a line number followed by a
colon. After the file has been entered, it must be saved.

• Under program control using the OPEN DISPLAY
statement. The file is written using PRINT statements,
followed by a CLOSE statement.

Modifying a procedure file

As with any display file, a procedure file can be loaded as a
data file and then modified or edited from the keyboard.
The RENUM and AUTO commands can be used to allow
entry of new lines.

Executing a procedure file

Use of a procedure file is initiated by a PROC or a
SUBPROC command, which causes the file to be opened
implicitly. Procedure files can also be called in a program by
the CHAIN statement. Lines from the file are executed as if
they were entered from the keyboard. (See "PROC
command", "SUBPROC command", and "CHAIN
statement.")

BASIC reference information 311

Procedure

Procedure file (continued)

312 SA34-0109

Closing a procedure file (after executing)

The procedure file remains open while the procedure is
active.

It is closed by:
a PROC command embedded within the procedure
that calls another procedure
issuing a CLEAR PROC command from the keyboard
an End Of File
GO END if no program is active

A procedure can be exited by specifying SKIP integer,
where integer is a number larger than the number of
lines remaining in the procedure.

A procedure can also be exited by issuing a GO END
command from the keyboard when the procedure is
interrupted.

Nesting a procedure file

Procedures may be nested by use of the SUBPROC
command to a level of five active
procedures/subprocedures. Procedures may provide input to
Customer Support Functions.

SKIP

The SKIP command allows selective use of the lines in the
procedure file (see "SKIP command").

(

(

Procedure

ALERT

The ALERT command tells the operator that intervention is
needed during execution of the procedure file (see "ALERT
command").

Data

Data in a procedure file can also be used as input supplied
in response to an INPUT or LlNPUT statement (see "INPUT
statement", "LlNPUT statement", and "RUN command").
This is achieved by coding the PROe parameter in the RUN
command.

Interrupting

If emd/ Attn is pressed during execution of a procedure file,
it will be handled the same way as if an ALERT command
had been encountered. Upon return to the procedure, the
keyboard is opened before the next PROe command is
executed. For more information, see "ALERT command"
and "GO command." In both cases, enter GO to continue.

Storage

Each procedure file activated by a PROe or SUBPROe
requires about 200 bytes of storage. The first requires 500
additional bytes.

BASIC reference information 313

Procedure

Procedure file (continued)

314 SA34-0109

Example

CLEAR DATA
10: LOAD PROG1
20: RUN
30: LOAD PROG2
40: RUN
50: ALERT INSERT PAYROLL DISKETTE THEN ENTER GO

•
•
•

SAVE PAYROLL.PROC//2

In order to execute the procedure, the command PROC
PAYROLL.PROC is entered.

PROG 1 will be loaded and executed, then PROG2 will be
loaded and executed. The ALERT message will then be
displayed on the screen and the execution of the procedure
will stop.

For more information about PROC, refer to Customer
Support Functions, Volume II under "Using a procedure
file".

('

PROCERR command

(.

PROCERR

The PROCERR command is a procedure file command that
directs the system error handling mechanism either to return
errors occurring in commands or untrapped in BASIC
programs to the procedure file or report them to the status
line.

STOP---,

PROCERR ----II 11----1 ••
LRETURN -.-J

The syntax of the PROCERR command is as shown above,
where:

STOP specifies that errors are to be reported to the status
line. Pressing Error Reset, Cmd/Error Reset. or Cmd/ Attn at
this time, opens the keyboard for input.

RETURN specifies that the next procedure file record is to
be executed.

The PROC command sets the PROCERR option to STOP
when issued with no procedure files active. Thereafter, the
option may only be reset with the PROCERR command. The
most recently issued PROCERR command from any level of
procedure file nesting always controls the PROCERR option.
The PROCERR command may be issued from the keyboard
to alter the option when a procedure file has been
interrupted (as by Cmd/ Attn). This PROCERR will be
considered the most recent until another PROCERR is
issued.

The PROCERR RETURN command sets the value of the
ERR variable to zero.

BASIC reference information 315

PROCERR

PROCERR command (continued)

PROCIN

316 SA34-0109

When the RETURN option is in effect, the next procedure
file record is executed in command mode and the procedure
continues. This should always be a SKIP command, which
tests the value of the ERR variable, unless the error can be
totally ignored (see examples).

Examples

PROCFILE.A

PROCERR RETURN !REGAIN CONTROL IF NO FILEXXX
FREE FILEXXX/VOLXX
PROCERR STOP !GOTO STATUS LINE IF LOAD/RUN FAILS
LOAD FILEYY.PGM
RUN

PROCFILE.B

PROCERR RETURN
LINK COPY !COPY FILE1 TO FILE2

•
•
•
SKIP 2 IF ERR=O !IF COPY SUCCESSFUL CONTINUE
ALERT COPY FAILED

Indicates whether input is from the screen (0) or from a
procedure file (1).

PROTECT command

(

(

(

PROTECT

The PROTECT command is used to control the integrity of
data in a diskette file by write-protecting the file. It can also
be used to mark a file label as closed that has been left
marked open or to RELEASE a file that has been reserved
(see "DIR command" and "Diskette file sharing").

'ON------..

,OFF------~

,CLOSE, r ALL

• RELEASE.l....L..tJ

PROTECT -- file-spec--------''--.... I------------'-----t.

.. ON
II CLOSE or RELEASE for this station only

The syntax of the PROTECT command is as shown above,
where:

file-spec consists of a file name followed by an optional
volume-id and device address. For more information see
"File specification parameter."

ON specifies that a file is to be write-protected.

OFF specifies that write protection is to be removed from a
file that is ~urrently write-protected. If none of the optional
parameters are specified, ON is assumed.

CLOSE specifies that a diskette file label is to be updated to
show that the file is not open for this station.

BASIC reference information 317

PROTECT

PROTECT command (continued)

318 SA34-0109

RELEASE specifies that a diskette file label is to be updated
to show that the file is not open and that no reserved
control status is in effect for this station. /'

ALL specifes that the CLOSE or RELEASE parameter applies
to all stations that are part of the System/23. RELEASE
ALL can affect data integrity if the other station is using the
file.

Write protection prevents REWRITE, WRITE, PRINT,
REPLACE, DROP, or FREE to a file. Write protection also
prevents COpy (Customer Support Function) to the file.

CLOSE, RELEASE, and ALL are ignored for Basic-exchange
and H-exchange diskettes.

Do not use PROTECT CLOSE or PROTECT RELEASE unless
you are sure the file is not in use.

Examples

PROTECT LOSSES

In the example, the LOSSES file will receive write
protection, which ensures that other data cannot be written
into the file.

PROTECT SCREEN.FILE,CLOSE ALL

The example shows how to mark as closed the file label of
a file named SCREEN. FILE that has accidentally been left
marked open by another station. Use the DIR command and
check the status of the file share indicator to see if a file
has been left open (see "File sharing"). ('".

\'\-/

RANDOMIZE

RANDOMIZE statement

(

« Random numbers

(

The RANDOMIZE statement is used to initialize the random
number generator. used by the RND function. to a new
value (called a seed). The next reference by the RND
function produces an unpredictable number in the range
from 0 to 1.

RANDOMIZE •

The syntax of the RANDOMIZE statement is shown above.
For more information. see "RND(X)." When RANDOMIZE is
not used. the function RND provides the same sequence of
numbers each time the program is run.

see
"RANDOMIZE statement"
"RND(X)"

BASIC reference information 319

READ

READ statement (with no file reference)

320 SA34-0109

The READ statement is used to read data from the internal
data table created by DATA statements and assigns that !;"~'

data to variables, arrays, or array elements. (See "DATA ~/
statement.")

To assign values from a record in a file (record I/O) to
specified variables or arrays, see "READ statement (with file
reference). "

r----·----.,
1 I

error-cond line-ref

EXIT line-ref

READ--rdata-item I D
L_, __ J

.. Interrupt on error unless ON is active

The syntax of the READ statement is as shown above,
where:

data-item specifies the names of variables to be read into
from the data table. Data items can include variables, array
elements, or entire arrays (preceded by MAT). The data
items must be separated by a comma.

error-cond line-ref specifies the line number or label that
the program should transfer to if one of the error conditions
occurs. The following error conditions may be included:

CONV - conversion error

(

C"

READ

EOF - an attempt to read more data than provided by
DATA statements.

SOFLOW - string overflow

See "EXIT statement" for more information on these error
conditions.

EXIT line-ref specifies the line number or label of an EXIT
statement that the system should reference if an error
occurs.

At the beginning of program execution, a pointer is set to
the first value in the internal data table specified by one or
more DATA statements.

When a READ statement is encountered, successive values
from the internal data table are assigned to variables and
arrays in the READ statement beginning at the current data
file position.

Example

CLEAR
10 OPTION BASE 1
20 DIM D(5)
30 DATA 5,10,15
40 READ A,B,C,MAT D
50 DATA 1,2,3,4,5

The values in the DATA statement are assigned in the same
order to the variables listed in the READ statement. Once
the READ and DATA statements are executed, A is equal to
5, B is equal to 10, C is equal to 15, and the five elements
of array Dare 1, 2, 3, 4, 5.

BASIC reference information 321

READ

READ statement (with no file reference) (continued)

322 SA34-0109

Programming considerations

• Character assignments . *_ /
The length of the character data item being read
determines the length of the character string assigned
to the character variable.

• Numerical assignments
A string of digits not in quotes may be read as a
number or a character string, depending on the
variable type.

• Array assignments
The array references in the data-item list are
assigned values from the data file by rows, starting at
the current data file position.

• Truncation
If the numeric data exceeds 15 digits, truncation will
occur.

• Error conditions
A numeric data value was read and the READ
statement specifies a character data item.
The data file is exhausted or no DATA statements
exist in the program and unassigned data list items
remain in the READ statement (EO F).
If a READ statement is executed and there are no
DATA statements in the program, an error will occur.
The absolute value of a numeric data item is greater
than the largest System/~3 numeric value (see
"Magnitude" under "Arithmetic data"). An overflow
condition is generated.

(

•

(

(

READ

The absolute value of a numeric data item is less than
the smallest System/23 numeric value (see
"Magnitude" under "Arithmetic data"). An underflow
condition is generated.
The data that is read exceeds the length of the data
item (SOFLOW).

BASE
If the default (BASE 0) is in effect, an array DIMed to
size N requires N + 1 elements. See "DIM
statement" and "OPTION statement."

BASIC reference information 323

READ

READ statement (with file reference)

The READ statement assigns values from records in a file to
specified variables or arrays. /'

'KEY, r;]-
,,,u Jl.." char·expression

,SEARCH >;

,REC;arith·expression --------' CUSING{Char.var

line·ref

READ-#file·ref ,0------1'--'----------1 ---------1.------_

{
har-Var

,FORMAT
har-constant

324 SA34-0109

r---'------,
I I

"'m~"d ""=j
EXIT line-ref

.. Unformatted READ
II Read next sequential record
II Communications feature not in use
a Read record, do not use data
B Interrupt on error unless ON is active

The syntax for the READ statement is as shown above,
where:

file-ref is a numeric expression. See "File reference
parameter."

USING specifies a line-ref (line reference) of a FORM
statement or a char-var (character variable) containing a
FORM statement. Line-ref can be a line number or label.

•

The FORM statement is used to indicate the representation (-----
and location to be assigned to the variables in the ' ,j'

(

(

(-

READ

data-item list that will be read. If no USING is specified.
unformatted read will be performed. See "Internal I/O file
formatting. "

KEY specifies the key field used to access the record in the
file. The character expression must be the same length as
the key field.

SEARCH specifies the key field used to access the record in
the file. The character expression can be less than or equal
to the length of the key field. If the character expression is
shorter in length than the key field. the search of the index
will consider only that part of the key field equal to the
length of the specified character expression.

= specifies that the KEY/SEARCH argument must make an
exact match to the record key.

>= specifies that if an equal compare is not made. the next
record in the key sequence following the provided key is
used.

REC=arith-expression is a positive. nonzero integer or
numeric variable that specifies the logical record number of
the record to be retrieved. If this parameter is not specified.
the next logical record will be accessed.

data-item specifies the name(s) of variable(s) to be read
into from the file. Data items can include elements. or entire
arrays (preceded by MAT). The data items must be
separated by a comma. The first data item must be
preceded by a colon.

error-cond line-ref specifies the line number or label that
the program should transfer to if one of the error conditions
occurs. The following error conditions may be included in
any order:

BASIC reference information 325

READ

READ statement (with file reference) (continued)

326 SA34·0109

CONV-conversion error

EOF-end of file

IOERR-input/output error

NOKEY-key not found; invalid key reference

NOREC-no record found; invalid record reference

SOFLOW-string overflow

See "EXIT statement" for more information on these error
conditions.

EXIT line-ref specifies the line number or label of an EXIT
statement that the system should reference if an error
occurs.

FORMAT is a Communication feature clause. It specifies
that special control functions are requested. The control
functions can be specified as a char-constant (character
constant) or in a char-var (character variable). See
System/23 Communications Guide.

Example

10 OPEN #l:"NAME=ITEMS",INTERNAL,INPUT,RELATIVE
20 LET 1=25
30 READ #l,US1NG 40, REC=1:I$,D$,A,B,C NOREC QUIT
40 FORM C 5,C 10,N 6,N 9.2,N 17.2

•
•

90 QUIT: CLOSE #1:

(

(

READ

Record number 25 of the file ITEMS is read in statement
30.

An unformatted READ into an array that is too large will
cause an error. The following example will READ variable
size unformatted records containing numeric data.

10 OPTION BASE 1
20 DIM INARRAY (50)

•
•
80 READ #l,USING 90:L$,H$
90 FORM C 1,C 1

100 LET COUNT=ORD(L$)+256*ORD(H$)
110 MAT INARRAY=INARRAY(COUNT)
120 REREAD #l:MAT INARRAY

The following is a KEYED example:

10 OPEN #30:"NAME=KMAST,KFNAME=KINDX",
INTERNAL, INPUT, KEYED

20 A$="NEAT'
30 READ #30,USING 40,KEY=A$:B$,F$,

X NOKEY DONE
40 FORM C 4,X 5,C 16,X 2,N 3

•
•
•

100 DONE: CLOSE #30:

The first record with a key field equal to N EAT is read in
statement 30.

BASIC reference information 327

READ

READ statement (with file reference) (continued)

328 SA34-0109

Programming considerations

No positional specifications
If the file was opened with the KEYED parameter and
if the KEY/SEARCH parameter is not entered, the
next sequential record in the file is accessed in
ascending key sequence. If the file was opened with
the RELATIVE parameter and the REC parameter is
not specified, then the next sequential record is
accessed.

Key length
The length of the KEY parameter must be equal to
the record key field.
The length of the SEARCH parameter must be less
than or equal to the length of the key.

Skipping records /-,
The data-item parameter can be omitted on READ to \'L/

allow for error checking. There will be no transfer of
data to variables, but a record will be read.

Unformatted READ
To correctly interpret an unformatted record, the data
types of the READ input list must match, element by
element, with the data types in the WRITE statement
that created the record. If the input list contains an
arithmetic data item and the field length is not 9, a
CONV error occurs. No other errors are detected.
Character strings of length 9 can be interpreted as
numeric values, and numeric values can be
interpreted as character strings of length 9.

Record I/O files

REC(N)

READ

• Errors
If REC= is specified and the record is deleted or is
greater than the largest record number, a NOREC
error will occur.
If the KEY and SEARCH parameters are specified for
a file which has not been opened as an index file, an
error will occur.

see "Internal I/O files"

REC returns the record number, in file N, of the last record
processed. A -1 is returned if the file is not open or if it is
a display or keyed file. Zero is returned if no records have
been processed.

BASIC reference information 329

Redimensioning

Redimensioning arrays

330 SA34-0109

Numeric and character arrays can be redimensioned
according to the following rules;

• Both one-dimensional and two-dimensional arrays can
be redimensioned.

• The total number of elements in any array after
redimensioning must not exceed the number originally
specified when the array was dimensioned.

The number of dimensions can be changed. A
one-dimensional array can become a two-dimensional
array and a two-dimensional array can become a
one-dimensional array.

• The maximum value for a dimension is 9999 or is
determined by the available storage.

An array can be redimensioned in a MAT assignment
(simple) statement or by using the ZER or CON
functions (see "MAT assignment (simple)" and "ZER
and CON").

• The new dimensions for the array can be specified with
either a constant or an expression. The expression
cannot contain subscripts.

• Redimensioning cannot occur on input or output
data-item lists.

• The array is allocated storage when it is first referenced.
After redimensioning, the unused storage of the array
can be reused.

• The maximum length of each element in a character ,f '-..

array cannot be changed. ~j

(

(

Example

10 OPTION BASE 1
20 DIM BIG(SO,SO)

•
•
•

Redimensioning

100 BIG(37,42)=1234S.6 !SPACE FOR ARRAY "BIG"

•
•
•
300 MAT BIG=ZER(l,l) !MOST OF SPACE FREED UP

The preceding example shows how an array can be
redimensioned in line 300. Line 300 takes the 50 X 50 array
and makes it a 1 X 1. The data in BIG (37. 42) is lost.

Referencing, substrings

see "Substring referencing"

Relational expressions

see "IF. THEN. ELSE statement"

BASIC reference information 331

Relative record

Relative record files

332 SA34·01 09

A relative record file is composed of a sequence of
equal-size records. A record may be empty or may contain
data. Each record has a number associated with it (a relative
record number), starting with one up to the number of
records contained within the file. The relative record number
is an index by which a record may be accessed for input or
output. This number is not in the record. Access, using a
relative record number, is made independent of the contents
of any other record. Access to a relative record file may be
either on a random basis or on a sequential basis. Relative
record files can be accessed by relative record number and
then accessed sequentially.

Record oriented statements accessing keyed files may
specify either a KEY clause or a SEARCH clause. Record
oriented statements accessing relative record files may
specify a REC clause. A REC clause is mutually exclusive
with either a KEY or a SEARCH clause. WRITE to a relative
record file must contain a REC= clause referencing a
deleted record only. The location following the last record in
the file is considered a deleted record. The maximum
number of records is 16,777,215.

A relative record file is accessed by:

• CLOSE
• DELETE
• OPEN (Internal)
• READ
• REREAD
• RESTORE
• REWRITE
• WRITE

I~-'~'

>\~ .. /'

R EM statement

(

REM

The REM statement is used to insert remarks or comments
in a BASIC program.

r remark~

~~r---L~--------~--~-----1I.

remark is one or more characters. This is an optional entry.

The REM statement is descriptive and not executed. It
appears in the program listing, but has no effect on
program execution.

Example

10 REM THIS PROGRAM DETERMINES THE COST PER UNIT

or:

10 ! THIS PROGRAM DETERMINES THE COST PER UNIT

BASIC reference information 333

Remarks

Remarks

334 SA34-0109

Remarks may be added to a program by using the REM
statement or an exclamation point, or to an existing
statement by using an ! (exclamation point) followed by a
character string. All blanks except one are deleted before
and after the exclamation point. Lowercase characters are
folded to uppercase unless enclosed in quotes. If blanks are
required in the remark field, they must be preceded by a
non-blank character (see example). Remarks are not
permitted on DATA statements and should not be used on
the DEL command.

Example

10 FOR MONTH=1 TO 12 !BEGIN LOOP
20 NEXT MONTH!"
30 A=B !* SAVE B

end of loop"

)

(1"
, \

"-J

RENAME command

(

(

RENAME

The RENAME command is used to rename a file on
diskette.

RENAME- old-file-spec , new-file-name •

The syntax of the RENAME command is as shown above,
where:

old-file-spec is the current file specification. For more
information, see "File specification parameter."

new-file-name is the new name to be assigned to the file.
This name must not already exist on the volume.

The RENAME command is rejected if control reserve is set
for the file, if the file is in open status, or if the diskette is
volume access protected. See "DIR command" and "File
sharing."

Example

RENAME OLD.FILE, NEW.FILE

This changes the name of the file OLD.FILE, to NEW.FILE.

BASIC reference information 335

RENUM

RENUM command

336 SA34·0109

The RENUM command generates new line numbers for all
BASIC program statements or data in the work area.
Renumbering begins with line number 10 and the increment
is 10, unless otherwise specified. All references to line
numbers such as in GOTO, IF, PRINT USING, GOSUB are
changed to the new numbers.

[first-line-num

RENUM~-----.D~--------------~--~.

.. RENUM 10,10
II Increment is 10

The syntax of the RENUM command is as shown above,
where:

first-line-num is the new beginning line number of the
renumbered work area. If there is no first-line-num
specified, a beginning number of 1 0 is the default value.

increment is the number specifying the increment for the
succeeding statement numbers. If there is no increment
number specified, an increment of 1 0 is the default value. If
a first-line-num is not specified, increment cannot be
specified.

RENUM

Example

This example shows the execution of a RENUM command:

RENUM 20, 15

Before

10 INPUT A.B
11 Q=INT (A/B)
19 IF Q=-1 THEN STOP
20 IF Q=O THEN 30
25 GOTO 10
30 PRINT Q
35 GOTO 10
40 STOP

Programming considerations

Interrupted program

After

20 INPUT A,B
35 Q=INT (A/B)
50 IF Q= -1 THEN STOP
65 IF Q=O THEN 95
80 GOTO 20
95 PRINT Q
110 GOTO 20
125 STOP

- The RENUM command is not valid during interrupted
program execution.

Permanent renumbering
- After using RENUM, use the REPLACE command to

update the file stored on diskette because RENUM
only changes the file in the work area.

For related information, see "MERGE command."

BASIC reference information 337

REPLACE

REPLACE command

338 SA34-0109

The REPLACE command is used to save the contents of the
work area to an existing file. This command is similar to
SAVE but applies only to files existing on a diskette, where
no name change is intended.

r,SOURCEl

rfile-~CJ ['LOCK]
REPLACE...L-a - - II - •

• Use the file last saved or loaded.
II Internal format

The syntax of the REPLACE command is as shown above,
where:

file-spec is the file specification. For more information, see
"File specification parameter." If the file does not already
exist, rJn error will occur.

SOURCE indicates that the program is to be saved in source
format. If SOURCE is not specified, the program is saved in
BASIC format. In either case, the file type must conform to
the present type stored on diskette. SOURCE files are type
05, BASIC program files are type 09.

LOCK indicates that the program is to be locked. A locked
program may not be listed, saved, or replaced in source
format. Once the program is locked, it cannot be unlocked.
A copy of the unlocked program should be kept by the
programmer.

.. -...../

(

(

REPLACE

Programm~ng considerations

• Diskette full

•

Replacing a statement

If there is not enough space on the diskette to save
the entire file, an error occurs. In this case, the file
should be saved on another diskette.

No file specification
SOURCE must be preceded by a comma if no file
specification is specified; otherwise, SOURCE will be
assumed for the file name.

Cmd/Attn
- Cmd/ Attn will not interrupt during a REPLACE.

Interrupted program
The REPLACE command cannot be issued if the
program is interrupted; enter GO END before issuing
REPLACE.

Compressing the work area
No additional storage becomes available as a result of
editing. Additional storage will be available if the
program is SAVEd or REPLACEd in source format,
then LOADed.

see "Editing a program"

BASIC reference information 339

REREAD

REREAD statement

The REREAD s~atement assigns values from the most
recent record READ or REREAD from the file.

r----·-----,
I I

line-ref EXIT line-ref

[,USf: {'h"~'''1 ,rro,=o' I;",~"f

REREAD-#file-ref :Tdata-item ---ID------L--__

340 SA34-0109

I I
L __ , __ .J

a Unformatted REREAD
II Interrupt on error unless ON is active

The syntax for the REREAD statement is as shown above,
where:

file-ref is a numeric expression. See "File reference
parameter."

USING specifies a line-ref (line reference) of a FORM
statement or a char-var (character variable) containing a
FORM statement. line-ref can be a line number or label.
The FORM statement is used to indicate the representation
and location of values to be assigned to variables in the
input list that will be read. If no USING is specified, the
record is read unformatted. See "Internal I/O file
formatting."

data-item specifies the names of variables to be read into
from the file. Data items can be variables, array elements,
or entire arrays (preceded by MAT). The data items must be (
separated by a comma. The first data item must be
preceded by a colon.

(

REREAD

error-cond line-ref specifies the line number or label that
the program should transfer to if one of the error conditions
occurs. The following error conditions may be included in
any order:

CONV-conversion error
IOERR-input/output error
NOKEY-key not found; invalid key reference
NOREC-no record found; invalid record reference
SOFLOW-string overflow

See "EXIT statement" for more information on these error
conditions.

EXIT line-ref specifies the line number or label of an EXIT
statement that the system should reference if an error
occurs.

Example

5 DIM D$*20
10 OPEN #l:"NAME=ITEMS",INTERNAL,INPUT,RELATIVE
20 FOR 1=1 TO 100
30 READ #l,USING 40,REC=I:I$,D$
40 FORM C 5,V 20,N 6,N 9.2,N 17.2
50 IF D$="BOLTS" "BOLTS" THEN GOTO 80
60 REREAD #l,USING 40:I$,D$,Q,P,Pl
70 NEXT I
80 ! CONTINUE OPERATION

BASIC reference information 341

Reserved words

Reserved words

The following words are reserved for System/23 BASIC
/'C---"',

and cannot be used as the name of user-defined variables
or statement labels. ,,_/

ABS EXP NEWPAGE RETRY
AIDX FIELDS NEXT RETURN
AND FILE NOKEY REWRITE
ATN FILES NONE RLN
ATTN FN NOREC RND
BELL FNEND
CEIL FN--- OFLOW ROUND
CHAIN FOR ON SEQUENTIAL
CLOSE FORM OPEN SGN
CMDKEY FREESP OPTION SHIFT
CNT GO OR SIN
CODE GOSUB ORD SOFLOW
CON GOTO OUTIN SQR
CONTINUE IF OUTPUT SRCH -~-,

CONV IGNORE PAUSE STEP
"""-_/

COS INTERNAL PI STOP
DATA INPUT SUB
DATE INT PAGEOFLOW SYSTEM
DEF IOERR POS TAB
DELETE KEY PRINT TAN
DIDX KEYED THEN
DIM KLN PROCIN TIME
DISPLAY KPS RANDOMIZE TO
DISPLY LEN RD TRACE
DUPREC LET READ UDIM
ELSE LINE REC UFLOW
END LINPUT RELATIVE USE
EOF LOG REM USING
ERR MAT REREAD VAL
ERROR MAX WRITE
EXIT MIN RESTORE ZDIV (1f."

\

ZER "'-. ./

342 SA34·0109

('

Reserved words

The following words cannot be used as the names of
user-defined character variables.

CHR$
DATE$
FILE$
HEX$

KSTAT$ RPAD$
LPAD$ RPT$
LTRM$ RTRM$
PIC$ SREP$

STR$
TIME$
WSID$

BASIC reference information 343

RESTORE

RESTORE statement (with no file reference)

344 SA34-0109

This RESTORE statement causes subsequent READ
statements to assign values beginning with the first item in
the first DATA statement (see "DATA statement").

RESTORE •

The syntax of the RESTORE statement is as shown above.

The RESTORE statement returns the internal data table
pointer from its current position to the beginning of the
table.

A RESTORE statement is ignored in a program that contains
no DATA statements.

Example

10 DATA 1,2
20 READ A,B
30 RESTORE
40 READ C,D

In the above example. after the statements are executed.
the variables A and C will each have a value of 1 and
variables Band D will each have a value of 2.

(

(

RESTORE

RESTORE statement (with file reference)

This RESTORE statement is used to reposition a file.

,REC=arith-expression -------, r---'----,
I ,

error-cond line-ref 'KEY~=}-
o('uJl.. char-expression

,SEARCH >= EXIT line-ref---t

RESTORE- #file-ref-'-------III---------....L.. --'-----6I-----L--...

a Go to the beginning of the file (if opened for output,
DROP the file)

II Interrupt on error unless ON is active

The syntax of the RESTORE statement is as shown above,
where:

file-ref is a numeric expression. See "File reference
parameter."

When a RESTORE statement (without a parameter) is
executed, the specified display or internal I/O file is
repositioned so that subsequent references to the file will
refer to the beginning of the file.

REC=arith-expression for relative access, specifies the
number of the record to which the file will be reset. The
record specified by the arithmetic expression will be the
next record in the file to be accessed by a READ without a
REC clause.

KEY for keyed access, specifies the key field used to
access the record in the file. KEY indicates key-indexed
access of the file, which must have been opened as a keyed
file.

BASIC reference information 345

RESTORE

RESTORE statement (with file reference) (continued)

346 SA34·0109

char-expression parameter contains the actual record key to
be compared to those records in the file. The character
expression must be the same length as the key field.

SEARCH for keyed access specifies the key field used to
access the record in the file. SEARCH indicates key-indexed
access of the file.

char-expression can be less than or equal to the length of
the actual key field. If the char-expression is shorter than
the key field, the search of the index will consider only that
part of the key field equal to the length of the character
expression.

= specifies that the KEY/SEARCH argument must make an
exact match to the record key.

> = specifies that if an equal compare is not made, the next
record in key sequence following the provided key is used. '-.. ~

error-cond line-ref specifies the line number or label that
the program should transfer to for one of the error
conditions. The following error conditions may be included
in any order:

• IOERR-input/output error

NOKEY-invalid key reference

NOREC-invalid record reference

See "EXIT statement" for more information on these error
conditions.

f·

(

RESTORE

EXIT specifies the line number or label of an EXIT
statement that the system should reference if an error
occurs.

Programming considerations

• Adding data
To position to the end of data, close the file, then
reopen the file for output.

RESTORE #0
- RESTORE with a file reference of #0 is ignored.

Dropping data
A RESTORE statement specifying no parameters
positions the file at the beginning of data. For the
following specific cases, previously valid data
becomes inaccessible (same action as DROP
command):
1. A display file opened for output, NOSHR.

sequential access.
2. An internal file opened for output, NOSHR.

sequential access.

An error occurs if a RESTORE statement is executed
for an internal file opened for output with relative or
keyed access.

BASIC reference information 347

RETRY

RETRY statement

348 SA34-0109

The RETRY statement transfers control to the statement
causing the most recent error not suppressed by an ON
condition IGNORE. See "ON statement".

RETRY •

RETRY is useful following an ON GOTO transfer or
following an I/O exit. Any event that can cause an ON
GOTO transfer or an I/O exit will set the line to which retry
will transfer control.

If an ON event is specified to be IGNORED, the return
statement specification used by RETRY is not changed.

Example

100 ON ZDIV GOTO FIX

•
•
•

300 INPUT C
310 Z = 10/C

•
•
•

400 FIX: C= 1 !O ENTERED FOR C
410 RETRY ! REEXECUTE LINE 310

./

(

(

RETURN statement

(

RETRY

Programming considerations

• RETRY without error
If no error has occurred since RUN, execution of
RETRY will cause an error and will interrupt
execution.

• RETRY after INO
Execution of RETRY following INO causes the same
line to be executed again.

Multiple errors
If a second ON GOTO or I/O exit occurs before
RETRY is executed, the first occurrence is lost. Avoid
operations that can cause such occurrences or use
ON IGNORE.

For a description of special handling of ON events and I/O
exits within a defined function, see "DEF,FNEND
statement. "

The RETURN statement transfers program control to the
first executable statement following the most recently
executed GOSUB statement (see "GOSUB statemenf').

RETURN •

BASIC reference information 349

REWRITE

REWRITE statement

The REWRITE statement is used to replace an existing
record in a file.

{Iine-ref~
, USING

[,hoc""",

I' REC= arith-expreSSiOnj

t---' KEY= char-expreSSion----1 ,data-item,

REWRITE-#file-ref D I I fJ I :..-L---s1--'--r--,,\

,---'----,
I

error-cond line-ref

EXIT line-ref

-.....\...---01-----1.--.

350 SA34-0109

L ____ , ____ -.-1

.. Unformatted write
II Rewrite the last record READ/REREAD
II REWRITE record with no data
II Interrupt on errors unless ON is active

The syntax of the REWRITE statement is as shown above,
where:

file~ref is a numeric expression. See "File reference
parameter."

USING specifies a line-ref (line reference) of a FORM
statement or a char-var (character variable) containing a
FORM statement. Line-ref can be a line number or label.
The FORM statement is used to indicate the type, length,
and locations of the variable values (data items).

REWRITE

(

(

(

REC=arith-expression specifies the record having a relative
record number equal to an arithmetic expression.

KEY = char-expression specifies the key field used to access
the record in the file.

data-item specifies the names of variables or expressions
that contain the values to be written to the file. Data items
can include variables, array elements, entire arrays
(preceded by MAT) or numeric or character expressions.
The data items must be separated by a comma. The first
data item must be preceded by a colon.

error-cond line-ref specifies the line number or label that
the program should transfer to if one of the error conditions
occurs. The following error conditions may be included in
any order:

• CONV-conversion error
• EOF-end of file; insufficient file space for data
• IOERR-input/ output error
• NOKEY-key not found; invalid key reference
• NOREC-no record found; invalid record reference
• SOFLOW-string overflow

See "EXIT statement" for more information on these error
conditions.

EXIT line-ref specifies the line number or label of an EXIT
statement that the program should transfer if an error
occurs.

For more information, see Appendix B.

BASIC reference information 351

REWRITE

REWRITE statement (continued)

352 SA34-0109

Example

iO OPEN #3:"NAfviE=fii.EB",iNTERi\iAi.,OUTii\i
20 DIM A$(6)*3
30 READ #3: MAT A$
40 A$(3)= "ABC"
50 A$(6)= "XYZ"
60 REWRITE #3: MAT A$

Programming considerations

OPEN OUTIN
- OUTIN must be specified in the OPEN INTERNAL

statement.

Preceding statements
- REWRITE must be preceded by a successful READ or

REREAD to the same file reference if no KEY or REC
parameter is specified. If KEY or REC is specified, the
record is read before it is updated and rewritten.

• No data
- If the I/O list is omitted there will be no transfer of

data from variables. A record will be written.

• Key field
- A REWRITE to a file opened for keyed processing

cannot alter the key field.
- A REWRITE may modify any field other than the one

used for the associated key specified by OPEN, This
includes fields used for other keys. If the field is
modified, the associated key file must be regenerated
by the INDEX Customer Support Function before it is
used again. If this is not done unpredictable
modifications to the Master file may result if there is

(

(

•

REWRITE

a subsequent WRITE/REWRITE/DELETE operation
that uses that key field.
There is no check made to verify that the Master file
record obtained (using the index file) contains the key
characters indicated by the KEY = specification.

Communications
- REWRITE is not applicable to Communications.

• Multiple REWRITEs
When a file is opened INTERNAL, aUTIN, KEYED, or
RELATIVE, a REWRITE statement without a record
specifier (KEY= or REC=) can be used to update
portions of a record which was just accessed by
READ or REREAD. The record may not be processed
by a second chronologically sequential REWRITE
without another intervening READ (KEY= or REC=).
See "I/O table 7" and "I/O table S".

If the record cannot be completely updated in one
REWRITE because of a long FORM specification or
data list, a second REWRITE may be required. This
requirement can have the following effects:

• If the file is in SH R (shared) mode, the other program
may access the updated record between the two (or
more) REWRITE statements. This provides a copy of the
record which is not valid to the READ statement in the
other computer.

• If the record is one of a group with duplicate keys, the
program may require considerable time to reaccess the
record. The reason for this is that it must search
through all the preceding duplicate keys.

BASIC reference information 353

REWRITE

REWRITE statement (continued)

354 SA34·0109

The above mentioned effects can be avoided by creating a
temporary file with one record. This record should be the
same size CiS the iecolu ill ih~ uCliCl fiie. The foiiowing code
will then update the record without excessive search time or
loss of data integrety:

Assume a record length of 2000 bytes.

5 WORK=5
10 OPEN #WORK:"NAME=WORKFILE/VOID,SIZE=2001,

RECL=2000",INTERNAL,OUTIN,SEQUENTIAL
20 DIM A$(8)*250 USE THE MINIMUM NUMBER OF

ELEMENTS MAXIMUM LENGTH

•
•
•

100 MAT A$=A$(8)
110 READ #DATAFILE,USING COPYFORM:MAT A$
120 COPYFORM: FORM C 250
130 RESTORE #WORK:
140 READ #WORK:
150 REWRITE #WORK,USING COPYFORM:MAT A$
160 MAT A$=A$(l)

•
• PERFORM MULTIPLE REWRITES TO WORK FILE

•
300 MAT A$=A$(8)
310 RESTORE #WORK:

REDIMENSION A$

320 READ #WORK,USING COPYFORM:MAT A$
330 REWRITE #DATAFILE,USING COPYFORM:MAT A$
340 MAT A$=A$(l) RELEASE STORAGE

•
•
•

See "Program 5-Sample" in Appendix A. ()

RLN(N)

RND(X)

(

(

RLN

RLN returns the record length for internal file N. If file N is
not open, a -1 is returned.

RND returns a random number in the range of 0 to 1. If X
or the RANDOMIZE statement is specified, the random
number generator is reset. Each random number is
computed from the previous one according to a fixed
algorithm. When X is specified, the number generated is the
number that would normally follow X. The value specified
for X must be greater than 0 and less than 1.

If X is not specified and RANDOMIZE is not executed,
2.1 E9 unique numbers will be generated before the
sequence repeats. Run starts the random numbers at the
same point each time.

See "Program 2-Sample" in Appendix A.

BASIC reference information 355

ROUND

ROUND(X,M)

RPAD$(A$,X)

356 SA34-0109

ROUND returns the value of X rounded to M decimal digits
to the right of the decimal point. If M is negative, X is
rot!~ded to the !eft of the dac;iiiQ~ pGiiit {r,,1 traiHng £ttru:s

following the number}. For example:

10 X=15.735
20 R=ROUND (X,2)

R contains 15.74

10 X=273
20 R=ROUND(X,-2)

R contains 300

RPAD returns a string of characters of length X or greater
by placing the required number of blanks to the right of A$.
If X is less than the length of A$, then A$ is returned
unchanged. For example:

10 A$="ABCD"
20 B$=RPAD$(A$,5)

B$ contains "ABCDb"

10 A$="ABCD"
20 B$=RPAD$(A$,2)

B$ contains "ABCD"

Note: An error is generated if X is riot within the 0 to 255
range.

RPT$ (A$,M)

RTRM$(A$)

(

(

RPT$

RPT$ returns A$ repeated M times. For example:

ABC$=RPT$("*",3)

ABC$ Contains "***"

Note: When the result of RPT$ exceeds 255 characters, the
result will vary based upon the function being performed.

RTRM$ returns A$ with all trailing blanks removed.

10 A$=" AB CD "
20 B$=RTRM$(A$)

B$ contains" AB CD"

BASIC reference information 357

RUN

RUN command

358 SA34-0109

The RUN command starts execution of a BASIC program at
the lowest numbered executable statement. The program
must reside ::1 the w"vviK area, aiid th6 .,vurk area iTii.i:;t be
defined as containing a BASIC program.

STEP

TRACE

TRACEP
RUN

DISPLAY

PROc-D fJ

D

.. Normal execution mode
II Direct printed output to printer
II INPUT, LlNPUT #0 from keyboard

,
If DISPLAY or PROC parameter follows the RUN command,
no comma is necessary.

The syntax of the RUN command is as shown, above
where:

STEP specifies that the program stops before each
statement is executed. The word STEP and the line number
of the next statement to be executed are displayed. To
execute the next statement, a GO command must be
entered and press Enter. Execution will not stop inside
user-defined functions.

TRACE specifies that the line number of each statement be
displayed when the statement is executed.

(-

(

RUN

TRACEP specifies that the line number of each statement
be printed on the printer when the statement is executed.
TRACEP should be used if tracing to the display screen
would overwrite valid information. The tracing information is
accumulated until a line is full or until the printer is closed
(for example, program terminates).

DISPLAY specifies that all PRINT #255 statements directed
to the printer should instead be directed to the screen.

PROC specifies that data for INPUT and LlNPUT statements
should come from a procedure file rather than from the
keyboard. This does not apply to INPUT FIELDS (see "Full
screen processing"). PROC is only valid on a RUN
command issued from a procedure file.

Example

LOAD PAYROLL/LEDGER
RUN

A program named PAYROLL is loaded from a diskette with
VOLID LEDGER. The program is then executed.

Programming considerations

Variable initialization
Each time the RUN command is issued it initializes all
arithmetic variables and arrays to zeros, and character
variables and arrays to null.

Resuming normal processing
If a RUN STEP is in process and normal processing is
required, GO RUN can be issued.

BASIC reference information 359

RUN

RUN command (continued)

Data work area
The RUN command will not be accepted by the
system if thE: YvurK. ilrt::i:I l;unli:lins data rather than a
program.

Error conditions

The following errors will be detected before the first
statement is executed:

An END statement appears and it is not the last
statement.
An undefined line number is found.
FOR/NEXT loops are improperly nested.
A previous RUN was interrupted. In this case enter
GO END then RUN (see "Split screen").
An array or character variable is DIMed more than
once.

TRACEP and DISPLAY
If both TRACEP and DISPLAY are present. the trace
information will be directed to the screen.

TRACE
- RUN TRACE(P) will trace the whole program. Use the

TRACE statement to trace small portions of the
program; see 'TRACE statement."

Sample procedure or Sample program

see Appendix A

360 SA34-0109

.... , _/

SAVE command

(

(

(

SAVE

The SAVE command stores the contents of the work area in
a specified file. SAVE is used to store a new program or
data file for the first time, or an existing program or data
file under a new name.

ISOURLE

,LOCK

SAVE -file-spec a

• Save internal (file type 09)

The syntax of the SAVE command is as shown above,
where:

file-spec is the file specification. For more information see
"File specification parameter."

Since SAVE is used to store a program or data file not
already existing under the name chosen, the file name must
be qualified by a volume 10 or by a drive number.

SOURCE indicates that the program is to be saved in source
format as file type 05. If SOURCE is not specified, a
program is saved in BASIC format as file type 09, data is
saved as file type 05.

LOCK indicates that the program is to be locked. A locked
program may not be listed, saved, or replaced in source
format.

BASIC reference information 361

SAVE
SAVE command (continued)

362 SA34-0109

Examples

SAVE MYPROG/MYVOL

or

SAVE MYPROG.SRC//1,SOURCB

Programming considerations

Locked programs
A locked program cannot be unlocked. The
programmer should keep an unlocked version.

• Existing files
To save an existing program on diskette, use
REPLACE.

• Interrupted programs
SAVE cannot be issued if a program is in an
interrupted state (from an error or Cmd / Attn), first
enter GO END.

• Cmd/ Attn
- Cmd/ Attn will not interrupt during a SAVE.

• Diskette full
If there is not enough space on the diskette to save
the entire file, an error will occur. In this case, the file
should be saved on another diskette.

LOAD and SAVE
Program files (type 09) load and save faster than
source files (type 05).

"""-_/

(

(

SAVE

Compressing the work area
- No additional storage becomes available as a result of

editing. The additional storage will be made available
when the program is SAVEd or REPLACEd in
SOURCE format, then LOADed.

Scalar multiplication (MAT assignment)

Search

SGN(X)

see "MAT assignment (scalar multiplication)"

see
"SRCH(array,X[,row]) or SRCH(array$,X$[,row])"
"Diskette file searches"

SGN returns the sigll of X.

SGN(-2) is -1 (representing a negative number)

SGN(+10) is +1 (representing a positive number)

SGN(O) is 0

BASIC reference information 363

Sharing

Sharing _

SHIFT(X)

364 SA34-0109

see "Device sharing"
"File sharing"
"OPEN stateme~t"

SHIFT returns a value to indicate the machine type
(Katakana or non- Katakana). The X parameter, which is
optional, establishes a new shift mode.

Machine Value Value
type returned of X
Non-Katakana 0 o = lowercase

1 = uppercase

Katakana 1 o = alphanumeric
1 = Katakana

The following PRINT statement will display the machine
type:

10 PRINT SHIFT

The following LET statement will set a non-Katakana
machine to uppercase shift mode:

20 LET A=SHIFT(1)

-' "
'li... .. /

Sign of a number

(
Significance

SIN(X)

(

(

see "SGN(X)"
"Arithmetic data"

see "Arithmetic data"

Sign

SI N returns the sine of X. X is in radians and must be less
than 1 E10. Specify a value for X greater than -2*P1 or less
than 2*P1 for best accuracy.

BASIC reference information 366

SKIP

SKIP command

366 SA34-0109

The SKIP command is used to skip records within a
procedure file.

[IF -logical-expression 1
SKIP -- integer --'------IDut----'-__ _

• Skip unconditionally

The syntax of the SKIP command is as shown, where:

integer indicates the number of records within a procedure
file to be skipped.

logical-expression transfers procedure control according to
the result of the logical expression (see "IF, THEN, ELSE
statement"). Only CODE and ERR can be tested in the '~ . ./f
logical expression.

When the IF clause is specified on the SKIP command, the
logical expression is evaluated. If the evaluation results in a
true condition, the specified number of procedure file
records are skipped. If the evaluation results in a false
condition, no procedure file records are skipped.

The SKIP command without the IF clause causes the
specified number of records to be skipped unconditionally.

rf-"
\,~~,_/

(

(

Skip lines

(

Example

00010:LOAD FIRST
00020:RUN
00030:SKIP 3 IF CODE> 0
00040:LOAD SECOND
00050:RUN
00060:SKIP 3
00070:ALERT INSERT TRANSACTION DISKETTE
00080:LOAD THIRD
00090:RUN

SKIP

In this example, the program in file FIRST is loaded and
executed. If the program causes the value of the CODE
variable to be set to positive, the SKIP 3 IF CODE> 0
causes the next 3 records in the procedure file to be
skipped and the ALERT command to be processed. The
program in file THIRD is then executed. IF the value of the
CODE variable from program FIRST is zero or less, the
program in file SECOND is loaded and executed, then SKIP
3 unconditionally skips the last 3 commands.

The line numbers and colons are not part of the data on the
procedure file. They are added and used by the editing
commands.

see "FORM statement" (SKIP specification)

BASIC reference information 367

SORT

SORT command

368 SA34-0109

The SORT command alters the order of the records in a file.
SORT can be specified from a procedure file or entered
Ilurn ihe keyboard.

SORT -file-spec •

The syntax of the SORT command is as shown above
where:

file-spec is the file specification of a previously generated
Sort control file,which consists of a file name followed by
an optional volume identification and device address (see
"File specification parameter").

Information for the sort is always taken from the control file
specified by the file-spec. See Customer Support
Functions, Volume II for more information about SORT.

The SORT command is used in conjunction with the
Customer Support Function diskette.

Spaces

(
Special character set

Split screen

SQR(X)

(

Spaces

see "Blanks"

see "Character set"

When a running BASIC program is interrupted by an
untrapped error followed by an ERROR RESET, Cmd/ Attn,
or PAUSE statement in the program, the screen goes into
split screen mode.

Lines 19 to 23 are temporarily replaced with a four-line
blank area topped by a row of asterisks. This allows the
entry of commands and desk calculator operations without
disturbing the original screen.

If you enter any command which restarts or terminates the
program, the "split screen" is removed and replaced with
the former display. Use the GO command to restart and GO
END or CLEAR to terminate (see "GO command").

SQR returns the square root of X. If X is less than zero, an
error occurs.

BASIC reference information 369

Square roots

Square roots

see "SQR{X)"

SRCH (array,XI,rOw]) or SRCH (array$,X$[,row])

SREP$(A$,M,B$,C$)

370 SA34·0109

SRCH searches for the value of X. The result is a number
that indicates in which row the argument X was found.
Row, which is optional, is used to select the starting row
within the vector. The default row is 0 (Base 0) or 1 (Base
1). If the argument is not found, -1 is returned. If the array
has never had anything assigned to it, a -1 is returned.

Note: An error will be generated if row is not within the
range 0 to 255.

SREP$ returns a string that represents the replacement of
B$ with C$ in string A$, starting at position M.

10 A$="ABCDEFGHIJ"
20 B$= "DE"
30 C$=" 123"
40 D$="SREP$(A$,4,B$,C$)

D$ contains "ABC123FGHIJ"

Note: An error will occur if the string length exceeds 255.

Standard format

(

Statement length

Statement numbers

Statements

Status line

see "Integer format"

see "BASIC statements"

see "Line numbers"

see "BASIC statements"

see
"Character set"
"Device sharing"
"DISPLAY"

Standard format

"Status line" in the Operator Reference
System/23 Messages

BASIC reference information 371

STOP

STO P statement

372 SA34-0109

The STOP statement stops the program and closes all fi!es.

[arith-expression J
STOP--~------~a·------~--~.·

.. CODE is 0

The syntax of the STOP statement is as shown above,
where:

arith-express;on is an expression that is rounded to an
integer and is used to set the CODE variable. It is in the
range of 0 to 9999. If the parameter is not specified, the
default is zero.

Unlike the END statement, the STOP statement can appear
anywhere in a BASIC program. " ..

Example

With arith-expression:

110 CODEVAL = 139
120 STOP CODEVAL

STOP

In this example, the STOP statement sets the value returned
by CODE to 139 and stops the program.

Without arith-expression:

110 STOP

In this example, the STOP statement sets the value returned
by CODE to 0 (the default value) and stops the program.

BASIC reference information 373

Storage

Storage use

374 SA34-0109

The following formulas are used to estimate the amount of
System!23 internal storage used by unedited programs. The
tOt2~ storage avaHab~e is :~d:cated by the HELP STATUS
command immediately following CLEAR.

For programs, calculate the following items and add 27
bytes for overhead:

Notes
Item B.ytes
Statement 7
Function reference 2 II
Keyword 1.5 D
Label 1.5 DII
System function 1.5 D
Variable! array reference 1.5 DII
Line number reference 4
Character literal 2 II
Numeric literal 4 or 10 II
Expression 1 II
FORM field specifier 2
PIC specification 2 II
Subscripts 4 or 6 II
Substring 6 II
Operators 1 II
Punctuation 1 D
Asterisk 2 II
FOR, NEXT 4 or 25 III
CHAIN, USE, LIST 2 ..

'<.' - ~/

(-

(

(

•
a • II
II
II

II

II
II
&I •

Storage

Frequently used functions, variables, and first 63 user
defined names are 1 byte. Others are 2 bytes.
Plus the number of characters.
See "Arithmetic expression", "Character expression".
Name length plus 5 for first time reference
Literals used in DIM and FORM use 4 bytes.
4 bytes for () format, 6 bytes for t) format, 6 bytes
for (:) format. Byte totals only included punctuation
characters and end of expression overhead.
Applies to logical operators, arithmetic operators,
concatenation character, and =.
Punctuation characters are # : ; () and,
Used in DIM and FIRM
FOR is 4 bytes, N EXT is 25 bytes
The variable list and any remark that follows, is treated
as a single character literal string. Add the number of
characters.

When the program is run, both user-defined objects and
system objects use storage as follows:

Item
Character variable
Character array

Numeric variable
Numeric array
File controls
Procedure

Bytes
7 + current number of characters II
13+ (1 +DIM length) *number of
elements.
15.
13+ (9*number of elements) •
132 per file II
650/132 per procedure.

• Allocated at first reference, released at CLEAR/RUN
II Allocated at OPEN, released at CLOSE
• Allocated at PROC/SUBPROC, released at EOF

BASIC reference information 375

Storage

Storage use (continued)

As the program is run, temporary results, work areas, and
I/O buffers are allocated as needed and automatically
reieased. No singie item can exceed 64K. bytes. I:dltmg ",,-/

376 SA34-0109

never decreases the size of a program. To recover space
when lines are deleted, SAVE SOURCE, LOAD, and SAVE
internal again. Storage can be recovered from arrays by
redimensioning to one element. See "Redimensioning
arrays". The System/23 will reserve a minimum amount of
storage for internal use, so your program cannot entirely fill
up storage.

Example

100 LET WORK5$(l:2)=RUNDAT$(5:6)

Item Bytes Overhead Comments

LET 1.5 Keyword
WORK5$ 1.5 11 Variable/ array
(:) 6 Substring
1 10 Numeric literal
2 10 Numeric literal
= 1 Operators

RUNDAT$ 1.5 12 Variable/ array
(:) 6 Substring
5 10 Numeric literal
6 10 Numeric literal

7 Statement
27 Program first line

Totals 57.5 + 57 = 114.5 bytes

-' ,

',,-/

Storage

200 DEF FNA$(R,K$)=STR$(R+5)&K$

(Item Bytes Overhead Comments
DEF 1.5 Keyword
FNA$ 2 9 Function reference
(1 Punctuation
R 1.5 6 Variable/ array

1 Punctuation
K$ 1.5 7 Variable/ array
) 1 Punctuation

1 Operators
STR$ 1.5 System function
(1 Punctuation
R 1.5 Variable/ array
+ 1 Operators
5 10 Numeric literal

1 Expression
) 1 Punctuation (- & 1 Operators
K$ 1.5 Variable / array

1 Expression
7 Statement

Totals 31 + 29 = 60 bytes

(

BASIC reference information 377

STR$
STR$(X)

378 SA34-0109

STR$ returns the string that is the character representation
of the value X. The string has the same appearance as
though 0 rfU:'JT X had b66ii issued. There aft: i-Iv i~aui'-IY VI ' '~ ... /

trailing blanks. See "PRI NT statement".

X=12
A$=STR$(X)

A$ contains "12"

'"'--

",--"

\.~-=./

SUBPROC command

(

(-

SUBPROC

The SUBPROC command is used to initiate the use of a
new procedure file without closing the currently active
procedure file. A procedure file is a DISPLAY I/O file on
diskette that contains BASIC statements, system
commands, and/or input data.

SUBPROC-file-spec •

The syntax of the SUBPROC command is as shown above,
where:

file-spec is the file specification, which consists of a file
name followed by an optional volume identification and
device address (see "File specification parameter").

The SUBPROC command is identical to the PROC command
(see "PROC command") with the following exceptions:

• The SUBPROC command may be issued from within a
procedure file without causing the procedure file to be
closed.

Termination of a procedure invoked by SUBPROC will
cause the procedure file input to revert to the invoking
procedure.

• The maximum number of procedure files that can be
open at one time is five.

INPUT or L1NPUT from a procedure will cause an EOF error
when the procedure/subprocedure is exhausted.

BASIC reference information 379

Subroutines
Subroutines

Subscripted Variables

380 SA34·0109

see "GOSUB statement"
"RETURN statement"

see "Arrays"

Substring referencing

(

(

(

Substring

A substring is a part of a string rather than the entire string.
Normally, the entire string is referenced. However,
sometimes only a part of a string needs to be referenced.
The substring reference is used to extract, replace, or insert
characters in a character string.

The substring reference denotes the position within a
character string by:

character string (arith-expression :arith-expression)

The first arithmetic expression indicates the beginning
position, and the second arithmetic expression indicates the
ending position of the substring. The arithmetic expressions
cannot be negative and are rounded to integers.

The character string can be an array element. For example:

K$ = ABC$(5)(A:B)

BASIC reference information 381

Substring

Substring referencing (continued)

382 SA34-01 09

Substring referencing rules are as follows:

Rule 1.

Rule 2.

Rule 3.

Rule 4.

Rule 5.

If the beginning position is less than one, it is
considered to be one.

If the beginning position is greater than the
length of the character string, the substring
addressed follows the last character of the
character string. For example: if A$ equals
"ABCD", the statement A$ (5:7)="123" would
result in "ABCD123".

If the ending position is greater than the length
of the character string, it is assumed to be the
length of the character string.

If the beginning position is greater than the
ending position, the substring addressed
immediately precedes the beginning position
character of the character string. The value of
the ending position has no significance. For
example if A$ equals "ABCD" then the
statement A$(3:1)= "123" would result in
"AB123CD".

In order to assign characters to a string at a
specified location, that location must be
allocated.

11(~·

.'tj

(

(

Substring

Examples of substring referencing

For the following examples assume that:

A$="ABCOE"

and

B$="WXYZ"

Extraction of characters:

Statement

E$=A$(2:3)

E$=A$(4:4)

E$=A$(O:2)

E$=A$(7:8)

E$=A$(4:8)

Result

E$ equals "BC"

E$ equals "0"

E$ equals "AB", the zero is
considered to be one (see Rule 1)

E$ equals" ", a null string (see
Rule 2)

E$ equals "DE", the eight is
considered to be five (see Rule 3)

BASIC reference information 383

Substring

Substring referencing (continued)

384 SA34-0109

Replacement of characters:

Statement

A$(3:4)="12"

A$(3 :4)= ""

A$(3:4)=B$(1 :2)

A$(3:4)=B$(1 :4)

Result

A$ equals "AB12E", "CD" is
replaced with "12".

A$ equals "ABE", "CD" is deleted

A$ equals "ABWXE", "CD" is
replaced by 'WX"

A$ equals "ABWXYZE", "CD" is
replaced by "WXYZ"

Insertion of characters:

Statement

A$(1 :0)="123"

A$(1 :0)=B$(3:4)

A$(3:2)=B$(1 :4)

A$(7 :8)= "123"

Result

A$ equals "123ABCDE", "123" is
inserted before the "A" in A$ (see
Rule 4)

A$ equals "YZABCDE", "YZ" is
inserted before the "A" in A$ (see
Rule 4)

A$ equals "ABWXYZCDE",
"WXYZ" is inserted between the
"B" and "C" in A$ (see Rule 4)

A$ equals "ABCDE123", 123 is
inserted after the "E" in A$ (see
Rule 2)

/~,

r')
"L

Example using subscripts

10 ABC$(4) = "ABC"
20 1= 1
30 J = 2
40 K = 4
50 ABC$ (K)(I:J) = "12"

Results in ABC$(4) being "12C"

Example Rule 5

10 OIM A$*10
20 A$ (1 :4) = "ABCO"
30 A$ (9:10) = "EF'

Results in A$ being "ABCOEF'.

Substring

Notice that character string "EF" was not assigned to
location 9 and 10 of A$ as specified. To cause "EF" to be
assigned to location 9 and 1 0 of A$, A$ must first be
allocated 10 characters. To achieve that, insert statement 15
(see Rule 5).

15 A$ = RPT$("b",10)

which results in "EF' being assigned to location 9 and 10:

"ABCObbbbEF"

BASIC reference information 385

Syntax

Syntax description

When syntax formats are described in this manual,
capitalized expressions, lowercase expressions, and special
characters (such as a comma, colon, exclamation point, or
an asterisk) have special meaning.

Syntax of the BASIC commands and statements is
presented in the following format:

Statement or [,optional parameter] CChoice of ~
Command ---Irequ ired parameterss----r--'----_a .. ----.L-"T-I
Keyword t _ _ _ _ _ _ _ _ J required parameter /

..

386 SA34-0109

7 indicates the end of the

indicates the parameter statement or command

may be repeated

Where:

Statement or Command keyword is a BASIC statement
such as LET or a command such as RUN.

required parameter is an item that must be included such
as the line reference in GOTO 100.

optional parameter is an item that may be included if
desired such as ELSE in an IF, THEN, ELSE statement.

indicates that the parameter may be repeated means that
more than one parameter can be included such as the
variables in INPUT A, B, C ...

choice of required parameters means that one of the
parameters must be included such as the choice between
numeric or character constants in a OAT A statement.

,~ ".
''il/

(

(

Syntax

indicates the end of the statement or command refers to
the block that indicates the end of the syntax.

To read the syntax of a command or statement, read from
left to right along the main line. When you reach an optional
parameter, you can either include that parameter or continue
along the main line. When you reach a choice of required
parameters, you must include one of the parameters with
your command or statement.

If a parameter is shown in uppercase letters, you must enter
it exactly as it appears. You must also enter any special
character (such as a comma or colon) that appears in the
diagram.

All lines entered in BASIC program entry mode are
converted to English uppercase prior to syntax checking.

To prevent remarks or character data on DATA statements
from being converted to English uppercase, they must be
enclosed in quotation marks.

If you do not include an optional parameter, the System/23
provides a default value or action. The defaults are listed in
the description of the statement or command. The syntax
diagrams include a number (such as II) that corresponds to
the defaults listed.

In the case of the MERGE, REPLACE, and VOLID
commands only, you must include a comma to indicate that
you have omitted an optional parameter.

BASIC reference information 387

Syntax

Syntax description (continued)

Here are two examples using the REREAD statement:

[~ ~::~~::1l error-cond line-ref

REREAD M #f",.~f :I:: . .:::.J ~"'''.;"m •• ElxIIT.lilllnel-rll!elf •••••
RESULTS INl

REREAD #20: NAME$, ADDRESS$

LChar-var
;.···,USING:; :

1,,· line-ref

error -cond line-ref

EXIT line-ref.-.I

REREAD _ #file-ref ii .• _----6---8 ~ RESULTS INl

388 SA34-0109

REREAD #20, USING 50: NAME$ EXIT 400

In these examples, you must include the file-ref parameter
following the keyword REREAD. You may choose to include
the USING parameter in which case you must also include
either the char-var or line-ref parameter_ You must include
the colon, followed by at least one data-item_ Note that you
may list more than one data-item_ You may choose to
include either EXIT line-ref or error-cond line-ref_

In the first example, the optional parameters are omitted.
Therefore the default actions are taken.

(

SYSTEM command

Syntax

The syntax for a BASIC statement is as shown:

["b," J [! COm"k]
line number __ --' _____ --L_ statement __ .L ______ .L-__

A keyword in a BASIC statement or system command must
be followed by a blank except where a comma, parenthesis,
or other appropriate delimiter is defined. Also a blank must
follow the leading line number in a BASIC statement.

A label can be added to any BASIC statement except a DEF
statement (see "Labels").

A remark can be added at the end of any system command
or BASIC statement except a DATA statement (see
"Remarks").

The SYSTEM command allows the operator to specify
special functions for the communications feature.

SYSTEM--------------••

BASIC reference information 389

Systetn commands

System commands

390 SA34-01 09

The system commands are used for program management,
execution, operations, and to control diskette and printer
operations. System commands are instructions that the '~j

computer executes immediately. Commands are not part of
a BASIC program and do not have line numbers.
Commands may be entered either character-by-character
from the keyboard and then executed by pressing the Enter
key or, in some cases, the entire keyword may be entered
by holding down the Cmd key and pressing the appropriate
key. Using the Cmd key inserts the keyword by pressing a
single key, providing faster operation and prevents keying
errors. It should be noted that commands can be executed
from the keyboard or a PROC, but not from a program. The
commands direct the system to perform the following
operations.

Program execution-Start or resume execution of a
BASIC program, procedure, or Customer Support
Functions. :,)

Program management-Load or save programs or data
on diskette. Display program status (name and storage).

Program operation-List, edit, and renumber program
statements or merge several programs into one.

File management-Lists, renames, protects, drops, or
frees files on a diskette.

Set DATE and TIME.

• PRINT variables or expression results.

Assign values to variables.

'<-. /

(

(

System commands

Parameters required for a command can be entered on the
line after the command keyword. The command operation
starts after the Enter key is pressed. The command
keywords and their functions are:

ALERT
AUTO
CLEAR
DATE
DEL

DIR
DROP
FREE
GO
HELP STATUS
LET
LINK

LIST

LlSTP
LOAD
MERGE
PRINT
PROC

PROCERR
PROTECT

Alert the operator from a procedure file
Automatic line numbering
Delete data or program from work area
Set the DATE$ variable
Delete lines of a BASIC program or
data work area
List a file directory
Remove file data
Eliminate a file
Resume interrupted processing
Display the name of the work area
Assigns a value to a variable
Loads and executes Customer Support
Functions
Display a BASIC program or data file
work area
Prints a list of lines in the work area
Load a BASIC program or data file
Merge a BASIC program and source file
Displays data on screen or printer
Initiate command input from a
procedure file
Directs system error handling
Write-protect a file, remove share
restrictions, or close a file

BASIC reference information 391

System commands

System commands (continued)

392 SA34-0109

RENAME
RENUM
REPLACE
RUN
SAVE
SKIP
SORT
SUBPROC
SYSTEM

TIME
VOLIO

Rename a file
Renumber lines
Save a program to an existing file
Run a BASIC program
Save a BASIC program or data file
Skip records within a procedure file
Execute SORT file
Initiate input from a sub-procedure
Specifies special communications
feature functions
Set time of day
List or change a diskette volume
identification or access status

System functions

(

(- .

(

System functions

The System/23 BASIC langl!age includes system functions
(intrinsic functions) that perform a number of commonly
used operations. In addition. the function can be defined
and named by using the DEF statement (see "DEF
statement").

The system functions can be used anywhere in a BASIC
expression that constants. variables. or array element
references can be used. See "Arithmetic expressions"

Some of the functions have one or more arguments that
produce a single result. An invalid argument will cause an
error.

System function rules are as follows:

Arithmetic expressions are indicated by X or M

• Character scalar arguments are indicated by A$. B$. or
C$

• File reference numbers are indicated by N and can be
arithmetic expressions. Non-integer values are rounded

Note: The arguments to system functions can be
expressions that include function references.

See "Program 4-Sample" in Appendix A.

BASIC reference information 393

System functions

System functions (continued)

394 SA34·01 09

ABS(X)
AIDX(array name)

ATN(X)
CEIL(X)
CHR$(X)

CON

COS(X)
DIDX{array name)

DISPLY(X)
EXP(X)
FILE(N)
FILE$(N)
FREESP(N)
INT(X)
HEX$(A$)

KLN(N)
KPS(N)
LEN(A$)
LOG(X)
LPAD$(C$.X)
LTRN$(C$)
MAX(X1.X2, ...)
MIN(X1.X2 •...)
ORD(A$)
PIC$(C$)
POS(A$. B$.X)
REC(N)
RLN(N)
RND[(X)].

Absolute value of X
Ascending index of the source
array
ARC tangent of X
Next larger number
Position in native collating
sequence
Sets array to a constant and
redimensions
Cosine of X
Descending index of the source
array
Current ,screen display page
E raised to X power
Status of the file
File specification
Space available
X or next smaller number
Character equivalent of
hexadecimal value
Key length of file N
Key position of file N
Length of A$
Natural log of X
Pad with blanks on left
Trim blanks from left
Maximum value of list
Minimum value of list
Collating location of A$
Return or set PIC currency symbol
Substring location
Last record number used in file N
Record length
Random number ,(,

I':,
,~~

(

System keywords

(

ROUND(X,M)
RPAD$(A$,X)
RPT$(A$,M)
RTRM$(A$)
SGN(X)
SHIFT(X)

SIN(X)
SQR(X)
SRCH
SREP$
STR$(X)

TAN(X)
UDIM(array,X)
VAL(A$)

WSID$
ZER

see
"System commands"
"Reserved words"

System functions

Rounded value of X
Pad with blanks on right
Repeat string A$
Trim blanks from right
Sign of X
Returns machine type or sets shift
mode
Sine of X
Square root of X
Search table
Replaces substring
Character string representation of
X
Tangent of X
Highest subscript of array
Numeric equivalent of numeric
representation
Shared 5246 port number
Zero array and redimension

BASIC reference information 395

System variables

System variables

396 SA34-0109

The system variables are used by the system to aid in time
stamping. program control. and error recovery. System
variables are maintained by the system. They cannot be the
target of an assignment. nor can they be referenced in a
substring operation. Otherwise. they may be used in any
context where a user variable is allowed.

The following are system variables that are set to arithmetic
values:

CMDKEY-INPUT /L1NPUT termination code

• CNT-I/O variable count

CODE-Program termination code

• ERR-Error code

• FILENUM-Last file ca.using an error

LINE-Last program line number causing an error

PROCIN-Is RUN PROC active?

The following are system variables that are set to character
values:

• DATE$--Value set by DATE command

KST AT$--Last key stroke

TIME$--Current time of day

WSID$--5246 attachment code

TAB function

(
Tables

TAN(X)

(- THEN

(

TAB

see "PRINT statement"

see "Arrays"

TAN returns the tangent of X, where X is in radians and is
less than 1 E1 O. Specify a value for X greater than -(PI/2) or
less than PI/2 for best accuracy.

see "IF,THEN,ELSE statement"

BASIC reference information 397

TIME

TIME command

TIME$

Tips and techniques

398 SA34-0109

The TI M E command is used to enter the time of day into
the system. The system variable TIME$ is set to the value
specified.

TIME-hh:mm:ss •

The syntax of the TIME command is as shown above,
where:

hh :mm :ss specifies the time in hours, minutes, and
seconds.

The time is set to 00:00:00 at power-on time.

The value of TIME$ wraps on 23:59:59 to 00:00:00. The
DATE$ variable is not incremented.

TIME$ returns an eight character string that is initialized by
the TIME command and maintained by the system. At
power-on, the value is set to 00:00:00.

see Appendix C

TRACE statement

t·

TRACE

The trace statement is used to trace all or part of a
program's execution.

£NL OFF

PRINT

TRACE D

.. ON to display

The syntax of the TRACE statement is as shown above,
where:

ON specifies that tracing is to be displayed on screen. This
is the default.

OFF specifies that tracing is to be stopped.

PRINT specifies that tracing is to be printed on the system
printer. PRINT cannot be used if device address 10 is OPEN
to a file reference number other than #255. If TRACE PRINT
is active, device 10 cannot be OPEN to any file reference
number except #255 (see "Printer assignment").

To TRACE an entire program without modifying it, see
"RUN command" (TRACE option).

BASIC reference information 399

Trim

Trim

UDIM (array,X)

400 SA34-0109

see "L TRM$"
"RTRM$"

UDIM returns the value of the upper dimension X of the
array, where X is either an integer 1 or an integer 2.

X=1 returns the row dimension
X=2 returns the column dimension

An error occurs if X is neither 1 nor 2, or if 2 is specified
and the array is one-dimensional.

10 DIM A(5,3)
20 B = UDIM(A,1)
30 C = UDIM(A,2)

B contains 5 (row dimensions)
C contains 3 (column dimensions)

USE statement

(

USE

The USE statement lists the variables passed from one
program to another during chaining.

USETdata-item I •

I I L __ , ___ J

The syntax of the USE statement is as shown above,
where:

data-item is the variable or array (without the keyword
MAT) passed to the chained-to program. The list of data
items is not syntax checked until the USE statement is
executed.

The list of data items specified on the USE statement must
exactly match those listed on the corresponding CHAIN
statement. If an array or a character variable is passed
during chaining, the array or the character variable must be
dimensioned in the chained-to program to the same number
of elements and string size to which it was DIMed in the
chained-from program. The options of the chained-to
program must be identical to the options of the
chained-from program.

Only one USE statement is permitted in a program_

BASIC reference information 401

VAL(A$)

VAL(A$)

Variable names

402 SA34-01 09

The numeric value associated with the string A$ is returned.
If the conversion of the numeric representation results in a
value that causes an underflow, then the value returned is
zero. If the conversion of the numeric representation results
in a value that causes an overflow, then the value returned
is the largest number. If A$ is not a valid numeric
representation, a CONY error will occur.

All variable names must be unique. The same name used to
designate an array, a variable, a function, or a label is not
permitted.

There are three types of variable names. They are:

• Numeric variable or numeric array name

• Character variable or character array name

Function names

Numeric variable or numeric array name

A numeric variable name or a numeric array name must
start with an alphabetic character, followed by up to seven
alphabetic or numeric characters. The name must be
surrounded by blanks, commas, parentheses, or other
delimiters as shown in the syntax. For example:

10 SALARY = 850
20 TAXRATE(3) =.22

Variable names

(

(

(-

Variable names

Character variable or character array name

A character variable name or character array name must
start with an alphabetic character, followed by up to seven
alphabetic or numeric characters and ending in a $. The
name must be surrounded by blanks, commas, parentheses,
or other delimiters as shown in the syntax. For example:

20 DIM ADDRESS$*20
30 ADDRESS$ = "22136 LARKSPUR TRAIL"
40 NAM E$(3) = "SCOTT"

Function names

Function names must start with FN, followed by an
alphabetic character, followed by up to seven alphabetic or
numeric characters. The function name must end in a $ only
if a character result is returned (see "DEF,FNEND
statement") .
For example:

50 DEF FNFICA(X)=.0613*X
60 DEDUCT = FN FICA(SALARY)
70 DEF FNCONNECT$(X$,Y$)=X$&Y$
80 PRINT FNCONNECT$(NAME$(3),ADDRESS$)

Note: Names which are already used in the BASIC language
may not be used as variable names. All words beginning
with FN are reserved words. (See "Reserved words".)

BASIC reference information 403

Variables

Variables, arithmetic

Variables, character

Variables, internal

404 SA34-0109

see "Arithmetic variables"

see "Character variables"

see "System variables"

''f '.
\'4~,)

(

(

vaLiD command

old-volume-id -,

vaLiD

The VOLID command, if entered with parameters, is used to
change a diskette volume identification, the owner
identification, or the access state.

If no parameters are entered for the VOLID command,
volume identification and owner identification for all
diskettes currently inserted are displayed and unchanged.

,ON

,OFF

, owner-id -.....J.--I'JI--.1....-------------.

'ON

'·OFF

,-cwner-id

'ON---------~

new-volume-id ~-----.fCI---------------.....J.~

VOLID---4--~~---------------------------------------~----~

D Display current volume and owner identification
II Protection off
II Owner- id not changed

The syntax of the VOLID command is as shown above,
where:

old-volume id specifies the volume to be changed.

new-volume id specifies the new volume identification for
the diskette. This parameter can be from one to six

BASIC reference information 405

vaLiD
vaLiD command (continued)

406 SA34·01 09

alphabetic or numeric characters. New-volume id is only
necessary if the volume identification is being changed. ;'.

owner-id specifies the owner identification for the diskette.
This entry can be up to 14 alphabetic or numeric characters.
Owner-id is only necessary when the owner identification is
being changed or when the OFF parameter is used.

ON specifies that the protection indicator for the volume is
to be turned on, making the volume unaccessible.

OFF specifies that the protection indicator for the volume is
to be turned off, making the volume accessible.

Do not change the vall D of a diskette with files that are
open and in use.

"

(.

(

Work area

(

vaLiD

Example

VOLID DEBITS,DEBTS,ZEPOL,ON

In this example, the diskette volume identification of volume
DEBITS is changed to DEBTS. The owner identification is
changed to ZEPOl. The volume protection indicator is
turned on.

VOLID DEBITS"NEW

In this example, the owner identification of the volume
DEBITS is changed to NEW. Notice that no new-volume-id
is entered because the volume identification is not changed.
However, a comma must still be entered as shown in the
example. The extra comma indicates that a parameter is
being skipped.

VOLID
1 MASTER PAYROLL

In this example, the VOLID command is entered alone and
the volume 10 and owner ID are displayed for the diskette
in drive 1.

see "Storage use"

BASIC reference information 407

WRITE

WR ITE Statement

The WRITE statement is used to replace a deleted record or
add a record to an internal file. The file may be opened for
sequential, relative, or keyed access.

line-ref

,USING-{
char-var

{
char-var

,FORMAT
char-constant

WRITE _#file-ref ----liil-----'--'------1y----'---'------taI-----J.....,.

I I
L __ , __ .J

408 SA34-0109

r-----'·-----.,
I I

error-cond line-ref,

EXIT line-ref --.of

.. Unformatted write -"'"--.
II Sequential file only. Add to the end of the file
• Communications special control functions not in use
.. WRITE record with no data
.. Interrupt on error unless ON is active

The syntax for the WRITE statement is as shown, where:

file-ref is a numeric expression. See "File reference
parameter" .

USING specifies a line reference of a FORM statement or a
character variable containing a FORM statement. line-ref
can be a line number or label. The FORM statement is used
to indicate the representation and location of the variables
in the output.

(-.

WRITE

REC= specifies the record having a record number equal to
an arithmetic expression. This parameter must be used
when RELATIVE is specified in the OPEN statement. When
replacing a record, the record number refers to the deleted
record. When adding a record, the record number is n + 1
(n is the total number of records in the file).

FORMAT is a Communications feature clause. It specifices
that special control functions are requested. The control
functions can be specified as a char-constant (character
constant) or in a char-var (character variable).

data-item specifies the names of variables or expressions to
be written to the file. The data-item can include variables,
array elements, entire arrays (preceded by MAT). or numeric
or character expressions. data-item must be separated by a
comma and must be preceded by a colon.

error-cond line-ref specifies the line number or label that
the program should transfer to if one of the error conditions
occurs. The following error conditions may be included in
any order:

CONV - conversion error

DUPREC - record already exists

• EOF - end of volume

• IOERR - input/output error

• NOREC - invalid record reference

• SO FLOW - string overflow

BASIC reference information 409

WRITE

WRITE Statement (continued)

EXIT specifies the line number or label of an EXIT
statement that the system references if an error occurs.

For related information, see "Internal I/O file formatting",
"READ statement", "OPEN statement", "FORM
statement", and I/O tables in Appendix B.

Programming considerations

Added keyed records
The record is added to the master file and a pointer
to it is added to the index file. Running the Index
Customer Support Function is recommended to speed
up subsequent file access. If the new index file record
was created and the master file write is unsuccessful,
the index file will contain an invalid entry. The
condition will cause a NOREC error (no record found)
on a subsequent READ KEY= for the record. To
prevent the addition of a duplicate key, precede the
WRITE with a READ KEY= and check for a NOKEY
condition. The specification of no duplicate key in the
Index Customer Support Function does not prevent
the addition of duplicate keys.

CLOSE statement
Execution of the WRITE statement does not always
result in an immediate physical write to the diskette.
To ensure that it will, a CLOSE can be issued. When
a file is shared, only one program can write while the
other program reads.

Unspecified record locations
Unspecified record locations are written as blanks if a
USING clause was present. ,'f"

'jl . , ... ;./

410 SA34·0109

WSID$

(

XREF

WRITE

KEY /SEARCH
- The KEY/SEARCH position specification cannot be

used.

OPEN statement
- OUTPUT or OUTIN must be specified on the OPEN

INTERNAL statement.

No data
- If the I/O list is omitted, there will be no transfer of

data from variables. A record will be written.

See "Program 5-Sample" in Appendix A.

WSID$ returns a character value of length 2 to indicate to
which port of the 5246 Diskette Unit the requesting
System/23 is attached (see "Device sharing"). The possible
values are:

01 Attached to port 1 of 5246 Diskette Unit, not
attached to 5246 Diskette Unit, or 5246
Diskette Unit is powered off.

02 Attached to port 2 of 5246 Diskette Unit

see "LIST label" under "L1ST,L1STP command"

BASIC reference information 4 1 1

ZER and CON

ZER and CON

412 SA34-0109

ZER and CO~~ are functions provided for matrixes.

ZER syntax

J:,umnsl
,(rows s---l) 1

MAT - array·name" ZE R...l-.-a •

D No redimensioning
II Redimension to a one-dimensional array (vector)

The syntax for ZER is as shown, where:

array-name is the name of the array to be set to zero.

ZER sets all the elements of the array to zero.

row, columns are the redimensioning specifications for the
array. Results are unpredictable if subscripted values are
specified for rows and / or columns.

ZER and CON

Example

Assume array A is an array with four rows and four
columns.

10 OPTION BASE
20 DIM A(4,4)

•
•
•

250 MAT A=ZER(3,3)

array A before

1 234

2345

3456

4567

array A after

000

000

000

BASIC reference information 413

ZER and CON
ZER and CON (continued)

414 SA34-0109

CON syntax

I,COlum.:l

CON~[~(r_o~~~~r-______ }_JL-__ ~.

D 1
lEI No redimensioning
II Redimension to one-dimensional array (vector)

The syntax for CON is as shown, where:

array-name is the name of the array to receive the
constants.

arith-expression is a scalar arithmetic expression, which
must be enclosed in parentheses.

CON .sets all the values of array-name to the value of the
arith-expression. If no arith-expression was specified, the
default is 1.

rows, columns are the redimensioning specifications for the
array. Results are unpredictable if subscripted values are
specified for rows and / or columns.

ZER and CON

Example

(
Assume array B is an array with 5 rows and 5 columns.

10 OPTION BASE
20 DIM B(5,5)

•
•
•

250 MAT B=(3*2)*CON(3,4)

array B before array B after

1 2345 6666

23456 6666

(
34567 6666

45678

56789

BASIC reference information 415

ZER and CON

Notes:

416 SA34-0109

(

(

Appendix A. Sample programs
Program 1 - Sample

00010 PRINT ~255: "SAMPLE 1 PROGRAM" iTAB(1)
00020 TRACE PRINT !. TRACE, DISPLAY LINE NUMBERS WITH RESULTS
00030 PRINT ~255:ABS(5),ABS(-5) ! ABS, ABSOLUTE VALUE SYSTEM FUNCTION
00040 PRINT ~255:ATN(1) ! • ARC TANGENT SYSTEM FUNCTION
00050 ! 4 ROW, 4 COLUMN ARITHMETIC ARRAY A, CHARACTER ARRAY C$
00060 ! (MAXIMUM STRING LENGTH 10)
00070 DIM A(3,3),C$(3,3)110
00080 LET A(2,2)=5 ! • ASSIGN NUMERIC ARRAY ELEMENT
00090 PRINT ~255:A(2,2) ! • PRINT NUMERIC ARRAY ELEMENT
00100 lET C$(2 /2)="XYZ" ! • ASSIGN NUMERIC ARRAY ELEMENT
00110 PRINT ~255:C$(2,2) !. PRINT CH~RACTER ARRAY ELEMENT
00120 PRINT ~255:HAT A ! • PRINT ENTIRE ARRAYS A AND C$
00130 PRINT ~255:HAT C$! • PRINT ENTIRE ARRAYS A AND C$
00140 PRINT ~255:9.E+126/1.E-126 ! PRINT MAXIMUM AND HINIMUM NUMBERS
00150 PRINT ~255:.123456789012345 ! PRINT FULL SIGNIFICANCE
00160 DATA 266,266. /266.00/ .266E3,.266E+3,+.266E3,+.266E+3
00170 DATA +0.266E+003,+2.66E2/26.6E1,2660E-1 /+26600E-2,.00266E5
00180 DIH N(2 /3)! • DIM ARRAY FOR REPRESENTATION EXAMPLE
00190 REA[I MAT N ! • READ DIFFERENT VERSIONS OF 266 INTO ARRAY N
00200 PRINT ~255:MAT N ! • PRINT RESULTS
00210 PRINT ~255:1+2,11213/(1+2)*3/(1+2)1(3+4)
00220 PRINT ~255:1+213+4,1+2*3/4/(1+2)*(3/4)/TAB(0)/l+2*3/4,2*13
00230 PRINT ~255:50+101*2/(2*(13+12»-2
00240 LET PAYMENT=122.3 ! • ASSIGN NUMERIC VARIABLE
00250 LET TODAY=30
00260 LET VALUE=20
00270 PRINT ~255:PAYMENT,VALUE,TODAY
00280 PRINT "PRESS ING TO CONTINUE"
00290 ON ATTN GOTO ENDING! • INO KEY CAUSES TRANFER TO ENDING
00300 TRACE OFF ! • STOP TRACE WHILE WAITING FOR INO
00310 LET Z=O ! CANNOT DETECT INO ON A GOTOi MUST HAVE SOMETHING ELSE IN LOOP
00320 GOTO 310
00330 ENDING: ON ATTN IGNORE!. ING KEY IGNORED
00340 TRACE PRINT !. RESTART TRACE
00350 PRINT ~255:CEIL(1.2)iCEIL(-1.2),CEIL(5)iCEIL(-5)
00360 LET D$="ABCD" ! • INITIALIZE CHARACTER VARIABLE D$
00370 PRINT ~255:D$/D$~nEF",D$(2:3) ! PRINT CHARACTER EXPRESSIONS
00380 lET D$(2:3)="XY" ! • REPLACE "BC" WITH "XY"
00390 PRINT ~255:D$
00400 LET D$(2:3)="12345" ! • REPLACE "XY" WITH "12345"
00410 PRINT ~255:D$
00420 LET D$ (2: 6) ='"' ! • REPLACE 5 CHARACTERS WITH NULL
00430 PRINT 0255:D$

Sample programs A-1

Appendix A. Sample programs
Program 1 - Printed output

I SAMD'E • nnOGRAU -lrL .I, rJ\ I1n

00030 5 5
00040 .785398163397448
00080 00090 5
00100 00110 XYZ
00120
0 0 0
0 0 0
0 0 5
0 0 0

00130

XYZ

00140 9.E+126 1.E-126
00150 .123456789012345
00190 00200

266 266 266
266 266 266
266 266 266

00210 3 6 9
00220 11 2.5 2.25

2.5 8
00230 50
00240 00250 00260 00270 122.3 20
00280 00290 00300 00350 2-1 5 -5
00360 00370 ABeD ABCDEF BC
00380 00390 AXYD
00400 00410 A12345D
00420 00430 AD

A-2 SA34-01 09

0
0
0
0

266
266
266
21

30

.~

\"-./

------" ,

"'-j

r, 10

(

(-

Program 2 - Sample

00010 PRINT 0255:"SAItPLE 2 PROGRAtt" ;TABU)
00020 TRACE PRINT
00030 PRINT HEX$("04") iIHIGHLIGHT"iHEX$("07") iI BLINK"jHEX$(1081)j"REV ERSE"jj
00040 PRINT HEX$(IOAI)i"HIGHLIGHT,BLINKliHEX$("OB")jIREVERSE,BLINK"iHEX$("14")
00050 DIIt Etl255
00060 TRACE OFF
00070 FOR 1=64 TO 255 ! USE CHR$ TO GENERATE ALL LETTER GRAPHICS
00080 LET E$=E$&CHRt(I)I ! CATENATE EACH CHARACTER TO ACCUItULATED E$
00090 NEXT I
00100 PRINT NEWPAGE ! CLEAR SCREEN
00110 PRINT FIELDS "3,2,e 7S":"DISPLAY FOR EACH SETTING OF THE DISPLY FUNCTION"
00120 PRINT FIELDS "5,2,C 64":E$U:64) ! PRINT CONTENTS OF Et (ALL CHARACTERS)
00130 PRINT FIELDS "7,2,C 64":E$(65:128)
00140 PRINT FIELDS "9,2,C 64":E$<129: 182)
00150 FOR 1=1 TO 5 ! SET DISPLY AND PRINT DISPLY SETTINGj WAIT FOR ENTER
00160 PRINT FIELDS "l5,2,C 7S":"DISPLY FUNCTION SETTING IS:"&STR$(DISPLY(I»
00170 PRINT FIELDS "17,2,C 7S":"PRESS ENTER TO CONTINUE"
00180 INPUT FIELDS "18,2,C 1":2$
00190 NEXT I
00200 TRACE PRINT
00210 PRINT 1255:"COSINE OF 1 RADIAN IS "iCOS(1)
00220 DIIt F(4),AINDEX(4),DINDEX(4)
00230 FOR 1=0 TO 4 ! FILL F WITH RANDOIt NUItBERS
00240 LET F(I)=RND
00250 PRINT 1255:;
00260 NEXT I
00270 ItAT AINDEX=AIDX(F) ! ASCENDING INDEX OF F
00280 ItAT DINDEX=DIDX(F) ! DESENDING INDEX OF F
00290 FOR 1=0 TO 4
00300 PRINT 1255:i
00310 PRINT t255,USING 330:F(I),AINDEX(I),DINDEX(I),F(AINDEX(I»,F(DINDEX(I»
00320 NEXT I
00330 FORIt N 17.15,X 2,N 1,X 2,N 1,X 2,N 17.15,N 17.15,SKIP 21
00340 PRINT 0255:"TAHU)=" ;TAN(1) , "TAH(PII4) =" HAH(PII4)
00350 PRINT t255:"CHARACTER AND NUItERIC DATA II jSTRt<123.4S)
00360 END

Sample programs A-3

Appendix A. Sample programs
Program 2 - Printed output

·SAMPLE 2 PROGRAM

00030 00040 00060 00210 COSINE OF 1 RADIAN IS .540302305868036
00230 00240 00250
00260 00240 00250
00260 00240 00250
0026000240 00250
00260 00240 00250
00260 00270 00280 00290 00300
00310 .131537788143166 0 1 .131537788143166 .755605322195030

00320 00300
00310 .755605322195030 4 3 .218959186328090 .532767237412170

00320 00300
00310 .458650131923449 2 2 .458650131923449 .458650131923449

00320 00300
00310 .532767237412170 3 4 .532767237412170 .218959186328090

00320 00300
00310 .218959186328090 1 0 .755605322195030 .131537788143166

00320 00340 TAN(I)= 1.5574077246552 TAN(PI/4)= .99999999999067
00350 CHARACTER AND NUMERIC DATA 123.45
00360

A-4 SA34-0109

"-",

-,-

(,

Program 2 - Display output

DISPLAY FOR EACH SETTING OF THE DISPLY FUNCTION

3a~aal~n[.«+!&~~e~liJI6].*)iA-/AA~AAACN:/X_)?ttEtftIl':t@':"

lIIabcdefgh i «»4~Ho jk l.nopqr!Qz.Ii~Jl-stu ... wXYZ i l.DtJUf¥Rf.§1 .,,_ .. , =
{ABCDEFGHI-ooooo)JKL"NOPQRluU~6y\ STUVWXYZ 20oo60012345

DISPLY FUNCTION SETTING IS:l

PRESS ENTER TO CONTINUE

RUN FIELDS 1.01 1 1

Sample programs A-5

Appendix A. Sample programs
Program 3 - Sample

A-6 SA34-0109

00010 OPTION BASE 1 ! SAMPLE3, DISKETTE FILE SIZE
00020 111M FILETYPE$(6)*2
00030 DATA BX,HX,04,05,07,OS
00040 REAlI MAT FILETYPE$
00050 PRINT NEWPAGE
00060 PRINT FIELDS "2/2/C 36":"ENTER FILE TYPE (BX /HX/04,05,07,OS)"
00070 INPUT FIELDS "2/39 /C 2":FTYPE$
OOOSO ON 1+SRCH(FILETYPE$/FTYPE$/i) GOTO 70,TBX/THX/T04/TOS/T07/TOS NONE 70
00090 TBX: GOSUB INREC
00100 LET BYTES=12S*RECORDS
00110 GOTO REPORT
00120 THX: GOSUB INREC
00130 LET BYTES=256*RECORItS
00140 GOTO REPORT
00150 T04: GOSUB INREC
00160 PRINT FIELDS "6 /2/C 12":"RECORD SIZE"
00170 INPUT FIELDS "6}15}N 4":RSIZE
001S0 IF RSIZE}4095 THEN GOTO 170
00190 LET BYTES=(1+RSIZE)*RECORItS
00200 GOTO REPORT
00210 T05: PRINT FIELDS "4}2 /C 15":"NUMBER OF LINES"
00220 INPUT FIELDS "4,1S,N 5":NLINES
00230 PRINT FIELDS "6 /2,C 30":"AVERAGE LINE LENGTH (1 TO 255)"
00240 INPUT FIELDS "6,34 /N 3":LINELGTH
00250 LET BYTES=LINELGTH*(1+NLINES)
00260 GOTO REPORT
00270 TOS: !
002S0 T07: GOSUB INREC
00290 PRINT FIELDS "6/2/C 20":"KEY LENGTH (1 TO 2S)"
00300 INPUT FIELIIS "6,24,N 2":KEYLGTH
00310 LET BYTES=512*CEIL(RECORDS/INT(512/(KEYLGTH+4»-1)
00320 IF FTYF'E$="07" THEN GOTO REPORT
00330 PRINT FIELDS "S/2/C 21":"NUMBER OF NEW RECORDS"
00340 INPUT FIELDS "S/24,N S":NEWRECS
00350 LET BYTES=BYTES+512*CEIL(NEWRECS/INT(510/(KEYlGTH+10»)
00360 GOTO REPORT
00370 !
00380 REPORT: PRINT FIELDS "10/2,C 30":"FILE SIZE = "~STR$(BYTES)
00390 PRINT FIELDS "22,2,C 16":"AGAIN ? <YES/NO)"
00400 INPUT FIELDS "22,20,C 3":ANSWER$
00410 IF ANSWER$="YES" THEN GOTO 50
00420 PRINT NEWPAGE
00430 STOP
00440 INREC: PRINT FIEUIS "4,2/C 18": "NUMBER OF RECORDS"
00450 INPUT FIELDS "4/21/N S":RECORDS
00460 RETURN
00470 END

~- -,

Program 3 - Display output A

ENTER FILE TYPE (BX,HX,04,05,07,08) 08

NUHBER OF RECORDS 800

KEY LENGTH (1 TO 28) 14

NUHBER OF NEW RECORDS 200

FILE SIZE = 19456

AGAIN ? (YES/NO)

RUN FIELDS 1.01 1 2

Sample programs A·7

Appendix A. Sample programs
Program 3 - Display output B

r'---'
ENTER FILE TYPE (BX/HX/04/05/07/0S) HX

NUMBER OF RECORDS 200

FILE SIZE = 51200

AGAIN ? (YES/NO)

RUN FIELDS

A-8 SA34-01 09

1.01 1 2

Program 4 - Sample

(-

c

00010 PRINT t255: "SAMPLE 4 PROGRAM" ;TAB(1)
00020 TRACE PRINT
00030 DEF FNTIMESTMP$*30
00040 LET FNTIMESTMP$="ItATE: "t,DATnt,"I TIME: ".HIMEl
00050 FNEND
00060 PRINT ~255:FNTIMESTMP$
00070 DEF FNTEST1(X)
00080 LET FNTEST1=X+FNTEST2(X)
00090 FNEND
00100 DEF FNTEST2(Y)
00110 LET FNTEST2=Y*Y
00120 FNEND
00130 PRINT ~255:FNTEST1(3) ! RESULT IS 12
00140 DEF FNTEST3(Z)=Z+2
00150 PRINT ~255:FNTEST3(6) ! RESULT IS 8
00160 PRINT ~255:EXP(1)iEXP(2)iEXP(.5)
00170 PRINT ~255:INT(1.5)6·INT(-1.5)iINT(10)
00180 PRINT ~255:LOG(1)iL GCEXP(1»iLOG(10)
00190 LET A$=" ABC"
00200 PRINT ~255:A$;A$iLEN(A$)
00210 PRINT ~255:LTRM$(A$);LTRM$(A$),LEN(LTRM$(A$»
00220 LET B$="XYZ "
00230 PRINT ~255:BiB,LEN(B$)
00240 PRINT ~255: RTRM$(B$) ; RTRM$ (B$) I LEN (RTRM-$ (B$))
00250 LET C$="DEF"
00260 PRINT ~255:C$;C$/LEN(C$)
00270 PRINT ~255: LPArI$(C$,I0) ;LPAD$(C$II0) I LEN(LPAD$ (C$ / 10))
00280 PRINT t255: RPAD$(C$ /10) iRPAD$(C$ dO) ,LEtHRPAII$(C$, 10»
00290 PRINT ~255:RPT$(IGHI" 3)
00300 PRINT ~255:MIN(1/3/-5~!MIN(-5}113)
00310 PRINT ~255: POS ("ABCDCDE" ,IDE",1)
00320 PRINT t255:POS (IABCDCDEI,"CD"}4)
00330 LET A=123.456789
00340 PRINT t255 :A1ROUND(A13)6'ROUND(Al O) ;ROUNDCA,-2)
00350 PRINT ~255:StiN(-3)IStiN(I,SGN(2J.2)
00360 PRINT ~255:SIN(PI)lSIN(2*PI)iSIN(PI/2)
00370 PRINT ~255:SQR(4)ioGR(9)iSQR(2)
00380 PRINT ~255:0RD("A") OR[I("1")
00390 PRINT ~255:SREP$("A9ABCDEFG" ,3/'AB" ,"XY")
00400 PRINT ~255:10+VAl("12")
00410 END

Sample programs A·9

Appendix A. Sample programs
Program 4 - Printed output

SAMPLE 4 PROGRAM

00030 00060 00040 00050 DATE: I I 1 TIME: 00:02:25
00070 00100 00130 00080 00110 00120 00090 12
00140 00150 8
00160 2.718281828459 7.389056098931 1.6487212707
00170 1 -2 10
00180 0 .999999999999983 2.30258509299405
00190 00200 ABC ABC 6
00210 ABCABC 3
00220 00230 XYZ XYZ 6
00240 XYZXYZ 3
00250 00260 DEFDEF 3
00270 DEF [IEF 10
00280 DEF DEF 10
00290 GHIGHIGHI
00300 -5 -5
00310 6
00320 5
00330 00340 123.456789 123.457 123 100
00350 -1 0 1
00360 0 -1.E-14 1
00370 2 3 1.414213562373
00380 193 241
00390 ABXYCDEFG
00400 22
00410

A-10 SA34-0109

(

Program 5 - Sample

00010 PRINT ~255:"SA"PLE 5 - OPEN/ CLOSE(FREE)t INPUT/.. LINPUT"
00020 PRINT ~255: II READ/ REREAD, WRI E, REWldTE" HABU)
00030 TRACE PRINT
00040 OPEN ~1:INA"E=TEST.DISP/SA"PLE,SIZE=512"/DISPLAy/OUTPUT
00050 PRINT ~1:ILINE/1"
00060 PRINT tl: I LINE,2"
00070 CLOSE ~1:
00080 OPEN ~2:"NAHE=TEST.DISPII/DISPLAY/INPUT
00090 OPEN t3:"NAHE=TEST.INT/SAHPLE/SIZE=512/RECL=21"/INTERNAL/OUTPUT
00100 LINPUT ~2:A$
00110 PRINT t255:A$
00120 LINPUT ~2:A$
00130 PRINT t255:A$
00140 RESTORE t2:
00150 INPUT t2:Af,B
00160 PRINT ~255:A$,B
00170 WRITE ~3:Af/B
00180 INPUT ~2:A$/B
00190 PRINT ~255:Af/B
00200 WRITE ~3:Af,B
00210 CLOSE ~2/FREE:
00220 CLOSE ~3:
00230 OPEN ~3: "NAHE=TEST. INT",INTERNAL/OUTIN
00240 READ 03:
00250 REREAD 03:Af/B
00260 PRINT 0255:Af/B
00270 REWRITE 03: Af, B / "NEW"
00280 READ 03:Af,B
00290 PRINT 0255:Af,B
00300 RESTORE 03:
00310 READ 03:A$,B,C$
00320 PRINT 0255:Af,B/Cf
00330 LET COUNT=CNT ! • HUST SAVE CNT TO PRINT VALUE
00340 PRINT 0255:CNT ,"REAL VALUE OF CNT IS II iCOUNT
00350 PRINT 0255:"FILE(3) = "iFILE(3)
00360 PRINT 0255:"FILEf(3) = "iFILE$(3)
00370 PRINT 025S:"FREESP(3) = "iFREESP(3)
00380 PRINT t255:"WSID$:: "iWSID$
00390 PRINT 0255:"REC(3) = "iREC(3)
00400 PRINT 0255:"RLN(3) = "jRlN(3)
00410 CLOSE 03/FREE:

Sample programs A-11

Appendix A. Sample programs
Program 5 - Printed output

I SAMPLE 5 - OPEN, ClOSE(FREE), INPUT, LINPUT
READ, REREAD, WRITE, REWRITE

00040 00050 00060 00070 00080 00090 00100 00110 LINE,1
00120 00130 LINE,2
00140 00150 00160 LINE 1
00170 00180 00190 LINE 2
00200 00210 00220 00230 00240 00250 00260 LINE 1
00270 00280 00290 LINE- 2
00300 00310 00320 LINE 1 NEW
00330 00340 0 REAL VALUE OF CNT IS 3
00350 FILE(3) = 0
00360 FILEt(3) = TEST.INT/SAHPLE/3
00370 FREESP(3) = 509
00380 WSIDt = 01
00390 REC(3) = 1
00400 RLN(3) = 21
00410

A·12 SA34-0109

(

({

(-

Program 6 - Sample

00010 PRINT ~255:"SAHPLE 6 - ON ERROR} ERR/ LINE, CONTINUE, RETRY"
00020 TRACE PRINT
00030 ON ERROR GOTO REPORT
00040 OPEN ~1:"NAHE=TEST2ISAIiPLE/SIZE=512"/DISPLAY/OUTPUT
00050 PRINT U:"TEST RECORD"
00060 CLOSE ~1:
00070 OPEN ~1:"NAIiE=TEST2"/DISPLAy,INPUT
00080 INPUT ~1:A
00090 CLOSE ~1,FREE:
00100 ON ZDIV GOTO FIXZDIV
00110 LET A=1
00120 LET B=O
00130 LET C=A/B
00140 PRINT ~255:C
00150 STOP
00160 !
00170 REPORT: PRINT ~255:"ERR="iERR
00180 PRINT ~255: "LINE=" iLINE
00190 CONTINUE
00200 !
00210 FIXZDIV: LET B=1
00220 RETRY
00230 END

Sample programs A-13

Appendix A. Sample programs
Program 6 - Printed output

SAMPLE 6 - ON ERROR, ERR, LINE, CONTINUE, RETRY
00030 00040 00050 00060 00070 OOOBO 00170 ERR= 726
00180 LINE= 80
00190 00090 00100 00110 00120 00130 00210 00220 00130 00140 1
00150

A-14 SA34-0109

(

Program 7 - Sample

00010 PRINT ~255:"SAMPI..E 7A" INITIALIZE VARIABLES AND ARRAYS THEN CHAIN
00020 OPTION BASE 1
00030 DIM A$*18,C(5)
00040 LET A$="TEST DATA"
00050 LET B=5
00060 DATA 10}20}30}40,50
00070 READ MAT C
00080 OPEN ~1:"NAME=CHAIN.TESTiSAMPLE}SIZE=512"}DISPLAy,OUTPUT
00090 CHAIN "SAMPLE7B",FILES}A$,B,C

00010 DIM A$*18}CCS)
00020 USE A$lB,fC ! PICK UP CHAINED VALUES AND FILE FROM SAMPLE 7A
00030 PRINT T2.J5:"SAMPLE 7B"
00040 TRACE PRINT.
00050 OPTION BASE 1 ! MUST BE SAME AS CHAINED FROM PROGRAM
00060 PRINT ~255:A$iBiC(5)
00070 PRINT ~255:A$
00080 CLOSE ~l,FREE:
00090 PRINT ~255:UDIM(C}1)
00100 PRINT ~255:MAT C
00110 MAT C=ZER(4)
00120 PRINT ~255:MAT C
00130 MAT C=(2*5)*CON(3}
00140 PRINT ~255:MAT C
00150 MAT C=C(2)
00160 PRINT ~255:MAT C
00170 MAT C=C+C
00180 PRINT ~255:MAT C

Sample programs A-15

Appendix A. Sample programs
Program 7 - Printed output (continued)

SAMPLE 7A
SAMPLE 7B
00060 TEST DATA 5 50
00070 TEST [lATA
00080 00090 5
00100

10
20
30
40
50

00110 00120 o
o
o
o

00130 00140
10
10
10

00150 00160
10
10

00170 00180
20
20

A-16 SA34-0109

)

(

(

Program 8 - Sample

00010:LOAD SAMPLE8.BUILD ! PROCEDURE TO DRIVE SAMPLE 8
00020:RUH
00030:LINK INDEX
00040:MESSAGES=1
00050:CHOICE=2
00060:MASFILE=TEST.MASTER
00070:KEYSTART=9
00080:KEYLGTH=5
00090:IDXFILE=TEST.INDEX
00100:IDXVOLID=SAMPLE
00110: DUPKEY=N
00120:ENDLINK
00130:LOAD SAMPLE8.TEST
00140:RUH
00150:PRINT ~255:"END SAMPLE 8"

00010 PRINT ~255:"SAIiPLE8.BUILD"
00020 OPEN ~1:"NAME=TEST.MASTERISAMPLEISIZE=512IRECL=22"IINTERNALIOUTPUT
00030 WRITE ~1IUSING FORIiK: "RECORD 1" !"SMITH" 112.34
00040 WRITE ~1IUSING FORIiK:"RECORD 2"I"JONES"156.78
00050 WRITE ~1IUSING FORIiK:"RECORD 3","BURNS"10
00060 CLOSE ~1:
00070 FORMK: FORM C B/e 6/N 8.2
00080 END

00010 PRINT ~255:"SAMPLEa.TEST"
00020 TRACE PRINT
00030 LET A$=PIC$("$") ! INITIALIZE CURRENCY SYMBOL
00040 OPEN ~1:"NAME=TEST.IiASTER,KFNAIiE=TEST.INDEX"IINTERNAL,INPUT IKEYEri
00050 PRINT ~255: KLN(1 hKPS(1) ! KEY POSITION } KEY LENGTH
00060 READ ~1IUSING FORIiR,KEY="JONES":AiINAME$IAMOUNT
00070 FORMR: FORM C 8 e 6 N 8
00080 PRINT ~255/USIN6 FORMP:AMOUNT
00090 FORMP: FORM PIC($~~~.~~)
00100 PRINT ~255:PIC$("X") 1 SET CURRENCY SYMBOL TO "X"
00110 PRINT ~255/USING FORMP:AMOUNT
00120 READ ~lIKEY="BAKER": EXIT EXIT1
00130 STOP
00140 EXIT1: EXIT NOKEY PRINTERR
00150 STOP
00160 PRINTERR: PRINT ~255:"KEY NOT FOUND"
00170 CLOSE ~1IFREE: ! FREE TEST FILE

Sample programs A-17

Appendix A. Sample programs
Program 8 - Printed output

gftR~~U:~~~rD
00030 00040 00050 5 9
00060 00080 $056.78
00100 X
00110 X056.78
00120 00160 KEY NOT FOUND
00170
END SAMPLE 8

A-1S SA34-0109

)

Program 9 - Sample

(

00010:PRINT t255:"SAHPlE 9 - COHHANDS",TABU)
00020: CLEAR
00030:10 PRINT t255:"SAHPlE 9 TEST"
00040:20 PRINT t255:"DATE="iDATEf,"TIHE="iTIHEf
00050:30 PRINT 4255:"LINE TO BE DELETED"
00060:40 END 1+83
00070:SAVE SAHPlE9.TESTPROG/SAHPlE,SOURCE
00080:ClEAR
00090:DATE 80/12/04
00100:TIHE 15:12:30
00110:RENAHE SAHPlE9.TESTPROG,SAHPlE9.TEST2
00120:l0AD SAHPlE9.TEST2
00130:RENUH 100,100
00140:LISTP
00150:210 PRINT t255:"NEW LINE"
00160:DEl 300
00170:REPlACE,SOURCE
00180:LISTP
00190:RUN TRACEP
00200:PRINT t255:CODE
00210:SKIP 1 IF CODE=84
00220:AlERT CODE NOT SET PROPERLY
00230:FREE SAHPlE9.TEST2
00240:PRINT t255:"END SAHPlE 9"

Sample programs A-19

Appendix A. Sample programs
Program 9 - Printed output

SAMPLE 1 - COHHAHDS

00100 PRINT t255:"SAHPLE 9 TEST"
00200 PRINT 1255:"DATE="iDATEf,"TIHE="jTlHEf
00300 PRINT 1255:"LINE TO BE DELETED"
00400 END 1 +83
00100 PRINT 1255:"SAHPLE 9 TEST"
00200 PRINT 1255: "DATE=" iDATEf,"TIHE=" iTIHES
00210 PRINT 1255:"NEW LINE"
00400 END 1+83
00100 SAMPLE 9 TEST
00200 DATE=80/12/04 TI"E=15:12:50
00210 NEW LINE
00400

84
END SAHPLE 9

A-20 SA34-0109

(

(

c

Program 9 - Display output A

PROC SAHPLE9.PROC
PRINT t255: "SAHPLE 9 - COHItANDS", TABU)
CLEAR
10 PRINT t255:"SAItPLE 9 TEST"
20 PRINT t255: "DATE=" iDATE$ /'TIHE=" iTIItE$
30 PRINT t255:"LINE TO BE DELETED"
40 END 1+83
SAVE SAHPLE9.TESTPROG/SAHPLE,SOURCE
CLEAR
DATE 80/12/04
TIHE 15:12:30
RENAItE SAHPLE9.TESTPROG,SAHPLE9.TEST2
LOAD SAHPLE9.TEST2
00010 PRINT t255:"SAHPLE 9 TEST"
00020 PRINT t255:"DATE=" iDATE$,"TIHE=" iTIItE$
00030 PRINT 1255: "LINE TO BE DELETED"
00040 END 1+83
RENUIt 100,100
LISTP
210 PRINT t255:"NEW LINE"
DEL 300
REPLACE, SOURCE

HOLD 2104 1.01 1 2

Sample programs A-21

Appendix A. Sample programs
Program 10-Sample

A-22 SA34-0109

Full screen processing.

00010 PRINT NEWPAGE
00020 LET 1=3.14159265
00030 LET A$:"A TEST LINE"
00040 LET J=-I
00050 PRINT FIELDS "l,10,N 8,N,N":1
00060 PRINT FIELDS "2,10,N a,N,N":J
00070 PRINT FIELDS "3,10,N a.6,N,N":I
00080 PRINT FIELDS //4,10,N a.5,N,N//:J
00090 PRINT FIELDS "S,10,N 1.1.9,N,N":I
00100 PRINT FIELDS //6,10,N 15.9,N,N":J
00110 PRINT FIELDS //7,10,PICe$$.OII) N,N":I
00120 PRINT FIELDS //8,10,PIC($$.IIID~) ,N,N":J
00130 PRINT FIEL[lS "96106PIC(II.IIIOI) 1N,N": I
00140 PRINT FIEL[lS //1 ,I JPIc(+II.IIII~),N,N":J
00150 PRINT FIELDS "11,10,PIC(+++.IIIOIIII,N}N":I
00160 PRINT FIEL[lS //12,10,PIC(+++.IOIOOIOI,N,N//:J
00170 PRINT FIELDS "13,10,PIC(+*O.OIIIIIII,N,N"lI
001ao PRINT FIELDS "14,10,PIC(HI.IHOIIII,N,N":j
00190 PRINT FIELDS "15,10,PIC(---.OIIIIIII,N,N":I
00200 PRINT FIELDS 116,10,PIC(---.IIIIIIII,N,N":j
00210 PRINT FIELDS "17,IO,C 11":A$
00220 PRINT FIELDS //18,10, C 11": STRSO)
00230 PRINT FIEL[lS "19,10,C 11//:STR$(J)
00240 PRINT FIELDS "20,10,V l1//:STRHJI
00250 PRINT FIELDS "21,10,G 11":STR$(JI
00260 PRINT FIELDS //22,10,6 11":J
00270 PRINT FIELDS //23,10,6 11//: A$
00280 END

Program 10-Display output

Full screen processing.

(

00050 3
00060 _'1

" 00070 3.141593
00080 -3.14159
00090 3.141592650
00100 -3.141592650
00110 $3.141
00120 $3.141[1P.
00130 03.14159
00140 -03.14159
00150 +3.1415926
00160 -3.1415926
00170 +*3.1415926
00180 -*3.1415926
00190 3.1415926

(00200 -3.1415926
00210 A TEST LINE
00220 3.14159265
00230 -3.14159265
00240 -3.14159265
00250 -3.14159265
00260 -3
00270 A TEST LINE

REA[lY INPUT 4000 1.01 1 4

(

Sample programs A-23

Appendix A. Sample programs
Program 11-Sample

A-24 SA34-0109

Full screen processing.

00010 REM FULL SCREEN PROCESSING WITH THE "N X" FORMAT
00020 OPTION BASE 1
00030 DIM B$(16/16)*13;A(16/16)
00040 FOR 1=1 TO 16 l BUILIt THE FIELD DEFINITION
00050 FOR J=1 TO 16 ! ANn DATA ARRAYS
00060 LET Bsn ,J)::STR$(I)bl/ /1/&STR$(5*(J-1) +2H./I"N 3,U"N"
00070 LET A(IIJ)=16*J+i
00080 NEXT J
00090 NEXT I
00100 MAT B$=BS(256) ! REDIMENSION THE CONTROL ARRAY
00110 PRINT NEWPAGE
00120 PRINT FIELDS MAT BS:MAT A
00130 PRINT FIELDS /l22 1 10,C 501/:"THIS USES AN 'N 3' FORMAT"
00140 INPUT FIELDS /l22/70 IN l/U IN":I ! WAIT FOR OUTPUT
001.50 END

Program 11-Display output

Full screen processing.

(

17 33 49 65 81 97 113 129 145 161 177 193 209 225 241 257
18 34 50 66 82 98 114 130 146 162 178 194 210 226 242 258
19 35 51 67 83 99 115 131 147 163 179 195 211 227 243 259
20 36 52 68 84 100 116 132 148 164 180 196 212 228 244 260
21 37 53 69 85 101 117 133 149 165 181 197 213 229 245 261
22 38 54 70 86 102 118 134 150 166 182 198 214 230 246 262
23 39 55 71 87 103 119 135 151 167 183 199 215 231 247 263
24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 264
25 41 57 73 89 105 121 137 153 169 185 201 217 233 249 265
26 42 58 74 90 106 122 138 154 170 186 202 218 234 250 266
27 43 59 75 91 107 123 139 155 171 187 203 219 235 251 267
28 44 60 76 92 108 124 140 156 172 188 204 220 236 ')"--1 a..,J,;.. 268
29 45 61 77 93 109 125 141 157 173 189 205 221 237 253 269
30 46 62 78 94 110 126 142 158 174 190 206 222 238 254 270
31 47 63 79 95 111 127 143 159 175 191 207 223 239 255 271
32 48 64 80 96 112 128 144 160 176 192 208 224 240 256 272

((
THIS USES AN 'N 3' FORMAT

RUN FIELDS 4000 1.01 1 1

(

Sample programs A-25

Appendix A. Sample programs
Program 12-Sample

Full screen processing.

00010 REM VARIABLE OPEN OF 4 FILES ON 4 DRIVES
00020 DIH REC$*25
00030 LET J=10
00040 LET 1<=24
00050 FOR 1=1 TO 4 ! OPEN A FILE ON EACH DRIVE
00060 LET FILEN$=IIFILEII&STR$(5-I)&lIj jlll·.5TR$(I)

&~~~~ ~~~l!~7~N~~E~~i~1L~N$~f.~§h~~II~M~i(jil<~~~)1,1I/RECL=801l}INTERNAL/OUTPUT
00090 NEXT I
00100 LET REC$=IITHIS IS A TEST RECORII II
00110 FOR J=l TO 100 ! WRITE 100 RECORDS TO EACH FILE
00120 FOR 1=1 TO 4
00130 WRITE ~I6USING 140: REC$&" RECORIt NUMBER "&STR$(JH." ON FILE "l,STR$(I)
00140 FORH C 8
00150 NEXT I
00160 NEXT J
00170 FOR 1=1 TO 4 ! CLOSE THE FILES
00180 CLOSE U:
00190 NEXT 1
00200 ENIt

A-26 SA34-0109

Appendix B. Tables
Tables

(

(

(

Tables 8-1

Appendix B. Tables
Tables (continued)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

8-2 SA34-0109

101234 nfl789 - -

Note Note
2 1

I

.J .L f-
T Note L ,

r 1 -,
-
+ A a a a a

.... a [< (+ ! a c n

& e ~ e ~ f I' i' 'i (3

1 $ *) 1\ - / a A-,

A A A A
.... I C N I , % -

E A E f '" i' > ? q, E E I

1 ...
@

,
" I/J : = a

b c d e f g h i ~ ~

d Y l ± j k I m n
~

A 0 p q r !! Q a:) ,.£

!l '" 5 t u v w x y z

i i f) Y I ® ¢ £ f ~

J' § 1f y.. % %
--,

I
..

",. { A B C 0 E F G -
H I " 0 6 '0 } J 0 0

K L M N a p Q R " I u

i.i
~

Y \ s T U V u u

W X Y Z 2 8 0 0 6 0
0 1 2 3 4 5 6 7 8 9

3 " (j " U u u

Notes:
1. Unpri ntable character
2. Page advance

Use table from left to right

Examples:

~ecimal code 193 prints A
decimal code 91 prints $

The information in this

table is used with CHR$

Table 1. Decimal code to print character conversion

(

(

The following tables specify the response of the System/23
to any combination of two I/O statements. Statements
which are not listed in the table are considered errors.

Previous I/O Following I/O statement

statement READ REREAD RESTORE

next previous position
READ sequential record to

record read beginning

next previous position
REREAD sequential record to

record read beginning

first position
RESTORE record error to

beginning

Table 2. OPEN, INTERNAL, SEQUENTIAL, INPUT

Tables B·3

Appendix B. Tables
Tables (continued)

Previous I/O "0 Foiiowmg 1/ statement

statement WRITE RESTORE

add position
WRITE record to

at the end beginning

record position

RESTORE
is written to
as first beginning
and only

Table 3. OPEN, INTERNAL, SEOUENTIAL, OUTPUT

8-4 SA34-0109

Previous I/O Following I/O statement**

statement READ REREAD

next read
READ sequential previous
or
REREAD

record record

DELETE
read
next

or
sequential

error
REWRITE

record

read
RESTORE first error

record

* Initial position at beginning of file
**Error for diskette files on a WRITE

REWRITE

update
previous
READ

error

error

Table 4. OPEN, INTERNAL, SEOUENTIAL, OUTIN*

RESTORE

position
to
beginning

position
to
beginning

position
to
beginning

DELETE

delete
record
previously
read

error

error

Following I/O statement

Previous I/O READ* RESTORE*
statement READ REC=n2 REREAD RESTORE REC=n2

READ next read read position position
or sequential record previous to to
REREAD record n2 record beginning record n2

READ*
next read read position position

REC=nl
sequential record previous to to
record n2 record beginning record n2

read read position position
RESTORE first record error to to

record n2 beginning record n2

RESTORE*
read read position position

REC=nl
record record error to to

n1 n2 beginning record n2

*NO R EC error if record is nonexistent or deleted.

Table 5. OPEN, INTERNAL, RELATIVE, INPUT

The WRITE statement must have a REC= clause. The
WRITE must be directed to a deleted record in the file or to
record n+ 1, where n is the last record. If a WRITE REC= is
followed by a WRITE REC=, a record is added. If the
record specified already exists, a DUPREC error occurs. A
RESTORE to a relative file open for output is an error.

Table 6. OPEN, INTERNAL, RELATIVE, OUTPUT

Tables 8-5

Appendix B. Tables
Tables (continued)

.-

Previous
I/O READ RE- WRITE
statement READ REC=n~ READ REC=n~*

READ read read read add
or next record pre- record
REREAD sequen- n2 vious n2

tial record
record

READ read read read add
REC=n, next record record record

sequen- n2 n1 "4 n2
tial
record

Note read read add
next record error record
sequen- n, n2

tial
record

Restore read read add
first record error record
record n2 n2

RESTORE read read add
REC=n, record record error record

n2 n2 n2

Note: This line applies to: WRITE, REC=n,
REWRITE
REWRITE, REC=n,
DELETE
DELETE, REC=n,

*If a record does not exist a NOREC error occurs
**If a record already exists a DUPREC error occurs

Table 7_ OPEN, INTERNAL, RELATIVE, OUTIN

8-6 SA34-0109

RIO - nE - "'-
RE- WRITE LETE RE- STORE
WRITE REC=n~ DELETE R_EC=n2 STORE REC=n~

update update delete delete posi- position
pre- record pre- record tion at
vious n2 vious n2 to record
record record begin- n2
read read ning

update update delete delete posi- position
record record record record tion at
n, n2 n, n2 to be- record

ginning n2

update delete posi- position
error record error record tion at

n2 n2 to record
begin- n2

ning

update delete posi- position
error record error record tion at

n2 n2 to record
begin- n2

ning

update delete posi- position
error record error record tion at

n2 n2 to record
begin- n2

ning

Following I/O statement

READ* RESTORE*
Previous I/O KEY/ KEY/

(,
statement READ SEARCH REREAD RESTORE SEARCH

read read read position position

READ
next specified previous to to
record record record first specified
by key key record

READ read read read position position

KEY= next specified previous to to

SEARCH= record record record first specified
by key key record

read read read position position
next specified previous to to

REREAD
record record record first specified
by key key record

(- read read position position
first specified to first to

RESTORE record record
error

key specified
by key record

RESTORE read read position position
KEY= record specified error to first to
SEARCH= restored record key specified

to record

*If there is no KEY to match then a NOKEY error occurs

Table 8. OPEN, INTERNAL, KEYED, INPUT

If A WRITE is followed by a WRITE, a record is added.

Table 9. OPEN, INTERNAL, KEYED, OUTPUT

Tables B-7

Appendix B. Tables
Tables (continued)

Followin" 110 <t"tAn"ont . _ "------,._-~

RE-
Previous READ* RE- STORE* DE-
I/O KEY/ RE- RE- WRITE* DE- RE- KEY/ LETE*
statement READ SEARCH READ WRITE KEY= LETE STORE SEARCH KEY= WRITE

READ read r read update u delete p p d a
or next e pre- pre- P pre- 0 0 e d

READ record a vious vious d vious s s I d

KEY/ by d record record a record i i e

SEARCH key read t
read

t t t r
s e i i e e

or
p 0 0 c

REREAD e s n n s 0

REWRITE read c p p r

or next i e t t e d

REWRITE record f c 0 0 c

KEY= by
i i i b
e f f s f y

or key d error error i error i p i
DELETE e r e e k
or r d s c d e
DELETE e t i Y
KEY= c r f r

or 0 e k i e

WRITE r c e e c
d 0 y d 0

RESTORE read r r
first d k d

record error error error e

by y

key

RESTORE read
KEY/ record q error error error
SEARCH n2

n 2

*If there is no key to match, then a NOKEY error occurs

Table 10_ OPEN, INTERNAL, KEYED, OUTIN

8-8 SA34-0109

(
Previous I/O Following I/O statement

statement INPUT LlNPUT RESTORE

next next position

INPUT logical logical to
line line beginning

next next position

L1NPUT logical logical to

Jine line beginning

first first position
RESTORE logical logical to

line line beginning

Table 11. OPEN, DISPLAY, INPUT

(-

Previous I/O Following I/O statement

statement PRINT RESTORE

PRINT
next logical position to

line written beginning

RESTORE
first logical position to
line written beginning

Table 12. OPEN, DISPLAY, OUTPUT

(

Tables 8-9

Appendix B. Tables

8·10 SA34-0109

Appendix C. Performance tips and techniques
Introduction

This appendix is intended to identify areas that significantly
affect program and system performance. Performance is
enhanced if it is initially designed carefully and thoughtfully.

Flow diagrams are very helpful in designing
efficient-running systems. There are many publications on
flowcharting and other design aids that you may find helpful
if you are not already familiar with these techniques.

Performance tips and techniques C-1

Appendix C. Performance tips and techniques
BASIC statements and functions

C-2 SA34-0109

A functionally enriched BASIC language has been
implemented on System/23. This makes it possible tor",
achieve the same results with various combinations of J

BASIC statements. Pay close attention to the complete set
of options provided by each BASIC statement and, in
particular, to the specially provided set of 45 system
functions. Making use of system functions can eliminate
many lines of program statements thereby improving
processing time. Performance can also be enhanced by
careful selection and use of the BASIC statements.

This section contains general comments on the use of
BASIC to assist you in selecting combinations of statements
and functions. Many of the following comments and
examples will become noticeably significant when processed
repetitively in loops or collectively with other statements.

Statement length (255 characters)

Combine statements where possible to take advantage of
the 255 character maximum statement length.

(

(

Example:

Do

10 PRINT USING 20: "TOTALS", A, B, C
20 FORM X 9,C 6,SKIP 1,3*N B.2

Instead of

10 PRINT USING 20: "TOTALS"
20 FORM X 9,C 6
30 PRINT USING 40: A, B, C
40 FORM 3*N B.2

Constants in variables

Maintain constants in a variable if they are used repeatedly
to initialize other variables. This executes somewhat faster
than assignment from a constant and uses less storage.

Example:

Do Instead of

20 LET 11=1 •
• •
• •

300 LET COUNTER=I1 300 LET COUNTER=1

• •
• •

500 LET SWITCH=I1 500 LET SWITCH=1

Performance tips and techniques C-3

Appendix C. Performance tips and techniques
BASIC statements and functions (continued)

C-4 SA34-0109

Array initialization with MAT assignment

Use the MAT assignment statement to initialize an array.
since it is nearly as fast as the simple assignment.

Example:

Do

10 DIM ARRAY (10)
20 MAT ARRAY=(10)

Simple subscripts

Instead of

10 DIM ARRAY (10)
20 FOR 1=1 TO 10
30 ARRAY(I)=O
40 NEXT I

A performance gain can be realized by not specifying an
expression as an array subscript.

Example:

Do

X=N+1
ARRAY (X) =5

Instead of

ARRAY (N+1) =5

Arithmetic guidelines

Consider the arithmetic guidelines provided in the following
examples.

Examples:

Do Instead of

250 LET B=A*.5 250 LET B=A/2
500 LET B=A+A 500 LET B=A*2
650 LET B=A*A*A 650 LET B=A**3

Expressions-avoid repetitive evaluation

Avoid repetitive evaluation of the same expression in a
statement. Evaluate the expression once and save the result
in a variable for use in subsequent statements.

Example:

Do

300 LET A=C*3+D
310 LET X=A+B
320 LET Y=A+E

Instead of

310 LET X=C*3+D+B
320 LET Y=C*3+D+E

Performance tips and techniques C-5

Appendix C. Performance tips and techniques
BASIC statements and functions (continued)

C-6 SA34-0109

System functions

System/23 has 45 preprogrammed system functions. Each
of these functions has a specific purpose and was designed
to make program development easier and more efficient. .
Use the system functions whenever possible because they
always execute faster than the same capability written in
the BASIC language.

The following is a list of some of the very useful system
functions with a brief description of their purpose.

Function Name Purpose

POS Position Locates a string of characters
within a second string of
characters

SRCH Search Searches a one-dimensional
array for the location of a
specific character string or
numeric value

SREP$ String replace Replaces a substring of
characters with a new
substring of characters within
a larger character string

RPAD$ Pad blanks right Adds blanks to the right end
of a character string

LPAD$ Pad blanks left Adds blanks to the left end of
a character string

'.

" . 7

/r~ , .

'--

(

RTRM$

LTRM$

Trim blanks right Removes blanks from the
right end of a character string
(The V FORM statement
specification removes trailing
blanks from a character value
being input.)

Trim blanks left Removes blanks from the left
end of a character string

You should become familiar with each of the system
functions. Refer to the "Reference information" section of
this manual for a complete description of each system
function.

Performance tips and techniques C-7

Appendix C. Performance tips and techniques
Logic control

C-B SA34-0109

The sequential execution of a BASIC program can be
modified by many of the BASIC statements. Use the 'Ii

following general guidelines when selecting the method of ',-~

branching for each step of a program.

Labels for branching

Use labels as targets for branching statements to improve
the readability of a program.

Branching to labels executes as fast as branching to line
numbers. Also, storage is saved if the label is referenced
from more than one location in the program.

Example:

500 GOTO BEGIN

Subroutine use

Use subroutines to handle commonly used portions of a
program. Invoke these subroutines using either the
GOSUB/RETURN statements or the DEF/FNEND define
function statements. The GOSUB/RETURN combination
executes faster than the function call. However, the
performance of a subroutine is highly dependent upon the
BASIC code within the subroutine. Defined functions have
specific characteristics not available to the
GOSUB/RETURN combination. Review the features of the
DEF/FNEND and "the GOSUB/RETURN statements in the
"Reference information" section of this manual before
selecting the subroutine technique to use in a program.

('

(

I F statement capabilities

You can achieve improved performance by taking full
advantage of the capabilities of the I F statement. By using
the logical AND/OR comparison and the THEN/ELSE
clause cabability of the IF statement, you can often avoid
the need for more IF statements and additional code in a
program.

Example:

Do

200 IF A=B AND C=D THEN Z=A ELSE Z=B

Instead of

200 IF A=B THEN GOTO 210
205 GOTO 215
210 IF C=D THEN GO TO 225
215 LET Z=B
220 GOTO 230
225 LET Z=A
230

I F statement ordering

Ordering the execution sequence of I F statements can
significantly alter the performance of a program. Place the
most frequently occuring IF condition at the beginning of a
series of I F statements.

Performance tips and techniques C-9

Appendix C. Performance tips and techniques
Logic control (continued)

C·10 SA34-0109

Example 1:

A customer order to be read from a data entry file consists
of different record types and numerous individual
transactions.

Record type Identification

1 Header
2 Customer name and address
3 Transaction

•
3 Transaction
4 Trailer

Do

100 IF RECTYPE$="C" THEN GOTO 3000
110 IF RECTYPE$="A" THEN GOTO 1000
120 IF RECTYPE$="B" THEN GOTO 2000
130 IF RECTYPE$="D" THEN GOTO 4000

Instead of

100 IF RECTYPE$="A" THEN GOTO 1000
110 IF RECTYPE$="B" THEN GOTO 2000
120 IF RECTYPE$="C" THEN GOTO 3000
130 IF RECTYPE$="D" THEN GOTO 4000

Moving the test for record C to the beginning of the list
would result in 1800 fewer I F statements executed.
assuming 100 groups with an average of 10 transactions
per group.

',,-, '

(-

(

Example 2:

Cascading the IF statements can also improve performance
and reduce storage requirements.

Do

200 IF A ><1 THEN GOTO NOT1
210 IF B=1 THEN X=O
220 IF B=2 THEN X=1
230 IF B=3 THEN X=2
240 GOTO CONTIN
250 NOT1 : IF B=1 THEN X=3
260 IF B=2 THEN X=4
270 IF B=3 THEN X=5
280 CONTIN:

Instead of

200 IF A=1 AND B=1 THEN X=O
210 IF A=1 AND B=2 THEN X=1
220 IF A=1 AND B=3 THEN X=2
230 IF A><1 AND B=1 THEN X=3
240 IF A><1 AND B=2 THEN X=4
250 IF A><1 AND B=3 THEN X=5

Performance tips and techniques C-11

Appendix C. Performance tips and techniques
Logic control (continued)

C-12 SA34-0109

Loop design

In general, design loops using the FOR/NEXT statements,'.J
instead of the IF / GOTO combination of statements.

Example:

Do Instead of

200 FOR 1=1 TO 10 200 1=1+1
• 210 IF 1=11 THEN GOTO 310
• •
• •

300 NEXT I 300 GOTO 200

Tight loops

Always inspect loops for unnecessary code; whenever
possible, the code should be removed from the loop. This
includes non-executable statements such as FORM (see
"Non-executable statements" in this section).

Example:

Do Instead of

10 LET A=B+1 10 FOR X=1 to 1000
20 FOR X=1 to 1000 20 LET A=B+1
30 IF D(X)<A THEN D(X)=A 30 IF D(X)<A THEN D(X)=A
40 NEXT X 40 NEXT X

Coding techniques

(

Non-executable statements

Some required BASIC statements are considered
non-executable since they do not functionally alter the
program during execution. As these statements are
encountered during the execution of a program, the system
requires a small amount of time to identify the instruction
and proceed to the next sequential statement. The
non-executable statements are DIM, DEF/FNEND, FORM,
EXIT, and REM. Whenever possible, move these
non-executable statements out of loops.

Example:

Do Instead of

200 DIM A(10) 200 FOR 1=1 to 10
210 FORM C 5, N 3 •
220 FOR 1=1 to 10 •
• 250 DIM A(10)

• 260 FORM C 5, N 3

• •
300 NEXT I 300 NEXT I

Performance tips and techniques C-13

Appendix C. Performance tips and techniques
Coding techniques (continued)

C-14 SA34-0109

Remarks

Comments (REM statements) are considered ',,--,
non-executable. The system requires a small amount of
time to identify a REM statement. Place comments on
individual instructions using an exclamation point instead of
using REM statements whenever possible. Placing
comments on individual statements improves performance
and also saves storage by eliminating the need for a line
number and the REM statement.

Example:

Do

100 FOR A=1 to 15 Process items

•
•

400 NEXT A

Instead of

100 FOR A=1 to 15
110 REM Process items

•
•

490 NEXT A

Array redimensioning

The redimensioning of an array is one method of saving
storage. In the case where you originally dimension an array
to some pre-determined maximum dimensions and find that
in the course of running the program you don't need the
maximum size, you can redimension downward.

(

Example:

Do
100 DIM A$(100)*20
110 INPUT A ! Operator types in a number

of items to be input
120 FOR I = 1 to A
130 INPUT A$ (I)
140 NEXT I

190 MAT A$ = A$(A) ! Redimension down to
the number of items input

200 CHAIN "NEXTONE" , A$, A

Instead of

100 DIM A$(100)*20
110 INPUT A ! Operator types in a number

of items to ~e input
120 FOR I 1 to A
130 INPUT A$ (I)
140 NEXT I

190 REM without redimensioning
you will pass a 100 element array

200 CHAIN "NEXTONE", A$, A

Performance tips and techniques C-15

Appendix C. Performance tips and techniques
I/O techniques

C-16 SA34-0109

Buffer space considerations

System / 23 does not necessarily do a physical I/O
operation each time a READ or WRITE statement is
executed. If enough storage is available, System/23 may
buffer up to 7.5K bytes of data per file before actually
reading from or writing to the diskette. By taking advantage
of this buffering, heavily I/O bound programs can be made
to run significantly faster.

Points to remember are:

• Sequential vs. relative access of files
- Sequential access files can be buffered up to 7.5K

bytes of data. For relative access files, System/23
tries to keep as many 512 byte buffers as needed to
hold one logical record.

- Use sequential access whenever possible.

• Priority of accessing files
- 'Vhen more than one file will be accessed in a

program, access the most frequently used file first to
ensure that as much buffer space as possible is
assigned to this file.

• Need for closing files
CLOSE files that are no longer needed. This frees
space for buffers.

• Using CHAIN statement
Additional space for buffers can be provided by
breaking the program into a number of programs by
using the CHAIN statement. However, be sure that
the benefits are not offset by the length of time it
takes to execute the chain. (r)

'~/

(-

Selecting record length
System/23 format diskettes have a sector length of
512 bytes. Records that cross sector boundaries
require additional physical I/O. To avoid this, choose
a record length which, when incremented by one,
divides evenly into 512. For example: 63, 127, 511.
The extra byte is for the control byte that System / 23
attaches to each record in type 04 files.

OPEN statement considerations

An OPEN statement requires many physical I/O operations
and is time consuming. The time required can be reduced in
the following ways:

• Restrict use of CLOSE and OPEN statements
CLOSE a file only if it will not be used again or if
storage is a problem. This avoids unnecessary
OPENs.

• Position most-used files first
Position frequently OPENed files first in the diskette
directory. This can be done by creating these files
first on empty diskettes before adding additional files.

• Specify drive numbers
Specify drive numbers in the OPEN statement
whenever possible.

Performance tips and techniques C-17

Appendix C. Performance tips and techniques
I/O techniques (continued)

C·18 SA34-0109

Access time reduction for keyed files

The time required to access keyed files can be reduced in
the following ways:

Use keyed sequential access
- Whenever possible, use keyed sequential access.

• Specify KW= in OPEN statement
- For large key files specify "KW=" in the OPEN

statement (see "OPEN statement").

• Regenerate key files after update
- After adding records to the master file, regenerate

key files using the Create Index File, Customer
Support Function. This places all keys in sorted order
within the key file.

General I/O performance guidelines

• Allow sufficient file size
System/23 files will be automatically extended when
full, but this will slow down any file access. For best
performance, whenever possible, create a file as large
as will be required.

• Compress files
- Compress multi-extent files (see "DIR command").

Do this by copying the file to an empty diskette using
the Copy Diskette function.

• Multiple rewrites to the same record, see "Programming
considerations" under "REWRITE statement."

• Copy diskettes with media errors

(/

(

If a diskette begins to have media errors (see "DIR
command"). transfer all data to another diskette. Do
this using the Copy Diskette or Recover Diskette
functions.

Place files for best access
When a program will be accessing more than one file,
the files should be on separate diskettes or be
positioned close together when on a single diskette.

Select best file format
Use BASIC and H-exchange files only to transfer
data between System/23 and other systems.
Always use System/23 format files for normal
processing.

BASIC language considerations
Unformatted I/O is faster than formatted I/O.

- MAT I/O is faster than scalar processing.

Performance tips and techniques C-19

Appendix C. Performance tips and techniques
I/O techniques (continued)

C-20 SA34-0109

Selection of data file access method

Choosing the proper access method for your data files is
one of the more important decisions you must make.

Whether to use the sequential, relative, or keyed access
method depends on your application.

• Accessing individual records
Relative access. The fastest method of accessing an
individual record is directly by means of the relative
record number of the desired record.
For example, in an inventory file it is possible to
convert the item number into a record number. Item
numbers could be 1 to 1000. Item number 52 would
be record 52 in the file. There are more complicated
methods for creating a relative record number;
however, they are beyond the scope of this manual.
Keyed-access indexing. This is the next fastest
method to access individual records. A pointer to the
master file data record is maintained in an index file.
This is the most commonly used access method
because existing keys such as item numbers can be
used.
Sequential access. Processing a file sequentially to
find an individual record is time consuming because
the file must be read from the beginning until the
proper record is found.

':":

I/O techniques

(

(

• Processing sequential files
If an entire file is to be processed from beginning to
end, sequential access is the fastest method.
The fastest method to process a file sequentially is to
sort the master file into the desired order before
processing.
To process a RELATIVE file sequentially starting at a
specified record number, first OPEN the file
RELATIVE, and then execute a RESTORE #X, REC=A
statement. Subsequent READ statements without a
REC= clause will read each record sequentially from
the file.

• Processing keyed files
If a file is to be processed SEQUENTIAL in some
cases and RELATIVE in others, it may be more
appropriate to create an index (key) file. The system
can then access the master file (1) SEQUENTIAL by
accessing the index file or (2) RELATIVE by providing
a key to the index file.

Performance tips and techniques C-21

Appendix C. Performance tips and techniques
I/O techniques (continued)

C-22 SA34-01 09

Main storage index area for keyed access method

Access to a master file record using an index (key) file can' /
be improved substanially if you maintain an index area in
main storage that points to the index (key) file. To do this,
use the KW= parameter, which is included in the OPEN
statement.

Example:

30 OPEN #1:"NAME=TAXES,KFNAME=TAXKEY,KW=50",
INTERNAL,INPUT,KEYED

In the preceding statement, 50 bytes of main storage have
been allocated for index file pointers.

Performance can be substantially improved for random key
access to a file when an optimum KW parameter is
assigned. Refer to the "OPEN statement" section of this
manual for a complete description of the KW parameter and
how to calculate the optimum KW value.

(

i(~
"

(

Index file sorting

Many applications, such as inventory, make use of an index
file with pointers that allow fast access to desired records.
If the index file is sorted, access to a master record will be
faster than if the index file is not sorted. The index file for a
master file is automatically placed in sorted order when it is
initially created by the Create Index File function. See
Customer Support Functions, Volume II.

As new items are added to the master file, the item number
key (item number is specified as the key) is added to the
end of the index file. Depending on the activity of adding
and deleting records, the index file should be periodically
recreated so that the new index record is placed in its
proper location and the unwanted index records are deleted.

Performance tips and techniques C-23

C-24 . SA34-o109

(

(

(

Index

ABS(X) 6
absolute value 6
access method C - 20
access time reduction keyed files C-19
accuracy 14
action tables 220
adding statements 121
addition and multiplication 20
AIDX and DIDX 7

example (AIDX) 8
example (DIDX) 9
programming considerations 9
syntax 7

ALERT a procedure file 313
ALERT command 11

syntax 11
allocation, diskette 109
allocation of printer 300
alphabetic character set 12
alphabetic characters 49
AND (relational expression) 204
arc tangent 12, 31
arithmetic arrays 13

BASE 0 13
BASE 1 13
declared 13
dimensioned 13
one-dimensional 13
two-dimensional 13

arithmetic constant 18
example 18

arithmetic data 14
accuracy 14
arithmetic constant 18
arithmetic data formats 15
fixed-point format 16
floating-point format 17
integer format 15
magnitude 14
selecting an arithmetic format 18
significance 14

arithmetic data formats 15
fixed- point format 16

examples 16
floating-point format 17

example 17

integer format 15
examples 15

selecting an arithmetic format 18
example 18

arithmetic expressions 23
arithmetic expressions and operations 19

example 21
operators 20
rilles 20
syntax 19

arithmetic format 18
arithmetic guidelines C-5
arithmetic hierarchy 24

example 25
order of priority 24

arithmetic variables 26
examples 26

array element references 132
array expressions 26
array initialization C-4
array name, character 403
ARRAY redimensioning C-15
arrays 13, 27, 44, 132, 330

data items 27
element 27
example 28
maximum subscript 30
OPTION BASE 0 27
OPTION BASE 1 27

arrays, arithmetic 30
arrays, character 31
arrays, declaring 31
arrays, redimensioning 31
ascending index 7, 31
assignment 300
assignment statements 31
asynchronous communications terminal 77
ATN(X) 31

arc tangent 31
attention and inquiry 32

Cmd/Attn 32
Inq Key 33

attributes, display 183
attributes, Full screen 180
AUTO command 34

examples 35

Index X·1

Index

increment 34
line-num 34
programming considerations 35
syntax 34

BASE 0 13
BASE 1 13
BASIC character set 49

alphabetic characters 49
numeric characters 49
special characters 49

BASIC exchange (BX) 113
BASIC statements 36

CHAIN 41
CLOSE 64
CONTINUE 70
DATA 320
DEF 84
DELETE 94
DIM 100
END 123
EXIT 126
FNEND 84
FOR 145
FORM 150
GOSUB 193
GOTO 198
IF,THEN,ELSE 202
INPUT 208
LET 245
LlNPUT 251
MAT 95, 261, 263, 264, 266
NEXT 145, 272
ON 274
OPEN 277
OPTION 292
PAUSE 298
PRINT 302
RANDOMIZE 319
READ 320
REM 333
REREAD 340
RESTORE 344
RETRY 348
RETURN 349

X-2 SA34-0109

REWRITE 350
STOP 372
TRACE 399
USE 401
WRITE 408

BASIC statements and functions C-2
batch data transfer 77
blanks 39

rules 39
branching

GOSUB and RETURN 193
GOTO 198
ON 274
system functions 393

buffer space considerations C-17
built-in functions 393
BX 113
byte 39

catenation 40
CEIL(X) 40

example 40
ceiling 40
CHAIN statement 41

data-item 41
example 41
FILES 41
pgmname 41
programming considerations 43
syntax 41

change collating sequence 75
changing BASIC statements 121
changing line numbers 121
character array name 403
character arrays 44

example 44
character constants 45

examples 45
character data 45
character expressions 46

examples 46
related subjects 47
syntax 46

character padding
LPAD$ ·259

)

(,.

(

(

RPAD$ 356
character position (POS) 155
character repeat (RPT$) 357
character set 49

alphabetic characters 49
characters not displayable
EBCDIC characters 52
graphic characters 49
hex code 55
hexadecimal representation
numeric characters 49
special characters 50

character string 61
character string input (UNPUT)
character variable 403
character variables 60

example 60
characters 296
CHR$(X) 61

example 61
CLEAR command 62

parameters 62
syntax 62

CLEAR DATA 311
clear display screen 63
CLOSE statement 64

example 65
parameter 64
programming considerations
syntax 64

closing a procedure file 312
cmd/aUn 32
CMDKEY 66
CNT 66
CODE 67. 366. 372
coding techniques C-15

56

52

37

65

collating sequence. change 75
commands 67
comments 68
communications 72
CON 68
CON and ZER 412
concatenation 69

example 69
constants 18. 45. 69. 132
constants in variables C-3

examples C-4
CONTINUE statement 70
control attributes 184
control reserve 335
CONV 275
conventional representation 15
copy diskette 74
COS(X) 71
create index file 75
creating a procedure file 311
cross reference 71
currency symbol (PIC$) 298
cursor position 184
Customer Support Functions 72

asynchronous communications terminal 72
batch data transfer 72
change collating sequence 72
copy diskette or file 72
create index file 72
diagnostic analysis 72
display diskette label 72
load machine update 72
online test 72
prepare batch data transfer 72
prepare diskette 72
prepare sort control file 72
recover diskette 72
replace customer support function 72
select machine updat,e 72
set up asynchronous communications
sort 72

data
DATA

14.45
320

data buffering 108
data display 116
data file 221
data file access method C-20
DATA files 79

create a display file 79
edit an existing DISPLAY file 79
edit the file 79
example 80

data files. keyboard 221
data formats 15. 272

72

Index X-3

Index

data items 27 example 101
data list delimiters 299 example 103 -~~ -.~

DATA statement 81 parameter 100
example 82 example 100
parameter 81 programming considerations 104
programming considerations 82 syntax 100
syntax 81 dimensioning arrays 99

data transfer. batch 77 DIR command 105
DATE command 83 example 106

parameter 83 parameter 105
syntax 83 syntax 105

DATE$ 83 diskette
decending index 7 copy 74
decimal 296 display label 74
declaring arrays 83. 101 drive number 96
DEF.FNEND statement 84 file types 113. 115

multiple-line function 86 prepare 72
example 87 recover 75
parameter 86 diskette. saving on
syntax 86 REPLACE 338

one-line function 84 SAVE 361
example 85 diskette access state (VOLlD) 405
parameter 84 diskette data buffering 108
syntax 84 additional allocation 109

programming considerations 88 maximum space 109
the use of functions 87 size of this allocation 109

DEL command 92 diskette dynamic file extension 110
example 93 diskette file searches 111
parameter 92 file name 111
syntax 92 VOLID 111

DELETE statement 94 diskette file size 113
example 95 file types 113
parameter 94 BX 113
programming considerations 95 HX 113
syntax 94 diskette file types 115

deleting statements 121 table 115
delimiters. data list 299 diskette files 273
demension. upper (UDIM) 400 diskette storage requirements 113
descending index (MAT assignment) 95 DISPLAY 116
device address parameter 96 example 117
device sharing 96 files and data 116
diagnostic analysis 78 display attributes 183 ."L.

DIDX 7.99 blink 183
digit specifiers 167 highlight 183
DIM statement 100 invisible 183

declaring arrays 101 normal 183

X-4 SA34-0109

(

(

(

reverse 183
underline 183

display diskette label 74
display files 116
DISPLY (X) 118
division 21
dollar sign (PIC$) 298
drive number 96

device address parameter 96
DROP/FREE command 119

parameter 119
syntax 119

DUPREC 126
dynamic file extension 110

EBCDIC characters 52
edit DISPLAY file 79
edit file 79
editing a program or data file 121

adding statements 121
changing line numbers 121
deleting statements 121
programming considerations 122
replacing statements 121

element 27
ELSE 122
end of file (EXIT) 125
END statement 123

examples 123
parameter 123
programming considerations 123
syntax 123

EOF 126
ERR 124
ERROR 275
error handling 124
evaluation expressions 24
executing a procedure file 311
execution order 124
EXIT statement 125

error conditions 125
DUPREC 126
EOF 126
IOERR 126
NOKEY 126

NOREC 128
PAGEOFLOW 128
SOFLOW 128

example 128
parameters 125
programming considerations 129
syntax 125

EXP(X) 131
exponent specifiers 173

examples 173
exponential 131
exponentiation 22
expressions C-6, 26, 46, 132, 259
expressions, arithmetic 133
expressions, array 133
expressions, character 133
expressions, relational 133
expressions and operations 19

FIELDS 133
file 311
file extension, dynamic 110
file formatting 178
file name 141
file reference parameter 135

example 135
file searches 111, 135
file sharing 136

controlled 137
default 136
perform function 136
programming considerations 139
regulated 136
restrictions 137
summary 138

file size 113, 140
file space (FREESP) 179
File-spec 141
file specification parameter 141

examples 142
file types 113, 115
FILE(N) 144
FILE$(N) 144
FILENUM 134

example 134

Index X-5

Index

files 79, 241
files, display 116
files, internal 214
files, related subjects 143
files key-indexed 241
fixed-point format 16, 144
floating currency symbol 144
floating-point formula 17
FNEND 84, 179
FOR and NEXT st!ltements 145

example 147, 149
FOR syntax 145

parameter 145
N EXT syntax 146

parameter 146
programming considerations 148

FORM statement 150
digit specifiers 167
digits displayed 150
display character data 150
example 178
example of V format 162
examples of L format 162
examples of N format 159
examples of PO format 161
examples of ZD format 160
exponent specifiers 173
I/O list items 151
increase the spacing 151
insertion characters 171
output positions 150
parameters 155
PIC 164
programming considerations
reading same values 152
syntax 154
trailing characters 174
written into a record 151

FORMAT 326
format, arithmetic 18
formatting I/O files 178
FREE command 179
FREESP(N) 179
full screen processing 180

control attributes 184
display attributes 183

X-6 SA34-0109

176

example 184, 185
leading and trailing attributes 182
parameter 180
programming considerations 187
syntax 180

function names 403
function references 132
functions 72, 219
functions, built-in 393
functions, defined 189

general I/O performance guidelines C-19
global variables

CHAIN 41
USE 401

GO command 190
example 192
parameters 190
programming considerations 192
syntax 190

GOSUB and RETURN statement 193
example 195
parameter 193
programming considerations 195
syntax 193

GOTO statement 198
computed GOTO syntax 198
example 199
parameters 199
simple GOTO syntax 198

graphic characters 49, 51
guidelines C-5

handling interrupts 218
HELP STATUS command 200

example 200
syntax 200

HEX$(A$) 201
hexadecimal representation 52
hierarchy, arithmetic 24
HOLD 33,201
HX (H exchange) 113

.,Jt".-

(I/O action tables 220
I/O file formatting 215
I/O files 216. 329
I/O list items 151
I/O performance guidelines C-19
I/O techniques C-17
IF statement capabilities C-l0
IF statement ordering C-l0
IF.THEN.ELSE statement 202

logical operators. expressions 205
parameter 202
relational expression 204
syntax 202

increment loop (NEXT) 145. 272
index file. create 72
index file sorting C-22
index keys 207
indexing BASE 0 or 1 292
INPUT FIELDS 180
INPUT statement 208

example 210
parameter 208
programming considerations 211
syntax 208

inq key 33
inquiry 32
inquiry key 213
insertion characters 171

examples 173
INT(X) 219
integer

CEIL(X) 40
INT(X) 219

integer format 15. 213
internal constants 214
internal files 214
internal I/O file formatting 215

formatted 215
unformatted 215

internal I/O files 216
internal machine fixes (LINK) 249
internal representation of characters 216
internal variables 217
interrupt 217
interrupt handling 218

priority 218

intrinsic functions 219. 393
introduction 1
inverted print 291
10ERR 126

katakana 364
key description legend 222
key description table 222. 228
key- indexed files 241

created 241
process 241

key length 328
key starting position (KPS) 243
key workarea size 289
keyboard 220
keyboard generated data files 221

changed 221
created 221
length 221
listed 221

keyed files C-19
keys 242
keywords 395
KLN(N) 243
KPS(N) 243

L format 161
labels 243

example 244
labels for branching C-9
leading and trailing attributes 182
LEN(A$) 244
length of character (LEN) 244
length of key for file (KLN) 243
length of record (RLN) 355
LET statement 245

example 246
parameter 245
programming considerations 245
syntax 245

line control 247
line function 272
line numbers 248
line reference 248

Index X-7

Index

example 248
lines 367
LINK command 249

example 250
parameter 249
syntax 249

L1NPUT statement 251
example 252
parameter 251
syntax 251

LIST command 253
list items. I/O 151
L1ST.L1STP command 253

example 256
parameter 253
programming considerations 254
syntax 253

L1STP command 253
LOAD command 257

example 257
parameter 257
programming considerations 258
syntax 257

load machine update 73
LOCK 338. 361
LOG (X) 259
logarithm 259
logic control C-9
logical expressions 259
logical operators. expressions 205

examples 205
loop (FOR and NEXT) 145
loop design C-13
LPAD$(C$.X) 259
LTRM$(C$) 260

magnitude 14. 260
main storage index area C-22
MAT AIDX 7
MAT assignment 95
MAT assignment (addition. subtraction. scalar

multiplication) 261
example 262
parameter 261
programming considerations 262

x-a SA34-0109

syntax 261
MAT assignment (ascending index or

descending index) 263
MAT assignment (scalar value) 264

example 265
parameter 264
programming considerations 264
syntax 264

MAT assignment (simple) 266
example 267
parameter 266
programming considerations 267
syntax 266

MAT DIDX 7
matrix operations 268
MAX (X1.X2.X3 •...) 268
maximum subscript 30
maximum value 268
MERGE command 269

example 271
parameter 269
programming considerations 270
syntax 269

MIN (X1.X2.X3 •...) 272
minimum value 271
modifying a procedure file 311
modifying a screen 180. 251
multiple line function 272
multiplication 20. 20

N format 158
names 402

character array 403
character variable 403
example 402
function names 403
numeric array name 402
numeric variable 402

names. variable 272
negative 23
nesting a procedure file 312

ALERT 313
closing a procedure file 312
creating a procedure file 311
data 313

(-

example 314
executing a procedure file 311
interrupting 313
modifying a procedure file 311
SKIP 312
storage 313

NEWPAGE 303, 307
N EXT statement 145, 272
NOKEY 126
non-executable statements C-14
non-katakana 364
NONE (GOSUB, GOTO) 193, 199
NOREC 126
numbers 248, 319
numeric array name 402
numeric characters 50
numeric data formats 272
numeric to string conversion (STR$)
numeric variable 402

offline diskette files 273
OFLOW 274
ON GOSUB 193
ON GOTO 348
ON statement 274

error conditions 274
example 276
parameter 274
programming considerations 276
syntax 274

one-line function (DEF, FNEND) 84
online test 78
OPEN DISPLAY 277, 311
OPEN INTERNAL 277
OPEN OUTIN 352
OPEN parameter table 291
OPEN statement 277

example 282, 288
OPEN DISPLAY 277

example 282
parameter 279
syntax 279

OPEN DISPLAY syntax 278
OPEN INTERNAL 277

example 288

378

parameter 284
syntax 284

OPEN INTERNAL syntax 283
OPEN parameter table 291
programming considerations

OPEN statement considerations
open status 335
operations, arithmetic 23
operators 132
OPTION BASE 0
OPTION BASE 1
OPTION statement

27
27

292
parameter 292
programming considerations
syntax 292

OR 204
ORD(A$) 296
order of execution 295

execution 295
rules 295

ordinal value (ORO) 296
output positions 150
overflow 296
overstruck characters 296

packed decimal 296
PAD 296
padding characters

LPAD$ 259
RPAD$ 356

page overflow 296
PAGEOFLOW 127
parameter, device address
parameter, file reference
parameter, file specification
parentheses 24
PAUSE statement 298

description 298
syntax 298

PO format 160

297
297

297

performance tips and techniques
PI internal constant 214
PIC 164
PIC$ (C$) 298
POS 155

288
C-18

294

C-1

Index X-9

Index

POS(A$, B$,X) 299
positions 367
positive/ negative operations 23
preface III

about this book iii
prerequisites iii
related publications iv

prepare batch data transfer 77
prepare diskette 73
prepare sort 76
prerequisites iii
PRINT BELL 299
print control 309
print data list delimiters 299, 306
PRINT FIELDS 180
PRINT statement 302

example 309
parameter 303
programming considerations 304
syntax 302
USING 303

PRINT USING 303
print zones 303, 305, 309
printer assignment 300

assigned 300
programming considerations 301
released 300

printer spacing 307
PROC command 310

parameter 310
syntax 310

procedure 360
procedure file 311
PROCERR command 315

example 316
parameter 315
syntax 315

processing 180
PROCIN 316
program A-1,360
program or data file 121
PROTECT command 317

example 318
parameter 317
syntax 317

X-10 SA34-0109

quality print 308

random numbers 319
RANDOMIZE statement 319

syntax 319
READ statement 320

example 321
parameter 320
programming considerations 322
syntax 320

READ statement (with file reference) 324
example 326
key length 328
parameter 324
programming considerations 328
syntax 324

REC(N) 329
record files 332
record I/O files 329
record length (RLN) 355
record number (REC) 329
recover diskette 75
redimensioning arrays 330

example 331
rules 330

reference, line 248
reference parameter 135
referencing, substrings 331
related publications Iv
related subjects, files 143
relational expression 204, 331
relational function 204
relative record files· 332

accessed by 332
maximum 332

REM statement 333
example 333

remarks 334
example 334

RENAME command 335
example 335
parameter 335
syntax 335

RENUM command 336
example 337

l

parameter 336
programming considerations 337
syntax 336

repeat characters (RPT$) 357
replace 75
REPLACE command 338

parameter 338
programming considerations 339
syntax 338

replace string (SREP$) 370
replacing statement 121, 339
representation of characters 216
REREAD statement 340

example 341
parameter 340
syntax 340

reserved words 342
RESTORE statement (with no file reference) 344

example 344
syntax 344

RESTORE statement (with the file reference) 345
parameter 345
programming considerations 347
syntax 345

RETRY statement 348
example 348
programming considerations 349

RETURN statement 349
REWRITE statement 350

example 352
parameter 350
programming considerations 352
syntax 350

RLN(N) 355
RND function 319
RND(X) 355
ROUND(X,M) 356
RPAD$(A$,X) 356
RPT$(A$,M) 357
RTRM$(A$) 357
RUN command 358

example 359
programming considerations 359
syntax 358

sample procedure 360
sample program A-l, 360
SAVE command 361

example 362
parameter 361
programming considerations 362
syntax 361

scalar multiplication (MAT assignment) 363
scientific notation 16
screen 369
screen, clear (NEWPAGE) 303, 307
screen split 298, 369
search 363
select machine update 73
selecting an arithmetic format 18
selection of data file access method C-20
set up asynchronous communications 77
set up binary synchronous communications 77
SGN(X) 363
sharing 136, 364
SHIFT(X) 364
sign of a number 365
significance 14, 364
simple subscripts C-4
SIN(X) 365
size of array (DIM) 100
SKIP 156
SKIP command 366

example 367
parameter 366
syntax 366

skip lines 367
skip positions 367
SOFLOW 127,275
sort 76
SORT command 368

parameter 368
syntax 368

sorting C-22
SOURCE 338
space, file (DROP/FREE) 119
space, workarea (HELP STATUS) 200
space considerations C-17
spaces 369
spacing, FORM 151
special character set 369

Index X·11

Index

special characters 50
specification parameter 141
split screen 298, 369
SQR(X) 369
square root 370
SRCH 370
SREP$(A$,M,B$,C$) 370
standard format 371
statement length C-3, 371
statement numbers 371
statements C-14, 371
statements, adding 121
status line 371
STOP statement 372

example 373
syntax 372

storage use 374
STR$(X) 378
string 61,381
string to numeric conversion (VAL$) 402
subjects related to arithmetic expressions 23
subjects related to character expressions 47
SUBPROC command 379

exceptions 379
parameter 379
syntax 379

subroutine use C-9
subroutines 380
subscripted variables 380
substring referencing 381

example rule 5 385
example using subscripts 385
examples 381
extraction of characters 383
insertion of characters 384
referencing 381
replacement of characters 384
rules 382

subtraction 21
support 72
syntax description 2, 386
SYSTEM command 389
system commands 390

ALERT 11
AUTO 34
CLEAR 62

X·12 SA34-0109

DATE 83
r~

DEL 92 \

DIR 105
DROP 119
FREE 119
GO 190
HELP STATUS 200
LET 391
LINK 250
LIST 253
L1STP 253
LOAD 257
MERGE 269
PRINT 302
PROC 310
PROCERR 315
PROTECT 317
RENAME 335
RENUM 336
REPLACE 338
RUN 358
SAVE 361
SKIP 366
SORT 368
SUBPROC 379
SYSTEM 389
TIME 398
VOLID 405

system functions C-7,393
system keywords 395
system variables 396

CMDKEY 66
CNT 66
CODE 67
DATE$ 83
ERR 124
FILENUM 134
PROCIN 316
TIME$ 398
WSID$ 411

'l'

"L

TAB function 303, 307, 397
tables B-1,397
TAN(X) 397
techniques C-1, C-15

('

(

l

TEST 33
THEN 397
tight loops C-13
TIME command 398

syntax 398
TIME$ 398
tips and techniques 398
TRACE statement 399

default 399
syntax 399

trailing attributes 182
trailing characters 174

examples 175
trim 400

UOIM (array, X) 400
UFLOW 275
unformatted READ 328
use of blanks 39
USE statement 401

data-item 401
syntax 401

USING 215, 303, 324, 340, 350, 408

V format 162
VAL(A$) 402
variable names 402, 403
variable strings 381
variables 26, 60, 132, 380
variables, system 396

VOLIO command 405
example 407
parameters 405
syntax 405

volume identification (01 R) 105

whole numbers (CEIL) 40
words 342
workarea 407
write protection (PROTECT) 317
WRITE statement 408

parameter 408
programming consideratons 409
syntax 408

WSIO$ 411

XREF 411

ZO format 159
ZOIV 275
ZER and CON 412

CON syntax 414
example 415
parameter 414

ZER syntax 412
example 412
parameter 412

Index X-13

X-14 SA34-0109

(

(
...
o ...
::J

U

I
I
I

READE R'S COMMENT FORM

SA34-0109-1

BASIC Language Reference

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. IBM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. Instead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or clarifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape Please Do Not Staple

IIIIII
BUSINESS REPLY MAl L
FIRST CLASS PERMIT NO. 40 ARMONK. NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Information Development, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

--- ------ ----- ---- - ---- - - ----------_.-
International Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SA34·0109·1
Printed in U.S.A.

o
c: ..

(

c
.,
c
:J
CI
c
o
~
1J
"0
LL
~

o ..
:::l
()

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

READER'S COMMENT FORM

SA34-0109-1

BASIC Language Reference

Your comments assist us in improving the usefulness of our publications; they are an
important part of the input used in preparing updates to the publications. IBM may
use and distribute any of the information you supply in any way it believes appro
priate without incurring any obligation whatever. You may, of course, continue to
use the information you supply.

Please do not use this form for technical questions about the system or for requests
for additional publications; this only delays the response. I nstead, direct your
inquiries or requests to your I BM representative or the I BM branch office serving
your locality.

Corrections or cI arifications needed:

Page Comment

Please indicate your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments.)

Reader's Comment Form

Fold and tape Please Do Not Staple

111111

BUSINESS REPLY MAl L
FIRST CLASS PERMIT NO. 40 ARMONK. NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
Information Development, Dept 27T
P.O. Box 1328
Boca Raton, Florida 33432

Fold and tape Please Do Not Staple

--- ------ ----- ---- - ---- -- ----------_.-
International Business Machines Corporation
General Systems Division
4111 Northside Parkway N. W.
P.O. Box 2150, Atlanta, Georgia 30055
(U.S.A. only)

General Business Group/International
44 South Broadway
White Plains, New York 10601
(I nternational)

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

SA34-0 109-1
Printed in U.S.A.

n
S
:p
0"
:J

'" r-
:i'

) ..

