Theory-Maintenance
(5) $4 \sqrt[4]{4}$

Disk Storage Drive
(Machines with serial no. up to 30100)

Theory-Maintenance

5)

(Machines with serial no. up to 30100)

This manual provides, for the customer engineer, instructional information on the IBM 5444 Disk Storage Drive. Part 1 (pages prefixed 1-) of the manual describes the theory of operation of the machine, Part 2 (pages prefixed 2-) gives manual does ne, and appendixes contain reference data. Th circuits and power supplies thatain informado outside the machine. A glossary of special terms and an index are provided.
For maintenance of the machine, it is assumed that the reader has had theoretical and practical training on the 5444 Disk Storage Drive and that he is familiar with the using system to which the 5444 is attached. It is also assumed that he is familiar with the use of CE tools and with the servicing techniques that are employed in the maintenance of IBM equipment

Associated Publications

The following documentation is associated with this manual

1. The manuals of the using system to which the 5444 is attached
2. Automated logic diagrams and other engineering - controlled documents for the 5444. These are referred to in the manual and are shipped with each machine.
3. Installation instructions for the 5444. These are also shipped with each machine.
4. Symptom indexes and service aids for the 5444. Thes are distributed by technical operations departments as the
need arises and are available from IBM branch offices.
5. IBM Illustrated Parts Catalog 5444 Disk Storage Drive (Machines with serial no up to 30,100) Order No. S135-0001.

Abbreviations

AC,ac	Alternating Current
ALD	Automated Logic Diagram
c	Common
CE	Customer Engineer
cm	Centimeter
DC,dc	Direct Current
EC	Edge Connector
EMF	Electromotive Force
HDI	Head-to-Disk-Interference
hp	Horsepower
Hz	Hertz
in.	Inch
MAP	Maintenance Analysis Procedu
mm	Millimeter
ms	Millisecond
NC	Normally Closed
NO	Normally Open
NRZ	Non-Return to Zero
ns	Nanosecond
Rd	Read
R/W	Read/Write
SLD	Solid Logic (Dense)
SLT	Solid Logic Technology
TAP	Tuning Analysis Program
TB	Terminal Block
${ }_{\mathrm{V}}^{\mu}$	Microsecond

Second Edition (July, 1970)

This is a major revision of, and obsoletes $\mathrm{ZZ33}$-0026-0. Changes are continually made to the information herein; any such changes will be reported in subsequent revisions or FE Supplements.

A form for readers' comments is provided at the back of this publication. If the form has been removed, comments may be addressed to IBM United Kingdom Laboratories Ltd.,
Product Publications, Hursley Park, Winchester, Hants, England.
© Copyright Intemational Business Machines Corporation 1970

Part 1. Theory
Chapter 1. Introduction . . Machine Description
Machine Safety and Data Protection
Start/Stop Sequence
Manual Control of the 544
Machine Control from the Using Sys
Data Organization
Cylinder
Alternate Cylinder Assignment
CE Cylinder
Track FormatSector Format
${ }_{\text {Air }}$ Circulation System
Drive Mechanism
Drive Motor .
$\mathrm{DC} \mathrm{Braking}_{\text {d }}$.
Drive Spindle ${ }^{\text {A }}$
Recording Disks
Fixed Disk
Removable Disk.
40 Disk Cartridge .
Carrridge Clamp Arms
Cartridge Handle ${ }_{\text {Disk Cartridge Handing and Storage }}$
Brush Microswitches
Brush Motor . .
Carriage
Detent Mechanism
Voice Coil
Head/Arm Assembly
${ }_{\text {Flying the Heads }}^{\text {Head/Write Signal Level }}$
${ }_{\text {Head Load Solenoid Assembly }}$
Knock-Off Mechanis

DC Box
Resistor
Resistor Box:
Auxiliary Electronics
Electronic Interloc
Electronic Interlock
Switch Interlocks
Circuit Description
Index Transducers
Index Transducers.
Track Cosssing Sensor
Fine Home Sensor
Carriage Photocell
Track 000 (Home) Indication
Data Channel Electronics
Chapter 3. Principles of Operation
Input Communication Lines
mmunication Lines
Machinc Operations
Machine Safety
Start Up Sequence . .
Head Movement Across Disks
Recalibration to Track 000
CE Access Operations
Read/Write Operations
Double Frequency Recording Write Operation
Read Operation.
Read Operation
Safety Circuits
Chapter 4. Features
Chapter 5. Power and Coolin
Power Requirements AC Power
DC Power
Power Sequencing
Power-On Sequence
Chapter 6. Console and Maintenance Facilities
SECTION 1. CONSOLE
Operator Console
Mode-Select Switch .
Forward/Reverse Switch CE Cylinder
CE Disk Cartridge.
Track Position Indication
Drive Mechanism
Dive Mechanism

Part 2. Maintenance

Ciapter 1. Reference Data and Diagnostic Techria SECTION 1. REFERENCE DATA

Functional Characteristics
1.1.1.1
1.1.2
Spermat
1.2 Interface
1.3 ALD Package SECTION 2. DIAGNOSTIC TECHE
1.4 Approach to Servicing
1.4.1
1.4.2
Major Functional Area
Error Conditions
1.4.2 Error Conditions

Chapter 2. Console and Maintenance Facilities SECTION 1. BASIC UNIT
2.1 Console.

CE Panel
2.2.1 CE Mode-Select Switch
23. ${ }^{2.2 .2}$ Forward/Reverse Swits
2.3.1 Branch Office/Support Center Toois
2.3.2 Customer Installation Tools
2.3.3 Tools Use
2.3.3 Tools Use

Maintenance Aids.
2.4.1 Fixed Disk CE Track
2.4.2 Track Position Indication
2.4.3
Detent Yoke Holdout
2.4.4 Detent Yoke Holdout 2.4.5 TAP Lines -

Chapter 3. Preventive Maintenance
SECTION 1. BASIC UNIT
3.1 Approach to Preventive Maintenanc
3.1.1 Visual Inspection
3.1.2 Electronic Units.
3.1.3 Mecthanical Unit
3.2 ${ }^{\text {3.1.4 }}$ PM Proceanliness
3.2.1 Lubrication Details

Chapter 4. Checks, Adjustments, and Removal
SECTION 1. BASIC UNIT
4.1 Disks.

4.1.2 Removable
4.1.3 Fixed Disk

SECTION 2. FeAtures 2-38
Chapter 6. Locations 2-3
6.1
6.2 Electrical System Components
P.
$2-39$

Appendixes and Index

Appendix A. Special Circuits Not available

Appendix C. Disk Enclosure Adjustments and Locations
C. 1 Disk Enclosure Adjustments CC.1.1
C.1.2
Enclosure Air
Drawer Lock Bypass PM Procedure C-
 Appendix D. Inches Conversion into Millimeters and Centimeters D- 1 Appendix E. Glossary of Terms EIndex X
Part 1. Theory

	IBM 5444 Disk Storage Drive
1-2	Track Format
1-3	Sector Format
1. 4	Component Layout - Top Vie
1-5	Component Layout - Underside View
1-6	Air Circulation System .
1. 7	Motor Drive Schematic .
1.8	Drive Spindle
1-9	Lower Disk Hub Assembly
1-10	5440 Disk Cartridge
1-11	Upper Disk Hub Assembly
1-12	Cartridge on Drive Spindle
1-13	Cartridge Handle and Release
1-14	Disk Cleaning Brushes
1-15	Disk Cleaning Brushes Linkage Mechanism
1-16	Actuator Assembly
1-17	Carriage and Actuator Assembly - Without Heads
1-18	Leadscrew and Follower $1-1$
1-19	Layshaft/Leadscrew Drive 1 111
1-20	Detent Mechanism 1-11
1-21	Detail of Detent Mechanism 1-11
1-22	Read/Write Head $1-11$
1-23	Head Assembly 1-13
1-24	Head Load Linkage 1-13
1-25	Head Load Shaft Operation 1-14
1-26	Head Load Solenoid Assembly 1-14
1-27	Head Load Solenoid Circuit 1-14
1-28	Knock-Off Mechanism $1-15$
1-29	Logic Gate Card Layout 1-15
1-30	Auxiliary Electronics 1-16
1-31	Interlock Switch Circuits
1-32	Upper Index Transducer $1-17$
1-33	Lower Index Transducer 1-17
1-34	Track Crossing Sensor/Fine Home Sensor . . $1-18$
${ }^{1-35}$	Drive Disk and Sensor Mask ${ }^{1-18}$
${ }^{1-36}$	Carriage Photocell 1-18
1-37	Carriage Photocell Signals 1-18
1-38	Track 000 Indication $1-19$
1-39	Data Flow and Control ${ }^{1-20}$
140	Start-Up Sequence - Flowchart ${ }^{1-21}$
$1-41$	Start-Up Sequence - Timing 1-22
142	Multiple Track Head Movement-Operation
	Sequence ${ }^{1-23}$
1.43	Head Forward Operation - Timing ${ }^{1-23}$
$1-44$	Clutch and Detent Signals ${ }^{1-24}$
145	Access Control Signals 1-24
146	Single Track Head Movement - Operation
	Sequence $1-24$
$1-47$	Home Det

PERSONAL SAFETY

Safety cannot be over-mphasized. To ensure personal safety and that of co-workers, follow safety precautions at all times.

General Safety Practices

Become familiar with the general safety practices and the procedures for artificial respiration that are outlined in CE Safety Practices Card, Order No. S229-1264. This car issued to all customer engineers and is also obtainable from IBM Distribution Center, East Simpson Ferry Road, Mechanicsburg, Pennsylvania 17055, U.S.A.

Safety Practices at the 544

$A C$ and $D C$ Power: AC power and dc power are present at rminals inside the machine while the using system remai ermule ing on the machine.
Drive Disk and Drive Tire: Do not clean the drive disk or drive tire while the machine is running.
Drive Motor: The motor is provided with a thermal cutout that restores power when the motor has cooled after overheating. Always turn off power, therefore, before workin on the motor.
Isopropyl Alcohol: Use only IBM part 2200200 for cleaning parts as specified in Part 2. Isopropyl alcohol is a flammable liquid; therefore observe strict precautions regarding its torage. Keep only the minimum quantity that is needed for mmediate use, and store it in the original container whenver possible. Note the shipping regulations that are given on the container.

Equipment Safety

The machine can be easily damaged by incorrect operation and wrong servicing techniques. Cautionary notes are and wrong servicing techniques. Cautionary notes are

Cartridge Removal: Before removing a cartridge during a fault condition, make sure that the carriage and cleaning brushes are fully retracted.

CE SAFETY PRACTICES		
All Customer Engineers are expected to take every safety pre caution possible and observe the following safety practices	12. Each Customer Engineer is responsible to be certain that no action on his part renders product unsafe or exposes	
	hazards to customer personnel.	
d equipment with dangerevs volitage. Always ad	13. Place removed machine covers in a safe out-of-the-way place where no one can trip over them.	
	4. All machine covers must be in place before machine is re-	
maior components, working in imm	urned to customer. 15. Always place CE tool kit away from walk areas where no	
	one can trip over it (i.e., under desk or table).	
	16. Avoid touching mechanical moving parts (i.e., when lubricating, checking for play, etc.).	
	17. When using stroboscope - do not touch ANYTHING - it	
	may be moving. ery. Shirt sleeves must be left buttoned or rolled above the	
it is absolu		
electrical circuitry anywhere in the machine, the follow be followed	19. Ties must be tucked in shirt or have a tie clasp (preferably , mand	
a. Anothe	nonconductive) approximately 3 inches from end. Tie chains are not recommended	
b. be in in immediate vicinity.	20. Before starting equipment, make certain fellow $C E$'s and customer personnel are not in a hazardous position. 21. Maintain good housekeeping in area of machines while performing and after completing maintenance.	
b. Rings, wrist wathes, chain		
Only insulated pliers and screwdrivers shall be used		
	1. Start Immediately, Seconds Coun	
		, im on kis back immediatay,
c. Using spring hooks, ottaching springs.	Do not move victim unless absolutely necessary to remove from	1. Clear throat of water, food
nds.		foreign matter. 2. Tilt head back to open air passage
f. Alil other conditions that may be hazardous to your	help or stop to lo losen clothing, warm the victim or apply stimu	3. Lift jow up to keep tongue out of
- eyes. Remember, they are your eyes.	lants. Check Mouth for Obstructions	
	2. Check Mouth for Obstructions Remove foreign objects - P	4. Pinch nost
ined	tongue forward. 3. Loosen Clothing - Keep Warm	5. Blow until you see chest rise.
vals.	3. Loosen Clothing - Keep Warm Toke care of these items ofter vic.	-
ben appoved	tim is breathing by himself or when help is available.	${ }^{\text {to }}$ ¢ ${ }^{\text {en }}$
Uving $100{ }^{\text {ored }}$		
d	After victim revives, be ready to resume respiration if necessary.	nouth to mo
yotan sting of pushing	5. Call a Doctor Have someone summon medical	
or parts weighing over		
elc. shall be restored ofter	6. Don't Give Up	
KNOWING SAFETY RULES IS NOT ENOU	victim is breathing without help is certainly dead.	
USE GOOD JUDGMENT - ELIMINATE UNSAFE ACTS		

CE Safety Practices Card, Form 229-1264
CE Cartridge - Restricted Tracks: Do not overwrite tracks $004,005,006$, and 071 through 075 . These are prewritten tracks for use during alignment and, once destroyed, must be factory recreated.

Cleanliness: In the 5444 , cleanliness is of the utmost imp tance. Because the read/write heads fly clear of the disk only 85 millionths of an inch, extremely smal particles can be trapped in this gap; these particles can
accumulate until they damage the disk surfaces or the head faces. When the machine is being worked on with the top cover removed, take care not to let tools or other equipmen fall inside the machine.

Contamination of Other 5444's: If a head-to-disk interference occurs on a disk cartridge, particles may be generated that can damage other 5444's if the defective cartridge is placed on them. If a disk cartridge is damaged, it must never be used on another 5444.

Disk Damage: The coated surfaces of the disks must be protected from any damage. When installing a read/write head, first wrap a lint-free issue, iBM part 2162567, around the head to prevent a head-to-disk contact. When removing or replacing an actuator assembly, take careful note of the cautions given under the item 4.4 in Part 2, so that the disk will not be damaged. The actuator assembly must stay in contact with the base and not be allowed to lift during th course of adjustment.

Inner Limit Stop Shaft: The setting of the inner limit stop shaft provides a reference position for the drive disk. Therefore, loosen either the inner limit stop shaft or the drive disk (but not both parts) at any one time.

Power Sequencing: Do not apply 24 V dc without also apply ing other logic voltages; otherwise, the voice coil will be damaged.
Precision Components: All components contributing to the Precision Components. All components contributing to the
accuracy of the actuator and carriage must be handled and accuracy of the actuator and carriage must be handed follower and ball slides must be kept free from contamina tion or damage. Head arm assemblies should be stored in transit boxes.

Read/Write Heads: Do not touch the faces of the read/write heads with your fingers, because skin oil can attract particles and erode the head. Do not blow on the heads because saliva can damage similarly.

SLT Cards: Remove power before removing or replacing card, to prevent damage to other cards in the circuit.

MACHINE DESCRIPTION

- The IBM 5444 Disk Storage Drive is a direct-access storage unit providing up to $\mathbf{4 0}$ million bits of data storage.
- Three models are available.
- Data is stored on both sides of magnetic recording disks.
A removable upper disk forms part of the IBM 5440 Disk Cartridge.
- Machine operations of accessing, reading, and writing are controlled from the using system
- Read and write operations are accomplished using read/write (R/W) heads.
- An actuator carries the read/write heads over the disk surfaces.

The 5444 Disk Storage Drive (Figure 1-1) is a direct-access disk file that provides auxiliary storage for small computer systems. The unit is designed to be mounted within the frame of the using system.
The storage medium is a 14 in . $(356 \mathrm{~mm})$ diameter disk, coated on both sides with magnetic iron oxide. The 5444 can accommodate two such disks mounted on a common drive spindle. The lower disk is permanently mounted in an enclosure at the base of the drive spindle. The top disk forms part of th

Dabs

Data is stored in concentric tracks on the recording surfaces. To replace any defective tracks, three extra track per surface is available for use only by the customer engineer (CE).
Three models of the 5444 are available, the main differences being the storage capacity and number of disks used.

Differences between Models

Model 2 is described in this manual; any differences between models are dealt with where appropriate

Figure 1-1. IBM 5444 Disk Storage Drive [07461]

Model 1: Two disks. Data is stored on both disks, on 100 tracks of each of the four recording surfaces. The total storage capacity is 20 million bits.
Model 2: Two disks. Data is stored on both disks, on 200 tracks of each of the four recording surfaces. The total storage capacity is 40 million bits.
Model 3: One disk (removable) only. Data is stored on 200 tracks on each recording surface of this disk. The total storage capacity is 20 million bits.

Major Units

- The major units are described in detail in Chapter 2.

The 5444 contains two 14 in . (356 mm) magnetic recording disks on a common drive spindle. The lowe disk is fixed and the upper disk removable forming part of the IBM 5440 Disk Cartridge. Writing and reading uses four read/write heads: one for each recording surface. The four heads are supported in a carriage that
moves on linear ball slides within the actuator frame. Movement of the carriage is from a leadscrew driven via a flexible drive disk which, in turn, obtains its motion from a constantly-turning layshaft. Forward or reverse motion of the carriage is given by clutches acting on the flexible drive disk. The heads are stopped at the correct track by a detent on the leadscrew. A drive The upper the aisks and the layshaf.
is permanently enclosed in the 5440 Disk on Model 3) is permanently enclosed in the 5440 Disk Cartridge. The be fitted to other cartridges and 5444's. Cartridge be fitted to other cartridges and 5444's. Cartridge
interchangeability depends on model. Model 1 reads only the first 100 tracks of a disk and so reads only part of a disk written on a Model 2 or 3.

MACHINE SAFETY AND DATA PROTECTION

Safety devices on the 5444 control start/stop sequencing and actuator operations and protect recorded data. The safety devices include drawer and cartridge interlocks to prevent access during operation, and interlocks to prevent access during operation, and interlocks to
prevent the 5444 starting when the 5444 is open. The CE can override the interlocks during maintenance.
The 5444 includes sensors to monitor the write circuits during read/write operations. If an unsafe condition occurs, a 'data unsafe' signal is sent to the using system to inhibit all further read/write operations until the cause of the unsafe condition is removed.

MACHINE OPERATIONS

- All machine operations are controlled by signals from the using system.

Start/Stop Sequence

- Start and stop sequences are controlled by a ${ }^{+}+24 \mathrm{~V}$ file start' line from the using system.

Before the start-up sequence commences, the using system power supplies must be switched on, and the drawer and cartridge interlocks made. Start-up sequence commences with line ' +24 V file start' activated, and
takes approximately one minute to complete. During this time, four cleaning brushes sweep across the disk ecording surfaces to remove dust particles. The on minute sequence also allows the machine electronics an e temperature in the disk enclosure to stabilize
At ino 1500 rpm with the read/write heads load ver the disks at track 000 A 'ready' signal indicates to the using system that the 5444 can start operations.
Stop sequence commences when ' +24 V file stat
drops. The read/write heads unload and retract off the disks. When the disks have stopped, the 5444 can be opened to remove the disk cartridge.
Note: When ' +24 V file start' is dropped, all dc power supplies remain on at the machine and ac power is still present in the ac box

Carriage Movement

- Controlled by 'access forward' and 'access reverse' lines from the using system.

The 5444 must be ready before a carriage movement can begin. While the read/write heads are moving over the tracks on the disk, the 5444 generates 'track crossing' pulses to enable the using system to determine the hea osition.
When 'access forward' or 'access reverse' is activated he carriage moves the heads across the disk surfaces, Wen the access command is dropped, a detent ed/wite heals poition over the

Read/Write Operations

- Read/write operations are controlled by 'read select', 'write select', and 'erase select' lines from the using system

To perform a read or write operation, the appropriate head is defined by head select and disk select lines. The read or write is further defined by 'read select' or write select' and 'erase select' lines respectively from the using system
The erase coil is always energized during a write operation to trim the edges of the written data tracks. his technique is called 'side erase'

Manual Control of the 5444

The 5444 may be controlled manually from a CE control panel. Two switches on this panel enable the 5444 to be switched off-line to give manual selection of any head or track. When controlled from the CE contro panel, the 5444 is write-inhibited.

Machine Control from the Using System

The 5444 is under the complete control of the using system for accessing, reading, and writing. The 5444 contains access control logic, read/write logic, and safety and interlock circuits. Twelve input and eight outpu lines form an interface with the using system. The interface is described in Chapter 3.

DATA ORGANIZATION

- Track format is determined by the using system.

- Where a byte is referred to, an 8 -bit byte is implied

Cylinder

The 5444 contains two disks, totalling four surfaces for recording. (Model 3 has one disk, giving two recording surfaces.) Each disk consists of 203 concentric cylinders (Model 1 consists of 103 cylinders.) Each cylinder has two tracks, one on the top surface, and one on the bottom surface. At each cylinder address, either track may be read (or written onto) by selecting the appropriate read/write head.

Alternate Cylinder Assignment

Model 1 has 103 cylinders, Models 2 and 3 have 203 cylinders. On all models, three of these cylinders are used as alternate cylinders where data is transferred to replace a defective cylinder. The alternate cylinders are numbered 001, 002, 003 (on all models).

CE Cylinder

One extra cylinder on each disk (Model 1: cylinder 103 Models 2 and 3: cylinder 203) is reserved for CE use during maintenance

Track Format

- Each track is divided into 24 sectors.

- An index marker pulse indicates the start of each track.

The track format is shown in Figure 1-2. Each track is divided into 24 equal length sectors. A data record is identified by specifying the cylinder, head, and sector number corresponding to that record.
An index marker pulse indicates the start of each track and aligns all tracks on any disk. The index pulses are derived from index transducers monitoring rotation of the two disks. The upper removable disk and the fixed disk have separate index transducers.
After the index pulse, there is a gap of 32 bytes before the first sector is written. This gap allows for variation in the position of the index pulse.

Sector Format

- Each sector contains an identifier field and a data field
- Address marks denote the beginning of each sector.

The sector format is shown in Figure 1-3. The beginning of each sector is denoted by address marks which are derived from the 'read data' output of the read amplifier. A data separator in the using system separate 'read data' into data pulses and clock pulses. The data separator also provides address marks indicated by missing clock pulses.
The identifier field contains a flag byte, two address bytes, and three check bytes. The flag byte indicates either that the entire track is not used because of some defect, or that the track is an alternate track replacing a defective track. The two address bytes contain the sector address as a 14-bit binary number. The three check bytes are generated by the using system to verify the identifier field.
The data field contains one synchronizing byte from the using system, 256 data bytes, and three check bytes.

Figure 1-2. Track Format [07462]

Legend

Figure 1-3. Sector Format [07463]
5444 (<30100) FETMM (5/70)

Figure 1-4. Component Layout - Top View [07464]

Figure 1-5. Component Layout - Underside View [07465]

BASE

The component parts of the 5444 are mounted on a cast light-alloy base. A closed air-circulation system is built into the casting. Figures $1-4$ and $1-5$ show the layout of the component parts on the base casting the layout of The using system provides mounting facilities for the 5444 (see Appendix C).

AIR-CIRCULATION SYSTEM

- A closed air-circulation system keeps the disk chamber free from contamination. An air filter removes dust particles.
- Impeller blades on the rotating lower disk hub assist the flow of air.

The read/write heads fly close to the disk surface Contamination is therefore removed from the air in th disk chamber to avoid head-to-disk interference. A disk chamber to avoid head-to-disk interference. A contamination-free environment for the disks.
contamination-free environment for the disks.
An air filter removes any dust particles down to $1 / 3$ micron in diameter. The air then recirculates into the disk chamber via a duct in the base. The disk cleaning brushes park within the airstream.
Eight impeller blades on the underside of the lower isk hub assembly force air through the filter and back hrough the return duct to the center of the disk chamber. A deflector plate ensures a streamline airflow through the filter and prevents dust particles in the bush area from re-entering the disk chamber.

DRIVE MECHANISM

- The disks rotate at $1500 \mathrm{rev} / \mathrm{min}$
- A layshaft pulley incorporated in the drive mechanism provides motive power for the actuator assembly
- Drive belt tension is automatically set by a spring-loaded idler pulley.

The disks on the drive spindle (one only on the Model 3) are driven at $1500 \mathrm{rev} / \mathrm{min}$ by a $1 / 12 \mathrm{hp}$ motor via a flat drive belt and an idler pulley (Fiqure 1-7). The drive belt is coupled via a layshaft pulley to the actuator assembly, which moves the read/write heads over the recording surfaces of the disks. The idler pulley maintains tension on the drive belt.

Drive Motor

- Different drive motors and pulleys are used for 50 Hz and 60 Hz operation (see Appendix B).

The drive motor is a $1 / 12 \mathrm{hp}$ capacitor induction motor and is fixed to the base on a moulded plastic mounting to ensure that the motor is electrically insulated from the base

Figure 1-6. Air-Circulation System [07466]

View from underide of 544

Figure 1-7. Motor Drive Schematic [07467]

A thermal cutout integral with the motor body cuts off the motor ac supply to protect the motor from overheating; operation of the cutout shuts down the 5444. The cutout resets automatically when the motor cools down. Normal machine start-up procedure may then be performed provided that the cause of thermal trip is rectified
To enable the 5444 to be operated from 50 Hz and 60 Hz power supplies, different drive motors and motor pulleys are available (see Appendix B).

DC Braking

DC braking ensures that the disks stop rotating within 30 seconds during a file-stop-sequence. When ' +24 V file start' is dropped, relay K5 is energized to pass dc hrough the drive motor. K5 is de-energized when 'speed zero' is activated near the end of the file-stop-sequence.

Anti-Static Brush

A carbon bearing on the anti-static brush runs against the domed base of the drive spindle and grounds the spindle to the base (that is, logic ground).

DRIVE SPINDLE

The drive spindle (Figure 1-8), which carries the two recording disks, runs in two sealed bearings within a housing bolted to the base. Drive is obtained from the drive motor via a belt and a pulley mounted on the spindle.
A metal nib fixed to the pulley is sensed by a transducer, which provides an index pulse to indicate the start of each recording track on the permanent (lower) disk.

RECORDING DISKS

- Each disk has coated surfaces which can be
magnetized to store bit patterms.
- Models 1 and 2 use two disks.

- Model 3 uses one disk

- Model 1 uses only tracks 000 to 103.

The disks are constructed from light alloy and are 14 in .

Figure 1-8. Drive Spindle [07468]
$(356 \mathrm{~mm})$ diameter, $0.050 \mathrm{in} .(1,3 \mathrm{~mm})$ thick, coated approximately $0.0001 \mathrm{in} .(0,003 \mathrm{~mm})$ thick on each sid ith epoxy bonded magnetic iron oxide
The usable section (that is, amount traversed by R/W heads) of each disk is 2 in . ($50,8 \mathrm{~mm}$) wide from track 000 to track 202. The inner track (202) is at 4.5 in $114,3 \mathrm{~mm})$ radius and the tracks are 0.010 in . $(0,25$ mm) apart
Models 1 and 2 use two disks (four recording surfaces) nd Model 3 uses one disk (two recording surfaces). On Model 1 only tracks 000 to 103 are used for recording access to the other tracks is limited by the acces mechanism.

Fixed Disk

- Where two disks are used, the lower disk is permanently mounted on the hub assembly of the drive spindle.

Fixed Lower Disk Hub Assembly

- The hub assembly is a push-fit on the drive spindle

The fixed lower disk is secured on the hub assembly by clamp ring (Figure 1-9). Eight impeller blades on the base of the hub assembly force air through the filter. A magnetic ring clamps the removable upper disk assembly to the fixed disk hub assembly.

Removable Disk

- The removable upper disk on its hub assembly is permanently enclosed in the 5440 Disk Cartridge (Figure 1-10) to protect the recording surfaces.
- The upper disk hub assembly is magnetically clamped to the lower disk hub assembly and seats on the drive spindle cone.
- For storage, the removable disk in its cartridge is placed into the bottom cover

Upper Disk Hub Assembly

- The removable upper disk is clamped to the upper disk hub assembly, which is magnetically clamped to the lower disk hub assembly.

A clamp ring secures the disk to the upper disk hub assembly (Figure 1-1) and the armature ring clamps to the ring magnet of the lower disk hub assembly, locking the two disks together on the drive spindle (Figure 1-12). The upper disk hub assembly seats on the drive spindle cone (see Figure 1-12).
For storage, the removable disk is placed in the cartridge bottom cover; the armature ring clamps onto our magnets (see Figure 1-13) to seal the cartridge covers. An index slot in the armature ring is used with ransducero prexide fach recording track on the upper disk.

5440 DISK CARTRIDGE

- The disk cartridge is held in position on the machine by two cartridge clamp arms.

When the cartridge is installed, the bottom cover is stored on top of the upper disk enclosure.

Figure 1-10. 5440 Disk Cartridge [07470]

Figure 1-11. Upper Disk Hub Assembly [07471]

- The cartridge carrying handle is used to release the cartridge from the drive spindle, and to release the artridge bottom cover

The removable upper disk on its hub assembly is enclosed between the upper disk enclosure and the protective cover of the cartridge.
When the cartridge is installed in the 5444, the upper and lower disk hub assemblies are locked together on the drive spindle (see Figure 1-12). The upper disk hub
assembly seats on a cone at the top of the drive spindle. To allow the read/write heads and the cleaning brushe to enter the upper disk enclosure, a head entry port and a brush entry port are formed in the side wall of the upper disk enclosure. Four slots in the side wall of the upper disk enclosure enable accurate location of these ports.
When removed from the machine, the upper disk enclosure is placed in a bottom cover (see Figure 1-10)

Figure 1-12. Cartridge on Drive Spindle [07472]

Four ring magnets, set into the bottom cover (see Figure 1-13), clamp the hub assembly to the bottom cover. The cartridge is moulded from polycarbonate. Customer cartridges have a blue top cover with a dull white bottom cover; CE cartridges have a black top cover and dull white bottom cover. The disk cartridges may be used in any 5444. One version of the disk cartridge is common to all models of the 5444.

Cartridge Clamp Arms

When the cartridge is in use, the bottom cover fits on top of the disk enclosure. Both are then held in position top of the disk enclosure. Both are then held in position
by two cartridge clamp arms (see Figure 1-1). The clamp arms actuate two cartridge interlocks that form part of the machine interlock circuits. These interlocks inhibit machine start-up if the cartridge or bottom cover are positioned incorrectly.
The clamp arms, when swung away to permit cartridge removal, operate a drawer stop at each side of the
machine. These stops prevent the machine being closed into the drawer while the clamp arms are in the 'release' position.

Cartridge Handle

The cartridge carrying handle is also used for removing the cartridge from the 5444 drive spindle, or for the cartridge from the 5444 drive spindle, or for
releasing the disk from the cartridge bottom cover when removed from the machine
To release the disk, the handle is lifted and at the same time the cartridge release catch (Figure 1-13) must be held against its spring; rotation of the handle then forces open the magnetic seal between the upper and lower hub assemblies.
To refit the disk, it must be positioned correctly on the drive spindle or in the cartridge bottom cover, and the handle allowed to drop.
For normal carrying purposes, the handle is lifted from its horizontal rest position.

Figure 1-13. Cartridge Handle and Release Catch [07473]

Disk Cartridge Handling and Storage

When not using the handle, the cartridge should be held with the fingers in the recessed handle compartment, the thumb gripping the bevelled edge set into the bottom cover.
Disk cartridges should be stored on top of each other, r standing on edge in racks. To facilitate stacking, a o a recessed area in the bottom of the next cartridge.

disk cleaning brushes

- Two pairs of cleaning brushes are used to sweep dust particles from the recording surfaces.
- This brush sweep cycle forms part of the file start up sequence.
- The sweep cycle takes approximately one minute
$1-8 \quad(5 / 70)$

The read/write heads fly at 80 to 100 microinches above he disk surfaces. To ayoid any head-to-disk interference, ontamination must be remoyed from the recording contamination must be removed from the recording surfaces. Two sets of cleaning brushes (Figure 1-14) are
used during the start-up sequence to sweep the recording used during the start-up sequence to sweep the recording
surfaces of the disks before the heads are loaded onto surfaces of the disks before the heads are loaded onto
the disks. This sweep cycle takes approximately one the disks. This sweep cycle takes approximately one
minute. The 'ready' line is not activated until the brushes return to the parked position.
The brushes are mounted on a brush arm, which is riven across the disks by the brush motor via a link and cam mechanism (Figure 1-15). The brush motor activated by the ' +24 V file start' line. When the cam rides against the forward stop, the brush motor reverse automatically, and the brushes start to return to th parked position off the disks. The cam operates the 'brush cycle complete' microswitch and stops the brus motor; the cam is now resting against the parked stop.

Good Brushes

Worn Brushes

Figure 1-14. Disk Cleaning Brushes

Brush Microswitches

Two microswitches (brush mid-cycle, and brush cycle complete) are actuated during the brush sweep cycle to
provide timing signals for use in the machine start-up sequence. The switches are operated by a cam fixed to the brush motor drive shaft (see Figure 1-15).

Figure 1-15. Disk Cleaning Brushes Linkage Mechanism [07475]

Brush Moto

The brush motor is a synchronous motor: the output spindle rotates at approximately 2 rpm . Because the supplies, different brush motors are available (see Appendix B).

ACTUATOR

- The actuator positions the read/write heads at track addresses defined by the using system.
- The carriage holds and positions the read/write heads over the disks.
- The access mechanism moves the carriage.
- The detent mechanism stops the carriage.
- Inner and outer limit switches restrict carriag movement
The actuator (Figure 1-16) accurately positions the four read/write heads at the track address defined by the using system. This positioning is carried out within specified time, the external control signals being provided by the using system. control signals bein

Carriage

- The carriage moves on linear ball slides within the actuator frame carrying the read/write heads over the disks.
- The read/write heads are in a loaded condition as they move out.
The carriage is mounted within the actuator frame and runs on linear ball slides. Read/write heads on support rms are fitted into slots in the carriage. As the carriag moves along the actuator frame, the read/write head move across the disk surfaces. Switches attached to the ctuator frame prevent the carriage from hitting it limits of travel.
Four head load spring shafts (Figure 1-17) on the carriage are operated by a geared linkage mechanism coupling all four shafts together to load simultaneously. The linkage is operated by a flexible head load cable and a head load lever attached to shaft number 02 . The head load mechanism has a mechanical knock-off (trip arm and trip) to unload the heads if the carriage is retracte off the disks with the read/write heads still loaded. The head load mechanism is described later in this chapter

Actuator Mechanism

- Carriage movement is obtained from a rotating leadscrew.

The leadscrew drives a follower wheel mounted in the carriage.

- Motive power for leadscrew rotation is obtained from a layshaft via a drive tire and flexible drive disk.
- One of the two clutches holds the flexible disk agains the drive tire to give the required direction of carriage movement

Figure 1-16. Actuator Assembly [07476]

The carriage is driven long the actuator frame by a leadscrew acting on a spring-loaded follower wheel and rollers attached to the carriage (Figure 1-18). The leadscrew is held in bearings at each end of the actuator frame and is rotated from the layshaft (see Figure 1-20), The layshaft is driven from the drive motor via a drive belt and rotates continuously while the machise is operation. A flexible stainless steel 1-19).
One of two clutch pads holds the drive disk against the One of two clutch pads holds the drive disk against the
rotating drive tire. The upper (forward) clutch holds the disk against the upper driving surface of the tire to move
the carriage towards the center of the recording disks. The lower (reverse) clutch holds the disk against the lower driving surface to move the carriage away from the center of the recording disks.
A pressure pad fixed to the end of each clutch armature prevents wear on the drive disk when the disk is held against the drive tire. When a clutch is energized, the pressure pad moves towards the drive tire, forcing the flexible disk against the tire driving surface. When the clutch is de-energized, a return spring returns the armature holding the pressure pad to its stop position. The leadscrew has a pitch of 0.1 in . $(2,54 \mathrm{~mm})$. One

Figure 1-17. Carriage and Actuator Assembly - Without Heads [07477]
revolution of the leadscrew, therefore, causes the carriage to move 0.1 in . that is, 10 tracks at the disk track density of 100 tracks per inch

Detent Mechanism

- Two detent pawls engage in a detent wheel to stop carriage movement.
- During an access operation, a yoke holds the pawls clear of the detent wheel.
- The yoke is driven by a voice coil.

The general view of the detent mechanism is given in Figure 1-20. Two spring-loaded pawls engage in a detent wheel, which acts on the leadscrew and stops th carriage to position the read/write heads accurately. Each detent pawl (Figure 1-21) pivots on a leaf spring and is held into the detent wheel by a pawl spring. To allow the leadscrew to rotate, the voice coil is energized, pulling back the yoke which holds the pawls

lear of the detent wheel. To stop the leadscrew the oice coil is energized in the other direction to drive the yoke towards the detent wheel. The pawl springs cause he two pawls to engage in the teeth of the detent wheel. One revolution of the detent wheel corresponds to arriage movement of 10 tracks. The deten wheel ha nent corresponds to ne track movement of the carriage.

Voice Coil

The voice coil is fixed to the yoke and is center-tapped;
when one half is energized it moves the yoke forwards, and when the other half is energized moves the yoke backwards. The yoke engages and disengages the pawls in the detent wheel.
When the using system signals the carriage to move, the yoke pulls the detent pawls clear of the detent wheel. One of the two clutches energizes to drive the carriage; when the carriage nears the specified rack, the clutch de-energizes. The yoke moves in the reverse hil 8 in the the
A 1.8 ms pick pulse (pick 1) and a hold current are
pplied to the disengage half of the coil. After the pick pulse drops, the coil continues to move because of the old current. When the coil reaches its of travel gainst a resilient stop, a 0.8 ms pick pula (he applied to the co
Pick 2 is derived from the back electromotive force (emf) generated in the undriven (engage) half of the coil. The action to engage the pawls is similar but the functions of the voice coil halves are reversed. The disengage half of the coil provides a back emf sense signal for the engage half. The level of hold current for he engage action is 235 mA and for the disengage action 590 mA .

Figure 1-19. Layshaft/Leadscrew Drive [07479]

HEAD/ARM ASSEMBLY

- The head/arm assembly consists of a read/write head, support arm, and connecting cable and plug
- The four head/arm assemblies are clasped to the carriage.
- The carriage moves within the actuator frame carrying the heads over the disks.

Read/Write Head

- The read/write head is mounted on a ceramic slider and contains a read/write coil, and an erase coil

Note: Drive tire, drive disk, and clutches omitted for clarity

Figure 1-21. Detail of Detent Mechanism [07481]

- The erase coil follows the read/write coil to trim the edges of the written data tracks.

The read/write head (Figure 1-22) contains a read/write coil wound on a single core and an erase coil wound on yoke. The read/write pole gap is followed by the split rase pole tips to 'side' erase the edges of the writt data tracks; the erase pole tip is made in the form of a yoke. The erase coil is connected to the center tap of the ead/write coils and is always energized when writing.

Head Support Arm

- The head support arm holds and positions the read/write head.
- The head load spring provides the loading force to hold the read/write head above the disk surface.

The read/write head on its ceramic slider is mounted on a leaf spring screwed to the support arm (Figure 1-23) The support arm fits into a slot in the carriage and the
head/arm assembly is adjusted in this slot to position the head exactly (tracking adjustment) over the center of a particular track.
When the heads move over the disk surface the head load spring is moved by turning the head load thit to hold the ceramic slider down against the pressure of the air film and therefore maintain the correct slider-to-disk spacing. A flexure spring allows the head to move freely about axes tangential to, and radial to, the recording track. The leaf spring allows the head to move up and surface.

Flying the Heads

The ceramic slider floats just above the rotating disk surface on a thin film of air.

- The head-loading mechanism is designed to fly the head at a specified height above the disk surface
he film of air beneath the ceramic slider acts as labricant between the slider and the rotating disk surface. While this air film is maintained, no wear or brasion can occur. The spinning disk forces air between he disk and the slider, lifting the shoe against the head load; at this point, the head is "flying". Two bleed hole in the slider partially relieve the pressure build-up eneath the shoe
The head load spring bears upon a dimple on the lea pring (see Figure 1-22), which transfers the head f is biaton to the ceramic slider. Th approximately 40 grams. To approximately 40 grams. To overcome this bias the hea load spring provides a load of 286 grams. This places
oad of 246 grams on the slider to just balance the upward force from the air film, allowing the slider to fly The flying height is 80 microinches at the inner track, and 99 microinches at the outer track

Read/Write Signal Level

The read/write signal level is greater at the outer track than at the inner track.
For a given load, the head flies at a height proportiona or the velocity of the disk. Because the velocity of the isk sufface is greater at the outer track than at the inne rack the flying height at the outer track is greater than flying height at the inner track.
The read signal increases as the head approaches the Ther track (the induced voltage at the head is proportional to the rate of change of flux lines with proportional and hence to disk velocity), but this effect is omewhat reduced because the head is further away rom the disk surface.
Write current is increased for tracks 000 through 120 approximately) to compensate for the increased flying height at the outer tracks.

Figure 1-23. Head Assembly [07483]

HEAD LOAD MECHANISM

- Each read/write head is loaded by a head load spring on the head load spring shaft.
- The four head load shafts are turned by a solenoid acting through a cable and linkage.
- The heads unload automatically if the disk speed falls below 64% of maximum, or if a data unsafe condition exists.
- A knock-off mechanism is incorporated to ensure tha the heads are unloaded before leaving the disk.

When the 5444 is not in use, the head/arm assemblies are unloaded and retracted off the disks. The heads are not loaded until the disk reaches full speed, the brush cleaning cycle is completed, and the heads are detented at track 000 .
To load the heads, the head load solenoid (Figure 1-24) pulls on the head load cable to operate a linkage on the head load spring shafts (Figure 1-25). The shafts on the head load spring shafts (Figure 1-25). The shafts
turn and the head load springs push the head sliders turn and the head load springs push the head sliders
towards the disk surface. When the head load solenoid de-energizes, the head

Figure 1-24. Head Load Linkage [07484]
head load springs, allowing the heads to move away from the disk surface.

Head Load Solenoid Assembly

- Contains a pick winding and a hold winding
- The hold winding is shorted until the solenoid is picked.
- Head load interlocks 1 and 2 are operated when th solenoid is energized.

Figure 1-25. Head Load Shaft Operation [07485]

The head load solenoid assembly (Figure 1-26) mounted in the base beneath a cover plate and contains: two windings connected in series, a pick winding, and a hold winding. The hold winding is shorted by head load interlock switch 1 (Figure 1-27) until the solenoid energizes. When the solenoid plunger nearly bottoms the short circuit across the hold winding is removed which reduces the high pick current to a low leve rient to hold the plunger sealed.
the plager moperating able by 1 nd 2. Whis loaded OK' line.

Knock-Off Mechanism

- If tripped, the mechanism must be reset by a CE
- Must be reset before the heads can be loaded.

Under certain fault conditions, the heads could still remain loaded when retracted past track 000 towards the edge of the disks. As a protection, an off-disk trod x of nload the heads before they readh ha dise A further protection is a mechanical knock-off in the ead load mechanism.
The mechanical knock-off (Figure 1-28) consists of a

Edge Connector EC4
Figure 1-26. Head Load Solenoid Assembly [07486]
upport spring for the head load cable guide, a trip on the actuator frame, and a knock-off trip arm on the hea oad lever. A leaf spring at the base of the cable guide biases the guide towards the carriage. During normal operation, the support spring holds the cable guide awa om the carriage, against the tension of the leaf spring. the trip arm pushes the support spring away from the cable guide, the guide is allowed to spring in towards the rriage to unload the heads.
If the mechanism is tripped, the fault must be retified before the heads are reloaded. Resetting the mechanism must only be performed by a CE.

AC Box

The ac box is mounted at the rear of the 5444 (see Figure 1-4) and contains the following.
. Terminal block for the ac input supply from the using system.
2. Two line filters

Three relays: K1 (drive motor relay), K3 (brush motor relay), and K5 (drive motor brake relay)
Drive motor capacitor.
The ac box is connected to ac ground and is electrically the base casting is connected to ogic ground). The ac supply is distributed from the ac

Figure 1-27. Head Load Solenoid Circuit [07487]
box to the drive motor and the brush motor; all connections are via a terminal block.

DC BOX
The dc box is mounted beneath the ac box (see Figure 1-4) and contains the following:

1. Terminal block for the dc input supply from the using system.
Two relays: K2 (dc control relay) and K4 (head load relay).

Figure 1-28. Knock-Off Mechanism [07488]
3. Two CE switches, mounted externally
4. One SLT card (1 wide by 2 high) containing externa components for the interlock circuitry.
The dc box is connected electrically to the base. Two CE switches ('mode-select' and 'forward/reverse') ar mounted on the CE control panel on top of the dc box detailed descriptions of these switches are given Chapter 6 . The box hinges open for ease of servicing

RESISTOR BOX

The resistor box is mounted above the drive motor at the rear of the 5444 (see Figure 1-4) and contains the high-heat dissipation resistors of the voice coil detent control circuit.

AUXILIARY ELECTRONICS

Forms the interface between the using system and the 5444.

- Includes all electronics on the machine other than data channel electronics.

The auxiliary electronics, which employ SLD-100 logic are contained on six solid logic technology (SLT) card within a 2×13 SLT board (Figure 1-29). Figure 1-30 is a schematic diagram of the auxiliary electronics. Th ' +24 V dc driver' common line is grounded at the using system.

Electronic Interlock

The electronic interlocks which interface between the 5444 and the control signals from the using system, control the solenoids, relays, and motors on the 5444 and process signals from microswitches and transducers. The interlocks:

1. Condition the start/stop sequencing.
2. Use command signals from the using system.
3. Protect against damage by operator error.
4. Limit damage caused by machine failure.

Figure 1-29. Logic Gate Card Layout [07489]
5. Provide machine status information to the using system.
6. Provide CE test facilities.

Switch Interlocks

- The switch interlock circuits are shown in Figure 1-31.

Five interlock switches have associated level converters that produce the required logic levels:

1. Off-disk interlock.
2. Off-disk interlock.
3. Brush cycle complete interlock.
4. Carriage overrun interlock.
5. Carriage overrun interlock.
6. ' +24 V file start' line.

The brush mid-cycle interlock and the head load interlock 2 require only a resistor to interface with the logic.

Cartridge Interlocks: Two interlock switches connected n series with ' +24 V file start' to prevent machin sart-up when the cartridge and cartridge bottom cove are not in position on top of the machine. The interlock switches are operated by the two cartridge clamp arms. Brush Mid-Cycle Interlock: Provides a logic switching evel 'brush mid-cycle interlock' for use in the machin evel 'brush mid-cycle interlock' for use in the machin cam attached to the brush motor spindle.
Brush Cycle Complete Interlock: Indicates completio of brush cleaning cycle and raises 'brush cycle complete' for use in the machine start-up sequence. The complet witch is operated by a cam aptached to the brush motor spindle.
Off-Disk Interlock: Mounted on the actuator frame this interlock provides, after level conversion, a logic line indicating if the read/write heads are 'off disk' or 'o disk' The interlock switch is cord in

Figure 1-30. Auxiliary Electronics [07490]

Figure 1-31. Interlock Switch Circuits [07491]
the head load solenoid and is set at track -004. The interlock unloads the heads if the carriage is retracted beyond track -004 with the heads still loaded (a fault condition).
Note: Under normal operating conditions, the carriage
annot be retracted past track 000 . During a file stop sequence, the heads are unloaded as soon as the ' +24 V file start' line is de-activated, and before the carriage retracts past track 000 . The switch remains operated while the heads are beyond track 004 , preventing the heads from being re-loaded

Head Load Interlocks: There are two head load interlock switches, both operated by the lever arm attached to the head load solenoid plunger. Head load interlock 1 emoves the short circuit across the hold winding of the head load solenoid to reduce the head load current. Head load interlock 2 indicates that the heads are loaded and, after level conversion, provides the logic line 'heads oaded OK'.

Carriage Overrun Interlock: Mounted on the actuator frame, and connected in series with the forward clutch, this interlock switch prevents carriage travel past the inner limit and, after level conversion, raises the logic line 'access overrun'.
Carriage Retracted Interlock: Mounted on the actuator rame and connected in series with the reverse clutch, this interlock switch stops the carriage at the retracted position and, after level conversion, raises the logic line 'carriage retracted'

Circuit Descriptions

Index Amplifiers (Part of Interlock 3 Card)
There are two index amplifier circuits, one for each of the two index transducers. Index amplifier 1 is used with the upper index transducer; index amplifier 2 is used with the lower index transducer. The appropriate amplifier is selected by the condition of 'disk select upper'.
The index amplifiers detect the output signals from the upper or lower index transducers and convert the signals to SLD-100 logic levels.
To indicate the start of each recording track on the disk, an index marker pulse is obtained on the 'index pulse' line for each revolution of the disk selected.

Speed Sensors (Speed Sensor Card)

The speed sensor card contains two circuits that monitor the disk speed: speed zero detector and 80% speed detector.
The speed zero detector amplifier uses the output from the lower index transducer to control the 'speed zero' line. When the disk speed falls to a safe level, the 'speed zero' line raises the 'cartridge safe' line.
The 80% speed detector circuit uses the output from the upper index transducer, via index amplifier 1 , to control the 'speed OK' line. During a start up sequence, the circuit detects when the 'speed is maximum (1200 rpm) and raises 'speed OK' line. The
line is dropped if the disk speed falls below 64% of maximum (960 rpm).

Photo-Amplifiers (Part of Interlock 2 Card)
Three identical photo-amplifier circuits convert the output from three photocells to logic levels

1. Track crossing photocell - provides 'track crossing' line.
2. Fine
3. Fine home photocell - provides 'fine home' line.
4. Carriage photocell - provides 'carriage photo cell lit' line.

Solenoid Drivers

There are five solenoid driver circuits:

1. Head load relay driver (voltage regulator card).
2. Voice coil driver (voice coil driver card, and part of voltage regulator card).
3. Forward clutch driver (interlock 3 card).
4. Reverse clutch driver (interlock 3 card).
5. Drive motor brake relay driver (interlock 3 card).

The forward and reverse clutch drive circuits are mutually exclusive: if the 'access forward' and 'access reverse' lines are active simultaneously (in error), the first line to become active takes precedence. A 1.5 ms clutch-off delay is used during the automatic contro of a nergized long enough to move the carriage through on track.

Index Transducers

- There are two index transducers, one for each disk

- The index transducers provide a pulse indicating the start of each recording track.

The index transducers sense a fixed location on the disk to indicate the start of each recording track. Because the upper disk is removable and is not keyed to the drive spindle, the index locations for the two disks are not identical.
The upper index transducer senses a slot cut into the armature ring on the upper disk hub assembly (Figure 1-32). The lower index transducer is fixed to the drive spindle housing to sense a metal nib attached to the drive spindle pulley (Figure 1-33). For both transducers, changes in reluctance are detected as the slot or nib The transducer output pulses are fed into two index mplifiers, ofe which is selected by the 'disk select

Figure 1-32. Upper Index Transducer [07492]

Figure 1-33. Lower Index Transducer [07493]
line to correspond with the disk in use. The index marker pulse obtained indicates the start of each recording track on the disk; this marker pulse is passed to the using system via the 'index pulse' line.
The output from the lower index transducer is also fed to the speed sensor circuits to monitor the disk speed.

Track Crossing Sensor

- Provides a pulse output for every track crossed by the read/write heads.
Track crossing indication is provided by a lamp and photocell that senses rotation of the flexible drive disk photocell that senses rotation of the flexible drive disk
attached to the leadscrew (Figure $1-34$). The drive disk
has ten slots (Figure 1-35) that allow light to pass to the photocell to produce ten output pulses per leadscrew evolution, that is, one pulse for each track crossed by the read/write heads. The output pulses are fed to a photo-amplifier to provide the 'track crossing' line. A hole in the sensor mask plate mounted immediately in front of the photocell ensures that the photocell is illuminated only from the track crossing lamp. The track crossing slots have numbers etched on the drive
allow the CE to visually check the track position.

Fine Home Sensor

The fine home sensor consists of a lamp and photocell monitoring rotation of the flexible drive disk (see Figure $1-34)$. The fine home photocell is mounted on the same the fine The fine home photocell is illuminated twice per ole in the drive disk and once through the warning slot (see Figure 1-35). Fine home pulses are therefore obtained at tracks 000 , 010,020 and so on Warning pulses occur prior to the fine home pulses at tracks $001.5,011.5,021.5$, and so on. The pulses are fed to a photo-amplifier to provide the 'fine home area' line.

Carriage Photocell

- Provides the lines 'coarse home', and 'add write current'.

With the other photo sensors, provides ‘all cells lit

The carriage photocell (see Figure 1-17) and lamp are mounted on the actuator frame (Figure 1-36). Illumination to the photocell is interrupted by two metal flags attached to the carriage: the coarse home flag, and the add write current flag. The coarse home flag darkens the photocell (from approximately tracks 020 to tors) to give the coarse home' line. The add roroximaly fras 115 and photoceli (between position beyond track 202) to drop the 'add write current' line, which then drops the additional write current needed to compensate for the increased flying height of the read/write heads at the outer tracks.

Carriage Photocell Signals

The photocell is illuminated between the coarse home flag and the add write current flag, that is, between approximately tracks 005 and 115 . The photocell

Figure 1-34. Track Crossing Sensor/Fine Home Sensor [07494]
output is fed to a photo-amplifier to provide the 'carriage pc lit' line which is used to produce three other carriage pc lit' line which is used to produce three other
lines: 'coarse home', 'add write current', and 'all cells lit' (Figure 1-37).
'All cells lit' is used in the machine start-up sequence to retract the heads from track 010 to track 000, prior to head loading.
'Add write current' is held on by the 'add write current' latch, which is set by carriage pc lit' during the machine start-up sequence. 'Carriage pc lit' drops when the coarse home flag passes the photocell (between tracks -020 and +005) and raises the 'coarse home' line. When the heads leave track 000 , the coarse home flag moves away from the photocell, activating 'carriage pc lit' at track 005 to drop 'coarse home' and raise 'add write current'. At approximately track 115, the add write current flag passes the photocell and drops
'carriage pc lit'. The 'add write current' latch resets at 'carriage pc lit'. The 'add write current' latch resets at The 'add write current' latch is no set pain util the
 carriage pc lit'.

Track $\mathbf{0 0 0}$ (Home) Indication

- Track $\mathbf{0 0 0}$ is indicated by the logical combination of the 'track crossing', 'fine home area', and 'coarse home' signals.

Figure 1-36. Carriage Photocell [07496]

Figure 1-37. Carriage Photocell Signals [07497]

The track 000 (or home) position is a unique position Figure 1-38) on the 5444 defined by signals obtained from the track crossing sensor, the fine home sensor, and the carriage photocell. The signals 'track crossing', 'fine home area', and 'coarse home' are logically ANDed to give the line 'home'.
The read/write heads can only load at track 000 and move there prior to head loading during the machine start-up sequence. Under normal circumstances, the home detection logic prevents the carriage from retracting behind track 000

data channel electronics

- Contains circuits for read and write operations

- Contains safety circuits to protect recorded data

The data channel contains the circuits required to enable the read/write heads to write information onto the the read/write heads to write information ont disks. The data channel also contains safety circuits to ensure that read and write operations take place only when it is safe to do so. Separate head select circuits are used for the read and write operations
The data channel circuits are contained in four SLT cards, three of which are mounted in a 2×14 SLT board (see Figure 1-29). The fourth card (matrix and preamplifier) is mounted in the preamplifier enclosure.

Figure 1-38. Track 000 Indication [07498]

Chapter 3. Principles of Operation

communication lines

- A total of 23 communication lines are connected between the 5444 and the using system (Figure 1-39)
- 12 input lines supply signals to the 5444 from the system control circuits.

8 output lines supply signals from the 5444 to the system control circuits.

- 3 additional lines are available for timing analysis programs (TAP's).

The machine operations are controlled by command signals from the using system via input communication lines. Output communication lines provide machine status information to the using system, indicating that the machine is conditioned to respond to the system command signals.
The signal levels referred to in this section correspond to the standard SLD-100 logic levels, as follows:
Up level: +3.0 V dc to +6.6 V dc .
Down level: 0 V dc to +0.3 V dc .
Note: The voltages are measured at the machine/ system interface.
All signal lines connect to the 5444 via three half-wide tape cables that plug into the 2×14 SLT board mounted in the logic gate at the front of the machin (see Figure 1-29).
Note: The 5444 derives power from the using system

Input Communication Lines

- The 12 input lines condition the 5444 for the read/write operations.
- The lines also provide the command signals to control these functions.
Read Select': Activated at a down level and gated with the 'disk select' and 'head select' lines to select the /disk select and head select lines to select the read/write head dignals from the seled head are then ed to the read amplifir circuits 'Read select' may not fed to the read amplfir circuis. Read sect may not be activated in the following circumstances operation.

2. Until at least $5 \mu \mathrm{~s}$ after the disk select lines are switched.
3. Following a write operation, until at least $1.2 \mu \mathrm{~s}$ afte 'erase select' is dropped
'Disk Select Upper' and 'Disk Select Lower': These two lines define which disk is to be used for read or write operations. Each line is activated by a down level. An up level on both lines deselects both disks; a down (active) level on both lines is an unsafe condition when 'write select' is activated. The lines may not be switched under the following circumstances:
4. Following a write operation, until at least $1 \mu \mathrm{~s}$ after 'erase select' is dropped.
. Following a read operation, until at least $1 \mu \mathrm{~s}$ after 'read select' is dropped.
'Head Select Upper' and 'Head Select Lower': These two lines define which read/write head is to be used for read or write operations on the disk defined by the disk selec lines. The operating levels and switching conditions fo the head select lines are the same as those for the disk select lines.

Double Frequency Write Data': Carries the input write data to the 5444 and drives the 5444 write trigger. The leading edge of each pulse on the 'double frequency write data' line causes a magnetic flux reversal to be recorded on the selected disk surface. The line carries clock pulses interspersed with data pulses. When 'write select' is activated, the first pulse occurs on the 'double frequency write drops 315 ns after the leading edge of the last pulse
'Erase Select': Activated at a down level and gated with the disk and head select lines to select the head for a write (and erase) operation. Erase current flows in the erase coil (during a write operation, the erase coil is activated within $1 \mu \mathrm{~s}$ of 'write select', 'and dropped $24 \mu \mathrm{~s}$ after 'write select' is dropped Following a read peration 'erase select' is not activated until at least $1.2 \mu \mathrm{~s}$ after 'read select' is dropped.
'Write Select': Activated at a down level; write current is turned on in the write coil provided that 'erase select' is also activated. Data on the 'double frequency write data' line is then written onto the selected disk surface. Write operations are inhibited when the 5444 is off-line and

under control of CE control panel. The 'write select' line is activated within $1 \mu \mathrm{~s}$ of 'erase select' and may not be activated under the following circumstances.

1. During the head settling time following a head movement.
2. Until at least $5 \mu \mathrm{~s}$ after the disk select and head select lines are switched.
3. Following a read operation, until at least $1.2 \mu \mathrm{~s}$ after read select' is dropped.
'Power On Reset': Resets the machine safety latches when the using system dc supply is first switched on and provides the internal line 'data unsafe reset' to reset the three safety latches. The line switches to a down level for 1 ms .
'Access Forward': Activated at a down level and releases the detent mechanism, allowing the carriage to move. The forward clutch is then energized, moving the carriage (and read/write heads) forwards, toward the disk center. 'Access forward' must not be activated at the same time as 'access reverse'.
'Access Reverse': Activated at a down level, releasing the detent mechanism and allowing the carriage to move. The reverse clutch energizes, moving the carriage must not be activated at the same time as 'access forward'.
‘+24V File Start': Activated when switched to +24 V dc. The line controls ac power to the drive motor and initiates the start-up sequence. The cartridge interlocks series with the ' +24 V file start' line. These interlocks drop ' +24 V file start' to prevent start-up sequence if the cartridge is not in position on the machine.

Output Communication Line

- The eight output lines provide machine status information to the using system.
'Read Data': Carries clock pulses interspersed with data pulses from the read amplifier circuits. Each 100 ns pulse corresponds to a magnetic flux reversal on the disk surface. (The up level depends on the type of data separator used by the using system.)
'Data Unsafe': Activated at an up level to indicate an unsafe condition in the 5444. Three safety latches detect unsafe conditions in the write circuits during read/write operations. Further read/write operations are then inhibited.

Figure 1-40. Start-Up Sequence - Flowchart [07500

5444 (<30100) FETMM (5/70) 1-21
'Track Crossing': The positive-going edge of each pulse indicates each track crossed by the read/write heads. The pulses are obtained from the track crossing photocell and give the using system a continuous indication of read/write head position. When the carriage starts to move, a 1.5 ms positive-going pulse indicates the first track crossed; subsequent pulses have a pulse width of approximately 1 ms at 3.5 ms intervals. The pulses are at up level while the heads cross the tracks, but are at down level when the heads are stationary over a track.
Note: To stop the carriage, 'access forward' or 'access reverse' drop within $10 \mu \mathrm{~s}$ after the positive-going edge of the last track crossing pulse
'Index Pulse': Carries $43 \mu \mathrm{~s}$ positive-going index pulses indicating the start of each recording track. After indicating the start of each recording track. After amplification, the output from either the upper or lower
index transducers is selected by the 'disk select upper' line or the 'disk select lower' line. When neither disk select line is activated, the lower transducer output is available on the 'index pulse' line.
'Home': Indicates that the read/write heads are positioned over track 000 . The line is activated at a down level when the lines 'fine home area', 'track crossing', and 'coarse home' are ANDed together, and when the forward clutch is not selected.
'Access Overrun': Indicates that the carriage has Access Overrectly moved beyond its inner limit of travel that incorrectly moved beyond its inner limit of travel, that
is, beyond track 103 for Model 1 and beyond track 203 for Models 2 and 3. The line is activated at a down level. 'Ready': Activated at a down level under the following conditions indicating that the 5444 is ready:

1. Start-up delay time expired and brush cleaning cycle complete.
2. Disks running at full speed.
3. Heads loaded at track 000
4. CE mode select switch set to 'on-line'.

During normal operations, 'ready' remains down, but rises if any one of the following conditions occurs:
2. Disk speed drops to an unsafe level (below 960 rpm). 3. Heads unloaded.
4. An unsafe condition exists (indicated by 'data unsafe' line).
Cartridge Safe': Activated at down level to indicate when the operator can gain access to the machine and the disk cartridge. The following lines are required to give 'cartridge safe':

1. 'Brush cycle complete'

Not 'head loaded OK'
. 'Speed zero'.
4. Not 'speed OK'
'Carriape retracted
6. 'Off disk'

MACHINE OPERATION

- Machine operations are controlled by comman signals from the using system
- Movement of heads over the disks is controlled by 'access forward' and 'access reverse'
- Start/stop sequencing is controlled by ' +24 V file start'.

Machine Safety

The following safety devices are incorporated on the
Two mechanical drawer stops: prevent the 544 being moved into its enclosure with the cartridge clamp arms open.
. Two cartridge interlock switches: prevent machin start-up if the cartridge clamp arms are open.
3. 80% speed detector circuit: indicates when the disk rotation speed has fallen to an unsafe level.
4. Off-disk interlock switch: unloads the heads if the carriage is retracted past track -004.
5. Knock-off mechanism: mechanically unloads the heads before they reach the disk edge (a backup to the off-disk interlock switch).
6. Head load interlock switch 2: indicates that the head are loaded.
7. Carriage overrun interlock switch: prevents carriage travel past the inner limit.
Carriage retracted interlock switch: stops carriage travel at the retracted position

Start-Up Sequence

- Initiated when ' +24 V file start' is activated.
- The purpose is to allow time for the disk cleanin cycle to complete, the electronics to stabilize, and the disk enclosure temperature to stabilize.
- Takes approximately 1 minute to complete.
- When complete, activates 'ready' line, and machin can perform operations under control of the usin system.
+24 V File Start
Drive Motor Relay Energized Brush Motor Relay Energized

Brush Cycle Complete
Brush Mid-cycle Interlock
Cartridge Safe
Speed OK
File Reset
Power On Forward
Forward Clutch Energized
Carriage Retracted
Off-Disk
Coarse Home
Power On Reverse
Reverse Clutch Energized
Inhibit Retract
Home
Load Heads
Ready

Figure 1-41. Start-Up Sequence - Timing [07502]

- The sequence is shown in Figure 1-40.
- Timing is given in Figure 1-41

Head Movement Across Disks

- Controlled by command signals from the using system.
- These commands are 'access forward' and 'access reverse'.
- If heads move to wrong location, the using system may use a recalibration operation to reset the
read/write heads to a known track position, for example, track 000.
During maintenance, the CE can control the 5444 from the CE control panel.

Movement of heads cannot begin until 'ready' is activated, that is, the following conditions are satisfied: 1. Disks are running at full speed
2. Heads loaded over the disks.
3. No write unsafe condition exists.
4. Mode select switch on the CE control panel set to 'on-line'.

Note: The simulated track crossing pulse is an extra pulse which is required because the detent mechanism takes one track
to operate; without this extra pulse the carriage would
stop at the wrong track.

Figure 1-42. Multiple Track Head Movement - Operation Sequence [07503]
'Access Forward'

- Sequence is given in Figure 1-42
- Timing is given in Figure 1-43
- Derivation of clutch and control signals are shown in Figures 1-44 and 1-45.
multiple track

[^0]

Figure 1-44. Clutch and Detent Signals [07505]

Figure 145. Access Control Signals [07506]
1-24 (5/70)

Single Track Accessing

- The sequence is shown in Figure 1-46
- See Figures 1-43, 1-44, and 1-45 for timing and logic.

'Access Reverse'

- Similar to 'access forward’.

Recalibration to Track 000

- If the head movement is at error, the using system may perform a recalibration operation.
The using system requires to know the cylinder address of the read/write heads at all times. The correct cylinder of the read/write heads at all times. The correct cylinde following reasons:
following reasons:

1. Wrong track address (heads stop on the wro
2. Misregistration (heads stop between tracks).
3. Carriage overrun (heads move as far as the carriage overrun interlock).
If the cylinder address is lost, the using system may start a recalibration operation to return the read/write heads to track 000; the 5444 contains the logic circuits used for the recalibration. To start a recalibration operation, access reverse' is activated.

Recalibration After Wrong Track Address

From Tracks 002 to 202: When 'access reverse' is activated, the carriage retracts towards track 000 . At approximately track 001.5, the fine home area warning pulse occurs, setting the 'home area' latch (Figure 1-47). With the 'home area' latch set, the 'inhibit retract' latch is set by the track crossing pulse at the next track crossing point (track 001). With 'inhibit retract' 'detivated, ground reverse clutch' is dropped, and detent activated (se bise 14). (Dint be ach the hers is dropped
From Track 001: Recalibration from track 001 is slightly different because no fine home warning pulse occurs to set the home area latch. The 'inhibit retract' latch is now set by the first track crossing pulse (derived from the clutch off delay SS and obtainec as the heads move ofrack 000 . As for a single track 'goud reverse clutch' is held on by the clutch off delay SS, to ensure the the carizo ho sficien mome SS, to ensure that the carriage has sufficient momentum to move one track

Recalibration After Misregistration

- The recalibration operation varies, depending on whether or not misregistration occurs in the add write current area.
- Figure $1-48$ shows the head movement error logic.

Between Tracks - 000.5 and +005 : When 'access reverse is activated, an SS is fired, the output of which is ANDed with not 'file track crossing' to set the 'carriage
iscegistration' latch. 'Carriage misregistration' inhibits access reverse' and activates 'ground forward clutch', t ove the carriage forwards until the 'carriag tration' latch is reset by 'carriage pc lit' oximaty track +005 . 'Carriage misregistration' drops and deactivates 'ground forward clutch'; 'acces everse' is no longer inhibited. The carriage can now home detection logic stops the carriage at track 000 .
Between Tracks +005 and +202 : In this area eithe 'arie pc lit' 'dd wite current' lime hold th 'arriage misregistration' latch reset 'Access reverse' ctivated bringing up 'ground reverse clutch' to retract he carriage to track 000
Recalibration After Carriage Overrun
The carriage overrun interlock is set as follows:
. Beyond track 103 for Model 1
2. Beyond track 203 for Models 2 and 3

If the carriage moves as far as to transfer the carriage overrun interlock switch, activating 'access overrun', the +24 V dc driver supply to the forward clutch is broken, and 'ground forward clutch' is dropped, preventing any further forward movement. Access reverse is the detection logic stops the carriage at track 000 .

CE Access Operations

The CE can control the 5444 from the CE control panel.
The CE controls the heads movement by using the mode select switch and the forward/reverse switch.

Figure 1-49 shows the CE control logic.

Figure 147. Home Detection Logic [07508]

Figure 1-48. Head Movement Error Logic [07509]

Figure 149. CE Control Logic [07510]

While the 5444 is controlled from the CE control panel, on-line' is dropped, deactivating 'ready'; the machine is then automatically read-select and write-inhibited. The heads can be moved in steps of one or 10 tracks at a time as selected on the mode select switch
One-track and 10 -track operations are similar for forward and reverse direction. In the following paragraphs only the forward direction is described.
One-Track Forward Acces
When the forward/reverse switch is set to FORWARD, singleshot fires, setting the 'CE forward' latch. 'CE forward' is activated, bringing up 'ground forward clutch', and dropping 'detent' (see Figure 1-44).
The carriage now moves forwards and as it moves off-track the clutch off delay SS fires to reset the 'CE forward' latch; 'CE forward' is dropped, and 'detent' activated. The detent mechanism engages to stop the carriage after one track.

10-Track Forward Access

When the forward/reverse switch is set to FORWARD, a singleshot fires, setting the 'CE forward' latch. 'CE singleshot fires, setting the 'CE forward' latch. 'aE
lutch', and dropping 'detent'. The carriage moves forward towards the next 10 -track position (that rack 010, 020, and so on). As it reaches the tenth track 'ine home area and 'file track crossing' are activated, resetting the latch. Ground forward clutch' is dropped, and 'detent' activated. The detent mechanism engages to top the carriage one track later. During a forward operation, the carriage stops at tracks $011,021,031$, and so on. During a reverse operation, the carriage stops at tracks $039,029,019$, and so on

Machine Stop Sequence

- Initiated when ' +24 V file start' drops.

- When the sequence is complete, the machine can be opened to remove the disk cartridge.
- DC braking reduces the machine stop sequence time to approximately 30 seconds.
- The machine stop sequence is shown in Figure 1-50.
- The machine stop logic and timing are given in Figures $1-51$ and 1-52.
- See Figure 1-47 for home detection logic

Figure 1-50. Machine Stop Sequence [07511]

Figure 1-51. Machine Stop Logic [07512]

Figure 1-52. Machine Stop Timing [07513]

When the machine stop sequence is complete, the heads mechanically unload the carriage retracts, and the disk mechanically unload, the carriage retracts, and the disk
stop. (The heads must be retracted off the disks to stop. (The heads must be retracted off the disks to
prevent damage while removing or installing a cartridge:) prevent damage while removing or installing a cartridge.)
'Cartridge safe' is activated, allowing customer access to the machine to remove the disk cartridge.
When ' +24 V file start' drops, all other ac and dc power supplies remain on at the machine. Note that ac power is still present at the ac box. If ' +24 V file start' drop within one minute of being activated (that is, during a machine start-up sequence), the start-up sequence mus complete before 'cartridge safe' is activated; this allows the disk brushes to park.

READ/WRITE OPERATIONS

- Read/write operations are controlled by the using system.
- The 5444 uses the double-frequency horizontal non-return to zero (NRZ) recording method.
- During a write operation, a data bit is recorded on the disk surface when the current in the head coils is reversed.
- During a read operation, a bit is sensed when there is a flux reversal on the disk surface.

Double Frequency Recording

- The using system clock frequency produces the basic bit-cell timing cycle.
- Clock pulses are synchronized with interspersed data pulses to produce a single composite write signal.
- The write signal presents either a zero-bit condition or a one-bit condition for each bit-cell time generated by the clock.

The 5444 uses the double frequency horizontal NRZ method of magnetic recording. Data pulses intersperse with clock pulses from the using system to produce a write signal on the 'double frequency write data' line (Figure 1-53).

Figure 1-54. Basic Read/Write Head [07515]

\longleftarrow Surface Movement of Recording

Figure 1-55. Horizontal Recording [07516]

Figure 1-56. Horizontal Reading [07517]

The recording device is a read/write head, diagrammatically represented in Figure $1-54$. When current flows, the flux induced in the pole piece fringes fringe flux horizontally magnetizes the surface. During a write operation a data bit is recour reversing the direction of the current in the coil, which reversing the direction of the current in the coil, which
reverses the flux direction in the pole piece and reverses reverses the flux direction in the pole piece and reverses
the fringe flux in the gap. At the instant the flux in the pole piece gap reverses, the direction of magnetization changes on the disk surface. Each reversal between clock pulses represents a recorded data bit (Figure 1-55).

Figure 1-57. Double Frequency Recording - Flux and Pulse Relationship [07518]

During a read operation, with recording surface magnetized in one horizontal direction, constant flux flows and the coil registers no output voltage (Figure flows and the coil registers no output voltage (Figure
1-56). However, when the recorded bit (180 degrees horizontal flux reversal) passes the gap, the flux flowing through the ring and coil also reverses and produces a voltage output pulse. The flux and pulse relationship of the double frequency recording is given in Figure 1-57.

Write Operation

- Write operations are controlled by command signals from the using system.
- Data to be recorded enters the 5444 on the 'double frequency write data' line.
- The required read/write head is defined by the head select and disk select lines.
- Write and erase circuits are then activated by write select' and 'erase select'
For each clock or data bit that arrives on the 'double frequency write data' line, the write current switches to frequency write data' line, the write current switches to the other half of the read/write coil (see Figure 1-55)
The flux at the read/write gap is reversed, to record the bit on the selected disk surface.

Note: Circled numbers refer to Write Circuit waveforms (Figure 1-59)

Figure 1-58. Write Circuit - Logic [07519]

Note: Waveform numbers refer to Write Circuit Logic (Figure 1-58)
Figure 1-59. Write Circuit - Waveforms [07520]
Write operations end when the flow of clock and data bits ceases. 'Write select' (refer to "Input bits ceases. 'Write select' (refer to "Input
Communication Lines") then drops, turning off the write current in the read/write coil. 'Erase select' drops $25 \mu \mathrm{~s}$ after 'write select', ensuring that the newly written rack is 'side' erased right up to the end of the data. Note: Write operation is inhibited when the 5444 is controlled from the CE control panel.

Write Circuits
The write circuits consist of head select circuits, and write and erase drivers (Figure 1-58). Timing waveforms are given in Figure 1-59
Head selection for a write operation is achieved by switching the center-tap of the selected read/write coil to +16 V dc. The center-taps of the read/write coils in the three non-selected heads are left floating.
Write current is turned on when 'write select' is
ctivated and is switched between the two halves of the read/write coil by the write trigger, which switches ever time a clock or data bit is received on the 'double frequency write data' line. The write current is 35 mA (nominal) for tracks 000 to +115 , and 30 mA (nominal) or tracks 116 to 203. This current level is controlled by the 'add write current' line.

Read Operation

- Read operations are controlled by command signal from the using system
- Data read from the disk surfaces is passed to the usin system on the 'read data' line.
- The required read/write head is defined by the head select and disk select lines.
- Read circuits are then activated by 'read select'

The read circuits are activated as long as 'read select' remains up. Read signals read off the selected disk by the read/write head, are amplified and shaped in the read circuits. The raw data output from the read circuits is fed via the 'read data' line to the using system where a data separator separates the raw data into data bits and clock bits.
Note: The 5444 may also be used for read operations when off-line, and controlled from the CE control panel. The appropriate read/write head is selected by one of four CE head select lines. 'Read select' is not required. Read Circuits
The read circuits consist of head select circuits, preamplifier, filter, limiter and detector circuits (Figure 1-60). Timing waveforms are given in Figure 1-61. The read circuits produce a train of pulses representing the magnetic patterns recorded on the disk surface. The bit-cell period is nominally 629.5 ns. Individual bit-cell periods can vary by $\pm 22 \%$ because of interaction betwen ajjacent magnetic pattems recorded on the disk the data and clock pulses due to this inseraction. This effect is called bit shift and is kept to a $-\frac{1}{2}$ Figure 1-61). Figure 1-61).
read/write heads are left floating. Head selection is read/write heads are left floating. Head selection is
achieved by taking the center-tap of the read/write coil achieved by taking the center-tap of the read/write coil
losistor to $0 V$ dc. The center-taps of the non-selected heads are at +5 V dc.

Safety Circuits

- Detect unsafe conditions in the write circuits.
- Inhibit read/write operations when conditions are unsafe.
- On the write select and safety SLT card.

The 5444 contains safety circuits to protect dat ecorded on the disk. Four outputs from the writ read select' and 'access in motion', to determ' whether an unsafe condition exists. If an unsaf condition does exist, one of three latches is set activating 'data unsafe', the heads mechanically unloa and 'ready' drops inhibiting all further read or write perations.
The three latches, together with the conditions that set the latches, are as follows

Select unsafe latch:

1. 'Read select' activated, together with either 'write select' or 'erase select'
'Access in motion' activated, together with either write select' or 'erase select'
Erase Unsafe Latch:
2. 'Write select' activated, with 'erase current on' dropped.
'Write select' dropped, with 'erase current on' activated.
Write Unsafe Latch:
3. 'Write select' activated, with 'no write transitions' activated.
'Write select' dropped, with 'write current on' activated.
4. 'Write select' activated, with 'multi head output' activated.

The latches are reset on machine start up, the line 'brush midcycle interlock' raising 'data unsafe reset'. If the unsafe condition is removed, read/write operations can esume.
When the using system powers up, the latches are reset by 'power on reset' raising 'data unsafe reset'.

Note:
Circled numbers refer to Read Circuit Waveforms (Figure 1-61)
2. Waveforms marked thus * cannot be scoped.

Notes:

1. Waveform numbers refer to read circuits. See Figure 1-60.
2. Voltage amplitude values are differential.

Figure 1-61. Read Circuit - Waveforms [07522]

There are no features applicable to this machine.

POWER REQUIREMENTS

- All power supplies are obtained from the using system.
- The 5444 can be operated from 50 Hz or 60 Hz power supplies. Differences between machine versions are given in Appendix B.
- The input power lines are shown in Figure 1-62.

AC Power
The ac power requirements are as follows $220 / 235 \mathrm{~V}$ ac $\pm 10 \%, 50 \mathrm{~Hz} \pm 0.5 \mathrm{hz}$, single phas
$208 / 230 \mathrm{~V}$ ac $\pm 10 \%, 60 \mathrm{~Hz} \pm 0.5 \mathrm{~Hz}$, single phase Surge current (starting): 3.5 A rms maximum Average current: 1 A rms maximum
AC ground is connected as a separate line to the using system; the AC box is connected to ac ground and is insulated from the machine base.

DC Power

The following dc power supplies are required:
$+24 \mathrm{~V} \mathrm{dc} \pm 10 \%$, 'file start' line, maximum current 0.2 A $+24 \mathrm{~V} \mathrm{dc} \pm 10 \%$, file start' line, maximum current 0.2 A $24 \mathrm{~V} \mathrm{dc} \pm 10 \%$, driver supply, maximum current 6.0 A 24 V dc $\pm 10 \%$, regulator supply, maximum curren
$6 \mathrm{~V} \mathrm{dc} \pm 8 \%$, maximum current 1.0 A
$4 \mathrm{~V} \mathrm{dc} \pm 8 \%$, maximum current 1.3 A
$-30 \mathrm{~V} \mathrm{dc}+6.1 \mathrm{~V},-5.1 \mathrm{~V}$, maximum current 0.35 A
Two lines are required for the +24 V dc input: a +24 V regulator line, and a +24 V driver line. The regulator lin is used to supply the +18 V dc voltage regulator. The driver line supplies all other +24 V dc requirements including relays, solenoids, and solenoid drivers.

Two dc ground lines are used. The ground line for the Two de ground lies +24 V regulator, $+6 \mathrm{~V},-4 \mathrm{~V}$, and -30 V supplies (logic
ground) is connected to the machine base. A separate ground line is used for the +24 V driver supply. Both dc ground lines are connected to the using system as separate lines.

+18 V DC and-18V DC Voltage Regulators

Two voltage regulators are used to generate +18 V dc and -18 V dc supplies. The +18 V dc supply is generated from the ' +24 V dc' regulator line, and the -18 V dc supply from the ' -30 V dc ' line. The two 18 -volt supplies are connected across the machine interface for use by the using system.
Both series voltage regulators are on a 2×2 SLT card mounted in Y logic gate. The series regulating power ransistors are mounted on a heat sink on the logic gate

$-18 \mathrm{~V} \mathrm{dc} \pm 3 \%$, maximum current 300 mA

power sequencing

Power On Sequence

The +6 V dc, and 4 V dc supplies must be switched on at least 5 ms before the +24 V dc supply is applied

Power Off Sequenc

The +24 V dc supply must have decayed to at least 2.5 V dc before the +6 V dc , and -4 V dc supplies are switched off.

Figure 1-62. Input Power Lines [07523]

Section 1. Console

operator console

There is no operator console.

CE CONTROL PANEL

- Contains two switches for CE control; the 5444 is atomatically read-selected and write-inhibited

The CE control panel (Figure 1-63) is mounted on top of the DC box (see Figure 1-4) and contains two witches for CE control of carriage movement and head selection. CE control is effected when the mode-select witch is set to any position other than ON-LINE; ready' line to the using system drops. Under CE control, the machine is automatically write-inhibited: any read/write head can be selected.
Note: Carriage travel is still restricted by the home detection logic and the carriage overrun interlock switch, as for normal on-line operation.

Mode-Select Switch

- Using the mode select switch, the CE can select any read/write head.
The mode-select switch is a seven-position rotary switch as follows:

On-Line Position
The 5444 is functionally connected to the using system; the CE controls are inoperative.

On-Track Position
The carriage moves one track for each operation of the forward/reverse switch.

Ten-Track Position
The carriage moves through a nominal 10 tracks for each operation of the forward/reverse switch. (The number of operation of the forward/reverse switch. (The number of
tracks moved is dependent upon the starting address; the

$Z_{\text {Forward/Reverse Switch }}$

Iigure 1-63. CE Control Panel [07524]

ddress at which the carriage stops is dependent upon he direction of travel.)

Forward Travel: Starting from track 000, the carriag moves to track 011, then to track 021,031 , and so on, for successive operations of the forward/reverse switch. When starting from an intermediate track, track 024 fo instance, the carriage moves to track 031, 041, and so on.

Reverse Travel: Starting from track 202, the carriage moves to track 199, then to track 189, 179, and so on for successive operations of the forward/reverse switch. When starting from intermediate tracks, track 167 for instance, the carriage moves to track 159,149 , and s on.

Head 00 Position
Selects the upper head of the upper removable disk.
Head 01 Position
Selects the lower head of the upper removable disk.

Head 02 Position

Selects the upper head of the lower fixed disk.

Head 03 Positio

Selects the lower head of the lower fixed disk.

Forward/Reverse Switch

- The forward/reverse switch determines the directio of travel of the carriage when the 5444 is under C control.

The forward/reverse switch is a three-position toggle switch, biased towards a central off position. The switch is used with the ' 1 Track' and ' 10 Track' positions of th mode select switch, to determine the direction of carriage movement; in the forward position, the carriag moves towards to cent sition, the carriage moves away from the disk cente

Section 2. Maintenance Facilitie

 CE CYLINDER
- One cylinder on each disk is reserved for fault finding

- Customer access to the CE cylinder is inhibited.

Cylinder 203 on Models 2 and 3, and cylinder 103 on Model 1 are reserved for fault diagnosis of the read/writ circuits. The CE has, therefore, four tracks available on Models 1 and 2, and two tracks on Model 3
Customer access to the CE cylinder is inhibited by th operating system program. (Customer access is limited to cylinders 000 to 202 on Models 2 and 3, and 000 to 102 on Model 1.)

CE DISK CARTRIDG

- Used during maintenance.

- Assists circumferential adjustment of the upper index transducer.
- Assists adjustment of the head/arm assemblies
- Two pre-recorded cylinders (005 and 073) are used in these adjustment procedures.

A CE disk cartridge contains two pre-recorded cylinders, 005 and 073, which are used during adjustment procedures to the head/arm assemblies and to the upper disk index transducer. Cylinders 004, 005, 006, and 071 through 075, should not be written on, otherwise the pre-recorded information will be destroyed. Any other cylinders may be used for test purposes.
The cartridge is identifed by its black top cover and white bottom cover. (Customer cartridges have a blue top cover with the white bottom cover.)

Cylinder 005

Cylinder 005 is used for circumferential adjustment of the upper index transducer and has a single flux transition marker recorded 180° from the center-line of the index slot. To assist in identifying this marker it is followed after $10 \mu \mathrm{~s}$ by a train of pulses.

Cylinder 073

Cylinder 073 is used for adjustment of the head/arm assemblies. Two concentric cylinders either side of cylinder 073 are spaced 0.010 in . $(0,25 \mathrm{~mm})$ apart. The cylinders are written with slightly diferent frequencies; monitoring the beat frequency at cylinder 073 .

TRACK POSITION INDICATION

- A scale and pointer indicates the carriage position to the nearest ten tracks.
- Fine track position indication is obtained from numbered track crossing slots on the drive disk.

Track position indicators indicate the location of the read/write heads over the recording area. Coarse indication (that is, within 10 tracks) is provided by a
scale on the top of the actuator frame (see Figure 1-17). Fine indication is provided on the drive disk; the numbered track crossing slots on the drive disk provide single track indication (Figure 1-64).

MANUAL OPERATION AIDS

- The disk drive mechanism and the carriage assembly
may be moved manually when ac and dc power are removed.
rive Mechanism
With ac and dc power removed, the disk drive mechanism can be rotated manually using the drive belt pulleys.

Carriage Assembly

No special aids are provided for manual operation, but
the carriage may be moved, with ac and dc power off, by
pulling back the detent yoke and securing it with the
holdout hook.
CAUTION
The face of the drive disk must not be touched.

Figure 1-64. Drive Disk [07525]

Part 2. Maintenance

Section 1. Reference Data

1.1 FUNCTIONAL CHARACTERISTICS

The 5444 is available in the following models
Model 1. Fixed disk and removable disk, using tracks 000 through 103 of each disk, and providing a storage capacity of 2.46 million bytes.
capacity of 2.46 million bytes. Model 2. Fixed disk and removable disk, using tracks capacity of 4.92 million bytes
Model 3. Removable disk only, using tracks 000 through 203, and providing a storage capacity of 2.46 million bytes. Model 3 can only be installed as an addition to Model 2.

1.1.1 Format

Using a format of 256 data bytes in 24 sectors, the storage capacity is arranged in the following manner

Each track:

6,144 bytes
$\begin{array}{ll}\text { Each cylinder: } & 12,288 \text { bytes } \\ \text { Each disk: } & 2.46 \text { million bytes }\end{array}$
The format is completely determined by the program of the using system. Figure 2-1 illustrates typical track and sector formats.

1.1.2 Speed

The speed of the 5444 is as follows:
Rotation time: $\quad 40$ milliseconds, that is, $1,500 \mathrm{rpm}$ Data rate: 200 kilobytes per second 39 milliseconds maximum.

1.2 INTERFACE

Figure 2-2 shows the interface connections at the 5444 . Logic circuits within the 5444 use SLD*/100 signal levels, and the lines at the interface are at these levels. The SLD/ 100 levels are as follows:
Positive (+): $\quad+3.0 \mathrm{~V}$ to +6.6 V
Negative (- : $\quad 0 \mathrm{~V}$ to +0.3 V
Note: The 'rd data' line is at a special level of approximately 0 V to -3 V .
\qquad
*Solid Logic (Dense)

5444 (<30100) FETMM (5/70) 2-1

A \& I = Address and identifier field
5444 Model 1: 103 customer tracks (000 through 102) and CE track are used on one disk surface.
5444 Models 2 and 3: 203 customer tracks (000 through 202) and CE track are used on one disk surface.
Track 000 is used for initial program loading and for other system requirement.
racks 001,002 , and 003 are used as alternate tracks.
Track 103 or 203 (as appropriate) is used as the CE track.

Figure 2-1. Typical Sector and Track Formats [07526]

1.3 ALD PACKAGE

The page numbers of automated logic diagrams (ALD's) or the 5444 are prefixed FN and WK. Wiring diagrams and component location diagrams are prefixed ZA and ZZ. Page OA-000 supplies an index to the major ALD page groups.

Figure 2-2. 5444-to-System Interface [07527]

Section 2. Diagnostic Techniques

CAUTION

Switch off power before removing or installing SLD cards. Use the correct probe tips when connecting the acilloscope or cer to libegic pins.
he 544 may be the CE mode-select switch (see 2.2.1). AC and dc powe remain on.

1.4 APPROACH TO SERVICING

Take the following approach to servicing the 5444 :

1. Obtain the operator's report.
2. Use any error printout routine that the program of the using system provides.
R a avilable diagnostic programs
(MAP) appropriate maintenance analysis procedure (MAP) charts, which are contained in the解

1.4.1 Major Functional Areas

1.4.1.1 Data Recording Area

Data-recording functions are provided by the following areas:

1. Read/write heads
2. Read/write electronics (four cards)
3. Unsafe-condition latches (three latches),
4. Upper and lower index transducers and amplifiers.
5. Disk surface

The 5444 can neither detect errors in the recording area nor recover from these errors, except to signal 'data unsafe' to the using system

1.4.1.2 Access Area

Disk-accessing functions are provided by the following areas:

1. Electronic control of mechanical motion.
2. Drive mechanism.
3. Track-crossing detecto
4. Home detector.

To prevent damage to the drive tire, circuits protect the
orward and reverse clutches from simultaneous energization. ack but fails to correctly position at this track. The 544 can only either signal 'access overrun' or stop at rack 000 and signal 'home'. If the carriage is driven past the home position, either the R / W heads unload at track minus 001 or the trip mechanically unloads the head before the carriage is fully retracted.

1.4.1.3 Operational Control

Operational control is provided by the following areas
Carriage interlock switches.
. Head-load/unload controls
. Speed detectors.
Head-load interlock switches
Cartridge interlocks.
Any errors in these areas de-activate the 'ready' line supply index pulses. Any failure of the speed etector does not allow the 'cartridge safe' line to set.

1.4.2 Error Conditions

1.4.2. 1 Unsafe Conditions

The unsafe condition is generated from the following tches (see ALD page FN230):
'Write unsafe' latch
'Erase unsafe' latch
3. 'Read/write select unsafe' latch

Write Unsafe Latch: This is set by any one of the ollowing conditions:
. Write operation is selected but no write transitions are detected.
2. Write operation is selected and multiple R / W head are selected
ration is not selected but write current on.
Erase Unsafe Latch: This is set by either one of the ollowing conditions:
Write operation is selected but erase current is not on.
Write operation is not selected but erase current on.
elect Unsafe Latch: This is set by any one of the

llowing conditions:

1. Read and write operations are selected
. Read and erase operations are selected. operation is selected.

14.2.2 Not-Ready Conditions

The 'file ready' line indicates to the using system that the 5444 is ready. A not-ready state may be caused by one of the following faults:
. One of the interlock switches has failed.
. The rotational speed is less than 64% of full speed
An incorrect head-loading sequence has occurred.
AC or dc power has failed.
5. An unsafe condition has arisen.
1.4.2.3 Access Overrun Condition

The access-overrun error condition is signaled by 'access overrun' to the using system. The signal is raised when the carriage overrun interlock switch senses that the carriage is too close to the center of the disk. Th sensing occurs at track 204/2051/2 (5444 Models 2 and 3) or track 104/1051/2 (Model 1 only), and de-energizes th furward clutch forward.

1.4.24 ReadWrite Errors

Read/write errors can be detected only by the usin system. The 5444 has no means of parity checking

1.5 ERROR RECOVERY PROCEDURE

Figures 2-3 and 2-4 provide error recovery procedures for use when a suspected head-to-disk interference (HDI) has occurred or when R / W heads 02 and 03 are aligned. See 4.7.1.3 for head alignment details.

This page has been left blank intentionally

Figure 2-3. Error Recovery Procedure - Suspected HDI on Fixed Disk (Part 1 of 2) [07528]
$24 \quad(5 / 70)$

Figure 2-3. Error Recovery Procedure - Suspected HDI on Fixed Disk (Part 2 of 2) [07529]

Figure 2-4. Error Recovery Procedure - R/W Head 2 or 3 Replacement (Part 1 of 2) [07501]
$2-6 \quad$ (5/70)

Figure 24. Error Recovery Procedure - R/W Head 2 or 3 Replacement (Part 2 of 2) [07530]

Section 1. Basic Uni

2.1 CONSOLE

The 5444 is not provided with an operator console. Refer to the using system manuals for the method of controlling the machine

2.2 CE PANEL

The CE panel (Figure 2-5) is mounted on the dc box at the rear of the machine and is provided with two switches: a CE mode-select switch and a forward/reverse switch. When the 5444 is under control of these switches, the 'home' latch and the carriage overrun interlock switch limit the carriage travel to the recording area between tracks 000 and 203 (Models 2 and 3) or track 103 (Model 1)

2.2.1 CE ModeSelect Switch

On the CE mode-select rotary switch, one on-line position and six off-line positions can be chosen. When the switch is set to ON LINE, the 5444 is controlled by the using system. When the switch is set to an ofr-line circuits are blocked and the 5444 is selected for read peration. Idividual off line stim se follows

1 Track: Allows the carriage to move across one track for each operation of the forward/reverse switch.
10 Track: Allows the carriage to move across ten tracks for each operation of the forward/reverse switch. The 31 (and so on) in the forward direction and to track 29, 19, 9 (and so on) in the reverse direction; the first forward/reverse operation moves the carriage to the next overshot position not necessarily the full ten tracks.
$H D 0$: Upper head, upper disk
HD 1: Lower head, upper disk
All heads are
read selected
HD 2: Upper head, lower disk
HD 3. Lower head, lower disk
Head pre-amplifier output may be monitored at logic board pins Y-W1 K6J 10 or Y-W1 K6J12.

CE Mode-Select Switch $Z_{\text {Forward/Reverse Switch }}$ Figure 2-5. CE Panel on DC Box [07524]

2.2 Forward/Reverse Switch

The forward/reverse toggle switch is center biased, the enter position being off'. The switch provides directional control for the carriage when the CE mode-select switch is set to either 1 TRACK or 10 TRACK (see 2.2.1)

2.3 CE TOOLS AND THEIR USE

Special tools for servicing the 5444 are located at either the branch office or the customer installation.

2.3.1 Branch Office/Support Center Tools

The following tools are provided at the branch office or upport center:

Tool	IBM Part
Actuator Alignment Tool	5831644
Cartridge Support Clip (4 supplied)	2537562
Clutch Setting Gage	2597940
Disk-Clearance and Head-Load Spring Gage	5831639
Head-Clearance Gage	5831638
Head-Load Gage	2536600
Hub Tool	2537550
Nylon Gloves	461621
Runout Gage	2536591
T-Handle Wrench, 3/16" hexagon	460947
Tire Wear Gage	2597962
Torque Screwdriver, 10 lb in. ($11,5 \mathrm{~kg} \mathrm{~cm}$)	2597968
Torque Wrench, 8 lb in. $9,2 \mathrm{l}$	2598187

The following items are required (from using system inventory) for servicing the 5444:

Tool	IBM Part
CE Probe (see 2.3.3.1)	817971
Oscilloscope, Tektronix* 453	453047
2.3.2. Customer Installation Tools	
Tool	IBM Part
Actuator Pin Gage	2597946
Screwdriver Adapter	2597970
6 -Flute Adapter, Size 4-40	2597971
CE Cartridge (see 2.3.3.2)	2537301
Disk and Head Cleaning Paddle	2108474
Feeler Gages:	
0.003 in .	2536581
0.004 in.	2536582
0.005 in.	2536583
0.007 in .	2598179
0.010 in.	2598040
0.014 in.	2598041
0.016 in.	2598042
Head Cleaning Brush	2200106
Isopropyl Alcohol, $60 z$	2200200
Lint-Free Tissues	2162567
Torque Wrench, $4 \mathrm{lb} \mathrm{in}$. ($4,6 \mathrm{~kg} \mathrm{~cm}$)	2597969

2.3.3 Tools Use

2.3.3.1 CE Probe

The MAP charts (see 2.4.4) call for use of the CE probe part 81997 . Details for using the tool are given in the manuals of the using system.
23.3.2 CE Cartridge

The CE cartridge, part 2537301, is similar to the 5440 Disk Cartridge but is identified by a black top. The disk contains pre-written tracks at cylinders 005 and 073 (that is, the tracks 005 and 073 on both surfaces of the cartridge disk) that are used during the adjustment of the upper index transducer and the read/write head arm assemblies.
${ }^{*}$ Trademark of Tektronix, Incorporated

CAUTION
Do not, under any circumstances, write on the tracks cylinders $004,005,006,071,072,073,074$, or 075 of the CE cartridge. Overwriting on these tracks destroys the alignment data. Always check the track number before starting writing operations.

Pre-Written Tracks 005 (Upper Index Transducer Adjustment): A recorded marker pulse, followed after ten microseconds by a train of pulses, is provided on tracks 005. The upper index transducer is adjusted, as described in 4.2.3, until the marker pulse appears 30 ds after the index pulse
Pre-Written Tracks 073 (Head Arm Alignment): Cylinder 073 of the CE cartridge has two circular concentric tracks that are spaced 0.010 in . $(0,25 \mathrm{~mm})$ apart and are 0.001 in . ($0,04 \mathrm{~mm}$) eccentric to the disk; these tracks is wretly at sigh drequis. A race with an equal two-lobed pattern. The pattern and adjustment procedure are described in 4.7.1.3.

2.4 MAINTENANCE AIDS

24.1 Fixed Disk CE Track

On the fixed disk of the 5444, the tracks at cylinder 203 (5444 Models 2 and 3) or cylinder 103 (Model 1) are reserved for CE use. These tracks may be written on without customer data being disturbed

2.4.2 Track Position Indication

To indicate the approximate position of the R / W heads, a scale and pointer are provided. The scale (on the top of the actuator frame) is marked in ten-track intervals, and the pointer (on the carriage) moves along the scale; a mark at the left-hand end of the scale shows the fully retracted position of the carriage. The indication may be viewed through a window in the top cover of the 5444. To indicate the head position within the ten-track graduations on the scale, the flexible drive disk of the detent assembly is provided with slots, numbered 0
through 9 . The number of the slot that is between the through 9 . The number of the slot that is between the track-crossing lamp and the track-crossing photocell is
also the number of the track within the particular graduations. This indication can be viewed through the transparent detent cover at the rear of the 5444 .

2.4.3 Detent Yoke Holdout

It is frequently necessary for the CE to manually move the carriage, with the detent pawls held out engagement. To disengage the pawls, carefully move the yoke (Figure 2-6) towards the voice coil, loosen the hook securing screw, and engage the hook on the projection.
After servicing, make sure that the hook is secured by its screw clear of the yoke.

2.4.4 MAP Charts

Maintenance analysis procedure charts are the primary tools for fault diagnosis. Presented as flowcharts, they MAP charts are contained in the documentanent. The using system, together with

2.4.5 TAP Lines

Jumpers are connected to the pins of the logic board in the 5444, from the timing analysis program (TAP) lines as follows:

TAP's Line Driver Pin Unsafe Latch Pin
TAP Line B Y-W1 G7 B03 to Y-W1 H6 B10
TAP Line B Y-W1 G7 B05 to Y-W1 H6 G04
tap Line C Y-W1 G7 B04 to Y-W1 H6 G03
Note: If the jumpers that are normally installed between the unsafe latches and the TAP line driver input pins are changed during the running of diagnostic programs, hese jumpers must be returned to the proper pins

Section 2. Feature

No features are fitted to the 5444

Figure 2-6. Yoke Holdout Hook [07531]

Section 1. Basic Unit

3.1 APPROACH TO PREVENTIVE MAINTENANCE

Preventive maintenance allows the customer to use his 5444 for the maximum possible amount of time. 5444 for the maximum possible amount of time.
Maintenance that does not reduce downtime is unnecessary

3.1.1 Visual Inspection

When the opportunity occurs to visually inspect the 5444 , look for corrosion, dirt, wear, cracks, binding, and loose connections. Take remedial action so that more serious faults may be avoided.

3.1.2 Electronic Units

The program of the using system incorporates diagnostic programs which, if regularly used, will assist in tracing intermittent and potential sources of trouble.

313 Mechanical Units

The main steps in preventive maintenance of mechanical units are: clean, inspect, and lubricate. Do not adjust or dismantle a correctly functioning unit, even if the tolerances vary from those given in "Checks, Adjustments, and Removals".

31.4 Cleanliness

The 5444 is sensitive to dust particles. Always maintain strict cleanliness, therefore, whenever maintenance work is carried out. If the top cover is removed from the machine, install the CE cartridge, part 2537301 , before carrying out any work. Do not let lubricants accumulate inside the machine.

Unit	Frequency (Months)	Cleaning	Inspection	Lubrication
Air Filter	During any servicing	None	Check that filter is not dirty and damaged. See 4.2.5.1	-
Drive Disk	3	Clean with isopropyl alcohol	Check that disk is not bent. See 4.5.3.1	-
Drive Tire		Clean with isopropy alcohol	Check that tire is not worn. See 4.5.2.1	-
Read/Write Heads	3 (See Note 1)	See 3.2.2.2 and 3.2.2.3	Check for freedom from particle damage and oxide deposits. See 3.2.2.1	-
Carriage Slides	6 (See Note 2)	Clean with isopropyl alcohol	-	Lubricate with IBM no. 20 grease. See 3.2.1.1
Disk Cleaning Brushes	6		Check that brushes are not worn; see 4.3.1.1. If worn, change; see 4.3.1.2	Lubriele
Leadscrew	6 (See Note 2)	Clean with isopropyl alcohol	-	Lubricate with Molykote 'G'.* See 3.2.1.1
Detent Wheel, Yoke Guide	6 (See Note 2)	-	-	Lubricate with IBM no. 9 oil. See 3.2.1.2
Drive Belt	12	-	Check that belt is not frayed and cracked. Change if necessary, see 4.2.7	-
Drive Motor	12	-	-	Lubricate with IBM no. 6 oil. See 3.2.1.4
Pawl Bracket Assembly	12	-	-	Lubricate with IBM no. 9 oil. See 3.2.1.2

Notes:

This preventive maintenance depends on usage. If the usage exceeds 176 power-on hours per month, perform the maintenance every 528 power-on hours.
2. This preventive maintenance depends on usage, If the usage exceeds 176 power-on hours per month, perform the maintenace every 1,056 power-on hours
of Dow Corning Corporation
Figure 2-7. PM Routine Chart [07532]

3.4.1 Disks and Heads

When the read/write heads are flying above the disk surface, the clearance is about 85 millionths of an inch; very small particles, not visible to the eye, can cause dirt accumulate on the head faces, and this accumulatio can damage the disk and/or heads.

3. 1.4.2 Actuator Assembly

The actuator area is susceptible to dirt and damage

Deep any removed parts in a dust-proof plastic bag. Keep the drive tire and drive disk clean and free from contamination by oil or dirt.
3.1.4.3 Voice Coil Assembly

The magnet of the voice coil assembly may attract magnetic debris, which can cause failure of the unit. The debris can be removed by picking off with adhesive tape When the voice coil is removed from the machine, do not place it on a dirty surface.

3.2 PM PROCEDURES

CAUTION

Do not allow tools or parts to fall into the machine when the top cover is removed. In particular, avoid damage to the disk.

Carry out the preventive maintenance that is given in Figure 2-7. The locations are shown in Figure 2-8.

Figure 2-8. PM Locations [07533]

Figure 2-9. Carriage Slides and Leadscrew Lubrication [07535]

3.2.1 Lubrication Details

3.2.1.1 Leadscrew and Carriage Slide

1. Remove the following:
a. Top cover.
b. Air filter block the air duct with a lint-free tissue. c. Shield between air filter and carriage.
2. Manually move carriage to inner limit stop, after hooking back the voice coil yoke (see 2.4.3).
3. Clean the cartiage slides and leadscrew (Figure 2-9) with lint-free tissues and isopropyl alcohol (see 2.3.2 for part numbers) to remove all traces of lubricant. Note: Do not move the carriage after lubricant has been removed

CAUTION

In the following step, do not apply lubricant with the
fingers because of the risk of contaminating other parts of the clean area
4. Lubricate exposed thread of leadscrew with Molykote ' G '*, part 357830 , by squeezing $1 / 8$ to $1 / 4$ Molykote of lubricant from a 0.150 in. nozzle on tube, part in. of lubricant from a
$357830(0,035$ to $0,070 \mathrm{cc})$. Lubricate carriage slides with IBM no. 20 grease; use minimum amount.
5. Move carriage back and forth to distribute lubricant. Wipe off excess with a lint-free tissue.
6. Remove tissue from air duct and refit air filter. Refit shield and top cover.

* Trademark of Dow Corning Corporation

1. Remove detent end cover.
2. Lubricate the points shown in Figure 2-10 with IBM no. 9 oil. Use a small screwdriver to drip small amounts of oil on to the locations.
3. Clean drive tire and drive disk with isopropyl alcohol, part 2200200.
3.2.1.3 Drive Motor
4. Turn both lubrication spouts so that hollow openings face upwards.
Clean spouts, then drip in IBM no. 6 oil
5. After lubrication is completed, turn spouts over, so that the hollows face downwards, to prevent dirt accumulating in them.

3.2.2 Read/Write Heads

3.2.2.1 Condition of Heads

Figure 2-11 shows the various conditions that may be found in the face of a read/write head.

Grooves: A large particle that is embedded in the disk surface may cut a groove or deep scratch in the head face, thereby attracting oxide deposits. If the face has grooves 0.010 in . $(0,25 \mathrm{~mm})$ apart, change the R / W head arm assembly (see 4.7.1)
Light Scratches: Clean the head (see 3.3.2.2).
Heavy Accumulation of Oxide: If a head has a heavy accumulation of oxide between the bleed holes and the pole tip, see 3.3.2.3.
Slight Accumulation of Oxide: Clean the head (see 3.3.2.2).

Alcohol Dried in Pools, Fingerprints, or Oily Deposits: Clean the head (see 3.3.2.2).
3.2.2.2 Cleaning RW Heads (Light Oxide Deposits)

1. Remove top cover. Check that carriage is fully retracted
2. Wrap a lint-free tissue around a disk and head leaning paddle, and dampen with isopropyl alcohol (see 2.3.2 for part numbers). Carefully insert paddle between the two R/W head faces, and insert a tissue between the heads that are not being cleaned.

Figure 2-10. Detent Assembly Lubrication [07534]

CAUTION

Perform the following operation carefully. Do not touch the faces of the R/W heads with the fingers. Avoid leaving alcohol residue on the faces.
3. Close the heads by gently depressing head-load solenoid, then drawing paddle and tissue through the heads.
4. Repeat steps 2 and 3 until all oxide deposits are removed.
5. Dry the head with a dry tissue, in a similar manner to that for cleaning. Inspect with a dental mirror. I deposits of oxide still remain, see 3.2.2.3.
6. Repeat steps 2 through 5 for the other pair of heads. 7. Refit top cover.
3.2.2.3 Cleaning RW Heads (Heavy Oxide Deposits) If cleaning as described in 3.2.2.2 is unsuccessful, continue as follows:

1. Wet the head cleaning brush, part 2200106, with isopropyl alcohol and shake off any excessive liquid

CAUTION

In the following steps, avoid touching the face of the R/W head with the fingers. Do not leave pools of isopropyl alcohol on pieces of tissue on the head face. Never blow on R/W heads and do not use excessive force when supporting them. Discard worn head cleaning brushes.
2. Supporting back of head with disk and head cleaning paddle, scrub face of head with brush, using a rotary motion. Give special attention to bleed holes and to leading and trailing edges of face Note: Do not hit the head with the metal stem of the
bru
3. Wrap a lint-free tissue around a paddle, dampen tissue with isopropyl alcohol, and polish face of head
4. Dry the head face with a dry tissue wrapped around paddle.
5. Inspect surface of face, using a dental mirror, to make sure that all dirt and oxide deposits have been removed. If contamination still persists, change the head arm assembly (see 4.7.1.4 and 4.7.1.5).

Direction of Disk Rotation

Change Head if:

Deep scratches with oxide accumulation

Heavy oxide accumulation in pole tip area cannot be removed

Clean Head before Use if:

$$
\begin{aligned}
& \text { Alcohol residue dried in } \\
& \text { nools }
\end{aligned}
$$

ingerprints

Light scratches without
Light scratches witho
oxide accumulation

Figure 2-11. Conditions of Read/Write Heads [07536]

Section 1. Basic Unit

4.1 DISKS

CAUTION

If the 5444 produces tinkling or screeching noises, immediately inspect the disks and the read/write heads (see 4.7). Always change the disk and never transfer it to another machine.

4.1.1 Inspection - General

The condition of the faces of the read/write heads (see 3.2.2) is a guide to the state of the disk surfaces. A clean head that rapidly accumulates oxide deposits indicates that the disk surface is dirty or scratched, or has embedded particles. If cleaning or changing the heads
(see 3.2.2.2 and 3.2.2.3) and cleaning the disks (see (see 3.2 .2 .2 and 3.2 .2 .3) and cleaning the disks (see examine the disk surfaces for scratches, embedded particles and discolored spots on the oxide. Error recovery and data dumping proced
with in the manuals of the using system. recovery procedures are given previously in 1.5.

4.1.2 Removable Disk (5440 Disk Cartridge)

CAUTION

Always check that the carriage and brush arm are completely retracted before taking off the disk cartriage.
2. Under no circumstances dismantle the disk cartridge. 4.1.2.1 Inspection and Cleaning

No maintenance schedule is given for disk cartridges. Whenever read/write head surfaces show an accumulation of oxide or dirt, clean the disk cartridge as follows:
urn off power and remove top cover
Open cartridge clamp arms and lift off disk cartridge.
3. Place hub tool, part 2537550 , on spindle
4. Fit four cartridge support clips, part 2537562 , in the four slots around rim of cartridge (Figure 2-12). 5. Remove one cartridge clamp arm by removing the three attaching screws. If a. runout check is to be
made later (see 4.1.2.2), remove left-hand clamp arm.
6. Place cartridge on spindle of hub tool, aligning the cleaning brush entry port in cartridge with gap provided by removal of clamp arm.
7. Open logic gate (see Figure 2-46) to gain access to disk spindle pulley.
8. Wrap a lint-free tissue around a disk and head 8. Wrap a lint-free tissue around a disk and head
cleaning paddle and dampen with isopropyl alcohol Note: For part numbers of tissue, paddle, and alcohol, see 2.3.2.
9. Insert paddle and tissue through cleaning brush entry port in cartridge. Manually rotate disk by spindle pulley, and, at same time, press tissue on disk surface being cleaned.
10. Withdraw paddle while the disk is still rotating.
11. Using another paddle with a dry tissue, dry the disk surface in a similar manner to steps 9 and 10 Ensure that no alcohol is left on surface.
12. Examine disk surface. If particles have been embedded such that they have not been removed by the cleaning, take the disk cartridge out of service
14. Remove disk cartridge and hub
15. Remstal carip fro disk ani
15. Remove clips from disk cartridge.
16. Re-install disk cartridge in machine and close clamp 6. Re-in
arms.
7. Refit top cover to machine

If the hub tool and cartridge support clips are not vailable, clean as follows
available, clean as fo

1. Turn off power.
2. Remove top cover and air filter; block the air duct with a lint-free tissue.
3. Remove cleaning brush arm. See 4.3.1.2
4. Carry out steps 8 through 12 of foregoing cleaning procedure.
Notes.
a. This shortened method is more likely to cause disk damage than by mounting on a hub tool. b. The cleaning brush entry port is to the left of the actuator.
5. Remove tissue from air duct and re-install air filter. Refit top cover to machine.

term runout means edge wobble, or up-and-down novement, while the disk is rotating. To check runout
6. Turn off power and remove top cover.
7. Open cartridge clamp arms and remove disk cartridge.
8. Place hub tool, part 2537550 , on disk spindle.
9. Insert disk runout gage, part 2536591 , under top rim of disk cartridge (Figure 2-13) so that gage arm rides on lower surface of disk. Fit cartridge support clips, part 2537562 , in the four slots around rim of cartridge (see Figure 2-12).
10. Remove left-hand cartridge clamp arm by removing . he three attaching screws.
11. Mount disk cartridge on spindle of hub tool, gning the cleaning brush entry port with gap
12. Slowly rotate disk by turning spinde
13. Slowly rotate disk by turning spindle pulley. If pointer on gage moves more than two divisions of
the scale, runout is excessive and disk cartridge must be taken out of service.
14. Remove disk cartridge and all tools
15. Re-install cartridge clamp arm.
16. Remove clips from disk cartridge. If cartridge is serviceable (see step 7), re-install it in machine and close clamp arms
17. Refit top cover.
4.1.2.3 Cartridge Cover Cleaning

Clean dirt and stains from the cartridge cover with lint-free tissue that has been dampened with isopropyl alcohol. See 2.3.2 for part numbers of tissue and alcohol.

4.1.3 Fixed Disk

4.1.3.1 Inspection and Check

An indication of damage to the fixed disk may be gained from the condition of the lower R / W heads, persistent read or write errors, or noises from the machine. If head-to-disk interference has occurred, change the heads and the disk. Refer to the error recovery procedure for ben prior to an HDI incident to make sure that bey have been droping particles. g particles.
Visually inspect the therer surface of the fixk,列 shield. Examine the disk surface for:

Figure 2-13. Runout Check - Removable Disk [07538]

1. Spiral scratches.
2. Scratches that expose metal.
3. Embedded particles.

If the lower surface is suspected, remove the disk to inspect it.
Carry out the disk height and runout check as directed by the error recovery procedure flowchart, or when fitting a new fixed disk, as follows:

1. Remove top cover and disk cartridge
2. Remove fixed disk shield, pillar for head cable clamp, and head connectors from Z gate.
3. Mount disk-clearance and head-load spring gage part 5831639, on machined pad (Figure 2-14) nea the head entry port, with gage fingers turne towards the layshaft. Secure tool with captive scre in hole vacated by head cable clamp pillar
Swing fingers 02 and 03 of gage ds head entry port so they overlap edge of disk.
4. Manually rotate disk (by the spindle pulley) through one revolution and observe if disk touches eith inger
Note: If the disk touches a gage finger, the disk is warped and must be changed.
5. Swing disk fingers away from disk

Runout Check

Figure 2-14. Disk Height and Runout Checks - Fixed Disk [07539]
7. Clip runout gage, part 2536591 , on to pillar of disk-clearance and head-load spring gage below the 02 and 03 fingers. See Figure 2-14. Adjust height of disk whe so ith midscal.
8. Slowly rotate disk by the spind
8. Slowly rotate disk by the spindle pulley through one revolution and check runout. If pointer moves
more than two divisions on the scale, runout is more than two divisions on the scale,
excessive and the disk must be changed.
9. Remove tools. Refit cable clamp pillar, head Remove tools. Refl cable and fixed disk shield.
connector
10. Re-install disk cartridge and top cover.

4.1.3.2 Cleaning

Clean both surfaces of the fixed disk as follows:

1. Remove top cover, disk cartridge and fixed disk shield
2. Wrap a lint-free tissue around a disk and head cleaning paddle and dampen with isopropyl alcohol. See 2.3.2 for part numbers.
3. Insert paddle through head entry port, rotating the disk by turning spindle pulley. Keep the paddle horizontal and exert gentle pressure on disk surfaces while rotating.
4. Withdraw the paddle while disk is still rotating.
5. Dry the disk with a dry tissue in a similar manner to that for cleaning.

4133 Removal

Before removing the fixed disk try to recover data contained on it. Refer to 1.5 if data transfer cannot be completed; if the disk is undamaged, see Figure 24 (head 02,03 replacement); for suspected HDI, see Figure 2-3.
Remove the fixed disk as follows:

1. Turn off power, ensuring first that carriage and disk Turn off power, ensuring first that
2. Open cartridge clamp arms and take off the disk cartridge.
3. Remove fixed disk shield by removing the screws.
4. Take off upper index transducer boom assembly (see 4.2.3.2).
5. Unscrew the eight screws around clamp ring (see Figure 2-15) and remove it. Store flat, protected by tissues, part 2200200.
6. Push down on one side of disk, hold other side, and lift out disk.
7. Scrap removed disk.

4.13.4 Replacement

New fixed disks are supplied in a pack, part 2597938 that also contains nylon gloves, plastic washers, and a paper protector for the disk surface.

1. Thoroughly clean cavity in machine, using first vacuum cleaner, then isopropyl alcohol-moistened tissues. (See 2.3.2 for part numbers of tissues and alcohol.) Wipe spindle chuck and clamp ring.
2. Open disk pack and put on nylon gloves.
3.

in Figure 2-15, then dry the surface with dry tissues in a similar manner. (The disk has "TOP" written on the inner diameter to identify the upper surface)
5. Still wearing nylon gloves, carefully place disk
. Still wearing nylon gloves, carefully place disk on spindle chuck without allowing
to touch any part of the machine
6. Place clamp ring in position and, fitting new plastic washers provided, insert the eight screws. Do no trap the paper protector under the ring. Tighten the screws in sequence shown in Figure 2-15 with torque screwdriver, part 2597968
Ncte: Avoid dropping metal particles from the screw slots. Use a strip of adhesive tape for picking up particles.
7. Remove paper protector from disk. Remove nylon
8. Check the disk height and runout, see 4.1.3.1. If disk fails these checks, proceed as follows
a. Put on nylon gloves.
b. Take off disk, rotate it through 90 degrees and reclamp as given in step 6. Remove gloves.
Re-check disk height and runout. If still incorrect, fit a new disk
9. Clean upper surface of disk with an isopropyl alcohol-moistened tissue. Dry with a dry tissue, then protect with a new tissue
10. Re-install upper index transducer boom assembly (see 4.2.3.2). Fit fixed disk shield and adjust upper index transducer (see 4.2.3.1)
Before the 5444 can be used, perform any disk initialization program (that is in use) five times without error or alternate track assignment. If any alternate tracks are assigned, change the disk. (Three alternate tracks on each surface must be available to the customer on a newly fitted fixed disk.)
Inspect heads 02 and 03 after initialization for accumulation of oxide, and clean as necessary (see 3.2.2)

Sequence of Tightening Clamp Ring Screws

4.2 BASE ASSEMBLY

4.2.1 Cartridge Clamp Arm Replacement

Detach the left-hand and right-hand cartridge clamp arms by removing the three screws. Install the arms in the reverse manner.

4.2.2 Cartridge Interlock Switches

Each cartridge clamp arm assembly contains an interlock switch. To adjust the switch

1. Remove disk cartridge
2. Open cartridge clamp arms.

DANGER
The toggle spring assembly under each arm is under tension. Keap fingers clear when lifting in the following step.
4. In turn, lift the toggle spring assembly for each arm (Figure 2-16) and feel the free play of $1 / 16$ in. (1,6 mm). Adjust each interlock switch to operate in both directions within the free play, then tighten the switch screws.
5. Refit clamp arms and re-install disk cartridge

4.2.3 Upper Index Transducer

4.2.3.1 Checks and Adjustments

The following adjustments can be made to the upper index transducer assembly

1. Vertical and horizontal (mechanical) adjustments.
2. Circumferential adjustments, using an oscilloscope.

Vertical and Horizontal Checks and Adjustments:

1. Turn off power and remove top cover.
2. Open cartridge clamp arms and remove disk cartridge.

CAUTION
In the following steps, do not drop metal particles on to the fixed disk surface.
3. Place hub tool, part 2537550, on spindle, with projecting tip clear of transducer pole piece. Lower the handle and firmly locate tool
4. Rotate hub tool until its tip overlaps transducer pole piece (Figure 2-17).
Note: Make sure that the tip of the tool does not hit the pole piece.

Figure 2-16. Adjusting Cartridge Interiock Switches [07541]
5. Using 0.004 in. feeler gage, part 2536582 , check tha vertical gap between tip of hub tool and pole piece is $0.004 \mathrm{in} . \pm 0.001(0,1 \mathrm{~mm} \pm 0,03)$. Add or remov hims equally under either side of transduce assembly, as necessary
6. Check that horizontal gap between pole piece and tip of hub tool is $0.007 \mathrm{in} . \pm 0.002(0,18 \mathrm{~mm} \pm 0,05)$ Adjust by slackening transducer mounting screws moving transducer, and tightening screw.
Remove hub tool.
8. Carry out circumferential check.

Circumferential Check and Adjustment:

1. Insert CE cartridge, part 2537301 (see 2.3.3.2).
2. Start the 5444 and load to track 000
3. Set CE mode-select switch to 1 TRACK and forward/reverse switch to FORWARD. Go to track 005.
4. Set CE mode-select switch to HD0 or HD 1 .
5. Set the Tektronix 453 oscilloscope (using $\times 1$ probe) as follows:
Channel 1: Y-W1 K6J12 (linear read signal 1; see ALD page FN260). Y-W1 K61 10 (linear read signal 2; see ALD pase FN260).
Trigger Positive: Y-W1 D6G03 (index pulse; see ALD page FN445).
Channel 1: Normal. 50 millivolts per division. Channel 2: Inverted. 50 millivolts per division. Time/Division: 5 microseconds per division.

6. Loosen locknuts of circumferential adjustment screws and turn the screws in until they touch end of upper transducer boom (Figure 2-18)
7. Loosen clamp screw one half-turn. Open Y logic 8. The oscilloscope display should resemb.
8. The oscilloscope display should resemble that shown in Figure $2-18$; the marker pulse, which
precedes a train of pulses by $10 \mu \mathrm{~s}$, should occur 30 precedes a train of pulses by $10 \mu \mathrm{~s}$, should occur 30
$\mu \mathrm{~s} \pm 5$ from the start of the trace $\mu \mathrm{s} \pm 5$ from the start of the trace. To obtain this
condition, back off one circumferential adjustment condition, back off one circumferential adjustment
screw and tighten other screw so that boom is screw and tighten other screw so that boom is
pivoted about the clamp screw. (If the right-hand screw is backed off and the left-hand screw is tightened, the marker pulse is moved towards the start of the trace, that is, the delay time is shortened.)
9. When marker pulse occurs within 25 to $35 \mu \mathrm{~s}$, tighten clamp screw, then back off and lock both circumferential adjustment screws.
10. Stop machine and remove $C E$ cartridge.
11. Re-check that the $0.004 \mathrm{in} . \pm 0.001(0,1 \mathrm{~mm} \pm$ 0,03) gap is still obtained between transducer pole piece and tip of hub tool; see "Vertical and Horizontal Checks and Adjustments".
12. Re-install top cover
4.2.3.2 Removal and Replacement

An upper index transducer replacement kit is supplied as part 2598087 , and consists of a transducer and shims. Remove the transducer as follows:
Remove the transducer as

1. Take out disk cartridge.
2. Remove fixed disk shield. Place a lint-free tissue, part 2162567, between underside of the boom and surface of the fixed disk.
3. Remove the four screws that secure transducer boom cover plate, and take off plate. Unplug connector P1.
4. Remove the four socket screws that hold transducer assembly, and lift off the assembly. Take care not to lose the shims beneath (see Figure 2-17). Remove tissue.
Install transducer and shims in reverse order to removal. Check the adjustment (see 4.2.3.1).

4.2.4 Lower Index Transduce

4.2.4.1 Check and Adjustment

The lower index transducer assembly is mounted on the main spindle casting. Check and adjust as follows:

1. Open Y logic gate to gain access.
2. Check that gap between transducer and metal nib on spindle pulley (Figure 2-19) is $0.002 \mathrm{in} . \pm 0.001$ ($0,05 \mathrm{~mm} \pm 0,03$).
3. Slacken mounting screws of transducer, adjust as necessary to obtain correct gap, and tighten screws. 4. Close Y logic gate.

424.2 Removal

Note: Recover any required data from the fixed disk before the lower index transducer is removed.
Remove transducer as follows

1. Open Y logic gate.
2. Without disturbing transducer housing, release hexagon setscrew that holds transducer (see Figure 2-19).
3. Withdraw transducer from its housing. Unplug connector P2 and cut leads back to the cable loom at both ends.

4.2.4.3 Replacement

A lower index transducer replacement kit is supplied as part 2598086
part 2598086 .

1. Insert transducer into housing. Route and tape the Insert transducer into housing. Route and tape the
leads alongside the cable loom. Plug in connector P2. 2. Adjust transducer (see 4.2.4.1).
2. Using the replacement long hexagon screw and locknut, secure transducer without overtightening. Lock the screw.
3. Close Y logic gate.
4. Retrieve any data that has still to be recovered from the fixed disk.
5. Re-initialize the fixed disk by running the disk initialization program five times without errors or alternate track assignment.

4.2.5 Air Filter

Handle air filter with care and prevent it from becoming dirty. A dirty filter shortens the life of disks and read/write heads.

Figure 2-19. Lower Index Transducer [07544]

25.1 Service Check

Examine the filter whenever any service or removal is done. Look for dirt and breaks in the material. Change a dirty or defective filter; do not attempt to clean or epair it.

2.5.2 Removal

1. Remove top cover from machine.
2. Unscrew filter mounting screws (Figure 2-20).
3. Lift out filter. Block the air duct beneath filte assembly with a lint-free tissue, part 2162567, to prevent objects falling in
4. If filter is serviceable, carefully store it.

4.2.5.3 Replacement

1. Remove tissue from air duct
. Install new filter and fit mounting screws (see Figur 2-20)
Fit top cover to machine

4.2.6 Changing Drive Motor

DANGER
Always turn off power before working on the drive motor, because the motor contains a thermal cutout for restoring power after overheating

Change the drive motor (see Figure 2-47) as follows: 1. Take off drive belt (see 2.4.7).
2. Disconnect motor leads at terminal block TB1 capacitor C 1 , and ac box ground.
3. Remove motor mounting screws under the bracket
4. Replacement motors are supplied complete with leads and connectors. Install motor and secure with its mounting screws.
5. Connect appropriate leads to TB1, C1, and ac box ground (see ALD page ZA200)
6. Refit drive belt (see 4.2.7)

Figure 2-20. Air Filter Mounting [07545]

View from underside of 5444
Figure 2-21. Route of Drive Belt [07546]

4.2.7 Changing Drive Belt

Change the drive belt if it is cracked or frayed, as follows

1. The belt is self-adjusting. To remove, first release tension from idler (Figure 2-21) by pulling against tension springs, then lift off belt.
2. Fit belt with its smooth side inwards.
3. Adjust drive motor pulley on its shaft by loosening 3. Adjust drive motor pulley on its shaft by loosening
the hexagon screw, so that belt runs clear of flanges the hexagon screw, so that belt runs clear of flanges
on other pulleys. Tighten motor pulley screw on completion.
Note: If the 5444 is mounted with a limited accessibility to the underside, tape the drive belt to the spindle pulley (see Figure 2-21) with adhesive tape. This action will allow the CE to move to the other end of the machine for pulling the belt through to the other pulleys. Remove the tape on completion.

4.2.8 Spindle Assembly

Before commencing work on the spindle assembly, make all attempts to recover data from the fixed disk. Refer to Figure 2-3.

4.2.8.1 Removal

1. Ensure that carriage is fully retracted, then turn off power.
2. Remove disk cartridge, the shield above fixed disk, and upper index transducer boom assembly (see 4.2.3.2)
3. Remove and discard fixed disk (see 4.1.3.3).
4. Take off drive belt (see 4.2.7)
5. Open Y logic gate
6. Remove anti-static assembly and ground wire from spindle (Figure 2-22), and lower index transducer assembly (see 4.2.4.2).
7. Lift magnet ring out of the chuck (see Figure 2-22) with a screwdriver, without damaging the ring.
8. Turn chuck until one of the three spindle mounting screws is visible through an access hole.
9. Unscrew mounting screw, completely lifting it out with a screw-holding driver. Turn chuck until another screw is visible and remove that screw in same way. Repeat the action for the third screw.

CAUTION

Do not "lever" the spindle assembly with a screwdriver (in the following step) or else the machined base may become damaged.
10. Lift out spindle assembly by gripping edges of chuck plate.

Figure 2-22. Spindle Assembly [07547]

4.2.8.2 Replacement

Replace the spindle assembly as a complete unit

1. Insert spindle assembly (see Figure 2-22) into machine, with lower transducer mounting facing towards Y logic gate.
2. Place assembly firmly on machined base. Turn spindie chuck until the hole for one mounting screw is visile. Use a screwholding diver to start the action to fit the other two mounting screws.
Tiehten all three screws down evenly. Refit . Figure 2-22. Figure 2-22.
3. Refit anti-static assembly and connect ground wire

Refit lower index transducer assembly (see 4.2.4.3) then adjust it (see 4.2.4.1)
6. Refit drive belt (see 4.2.7).
7. Fit a new fixed disk (see 4.1.3.4, steps 1 through 9) 8. Refit upper index transducer boom (see 4.2.3.2).
9. Refit shield above fixed disk.
0. Check upper index transducer clearances, and adjus if necessary (see 4.2.3.1).

1. Check actuator alignment (see 4.4.1.3)
2. Align read/write heads 00 and 01 and set heads 02 and 03 to initial setting of 0.025 in . $(0,64 \mathrm{~mm})$. See 4.7.1.3.
3. Install disk cartridge
4. Initialize the new fixed disk.

4.3 DISK CLEANING BRUSHES

4.3.1 Brush Arm Assembly

To check that the brush arm is in the fully retracted position, view the assembly through the small window in the top cover.

4.3.1.1 Check

Check that brushes are not worn so that they cannot be deflected as they pass over the disk (Figure 2-23). If worn, change (see 4.3.1.2)
4.3.1.2 Removal and Replacement

Change the brushes during preventive maintenance and if they are worn, as follows
2. Tu of
. Take off clip from brush arm support and lift of
 the clip
3. Unclip brushes from end of brush arm and slide on new brushes.
Mount brush arm and secure with clip.
5. Refit top cover.

4.3.2 Brush Mid-Cycle Switch and Brush Cycle-Complete

 Switch4.3.2.1 Adjustment

1. Turn off power and remove top cover
2. Remove air filter (see 4.2.5.2).
. Unclip and take off brush arm (see Figure 2-23) Take care not to damage the clip. Remove brus ith
3 gap between bodies of the brush mid-cycle and brush . Therace should be 0.050 in ($1,27 \mathrm{~mm}$) . The
To adjust switches, slacken off pivot
3. To adjust switches, slacken off pivot screw and mounting screw of each switch and mov
4. Check the order in which the switches operate, as follows:
a. By hand, slowly move cam arm from retracted stop to forward stop, and check that cycle complete switch transfers before mid-cycle switch does.
b. By hand, slowly move cam arm from forward stop to retracted stop, and check that mid-cycle switch transfers before cycle-complete switch.
c. Vary the 0.050 in . $(1,27 \mathrm{~mm})$ gap by ± 0.003 in $(0,86 \mathrm{~mm})$ to obtain these conditions.
5. Refit the following items:
. Brush motor cover plate
Brush arm
4.2.5.3)
dop cover

Figure 2-24. Disk Cleaning Brush Drive - Switch Adjustment [07548]

3.22 Removal and Replacement

1. Turn off power and remove the following items a. Top cover.
b. Brush motor cover plate
2. Note wiring to switch, then disconnect (see Figure 2-24).
3. Unscrew switch mounting and pivot screws. (Th nuts below the screws are captive.) Lift off switch
4. Install new switch in reverse sequence to removal. Check adjustment (see 4.3.2.1)

4.3.3 Brush Motor

4.3.3.1 Removal

1. Turn off power and remove top cover
2. Remove air filter (see 4.2.5.2). Block air duct and brush entry port with lint-free tissue, part 2162567
3. Unclip and take off brush arm (see Figure 2-23). Do not damage clip.
4. Remove brush motor cover plate.
5. Disconnect motor leads at terminal block TB2 and witch connections at edge connector EC3 (se Figure 2-24).
6. Take out the four screws at corners of moulded housing, then lift out housing assembly
7. Loosen cotter nut (see Figure 2-24). Tap cotter to release it from brush motor shaft.
8. Unscrew motor mounting screws and take out motor. Do not lose the cam.

4.3.3.2 Replacement

Note: When changing a brush motor, make sure that the new motor is of the correct frequency for the power supply.

1. Insert cam cotter (see Figure 2-24), turning motor shaft so that its flat side engages cotter. Fit and tighten the nut. Assemble cam arm peg into link.
2. Fit motor and secure with its screws. 2. Fit motor and secure with its screws.
3. Check adjustments of brush cycle-complete switches (see 4.3.2.1).
4. Re-install assembly, and the items taken off in 4.3.3.1, without trapping the wires. (See ALD pages ZZ200, ZA200, and ZA220, for wiring details.) Ensure that tissues are removed from air duct and brush entry port before fitting air filter

4.4 ACTUATOR ASSEMBLY

4.4.1 Actuator Components - Handling

Carriage or leadscrew parts (Figure 2-25) are not field Carriage or leadscrew parts (Figure 2-25) are not field
replaceable units; if they are defective, change the complete actuator assembly. Handle and store all part of the actuator assembly with extreme care. In pll all slides, drive disk, and drive tire free of damage or contamination.

44.1.1 Removal

If data is to be recovered from the fixed disk, do this before actuator removal, if possible; otherwise, refer to 1.5 to attempt recovery after actuator replacement.

A T-handle wrench, part 460947, is held at branch offices to facilitate actuator screw removal where offices to faciiltate actuator screw removal where
enclosures make entry to the base of the 5444 difficult. 1. Turn off power
2. Remove drive belt (see 4.2.7). This action allows the idler to retract and give access to hexagon socke ews that hold actuator
Disnect plugs J3, J4, and J5 from dc box.
4. Ensure that carriage is fully retracted then remove read/write head arms (see 4.7.1.4)
. Disconnect head-load cable (see 4.8.1.2)
6. Open CE panel (on dc box cover) and hinge back to
allow room for actuator assembly to be withdrawn. Remove motor upper oiling spout from drive motor.
Remove three actuator holding screws (using T-handle wrench, part 460947), slightly lift actuator assembly to bring its locating dowel clear of base casting, and carefully withdraw assembly.
8. Protect assembly in a dust-proof bag while out of the machine.
4.4.1.2 Replacement

Only actuator assemblies with adjustable layshafts are supplied to the field for replacement
Note: The carriage inner limit stop shaft on the actuator casting (see Figure 2-25) is factory-set to track $2071 / 2$ and should only be moved during conversion for a 5444 Model 1 (see 4.4.2) or during actuator alignment on a Model 1 (see 4.4.1.3).

1. Check that read/write head arms are removed and that carriage is fully retracted.
2. Make sure that mating faces of actuator and base casting are clean. Insert actuator assembly through casting and locate by the dowel (see Figure 2-26).
3. Hand tighten the three socket holding screws. Use
4. Refit
5. Refit upper oiling spout on drive motor, with the
6. Proceed with alignment, see 4.4.1.3

4.1.3 Alignment

he actuator assembly must be aligned so that the carriage moves in a true radial line to the disk. A hub ool, part 2537550 , and an actuator alignment tool, part 5831644 , are available at branch offices for aligning the actuator assembly.
Note: On 5444 Model 1 (103 tracks only), remove the nner limit stop shaft (see Figure 2-25) and the carriage o track 200. The drive disk and the inner limit stop haft must not be loose at the same time. 1. Check not be loose at the same time.

1. Check that carriage is fully retracted, then remove disk cartridge and machine top cover.
2. Ensure that actuator assembly is firmly on base casting but is free to pivot on dowel (Figure 2-26) 3. Place hub tool, part 2537550 , on main spindle.

CAUTION
Avoid damaging the head-load spring in the following step.
4. Back off adjusting screw of top head arm. Fit actuator alignment tool, part 5831644, in the top (00) position (see Figure 2-26); register the tool snugly on the locating faces. Fit one R/W head arm in position 01 to balance the clamp. Fit clamp and tighten clamp screw
5. Extend carriage to track 200

CAUTION

From this step onwards, the fixed disk is at risk. If the actuator assembly is allowed to lift off the base, the head-load springs will damage the fixed disk.
6. Adjust the actuator assembly sideways, with a 0.002 in. ($0,05 \mathrm{~mm}$) feeler gage between actuator alignment tool face and hub tool boss. The gap should be $0.002 \mathrm{in}. \pm 0.001(0,05 \mathrm{~mm} \pm 0,03)$. A suggested method of moving the actuator assembly is to press the detent plate (see Figure 2-27) with the thumbs, against the rubber seal (see Figur 2-25).
7. Tighten the three socket holding screws. The tightening sequence is important. As the screws are tightened, the actuator assembly tends to pivot about the locating dowel. Finger-tighten all three screws, then:

a. Tighten the single screw nearest the disk an observe which way the 0.002 in. gap moves
b. Select one of the two screws near the deten end and tighten it so the gap moves in th opposite direction.
c. Continue to work on these two screw alternately until the gap remains constant 0.002 in .
d. Tighten the third screw and check the gap.
8. Retract carriage and remove tools.
9. On 5444 Model 1, refit and adjust inner limit stop 4.4.2)
0. Reconnect head-load cable and adjust (see 4.8.1. and 4.8.1.1).
11. Refit read/write head arms and adjust (see 4.4.3 4.7.1.5, and 4.7.1.3).
2. Connect plugs J3, J4, and J5 to dc box
13. Fit drive belt (see 4.2.7).
4. Check upper index transducer setting and adjust as necessary (see 4.2.3.1)

4.4.2 Replacement Actuator Assembly - Limit Sto

 (5444 Model 1)eplacement actuator assemblies are supplied with th nner limit stop set to track 2071/2. On the 5444 Model 1 two disks limited to track 103 only), adjust the inne top shat to track $103 / 2$ and set the caniag fore the mechanical stop. Proceed as follows
Check the dik
carriase to inner limit stop shaft (see Figure 2.25) The track-crossing sensor hole should be between the ' 7 ' and ' 8 ' slots in the drive disk. The carriage scal pointer should indicate over 200 .
2. Lift out shield located near air filter. Stop shaft is set in actuator casting, at the end nearest to heads.
3. Move carriage to track $1071 / 2$ (that is, carriage scal just past 100 , and track-crossing hole between the ' γ nd ' 8 ' slots of drive disk). At inner limit stop shaf loosen lower six-flute setscrew ($7 / 64 \mathrm{in}$. wrench) and move stop shaft to limit carriage travel at track 1071/2. Tighten setscrew and refit shield.
4. Set carriage overrun interlock switch to transfer $2^{1 / 2}$ to 3 tracks before inner limit stop (see 4.5.7.1)
4.4.3 Replacement Actuator Assembly - R/W Heads (5444 Model 3)
If a replacement actuator assembly is being fitted to a 5444 Model 3 (removable disk only), read/write head arm assemblies are fitted in the upper two positions (00 and 01) only. Positions 02 and 03 must be occupied by blank arms to hold off the head springs: position 02 is fitted with arm B down (downward-facing head), part 2536625 , and position 03 with arm B up (upward-facing head), part 2536626 . Retract the carriage before fitting these arms, and locate the head-load springs on the raised portion of the arms
Note: The head-load spring adjustments at all four positions must still be correct when blank arms are fitted (see 4.8.4.1).

4.5 ACCESS MECHANISM

4.5.1 Layshaft

The layshaft assembly is lubricated for life and is not to be dismantled. If any failure demands that a layshaft assembly be changed, fit also a new late level (after EC level 391962) actuator assembly, part 2598200 (a late level actuator assembly complete with layshaft, together with fitting instructions and machine record update). Early level layshafts cannot be replaced. Some earlier units have a different type of layshaft and drive tire. Later units, from EC level 391962, have an adjusting screw on the layshaft casting (Figure 2-27). The two
types are not interchangeable.
4.5.1.1 Establishing Clutch Relationship - Summary of Action
To establish the correct clutch/drive disk/layshaf relationship

- The drive disk and tire are removed, and th relationship between the lower clutch pad and the leadscrew is then set, with a clutch setting gage.
- The tire is fitted and the layshaft is set with a gap between the lower clutch pad and the tire driving surface.
- The layshaft is secured and the upper clutch is set a fixed distance from the tire upper driving surface.
- The tire is again removed and the drive disk is refitted.
- The tire is finally refitted and the clutch settings are rechecked.
Once the initial settings have been made, any one unit can be moved, replaced, and set relative to the other undisturbed unit. For example, a new layshaft can be installed and set to the lower clutch, providing the clutch has not also been moved

4.5.1.2 Adjustment

1. Turn off power and remove detent cover. Remove drive belt (see 4.2.7)
2. Loosen clutch brackets and use the eccentrics to move both brackets to the rear, that is, clear of drive disk.
3. Remove drive tire and drive disk. Using drive disk screw, secure clutch setting gage, part 2597940, on end of leadscrew (Figure 2-28).
4. Adjust lower clutch assembly forward until 'GO part of the gage clears lower clutch pad, but 'NO GO' part does not pass. The adjustment is fine because the difference between ' GO ' and ' NO GO' is only $0.002 \mathrm{in}.(0,05 \mathrm{~mm})$. Use only light finger pressure to turn gage with detent pawls hooked back.
5. Remove gage and install drive tire.

Figure 2-27. Layshaft Assembly (EC Level 391962) [07549]

Figure 2-28. Lower Clutch Initial Setting [07551]

Tire Wear Gage Part 2597962.
If the gage passes over the tire, change
the tire. Use the weight of the gage only,

NO GO
2597962 the tire. Use
do not force
2597962
6. Adjust layshaft assembly for a $0.015 \mathrm{in} . \pm 0.002$ ($0,38 \mathrm{~mm} \pm 0,05$) between the lower driving surfac of tire and the lower clutch pad (see Figure 2-28) Most layshaft assemblies have an adjusting screw, but the early version has no adjuster and must be lightly tapped forward with a screwdriver handle.
7. Tighten layshaft assembly and check the adjustment by inserting a $0.013 \mathrm{in} .(0,33 \mathrm{~mm})$ feeler gag between tire and lower clutch pad; the gage shoul pass through. Insert a $0.017 \mathrm{in}. \mathrm{(} 0,43 \mathrm{~mm}$) feele gage; as it enters, the tire should rotate
8. Set upper clutch assembly for a $0.015 \mathrm{in} . \pm 0.002$ $(0,38 \mathrm{~mm} \pm 0,05)$ gap between upper clutch pad and tire upper driving surface. Check with 0.013 in and 0.017 in . feeler gages as in step 7 .
9. Remove tire. Clean and fit, if necessary, a new drive disk with a new brown washer (see Figure 2-30). Recheck clutch clearances
0. Refit tire and clean it with isopropyl alcohol, part 2200200

1. Refit drive belt (see 4.2.7), unhook the yoke and fit the detent cover.

5.1.3 Removal and Replacement

Before removing the layshaft assembly:
. Turn off power.
. Remove detent cover.
. Remove drive belt (see 4.2.7).
Removal of Assembly (prior to EC Level 391962) loosen the holding screws and draw the assembly out from the casting; do not tilt the assembly or else the tire will damage the drive disk. Do not lose the shims.
Removal of Assembly at EC Level 391962: Remove the drive tire. Unscrew the layshaft holding screws and take rive the adjusting screw may have to be backed off to allow removal.

Replacement:
Note: The replacement of an early-level layshaft assembly by a later-level assembly involves an actuator change as described in 4.5.1
Fit the layshaft assembly as follows

1. Replace layshaft assembly in the reverse sequence to removal, installing the original shims and hand-tightening the holding screws.
Note: If shims are lost or damaged, their thickness is marked on the actuator casting; use shim 0.005 in. $(0,13 \mathrm{~mm})$, part 2536351, and shim 0.015 in . ($0,38 \mathrm{~mm}$), part 2536475
2. Adjust as described in 4.5.1.2. If lower clutch assembly has not been disturbed, set tire lower driving surface to 0.015 in . $(0,38 \mathrm{~mm})$ from clutch pad.
3. Refit drive belt (see 4.27) and detent cover.

4.5.2 Drive Tire

4.5.2.1 Check

Check both driving surfaces of the tire for wear with the tire wear gage, part 2597962, as shown in Figure 2-29 Visually inspect the tire surfaces for:

1. Staining or polishing of the driving edge.
2. Ragged edges or tapered driving surface.
4.5.2.2 Removal and Replacement

If an early-level tire, part 2537598, is being changed order the new one from one of the following ring plants; quote "MES Co order. (This tire is not stocked at field part centers.)

1. Dept. 625, IBM Corporation, Monteray and Cottle Roads, San Jose, California 95114, U.S.A.
2. Dept. 611, IBM United Kingdom Ltd., Langstone 2. Road, Havant, Hampshire, England.

The early-level tire is not interchangeable with a later tire.

Figure 2-30. Clutch Adjustment and Checking

Remove the tire holding screw and withdraw the tire ssembly. Take care not to damage the drive disk
Fit the tire in the reverse sequence to removal. When
new tire replaces a worn one, check the tire-to-lowe new tire replaces a worn 1. Hold clearance as follows:

Hold back yoke with holdout hook, to disengage detent pawls.
2. Insert a 0.012 in . $(0,3 \mathrm{~mm})$ feeler gage between lowe clutch pad and drive disk (Figure 2-30). The disk clutch pad and drive disk (Figure $2-30$). The disk
should touch the tire driving surface for one should touch the tire driving surface for o
complete layshaft revolution. Adjust as necessary.
3. Check by inserting a 0.010 in . $(0,25 \mathrm{~mm})$ feeler gag and turning the tire with the layshaft pulley; drive disk should not rotate.
4. Insert a 0.014 in . $(0,36 \mathrm{~mm})$ feeler gage. Turn the tire, and check that the disk is driven by the full circumference of the tire driving surface.
5. Make any further adjustments by loosening and adjusting the layshaft.

4.5.2.3 Cleaning

DANGER

Do not attempt to clean the tire when the 5444 is running.
Clean the tire after any activity. Apply isopropyl alcohol, part 2200200, with a lint-free tissue, while rotating the layshaft by hand.

4.5.3 Drive Disk

CAUTION

The drive disk is easily damaged. Take care, therefore, when working near or cleaning it. Clean the disk with isopropyl alcohol after any activity to prevent the transfer of contaminants to the drive tire.

4.5.3.1 Service Check

A drive disk that is buckled or is dished (that is, concave or convex) cannot perform correctly. Move the carriage, with the yoke disengaged, and view the disk from the side; when the disk is turning, any unevenness will be apparent. Change a suspected drive disk.

4.5.3.2 Removal

1. Turn off power.
2. Remove detent cover.
3. Disengage detent pawls by hooking back the yoke.
4. Remove drive tire (see 4.5.2.2).
5. Turn leadscrew to gain access to the hole between
drive disk and detent wheel.

CAUTION

Make sure that, in the following step, the inner limit stop shaft and the drive disk are not loose at the same time; the setting of the drive disk depends on the setting of the stop shaft
6. Insert a suitable six-flute wrench into the $3 / 32 \mathrm{in}$. $(2,4 \mathrm{~mm})$ hole shown in Figure 2-31. Unscrew disk-holding screw, using wrench to steady the during this operation; any attempt to unscrew the disk with pawls engaged will permanently damage them.
4.5.3.3 Replacement

Note: On some early machines, a steel washer is fitted behind the drive disk (see Figure 2-28). On replacement of the disk, face the countersunk side of the washer towards the leadscrew.

1. Clean drive disk with lint-free tissue dampened with isopropyl alcohol. Holding disk by its edges, place it on leadscrew shoulder; put a new brown washer, part 5831904, between disk and screw (see Figure 2-31). Tighten lightly
2. If fine-home sensor mask has been moved, reposition mask to obtain a clearance to drive disk of 0.010 to 0.030 in . $(0,25$ to $0,76 \mathrm{~mm})$.
3. Set sensor support bracket to center of adjustment slot.
4. Disengage detent pawls and slide carriage to inner limit stop shaft, which is set to track $2071 / 2$ position (5444 Models 2 and 3) or track 1071/2 position (Model 1)
5. Release detent pawls and let them detent at track 207 or 107 position, as appropriate.
6. With disk-holding screw slack, rotate drive disk until the ' 7 ' slot is aligned with track-crossing hole in sensor mask. Rotate a small amount counterclockwise to anticipate turning motion when the disk is tightened (see Figure 2-31); rotate the disk only from the edge, because skin acids contaminate the disk face.
7. Hook back detent yoke, insert a suitable six-flute wrench into the $3 / 32 \mathrm{in}$. $(2,4 \mathrm{~mm})$ hole in the leadscrew (see Figure $2-31$). The leadscrew may have to be turned to expose this hole, but do not lose the drive disk/ leadscrew relationship. Holaing the leadscrew steady, tighten the drive disk screw to 4 lb in. $(4,6 \mathrm{~kg} \mathrm{~cm})$; use torque wrench, part 2597969 and screwdriver adapter, part 2597970.
Note: Do not hold the disk while tightening.
8. Unhook yoke and move the carriage to track 207 or 107 (as appropriate) for check. If necessary, adjust sensor support bracket so that track-crossing hole is centered in the ' 7 ' slot.

Figure 2-31. Drive Disk Adjustment [07554]

Note: If the track-crossing hole cannot be centered in the ' 7 ' slot, repeat the adjustment from step 4 onwards.
9. Replace drive tire (see 4.5.2.2) and detent cover

4.5.4 Forward and Reverse Clutches

4.5.4.1 Service Check

1. Turn off power
2. Remove detent cover
3. Hook back yoke to disengage detent pawl
4. The correct gap between each clutch pad and the drive tire is 0.015 in . ($0,38 \mathrm{~mm}$), incluaing the 0.003 .30) ($0,8 \mathrm{~mm}$) thickness of the drive disk (see Figure disk to touch the tire. Check that:
a. When a $0.010 \mathrm{in}$. . $0,25 \mathrm{~mm}$) feeler gage is inserted
in a similar way, the tire does not drive the disk in a similar way, the tire does not drive the disk the tire drives the disk.
5. Refit detent cover.

4.5.4.2 Adjustment

Betore the clutch adjustment is made, the leadscrew/ lower clutch/tire relationship must already be set. If both the layshaft and the lower clutch have been moved, the layshaft and the lower clutch have been moved,
To set up the upper (forward) clutch and reset the lower (reverse) clutch, proceed as follows

1. Turn off power
emove detent cover.
2. Insert a 0.012 in. $(0,31 \mathrm{~mm})$ feeler gage between clutch pad and drive disk (see Figure 2-30).
3. Adjust clutch bracket eccentric (see Figure 2-28), with pivot screw and holding screw both loosened, with pivot screw and holding screw
until disk is deflected to touch the tire
4. Tighten bracket and check clutch adjustment with 0.010 in . $(0,25 \mathrm{~mm})$ and 0.014 in . $(0,36 \mathrm{~mm})$ feeler gages.
5. Refit detent cover.

4.5.4.3 Removal

A coil failure or other faults on the clutch assembly requires a complete assembly change. Remove the clutch assembly as follows:

1. Turn off power.
2. Remove detent cover
. Remove clutch pivot and holding screws (see Figure $2-28$), then withdraw clutch assembly, complete with eccentric.
Note: The eccentric is a loose piece

Visually position tra

in center of ' σ ' slot.

Photocell Assembly, Part 2537349

Figure 2-32. Photocell Assembly - Adjustment and Details [07555]
0.030 in . (0,25 to $0,76 \mathrm{~mm}$) from drive disk. Center the track-crossing hole in ' 0 ' slot of drive disk. (The the track-crossing hole in 0 slot of drive disk. (The fixed and, therefore, one adjustment sets up both photocells.)

4.5.6 Carriage Photocell Assembly

4.5.6. 1 Check

1. Remove top cover
2. Connect a CE meter between pin Y-W1 C6B13 (see ALD page FN450) and a D08 ground pin.
3. Monitor ' + carriage PC lit'. With the carriage at track 006 , the line should be active $(+4 \mathrm{~V})$, and at track 004 , it should be inactive (0 V)
4. Refit top cover.

4.5.6.2 Adjustment

1. Remove top cover
. Position carriage photocell assembly so that flag runs mid-way between photocell and lamp mask. Ensure mid-way between photocell and lamp mag.
Detent carriage at track 005
2. Monitor Y-W1 C6B13 (see 4.5.6.1) at track 005. Position the coarse home flog until' ' carria PC line just changes from +4 V to 0 V
3. Tighten flag assembly and carry out checks at track 004 and 006 (see 4.5.6.1).
4. Refit top cover.
4.5.6.3 Removal and Replacement
5. Turn off power.
6. Remove top cover.
7. Lamp: Unclip lamp from holder and fit replacement lamp.
Photocell: Unsolder photocell assembly leads, noting their position. Fit replacement assembly and resolder leads. Carry out adjustment procedure (see 4.5.6.2)

fit top cover.

457 Carriage Interlock Switches

4.5.7.1 Adjustment of Carriage-Retracted and CarriageOverrun Interlock Switche
Remove the top cover to gain access for the adjustments. Carriage Retracted Interlock Switch: Adjust as follows 1. Loosen six-flute socket screws on switch bracket Figure 2-33.

Set the switch to transfer $21 / 2$ to 3 tracks before the retracted mechanical stop. Read the tracks off the rive disk
Tighten socket screws.
4. Make fine adjustment with the fine adjustment screw.

Carriage-Overrun Interlock Switch: Adjust as follows:

1. Loosen six-flute socket screws on switch bracket (see Figure 2-33).
. Set the switch to transfer $21 / 2$ to 3 tracks before the inner limit stop that is, at track 2041/2 to 205 (5444 Models 2 (3) or track 1041/2 to 105 (Model 1). off the drive disk.
Tighten socket screws.
2. Make fine adjustment with the fine adjustment screw.
4.5.7.2 Off-Disk Interlock Switch Adjustment
3. Remove top cover.
4. Loosen six-flute socket screw holding bracket below sw (see Figure 2-33)
Adjust the switch to transfer between tracks -03 and 05 , that is, three to five tracks after track 000 when carriage is retracted. While making this adjustment ensure that switch roller clears striker plate by 0.005 in. $\pm 0.003(0,13 \mathrm{~mm} \pm 0,08)$ when the switch actuating arm is lightly bottomed.
5. Refit top cover.

4.6 DETENT MECHANISM

The detent mechanism is composed of the detent wheel, voice coil assembly, and pawl bracket assemblies.
4.6.1 Detent Wheel

The detent wheel is integral with the leadscrew. Apart from cleaning and lubricating, no other action can be taken. Damage to the detent wheel involves a complete actuator change (see 4.4.1)

4.6.2 Voice Coil Assembly

The voice coil assembly, part 2537382, (Figure 2-34) is a factory-adjusted unit and individual parts cannot be changed. The magnet may be removed for cleaning. Locating dowels must not be disturbed.

Figure 2-34. Voice Coil Assembly [07457]

4.6.2.1 Removal

Turn off power.
Remove detent cover, drive tire (see 4.5.2.2), and drive disk (see 4.5.3.2)
3. Note their route, then disconnect coil leads from edge connector EC2.
4. Remove the four voice coil screws (see Figure 2-34) and lift complete assembly from base casting.

6.2 Replacement and Adjustment

1. Position voice coil assembly (see Figure 2-34) on detent plate (see Figure 2-27). Ensure that locating dowels enter slots in plate. Insert and hand-tighten screws, leaving assembly free to move.
2. To refit original assembly, do not disturb paw brackets. To fit a new assembly or when the deten pawls require adjustment, loosen pawl bracke holding screws.
3. Insert actuator pin gage, part 2597946, in between the crests of the detent wheel (see detail in Figur V -shepd . learance: do not use force. Tighten coil holdin screws.
4. Connect voice coil leads, routing them behind voice coil assembly as shown in the figure.
. Leaving gage in place, adjust lower pawl bracke eccentric so that lower detent pawl rides on crest of detent wheel tooth. Continue turning until deten pawl just drops down flank of tooth. Tighten lowe pawl bracket holding screw.
5. Withdraw actuator pin gage. Turn upper pawl bracket eccentric to bring upper detent pawl on to crest of detent wheel tooth, then continue turning until th detent pawl drops down tooth flank. Keep lowe pawl against its tooth flank but do not deflect the pivot spring. Tighten upper pawl bracket holding screw.
6. Rotate detent wheel, checking remainder of the teeth to ensure that both pawls drop into roots of the detent wheel teeth. If one tooth is found that will not allow this, slightly re-adjust upper bracket
7. Refit drive disk (see 4.5.3.3), drive tire (see 4.5.2.2), and detent cover.

4.63 Pawl Bracket Assemblies

Only the detent pawls and pawl return springs in the pawl bracket assemblies are field replaceable. Th remainder of the pawl bracket assembly must be replaced completely

4.6.3. 1 Removal and Replacement

1. Turn off power.
2. Remove detent cover, drive tire (see 4.5.2.2), drive disk (see 4.5.3.2), and voice coil assembly (se Note: Do not put the voice coil on a dirty surface where the magnet can attract magnetic particles.
3. Remove pawl bracket holding screw (see Figure $2-34$). The eccentric adjuster is a loose piece that is secured by the bracket; do not drop it, therefore, as bracket is withdrawn.
4. If only detent pawls or return springs are to be changed, lubricate new parts with Molykote ' G ' at spring loops and pivot point, and on yoke contacting face. After cleaning original parts lubricate in the same way
5. Mount pawl brackets on pivot stud of voice coil assembly. The upper bracket with offset pivot fits nearest the voice coil. Put eccentrics in recesses of detent plate.
6. Position voice coil assembly, with brackets, on to detent plate. Locate dowels in the detent plate and locate eccentrics in bracket slots. Fit and hand-tighten screws for voice coil assembly and pawl brackets
7. Adjust voice coil assembly (see 4.6.2.2)

4.6.3.2 Voice Coil Magnet Cleaning

Pieces of attracted debris can be removed by picking them off the voice coil magnet with adhesive tape. Do not put the voice coil on a dirty surface where th magnet can attract pieces of magnetic debris.

As the heads move
Figure 2-35. R/w Head Clearance Check [07558]

4.7 R/W HEAD ARM ASSEMBLY

4.7.1 Checks, Adjustments, and Removal

4.7.1.1 Height Check

1. Turn off power.
2. Remove top cover
3. Check that carriage is fully retracted and heads are unloaded.
4. Remove disk cartridge.
5. Place head clearance gage, part 5831638, on machined pad at the disk side of the cable clamp pillar (Figure 2-35). Jaws of tool should be behind the heads.
6. Carefully retract carriage and check that the heads clear the jaws of the tool. If a head does not clear the jaws, change the head arm (see 4.7.1.4 and 4.7.1.5) and recheck. If the new head does not clear the jaws, check adjustment of head-load spring shaft (see 4.8.4.1).
7. Remove tool, then refit disk cartridge and top cover
4.7.1.2 Head Damage

The routine inspection for damage to R / W heads is described in 3.2.2. A faulty head can give read/write arors or can cause damage to a disk; typical symptom
. A rapid accumulation of oxide on a particular head
2. Regularly spaced radial, circular, or spiral scratches on the disk surface
3. Tinkling noises, caused by the head bouncing on the disk.
In all cases, the faulty head must be changed (see Figure $2-4)$. On replacement, align the new head (see 4.7.1.3) and clean the disk.
4.7.1.3 Head Alignment

Alignment of Heads 00 and 01: The two upper R/W heads need to be aligned so that they can accept any disk cartridge. The two lower R/W heads keep a constant elationship with the fixed disk.

1. Turn off power.
2. Remove disk cartridge
3. Install CE cartridge, part 2537301 (see 2.3.3.2)
4. Turn on power.
5. Remove the top cover and observe that R / W heads are loaded to track 000
6. Operate the switches on the CE panel to move head to track 073 (see 2.2).
ct switch to HDO.
7. Set the Tektronix 453 oscilloscope (using $\times 1$ probe) as follows:
Channel 1: Y-W1 K6J12 (linear read signal 1 ; see ALD page
N260). . Y-W1 K6J10 (inear read signal 2; see ALD page ${ }^{\text {FN260). }}$
rigger Positive: Y-W1 D6G03 (index pulse; see ALD page Mode).
Channel 1: Normal. 50 millivolts per division.
Channel 2: Inverted. 50 millivolts per division.
Time/division: 5 milliseconds per division.
Note: Before commencing alignment, run the CE cartridge for 15 minutes to allow it to reach th temperature of the 5444
8. Slacken clamp screw of the upper head arms. Turn back, by one-quarter of a turn, the adjustment screws of the two upper head arms. (Figure 2-36).
9. Push R / W heads 00 and 01 back to the adjustment screws and tighten clamp screw to 4 lb in. $(4,6 \mathrm{~kg}$ $\mathrm{cm})$ with torque wrench, part 2597969 , and 6 -flute adapter, part 2597971.
10. Screw in on the adjustment screw of head arm 00 as the R / W head approaches track 073, the oscilloscope display loops appear (see Figure $2-36$). Continue to screw in carefully until the loops are similar in size, 3.8 to 4.2 divisions in length. Use the horizontal sweep control to place the two loops across eight divisions.
Note: The head arm adjustment screw only pushes the arm forward. If track 073 is overshot, return to step 9 .
11. Set CE mode-select switch to HD1. Screw in on the adjustment screw of head arm 01 and set the equal length loops as in step 1
12. Remove CE cartridge

Alignment of Heads 02 and 03: If the data on the fixed disk has to be retained, refer to the error recovery procedure in 1.5 .
Align heads 02 and 03 as follows:

1. Slacken clamp screw of the lower head arms. Fully turn back the adjustment screws of the two lower head arms.
2. Insert a 0.025 in . $(0,64 \mathrm{~mm})$ feeler gage between rear of arms and carriage casting (see Figure 2-36), then tighten the clamp screw to 4 lb in. $(4,6 \mathrm{~kg} \mathrm{~cm})$ with torque wrench, part 2597969 , and 6 -flute adapter part 259797
3. After tightening, turn forward head arm adjustment screws to just touch the head arms. Check that gap is $(0,64 \mathrm{~mm} \pm 0,08)$.
4. Refit top cover.
4.7.1.4 Removal

If R / W heads 02 and 03 are to be removed and the data on the fixed disk to be retained, transfer the data to a disk cartridge before head removal. Refer to 1.5

Oscilloscope Displays ($5 \mathrm{~ms} /$ division)

CAUTION
In the following steps, do not touch the face of the
R / W head. Do not touch the disk with the head arm.

1. Turn off power.
2. Remove disk cartridge and top cover.
3. Remove clamp and unplug head connector at gate \mathbf{Z}
(Figure 2-37).
4. Release head cable shield from clamp pillar and from carriage cable clamp.
5. Take off appropriate head arm clamp (see Figure 6 2-36).
6. Take out head sideways from carriage, holding by the head support arm.
4.7.1.5 Replacement

CAUTION
In the following steps, do not touch the face of the R/W head. Do not touch the disk with the head arm.

1. Route the cable in the new R / W head arm as shown in Figure 2-38. Open the leaf spring not more than $1 / 5 \mathrm{in}$. $(5 \mathrm{~mm}$) to insert cable.
2. Slide head into carriage from the side. Insert locating tongue (see Figure 2-37) of arm in a slot near head arm adjustment screw.
Note: Make sure that the head-load springs are correctly located on the metal dimple and pass under the arm extension as shown in Figure 2-37
3. Loosely fit head arm clamp. Secure ends of head cable shield in the carriage clamp and clamp pillar (see Figure 2-37).
4. Plug head connector into socket A1 of gate Z (see Figure 2-37), then check that the head cables do not touch the disk at any carriage position. Refit the head plug clamp at gate Z .
5. Carry out the height check and alignment procedures (see 4.7.1.1 and 4.7.1.3).
6. Install disk cartridge and refit top cover.
4.7.2 Cleaning R/W Heads

For the methods of cleaning R / W heads, see 3.2.2.2 and 3.2 .23

Figure 2-38. Cable Routing in R/W Head Arm [07575]

Figure 2-37. Cable Connections for R/W Head Arm [07560]

2-32 (5/70)

8 HEAD-LOAD MECHANISM

4.8.1 Head-Load Cable

4.8.1. 1 Adjustment

1. Turn off power and remove top cover
2. Check that carriage is fully retracted.
3. Remove cover from head-load assembly.
4. Insert a lint-free tissue between each pair of R/W
heads. that cable cap is seated in cable adjusting bush.

CAUTION
The action in the following step brings the heads together and must, therefore, be done with care and not repeated more than necessary
6. Gently push in plunger of head-load solenoid until it bottoms.
7. The gap between the plastic pad on the head-load lever and the carriage frame should be 0.230 in . $+0.005,-0.000(5,84 \mathrm{~mm}+0,13)$, see Figure 2-39. Check by inserting the 'GO' arm of head-load gage, part 2536600 , between head adjusting screw and trip arm.
8. Adjust gap with the cable adjusting bush and check that 'NO GO' arm cannot be inserted. After adjustment, tighten adjuster locknut.
9. Remove tissues from R / W heads.
10. Refit cover to head-load assembly. Refit top cover.

4.8.1.2 Removal and Replacement

1. Turn off power.
2. Remove top cover and check that carriage is fully retracted.
3. Remove cover from head-load assembly
4. Insert a lint-free tissue between each pair of R / W heads.
5. Slacken cable adjuster locknut (see Figure 2-39) Screw in the cable adjusting bush. Slip outer cable from tensioner and iff cable nipple out of solene lever. Tak together.
6. Disconnect other end of cable from head-load lever 7. Unscrew complete adjuster and remove cable assembly.
7. Fit cable assembly in reverse order to removal
8. Carry out the adjustment (see 4.8.1.1). Ensure that cable cap seats correctly in cable adjusting bush, or, otherwise, partial head loading will result.
9. Remove tissues from R/W heads
10. Refit cover to head-load assembly. Refit top cover

8.2 Head-Load Solenoid and Lever

4.8.2.1 Adjustmen

1. Turn off power
2. Remove top cover and check that carriage is fully retracted.
3. Remove cover from head-load assembly
4. Insert a lint-free tissue between each pair of R/W heads.
5. Adjust lever stop bracket (Figure 2-40) by its securing screws to obtain a clearance of $0.015 \mathrm{in} . \pm$ $0.010(0,38 \mathrm{~mm} \pm 0,25)$ between bracket and lever with no slack on the head-load cable. Press lightly on the solenoid plunger to take up cabs.
Refit top cover to
cover to head-load assembly. Refit top cover

4.8.2.2 Removal and Replacement

i. Turn off power
2. Remove top cover and cover from head-load sembly
. .
4. Remove circlip from pivot pin and push out pin (see Figure 2-40). Make sure that pin is not dropped.
5. Remove solenoid securing screws (2) and withdraw unit
6. Install solenoid in reverse sequence to removal
7. Check adjustment (see 4.8.2.1).

4.8.3 Solenoid Switches

4.8.3.1 Service Check

1. Turn off power
2. Remove top cover and cover from head-load assembly.
3. Check that carriage is fully retracted
4. Insert lint-free tissue between each pair of R/W heads.
5. Check that both solenoid switches (see Figue 2-40) Check that both solenoid switches (see Figure 2-40) from the bottomed position.
from the bottomed position.
6. Adjust as necessary (see 4.8.3.2)
7. Remove tissues from R/W heads.
8. Refit covers.
4.8.3.2 Adjustment
9. Turn off power.
10. Remove top cover
11. Set carriage to fully retracted position
12. Remove head-oad assembly cover plate. Protect the heads.
13. Insert lint-free tissue between each pair of R/W heads.
CAUTION
The action in the following steps brings the head together and must, therefore, be done gently and no repeated more than necessary
14. Slowly depress solenoid plunger until it bottom (see Figure 2-40).
15. Mark bottom position of plunger with a pencil or piece of adhesive tape.
16. Loosen switch or $1 / 10 \mathrm{in} .(2,5 \mathrm{~mm})$. and swing the assembly until both switches transfe with the solenoid plunger still $1 / 10 \mathrm{in}$. $(2,5 \mathrm{~mm})$ from the bottom position.
. Let the plunger gently come fully out, then depres it again to check the operating position
17. Remove adhesive tape.
18. Remove tissues from R / W heads
19. Refit cover to head-load assembly
20. Refit top cove

4.3.3 Removal and Replacement

1. Turn off power.
2. Remove top cover and head-load assembly cover.
3. Remove screw securing switch mounting plate (see Figure 2-40).
4. Note lead connections and disconnect leads from edge connector EC4 and from switches.
5. Lift mounting plate, together with both switches from base.
6. Remove faulty switch from mounting plate.
7. Assemble switches in reverse sequence to removal.
8. Adjust switches (see 4.8.3.2).
9. Remove tissues from R/W head
10. Refit cover to head-load assembly
11. Refit top cover

Depress plunger and
Depress plunger and

Figure 240. Head-Load Solenoid Switch Adjustment [07576]

4.8.4 Head-Load Spring Shafts

4.8.4 Adjustment

1. Attempt to recover data from the fixed disk befor removing heads (see 1.5).
2. Turn off power and remove disk cartridge.
. Remove top cover and detent cover.
3. Hook back detent yoke, to disengage detent pawls.

Ensure that carriage is fully retracted then remove head arm assemblies (see 4.7.1.4)
6. Remove cable clamp pillar (Figure 2-41). Locate disk-clearance and head-load spring gage, part disk-clearance and head-load spring gage, part captive screw.
7. Remove knock-off trip (Figure 2-42)
8. Remove cover over power transistors (see Figure 2-46)
9. Take out head-load cable from cable guide and from head-load lever
10. Set links in the sequence $02,03,01$, and 00 . (02 is the master shaft carrying the head-load lever.) Refer to Figure 2-41.

CAUTION

In the following steps, make sure that the head-loa springs are clear of the fixed disk surface befor moving the carriage.
Note: Each link is dependent upon the other and, there fore, all links must be checked if one is adjusted.
a. With head-load lever touching side of carriage frame and central in the cast recess, carriag ring 02 should just touch the 02 , hea-load Loosen clamp screw on head-load surface. obtain this condition, then tighten screw and teck that headload sping is within 0.008 in heck that head-load spring is winin 0.008 in. $0,2 \mathrm{~mm}$) of the 02 gage surface
b. Insert a folded-card wedge between cable guide and head-load lever. Keep the lever touching forward to track 100.
c. With head-load lever still touching carriage frame, loosen clamp screw of link 02 and set this link vertical. Tighten screw to 8 lb in . $(9,2$ kg cm) with torque wrench, part 2598187 Check that end play of shaft 02 does no exceed $0.003 \mathrm{in}$. ($0,076 \mathrm{~mm}$).
d. Swing gage arm 02 clear and position arm 03
e. Loosen clamp screw of link 03 and mov carriage back until load spring of head 03 rests

Figure 2-42. Knock-Off Trip and Trip Lever [07563]
flat on the 03 gage surface. Adjust link 03 to touch link 02 then tighten clamp screw of link 03.
f. Move carriage out to track 100 and tighten clamp screw to 8 lb in . with torque wrench, part 2598187
g. Retract carriage. Check that head-load spring 03 is within $0.008 \mathrm{in}$. . $0,2 \mathrm{~mm}$) of the 03 gag surface and that end play of shaft 03 does no exceed 0.003 in.
h. Repeat steps d through g , but for link 01 Note: Adjust all head-load springs whethe blank arms are fitted in the lower positions or
i. Repeat steps d through g , but for link 00. Make sure that the touching point with link 01 is correct (see Figure 2-41)

1. Remove gage and re-install head-load cable.
2. Refit power transistors cover.
3. Check setting of head knock-off trip (see 4.8.5).
4. Refit head arm assemblies (see 4.7.1.5).
5. Release detent yoke, to engage detent pawls.
6. Refit detent cover and top cover.
7. Refit detent cover and top cover.
8. Install disk cartridge.
9. Re-initialize fixed disk.

4.8.4.2 Removal

1. Turn off power.
2. Remove top cover.
3. Remove disk cartridge. disengage detent pawls.
4. Remove the appropriate R / W head arm (see 4.7.1.4)
a. For head-load spring shaft 00 or 01 , remove head arms 00 and 01
b. For shaft 02 or 03 , remove actuator assembly (see 4.4.1.1) to prevent damage to the fixed disk. In addition, for shaft 02, remove all head arms; for shaft 03 , remove head arms 02 and 03.
5. Loosen link clamp screw and take off link. (Note which link belongs to which shaft.)
6. Because shaft 02 carries the head-load lever, loosen the lever clamp screw and remove the lever
7. Holding carriage steady, pull out shaft towards center

4.8.4.3 Replacement

1. Smear a thin film of IBM no. 20 grease on bearing ends of head-load spring shaft.
2. Push in shaft until its shoulder bears on bush. When shaft is fully home, wipe away excess grease with a lint-free tissue
3. On shaft 02 , install head-load lever and secure with the clamp screw.
4. Adjust head knock-off trip (see 4.8.5).
5. Fit the link and commence adjustment (see 4.8.4.1). Note: On all models, the head-load springs must be checked with the head-load spring gage, even if blank arms are fitted in the lower positions.

4.8.5 Knock-Off Trip Adjustmen

Whenever the head-load lever is released from the master 02 head-load spring shaft, readjust the knock-off trip.

1. After fitting and clamping the head-load lever, check that the support spring and cable guide are vertical to the carriage casting (Figure 2-43), to allow the head-load cable to run straight between the head-load lever and the cable guide. Ensure that the ear on the cable guide engages fully in the support spring.
2. With the carriage positioned at track 000 , the trip lever should have $0.040 \mathrm{in} . \pm 0.005(1,02 \mathrm{~mm} \pm$ 0,127) clearance to the trip. Adjust the trip by loosening its screws to obtain this clearance.

Figure 2-43. Knock-Off Trip Adjustment [07577]

.9 AUXILIARY ELECTRONICS

the auxiliary electronics are mounted on six solid logic technology (SLT) cards that are plugged into one half of the Y logic board. The data channel and tape cable entries occupy the remaining sockets in the board.

CAUTION

Turn off power before removing or replacing SL cards.
4.9.1 Fault Finding

The method of fault finding is based on the MAP package that is contained in the using system. The basic method of fault correction in the 5444 is by card replacement.

4.9.2 Index Transducer Check

Output waveforms of the upper and lower index ransducers are similar. Measure the waveforms and index pulses (Figure 2-44). If the negative peak value for a transducer is below that shown

1. Check setting of transducer and readjust as necessary (see 4.2.3.1 or 4.2.4.1).
2. Re-measure waveform and index pulse.
3. If negative peak value is still incorrect, change transducer (see 4.2.3.2 or 4.2.4.2).
If the positive-going edge of the index pulse does not coincide with the waveform zero crossover point, change the index amplifier card (see ALD page FN445).
4.9.3 Detent Voice Coil Control

Voice coil control circuits are on cards Y-W1 E6 and Y-W1 F6. Driver power transistors Q3 through Q6 are located on the casting behind the voice coil. Typical waveforms are shown in Figure 2-45.

CAUTION

Do not disturb the pick SS potentiometer on the voice coil control card. This potentiometer is preset and sealed at the factory.

Section 2. Features

No features are fitted to the 5444

Zero Crossover (See Note)

Index Transducer	Output Waveform		Index Pulse (See Note)	
	Measure at	Negative Peak Value	Measure at	Width
Upper	Pin Y -W1 D6D13	More than 1.3V	Pin Y -W1 D6803	Approx. 43 $\mu \mathrm{s}$
Lower	Pin Y -W1 D6J07	More than 1.66V	Pin Y-W1 D6802	Approx. 43 $\mu \mathrm{s}$

Note: Positive-going edge of index pulse must coincide with zero crossover point of waveform

Figure 244. Index Transducer Waveform Check [07564]

Note: For details, refer to ALD page FN495

Figure 245. Detent Voice Coil Waveforms [07565]

Chapter 5. Power Supplies

Section 1. Basic Unit

5.1 GENERAL

All power supplies to the 5444 are fed from the using system to terminal block TB1 in the ac box, and TB3 in the dc box (see Figure 2-47). Supplies at TB1 and TB3 are as follows:
TB3. DC Input in DC Box
(ALD page ZA250)
$\begin{array}{ll}\text { 1. } & +6 \mathrm{~V} \\ \text { 2. } & -4 \mathrm{~V}\end{array}$

2.	-4 V
3.	-30 V

4. ${ }^{-30}+24 \mathrm{~V}$ Regulator
$\begin{array}{cc}\text { 5,6. } & \text { Logic ground } \\ \text { 7. } \\ \text { +24V Driver }\end{array}$

7.	+24V Driver
8.	24 V Driver common

9. +24 V File start
10. Jumper points

TBI. AC Input in AC Box
(ALD page ZA200)

1. Line voltage
2. Line neutral

AC Box Ground to TB3. (ALD page ZA200)
Brush motor supply

DANGER

Power to the 5444 may not be automatically disconnected when the enclosure has been opened and the cartridge removed. Unless the complete system is powered down, some terminal blocks remain live.

5.2 AC POWER

The ac power is as follows:
Average ac current: 1.0 ampere maximum.
Peak ac current: 3.5 amperes maximum.

5.3 PROTECTIVE DEVICES

No fuses or manual cutouts are provided in the 5444. A thermal cutout operates on drive motor overtemperature condition and automatically resets when the motor cools down

5.4 18V REGULATOR

Two 18 V regulated supplies, positive and negative, are produced by a voltage regulator card sharing level converters. The supplies are.
$+18 \mathrm{~V} \mathrm{dc}, 600$ milliamperes maximum (Transistor Q1)
-18 V dc, 300 milliamperes maximum (Transistor Q2)
The metering points are
+18V: Y-W1 N6D03
Ground: Any D08.
18V: Y-W1 N6B13.

5.4.1 Checking

No servicing or adjustment is possible on the 18 V regulator other than checking that +24 V and -30 V inputs are present. The output should be $18 \mathrm{~V} \pm 0.5 \mathrm{~V}$. If a regulator card appears defective, change the card or, if the fault persists, check the transistors Q1 $(+18 \mathrm{~V})$ and Q2 (-18V), which are mounted on the machine front casting.

Section 2. Features

The 5444 has no features.

6.1 PHYSICAL COMPONENTS

Figures 2-46, 2-47, and $2-48$ show the location of physical components in the 5444

6.2 ELECTRICAL SYSTEM COMPONENTS

ALD page OAOOO provides an index of other ALD pages
that show the locations of electrical system components in the 5444.

Figure 2-46. Front Top View of 5444 - Locations [07566]

Appendixes and Index

B. 1 POWER REQUIREMENTS

The 5444 is available for use with either a 50 Hz or a 60 Hz power supply. The machine index card states the power supply to which the machine has been built.

B.1.1 50 Hz Power Supply

The 50 Hz power supply is as follows
$220 / 235 \mathrm{~V} \mathrm{ac} \pm 10 \%$, single phase.
Peak current (starting): 3.5 amperes.
Average current: 1.0 ampere.

B.1.2 60 Hz Power Supply

The 60 Hz power supply is as follows:
$208 / 230 \mathrm{~V}$ ac $\pm 10 \%$, single phase.
Peak current (starting): 3.5 amperes.
Average current: 1.0 ampere.

B. 2 COMPONENTS

When the power supply frequency or voltage is changed, change the components listed in Figure B-1.

Power Supply Changed	Component to be Changed
Frequency and voltage	1. Brush motor (see 4.3.3) 2. Drive motor and drive motor pulley (see 4.2.6)
Voltage only	Drive motor (see 4.2.6)

Figure B-1. Power Supply Change - Components to be Changed [07569

C. 1 DISK ENCLOSURE ADJUSTMENTS

c.1.1 Enclosure Air Filter, PM Procedure

1. Turn off system power switch.
2. Remove connector access plate.
3. Disconnect blower.
4. Remove screws supporting blower to blower cover
5. Rotate filter 180° (every six months for one shift usage) or replace the filter (once each year for one shift usage)
6. Assemble in reverse order.
c.1.2 Drawer Lock Bypass Procedure

CAUTION
If disk cartridge is to be removed, be sure that head cleaning brushes in the read/write heads are fully retracted.

1. Insert a small tool, approximately $1 / 2 \mathrm{in}$. (13 mm) into the lock access hole located on left side of enclosure. Use a prying motion to lift the lock while unlatching the drawer
2. To power up the 5444 with the drawer open, activate drawer lock microswitch (see Figure C-3) by inserting the false latch, part 2590976
C.1.3 Disk Drawer Microswitch and Latch Adjustmen 1. Turn off disk drive power switch.
3. Open drawer.
4. Turn off systems power switch (to de-energize the drawer lock solenoid)
5. Remove the front drawer cover and open blower cover.
6. Slide disk drive to the rear
7. Insert false latch so it rests on latch pin (Figure C-1).

Figure C-1. False Latch Setup [07570]
7. Insert a 0.005 in . $(0,13 \mathrm{~mm})$ feeler gage between latching surface of the false latch and the solenoid latching surface of the false latch and the solenoid lock. This action allows
freely with latch in place.
8. With feeler gage clamped between lock and latch surface, position the microswitch so that operating button is fully transferred to the normally closed position.
9. Remove feeler gage and false latch
10. Slide disk into enclosure and close blower cover
11. Install front drawer cover, keeping it square with the top and sides of the frame.
12. Check the drawer for easy closing and latching. If
latch hits the pin and does not ride easily over it adjust vertical position of latch perpendicular to the disk front cover (Figure C-2).

Figure C-2. Drawer Latch Adjustment [07571]
13. Check that 5444 does not drop its ready status when drawer cover is closed and latched:
a. Close the drawer.
b. Turn on system power switch and the disk drive start switch.
c. Try to open drawer several times after ready indicator turns on. If ready indicator goes out, indicator turns on. If ready indicator goes out,
check for a defective microswitch and/or repeat the adjustment procedure.

C. 2 DISK ENCLOSURE LOCATIONS

Locations in the disk enclosure are shown in Figure C-3.

values.

Figure D-1. Conversion Table - Inches into Millimeters and Centimeters [07573]

Beat Frequency: The frequency that is produced by the intermodulation of two frequencies.
Circumferential Adjustment: The adjustment of the upper index transducer to ensure that the index pulse from the transducer is in an identical position relative to the read/ write heads when the disk cartridge is transferred between 5444's.
Data Rate: The nominal rate at which data can be transmitted from a 5444
Direct Access Storage: The type of storage where information may be stored or retrieved directly without prior sequential search.
Microinch: One millionth of an inch (1×10^{-6} inch $)$
Micron: One millionth part of a meter (1×10^{-6} meter) Equivalent to 39.4 microinches.
Period: The time between consecutive pulses.
Reluctance: The ratio that the magnetomotive force acting around a magnetic circuit bears to the flux that produces this force.
Runout: The total up-and-down vertical movement at the disk edge during one revolution.
SLD-100: A specification for voltages that are used in solid logic dense construction.
Tracking Adjustment: An adjustment to ensure that the read
write heads move in a true radial line across the disk surfaces.

```
A
ac box 
description 1-14
ac power check 2-39
ac power requirements 1-33
access forward operation 1-2
l
    c
    access operations
    introduction 1-2
access overrun condition 2-
access overrun' line 1-2
`access reverse' line 1-21 
access re
alignment 2-23
handing of components 2-22
preventive maintenance 2-1
\mathrm{ removal 2-22}
c}\begin{array}{c}{\mathrm{ replacement 2-22}}\\{\mathrm{ _djustments }}
\
    carriage interlock switches
    carriage pho7
    fine home photocell 2-28
    inner limit stop shaft 2-23
    lower index transducer
\mathrm{ solenoid switch 2-34}}\mathrm{ upper index transducer 2-16
\mathrm{ air circulation system 1-5}
air ail duct
air filter (loction 2-39
    location 2-39
    service check 2-1
ALD's 2-1
Alternate cylinder 1-2
approach to servicing 2-2
automated logic diagrams 2-1
B
base assembly removals 2-16
base assembly ree
brach officictools 2-8
brush cycle complete interlock
*adjusment of switch interlock
description 1-15 switch 2-20
```

```
```

replacement 2-28

```
```

replacement 2-28
$$
\begin{array}{l}{\mathrm{ service check 2-27 }}\\{\mathrm{ clutch/leadscrew relationship 2-24}}\end{array}
$$]
$$
\begin{array}{l}{\mathrm{ service check 2-27 }}\\{\mathrm{ clutch/leadscrew relationship 2-24}}\end{array}
$$]
l
l
input 1-20
input 1-20
Console 2-8
Console 2-8
console and maintenance faci
console and maintenance faci
contamination control 1-3
contamination control 1-3
conversion table, metric (se- brush cycle complete interlock)
conversion table, metric (se- brush cycle complete interlock)
Cylinder concept 1-2
Cylinder concept 1-2
cylinder 005 1-34
cylinder 005 1-34
D
D
data channel electronics 1-19
data channel electronics 1-19
data channel electronics, 1-19
data channel electronics, 1-19
新 organization 1-2
新 organization 1-2
data protection 1-1
data protection 1-1
data separator 1-30
data separator 1-30
dc box
dc box
description 1-14
description 1-14
dc braking 1-6
dc braking 1-6
dc power requirements 1
dc power requirements 1
%
%
l}\begin{array}{l}{\mathrm{ description 1-10}}
{\mathrm{ maintenance 2-29}}
l}\begin{array}{l}{\mathrm{ description 1-10}}
{\mathrm{ maintenance 2-29}}
detent wheel
detent wheel
damage 2-29
damage 2-29
_lobrication 2-12
_lobrication 2-12
l}\begin{array}{l}{\mathrm{ detent yoke holdout hook }}
{\mathrm{ diagnostic techniques 2-2}}
{\mathrm{ disk }}
l}\begin{array}{l}{\mathrm{ detent yoke holdout hook }}
{\mathrm{ diagnostic techniques 2-2}}
{\mathrm{ disk }}
c
c
fixed (see fixed disk)
fixed (see fixed disk)
Tismovable (see 5440 Disk Cartridge)
Tismovable (see 5440 Disk Cartridge)
disk and head damage 2-12 (see 5440 Disk Cartridge)
disk and head damage 2-12 (see 5440 Disk Cartridge)
lig
lig
disk, drive (see drive d
disk, drive (see drive d
disk, rive (see drive dis,
disk, rive (see drive dis,
l
l
\mathrm{ disk select lines 1-20}
\mathrm{ disk select lines 1-20}
'double frequency write data' line 1-20
'double frequency write data' line 1-20
l
l
drawer stop locatio
drawer stop locatio

l
l

removal 2-26
removal 2-26
N

```
```

N

```
```

```
drive mechanism
description 1-5 1-35
manual oper
drive motor 
lescription 1-5
lubrication 2-12 
\mathrm{ removal and replacement 2-18}
drive spindle 1-6
check 2-25
lceck 2-25
c
#
E
early-style layshaft 2-24
l
```



```
electronic unit inspection 2-10
erase select' line 1-20
F
file start line, +24V 1-21
利e start line,+24V 1-2 
file stop sequence 1-26
cine home photocell
#adjustment 2-28
\begin{subarray}{c}{\mathrm{ removal 2-28}}\\{\mathrm{ frplacement 2-28}}\end{subarray}
\mathrm{ fixed disk}
    #
    l
M,
%eplacement 2-15 (%)
format 2-1 track
forward travel 1-34
forward travel 1-34
forward/reverse sw
Muse.8
forward clutch (see clutches)
H
handling of actuator components 2-22
handling of actuato
M, 2-12
head alignment 2-30
head arm alignment track (073) 2-8
# head/arm assembly 
checks, adjustments, and removals 2-3
l
```

```
M head damage 2-12,2-30
    head damage 2-12,,-30
    M head knock-off adjus
    *)
    removal and replacement 2-32
    M rem-\oal and replacement
    l}\begin{array}{l}{\mathrm{ head-oad interlock 1-17 mechanism}}\\{\mathrm{ checks, ajjustments, and removals 2-32}}
    checks, adjustments, and remova
    head load soleno
    l}\begin{array}{l}{\mathrm{ adjustment me-34}}\\{\mathrm{ check 2-34}}
```



```
    \mathrm{ removal and replacement 2-34}
    head load spring shafts 2-35
    head select lines 1-20
    head support arm
    description 1-12
    removal 2-95 (-96
    ⿳ replacement 2-96
    heavy oxide deposits 2-12
    height check, head 2-3
    home indication
I
idler pulley location 2-41
\index amplifier 1-1
index pulse line 1-2
    checks, adjustments, and removals
    l}\begin{array}{l}{\mathrm{ lower (see lower, index transducer)}}\\{\mathrm{ upper (see upper index tranducer)}}
    # description 1-17 
    inner limit stop so
    installation tools 2-8
*)
K
knock-off mechanism
    \mathrm{ adjustment 2-36}
L
layshaft 2-24
pulley location 2-41
lol
lem
l
l
lower disk pub assembly 1-6
```

```
Mower index transducer
l}\begin{array}{l}{\mathrm{ adjustment 2-18}}\\{\mathrm{ removal and replacement 2-18}}\\{\mathrm{ lubrication 2-11 }}
M
machine operations 1-2
machine safety 1-22
maintenance facilities 1-34,2-8
major functional areas 2-2
major functional units
manual control 1-2 1-2
mechanical unit inspection 2-10
models (of 5444) 1-1
    mode-select switc
    # description
motor, brush (see brush motor)
N
not-ready condition 2-2
O
off disk interlock switch
adjustment 2-29
on-line position of mode switch 1-34
one track access position
one track forward 1-26
operator console
P
Part numbers of tools and maintenance equipment 2-8
l
Mpawl pivot lubric
    removal 2-30
replacement 2-30
photo-mplifiers 1-17 
hotocell, carriage (see carriage photocell)
Mhotocell, carriage, (see c
Mower-n reset' line 1-2
power-off sequence 1-3
power-on sequence 1-33
```



```
Mower requirements 1-33
power supplies checking 2-38
power supplies checking 2-38
l
Tempitier card Z, loca
    Capproach 2-12
\mathrm{ procecures 1-12}
rinciples of operation 1-20
molective devices 2-38
```

voice coil (continued)
removal $2-30$
removal $2-30$
replacement $2-30$

restrictions in servicing
vice coil control circuits
$2-36$

voice coil control circuits
voice coil magnet cleaning $2-36$
$2-30$
W
write circuits 1-29
rite operation 1-28
'write select' line $1-20$
WTC and Domestic differences B-1
\mathbf{Y}
Y logic gate, location of 2-41
8 V regulator checking $2-38$
0 -hertz operation B-
5440 Disk Cartridge
cleaning $2-13$
cleaning 2-13-6
description 1-6
handing 1-8
handing $1-8$
inspection $2-13$
introduction $1-1$
storage $1-8$
60 hertz operation $\mathrm{B}-1$

To the Reader:

The reader's comment form on the right is provided for your comments and suggestions (both favorable and unfavorable) on this manual; these will help us to produce better publications for your use. Your observations may concern, for example, the organization of the manual contents, the text (clarity, accuracy, cross referencing), the illustrations, the index, or the paper, printing, or binding. Each reply will be carefully reviewed by the persons responsible for writing and publishing the manual.

If the form has been removed, send your comments and suggestions to:
IBM United Kingdom Laboratories Ltd., Product Publications, Hursley Park, Winchester, Hants, England.

Please quote the manual title and/or order number in your reply.
All comments and suggestions become the property of IBM.

Reader's Comment Form

IBM 5444 Disk Storage Drive

Comments and Suggestions:

The above remarks are based on my experience of using this manual: In the fieldFor education \square
\qquad
\qquad

Attention: Department 813 (H)

[^0]: Figure 143. Head Forward Operation - Timing [07504]

