

System/3 5444 Disk Storage Drive Attachment

Theory-Maintenance

System/3 5444 Disk Storage Drive Attachment

Theory-Maintenance

▼ X	2 XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	•
	This is a combined theory-diagram manual on the disk attachment for the IBM System/3 Model 10 and System/3 Model 6. There are no other manuals for the disk attachment. This manual is organized into three chapters: introduction, functional units, and operations. Information on how to use each chapter is found on the first page of the chapter. The page numbering system of this manual is as follows: $\frac{8 \text{ XXX}}{1 \text{ Image numbering system of this manual is as follows:}$	ACK ALD ALU AM BCA C CC CCR CPU CSR DBI DBO DCF DFCR
	 Section number: applies to the Model 6 FETM. This manual is Section 8. Chapter number: a "1" means chapter 1, a "2" means chapter 2, a "3" 	DFDF F FCU G
Second Edition (November 1970)	means chapter 3.Page number of chapter: numbered 01 through 99.	HSA ID I/O
This is a major revision of, and obsoletes, SY34-0021-0. This edition incorporates use of the disk attachment in the IBM 5406 in addition to its previous use in the IBM 5410. Chapter 2 is completely new and now contains second-level diagrams of each eard in the disk attachment. Chapter 3 has been extensively revised by adding more detailed information on disk attachment operations. Changes are periodically made to the information herein; any such changes will be reported in subsequent revisions or Technical Newsletters.	 The diagrams and flowcharts in this manual are at engineering level 571538. Other manuals needed to understand and service the file attachment are: Field Engineering Theory of Operations Manual. <i>IBM 5410 Central</i> <i>Processing Unit</i>, Order No. SY31-0207 Field Engineering Maintenance Diagrams Manual. <i>IBM 5410 Central</i> <i>Processing Unit</i>, Order SY31-0202 Field Engineering Maintenance Manual. <i>IBM 5410 Central Processing</i> <i>Unit</i>, Order SY31-0202 	IPL LIO LSR N OE PC PG S SAR
Some illustrations in this manual have a code number in the lower corner. This is a publishing control number and is not related to the subject matter.	 Field Engineering Theory-Maintenance Manual, System/3 Model 6 5406 Processing Unit and Attachments, Order No. SY34-0022 	SERI SIO SLD
Copies of this and other IBM publications can be obtained through IBM Branch Offices.	• Field Engineering Theory of Operations Manual, <i>IBM 5406 Central Process-</i> ing Unit, Order No. SY34-0023	SNS TIO
A form for readers' comments is provided at the back of this publication. If the form has been removed, send your comments to IBM Corporation, General Systems Division, Systems Publications, Department 707, Boca Raton, Florida 33432, Comments become the property of IBM.	 Field Engineering Theory-Maintenance Manual, <i>IBM 5444 Disk Storage</i> <i>Unit</i>, Order No. SY33-0026 Field Engineering Theory-Maintenance Manual, <i>IBM 5444 Disk Storage</i> <i>Drive (Machines with serial numbers up to 30100)</i>, Order No. SY33-0026 	
©Copyright International Business Machines Corporation 1970	• IBM Maintenance Library, 5444 Disk Storage Drive, Theory-Maintenance (Machines with serial numbers above 30100), Order No. SY33-0029	

Abbreviations

Acknowledged Automated Logic Diagram Arithmetic and Logic Unit Address Mark Bit Count Appendage Byte containing the binary number that corresponds to the number of the track Cyclic Check Cycle Control Ring Central Processing Unit Cycle Steal Request Data Bus In Data Bus Out Disk Control Field Disk File Control Register Disk File Data Register Flag Byte File Control Unit Gap High Speed Access Identifier Area Input/Output Initial Program Load Load I/O Instruction Local Storage Register Byte in the disk control field Sync Byte Character Parity Check Parity Generator Sector Byte Storage Address Register Serializer-Deserializer Start I/O Instruction Solid Logic Dense Sense I/O Instruction Test I/O Instruction

ŧ

IBM, / Technical Newsletter

System System/3

Base Publ. No. SY34-0021-1

This Newsletter No. SN34-0059

Date August 1971

Previous Newsletter Nos. None

IBM Field Engineering Theory-Maintenance, System/3 5444 Disk Storage Drive Attachment

©IBM Corp. 1970

This Technical Newsletter provides replacement pages for the subject publication. Pages to be inserted and/or removed are:

Title page, ii	8-227, 8-228
iii, iv	8-231, 8-232
8-101 through 8-104	8-237 through 8-242
8-107 through 8-112	8-249, 8-250
8-201 through 8-208	8-305, 8-306
8-211, 8-212	8-313, 8-314
8-213, 8-214	X-1, X-2
8-215, 8-216	

A change to the text or to an illustration is indicated by a vertical line to the left of the change.

Summary of Amendments

- 1. Incorporate information for high speed access
- 2. Technical corrections

Note. Please file this cover letter at the back of the manual to provide a record of changes.

IBM Corporation, Systems Publications, Boca Raton, Florida 33432

©IBM Corp. 1971

PRINTED IN ITALY

Α ► В

Error Detection 8-101 Cycle Steal Requests (CSR) 8-102 Serializer-Deserializer (Serdes) 8-102 High Speed Access Control 8-102 **IBM** 5444 Disk Storage Drive 8-102 Operator Console (Model 10) 8-103 Operator Console (Model 6) 8-103 Data Storage 8-103 Track Format 8-104 Local Storage Registers (LSR) 8-105 File Instructions 8-106 Load I/O (LIO) 8-107 Test I/O / Advance Program Level (TIO/APL) 8-108 Sense I/O (SNS) 8-109 Start I/O (SIO) 8-111 Initial Program Load (IPL) 8-111 Write Operation 8-112 Read Data Operation 8-113

Compare/Scan Operation 8-114

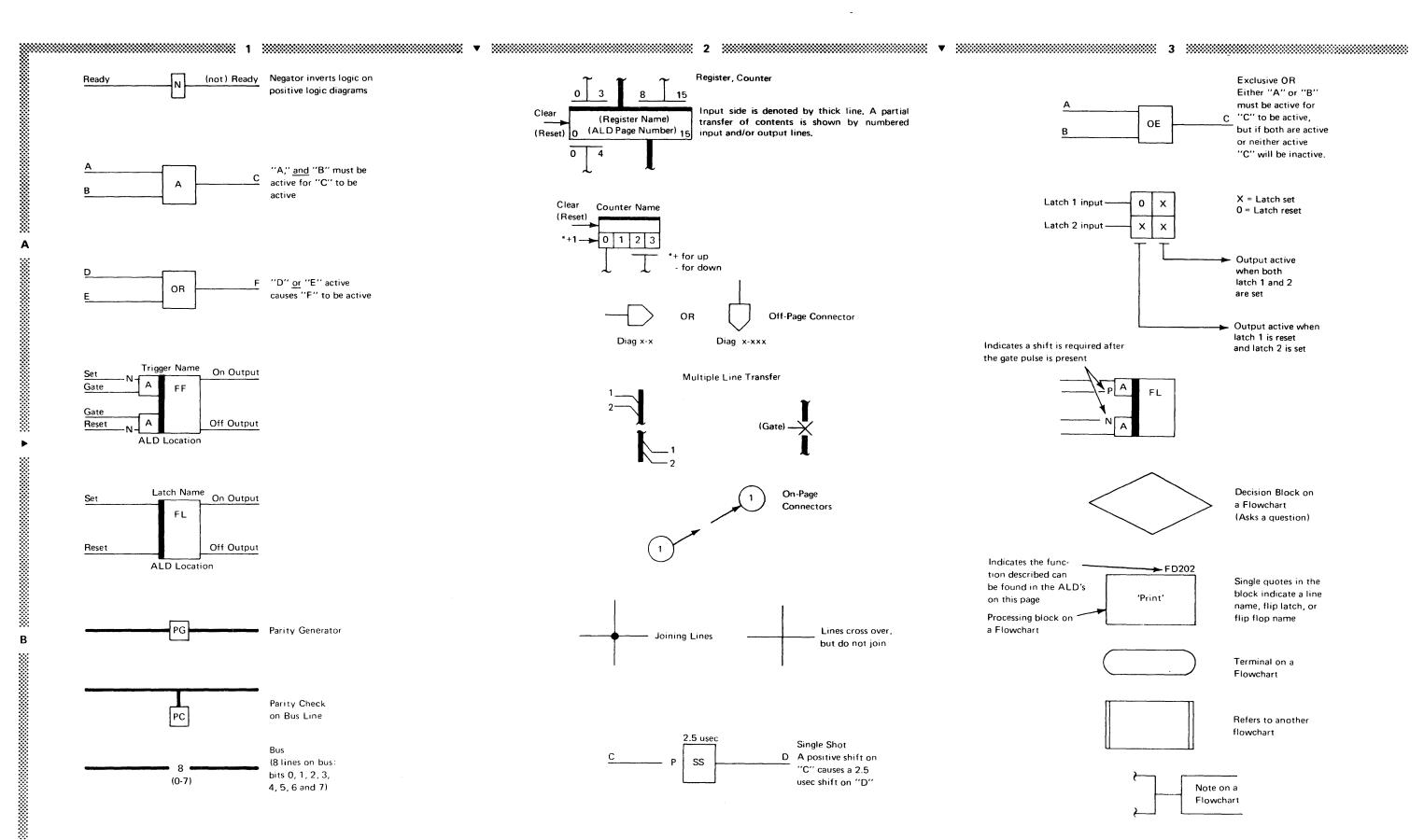
Load I/O and Test I/O Operations 8-115

Sense Operation 8-115

 Chapter 1. Introduction
 Chapter 2. Functional Units
 Chapter 3. Operations

 IBM 5444 Disk Storage Drive Attachment 8-101
 Introduction to Functional Units 8-201
 Introduction to Operations 8-301

 Program Instructions 8-101
 Enuctional Unit Index. ALD-Card Cross Reference Chart 8-202
 Introduction to Operation 8-301


 Timing 8-101
 Board Layout 8-203
 Test I/O Operation 8-304

 Local Storage Register Addressing 8-101
 Data Flow 8-204
 Sense I/O Operation 8-305

 Attachment Interface 8-205 Cards C2 and C3 8-206 Card C4 8-207 Cards D3, D4, and E4 (2 Parts) 8-208, 8-209 Card E2 (2 Parts) 8-210, 8-211 Card G2 (4 Parts) 8-212 through 8-215 Card J2 (4 Parts) 8-216 through 8-219 Card K2 (4 Parts) 8-220 through 8-223 Card L2 (4 Parts) 8-224 through 8-227 Card M2 (4 Parts) 8-228 through 8-231 Card N2 (4 Parts) 8-232 through 8-235 Card P2 (3 Parts) 8-236 through 8-239 Card Q2 (3 Parts) 8-240, 8-241, 8-243 Card R2 (3 Parts) 8-244, 8-245, 8-247 Card S2 (3 Parts) 8-248, 8-249, 8-251 Card T2 (3 Parts) 8-252 through 8-254

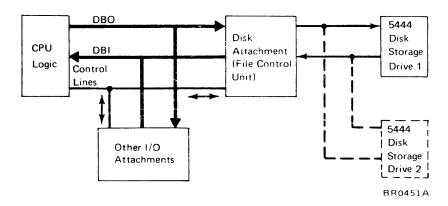
Contents

- Initial Program Load (3 Parts) 8-307 through 8-309
- Start I/O Initial Selection (3 Parts) 8-310 through 8-312
- Seek Operation (4 Parts) 8-313 through 8-316
- Write Identifier Operation (9 Parts) 8-317 through 8-325
- Write Data Operation (9 Parts) 8-326 through 8-334
- Read Operations (12 Parts) 8-335, 8-337 through 8-347
- Read Identifier Operation (9 Parts) 8-348 through 8-356

IBM 5444 DISK STORAGE DRIVE ATTACHMENT

Α

В


The IBM 5444 Disk Storage Drive Attachment, also called the disk attachment or file control unit (FCU), can attach either one or two 5444 Disk Storage Drives to the IBM System/3 Model 10 or the IBM System/3 Model 6.

The file control unit is the interface between the disk storage drive and the central processing unit (CPU). The file control unit (FCU) provides a way for the disk storage drive to use the facilities of the CPU to communicate with core storage. Communication between the CPU and file control unit (FCU) is via the data bus out (DBO) lines and data bus in (DBI) lines, with additional lines for control signal interchange.

The disk attachment is located in the main gate of the CPU. In the Model 10 it is located in gate 01A-A2; in the Model 6 it is located in gate 01A-A1. A disk attachment may be either *standard* or *high speed*, depending on the model of 5444 Disk Storage Drive attached to the CPU. The difference between a standard and high speed attachment is determined by the type

of logic card plugged into positions G2 and F2 of the attachment board. The standard disk attachment is used in either the Model 6 or Model 10 CPU to attach 5444 Disk Storage Drives with friction drive or stepper motor access mechanisms.

The high speed disk attachment is used only with the Model 10 CPU to attach 5444 Disk Storage Drives with the high-speed access feature installed.

The file control unit contains logic circuits to:

- Decode program instructions into signals to control a disk operation. 1.
- Generate timing signals for data transfer to and from the disk. 2.
- 3. Address the local storage registers assigned to disk operation.
- Detect error conditions. 4.
- Generate the cyclic code (CC) and bit count appendage (BCA) check 5. characters.
- Provide status information about the file control unit and drive(s). 6.
- 7. Generate cycle steal requests.

- 8. Serialize data (change from parallel-by-byte to serial-by-bit) and deserialize data (change from serial-by-bit to parallel-by-byte).
- Control the high-speed access interface line for drives that have the 9. high-speed access feature installed. (Model 10 CPU only.)

Program Instructions

Four program instructions are used for disk operation:

- Load I/O (LIO) 1
- 2. Test I/O (TIO) / Advance Program Level (APL)
- 3. Sense I/O (SNS)
- Start I/O (SIO) Δ

Load I/O (LIO)

Load I/O transfers two bytes of data from core storage into either of the local storage registers assigned to disk, disk file data register (DFDR) or disk file control register (DFCR). For diagnostic purposes, a CE load I/O (LIO) instruction transfers two bytes from core storage to the file control unit. This information controls logic lines in a manner that duplicates disk drive functions to facilitate diagnostic programs.

Test I/O (TIO)

Test I/O / Advance Program Level tests for operating conditions of the drive and attachment. This instruction is used to branch the program into subroutines depending on the results found in the test (condition met or not met). If the system has the dual program feature, the program may branch into another program depending on the conditions found in the test. Without the dual program feature, the program loops on the advance program level (APL) instruction until the condition specified in the test is no longer present.

Sense I/O (SNS)

Sense I/O transfers (1) the two bytes in either local storage register (LSR) or (2) two bytes of file control unit status information into core storage. The four status bytes indicate operating conditions about the file control unit and drive(s). Each bit within each byte carries a significance, providing up to 32 indications of the condition of the units.

Start I/O (SIO)

Start I/O selects the drive an operation is directed to, selects the disk (either fixed or removable), and specifies the command (operation) to be performed. These commands are:

Write-records data on the disk from the data field in core storage.

Read-reads data recorded on the disk and transfers the data to the data field in core storage.

Scan-compares data on disk with a data field in core storage. An equal, low or equal, or high or equal indication can be obtained.

Timing

- 1
- 2. 3.
- 4.

Error Detection

1 2

Chapter 1. Introduction

Seek-positions the read heads in the 5444 to a desired location (cylinder) and selects a read head to be used in the next start I/O instruction operation (read, write, or scan). Head selection determines the upper or lower surface of the disk to be addressed.

File control unit circuits are controlled by timing (clock) signals. These signals are generated by (1) a crystal oscillator (write clock) or (2) signals produced from the clock signals when data is read from the disk (read clock). Clock signals drive other time-generating logic needed to control the transfer of data through the file control unit and to and from the disk.

Local Storage Register Addressing

The local storage registers disk file data register and disk file control register are addressed by the file control unit to:

Locate the data field in core storage.

Locate the disk control field in core storage.

Increment or decrement the address in a register.

Load the local storage register with an address.

Errors in the file control unit may be of two types:

Error in data (parity).

Failure of the file control unit to follow the functional objectives of a program instruction.

Α

►

В

Parity Errors

The parity of the data is checked as it enters the file control unit. After the data byte is under control of the file control unit, the parity bit is separated from the data byte, but retained and transferred in step with the data through the file control unit. At each transfer point the parity is compared with the separated parity bit. As the data byte leaves the file control unit to be recorded on disk, the odd-even status of the data bits is checked against the separated parity bit to insure that the data was transferred out of the file control unit with the same parity as when it entered the file control unit.

In place of recording parity bits on the disk, the file control unit generates check characters (cyclic code and bit count appendage) from the serialized data bits and records the characters at the end of the identifier area (ID) and data fields on the disk. With a known input (the data byte parity), the parity of the check character can be predicted. The check character generated is therefore compared with the separated parity bit for error in generation.

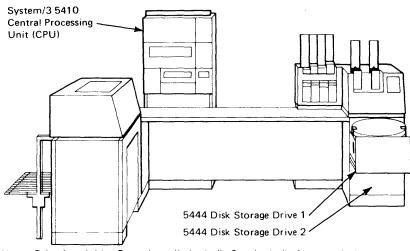
When data is read from the disk, the check characters are regenerated and compared to the check characters recorded on disk to insure that the data was read correctly. Before the data byte is returned to the CPU, a parity bit generator reinserts the parity bit that was removed from it before the byte was serialized.

Functional Objective Errors

Functional objectives of each program instruction are checked and if the objectives are not met, an error is indicated by setting an error latch. If an error is indicated, the operation in progress is ended, and a status (error) latch is set to indicate the type of error.

Cycle Steal Requests (CSR)

A cycle steal request operation permits the file control unit to share processing time with the CPU and other I/O devices. Cycle steal requests for disk data transfer are highest in priority of the cycle steal devices.


The file control unit requests a cycle steal when there is data or control information to transfer to or from the file control unit or when the address of a LSR is to be modified. A LSR is usually addressed during a cycle steal to locate the data field or the disk control field in core storage.

One data byte is buffered (stored) in the file control unit. As a result the file control unit requests a cycle steal one cycle before the data is needed at the file control unit, or one cycle after the data byte is ready to send to the CPU.

Serializer-Deserializer (Serdes)

Data is transferred to the file control unit parallel-by-byte but is recorded on the disk serial-by-bit. Data is read from the disk serial-by-bit and transferred to the CPU parallel-by-byte.

Two registers in the file control unit operate in a multifunction manner to change the byte into bits or the bits back into a byte. One register acts as a buffer while the other shifts or vice-versa. These registers are called a serdes (serializer-deserializer).

Note: Drive 1 and drive 2 are also called spindle 0 and spindle 1, respectively. BR0442A

High-Speed Access Control

During seek operations on disk drives with the high-speed access feature installed, the disk attachment must monitor the carriage position relative to the desired track. Depending on the length of the seek, the disk attachment deactivates the high-speed access interface line at various numbers of tracks before the end of the seek. This is to allow the carriage to slow to normal speed and stop at the desired track without overtravel.

IBM 5444 DISK STORAGE DRIVE

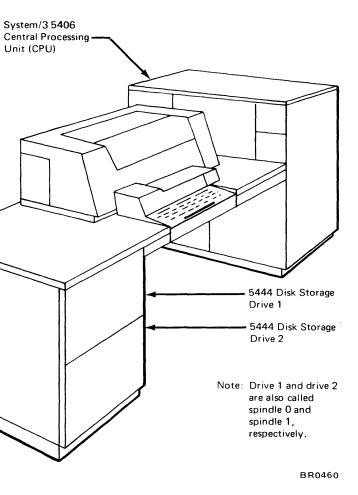
The IBM 5444 Disk Storage Drive is a direct access storage device for the IBM System/3 Model 10 or System/3 Model 6.

A 5444 drive contains two disks mounted on a common spindle. One disk is permanently mounted in an enclosure at the base of the drive spindle. The other disk, which is removable, is housed in a cartridge at the top of the spindle above the fixed disk. When removed from the drive, the cartridge is placed into a base to form a fully sealed enclosure for protected, off-line storage.

5444 Disk Storage Drives use either of two types of access drive mechanism, friction drive or stepper motor. Early drives below serial number 30100 use friction drive, later drives above serial number 30100 use the stepper motor.

A high speed access feature is available for drives above serial number 30100 and is available for use on the Model 10 only. High speed access and normal speed drives can not be installed (mixed) on the same system.

A system can contain one or two drives. The drives are mounted within the system on sliding drawers.


Six models of the 5444 can be used to obtain four different drive configurations as shown in the following tables. The first table lists and describes the available models. The second table shows the drive configurations.

Available Models

Model

A3

1 2 3 A1 A2

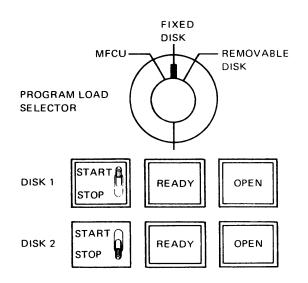
Description

- Single drive. Accesses 104 cylinders on removable cartridge and 104 cylinders on fixed nonremovable disk. Single drive. Accesses 204 cylinders on removable cartridge and 204 cylinders on fixed nonremovable disk. Single drive. Accesses 204 cylinders on removable cartridge only.
- Model A1, A2, and A3, are equivalent to models 1, 2, and 3 except that high speed access is installed. These models are available on the Model 10 only.

Drive C	onfiguration	ns		Cylinders Ac	cessed
No. of Drives	Normal Speed Model (s)	High Speed Model(s)	Storage Capacity (million bytes)	Removable Cartridge	Fixed Disk
1	1	A1	2.46	104	104
1	2	A2	4.92	204	204
2	2&3	A2&A3	7.37	204	204
2	2	A2	9.83	204	204

Model 1 is located in the upper drawer; model 3 or a second model 2 is located in a lower drawer.

The disk drive uses solid logic dense (SLD)-100 circuits and SLD-100 line levels between the drive and disk attachment.


For further information about the 5444 disk storage drives, refer to:

FE Theory-Maintenance Manual, IBM 5444 Disk Storage Drive, (Machines with serial numbers up to 30100), Order No. SY33-0026

IBM Maintenance Library, 5444 Disk Storage Drive, Theory-Maintenance, (Machines with serial numbers above 30100), Order No. SY33-0029

Operator Console (Model 10)

Operator controls for the disk drives are located on the system console.

Program Load Selector

This three-position switch determines what I/O device will be selected for the program load operation:

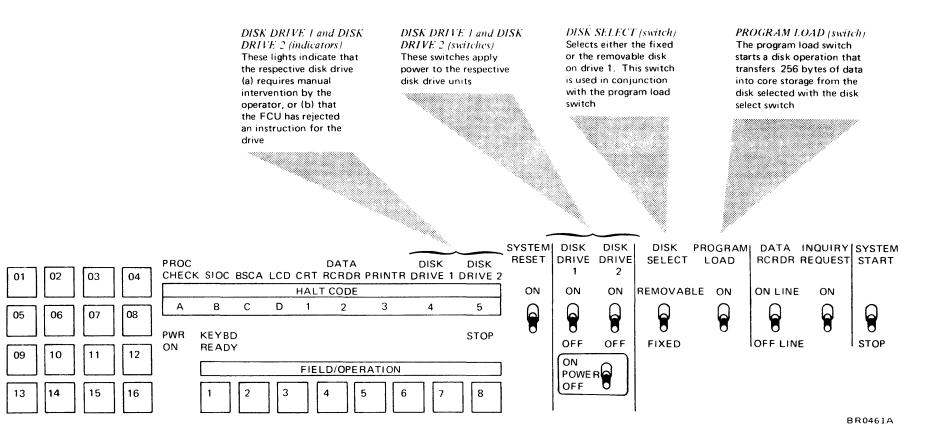
MFCU position selects the multifunction card unit.

Fixed Disk and Removable Disk select disk drive one and either the fixed (lower) or removable (upper) disk, depending on the switch position.

The START-STOP switch and indicators **READY and OPEN provide individual** control and status for the drives:

Start-Stop switches apply AC power to the respective drive.

Ready indicator on means that the respective drive is ready for operation.


Open indicator on means that the drive drawer may be opened to attend to the drive or to change the remov-

able disk.

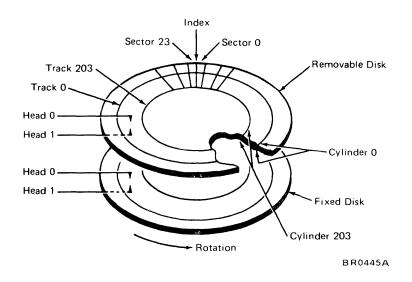
BR0443A

Operator Console (Model 6)

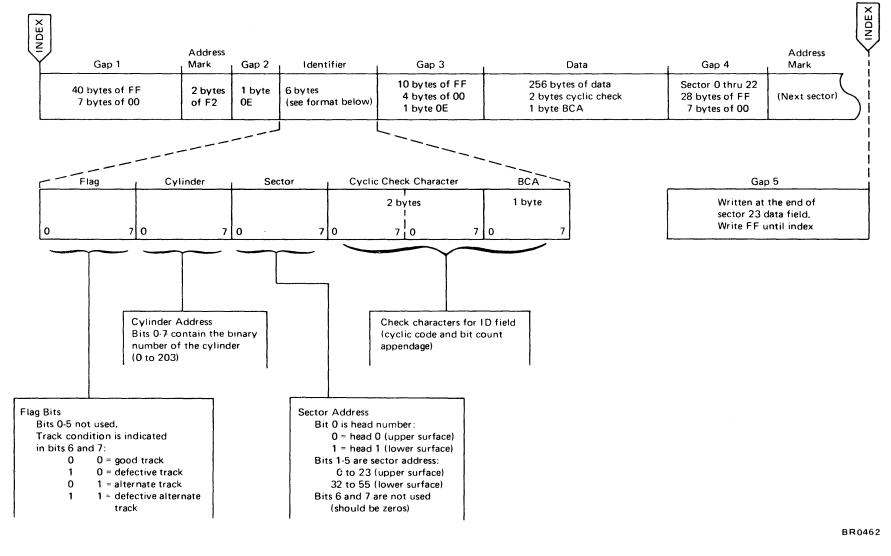
Operator controls for the disk drives are located on the system console.

Data Storage

Data is recorded (written) on the disk serially by byte and serially by bit. In addition to data, clock bits are recorded on the disk. Data bits are recorded between the clock bits in a continuous pattern without separation or extra bits as markers. The clock bits provide timing signals when the data is recovered (read) from the disk. This method of recording data is referred to as double-frequency recording. A data byte of hexadecimal FF, for example, is written as all ones-twice the frequency of zeros that are recorded as clock bits only.

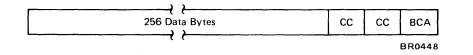

Clock Bit Data Bit Zeros BR0444

Data recorded on the disk does not contain a parity bit; it is removed from the data byte before it is recorded on the disk. Instead of a parity bit, check characters are generated from the data bits and recorded at the end of the data field. When data is recovered (read) from the disk, the check characters are regenerated and compared with the check characters recorded on the disk to verify the data.


Data is recovered serially by bit and reassembled into an 8-bit byte. A parity-bit generator reinserts the parity bit removed in the recording process, before the data byte is returned to the system for processing.

Track Format

The track is the smallest addressable unit to which the drive access mechanism can position its heads. Each track is divided into 24 sectors, each with its own address. A sector may be read or written selectively through programming. A fixed point on the disk, index, is the starting point for all tracks. Each disk surface contains either 104 or 204 tracks. The tracks that are related to each other in the vertical plane on a single disk form a cylinder. On drives with two disks, the corresponding cylinders on both disks have the same cylinder numbers. Depending on the disk drive model, 100 or 200 cylinders are used for data storage. Cylinders 001, 002, and 003 are for alternate tracks and cylinder 103 or 203 is for customer engineer use.



- A mark which is fixed for each disk and provides orientation Index information to the disk attachment. It is the starting point for every track.
- G1 A gap area between index and the first address mark. G1 contains 40 bytes of FF followed by seven bytes of zeros.
- AM Address mark (AM) is a specially written group of bits that indicate the start of a new sector. AM contains two bytes. (See "Data Separator" for additional information on address marks.)
- G2 A gap area between an address mark and the identifier of a sector. G2 contains a one-byte sync character (hexadecimal 0E).
- ID The identifier area (ID) of a sector contains six bytes, one flag byte, two address bytes, and three bytes of check characters.

G3 A gap area between the identifier and the data area of a sector. G3 contains 15 bytes: ten bytes of FF, followed by four bytes of zeros, followed by one sync character (hexadecimal OE).

Data The data area contains 256 bytes of data and three bytes of check characters.

G4	A gap
	the ne
	of zero
G5	A gap
	G5 is f
	tional

\mathbf{v}

area between the data field and the address mark of ext sector. G4 contains 28 bytes of FF and seven bytes os.

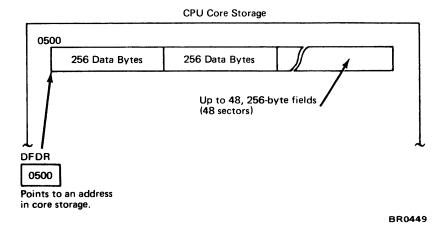
area between the end of the last sector and index. filled with FF (number of ones varies with disk rotaspeed).

The track format for address marks, gaps, identifier fields, and data field is established by the disk attachment while executing a write identifier command. (This command is principally used to prepare a new disk for operation.) Data recorded on the disk during subsequent write data operations is written between gaps three and four. These gaps may vary slightly in length due to disk rotational speed.

Two local storage registers, located in the CPU, are assigned to disk operation. They are the disk file data register and disk file control register.

Disk File Data Register (DFDR)

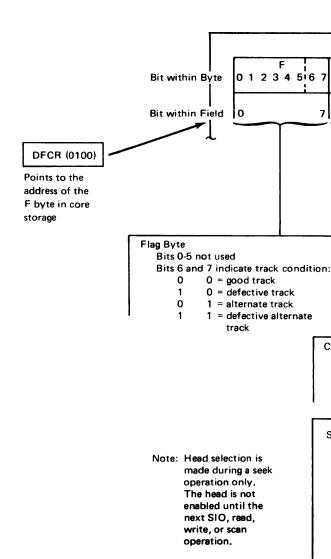
A


В

This register addresses the disk data field in core storage. The data field contains data to be written on the disk or data received from the disk.

At the start of an operation, the disk file data register contains the twobyte address of the first byte in the data field. The disk file data register is updated by one as each byte is read from or written on the disk. At the end of an operation, the address in the disk file data register is one greater than the last address used during the operation. (For read data diagnostic, scan, and write identifier commands, the disk file control register address is equal to the original address.) If there is no data transferred, the contents of the disk file data register remain unchanged.

Note: In any of the described operations, the contents of the disk file data register are not predictable if an equipment check occurs.


The data field format is:

Disk File Control Register (DFCR)

The disk file control register contains the address of a four-byte disk control field (DCF) in core storage. The disk control field contains information regarding (1) track condition, (2) cylinder address, (3) sector address, (4) head selection, (5) number of sectors to process during an operation, (6) number of cylinders to move the access mechanism during a seek instruction, and (7) the direction in which the access mechanism should move for the seek operation.

The disk control field format is:

CORE STORAGE С S N 0123456 011 2 3 4 5 6 7 0 1 2 3 4 5 6 7 78 15 16 23 24 31 Cylinder Byte Bits 0-7 contain the binary number of the cylinder address (0 to 203) Sector Byte Bit 0 is head selection (See note) 0 = select head 0 1 = select head 1 Bits 1 through 5 are sector address: on disk upper surface address will be 0 to 23, lower surface 32 to 55 Bits 6 and 7 indicate direction of seek: 0 = seek reverse 0 0 1 = seek forward N Byte (Field) Bits 0-7 contain a binary number of the number of cylinders to move in a seek operation, or a number that indicates how many sectors to process. This number is equal to the number of sectors desired, less one (N = 16 will process 17 sectors)

BR0450A

Α

►

B

File Instructions

Before a disk operation begins, a load I/O instruction is issued to load the local storage registers, disk file data register and disk file control register, with the address in core storage of the data field and disk control field, respectively.

Next, the availability and operating status of the device should be checked with the test I/O and sense I/O instructions. If the results of the test I/O and sense I/O indicate that the device is ready to accept an instruction, a start I/O instruction is issued.

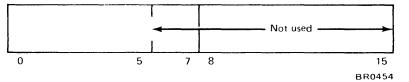
All devices on the data bus out receive the start I/O instruction; however, only the device that decodes its address from the device address in the Q-byte may accept the instruction. The device that decodes its address must return a signal to the CPU (I/O condition A-I/O condition B) to indicate if the device accepts or rejects the instruction.

After the start I/O instruction cycles (I-op, I-Q, I-R) are complete, the instruction is set up in the disk attachment. The disk attachment will complete the specific operation with only cycle steal requests from the CPU.

If a start I/O instruction read, write, or scan instruction is issued to a drive that is currently in a seek operation, the instruction will be provisionally accepted (held) by the disk attachment for execution at the end of the seek. If a seek check (error) occurred during the seek operation, the provisionally held start I/O instruction will be reset and a status bit set to indicate the result.

The disk instructions and the functional objectives of each are given in the following headings: Load I/O, Test I/O, Sense I/O, and Start I/O.

Load I/O General Notes


- 1.

2.

3

- accepted 4.

In diagnostic mode, two bytes, located at the operand 1 address, control the disk operation. The format and description of these two bytes follow.

Bit O-Index. Presence of this bit generates an index pulse in the file control unit. Index stays on until the next load I/O instruction is issued without bit 0 on, or until a CPU system reset occurs.

Bit 1-Write Oscillator. A write oscillator pulse is generated each time a load I/O instruction is issued with bit 1 on.

Bit 2-Separated Clock. A separated clock pulse is generated each time a load I/O instruction is issued with bit 2 on.

Bit 3-AM Indicate. An address mark indicate pulse is generated each time a load I/O instruction is issued with bit 3 on. (This pulse normally is produced when the data separator reads an address mark.)

Bit 4-Separated Data. One separated data pulse is generated when bit 4 is on. When a data bit is desired, it should be used after a separated clock bit is issued. Bits 1-4 operate file control unit lines of the same name and allow program control of these lines.

Bit 5-Inhibit CPU Request. This bit will cause CPU requests made by the attachment, to be inhibited until the next LIO instruction without this bit on or there is a system reset.

If a high speed FCU is installed, this bit also simulates a track crossing pulse from both drives. The track crossing pulse will stay on until the next LIO instruction without this bit or a system reset.

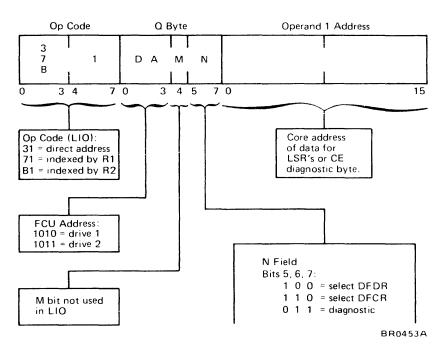
Bits 6-15. These bits are not used.

A diagnostic load I/O instruction sets the file control unit into a diagnostic mode. In diagnostic mode, the file control unit is not busy to another load I/O instruction or start I/O instruction. Load I/O instructions can be issued during a sense I/O instruction when they would normally not be accepted.

Programming Note: An example of proper instruction sequence after the disk file control register and disk file data register are loaded is:

- LIO (Diagnostic; to set the file control unit into diagnostic mode)
- SIO (Write ID)
- LIO (Diagnostic)
- LIO (Diagnostic)
- LIO (Diagnostic) LIO (Diagnostic)

by the appropriate bit or bits present in the diagnostic control byte.


Operate file control unit interface lines

Diagnostic mode is reset at the end of the start I/O instruction or by a system reset.

Load I/O (LIO)

- This instruction loads the local storage registers (disk file data register or disk file control register) with an address used by the file control unit during start I/O instructions.
- Load I/O can be used to set diagnostic CE mode, allowing CE control of a disk operation.

The format of the Load I/O instruction is:

DFDR and DFCR (N Field = 100 or 110)

Two bytes located in storage at the address specified by the operand address are loaded into the register designated by the N bits as shown. If any combination of N bits other than shown is used, a processor check stop will occur.

Diagnostic (N Field = 011)

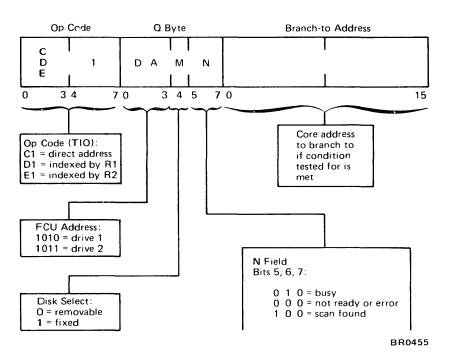
This combination of N bits is for diagnostic use. The file control unit logic is operated at a reduced rate of speed with no data transfer to and from the disk. The rate of speed is controlled by the diagnostic program. One clock pulse is issued with each diagnostic load I/O instruction. By stopping the CPU after a diagnostic load I/O instruction, the disk operation can be stopped to probe signal levels with a light indicator or a sense I/O instruction command may be issued to sense the status of attachment conditions.

If the file control unit is busy, the load I/O instruction becomes equivalent to an advance-program-level-on-busy operation.

Load I/O does not set any disk status conditions. The M-bit is not used by the file control unit.

Load I/O is executed if the drive is executing a seek or recalibrate instruction, and a read, write, or scan has not been provisionally

If the drive is not ready, a load I/O instruction is executed.


Α

B

Test I/O / Advance Program Level (TIO/APL)

• This instruction is used to test for scan-found, error, drive-not-ready, and file control unit busy.

The format of the test I/O instruction is:

Busy (N Field = 010)

A control-unit-busy condition may be indicated by a test I/O and branch/advance program level instruction or by the rejection of a load I/O or start I/O. The busy condition is indicated to all file I/O instructions except sense I/O while:

- 1. The file is executing any read, write, or scan on any drive.
- 2. The file has provisionally accepted any operation for automatic execution at the conclusion of a seek currently in progress.

Not Ready or Error (N Field = 000)

The ready state of the disk drive is indicated to the file control unit by the conditioning of the file ready line. Failures that result in a not-ready state of the disk drive include:

- Failures of drive interlock switches
- Failure of the disk to maintain the rotational speed
- Failures that interrupt the normal head loading sequence or which cause the heads to unload
- A failure of ac power
- The occurrence of an unsafe condition

Unsafe conditions turn on latches located in the file circuitry.

1. Write unsafe latch

- a. Write selected and no write transitions detected.
- b. Write selected and multiple heads selected.
- c. Write not selected and write current source on.
- 2. Erase unsafe latch
 - a. Write selected and erase current source not on.
 - b. Write not selected and erase current source on.
- 3. Read/write selection unsafe latch
 - a. Read selected and write selected.
 - b. Read selected and erase selected.
 - c. File accessing and write selected.
 - d. File accessing and erase selected.

A test I/O instruction error is indicated when either drive is addressed if the following device status is present:

Data check Track condition check Missing address mark End of cylinder No record found Equipment check (if not caused by unsafe) No-op Overrun

Note: See "Device Status" for description of the individual device status conditions. An error is indicated if there is a seek check or unsafe for the drive addressed. A seek check or unsafe condition for the unselected drive does not cause an error to be indicated. The drive to which the device status applies may be determined by the device status, status address (byte 1, bits 6-7).

Scan Found (N Field = 100)

The result of a start I/O scan instruction is determined by a test I/O scan found. The result is indicated if either drive 1 or drive 2 is addressed. The drive that the scan found condition occurred on is determined by a sense I/O instruction in status byte 1, bit 7.

Test I/O General Notes

1 If any N field other than the three previously shown (010,000, or 100) is used, the operation causes a processor-check stop. The test I/O instruction does not receive a busy indication if a seek is in progress on either or both drives 1 and 2 and no other operation has been provisionally accepted. If another operation (read, write, or scan) has been provisionally accepted or is in progress, busy is indicated when either drive is addressed.

2. File control unit busy rejects (equivalent to advance program level) a start I/O seek when the addressed drive is executing a previous seek instruction. This busy condition is not indicated by test I/O and branch/advance program level but may be checked by sense I/O. A busy condition occurs only when two consecutive seeks are issued to the same drive and the second seek is issued before the first is completed.

If a read, write, or scan is issued to a drive that is currently seeking, the new instruction is provisionally accepted for execution at the end of the seek. The provisionally accepted instruction causes a busy indication to a test I/O instruction. If there is a seek check at the end of the seek, the provisionally accepted read, write, or scan is not executed and no-op is set.

4.

3.

Advance Program Level (APL)

however, is different (F1).

Op Code

```
F1
```

The manner in which the CPU executes the advance program level instruction depends on whether the advance program level feature is installed on the CPU.

level.

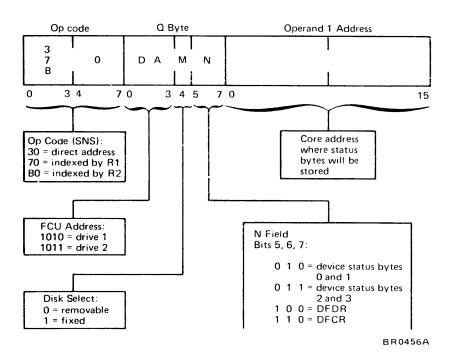
\bullet

The scan-found indication is reset by the next start I/O.

An advance program level instruction tests for the same conditions as the test I/O instruction and uses the same N field codes. The OP code,

The format of the advance program level instruction is:

QByte


 DA	T 	М	1	N	Not Used
					BR0463

Operation: This instruction tests for the conditions specified in the Q byte. If the condition tested for is present, a system with the dual programming feature installed activates the inactive program level; a system without the dual programming feature loops on the advance program level instruction until the condition no longer exists. If the condition is not present, systems with and without the dual programming feature take the next sequential instruction in the active program

Sense I/O (SNS)

• This instruction causes the contents (two bytes) of the specified local store register or device status to be stored into core storage at the address specified in the first operand address.

The format of the sense I/O instruction is:

Device Status (N Field = 010 or 011)

- Device status is four bytes of information assembled by the control unit which provide information about the control unit and the file.
- Device status is made available by use of a sense I/O instruction.

The device status bits are:

	Byte 0	Byte 1	Byte 2	Byte 3
Bit O	No-op	Scan Equal Hit	Unsafe	CE sense Bit
Bit 1	Intervention Required	Cylinder Zero	TAP Line A	CE sense Bit
Bit 2	Missing Address Marker	End of Cylinder	TAP Line B	CE sense Bit
Bit 3	Equipment Check	Seek Busy	TAP Line C	Not Bit Ring Inhibit
Bit 4	Data Check	100 Cylinder	Index	Standard Write Trigger
Bit 5	No Record Found	Overrun	Head Settling	Condition Priority Request
Bit 6	Track Condition Check	Status Address A	CE sense Bit	Bit Ring 0
Bit 7	Seèk Check	Status Address B	Model 6	Not CC-Register Position 17

BR0457A

Byte O, Bit O-No Op. This bit indicates that the last issued command was not executed. It is caused by the selected file being unsafe or by a seek check occurring during a seek on the drive that read, write, or scan is provisionally accepted for. The no-op status bit is reset only by (1) a sense I/O command, (2) a CPU check reset, or (3) a general reset.

Byte 0, Bit 1-Intervention Required. This bit indicates that the addressed drive is not ready. The condition may be corrected by making the file ready. An uninstalled second drive causes an intervention required indication in response to a start I/O. A two-drive system with an uninstalled fixed disk on the second drive also causes an intervention required when the fixed disk is addressed.

A seek in reverse of too many cylinders may cause the high speed model files to become not ready if the carriage mechanism approaches cylinder zero at a speed greater than the normal speed files. This can occur from cylinder 4 or greater if a reverse seek beyond cylinder zero is attempted. Recalibration will never cause ready to drop as it is executed in low speed mode. To reinstate ready, the file power must be turned off and back on again.

Byte 0, Bit 2-Missing Address Mark. This bit is set on any multisector operation after identifier area orientation is established when any two following sequential sectors read from the file have identical bits in bit position 5 of the head/sector byte of the identifier. If this condition is detected before ID orientation or on a single sector operation, it is indicated after the control unit has determined that the record cannot be found on the track. This bit is also set if no address mark is found and index has passed twice while looking for address mark. This bit is not set if a data check is detected in one of the two identifier fields.

Byte 0, Bit 3–Equipment Check. This bit indicates that the control unit has detected a hardware failure, such as a CC register check, an equipment check write gate, a check counter error, a parallel parity check, or a serdes check. This status bit will also indicate that the selected drive has detected an unsafe drive condition.

Byte O. Bit 4-Data Check. This status bit indicates that a cyclic check or bit-count appendage check was detected while reading the identifier area or data fields from the file.

Byte 0, Bit 5-No Record Found. This bit indicates that the first identifier called for on a read, write, or scan could not be found on the track; or, after the first hit of a multisector operation, there is a subsequent identifier noncompare. This bit is set with track condition check. The identifier compare takes place on all bits of the identifier.

Byte 0, Bit 6-Track Condition Check. This status bit is an indication that a data operation was attempted, but the track condition bits in the flag byte in main storage did not agree with the track condition bits written on the file.

- 2.

1.

- 3. operation
- 4. 5. time

equal command is issued.

clock.

Bit 6 Status Address

0

0

accepted on either drive.

- Byte 0, Bit 7-Seek Check. This status bit indicates that the control unit has detected a seek error caused by one of the following conditions:
 - Access overrun on selected drive while go forward is active
 - Go forward or go reverse active and drive not ready
 - Go reverse active, cylinder zero active and not in a recalibrate
 - Go forward or go reverse active for longer than 1 to 2 seconds Track crossing pulse from drive sensed at the end of head settling
- Byte 1, Bit 0-Scan Equal Hit. This status bit indicates that the equal condition was satisfied whenever a scan equal/low, an equal/high, or
- Byte 1, Bit 1-Cylinder Zero. An indication that the selected drive's access mechanism is positioned at cylinder zero.
- Byte 1, Bit 2-End of Cylinder. This status indicates that on a multiple sector data or scan operation one of the following occurred:
- a. An attempt was made to operate beyond the end of the cylinder. (Head 1 of the selected disk).
- b. Head 1 ID's were written on Head 0 (Bit 0=1 of S byte) and an attempt was made to operate beyond the end of the track. This can happen on alternate tracks.
- In both cases, all sectors up to and including the last one on the track were successfully handled.
- Byte 1, Bit 3-Seek Busy. This bit indicates that the drive addressed by the sense I/O is seeking (includes head settling time).
- Byte 1, Bit 4-100 Cylinder. This status bit indicates that the first drive (drive 0) attached to the system has 100 cylinders available to the customer. This indication is generated by the attachment hardware.
- Byte 1, Bit 5-Overrun. This bit is set when a data cycle request is not honored within the time required to maintain data transfer with the file. This condition occurs due to a process-check stop which stops the CPU
- Byte 1, Bits 6 and 7-Status Address A and Status Address B. Status A and Status B indicate the address of the drive that was specified in the last read, write, or scan instruction. They provide the drive number that per tains to the attachment-dependent status bits.

A	Bit 7 Status Address B	Drive
	0	1
	1	2

This address is updated when a start I/O is accepted or provisionally

Byte 2, Bit 0-Unsafe. This bit indicates that one of the following errors has been detected by the disk drive:

- 1. Write unsafe
 - a. Write selected and no write transitions detected.
 - b. Write selected and multiple heads selected.
 - c. Write not selected and write current source on.
- 2. Erase unsafe
 - a. Write selected and erase current source not on.
 - b. Write not selected and erase current on.
- Read/write selection unsafe 3
 - a. Read selected and either write or erase selected.
 - b. Carriage accessing and either write or erase selected.

Byte 2, Bit 1-Tap Line A. Used by the timing analysis program (TAP). These lines can be jumpered at the drive to sense signals that normally are not checked. See note 5.

Byte 2, Bit 2-Tap Line B. Same as byte 2, bit 1.

Byte 2, Bit 3-Tap Line C. Same as byte 2, bit 1.

Byte 2, Bit 4-Index. This line is active for about 43 micro seconds starting with each index pulse from the selected drive.

Byte 2, Bit 5-Head Settling. This line turns on at the end of a seek operation to time out head settling. It is on for 24.67 (+3.2, -3.74) milliseconds for the high speed files and about 28 milliseconds for the standard speed drives.

Byte 2. Bit 6-Wireable CE Sense Bit. This sense bit allows the customer engineer to provide the CPU with MST signals which normally are not available for sensing (used for diagnostic programs).

By te 2, Bit 7-Model 6. This bit indicates that the CPU is a 5406.

Byte 3, Bit 0, Bits 1 and 2-Wireable CE Sense Bit. Same as byte 2, bit 6.

Byte 3, Bit 3-Not Bit Ring Inhibit. For CE use in diagnostic programs.

Byte 3, Bit 4-Standard Write Trigger. For CE use in diagnostic programs.

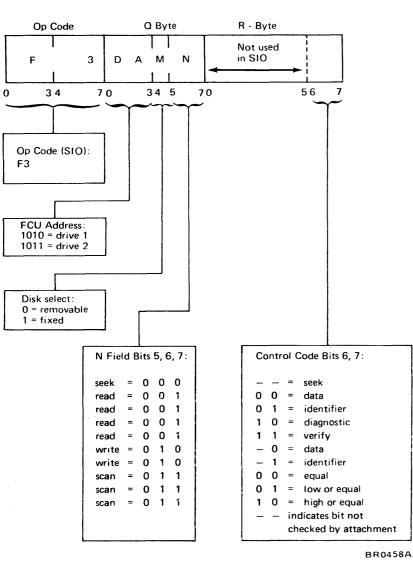
Byte 3, Bit 5–Condition Priority Request. This bit indicates the status of the condition-priority-request latch.

Byte 3, Bit 6-Bit Ring 0. This bit is active at bit ring 0 time.

Byte 3, Bit 7-(Not) Cyclic Check-Register Position 17. This bit indicates the status of position 17 of the cyclic check-register.

DFDR/DFCR (N Field = 100 or 110)

The local storage register designated in the N field coding is sensed and the address in the local storage register is transferred into core storage at the address specified in the operand one address.


Sense I/O General Notes

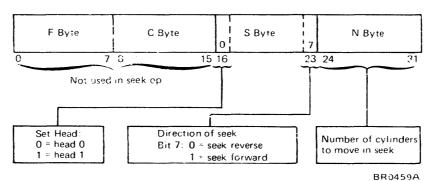
- If any combination of N bits other than the four designated is 1. used, the operation causes a processor-check stop.
- The file attachment is not busy to a sense 1/0. 2.
- 3. Sense I/O does not set any file status conditions.
- The sense bytes are placed in core so that the highest numbered 4 byte is placed at the highest address.
- TAP lines A, B, and C are normally jumpered to the three unsafe 5. latches in the file drive. If these lines (jumpers) are moved to sense other signals as required in diagnostic programs, be sure to reinstall the jumpers to the unsafe latches. (See 5444 ALD FN260 for drives below serial 30100, 5444 ALD FS260 for drives above serial 30100. for normal jumpering of these lines.)
- 6. Device status bits equipment check (due to unsafe condition) cylinder zero, seek check, seek busy, intervention required, unsafe, head settling, and index may vary depending on the drive selected by the sense I/O instruction. These bits are presented only when the drive to which they apply is selected. They are reset when the drive to which they apply is selected if the error condition is no longer present. All remaining bits may be presented when either drive is selected by sense I/O. All remaining bits except no-op are reset when a start I/O is executed on either drive. No-op is reset by the sense I/O instruction that transfers no-op to core storage (N code 010).

Start I/O (SIO)

• This instruction selects an I/O device and provides the additional information to specify the detailed operation.

The format of the start I/O instruction is:

There are four basic disk operations: write, read, scan, and seek. These are further defined into twelve specific operations.


Operation	Definer
Write	Data
	Identifier
Read	Data
	Identifier
	Diagnostic
	Verify

Scan	Equal
	Low or Equal
	High or Equal
Seek	Forward
	Reverse

Recalibrate

Seek

The head access of the selected drive is moved a specified number of cylinders, and the specified head number is set for future read, write, or scan operations. Seek uses only two bytes of information from the disk control field: the S and N bytes. The disk file control register address must contain the address of the F byte.

The N byte specifies the number of cylinders the access mechanism will move on the seek. Bit 23 of the S byte specifies the direction of movement. Forward (bit 23 = 1) is from cylinder 0 to 202.

Recalibration is executed by specifying a seek in the reverse direction and a number of cylinders to be moved that is equal to or greater than 223. Head 0 is selected automatically for a recalibration operation.

Seek Forward: Moves the head-access mechanism forward. (Forward direction is from the outer edge of the disk to the inner tracks.)

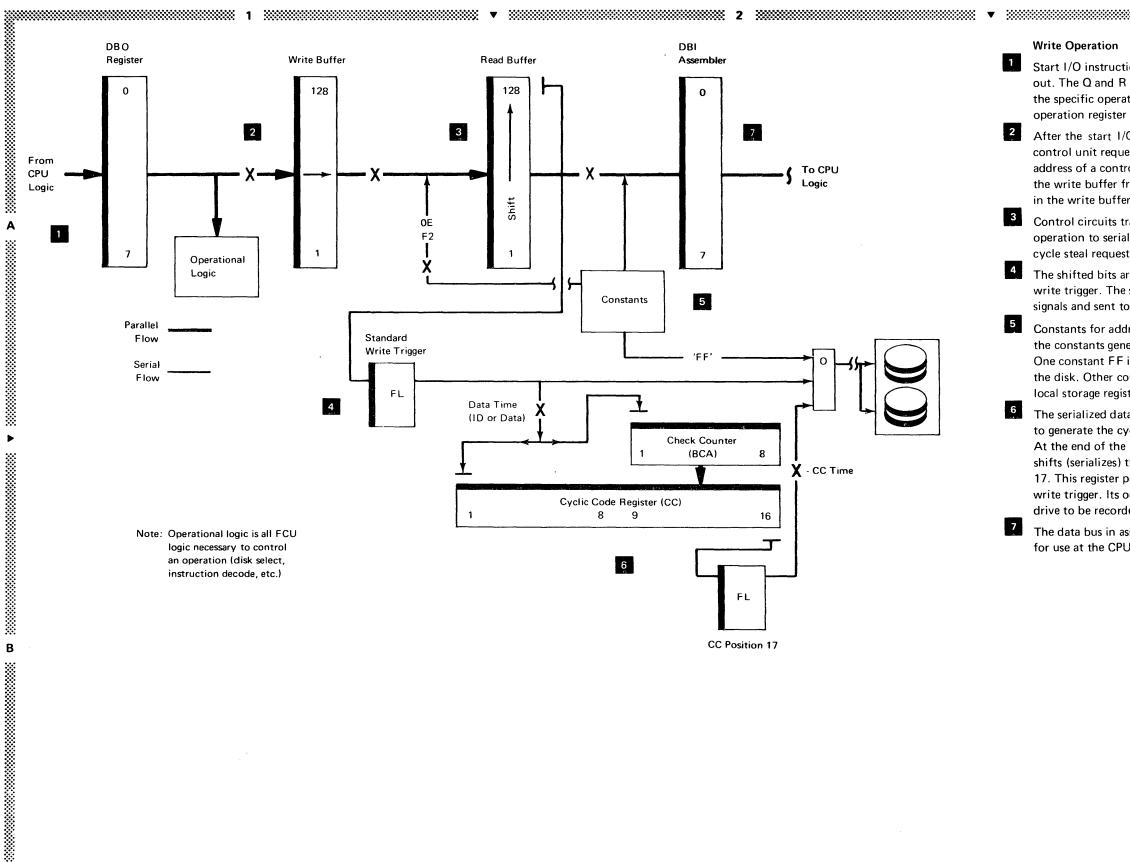
Seek Reverse: Moves the head-access mechanism from the inner to the outer edge of the disk.

Seek Recalibrate: Moves the nead-access mechanism to cylinder zero. This positions the mechanism to a specific location (cylinder zero) when needed in error recovery routines. On high speed drives, recalibrate operation is always in low (normal) speed.

Write Operations

Write Data: Records data on disk from the data field in core storage.

Write Identifier: Records addresses from the disk control field for sectors and cylinders in the identifier area field on disk. Address marks and gaps generated by the file control unit are written by this command. Twentyfour sectors are always written.


Read Operations

instruction

Initial Program Load (IPL)

from drive 2.

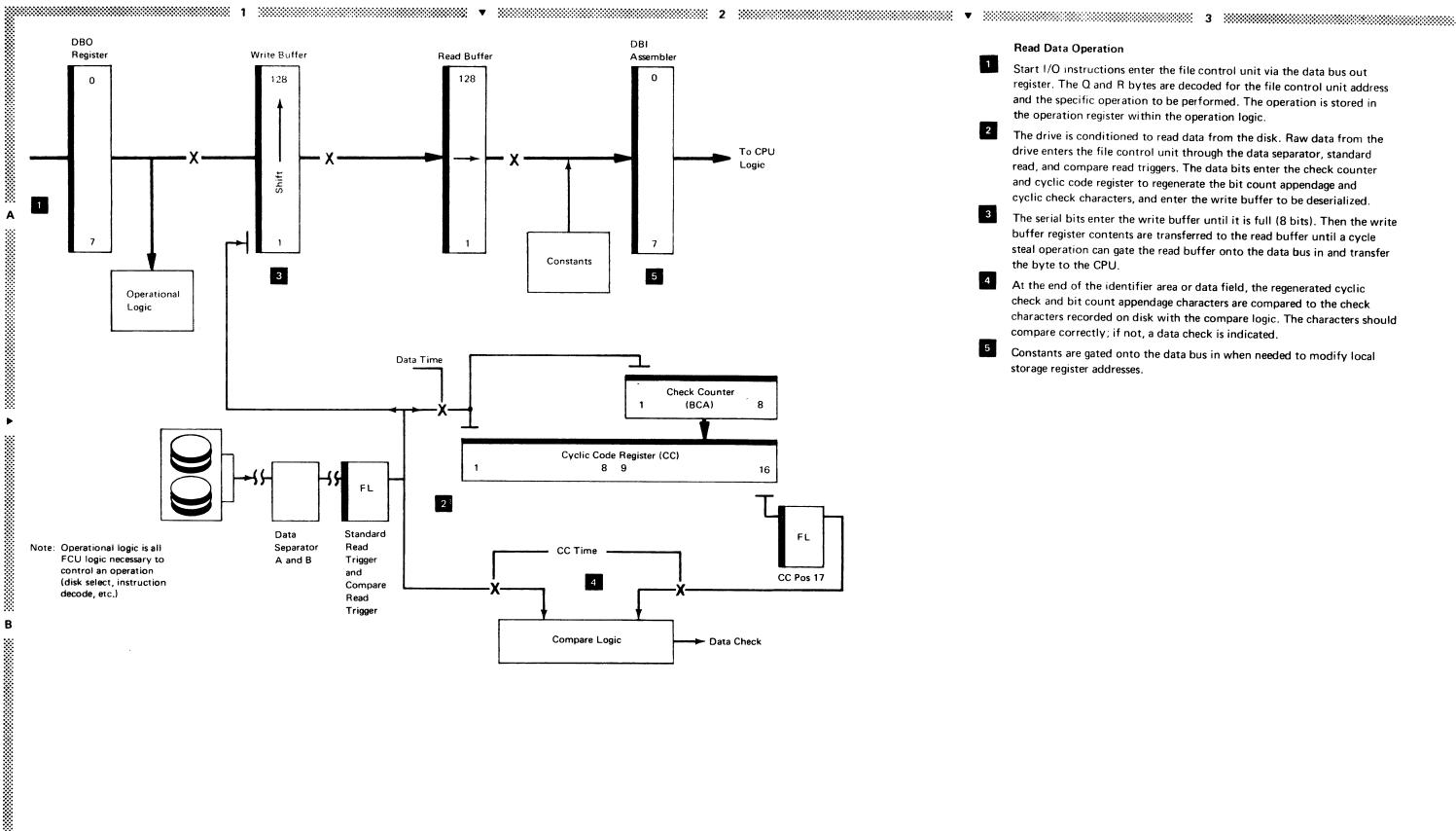
- Read Data: Recovers data recorded on disk and transfers this information to the data field in core storage.
- Read Identifier: Transfers only the identifier area field information on disk into the disk control field.
- Read Diagnostic: The file control unit is operated with reduced requirements for detection of address marks. Otherwise, this operation is very similar to read data.
- Read Verify: Does not transfer any information. Regenerates the cyclic check and bit count appendage check characters and compares them with the check characters recorded on the disk. This command usually follows a write operation and verifies that the data-check characters were written correctly.
- Scan Equal: Compares data on disk with data in core. The result is indicated by a status bit and is available to a sense I/O instruction or test I/O
- Scan Low or Equal and Scan High or Equal: These commands differ from scan equal only in the indication returned about the compare.
- The initial program load operation is not under program control. It is started with the program load switch on the operator console. An initial program load operation reads a 256-byte data field from sector 0, head 0, from either the fixed or removable disk as determined by the program load selector switch on the operator console. Drive 1 is selected by the file control unit. Initial program load cannot be performed
- At the start of an initial program load operation, the disk file data register address is set to 0000 and a seek recalibrate is performed to position the read heads to cylinder 0. Data is read from the first sector past index (sector 0). At the end of the data field, the file control unit signals the central processing unit to start processing at core address 0000. No compare is made on the identifier of the first record: the first record found after the index mark is read and any error conditions are made available for program testing. If no record is found or the wrong record is read, the program will not start correctly. An unsuccessful initial program load operation requires an operator retry
- A test I/O and branch instruction should be performed to test for errors or busy before attempting the first start I/O instruction.

- local storage register addresses.
- drive to be recorded on disk.
- for use at the CPU.

3

Start I/O instructions and data enter the file control unit via the data bus out. The Q and R bytes are decoded for the file control unit address and the specific operation to be performed. The operation is stored in the operation register within the operational logic.

After the start I/O operation I-Q and I-R cycles are complete, the file control unit requests a cycle steal, selects a local storage register for an address of a control or data field, and receives the data (in parallel) into the write buffer from the data bus out. One data byte is buffered (stored) in the write buffer until it is needed at the read buffer.

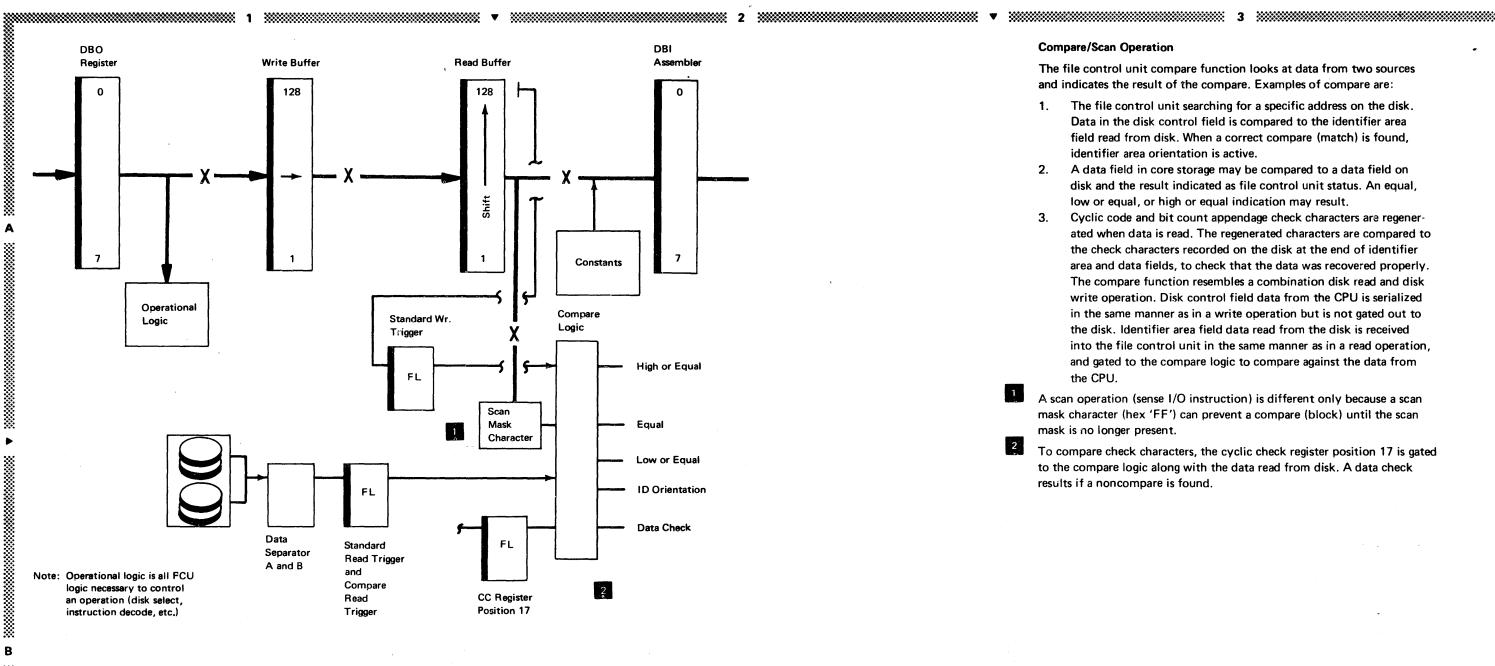

Control circuits transfer the write buffer to the read buffer, start a shift operation to serialize the byte, and at the same time generate another cycle steal request to refill the write buffer.

The shifted bits are transferred out of the read buffer into the standard write trigger. The standard write trigger output is combined with clock signals and sent to the drive to be recorded.

5. Constants for address marks (F2) and sync bytes (0E) are generated by the constants generator and gated into the read buffer to be serialized. One constant FF is combined directly with clock bits to write all ones on the disk. Other constants are gated onto the data bus in to modify the

The serialized data bits enter the check counter and cyclic code register to generate the cyclic check and bit count appendage check characters. At the end of the identifier area or data field, the cyclic check register shifts (serializes) the register contents into cyclic check register position 17. This register position functions in the same manner as the standard write trigger. Its output is combined with clock timing and sent to the

The data bus in assembler gates the constants onto the data bus in lines


Start I/O instructions enter the file control unit via the data bus out register. The Q and R bytes are decoded for the file control unit address and the specific operation to be performed. The operation is stored in the operation register within the operation logic.

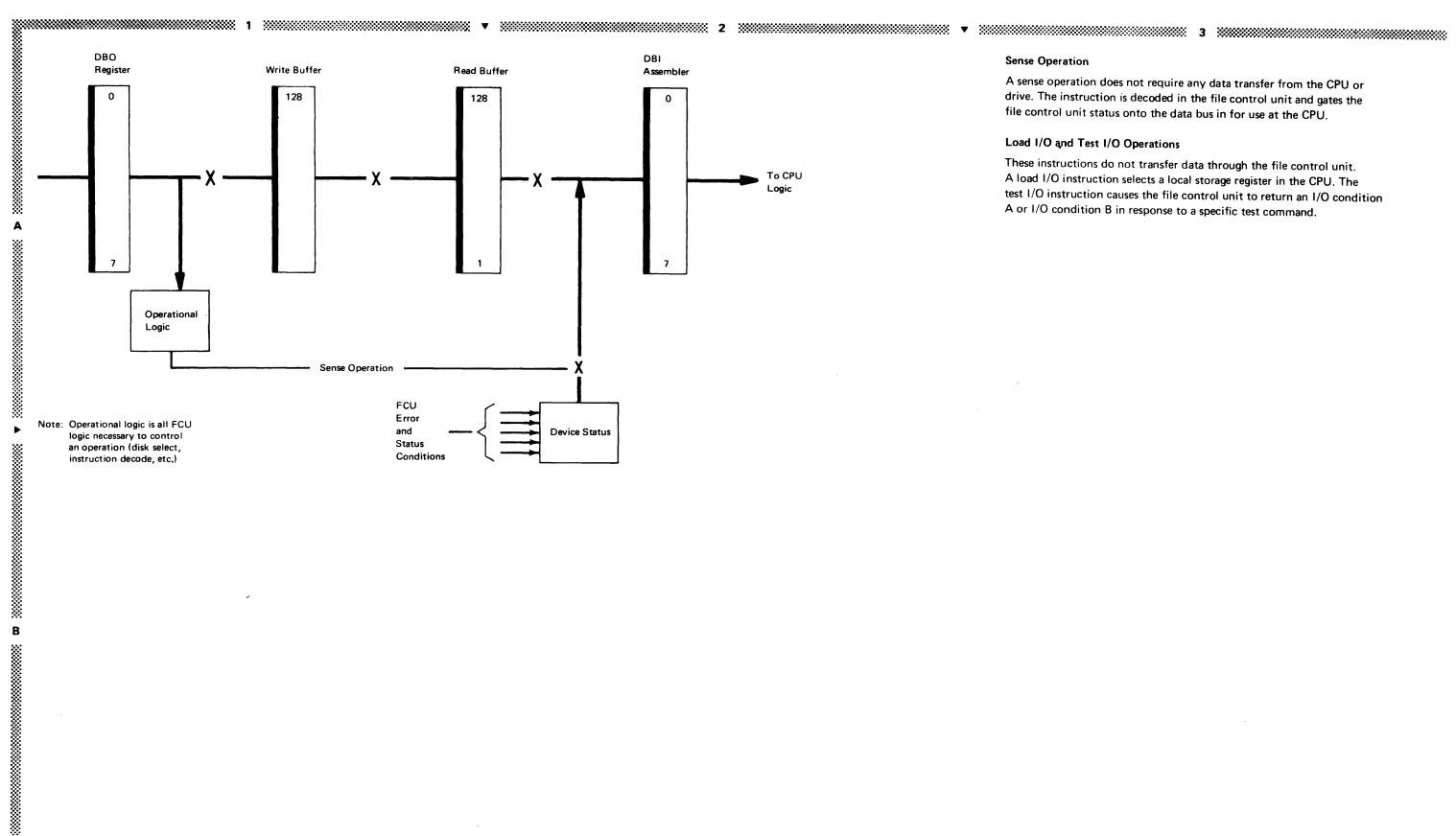
The drive is conditioned to read data from the disk. Raw data from the drive enters the file control unit through the data separator, standard read, and compare read triggers. The data bits enter the check counter and cyclic code register to regenerate the bit count appendage and cyclic check characters, and enter the write buffer to be deserialized.

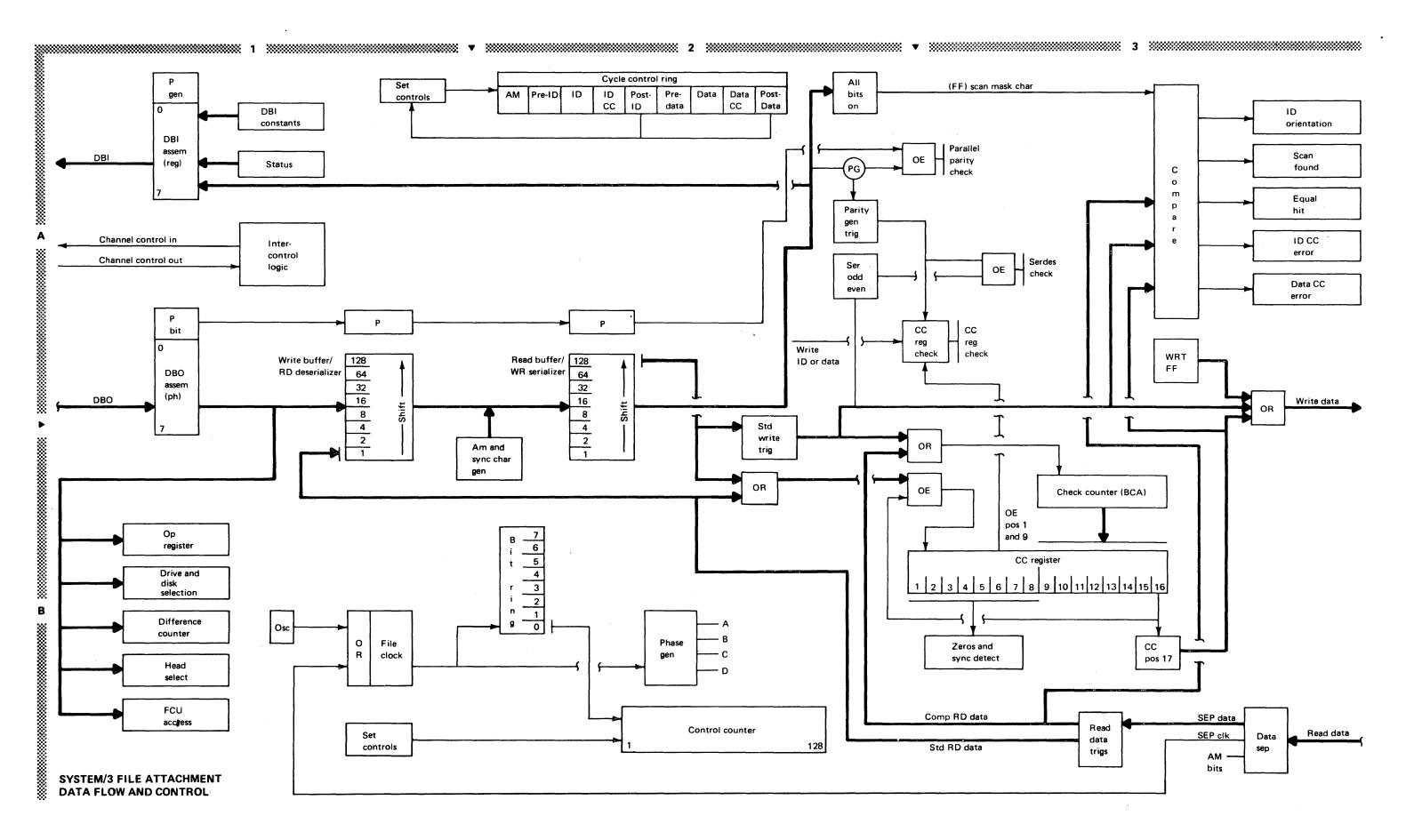
The serial bits enter the write buffer until it is full (8 bits). Then the write buffer register contents are transferred to the read buffer until a cycle steal operation can gate the read buffer onto the data bus in and transfer

At the end of the identifier area or data field, the regenerated cyclic check and bit count appendage characters are compared to the check characters recorded on disk with the compare logic. The characters should compare correctly; if not, a data check is indicated.

Constants are gated onto the data bus in when needed to modify local

The file control unit compare function looks at data from two sources and indicates the result of the compare. Examples of compare are:


1. The file control unit searching for a specific address on the disk. Data in the disk control field is compared to the identifier area field read from disk. When a correct compare (match) is found, identifier area orientation is active.


A data field in core storage may be compared to a data field on disk and the result indicated as file control unit status. An equal, low or equal, or high or equal indication may result.

Cyclic code and bit count appendage check characters are regenerated when data is read. The regenerated characters are compared to the check characters recorded on the disk at the end of identifier area and data fields, to check that the data was recovered properly. The compare function resembles a combination disk read and disk write operation. Disk control field data from the CPU is serialized in the same manner as in a write operation but is not gated out to the disk. Identifier area field data read from the disk is received into the file control unit in the same manner as in a read operation, and gated to the compare logic to compare against the data from

A scan operation (sense I/O instruction) is different only because a scan mask character (hex 'FF') can prevent a compare (block) until the scan

To compare check characters, the cyclic check register position 17 is gated to the compare logic along with the data read from disk. A data check results if a noncompare is found.

INTRODUCTION TO FUNCTIONAL UNITS

This chapter describes the functional units of the disk attachment and contains second-level diagrams. Chapter 2 is divided as follows:

- 1. A functional unit index for the second-level diagrams and a cross reference chart for card locations vs ALDs.
- A layout of the disk attachment board and the major logic functions 2. within each card.
- 3. An overall data flow of the disk attachment.
- A CPU-to-disk attachment and disk-attachment-to-disk-drive interface 4. diagram.
- Second-level diagrams combined with descriptions of the functional 5. units.

Each card location has its own group of second-level diagrams. For most card locations, there is a description of the functional units contained on the card in front of the second-level diagrams.

The 8-XXX references on the second-level diagrams are page numbers to the card second-level diagram that originates the incoming signal line. An asterisk refers to an interface line and is shown on the interface diagram, page 8-205. There are no second-level diagrams for drive 1 seek controls, card F2, because the logic on card F2 is identical to the logic on card G2. Where a drive 1 seek control line is referenced on the second-level diagrams, the reference is to a card G2 diagram. The reference is in parentheses to indicate that it actually originates on card F2:

Example

Α

►

В

8-213 refers to drive 0, card G2 (8-213) refers to drive 1, card F2

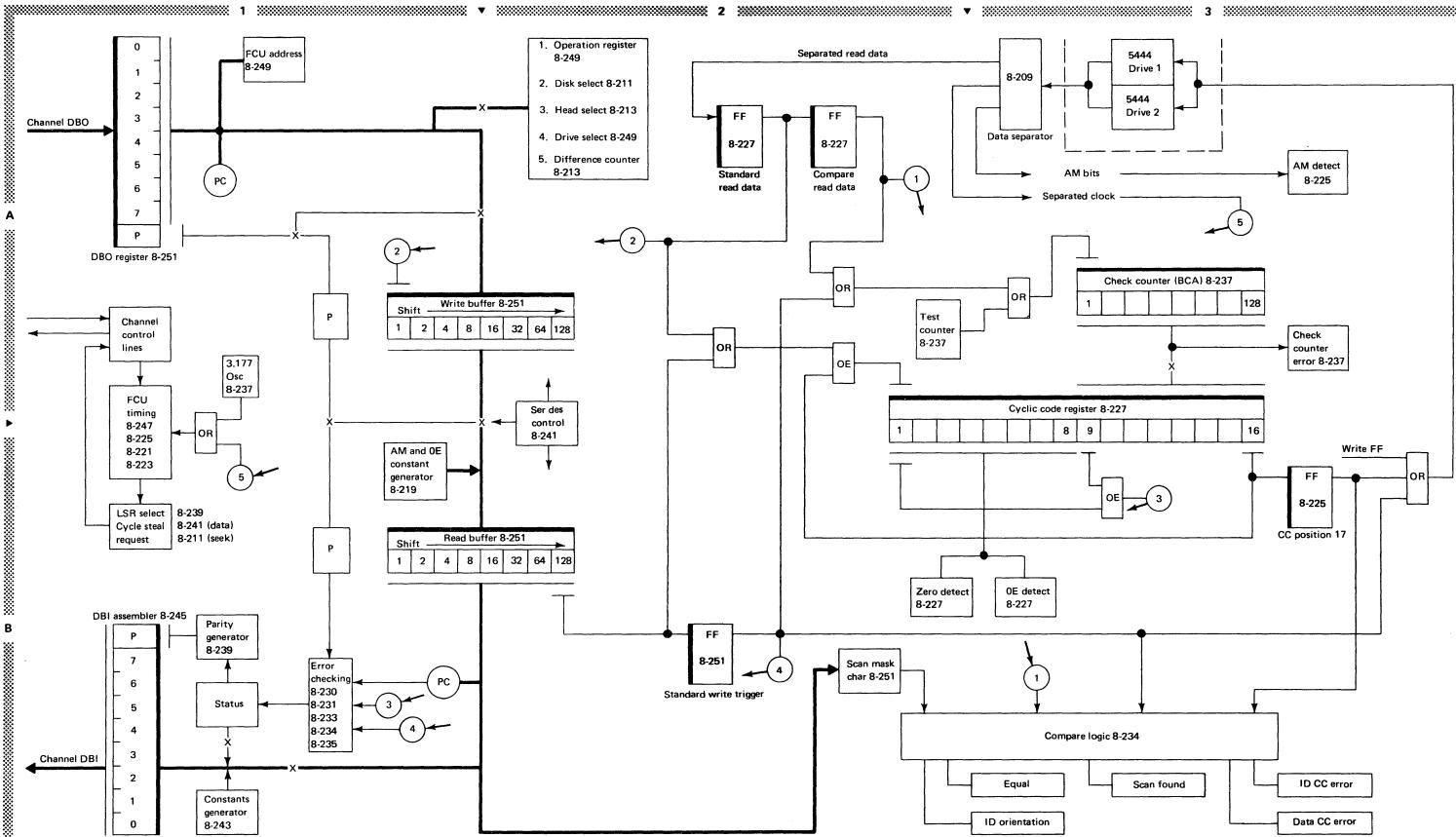
The GDXXX references below latches and logic blocks within the diagrams refer to disk attachment ALDs. The GDXXX numbers in the lower left corner of each diagram refer to the span of disk attachment ALD pages for that card position.

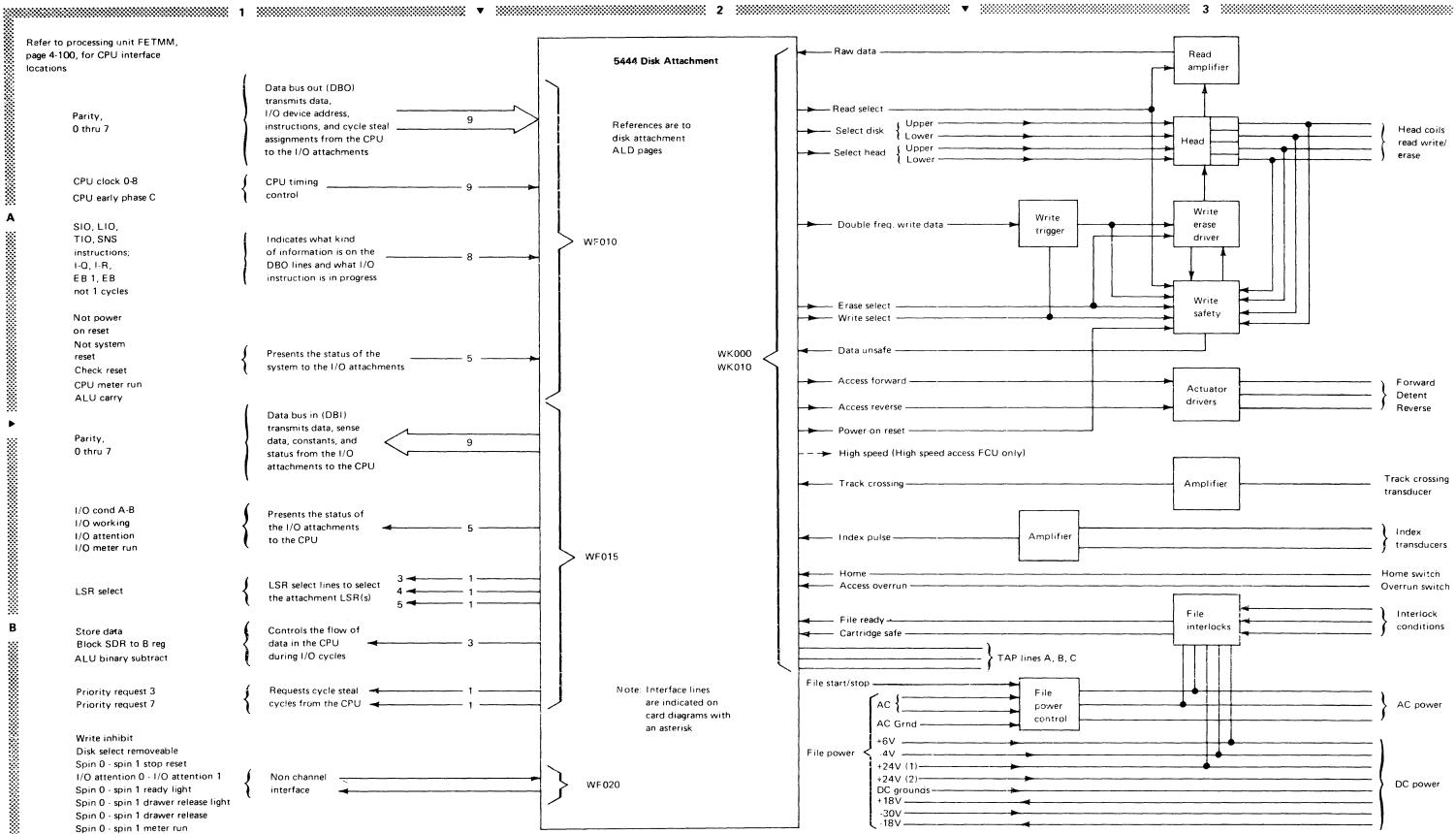
File control units to attach standard speed access drives, use version 000 ALDs. File control units to attach high speed access drives use version 001 ALDs. Version numbers are printed below the ALD page number.

Chapter 2. Functional Units

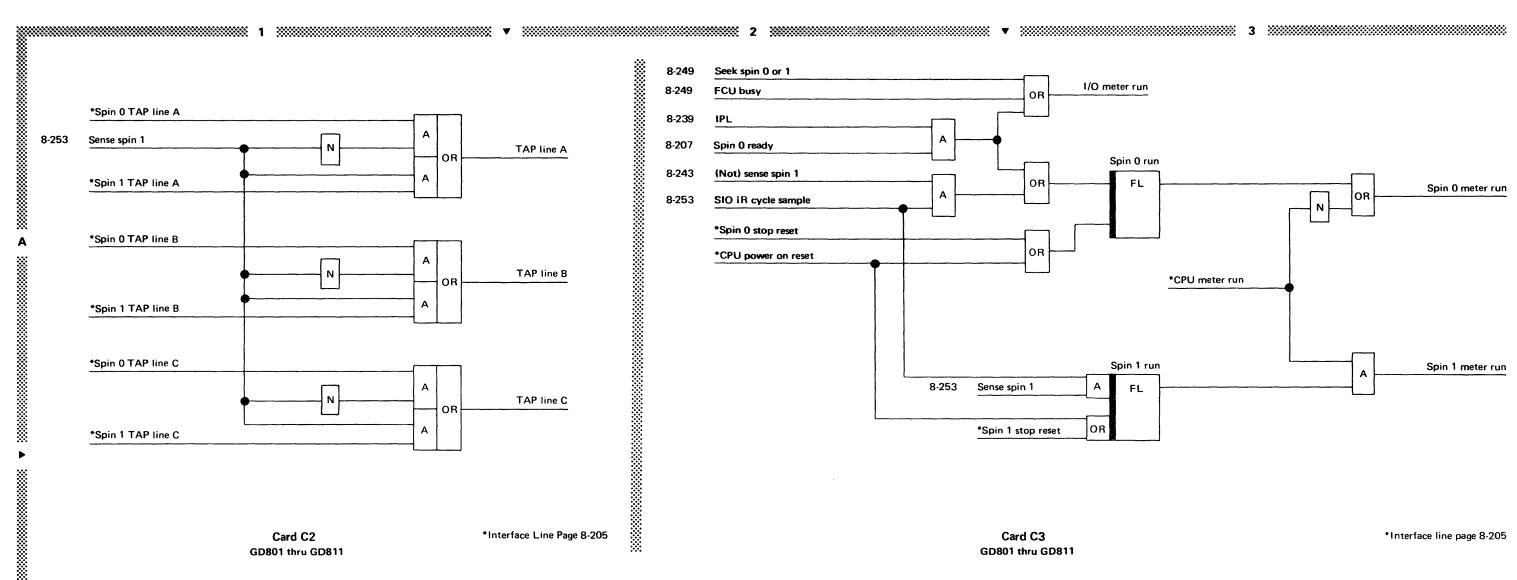
	*** 1 *********		******		************************		•	*****	3 3	
tional Unit Index										
Functional unit	Card location	Description	Diagram			ss reference chart				
Address mark detect	L2	8-224	8-225							
Bit ring	L2	8-224	8-225	Вус	card location	By ALD loca	ation			
CE controls	P2	8-236	8-237	C2	GD-811	GD-101-104	R2			
Check counter (BCA)	P2	8-236	8-237							
Clock	R2	8-244	8-247	C3	801	111-117	L2			
Clock gate	J2	8-216	8-217							
Compare	N2	8-232	8-234	C4	901-902	121-125	К2			
Compare read data trigger	L2	8-226	8-227				11			
Constants	02		8-243	D2	911	201-204	T2			
Control counter	К2	8-222	8-223			1	<u> </u>]			
Cycle control ring	K2	8-220	8-221	D3	501	211-216	S2			
Cyclic code register	L2	8-226	8-227	D4	511-512	301-304	E2			
Data separator	D4-E4	8-208	8-209	50		014.043	62			
Data bus in (DB1)	R2	8-244	8-245	E2	301-304	311-317	G2			
Data bus out (DBO)	S2	8-248	8-251	E4	521	321-327	F2			
Difference counter	G2	8-212	8-213	E4	52 1	521-527	F2			
Erase gate	J2	8-216	8-219	F2	321-327	501	D3			
Error conditions	M2 - N2	8-228	8-230 thru 8-235	G2	311-317	511-512	D4			
Go slow counter	G2	8-214	8-214	Н2	not used	521	E4			
Index	J2	8-216	8-218		621-626	601-606	P2			
Initial selection	Т2	8-252	8-253, 8-254	J2	621-626	001-000	FZ			
Initial program load (IPL)	P2	8-236	8-239	К2	121-125	611-615	Q2			
LSR selection	P2	8-236	8-239	L2	111-117	621-626	J2			
Operation register	S2	8-248	8-249	M2	711-713	701-706	N2			
Priority request 3 (data)	02	8-240	8-241	N12	701 700	711 710	M2			
Priority request 7 (seek)	E2	8-210	8-211	N2	701-706	711-713	+			
Read buffer	S2	8-248	8-251	P2	601-606	801	C3			
Read gate	J2	8-216	8-217	Q2	611-615	811	C2			
Resets	M2	8-228	8-230, 8-231							
Seek (common controls)	E2	8-210	8-211	R2	101-104	901-902	C4			
Seek (individual drive controls)	G2	8-212	8-213, 8-215	S2	211-216	911	D2			
Serdes	S2	8-248	8-251	52	211-210	311	02			
Serdes control	02	8-248	8-241	T2	201-204					
Standard read data trigger	L2	8-226	8-241	12	201-204		L			
Standard read data trigger Standard write trigger	S2	8-226	8-227 8-251	U2	not used					
				·	•					
Write buffer	S2 J2	8-248	8-251							

	CARD ALD cro	ss reference chart			
Ву	card location	By ALD loca	ation		
C2	GD-811	GD-101-104	R2		
СЗ	801	111-117	L2		
C4	901-902	121-125	К2		
D2	911	201-204	T2		
D3	501	211-216	S2		
D4	511-512	301-304	E2		
E2	301-304	311-317	G2		
E4	521	321-327	F2		
F2	321-327	501	D3		
G2	311-317	511-512	D4		
H2	not used	521	E4		
J2	621-626	601-606	P2		
К2	121-125	611-615	Q2		
L2	111-117	621-626	J2		
M2	711-713	701-706	N2		
N2	701-706	711-713	M2		
P2	601-606	801	C3		
Q2	611-615	811	C2		
R2	101-104	901-902	C4		
S2	211-216	911	D2		
T2	201-204				
U2	not used				

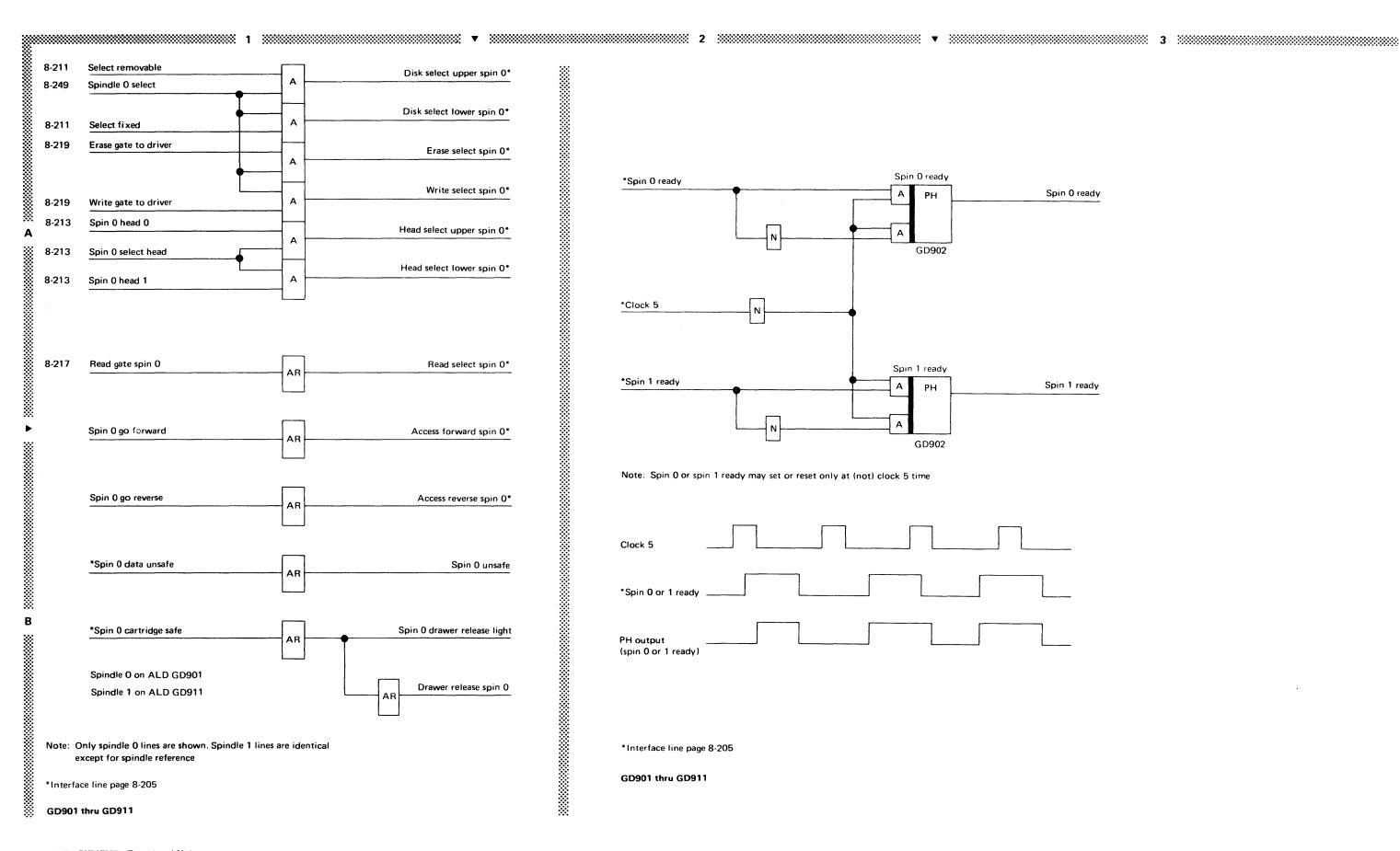

2	B2	C2	D2	E2	F2	G2	H2	J2	K2	L2	M2	N2	P2	Q2	R2	S2	T2	U2	V2
		TAPs	File	Common	Spindle	Spindle	(not used)	Read	Cycle	Bit	Resets	Compare	LSR	Priority	DBI	Op	Initial	(not used)	Cab
		line	line	seek	1 seek	0 seek		gate	control	ring		Scan	select	request	assembler	register	selection		
		receivers	drivers	controls	control	control			ring		Select			3					
				Seek cycle				Write	and	Cyclic	file	ID	IPL		FCU	Spindle	CE		
				Priority	Difference	Difference		gate	controls	check	Chart	orientation	05	Input	clock	select	mode		1
				request 7	counter	counter		Erase	Control	register	Start op	сс	CE controls	data time	Phase	Serdes	1/0		1
				Seek times	Seek time	Seek time		gate	counter	Sync	UP I	register	controis		oscillator	- Condes	condition		
		ALD page	ALD page	1, 2, 3, 4	out	out		3	and	detect	FCU	check ·	Check	Data]	Bus out	A and B		1
		GD811	GD911		counter	counter	1	Clock	controls	Zeros	error 1		counter	area					
		Card type	Card type	Seek time				gate		detect		Parallel	(BCA)			Parity	1/0		
		7043	3363	out counter	Initial	Initial			Count		No	parity	Ohaal	ID		check	attention		1
		C3	D3		seek time	seek time		Write	zero	Address	record	check	Check counter	area		Standard			
		File	FCU osc	Head settle	Forward-	Forward-		data	gate	mark	found	Serdes	error	Serdes		write	l	ł	
		meter		counter	reverse	reverse		Execute		detect	Set end	check		controls		trigger]		C
			Write	Disk select						Standard	of		Sense						1
			drivers		Go	Go		Write	1	read	cylinder	FCU	byte	Constants					
								FF		data		error	selection	CPU					
					Reset	Reset		N carry		trigger	Intervention required	1, 2 and 3		controls]				
			1	ALD pages GD301	go	go		NCarry]		required	Track						{	
		ALD page	ALD page	thru	Recalibrate	Recalibrate		Index		Compare read	Overrun	condition							
		GD801	GD501	GD304	ор	ор				data		check						Į	
		Card type	Card type	Card type		_				trigger									
		6456	0997	3353	Pre end	Pre end						Data check							
		C4	D4	E4	End seek	End seek			1			CHECK							
		File	Data	Data										1		Į			Ca
	1	line	separator	separator	Seek	Seek	1		}										
		drivers			check	check											l		
		Coindle O			lload	Unort]										1	1
		Spindle 0 and 1			Head trigger	Head trigger													1
		ready							i										[
																		1	
		Drawer																	1
		release								l									1
		Drawer]		For ECU wi	th high speed											[
		release			access only;				l	l.							ļ		
		light			counter Aux														
						ł	1						ł	· ·					Ca
		1													1	1			
	1									1					}				1
			1					1]	1					1				
									1	•									
		ALD pages	ALD pages		ALD pages	ALD pages		ALD pages	ALD pages	ALD pages	ALD pages	ALD pages	ALD pages	ALD pages	ALD pages	ALD pages	ALD pages		
		GD901	GD511		GD321	GD311		GD621	GD121	GD111	GD711	GD701	GD601	GD611	GD101	GD211	GD201		
		thru	thru	ALD page	thru	thru		thru	thru	thru	thru	thru	thru	thru	thru	thru	thru		
		GD902	GD512	GD521	GD327	GD317		GD626	GD125	GD117	GD713	GD7 0 6	GD606	GD615	GD104	GD216	GD204		
		Card type	Card type	Card type	Card type	Card type	1	Card type	Card type	Card type	Card type	Card type	Card type	Card type	Card type	Card type	Card type		ļ
	1	3362	0998	7874	Note 2	Note 2	1	3358	3350	3349	3361	3360	3355	3357	3348	3352	3359		1

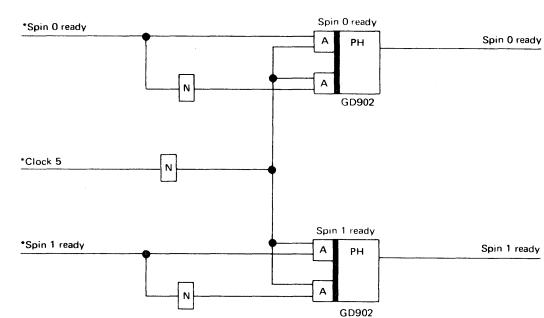

Note 1. Card F2 logic is identical to card G2 except for drive reference. Card F2 is not shown in the second level diagrams, refer to card G2 for drive 1 logic representation

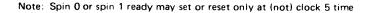
Note 2. Card type for FCU without high speed access is 3354, with high speed access card type is 6884

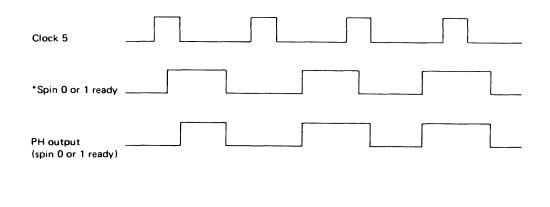

(card side)

5410 Disk attachment board location is 01A-A2 5406 Disk attachment board location is 01A-A1






DISK ATTACHMENT-Functional Units Cards C2 and C3



.

*Interface line page 8-205

GD901 thru GD911

Α

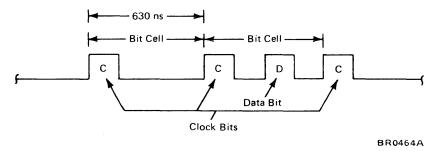
►

В

CARDS D3, D4, AND E4

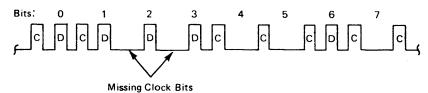
Cards D3, D4, and E4 are shown on one diagram and contain the following logic:

- File control unit oscillator (card D3) 1.
- Data separator (cards D4 and E4) 2.


The file control unit oscillator produces a 3.177 MHz square-wave signal which is gated into the file control unit clock with 'clock gate'.

Raw data received from the drive consists of clock bits, data bits, and address marks. The function of the data separator is to separate the three signals into different outputs: separated clock, separated data, and address mark bits.

The data separator must be stabilized before it can function properly. This is accomplished by reading at least 10 bytes of FF followed by at least 7 bytes of 00, which explains the purpose of the sector gaps before each address mark in the track format.


After the data separator is stabilized on clock bits by reading zeros, it directs each clock bit detected to the separated clock output. The separated clock output drives the file control unit clock during a read operation.

The space between two clock pulses is called a bit cell. Data bits are recorded after a clock bit. Therefore a bit detected after a clock bit is recognized as a data bit and is directed to the separated data output.

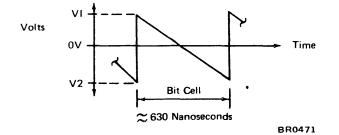
Separated data pulses are processed by the file control unit standard-read and compare-read triggers. As a result, the compare-read data signal is one bit cell in length and one bit cell later in relation to when the data bit was read.

Each sector begins with an address mark (AM), a unique pattern encoded on the disk which cannot be found in a data pattern. Within the limitations of double frequency recording, the only possibility is the omission of clock bits. Two bytes of F2, with clock bits missing, are written for address marks.

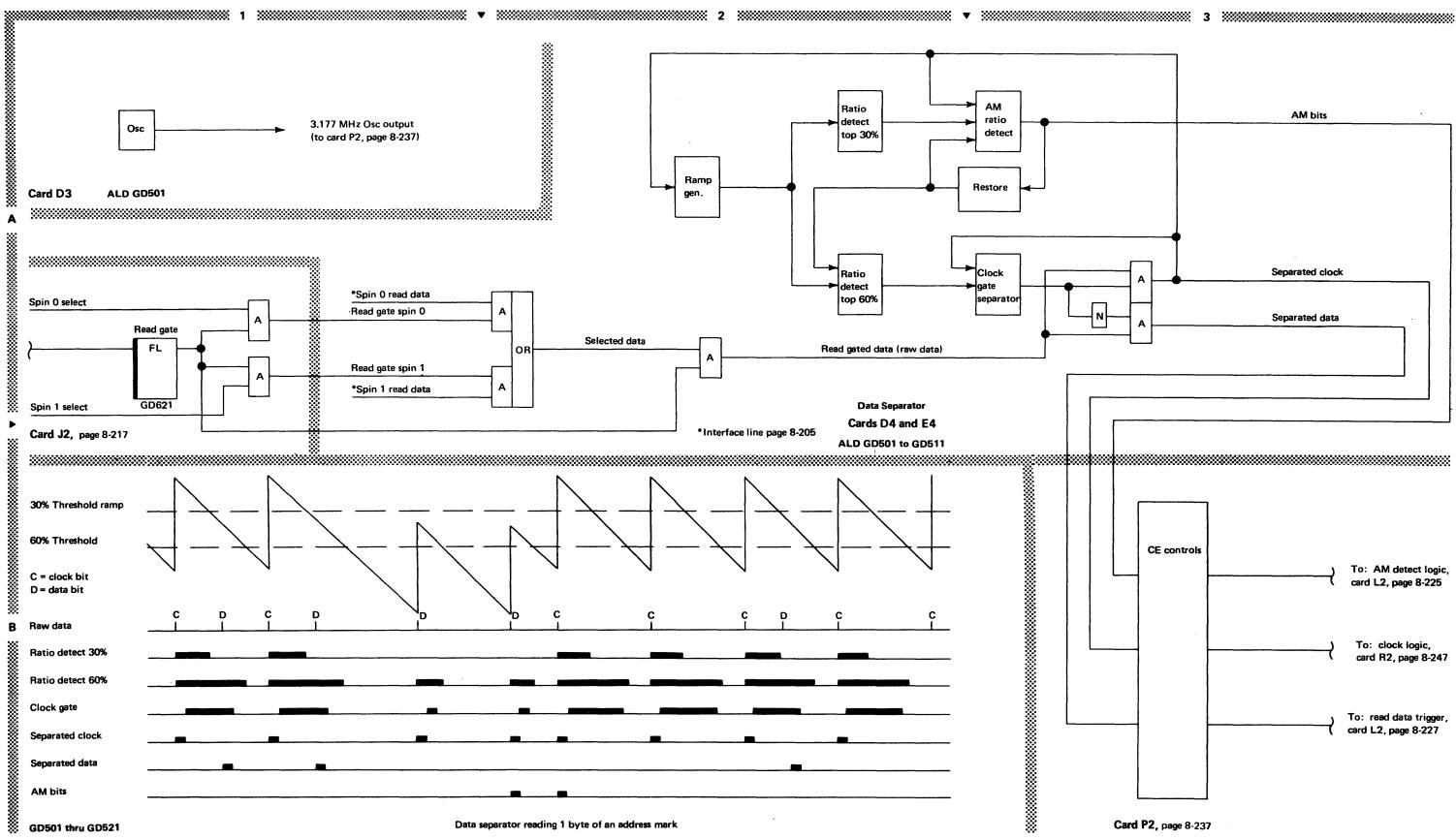
BR0465

The data separator can detect the missing clock bits and direct this indication to a separate output, address mark bits. Address mark bits are processed by the address mark detect logic on card L2-1, to check if the address mark bits are in proper relation to the rest of the file control unit timing circuits.

These checks are:


- 1. That there was compare data during bit ring 0, 1, and 6 time. If not, there may have been missing bits in the address mark.
- That address mark indicate was not active during bit ring 0, 1, 4, 5, 2 6, or 7 time. If address mark indicate is detected during this time, a false address mark detect or an address mark was detected at the incorrect time.
- 3. That compare read was not up at bit ring 2, 3, 4, 5, or 7 time. This indicates that bits were read when they should not have been.
- That address mark indicate was active at bit ring 2 and 3 time. 4.

All operations, except read data diagnostic, check for all four of the above requirements for address mark detection. Read data diagnostic reduces the requirements by eliminating check conditions 1, 2, and 3. If any of the check conditions are detected during an operation (check 4 for read data diagnostic), start address mark search FL is reset to prevent generation of the address mark detect signal.


Data Separator Adjustment:

Note. Board locations differ with CPUs. XX refers to board A-A2 in the 5410, to A-A1 in the 5406.

- 1 1. Remove card in location A-XXJ2 to select 'read gate spin 0' and 'read gate' for data separator A card.
- 2. Disable '+spin 0 read data' and '+spin 1 read data' inputs to data separator A, with jumpers to -4 volts (D4G13 to D4B06) and (D4J13 to D4G06).
- 3. Disable 'ratio circuit 2' output on data separator A with jumper to logic ground (D4B07 to D4D08).
- Jumper '3.177 MHz osc output' signal on oscillator card (D3D07) 4. into data separator A card (D4G03).
- Observe 'ramp' waveform on data separator B output (E4G02). 5.
- 6. Adjust potentiometer on data separator B card (A-XXE4) until 'ramp' waveform is swinging equally about logic ground with a ± 100 millivolt tolerance. V1 should equal V2 within ± 100 mV.

1 \sim 3

CARD E2

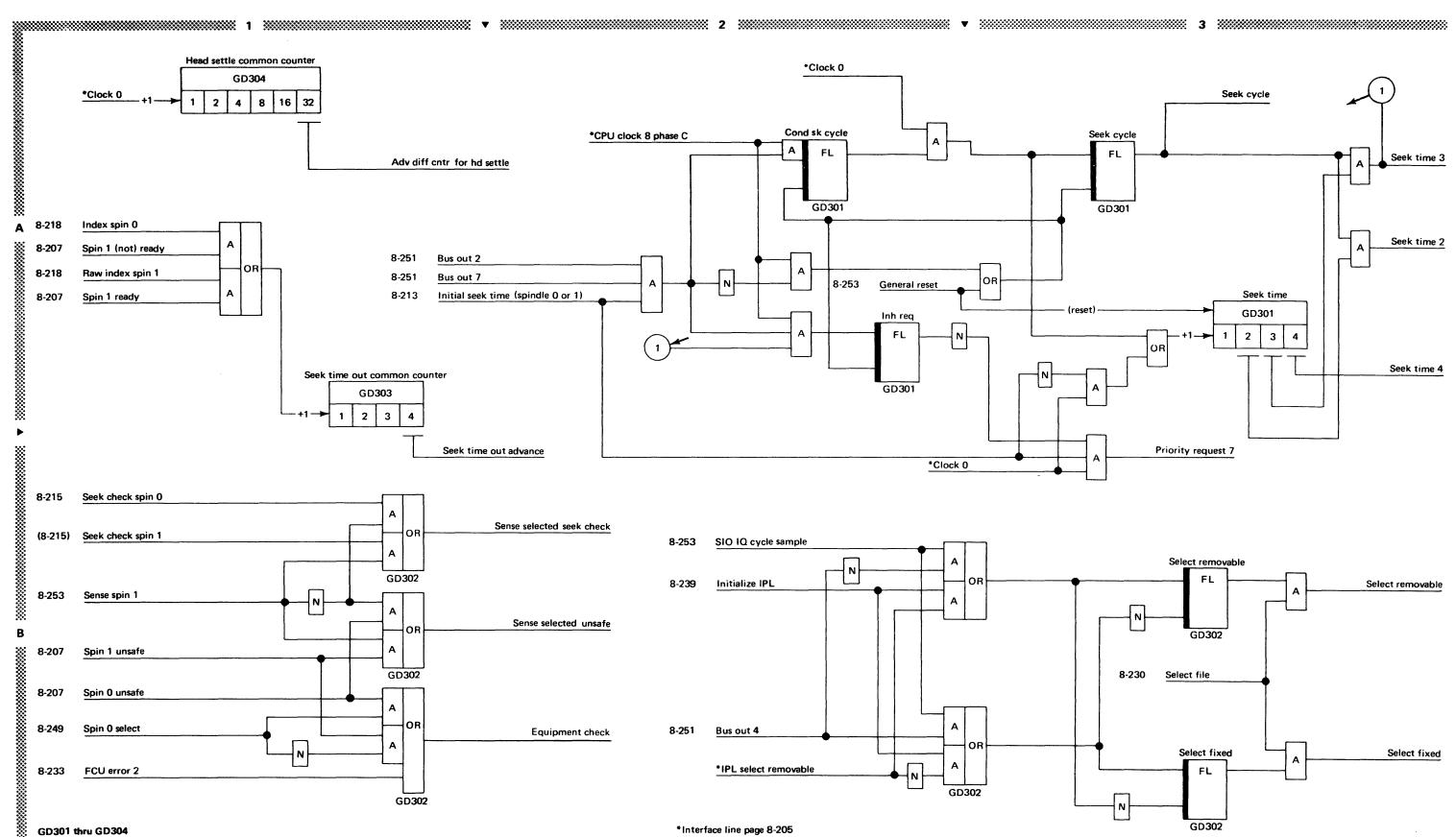
Card E2 is shown on one diagram and contains seek controls that are common to the individual drive seek controls shown on card G2. The following logic is shown:

- 1. Head settle common counter
- 2. Seek-time-out common counter
- Priority request 7 3. (seek cycle-steal request)
- 4. Fixed-removable disk selection
- 5. Sense signals for device status

The head settle common counter is advanced by clock 0 from the CPU and steps continuously. The counter's output is gated to the selected drive difference counter during head settle time, to develop a 27.6 to 28.3 ms time delay. This time delay prevents another start I/O instruction operation from starting until the access mechanism motion has stopped, following a seek operation.

The seek time-out common counter is advanced by raw index pulses from spindle 0 if spindle 1 is not ready, or from spindle 1 if spindle 1 is ready. This counter's output is gated to the selected drive's seek-time-out counter when 'go' for the selected drive is active. The purpose of this counter is to develop a 1 to 2 second time base which is used to set a seek check if a seek operation has not ended within this time.

Priority request 7 is the seek instruction cycle steal request (CSR). Four CSRs are made during a seek operation to bring control information in the disk control field to the file control unit. Each cycle steal request modifies the disk file control register address plus one (see logic on Q2-2) to address each successive byte in the disk control field. Only information in the S and N bytes is used in seek control.


A cycle steal request is made by the file control unit until it is honored by the CPU. The CPU indicates that it is honoring the request by returning bus out lines 2 and 7 active at clock 8 time. This sets the condition seek cycle latch in the file control unit and prepares the logic in the file control unit to accept the information on the data bus out in the next cycle. Each cycle steal request honored advances the seek time counter plus one and keeps track of which cycle steal request the file control unit has made. The seek time counter gates the file control unit logic to direct the S and N byte information into the head trigger and difference counter logic.

The inhibit request latch is set after the fourth seek cycle steal request is made to halt any further cycle steal requests.

Fixed-removable disk selection gates the control logic in the 5444 drive to select either the upper or lower disk. For a start I/O instruction, the selection is indicated with a bus out 4 condition during an initial program load. The program load selector switch on the operator console determines the selection.

Sense signals for device status seek check (byte 0, bit 7), unsafe (byte 2, bit 0), and equipment check (byte 3, bit 0) are generated on this card. These signals are gated to the data bus in during a sense instruction.

 \mathbf{v}

DISK ATTACHMENT-Functional Units

Card E2 (Part 2 of 2)

CARD G2

Card G2 is shown on 4 pages and contains seek control and 5444 drive head selection logic for disk drive 0. Drive 1 seek controls on card F2 are not shown, but card F2 has logic identical to that of card G2 except that the drive references are to drive 1. For some cards shown on other pages, references are made to drive 1 seek controls. These references are shown in parentheses and refer to card G2. (8-213) refers to drive 1.

Card G2 (and F2) can be one of two types, depending if the FCU is to attach standard or high speed drives.

Cards G2 (and F2) in FCUs to attach the high speed drives contain a go slow counter. The basic logic and operation, however, remain the same as the standard speed FCU. Because the logic was repackaged for high speed access, the second level diagrams reference two locations in the ALDs where the various logic can be found. References to high speed access (HSA) ALDs will have a (HSA) suffix.

The following logic is shown on card G2:

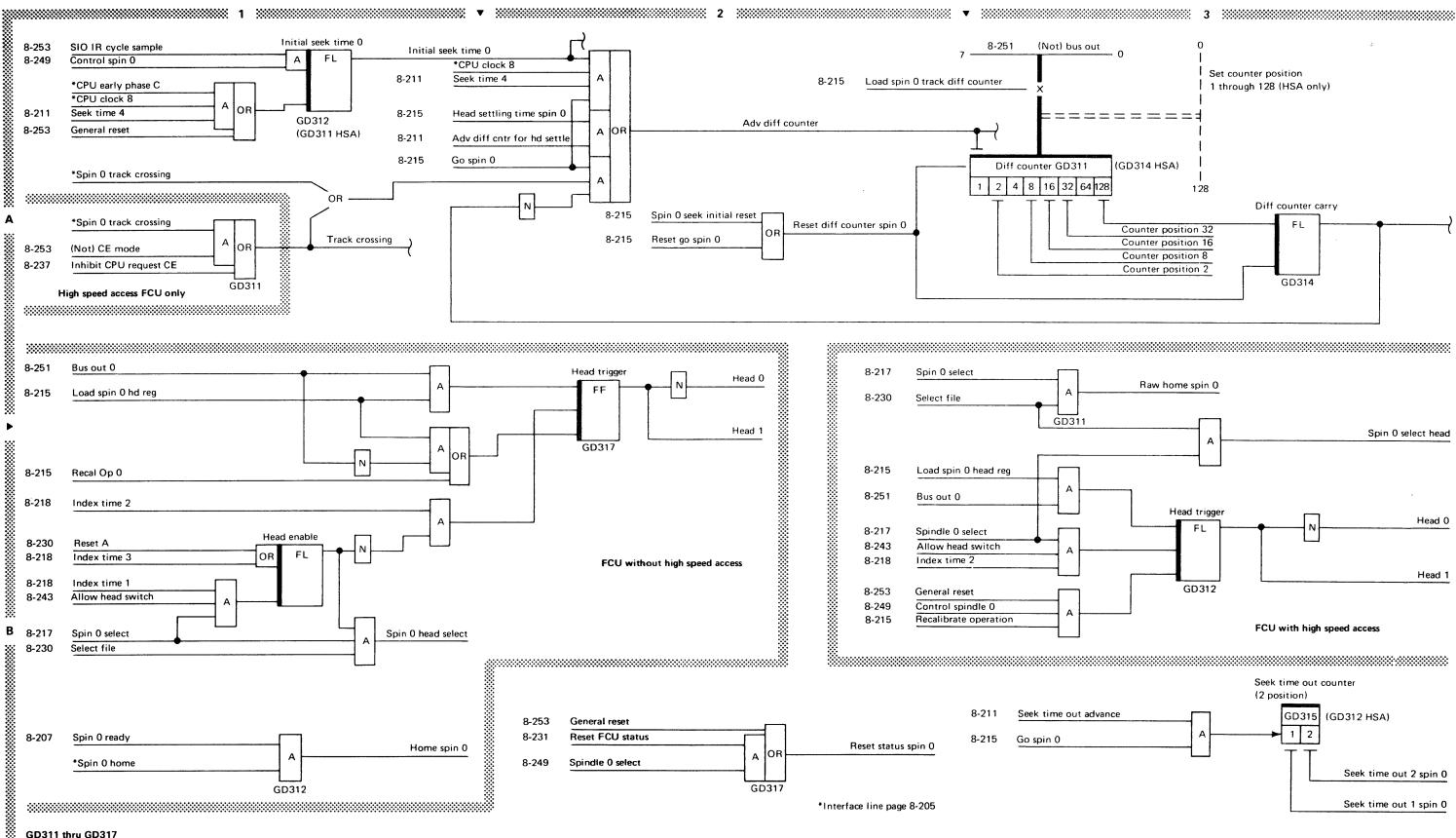
- 1. Difference counter
- 2. Seek time-out counter
- 3. Initial seek time
- 4. Head trigger
- 5. Forward-reverse
- 6. Recalibrate operation
- 7. Seek check
- 8. Go
- 9. Head settling latch
- 10. For FCUs with high speed access, the go slow counter.

The difference counter indicates the number of cylinders to move in a seek operation. This counter is used in conjunction with the head settle counter to develop the head settle time delay. During a seek operation, at seek time 4 when the N byte information is on the data bus out, the binary complement is set with the counter by (not) data bus out conditions. For example, N=7 would set the difference counter to a value of 248. Track crossing pulses from the drive advance the counter until it carries, which indicates that the desired count was reached. (The counter receives one advance pulse at the start of its operation so that the count is correct.) During head settle time, the counter is advanced with the head settle counter. (See card E2.)

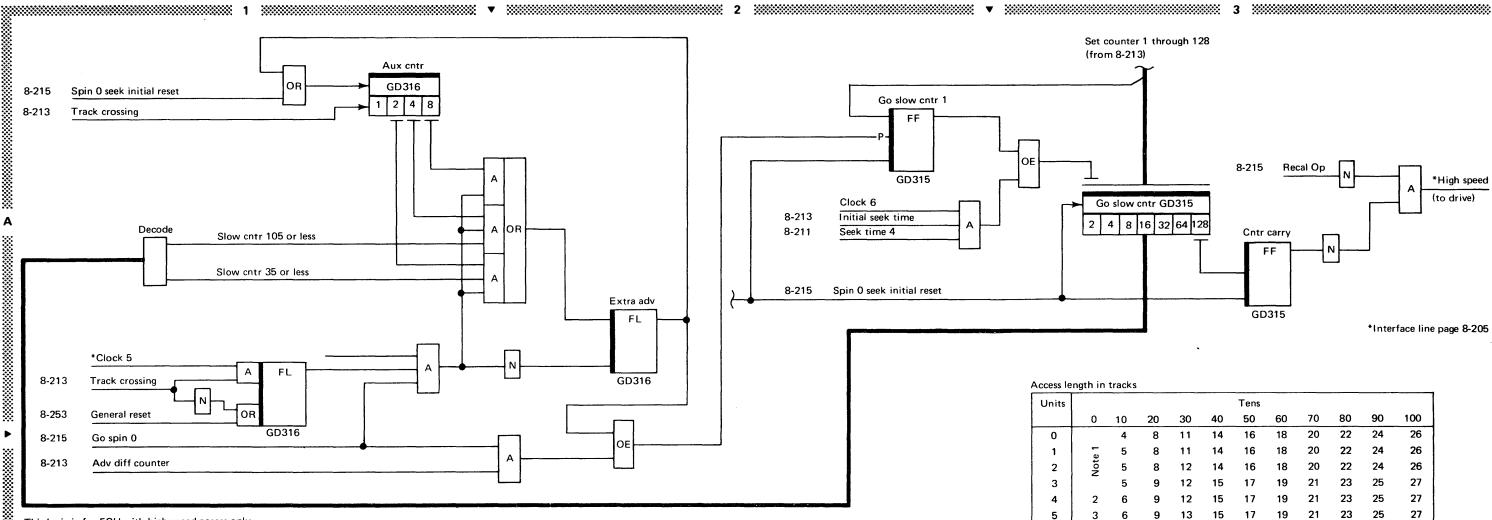
The seek time-out counter is a two-position counter to aid in the 1 to 2 second time base for a seek check condition. (See card E2 and error conditions on card M2 for seek check conditions.)

Initial seek time indicates the start of a seek operation at start I/O instruction I-R cycle time and is reset at the end of seek 4 time, the last of the file control unit seek cycle steal requests.

The head trigger is set with bus out 0 during a seek operation when the seek counter is at 3. The S-byte information is on the data bus out at this time. In a recalibrate operation, the head trigger is set to 0. If the allowhead-switch latch is set, the head-enable latch prevents a head selection until index 2 time.


The forward-reverse latch determines in which direction the drive access mechanism will travel in a seek operation. The latch is set with a bus out 7 condition when the S-byte information is on the data bus out.

When the file control unit is to perform a seek-recalibrate operation, the recalibrate operation latch is set. A reverse seek instruction and a bus out with a value greater than 223 at seek 4 time (N byte) indicate that the latch is to be set.


Seek check is set when one of five error conditions is sensed during a seek operation. (See error conditions on card M2 for these error descriptions.)

Go is the signal to start the mechanical motion in the drive for the seek operation. A signal to the drive to stop the access motion results when this latch is reset.

Setting the head settling latch starts the head settling time out, and gates the file control unit logic to generate the 27.6 to 28.3 ms time base for the delay.

GD311 thru GD317

This logic is for FCU with high speed access only.

High Speed Access

В

The 5444 drive access operates at high speed under control of the high speed interface line. When the interface line is active, the drive will access at high speed, deactivating the line causes the drive to access at slow (normal) speed.

A go slow counter, located in the FCU, monitors the drive carriage relative to the desired track. Depending on the length of the seek, the FCU will deactivate the high speed interface line at various number of tracks before the end of the seek operation as shown in the chart.

The diagram on this page shows the high speed interface line control logic, and is the only additional circuitry added to the normal speed FCU.

Go Slow Counter

The go slow counter controls the high speed interface line. Note that the high speed interface line is active at the start of a seek operation and remains active until the go slow counter carries. The high speed interface line is not active during a seek recalibrate operation.

At the start of a seek operation, the go slow counter is set to the same value as the difference counter. Then before the access mechanism starts to move, the go slow counter is advanced by a count of three. (Two counts by direct input to the 2-bit trigger and one count by the 'adv. diff counter' signal as described on page 8-212.)

After the initial advance of three counts, the go slow counter is advanced by 'adv diff counter' signals and extra advance pulses as gated by the auxiliary counter.

Auxiliary Counter

This counter, and a decode network, develop the extra advance pulses to the go slow counter to achieve the deactivation of the high speed interface line as shown in the chart. The auxiliary counter is advanced by track crossing pulses received from the drive, and its count is reset with each extra advance pulse to the go slow counter.

line is deactivated.

6

7

8

9

Units

0

1

2

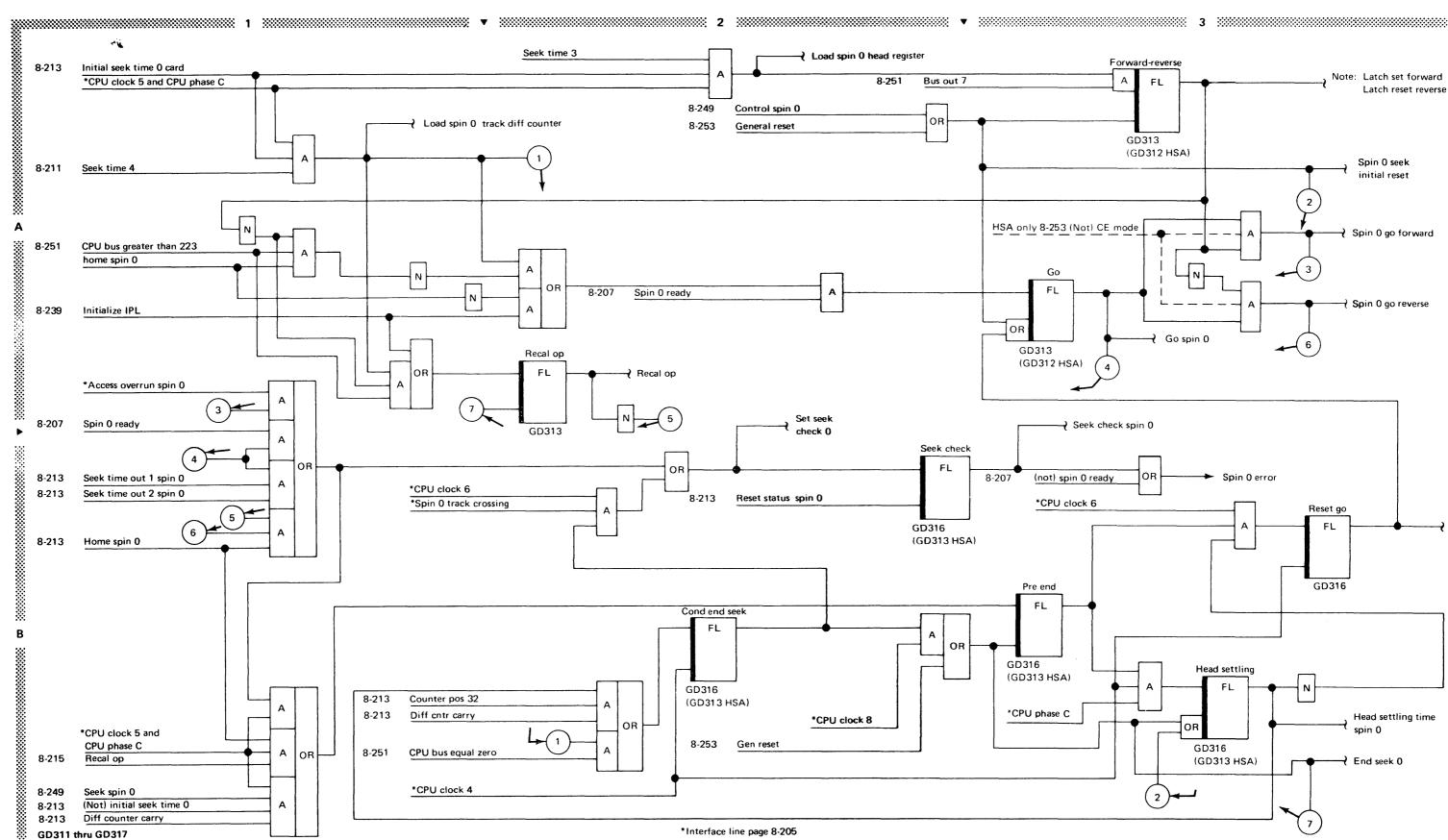
3

4

5

6

7


8

9

9										
					Tens					
0	10	20	30	40	50	60	70	80	90	100
	4	8	11	14	16	18	20	22	24	26
e 1	5	8	11	14	16	18	20	22	24	26
Note	5	8	12	14	16	18	20	22	24	26
-	5	9	12	15	17	19	21	23	25	27
2	6	9	12	15	17	19	21	23	25	27
3	6	9	13	15	17	19	21	23	25	27
3	6	10	13	15	17	19	21	23	25	27
3	7	10	13	15	17	19	21	23	25	27
4	7	10	14	16	18	20	22	24	26	28
4	7	11	14	16	18	20	22	24	26	28
*****		******	*****		******					*****
Tens										
110	120	130	140	150	160	170	180	190	200	
28	29	30	31	32	33	34	36	37	38	
28	29	30	31	32	33	35	36	37	38	
28	29	30	31	32	34	35	36	37	38	
28	29	30	31	33	34	35	36	37	38	
28	29	30	32	33	34	35	36	37	38	
28	29	31	32	33	34	35	36	37		
28							~~	~ 7		
29	30	31	32	33	34	35	36	37		
25	30 30	31 31	32 32	33 33	34 34	35 35	36 36	37 37		
29										
	30	31	32	33	34	35	36	37		

Number of tracks, before the desired track, that the high speed interface

Note 1. High speed is not active for seek lengths of 3 tracks or less.

CARD J2

Card J2 is shown on three pages and contains the following logic:

- 1. Read gate
- 2. Clock gate
- 3. Index
 - a. Index reset
 - b. Index passed
- 4. Execute
- 5. End write identifier area operation
- 6. N carry latch
- Write gate 7.
- 8. Erase gate
- 9. Write gate equipment check
- 10. Write data to spindles 0 and 1
- 11. Set fixed-write data

Read gate conditions the read heads in the drive and the logic in the file control unit to read data from the disk.

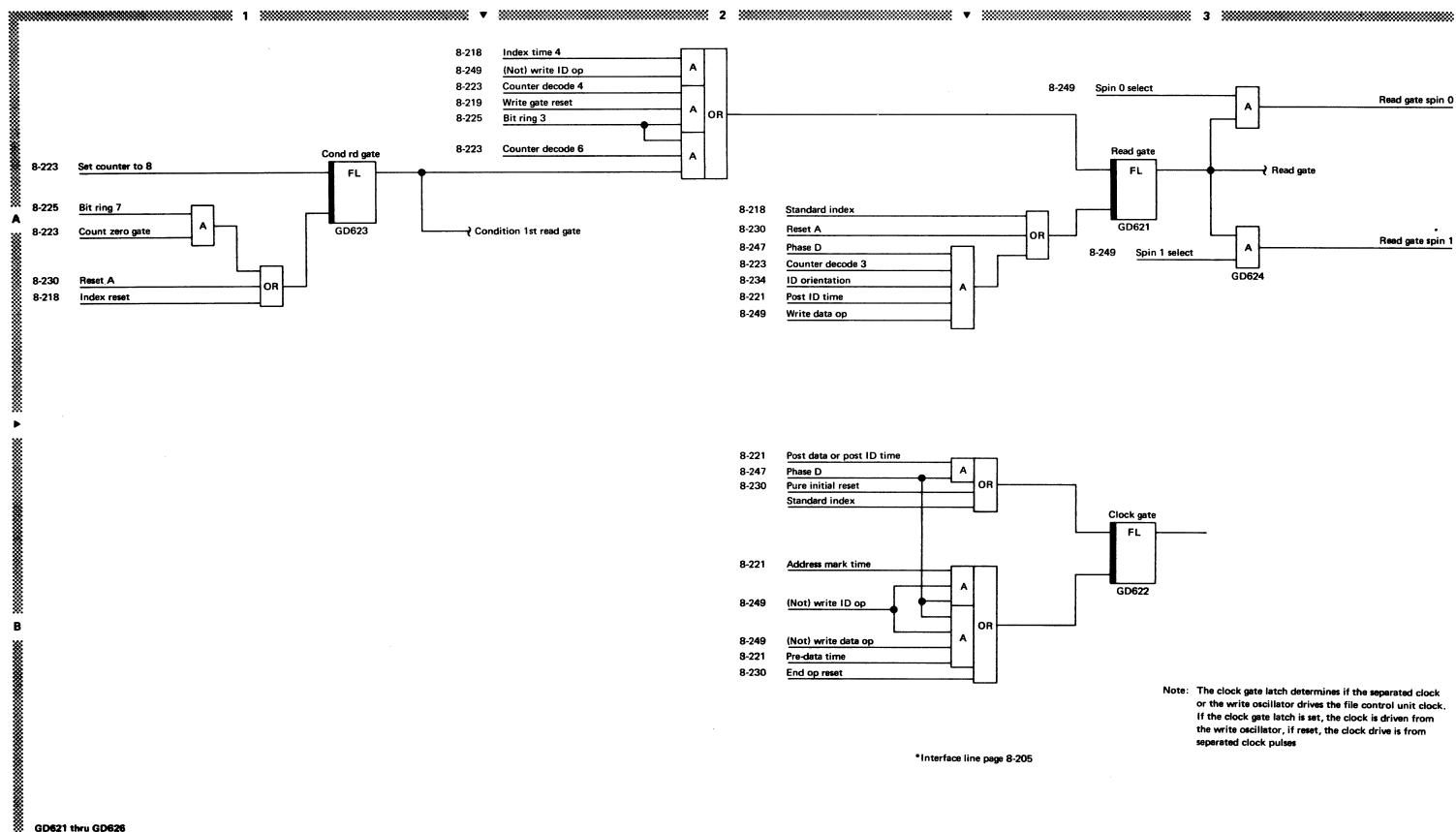
Clock gate selects either the 3.177 MHz oscillator or the separated clock signals from the data separator to drive the file control unit clock.

Index logic processes the raw index pulse from the drives and synchronizes it with the file control unit clock and bit ring signals. Index reset and index passed indicate when an index has passed twice in an operation. They are used to set error status under some conditions; for example, no record found.

Execute is set as a result of a 'start op' pulse whenever index is not active. Execute is an indication to the file control unit to start an operation.

Activating an end write identifier area operation terminates a write identifier area operation.

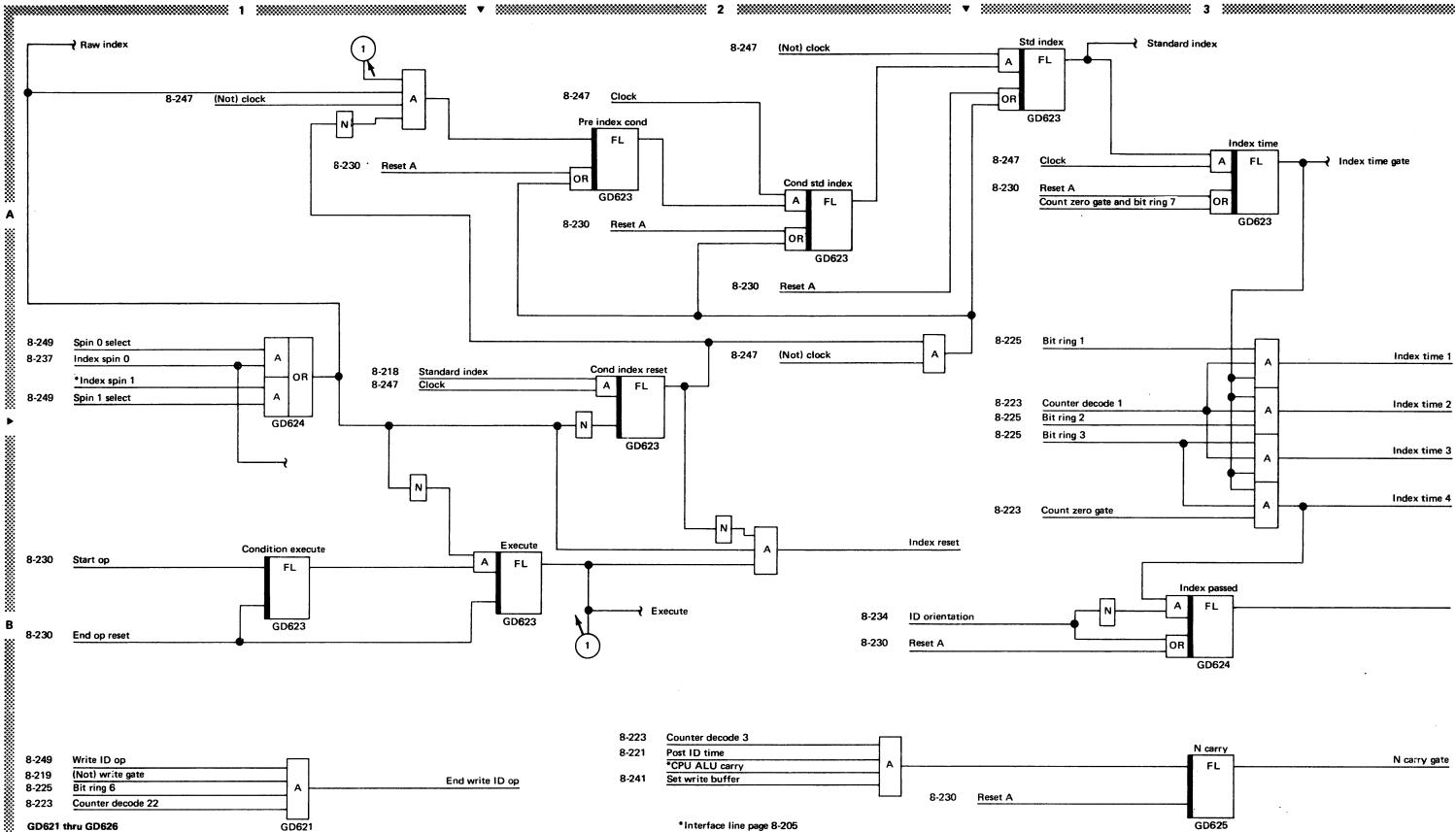
The N carry latch is set when the N field in the disk control field (in core storage) has decremented the number of sectors as specified at the start of an operation. This latch gates the reset logic on card M2-1 to end an operation in progress.

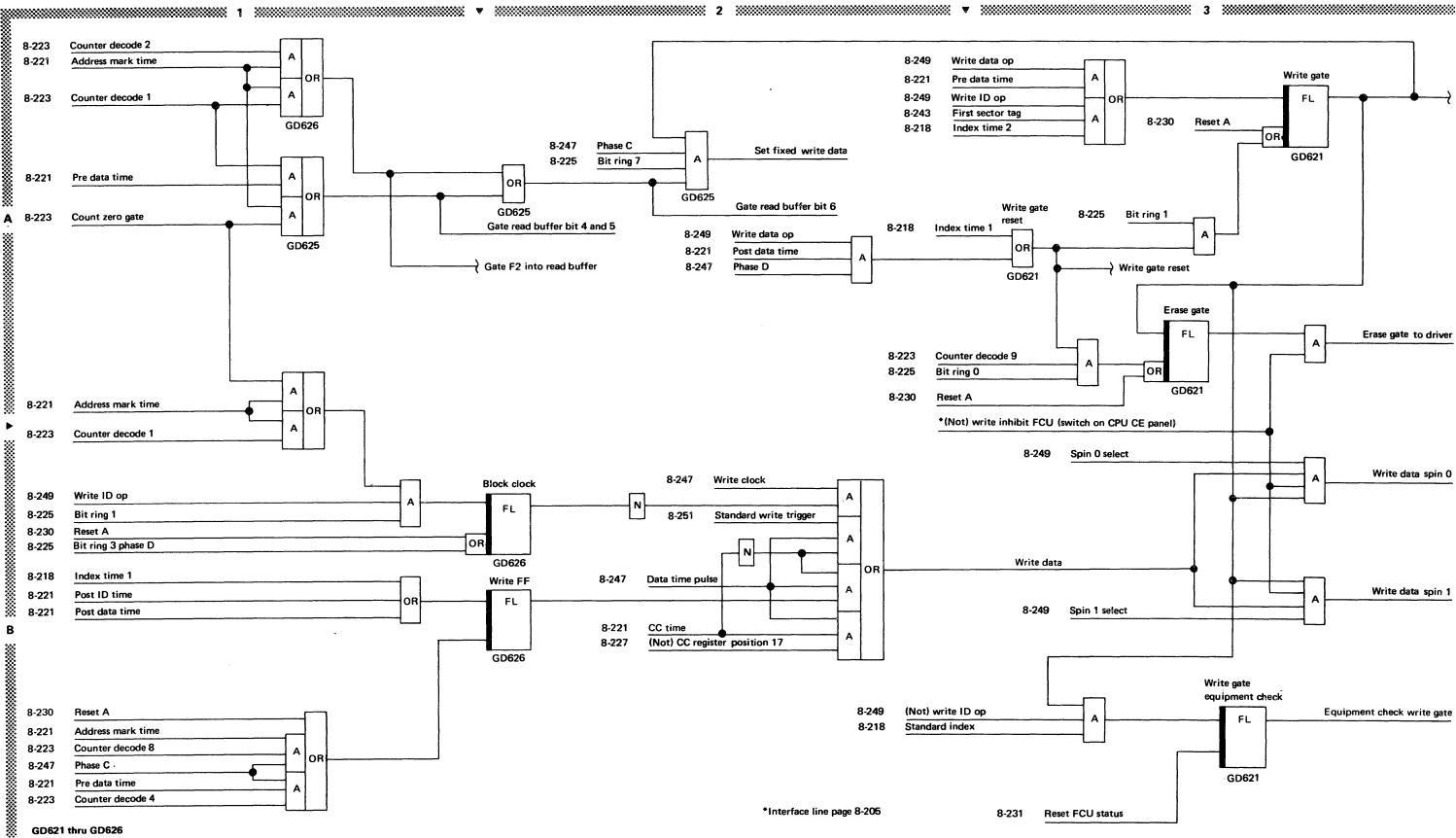

Write gate and erase gate condition the read-write heads in the drive to write information on the disk.

Write gate equipment check is an error indication and is active when write gate is active, index is sensed, and the file control unit is not in a write identifier area operation.

Write data to spindles 0 and 1 is the file control unit "outlet" for data to the drives. This is where data and the write clock signals are combined. Write FF conditions this logic to write all ones on the disk for sector gaps. Block clock is active only during a write identifier area operation and is responsible for the missing clock pulses in the address mark.

Set fixed-write data generates constants F2 and 0E, the address mark and sync byte characters. During a write operation, these characters are gated into the read buffer to be serialized and written on disk.


 \bullet


GD621 thru GD626

DISK ATTACHMENT-Functional Units Card J2 (Part 2 of 4)

DISK ATTACHMENT-Functional Units Card J2 (Part 3 of 4)

GD625

DISK ATTACHMENT-Functional Units Card J2 (Part 4 of 4)

CARD K2

Card K2 is shown on two pages and contains the following logic:

- Cycle control ring, page 8-221 1.
- 2. Control counter, page 8-223

Cycle Control Ring (CCR)

The cycle control ring provides gating signals that correspond to the sector fields on disk. There are nine conditions or times in the cycle control ring cycle:

- 1. Address mark (AM)
- Preidentifier-gap 2 (pre ID) 2.
- Identifier (ID) 3.
- 4. Identifier cyclic code and bit count appendage characters (ID CC)
- 5. Postidentifier—part of gap 3 (post ID)
- Predata-part of gap 3 6.
- 7. Data
- Data cyclic code and bit count appendage characters (data CC) 8.
- 9. Postdata-gap 4

The cycle control ring starts in address mark time and will cycle through conditions 1 through 5 in the order listed above. The cycle control ring may continue with conditions 6 through 9 or return to address mark time after condition 5, depending on the file control unit operation.

Each sector starts with an address mark. If the cycle control ring is started (synchronized) when an address mark is detected (or is to be written). and advanced at the end of each field, the cycle control ring can signal what field is presently in operation and determine what will be the next field.

When searching for a specific address in a cylinder, the cycle control ring cycles address mark through post ID time. During this time the file control unit will compare the sector address on disk with the address in the disk control field (in core storage). If a correct compare was made (ID orientation), the cycle control ring may end the operation or continue on with predata through postdata time. If a correct compare was not made, the cycle control ring returns to address mark time and compares the next sector address with the disk control field. The functional objective of the file control unit operation (op-code) determines how the cycle control ring cycles. The end of sector fields is indicated by:

- 1. 'Address mark' or 'sync byte detect' ANDed with 'clock'.
- 2. 'CCR advance gate' ANDed with 'clock'.

- 'Post ID time', '(not) write ID operation', '(not) IPL operation', 1. and '(not) ID orientation'
- 2
- 3.

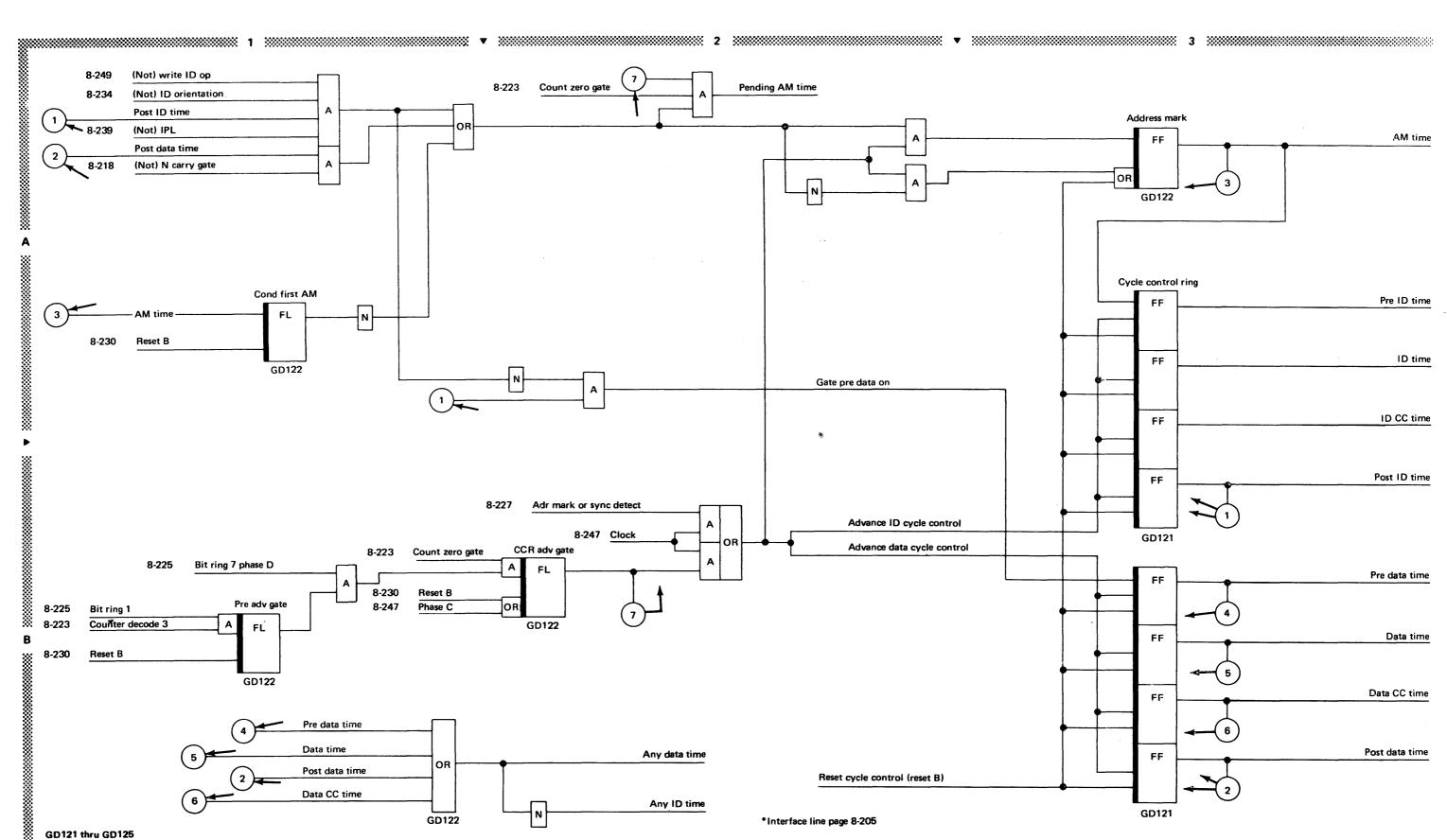
and write identifier instructions.

'CCR advance gate' is set when' preadvance gate', 'bit ring 7 time', 'phase D', and 'count zero gate' are active. 'Preadvance gate' is set at the beginning of an operation when the control counter decode is 3 and at bit ring 1 time. The 'preadvance' latch remains set until the end of an operation.

	AM Time		Pre ID		ID		ID CC		Post ID		Pre Data		Data		Data CC		Post Data
Read or scan Ops	FCU searches for zeros detect and then two bytes of 'F2' with clock bits missing (address marks).	2	Request a cycle steal for the 'F' byte from the disk control field (DCF).	1	Continue to cycle steal C and S information out of the disk control field (DCF). Compare DCF FCS with FCS read from disk ID field. Regener- ate CC and BCA characters.	3	Compare regenerated CC and BCA characters with those written on disk.	3	Activate ID orientation if ID field and CC and BCA characters compare correctly. Subtract 3 from DFCR address. Set 'N carry latch' if N field (in DCF) equal 'FF'.	3	FCU sets up to read 256 bytes of data.	1	Read 256 data bytes. Cycle steal to transfer data bytes to CPU. Re- generate CC and BCA characters.	3	Compare regenerated data, CC and BCA characters with those recorded on disk.	3	If multi-sector opera- tion, prepare to return to AM time. If last sec- tor, end operation after post data time.
Write Data Op	Same as read data operation.	2	Same as read data operation.	1	Same as read data operation.	3	Same as read data operation.	3	Same as read data operation.		Write gate active. Write 4 bytes of ones, 4 bytes of zeros, and 1 sync byte OE. Cycle steal first data byte from data field.	3	Write 256 data bytes. Cycle steal each char- acter from the data field. Generate CC and BCA characters.	3	Write data, CC, and BCA characters on disk.	3	If multi-sector opera- tion, prepare to go back into AM time. If last sector of operation, end cycle after post data.
Write ID Op	Write 13 bytes of ones, 7 bytes of zeros and 2 bytes of 'F2' with miss- ing clock bits (address marks).	3	Write sync byte '0E' cycle steal 'F' byte from DCF. (gap 2)	3	Cycle steal C and S in- formation from disk control field and write the bytes on disk. Gen- erate CC and BCA char- acters.	3	Write CC and BCA char- acters on disk that were generated from ID data.	3	Start writing 10 bytes of ones. (gap 3)		Finish writing the 10 bytes of ones. Write 4 bytes of zeros and one sync byte OE. Cycle steal first data byte from data field (gap 3).	3	Write the same data character 256 times. Generate CC and BCA characters cycle steal each data byte from the data field.	3	Write CC and BCA characters on disk generated from data bytes.	3	Write 15 bytes of ones. If last sector, write ones until index (gap 4 and gap 5 respectively).

Note: The number in this column indicates the condition that advances

the CCR into the next time. These conditions are:


1. 'Sync byte (0E) detect' ANDed with 'clock'.

2. 'Address mark detect' ANDed with 'clock'.

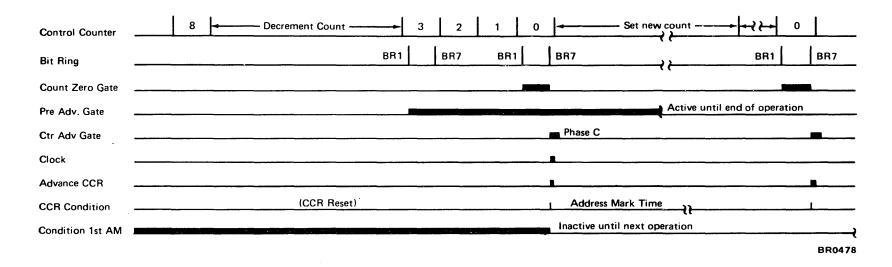
3. 'Counter advance gate' ANDed with 'clock'.

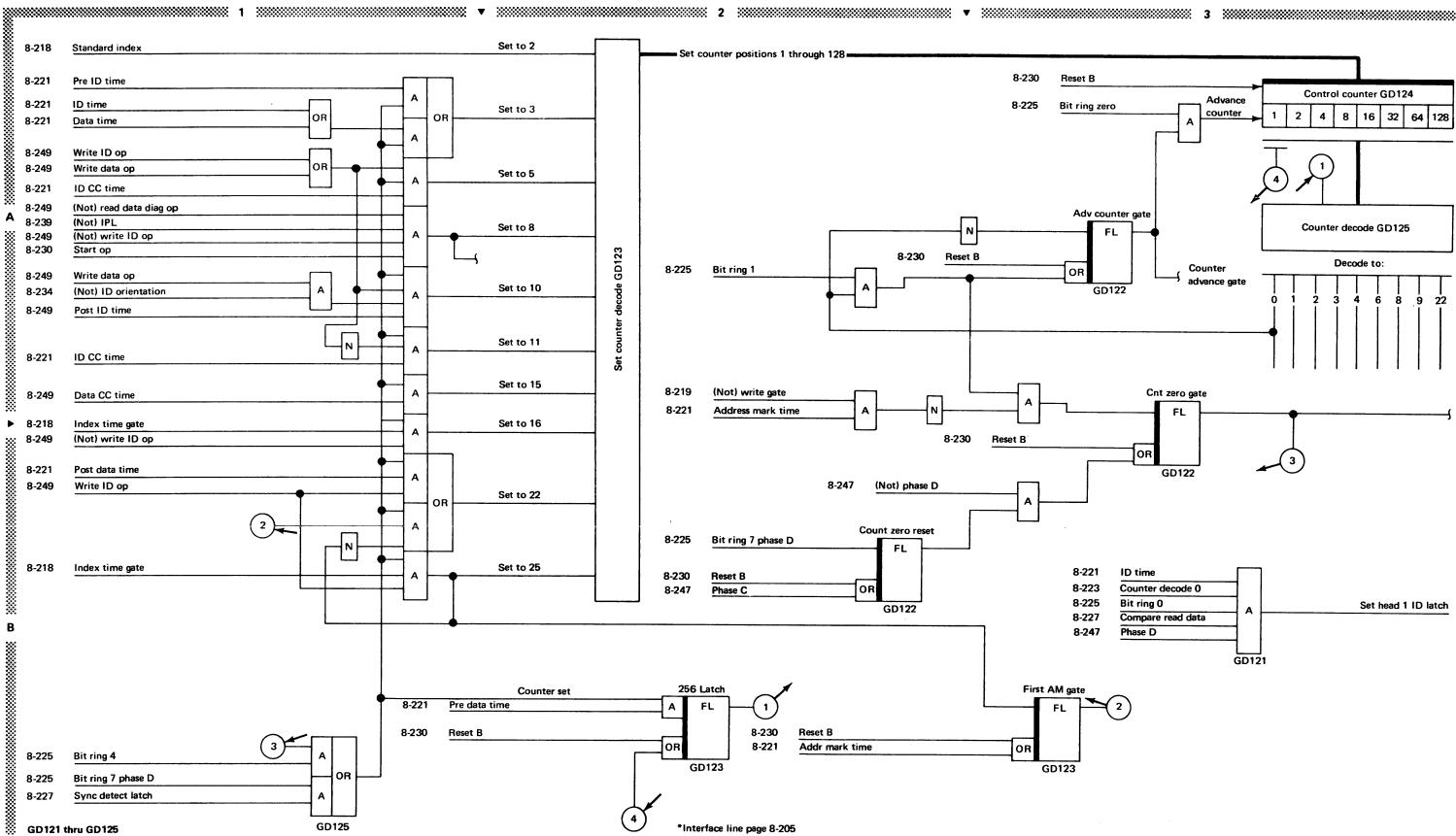
Α ► B

- Gate logic determines if the cycle control ring is to continue into predata time after post ID time or return to address mark time after postdata, and to set address mark time at the start of an operation. These gates are:
 - 'Post data time' and '(not) N carry gate' 'Condition first AM'
- The chart on this page shows the cycle control ring cycles and brief descriptions of the operations performed in each for read data or scan, write data,
- The control counter is described briefly on page 8-222.

DISK ATTACHMENT-Functional Units Card K2 (Part 2 of 4)

Control Counter


Individual field operations within the file control unit are definite in length. For example, the identifier area field is always six bytes in length. The control counter controls file control unit circuits within a field and signals the ends of fields. This counter can be set to predetermined values, then changed by one as each byte is processed. When the counter reaches zero an indication is given to the file control unit.


The control counter is an eight-position binary counter which increases in value with each advance pulse. Its maximum value (all positions on) is 255; 256 is considered zero (all positions off). A count of ten requires the counter to be preset to 246.

Predetermined values are set into the counter with decode logic which considers op-code commands, the field within the sector format that is to be operated on (zone), index pulse, and counter set. Zone lines and/or op-code lines select the circuit block that corresponds to the desired counter value. The 'counter-set' line activates the gate logic and decodes the selected block to turn on the necessary counter positions to produce the desired count. Bit ring 0 is ANDed with the advance-counter gate to provide the counter advance.

Resetting the bit ring leaves bit ring position 7 active. When 'bit ring inhibit' goes inactive, the next clock pulse steps the bit ring to 0. This action produces a redundant control-counter advance. The value preset into the counter is one more than the actual count needed to allow for this redundant advance.

Counter position outputs are fed into a decode network which interprets the counter condition into decimal values. File control unit logic uses these indications to prepare for the next sequential operation or to signal the end of an operation.

DISK ATTACHMENT-Functional Units Card K2 (Part 4 of 4)

CARD L2

Α

В

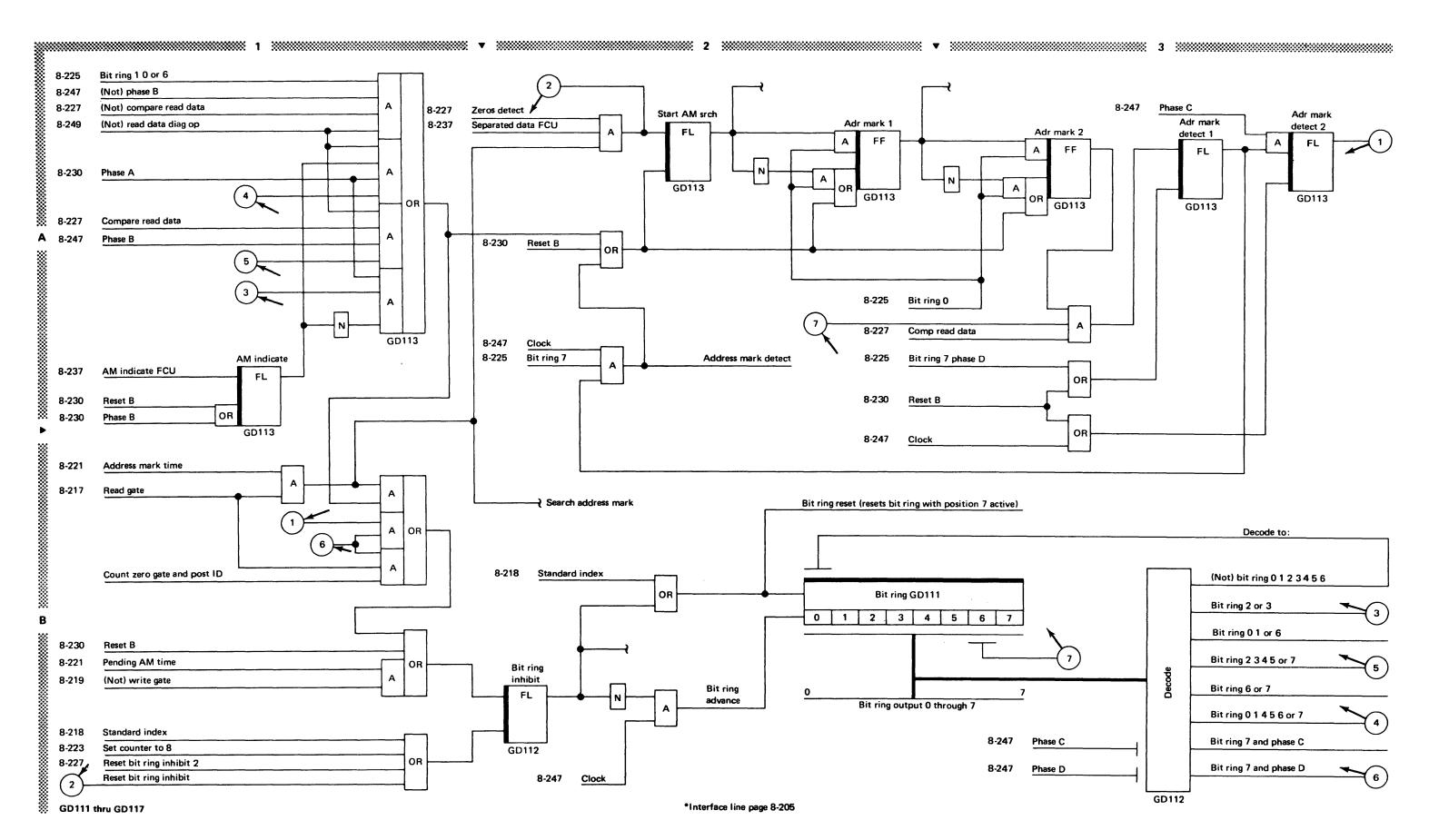
Card L2 is shown on two pages and contains the following logic:

- 1. Address mark detect
- Bit ring 2.
- 3. Cyclic code register
- Standard read data and compare read data triggers. 4.

Address Mark Detection

The address mark detect logic (page 8-225) processes the address mark bits from the data separator and checks for the following conditions:

- That there was compare data during bit ring 0, 1, and 6 time. If not, 1. there may have been missing bits in the address mark.
- That address mark indicate was not active during bit ring 0, 1, 4, 2. 5, 6, or 7 time. If address mark indicate is detected during this time, a false address mark detect or an address mark was detected at the incorrect time.
- 3. That compare read was not up at bit ring 2, 3, 4, 5, or 7 time. This indicates that bits were read when they should not have been.
- That address mark indicate was active at bit ring 2 and 3 time. 4.


All operations, except read data diagnostic, check for all four of the above requirements for address mark detection. Read data diagnostic reduces the requirements by eliminating check conditions 1, 2, and 3. If any of the check conditions are detected during an operation (check 4 for read data diagnostic), start address mark search FL is reset to prevent generation of the address mark detect signal. The address mark detect signal advances the cycle control ring from address mark time into pre ID time.

Bit Ring

The bit ring (page 8-225) provides the file control unit with timing for the sub byte level. Each of its eight outputs is active for the length of time of one bit cell and is named for the bits within a byte, zero through seven. The bit ring is advanced with clock pulses which are gated with the 'bit ring inhibit' line. 'Bit ring inhibit' is active when the bit ring must be held from stepping to synchronize with a data byte or at the start of an operation. Bit ring outputs are used throughout the file control unit to gate logic at the sub byte level; for example, to locate the flag bits 6 and 7 within the F byte. When reset, the 'bit ring 7' output is active and remains in this state until the 'bit ring inhibit' line is inactive.

	nals 1 through 15 shown on page 8-225			······			AM By	te 1 —				 -			<u></u>	AM By	/te 2 -					4	
1.	Raw Data	 _	<u></u>					L		.				L	<u> </u>								
2.	Separated Clock	-													<u>.</u>		a			L		_ <u>_</u>	
3.	Separated Data		R									<u> </u>		L								<u> </u>	
4.	AM Bits (from Data Separator)						<u></u>	L				<u> </u>										<u> </u>	
5.	Compare Trigger	<u> </u>	3			Kode with the	2			3		2	3	هم و او	6.4	2				3	1 - 49	2	
6.	Bit Ring	7	I	0	1	1	121	3	4	15	6	7		0	1	2	3	1 4		5	16	17	
7.	Start AM Search FL			i osti -			1	a tana bara	a de contra como como como como como como como com	rista alta e	م مروع دينو					. .	an an tar	*		A	a and		
8.	Zeros Detect			Phase	a							<u> </u>										·	
9.	Address Mark Indicate FL	<u> </u>	,				4	- a -25	Phase	e b		<u> </u>				4	A. 21.5.	Ph	ase b)			
10.	Address Mark 1			ميو الور	Sec.	(el second		in a stand	10	. o. 8 4	D	- 3 54 A 2	6				_						
11.	Address Mark 2												6	Ka		ese e ho		s. 45 x H	• ().	·			
12.	Bit Ring Inhibit																			Bit Ri	ng 7 Pł	l ase d	.
13.	Address Mark Detect 1					-									<u> </u>					Phase	b	3-2021-0 1	2
14.	Address Mark Detect 2																	Columb at Agentum Statements		Phase	С	4.6 D. A. H	Phase d
15.	Address Mark Detect																						
	Cycle Control Ring						AM: At	the be	ginning	of an op	eration,	the cy	cle con	trol ri	ng is se	t to Al	M time					_F	Pre ID

- 4. AM Bits
- 5. Compare
- 6. Bit Ring
- 7. Start AM
- 8. Zeros De
- 9. Address I
- 10. Address
- 11. Address I
- 12. Bit Ring
- 13. Address I
- 14. Address
- 15. Address I
- 16. Cycle Cor page 8-221

DISK ATTACHMENT-Functional Units Card L2 (Part 2 of 4)

Cyclic Code Register (CC Register)

The cyclic code register shown on page 8-227:

- 1. Generates the cyclic code characters
- 2. Deserializes the cyclic code character and the bit count appendage byte to be written on disk
- 3. Detects the sync byte 0E recorded in the field gaps ('sync byte' detect, used for controlling the cycle control ring)
- 4. Detects zeros recorded in the sector field gaps ('zeros detect', used in address mark detection)

Signals from the op-code register and cycle control ring determine which function the cyclic code register will perform. Input to the cyclic code register can be from:

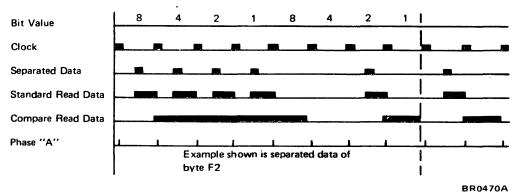
- 1. Position 128 of the read buffer on a write operation
- 2. The 'standard read' trigger on a read operation
- 3. The bit count appendage register. The eight bits of the bit count appendage register transfer in parallel into positions 9 through 16 of the cyclic code register

Cyclic code characters are generated from data bits during read data, write data, write identifier area, or verify commands. Data bits enter position one of the cyclic code register and are shifted toward position sixteen at the rise of phase A time. The first two data bytes enter the cyclic code register unchanged. The first bit of the third byte and each successive bit is exclusive ORed (OE) with the output from position sixteen before entering position one. Position one will assume the result of the OE. Cyclic code generation ends with the last data bit for the data field processed.

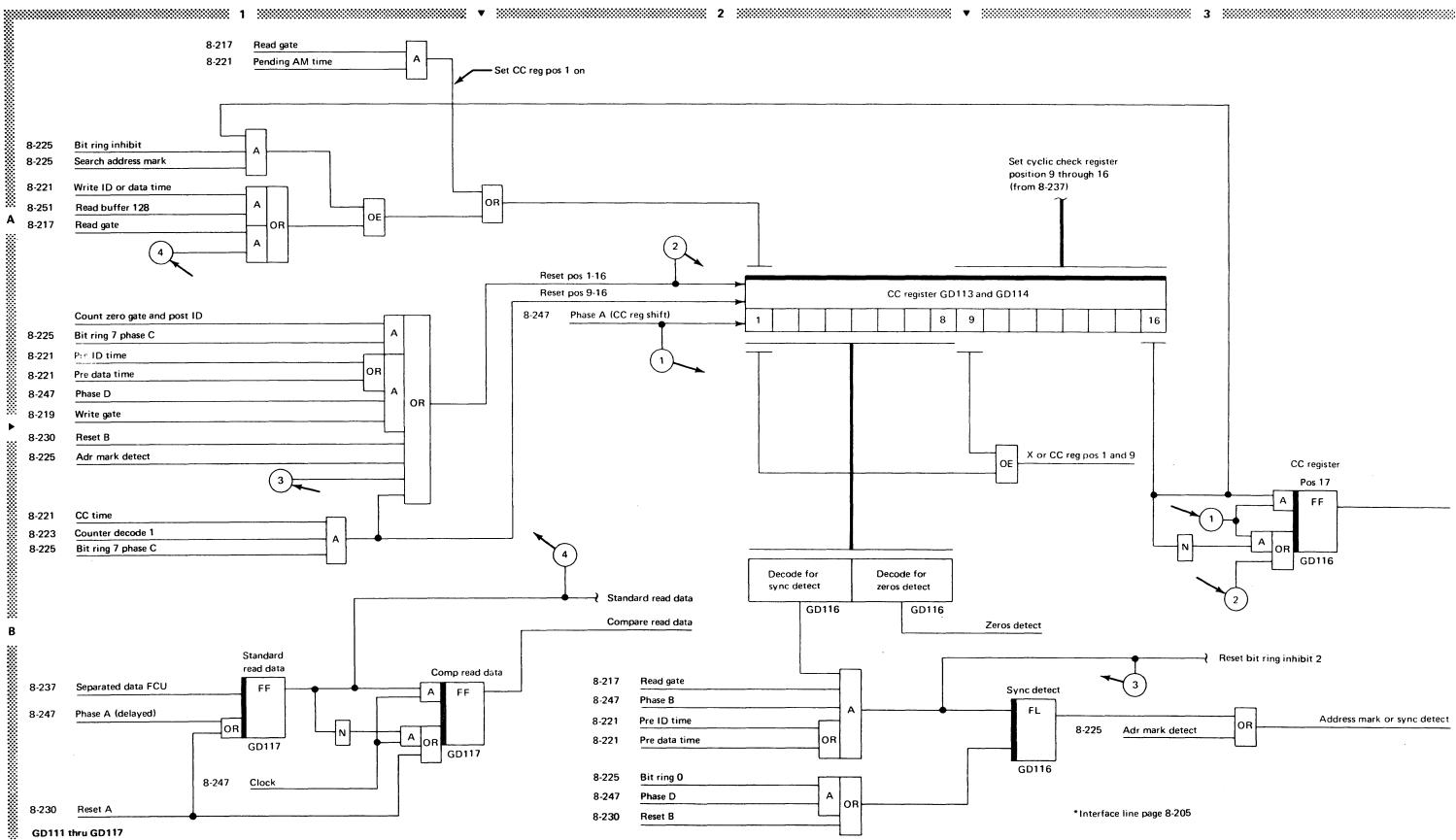
At cyclic check time, the contents of the cyclic code register are shifted out bit by bit into position seventeen. The output of position seventeen is combined with clock pulses, gated to the selected drive, and recorded on the disk. Active output of position seventeen is the (not) condition (a one bit is written on disk as a zero).

After writing the cyclic code characters, positions 9 through 16 of the cyclic code register are reset and the contents of the bit count appendage register are transferred into these positions. The cyclic code register then continues its shift operation to write the bit count appendage character in the same manner as the cyclic code characters are written.

Cyclic Code Register Check


The parity of the generated check character in the cyclic code register is checked against two other flip-flops which indicate the parity of the byte transferred into the read buffer. The following table shows the correct (no error) conditions of the three flip-flops. If other than these conditions occur, a cyclic code check is indicated.

O = Odd E = Even									
Е	Е	0	0						
Е	0	Е	0						
E	0	0	Е						
		Ē =	E = Eve						


BR0481

Standard Read Data Trigger and Compare Read Data Trigger

Separated data pulses are processed by the file control unit standard read and compare read triggers (page 8-227). As a result, the compare read data signal is one bit cell in length and one bit cell later in relation to when the data bit was read.

 \sim

DISK ATTACHMENT-Functional Units Card L2 (Part 4 of 4)

CARD M2

Card M2 is shown on pages 8-230 and 8-231 and contains the following logic:

- 1. Resets
- 2. Error conditions
- 3. Signals for status information

Resets

A

►

B

The reset logic is shown on page 8-230.

Resets are performed to set the file control unit into the condition needed to start an operation or to stop an operation in progress. In the case of some error conditions, a reset is performed to halt the operation.

'Reset A', 'reset B', and 'pure initial reset' are active at the beginning of an operation at clock 0 time. The drive selected by the logic on page 8-249 is also enabled at this time. The 'start op' pulse at clock 4 time starts the operation set up in the operation resister.

The other inputs into the large OR circuit are the normal ending signals for an operation and the error reset conditions.

Error Conditions

The simplified reset logic figure, page 8-229, shows the error inputs into the reset logic. The conditions that cause the error signals are described below.

Seek Check

Seek checks indicate an abnormal condition during a seek operation. Conditions that set seek check are:

- No seek ends 1 to 2 seconds after 'go' is active. 1.
- 'Go Forward' is active and access overrun is indicated. 'Access over-2. run' occurs when the access mechanism is at its inner stop.
- 3. 'Go Reverse' is active, 'cylinder zero' is indicated, and file control unit is not in a recalibrate operation.
- A track crossing pulse is sensed after head settling time. 4.
- 'Go' is active and drive becomes (not) ready during a seek operation. 5.

Virgin Track

This error indicates that an 'index' pulse passed twice while looking for an address mark and none was found.

First Record Not Found

This error indicates that 'ID orientation' was not established after an address mark was located. 'Index' passed twice after locating the address mark.

Set End of Cylinder

Indicates one of two conditions:

- That 'index' was sensed while reading from head 1 1
- That 'index' was sensed while reading an alternate track from head 2. 0 which was originally located on the lower surface of the disk (head 1)

Overrun

Indicates that a data cycle steal request from the file control unit was not honored by the CPU before the next file control unit 'set write buffer' time or 'gate data to DBI' time.

No Record Found

Indicates a 'first record not found' or virgin track error, or that a successive identifier area field did not compare successfully after 'ID orientation' was established.

Equipment Check Write Gate

Indicates that 'write gate' was active at 'standard index' time and that the file control unit was not in a 'write ID' operation.

Check Counter Error

Indicates that 'check counter' register positions 8 through 128 were not reset at 'index 2' time, or that the check counter register did not advance to a count of 192 from index 4 time until the control counter decoded to 1. Both of these conditions are checked only during a write operation.

Cyclic Check Register Check

Indicates that a cyclic code check character was not generated with parity as predicted by the 'odd count parity transferred' and 'odd byte transferred' latches.

Parallel Parity Check

Indicates that the parity of the byte entering the read buffer was not the same as when that byte entered the write buffer from the bus-out latches.

Serdes Check

Indicates that the parity of the serialized byte shifted out of the read buffer was not the same as that byte entering the read buffer.

Missing Address Mark

Indicates that a virgin track error was found, or that the units position of the sector count was not odd-or-even different from the last sector read in a multisector read or write operation. This condition can also mean that the units position of the sector address was not even after a head switch during index time.

Track Condition Check

This error indicates that bits 6 and 7 of the flag byte in the disk control field were not the same as bits 6 and 7 of the flag byte read from disk.

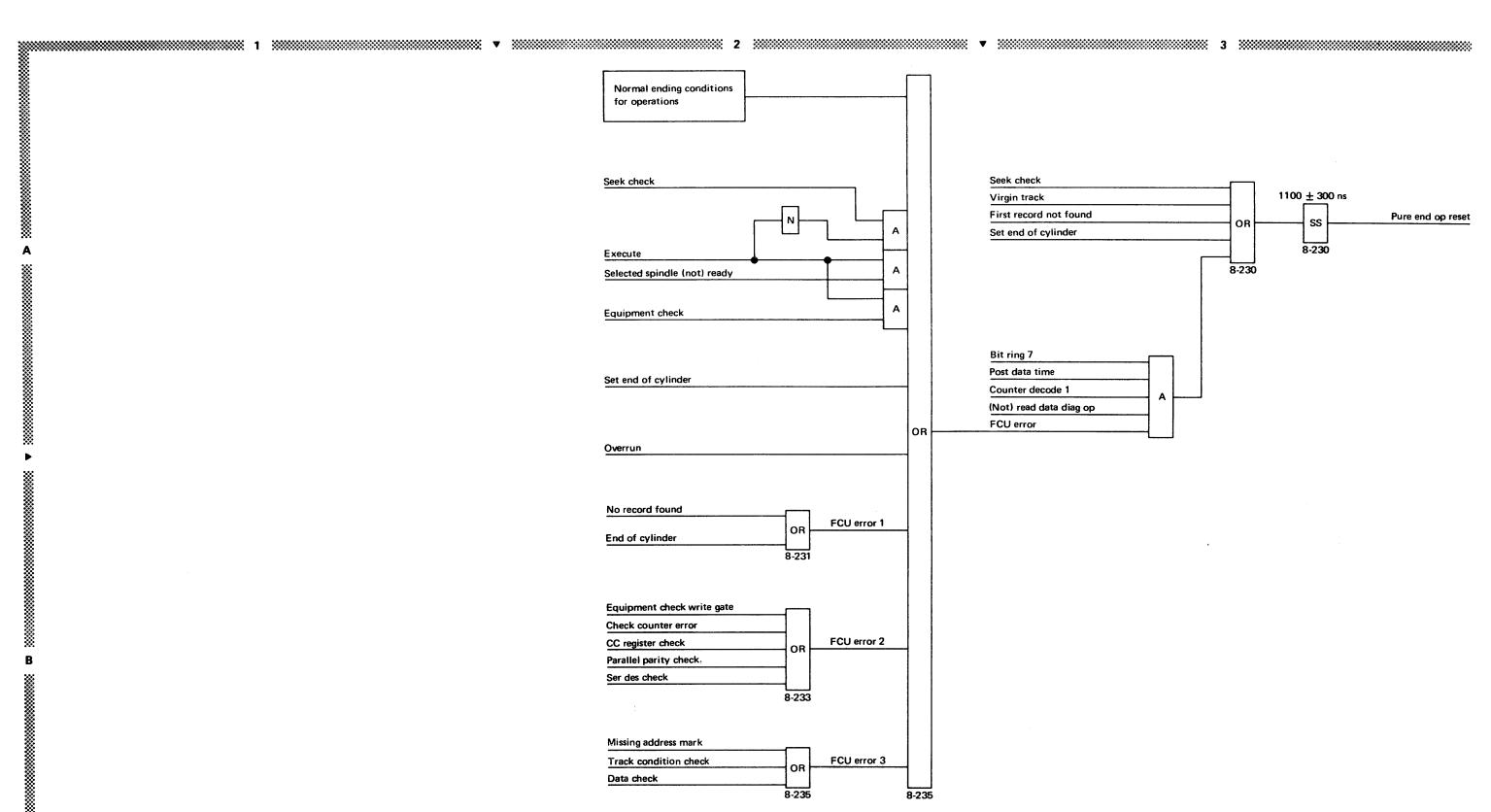
Data Check

Equipment Check

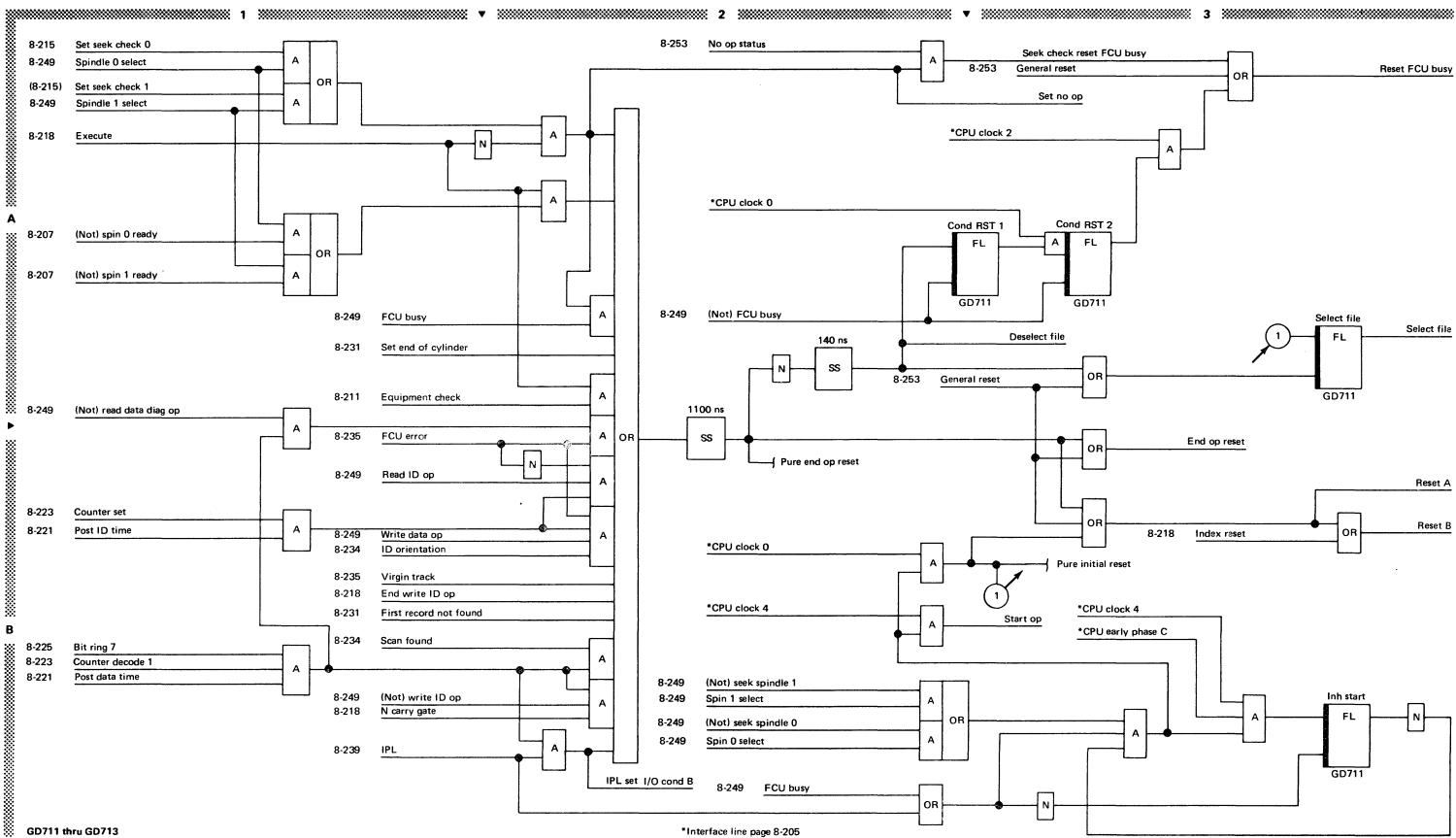
spindle unsafe conditions.

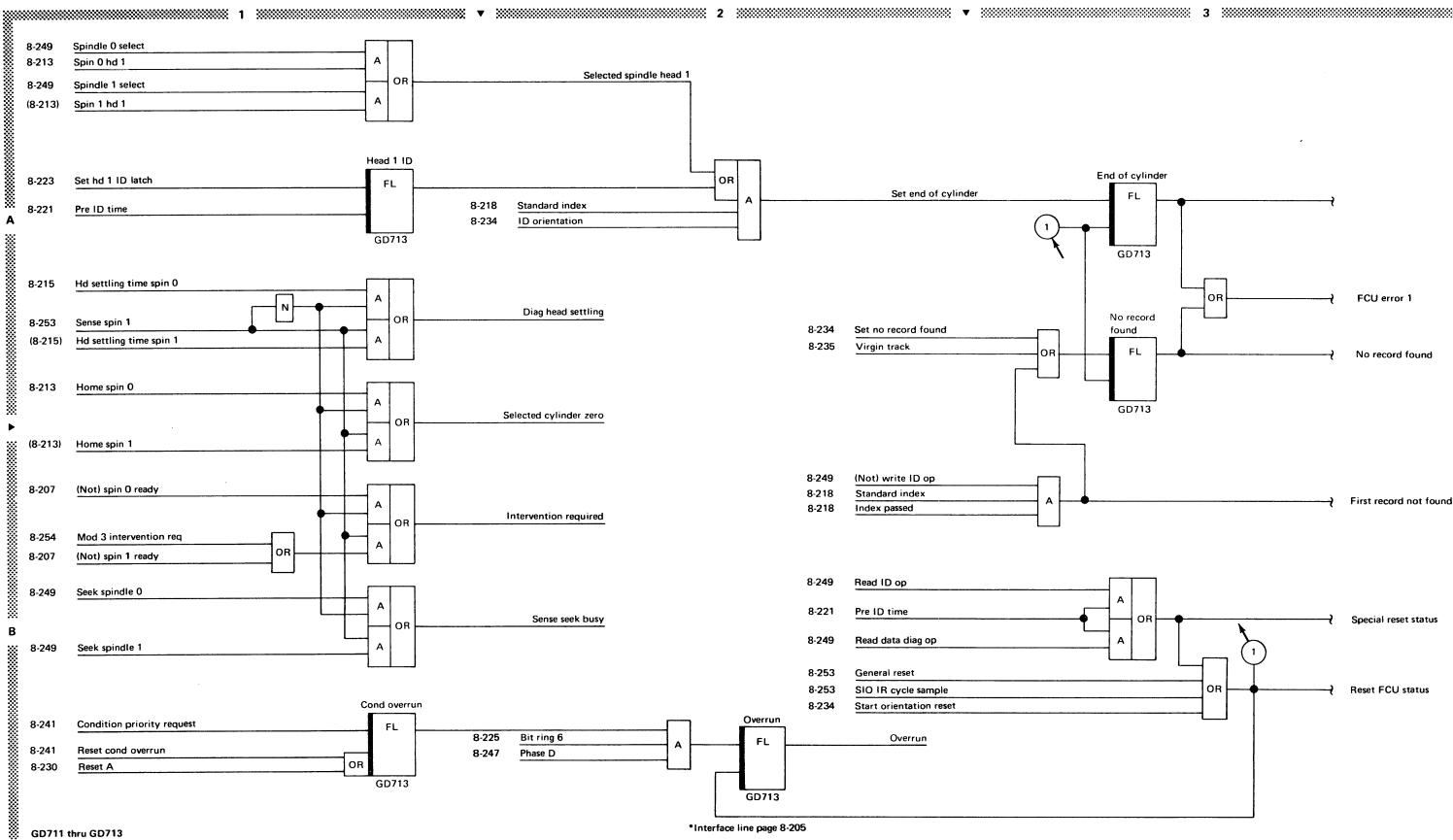
Status Signals

sense information.


\mathbf{v}

This error indicates that the cyclic code or bit count appendage check characters read from disk during an identifier area compare or read data operation were not the same as the cyclic check and bit count appendage regenerated during the read operation.


This error indicates any of the file control unit error 2 conditions plus


The signals, 'diagnostic head settling', 'selected cylinder zero', 'intervention required', and 'sense seek busy', are input signals for file control unit

► в

Simplified Reset Logic

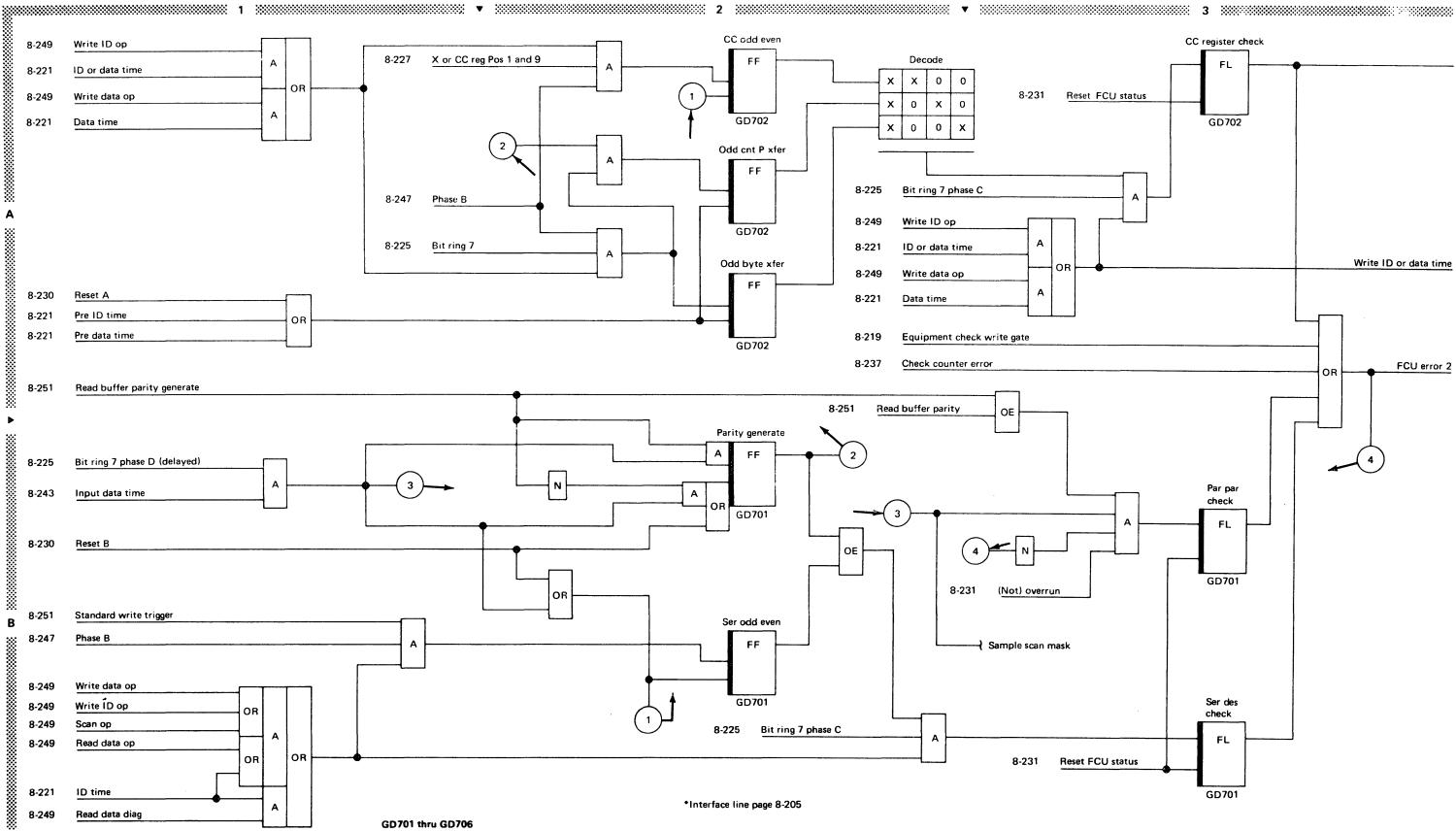
- -

Α

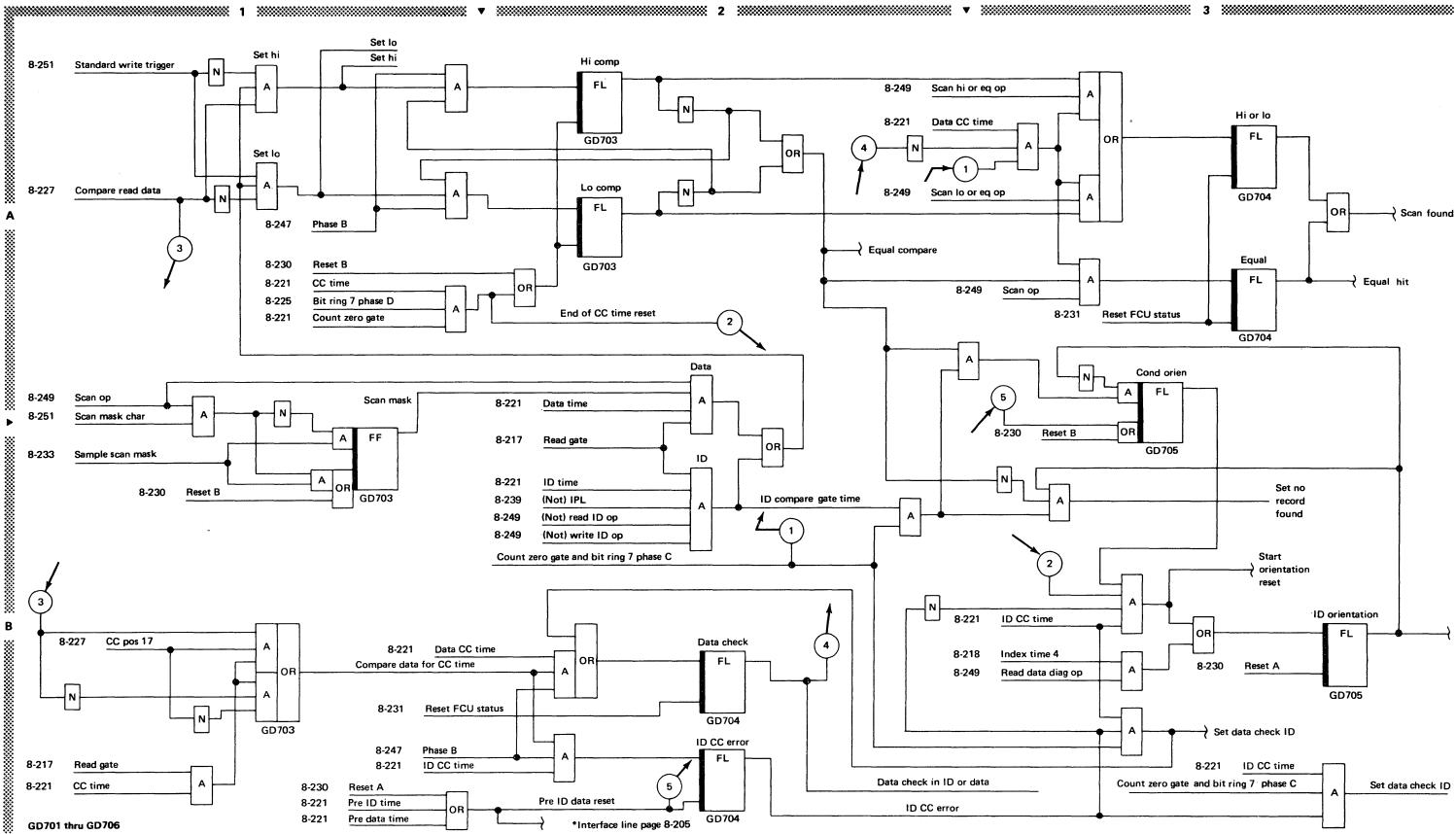
►

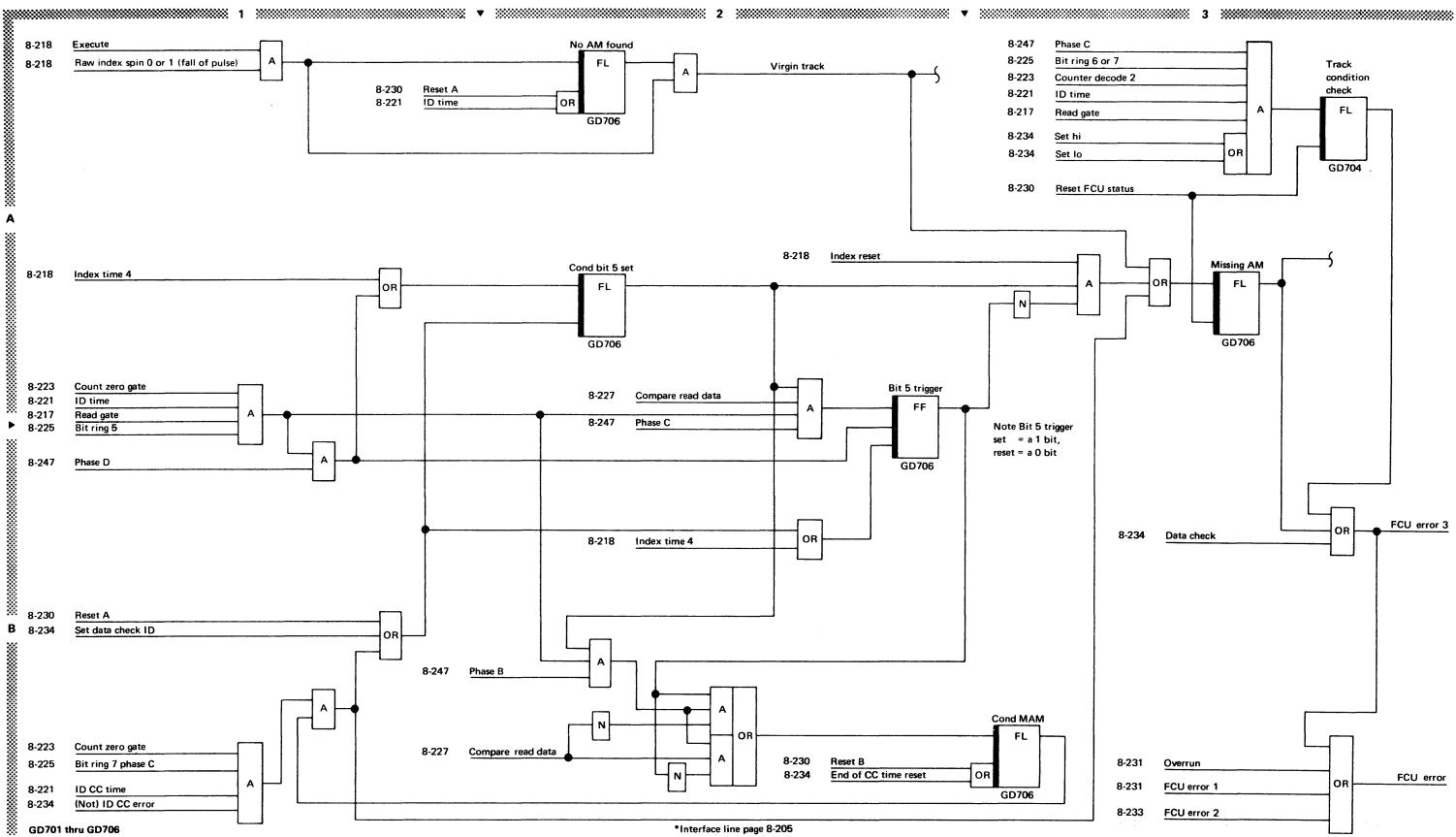
в

CARD N2


Card N2 is shown on three pages and contains the following logic:

- 1. Error conditions
 - a. Cyclic code register check
 - b. Parallel parity check
 - c. Serdes check
 - d. Missing address mark
 - e. Track condition check
 - f. Virgin track
 - g. Data check
 - h. ID CC error
- 2. Compare


The error condition objectives are described on page 8-228.


The compare logic receives its input from two sources, the standard write trigger and the compare read data trigger. The compare logic can indicate 'hi' if the compare read data trigger source is greater than the standard write trigger, 'lo' if the standard write trigger source is greater than the compare read data trigger source, or 'equal' if the two sources match correctly.

The hi, lo, or equal conditions are gated by the operation being performed by the file control unit to indicate 'ID orientation', 'scan found', or 'data check'.

DISK ATTACHMENT-Functional Units Card N2 (Part 2 of 4)

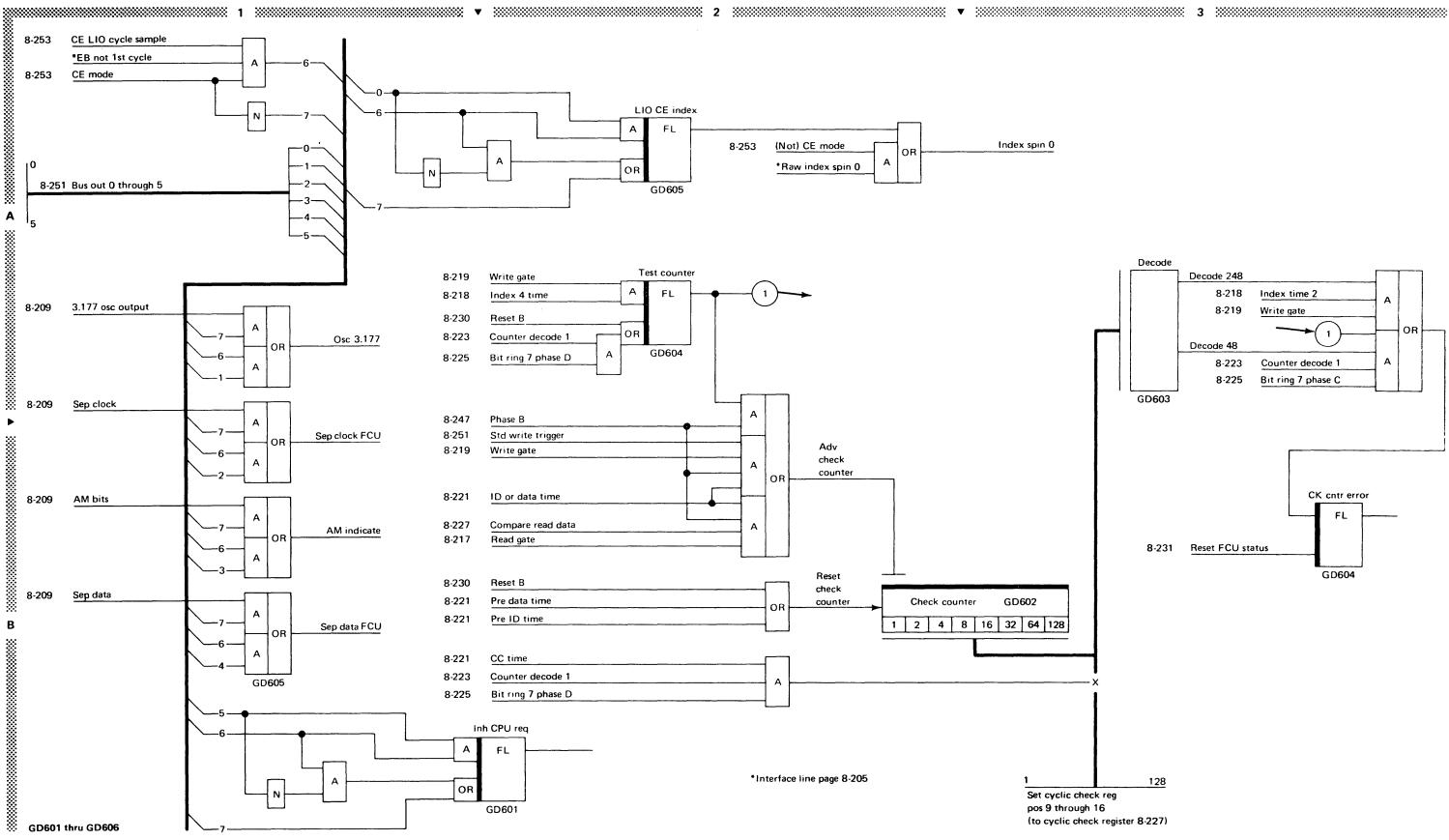
DISK ATTACHMENT-Functional Units Card N2 (Part 4 of 4)

address mark indicator lines is blocked and controlled instead by bits present in the load I/O instruction diagnostic byte. (See the description of the load I/O instruction diagnostic byte, load I/O instruction in chapter 1.) The file control unit cycle steal requests may also be blocked in addition to the other input mentioned.

Check Counter (BCA)

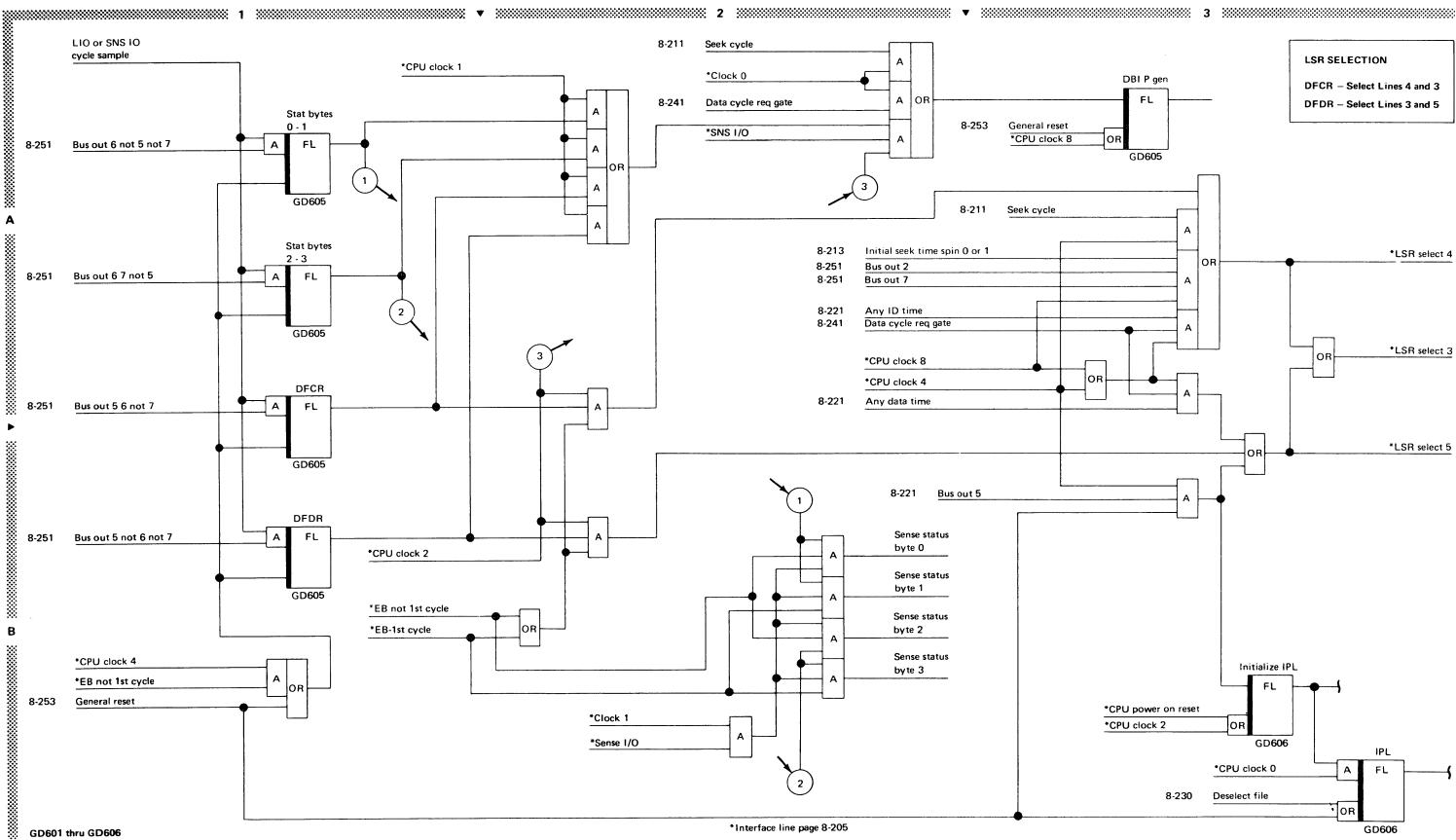
The bit count appendage check character is generated in the check counter. The counter will accumulate 255 data bits, reset to zero by overflowing, and continue to count toward 255 bits again. When data input stops, the result is left in the check counter to be written after the cyclic code characters on disk. The manner in which the bit count appendage bits are written is explained under "Cyclic Code Register."

A test is made on the check counter before it is used in a start I/O instruction write operation by allowing the counter to step at each phase B time, in the area following index. The output is compared to a predicted value at the proper time and a check counter error is indicated if the results do not compare. Two checks are made on the check counter: (1) that positions 8 through 128 are reset off at index 2 time, and (2) that the counter stepped to a value of at least 192 from index 4 time until the control counter is decremented to 1 (the control counter was set to 25 at index 4 time). There are 8 inputs per byte (phase B), for 24 bytes of the 25 byte countdown for a total of 192 advance pulses.


Local Storage Register Selection

The file control unit addresses the local storage registers during load I/O instructions, sense I/O instructions, and during cycle steal cycles (I/O cycle). Local storage registers are addressed at CPU clock 8 and clock 4 times.

Status byte latches 0-1, 2-3, disk file control register and disk file data register, are set during the I-Q cycle of an instruction with the N-field bits. These latches gate the file control unit logic to select the desired sense byte or local storage register.


Initial Program Load Latches

The initial program load latches are set at the start of an initial program load command. The output of the latch controls the file control unit logic which performs the initial program load operation.

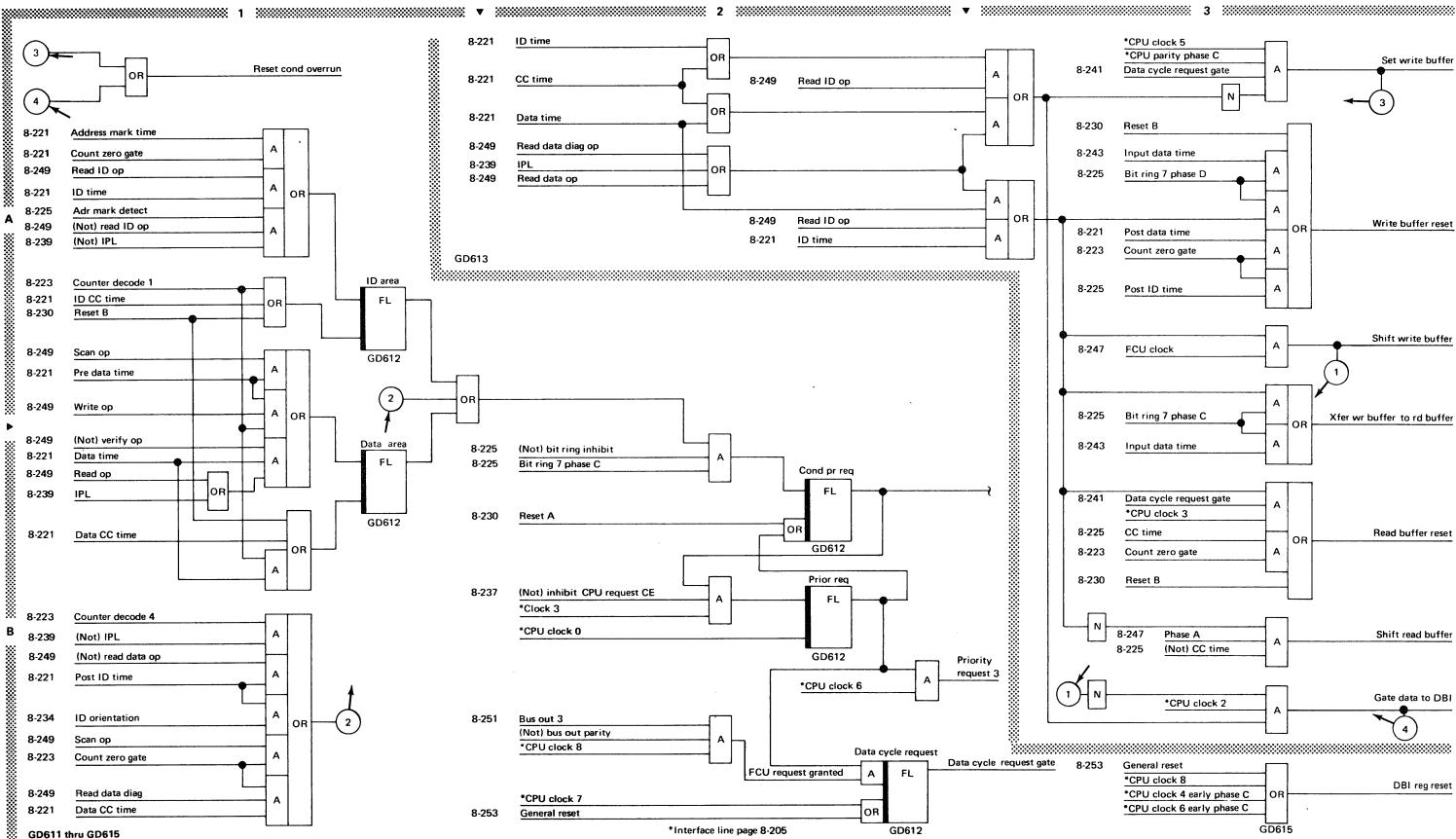
DISK ATTACHMENT-Functional Units Card P2 (Part 2 of 3)

Ricettonuity show

storage register or core. The constant may also be entered into these locations without change. A cycle steal request is started when one of the inputs to the 'condition prior request' latch is active, and gated by a final condition, 'bit ring 7 and phase C'. The remainder of the cycle steal request is as follows:

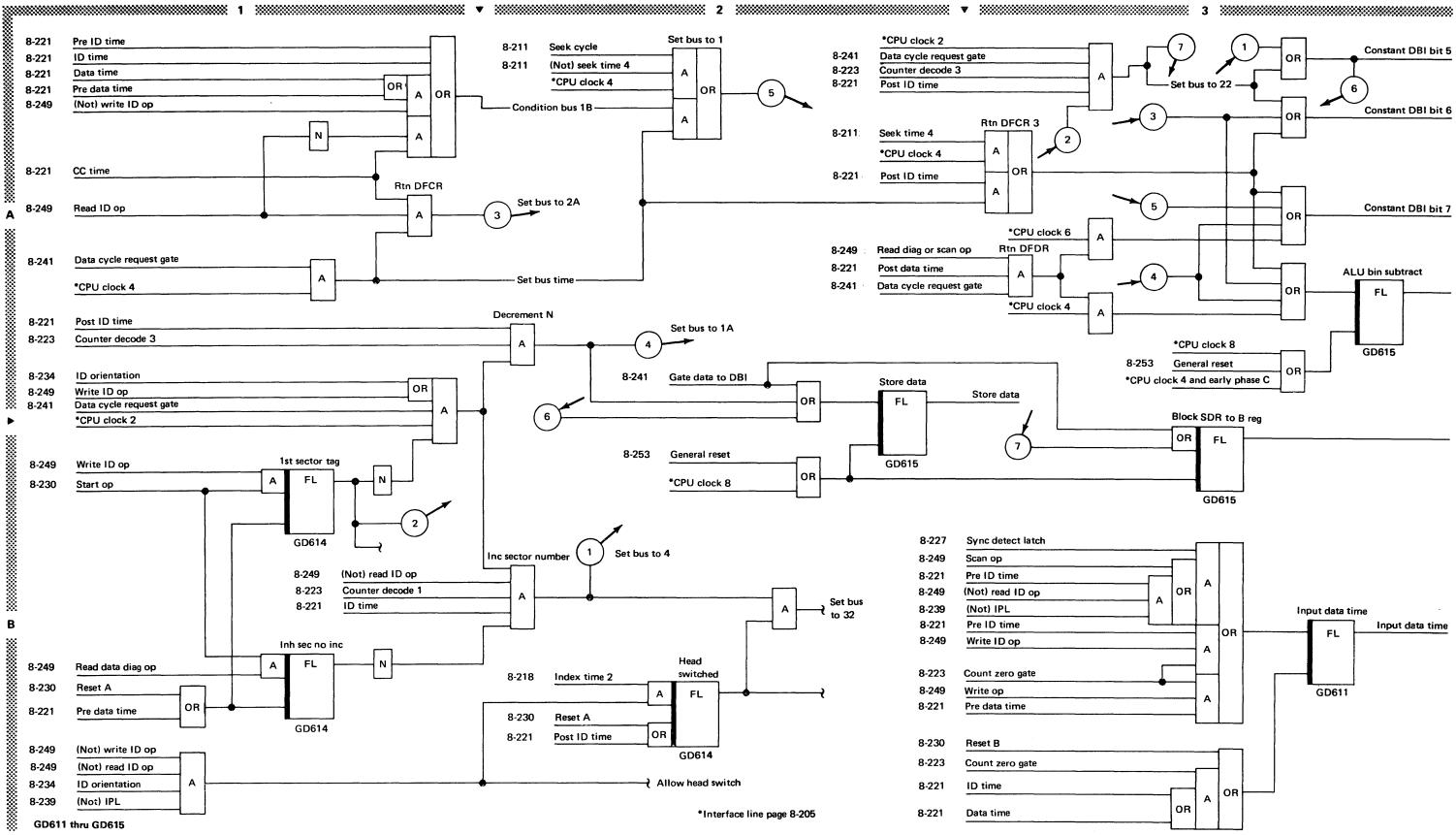
Clock 3–The 'prior request' latch is set.

- Clock 6-The request for an I/O cycle is active on the interface lines.
- Clock 8-The CPU responds to the cycle steal request by 'bus out 3' active. The 'data cycle request' latch is set to indicate that the next I/O cycle is for the file control unit.


The I/O cycle is a result of a priority request. The following actions occur during the I/O cycle:

Clock 0–Reset 'condition prior request' latch

- Clock 2-Data in the file control unit or a constant generated in the file control unit is gated onto the data bus in lines.
- Clock 4-A constant which modifies a local storage register address can be gated onto the data bus in.
- Clock 5-Information in the CPU is available to the file control unit on the data bus out lines.


The latches arithmetic and logic unit binary subtract, store data, and block SDR to B register are located in the file control unit and control how the CPU processes the constants and data. If the arithmetic and logic unit binary subtract latch is set, the constant is subtracted from the value at the specified location; if the latch is not set, the constant is added to the value. If the store data latch is set, the sum or difference is restored to core storage or the local storage register. If the block SDR to B register latch is set, data from core storage is prevented from reaching the B register in the CPU. As a result, information entered into the B register from the data bus in is not modified.

The serdes registers are controlled by the serdes control logic. The gates generate, reset, shift, and transfer data within and through the registers. The signal names are self-explanatory as to their functions.

DISK ATTACHMENT-Functional Units Card Q2 (Part 2 of 3)

A			
A 		(In	tentionally blank)
8			

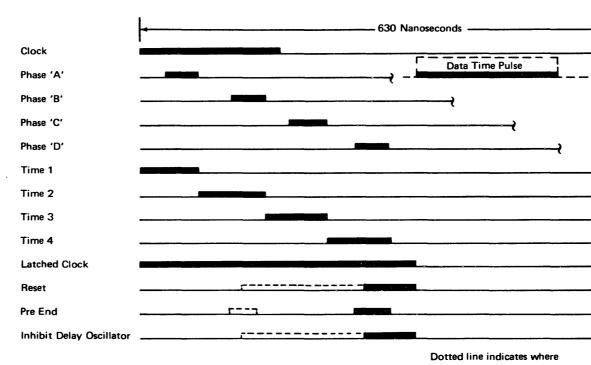
DISK ATTACHMENT-Functional Units Card Q2 (Part 3 of 3)

CARD R2

Card R2 is shown on two pages and contains:

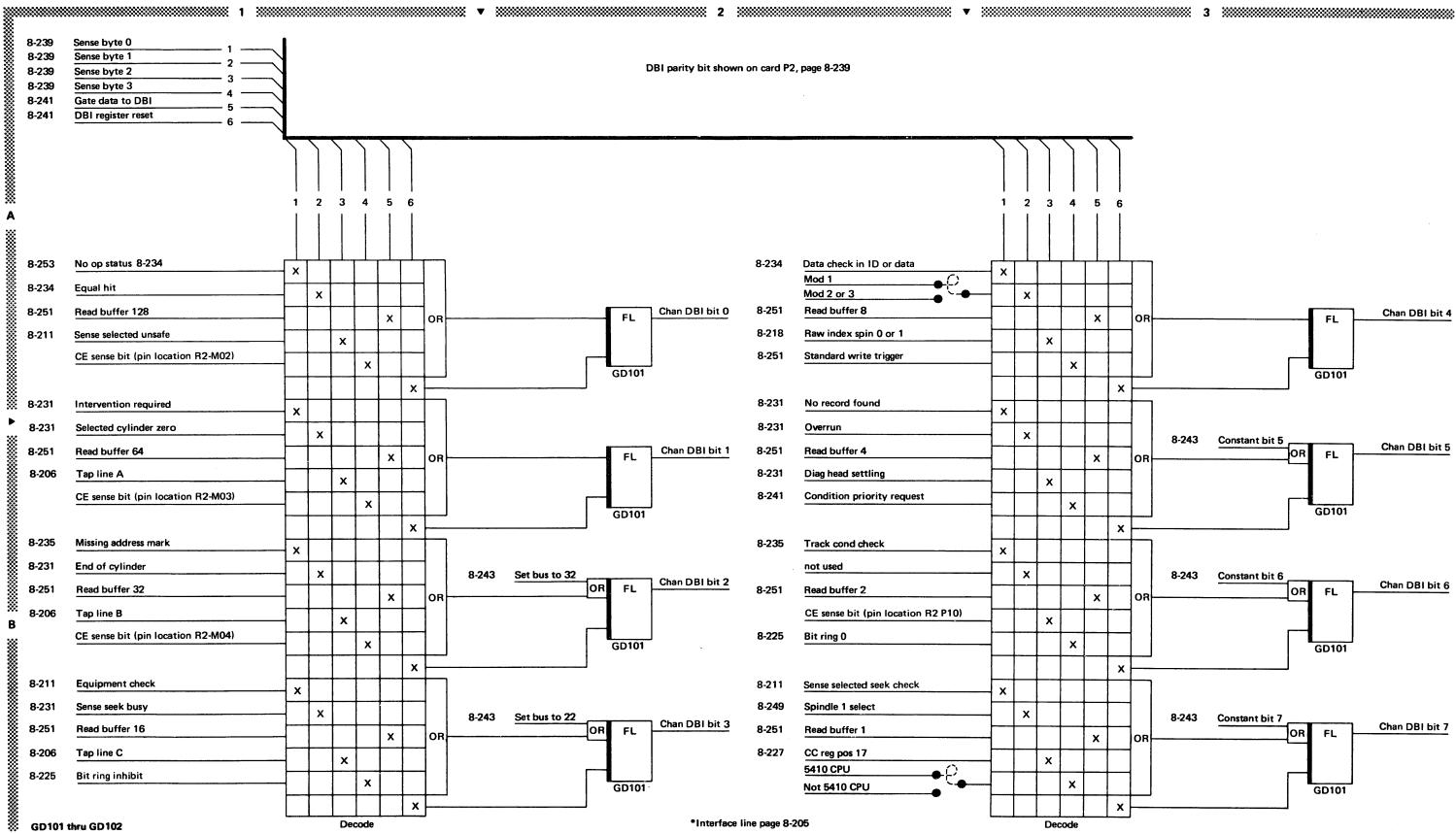
- Data bus in assembler 1.
- 2. File control unit clock and phase generator

The data bus in assembler is the file control unit "outlet" for information to the CPU. Data, constants, and status information are grouped and gated onto the data bus in through this register. The data bus in parity bit is generated on card P2-2.

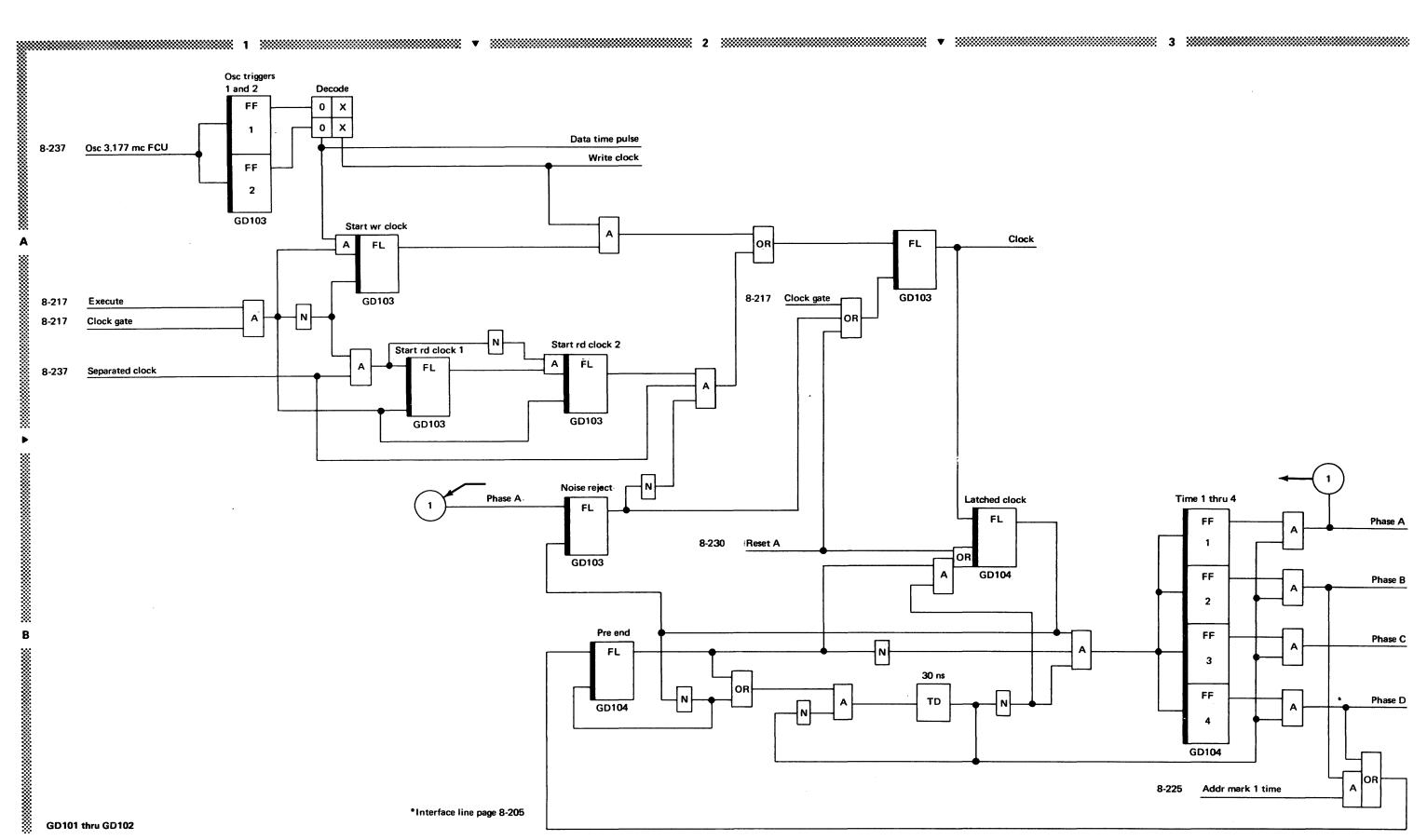

The file control unit clock provides basic timing for file control unit operation. The clock may be driven by a 3.177 oscillator (write clock) or separated clock pulses from the data separator (read clock). The clock is started when 'execute' is active. These signals are produced at the beginning of an operation, after the I-Q and I-R cycles are complete.

During a write operation, or during any operation for which the clock bits from the disk are not usable, the clock is driven with the 3.177 oscillator. When data is being read from the disk, the clock is driven with the separated clock pulses from the data separator. A gating signal, 'clock gate', determines which signal (oscillator or separated clock) has control. If 'clock gate' is active, the oscillator drives the clock.

When the clock drive is changed from oscillator drive to separated clock pulses or vice versa, a sliver (partial) pulse can be produced. 'Start read clock' triggers 1 and 2 prevent the sliver by sequencing the changeover.


Clock pulses are alternately gated to produce clock and data time pulses. Timing within each bit cell is accomplished with phase pulses 'A', 'B', 'C', 'D'. These pulses are generated with each clock pulse by a delay line (delay oscillator) and a four-ring FF circuit. Each phase pulse is 40 nanoseconds in duration and 40 nanoseconds apart.

During a search for an address mark on disk, phase pulses 'C' and 'D' are not produced. The phase generator is turned off after phase B with a gate line, 'address mark one', which stops the generation of phases 'C' and 'D'. When the clock is driven with separated clock pulses, noise spikes read from the disk could be mistaken for a clock pulse. The 'noise reject' flip latch prevents a clock pulse from being recognized before phases 'A' through 'D' are complete.



---- ulse occurs when "address mark 1" is active.

BR0473

CARD S2

Card S2 is shown on two pages and contains the following logic:

- Operation register 1
- 2. Bus out register
- Read buffer/write serializer and write buffer/read deserializer 3. (Serdes)

Operation Register

The operation register is set by bus out lines which sense the N-field and control field of the start I/O instruction during the start I/O instruction I-Q and I-R cycles. This instruction is retained by the file control unit until the operation is complete or certain errors occur.

Bus Out Register

All CPU information sent to the file control unit via the data bus out enters the file control unit through the bus out register. Three decode networks check the bus out register output for errors in parity and seek control, CPU bus greater than 223, and CPU bus equal to zero. The parity bit is detached from the data byte at this point and is transferred through the file control unit separately.

Read Buffer/Write Serializer and Write Buffer/Read Deseiralizer (Serdes)

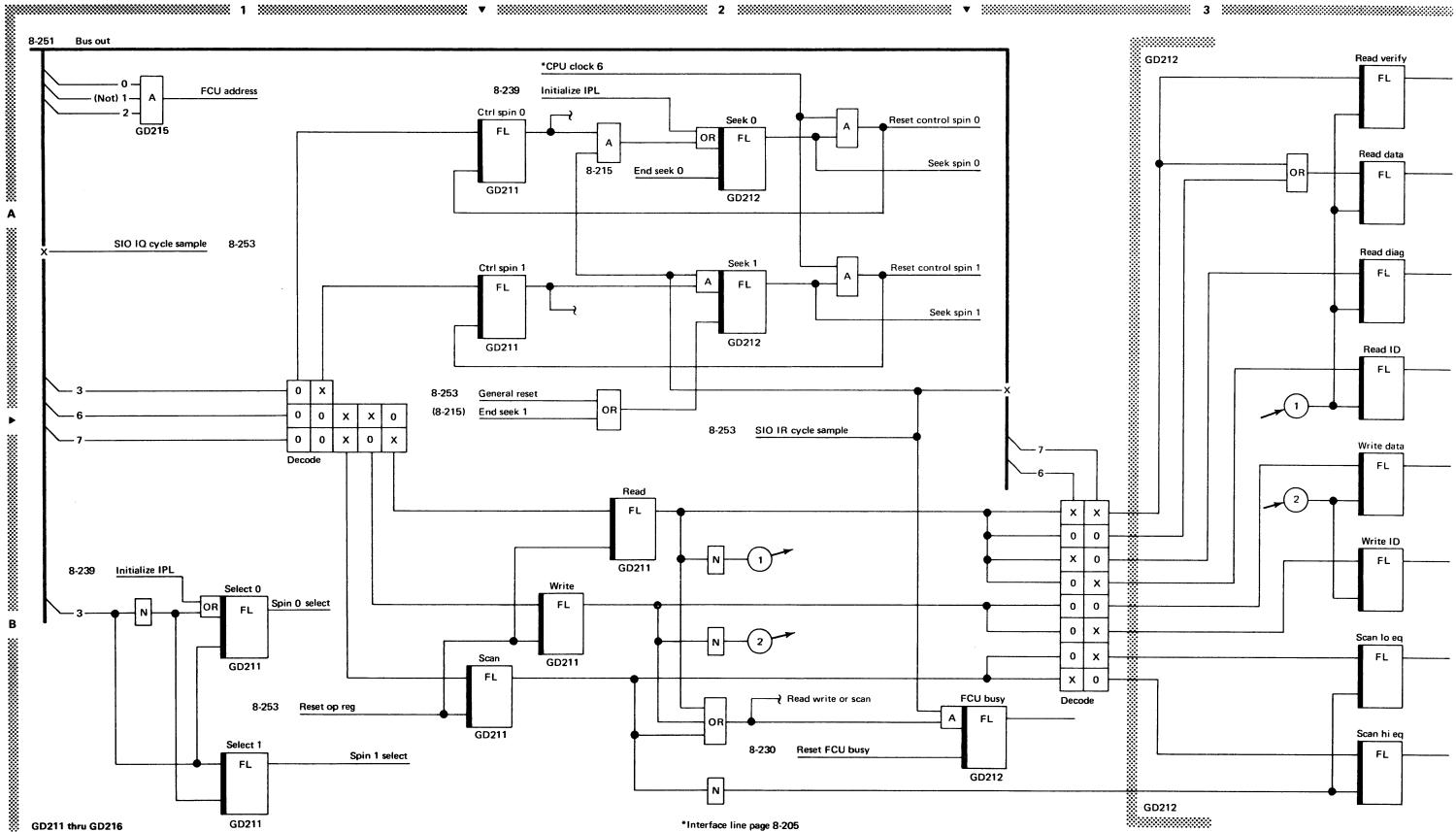
- Two registers, referred to as serdes, handle data in the file control unit.
- Each register can shift data bits or function as a buffer for the other register.
- Parity bit from the data bus out is not used in the registers.

Two eight-position, dual-purpose registers handle data in the file control unit. Both registers may shift bits toward the high-order end or pass the data byte in parallel without change. These registers, read buffer/write serializer and write buffer/read deserializer (serdes), provide serialization of data during a write operation and deserialization of data during a read. In both operations, the write buffer is the input register, the read buffer is the output.

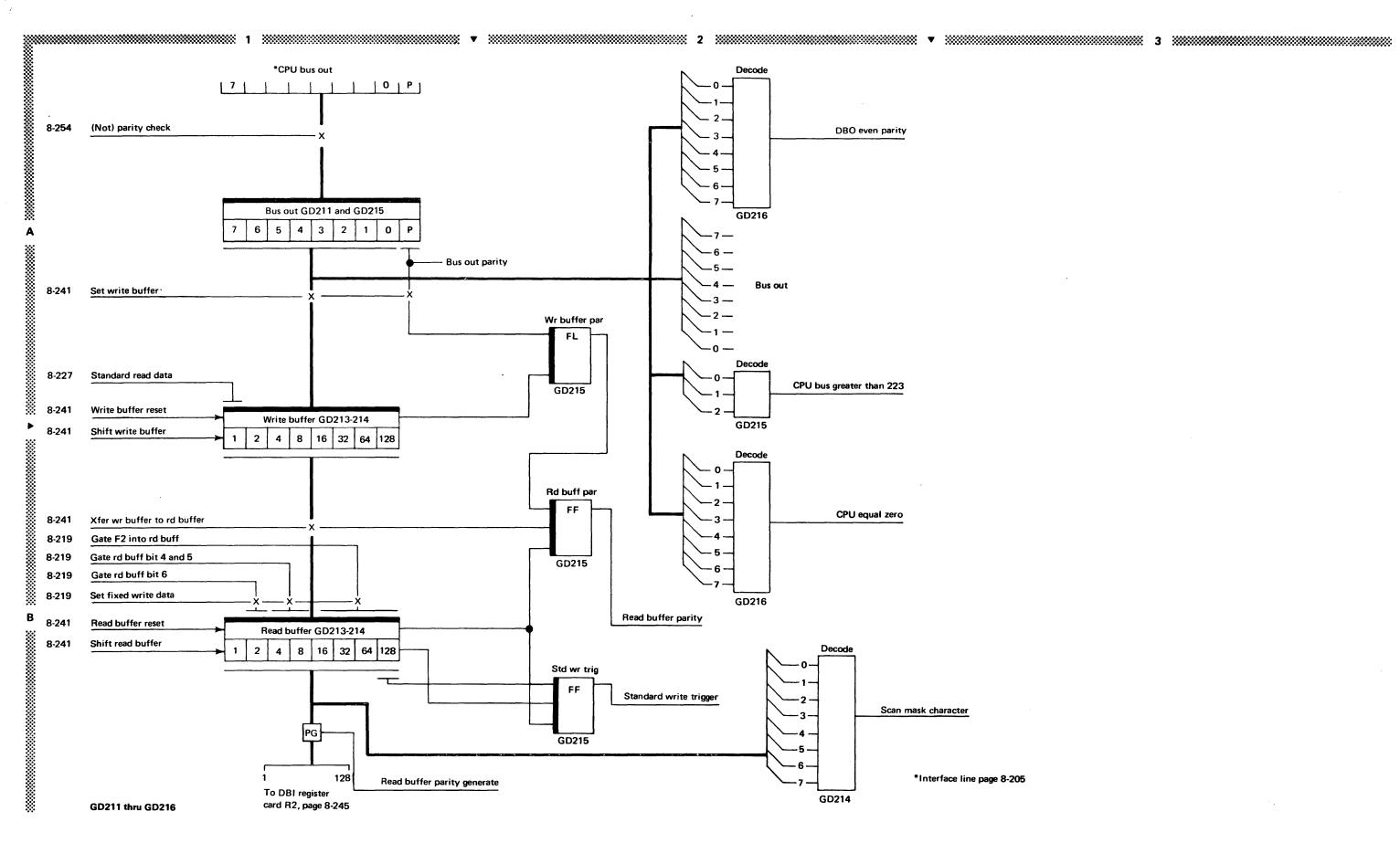
Write Operation

Data is gated into the write buffer register from the data bus out on a cycle steal operation. The data byte is temporarily held there until it is needed in the read buffer. Another operation transfers the data byte from the write buffer into the read buffer and requests another byte from the CPU to fill the write buffer.

Shift operation of the read buffer can now begin, shifting the bits toward the high-order end and into the 'standard write' trigger where the bit is combined with clock timing and sent on to the disk to be recorded.


As the last bit is shifted out of the read buffer, the write buffer is gated into the read buffer and a cycle steal request is generated to reload the write buffer. This operation continues until the end of the command.

Special bytes that are written on the disk (F2 for address marks) are gated into the read buffer for deserialization. Cyclic code and bit count appendage bytes are not gated into the read buffer for deserialization.


Read Operation

Separated data from the data separator enters the write buffer on the loworder end. The bits are shifted upward to the high-order end as each bit arrives until eight bits are read. The byte is then transferred to the read buffer where it is temporarily held before it can be transferred to the data bus in assembler for entry into the CPU. A parity bit is generated at the data bit in assembler before the read buffer information is gated onto the data bus out.

 \mathbf{v}

DISK ATTACHMENT-Functional Units Card S2 (Part 2 of 3)

DISK ATTACHMENT-Functional Units Card S2 (Part 3 of 3)

CARD T2

Card T2 is shown on two pages and contains the following logic:

- Initial selection 1.
- 2. Signals for device status
- I/O conditions A and B 3.
- 4. I/O attention

Initial Selection

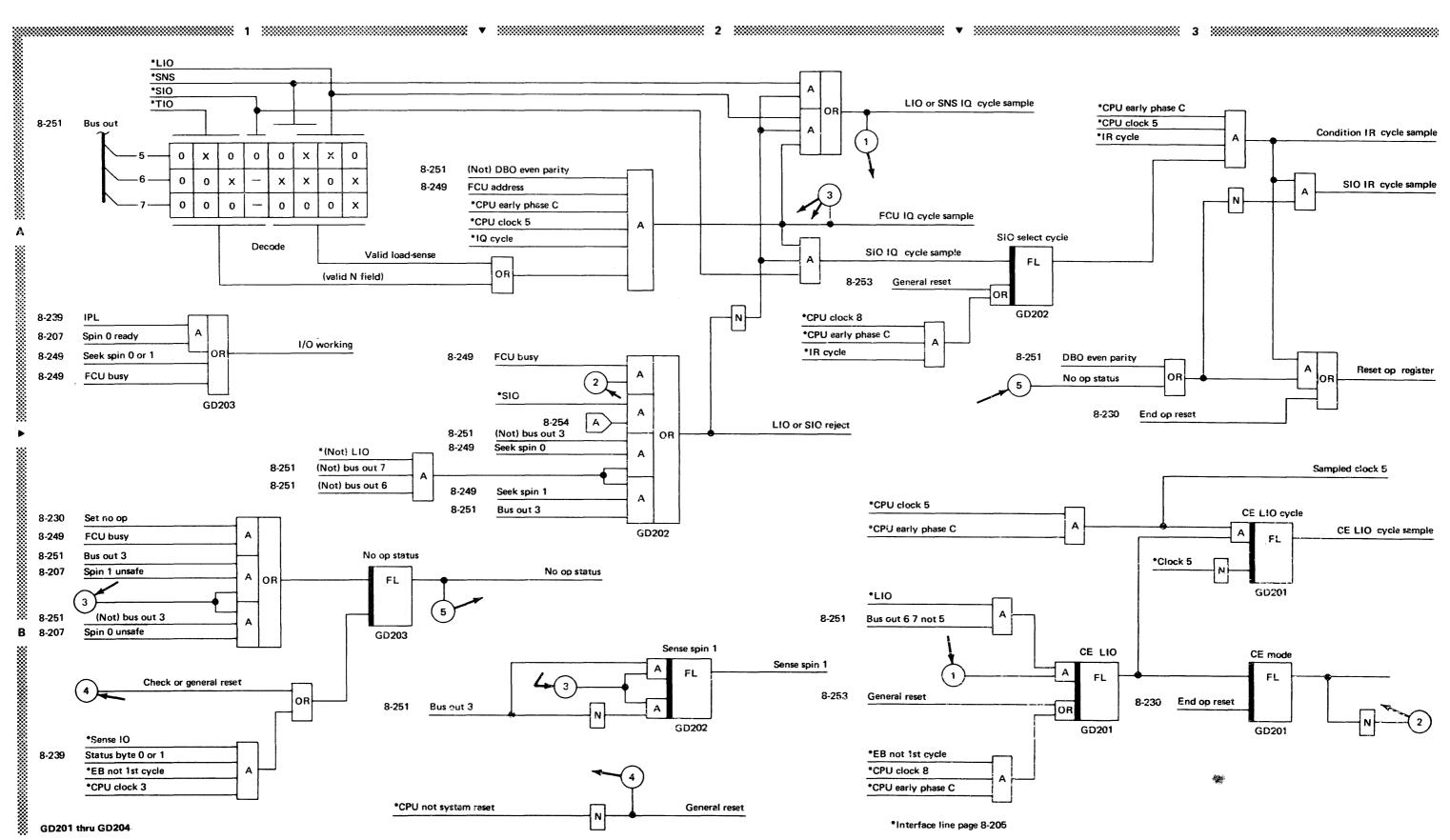
Initial selection prepares the file control unit to start an operation. It contains logic to sample the data bus out (either for normal operation or for diagnostic operation), reject an instruction, return I/O condition A and/or I/O condition B signals, and indicate if the drive requires attention with the I/O attention signal line.

Signals for Device Status

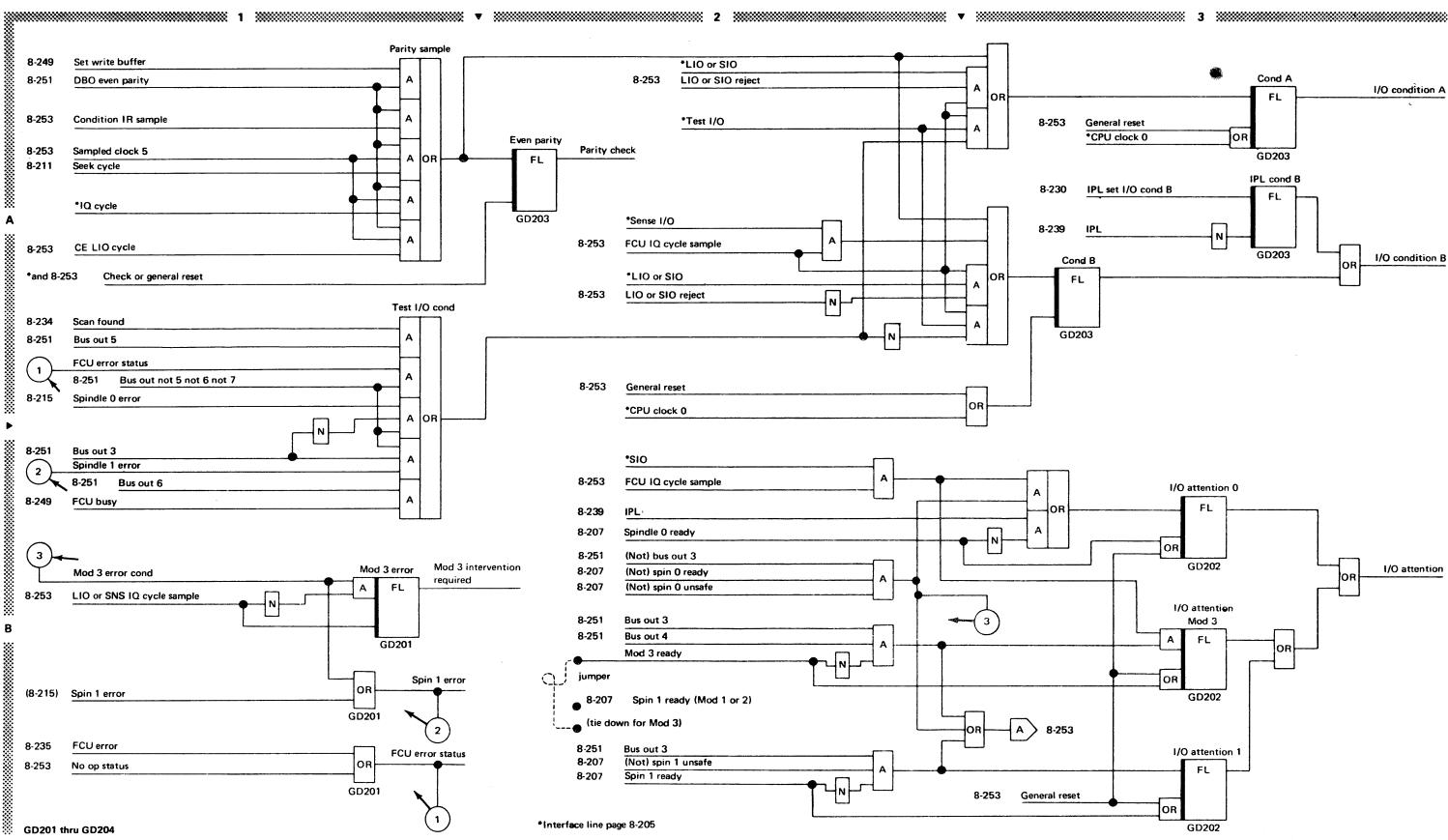
The no-op status latch is set for either of two conditions: 1) when the file control unit cannot execute an instruction due to the file control unit being unsafe, or 2) after a seek operation, there is a seek check and the operation register is holding an instruction to be executed after the seek.

Sense spindle 1 latch is set with a bus out 3 condition which gates the file control unit to sense the drive sensitive status conditions.

I/O Condition A and I/O Condition B


I/O conditions A and B signals indicate the status of the file control unit to the CPU. The CPU interprets the returned I/O conditions A and B combination and can determine if the file control unit can accept or will reject an instruction issued to it.

			Attachment Co		1/O Co	ndition	CPU Reaction
		1/0 4		ondition	A	В	
		1	ncorrect DBO	Parity	1	1	Processor Check Stop
tion			Q Byte r	not correct	0	0	Processor Check Stop with Q Byte Invalid Check
Cycle Instruction			SN	S Instruction	0	1	Proceed to next sequential instruction
v 2 0 − 2 0 −	Correct DBO	Correct	SIO or LIO	Reject Instruction	1	0	Retry I/O instruction
	Parity	Q Byte	Instruction	Accept Instruction	0	1	Proceed to next sequential instruction
đ			TIO or APL	Condition not met	0	1	Proceed to next sequential instruction
			Instruction	Condition met	1	0	Branch to effective address
- 40 x		1	ncorrect DBC) Parity	1	1	Processor Check Stop
SIO I-R, LIO E-B, & I/O Cycles			Correct DBO I	Parity	0	0	Continue as normal


BR0452

I/O Attention

I/O attention illuminates the disk drive 'I/O attention' indicators on the operator console for the Model 6 or turns off the 'ready' indicator for the Model 10, when the disk drive is not ready or requires attention from the operator.

DISK ATTACHMENT-Functional Units Card T2 (Part 3 of 3)

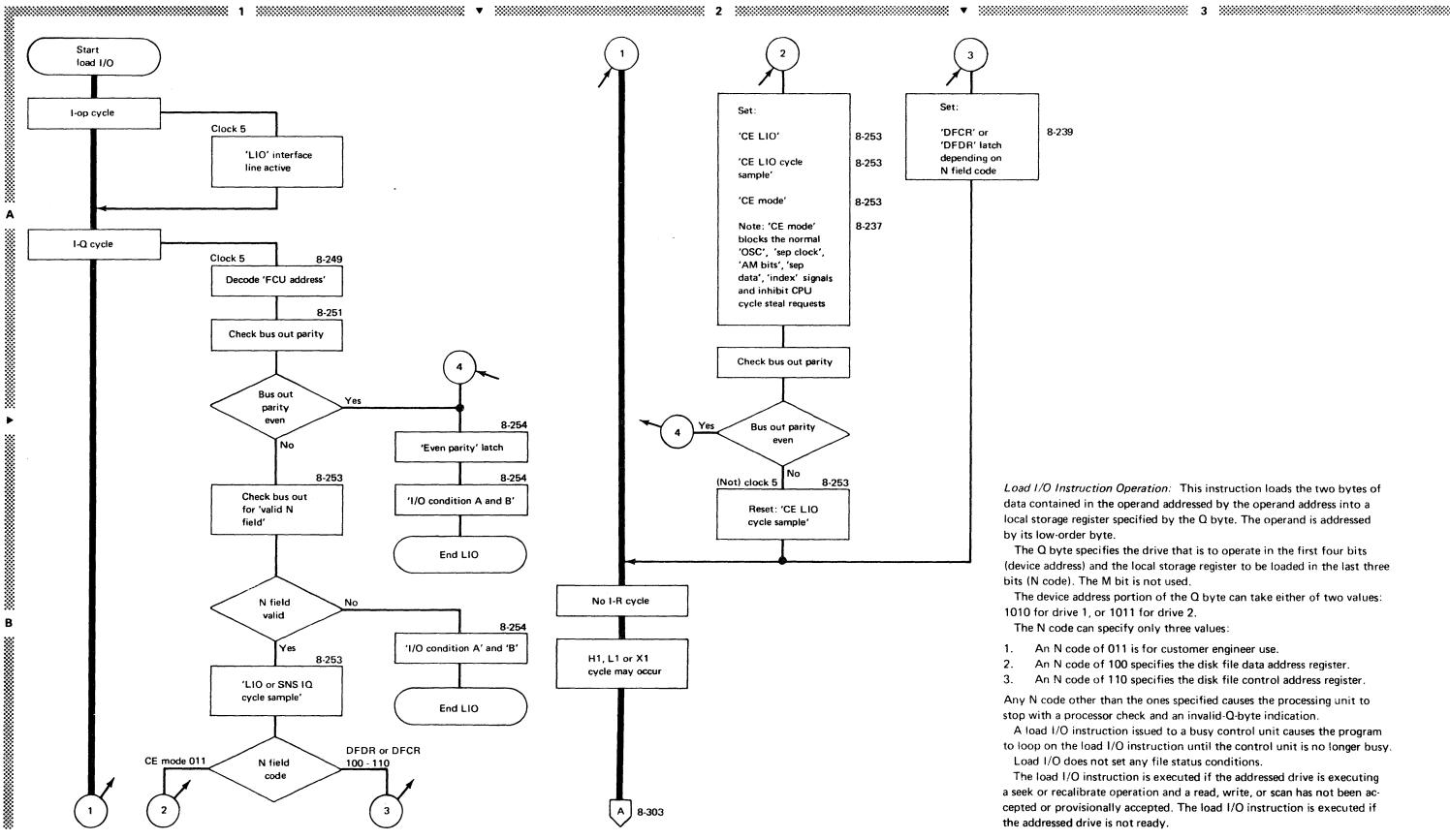
INTRODUCTION TO OPERATIONS

This chapter contains detailed flowcharts and timing charts of the operations performed by the disk attachment.

Flowcharts

The flowcharts contain three levels of information. By reading down the heavy dark lines, the reader can learn the major objectives of the operation. The second level of information is obtained by reading the information in the boxes that branch off the heavy dark line. The information that is contained in each block in a heavy dark line is explained in the blocks that branch off from it. The third level of information is contained in the note blocks (open ended blocks) that branch off the second level blocks. Information in these blocks is intended to explain why an action has been performed.

The page references next to the blocks refer to the second level diagrams in chapter 2. A clock time to the side of a block, indicates the CPU time that causes the action described in the block.


Timing Charts

The timing charts in this chapter are to be used to supplement the information found in the flowcharts and the second level diagrams in chapter 2.

The numbers at the start or ending of a signal line in the timing chart refer to the number at the left hand side of the timing chart. This reference indicates the signal, or signals, that caused the desired line name to become active or inactive. Line references are for individual timing charts (signal line numbers are not the same from chart to chart).

DISK ATTACHMENT-Operations Introduction to Operations

Chapter 3. Operations

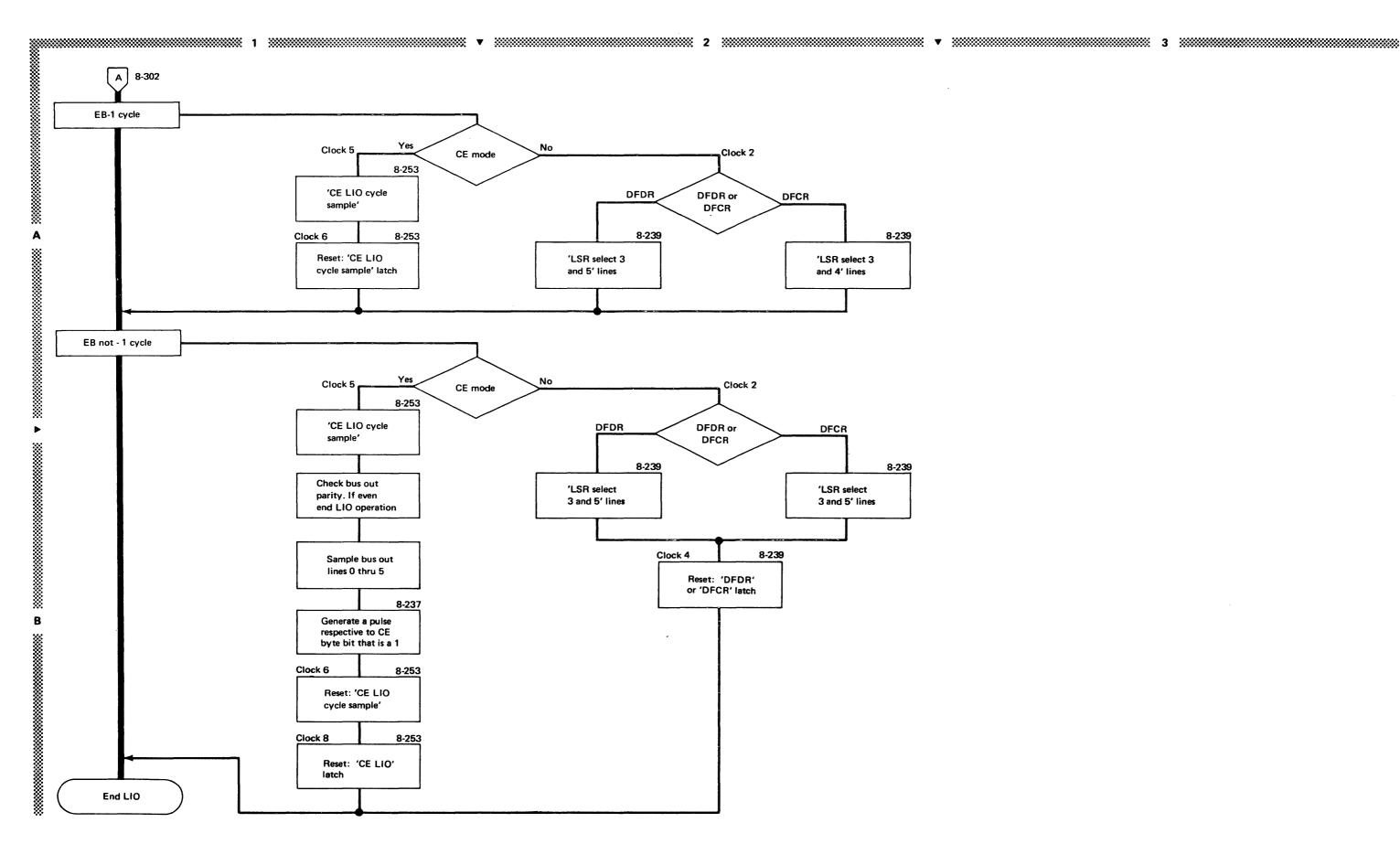
Load I/O Instruction Operation: This instruction loads the two bytes of data contained in the operand addressed by the operand address into a local storage register specified by the Q byte. The operand is addressed

The Q byte specifies the drive that is to operate in the first four bits (device address) and the local storage register to be loaded in the last three bits (N code). The M bit is not used.

The device address portion of the Q byte can take either of two values: 1010 for drive 1, or 1011 for drive 2.

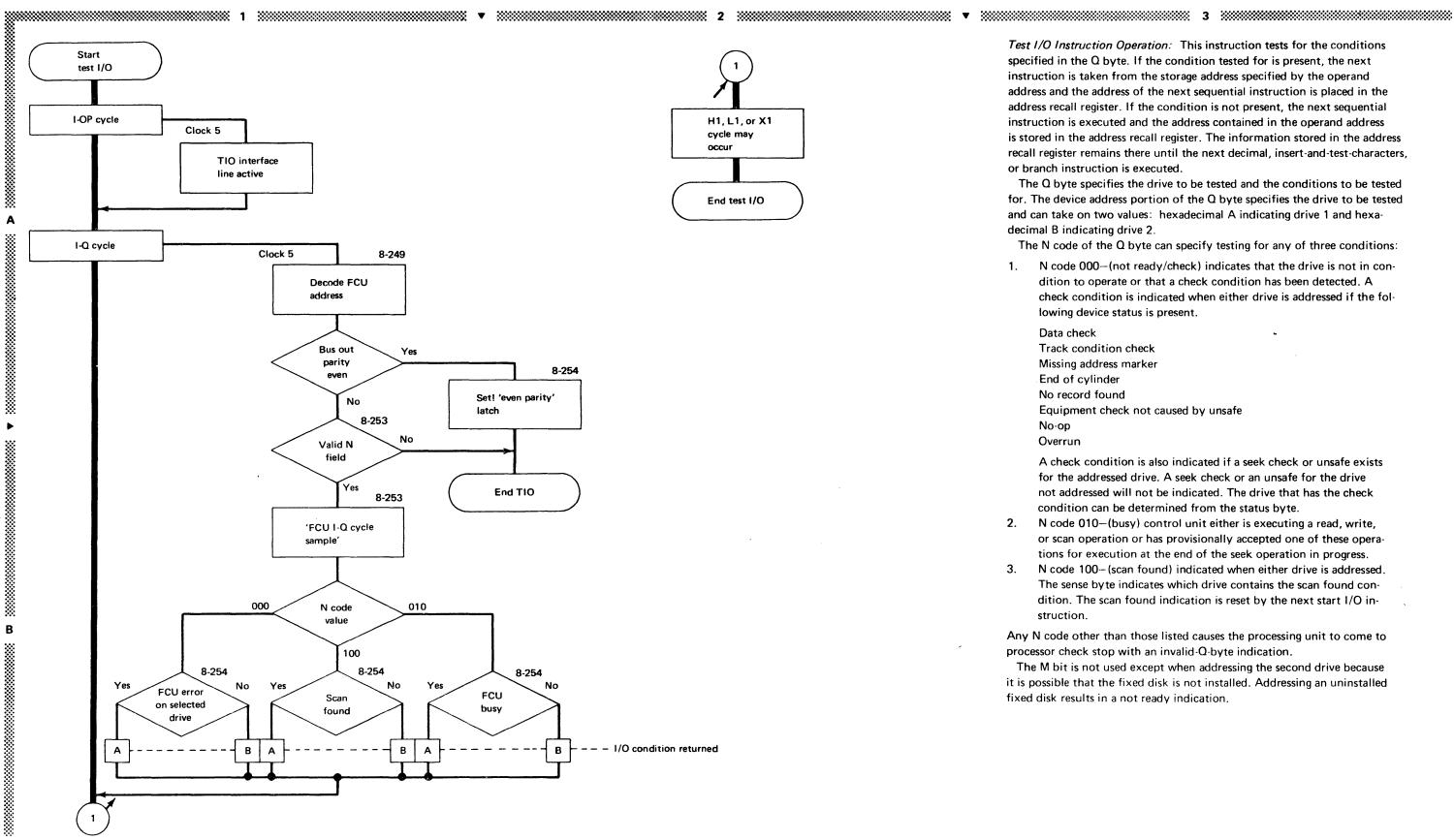
The N code can specify only three values:

An N code of 011 is for customer engineer use.


An N code of 100 specifies the disk file data address register.

An N code of 110 specifies the disk file control address register.

Any N code other than the ones specified causes the processing unit to stop with a processor check and an invalid-Q-byte indication.


A load I/O instruction issued to a busy control unit causes the program to loop on the load I/O instruction until the control unit is no longer busy. Load I/O does not set any file status conditions.

The load I/O instruction is executed if the addressed drive is executing a seek or recalibrate operation and a read, write, or scan has not been accepted or provisionally accepted. The load I/O instruction is executed if the addressed drive is not ready.

DISK ATTACHMENT-Operations Load I/O Operation (Part 2 of 2)

DISK ATTACHMENT-Operations Test I/O Operation

Test I/O Instruction Operation: This instruction tests for the conditions specified in the Q byte. If the condition tested for is present, the next instruction is taken from the storage address specified by the operand address and the address of the next sequential instruction is placed in the address recall register. If the condition is not present, the next sequential instruction is executed and the address contained in the operand address is stored in the address recall register. The information stored in the address recall register remains there until the next decimal, insert-and-test-characters, or branch instruction is executed.

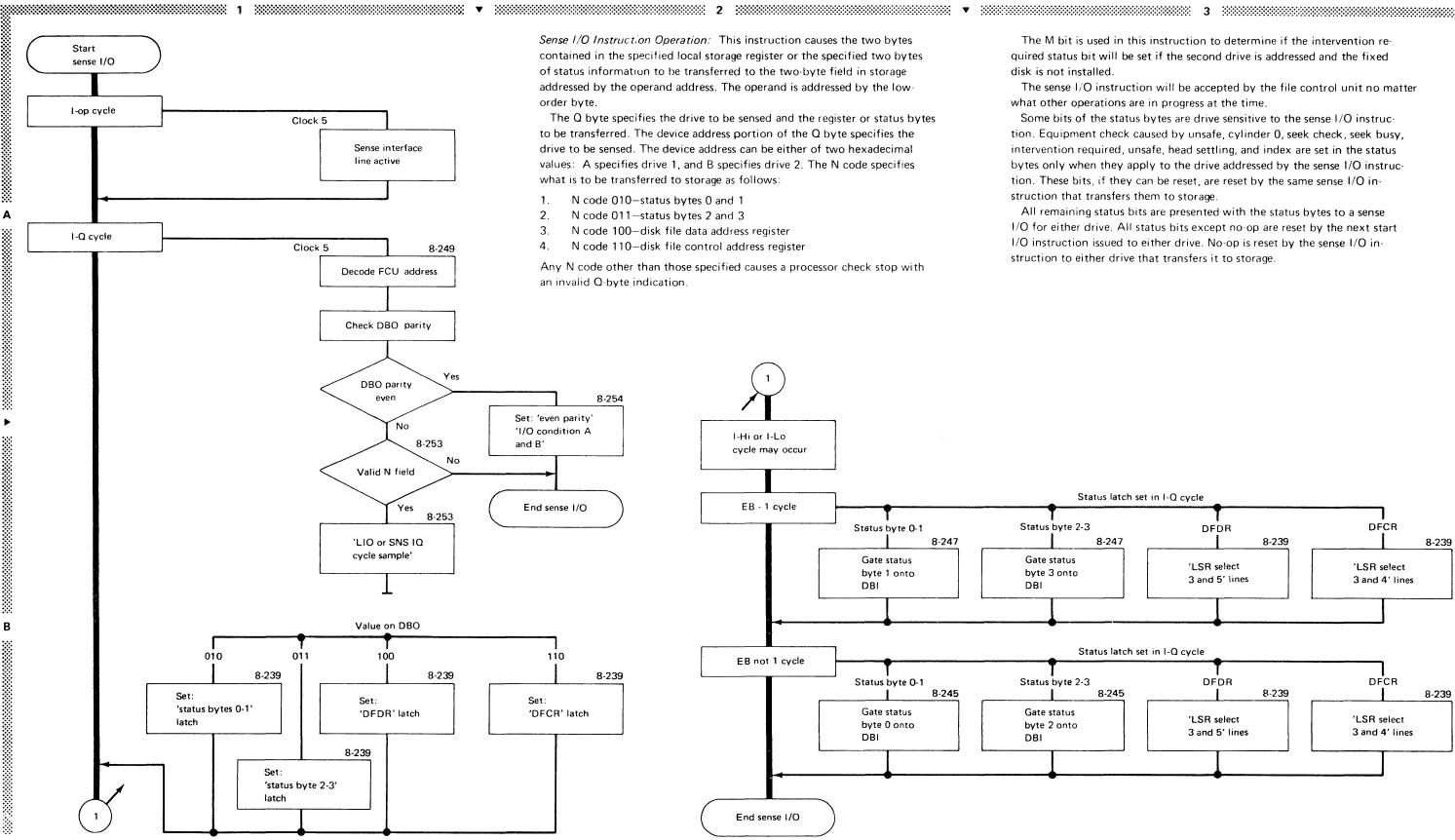
The Q byte specifies the drive to be tested and the conditions to be tested for. The device address portion of the Q byte specifies the drive to be tested and can take on two values: hexadecimal A indicating drive 1 and hexa-

The N code of the Q byte can specify testing for any of three conditions:

1. N code 000-(not ready/check) indicates that the drive is not in condition to operate or that a check condition has been detected. A check condition is indicated when either drive is addressed if the following device status is present.

Track condition check

Missing address marker


Equipment check not caused by unsafe

A check condition is also indicated if a seek check or unsafe exists for the addressed drive. A seek check or an unsafe for the drive not addressed will not be indicated. The drive that has the check condition can be determined from the status byte.

N code 010–(busy) control unit either is executing a read, write, or scan operation or has provisionally accepted one of these operations for execution at the end of the seek operation in progress. N code 100-(scan found) indicated when either drive is addressed. The sense byte indicates which drive contains the scan found condition. The scan found indication is reset by the next start I/O in-

Any N code other than those listed causes the processing unit to come to processor check stop with an invalid-Q-byte indication.

The M bit is not used except when addressing the second drive because it is possible that the fixed disk is not installed. Addressing an uninstalled fixed disk results in a not ready indication.

DISK ATTACHMENT-Operations Sense I/O Operation

	 2	▼	******
A			
8			
8			
8			
8			
8			
8			
×			
8			
8			
*			
8			
*			
*			
•	(Inten	tionally blank)	
*			
*			
8			
8			
*			
8			
8			
8			
8			
R			
*			
8			
8			
8			
8			
8			
*			
8			
B			
*			

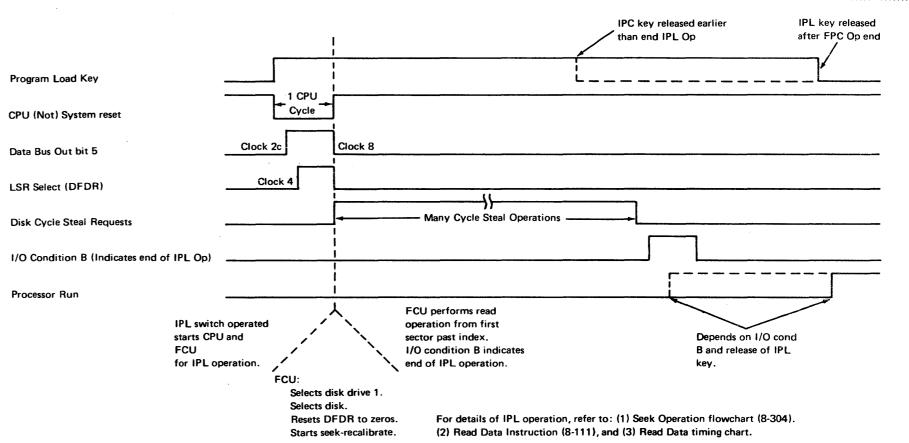
3

INITIAL PROGRAM LOAD

A

8

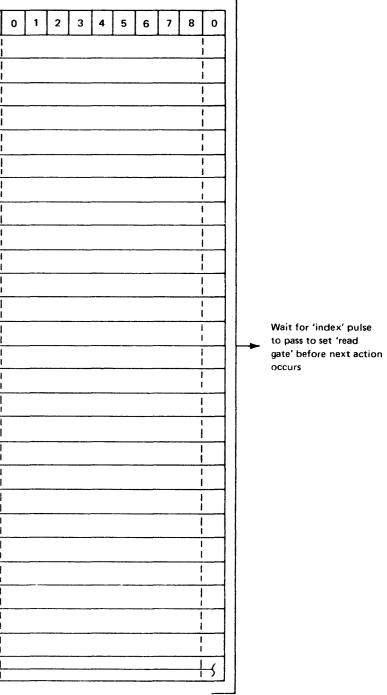
The initial program load is a disk read operation, started by the program load switch. A second switch, disk select, determines which disk in drive 1 data is to be read from. Sector zero data field on the selected disk is read and transferred into core storage starting at address 0000. When the 256 byte data field is read, the central processing unit starts processing at core ^{*}location 0000.


An initial program load is accomplished as follows:

- The program load selector is set either to the fixed disk or removable 1. disk position to select the disk to IPL from.
- 2. Operate the program load switch to start the IPL operation.

The program load switch starts a CPU system reset and activates DBO 5. One CPU machine cycle is started to reset the IAR to 0000. DBO 5 and system reset is sent to the file control unit and is a signal to start an IPL operation. An IPL operation:

- Selects disk drive 1 (spindle 0). 1.
- Selects the disk determined by the program load selector and head 0. 2.
- 3. Selects the DFDR and resets it to 0000.
- Starts a seek recalibrate operation to position the read heads to 4. cylinder zero.

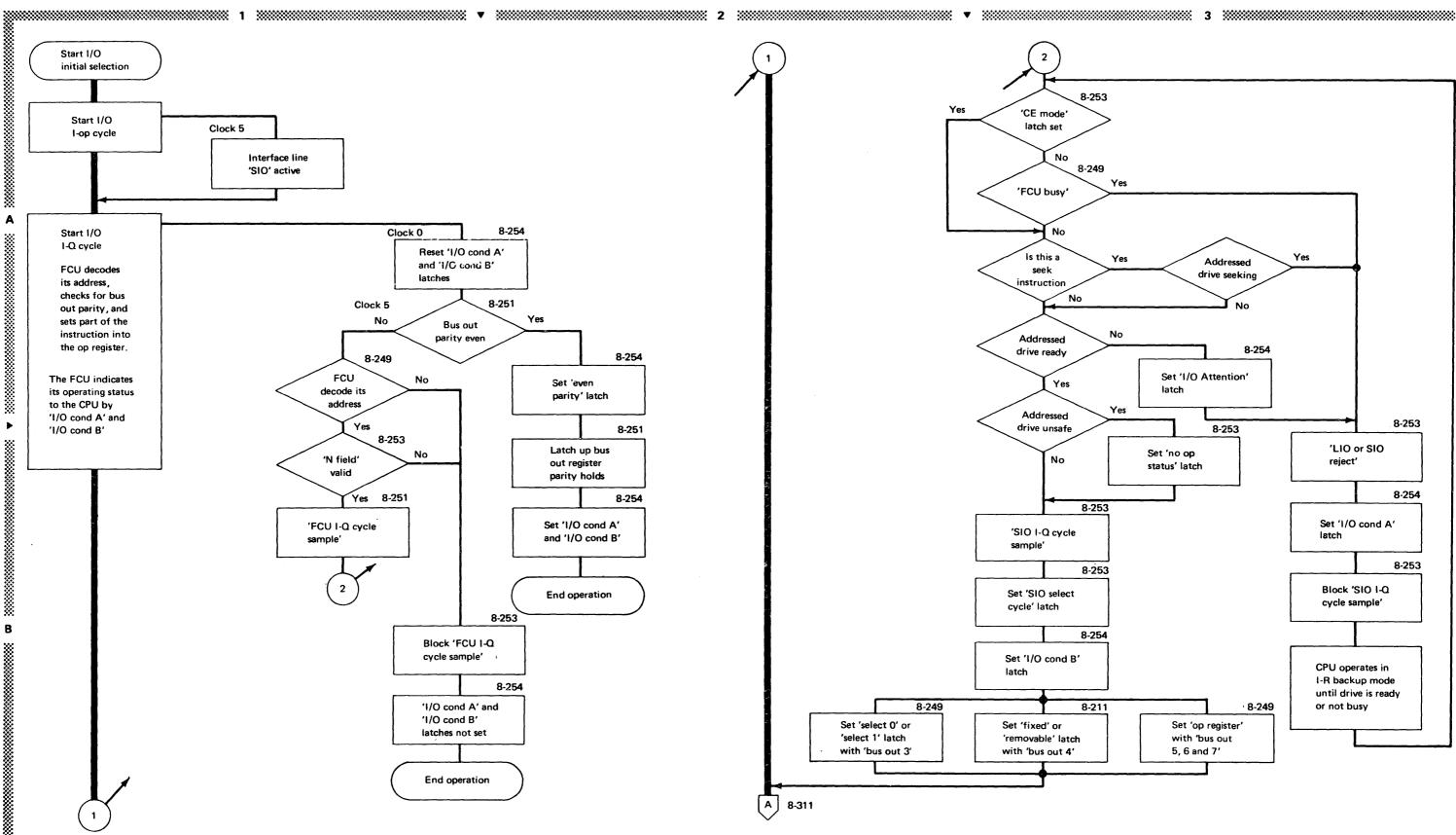

When the seek operation is complete and the head settle time has ended, the file control unit starts a read operation on the first sector after index. This read operation is exactly like a start I/O instruction read data operation except that the sector ID field is not compared to the disk control field in core. Two hundred fifty-six data bytes are read, each byte is transferred to the CPU with a cycle steal request (I/O cycle). At the end of the data field, the file control unit activates I/O condition B to signal the CPU to start processing at core location 0000. If I/O condition B is activated before the program load switch is released, the CPU waits until the switch is released before starting to process.

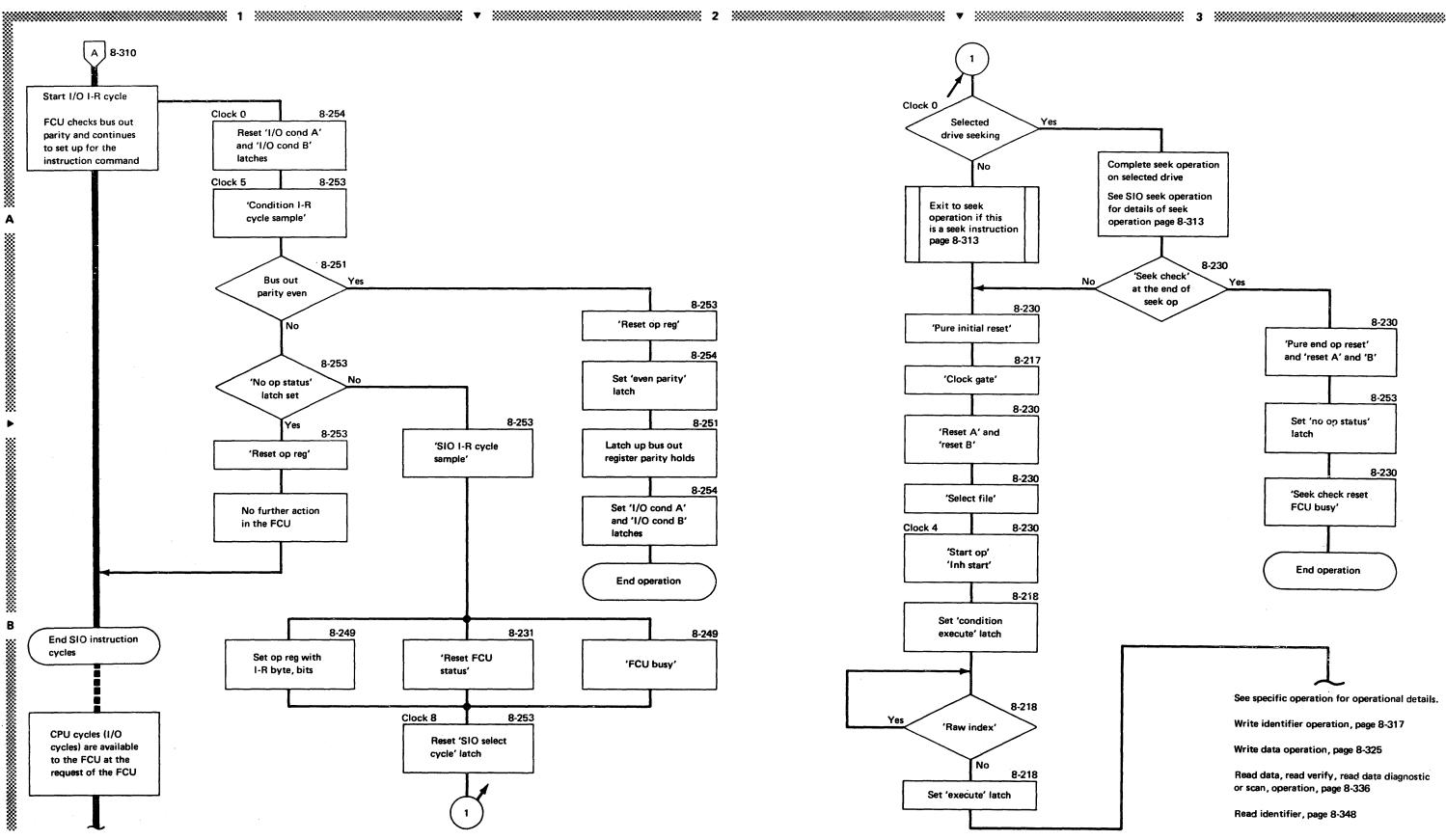
BR0605

3900			1	****	***	***	****	***	***	****	***	***	×	•	*	***	****	****	***	****	***	***	***	***	****	***	***	X	2	***	***	***	****	****	***	***		***	****	****	****	×	▼	*	***	***	***	***	****	***	8
	No	Signal name	Diagram																																																
*	1	CPU clock	CPU	0	T	1	2	3	4	1	5	6	7	8	3	0	1	2	F	4					5		8	0	1	2		3	4	5	6	7	1	8	0	1	:	2	3	4	Τ	5	6		7	8	Γ
8	2	Program load key	CPU			I						1		-1	1				.	4	Ac	tive	e ur	ntil	ор	erate		eleas	es k	ey						-		 		1					-			- -			1
*	3	CPU (not) system reset	CPU			<u>.</u>								* >						,							1																								1
	4	Data bus out 5 (CPU)	CPU			I conti	11.18	i ka ka		C.p. C.		0	1		1												1											1												1	
×	5	LSR select	CPU						_						I (CP	PU r	esets	DF	DR	to	000	00))																												1
8	6	Initialize IPL	8-239			1, :	3 an	d 4				a . 3a.			1																																				1
A	7	IPL	8-239	1							0	. 313	1a	nd 6						4	Re	eset	t by	y 'e	nd o	op re	eset											l													I
	8	Spin 0 select	8-249					6							1					4	Re	eset	t by	y ne	ext	driv	l e se	ecti	on									1													
	9	Seek spin 0	8-249					6	_				****	3 7	ł	<u> </u>	2300			,	_	,	4				27																							1	1
	10	Select fixed or removable	8-211					6							i					4	Ma	ake	sel	lect	ion	dete	l erm	ined	by	fixe	d-r	emo	vabl	e sw	itch					· · · · · ·											1
	11	Recalibrate op	8-215					6												,		,	6				27																								ī
	12	Go	8-215					6	г						 _ _	_							- ,			- 7 2	27	N	ote:	go	will	no	be	set i	f 'ho	ome	spir	ן ח 0'	is	acti	veo	or sp	oin O) is	not	rea	ady				1
	13	Reset condition end seek	8-215					1	253												-,	,	- 7			•	1																								ľ
	14	I/O working	8-253											7						(Re	eset	t by	/ I P	Lla	tch	i rese	et																						1	
	15	Head trigger	8-213					11					630	A						~	Ga	ate	to	sele	ect ł	nead	10											1												1	I
▶	16	I/O attention 0	8-254											7	,					, (Ac	ctiv	ve if	f sp	oind	le O	is n	otre	eady	w	en	IPL	latc	h is	set																1
*	17	Forward-reverse	8-215	3								, in the second			İ					, ,	Re	ever	rse	is s	elec	ted	 tł	is d	irect	tion	is a	activ	e un	itil r	next	dire	ectio	i on s	elec	tior	1										I
	18	Start op	8-230												!					,												1	- C	1																	I
	19	Inhibit start	8-230						_						1												1					1		1.11	(R	eset	l by	IPL	late	ch re	eset									Ī
	20	Reset A - reset B	8-230												1											1	1	AC .	1						,			1												1	1
	21	Initial reset	8-230																								1		1																					1	
	22	Select file	8-230												l											1			1.2.1.1		37			R	eset	by	'end	l op	o res	et'										ſ	1
	23	Head enable	8.213																							20					- i.e		, ,	R	eset	by	ʻind	l ex'													1
	24	Clock gate	8-217												1											2	1			1.8	- A.			R	eset	bγ	'AM	۱ tir	ne'												1
В	25	Condition execute	8-218												1											1	8 8					1.1.1.1	7		°		so it a	1			.	Re	set l	by '	enc	d of	o re	set'		1	
*	26	Execute latch	8-218	Se	et if	'in	dex'	is r	ot	activ	e				1											2	5											1			_	Re	set t	ογ '	enc	t op	o res	seť		1	
	27	End seek 0	8-215												1										1		1	1 /	Acti	ve v	vhe	n se	ek er	nds (or if	no	mot	۱ ion:	see	k, v	vher	n he	ad s	ett	le ti	ime	ou	t er	nds	1	Ī
	28	FCU clock	8-247	с	loc	k p	lses	be	gin	whe	n 'e:	kecu	te',	, line	1 e 26	i, is	activ	ve. C	Cloc	k dı	Irive	en f	fror	m 3	3.17	7 os	I SC L															_						5			
*				-								_																																							

Program load key is operated, FCU sets up for IPL operation, then waits for index to continue

****			*********	
	No	Signal name	Diagram	
8 (1	FCU clock	8-247	
	2	Raw index	8-218	
	3	Pre index condition	8-218	1 and 21 and 6
	4	Condition standard index	8-218	1 and 31 and 6
	5	Standard index	8-218	1 and 4 1 and 6
8	6	Condition index reset	8-218	1 and 5
A	7	Index time	8-218	1 and 5
×	8	Index times 1 through 4	8-218	7 and 10 1 2 3 4
*	9	Bit ring inhibit	8-227	5
8	10	Bit ring (starts at 7)	8-227	7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 5 0 1 2 3 4 5 6 7 5 0 1 2 3 4 5 6 7 0 1 2 3
	11	Control counter	8-223	
	12	Read gate	8-217	8 Reset by 'reset A'
8	13	Count zero gate	8-223	10 and 1110 10 and 1110
8	14	Counter set	8-223	7, 10 and 13 10 'set counter to 16'
8	15	Cycle control ring	8-221	<u>}</u> Reset AM
•	16	CCR advance gate	8-221	10, 13, and 1910
	17	Condition first AM	8-221	15
	18	Clock gate	8-218	Clock driven from 3.177 osc — — — — — — — — — — — — — — — — — — —
×	19	Pre advance gate	8-221	10 and 11 Reset by 'reset B'
				Sense 'index', set 'read gate', then wait for zeros and address mark detect to continue
8				
≫ B				

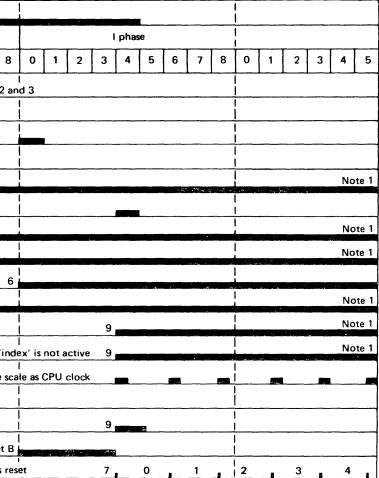

Wait for 'zeros detect' and address mark detect. When an address mark is detected the FCU continues to read the ID field, however no ID compare with the disk control field is made	The FCU cycles through the ID field. When the cycle control ring reaches data time, the FCU starts to read data and sends it to the CPU to be stored at the DFDR address. Note: see read data operation for details of read data field	At post data time, counter decode 1 and bit ring 7 time, (this condition occurs at the end of post data time) 'pure end op reset' is active to deselect the drive and reset the 'IPL' latch	'IPL set I/O condition is active and indicates end of the IPL operat to the CPU. The CPU starts processing at co location 0000
--	---	---	---


• •

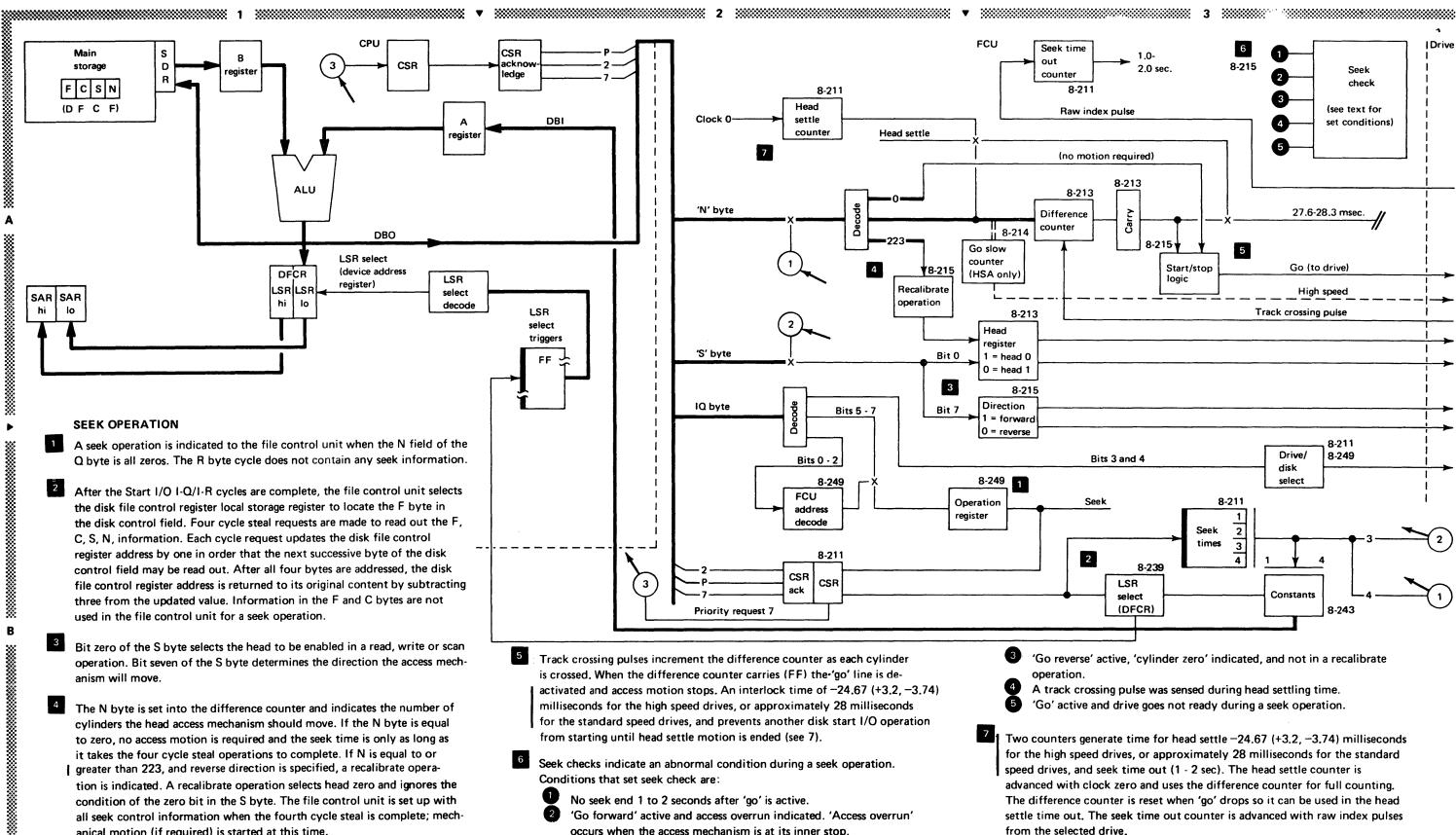
B' the ion re

.

DISK ATTACHMENT-Operations Start I/O Initial Selection (Part 1 of 3)


DISK ATTACHMENT-Operations Start I/O Initial Selection (Part 2 of 3)

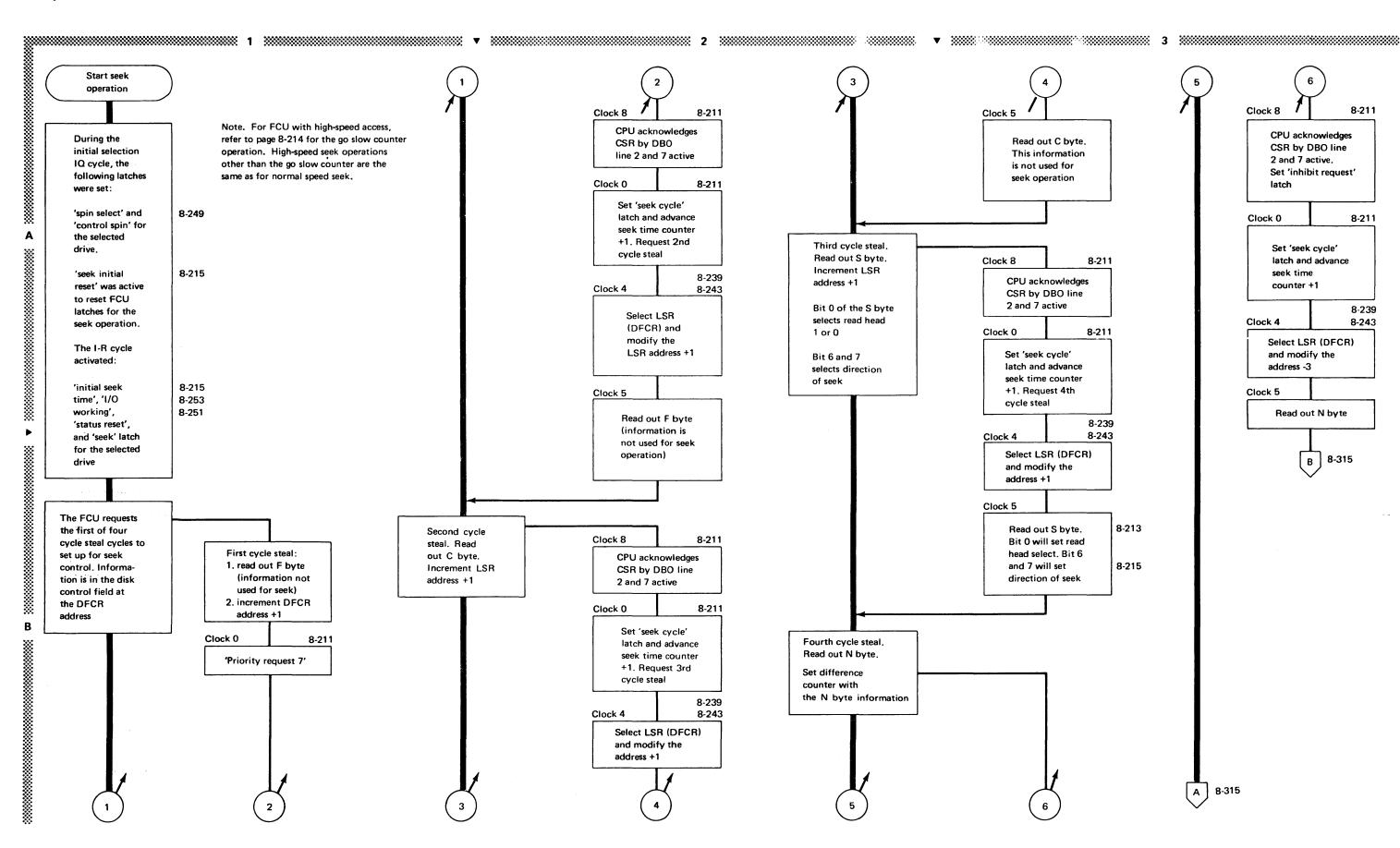
DISK ATTACHMENT-Operations Start I/O Initial Selection (Part 3 of 3)

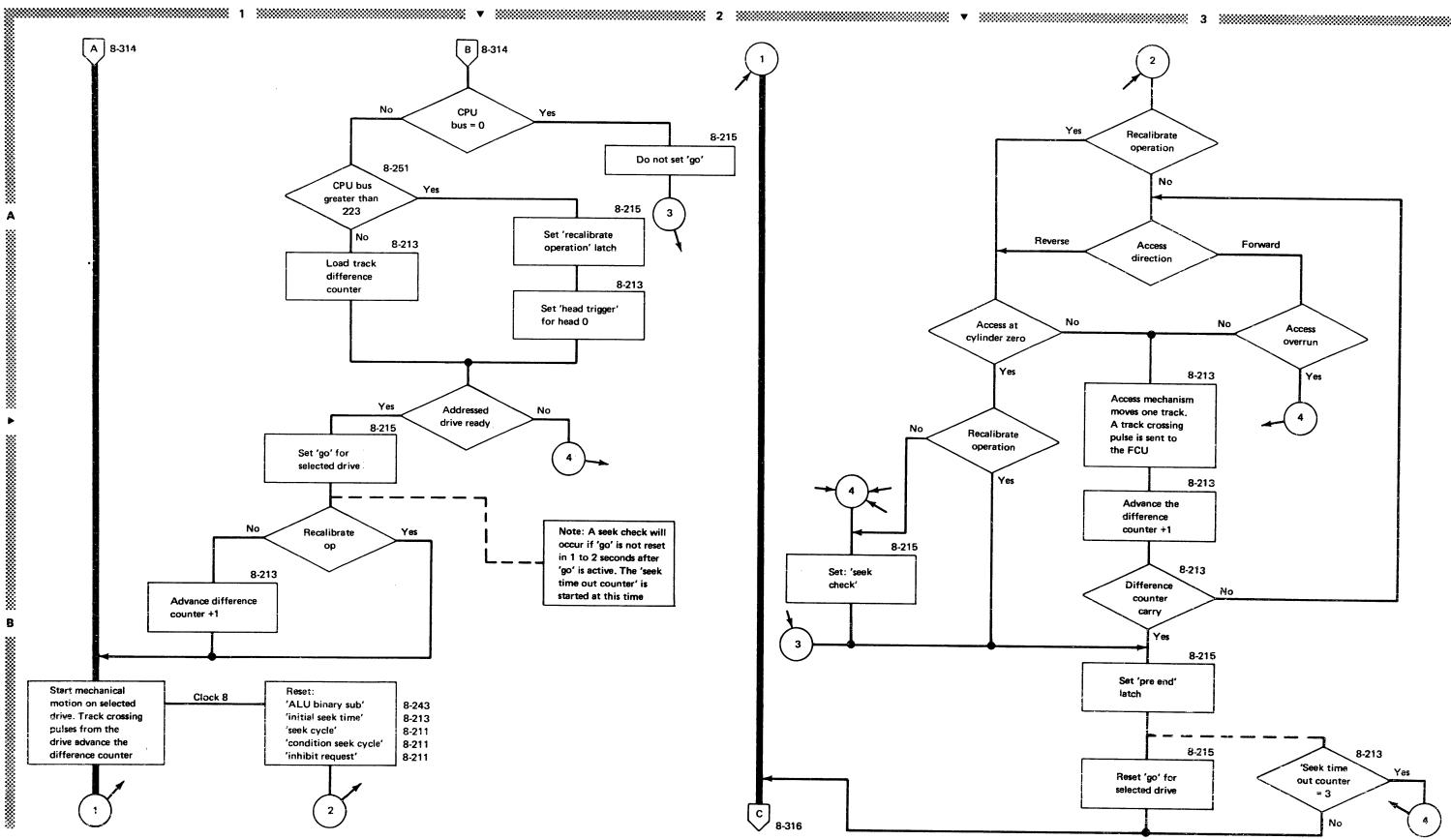

No	Signal name	Diagram					_																	
1	Start I - O	Interface line			3																and the second			
2	CPU cycle				I - op)						۱ -	٥							1	R			
3	CPU clock times	CPU	0 1	2	3 4	5	6 7	7 8	0	1	2	3	4 !	5 6	7	8	0	1	2	3	4 5	6	7	8
4	SIO select cycle	8-253							1				5				1							2 a
5	Signal name Start I - O CPU cycle CPU clock times SIO select cycle Cycle sample - (I-Q or I-R) Initial reset I - O condition B	8-253	This erro	signal is r in the l	blocked	dinca Rcyc	ise of ai le	n	1						(a - 15 a) 4		1	S	14.0 - 0 - 00					
6	Initial reset	8-230																						
7	I - O condition B	8-254																						
8	FCU busy	8-249															 		Ę	5 and	11			
9	Start op	8-230							1															
10	Drive select	8-249							1				5											
11	Write read or scan operation	8-249			<u></u>				1				5				1							
12	Clock gate	8-217							1					- 1 × 10-										6
13	Write ID, read ID, read data, or scan (specific operation)	8-249	· · · · · · · · · · · · · · · · · · ·																		5			
14	Condition execute	8-218							1			-												
15	Execute	8-218							1													Acti	ive if	ʻind
16	FCU clock	8-247							I									Note	: FCL	J cloc	< is no	t to the		
17	Raw index	8-218							1								ł							
18	Set counter to 8	8-223							1								 							
19	Bit ring inhibit	8-225		· · · · · · · · · · · · · · · · · · ·					1														Rese	et E
20	Bit ring	8-225							1							Bit	i tring o	ositi	on sev	/en ac	tive wl	nen bit		

Set Q byte N field into FCU operation register Set control code into operation register

Note 1: These lines are active until 'end operation reset'. Normally this will occur when an operation is complete. An FCU error may cause 'end op reset' to be active at any time

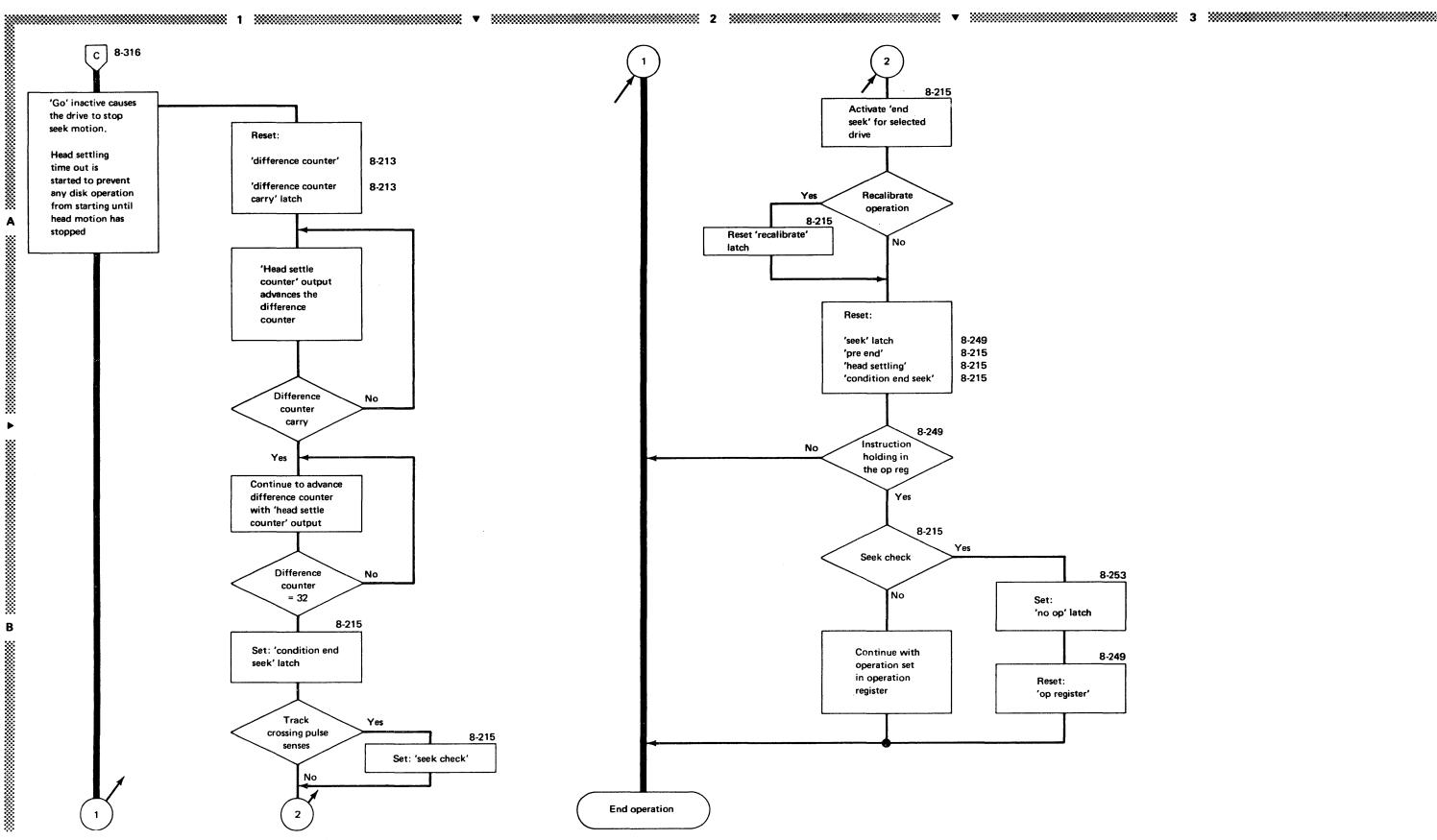
tion is indicated. A recalibrate operation selects head zero and ignores the condition of the zero bit in the S byte. The file control unit is set up with all seek control information when the fourth cycle steal is complete; mechanical motion (if required) is started at this time.


No seek end 1 to 2 seconds after 'go' is active. 'Go forward' active and access overrun indicated. 'Access overrun' occurs when the access mechanism is at its inner stop.


2

from the selected drive.

advanced with clock zero and uses the difference counter for full counting. The difference counter is reset when 'go' drops so it can be used in the head settle time out. The seek time out counter is advanced with raw index pulses


DISK ATTACHMENT-Operations Seek Operation (Part 2 of 4)

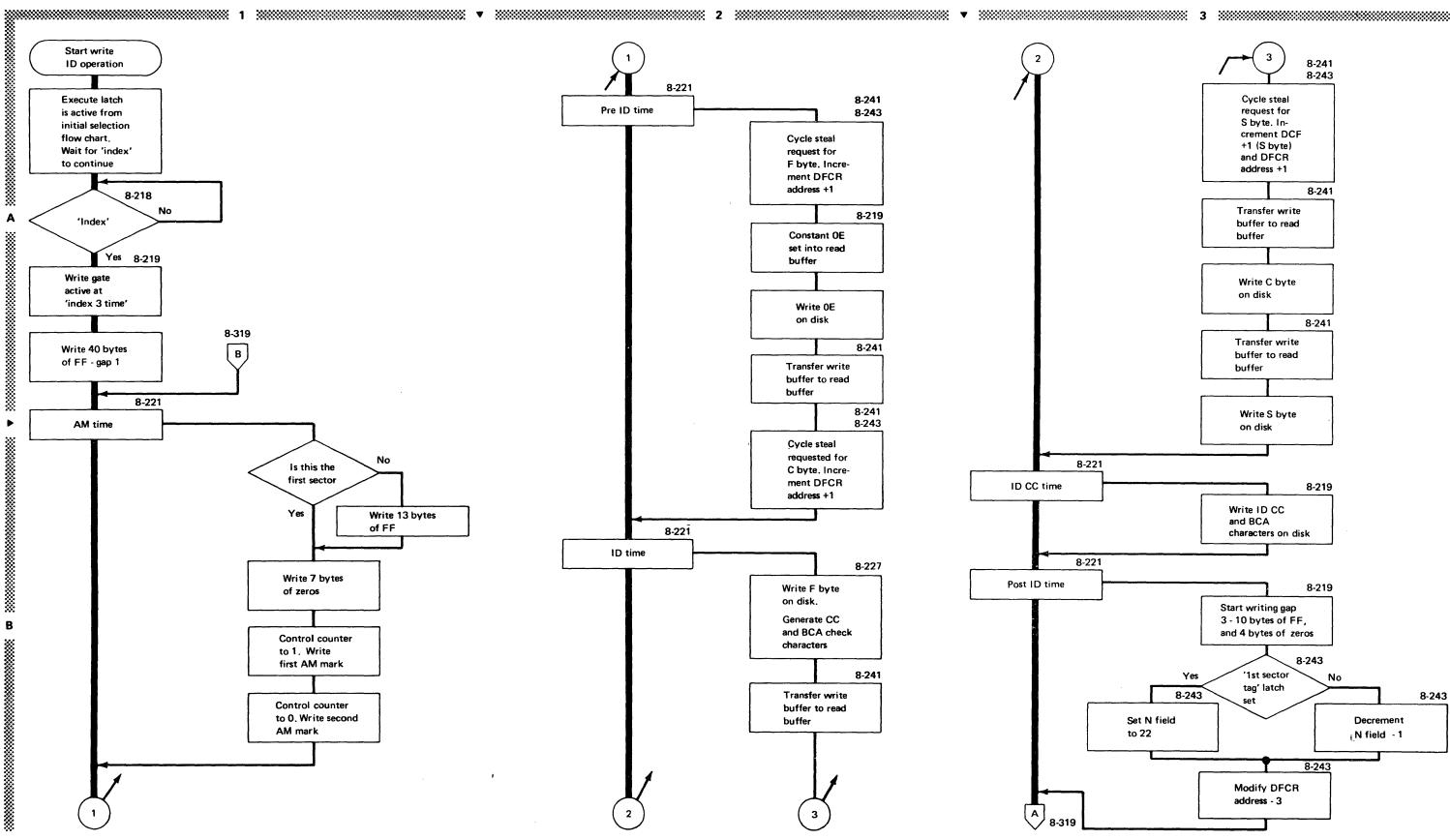
DISK ATTACHMENT-Operations Seek Operation (Part 3 of 4)

DISK ATTACHMENT-Operations Seek Operation (Part 4 of 4)

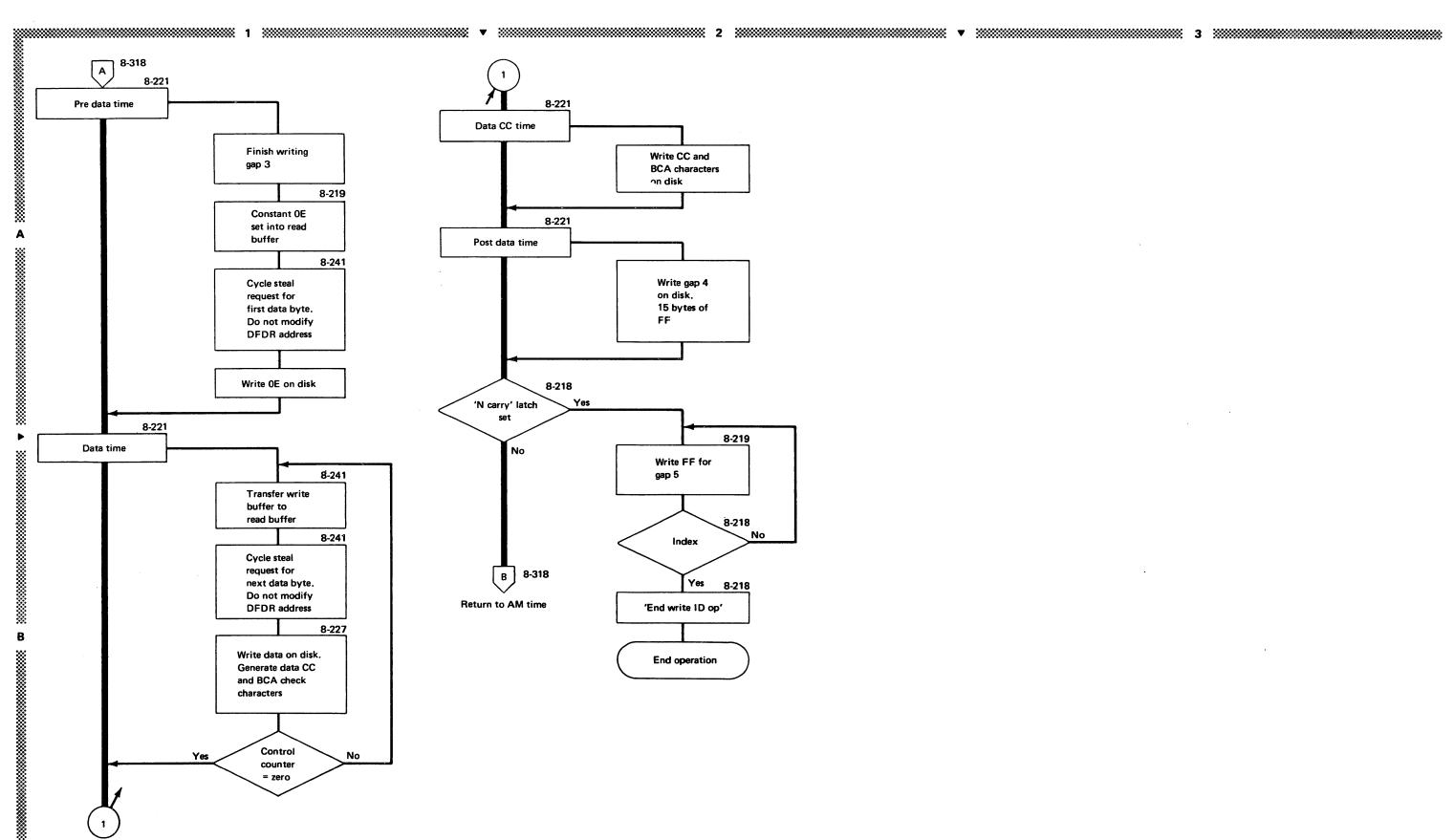
WRITE IDENTIFIER OPERATION

This instruction initiates the writing of a 24-sector format on the selected disk. The operation always starts at the index marker on the disk and writes 24-sector formats. There is no identifier-field compare on a write-identifier instruction before writing.

- This operation always writes 24 sectors per track.
- Operation starts at index.
- The N byte in the disk control field is automatically set to 22 by the file control unit (24 sectors are written).
- Sector number is incremented by one. N byte is decremented by one for each sector written. Both of these bytes are in the disk control field in core.
- The DFDR local storage register is not updated for each byte written in the data field. The same character is written repeatedly for the 256 byte data field.
- Cyclic code and bit count appendage characters are generated for the ID and data field. These characters are written at the end of their respective fields within each sector format.
- Two bytes of 'F2' with 2 clock bits missing are written for address marks.


The contents of the sector-identifier field is the first three bytes of the disk-control field (F, C, S) as addressed by the DFCR. The N byte is set by the control unit to ensure writing exactly 24 sectors per track. As each identifier is written on the file the sector number of the disk-control field (S byte) is incremented by one and the N field is decremented by one.

The data field for each sector is written with data from core addressed by the DFDR. This register is not incremented so the entire 256-byte field is written with the same character. If all records have been written, the N byte contains hexadecimal EF.


The file control unit is busy to all new operations during a write-identifier operation except sense I/O. The read verify command must be used to check for write errors after a write identifier command, in order to meet file performance specifications.

 \mathbf{v}

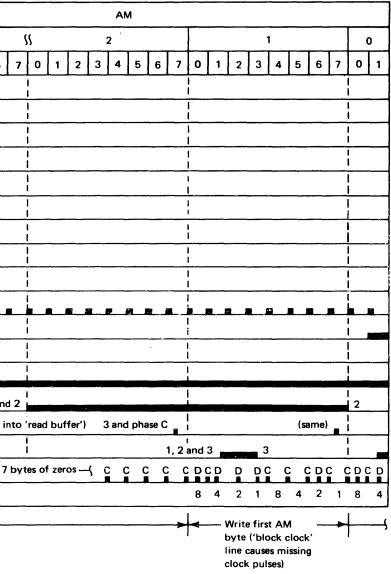
DISK ATTACHMENT-Operations Write Identifier Operation (Part 2 of 9)

DISK ATTACHMENT-Operations Write Identifier Operation (Part 3 of 9)

.

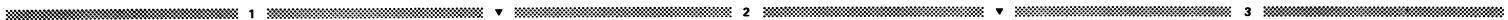
No	Signal name	Diagram						
1	Cycle control ring	8-221	Ş		Reset			•
2	Control counter	8-223	2	1	0	25	22	<u>\$</u> 8
3	Bit ring	8-225	7	0 1 2 3 4 5 6	7 0 1 2 3	4 5 6 7 0 1	2 3 4 5 6 7	7 0 1 2 3 4 5 6
4	Raw index	8-218		(4:	3 μs long)			
5	Bit ring inhibit	8-225	8	1	 	 		l 1
6	Pre index condition	8-218	4 and 13	1	1	1		l t
7	Condition standard index	8-218	6 and 13	1	1			
8	Standard index	8-218	⁻⁷ and 13		1			
9	Condition index reset	8-218	8 and 13		1	4		
10	Index reset	8-218	4 and 9		1			i i
11	Index time	8-218	8 and 13		1	3 and 14		1
12	Index time 1, 2, 3, 4	8-218		1 2 3	¦ 4	!		
13	Clock	8-247						
14	Count zero gate	8-223		 	2 and 3	2 and 3		
15	Write FF	8-219		l I 12		1		I Land 2
16	Write gate	8-219	1:	2 and 21				
17	Gate F2 into read buffer	8-219		 	: 			l 1 and
18	Set fixed write data	8-219		I I	 			set byte F2 int
19	Block clock	8-219		j j	 			
20	Spin write data	8-219		CD:CD }	Write 4	0 bytes of FF		CCCCCC↓ Write 7 t
21	1st sector tag	8-243				Reset by pre d		

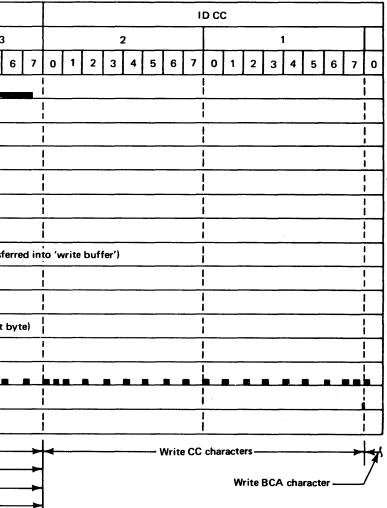
В


Ì

.

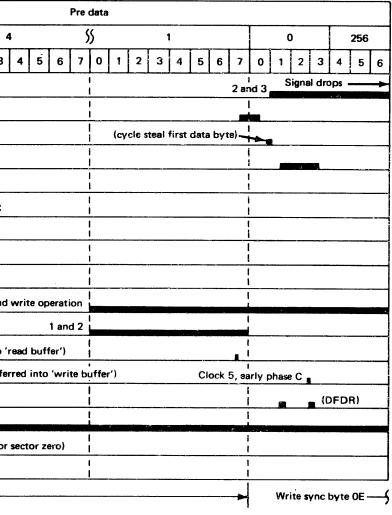
Α For 2nd through 24th sector-


operation starts here



No	Signal name	Diagram																		
1	Signal name Cycle control ring Control counter Bit ring Count zero gate Condition priority request Priority request 3 Data cycle request gate	8-221	АМ			Pre	ID								ID					
2	Control counter	8-223		0				3			2				1			0		3
3	Bit ring	8-225	2 3 4 5	6 7	0 1	2 3	4 5	67	0 1	2 3	4	567	0	1 2	3 4	567	7 0	1 2	3	4 5 6
4	Count zero gate	8-223															1			
5	Condition priority request	8-241	Bit ring 7, pha	se C	Clock 3				1					(cyc	le steal r	equest)				
6	Priority request 3	8-241		Clock 6	, 5 .												ł			
7	Data cycle request gate	8-241		Cloc	l ck 8	Cloc	ck 7													
8	ID area	8-241							!				2							
9	Gate read buffer bit 4, 5 & 6	8-219	(0E)		1				1				1							
10	Set fixed write data	8-219		1	 	(:	set cons	tant OE	into 'rea	d buffer	')		 				1			
11	Set write buffer	8-241	Clock	c 5, early	phase C	(F byte))		 	(C b	oyte)			(S	byte)		1	(data	on DE	BO transfei
12	Xfer write buffer to read buffer	8-241			1			1						_		5	1			
13	Input data time	8-243		1 ar	nd 4												1	4		
14	Constant on DBI	8-243			Clock 4	DBI lin	e 7		1	DBI	l line 7		I Clock 2		Bl line 7		(1	update (DFCR	for next b
15	DFCR select	8-239		Clo	l ck8	Clock 4	L .	с	I lock 8	Cloc	ck 4		ı Clock 8		lock 4					
16	Spin write data	8-219																		
17	Xfer chk ctr to CC register	8-237							1											
18	Input data time	8-243			l I								1							
		Wr	rite 2nd AM byte	>	 ∢ 0	>	◀	E>		FI	lag ——			c	ylinder -		►		-Sect	or
						- Write	gap 2	>				· .			ield info					<u></u>
					·							Increm				characters yte cycle s		ime		
												- Increm			n ng 5 b'	y le cycle :	SIEdi I	e		

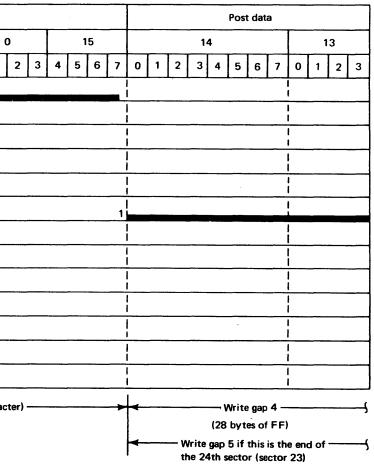
.



DISK ATTACHMENT-Operations Write Identifier Operation (Part 6 of 9)

• • •

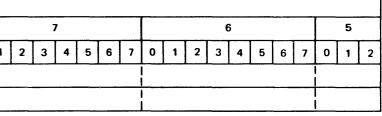
No	Signal name	Diagram							
1	Cycle control ring	8-221	ID CC	inn a' dòr a fhif a th' a' d' d' d' da a' dhachar a dh' dan ann an ann an ann an ann an ann ann	Post ID		Pre	data	
2	Control counter	8-223	0 5	4	3	SS 0 10	۰ <u>۶۶</u> 4 ۶	5 1	0
3	Bit ring	8-225	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5	6 7 0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4
4	Count zero gate	8-223	2 and 3	······································	2a	nd 3		2a	nd 3 Signal drops
5	Condition prior request	8-241		Bit ring 7, phase C	Clock 3				
6	Prior request 3	8-241		i Clock	6	1		(cycle steal first data byte)-	
7	Data cycle request gate	8-241		l Cle	ock 8 Clock 7		1		
8	Constant on DBi	8-243		ı (set N field to 22) Clock 2, DBI		। 7 (subtract 3 from DFCR a	l ddress)		ł
9	Write FF	8-219	1			1	2 and phase C		í I
10	ALU binary subtract	8-243			Clock 4 Clock 8	1			1
11	Store data	8-243		 (Clock 2	1			1
12	Block SDR-B register	8-243				8			1
13	Data area	8-241				1	I 1, 2 and write operation		
14	Gate bits 4, 5, & 6 to read buffer (OE)	8-219				1	l 1 and 2		
15	Set fixed write data	8-219				8	 (set OE into 'read buffer')	ſ	ŧ I
16	Set write buffer	8-241				1	, (DBO data transferred into 'write bi	uffer') Clock 5, a	i arly phase C 🔒
17	LSR selected	8-239		l Cic	ock 8 Clock 4 (DFCR)	8			(DFD
18	Input data time	8-243				1			1
19	1st sector tag	8-243					(active only for sector zero)		1
20	Decrement N	8-243		Subtract 1 from N field C	lock 2 _ (active only when line	1 19 is inactive on sector 1 th	rough 23)		1


-

	No	Signal name	Diagram							
	1	Cycle control ring	8-221	Pre data	D	ata			Data CC	
X	2	Control counter	8-223	256	255	š) O	3	2	1	0
8	3	Bit ring	8-225	567	0 1 2 3 4 5 6 7	0 1 2 3	4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3
×	4	Count zero gate	8-223		l 2 an	i d 3		1	1 2 an	l d 3
×	5	Condition prior request	8-241		I L Clock 3				1	
×	6	Priority request 3	8-241	Cloc	r ck 6	1			1	
×	1	Data cycle request gate	8-241		Clock 8 Clock 7	 		1	1	1
		Constant on DBI	8-243					l (do not change DFDR value)	1	1
	9	Write FF	8-219					1	ł 	1
	10	Input data time	8-243			1		1	1	1
8	11	Xfer write buffer to read buffer	8-241					1		
8	12	Block SDR-B register	8-243					1	1	1
	13	Data area	8-241			Counter decode	e 1	1	1	1
	14	LSR select	8-239	DFDR	i clock 8 Clock 4	1		1	1	1
×	15	BCA to CC register gate	8-237			l (transf	er check characte	r register into CC register)	!)
×		Set write buffer	8-241		i early phase C	1		1	 	1
8				-	(this sequence repeated unti	l control counter				
Ĭ		· · ·								

DISK ATTACHMENT-Operations Write Identifier Operation (Part 7 of 9)

1 - -


.

DISK ATTACHMENT-Operations Write Identifier Operation (Part 8 of 9)

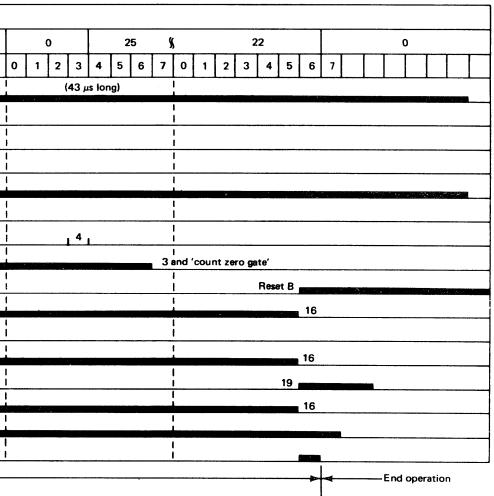
•

			× 1 ×××××	****	***	****	****		***	*****	***	****	▼	***	*****	***		****	****		***	***	****	***	2	***	***	***	***		****	****	***	****	***	****	**	▼	***	****	****	****		
X	No	Signal name	Diagram																		_																							
	1	Cycle control ring	8-221						F	Post da	ata						-																	۸M										
	2	Control counter	8-223			13		\$		0				22	!					2	21				\$				ę)								8						
	3	Bit ring	8-225	4	Ţ	5 6	5	7 0	T	1 2	2	3	4	5	6	7	0	1	2	3	4	5	6	7	,	0	ī	2	3	4	5	6	7	0	T	2	٢Ţ	3	4	5	6	7	0	1
8	4	Write FF	8 <u>-</u> 219					Ì						â		1								_	1				× .2*					 Ph	nase	с								
	5	Count zero gate	8-223	Γ				ı 2 and	3																																			
	<u></u>			ξ												- v	Nrite	FF	(gap	4 0	5)												>				. Re Fo	eturn or en	to ding	A	> or juenc	n pag e aft	ge 8-3 ter th	i20 f e 24
A																																												

.

20 for sector 1 through 24.

e 24th sector, see next page


•
•
- 24
•
- 2
- 6
- 2
- 6
•
- 63
. •
- 61
•
- 2
- •
. •
- •
•
- 4
-

8

▼			3 0000000000000000000000000000000000000
---	--	--	---

No Signal name Diagram 1 Cycle control ring 8-221 Post data s 2 2 Control counter 8-223 13 0 1 0 5 6 7 0 1 2 3 4 5 6 7 0 1 7 5 6 7 0 1 2 3 4 5 6 7 3 1 2 8-221 4 0 3 Bit ring (43 µs long) 8-218 4 Raw index Index sensed at drive 8-218 5 Pre index condition 4 and clock 6 8-218 **Condition index** 5 and not clock 7 Standard index 8-218 6 and not clock 8-218 8 Condition index reset 7 and clock 9 8-218 Index reset 4 and 8 10 Index times 1, 2, 3 & 4 8-218 1 2 3 . 4 . 11 8-218 Index time 7 and clock 12 Bit ring inhibit 8-225 13 Write FF 8-219 8-219 14 Write gate 10 15 8-219 Erase gate 16 8-230 Reset A - 1 17 8-218 Execute 18 FCU busy 8-249 19 End write ID 8-218

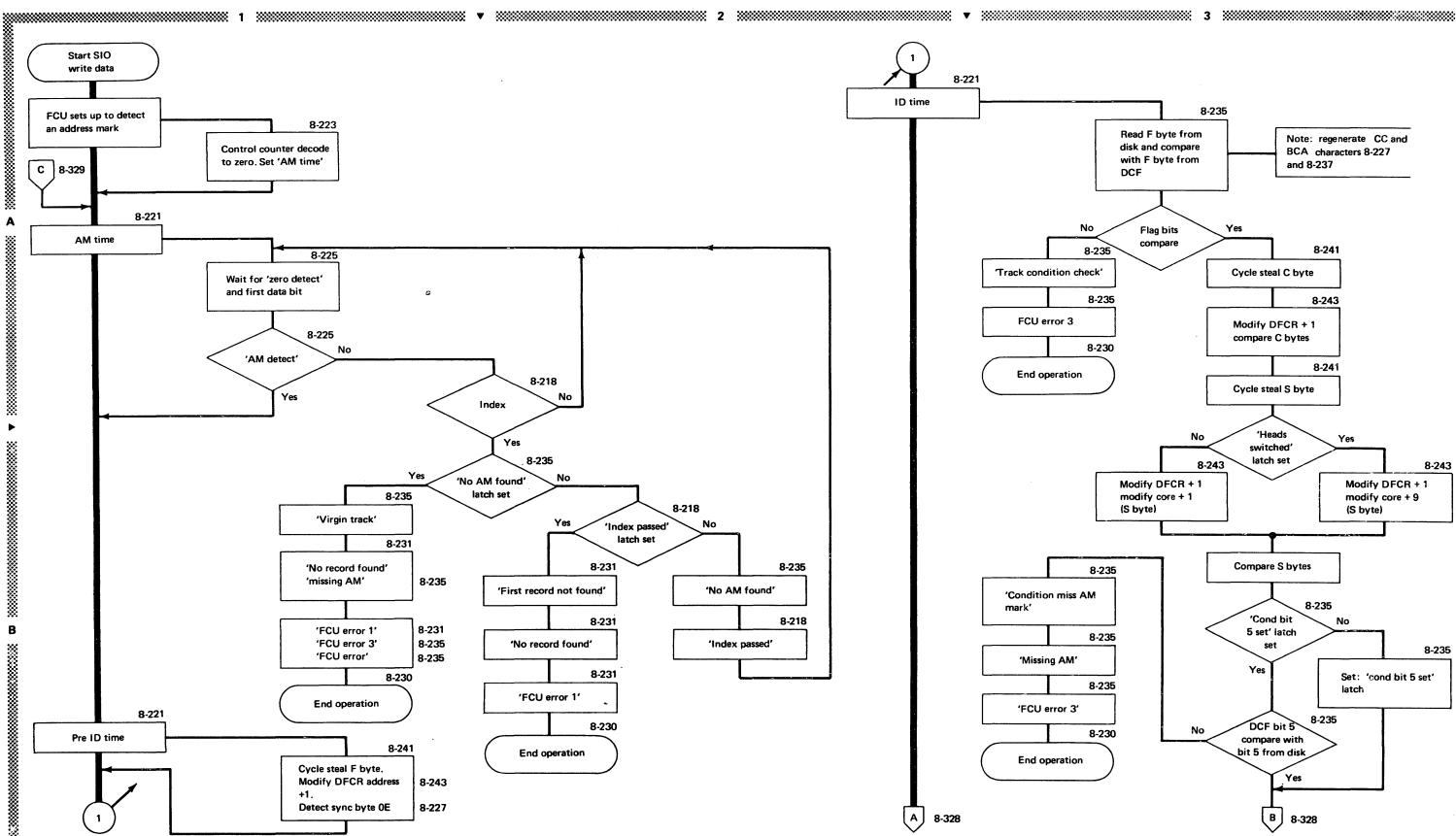
Write gap 5 (write FF until 'reset A')-

WRITE DATA OPERATION

This instruction initiates the transfer of data from core storage to the selected track on the disk. Data is transferred in multiples of 256 bytes. The entire data contents of a cylinder may be written (maximum of 48 sectors) if started with sector 0, head 0. Only consecutive sectors are written when multiple-sector operation is indicated.

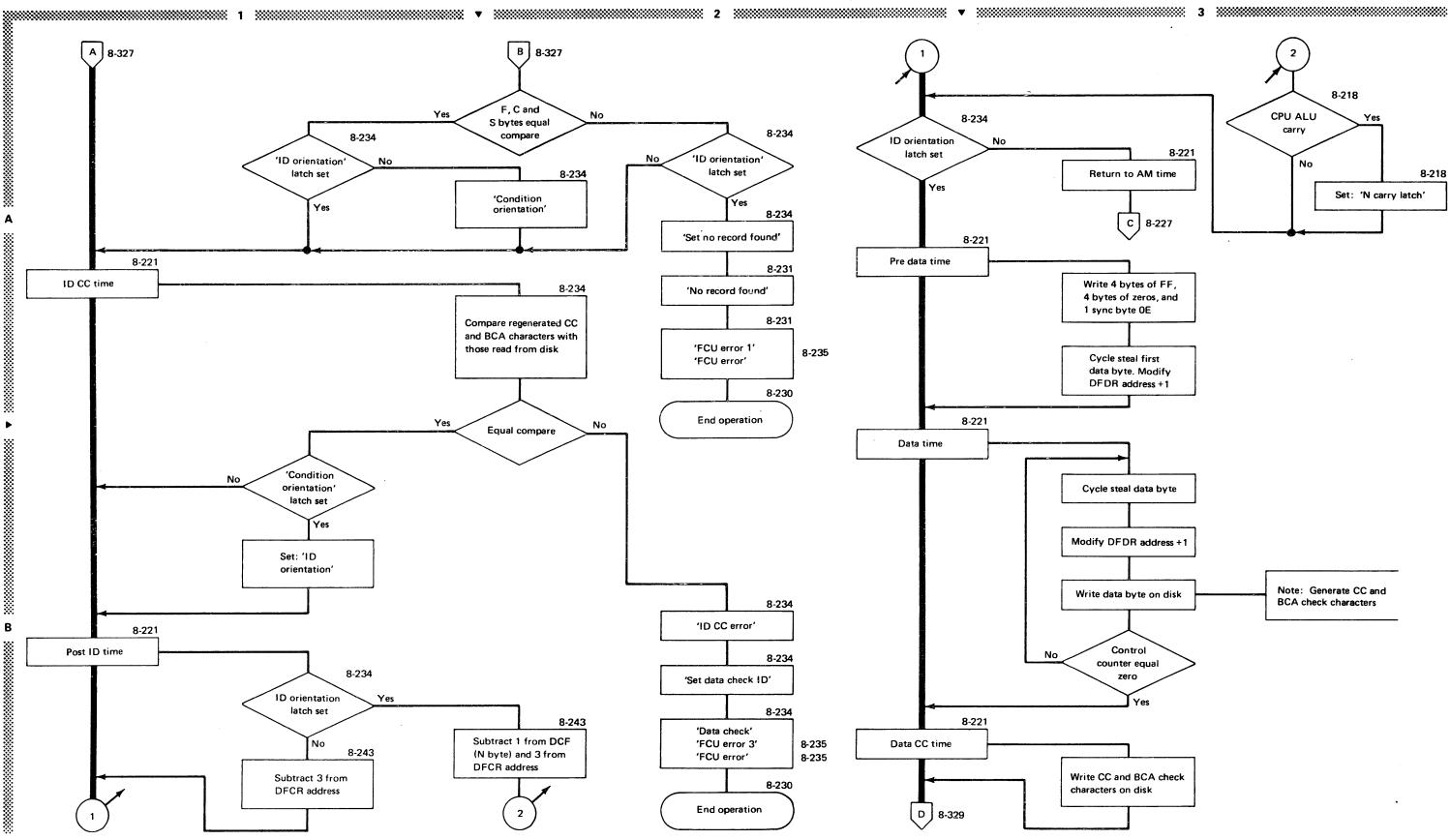
- Data in core storage to be written on disk is transferred when the ID information in the disk control field correctly compares with an ID area read from disk.
- 256 data bytes per sector are written in the data field. Up to 48 sectors may be written during one start I/O instruction. The file control unit switches head selection and updates the sector number in the disk control field to 32 when required in a multi-sector operation.
- The DFDR is addressed to obtain the location of the data byte to be written. The DFDR is updated one for each cycle steal within the data field.
- Cyclic code and BCA characters are generated and written after the data field. Only the data field CC and BCA are re-written. The ID area remains unchanged.
- Operation ends when the N byte in the disk control field carries. File control unit logic brings up 'end op reset' at post data time when the N byte carry is indicated.

Writing of data begins with the sector specified by the file identifier in the disk-control field located in the core storage. A comparison is made between disk control field identifier and sector identifiers read from the selected disk track. Comparing begins with the first ID to pass under the read head. An equal compare of the 3-byte identifier enables the transfer of the 256-byte sector data. The data is fetched from core using the DFDR for addressing. When multiple sectors are indicated, the attachment logic updates the disk control field sector number by plus one and decrements the N field by one. This updated identifier is compared with the next identifier read from the disk. In the multiple-sector write that requires head switching, the attachment updates the last disk address in the control field by adding nine to it. An equal comparison must be made on all succeeding addresses before their corresponding data fields are written on the disk. The data field of a sector is not written if an error is indicatred before writing of data begins.


The write-data operation is ended by completing the N+1 sectors called for in the N byte of the disk-control field or by the detection of an error condition. An equipment check ends the operation immediately. The presence of the error can be determined by a test I/O and branch instruction.

The control unit is busy to any new operation except sense I/O while it is performing a write data operation. During writing, the control unit generates two cyclic-check characters and a one bit-count-appendage byte for each data field. The characters are recorded at the end of the data field. The verify command must be used to check for write errors to meet file performance specifications.

During the writing of each identifier and data field, the attachment hardware generates two cyclic-check bytes and one bit-count-appendage byte which are automatically written at the end of each field.


At the end of the operation the disk-control field contains information about the progress of the operation. The identifier portion of the diskcontrol field indicates the last sector written or attempted to be written. The number of records written (or attempted to be written in case of an error condition) can be determined by subtracting the contents of the N byte of the disk-control field from its original value unless all records have been processed.

 \sim

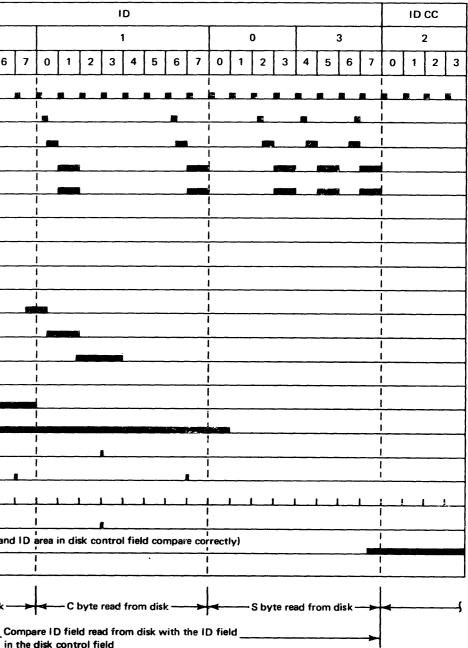
DISK ATTACHMENT-Operations Write Data Operation (Part 2 of 9)

DISK ATTACHMENT-Operations Write Data Operation (Part 3 of 9)

DISK ATTACHMENT-Operations Write Data Operation (Part 4 of 9)

		Diserso	
40 T	Signal name	Diagram	
1	Cycle control ring	8-221	General AM
2	Control counter	8-223	Reset 8 7 6 3 0
3	Bit ring	8-225	7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 -5
4	Clock	8-247	
5	Bit ring inhibit	8-225	14 10
6	CCR pre advance gate	8-223	2 and 3 Active until 'reset B'
7	CCR advance gate	8-223	Bit ring 7 and phase D Phase C
8	Count zero gate	8-223	2 and 3 9 and (not) phase D
9	Count zero reset	8-223	7 7
10	Pending AM time	8-221	7 7
11	Conditions 1st AM	8-221	1 Active until 'reset B'
12	Clock gate	8-217	Active from initial selection Clock driven from 3.177 MHz osc. Clock driven from separated clock 1 and phase D
13	Set CC register pos 1 on	8-227	10 and 17 10
14	Start op	8-230	CPU clock 4
15	Set counter to 8	8-223	14 14
16	Condition read gate	8-218	15 2 and 3
17	Read gate	8-218	2, 3 and 16
18	Search address mark	8-225	1 and 17

.


In the initial selection flow chart, the file control unit was set up for a write data operation. The next objective is to locate an address mark. Address mark detection is started when zeros in the sector gaps are detected to indicate to the file control unit that an address mark is approaching the read heads in the drive. The next data bit read, after zeros detect, starts the FCU looking for the address mark.

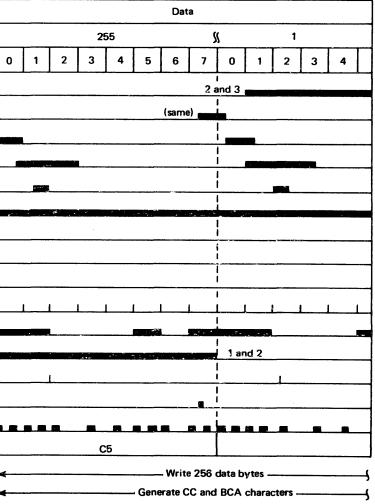
AM
s
•
Phase C
ind (not) phase D
7
7
Active until 'reset B'
Clock driven from separated clock 1 and phase D
10
d 3
,
tive when zeroes are detected

No Signal name Diagram 8-221 AM Pre ID Cycle control ring 1 3 2 8-223 **}**−0 -2 Control counter 3 4 0 1 2 3 4 5 6 7 8-225 7 С 3 4 5 6 7 0 1 2 5 6 7 0 2 3 Bit ring 4 Separated clock 8-237 5 Separated data 8-237 8-227 6 Standard read data 8-227 7 Compare data A Standard write trigger 8-251 8 9 8-225 Bit ring inhibit 8-227 10 Zero detect Phase A 11 Start AM search latch 8-225 12 Sync detect latch 8-227 8-241 13 Condition prior request Bit ring 7, phase C 8-241 14 Prior request Clock 3 Clock 0 15 8-241 Data cycle register gate Clock 8 Clock 7 8-227 16 CC register reset 8-241 17 ID area 18 8-241 Input data time 19 8-241 (DBO data set into 'write buffer') Set write buffer Clock 5 8-241 20 Xfer write to read buffer Bit ring 7, phase C Shift read buffer 8-241 Every phase A except data time and CC time 21 . 22 8-241 Constant on DBI (update DFCR address) DBI 7, clock 4 23 Condition orientation 8-234 (this signal active if ID field on disk and ID area in disk control field compare correctly) ~ 24 AM detect 8-225 В -Read address mark --Detect sync byte OE -— Zeros detected -

in the disk control field

-

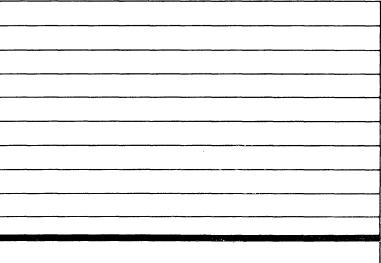
	Signal name	Diagram																																			
1	Signal name Cycle control ring Control counter Bit ring Count zero gate Bit ring inhibit Condition orientation ID orientation	8-221	[ID CC																																	
2	Control counter	8-223										2 1 0																		1,000		4					
3	Bit ring	8-225	3 4	•	5	6	7	0 1	Τ	2	3	4	5	6		7 0	5	1	2		3	4	5	Τ	3	7	0 1 2 3 4 5						6				
4	Count zero gate	8-223	<u></u>			I								L	L	I 2 and	3_		1						I	3				I	l		- 1				
5	Bit ring inhibit	8-225	1				1							·																							
6	Condition orientation	8-234																															~				
7	ID orientation	8-234										<u></u>				1						<u>.</u>	1, :	3, 4	and 6			" Au									
3	Condition prior request	8-241					İ								-A.o	1													· .· . <u>· .·</u>				1 and				
э	Prior request latch	8-241	1				i i																										8 and				
0	Data cycle request gate	8-241						<u></u>								1										1							Bus o				
1	Constant on DBI	8-243	(decrem	nent	N byt	te by or	ne; și	ubtract 3	fro	n DFC	CR)											<u></u> a>															
2	ALU binary subtract	8-243																															•				
3	Start orientation reset	8-234					1									1									7												
4	Write gate	8-219																																			
5	Write FF	8-219														1										1											
6	N carry gate	8-218	This lin	e act	ive wl	hen N f	ield	= FF																													
			,							Write on dis		nd BC	A ct	eck c	hara	acters																	Deci Deci N fid gate have				



Post	ID	Pre data																
»		C)			ç)		8									
6 7	0	1	1 2 3 4 5 6 7 0 1 2															
i 2 ar	nd 3																	
1									1									
	(activ	e unti	end	of ope	ration)												
i and 3	9																	
l and clock 3		CI	ock O)														
s out 3 and	clock	< 8			Clock	(7												
Clock 2	DBI	line 7		Clock	4 DB	I line	6 and	7										
	Clo	ock 2		· 2.	CI	cck 8												
 								1										
		2.1																
1		Clo	ock 5		<u> </u>	(act	tive ur	ntii 'er	nd op i	reset')								
ecrement D	FCR	addre	ss -3							-writ	e FF							

Decrement N field -1, if the N field carries, set N carry gate to indicate all sectors have been processed

	-					-	-				-		-	k		-		i.		-	•	-	


No	Signal name	Diagram																												
1	Cycle control ring	8-221														Pre o	lata													
2	Control counter	8-223		8	•	9	\$\$			4	1			9	%			1							0				2	256
3	Bit ring	8-225	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	7 0	5 1		2	3	4	5	6
4	Count zero gate	8-223					1																i 2 and	3						
5	Condition prior request	8-241													1					1	and	3								(sar
6	Prior request latch	8-241	(C	/cle s	teal re	quest	l t - LSF	R DFD	R sel	ected)										6 and				Cloc	k 0					
7	Data cycle request gate	8-241					ł								1				Bus	out 3	and c	cloc	۱ k 8		1000	Cic	ock 7	1		
8	Constant on DB!	8-243	(u	pdate	DFD	R by	l one fo	or eact	h cycl	e steal))										D	BI 7	l 7, cloc	k 4 🗖						
9	Input data time	8-243																					i 1 and	4						
10	Write FF	8-219					1	and 2							1															
11	Gate read buffer 4, 5, & 6	8-219									`			(0E)									ļ							
12	Set fixed write data	8-219													 									(0E s	et ir	nto 'rea	ad bu	uffer')		
13	Shift read buffer (phase A)	8-241				1	1	1	1	1	ł	1	1	1	1	1	1	1				1	1	1		1				
14	Standard write trigger	8-251					Ì	•							1															
15	Data area	8-241					!						1	and 2									ļ							
16	Set write buffer	8-241	(C	BO d	ata se	t into	l 'write	e buffe	er')														ı Clock	5, pha	ise C					
17	Xfer write buffer to read buffer	8-241					1																1					-	F	Phas
18	Write data to drive	8-219					1								1						·									
19	Hex character written						!																							

DISK ATTACHMENT-Operations Write Data Operation (Part 9 of 9)

,

				······································	•	▼
	No	Signal name	Diagram			
	1	Cycle control ring	8-221	Data	Data CC	Post data
8	2	Control counter	8-223	1 0 3	<u>()</u> 0 15	\$\$ 1
	3	Bit ring	8-225	5 6 7 0 1 2 3 4 5 6	7 0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7
×	4	Input data time	8-243	i 1 and 2	i i	
	5	Count zero gate	8-223	I 2 and 3 compared to the	2 and 3	
×	6	Shift read buffer	8-241			
A	7	Xfer write buffer to read buffer	8-241		i I	
*	8	Write FF	8-219	1	1	Reset A
	9	Write gate	8-219			1 and 3
×	10	Bit ring inhibit	8-225			Reset B
	11	End op reset	8-230	1	ł	i <u>1.4 μs</u> (if 'N carry gate' active)
				۲ Write data	Write CC characters	Write 13 bytes of FF

READ OPERATIONS

Read Data Operation

This instruction initiates the transfer of data from the selected disk to core storage. Data is transferred in multiples of 256 bytes (contents of an individual file sector). The entire contents of a cylinder may be read (48 sectors) if started with sector 0 head 0. Only consecutive sectors are read when multiple-sector reads are indicated.

- Reading of data begins when the ID information in the disk control field correctly compares with an ID field read from disk.
- All of the sector data field is read (256 bytes). Up to 48 sectors may be read in one operation. The file control unit switches heads and updates the sector address in the disk control field to 32, if required in a multiple sector read operation.
- The DFDR is addressed to obtain the location of the first byte in core where data is to be transferred. The DFDR is updated with each cycle steal request during the 256 byte data field.
- Cyclic code and BCA characters are generated and compared with the check characters recorded on disk. A non-compare will be indicated with a data check.

Reading of data begins with the sector specified by the disk-control field located in core. A comparison is made between this core identifier and sector identifier read from the selected disk track. Comparing begins with the first ID field to come under the head. An equal compare of the 3-byte identifier (flag, cylinder and sector) enables the reading and transfer of the 256-byte sector data. This data is read into core using the DFDR for memory addressing. If multiple sectors are indicated, the attachment logic updates the sector address by one and decrements the N field by one; both are found in the disk-control field. If the multiple-sector read requires head switching, the attachment updates the last sector address by adding nine to it. This updated identifier is compared with the next identifier read from the file. Any error found in this identifier causes the operation to end after the transfer of the data portion of the sector to core.

During a read operation, the attachment generates two cyclic check bytes and a bit-count-appendage byte from the data that has been read and compares these to the CC bytes and bit-count-appendage byte read back with the data, thus providing a check for read errors. During multiple-sector reads, the operation terminates at the end of any sector in which an error is detected, except an equipment check causes an immediate end.

At the end of an operation, the four bytes of the disk-control field contains information about the progress of the operation. The number of sectors processed is equal to the original value of N minus the present value unless all sectors requested have been processed. If all sectors have been processed, the value of N is hexadecimal FF. The residual value of N is located in the N byte of the disk-control field at the end of the operation. The head/sector byte of the identifier portion of the disk-control field is the last identifier processed unless (1) there is a missing address marker or (2) no identifier has been processed. If no identifier has been processed, the identifier in the disk-control field is the identifier of the first sector desired. If there is a missing address marker and a sector has been processed

on a multi-sector operation, then the identifier in the disk-control field is the identifier of the sector that has the missing address marker. The last data field in core is the data portion of the sector following the sector with the missing address marker.

The file control unit is busy to all other operations except sense I/O during a read-data operation.

Read Verify Operation

This instruction is used for write checking and should be used after every write instruction. (Instruction sequence should be write, test I/O, then read verify.) The instruction operates exactly like a read-data instruction, except that the data field is not transferred to core, and no cycle-steal requests are made to transfer data field characters or to update DFDR. (DFDR address is not changed.) The function of write checking is done by regenerating and comparing the cyclic check characters as in a normal read-data command.

At the end of the operation, the disk-control field contains information about the progress of the operation. The identifier portion of the diskcontrol field indicates the last sector verified or attempted to be verified. The number of records verified or attempted to be verified can be determined by subtracting the contents of the N byte of the disk-control field from its original vlaue unless all records have been verified.

The file control unit is busy to all other instructions except a sense I/O during a read verify command.

The differences of the read verify operation from the read data operation are as follows:

- 1. 'Verify op' blocks data cycle steal requests on diagram 8-241.
- 2. DFDR address +1 modification is blocked because 'data cycle request gate' is not active at data time, diagram 8-243.

Otherwise this operation is the same as the read data operation.

Read Data Diagnostic Operation

This command operates similarly to a read-data command. The command always begins at index and reads up to a maximum of 48 sectors. However, the operation should not be used for more than 24 sectors. Exceeding the 24-sector limit increases the chances of reading the wrong data field into core, and therefore must not be done. The data portion of the record is read and placed in core beginning at the address specified in DFDR. The sector number in the disk control field is incremented by one and the N byte is decremented by one as the operation is repeated on following sectors. The data address is returned to its original value at the beginning of each sector so that the following data field overlays the first data field in core. The operation continues until (1) the end of the sector in which the N byte is reduced to FF, (2) the end of cylinder is reached, or (3) an equipment check is detected. No other error conditions will end the operation. At this time the contents of the last sector read are available in core.

This command operates with reduced requirements for detection of address markers to improve the opportunity for recovering data that is not readable with a read-data due to a missing address marker. The reduced requirements are described in chapter 2 address mark detection.

The original identifier in core should be the identifier of the first record on the track so that at the end of the operation the identifier area in core contains the identifier of the last record read, unless there is a no-record found without a data check or a track-condition check. If there is a norecord found without data check or track-condition check, this is an indication that there was a missing address marker earlier on the track. See diagram 8-225 for address mark detection logic and functional unit description on page 8-224.

The DFDR address is returned to the original address at the end of each sector by the constant 'return DFCR' on diagram 8-243.

.

Scan Operations

The scan operation searches the data fields on the disk to find one that meets certain specified conditions when compared to a sector-sized data field in storage. Up to one cylinder of data (48 sectors) can be scanned in one operation. The scan operation can specify one of the following conditions to satisfy the scan:

- Equal 1.
- 2. Low or equal
- 3. High or equal

The data in the sectors on the disk is compared with the 256 characters in the disk data field in storage. The disk data field is addressed by the disk field data register. The comparison of individual characters within the sector can be masked off by placing a mask character consisting of all bits (hexadecimal FF) in each non-compare byte in the disk data field in storage. If only 10 bytes are to be compared the field must contain 246 mask characters in the byte positions of the characters that are not to be scanned.

Scanning of the data begins with the sector specified by the identifier portion of the disk control field. Comparing of sector addresses begins with the first sector identifier to come under the head. After the beginning sector is scanned, the S byte is updated to the identifier of the next sector and the N byte is decreased by 1 for each sector scanned.

The operation ends under the following conditions:

- When the data on the disk satisfies whichever condition is specified 1. by the start I/O instruction
 - a. Equal to the storage data field
 - b. Equal to or lower than the storage data field
 - c. Equal to or higher than the storage data field
- At the end of the sector in which the sector count in the N byte of 2. the disk control field goes to FF.
- When the end of the cylinder is reached. 3
- 4. At the end of any sector in which an error occurs after the first identifier specified by the disk control field has been found.

The control unit is busy to any new operations except sense I/O while performing a scan operation.

A scan found condition is indicated to a test I/O and branch or advance program level instruction. The appropriate bit in the status byte is also set by a scan equal condition.

At the end of the operation the disk control field contains information about the progress of the operation. The identifier portion contains the sector identifier of the last sector scanned unless there is a missing address marker. If there is a missing address marker, the identifier portion indicates the sector with the missing address marker. If no sector has been scanned, the identifier portion indicates the first sector designated. The number of sectors scanned can be determined by subtracting the contents of the N byte from the original value of the N byte unless all sectors have been processed. If all sectors have been processed, the N byte is hexadecimal FF.

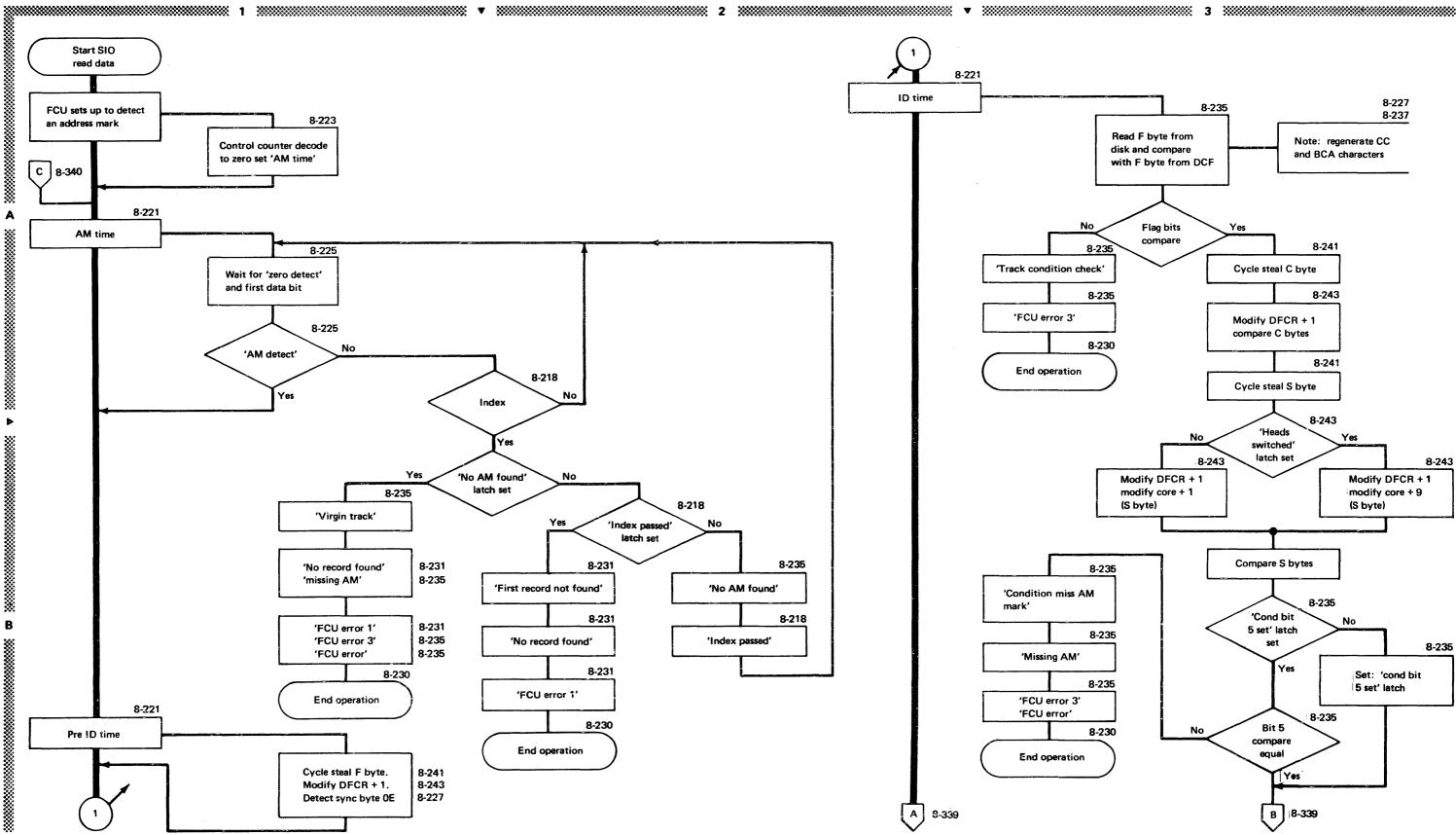
The disk file data address register contains the original address at the end of the operation unless equipment check occurs. The register contains the address of the last character processed in the event of an equipment check.

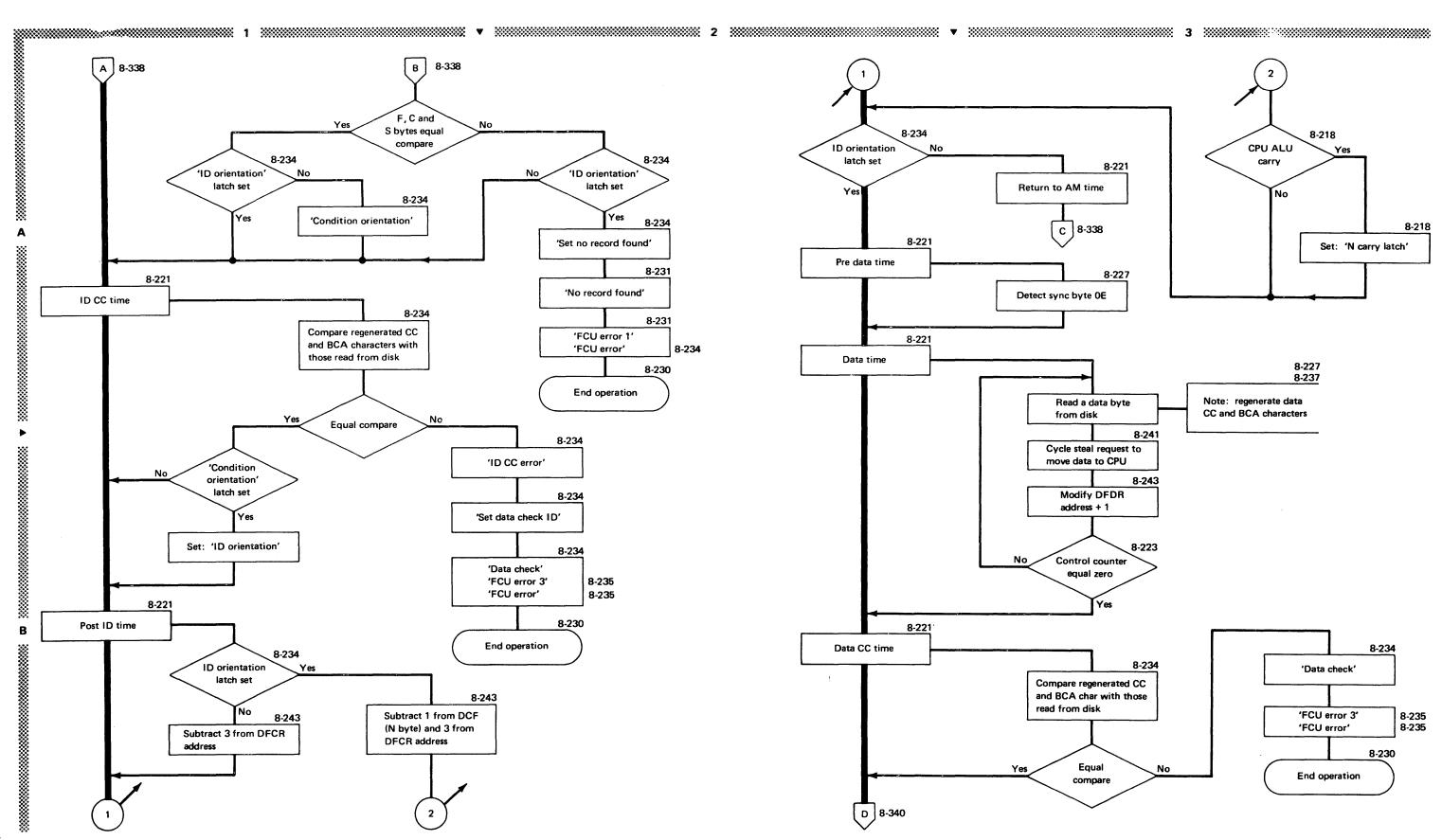
The read data operational flowchart and timing charts may be used for scan operations with the following exceptions.

- Scan is set into the operation register, diagram 8-249. 1.
- 2. The DFDR address is returned to the original starting address by the signal 'return DFCR' on diagram 8-243.
- Comparing of the 'standard write trigger' and the 'compare read 3. data trigger' is on diagram 8-234.
- 4. The scan mask is detected on diagram 8-251 and blocks the compare logic on diagram 8-234.

Scan Low or Equal

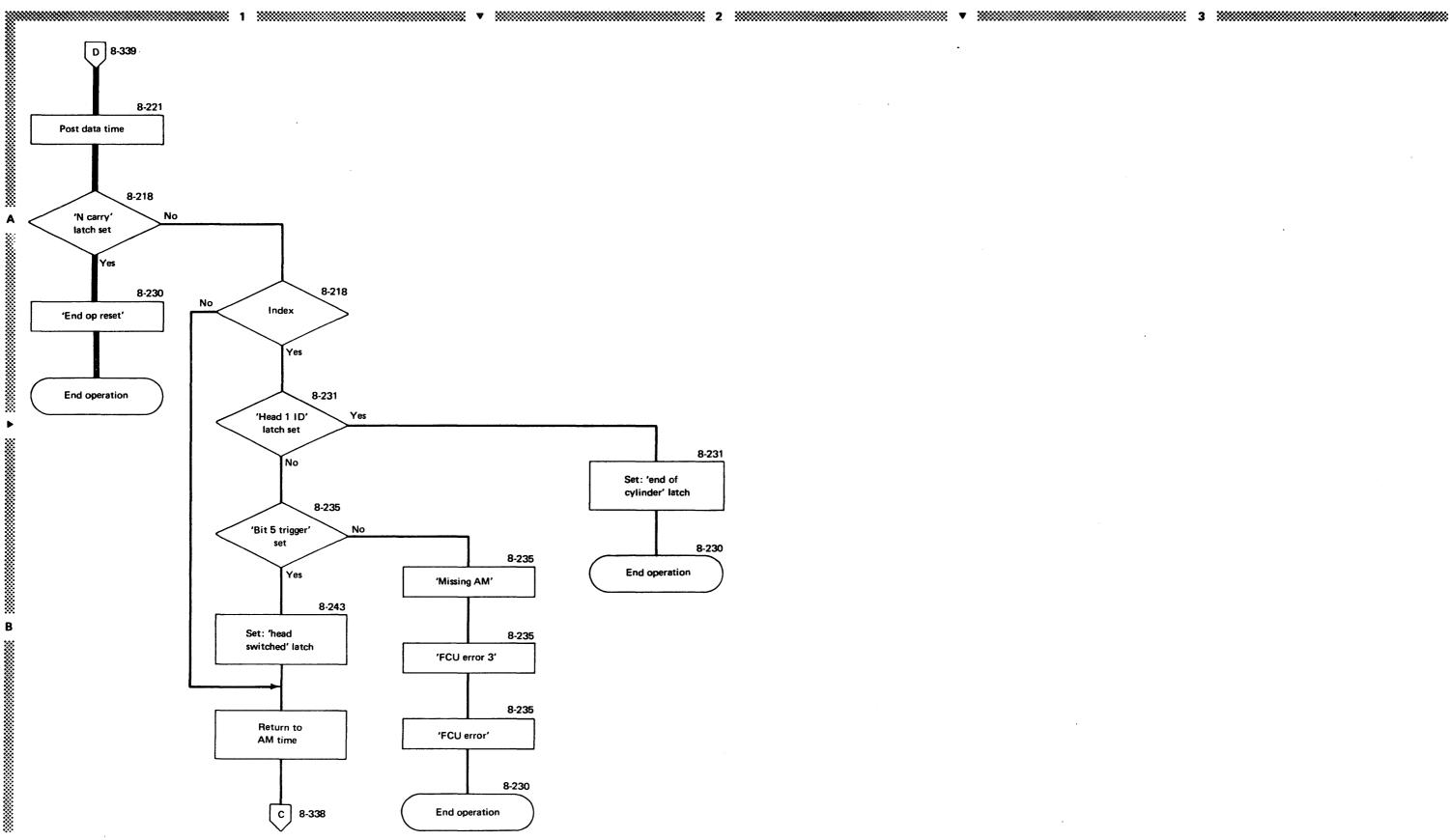
This instruction starts a scan operation similar to the scan-equal command except that this operation ends when the first disk data field is found that is lower than or equal to the masked data field in core.


A scan-found condition is indicated to test I/O and branch or advanceprogram-level instruction after the end of the scan if a data field is found on the disk that is equal to or lower than the field in core. The scan equal bit of the device status is set if the two fields are equal. All other conditions are the same as in the scan-equal operation.


Scan High or Equal

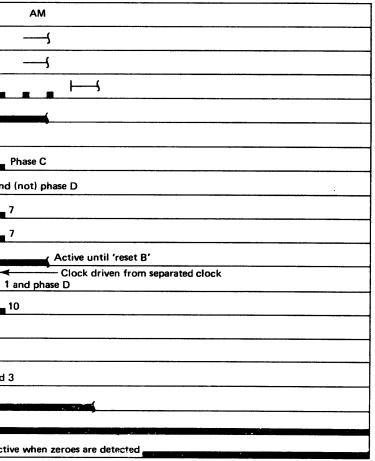
This instruction starts a scan operation similar to the scan-equal command except that this operation ends when the first disk data field is found that is higher than or equal to the masked data field in core.

A scan-found condition is indicated to a test I/O and branch or advanceprogram-level instruction after termination of the scan if a data field is found on the disk that is equal to or higher than the data field in core. The scan equal bit of the device status is set if the two fields are equal. All other conditions are the same as in the scan-equal operation.


Read Operations (Part 2 of 12)

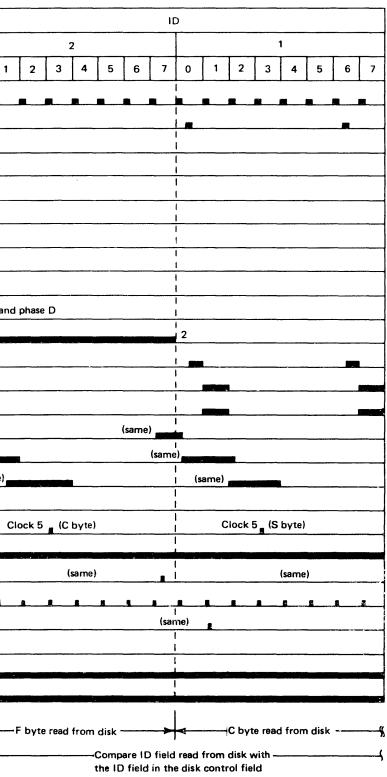
DISK ATTACHMENT-Operations Read Operations (Part 4 of 12)

DISK ATTACHMENT-Operations Read Operations (Part 5 of 12)

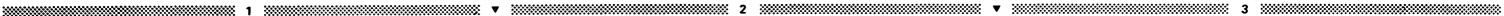

► В

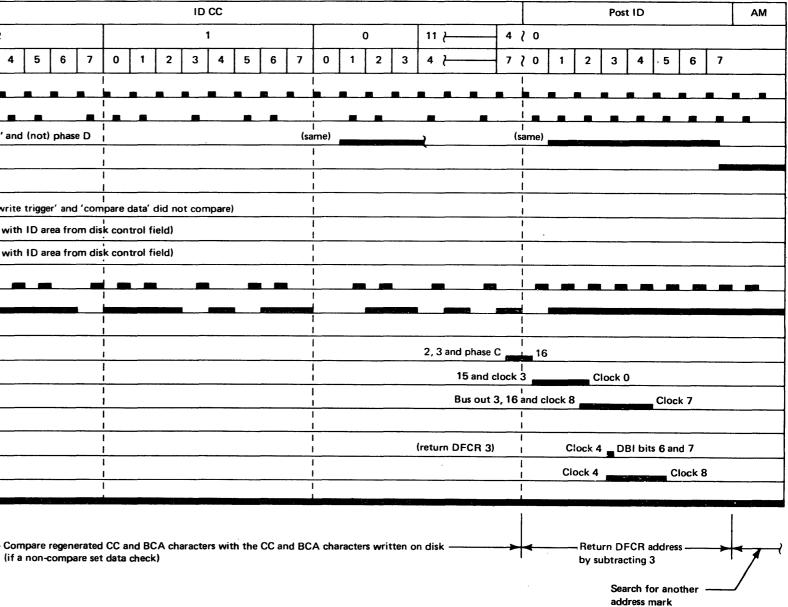
.

No	Signal name	Diagram																									
1	Cycle control ring	8-221	5										R	eset —			· · · ·										>
2	Control counter	8-223	Reset	8				7				-		6				3						0			
3	Bit ring	8-225	7		0	1 2	3	4	5	6	/ 0	1	2	3	4 <u></u>	0	1	2	3 5-		0	1	2	3	4	5	6 7
4	Clock	8-247													<u>ب</u>	٢			<u> </u>	-5					·····		
5	Signal name Cycle control ring Control counter Bit ring Clock Bit ring inhibit CCR pre advance gate CCR advance gate	8-225		14													•										10
6	CCR pre advance gate	8-223													2	and 3		- 6	م (بېچې چې د		Ac	ctive	e until	l 'rese	et B'		
7	CCR advance gate	8-223																					Ε	Bit rir	ng 7 ai	nd pha	ase D
8	Count zero gate	8-223		and the second second																2 aı	nd 3 🖕						9 and
9	Count zero reset	8-223																									7 7
10	Pending AM time	8-221																									7 ·
11	Condition 1st AM	8-221																									1
12	Clock gate	8-217					Ac	tive fi	rom i	nitial se	ectior	י נ							Clo	ock	driven	n fro	m 3.1	177 N	1Hz os	sc. —	→ →
13	Set CC register pos 1 on	8-227																								10 an	nd 17 1
14	Start op	8-230	CPU cloc	k 4 👝																							
15	Set counter to 8	8-223		14 1	4																						
16	Condition read gate	8-218		15											•		مى بورۇ	•			<u>.</u> *	- "					2 and 3
17	Read gate	8-218										2, 3 a	nd 16														
18	Search address mark	8-225																								1	1 and 17
19	Zero detect	8-227																									Activ

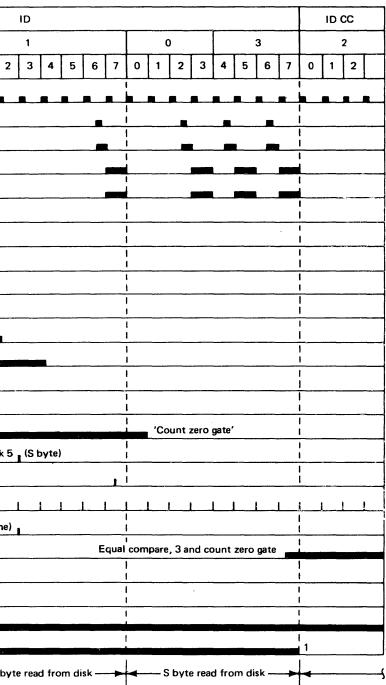

In the initial selection flow chart, the file control unit was set up for a read data read verify, read data diagnostic or scan operation. The next objective is to locate an address mark. Address mark detection is started when zeros in the sector gaps are detected to indicate to the file control unit that an address mark is approaching the read heads in the drive. The next data bit read, after zeros detect, starts the FCU looking for the address mark.

The timing charts that follow show this sequence: (1) locate an address mark, (2) successfully detect the address mark, (3) compare the ID field on disk with the disk control field in core storage (a non compare results), (4) locate another address mark, (5) compare disk ID field and disk control field (a successful compare results), (6) read the data field from disk, (7) and end the operation.


No	Signal name	Diagram					
1	Cycle control ring	8-221		АМ		Pre ID	
2	Signal name Cycle control ring Control counter Bit ring Separated clock Separated data Zero detect Bit ring inhibit	8-223	<u>۶</u>				3
3	Bit ring	8-225	7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6	7	0
4	Separated clock	8-237					l In m
5	Separated data	8-237					1
6	Zero detect	8-227		I 5 (sep data enters CC register)			1
7	Bit ring inhibit	8-225		1 8	l 11 and 3	3	3 3
8	Start AM search	8-225	5 and 6		1	3 and 10	1
9	AM indicate	8-225					1
10	AM detect 1	8-225			6 and 14	3 and phase D	1
11	AM detect 2	8-225			1 I 10 and phase C	4	1
12	AM detect	8-225			1 1 3, 4 and 10	4	1
13	Sync detect latch	8-227			l	(OE detected in CC register)	3 a
14	ID area	8-241		1	12		
15	Standard read data	8-227					
16	Compare data	8-227		l Internet (1997)			1
17	Standard write trigger	8-251		1	1		1
18	Cond prior request	8-241			I 3, 14 and phase C	19 (same)	
19	Prior request latch	8-241		1	1 18 and clo	ock 3 Clock 0 (sam	ne)
20	Data cycle request	8-241			l 19, bus out 3	3 and clock 8 Clock 7	l I (same)
21	CC register reset	8-227			12	13	1
22	Set write buffer	8-241		l (DBO data set into 'write buffer')		Clock 5 (F byte)	1
23	Input data time	8-243		1		1 and 13	1
24	Xfer write buffer to read buffer	8-241	1			3 and phase C	R I
25	Shift read buffer	8-241	Every	y phase A except data time and CC time			
26	Constant on DBI	8-243		1	l 1	1, 20 and clock 4 DBI 7	(same)
27	Search address mark	8-225				1	
28	Read gate	8-218					l
29	ID compare gate time	8-234		1		1 and	1



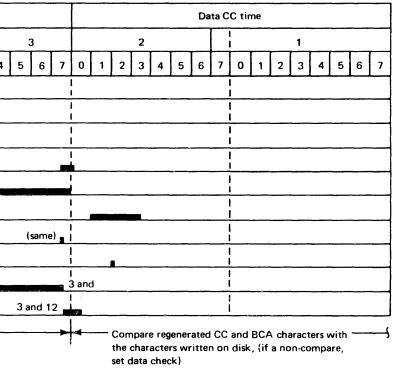
	Signal name	Diagram	· · · · ·									.															 						
1	Cycle control ring	8-221					ID													- 				ID	CC						_		
2	Control counter	8-223	1		0	}				3					_	2	_								1		 				0		
3	Signal name Cycle control ring Control counter Bit ring Separated clock Separated data Count zero gate Bit ring inhibit	8-225	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1		2	3	4	5	6	7	0	1	2	3	
4	Separated clock	8-237																															
5	Separated data	8-237		1								1										1						1					
6	Count zero gate	8-223	_2 a	I and 3								l ¦'Cou	int zei	rogat	e rese	et' and	d (no	t) pha	ise D	1								l (sai	me)				
7	Bit ring inhibit	8-225										1								1								1					
8	ID compare gate time	8-234		l 1								i 1																					_
9	Equal compare	8-234									(d	l rops b	ecause	e 'star	ndard	write	e trigg	er' ar	nd 'co	! mpare	data	í dio	l not	t con	npare	:)		 					
10	Condition orientation	8-234		l (this	signa	al not	activ	e bec	ause I	D rea	d fro	n disk	did n	ot co	mpar	e with	n ID a	irea fi	rom d	isk co	ntrol	field	4)					1					
11	ID orientation	8-234		l (this	s signa	al not	activ	e bec	ause I	D rea	nd fro	n disk	did n	ot co	mpar	e with	ו ID a	irea fi	rom d	isk co	ntrol	field	4)			-							
12	Standard read data	8-227		1																													-
13	Compare data	8-227	1									 							_	1								ا ا					
14	Standard write trigger	8-251	1	1																1								1					
15	Condition prior request	8-241		1								1								1													
16	Prior request latch	8-241		1								1								1								1					
17	Data cycle request gate	8-241	1	1								1								1								1					
18	Input data time	8-243		1	6							1								1								1					_
19	Constant on DBI	8-243		1								1								1													(r
20	ALU binary subtract	8-243	1									1								1								1					
21	Read gate	8-218		1								Î								l								1					


B

DISK ATTACHMENT-Operations Read Operations (Part 9 of 12)

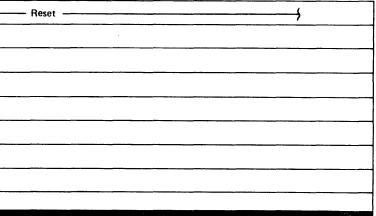
No	Signal name	Diagram																								
1	Cycle control ring	8-223						AM									Pr	e ID								
2	Control counter	8-223	Ş				- 0 -												>	3			2			
3	Bit ring	8-225	7	0	1	2 3	4	5	6 7	0	1	2 3	4	56	;		7				0	1 2	3	4 5	6 7	0
4	Separated clock	8-237								1																
5	Separated data	8-237		1																						
6	Standard read data	8-227		1				87												1						1
7	Compare data	8-227															<u> </u>									1
8	Standard write trigger	8-251	*							1																1
9	Bit ring inhibit	8-225	9	1																						1
10	Zero detect	8-227		3	<u> </u>					1																
11	Start AM search	8-225	3 and 8	1											_ 3 ar	nd 'AM	detect 1	,		1						1
12	Sync detect latch	8-227				· · · ala				1	0E d	etecte	d in C	C regis	ster		1997 - 1998 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	- <u> </u>			3 a	nd phas	se D			1
13	Condition prior request	8-241										17,	3 and	phase	C	14			(same)		•			(same)	1
14	Prior request latch	8-241		1									13	3 and	clock 3	3	Cloci	k 0		i same}					(sam	1 e)
15	Data cycle request gate	8-241		1												clock 8			ock 7	1	(sam	e)				 (sa
16	CC register reset	8-227		1						1					4				12							1
17	ID area	8-241		1						1				24												1
18	Input data time	8-243		1						1									1 and 10							
19	Set write buffer	8-241		1												С	lock 5	(F byte)		с	lock 5	, (С ь	yte)		
20	Xfer writer to read buffer	8-241		! 						1							_		7, clock	0,1			*			1
21	Shift read buffer	8-241	Eve	ry pha	ase A e	excep	t data	time	and CC	time								1	· · ·	<u> </u>						
22	Constant on DBI	8-243		1						1					1, :	2 and cl	ock 4	DBI 7	L	<u>-</u>		(same)			A	1
23	Condition orientation	8-234		 						1							-						•			1
24	AM detect	8-225		1						1	AM	detec	t 1, 3 i	and 4												
25	Search address mark	8-225		1											1											1
26	Read gate	8-218		1																						1
27	ID compare gate time	8-234		1						1							·		1 an	d 26						1
		Zeros detec	cted	-				Read	addres	s mark				,	+	C	Detect sy	nc byte	0E			F byte	read f	rom dis	kÞ	
				I											1					ŀ		ID in t core. N	he dis: Aodify	k contr	ad from ol field lo address Jest	cated

|--|


•	

Num					******			XXX 2 XX		•••••••••••••••••••••••••••••••••••••••		3
8,	No	Signal name Cycle control ring Control counter Bit ring Count zero gate Bit ring inhibit Condition orientation ID orientation	Diagram									
	1	Cycle control ring	8-223		ID CC					Post ID		Pre data time
	2	Control counter	8-223	2	1	0	0	11	10		0	
	3	Bit ring	8-225	+	0 1 2 3 4 5 6	7 0 1	2 3 4	567		0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	
	4	Count zero gate	8-223			2 and 3	<u>I</u> II	·····	and (not) phase D			and phase D
	5	Bit ring inhibit	8-225		۰ــــــــــــــــــــــــــــــــــــ							
	6	Condition orientation	8-234	+		<u> </u>				1	3 and phase D	
	7	ID orientation	8-234			!		3 and 4		1	(stays up until end of operation)	
···	8	Condition prior request	8-241		 -	I		Sand 4				
	9	Prior request latch	8-241		I					i 1 and 3	g Clock 0	
	10	Data cycle request gate	8-241		l	<u> </u>				1		
	11	Constant on DBI	8-243		l	<u> </u>				1	clock 8 Clock 7	
	12	ALU binary subtract	8-243		 	<u> </u>					< 2, DBI 7 Clock 4, DBI 6 and 7	
	13	Start orientation reset	8-234	+	1	1				1	Clock 2 Clock 8	
- X -	14	N carry gate	8-218		<u> </u>	1		I			ALU carry	(active until 'end op reset')
			1	.L	I							
× •			A suc	ccessful compare result	s					Modify N field -1, modify the DFCR	-3	
× (•				' i	if CPU ALU carry active after the N is modified, set 'N carry gate'	field	Detect sync byte de
X										is modified, set in carry gate		
B												
8												
×												
X												
8												
×												
» B												
*												
X												
*												
*												
8												
8												
*												
8												

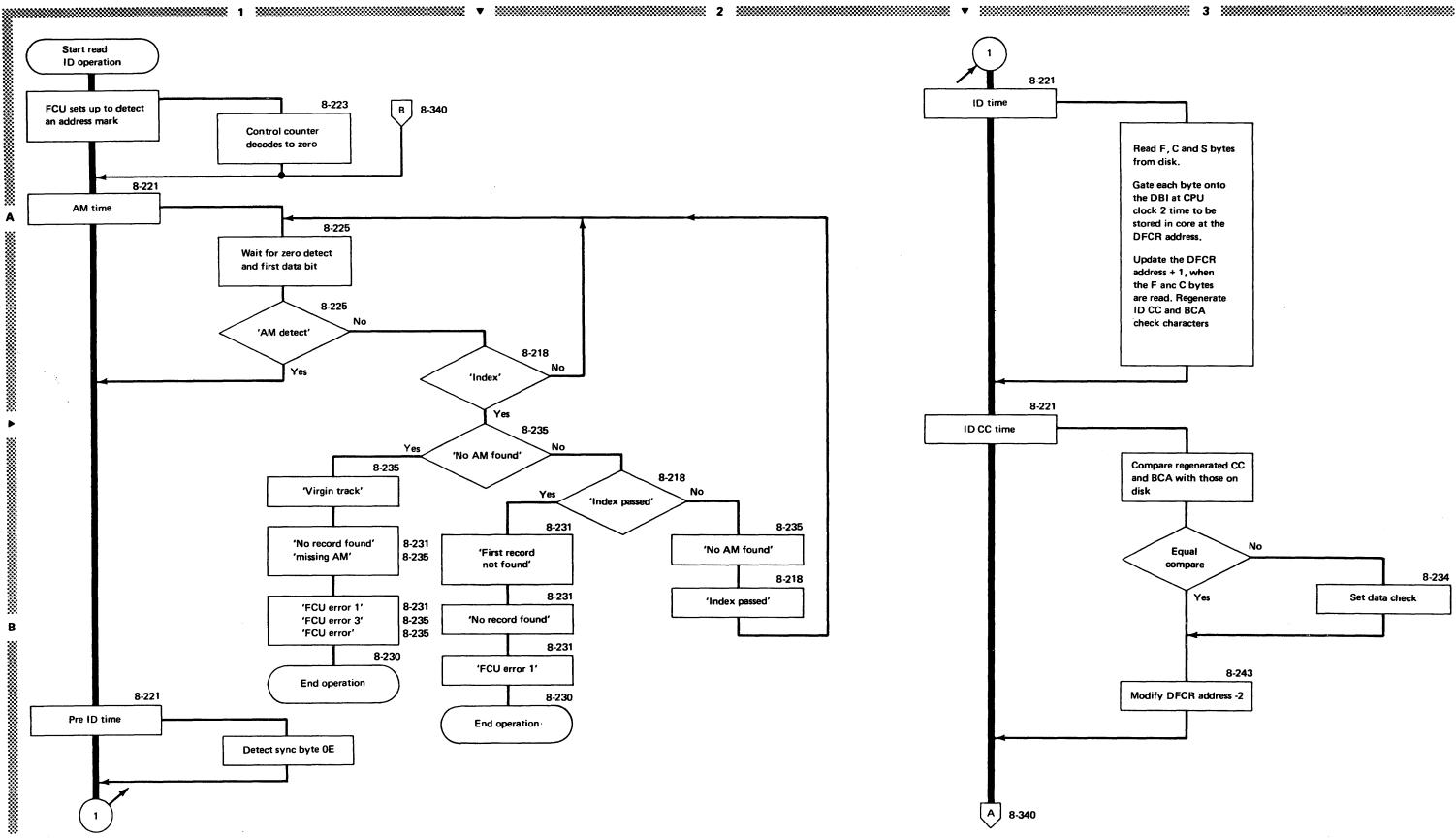
DISK ATTACHMENT-Operations Read Operations (Part 10 of 12)


No	Signal name	Diagram					
1	Cycle control ring	8-221	Pre data time		Data	time	
2	Control counter	8-223	256	255	254	<u> </u>	0
3	Bit ring	8-221	7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4 5 6 7	0 1 2 3 4
4	Separated data	8-237				1	8 1
5	Sync detect latch	8-227	Phase B	(detect OE)		1	
6	Bit ring inhibit	8-225	 5				
7	Condition prior request	8-241		3 and phase C	Clock 3		l i
8	Data area	8-241	1				
9	Data cycle request gate	8-241		l Clock	< 8 Clock 7		
10	Xfer write buffer to read buffer	8-241		3 and phase C	(same)	l (same)	
11	Gate data to DBI	8-241	1	ا (data byte sent to CPU) Clo	ock 2	l (same)	l (same)
12	Count zero gate	8-241					2
13	CCR adv gate	8-241				!	

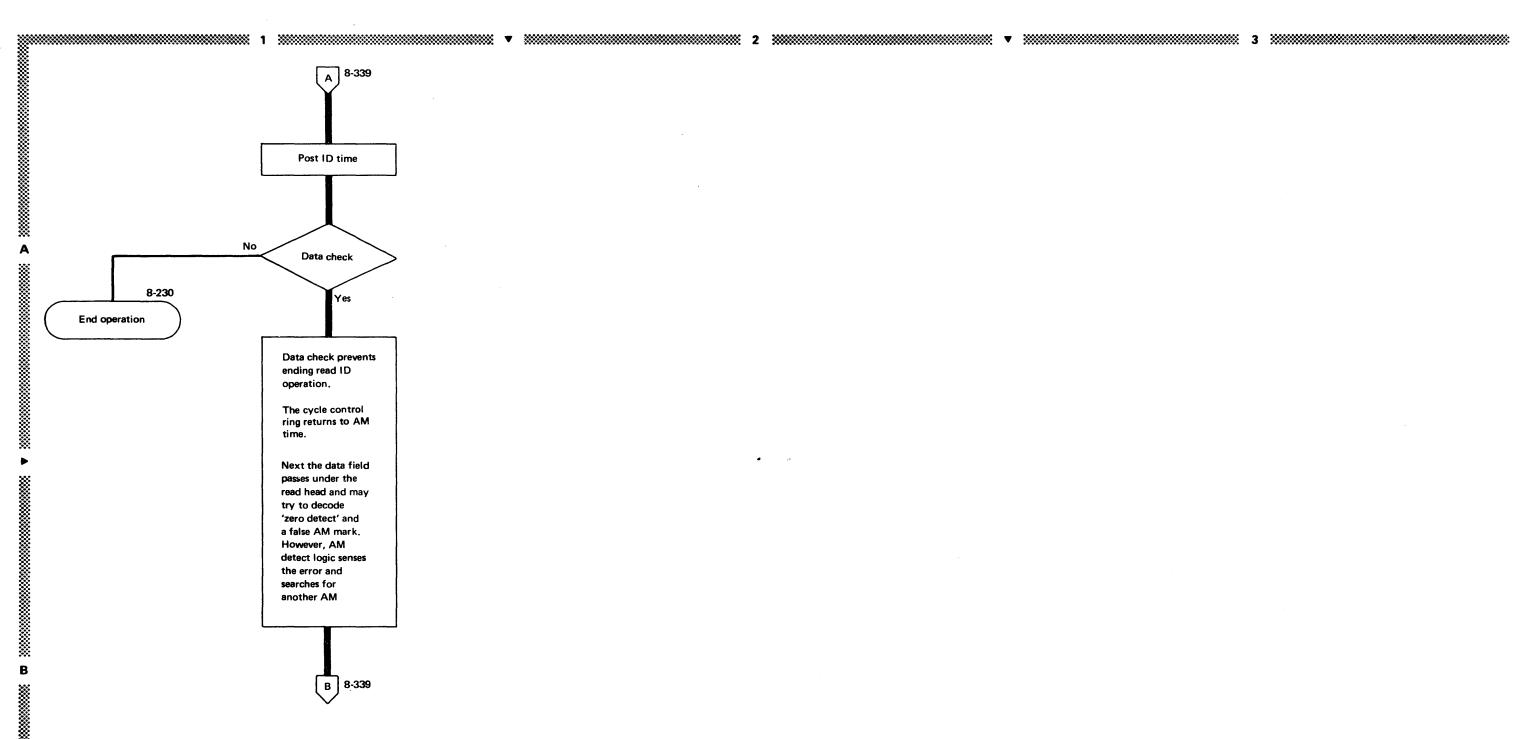
Read 256 data bytes (regenerate CC and BCA characters) Modify the DFDR address +1 with each byte read

No	Signal name	Diagram																														
1	Cycle control ring	8-221				Dat	a CC										1	Post d	ata							-						
2	Control counter	8-223			0				15						14				\$\$				1									
3	Bit ring	8-225	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7 -					\$	
4	Count zero gate	8-223	2 ar	nd 3	<u> </u>				•		1		•						1												_	
5	CCR advance gate	8-221							3 an	d 4									1													
6	Clock gate	8-217								1									I							8						
7	N carry gate	8-218									1								1							8						
8	End op reset	8-230																	1				1, 2	, 3, a	nd 7		(sin	gle sho	t time c	out)		
9	Bit ring inhibit	8-225	T																1				F	esult	of 8	_						

ends the operation. If 'N carry gate' was not active, return to AM time and continue to read sectors

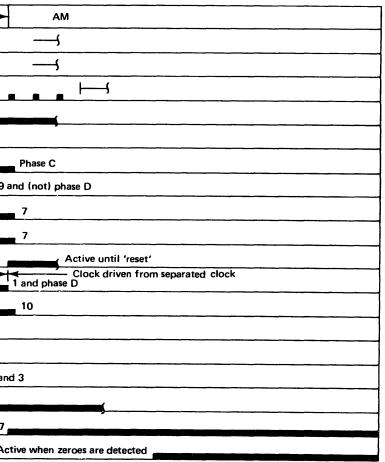

READ IDENTIFIER OPERATION

- Transfers the first identifier field (3 bytes) of a sector to pass under the read heads into core storage at an address specified by the DFCR.
- If an error is detected in the first ID field, the DFCR address is returned to its original address and the next ID field is read.
- Operation ends when an ID field is read without an error, a no record found is detected, or an equipment check occurs.
- The control unit is busy to any new operation.
- When the operation ends, the disk control field in core contains the FCS information of the ID field read from disk. The DFCR contains the original address after an equipment check.


This instruction initiates the transfer of a sector identifier (3 bytes-F, C, and S) from the selected disk to core storage. The operation starts with the next identifier to come under the head. It transfers the first sector identifier it find to the address designated by DFCR. If an error is found in this identifier, the next sector identifier is read and transferred to core starting at the original address contained in DFCR. The operation is terminated by the transfer of the first sector identifier without data check. A no-record status found during a read ID instruction indicates that an errorfree ID was not found on the selected track.

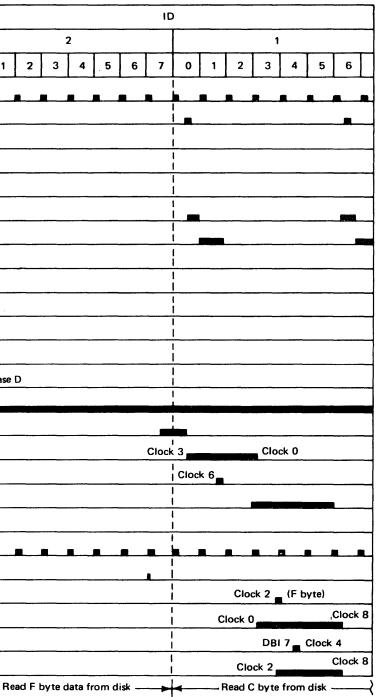
The control unit is busy to any new operation except sense I/O while performing a read-identifier operation. The control unit does not use the information contained in the disk-control field during this period. At the end of this operation, the first three bytes (F, C, S) of the disk-control field contain the last sector identifier read from the file. The last byte (N field) of the disk-control field is not changed.

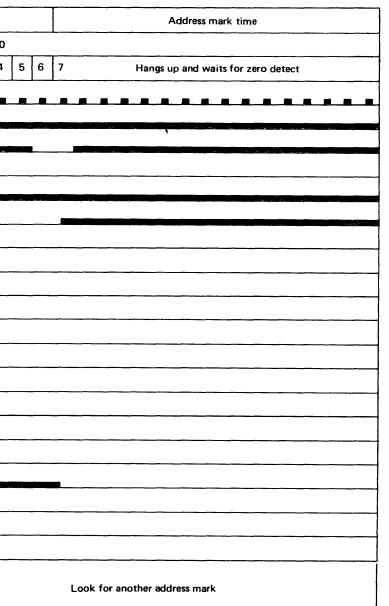
This operation does not switch heads. At the end of the operation, DFCR contains the original address unless there is an equipment check.


DISK ATTACHMENT-Operations Read Identifier Operation (Part 2 of 9)

No	Signal name	Diagram																									
1	Cycle control ring	8-221	<u>۶</u>				···							— Res	et —												>
2	Control counter	8-223	Reset		8			7						6					3					0			
3	Bit ring	8-225	7		0	1	2	3 4	1 5	6	7	0	1	2 3	4	<u>ب</u>	0	1	2	3 ⊱	- 0	1	2	3	4 5	6	7
4	Signal name Cycle control ring Control counter Bit ring Clock Bit ring inhibit CCR pre advance gate CCR advance gate	8-247														Ś				_ <u>}_</u>	- {					a	
5	Bit ring inhibit	8-225			14													~									10
6	CCR pre advance gate	8-223														2 8	nd 3					Activ	/e unti	l 'reset	B'		
7	CCR advance gate	8-223																			_ ,		Bi	t ring 7	and p	hase D	,
8	Count zero gate	8-223																		2	and 3						9 8
9	Count zero reset	8-223																								-	7
10	Pending AM time	8-221																									7
11	Condition 1st AM	8-221																									1
12	Clock gate	8-217						Active	from	initial	select	tion (Cloc	k driv	en fro	om 3.1	77 MH	z osc		
13	Set CC register pos 1 on	8-227																							10	and 1	7
14	Start op	8-230	CPU clo	ock 4																							
15	Set counter to 8	8-223		14	14																						
16	Condition read gate	8-218		15																							2 and
17	Read gate	8-218										2,	3 and	16													
18	Search address mark	8-225																								1 ar	nd 17
19	Zero detect	8-227																									Act

In the initial selection flow chart, the file control unit was set up for a read identifier operation. The next objective is to locate an address mark. Address mark detection is started when zeros in the sector gaps are detected to indicate to the file control unit that an address mark is approaching the read heads in the drive. The next data bit read, after zeros detect, starts the FCU looking for the address mark.

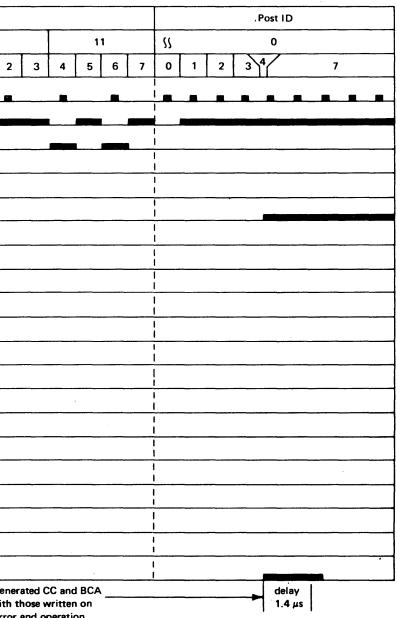

.


No	Signal name	Diagram		
1	Cycle control ring	8-221	AM Pre ID	
2	Control counter	8-223	3	
3	Bit ring	8-225	7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7	0
4	Separated clock	8-237		
5	Separated data	8-237		.
6	Zero detect	8-227		
7	Bit ring inhibit	8-225		
8	Start AM search	8-225		
9	Standard read data	8-227		
10	Compare data	8-227		
11	Address mark indicate	8-225		
12	Address mark detect 1	8-225	Phase B Phase D	
13	Address mark triggers	8-225	Address mark 1 Address mark 2	
14	Address mark detect 2	8-225		
15	Address mark detect	8-225		
16	Sync detect latch	8-227		Pha
17	ID area	8-241		
18	Condition prior request	8-241		
19	Prior request latch	8-241		<u></u>
20	Prior request 3	8-241		. <u></u>
21	Data cycle request gate	8-241		
22	CC register reset	8-227		
23	Shift write buffer	8-241		
24	Xfer write buffer to read buffer	8-241	Phase C	L
25	Gate data to DBI	8-241	('read buffer' register gated to DBI)	
26	DBI parity generate	8-239		
27	Constant on DBI	8-243	(update DFCR address by one)	
28	Store data and block SDR - B register	8-243	(store F byte, read from disk, into F byte address of disk control field)	

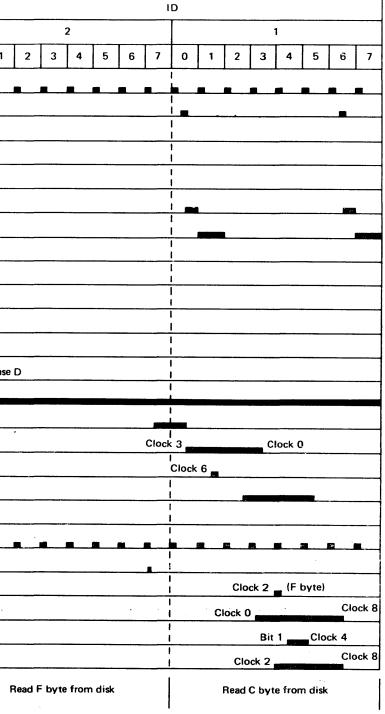
:

:

No	Signal name	Diagram	- -									,												
1	Cycle control ring	8-221			ID						•		ID CO	2									Post ID	•
2	Signal name Cycle control ring Control counter Bit ring Separated data Compare data CC register position 17 ID CC error	8-223	1	0		3		······································	2				1				0			11			(0
3	Bit ring	8-225	7	0 1 2 3	4	56	7	0 1 2	3 4	567	0	1 2	3 4	1 5	6 7	0	1 2	3	4	56	7	0 1	2 3 4	4
4	Separated data	8-239		 					n m			R	8									R		
5	Compare data	8-227																34°#						
6	CC register position 17	8-227				- San					1									<i>C</i>			ware by	
7	ID CC error	8-234		 						Phase B	1		A	and a second second				- N. (2010)	**************************************	Maria	 	nase D		
8	Data check	8-234		1										(data	a check	। preve	ents end	opera	tion)	Phase	c _			
9	Bit ring inhibit	8-225														1								
10	ID area	8-241														ł								
1	Condition prior request	8-241		1				1			1													
2	Prior request latch	8-241	Clo	ock 3 Clock	: O						1					1								
13	Prior request 3	8-241	Clo	i ock 6 _m																				
14	Data cycle request gate	8-241		l Clock 8		Clock 7										1								
5	Shift write buffer	8-241			8.6																1			
	Reset write buffer	8-241		l I Pha	se D						1										1			
7	Gate data to DBI	8-241		Clock 2	(C by	rte)			m (St	yte)	1										1			
3	Reset read buffer	8-241		Clock 3			1									: 								
19	DBI parity generate	8-239		l Clock 0	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Clock	8 				1										1			
20	Count zero gate	8-223			in se	to Alasta					1								1125					
21	Constant on DBI	8-243		I I DBI 7	Clo	ock 4		C	BI6	Clock 4			(retur	rn DF	CR addı	l ress t	o origina	al add	ress)					
22	ALU binary subtract	8-243					1				 										1			
23	Store data and block SDR B register	8-243		1							1					1					1			
				Read S byt	e fror	n disk				Su Re co	ibtract : egenerat mpared	2 from I ted CC a	DFCR and BC se writ	addre CA ch tten o	aracters n disk (i	are								



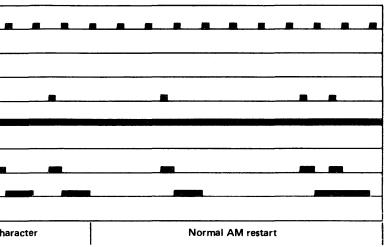
.


No T	Signal name Cycle control ring Control counter Bit ring Separated data Compare data CC register position 17 ID CC error	Diagram										1																		
1	Cycle control ring	8-221		.	<u> </u>		ID	r									<u> </u>	<u></u>					1	D CC						
2	Control counter	8-223	1		0 T		[<u> </u>	3				r	r	2	T-			<u> </u>	.	<u> </u>	- -	1	-					0 T
3	Bit ring	8-225	7	0	1	2	3	4	5	6	7	0	1	2	3	4	5	6	7	0	1	2		3 4	4	5	6	7	0 1	2
4	Separated data	8-237		1							L	<u> </u>		_8_						ļ.				.		A	.	<u> </u>	R_	
5	Compare data	8-227		<u> </u>				l		R		ļ				ļ			.	<u> </u>										
6	CC register position 17	8-227					L		B											ļ						.	<u> </u>			L
7	ID CC error	8-234	_	1								1								<u> </u>								1		
8	Data check	8-234	_	1								 								 										
9	Bit ring inhibit	8-225		1								1		. <u></u>			<u></u>			 								1		
10	ID area	8-241								1111		 								1										
11	Cond prior req	8-241		 									,							 								1		
12	Prior request latch	8-241	Clo	ck 3		CI	lock (2												1								1		
13	Prior request 3	8-241		i Clock	6							 								1								1		
14	Data cycle request gate	8-241		l ci	lock 8					CI	ock 7	1								1								1		
15	Shift write buffer	8-241						-				1																1		
16	Reset write buffer	8-241		ı Phase	D							ł 1																l		
17	Gate data to DBI	8-241				Cloc	k 2 📕	(C	byte)			1					(S by	rte)		1								1		
18	Reset read buffer	8-241	Τ	1			ock 3					1				-				1								1		
19	DBI parity generate	8-239		1	Clock				CI	ock 8	3	1							R.	1								1		
20	Count zero gate	8-223		1		_					F	ı 'hase [)															1		
21	Constant on DBI	8-243		1			DBI 7	7	Clock	٤4		1			C	BI 6	_ c	lock 4	ļ	1								l		
22	ALU binary subtract	8-243		1								1			Clo	ock 4			Clo	ı ock 8								1		
23	Store data and block SDR - B register	8-243		1		Cloc	k 2 📕			C	lock 8	1 1								1								1		
24	Pure end op reset	8-230		1								1								1								1		
					Re	ad S	byte	from	disk				Subt	ract 2	from	DFC	R ad	dress											mpare re	
							•					ļ																ch: dis	racters v < - if no (vith 1 error
															*															

disk - if no error end operation

3 3 3

No	Signal name	Diagram															
1	Cycle control ring	8-221					Addr	ress mark					Pre ID				ID
2	Control counter	8-223											16 Mar 19 10 10 10 10 10 10 10 10 10 10 10 10 10		3	2	1
3	Bit ring	8-225	7		0	1 2 3	4 5	5 6 7	0	1 2 3	4 5 6		7			0 1 2 3 4 5 6 7	0 1 2 3 4 5
4	Separated clock	8-237							l Ima								
5	Separated data	8-237									21						
6	Zero detect	8-227		i											1		
7	Bit ring inhibit	8-225		1					!						1		1
8	Start AM search	8-225		1					1								
9	Standard read data	8-227		-						1							
10	Compare data	8-227		1					1	.							
11	Address mark indicate	8-225		1											1		1
12	Address mark detect 1	8-225									Phase B	Phase D					
13	Address mark trigger's	8-225		<		Address m	nark 1			. Address mark	2	*			1		
14	Address mark detect 2	8-225		1				_	1		Phase C				l 		
15	Address mark detect	8-225		1					i I				····		1		1
16	Sync detect latch	8-227		1					1						1	Phase D	1
17	ID area	8-241		i					1			·····			1		1
18	Condition prior request	8-241													1	· · · · · · · · · · · · · · · · · · ·	l 1
19	Prior request latch	8-241		1		· · · · · · · · · · · · · · · · · · ·		·	T I						1	Cloc	I :k 3 Clock 0
20	Prior request 3	8-241		1					 						1		l Clock 6
21	Data cycle request gate	8-241													1		
22	CC register reset	8-227		1					 .			<u>,</u>			- 1		1
23	Shift write buffer	8-241							1	*							
24	Xfer write buffer to read buffer	8-241				· · · · · · · · · · · · · · · · · · ·			1				<u></u>	Phase C	1		
25	Gate data to DBI	8-241							1						1		I Clock 2 (F byte)
26	DBI parity generate	8-239		1					1	***		•	,				Clock 0
27	Constant on DBI	8-243		Î I	(u	pdate DFC	R address	5)	 						1		I Bit 1 Cloc
28	Store data and block SDR - B register	8-243		Î			·		 						 		Clock 2
4		Locate next					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							<u> </u>		Read F byte from disk	Read C byte from disk


DISK ATTACHMENT-Operations Read Identifier Operation (Part 9 of 9)

ъ

No	Signal name	Diagram					
1	Clock	8-247					
2	Control counter	8-223					
3	Bit ring	8-225	7	0	1 77		
4	Separated data	8-239					
5	Bit ring inhibit	8-225					
6	Zero detect	8-227					
7	Standard read data	8-227					
8							
	Compare read data	8-227					
9	Compare read data Reset start AM search	8-227 8-225		Phase A	1		.
9 ote: WI Ze wi	Reset start AM search	8-225 mark, the data find a field will set 'zer mark, however in		Phase A OE sync character da	ata	First data character	Second data

.

Α ۲ В

Address Mark (AM) 8-104 Adjustment, Data Separator 8-208 Advance Program Level (APL) 8-108 Alternate Track 8-104 AM Bits 8-208

Bit Cell 8-208 Bit Count Appendage (BCA) 8-104 Busy 8-108

C Byte 8-104 Card-ALD Cross Reference Chart 8-202 Checks (Error Conditions) 8-228 Compare/Scan Operation Data Flow 8-114 Control Field 8-105 Cycle Steal Requests (CSR) 8-102 Cyclic Code Characters 8-101, 8-103 Cylinder 8-104 Cylinder Byte 8-105

Data 8-104 Data Field 8-105 Data Flow 8-204 Data Separator Adjustment 8-208 Data Storage 8-103 Device Status 8-109 DFCR 8-105 DFDR 8-105 Diagnostic Byte 8-107 Diagnostic Load I/O 8-107 Disk File Control Register (DFCR) 8-105 Disk File Data Register (DFDR) 8-105 **Disk Instructions** Load I/O (LIO) 8-107 Load I/O (LIO) Diagnostic 8-107 Sense I/O (SNS) 8-109 Start I/O (SIO) 8-111 Start I/O (SIO) Read Data 8-111 Start I/O (SIO) Read Data Diagnostic 8-111 Start I/O (SIO) Read Identifier 8-111 Start I/O Read Verify 8-111 Start I/O Scan Equal 8-111 Start I/O (SIO) Scan High or Equal 8-111 Start I/O Scan Low or Equal 8-111 Start I/O Write Data 8-111 Start I/O Write Identifier 8-111 Test I/O (TIO) 8-108

Error Conditions 8-228

Flag Byte 8-104, 8-105 Functional Unit Index 8-202 Functional Units Address Mark Detect Description 8-224 Diagram 8-225

Functional Units (Continued) Auxiliary Counter Description 8-214 Diagram 8-214 Bit Ring Description 8-224 Diagram 8-225 Board Layout 8-203 **CE Controls** Description 8-236 Diagram 8-237 Check Counter (BCA) Description 8-236 Diagram 8-237 Clock Description 8-244 Diagram 8-247 Clock Gate Description 8-216 Diagram 8-217 Compare Description 8-232 Diagram 8-234 Compare Read Data Trigger Description 8-226 Diagram 8-227 Constants Diagram 8-243 Control Counter Description 8-222 Diagram 8-223 Cycle Control Ring Description 8-220 Diagram 8-221 Cyclic Code Register Description 8-226 Diagram 8-227 Data Bus In (DBI) Description 8-244 Diagram 8-245 Data Bus Out (DBO) Description 8-248 Diagram 8-251 Data Separator Adjustment 8-208 Description 8-208 Diagram 8-209 Difference Counter Description 8-212 Diagram 8-213 Erase Gate Description 8-216 Diagram 8-219 Error Conditions Description 8-232 Diagram 8-233 through 8-235 Go Slow Counter Description 8-214

Diagram 8-214

Functional Units (Continued) Index Initial Selection LSR Selection Diagram 8-239 **Operation Register** Diagram 8-249 Diagram 8-241 Diagram 8-211 Read Buffer Diagram 8-251 Read Gate Diagram 8-217 Resets Diagram 8-211 Serdes Diagram 8-241 Serdes Control Diagram 8-241 Diagram 8-227 Standard Write Trigger Diagram 8-251 Write Buffer Diagram 8-251 Write Gate Diagram 8-219

Gap 8-104

Index

Description 8-216 Diagram 8-218 Initial Program Load (IPL) Description 8-236 Diagram 8-253, 8-254 Description 8-252 Diagram 8-253, 8-254 Description 8-236 Description 8-248 Priority Request 3 (Data) Description 8-240 Priority Request 7 (Seek) Description 8-210 Description 8-248 Description 8-216 Description 8-228 Diagram 8-230, 8-231 Seek (Common Controls) Description 8-210 Seek (Individual Drive Controls) Description 8-212 Diagram 8-213, 8-215 Description 8-240 Description 8-240 Standard Read Data Trigger Description 8-226 Description 8-248 Description 8-248 Description 8-216

High Speed Access 8-102, 8-214	Read Buffer/Write Serializer–Write Buffer/Read Serializer (Serdes) 8-248 Read Data 8-111
IBM 5444 Disk Storage Drive	Read Data Operation Data Flow 8-113
Configurations 8-103	Read Diagnostic 8-111
Data Storage 8-103	Read Identifier 8-111 Read Verify 8-111
Models 8-102 Operators Console (Model 6) 8-103	Ready 8-207
Operators Console (Model 10) 8-103	
Track Format 8-104	
IBM 5444 Disk Storage Drive Attachment	Scan Equal 8-111
Cycle Steal Requests 8-102	Scan Found 8-108 Scan High or Equal 8-111
Error Detection 8-101 Local Storage Register Addressing 8-101	Scan Low or Equal 8-111
Program Instructions 8-101	Sector 8-104
Timing 8-101	Sector Byte 8-105
High Speed Access Control 8-102	Seek 8-111 Seek Control Field 8-111
Identifier (ID) 8-104 Index 8-104	Seek Control Field 8-111 Sense I/O (SNS) 8-109
Indicators (Model 6) 8-103	Sense Operation Data Flow 8-115
Indicators (Model 10) 8-103	Separated Clock 8-208
Initial Program Load (IPL) 8-111	Separated Data 8-208
Interface 8-205 I/O Condition A I/O Condition B 8-252	Start I/O (SIO) 8-111 Sync Character 8-104
IPL (Initial Program Load) 8-111	
	Tap Line 8-206 Test I/O (TIO) 8-108
	Track 8-104
Load I/O (LIO) 8-107 Local Starse Parister 8 105	Track Format, 8-104
Local Storage Register 8-105	
N D. 4. 0 105	Write Data 8-111
N Byte 8-105	Write Identifier 8-111
Operations	
Operations Initial Program Load (IPL) 8-307	
Load I/O (LIO) 8-302	
Read 8-337	
Read Identifier 8-348	
Seek 8-313	
Sense I/O (SNS) 8-305 Start I/O (SIO) 8-310	
Test I/O (TIO) 8-304	
Write Data 8-326	
Write Identifier 8-317	
Oscillator 8-208	

~

READER'S COMMENT FORM

Order No. SY34-0021-1

System/3

5444 Disk Storage Drive Attachment FETMM

Other ____

• Your comments, accompanied by answers to the following questions, help us produce better publications for your use. If your answer to a question is "No" or requires qualification, please explain in the space provided below. Comments and suggestions become the property of IBM. 37

...

	Y es	No	
• Does this publication meet your needs?			
• Did you find the material:			
Easy to read and understand?			
Organized for convenient use?			
Complete?			
Well illustrated?			
Written for your technical level?			
• What is your occupation?			
How do you use this publication?			
As an introduction to the subject?		As an instructor in a cl	lass?
For advanced knowledge of the subject?		As a student in a class?	
For information about operating procedu	res?	As a reference manual?	· 🗌

• Please give specific page and line references with your comments when appropriate. If you wish a reply, be sure to include your name and address.

COMMENTS:

System/3 5444 Disk Storage Drive Attachment FETMM

- of IBM.
- Does this publication meet your needs?
- Did you find the material: Easy to read and understand? Organized for convenient use? Complete? Well illustrated? Written for your technical level?
- What is your occupation? ____
- How do you use this publication? As an introduction to the subject? For advanced knowledge of the subject For information about operating proceed

Other _____

• Please give specific page and line references with your comments when appropriate. If you wish a reply, be sure to include your name and address.

READER'S COMMENT FORM

...

Order No. SY34-0021-1

• Your comments, accompanied by answers to the following questions, help us produce better publications for your use. If your answer to a question is "No" or requires qualification, please explain in the space provided below. Comments and suggestions become the property

...

	Yes	
? dures?		As an instructor in a class? As a student in a class? As a reference manual?

COMMENTS:

		· · · · · · · · · · · · · · · · · · ·	
SY34-0021-1		SY34-0021-1	
YOUR COMMENTS, PLEASE		YOUR COMMENTS, PLEASE	
Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and sug- gestions become the property of IBM.		Your answers to the questions on the back of this form, together with your comments, will help us produce better publications for your use. Each reply will be carefully reviewed by the persons responsible for writing and publishing this material. All comments and sug- gestions become the property of IBM.	
<i>Note:</i> Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.		<i>Note:</i> Please direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to the IBM branch office serving your locality.	
Fold	Fold	Fold	Fold
	FIRST CLASS PERMIT NO. 110 BOCA RATON, FLA 33432		FIRST CLASS PERMIT NO. 110 BJCA RATON, FLA 33432
BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES		BUSINESS REPLY MAIL NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STAT	
POSTAGE WILL BE PAID BY		POSTAGE WILL BE PAID BY	
IBM Corporation General Systems Division Boca Raton, Florida 33432		IBM Corporation General Systems Division Boca Raton, Florida 33432	
Attention: Product and Programming Publications, Department 707		Attention: Product and Programming Publications, Department 707	
Fold	Fold	Fold	Fold
IBM		IBM	
International Business Machines Corporation Data Processing Division 112 East Post Road, White Plains, N.Y. 10601 [USA Only]		International Business Machines Corporation Data Processing Division 112 East Post Road, White Plains, N.Y. 10601 (USA Only)	
IBM World Trade Corporation 821 United Nations Plaza, New York, New York 10017 {International}		IBM World Trade Corporation 821 United Nations Plaza, New York, New York 10017 [International]	

REPLY MAIL