
 System/3 Reference Summary

Second Edition (July 1978)

Comments may be addressed to IBM Corporation, GSD-CE Field Support, Department 90E, Boca Raton, FL 33432.
©Copyright International Business Machines Corporation 1974, 1978

CONTENTS

SYSTEM INDEX
Abbreviations 2
APLD-Setup and Cassette Adjustment Procedure 44
Card Module Coordinates and Voltage Levels 29
Card Pin and Voltage Locations 28
Card Top Connector Layout 30
Channel Condition A \& B Responses 27
CPU Basic Timings 18
Crossover Cable-Board Pin Locations 26
Cycle Steal Reference Diagram/Chart 15
Error Log Form Numbers 6
ESD Profile Test Points
5404 10
5408 11
5410 12
5412 13
5415 14
General Logic Probe 39
Interrupts 21
Interrupts, Hardware 20
Interrupts, Unexpected-5415 22
Logic Symbology 31
Machine Cycle Description 17
Machine Cycle (Fast I-Cycle) 19
Microcode Attachment Checks-5412 and 5415 22
Microcode Levets 6
Microcode and IOS Interface 20
MST Diagnostic Probe 41
Probe Checkout 43
Noise Scoping 9
Oscilloscope Service Aids 7
Phase Rotation Check 8
Program Check (PC) Halt-5415 22
System Control Panel 23
Systern Configurations
5408 45
5410 46
5412 B and C 47
5415 A 48
5415 B, C and D 49

Note: A suitable binder for this handbook may be obtained from Mechanicsburg Distribution Center by ordering Part Number 453559.

STANDARD ABBREVIATIONS

A
AAR
ACC
ALD
ALT
ALU
AMP
APL
APLD
ARM
ARR
ASNMT
ATCH
ATT
ATTN
BAR
BCA
BIN
BM
BSCA
BSCAR
BSCC
BSM
CAR
CARR
CCP
CE
CHAN
CHK
CLK
CONDA
CONDB
CPS

CPU
CR
CRR
CRT
CRTAR
CS
CTRL
CURAR
CYC
D.

DA
DBI
DBO
DCF
DCP
DDCF
DDCR
DDDF
DDDR
DEC
DEV
DFC
DFCR
DFDR
D.H.

Add to Register
Operand 2 Address Register
Access
Automated Logic Diagram
Alter
Arithmetic Logic Unit
Amplifier
Advance Program Level
Alternate Program Load Device
Armature
Address Recall Register
Assignment
Attachment
Address Translate Table
Attention
Operand 1 Address Register
Bit Count Appendage
Binary
Bill of Material
Binary Synchronous Communications Adapter
BSCA Address Register
Binary Synchronous Communications Controller
Basic Storage Module
Carry
Carriage
Communication Control Program
Customer Engineer
Channel
Check
Clock
Condition A
Condition B
Cycles Per Second
or
Characters per Second
Central Processing Unit
Condition Register
Condition Recall Register
Cathode Ray Tube
CRT Address Register
Cycle Steal
Control
Cursor Address Register
Cycle
Depress and Release
Display Adapter
Data Bus-In
Data Bus-Out
Disk Control Field
Diagnostic Control Program
Disk Drive Control Field
Disk Drive Control Register
Disk Drive Data Field
Disk Drive Data Register
Decimal
Device
Dual Feed Carriage
Disk File Control Register
Disk File Data Register
Depress and Hold Until Next Non-Decision Block

STANDARD ABBREVIATIONS (continued)

STANDARD ABBREVIATIONS (continued)

STANDARD ABBREVIATIONS (continued)

SSW	Sense Switch
ST	Store Register
	Storage
	Switch
	Sense/Inhibit
TAP	Timing Analysis Program
TB	Terminal Block
TEMP	Temporary
TF	Test False
T10	Test I/O Device
	Track
	Test
S	Universal Character Set
VFC	Vertical Forms Control
VFO	Variable Frequency Oscillator
XR	Index Register
XR1	Index Register 1
XR2	Index Register 2
XRD	X Read
7	X Write
	Y Read
WR	Y Write
Z	Inhibit

SYSTEM/3 MICROCODE LEVELS

3340-5412

FA0-2	EC571689	FA0-	EC	FA0-	EC
FA6-0	EC827785	FA6-	EC	FA6-	EC
FA7.1	EC827827	FA7.	EC	FA7-	EC

3340-5415

FA0-6	EC825149	FA0-	EC	FA0-	EC
FA6-2	EC825101	FA6-	EC	FA6-	EC
FA7.2	EC825068	FA7-	EC	FA7.	EC

3344.5415

FA0-2	EC825144	FA0-	EC	FA0-	EC
FA6-2	EC825101	FA6-	EC	FA6-	EC
FA7-2	EC830242	FA7-	EC	FA7-	EC

BSCC-5415

FBO-3	EC572305	FBO-	EC	FBO-	EC

$3277-5415$

FCO-2	EC824801	FCO-	EC	FCO-	EC

DA/LDA-5404,5408,5412,5415

FC7-3	EC572306	FC7-	EC	FC7.	EC

MLTA-5410,5412

FFO-2	EC577027	FFO-	EC	FFO-	EC

MLTA-5415

FFO-1	EC824808	FF0-	EC	FFO-	EC

NOTE: These are latest levels as of 7.1-1978

SYSTEM/3 CPU ERROR LOG FORM NUMBERS

TYPE	FORM NUMBER
$5404 / 06$	G229-8005
5408	G229-8041
5410	G229-4075
$5412-\mathrm{B}$	G229-4450
5412 C	G229-8097
$5415-\mathrm{A} / \mathrm{B}$	G229-4098
$5415-\mathrm{C} / \mathrm{D}$	G229-8091

OSCILLOSCOPE SERVICE AIDS

BABYSITTER (Single Sweep Mode)
icates the sensing of a pulse of predetermined amplitude. The trigger level is generally $1 / 2$ of the expected pulse amplitude.

1. To set the trigger level

CHANNEL CONTROLS
CH 1 VOLTS/DIV Determined by desired pulse amplitude

CH 1 INPUT GND
MODE CH1
RIGGER
NORMAL
EEP CONTROLS
HORIZONTAL DISPLAY
A
A SWEEP MODE
A \& B TIME/DIV
NORMAL
50 msec
A-TRIGGERING
SLOPE
COUPLING
$+$

SOURCE
DC
INT
the dot to the desired trigger level on the screen with the CH 1 position control.
ust the TRIGGER LEVEL CONTROL to give a sweep. Reposition the dot to the base line on the screen.
2. Single sweep operation
CH 1 INPUT
DC
A SWEEP MODE
SINGLE SWEEP

Check trigger level by arming the scope by depressing the reset button and its green light will come on. Move the spot up and check to see that a sweep is triggered when the trace reaches the preset level. The light will be turned off by a sweep and must be reset to arm the scope.

Reset the dot to your base line, arm the scope and place the channel 1 probe on the point you wish to monitor.

SHOOT THE MOON

Used to indicate the presence of a single high-speed pulse of a definite amplitude.
The calibration and setup is identical to the BABYSITTER except that the A-SWEEP MODE is NORMAL and the trace is out of focus to enable it to be easily seen.

LAYED SWEEP

1. Display the desired trace with HORIZONTAL DISPLAY on A.
2. Set B-SWEEP MODE to B STARTS AFTER DELAY TIME.
3. Set HORIZONTAL DISPLAY On A INTENSIFIED DURING B

Adjust the DELAY-TIME MULTIPLIER until the intensified portion of the trace starts just before the desired pulse to be observed on the trace.
Pull DELAYED SWEEP KNOB out and adjust the B-Sweep to display only the intensified pulse desired.
5. Set a SWEEP LENGTH to B ENDS A.
6. Set HORIZONTAL DISPLAY to DELAYED SWEEP B
7. The DELAY-TIME MULTIPLIER may now also be used to analyze other pulses on the trace.
If the B-trace is unstable:
a. Set B-SWEEP MODE to B TRIGGERABLE AFTER DELAY TIME
b. Adjust the B TRIGGERING CONTROLS for a steady trace with the B TRIGGER SOURCE on INT or use an EXT TRIG for B.

CHECKING PHASE ROTATION WITH AN OSCILLOSCOPE

Phase rotation can quickly and easily be checked with an oscilloscope using only one probe by using the "line" sync feature of the $\mathbf{4 5 3}$ (or equivalent) scope.

Use the following procedure:

1. Attach a 10 X probe to Ch 1 input. Use appropriate thread adapter and high voltage probe P/N 1749249 or 1749250.
2. Set Ch1 input coupling to $\mathbf{A C}$, Volts/div to 10.
3. Set Mode switch to Ch1, trigger to Ch1 only.
4. Set sweep to $2 \mathrm{~ms} /$ div. At this sweep speed each horizontal division represents approximately 40°.
5. Set a Sweep Mode to normal, Level to zero (0).
6. Slope to plus, coupling: AC, Source to LINE. Center the sweep horizontally.

Probe each of the three hot poles to find the one that gives a waveform starting on the leftmost side of the screen at the center horizontal line and going plus.
The pole giving the waveform starting at the left edge of the screen or zero degrees is the reference phase.
From the reference phase probe the next pole counterclockwise. If the positive-going waveform begins 120° after the reference phase, phase sequence is correct. If phase sequence is not correct, the waveform will not start plus until $\mathbf{2 4 0}$ degrees after the first phase.

On a correctly phased receptacle, probing each hot pole in sequence counterclockwise will easily show the 120 degree difference and correct sequence.

Note: See General C.E.M. 269 which shows the one case where the phasing may be 180 and 90 degrees rather than 120/120.

SCOPING FOR NOISE

Electrical noise on the frame or ground of data processing devices can be a source of intermittent problems. The effect that this noise has on the machine is largely determined sise time or the frequency characteristic of the noise. At low frequencies, such as 60 s , the noise is seen as common mode noise. That is, the noise causes a gradual shift he reference point (frame). The signal is referenced to DC ground. The DC ground or frame is fluctuating with respect to true ground or ' 0 ' volts potential. However, the signal is still +3 volts above frame potential.

Static or any sharp transient noise behaves quite differently. Since frequency is directly related to rise time, this noise is treated as a very high frequency disturbance. The impede of each leg of this same circuit will appear differently to this type of noise. This can a higher voltage to appear on one leg of the circuit than the other. The resulting ential difference between input legs can cause the circuit to malfunction.
In order to see the significant noise on a system ground, a special scoping technique is used. Both probes of a dual trace oscilloscope should be connected to the same point. The sensitivity of each probe input is set to the same level. Now, by inverting one channel, and adding, all low frequency "common mode" noise disappears. Both channels being "identical" has caused the lower frequency noise to phase out.
both channels are not identical. The invert circuit on channel two of the scope has an tional circuit not present on channel one. The time delay in the circuit is very minute. this small difference that prevents the very high frequency noise from being phased out. What is now displayed on the scope is only noise that can significantly effect the performance of the machine.

An energized $A C$ power line can be scoped directly as well. The $A C$ voltage (low frequency "common mode") does not display on the oscilloscope but any relatively high frequency noise does. Exercise extreme caution when probing AC power conductors. Use of HV probes P/N 1749249 and 1749250 is recommended.

Scoping for noise in this way should be coupled with experience and knowledge of the test gear. A coincidental failure of the machine and an observance of noise on the scope can effectively be captured with the use of an event recorder. This is often the only way of proving noise is a problem source.

ESD (5404)

ESD (5408)

ESD (5410)

ESD (5412)

ESD (5415)

CYCLE STEAL REFERENCE - PART 1

[^0]
CYCLE STEAL REFERENCE - PART 2

a.

MACHINE CYCLE DESCRIPTION

$10 p=$ Op-code moved from storage to op-code register.

$=\mathbf{Q}$-code moved from storage to Q -register.
Third instruction cycle when instruction uses no addresses.
Establishes first operand address in BAR when first operand is indirectly addressed.
$\mathrm{IH} \mathrm{I}=$ Establishes high-order byte of first operand in high-order byte of BAR when first operand is directly addressed.
IL1 = Establishes low-order byte of first operand in the low-order byte of BAR when first operand is directly addressed.

$=$ Establishes second operand address in the AAR when the second operand is indirectly addressed.
$=$ Establishes the high-order byte of second operand in the AAR when the second operand is directly addressed.
IL2 = Establishes the low-order byte of second operand in the AAR when the second operand is directly addressed.
$E A=$ Moves a byte of the second operand from storage, operates on it and returns it to storage.
EB = Moves a byte of the first operand from storage, operates on it and returns it to storage.
$=$ Transfers one or two bytes of data to or from an I/O attachment or device.

CPU BASIC TIMINGS

INSTRUCTION CYCLES (FAST I-CYCLE)

all instructions are executed at fast I-cycle speed. Certain instruction types require norprocessing speed.

These operations that require normal processing speed include:

- I/O and Halt instructions
- The last cycle of a 3- or 5-byte instruction

Sertain time dependent diagnostic programs

- Cycles during which program checks occur

The following instruction cycle diagram shows the 1 -cycle, dummy half cycle, and machine cycle relationship for all instruction types.

One Address Instructions (branch)
$\sqrt{1 . O p} \sqrt{1 . Q} \sqrt{1 . H 1 ~ V 1 . L 1}$
$\sqrt{1 . O p} \sqrt{1.0} \sqrt{1 . H 1} \sqrt{1 . L 1}$ (LA and BC

Command
Instruc

MICROCODE AND IOS INTERFACE

As I/O devices have become faster and more sophisticated, microcode has come into widespread use as a communication interface between system programming and $1 / O$ devices. The major impact from a microcode failure is the inability of IOS to communicate with the device.
(Example of 3340 microcode and corresponding disk IOS.)
When device errors occur. IOS can retry the operation and assuming successful completion, continue on. When an adapter check occurs, IOS can force a reload of the microcode (soft $(P L)$ and continue on. If the error persists after three retrys, IOS will cause a branch to a $X^{\prime} 00^{\prime}$ OP Code and force a process check. This will result in a red light indication and the interrupt Level 7 light on the console.

HARDWARE INTERRUPTS

Unexpected hardware interrupts on the System/3 Model 15 can also cause system symptoms that appear to be software failures. At system generation time a table is built for every device on the system. Each table contains numerous elements which can represent a function for the device to perform at execution time, when a function is requested of the device, the element is pligged with the address of the requesting task and the address of the active IOB (Input/Output Block). The requesting task may be a user program or the system itself. The IOB contains a description of the function to be performed. When the SIO is given to the device, the $I O B$ is put in the wait state. When the OP END interrupt is received from the device, the active $I O B$ is posted complete if the operation was successful.

In the case of the unexpected interrupt, no information has been plugged into the table element. Upon receiving the interrupt, the interrupt handler determines the device type and goes to the appropriate table to get the task and IOB information. System programming will check for a valid IOB address and, if none is present, will force a processor check. The PSR can determine the device that caused the unexpected interrupt.

INTERRUPTS

Interrupts, if enabled in an attachment (mod 12C/15 - current PMR must not have int. mask
 occur following "interrupt poll". If more than one device responds, the priority latches for them. Then the highest priority interrupt occurs followed by any others. A high ty interrupt can "interrupt" a lower priority that is in process (mod 12C/15 use P.M.R.
mask to prevent this if wanted). When this happens, the low priority will continue when the high priority finishes.

CPU ERROR HANDLING

The information below describes several common types of error conditions and how the software handles them:

1. UNEXPECTED INTERRUPTS - 5415

When an "IOB" (I/O command to a device) is initiated the device performs it's function and then causes an OP.END INTERRUPT which the "IOB" expected. If a device or attachment check occurs, it causes a pre-mature OP-END INTERRUPT but since
the error can be explained the software simply posts a message (one exception is when the 3340 gets an attach. check; see STEP 3-B). However, if an "IOB" has not been activated for a device and that device OP-END INTERRUPTS, the software forces a " 00 " INV. OP. process check. The console lights show "INT LEV, 4, 2, 1(7)" and memory location $X^{\prime} 0102-0103$ ' has $X \times 1111 \times \times \times \times 1 \times \times \times \times X$. The CPU error log sheet should be filled out, memory location X'0100-010F' recorded and a memory dump taken (if 3340 attach. caused the proc. ck., a CEFE dump can't be taken use stand-alone dump). A "PSR" can now analize this information to determine the cause.
2. PROGRAM CHECK HALT $\mathbf{- 5 4 1 5}$

The "PC" stick light halt has been changed on later program releases. An INV. OP (FF) process check, forced by software, will occur instead of "PC" halt.
3. MICROCODE ATTACHMENT CHECKS - $\mathbf{5 4 1 2}$ and 5415

If an error occurs in a microcode driven attachment the microcode is reloaded. The table below shows various attachments and how they handle re-load.

	MICRO CODE	
DEVICE	RE-LOAD TRIES	RESULT IF UNSUCCESSFUL
A) $3340 / 5412$	3	1- halt
B) $3340 / 5415$	3	INV. OP (00) process check (see step 1)
C) $3277 / 5415$	4	Ld or 5E halt
D) \quad DA $/ 5404,5408$,		
	5412,5415	1
E) \quad BSCC $/ 5415$	4	Y6BL halt

CONSOLE DISPLAY PANEL

unp	System/3 Model	Identification	Information Displayed
	All	SAR HI/SAR LO	Contents of storage address repister ton Model 12 C and Model 15. SAR DISPLAY torgle swith must be wet at SAR,
2	All	LSR HI/LSR LO	(inntents of reqister selected by selting of LSR DISPI AY SI LICTOR switch
3 L	All	OPRIG;	Contents of the op register
3R	All	Q.RIG	Contents of the Q-register
4 L	All	B-REG	Contents of the B-register
\bar{k}	All	ALUCTL	The state of the following Alt' cuntrols. DIG CAR (diqital carry) DH: (decimal) RI COMP (recomplement) ADD (addition) SLB (subtrattion) TH M CAR (temporary carry) AND thogical and) OR (logical or)
5L	All	A-RIG;	Contents of the A-register
5R	All	ALU OUT	Output of the ALC
\%	8, 10.12B	Reserved	
	i2C. 15	ATT	Contents of ATT (The ATT displayed is the active ATT register unless the alter: display ATT function is being used. in which case the addressed ATT rexister in displayed. An ATT is always selected and displayed here regardess of whether the contents are being used.
6R	All	COND RIG;	The contents of the condition register are displayed as follows. BIN OVI Ibinary overflow) TI (test false) Dt C OVt idecimal overflow) HI (high) LO (low) ro (equal)
7 L	All	(S ASNMT	Cycle steal assignment is displayed as it is presented to the 1/O devices on the I/O interface.
7R	8. 10.12 B	INT LI:V	Interrupt level, indicating which I/O device is in terrupting the program. Level is displayed as a binary encoded value. Interrupt level 0 is indicated as no light in any of the 3 interrupt level code bits and the INTI:RRUPT CYCLI light on.
	12 C	PMR/INT	Prokram mode register (PMR) and interrupt level. The PMR displayed is the active PMR unless the alter/display IMR function is being used, in which case the addressed PMR is displayed. Interrupt levels are indicated as follows:

CONSOLE DISPLAY PANEL (continued)

Strip Number	System/3 Model	Identification	Information Displayed
	15	PMR/INT (Models A and B) PMR (Models (and D)	Proqram mode register (PMR) contents and binary encoded interrupt tevel. The PMR displayed is the active PMR unless the alter display PMR function is being used. in which case the addressed PMR is displayed. Interrupt level is displayed as a binary encoded value. Interrupt 0 is indicated by no light in all 3 interrupt level code bits and the INT LI:V light on. On Models (and D only, the binary value displayed on the INT 1. INT 2. and INT 4 lights below the MACHINI: CYC'LIS lights serve as the interrupt level code bits.)
8	X. 111.128	PROC CHK	The processor checks are displayed as follows: I/O LSR: I/O attachment made an LSR selection error. If LSR I I or LSR 12 is not on, the LSR is associated with the 1403, 1442, 5203. or 5424. LSR II: The output from the 3340.3741 (iPL), or BSCA-1 LSR contained a parity error. LSR 12: The output from an L.SR associated with an $1 / 0$ device is not listed for LSR $1 / 1$ LSR HI: High-order (leftmost byte) of LSR output has parity error. LSR LO: Lowarder frightmost) byte of LSR output has patity error. SAR HI: Highorder (leftmost) byte of storage address registel has parity error. SAR LO: Lowarder (rightmost) byte of storage address register has parity error. INV ADDR: Storage address register contains address that evceeds installed storaze capacity. SDR: Storage data register has incorrect parity. CAR ('arty from Al.L' is wrong. (PL DBO Processor tried to send data with incorrect parity to an I/O device. OP/Q. Incorrect panty in up-code register or Q-register. INV OP: Invalid op code in op-code register CHAN DHO: CPU sent data with correct parity to $/$ O device, but I/O device received data with incorrect parity INV Q: Invalid Q-byte in the Q-register. DBI: CUP received data containing incorrect parity from an I/O device. A / B : A or B register has incorrect parity. ALU: ALU output has incorrect parity.
	120. 15	PROC CHK	The processor checks are displayed as follows: I/O LSR: Selection of an LSR by an I/O device was not performed correctly. LSR: Parity is incorrect on the output of the LSR.

Strip Number	Syatem/3 Model	Ldentification	Information Dingtayed
PROC CHK			
(continued)			

I/O CHANNEL CONDITION A \& B RESPONSES

CARD PIN AND VOLTAGE LOCATIONS

CARD MODULE COORDINATES AND VOLTAGE LEVELS

MST CARD LAYOUT

MST/SLD Voltage Levels

LOGIC SYMBOLOGY

Polarity is indicated by a wedge (Δ) or no wedge.

Active level is the line level that conforms to the edge of block character for that line.

AND
The output of the AND is active when all of the inputs are active.

OR

The output of the OR is active when one or more of its inputs are active.

ODD COUNT
This is a device whose output will be active when an odd number (1-3-5.7. etc) of its inputs are active.

EVEN COUNT

This is a device whose output will be active when an even number ($0 \cdot 2 \cdot 4 \cdot 6$, etc) of its inputs are active.

OSCILLATOR

This is a device which produces a uniform repetitive output either continuously or during the application of an input signal of the polarity indicated. It is desirable to show the frequency in the block.

LOGIC SYMBOLOGY (continued)

AMPLIFIER

This is a device whose fundamental purpose is to provide adequate driving energy and appropriate impedance matching to other devices. Its output will be active when its input is active. An AMPLIFIER has only one logic input.

DOT OR and DOT AND

Basic function whose outputs are connected externally so that the connection performs an AND or OR operation (dot AND, dot OR) shall be identified by having an additional A or OR placed in the block to the right of the primary block function symbol.

EXCLUSIVE OR

The output of an EXCLUSIVE OR will be active when one and only one of its inputs is active.

FLIP FLOP

This is a device which has two stable states. One of these is called the 1 state or set state; the other is the 0 state or reset state. In the set state, the outputs assume their indicated polarities. In the reset, or 0 state, the outputs assume polarities opposite those indicated.

LOGIC SYMBOLOGY (continued)

FLIP FLOP (continued)

Operation

(a) Application of a signal of indicated polarity to the S or set line will cause the outputs of the block to assume their indicated polarities.
(b) Application of a signal of indicated polarity to the R or reset line will cause the outputs to assume polarities opposite to those indicated.
(c) Application of a signal of indicated polarity to input line T, or to both the J and K in puts simultaneously, will change the state of the FLIP FLOP (complement the FLIP FLOP).
(d) Application of simultaneous S and R inputs will cause the outputs to $g o$ to opposite polarities.

BLOCK CHARACTERS

C CONTROL LINE OF PH

CD	CONTROLLED DATA LINE OF PH
J	COMPLEMENT SET
K	COMPLEMENT RESET
R	RESET LINE
S	SET LINE
T	COMPLEMENT LINE. SEE FLIP FLOP
U	UNLOADED OUTPUT
x	NON LOGICAL LINE (BIAS)
-	INDICATED OFF BOARD CONNECTION
	OR LABELED LOAD RESISTOR

FLIP FLOP LATCH or FLIP LATCH

The definition of this device is the same as that given for FLIP FLOP except that simultaneous application of signals of indicated polarity at the \mathbf{S} input and the \mathbf{R} input will cause the 1 output and 0 output to both go to the negative polarity or both go to the positive polarity (depending upon the characteristics of the particular circuit type) for the duration of such simultaneous input application. Complement input is not applicable to this block.

POLARITY HOLD

This is a device whose output will be active whenever the data line and the control line are active. When the control input is caused to go to opposite polarity to that indicated, the output will hold to whatever polarity is possesses at that moment.

LOGIC SYMBOLOGY (continued)

SPECIAL

A SPECIAL block will have its function adequately described by wording on the diagram page.

LIMITER

This is a device that limits one or both extremes of a waveform to a predetermined level without distortion of the remaining waveform.

SIGNAL MODE CONVERTER

This is a device that provides the necessary conversion or translation between signal lines having different signal reference values-current mode to voltage mode, voltage mode to voltage mode, etc.

INVERTER

This is a device whose output is in the more positive condition as a result of its input being in the more negative condition and vice versa.

SINGLESHOT

This is a device whose output will change for a specified time to the indicated polarity upon the application of an input signal of the indicated polarity

TIME DELAY

This is a device whose primary function is the time delay of a signal without distortion of the signal.

FUNCTIONAL LOGIC SYMBOLOGY

The Functional Logic Blocks used in System/3 ALDs consist of selectors, registers, decodes, X, and MREGs

ector

The selector consists of:
a. Two or more ORs having common input or output gating
b. Two or more ANDs having common input or output gating. A combination of a and b.

AMPLE

REGISTER

The register consists of associated storage elements, such as FF, FL, PH, with common reset or control lines. Common gating may be included

EXAMPLE

FUNCTIONAL LOGIC SYMBOLOGY (continued)

DECODE

The decode block contains inputs and outputs which are assigned numeric values. An output line is active when its numeric value is equal to the sum of the values of all active input lines. When all input lines are inactive, the output sum is zero.

Character modifiers are characters (alpha and symbol) printed around the blocks. These define the block's specific operation.

The load for an unloaded output can be found by tracing the net to its termination. The load will be specified by an * on the line and noted on the bottom of the FEALD page.
*The module pin will not appear when the line connects to a board pin.

FUNCTIONAL LOGIC SYMBOLOGY (continued)

DELAY

lay block will be generated by the FEALD program when two or mroe circuit elements, ded primarily for delay purposes, are removed.

EXAMPLE

MATRIX

A matrix relates to an addressing scheme where two or more groups of lines are used for addressing. A combination of one active line in each group will select a specific storage position.

EXAMPLE

The input lines are arranged in groups. One active line in each group will give one active output.

FUNCTIONAL LOGIC SYMBOLOGY (continued)

MULTIPLE REGISTERS (MREG)

Multiple registers (MREG) symbolize many registers which have common data and common input/output gating. The gates are shown as address lines (A0, A1, etc).

The multiple register symbol can be used to represent ROS, LSR, SDR, and monolithic memories. The unscopable address lines are "bundled" and shown as one line from the address decoder to the MREG. In the example the MTX addresses 3 -bit words. The 00 depicts the address range 000 through 19.
19

Writing into the storage unit requires an address line and the control line to become active. Reading from the storage unit requires an address tine only.

GENERAL LOGIC PROBE

Specifications

1. Size $\cdot 6^{\prime \prime}$ long, $2 \frac{1}{2} 2^{\prime \prime}$ wide, and $112^{\prime \prime}$ deep
2. Technology - SLT, SLD, TTL (VTL), FET, MST-1, 2, and 4
3. Built-in latch
4. Up and down indicators
5. Two gating pins
6. Will detect a 5 nsec pulse for MST and a 6 nsec pulse for VTL, SLD, SLT, FET

Switches:

1. Three position - Select the technology you are using.

- Multi - Used with SLT, SLD, VTL, and FET
- MST-2/4 - Self-explanatory
- MST-1 Self-explanatory

2. Latch

- Up. Up level set
- None - Latch not used
- Down. Down level set

Gating - Plus and minus gating pins are provided. The gate reference switch is used along with these two pins for gating the probe. When gating is to be used with the probe, the indicators are inhibited until the gate signal is present with the probe input signal
4. Gate Ref - Select correct gate level for the technology you are using.
-+1.4 V - For VTL, SLT, SLD

- Gnd - For MST - $2 / 4$
-1.3 V . For MST 1

5. Up and down indicator lights:

Up Down Range	
On	Off +2.0 V to +60.0 V
Off	On +0.8 V to -60.0 V
Off	$\mathrm{Off}+0.8 \mathrm{~V}$ to +2.0 V

Pulsing Signals . Depending on the frequency of the signal, either the up or down indicatd will be on alternately, or both indicators will be lit at the same time.
6. Input - Probe tip ($\mathrm{P} / \mathrm{N} 5500901$) is required for VTL. Ground lead ($\mathrm{P} / \mathrm{N} 5500900$) is also required as the input signal is independent of the power supply.
7. Probe Power - Can be connected to any dc voltage source in the range of 4 V to 12 V . The black lead must be connected to the negative potential and the red lead to the positive potential.
8. Probe Support Hook. Should be hooked on the gate when probing.

9. Probe P/N - 453212

MST DIAGNOSTIC PROBE

CE Diagnostic Probe - The CE Diagnostic Probe is designed as a substitute for the scope in the normal diagnostic techniques.

The Diagnostic Probe has two probe tips. One is for probing MST- 1 signals and the other for SLD (SLT) 100/700 signals. Only one tip at a time is used. This tip slips over the signal pin of interest and supports the probe.

Two lamps are provided to indicate the status of the line being probed. If the line has an up level the "UP" indicator will be on. A down level will cause the "DOWN" indicator to light. A pulse will be shown as a flash of one of the lights (depending on the polarity). A series of pulses is indicated by both lamps on, or on alternately, depending on the frequency of the pulses.

Each indicator lamp has its own sampling circuits and operates independently of the other lamp. Thus pulses will be detected and displayed by the probe. If a line is active, when probed, the appropriate indicator will be turned on for approximately 75 msec . After this time the indicator will go off and the line will immediately be sampled again. If it is still active the lamp will be turned on for another 75 msec , otherwise it will stay off until the line again becomes active.

The probe is powered by -4 vdc and ground, through a 42 -inch power cable. The end of the cable has a 4-pin socket which plugs onto the power cross-over connectors on the MST boards, or at other similar locations where -4 V and ground have been provided in the proper pin configuration. Always keep the side of the power plug labeled "UP" in the up direction.

Additionally, the probe has two MST gates for "syncing" purposes. When a jumper wire is connected from one of these gates to an MST signal pin, operation of the indicator lamp is inhibited (both lights off) until the correct polarity signal is received by the gate. The " + " gate requires an up MST level to start sampling and the " - " gate is contingent upon an MST down level. The gates work for MST only. However, an SLD signal at the SLD probe tip may be gated with an MST signal at the gate.

The following are specifications pertinent to the probe. "In between levels" are not defined and will vary from probe to probe.
A. MST Specifications for MST Probe Tip -

UP LEVEL:	-0.55 V	to	-0.98 V
DOWN LEVEL:	-1.52 V	to	-2.18 V
PROTECTION:	+24 vdc to	-30 vdc	
RESPONSE:	30 nanosecond pulse width		
INHIBIT RANGE:	-0.5 vdc to	+24 vdc,	
	-3.98 vdc to	-30 vdc , and	
	on open pins.		

B. SLD Specifications for SLD Probe Tip -

| UP LEVEL: | +2.7 vdc to +60 vdc |
| :--- | :--- | :--- |
| DOWN LEVEL: | -.01 vdc to +0.45 vdc |
| PROTECTION: | -12 vdc to +60 vdc |
| RESPONSE: | $\mathbf{2 0 0} \mathrm{nsec}$ (worse case) pulse width |
| INHIBIT RANGE: | -3.0 V to -12.0 V and on open pins. |

MST DIAGNOSTIC PROBE (continued)

C. Specifications for MST Gates -

1) "+" GATE
$\begin{array}{llll}\text { ACTIVE RANGE: } & -1.01 \mathrm{~V} & \text { to } & -0.613 \mathrm{~V} \\ \text { INHIBIT RANGE: } & -1.55 \mathrm{~V} & \text { to } & -4.48 \mathrm{~V}\end{array}$
2) "-" GATE:

ACTIVE RANGE: -1.55 V to -4.48 V
INHIBIT RANGE: -0.613 V to -1.01 V
3) PROTECTION: -4 vdc to +6 vdc
4) RESPONSE: SAME AS MST
D. POWER REOUIREMENTS: $-4 \mathrm{vdc}+\mathrm{OR}-12 \%$ at 265 MA (MAX)
E. POWER DISSIPATION: 1.95 Watts (WORSE CASE)
(Field Replaceable).
F. LAMPS: 2 Each - PN 454612
G. TIPS:

2 Each - PN 453163

DIAGNOSTIC PROBE CHECKOUT

SLD PROBE CHECK

Any D08 pin Down light only
Any +6 V laminar bus Up light only

$$
1200^{00}
$$

ALTERNATE PROGRAM LOAD DEVICE

The Alternate Program Load Device (APLD) is a cassette tape recorder that serves as an alternate input device. It is used to load diagnostics when they are unavailable from the normal input device due to a malfunction, and it is used to update diagnostic programs that are disk resident.

INTERFACE CIRCUITS

The APLD irterface card contains pulse shaping circuitry only. Error detection, tape speed synchronization, noise elimination, signal detection, data separation and de-serialization functions are all performed by the tape loader program.

The interface circuits are contained on a single wide 2-high MST-1 card. The function of the interface circuits is to convert the tape audio signals to machine readable MST- 1 levels. They consist of:

1. 60 Hz noise filter
2. Comparator
3. Shaper
4. Level Converter
5. Polarity Hold Latch

The read signal is first filtered to eliminate 60 Hz noise. It is then compared to a reference voltage, and a signal is generated at the comparator output when a positive input signal swing is detected. The generated comparator signal is shaped to the write signal pulse width via a single shot shaper and then converted in the level converter to the desired logic level. The output of the level converter goes to a polarity hold latch which is conditioned during clock 2 of each CPU cycle. The output of the polarity hold latch is OR'ed with a printer attachment 'busy' signal.

During a read data sample, the 'busy' condition is tested by performing a Test I/O. When 'busy' is present during the sample, a binary 1 is placed in core. When not present during the sample, a binary 0 is placed in core.

APLD SETUP

1. Connect the 7.5 volt ac adapter from the ac adapter socket to a 115 v ac outlet.
2. Connect the shielded audio cable from the cassette output socket to the input jack. Note: When the audio cable is plugged into the cassette output socket, the cassette speaker is disabled.
3. The volume control setting should be approximately 6 .

CASSETTE ADJUSTMENT PROCEDURE

When using the cassette as an APLD or to update diagnostics, use the following procedure to adjust the volume on the Noretco Recorder. Connect your CE meter across the output of the recorder and adjust for 1.5 volts $A C$ while reading data. Repeat this procedure for Side B.

Note: Solid lines indicate required features or devices. Dashed lines indicate features and devices are available, but not required.

IThe BSCA can be equipped with an EIA Local Attachment Feature that allows a BSC device (such as the IBM 3270 information Display System) residing in the local DP room to be attached directly to the BSCA without a data set or modem.
$23410 / 3411$ and ICA cannot both be installed on the same system

Note: Solid lines indicate required features and devices. Dashed lines indicate features and devices are available, but not required Only one 3741 can be directly attached to the system

IIf IBM programming support is used, configurations without the 5424 must include both a 1442 and a 5444 , and no 5475
If IBM System/3 disk system programming support is being used, at least one 5444 is required.
Usually not used in the United States.
IBM programming systems for a disk-oriented system require a minimum of 12,288 bytes of storage to ensure systems availability
The BSCA can be equipped with an EIA Local Attachment Feature that allows a BSC device (such as the IBM 3270 Information Display System) residing in the local DP room to
be attached directly to the BSCA without a data set or modem

DEVICES AVAILABLE FOR SYSTEM/3 MODEL 12

Note: Solid lines indicate required features and devices. Dashed lines indicate features and devices are avalable, but not required. Only one 3741 can be directly attached to the system.
${ }^{1}$ The BSCA can be equipped with an EIA Local Attachment Feature that allows a BSC device (such as the IBM 3270 information Display System) residing in the local DP room to be attached directly to the BSCA without a data set or modem

Note: Solid lines indicate required features and devices. Dashed lines indicate features and devices are available, but not required. Only one 3741 can be directly attached to the system.

1/BM 5424 required with this unit if IBM programming support is used.
${ }^{2}$ The BSCA can be equipped with an EIA Local Attachment Feature that allows a BSC device (such as the IBM 3270 information Display System) residing in the local DP room to be attached directly to the BSCA without a data set or modem.

Note: Solid lines indicate required features and devices. Dashed lines indicate features and devices are available, but not required. Only one 3741 can be directly attached to the system.
${ }^{1}$ IBM 5424 required with this unit if IBM programming support is used.
${ }^{2}$ The BSCA can be equipped with an EIA Local Attachment Feature that allows a BSC device (such as the IBM 3270 Information Display System) residing in the local DP room to be attached directly to the BSCA without a data set or modem.
${ }^{3}$ be attached directly to the BSCA without a data set or modem.

This page intentionally left blank.
(

5404/5406 INDEX

BSM Addressing-5406 26
BSM XY Lines-5406 28
CE Console Switches 15
Channel Cabling-5404 7
CPU Boards and Power Supplies-5404 5
CPU Boards and Power Supplies-5406 6
Data Flow Diagram-5404 3
Data Flow Diagram-5406 4
Halt Identifiers 14
I/O Attention Lights 23
I/O Check Light 22
Load DCP 25
Operator Console Switches 20
Power On/Off Sequence-5404 9
Power On/Off Sequence-5406 11
Processor Checks 12
Processor Check Error Priority 13
Single Cycle System Reset and Manual Routine 29
Sync Check-5404/5213-3 30

CPU BOARDS AND POWER SUPPLIES 5404

CPU BOARDS AND POWER SUPPLIES 5406

5404 I/O INTERFACE - Channel Cabling

This diagram shows the channel cable connection within the CPU.

\square

Note 1: FOR 50 HZ MACHINES, AC TO CPU BLOWERS COMES UP WITH K2 CONTACTOR

5408/5410 INDEX

Board Locations-5408 11
BSM Addressing-54 10 7
annel Cabling-5408 15
mnel Cabling-54 10 16
28
Data Flow-5408 3
Data Flow, Memory-5408 4
Data Flow-54 10 5
Halt Identifiers 35
Local Store Registers 26
cations-5410 13
STie-up/LSR Display Data 25
Power On/Off Sequence-5408 17
Power On/Off Sequence-5410 19
Power and Thermal Check Indications 20
Process Check Error Priority 10
Service Aids 21
\square
\square

This page intentionally left blank
\bullet

$\begin{aligned} & \text { SAR } \\ & \text { Bits } \end{aligned}$	One Byte (9-Bit) Readout Addressing			Binary	Decode/Remarks
15	8 K	16K	24K	1	X-Lo Order
14	B	B	or	2	
13	Y	Y	32K	4	
12	T	T	B	8	X.Hi Order
11	E	E	Y	16	
10			T	32	
9	B	B	E	64	Y.Lo Orcer
8	S	S		128	
7	M	M	B	256	
6			S	512	Y-Hi Order
5			M	1024	
4				2048	
3				4096	
2				8192	Byte Control
1				16384	
0				32768	

5410 BSM ADDRESSING (continued)

5410

LOCATIONS-5408 Board Locations

\square
\square
\square
\square

5406 POWER SEQUENCING

Power sequencing is controlled by the 24 Vdc control voltage. The power
supplies come on in the following order

-4 V logic voltage	3.	-30 Vdc storage supply
+6 Vdc logic voltage	4.	+24 Vdc supply

Power On Sequence

Note: $\quad+24$ Volt control voltage is on whenever the main line switch is on.
Note 1: For machines with printed circuit board sequence panel, the delay of -30 V is approximately 500 ms .

Note: +24 volt control voltage is on whenever main line switch is on.

PROCESSOR CHECKS

1/O LSR	Indicates selection of an LSR by an I/O device was not performed correctly.
LSR F1	Parity is incorrect on the output of the LSR Feature 1.
LSR F2	Parity is incorrect on the output of the LSR Feature 2.
LSR HI	Parity is incorrect on the output of the LSR high.
LSR LO	Parity is incorrect on the output of the basic LSR low.
SAR HI	Parity is incorrect in the Storage Address Register high.
SAR LO	Parity is incorrect in the Storage Address Register line.
INV ADDR	Indicates that the SAR contains an invalid address.
SDR	Parity is incorrect in the Storage Data Register.
CAR	Indicates the carry out of the ALU is incorrect.
A/B	Indicates the A or B-register has incorrect parity.
ALU	Indicates the output of the ALU has incorrect parity.
DBI	Parity is incorrect on the CPU end of the Data Bus-In.
CPU DBO	Parity is incorrect on the CPU end of the Data Bus-Out.
OP/Q	Parity is incorrect in the OP register or Q -register.
INV OP	Indicates an invalid OP code in the OP register.
CHAN DBO	Parity is incorrect on the 1/O device end of the Data Bus-Out.
INV C	Indicates an invalid Q-byte is present in an I/O instruction.

I/O ATTENTION LIGHTS

When any of the following lights are on, it indicates that the corresponding I/O device has been issued a start I/O instruction and it is not ready to operate. A not ready condition can be caused by power not being on or by some condition involving the paper or cards to be handled by the I/O device. The I/O attention indicators are SIOC, BSCA ATTN, LCD, CRT, DATA RCRDR, PRINTER, DISK DRIVE 1, and DISK DRIVE 2.

Recovery. Operator must determine cause of indication, rectify the cause and return device to the READY status.

Note: Refer to individual devices for 'normal' definition, recovery and/or restart procedures for that device.

UNIT CHECK

Testable Indicators

Unit check handling of testable indicators are controlled by software.

Restart procedures are conveyed to the operator via programmed HALT operation, HALT IDENTIFIERs displayed on the console and recovery/restart procedure listings.

B Gate		Hinge	A Gate	
B1 *5448/5445 File	$\begin{aligned} & \quad \text { A1 } \\ & \text { Cust } \\ & \text { Sys } \end{aligned}$	Operator	$\begin{aligned} & \quad \text { B1 } \\ & 1403 \\ & 5203 \\ & \text { PTR } \end{aligned}$	$\begin{array}{r} A 1 \\ \text { SIOC } \end{array}$
$\begin{array}{r} \text { B2 } \\ 3411 \end{array}$	$\begin{array}{r} \mathrm{A} 2 \\ \mathrm{BSCA} \end{array}$		$\begin{aligned} & \quad \text { B2 } \\ & 5471 \\ & 5475 \\ & \text { CPU } \end{aligned}$	\quad A2 5444 File
$\begin{array}{r} \text { B3 } \\ \text { MLTA } \end{array}$	$\begin{gathered} \text { Wat A3 } \\ \text { BSCA } 2 \end{gathered}$		$\begin{aligned} & \text { B3 } \\ & \text { CPU } \end{aligned}$	\quad A3 5424 MFCU
MLTA	A4		$\begin{gathered} \text { B4 } \\ \text { Core } \\ 8-16 \mathrm{~K} \\ \text { or } \\ 8-32 \mathrm{~K} \end{gathered}$	A4 Core $24-32 \mathrm{~K}$ or $48-64 \mathrm{~K}$

Front View With Gates open
*5448 and 5445 are mutually exclusive.

CHANNEL CABLING

This diagram shows the channel cable connection within the CPU. If any feature board is not installed then the cables run between the existing boards. If, for instance, the A2 board on gate A was not installed, then the cables would run from the A.A1 board to the A. A 3 board

5410 CHANNEL BANK CABLES

Chanmel Bank cables are mstalled in the following sequence. If the feature is not installed, then that board will be bypassed.

Termination on Channel Bank 1 is always in the A3 board whether or not the 5424 is instalted. The termination for Chamnel Banks 2 and 3 is in the last boad on channel.

This page intentionally left blank.

5410 POWER SEQUENCE

Note 1: +24 volt control voltage is on whenever the mainline switch is on.
Note 2: $\quad 500-960 \mathrm{~ms}$ for 5410 with printed circuit power sequence panel (EC816683H).
(1) Power On Sequence

Note: +24 volt control voltage is on whenever main line switch is on
2) Power Off Sequence

POWER CHECK/THERMAL INDICATIONS					
FAULT	POWER ON/ OFF SWITCH	INDICATORS		ACTION	
		POWER CHECK	THERMAL		
Internal Power Supply Malfunction	On	On	Off	$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 \end{aligned}$	Turn power switch to OFF Correct problem Depress Check Reset Turn power ON
Thermal Condition	On	On	On	1. 2. 3.	Turn power switch to OFF Power check indicator goes off Thermal light stays on until condition is removed
Customer Power Source Loss	On	On	On	$\begin{aligned} & 1 . \\ & 2 \\ & 3 \end{aligned}$	Turn power switch to OFF All indicators turn OFF Turn power switch to ON and continue operation
Emergency Power Off (EPO) Activated	On	Off	Off	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$	Turn power switch to OFF Correct problem Restore EPO interlock Turn power switch to ON

HALT IDENTIFIERS

$N=001$	LIO Turn On Command Lights		
$N=000$	LIO Turn Off Command Lights		
Light No.	Command Code	Light No.	Command Code
01	00000001	09	00001001
02	00000010	10	00001010
03	00000011	11	00001011
04	00000100	12	00001100
05	00000101	13	00001101
06	00000110	14	00001110
07	00000111	15	00001111
08	00001000	16	00010000

CE CONSOLE SWITCHES

Note: Switches should ONLY by altered with the system in a stop or wait state.

RRESS/DATA SWITCHES

mese switches are used to set up addresses or data. An address can be loaded into the storage address register. Data can be entered into main storage.

CE KEY SWITCH
is key switch, when switched to the CE position, prevents the customer usage meter from ling.

CE MODE SELECTOR
This rotary switch selects one of the three processor operating modes: the normal PROCESS mode, the STEP mode, or the TEST mode. PROCESS is the mode for normal programmed system operation.

In the STEP mode, the rotary switch setting controls the manner in which the processor performs the stored program.

1. Instruction Step - Each depression and release of the start key causes one complete instruction to be performed. The 1 -phase is performed while the key is pressed, and the E-phase, if any, when it is released.
2. Machine Cycle Step - Each start key depression and release advances the instruction through one machine cycle. Depression of the key causes data in storage to be accessed, modified as required, and result to be displayed in the ALU indicators of the console display. Upon release of the key, depending upon the operation being performed, either the old data or the new result is written back into storage.
3. Clock Step - Each depression of the start key causes the clock to advance through an odd-numbered clock, and each release through an even-numbered one.

Note: The halt ID lights will not light in clock step.

CE CONSOLE SWITCHES (continued)

Note: The integrity of I/O data transfers is preserved by allowing the clock to 'idle' from 1-Phase end of every executable Start I/O instruction, until data transfer to or from the device is complete.
B. The switch settings under the TEST mode permit the following:

1. Alter SAR. The address, set up in the address switches, is transferred into SAR by the Start key via the current IAR. Both SAR and IAR are modified.
2. Alter Storage. Data, set up in address/data switches 3 and 4 , is transferred to the A-register when the start key is operated, when the start key is released, the data is written into core storage at the address specified by SAR, and transferred into the Q -register.

Data may also be entered into core storage with the system console keyboard, this procedure is useful for hand-entering several continuous bytes of data into core storage. To enter data from the keyboard:

1. Load SAR with the core storage address where the first data byte is to be entered as per the instruction in alter SAR.
2. Set the address increment switch to ON, and the STORAGE TEST switch in the STEP position.
3. "Hex" characters can now be entered by typing on the keyboard, each byte is entered as two key-strokes. After each second key-stroke the "hex" character is entered into core storage and the address in SAR is incremented by one.

Only the keyboard keys 0 through 9 and A through F can be used to enter data, any other keyboard key use will result in a keyboard lock-up. To unlock the keyboard if this occurs, note the address in SAR and then perform a system reset to unlock the keyboard. SAR must then be re-loaded and then retype the byte entered in error.
3. Display Storage. The contents of the storage location specified by SAR are transferred into the B register when the Start key is pressed. These contents are rewritten into storage when the key is released, and are also transferred in the Q register.

Note: The STORAGE TEST SWITCH must be in the STEP position to avoid a processor check when changing the CE MODE SELECTOR from alter storage position to DISPLAY STORAGE position and vice versa. Invalid addresses are not check for while the system is in the TEST mode.

SYSTEM RESET SWITCH

A system reset causes the system to enter an immediate 'idle' state. All I/O machine registers, controls, and status indicators are reset and the processor clock is allowed to 'idle'. A complete program restart is normally required after a system reset. A system reset also resets a system power check to allow a power on retry. The following LSRs are reset to zero by a system reset:

IAR
PSR
DFDR
The other LSRs are not changed by a system reset.

Note: The CE mode selector must be in process mode for the system reset key to be effective.
This switch is also on the operator console.

CE CONSOLE SWITCHES (continued)

CHECK RESET SWITCH
switch causes a reset of the Processors and/or 1/O check conditions.

A check reset remove the current error conditions, thus allowing the processor to resume its operation after the start key is depressed.

FILE WRITE SWITCH
he off position, this switch prevents writing on all disk surfaces. Its primary purpose permit analysis of file write problems without destroying information written on file. A mechanical interlock on the CE panel ensures that the file write switch is on with the front cover closed.

START/STOP SWITCH

In the start position, this switch takes the processor out of the halt state, turns off the program stop lights and allows the processor to resume its normal operation.
the stop position, the processor halts at the end of the operation in progress when e switch is activated. The halt state of the CPU is indicated by the stop indicator on the system keyboard console. I/O data is transferred completely and without loss of information by placing the switch in the start position.

ADDRESS COMPARE SWITCH

This switch allows stopping the program when the setting of the (Address/Data) switches matches SAR. This switch will only be functional when the register display is positioned to SAR and the system is in the PROCESS mode.

With the switch in the RUN position, comparison of address switches to SAR via the register display is performed, but no processor stop is initiated when a match occurs. The 'matched' signal is provided as a CE 'sync' point. (Sync Point 1A-B2R2 S08)

When the switch is in the STOP position, a match of the address switches and the register display results in a processor stop at the completion of the storage read-write cycle.

The processor is restarted by activating the Start key.

Note: The integrity of I/O data transfers is preserved. The contents of SAR do not necessarily match the setting of the address switches at stop time.

ADDRESS COMPARE LIGHT

This light is on whenever the address switches match the contents of the Storage Address Register, the register display is positioned to SAR and the address compare switch is in the STOP position.

CE CONSOLE SWITCHES (continued)

I/O CHECK SWITCH

This switch, when on, forces the processor to come to an immediate stop on certain I/O errors.

The switch is normally set to RUN. With the switch set to STOP, the processor stops on an I/O error with the console display frozen to indicate the processor status at the time the error stop occured, and the I/O device turns ON the I/O check light.

A check reset followed by the Start key is the normal restart after an I/O error stop.
A mechanical interlock on the CE panel insures the I/O check switch is in the run position with the front cover closed.

Note: When the I/O check switch is in the STOP position and an I/O error occurs, the processor check light will turn ON .

PARITY CHECK SWITCH

This switch, normally set to stop, forces the processor to an immediate stop whenever a parity error is detected. Normal restart after a parity stop is to press check reset and then the start key. With the parity set to run, all parity errors are detected and displayed, but the processor stops for only some of the errors. The parity errors I/O LSR, INV ADR, INV OP, CHAN DBO, and INV O are not affected by the setting of the parity switch and the processor will always stop on these errors. For all other errors, the processor will continue to run when the switch is in the run position. A mechanical interlock on the CE panel ensures that the parity check switch is in the stop position with the front cover closed.

STORAGE TEST SWITCH

This switch enables the altering or displaying of storage as follows:
A. In the STEP position, a storage location is accessed with each depression of the Start key.
B. In the RUN position, following the Start key depression, core storage is exercised by accessing either the same location repetitively or all of core sequentially (see Address Increment Switch).

ADDRESS INCREMENT SWITCH

This switch enables address incrementing when in the CE test modes of Alter of Display storage. With the switch in the ON position, the contents of SAR are incremented by one after each storage access. When the switch is in the OFF position, SAR is not incrementing.

I/O OVERLAP SWITCH

This switch modifies control of the system so that I/O operations may be executed in either an overlap or a non-overlap mode. With the switch turned to the normal position of on, I / O operations are executed in an overlap mode. When the switch is turned off, I/O operation is completed before the next sequential instruction is executed.

\qquad

CE CONSOLE SWITCHES (continued)

LSR DISPLAY SELECTOR (Should be in the normal position when processing.)
rotary switch selects the Local Storage Register (LSR) whose contents are to be layed.

LSR's that can be manually selected for display via this switch are: IAR, ARR, XRI, and XR2.

Refer to Service Aid section for procedure to display other LSR's.
en the switch is in the Normal or OFF position, the system controls the selection display of the LSR's. If the switch is in other than the Normal position, the specified LSR is selected and its contents are available for display whenever the processor clock is stopped, or if the clock is running, when no CPU machine cycles and no I/O data transfer cycles are being taken. In the OFF position the LSR display will have all bits OFF if no I/O device is selecting an LSR.
bSCA SWITCHES (LOCAL TEST AND BSCA STEP)
e BSCA must be in a SIO test mode of operation for these switches to be effective. the test mode, the switches allow the following actions:

LOCAL TEST SWITCH

Placing the BSCA in test mode removes the BSCA from the communications line for diagnostic testing purposes. Data transmitted is sent to the receiver trigger allowing for wraparound operation. Test mode is used in conjunction with the external test switch. With the external test switch turned off, data is sent directly from the transmit trigger to the receive trigger; with the switch turned on, data is sent from the transmit trigger to the MODEM and then back to the receive trigger. The external test switch is located at the MODEM end of the medium speed cable. For high-speed MODEMs the switch is located on the CPU CE control panel.

BSCA STEP SWITCH

Step mode allows stepping through a test operation by using the BSCA step key located on the CPU CE panel. The stepping operation can also be used by using the machine cycle step or clock step and the CPU start key to step through each data phase and BCC phase within the bit time.

OPERATOR CONSOLE SWITCHES

INQUIRY REQUEST SWITCH

This switch is mounted on the console, and although this key is not under keyboard bail interlock control, it operates as though it were a key on the keyboard. Moving this switch to the ON position causes the data and status bytes to be stored in the keyboard attachment circuitry. Interrupt level one must be enabled for the CPU to recognize this switch. The status byte has the function key bit (bit 3) on and the data byte contains the unique data character code for the inquiry request key (0001 0001).

DISK DRIVE 1 AND DISK DRIVE 2 SWITCHES

These switches control application of electrical AC power to their respective disk drive motors.

DISK SELECT SWITCH

This switch selects the disk from which the initial program load wilt be performed When the switch is moved to the removable position, sector zero of cylinder zero, of the removable disk is used for program loading. Similarly, when the switch is in the fixed position, sector zero of cylinder zero, of the fixed disk on disk drive one is used for program loading.

PROGRAM LOAD SWITCH

This switch initiates loading the program into main storage. The following actions occur when this switch is operated to the on position:

1. All I/O and machine registers, controls, and status indicators are reset.
2. The instruction address register is set to zero.
3. The disk file data address register is reset to zero. The record in cylinder zero, sector zero on one of the disks in disk drive one is read into storage starting at location 0000. The disk that provides the first record is selected by the setting of the Disk Select switch on the console.

When the program load switch is released, the processing unit executes the instructions read into storage from cylinder zero, sector zero, starting at iocation 0000 .

If disk drive one is not ready, the I/O attention light is turned on. When the program load switch is uperated, it is necessary only to make disk drive one ready to complete the program load function.

DATA RECORDER SWITCH (DATA RCRDR)

Moving this switch to the on line position places the data recorded under program control when the Verify-Punch switch on the data recorder is in the punch position. The data recorder keyboard is disabled, data can be entered into the system from the data recorder reading station, data can be punched at the data recorder punching station, and data and control can be entered from the system keyboard console

Moving this switch to the off tine position places the data recorder under its own control and allows it to function as a normal (off line) data recorder.

OPERATOR CONSOLE SWITCHES (continued)

SYSTEM START SWITCH

When this switch is moved to the start position the processor turns off the halt code lights and resumes normal operation. When this switch is moved to the stop position the processor halts at the end of the operation in process. This halt is indicated by turning on the stop light on the console. 1/O data transfers are completed without loss of information. The system can be restarted without loss of information only by setting the switch to the start position.

POWER ON-OFF SWITCH

This switch controls the main electrical power to the system. When it is moved to the on position, a partial system reset is generated and a power up sequence is started. The partial system reset prevents any I/O operations from starting until they are requested, the power-up sequence is performed to apply the various voltages within the system in a manner to protect information in main storage. The On position of power switch is interlocked with power supply safety circuits, (overload protection and thermal circuits) and logic gate thermal protection. The system will not power-up until the interlock circuits are complete. If power on is disable due to an over voltage or over current condition of the -4 or +6 or -30 power supplies, turn power switch to off depress system reset on CE or Operators console then turn power switch to on. If the OFF position the system sequences the system power off in a manner to protect the infor mation in core storage and opens the main power to the system. If an abnormal power off occurs (such as an electrical failure) the system will not sequence down properly and information in core storage may not be preserved.

I/O CHECK LIGHT

This light is turned on when the following errors are detected

CRT- 2265

(1) When the 2265 attachment detects the following: D. REG INVALID PARITY

This light is turned off by a system reset, a check reset, or by an SIO instruction to the CRT

PRINTER-5213/2222
(1) When the 5213 attachment detects the following:

CYCLE OR MARGIN CHECK
SYNC CHECK
DATA OR ROS CHECK
INVALID COMMAND
This light is turned off by a system reset, a check reset, or by an SIO instruction to the PRINTER

DATA RECORDER

(1) When the DR attachment detects the following: INCORRECT CARD CODE, PUNCH OP NON-COMPARE DIAGNOSTIC PUNCH OP NON-COMPARE IN DR, READ OP
This light is turned off by a system reset, a check reset, or by an SIO instruction to the data recorder.

KEYBOARD

(1) When the keyboard attachment detects the following: PARITY CHECK
This light is turned off by a system reset, a check reset, or by an SIO instruction to the keyboard.

SERVICE AID PRINTER

The printer element may be moved one position to the right by holding up and not releasing the check reset switch and operating the system reset switch once for each increment to the right. The element may be restored to the left margin by operating and releasing the check reset key and operating the system reset switch.

I/O ATTENTION LIGHTS

There are eight $1 / O$ attention lights. When any of the following lights are on it indicates that the corresponding I/O device has been issued an SIO instruction and it is not ready to operate.

1. SIOC - The I/O device is not attached to the serial input output channel, or the $1 / O$ device is not ready. See the appropriate operators manual for the I/O device.
2. BSCA - The following conditions that will turn on the BSCA I / O attention light can be found by checking the BSCA operators console.
A. DT SET READY - This light being off indicates that the modem is not ready.
B. ACU PWR OFF - This light being on indicates that the auto call unit has power off.
C. DT LINE IN USE - This light being on indicates that the data line occupied line from the $A C U$ is active.
D. DT TERM READY - This light being off indicates that the BSCA is disabled.
E. EXT TEST SW - ihis light indicates that the switch at the modem end of the medium speed modem cable is in the TEST position. For high-speed modems this indicator will be on when the local test switch on the CE console is in the ON position.
3. LCD - This light being on indicates that the operator is required to insert a ledger card into the LCD feed chute.
4. CRT - CRT is not ready. Check for power on.
5. DATA RCRDR - If this light is on check the 5496 to see if the FD CHK and the STKR lights are on. If either light is on use the following procedures.
A. FD CHK
6. Hopper Jam - no damaged card: Adjust cards in hopper, press release key.
7. Hopper Jam - bent card: If punching cards, discard card. If reading cards, flatten card and place in hopper, and press release key.
8. Hopper Jam - damaged card: If punching, discard card then press release key.

If reading, remove card
Move DATA RCRDR ONLINE/OFFLINE switch to OFFLINE.
Re-punch damaged card
Place card back in hopper
Move DATA RCRDR ONLINE/OFFLINE switch to ONLINE.
Press release key
4. Empty Hopper - more card to process: Place more cards in the hopper then press release key.
5. Transport Jam:
a. Open transport cover
b. Push card gently toward stacker. Card will automatically continue and stack.
c. If punching, discard card (last one in stacker) and press release key.
d. If reading, use the same procedure that is used for hopper jam - damaged card.
B. FD CHK and STKR FL

1. Stacker Full: Remove cards from stacker and press release key.
C. DATA RCRDR 5496

If this I/O attention light is on with no check lights on the 5496 on, then check the following switch settings on the 5496 and the 5406 operator consoles.

I/O ATTENTION LIGHTS (continued)

5496 CONSOLE

1. Verify/Punch	Punch
2. Auto Rec Rel	On
3. Data Recorder Power Switch	On
4. Auto Skip Dup	Off
5. Prog	Off
6. Verify Field Correct	Off
7. Record Erase	Off
8. Prog Load	Off
9. Verify Repunch	Off
10. Print	On or Off
5406 CONSOLE	
1. Data Recorder	Online

1. Data Recorder

Online
Check if the data recorder is plugged in.
6. 129 DATA RCRDR - Jam in transport area of 129 or else last card read (or punched) did not exit read station at proper time. 129 column indicator $=8 \mathrm{~A}$. When 129 column indicator $=88$ one of the following conditions are present.
a. Stacker full
b. Hopper jam
c. Empty hopper
d. No card register
7. 5404/5406 PRINTER -. The following conditions turn this light on.
a. Cover is open or not properly closed.
b. The printer is out of paper.
c. The line select lever is not set to 6 on VFC.
8. 5404/5406 DISK DRIVE 1 -- The following conditions turn this light on.
a. Disk drive 1 is not up to speed.
b. The drawer is not closed properly.
c. The removeable disk is not mounted in file.
9. 5404/5406 DISK DRIVE 2 - The following conditions turn this light on.
a. Disk drive 2 is not up to speed.
b. The drawer is not closed properly.
c. The removable disk is not mounted in file. (5406 only)
d. The disk drive 2 switch is not turned on.

LOAD DCP

5406 BSM ADDRESSING

5406 BSM ADDRESSING (continued)

5406 BSM XY LINES

SINGLE CYCLE SYSTEM RESET AND MANUAL ROUTINE

This service aid is a procedure for clock stepping through system reset or the 5406 test modes. , alter SAR, alter storage or display storage).

5213/3 INTERMITTENT SYNC CHECK (5404)

The following procedure should be used to eliminate intermittent SYNC checks on 5213 Model 3 printers

1. Turn power off
2. Loosen the coupling which joins the leadscrew and stepper motor. Remove the stepper motor from the casting and lay in base.
3. Check for binds in the leadscrew by pushing the printhead from one margin switch to the other. The printhead should be very free and move with little or no resistance. The following steps should be used to eliminate any binding conditions.
A. Check for contamination on the cartier support shaft and leadscrew.
B. If binds still exist, rotate the carrier support shaft in one quarter turn incre. ments. This shaft can be rotated by loosening the set screw on the left support frame.
4. Mount the stepper motor on the frame.
5. Loosen the transducer clampscrews and adjust each transducer eccentric to the center of its travel.
6. Perform the print carrier and print emitter adjustment per step 2.20 of the 5213 TMD.
7. Adjust the emitter air gaps to .001 to the highest point on the emitter wheel
8. Turn power on and run diagnostic E8A and loop on Routine 2. Scope the following points in the 5213 attachment and check for a minimum output of 3 volts.

Print Right Emitter	$01 \mathrm{~A} \cdot \mathrm{~A} 2 \cdot \mathrm{C} 2 \mathrm{D} 07$
Print Left Emitter	$01 \mathrm{~A} \cdot \mathrm{~A} 2 \cdot \mathrm{C} 3 D 07$
Stepper Forward Emitter	$01 \mathrm{~A} \cdot \mathrm{~A} 2 \cdot \mathrm{~B} 2 \mathrm{~B} 08$
Stepper Reverse Emitter	$01 \mathrm{~A} \cdot \mathrm{~A} 2 \cdot \mathrm{~B} 2 \mathrm{~B} 12$

If 3 volts is not obtained, readjust appropriate emitter.
9. Adjust stepper motor speed using diag. E87. Adjust forward and reverse emitters so they fall into the 11.50 to 11.70 MS Range.
10. Adjust print emitters using Diag. E89. Adjustment on the $5213 / 3$ printer is correct when the X is lined up under the left hand X and adjusted via the eccentric to fall in the middle of the $3 X$ tolerance.
11. Recheck the output of the emitters using the procedure in Step 8.

5412 INDEX

Channel Cabling 7
Console Lights and Switches-5412 C 13
"ata Flow-5412 B 3
Sata Flow-5412 C 5
Halt Identifiers 10
Power On/Off Sequence 8
Power Supplies and Cooling 9
Processor Checks-5412 B 11
Processor Check Priority and Description - 5412 C 12
Storage Data Flow - 5412 B4Storage Data Flow-5412 C

Channel Bank 2

Power On Sequence

Man CB On (power switch OFF)
+24 V (ic comuol voltage
K1 (convermence outlets)
K2 (TH (HHK ligh tums off)
Tun" Power swith ON
$K 3$ (ate: voltage to logic supphes and fans)
K5 (4V power oni)
K5 2, K17 $1+6 \mathrm{~V}$ powe on)
$K 6(6 \mathrm{~V}$ sinsed $)$
$1+3.4 \mathrm{~V}$ power onl
18.5 V power ons
K8 8.5 V semsect ${ }^{1}$
K9 B (ldme and meter voitage)
K9 A (ac voltage to 5471)
K9 (dc voltage to $1: O$ devices)
(.24V nower on (1) 5412.5424)
K1 in 5421 (5421 stat tup)
$K /$ in $5421(+6 V, \quad 12 V,+60 V$ in 5421$)$
K 10 (124 V sensed)
K11 (+60 V sensed)
K 12 (remove POR)

Power Off sequence

HALT IDENTIFIERS

Hex Value	Character Displayed
00	
Blank	
${ }^{02} \text { Quote }$	1
03	1
07	1
1B	
$10 \text { Dash }$	-
3B	
3C	1
3E	
3 F	
57	

P6

5412-B PROCESSOR CHECKS

I/O LSR	Indicates selection of an LSR by an I/O device was not performed
correctly.	
LSR F1	Parity is incorrect on the output of the LSR Feature 1.

The 1/O attention light indicates to the operator that one or more of the attached I/O devices requires attention caused by a 'normal' $1 / O$ condition. 'Normal' is defined as: empty hopper, full stacker, out of forms, etc., as opposed to check conditions.

Recovery - Operator must determine cause of indication, rectify the cause and return device to the READY status.

Note: Refer to individual devices for 'normal' definition, recovery and/or restart procedures for that device.

UNIT CHECK

Testable Indicators

Unit check handling of testable indicators is controlled by software.
Restart procedures are conveyed to the operator via programmed HALT operation. HALT IDENTIFIERS displayed on the console and recovery/restart procedure listings.

5412-C PROCESSOR CHECK PRIORITY AND DESCRIPTION

If more than one lamp is on, the first one listed with corresponding clock lamp on has highest priority.

Clock	Check	Description
Even	1'OLSR*	Indicates selection of an LSR by an I/O device was not performed correctly.
Even		
Not 0	LSR	Parity is incorrect on the output of the LSR.
2	SAR ATT	Parity is incorrect in the SAR or in the ATT REG.
2	MSAR	Parity is incorrect at the memory end of the storage address lines.
2	Inv Addr*	Indicates that MSAR contains an invalid address ie: storage address exceeds system storage size.
6	SDBI	Parity is incorrect at input to storage.
4	SDBO	Uncorrectable data error at output of storage.
Even		
Not 0	CAR	Carry out of ALU is incorrect.
$1,3,5,7$	DBI	Parity is incorrect on the CPU end of Data Bus in from the I/O devices.
Even		
Not 0	A/B	Parity is incorrect in the A or B register.
Odd	ALU	Parity is incorrect at output of ALU.
Not 7,9	CPU DBO	Parity is incorrect on the CPU end of the Data Bus out going to the $1 / O$ devices.
8	$\mathrm{OP} / \mathrm{Q}^{*}$	Parity is incorrect in the OP or Q register.
8	$\operatorname{Inv} O P^{*}$	Invalid OP code in the OP register.
8	Chan DBO*	Parity is incorrect on the $1 / O$ device end of the data bus out coming from the CPU.
8	$\operatorname{Inv} \mathrm{Q}^{*}$	Indicates an invaitd Q byte is present in an 1/O instruction.

[^1]
5412-C CONSOLE LIGHTS AND SWITCHES

Only Unique 5412 Functions are Described Refer to 5410 for other lights and switches.

MODE SELECTOR SWITCH

- Alter SAR

Address switches are gated to IAR then SAR. $>64 \mathrm{~K}$ CE switch is gated to the " $>64 \mathrm{~K}$ SW Latch" then SAR E 15

- Display Storage
- Normal Mode

The IAR and the $>64 \mathrm{~K}$ CE SW latch are gated to SAR
SAR addresses storage untranslated. The data will display in the Q reg SAR E15 will display status of the $>64 \mathrm{~K}$ SW latch only if the SAR/MSAR switch is set to MSAK

- Display Check Bit SW On

Same as display storage normal mode except memory check bits (C1 C6) are displayed in the Q-reg bits $0 \cdot 5$. Q-reg bits 6 and 7 are forced on (1,1). The SAR address must be odd

- Alter Storage

Same as display storage except data switches (switches 3 and 4) are written into the address storage location.

- Display ATT/PMR

ATT displays in roller 6
PMR displays in roller 7
Console switches 1 and 2 select the register as shown:

| Register To Be Loaded | ATT/PMR Address Switch Settings | |
| :--- | :---: | :---: | Note | See next page for |
| :---: |
| bit significance. |

[^2]
5412-C CONSOLE LIGHTS AND SWITCHES (continued)

MODE SELECTOR SWITCH (continued)

- Alter ATT/PMR

Same selection as for display. Console switches 3 and 4 are gated into the selected register as shown:

	Sw	Hex Bits	Bit Significance
ATT	3	0	-
		2	$\left.\begin{array}{l} \text { E15 } \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}\right\} \begin{aligned} & \text { ATT Bits } \\ & \text { to M SAR } \end{aligned}$
		3	
	4	4	
		5	
		6	
		7	
PMR	3	0	B-Cycle Translate A.Cycle Transiate I-Cycle Transtate
		1	
		2	
		3	
	4	4	-
		5	1/O $>64 \mathrm{~K}$
		6	-
		7	Mask Interrupt

ADDRESS INCREMENT SWITCH

If on - causes IAR to be incremented by 1 each CPU cycle during alter/display storage. Storage scanning is within a 64 K boundary.

$>64 \mathrm{~K}$ CE SW

- Alter SAR Operation

Conditions the " $>64 \mathrm{~K}$ switch latch" and SAR E15 which is used to address storage during an alter/display storage operation. This latch is not incremented during storage scan.

- Address Compare Operation

If the SAR/MSAR switch is set to:
SAR the $>64 \mathrm{~K}$ switch is ignored.
MSAR the $>64 \mathrm{~K}$ switch and console switches 1 through 4 are compared to MSAR bits.

ADDRESS COMPARE STOP SWITCHES

The roller switch must be set to 1 (SAR display)
Stop on 1 cycle switch on - Stop on an address match during an 1 -cycle
Stop on E-cycle switch on - Stop on an address match during an E.cycle

- Will also stop on I/O cycle steal. SAR/MSAR switch should be set to MSAR.

Notes: 1. 1/O operations will be completed after the address match is detected.
2. Translate will be off when the CPU stops.
3. The SAR/MSAR switch determines if SAR or MSAR is compared to the address switches for generation of the address compare signal.
The $>64 \mathrm{~K}$ switch is compared if SAR MSAR is set to MSAR
4. To prevent stopping on an address match - tie up 01A•B3 R2 M02. Address match point is same card U12 pin.

5415 INDEX

Channel Cabling 7
Console Lights and Switches-5415 15
Data Flow-5415 A/B/C 3
Data Flow-5415 D 6
Diskettes 11
Halt Identifiers 9
Memory Data Flow-5415 A/B 4
Memory Data Flow-5415 C/D 5
MST Tie-up Points 10
Power On/Off Sequence 12
Power Supply Locations 14
Processor Check Priority and Description 13
Tie off for Fast I Cycles 10
Invalid Op Code Process Check 13
\bullet

5415 HALT IDENTIFIER

5415 TIEUP POINTS - MIST

A.GATE

Board	Pin
5445 A1	R4B07
5444 A2	T3B13
5424 A3	S5B09
2560 A3	J4B13
1442 A3	R5898
$>64 \mathrm{~K}$ Memory 44	None
1403 B1	E5D10
Channel B2	M3D07
CPU B3	U5B02
<64K MemoryB4	None

B-GATE

Board		Pin
BSCA1	A2	T2J03
BSCA2	A3	T2J03
SIOC	B1	D4G08
2501	B1	P2B13
$3277 / 3284 / 3411$	B2	L.2B10
MLTA	B4	C2U07
CE INVERTER		

N	
D02	D04
A.B3R2	
KA232	

5415 DISKETTES

P/N	Diskette \# \& Description	Programs	
1607738	1 (5415 Model B or C)	ODO, FFB, FFF, FD6, 143, FC0, C17, FA0, FC2, FA6, FA7, DD6, D44, and DD9	
4238747	1 (5415 -D w/o the 3344 EXP FEAT)	Contains the same programs as diskette above except that the CPU diagnostics (ODO) are different.	
4238751	1 (5415-D with the 3344 EXPFEAT)	Contains the same programs as diskette above except for the following programs: FA0, FC2. and FA7.	$\xrightarrow[\square]{\square}$
1607739	$\begin{aligned} & 2(5415 \text { w/o } 3344 \text { EXP } \\ & \text { FEAT) } \end{aligned}$	LDR, LDS, FCO, FAO, EOA	
4238752	$\begin{aligned} & 2 \text { (} 5415 \text { D with } 3344 \text { EXP } \\ & \text { FEAT) } \end{aligned}$	Same as above except for program FAO	
4238753	$3(5415$ B, C or D)	C16, FA1, FA2, FA3, FA4, and FA5.	
1607741	$\begin{aligned} & 4(5415 \text { w/o } 3344 \text { EXP } \\ & \text { FEAT) } \end{aligned}$	$\mathrm{C} 11, \mathrm{C} 12, \mathrm{C} 14, \mathrm{C} 15, \mathrm{C} 17, \mathrm{C} 18, \mathrm{C} 19$. C1A, C1B, C1C, C1F, and FA0	
4238754	$\begin{aligned} & 4 \text { (5415 with } 3344 \text { EXP } \\ & \text { FEAT) } \end{aligned}$	Same as above except for programs $\mathrm{C} 12, \mathrm{C} 18, \mathrm{C} 1 \mathrm{~A}, \mathrm{C} 1 \mathrm{~B}, \mathrm{C} 1 \mathrm{~F}$, and FA0	
4238748	5 (Shipped with 3344 EXP FEAT only)	C16, FA1, FA8, FA9, and FAA	

A 5415 always receives diskettes $1-4$ but will only receive diskette \#5 to support the 3344-B2.

Power On Sequence

Power Off Sequence

Man CB
. +24 V de contiol voltage
3 K 1 (convensence outlet)
4 K2 (thermat mterlock)
5. Turir POWER switch OFF
6. K9 (ac voltage to $1 O$ devices)
7. K9A (as voltage to 3277 and 3284)
8. K9B (lamp and metel voltage)
9. K 1 in $54211+60$. 6 , and 12 Vdct
$10 \mathrm{~K} 11(+60 \mathrm{~V}$ (tc sensed)

1. $K 10(+24 \mathrm{Vdc}$ sensed)
2. $K 12$ (turn on PORt
3. K7 in 5421
4. $K 8$ and $K 24(+8.5 \mathrm{Vdc})$
5. $(+3.4 \mathrm{Vdc})$
6. K3 (ac voltage to logic upplies and fans)
7. $K 6(+V$ (tc sensed)
8. K 5 (-4 Vdc sensed)

PROCESSOR CHECK PRIORITY AND DESCRIPTION

If more than one lamp is on, the first one listed with corresponding clock lamp on has highest priority.

Clock	Check	Description
Even	I/O LSR ${ }^{*}$	Indicates selection of an LSR by an I/O device was not per formed correctly.
Even		
Not 0	LSR	Parity is incorrect on the output of the LSR.
2	SAR ATT	Parity is incorrect in the SAR or in the ATT REG.
2	MSAR	Parity is incorrect at the memory end of the storage address lines.
2	Inv Addr*	Indicates that MSAR contains an invalid address ie: storage address exceeds system storage size.
2	Stor Prot	Indicates that an attempt was made to read or write into a protected address.
6	SOBI	Parity is incorrect at input to storage.
4	SDBO	Uncorrectable data error at output of storage.
Even		
Not 0	CAR	Carry out of ALU is incorrect.
1, 3, 5, 7	DBI	Parity is incorrect on the CPU end of Data Bus in from the $1 / 0$ devices.
Even		
Not 0	A/B	Parity is incorrect in the A or B register.
Odd	ALU	Output of ALU has incorrect parity.
Not 7, 9	CPU DBO	Parity is incorrect on the CPU end of the Data Bus out going to the I/O devices.
8	OP/Q*	Parity is incorrect in the OP or Q register.
8	Priv OP	An attempt was made to execute a privileged $O P$ when system was not in privileged mode.
8	Inv OP*	Invalid OP code in the OP register.
8	Chan DBO*	Parity is incorrect on the $1 / O$ device end of the data bus out coming from the CPU.
8	$\operatorname{lnv} Q^{*}$	Indicates an invalid Q byte is present in an 1/O instruction.

"Not affected by parity check switch.

INVALID OP CODE PROCESS CHECK

$X^{\prime} F^{\prime}$
$X^{\prime}{ }^{\prime} D^{\prime}$
$X^{\prime} F^{\prime}$
'FB'

Cause of Process Check

Program Check occurred in interrupt level

Program Check occurred in:

A - System task
B - Program level with EOJ in process

An op-end interrupt was generated and the system cannot determine which device to service

Unrecoverable 3340/44 Adapter check

Undefined 3340/44 interrupt

An op-end occurred for a device and it was not expected. Q-Reg contains device code of failing device.

5415 CONSOLE LIGHTS AND SWITCHES

Only Unique 5415 Functions are Described - Refer to 5410 for other lights and switches

MODE SELECTOR SWITCH

Alter SAR

Address switches are gated to IAR then SAR. $>64 \mathrm{~K}$ CE switch is gated to the " $>64 \mathrm{~K}$ SW Latch" then SAR E15.

- Display Storage
- Normal Mode

The IAR and the $>64 \mathrm{~K}$ CE SW latch are gated to SAR SAR addresses storage untranslated. The data will display in the Q-reg. SAR E15 will display status of the $>64 \mathrm{~K}$ SW latch only if the SAR/MSAR switch is set to MSAR.

- Display Check Bit SW On

Same as display storage normal mode except memory check bits (C1-C6) are displayed in the Q -reg bits $0 \cdot 5$. Q-reg bits 6 and 7 are forced on (1.1). The SAR address must be odd

- Alter Storage

Same as display storage except data switches (switches 3 and 4) are written into the addressed storage location.

- Display ATT/PMR

ATT displays in roller 6
PMR displays in roller 7
Console switches 1 and 2 select the register as shown:

Switches 1 and 2	Register Selected	Note: See next page for bit
00	ATT 00	significance.
01	ATT 01	
Thru	Thru 32 Total	
1E	ATT 1E	
1 F	ATT 1F	
20	PMR - Prog LVL	
28	PMR - INTR LVL 0	
29	PMR - INTR LVL 1	
Thru	Thru $\quad 9$ Total	
2F	PMR.INTR LVL 7]	

Set switch 1 to 3 to alter the $1 / O>256 \mathrm{~K}$ PMR bit

5415 CONSOLE LIGHTS AND SWITCHES (continued)

MODE SELECTOR SWITCH (continued)

- Alter ATT/PMR

Same selection as for display. Console switches 3 and 4 are gated into the selected register as shown.

	Sin	Hex Bits	Bis Significance		Sw	Hex Bits	B.1 Sigrifucdrat
ATT A B Mod	3	0	Futch Protect Surrage Protect 	ATT C. D Mod		0	$\left.\begin{array}{l} \text { E13 } \\ \text { E14 } \\ \text { E15 } \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \end{array}\right\} \begin{aligned} & \text { ATT Bits } \\ & \text { to M SAR } \end{aligned}$
		1				1	
		2			3	2	
		3				3	
	4	4				4	
		5			4	5	
		6				6	
		7				7	
Byte 1PMR	3	0	$10 \rightarrow 128 \mathrm{~K}$ BCycle Translate A Cycle Translate I Cycle Translate Privileged 1/O $>64 \mathrm{~K}$ Protect Stati. Mask Imterrupt	Byre: 2		0	
		1				1	
		2			3	2	
		3		PMR		3	
A B. C. D. Mod	4	4		D25.		4	
		5		D26		5	
		6		Mod	4	6	
		7				7	10.256 K

ADDRESS INCREMENT SWITCH

If on causes IAR to be incremented by 1 each CPU cycle during alter/display storage. Storage scanning is within a 64 K boundary.

$>64 \mathrm{~K}$ CE SW

- Alter SAR Operation

Conditions the " $>64 \mathrm{~K}$ switch latch" and SAR E 15 which is used to address storage during an alter/display storage operation. This latch is not incremented during storage scan.

- Address Compare Operation

If the SAR/MSAR switch is set to:

SAR the $>64 \mathrm{~K}$ switch is ignored.
MSAR the $>64 \mathrm{~K}$ switch and console switches 1 through 4 are compared to MSAR bits.

ADDRESS COMPARE STOP SWITCHES

The roller switch must be set to 1 (SAR display)

Stop on I-cycle switch on - Stop on an address match during an I-cycle
Stop on E-cycle switch on - Stop on an address match during an E.cycle

- Will also stop on I/O cycle steal. SAR/MSAR switch should be set to MSAR.

Notes: 1. I/O operations will be completed after the address match is detected.
2. Translate will be off when the CPU stops.
3. The SAR/MSAR switch determines if SAR or MSAR is compared to the address switches for generation of the address compare signal.
The $>64 \mathrm{~K}$ switch is compared if SAR/MSAR is set to MSAR.
4. To prevent stopping on an address match - tie up 01A•B3 R2 M02. Address match point is - same card U12 pin.
5. All reference to $>64 \mathrm{~K}$ CE SW also applies to $>128 \mathrm{~K},>256 \mathrm{~K}$, etc. SAR E13/E14 are also used.

1403 INDEX

Carriage Adjustment 3
Exerciser Programs 6
solation Program 5
rinter Checks 2
Service Aids 2
Timing Relationships 4

1403/5421 SERVICE AIDS

Tie off points

1. Prevent forms checks: 01A-B1E2-U06 to 01A-B1E2-U10
2. Prevent printer busy: 01A-B1G2-M02 to 01A-B1E2.U10
3. Prevent carriage busy: 01A-B1E2 J13 to 01A-B1L2D12
4. Carriage go low speed: B3-J06 to B3-D08
5. Carriage go high speed: (5421) E6-G07 to E6-D08 (start carriage with low speed jumper first)
6. Start printing at home time: (attach) 01A•B1C2.J10 to 01A•B1E2-U10

P6 Halts

P6 halts can be caused by buffer parity errors but a more likely reason is a bouncing switch in the 1403 - see MAP p. 23

1403 PRINTER CHECKS

The printer check lights are turned on when the accuracy of printing is questionable. The errors that turn on the lights can be determined by the unique halt indicator or by probing the following points. The check must not be reset prior to probing.

5410/5415

Sync Check	
01A-B1J2G02	+ Chain sync check
Forms Check	
01A-B1J2M04	- Forms jam
01A-B1E2U06	- Carriage sync check
Print Check*	
01A-B1J2G07	- Any hammer on check
01A-B1J2G11	- Hammer echo check
01A-B1J2G13	- Buffer parity check
01A B1J2J06	- Set address hammer echo check
01A-B1J2M11	- Interlock check

*These checks will drop +60 vdc to the printer.

1403 CARRIAGE ADJUSTMENT

The following sequence will correct the majority of problems associated with hydraulic units and wavy printing. Other items not mentioned in this procedure that could cause wavy printing, skipping, and spacing failures are listed below:

1. Dirty oil filter causes slow speed.
2. Out of round E1 shaft.
3. Wrong type oil in unit
4. Open magnet coils.
5. Binding oil retainers around pump and motor shafts.
6. Binding tractors on the carriage.
7. Worn bearings on hydraulic pump and motor shafts.
8. A leaking lower check valve causes reduced space speed. A leaking upper check valve usually causes no carriage malfunction other then to cause the detent spring to break prematurely (the check valves are interchangeable).

1403/5421 TIMING RELATIONSHIPS

Adjust E 1 for time $\mathrm{X}=\mathrm{Y}$

High speed operation (skip >8 lines)

1403/5203 ISOLATION PROGRAM

1. Used to locate intermittently failing print positions (any hammer on/echo check). Load DCP before running.
2. Set sw $3 \& 4$ to hex character to be printed. i.e. $\mathbf{C} 8=\mathrm{H}$

Program load Isolation Program. An 'SU' halt will occur.
4. Set sw 182 to $0-83(1-132)$. This determines the line length.
5. Set sw 384 to 7C-FF (1-132). This determines where the right-most position prints.
6. Press start to run. To change character being printed, system reset and repeat step 2-6. Sample sw settings are shown below.

ННННННHHHHHHHHHHH
HHHH
HH
017D
007C
H

Address:

0000	30000301	sense char to be printed
0004	$0 C 0007400301$	move char to print field
$000 A$	$0 C 84073 F 0740$	expand print field
0010	F05D6B	'SU' halt
0013	30000503	sense length and position
0017	C1E60017	loop if printer busy
$001 B$	0C0000280502	move line length
0021	$0 C 00002 A 0503$	move right-most position
0027	$0 C 8302 F F 0740$	variable move print field
$002 D$	$31 E 60039$	load LPDAR
0031	F3E201	print and space 1
0034	C0000013	go back and repeat
0038	$027 C$	left-most position of print

1403 EXERCISER PROGRAMS

1403 CHAIN CLEAN PROGRAM

- Load DCP chan mage is at 0800
- System reset
- Diat in the foltowing program

Address

0000	C2	03	08	00
0004	74	01	FF	
0007	36	01	00	$3 A$
$000 B$	C0	01	00	04
$000 F$	AC	$7 F$	$7 F$	FF
0013	F3	E0	01	
0016	$6 C$	83	FF	FF
$001 A$	71	E4	03	
$001 D$	71	E6	38	
0020	F3	E2	00	
0023	D1	E2	23	
0026	AC	00	$7 B$	FF
$002 A$	AC	83	FF	FE
$002 E$	B8	OF	80	
0031	D0	10	13	
0034	D0	87	16	
0037	00	70	FF	FF

- System reset
- Start

1403/5203 • PRINT Hs

- Alter all of storage to 40
- Dial in the following program

Address

0000	31E40022	Load I/O Load LPIAR
0004	31 E60022	Load I/O Load LPDAR
0008	C1E60008	Test 1/O busy
000C	3CC8012B	Set up chain image (one " $\mathrm{H}^{\prime \prime}$ at position 44)
0010	$3 \mathrm{CC801FF}$	Move " H " to data buffer
0014	0C8301FE01FF	Fill data buffer (017C-01FF) with "Hs"
001A	F3E2XX	Print and space
		$X X=01=$ Space 1
		$X X=02=$ Space 2
		$X X=03=$ Space 3
001D	C0000008	Branch to address 0008
0021	0100	Data for load I/O

- System reset
- Start

1442 INDEX

Data Checks . 2
Exerciser Programs

1442 FEED CHECKS

Feed Check	Definition	Mod 10	Mod 15
Read Station Chk	Arly read cell is dark at FCB2	K2B09	K2B09
Hopper Chk	Card is not registered at the read station at FCB3	K2B04	K2B04
Feed Clutch Chk	FCB1 occurred without pick. ing the feed clutch	K2B07	K2807
Punch Station Chk	Punch station cell is dark at FCB3	K2B02	K2802
Stacker Jam	A jam has occurred over the stacker	K2B05	K2B05
		(-) indicates check is on Board position RPQ 018-A1 Feat 01A.A3	(-) indicates check is on Board position RPQ 01B.A1 Feat 01A.A3

1442 DATA CHECKS

Data Check	Definition	Mod 10	Mod 15
Read Compare	The same read cells did not re- main exposed for 100 usec after the leading edge of the read emitter	J2S13	J2S13
Punch Compare	The actual punch echo pulses did not match the expected punch echos	L2G13	L2G13
Data Overrun	The CPU did not respond to a cycle steal request by the time that data for the next column was read or needed for punching	J2M05	J2M05
Invalid Card Code	Two or more holes were detected in the same card column between rows 1 and 7	J2U04	J2U04

1442 SHORT EXERCISER PROGRAMS

1442 FEED

Address:

0000 F3 $5000 \quad$ Feed
0003 CO 000000 Branch Back

1442 READ TRANSLATE

Address:

0000	31540010	Load Read Addr
0004	F35100	Read Translate
0007	C1 520007	TlO Busy
$000 B$	C0 000000	Branch Back
000F	0100	Data Read in at 0100

1442 PUNCH AND FEED

Address:

0000	31500014	Load Punch Length
0004	31540016	Lo Punch Addr
0008	F35200	Punch and Feed
$000 B$	C152000B	TIO Busy
000 F	C0 000000	Branch Back
0013	0030	Punch Length 80 Columns*
0015	0100	Hand Load Data at 0100

*Examples:	(To determine punch length)
	80 Columns Punched
	$128-80=$ Decimal 48 (Hex 30)
	40 Columns Punched
	$128-40=$ Decimal 88 (Hex 58)

\square \square

2265 INDEX

Core Image Hex Values . 2
Exerciser Programs

EBCDIC	Hex Val	$\begin{aligned} & \text { Sym- } \\ & \text { bol } \end{aligned}$	EBCDIC	Hex Val	Symbol and Cursor
01000000	40		00000000	00	-
01000001	41	A	00000001	01	A
01000010	42	B	00000010	02	B
01000011	43	C	00000011	03	C
01000100	44	D	00000100	04	D
01000101	45	\dot{E}	00000101	05	E
01000110	46	F	00000110	06	F
01000111	47	G	00000111	07	G
01001000	48	H	00001000	08	H
01001001	49	1	00001001	09	-
01001010	4A	c	00001010	OA	$\underline{1}$
01001011	4 B	-	00001011	OB	-
01001100	4 C	?	00001100	OC	\leq
01001101	4 D	1	00001101	OD	1
01001110	4 E	+	00001110	OE	\pm
01001111	4 F	1	00001111	OF	1
01010000	50	\&	00010000	10	
01010001	51	J	00010001	11	J
01010010	52	K	00010010	12	K
01010011	53	L	00010011	13	\underline{L}
01010100	54	M	00010100	14	M
01010101	55	N	00010101	15	N
01010110	56	0	00010110	16	O
01010111	57	P	00010111	17	P
01011000	58	O	00011000	18	Q
01011001	59	R	00011001	19	R
01011010	5A	\dagger	00011010	1A	1
01011011	5B	\$	00011011	1 B	\$
01011100	5 C	-	00011100	1 C	$\stackrel{-}{-}$
01011101	50	1	00011101	10	1
01011110	5 E	,	00011110	1 E	$\stackrel{\square}{\square}$
01011111	5F	\cdots	00011111	IF	ᄀ

2265 EXERCISER PROGRAM

CRT DIAGNOSTIC

Program checks data flow between CPU DBO, CRT attachment D reg and CPU DBI. If CRT attachment D-reg picks up or drops a bit, a halt will occur and D-reg will be displayed in the field/operation lights.

0000	F390XX	SIO DIAGNOSTIC XX=CRT char
0003	3092001 D	SNS DATA REGISTER
0007	0D000002001C	Compare diagnostic char with D reg
$000 D$	C0010015	Branch on not equal
0011	C0000000	Branch to 0000
0015	3112001 C	Display D-reg in field/op lights
0019	FOFFFF	Halt ABCD12345

CRT DISPLAY

Program will continuously display last char set in switches 1 and 2. To change char display set new char in Sws 1 and 2 depress stop, system reset, and start.

Address

0000	300010 C 2	Set CRT character in switches 1 and 2
0004	C201FFFC	Set XR 1 for 4 counts
0008	OCF010C010C1	Build 240 character table
000E	0F01000B003C	Build 960 character table
0014	0F01000D003C	
001A	3601003A	Add 1 to XR 1
001E	C0010008	Branch on XR 1 not zero
0022	0C0300000038	Restore table address
0028	31900034	Load CRTAR
002C	F39200	SIO CRT
002F	C0000028	Loop display
0033	0 D 01	CRTAR LSR address
0035	10C010C1	End char table address
0039	0001	Constant of 1
003B	00F0	Constant of 240

2501 INDEX
Data Checks . 2
Exerciser Programs . 3
Feed Checks . 2
Spare CE Sense Bits . 2

2501 FEED CHECKS

Feed Check	Definition	Mod 10	Mod 15
Pre read Chk	Pre-read solar cell did not uncover by Rd FCB2.	01A-A1R2U02	01B-B1H2J07
Read Station Chk	Any read cell still covered at Rd FCB2.	01A.A1R2U10	01B-B1H2D04
Hopper Chk	Pre-read solar cell did not cover by Rd FCB2	01A-A1R2S07	01B-B1H2J11
Power-on Reset Chk	This check is turned on while powering up Mod 15.	NA	Internal Card
Cover Chk	The cover interlock opened while executing a SIO.	01A-A1R2M 10	Internal Card
		(-) indicates check is on	(-) indicates check is on

2501 DATA CHECKS

Data Check	Definition	Mod 10	Mod 15
Invalid Card Code	Two or more holes were detected in the same card column between rows 1 and 7	01A.A1R2G09	01B-B1H2J13
Read Compare	The same read cells were not exposed at both the leading and trailing edge of the read emitter.	01A.A1R2G02	01B-B1H2M02
Fiber Optic	All read cells did not go dark prior to the first column emitter pulse. (Column 0).	01A-A1R2G07	01B-B1H2G13
OMR Check	Any cells error or unciefined mark or no area.	01A.A1R2G07	NA
Read Overrun	The CPU did not respond to a cycle steal request from one read column before the next column was read.	01A.A1R2U07	01B.B1H2S12
No Read Emit	No read emitter pulses were detected prior to Rd FCB2.	01A.A1R2P09	01B-B1H2U12
Translate Chk	Translator did not xlate card code to EBCDIC properly	NA	01B-B1F2G10
		(-) indicates check is on	(-) indicates check is on

SPARE CE SENSE BITS

Two sense bits (CE bits 1 and 2) have been left open for use by the CE. They are sampled on MTAPs 093 and 094. Any MST signal line can be sampled by jumpering into either CE SNS bit.

Mod $10 \quad$ Mod 15

CE Bit 1	01A.A1S2J13	$01 \mathrm{~B}+\mathrm{B}$!F2P10
CE Bit 2	01A•A1S2J10	$01 \mathrm{~B} \cdot \mathrm{~B} 1 \mathrm{~F} 2 \mathrm{D} 11$

Note: $\quad \mathrm{A}(-)$ level will turn the bit on.

2501 EXERCISER PROGRAMS

2501 FEED

Address:
$0000 \quad 31380010 \quad$ Load Read Length
0004 F3 3900 Read Translate
0007 C1 3A 0007 TIO Busy
000B CO 000000 Branch Back
000F 0080 Read Length 0

2501 READ TRANSLATE

Address:

0000	31380014	Load Read Length
0004	313 C 0016	Load Read Addr
0008	F3 3900	Read Translate
000B	C1 3A 000 OB	tio Busy
000F	CO 000000	Branch Back
0013	0030	Read Length ' 50 '
0015	0100	Data Read in at 0100

2501 READ CARD IMAGE

Address:

0000	31380014	Load Read Length
0004	$313 C 0016$	Load Read Addr
0008	F3 3B00	Read Card Image
000 B	C 13 A 00 0B	TIO Busy
000 F	C0 000000	Branch Back
0013	0030	Read Length ' 50
0015	0100	Data Read in at 0100

\square
\square

2560 INDEX

CE Circuits 4
CE Micro Control Switch Box 2
Data Check Chart 2
Exerciser Programs 6
Feed Check Chart 3
Machine Check Chart 3
Print Character Codes 5
Solar Cell Adjustment Procedure 2

Display Card	Data Checks	Definition
23 bit 0	Read Overrun	The CPU did not respond to a Cycle Steal Request from one read column before the next column was ready to be read
1	Punch Overrun	The CPU did not respond to a Cycle Steal Request before the next column was ready to be punched
2	Print Overrun	The CPU did not respond to a Cycle Steal Request before the next column was ready to be printed
3	Read Compare	The same read cells were not exposed at both the leading and trailing edge of the read emitter
4	Punch Compare	The actual punch echo pulses did not match the expected punch echos
5	Invalid Character	Two or more holes were detected in the same column between rows 1 and 7
6	Fiber Optic	All read cells did not go dark prior to the first column emitter pulse. (Column 0)
7	Print Translate	The output of the print translator is not odd

2560 SERVICE AIDS

1. CE Micro Control Switch Box and Display Cards

The maintenance package for the 2560 feature on system/3 Mod 15 is enhanced by the used of the CE switch box and two CE display cards. The box can be used to completely control and exercise the micro processor portion of the attachment. (When the box is being used to control the micro program, it is adviseable to turn off the CE Mode switch in the 2560.) The display cards contain 9 LED's (Light Emitting Diodes) which are used to display various registers, any 2560 errors, etc.

For further details, see the 2560 Attachment MLM 2.020, 030, 040.
2. Off-Line Feed

The $\mathbf{2 5 6 0}$ can be exercised in an off-line feed mode. This option can be used without requiring the total system from the customer.

Procedure:
a. Jumper 01A•A3J2 D11 (tie up) to 01A-A3Q2 J09 (off-line feed)
b. Load cards in pri and/or sec hoppers.
c. Depress NPRO.

2560 SOLAR CELL ADJUSTMENT PROCEDURE

1. Remove all cards from card feed path.
2. Turn CE Emergency Stop switch in the $\mathbf{2 5 6 0}$ to the 'STOP' position.
3. Jumper from 01A-A3A4 B03 to:
print mach - 01A-A3A2 D04
non-print mach - 01A-A3A2 J04
After this jumper is installed the 2560 Attention Light will go off when any card feed solar cell goes dark.
4. Connect CE Meter (+dc volts) from 'lamp test common' to the solar cell to be adjusted. (Located on Solar Cell Adjustment Panel.)
5. Turn pot counter-clockwise until Attention Light goes off. Record voltage.
6. Increase voltage 0.2 to 0.3 above that previously measured.

2560 FEED CHECKS (No jumper required on attachment)

Display Card	Feed Check	Definition
24 bit	Input Station	SC 1 did not uncover prior to FCB3 during Pri Feed
	Pri Pre-Read	SC 3 did not uncover prior to FCB2 during P_{n} : eed
	Pri Pre Punch	SC 5 did not uncover prior to FCB2 during Pri Feed
	Pri Punch Push	SC 5 did not uncover prior to Punch Push CB1 during primary punch pusher cycle
	Sec Pre Read	SC 2 did not uncover prior to FCB2 during Sec Feed
	Sec Pre.Punch	SC 4 did not uncover prior to FCB2 during Sec Feed
	Sec Punch Push	SC 4 did not uncover prior to Punch Push CB1 during secondary punch pusher cycle
	Read Sta Early	Any Read SC (0.3) was covered at FCB1 during feed cycle
23 bit	Read Sta Late	Any Read SC (0.3) was covered at FCB4 during feed cycle
	Punch Station	SC 7 did not cover prior to FCB4 during feed cycle
	Print Station	SC 8 did not cover prior to FCB4 during feed cycle
	Cell 8 to 9	SC 9 did not cover prior to FCB2 during feed cycle (This check is only made if SC 8 was covered on previous feed cycle)
	Corner Sta	SC 9 did not uncover prior to FCB3 during feed cycle
	Jambar	The Stacker Jambar switch is transferred.
	Cover Interlock	One of the cover interlock switches opened while executing an instruction.

2560 MACHINE CHECKS (Jumper 01A-A3H2 P07 to ground)

Display Card Machine Check		Definition
Z4 bit 0	Overlap Mode	This is not a Mach Check. This bit will be on if a print SIO and a Punch SIO were executed together. (Over lapped)
1	Col Emitter RD/Wr	No Column Emitter pulses were detected prior to FCB2 during a Read
2	Col Emitter Erase	Column Emitter pulses were detected prior to FCB1 during a feed cycle
3	Extra Feed Clutch cycle	A FCB1 pulse occurred without picking the feed clutch
4	Feed CB sequence	One of the FCB pulses was missing or occurred late
5	Punch Push Extra cycle	Punch Pusher CB1 occurred without picking the punch pusher clutch
6	Punch/Incr CB Seq	Either the punch pusher CB1, punch CBs 1 or 2 . Incr Drive CBs A or B is missing or out of time.
7	Print CB Sequence	Either Print CB1 or 2, or the Print 50 usec interrupt is missing or out of time.

Note: On the Machine Checks that pertain to CBs, (bits 4, 6, 7) the micro program will load the missing $C B$ information into
TSO LSR 11. Diagnostics F21 and F22 will pull out this information and print it.

2560 PRINT CHARACTER CODES

Byte Positions 0. 34 - 7	Character Printed	Card Code	Byte Positions 0347	Character Printed	Card Code
01000000	blank	T28			
01001010	¢	T28	11000110	F	T6
01001011	.	T38	11000111	G	T7
01001100	$<$	T48	11001000	H	T8
01001101	1	T58	11001001	1	T9
01001110	+	T68			
01001111	1	T78	11010001	J	E1
			11010010	K	E2
01010000	\&	T	11010011	L	E3
01011010	$!$	E28	11010100	M	E4
01011011	\$	E38	11010101	N	E5
01011100	-	E48	11010110	0	E6
01011101	1	E58	11010111	P	E7
01011110	;	E68	11011000	0	E8
01011111	--1	E78	11011001	R	E9
01100000	--	E	11100010	S	02
01100001	1	01	11100011	T	03
01101011	.	038	11100100	U	04
01101100	\%	048	11100101	\checkmark	05
01101101	-	058	11100110	w	06
01101110	>	068	11100111	\times	07
01101111	?	078	11101000	Y	08
			11101001	2	09
01111010		28			
01111011	\#	38	11110000	0	0
01111100	@	48	11110001	1	1
01111101	"	58	11110010	2	2
01111110	$=$	68	11110011	3	3
01111111	\cdots	78	11110100	4	4
			$\begin{aligned} & 11110101 \\ & 11110110 \end{aligned}$	5	5
11000001	A	T1		6	6
11000010	B	T2	11110111	7	7
11000011	C	T3	$\begin{aligned} & 11111000 \\ & 11111001 \end{aligned}$	8	89
11000100	D	T4			
11000101	E	T5			
Note: "T" indicates a 12 zone punch. " E " indicates an 11-zone punch.					

The above character set is the standard 63 -character set for domestic 2560 s. There is one additional EBCDIC character (11101010) which is used to print all 35 wires at once during a print rattle scan.

```
2560 EXERCISER PROGRAMS
FEED PRIMARY CARD
Address:
\begin{tabular}{lll}
0000 & F3 F0 00 & Feed Primary Card \\
0003 & C0 000000 & Branch Back
\end{tabular}
```


FEED SECONDARY CARD

```
Address:
```

```
0000 F3 F8 00 Feed Secondary Card
```

0000 F3 F8 00 Feed Secondary Card
0003 C0 00 0000 Branch Back
0003 C0 00 0000 Branch Back
FEED PRIMARY/SECONDARY CARD (RANDOMLY)
Address:

0000	C1 F30007	TIO Any Busy
0004	F3 F000	Feed Primary Card
0007	C1 F30000	T1O Any Busy
000 B	F3 F800	Feed Secondary Card
000E	C0 000000	Branch Back

READ PRIMARY CARD
Address:

0000	31 FO 00 14	LIO Read Length
0004	31 F5 00 16	LIO Read Addr
0008	F3 F1 00	Read Primary
000 B	C1 F3000B	TIO Any Busy
000 F	C0 0000 08	Branch Back
0013	0050	Read Length '50'
0015	0100	Data Read in at 0100

```

\section*{READ SECONDARY CARD}

\section*{Address:}
\begin{tabular}{lll}
0000 & \(31 \mathrm{F0} 0014\) & LIO Read Length \\
0004 & \(31 \mathrm{F5} 0016\) & LIO Read Addr \\
0008 & \(31 \mathrm{F9} 00\) & Read Secondary \\
000 B & C1 F3 00 08 & TIO Any Busy \\
000 F & C0 000008 & Branch Back \\
0013 & 0050 & Read Length '50' \\
0015 & 0100 & Data Read in at 0100 \\
\hline
\end{tabular}

\section*{2560 EXERCISER PROGRAMS (continued)}

PUNCH AND FEED PRIMARY CARD
\begin{tabular}{lll} 
Address: \\
0000 & 31 F2 0017 & LIO Punch Length \\
0004 & 31 F6 0019 & LIO Punch Address \\
0008 & F3 F0 00 & Feed Primary \\
000 B & F3 F2 00 & Punch and Feed Primary \\
000 E & C1 F300 OE & TIO Any Busy \\
0012 & C0 00 00 OB & Branch Back \\
0016 & 5000 & Punch Length ' 50 ' \\
018 & 0100 & Hand Load Data at 0100
\end{tabular}

PUNCH AND FEED SECONDARY CARD

Address:
\begin{tabular}{lll}
0000 & 31 F2 00 17 & LIO Punch Length \\
0004 & 31 F6 00 19 & LIO Punch Address \\
0008 & F3 F8 00 & Feed Secondary \\
000 B & F3 FA 00 & Punch and Feed Secondary \\
000 E & C1 F3 000E & TIO Any Busy \\
0012 & C0 00 00 0B & Branch Back \\
0016 & 5000 & Punch Length '50' \\
0018 & 0100 & Hand Load Data at 0100
\end{tabular}

\section*{PRINT PRIMARY CARD}

Address:
\begin{tabular}{|c|c|c|}
\hline 0000 & 31 F3 001 A & LIO Print Length and Head \\
\hline 0004 & \(31 \mathrm{F4} 001 \mathrm{C}\) & LIO Print Address \\
\hline 0008 & F3 FO 00 & Feed Primary \\
\hline 000B & F3 FO 00 & Feed Primary \\
\hline O00E & F3 F4 00 & Print and No Feed \\
\hline 0011 & C1 F3 0011 & TIO Any Busy \\
\hline 0015 & CO 00000 OB & Branch Back \\
\hline 0019 & \(403 F\) & Print Length '40' hds 1 to 6 \\
\hline \multirow[t]{7}{*}{001 B} & 0100 & Hand Load Data for hd: \\
\hline & & 1 at 0100 \\
\hline & & 2 at 0140 \\
\hline & & 3 at 0180 \\
\hline & & 4 at 01C0 \\
\hline & & 5 at 0200 \\
\hline & & 6 at 0240 \\
\hline
\end{tabular}
\(\square\)

\section*{\(\square\)}
Character Formats
5

Console/Attachment Service Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Word Formats

\section*{3277 CONSOLE/ATTACHMENT SERVICE PROCEDURES}

\section*{1. INPUT INHIBIT LOCK UP}

Use the following procedure if INPUT INHIBIT occurs.




\section*{2. MICROCODE RELOAD}

Starting with Release 6 (5415 B. C) and Release 2 ( 5415 D) the mictocode will be re loaded if an attach. "NOT READY" is detected (or CPU start button pushed when in a "WAIT" state). ERAP History Table byte 3 will show \(1 \mathrm{~F}, 2 \mathrm{~F}, 5 \mathrm{~F}, 6 \mathrm{~F}, 8 \mathrm{~F}\), or CF when this occurs

\section*{3. MODEL II SUBSTITUTE FOR MODEL I}

A 3277 Mod 11 can be used as a temporary substitute for a ModI. Pull D2, F2, K2 cards from Mod 11 and replace with D2 and K2 from Mod I (See SYS/3 CPU SA 43) Display character will be double size.
4. DISPLAY 3277 ATTRIBUTE CHARACTERS

To display the "ATTRIBUTE CHARACTERS", jumper H2DO7 to H2D08 on the 3277 logic board.


\section*{3277/3284 CHARACTER FORMATS}


3277 BUFFER
\begin{tabular}{|c|c|c|c|c|c|}
\hline Bits 2, 3 & & 00 & 01 & 10 & 11 \\
\hline \(\begin{array}{lllll}4 & 5 & 6 & 7\end{array}\) & & 0 & 1 & 2 & 3 \\
\hline 00000 & 0 & SP & \& & - & 0 \\
\hline 000001 & 1 & A & J & 1 & 1 \\
\hline 000110 & 2 & B & K & S & 2 \\
\hline \(\begin{array}{lllll}0 & 0 & 1 & 1\end{array}\) & 3 & C & L & \(T\) & 3 \\
\hline \(0 \begin{array}{llll}0 & 1 & 0 & 0\end{array}\) & 4 & D & M & U & 4 \\
\hline \(\begin{array}{llll}0 & 1 & 0 & 1\end{array}\) & 5 & E & \(N\) & V & 5 \\
\hline \(0 \begin{array}{llll}0 & 1 & 1 & 0\end{array}\) & 6 & F & 0 & W & 6 \\
\hline \(\begin{array}{lllll}0 & 1 & 1 & 1\end{array}\) & 7 & G & P & X & 7 \\
\hline 1000 & 8 & H & Q & Y & 8 \\
\hline \(1 \begin{array}{llll}1 & 0 & 0 & 1\end{array}\) & 9 & 1 & R & Z & 9 \\
\hline 1010 & A & \(\pm\) & ! & bl & : \\
\hline \(1 \begin{array}{lllll}1 & 0 & 1 & 1\end{array}\) & B & & \$ & , & \# \\
\hline 1100 & C & \(<\) & * & \% & @ \\
\hline 11901 & D & 1 & ) & - & , \\
\hline 11110 & E & + & ; & \(>\) & \(=\) \\
\hline 1111 & F & । & 7 & \(?\) & \(\cdots\) \\
\hline
\end{tabular}

\section*{3340 INDEX}
Address Conversion Formula ..... 28
AMOR ..... 32
MOP Command/Operand Set ..... 34
us and Tag Cables-5415/3340 ..... 30
CE Pack Organization ..... 27
CE Panel Microprogram Control ..... 18
Command Decode and Sense Status Response ..... 12
Controller and Device Interface Decode ..... 11
Customer Pack Format-3340 Cylinder 0 ..... 24
Data and Control Flow ..... 6
Data Module Connector Plug Chart ..... 3
DC Voltages ..... 8
Disk Error Display -5415/3340 ..... 22
Equipment Check Index Table ..... 17
Error Logging Locations -3340/3344 ..... 23
External Sense and Control Registers ..... 33
Functional Packaging -Logic Gate ..... 2
Interfaces ..... 5
IOS Queues, 3340/3344 ..... 19
Load and Unload States ..... 4
Load-Unload Timing ..... 8
Logic Levels ..... 8
Microdiagnostics ..... 18
MLM Quick Index ..... 9
Quick Fix List ..... 13
Sense Data Definition and Format ..... 15
Service Aid to Interchange A \& B Spindles ..... 31
Track Formats ..... 7
Track Format, CE ..... 8



\section*{3340 REFERENCE INFORMATION}

\section*{LOGIC GATE FUNCTIONAL PACKAGING}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Panel A1} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Drive} \\
\hline Location & Type & & \\
\hline A2 & Conn & DEV I Interface In & A, B \\
\hline A3 & Com & DEV I Interface Out (Terminated last drive) & A, B \\
\hline A4 & Com & DEV I Interface Out (Terminated last drive) & A, B \\
\hline AS & Conn & DEV I Interface In & A, B \\
\hline B2 & Comin & Duta and PLO In - fiom previous drive & A, B \\
\hline 83 & Conn & Data and PLO Out - to next drive & A. B \\
\hline C2 & \(\times 871\) & Line Receivers, Decoders, and Counters & A, B \\
\hline D2 & \(\times 867\) & DEV I Intertace Bus In and Select & A, B \\
\hline E 2 & \(\times 872\) & Head Select, Difference Counter, Index & B \\
\hline F2 & \(\times 872\) & Head Select, Difference Counter, Index & A \\
\hline G2 & \(\times 863\) & Sector Counter and Compare (RPS) & A, 8 \\
\hline H2 & \(\times 868\) & Read/Write Controls and Safety & A, B \\
\hline J2 & \(\times 866\) & Read Detector & \\
\hline L2 & \(\times 864\) & Data Module Sequence & B \\
\hline M2 & \(\times 864\) & Data Module Sequence & A \\
\hline N2 & \(\times 865\) & Access Sequence and Control & \(B\) \\
\hline P2 & \(\times 865\) & Access Sequence and Control & A \\
\hline O2 & \(\times 862\) & Servo Analog Controls & B \\
\hline R2 & \(\times 862\) & Servo Analog Controls & A \\
\hline Q4 & \(\times 861\) & Servo Logic Controls & \(B\) \\
\hline R4 & \(\times 861\) & Servo Logic Controls & A \\
\hline S2 & P377 & Servo Amplifier & B \\
\hline T2 & P377 & Servo Amplifier & A \\
\hline S4 & \(\times 859\) & Magnet Driver and Switch Integrators & B \\
\hline T4 & \(\times 859\) & Magnet Driver and Switch Integrators & A \\
\hline U2 & Conn. & Servo Pre-Amplifier Signal & B \\
\hline U3 & Conn. & Servo Power Amplifier Drive Lines & B \\
\hline U4 & Conn. & Data Module Sequence & B \\
\hline U5 & Conn. & Drive Switches and +24 V & B \\
\hline V2 & Conn. & Servo Pre-Amplifier Signal & \\
\hline V3 & Conri. & Servo Power Amplifier Drive Lines & A \\
\hline \(\checkmark 4\) & Conn. & Data Module Sequence & A \\
\hline V5 & Conn. & Drive Switches and +24 V & \\
\hline Y1 & Conn & \(\overline{\mathrm{CE}}\) Panel Control & \(\bar{A}, \bar{B}\) \\
\hline Y3 & Conn. & Read/Write Matrix - Upper A2 & B \\
\hline Y4 & Conn. & Read/Write Matrix - Upper \(\mathrm{A}^{2}\) _ \(\ldots \ldots \ldots\) & \\
\hline 21 & Cónn. & Read/Write Matrix - Lower A3 & \(\bar{B}\) \\
\hline Z2 & Conn. & Read/Write Matrix - Lower A3 & A \\
\hline
\end{tabular}


LOGIC GATE FUNCTIONAL PACKAGING (continued)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Ponel A2} & \multirow[b]{2}{*}{Function} & \multirow[b]{2}{*}{Drive} \\
\hline Loemion & Type & & \\
\hline C2 & Conn. & CTL I Tag Lines (Standard Interface) & A \\
\hline C3 & Conn. & CTL. 1 Tag Lines (Standard Interface) & A \\
\hline C4 & Conn. & CTL.I Bus Lines (Standard Interface) & A \\
\hline C5 & Conn & CTLI Bus Lines (Standard Interface) & A \\
\hline F2 & \(\times 851\) & CTL.I Bus In, Bus Out and Bus In Assembly Register & A. B \\
\hline G2 & \(\times 856\) & Polling and Selection (Address Plugging) & A, B \\
\hline H2 & \(\times 759\) & Switch Status Registers (String Switch) & \\
\hline J2 & \(\times 759\) & Switch Status Registers (String Switch) & B \\
\hline \(\times 2\) & \(\times 855\) & Assembly Bus and Response Control & A, B \\
\hline L2 & \(\times 854\) & CTL. 1 Bus Out, Operation Control and CE Display & \\
\hline & & & A. B \\
\hline P2 & \(\times 857\) & Gap Counter Control & A, B \\
\hline Q2 & \(\times 858\) & Macro Execution Control & A, B \\
\hline R4 & \(\times 852\) & ECC Control and Shift Register & A. B \\
\hline S2 & \(\times 853\) & Serializer/Deserializer (SERDES) & A. B \\
\hline T2 & \(\times 757\) & PLO and VFO & A, B \\
\hline U4 & Conn. & CE Panel Out & A, B \\
\hline U5 & Conn. & CE Panel In & A. \(\mathrm{B}^{\text {A }}\) \\
\hline V2 & Conn. & Data and PLO In & A, B \\
\hline V4 & Cọnn. & DEV-I Interface in & A. 8 \\
\hline V5 & Conn. & DEV-I Interface in & A. B \\
\hline
\end{tabular}

DATA MODULE CONNECTOR PLUG CHART (MLM, R/W 340)


LOAD AND UNLOAD STATES


NTERFACES (MLM, OPER 90)


\section*{TAILGATE}




\section*{CE TRACK FORMAT}

Each CE track must meet the following conditions:
- Standard HA and RO.
- R1 data length \(=256+\) ECC .
- R1 data pattern is 7777FFAA7777FFAA . .etc., from index to end of R1, both even and odd.

\section*{LOGIC LEVELS}
\begin{tabular}{|c|c|c|}
\hline Logic Family & Plus & Minus \\
\hline SLD & \begin{tabular}{l}
+7.72 V Maximum Up \\
\(+2.00 \vee\) Minimum Up
\end{tabular} & -0.30 V Minimum Down +0.00 V Maximum Down \\
\hline MST 1 & -0.61 V Maximum Up -0.97 V Minımum Up & \begin{tabular}{l}
-1.52 V Minimum Down \\
\(-2.38 \vee\) Maximum Down
\end{tabular} \\
\hline NPL & \begin{tabular}{l}
+6.00 V Maximum Up \\
+1.70 V Minimum Up
\end{tabular} & \begin{tabular}{l}
+0.70 V Minimum Down \\
+0.00 V Maximum Down
\end{tabular} \\
\hline
\end{tabular}


DC VOLTAGES
\begin{tabular}{|c|ccc|c|c|}
\hline Supply & \multicolumn{3}{|c|}{ Range } & Test Point & Notes \\
\hline+24 Vdc Local & +21.6 V & to & +26.4 V & EC 603 F & 1 \\
+24 Vdc Bootstrap & +19.2 V & to & +30.7 V & TB 101.1 & 2.3 \\
-24 Vdc & -24.0 V & to & -28.8 V & A1L2D03 & \\
+12 Vdc & +12.0 V & to & +14.4 V & A1R2D05 & \\
-12 Vdc & -12.0 V & to & -14.4 V & A1M2D06 & \\
\(-4 \mathrm{Vdc}(\) A02 only) & -3.84 V & to & -4.16 V & A1P2B06 & 4 \\
\(-4 \mathrm{Vdc}(B 01 / \mathrm{BO2})\) & -3.72 V & to & -4.40 V & A1P2B06 & 4 \\
+6 Vdc & +5.76 V & to & +6.24 V & A1J2B11 & 5 \\
-36 Vdc & -36.0 V & to & -43.2 V & TB 101.3 & 2 \\
\hline
\end{tabular}

Notes:
1. On VCM front mounting plate
2. On side of logic gate.
3. In 3340.42 module only.
4. Adjustable in 3340-A2 module only
5. Adiustable in all 3340 modules.

Note: All voltages are measured with respect to ground and with the data module loaded and ready. Use digital voltmeter. See PWR 090

MECHANICAL LOAD-UNLOAD TIMING (MLM, DM 640)


\section*{MLM QUICK INDEX}


New: Start all noomel andywis from MLAM START 100.
\begin{tabular}{|c|c|c|c|}
\hline Function & map Pep & OPER & SENSE \\
\hline Controlier Errors, couse Error Alert & & & \\
\hline Control Interface Bus In Parity & CTL. 300 & \(\infty\) & 107 \\
\hline Control Interface Bus Out Parity & CTL. 1370 & 90 & 107 \\
\hline Control Interface Tag Bus Parity & CTL. 1300 & 200 & 108 \\
\hline Device Bus in Parity & DEV-1 180 & 200 & 108 \\
\hline Device Bus Out Parity & DEV. 122 & 200 & 108 \\
\hline Device Tag Bus Parity & DEV. 120 & 260 & 108 \\
\hline Drive Selection Check & DEV-1 110 & 106 & 108 \\
\hline ECC Check & DATA 200 & 260 & 108 \\
\hline Gap Counter Chack & DATA 240 & 280 & 108 \\
\hline I Write Sense - I Write Fail & DATA 120 & - & 108 \\
\hline Monitor Check & DATA 220 & 260 & 108 \\
\hline No PLO Input & DATA 280 & 280 & 108 \\
\hline PLO Check & DATA 270 & 260 & 108 \\
\hline SERDES Check & DATA 250 & 260 & 108 \\
\hline Write Data Check & DATA 230 & - & - \\
\hline Drive Errors that cause Error Alert & & & \\
\hline Capable - Enable & R/W 210 & 260 & 107 \\
\hline Control Check & R/W 250 & 260 & 107 \\
\hline DM Sequence Error & DM 100 & - & 107 \\
\hline DM Locked Up & OM 352/500 & - & - \\
\hline False Drive Check & DEV. 1240 & - & - \\
\hline Index Check & RPI 100 & 260 & 107 \\
\hline Low Gain Check (Fixed Head) & R/W 290 & - & - \\
\hline Multiple Head Select & R/W 200 & 260 & 107 \\
\hline R/W Interlock Check & R/W 240 & 260 & 107 \\
\hline Sector Compare (RPS) & RPI 500 & - & 107 \\
\hline Transmit Target (RPS) & RPI 600 & - & 107 \\
\hline Transition Check & R/W 260 & 260 & 107 \\
\hline Write Current Check, Not Writirg & R/W 270 & 260 & 107 \\
\hline Write Current Check, Writing & R/W 275 & 260 & 107 \\
\hline Write Overrun & R/W 220 & 260 & 107 \\
\hline R/W Check End Conditions & CTL. 210 & - & 106 \\
\hline Command Overrun & CTL. 2223 & - & 110 \\
\hline ECC Data Chock & DATA 207 & 260 & 108 \\
\hline No Address Mark Found & DATA 130 & - & - \\
\hline No Sync Byte Found & DATA 135 & - & - \\
\hline Sync Out Time Check & DATA 110 & - & 109 \\
\hline Track Overrun & DATA 160 & - & - \\
\hline Read Data Checks & & & \\
\hline Controller & R/W 306 & - & 106 \\
\hline Correctable Data Checks, FSI 0000 & R/W 300 & - & 105 \\
\hline Data Module Problems & R/W 340 & - & - \\
\hline Drive Problems & R/W 302 & - & - \\
\hline Uncorrectable Data Checks, FSI \(494 \times\) & R/W 300 & - & 105 \\
\hline Miscellaneous & R/W 312 & - & - \\
\hline Others: & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & & & \\
\hline & & & \\
\hline
\end{tabular}
\(\bullet \bullet \bullet \quad \bullet \quad \bullet \quad 0\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Command} & \multirow[b]{2}{*}{\begin{tabular}{l}
Seek \\
Star
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Attn } \\
& \text { Reset }
\end{aligned}
\]} & \multirow[b]{2}{*}{Check Reset} & \multirow[b]{2}{*}{Rezero} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Drive } \\
& \text { Sync }
\end{aligned}
\]} & \multirow[b]{2}{*}{Sense Difference Ctr} & \[
\begin{aligned}
& \text { Sense } \\
& \text { HAR }
\end{aligned}
\] & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Sense } \\
& \text { Target }
\end{aligned}
\]} & \[
\begin{aligned}
& \text { Sense } \\
& \text { Status 0 }
\end{aligned}
\] & \multirow[b]{2}{*}{\begin{tabular}{l}
Sense \\
Status 1
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{aligned}
& \text { Sense } \\
& \text { Status } 2
\end{aligned}
\]} & \multirow[b]{2}{*}{Sense Status 3} & \multirow[b]{2}{*}{Sense Status 4} & \multirow[b]{2}{*}{\begin{tabular}{l}
Sense \\
Read／Write
\end{tabular}} & \multirow[b]{2}{*}{Sense Read／Write} \\
\hline & & & & & & & \begin{tabular}{l}
No \\
Fixed \\
Head
\end{tabular} & & \[
\begin{aligned}
& \text { No } \\
& \text { Fixed } \\
& \text { Head }
\end{aligned}
\] & & & & & & \\
\hline CTL． 1 Tag & & & & & & & & & & & & & & & \\
\hline DEV \({ }^{\text {dag }}\) & & & & & & & & & & & & & & & \\
\hline Hex Code & \(\times 8\) & \(\times 4\) & xc & \(\times 2\) & XA & \(\times 9\) & \(\times 5\) & ＊ & 03 & 83 & 43 & 23 & \multirow[t]{2}{*}{} & \(\times 8\) & \(\times 7\) \\
\hline \multirow[t]{8}{*}{} & \multirow[t]{4}{*}{} & \multirow{5}{*}{} & \multirow[b]{4}{*}{} & \multirow[b]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow[t]{5}{*}{} & \multirow{5}{*}{\(\square\)} & \multirow[b]{4}{*}{} & 0 & \multirow[t]{6}{*}{} & \multirow[t]{6}{*}{} &  & & \multirow[t]{4}{*}{} &  \\
\hline & & & & & & & & & 0 & & & 彦 & － & & \({ }_{\sim}^{4}\) Write Gate \\
\hline & & & & & & & & & 0 & & & \(\stackrel{\circ}{3}\) & \％ & & Unsquelch \\
\hline & & & & & & & & & 0 & & & － & 䢒 & & Read Gate \\
\hline & 1 & & 1 & & & & & － & 0 & & & 这 &  & 1 &  \\
\hline & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & & & 這 0 & 0 & 0 & 1 \\
\hline & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & \(\stackrel{ }{ }\) & 1 & 1 & 1 \\
\hline & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & － & 1 & 1 & 1 \\
\hline \multirow{8}{*}{device bus in} & Device Status ！ &  & Device Status & Device Status ＋ & \begin{tabular}{c} 
Not \\
Used \\
\hline
\end{tabular} & Difference Counter 128 & \[
\begin{aligned}
& \text { Direction } \\
& 1 \mathrm{ln}
\end{aligned}
\] & \begin{tabular}{l} 
RPS \\
Instalied \\
\hline
\end{tabular} & & \[
\begin{aligned}
& \text { DM } \\
& \text { Loaded } \\
& \text { Latch }
\end{aligned}
\] & \begin{tabular}{l}
DM \\
Size Check
\end{tabular} & Drive Start Switch & \begin{tabular}{l}
Access \\
Timeout Check
\end{tabular} & \[
\begin{aligned}
& \text { Multi } \\
& \text { Head } \\
& \text { Check }
\end{aligned}
\] & \\
\hline & & & & & & 64 & \begin{tabular}{l}
Difference \\
Counter \\
256
\end{tabular} & 64 & & Sector Compare Check & DM Sea Latch 4 & \begin{tabular}{l}
DM \\
Present \\
Switch
\end{tabular} & Overshoot & Capable Enable Check & \begin{tabular}{l}
Interface \\
Check
\end{tabular} \\
\hline & & & & & & 32 & & 32 & & \begin{tabular}{l}
Motor \\
at Speed
\end{tabular} & DM Seq Latch 2 & \begin{tabular}{l}
Cover \\
Locked \\
Switch－
\end{tabular} & \begin{tabular}{l}
Servo \\
Off \\
Track
\end{tabular} & Write Overrun & Drive Check \\
\hline & & & & & & 16 &  & 16 & & Air Belt Switch & DM Sea
\[
\text { Latch } 1
\] & DM Unloaded Switch & Track Crossing & Index
Check & Read／Write Check \\
\hline & & & & & & 8 &  & \[
\begin{array}{|l}
\stackrel{\rightharpoonup}{0} \\
\hline
\end{array}
\] & & \begin{tabular}{l}
Write \\
Enable
\end{tabular} & \begin{tabular}{l}
\[
10 \text { Second }
\] \\
Timer
\end{tabular} & \begin{tabular}{l}
DM \\
Loaded \\
Switch
\end{tabular} & \[
\begin{aligned}
& \text { Servo } \\
& \text { Latch }
\end{aligned}
\] & R／w Interlock Check & On Line \\
\hline & & & & & & 4 & & \(\stackrel{\square}{\square}\) & \[
\begin{aligned}
& \text { Low } \\
& \text { Gain } \\
& \text { Check }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Fixed } \\
& \text { Head } \\
& \text { DM } \\
& \text { Size } 4
\end{aligned}
\] & DM Sequence Check & Air Belt Switch & \[
\begin{aligned}
& \text { Linear } \\
& \text { Mode } \\
& \text { Latch }
\end{aligned}
\] & Control
Check & I Write Sense \\
\hline & & & & & & 2 & 2 & 2 & 0 & \[
\begin{aligned}
& \text { DM } \\
& \text { Size } 2
\end{aligned}
\] & \begin{tabular}{l}
Bias \\
Disable \\
Switch
\end{tabular} & Carriage
Home & Control
Latch & Transition Check & \begin{tabular}{l}
Index \\
Mark
\end{tabular} \\
\hline & \(\downarrow\) & ， & \(\downarrow\) & \(\dagger\) & \(\downarrow\) & 1 & 1 & 1 & 0 & \[
\begin{aligned}
& \text { DM } \\
& \text { Size } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { Odd } \\
& \text { Track }
\end{aligned}
\] & Motor at Speed & Wait Latch & Write I
Check & \[
\begin{aligned}
& \text { Active } \\
& \text { Track }
\end{aligned}
\] \\
\hline Posted In Sense Byte & 8 & 8 & 8 & 8 & 8 & & & & 19 & 9 & 10 & 11 & 16 & 12 & 8 \\
\hline
\end{tabular}


\section*{3340 QUICK FIX LIST}

\section*{CAUTION}

Do not apend over ten minutes of diagnostic time using this Quick Fix List. If the Possible Causes listed do not correct the problem, go immediately to the normal MLM procedures
\begin{tabular}{|c|c|c|c|}
\hline FSI & Error Description & Possible Causes & Run Micros \\
\hline 10xx & Device Interface Check & Cables and Connectors
A1C2, A2F2 & \[
\begin{array}{|l|}
\hline A 2, A 3 . \\
A A, A B \\
\hline
\end{array}
\] \\
\hline \(11 \times x\) & DM Sequence Check & A1M2(L2), A1T4(SA) Cables and Switches & AC. B \\
\hline 12xx & Access Timeout & Servo Cards. * A1P2(N2) & \[
\begin{aligned}
& A 4, A 6, A 7 \\
& A B, A A, A B \\
& A D, A F
\end{aligned}
\] \\
\hline 1301 & Sector Compare Check & A1G2 (RPS only) & A5 \\
\hline 1310 & False Drive Check & A1P2(N2) & \(A 5, A A\) \\
\hline \(14 \times \mathrm{x}\) & Read/Write (R/W) Safety & R/W Matrix Cards. A1H2, A1J2 & \[
\begin{aligned}
& A 3 . A 5, \\
& A D . A F
\end{aligned}
\] \\
\hline 15 xx & Overshoot Check & Servo Gain (Run \(A 7\) ) Servo Cards. "Carriage Home Photocell A1P2(N2) & \begin{tabular}{l}
A3. A4, A6. \\
A7, A8, AA \(A B\)
\end{tabular} \\
\hline \(16 \times x\) & Servo Off Track & Servo Cards, "A1P2(N2) & A3, A4 \\
\hline 1910 & Error Alert (not defined) & A2L2, A2F2 & A0, Al \\
\hline 1914 & Sync Out Timing Error & Bus Terminators A2F 2 & \[
\begin{aligned}
& A 1, \angle 4, A 6 \\
& A 8, A D, A F \\
& \hline
\end{aligned}
\] \\
\hline \[
\begin{array}{|l|}
\hline 1917 \\
1918 \\
\hline
\end{array}
\] & Transmit Head Difference Error & A1F2(E2), A1C2 & A2, A3 \\
\hline 49xx & Data Check No Sync Byte Found & R/W Ma . . \(x\) Cards A1 J2, A2S2 & AF, BI \\
\hline 9001 & No Tag Valıd R/W Op & A2T2, A2K2, A2G2 & A4. A6 \\
\hline 9004 & Time Out for Index & A1H2. A1F2(E2) & A5 \\
\hline 9005 & ECC Hardware Check & A2R4 & A1. AE \\
\hline 9009 & Busy Missing After Seek Start & A1P2(N2) & \[
\begin{aligned}
& A 3, A 4, A 6 \\
& A 7, A 8, A A \\
& A B
\end{aligned}
\] \\
\hline 900 A & Physical Address Check & Drive Address Jumper A102 & A2 \\
\hline 900F & Attention Check & A1P2(N2) & \[
\begin{aligned}
& A 2 . A 3 . A 4 \\
& A 5
\end{aligned}
\] \\
\hline 9104 & I Write Fall & AlH2. R/W Matrix Cards & AF \\
\hline \(91 \times 8\) & CTL. 1 or DEV I Bus In Parity Check & A2F 2, A1D2, Cables and Connectors & A1. A2 \\
\hline 9110 & DEV I Bus In Parity Check & A2D2. Cables and Connectors & A2 \\
\hline 9120 & One-of Eight Check & A1D2 & A2 \\
\hline 9180 & CTL I Tag Bus Parıty & A 2 K 2 & A1 \\
\hline 91FC & CTL I Bus In Assembly Failute & A 2 K 2 & A 1 \\
\hline 9200 & False CTL Error & A2K2 & A 1 \\
\hline 9202 & ECC Hardware Error & A2R4 & AE \\
\hline 9204 & Monitor Check & A2L2, A2P2(N2) & A1, A2, AD \\
\hline 9206 & Monitor -- ECC Hardware Error & A2P2(N2) & \(A D, A E\) \\
\hline \[
\begin{aligned}
& 9208 \\
& 920 C \\
& \hline
\end{aligned}
\] & Write Data Monitor Check & A2S2 & \(A D, A E, A F\) \\
\hline 921 X & Gap Counter & A2P2, A2O2 & AD \\
\hline \(92 \times \mathrm{x}\) & Shift Register & A2S2 & A3, AD, AF \\
\hline 9240 & No PLO & PLO Cable. A1H2, A2T2, A1T2(S2) & A3, AF \\
\hline 928x & PLO Error & A2T2 & A3. AF \\
\hline 92C0 & No PLO - PLO Error & PLO Cable, A1H2. A2T2, A1T2(S2) & A3, AF \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
- Servo Cards \\
A Side-A1R2 \(\left(^{\circ \circ}\right.\) ), A1R4, A1T2, Power Amp A \\
B Side - A102 (**), A104, A1S2, Power Amp B \\
- If cards A1R2 or A1Q2 are changed, check adjustment. Use micro A7, Adjust Mode.
\end{tabular}} \\
\hline
\end{tabular}

SENSE DATA DEFINITION AND FORMAT (MLM, SENSE 101)


This page intentionaliy left blank.
\(\bullet\)
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Synam Senep}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Miero } 83 \\
& \text { Menep }
\end{aligned}
\]}} & \multirow{3}{*}{Error Type} & \multicolumn{2}{|l|}{Fanks Sme.} & \multirow{3}{*}{Nowe} \\
\hline & & & & & F81 & M & \\
\hline Brte & Eit & Stop & Bnt & & Code & FSI & \\
\hline 18 & 4-7 & None & - & Micropropram Error Error condition in hex code See MLM SENSE 108 & 900k & 800 & \\
\hline \multirow[t]{8}{*}{} & 0 & \multirow[t]{8}{*}{\[
\overline{E A}
\]} & - & Controller Check - - & 9x뜨․ & 9xa & \\
\hline & \(\overline{0}\) & & \(\overline{0}\) & PLOCheck - & \(92 \times \mathrm{x}\) & 921 & \\
\hline & 1 & & 1 & No PLO Input & \(92 \times \mathrm{x}\) & 921 & \\
\hline & 2 & & 2 & SERDES Check & 922x & 921 & \\
\hline & 3 & & 3 & Gap Counter Check & 921x & 921 & \\
\hline & 4 & & 4 & Write Data Check & 920x & 920 & \\
\hline & 5 & & 5 & Monitor Check & 920x & 920 & \\
\hline & 6 & & 6 & ECC Check & \(920 \times\) & 920 & \\
\hline \multirow[t]{8}{*}{20} & 0 & \multirow[t]{8}{*}{\(\overline{E B}{ }^{-}\)} & 0 & CTLI Tag Parity & 9180 & 910 & \\
\hline & 1 & & 1 & CTL + Bus Out Parity & 9140 & 910 & \\
\hline & 2 & & 2 & Drive Select Check & 9120 & 910 & \\
\hline & 3 & & 3 & DEVIBus in & 911x & 910 & \\
\hline & & & & Parity & & & \\
\hline & 4 & & 4 & CTL I Bus in & 9108 & 910 & \\
\hline & & & & Parity & & & \\
\hline & 5 & & 5 & 1 Write Fall & 9104 & 910 & \\
\hline \multirow[t]{3}{*}{\[
\frac{8}{20}
\]} & \(\frac{1}{6}\) & E4 & 1 & Device Interface Check & 10xx & 100 & \\
\hline & & EC & 6 & \[
\overline{\mathrm{D} E \overline{\mathrm{~V}}, \bar{B} \text { us Out }}
\]
Parity & \(100 x^{-}\) & 100 & \\
\hline & 7 & & 7 & DEV I Tag Parity & 100x & 100 & \\
\hline \multirow[t]{5}{*}{8} & 2 & E4 & 2 & Drive Check & & & \\
\hline & & E5 & 0 & DM Loaded Swith & \(11 \times x\) & 110 & 1 \\
\hline & 1 & & , & Sector Compare Check & 1301 & 130 & \\
\hline & 2 & & 2 & Motor at Speed & \(11 \times x\) & 110 & 1 \\
\hline & 3. & & 3 & Alt and Belt Switch & \(11 \times x\) & 110 & 1 \\
\hline \multirow[t]{3}{*}{10} & 0 & E6 & 0 & DM Size Check & IIFF & 110 & \\
\hline & 4 & & 4 & DM Check Latch & \(11 \times x\) & 110 & \\
\hline & 5 & & \(5-\) & DM Sequence Crieck & \(11 \times x\) & 110 & \\
\hline \multirow[t]{3}{*}{16} & 0 & E9 & 0 & Access Timeout Check & 120x & 120 & \\
\hline & 1 & & 1 & Overshoot Check & 150x & 150 & 2 \\
\hline & 2 & & 2 & Servo Off Track Check & 160x & 160 & 2 \\
\hline \multirow[t]{10}{*}{} & 3 & E4 & \(3-\) & Read or Write Check - & & 140 & \\
\hline & 0 & E8 & \(0-\) & Multi Head Select & \(14 \times x\) & 140 & \\
\hline & 1 & & 1 & Capable Enable Check & 14xx & 140 & \\
\hline & 2 & & 2 & Wute Overrun & 14xx & 140 & \\
\hline & 3 & & 3 & Index Check & \(14 \times x\) & 140 & \\
\hline & 4 & & 4 & R/D Interlock & \(14 \times x\) & 140 & \\
\hline & & & & Check & & & \\
\hline & 5 & & 5 & Control Check & \(14 \times x\) & 140 & \\
\hline & 6 & & 6 & Transition Check & \(14 \times \mathrm{x}\) & 140 & \\
\hline & 7 & & 7 & Write Current - & \(14 \times 1 \times\) & 140 & \\
\hline 19 & 5 & \(\overline{E F}\) & 5 & Low Gain, FHF & \(14 \mathrm{~F} \times\) & 140 & \\
\hline 8 & 4 & EF & 4 & On-Line & 1915 & 191 & 3 \\
\hline \multicolumn{8}{|l|}{} \\
\hline \multicolumn{8}{|l|}{\begin{tabular}{l}
1. Switch normaly ciowd with drive Reedy Error is larched if switch opens. Error wao causer intervention Required (Byte 0,8 it 11 \\
2 A/so causer Seek Check (By W O. Bit 7 ). \\
3. Normally On. Error if OH. Error also causes intervention Required (By \(=0\), Bit 1 ).
\end{tabular}} \\
\hline
\end{tabular}

\section*{ADDING OR REMOVING CARDS}

To add or remove cards, it is recommended that power be turned off on the entire 3340 string. If this is impractical, add or remove cards with procedure 1 or 2.
1. For cards in Panel A1, positions C2, D2, G2, H2, J2, and R/W Matrix cards - always turn power off by
a. Vary both drives offline.
b. Turn off CP 210/(CP 401).

Note: If A2 module, power drops on entire string If B1/B2 module.
power is only removed from 3340 being menviced.
2. For all of Panel A2 and the cards in Panel A1 positions F2 (E2), M2 (L2). P2 (N2), T2 (S2), T4 (S4), A2 (R2), O4 (R4) plus the Power Amplifier
a. Unioad the data modules (all if working A2 panel).
b. Place the drive in CE Mode
c. Turn the +24 V switch off at the CE panel.

Turn the -36 V CB off: A drive - CP 408
B drive - CP 407
Note: \(B\) drive cards shown in \((x x)\).
\begin{tabular}{|c|c|}
\hline Lunked Series No. 1 & Linked Series No. 1 (Cont.) \\
\hline A1 Controlier Intertace & A4 Dynamic Servo Tent No. 1 \\
\hline 1 Pre Selection & 1 Rezero and Read Home Address \\
\hline 2 Selection & 2 No Motion Seek. Read HA \\
\hline 3 Parity Check Buses & 3 Overshoot Check \\
\hline 4 Valid Tags Test & 4 Track Following Timer \\
\hline 5 Bus in Assembler & 5 Seek 1 Cyl Increments \\
\hline A2 Device Interface and Logic & 6 Seek 2 Cy 1 Increments \\
\hline Drive Selection & 7 Seek 50 Cyl Increments \\
\hline 2 Tag and Bus Out Patity & 8 Seek 116 Cyl increments \\
\hline 3 Bus Out and in Wrap & 9 Seek 174 Cyl, Increments \\
\hline 4 Selection and Rejection & 10 Reiero, Seek 12 Cyi Read HA \\
\hline 5 Valid Drive Tags & AE Error Correction Code \\
\hline 6 Invalid Drive Tass & ECC Reset \\
\hline Bus in Parity Check & 2 ECC Read Normal Data \\
\hline 8 Head Address Register & 3 ECC Read Correctable \\
\hline 9 Difference Counter No 1 & 4 ECC Read Uncorrectable \\
\hline 10 Difference Counter No 2 & 5 ECC Write Burst \\
\hline A3 Deta Module and Control & \\
\hline Data Module Status & Linked Series No. 2 \\
\hline 2 Access Timer Accuracy & A6 Dy namic Servo No. 2 \\
\hline 3 Recalibrate Test & 1 Access Time Accuracy \\
\hline No.Motion Seek Test & 2 Open Servo Loop Test \\
\hline 5 Unsuppressible Regrster & 3 Coarse Velocity Gain \\
\hline 6 Set R/W Tags & 4 Rezero Area Derection \\
\hline Force No PLO input & 5 Rezero From Outer Crash \\
\hline 8 Servo OHt Track Venify & 6 Rezero to On Track \\
\hline A5 Index and Sector Tests & A8 Dynemic Servo No. 3 \\
\hline Target Register Test & 1 Access Mode Select \\
\hline 2 Index Test & \multirow[t]{4}{*}{\begin{tabular}{l}
2 Difference Count Version No 1 \\
3 Access Mode Acceleration \\
4 Target Track Capture \\
5 Difference Count Version No 2
\end{tabular}} \\
\hline 3 Force Mult, Head Check & \\
\hline Force Sector Compare & \\
\hline 5 Sector Compare Altention & \\
\hline AD Gap Counter Tests & \\
\hline Data Transter Checks & Non- henked Utiliten \\
\hline 2 GI Gap Tolerance & AO CE Panel Tost \\
\hline Extended GI Gap Tolerance & A7 Servo Adjustment \\
\hline Modulo 16 Counter & 1 Coarse Adjustment \\
\hline G2 Gap Tolera & 2 Fine Adjustment \\
\hline 6 G3 Gap Tolerance & A9 Incrementul Sook \\
\hline Data Transter & AA Cylinder Seek Test \\
\hline 8 Wrice Satety Checks & AB Random Seok Test \\
\hline AF Format Rasd and Write & AC Dats Modula State Analysis \\
\hline Read GI Unoriented & BO Reformat CE Tracks \\
\hline 2 Oriented and Unoriented & B1 Rasd (Any Track or Cylinder) \\
\hline 3 Force Command Overrun & B2 Write ICE Tracks only) \\
\hline Force Sync Out Timing & B3 Device Status Display \\
\hline 5 Test Allow HAR Function & B4 Teg Cycle Utility \\
\hline 6 Write Full Track G2 & 86 String Switch Feature \\
\hline Wite G2/Force Track Overriun & 87 Carrisge Go Home Test \\
\hline 8 Write/Format Write G2 & \multirow[t]{2}{*}{\begin{tabular}{l}
BF Controller Interface \\
(Run trom 115 or 125 )
\end{tabular}} \\
\hline 9 Read/Clock G2 Force No Sync Found & \\
\hline 10 Format Write G3. Read G3 & \multirow[t]{2}{*}{\begin{tabular}{l}
HC Controlier Interface \\
IRun trom 38302 . ISC ot IFA
\end{tabular}} \\
\hline 1 1: Read G3 and AM Search & \\
\hline 12 Format Erase and No AMF & 1 Bus and Tag Hot Line Test \\
\hline 13 Special Format R/W G 1 & 2 Tag Bus and Bus Out Test \\
\hline 14 Format Write G1 and Read G1 & 3 Control Lines Test \\
\hline 15 Skip Displacement & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Error Ston Example
A243
Routine A2, Device intertace/Logic Test
Test No 4. Selection and Rejection, Stop No}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}


\section*{CE PANEL MICROPROGRAM CONTROL (MLM, MICRO 10)}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|r|}{Switch Control Meaning} & \multicolumn{2}{|r|}{Luphts Display Meaning} \\
\hline 00 & Start/Stop on Execute & 82 & Microprogram Loading \\
\hline 01 & Bypass Errors & 8 C & Microporgram Running \\
\hline 02 & Loop Routines & 8 D & Dynamic Error Display \\
\hline 03 & Bypass Errors and Loop & C0 & Invalid Routine Request \\
\hline 04 & Inhibit Linking & CA & Micro Loaded and Ready \\
\hline 05 & Inhibit Link and Bypass & CE & Normal Program Stop \\
\hline 06 & Loop Single Routine & CF & Normal End \\
\hline 07 & Loop and Bypass Errors & Dx & Parameter No x Required \\
\hline 08 & Reset Run Options & \(E 1\) & Error or Message Stop \\
\hline 10 & Enter Parameters & Ex & Message Byte No × Display \\
\hline 20 & Display Message Byte & \(\mathrm{F}_{\mathrm{x}}\) & Storage Control Error \\
\hline 30 & Reset Diagnostic Control (Functional Disk Onty) & & \\
\hline
\end{tabular}

\section*{3340/3344 DISK IOS QUEUES}



 Serrse intormation, whach should the of prome concern to the thativate CE is fordeded at dsulacements \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\) :wht 40 .




 as process checks Figure 2 contams a list of halts and messages insued by 3340 ICS \(A\)
 and softwate (S))

\section*{3340 IOS QUEUES DISPLAY PROCEDURE}

The following procedure may be used to display the 3340 iOS OUE JES on the Mordel 15 system console
1. Press PF 10 key - "enter command" will display
2. Key D,space, CORE, enter key the first 80 bytes of corte will be displatert
3. Key: space,0132, enter key the address of the stat of the 3340 IOS QUEUS will be the first two bytes.
 the first 80 bytes of the first 3340 IOS Q will bed displdyed
5. Key: F.enter the next 80 bytes will be displayed (since each QUEUE is 87 bytes long, this will be the last seven ( 7 ) bytes of the first queue and the first seventy three (73) bytes of the second queue).
* "P1403" may be entered to print any display (P1403, enter key)
- Keying " \(F\) " or " \(B\) " plus the enter key will page forward or backward, respectively. 80 bytes at a time. Keying "C, enter key" will cancel the display function
- On a four (4) drive system, alternately keying "F enter key" and "P1403. enter key" once the address of the start of the queues is obtained will allow you to display and print all four of the queues ( 5 pages).
* The procedure for using the Display Core function and a layout of the 3340 IOS QUEUE may be found in the System/3 Model 15 System Data Areas and Diagriostic Aids Haridbook.

\section*{3340/3344 DISK IOS QUEUES - MODEL 15}

There is one 87 -byte queve for each 3340/3344 disk drive on the system. A pointer in SYSCOM points to the first queue. The queues are chaned together
\begin{tabular}{|c|c|c|c|}
\hline Disp & & Lng & \\
\hline Hex & Label & Dec & Description \\
\hline 00 & D10002 & .... & Start of 3340/3344 queues \\
\hline 00.57 & O3340A & 87 & Queue for D1 \\
\hline 58. AF & Q3340B & 87 & Queue for D2 \\
\hline B0. 107 & O3340C & 87 & Queue for D3 \\
\hline 108.15 F & Q3340D & 87 & Queue for D4 \\
\hline
\end{tabular}

Format of Each 87 - Byte Queue
\begin{tabular}{|c|c|c|c|}
\hline Disp & & Lng & \\
\hline Hex & Label & Dec & Description \\
\hline 00.01 & QFIRST & 2 & Address of first element in 100 E table for the drive \\
\hline 0203 & QLAST & 2 & Address of last element in IOOE table for the drive \\
\hline 04.05 & QOLOG & 2 & Reserved for DLOG \\
\hline 06.07 & QSELF & 2 & Address of the start of this queue \\
\hline 08.09 & SAVEOP & 2 & \(Q\) code and \(R\) byte of last operation started for this drive \\
\hline OA.OD & QSENSE & 4 & Adapter sense bytes \\
\hline QE OF & NXTQUE & 2 & Address of next queue \\
\hline 10.13 & QLSTSK & 4 & Cylinder/head number of last seek \\
\hline 14 & OSTAT2 & 1 & Status byte for drive \\
\hline 15 & QSTATS & 1 & Status byte for drive \\
\hline 16.1F & COUNT & 10 & Left end of 10 -byte DDCF field \\
\hline 20.23 & QDIAGS & 4 & Diagnostic sense area \\
\hline 24.25 & DDAREA & 2 & DDDR residual sense area \\
\hline 2627 & ADCSNS & 2 & Sense area for attachment status \\
\hline 28 2C & HAFLD & 5 & Left end of read area home address \\
\hline 2D. 35 & ROFLD & 9 & Left end of read area for RO count \\
\hline 36 & QFLGID & 1 & Drive hex 10 \\
\hline 37 & QOCODE & 1 & Q code for this drive \\
\hline 38.39 & ADHA & 2 & Address of HAFLD \\
\hline 3A.3B & ADRO & 2 & Address of ROFLD \\
\hline 3 C 3 D & ADCNT & 2 & Address of count \\
\hline 3E-3F & ADDIAG & 2 & Address of diagnostic sense area \\
\hline 40.57 & QDGSNS & 24 & Diagnostic sense area \\
\hline
\end{tabular}

Figure 1

\section*{DISK ERRORS}

Stic-Lite

HE
Blank 0

Blank 1

\section*{Message}

OA--

OC--

OF
OH
OJ
OL
ON
OU

\section*{Error Description}

Permanent Disk Error
Attempt to IPL from a non system pack
D1 is in read only mode; adapter check on 3340 attempting to run CEFS
Permanent disk error; an attempt to
load a system program that is not on the IPL pack
\begin{tabular}{ll} 
Wrong data module size & U \\
Write inhibited & U \\
Intervention (not ready) & U \\
Equipment check & H \\
Permanent Error during error & \\
logging & U \\
(Not properly initialized) & U \\
(Hardware failure) & H \\
Seek Check & H \\
Command reject & \(\mathrm{S}, \mathrm{H}\) \\
Invalid track format & \(\mathrm{H}, \mathrm{S}\) \\
Data check & (H.S) \\
No record found/end of pack & \(\mathrm{S}, \mathrm{H}\) \\
Data overrun/command overrun & H
\end{tabular}Intervention (not ready)UPermanent Error during errorHardware failure)HS. H,S.HH

Where H and S appear together, the code specified first is most probable. When they appear in parenthesis, neither takes precedence

Figure 2

3340 - 5415 DISK ERROR DISPLAY

Whent disk \({ }^{2}+10\) s cause at halt message on the console, 6 sense bytes descritung the prot dre? also displayied

CYL HEAD RECORD \(\underbrace{2 A}_{\text {SENSE BYTES 0, 1, 2, 3, 4 AND } 7}\)

This information is also logged in customer history file

\section*{3340/3344 ERROR LOGGING LOCATIONS}

Error logging is controlled solely by the \(\mathrm{S} / 3\) software support system. It is important, how ever, to define the locations where error logging occurs so that diagnostic programs pro vided with the attachment can read and print out these error logs to allow analysis of system temporary (recoverable) errors.

Error logging locations are defined below. Notice that locations differ depending on where IPL occurred. When 3344 disk drives are installed. IPL can occur from any of the four options given.

Therefore, the diagnostic programs that dump the errors logged must search each of the areas given to dump all possible errors logged.

Disk 1 R1

Disk 3 F1

Disk 3 R1
\begin{tabular}{lll}
\begin{tabular}{l} 
Unit Record/TP \\
Error Log
\end{tabular} & Disk Log & Tape Log \\
Cylinder 169, Head 0 & Cylinder 209, & Cylinder 209, \\
and Heads 4.9 & Heads 1.4, & Head 0 \\
Cylinder 179, Head 0 & Cylinder 209, & Cylinder 209, \\
and heads 4.9 & Heads 1.4 & Head 0 \\
Volume 1, Cylinder & Volume 1, & Volume 1. \\
199, Head 0 and & Cylinder 209, & Cylinder 209, \\
Heads 4.9 & Heads 1.4 & Head 0 \\
Volume 2, Cylinder & Volume 2, & Volume 2, \\
199, Head 0 and & Cylinder 209, & Cylinder 209, \\
Heads 4.9 & Heads 1.4 & Head 0
\end{tabular}

IMPORTANT NOTE: After IPL has occurred from either drive 1 or 3, error logging will be restricted to that particular drive. That is, logging does not arbitrarily select a drive but is dictated by the inital IPL selection. Logging changes only after IPL is performed again with a change in the "IPL option" (shown above). On drive 1 . logging can occur on different data modules so all data modules used on drive 1 must be searched to dump all possible errors logged for the system.

\({ }^{1}\) These areas are written in count-key-data format (standard data format) readable to Systern/3 and System/370. Other areas are written in compressed data format.
User programs after 256 retry reads, sets 2 byte actual hex address in the suspect bad track table. When \(\$\) INIT is run if calls SALT, rean record one time and it a read error occurs, flags the track defective and assigns an alternate

COMPRESSED DATA FORMAT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Gap 3 & R1 & Gap 2 & R1 & Gap 2 & R2 & Gap 2 & R3 & Gap 2 & R4 & Gap 3 & R5 & Gap 2 & R5 \\
\hline 73 & Count & 69 & Data & 69 & Data & 69 & Data & 69 & Data & 73 & Count & 69 & Data \\
\hline (201) & Area & (197) & Area & (197) & Area & (197) & Area & (197) & Area & (201) & Area & (197) & Area \\
\hline Bytes & & Bytes & \\
\hline
\end{tabular}

The compressed track format is identical to the standard format in the home address and record 0 areas Beginning with the record 1 count field, the format is one count field followed by four 256 byte data fields as shown above
\begin{tabular}{|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|l|}
\hline S D & S & D & P & A & P & A & F & C & C & H & H & DCB & DCB & DCB & DCB & DCB \\
\hline
\end{tabular}

COUNT AREA BYTE FORMAT
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline S & D & S & D & & A & P & A & F & C & C & H & H & \(R \quad \mathrm{~N}\) & K L & D L & D L & DCB & DCB & DCB & DCB & DCB & DCB \\
\hline & Skip & D & spl. & \multicolumn{4}{|l|}{Physical Address} & Flag & \multicolumn{2}{|r|}{Cylinder Address} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Head \\
Address
\end{tabular}} & Record Number & \multicolumn{3}{|l|}{Key} & \multicolumn{6}{|c|}{Detection Code Bytes} \\
\hline
\end{tabular}

KEY AND DATA AREA BYTE FORMAT


3340 C.E. PACK ORGANIZATION
\begin{tabular}{|l|c|c|l|}
\hline NAME & CYL & HEAD & RECORD NUMBER \\
\hline FA6, FA7 & 00 & 00 & \begin{tabular}{l}
\(25 \cdot 29\) (REPEATED AT \\
\(33-37)\)
\end{tabular} \\
\hline E.C. LEVEL OF FAO, FA6, FA7 & 00 & 00 & 47 \\
\hline CPU TEST BOOT (SMALL CC HALT) & 00 & 00 & 48 \\
\hline CPU-MEM TESTS & 01 & 00 & \(01-\) \\
& 01 & 09 & 48 \\
\hline VTOC & 02 & 00 & \(01-\) \\
\hline DCP & 02 & 19 & 48 \\
\hline CPU, UDT, FAS (FIRST & 03 & 00 & \(01-\) \\
AVAILABLE SECTOR), FFA, FFB & 03 & 09 & 48 \\
\hline DIAGNOSTIC PROGRAMS & 03 & 15 & \(01-\) \\
& 04 & 00 & \(01-\) \\
\hline ALTERNATE TRACKS & 33 & 19 & 48 \\
\hline
\end{tabular}

\section*{3340/44 ADDRESS CONVERSION FORMULA}

CCHH field in DDCF is System/3 logical
CCHH in 3340 HA or COUNT FIELD is 3340 logical
PA in 3340 HA or COUNT FIELD is 3340 physical
\(\mathrm{CL}_{3}=\) System \(/ 3\) logical cylinder address
\(\mathrm{HL}_{3}=\) System/3 logical head address
\(C L=3340\) logical cylinder address
\(\mathrm{HL}=3340\) logical head address
CP . \(=3340\) physical cylinder address
\(\mathrm{HP}=3340\) physical head address

SYSTEM/3 LOGICAL TO 3340 LOGICAL
\(C L=\left(C L_{;} \times 40\right)+\left(2 \times \mathrm{HL}_{3}\right) \quad C L=\) integer part
\(H L=\) remainder

3340 LOGICAL TO 3340 PHYSICAL
\(C P=\frac{C L}{2}\)
\(\mathrm{HP}=\left(12 \times\right.\) Remainder of \(\left.\frac{\mathrm{CL}}{2}\right)+\mathrm{HL}\)

3340 PHYSICAL TO 3340 LOGICAL
\(C L=(2 \times C P)+\) integer part of \(\left(\frac{H P}{12}\right)\)
\(H L=\) remainder of \(\frac{H P}{12}\)

3340 LOGICAL TO S/3 LOGICAL
\(\mathrm{CL}_{3}=\frac{(\mathrm{CL} \times 12)+\mathrm{HL}}{40}\) integer part
\(\mathrm{HL}_{3}=\frac{\text { Remainder of above }}{2} \quad\) integer part
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{CE/70/280 BM} & 70 MB & CE & \multicolumn{4}{|c|}{280 MB} \\
\hline \[
\begin{aligned}
& \text { S/3 } \\
& \text { LOGICAL }
\end{aligned}
\] & \[
\begin{aligned}
& 3340 \\
& \text { LOGICAL }
\end{aligned}
\] & \multicolumn{2}{|l|}{3340 PHYSICAL} & \multicolumn{4}{|c|}{3344 PHYSICAL} \\
\hline \begin{tabular}{l}
DOCF CCHH \\
(NOTE 1 )
\end{tabular} & DISK CCHH (NOTE 2,3) & \multicolumn{2}{|l|}{PA1PA2 ON DISK (NOTE 2.4)} & \multicolumn{4}{|c|}{PAI PA2 ON DISK (NOTE 5)} \\
\hline DEC/HEX \(\mathrm{CCH} / \mathrm{VCCH}\) & \begin{tabular}{l}
DISK/SNS \\
\(\mathrm{VCCH} / \mathrm{CCH}\)
\end{tabular} & HEX/DISK & DISK & VOL 1 & \begin{tabular}{l}
VOL 2 \\
HEX/DISK
\end{tabular} & \[
\begin{aligned}
& \text { VOL } 3 \\
& \text { HEX/DISK }
\end{aligned}
\] & VOL 4 HEX/DISK \\
\hline
\end{tabular}

NOTES:
1. EACH S/3 LOGICAL ADDRESS CAN BE CONVERTED TO AN EVEN AND ODD 3340/3344 LOGICAL AND PHYSICAL ADDRESS. FOR EXAMPLE: (FIND DEC S/3 ADDRESS 001100 AND FOLLOW ACROSS)

\(00100=03040110\) OA000028 BC28 1868 A468
_THESE ODD 3340/3344 ADDRESSES DEFINE THE ODD HALF TRACK OF S/3 LOGICAL ADORESS CYLINDER 1, HEAD O. A S/3 ADDRESS DEFINES A FULL TRACK MADE UP OF AN EVEN AND ODD HALF TRACK, EACH DEFINED UNIQUELY BY \(3340 / 3344\) ADDRESS.

THE HIGH ORDER HEAD (H) ADDRESS IS NOT GIVEN IN THE TABLE SINCE IT IS ALWAYS 00.
2. ONLY EVEN \(3340 / 3344\) CCHH ADDRESS CONVERSIONS ARE GIVEN TO MINIMIZE THE TABLE SEE NOTE 1 FOR THE ODD ADDRESSES
3. THE 3340 LOGICAL ADDRESSES (DISK/SNS) GIVEN ARE AS WRITTEN ON DISK AND AS GIVEN (WHEN AN ERROR OCCURS) IN BYTES 5 \& 6 OF THE 24 BYTES OF SENSE. 'DISK' AND 'SNS' BYTES WILL BE THE SAME UNTIL DISK ADDRESS 'V10000' IS REACHED. THE FOLLOWING RELATIONSHIP APPLIES FOR ADDRESSES V100 00 to V2C0 00:


SEE NOTE 8 FOR AN EXPLANATION OF ' \(V\) ' (VOLUME) THE HIGH ORDER HEAD \((H)\) ADDRESS IS NOT GIVEN IN THE TABLE SINCE IT IS ALWAYS 00 FOR 3344 DRIVES ONLY:
THE ' \(V\) ' BITS ARE WRITTEN ON DISK IN THE COUNT FIELDS BUT ARE NOT PRESENTED (WHEN AN ERROR OCCURS) IN BYTE \(5 \& 6\) OF THE SENSE BYTES INSTEAD. THE ' \(V\) ' BITS ARE PRESENTED IN THE 'R' BYTE (BYTE 3) AS FOLLOWS:
\begin{tabular}{|llll|llll|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline
\end{tabular}\(\quad\) SENSE BYTE 3 (R BYTE)
00 - ERROR OCCURRED IN LOGICAL VOLUME 1
01 - ERROR OCCURRED IN LOGICAL VOLUME 2
10 - ERROR OCCURRED IN LOGICAL VOLUME 3
11 - ERROR OCCURRED IN LOGICAL VOLUME 4
4. THE 3344 PHYSICAL ADDRESSES (HEX/DISK) GIVEN ARE AS HEX ADDRESSES AND AS WRITTEN ON DISK IN THE HA. THE DISK ADDRESSES ARE FOUND AS FOLLOWS FROM THE HEX ADDRESS:

5. THE 3344 PHYSICAL ADDRESSES GIVEN ARE HEX AS WELL AS IN THE TWO BYTE FORMAT WRITTEN IN THE HA ON DISK. THE ABOVE CONVERSION IS USED TO CONVERT THE HEX ADDRESS TO THE PA1 PA2 ADDRESSES.

\section*{5415 - 3340 BUS AND TAG CABLES}

Identification of 3340 Interface cable, connectors and receptacles.
1. 5415 tailgate receptacle - light grey center, metallic plating, \(\mathrm{P} / \mathrm{N} 5529192\).
2. 3340 tailgate receptacle - dark grey center, metallic plating, \(P / N 5353868\).
3. 3340 bus and tag cables - light grey connector on one end, dark grey connector on other end.

The 3340 Interface Cable, P/N 5466456, is installed as follows:
Dark grey connector, white tape \(42^{\prime \prime}\) from end, connects to 5415 tailgate; light grey connector, white tape \(12^{\prime \prime}\) from end, connects to 3340 tailgate.
The bus and tag cable shields are tied to ground via the tailgate receptacle, utilizing the metallic plating to connect shield pins internally. Each conductor has an associated shield pin.
If any discrepancy exists or verification of correct cable installation is desired, the following procedure should be used:
1. Plug the light grey connector of the bus or tag cable into the respective 3340 tailgate receptacle.
2. With the CPU end disconnected, meter the dark grey connector between B02 and B04 of cable, P/N 5466456, (continuity should be present with a resistance of less than 2 ohms).
3. Continuity should also be present between either B02 or B04 and 3340 frame ground with a similar resistance reading.

If the above indications are not obtained, the cable could be installed incorrectly or is not grounded properly through the tailgate receptacle or has an assembly problem.

\section*{3340 SERVICE AID - To Interchange A \& B Spindles}

ABSTRACT: On a single drive failure - swap electronics between drive for failure isolation.

To help isolate a Read/Write or Servo problem to the electronics, cables and connectors, or physical spindle, interchange electronics between the \(A\) and B spindles of a 3340 A2 or B2 box.

Before this procedure is used:
1. The 3340 MLM maintenance procedure should have been exhausted.
2. The data module should have been eliminated as a source of problem.

R/W matrix cards on both \(A\) and \(B\) drive replaced - not interchanged with each other.
Positive error definition, that is:
Microdiagnostic error stops, forced error (use FRIEND and obtain sense data) or repeatable customer program-error indication.

After each test step \# below, do the following items (A, B, C)
A. Rerun Failing test.
B. If trouble moves to other spindle, skip to step 7.
C. If trouble remains with same physical spindle, go to next step.

With Power-off, interchange cables: (See Figure 1)
CAUTION: Be sure cables are seated and no loose connectors exist.
\begin{tabular}{lcl} 
B Drive & with - A Drive & Description \\
A1U2 & A1V2 & Servo Pre AMP signal \\
A1U3 & A1V3 & Servo Power AMP drive \\
A1U4 & A1V4 & DM sequence \\
A1U5 & A1V5 & Drive Switches \\
A1Y3 & A1Y4 & Upper RNW matrix-A2 \\
A1Z1 & A1Z2 & Lower RNW matrix-A3
\end{tabular}

This effectively interchanges all electronics between \(A\) and \(B\) drives at the \(A 1\) board. Note that CE switch-B must be on to run physical spindle-A and vice versa. Also customers logical addresses have been reversed. Check servo is within tolerance - Run A7 micro (cards A1R2,Q2).
2. If trouble moves to other physical spindle: Problem is in MST cards or A1 board - try replacing board if all cards have been swapped. (Skip to step 7 to complete analysis when trouble moves).

If trouble remains with same physical spindle: Eliminate the power AMP and power AMP drive cables by,
A. Interchanging A1U3 with A1V3 (back to original positions) and
B. Interchange large lead on top of VCM coil from \(A\) to \(B\) spindle.
3. If trouble remains with same physical spindle: Eliminate R/W matrix flat cables by interchanging.
A. A1Y3 with A1Y4 (back to original positions)
B. A1Z1 with A1Z2 (back to original positions)
C. R/W matrix connecting blocks and pair of cables

If trouble remains with same physical spindle: Eliminate servo pre-AMP signal cable by interchanging.
A. Cables R/W matrix connector - drive connector plug see MLM R/W 350 A to B drive.
B. Cables A1U2 with A1V2
5. If trouble remains with same physical spindle, interchange (VCM) voice coil motor and bobbin ASM.
6. If trouble romains with same physical spindle,

Suspect:
A. DM Sequence cable A1U4/A1V4
B. Drive switches cable A1U5/A1V5
C. Drive mechanical problem
D. Environmental problem is ESD/Noise
7. Diagnosis is complete. Return all cables to original positions and verify proper operation of non failing drive. Take corrective action on failing drive. Verify its proper operation.

\section*{AMOP}

\section*{ATTACHMENT FREEZE JUMPERS}

01A - A1P2P10 to D08
A1M2P10 to D08
A1B4B09 to D08
Install the freeze jumpers on the 3340 attachment to display sense bytes and the external registers with the system in a failing state.
System reset and load DCP and C19 from the alternate load device.
To display the 24 sense bytes, the following commands must be entered:
D, CDL XXXX (Displays sense 0-7, 1 st 8 bytes)
D. CDL \(X X X X+8\) (Displays sense 8-15, 2nd 8 bytes)

D, CDL \(X X X X+16\) (Displays sense \(16-23\), 3rd 8 bytes)
NOTE: \(X X X X=\) starting sense byte microcode address.
Sense byte starting addresses with FAO at EC 825149 (3340) or 825144 (3344)
\begin{tabular}{llll} 
Drive \(1=053 C\) & \((0-7), 0544(8-15)\), & \(054 C\) & \((16-23)\) \\
Drive \(2=055 E\) & \((0-7), 0566(8-15)\), & \(056 E\) & \((16-23)\) \\
Drive \(3=05 B C\) & \((0-7), 05 C 4(8-15)\), & \(05 C C\) & \((16-23)\) \\
Drive \(4=05 D E\) & \((0-7), 05 E 6(8-15)\), & \(05 E E\) & \((16-23)\)
\end{tabular}

To display external registers, the following command must be entered D,EAAA.
AAA = Name of external register to be displayed
External register names and bit significance:
\begin{tabular}{ll} 
FTI - FILE TAGS IN & DST - DEVICE STATUS \\
HES - HDWR ERROR SENSE & FBO - FILE BUS OUT \\
ADS - ADPTR DIAG SENSE & FTO - FILE TAG OUT \\
FBI - FILE BUS IN & FCT - FILE BYTE COUNTER \\
CO2 - CHANNEL OUT (DBO) & CCH - CHNL BUFR CNT HI \\
DXC - DATA XFER CONTRLS & CCL - CHNL BUFR CNT LO \\
FTG - FILE TAG GATE & SBO - SENSE BYTE 0 \\
FTR - FILE TRAP RESET & SB1 - SENSE BYTE 1 \\
SCN - SCAN OP CONTROL & BOO - CHANNEL IN \\
FHF - FILE HDWR FIAGS &
\end{tabular}



\section*{SUMMARY OF AMOP COMMAND/OPERAND SET}

ALTER COMMAND
A, AC, YYYY
A, CI, YYYY, XXXXXX, XXXXXX

A, DLS, \(Y Y, X X\)
A, ZLS, \(Y Y, X X\)
A, CDL, YYYY, XX, XX, XX,

A, CDR, YYYY, \(X X, X X, X X\)

A, ALSB, YY, XX
\(A, A L S D, Y Y, X X\)
\(A, E A A A, X X\)

A, MS, YYYY, \(X X X X X X X X\)
\(A, M B, X X\)
A, CSTP, 0 - do not inhibit ck stop
1 - inhibit check stop

\section*{DISPLAY COMMAND}

D, CI, YYYY
D, DLS, YY
D. ZLS

D, CDL, YYYY
D, CDR, YYYY
D. ALSU
D. ALSL

D, EAAA
D. MS, YYYY
D. MB

\section*{COMMAND}

G
G, XX

H
I
T
P

DESCRIPTION
alter address compare stop alter control storage micro instruction up to 10 data fields
alter data local store
alter zone local store
alter control storage data left up to 10 data fields
alter control storage data right up to 10 data fields
alter address local store (B)
alter address local store (D)
alter IOP external register
see table for register name 'AAA'
alter main store in System/3
alter mode buffer
alter check stop

DESCRIPTION
display control store micro instruction display data local store
display zone local store
display control store left
display control store right
display address local store upper display address local store lower display external register 'AAA'
display 32 bytes of main storage display 8 program levels pointed to by the mode buffer

DESCRIPTION
start the adapter microprocessor start the adapter microprocessor and let it run XX cycles
halt the adapter microprocessor
I address compare stop
terminate AMOP
print

3410/3411 INDEX

Exerciser Programs
\[
\begin{aligned}
& \text {-mat A PACK } \\
& \text { OOFE PRegrim LoAD } \\
& \text { ac/uhlisp Hants MT Smet } \\
& \text { Ha Dephoathed } \\
& \text { Ser Seage Surtedas } \\
& \text { Flos. 1tu3 + 3227 } \\
& \text { is } 701 \text { - Thpe Diates, } \\
& \text { 으를 } \\
& \text { C } \times x \times 1+1+T \\
& \text { F\|O/F\|l SEh. ind, Jr } 1 \cos 2 \\
& \text { CXAX STARTS TEST }
\end{aligned}
\]

\section*{3410/3411 EXERCISER PROGRAMS}

The following hand entered programs will run in Phase Encoded ( 1600 bpi ) Mode. This mode is defaulted to by a System Reset or by tape at Load Point. These programs can be run in NRZI Mode ( 800 bpi) by a Mode Set Instruction while tape is at Load Point. An example of this is: F3 60 CB starting at storage location FFD. Tape Unit " 0 " will then remain in NRZI Mode until System Reset is pressed or Tape " 0 " is rewound. Do not branch back to mode set.


\section*{OPERATING HINTS}
1. Programs can be run separately or linked together by altering the branch back address to the beginning address of the next program.
2. Data field (2000) can be loaded with desired data by storage fill prior to entering program.

WRITE TAPE
\begin{tabular}{lll}
1000 & 31601018 & Load Byte Count \\
1004 & 3164101 A & Load MTDAR \\
1008 & F36200 & Write Tape \\
\(100 B\) & C162100B & TiO Busy \\
100 F & C160101E & TIO Not Ready/Unit Check \\
& & (Branch to Error Routine) \\
1013 & C0001000 & Branch Back \\
1017 & OOFF & Byte Count (256) \\
1019 & 2000 & Data Field (MTDAR)
\end{tabular}

READ BACKWARDS
\begin{tabular}{lll}
1100 & 31601118 & Load Byte Count \\
1104 & 3164111 A & Load MTDAR \\
1108 & F36300 & Read Backward \\
110 B & C162110B & TIO - Busy \\
110 F & C160101E & TIO - Not Ready/Unit Check \\
& & (Branch to Error Routine) \\
1113 & C0001100 & Branch Back \\
1117 & OOFF & Byte Count (256) \\
1119 & 2OFF & Data Field (MTDAR) \\
& & \\
READ FORWARD &
\end{tabular}
\begin{tabular}{lll}
1200 & 31601218 & Load Byte Count \\
1204 & 3164121 A & Load MTDAR \\
1208 & F36100 & Read Forward \\
120 B & C162120B & TiO - Busy \\
120 F & C160101E & TlO - Not Ready/Unit Check \\
& & (Branch to Error Routine) \\
1213 & C0001200 & Branch Back \\
1217 & \(00 F F\) & Byte Count (256) \\
1219 & 2000 & Data Field (MTDAR)
\end{tabular}

\section*{ERROR ROUTINE AND HALT}
\begin{tabular}{lll}
\(101 E\) & 30651601 & Sense Bytes Attachment \\
1022 & 30601603 & Sense Bytes 0 and 1 \\
1026 & 30611605 & Sense Bytes 2 and 3 \\
\(102 A\) & 30621607 & Sense Bytes 4 and 5 \\
102 E & 30631609 & Sense Bytes 6 and 7 \\
1032 & 30661608 & Sense Bytes Hardware \\
1036 & F03C7C & Halt (FE) \\
1039 & C000XXXX & Branch to Retry
\end{tabular}

\section*{3410/3411 EXERCISER PROGRAMS (continued)}

TAPE MOTION LOOP
\begin{tabular}{lll}
00 & F3601F & WTM (first) \\
3 & 0E00132B132C & Add Constant \\
130 C & 3D10132B & Compare for Equal \\
1311 & C0811318 & Branch on Equal \\
1314 & C00017 & Erase Gap \\
1318 & F3601F & Branch to Add Loop \\
131 B & F3602F & WTM (Second) \\
1 E & F3602F & Backspace File (find second TM) \\
1 & F3603F & Backspace File (find first TM) \\
S24 & F3603F & Forwardspace File (find first TM) \\
1317 & C000131B & Forwardspace File (find second TM) \\
\(132 B\) & 0001 & Loop Between TM \\
\end{tabular}

Note: Location 130A can be altered to change the amount of tape motion. (Fixed value is 16 erase gaps.)

\(\square\)

\section*{3741 INDEX}

SIO. 3741
5
Standard Diskette HDR 1 Label 2

STANDARD DISKETTE HDR 1 LABEL

\begin{tabular}{|c|c|c|}
\hline Sector and Position & Description & \begin{tabular}{l}
Entry: \\
Required, Optional, or Not Applicable
\end{tabular} \\
\hline 1.4 & Label 10, must be HDR1. & Required \\
\hline 5 & Reserved. & \\
\hline 6.13 & Data set name (user name for data set). & Optional \\
\hline 14.22 & Reserved. & \\
\hline 23-27 & Block/record length. An entry of 1-128 tells the system how much of each 128 -position sector contains actual data. (Each sector-track position can contain one logical record.) & Required \\
\hline 28 & Reserved. & \\
\hline \[
29-33
\] & BOE. Address of the first sector of the data set is identified as follows: track number in positions 29 and 30; 0 in position 31 ; sector number in positions 32 and 33. & Required \\
\hline 34 & Reserved. & \\
\hline 35-39 & EOE. Address of the last sector reserved for this data set is in the same format as BOE. & Required \\
\hline 40 & Reserved. & \\
\hline \multirow[t]{9}{*}{41} & \begin{tabular}{l}
Bypass indicator. \\
\(t\) entry indicates data set is intended for processing.
\end{tabular} & Optional \\
\hline & B entry indicates data set is not intended for processing even though it resides on the diskette; that is, a 3741 or 3742 user could store 3741 or & \\
\hline & 3742 programs on a diskette lidentified with B & \\
\hline & in the label) as well as data (identified with 6 in & \\
\hline & the label), and neither a 3747 nor a 3540 would & \\
\hline & read the programs. Also, a data set identified & \\
\hline & with a B in this position would not be trans- & \\
\hline & mitted by a 3741 Model 2 or Model 4 operating & \\
\hline & in teleprocessing transmit mode. & \\
\hline \multirow[t]{2}{*}{42} & Data set security. & \multirow[t]{10}{*}{Optional} \\
\hline & \(\checkmark\) entry indicates that the data set is not secured and can be accessed. & \\
\hline & A non-blank character (which can be written only by the \(\mathbf{3 5 4 0}\) ) indicates restricted access. & \\
\hline & When set to non-blank, the volume accessibility indicator must also be set to non-blank. The & \\
\hline & data cannot be read by a 3741, a 3742, a 3747, & \\
\hline & but can be read by a 3540 with operator & \\
\hline & qualification. The data set cannot be written & \\
\hline & upon, and the volume accessibility indicator & \\
\hline & cannot be changed from non-blank by the & \\
\hline & 3741,3742 , or 3747 , or by 3540 programming support & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{N Field} & \multicolumn{9}{|c|}{Bits} \\
\hline & & 0 & 1 & 2 & 3 & 4 & & 5 & 6 & 7 \\
\hline Reset Interrupt Request & \multirow[t]{5}{*}{\[
\left[\begin{array}{ccc}
0 & 0 & 0 \\
\text { or } \\
\text { Read } \\
0 & 0 & 1
\end{array}\right]
\]} & \multicolumn{3}{|c|}{\multirow{7}{*}{Not Used}} & & & & & & 1 \\
\hline Enable Interrupt (ability) & & & & & & & & & 1 & \\
\hline Reset Interrupt (ability) & & & & & & & & 1 & & \\
\hline Remove Busy State & & & & & & 1 & & & & \\
\hline Set Interrupt Request & & & & & 1 & & & & & \\
\hline Read I/O Device & 001 & & & & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Any Above Combination}} \\
\hline Write I/O Device & 010 & & & & & & & & & \\
\hline 1/0 8 Select & \multirow{8}{*}{011} & 1. & & & & & & & & \\
\hline 1/0 7 Select & & & 1 & & & & & & & \\
\hline 1/0 6 Select & & & & 1 & & & & & & \\
\hline 1/O 5 Select & & & & & 1 & & & & & \\
\hline 1/O 4 Select & & & & & & 1 & & & & \\
\hline 1/0 3 Select & & & & & & & & 1 & & \\
\hline 1/0 2 Select & & & & & & & & & 1 & \\
\hline 1/O 1 Select & & & & & & & & & & 1 \\
\hline 1/O 14 Select & \multirow{8}{*}{100} & 1 & & & & & & & & \\
\hline 1/O 13 Select & & & 1 & & & & & & & \\
\hline 1/O 12 Select & & & & 1 & & & & & & \\
\hline 1/O 11 Select & & & & & 1 & & & & & \\
\hline 1/O 10 Select & & & & & & 1 & & & & \\
\hline 1/O 9 Select & & & & & & & & 1 & & \\
\hline 1/O Unit 2 Select & & & & & & & & & 1 & \\
\hline 1/O Unit 1 Select & & & & & & & & & & 1 \\
\hline
\end{tabular}

1/O Select Line 1 - Spare
1/O Select Line 2 - Spare

I/O Select Line 3 - 'Setup Error'

Select Line 4 - 'Force Response'

1/O Select Line 5 - 'Sense Response'


I/O Select Line 7 - 'End of Job \(\mathbf{I n}^{\prime}\)

1/O Select Line 8 - 'Bus Out Parity Error'


Select Lines 9 through 16 (not used)

This line indicates that the 3741 is in the wrong mode to accept data from the system.

This line indicates a normal, non-error response to the 3741 .

This line tells the 3741 that an abnormal condition exists and that it should sense its registers to determine the condition. If no other bit is on, this line indicates a record-length error.

This line tells the 3741 to close out the current data set and proceed to the next data set.

This line indicates to the 3741 that the last record transferred was the last record in this job.

This line indicates that the 3741 attachment has detected a parity error on the interface.
\(\square\)

\(\square\)

5203 INDEX

Chain Pattern . . . . . . . ...................................... . . . . . . . 2
Exerciser Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Exinter Checks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
yalts

BCD CODE
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Hex \\
Char- Chain Chain acter Character Position
\end{tabular}}} & \multicolumn{6}{|c|}{BCD CODE} \\
\hline & & & B & A & 8 & 4 & 2 & 1 \\
\hline F1 & 1 & 1 & & & & & & 1 \\
\hline F2 & 2 & 2 & & & & & 2 & \\
\hline F3 & 3 & 3 & & & & & 2 & 1 \\
\hline F4 & 4 & 4 & & & & 4 & & \\
\hline F5 & 5 & 5 & & & & 4 & & 1 \\
\hline F6 & 6 & 6 & & & & 4 & 2 & \\
\hline F7 & 7 & 7 & & & & 4 & 2 & 1 \\
\hline F8 & 8 & 8 & & & 8 & & & \\
\hline F9 & 9 & 9 & & & 8 & & & 1 \\
\hline FO & 0 & 10 & & & 8 & & 2 & \\
\hline 78 & \# & 11 & & & 8 & & 2 & 1 \\
\hline 7C & @ & 12 & & & 8 & 4 & & \\
\hline 61. & 1 & 13 & & A & & & & 1 \\
\hline E2 & S & 14 & & A & & & 2 & \\
\hline E3 & T & 15 & & A & & & 2 & 1 \\
\hline E4 & U & 16 & & A & & 4 & & \\
\hline E5 & V & 17 & & A & & 4 & & 1 \\
\hline E6 & W & 18 & & A & & 4 & 2 & \\
\hline E7 & X & 19 & & A & & 4 & 2 & 1 \\
\hline E8 & \(Y\) & 20 & & A & 8 & & & \\
\hline E9 & 2 & 21 & & A & 8 & & & 1 \\
\hline 50 & \(\xi\) & 22 & & A & 8 & & 2 & \\
\hline 68 & , & 23 & & A & 8 & & 2 & 1 \\
\hline 6C & \% & 24 & & A & 8 & 4 & & \\
\hline D1 & J & 25 & B & & & & & 1 \\
\hline D2 & K & 26 & B & & & & 2 & \\
\hline D3 & L & 27 & B & & & & 2 & 1 \\
\hline D4 & M & 28 & B & & & 4 & & \\
\hline D5 & N & 29 & B & & & 4 & & 1 \\
\hline D6 & 0 & 30 & B & & & 4 & 2 & \\
\hline D7 & P & 31 & B & & & 4 & 2 & 1 \\
\hline D8 & Q & 32 & B & & 8 & & & \\
\hline D9 & R & 33 & B & & 8 & & & 1 \\
\hline 60 & - & 34 & B & & 8 & & 2 & \\
\hline 5B & \$ & 35 & B & & 8 & & 2 & 1 \\
\hline 5C & * & 36 & B & & 8 & 4 & & \\
\hline C1 & A & 37 & B & A & & & & 1 \\
\hline C2 & B & 38 & B & A & & & 2 & \\
\hline C3 & C & 39 & B & A & & & 2 & 1 \\
\hline C4 & D & 40 & B & A & & 4 & & \\
\hline C5 & E & 41 & B & A & & 4 & & 1 \\
\hline C6 & F & 42 & B & A & & 4 & 2 & \\
\hline C7 & G & 43 & B & A & & 4 & 2 & 1 \\
\hline C8 & H & 44 & B & A & 8 & & & \\
\hline C9 & 1 & 45 & B & A & 8 & & & 1 \\
\hline \(4 E\) & + & 46 & B & A & 8 & & 2 & \\
\hline 4B & , & 47 & B & A & 8 & & 2 & 1 \\
\hline 7 D & , & 48 & & & 8 & 4 & & 1 \\
\hline
\end{tabular}


LC ARRAY

\section*{5203 PRINTER CHECKS}

This light is turned on when the accuracy of printing is questionable.
The errors that turn on the light can be determined by the unique halt indicator or by probing the following points. The check must not be reset prior to probing. A Down Level indicates an error.

SOCKET LOCATION \(=\) A.B1K4 (5410)
\begin{tabular}{|c|c|c|c|c|}
\hline CHECK & PIN & & PIN & CHECK \\
\hline \multirow[t]{2}{*}{* HMR ECHO} & \multirow[t]{2}{*}{D02} & 0 & 802 & ANY HMR ON* \\
\hline & & 00 & B03 & FORMS JAM \\
\hline & & 00 & B05 & THERMAL* \\
\hline & & 00 & 810 & INCR SYNC/SLIP** \\
\hline *CHAIN SYNC & D11 & 00 & & \\
\hline CARR SPACE & D12 & 00 & & \\
\hline - INCR FAIL & D13 & 00 & 813 & CARR SYNC* \\
\hline
\end{tabular}
*These checks will drop 60 vdc to the printer.
* Additional probing of 01A-B1F5B13 defines:

If minus a slip check occurred
If plus a sync check occurred

\section*{SERVICE TIP}

To allow printing to start only at HOME TIME jumper 01A B1F2-J13 to 01A.B1M2.U07

\section*{5203 P5 HALTS}

ERAP Iogs "P5" halts as Cham Sync Checks or Incrementer Sync/Slip Checks. The later can be further broken down by jumpering 01A-B1F2S13 to 01A-B1K2 P06. This will cause ERAP to record Incrementer SynciSlip Checks in the History Table as follows:

SENSE BYTE 4
\(\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}\)
\(\times 0 \times \times \times \times \times 0 \quad\) BIT 1 is "OFF" - not an
\(\times 0 \times \times \times \times \times 1 \quad\) Incr. Sync or Slip Check
\(X 1 \times \times \times \times \times 0\) BIT 1 "ON". BIT 7 "OFF' \(=\) Incr. Sync
\(X 1 \times \times \times \times \times 1 \quad\) BIT 1 "ON", BIT 7 "ON" \(=\) Incr. Slip

\section*{5203 EXERCISER PROGRAMS}

\section*{5203 CHAIN CLEAN PROGRAM}
(For 5410 Systems Without 5424)
- Load DCP . chain image is at 0801
- System reset
- Dial in the following program

Address
\begin{tabular}{lllll}
0000 & C2 & 03 & 08 & 00 \\
0004 & 74 & 01 & FF & \\
0007 & 36 & 01 & 00 & \(3 A\) \\
0003 & C0 & 01 & 00 & 04 \\
000 F & AC & 7 F & \(7 F\) & FF \\
0013 & F3 & E0 & 01 & \\
0016 & \(6 C\) & 83 & FF & FF \\
001 A & 71 & E4 & 03 & \\
\(001 D\) & 71 & E6 & 38 & \\
0020 & F3 & E2 & 00 & \\
0023 & D1 & E2 & 23 & \\
0026 & AC & 00 & \(7 B\) & FF \\
\(002 A\) & AC & 83 & FF & FE \\
002 E & B8 & \(0 F\) & 80 & \\
0031 & D0 & 10 & 13 & \\
0034 & D0 & 87 & 16 & \\
0037 & 00 & 70 & FF & FF
\end{tabular}
- System reset
- Start

\section*{5203 • PRINT Hs}
- Alter all of storage to \(\mathbf{4 0}\)
- Dial in the following program

Address
\begin{tabular}{|c|c|c|}
\hline 0000 & 31E40022 & Load I/O - Load LPIAR \\
\hline 0004 & 31 E60022 & Load I/O - Load LPDAR \\
\hline 0008 & C1E60008 & Test I/O busy \\
\hline \multirow[t]{2}{*}{000C} & \multirow[t]{2}{*}{3CC8012B} & Set up chain image (one \\
\hline & & "H" at position 44) \\
\hline 0010 & 3CC801FF & Move " H " to data buffer \\
\hline 0014 & 0C8301FE01FF & Fill data buffer (017C-01FF) with "Hs" \\
\hline \multirow[t]{4}{*}{001A} & \multirow[t]{4}{*}{F3E2XX} & Print and space \\
\hline & & \(X X=01=\) Space 1 \\
\hline & & \(X X=02=\) Space 2 \\
\hline & & \(X X=03=\) Space 3 \\
\hline 001D & C0000008 & Branch to address 0008 \\
\hline 0021 & 0100 & Data for load 1/O \\
\hline
\end{tabular}
- System reset
- Start

\section*{5213/2222 INDEX}

Commands (Addressed by PCAR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

\section*{5213/2222 COMMANDS (Addressed by PCAR)}
\begin{tabular}{|ll|}
\hline Bit 0 \\
\hline Bit 1 \\
\hline Bit 2 \\
\hline Bit 3 \\
\hline Bit 4 \\
\hline Bit 5 \\
\hline Bit 6 \\
\hline Bit 7 \\
\hline
\end{tabular}
-If bit is on a count ( -1 ) byte must follow
LCD COMMAND FORMAT
\begin{tabular}{|c|c|c|c|c|}
\hline Command & Bits
\[
01234567
\] & Hex & Count Command & Chained \\
\hline Eject & 00000000 & 00 & & \\
\hline Index & 00000001 & 01 & & \\
\hline Read Mark and Eject & 00000010 & 02 & \(x\) & \\
\hline Sense Cell Check & 00000011 & 03 & \(x\) & \(x\) \\
\hline Card Skew Check & 00000100 & 04 & \(x\) & \(x\) \\
\hline Locate ID Field & 00000101 & 05 & \(x\) & X \\
\hline Feed, Read ID \& Loc. & 00000110 & 06 & \(x\) & \\
\hline Feed, Read ID \& Ejt. & 00000111 & 07 & X & \\
\hline
\end{tabular}

\section*{NOTES:}
1. The first five bits must be zero.
2. The first command byte must have the five bit off.

The next command byte after a chained command must have the five bit on.

\section*{5424 INDEX}

Exerciser Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 -d Check Chart 2
wheel Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Column Card Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{During which Operation Check is Given} & \multicolumn{5}{|r|}{Under Which Photo Cell Condition Chect is Given} & \\
\hline & \begin{tabular}{l}
Every \\
Operation
\end{tabular} & Punch Operation & Non Punch Operation & \begin{tabular}{l}
Print \\
Operation
\end{tabular} & Non Print Operation & Covered Late & Uncovered Late & Uncovered Early & \begin{tabular}{l}
Never \\
Dark
\end{tabular} & \begin{tabular}{l}
Dark \\
Without \\
Feed Cycle
\end{tabular} & \\
\hline Hopper Check & \(\times\) & & & & & & & \multicolumn{3}{|c|}{Hopper Criil} & Card nevet covered cell． \\
\hline Feed Check 1 & \(\times\) & & & & & Hopper Cell & & & & & Card covered cell late． \\
\hline Feed Check 2 & \(\times\) & & & & & Read Cells & & & & & Card late getting to read station． \\
\hline Feed Check 3 & & & & & & & & & & Read Celis & Card in read station between feed cycles． \\
\hline Feed Check 4 & \(\times\) & & & & & & Read Cetls & & & & Card too long in read station． \\
\hline Feed Check 5 & \(\times\) & & & & & & & & & Prepunch & Card left wait station without punch registration pressure roll． \\
\hline Feed Check 6 & & & \(\times\) & & & Prepunct & & & & & Card late to prepunch cell． \\
\hline Feed Check 7 & & \(\times\) & & & & Prepunch & & & & & Card late to prepunch cell in punch operation． \\
\hline Feed Check 8 & & \(\times\) & & & & & & Prepunch & & & Card out of registration in punch operation． \\
\hline Feed Check 9 & & & ＊ & & & & Prepunch & & & & Card too long in punch station． \\
\hline Feed Check 10 & & ＊ & & & & & Prepunch & & & & Card out of registration in punch operation． \\
\hline Feed Check 11 & & & ＊ & & & Corner & & & & & Card late to corner non－punch operation． \\
\hline Feed Check 12 & & \(\times\) & & & & Corner & & & & & Card late to corner punch operation． \\
\hline Feed Check 13 & \(\times\) & & & & & & & Corner & & & Card lett corner without kicker． \\
\hline Feed Check 14 & & & & & \(\times\) & & Corner & & & & Card left corner late non－print operation． \\
\hline Feed Check 15 & & & & \(\times\) & & & Corner & & & & Card left corner late print operation． \\
\hline Feed Check 16 & & & & & \(\times\) & Postorint & & & & & Card too long in print station． \\
\hline Feed Check 17 & & & & \(\times\) & & Postprint & & & & & Card early or late leaving print station． \\
\hline Feed Check 18 & & & & & & & Postprint & & & & Card too slow to stacker transport． \\
\hline Feed Check 19 & \multicolumn{10}{|c|}{Stacker Jam} & \\
\hline Feed Check 20 & \multicolumn{10}{|c|}{Gear emitter check or fire CB check} & \\
\hline
\end{tabular}

TYPEWHEEL PATTERN
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Position & Char & Hex & BCD & Position & Char & Hex & BCD \\
\hline 1 & - &  & Char not
Jsed & 33 & - & 60 & B \\
\hline 2 & 1 & F1 & 1 & 34 & J & D1 & B 1 \\
\hline 3 & 2 & F2 & 2 & 35 & K & D2 & B 2 \\
\hline 4 & 3 & F3 & 21 & 36 & L & D3 & B 21 \\
\hline 5 & 4 & F4 & 4 & 37 & M & D4 & B 4 \\
\hline 6 & 5 & F5 & 41 & 38 & N & D5 & B 41 \\
\hline 7 & 6 & F6 & 42 & 39 & 0 & D6 & B 42 \\
\hline 8 & 7 & F7 & 421 & 40 & P & D7 & B 421 \\
\hline 9 & 8 & F8 & 8 & 41 & Q & D8 & B 8 \\
\hline 10 & 9 & F9 & 81 & 42 & R & D9 & B 81 \\
\hline 11 & : & 7 A & 82 & 43 & ! & 5 A & B 82 \\
\hline 12 & \# & 7B & 821 & 44 & \$ & 5B & B 821 \\
\hline 13 & @ & 7 C & 84 & 45 & * & 5 C & B 84 \\
\hline 14 & & 7 D & 841 & 46 & 1 & 5D & B 841 \\
\hline 15 & \(=\) & 7E & 842 & 47 & : & 5E & B 842 \\
\hline 16 & " & 7 F & 8421 & 48 & 7 & 5F & B 8421 \\
\hline 17 & 0 & FO & A & 49 & \} & DO & BA \\
\hline 18 & 1 & 61 & A 1 & 50 & A & C1 & BA 1 \\
\hline 19 & S & E2 & A 2 & 51 & B & C2 & BA 2 \\
\hline 20 & T & E3 & A 21 & 52 & C & C3 & BA 21 \\
\hline 21 & U & E4 & A 4 & 53 & D & C4 & BA 4 \\
\hline 22 & V & E5 & A 41 & 54 & E & C5 & BA 41 \\
\hline 23 & W & E6 & A 42 & 55 & F & C6 & BA 42 \\
\hline 24 & X & E7 & A 421 & 56 & G & C7 & BA 421 \\
\hline 25 & Y & E8 & A8 & 57 & H & C8 & BA8 \\
\hline 26 & Z & E9 & A8 1 & 58 & 1 & C9 & BA8 1 \\
\hline 27 & 8 & 50 & A8 2 & 59 & है & 4A & BA8 2 \\
\hline 28 & . & 68 & A8 21 & 60 & \(\stackrel{\square}{-}\) & 4B & BA8 21 \\
\hline 29 & \% & 6C & A84 & 61 & \(<\) & 4C & BA84 \\
\hline 30 & - & 6D & A84 1 & 62 & 1 & 4D & BAB4 1 \\
\hline 31 & \(\geq\) & 6 E & A842 & 63 & \(+\) & 4E & BA842 \\
\hline 32 & ? & 6 F & A8421 & 64 & 1 & 4F & BA8421 \\
\hline
\end{tabular}

\(\square\)


\section*{5424 EXERCISER PROGRAMS}

FEED PRIMARY CARD

Address:
\begin{tabular}{lll}
0000 & F3F000 & Start I/O feed primary \\
0003 & C0000000 & Branch back to address 0000
\end{tabular}

\section*{PUNCH PRIMARY CARD}

Address:
\begin{tabular}{lll}
0000 & F3F000 & Start I/O - Fill primary wait station \\
0003 & 31F6000F & Load I/O - load MPCAR \\
0007 & F3F200 & Start I/O - feed and punch primary \\
000A & C0000003 & Branch back to address 0003 \\
\(000 E\) & 0200 & Address of MPCAR \\
0200 & & Data to be punched
\end{tabular}

READ PRIMARY CARD

Address:
\begin{tabular}{lll}
0000 & 31F5000C & Load I/O - MRDAR \\
0004 & F3F100 & Start I/O - read primary \\
0007 & C0000000 & Branch back to address 0000 \\
000 B & 0200 & Address of MRDAR
\end{tabular}

FEED SECONDARY CARD

Address:
\begin{tabular}{lll}
0000 & F3F800 & Start I/O feed secondary \\
0003 & C0000000 & Branch back to address 0000
\end{tabular}

\section*{PUNCH SECONDARY CARD}

Address:
\begin{tabular}{lll}
0000 & F3F800 & Start I/O - Fill secondary wait station \\
0003 & 31F6000F & Load I/O - load MPCAR \\
0007 & F3FA00 & Start I/O - feed and punch secondary \\
000A & C0000003 & Branch back to address 0000 \\
000E & 0200 & Address of MPCAR \\
0200 & & Data to be punched
\end{tabular}

READ SECONDARY CARD

Address:
\begin{tabular}{lll}
0000 & 31F5000C & Load I/O - MRDAR \\
0004 & F3F900 & Start I/O - read secondary \\
0007 & C0000000 & Branch back to address 0000 \\
\(000 B\) & 0200 & Address of MRDAR
\end{tabular}

\section*{5424 EXERCISER PROGRAMS (continued)}

PRINT FROM PRIMARY
\begin{tabular}{lll}
0000 & F3F000 & Start I/O - Fill primary wait station \\
0003 & 31F4000F & Load I/O - Load MPTAR \\
0007 & F3F400 & Start I/O Print primary \\
000 A & C0000003 & Branch to 0003 \\
000 E & 0200 & \\
0200 & & Data to be printed
\end{tabular}

\section*{PRINT FROM SECONDARY}

Same as Print from Primary with these changes:
0001 to F8
0008 to FC

\section*{REPRODUCE}

Data cards in Primary
Blanks in Secondary
OVERLAP Switch OFF
\begin{tabular}{lll}
0000 & F3F800 & Fill secondary wait station \\
0003 & 31F4001A & Load I/O - MPTAR \\
0007 & 31F5001A & Load I/O - MRDAR \\
000B & F3F100 & Start I/O - Read primary \\
000 E & 31F6001A & Load I/O - MPCAR \\
0012 & F3FE07 & Start I/O P Punch print secondary \\
0015 & C0000007 & Branch to 0007 \\
0019 & 0200 &
\end{tabular}

\section*{5444 INDEX}
CE Pack Organization ..... 4
Disk File Control Register ..... 5
Exerciser Programs ..... 8
Sector and Track Formats ..... 6
Service Aids ..... 2

Service Aids

\section*{5444 SERVICE AIDS}

\section*{READ/WRITE SAFETY}

During read and write operations certain conditions are monitored by the file circuits. In an unsafe condition a data unsafe line to the FCU is raised and file ready is deconditioned.

This can be reset only by stopping the file and restarting. In the unsafe condition all write and read operations are permanently inhibited. All other file operations should be inhibited by the FCU.

The following unsafe conditions cause a data unsafe signal to the FCU to be raised. They are divided within the file into the three groups shown to aid in diagnosing error conditions.
1. Write Unsafe
a. Write selected and no write transitions detected.
b. Write selected and multiple heads selected.
c. Write not selected and write current source on.
2. Erase Unsafe
a. Write selected and erase current source not on.
b. Write not selected and erase current on.
3. Read/Write selection unsafe
a. Read selected and either write or erase selected.
b. Carriage accessing and either write or erase selected.

Unsafe will set equipment check.

\section*{RESTRICTED TRACKS - CE CARTRIDGE}

Never write on upper index transducer alignment tracks 004,005 , and 006 , or head alignment tracks \(071,072,073,074,075\). Writing on these tracks will destroy the alignment data which can only be rewritten by returning for rewriting by a special file. When using the CE cartridge always check the cylinder number before writing.

\section*{RESTRICTED TRACKS NORMAL CARTRIDGE}

Cylinder 203 on Models 2 and 3, cylinder 103 on Model 1 is reserved for CE use. These tracks may be used to write on. The CE cylinder is on both the fixed and removable disks. Cylinders 001, 002, 003 on Models 1,2, and 3 are reserved for alternate cylinder assign. ment.

\section*{ABSENCE OF FILE READY}

The ready state of the file is indicated to the FCU by the conditioning of the file ready line. The DISK DRIVE I/O attention light will be on if an SIO instruction or IPL has been issued to the file and the file is not ready. Failures which result in file not ready include:
1. Failures of the interlock switches
2. Failure of the disk to maintain a rotational speed greater than \(65 \%\) of full speed
3. Failures that interrupt normal head load sequence or cause the heads to unload
4. Failure of ac power
5. The occurrence of an unsafe condition activating data unsafe


\section*{5444 SERVICE AIDS (continued)}

\section*{ACCESS OVERRUN CONDITION}

Access overrun is an error condition which occurs when the inner limit switch is operated by the carriage moving too close to the DISK SPINDLE. This position is reached between tracks 204 and 205 on the full capacity file between 104 and 105 on the half capacity file. The activation of the inner limit switch de-energizes the access forward clutch thus preventing the carriage accessing further in. The error condition is indicated to the FCU by the conditioning of the access overrun interface line.

5444 Models Available:
Model 1100 cylinders both fixed and removeable disk Disk Drive 1 only
Model 2200 cylinders both fixed and removeable disks Disk Drive 1 or 2
Model 300 cylinders removeable disk only Disk Drive 2 only
5444 Configurations Available:
A. One model 1 on Disk Drive 1
B. One model 2 on Disk Drive 1
C. One model 2 on Disk Drive 1 and one model 3 on Disk Drive 2
D. One model 2 on Disk Drive 1 and one model 2 on Disk Drive 2

\section*{To Reset Unsafe Condition Jumper}
Y.WIH6D12 to \(Y\)-WIH6J08

\section*{Monitoring Unsafe}

Tap lines \(A, B\), and \(C\) may be used to monitor the three unsafe condition latches during customer operation via the CE sense bits. To do this, place the following jumpers on the 5444 board.

5444 Machines without stepper motors (prior to \(\mathrm{S} / \mathrm{N} 30100\) )
FN230 FN260

Write unsafe (tap line A)
Select unsafe (tap line B)
Erase unsafe (tap line C)
\begin{tabular}{ll} 
Y.W1H6G03 & to \(Y\).W1G7B04 \\
Y-W1H6B10 & to \(Y \cdot W 1 G 7 B 03\) \\
Y.W1H6G04 & to Y.W1G7B05
\end{tabular}

5444 Machines with stepper motors (after S/N 30100)
\begin{tabular}{llc} 
& FS230 & FS260 \\
Write unsafe (tap line A) & YW1H6G03 & to Y.W1B6D05 \\
Select unsafe (tap line B) & Y.W1H6B10 & to Y.W1B6B04 \\
Erase unsafe (tap line C) & Y.W1H6G04 & to Y.W1B6B08
\end{tabular}

Tap \(A\) is sense byte 2 bit 1
Tap B is sense byte 2 bit 2
\(\operatorname{Tap} C\) is sense byte 2 bit 3

5444 TAP PROCEDURE FOR MACHINES BELOW S/N 30100
The jumper on Y.W1 H6B10 must not be connected until just before the tap run is started.
If the actuator needs to be moved, remove jumper on H6B10 prior to using the CE switches to reposition actuator.

The actuator must be positioned on a track divisible by \(10(10,20,30\), etc) before jumper is replaced on H6B 10.


Refer to 5444 File MAP Charts Appendix B, page 900 for a detailed description of TAP procedures.

\section*{5444 SERVICE AIDS (continued)}

\section*{SEEK REPEAT (5444 STEPPER DRIVE ONLY - ABOVE S/N 30100)}

The following procedure will allow repetitive seeks alternating first forward then reverse.
1. Using CE switch, access to desired track.
2. Set CE mode switch to either 1 or 50 track mode.
3. Jumper Y-W1F6G02 to ground (D08).

If repetitive seeks are required alternating between track 000 and 100
1. Using CE switch, access to track 000 .
2. Set CE mode switch to 50 track.
3. Jumper Y-W1B6G12 to Y-W1B6D13.
4. Jumper Y-W1F6G02 to ground (D08).

\section*{5444 C.E. PACK ORGANIZATION}
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{NAME} & 5408/5410 & 5415 \\
\hline & \multicolumn{2}{|l|}{DISK ADDRESS (CYL AND HEAD/SECTOR)} \\
\hline CPU TEST BOOT (SMALL CC HALT) & 0000 & 0000 \\
\hline CPU TEST LOADER & 0004 & 0004 \\
\hline CPU AND MEM. TESTS & 0010-00AC & 0010-00D8 \\
\hline FFA (LOADS FFB) & Oово & OODC \\
\hline FFB (LOADS DCP) & 00C4-00D8 & 0DC4 - 0DD8 \\
\hline END OF FILE POINTER (FAS) & 0700 & 0700 \\
\hline DCP & 0704-07BC & 0704-07D8 \\
\hline VTOC & 0800 (START ADDR.) & 0800 (START ADDR.) \\
\hline DIAGNOSTIC PROGRAMS & OE00 (START ADDR.) & OE00 (START ADDR.) \\
\hline
\end{tabular}



\section*{DISK FILE CONTROL REGISTER}

The DFCR Disk File Control Register contains the two-byte address of the four-byte Disk Control Field in storage. The format of the four-byte Disk Control Field in core is:

Byte

\(=\) Number of sectors to be transferred on read, write or scan.
\(=\quad\) Number of cylinders to be moved on seek.
\(=\quad\) Head bit 16 (0-1)
0 = UPPER HEAD
1 = LOWER HEAD
\(=\) Sector bits \(17-21(0-23)\). Bit \(22-23\) both zeros for read, write, or scan. Bit 23 for seek is \(0=\) reverse, \(1=\) forward.
\(=\) Cylinder (0-203) DEC (0-CB) HEX Cylinder 203 CE TRACK
\(=\quad\) Flag (normally set to zero) for defective track bit \(6=1\) for alternate track bit \(7=1\). Bits \(\mathbf{0 . 5}\) are don't care bits.

The seek operation uses the \(\mathbf{S}\) and N -bytes of the disk control field.

Hex Values for Head and Sector Selection
\begin{tabular}{|c|c|c|c|c|c|}
\hline DecHex & Dec Hex & DecHex & DecHex & Dechex & Dechex \\
\hline \(00=00\) & \(08=20\) & \(16=40\) & \(24=80\) & \(32=A 0\) & \(40=C 0\) \\
\hline \(01=04\) & \(09=24\) & \(17=44\) & \(25=84\) & \(33=A 4\) & \(41=\mathrm{C} 4\) \\
\hline \(02=08\) & \(10=28\) & \(18=48\) & \(26=88\) & \(34=A 8\) & \(42=C 8\) \\
\hline \(03=0 \mathrm{C}\) & \(11=2 \mathrm{C}\) & \(19=4 \mathrm{C}\) & \(27=8 \mathrm{C}\) & \(35=A C\) & \(43=C C\) \\
\hline \(04=10\) & \(12=30\) & \(20=50\) & \(28=90\) & \(36=B 0\) & \(44=\) D0 \\
\hline \(05=14\) & \(13=34\) & \(21=54\) & \(29=94\) & \(37=84\) & \(45=\) D4 \\
\hline \(06=18\) & \(14=38\) & \(22=58\) & \(30=98\) & \(38=88\) & \(46=\) D8 \\
\hline \(07=1 \mathrm{C}\) & \(15=3 \mathrm{C}\) & \(23=5 \mathrm{C}\) & \(31=9 \mathrm{C}\) & \(39=\mathrm{BC}\) & \(47=D C\) \\
\hline \multicolumn{3}{|c|}{Upper Head} & \multicolumn{3}{|c|}{Lower Head} \\
\hline
\end{tabular}

- Address Mark Byte \(1 \longrightarrow\) Address Mark Byte 2 \(\qquad\)
 Raw Data


- Output signals of Data Separator Circuits, not available at the 5444
\(\mathrm{C}=\) Clock pulse
\(\overline{\mathrm{C}}=\) Missing clock pulse
\(1={ }^{\prime} 1\) data bit
\(0=0^{\prime}\) (not one) data bit

\section*{5444 EXERCISER PROGRAM}

\section*{Recalibrate and Seek to 203}

Drive 1, Removable Disk, Hd 0
\begin{tabular}{rlllll}
1000 & 31 & A6 & 10 & \(1 B\) & LIO DFCR \\
04 & F3 & A0 & 00 & & SIO Recalibrate \\
07 & 31 & A6 & 10 & \(1 D\) & LIO DFCR \\
\(0 B\) & F3 & A0 & 00 & & SIO Seek \\
\(0 E\) & CO & 00 & 10 & 00 & BC to Start \\
12 & 00 & 00 & 00 & EO & DCF Recalibrate \\
16 & 00 & 00 & 01 & CB & DCF Seek \\
\(1 A\) & 10 & 12 & 10 & 16 & DFCR Addresses
\end{tabular}

\section*{Write Data Sector 0, Track 203}

Drive 1, Removable Disk, Hd 0
\begin{tabular}{rrlllll}
1500 & 31 & A6 & 15 & 26 & & LIO DFCR \\
04 & 31 & A4 & 15 & 28 & & LIO DFDR \\
08 & OC & O3 & 15 & 20 & 15 & 24
\end{tabular} MVC Load DCF

\section*{Read Data Sector 0, Track 203}

Dive 1. Removable Disk. Hd 0
\begin{tabular}{rrrrrrl}
1700 & 31 & A6 & 17 & 26 & & LIO DFCR \\
04 & 31 & A4 & 17 & 28 & & LIO DFDR \\
08 & OC & 03 & 17 & 20 & 17 & 24 \\
MVC Load DCF \\
OE & F3 & A1 & 00 & & & SIO Read Data \\
11 & C1 & A2 & 17 & 11 & & TIO Busy \\
15 & C1 & AO & 19 & 00 & & TIO Not Ready Error \\
19 & CO & 00 & 17 & 00 & BC to Start \\
\(1 D\) & 00 & 00 & 00 & 00 & DCF \\
21 & 00 & CB & 00 & 00 & Constant \\
25 & 17 & \(1 D\) & 17 & 29 & DFCR OFDR Addresses \\
29 & 00 & 11729 to 1829\()\) & Data Field
\end{tabular}

\section*{Error Routine}
\begin{tabular}{rlllll}
1900 & 30 & A6 & 19 & 21 & SNS DFCR \\
04 & 30 & A4 & 19 & 23 & SNS DFDR \\
08 & 30 & A2 & 19 & 25 & SNS Bytes 0,1 \\
\(0 C\) & 30 & A3 & 19 & 27 & SNS Bytes 2,3 \\
10 & F0 & \(3 B\) & 6 C & & HPL Halt HC \\
13 & C0 & 00 & \(x x\) & \(\times x\) & BC to Start \\
& & & \\
\(x \times x x=1500\) or 1700 & &
\end{tabular}

\section*{5445/5448 INDEX}
Control and Address Registers-5445 ..... 4
Disk Map-5445/5448 ..... 3
Pack Layout-5448 ..... 2
Select Lock 5445 ..... 4
Track Format - 5445 ..... 5

\section*{5448 PACK LAYOUT}

\begin{tabular}{|c|c|c|}
\hline & PHYSICAL 5448 & \[
\begin{aligned}
& \text { LOGICAL } \\
& 5445
\end{aligned}
\] \\
\hline BYTES PER SECTOR & 256 & 256 \\
\hline SECTORS PER TRACK & 24 & 20 \\
\hline BYTES PER TRACK & 6144 & 5120 \\
\hline TRACKS PER CYLINDER & 4 & 20 \\
\hline SECTORS PER CYLINDER & 96 & 400 \\
\hline BYTES PER CYLINDER & 24576 & 102240 \\
\hline CYLINDERS PER UNIT & 200 & 47 3/4 \\
\hline \multicolumn{3}{|l|}{MAXIMUM NUMBER OF FILES} \\
\hline PER UNIT & 50 & 50 \\
\hline \multicolumn{3}{|l|}{MAXIMUM NUMBER OF TRACKS} \\
\hline PER UNIT & 800 & 955 \\
\hline NUMBER OF UNITS & 2 & 2 \\
\hline
\end{tabular}

\section*{5448-5445 DISK MAP}

\section*{LOCATION}

Cyl 0 Track 1

Track 4

Track 2 Cyl 0 Head 05445 ( 20 sectors) ( 4 sectors reserved)
Track 3 Cyl 05444 Format (sectors 00 thru 5C)
CONTENT
CyI 05444 Format (sectors 00 thru 5C)

Cyl 0 Head 15445 Format ( 20 sectors) ( 4 sectors reserved)

CyI 1-3 ALTERNATE TRACKS \& LOG
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Cyl & 4 & Track 1 & Cyl & 1 & Head & (20 sectors) & CyI & 1 & Head 1 (4 sectors) \\
\hline & & Track 2 & Cyl & 1 & Head 1 & (16 sectors) & Cyl & 1 & Head 2 (8 sectors) \\
\hline & & Track 3 & Cyl & 1 & Head 2 & (12 sectors) & CyI & 1 & Head 3 (12 sectors) \\
\hline & & Track 4 & Cyl & 1 & Head 3 & (4 sectors) & Cyl & 1 & Head 4 (16 sectors) \\
\hline \(\mathrm{CyI}^{\prime}\) & 5 & Track 1 & Cyl & 1 & Head 4 & (4 sectors) & CyI & 1 & Head 5 (20 sectors) \\
\hline & & Track 2 & Cyl & 1 & Head 6 & (20 sectors) & & & \\
\hline
\end{tabular}

NOTE: *Six 5445 tracks are mapped on five 5448 tracks. Mapping is continuous thru the data area.

Cy 203 Track 1 Cyl 48 Head \(10(12\) sectors) Cyl 48 Head 11 (12 sectors) Track 2 Cyl 48 Head 4 ( 8 sectors) Cyl 48 Head 12 ( 16 sectors) Track \(3 \quad\) Cyl 48 Head 12 ( 4 sectors) Cyl 48 Head 13 ( 20 sectors) Track 4 CyI 48 Head 14 ( 20 sectors) ( 4 sectors reserved)

To convert from \(5445 \mathrm{C} / \mathrm{H} / \mathrm{R}\) to \(5448 \mathrm{C} / \mathrm{S}\) :
\(\frac{400 \mathrm{C}^{*}+20 \mathrm{H}^{* *}+\mathrm{R}^{*}-16}{96}=\) CYLINDER* Remainder = Sector*

To convert from \(5448 \mathrm{C} / \mathrm{S}\) to \(5445 \mathrm{C} / \mathrm{H} / \mathrm{R}\) :
```

96 C* + S* + 16 = CYLINDER* REMAINDER = HEAD** Remainder = Record*
400 20

```
* A Decimal non-zero number
** A Decimal number from 0 thru 19

\section*{5445 CONTROL AND ADDRESS REGISTERS}

\(F=\) Flag Bits \(\quad 6=\) defective track
7 = alternate track

\section*{5445 ERROR CONDITIONS}

The following malfunctions will cause a select lock light.
1. The head failure latch indicates more than one head selected at a time.
2. The write failure latch indicates:
a. DC write current and not write gate.
b. DC erase current and not erase gate.
c. Write gate and no ac write current.
d. Write current and not erase current.
3. The read/write failure latch indicates read gate or not file ready and either write gate or erase gate.
4. DC power failure.
5. AC line failure.



\section*{5471 INDEX}

5471 Console I/O Error Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Exerciser Programs

\section*{5471 CONSOLE I/O ERROR CONDITIONS}
```

Keyboard Check
Parity error was detected coming from the reed switches.
Keyboard Translator Check
Parity error detected coming from keyboard code to Sys
tem/3 card code translator.
Printer Translator Check
Parity error was detected coming from System/3 card
code to tilt-rotate code translator.
Printer Malfunction
Describes generally the malfunction of printer feedback
contacts. This condition is caused by any of the following
a. Printer cycle too long
b. Printer extra cycle
c. Printer feedback too late

```

\section*{5471 EXERCISER PROGRAMS}

\section*{TYPEWRITER FUNCTION - PRINT FROM KEYBOARD}
\begin{tabular}{lll} 
Addr & & \\
0000 & F31011 & Reset int pending, turn on proceed \\
0003 & 30110200 & Sense \\
0007 & 38080200 & TBN for return or data key init pending \\
000 B & C0900003 & Test false, branch if condition true \\
000F & 31180200 & Load data register with character keyed \\
0013 & F31880 & Start print \\
0016 & 30190300 & Sense \\
001 A & 38080300 & Test EOL \\
001 E & C0900000 & Restart if false \\
0022 & F31840 & CR and index \\
0025 & C0000000 & Restart
\end{tabular}

\section*{PRINT CHARACTER FROM SW \(3 \& 4\)}
\begin{tabular}{lll} 
Addr & & \\
0000 & 35C0001A & Set int. IAR \\
0004 & 30000200 & Sense SW 3 \& 4 \\
0008 & 31180201 & Load data register with character \\
000 C & F31880 & Start print \\
000 F & 30190300 & Sense \\
0013 & 38080300 & TBN for EOL \\
0017 & C0900004 & Test false, branch if condition true \\
001 B & F31840 & Carriage return and index \\
001 E & C0000004 & Unconditional branch \\
0200 & XX & Character to be printed
\end{tabular}

Exerciser Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Offline Check-129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Offline Check-5496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

\section*{SERVICE AID DATA RECORDER}

\section*{5496 OFFLINE CHECK}

When trouble is experienced with the 5496 on line, use the following procedures to determine if the machine functions properly as an offline device.
1. Place the 5496 in offline status by placing the DR switch to OFFLINE on the CPU console.
2. Place all 5496 switches in off position (down) except AUTO REC REL, PRINT and POWER.
3. Remove all cards from the hopper and enter the following 96 -character record from the keyboard. Enter 0 through 9 , A through \(Z\), all 30 special characters and fill with three groups of 0 through 9. Depress release key.
Only a FEED CHECK error should occur.
4. Place a deck of blank cards in the hopper and depress the RELEASE key.
- The first card should feed and the FEED CHECK light should go off.
- The card should now be punched and printed with the data that was keyed in step 3. Ensure the data is correct.
5. Place the card just punched in the hopper and depress READ.
- The data from the cards should now be loaded onto the delay line.
6. Depress and hold the DUP key through all 96 columns.
- The card should feed and punch automatically when column 96 is duplicated.
- The card should be identical to the original.
7. Place the last card punched in the hopper and depress the READ key.
8. Depress DUP through column 10 only, then enter your name and depress RELEASE.
- The card should contain 0 through 9 in columns 1 through 10 followed by your name. The remainder of the card should be blank.

If this procedure performs error free, the 5496 is operating correctly as an offline data recorder.

\section*{129 OFFLINE CHECK}
1. Place CPU data recorder switch to offline position.
2. Power the 129 down and up. Ensure that blank cards are in the hopper and the card bed is clear.
3. Place the \(\mathbf{1 2 9}\) control switches in the following positions.
a. Punch/verify PUNCH
b. Auto skip/dup

OFF
c. Rec adv/card feed

AUTO
d. Program mode

DATA READ
e. Print ON
f. Character mode

64
4. Depress feed key momentarily, one card should feed but not register.
5. Key in the following characters
a. \(\mathbf{0 . 9}\) in columns 1 through 10 column indicator should advance one column for each key depressed, and should indicate column 11 when last character has been entered.
b. Space in column 11. Column indicator should advance to 12.
c. \(C\) in column 12
\(J\) in column 13
\(U\) in column 14
Column indicator should indicate 15
6. Depress reg key. Card should register.
7. Depress rel key. Card should be punched and half stacked. Inspect this card for proper punches and printing.
8. Activate the clear switch. Card in pre-register station should half stack.
9. Insert the punched card into the pre-register station and depress the read button. Card should half stack.
10. Place the rec adv/card feed switch to manual position.
11. Depress the feed key momentarily. One card should feed but not register.
12. Depress the dup key until the column indicator advances to 00 .
13. Place the rec adv/card feed switch in the auto position.
14. Depress regkey. Card should punch and half stack.
15. Punched card of Step 7 should duplicate punched card of Step 14.

5496/129 EXERCISER PROGRAM
DATA RECORDER READ OR PUNCH
\begin{tabular}{lll}
0000 & 31F0000C & LIO DRAR LSR \\
0004 & F3XX00 & XX F1=READ,F2=PUNCH SIO \\
0007 & C0000000 & Loop read or punch \\
\(000 B\) & 0165 & DRAR LSR address \\
0165 & & Data to be punched or read from card
\end{tabular}

\section*{DR READ COMP PREVIOUSLY PUNCHED CARDS}

Program will read cards punched in the Data Recorder Punch Prog to check for correct punching and reading. Load punched cards in the hopper and enter DR Read Compare Program. The first column that is read from the card that does not compare with the corresponding punch field column will be displayed in hex in the field/op lights. To check for correct reading alter SAR to \(01 \times X(X X=\) Field/Op Its) and display char. To check for correct punching, alter SAR to 0164+00XX ( \(X X=\) Field/Op lights) and display punch character.
\begin{tabular}{lll}
0000 & 31 F00037 & LIO DRAR LSR \\
0004 & F3F100 & SIO READ \\
0007 & C1F20007 & TIO Busy \\
000 B & C2010101 & Set XR 1 to 0101 \\
000 F & C202FFA0 & Set XR 2 for a count of 96 \\
0013 & 5D006400 & Compare read data to punch field \\
0017 & C001002B & Branch if not equal \\
\(001 B\) & 36010039 & Add 1 to XR 1 \\
\(001 F\) & 36020039 & Add 1 to XR 2 \\
0023 & C0010013 & Branch on not zero \\
0027 & C0000000 & Branch to read next card \\
\(002 B\) & \(3401003 B\) & Store XR 1 \\
\(002 F\) & \(3112003 B\) & Turn on field/op lights XX lights equal \\
& & non comp card col in hex \\
0033 & FOFFFF & HALT ABCD12345 \\
0036 & 0101 & DRAR LSR address \\
0038 & 0001 & Constant of 1
\end{tabular}

\section*{DATA RECORDER DIAGNOSTIC}

Program checks data flow between multipurpose register in attachment and DR entry register. If DR entry register picks up or drops a bit, a halt occurs and a multipurpose register will be displayed in the field/operation lights, the DR entry register must be probed to determine failing bit.
\begin{tabular}{lll}
0000 & F3F3XX & SIO DIAGNOSTIC XX=DR CHAR \\
0003 & 30F2001B & SNS compare error \\
0007 & 3904001 B & Test 5-bit off \\
000 B & C0900013 & Branch on error \\
000 F & C0000000 & Branch to 0000 \\
0013 & 3112001 A & \begin{tabular}{l} 
Display attach multipurpose register in \\
field/op lights
\end{tabular} \\
& & HALT ABCD12345 \\
0017 & F0FFFF & \\
001 A & data/status & \\
001 C & &
\end{tabular}

\section*{5496/129 EXERCISER PROGRAM (continued)}

DATA RECORDER DIAGNOSTIC
Program checks the multipurpose register in attachment for missing or picking up bits. If multipurpose register does not compare with char sent to it on a SIO (diagnostic) multipurpose register will display incorrect byte in field/op lights.
\begin{tabular}{lll}
0000 & F3F3XX & SIO DIAGNOSTIC XX=DR CHAR \\
0003 & \(30 F 2001\) D & SNS multipurpose register \\
0007 & OD000002001C & \begin{tabular}{l} 
Compare multipurpose register with \\
diag character
\end{tabular} \\
0000 & C0010015 & \begin{tabular}{l} 
Branch on not equal compare \\
0011
\end{tabular} \\
C0000000 & \begin{tabular}{l} 
Branch to 0000
\end{tabular} \\
0015 & 3112001 C & \begin{tabular}{l} 
Display multipurpose register in field/ \\
op lights
\end{tabular} \\
0019 & FOFFFF & Halt ABCD12345 \\
\(001 C\) & data/status &
\end{tabular}
\(\square\)
\(\square\)

\section*{DISPLAY ADAPTER INDEX}

\section*{Service Hints}
Service Procedure ..... 3

\section*{DISPLAY ADAPTER SERVICE HINTS}

\section*{ADAPTER CHECKS}

If an adapter check occurs an Op End Interrupt will cause a reload of the microcode it errors persist after one retry the software will give a halt display "Y68L" Below are listed the five types of errors that can cause adapter checks. Refer to logic JR5 10 to probe them

FET WRITE PARITY
CTL STORE PARITY
HDB/EXT REG PARITY
OP DECODE PARITY
FET ADDRESS PARITY

\section*{TUBES LOCK OUT - ADAPTER HANG UP}

There are three likely causes of tubes being locked out ESD noise contributes to many of them happening Below are the three conditions and a means to verify them.
1. "MC ENABLED" (refer to logic JR340)
"ATTACH ENABLED" frefer to logic JR340)
"BSCA ENABLED" (refer to logic JR410)

Any of these PH latches going inactive will cause lock out. The MST probe can be used to verify that they are all "ON"
2. The second cause is when the DA is requesting an interrupt but the CPU is not responding. This could be a software problem or possibly some other attachment was granted an interrupt and has other interrupts masked "OFF" in its PMR reg (Check INT lights on CPU panel) Note that BSCC or BSCA attachments should the inactive when doing the following scoping procedure. Display "+ INT. POLL" (ref. logic JR410) on CHAN 1 of scope: sync + INTERNAL CHAN I ONLY See if "+ CHAN DBI BIT 2 " (ref logic JR4 10) is occuring at the same time on CHAN 2 . If it is, the CPU is not granting the DA an interrupt. This can also be checked with the "MST" probe. Jumpet "+ INT POLL" to + GATE of the probe and see if " + CHAN DBI BIT 2 " is pulsing "UP" This indicates that interrupts are being requested but not honored
3. The third possibitity is if something reset "INTERRUPT ENABLE" PH latch (Ref logic JR4 10) This will prevent "INTERRUPT PENDING" (ref logic JR410) from requesting an interrupt on DBI BIT 2 ". There is no way to probe this condition but you should know that it can exist

\section*{DISPLAY ADAPTER SERVICE PROCEDURE}

Use the following procedure if "D.A." hang-up occurs. This does not apply to individual 3277/84 problems.
probe (MST) "+ADAPTER CHECK
DOT" (logic JR 510)

\(\infty\)
\(\square\)

\section*{MLTA INDEX}
Configurator Data ..... 2
Reject and Attention Conditions-BSCA/MLTA ..... 4

MLTA - 1

\section*{MLTA CONFIGURATOR FOR START - STOP TERMINALS}

The following information may be helpful when running diagnostic FE7 to develop configurator data for 201

CONTROL UNIT
PRINTER-KEYBOARD
PAPER TAPE READER
PAPER TAPE PUNCH
PRINTER
CARD READER
CARD PUNCH
o Line speed is 134.5 BPS
- EIA interface or IBM line adapter
o Control unit and subcomponent addressing (station control)
- LRC

0
PTTC EBCD line code

IBM SELECTRIC TYPEWRITER
o Line speed is 134.5 BPS
- EIA interface or IBM Iine adapter
- No station control
- No LRC
- PTTC/EBCD or correspondence line code
- Line speed is 134.5 BPS
- ElA interface or IBM line adapter
- Optional station control
- Optional LRC
- PTTC/EBCD or correspondence line code

27402 IBM SELECTRIC TYPEWRITER
- Line speed is 134.5 BPS or 600 BPS
- EIA intertace or IBM line adapter
- Station control
- Optional LRC
- PTTCEBCD or correspondence line code

SYS/7 - 2740.1 CONFIGURATION
o Line speed is 600,1200 or 2400 BPS

CMCST 2741 CONFIGURATION

3767
2741,27401,27402 CONFIGURATION
o Line speed is \(200,300,600 \mathrm{BPS}\)

MLTA - 3

\section*{MLTA INSTRUCTION REJECT AND ATTENTION CONDITIONS}

\section*{BSCA Instruction Reject and Attention Conditions}
\begin{tabular}{|c|c|c|c|}
\hline Affected & & Program & \\
\hline Instructions & Condition & Test & Result \\
\hline Receive, Transmit, and & Data Set Ready & Status Bit 2 & Instruction Rejected \\
\hline Receive, Receive & Latch Off & TIO NR 3 & 1/O Attention Indi \\
\hline Initial (Non-SW/MP) & & (Non SW/MP) & cator \\
\hline & & & BSCA Attention in dicator \\
\hline Auto Call or & ACU Power Off or & TIO NR & Instruction Rejected \\
\hline Receive Initial (SW) & Data Line & Status Bit 1 & 1/O Attention Indi- \\
\hline & Occupied On & & cator \\
\hline & & & BSCA Attention Indicator \\
\hline LIO Except 110 or & Busy & TIO & Instruction \\
\hline SIO Except Control & & Busy & Rejected \\
\hline SIO Except Control & BSCA Disabled or & TIO NR & Instruction Rejected \\
\hline & External Test & TIO NR & 1/O Attention Indi- \\
\hline & Switch On and & & cator \\
\hline & Test Mode Disabled & & BSCA Attention in dicator \\
\hline None & Data Set Ready & & 1/O Attention Indicator \\
\hline & Latch On and Data & & BSCA Attention Indi- \\
\hline & Set Ready Off & & cator \\
\hline
\end{tabular}

MLTA Instruction Reject and Attention Conditions
\begin{tabular}{|c|c|c|c|}
\hline All MLTA Instructions & DBO "P" Check & \(N / A\) & Processor Check Stop DBO "P" Check Indicator \\
\hline General Adapter Instructions (M-Bit \(=1\) ) & Invalid "N" Field & \(N / A\) & Processor Check Stop 1/O "Q" Byte Invalid Indicator \\
\hline LIO with M.Bit \(=1\) Except Line Select & Adapter Busy & TIO Any Line Busy & Instruction Rejected 1/O Attention Indicator MLTA Attention Indicator \\
\hline \begin{tabular}{l}
SIO Individual \\
Line Instructions
\end{tabular} & \begin{tabular}{l}
Adapter Not \\
Ready and/or \\
Adapter Check
\end{tabular} & TIO Adapter Not Ready and/ or TIO Adapter Check & Instruction Rejected 1/O Attention Indicator MLTA Attention Indicator \\
\hline SIO or LIO With M-Bit \(=0\) & No Line Selected or Selected Line Not Installed & TIO Any Line Selected & Instruction Rejected 1/O Attention Indicator MLTA Attention Indicator \\
\hline \begin{tabular}{l}
SIO (M-Bit \(=0)\) \\
Except Control or Reset LIO (M-Bit = \\
0) Except While PCl Pending
\end{tabular} & Selected Line Busy & TIO Line Busy & Instruction Rejected I/O Attention Indicator MLTA Attention Indicator \\
\hline \begin{tabular}{l}
1. Status Byte 1, Bi \\
2. Status Byte 1, Bi \\
3. Not Ready includ point network.
\end{tabular} & ta Line Occupied ta Set Ready Cond ta Set Ready Latch & on a non-switched & oint-to-point or multi- \\
\hline
\end{tabular}

\section*{T.P. INDEX}

BSC Communications Control Characters8
BSCA 1/BSCA 2 Operator's Console ..... 5
BSCC Operator's Console ..... 6
CCP On-Line Terminal Tests ..... 21
Communication Attachments, \(\mathrm{S} / 3\) ..... 16
Communication Control Characters ..... 11
Control Unit and Device Addressing for 3270 System ..... 15
EBCDIC and ASCII Table ..... 20
MLTA Operator's Console ..... 6
Pin Descriptions for RS232 Interface ..... 17
Poll Sequence Example-3270 (No Data Transfer) ..... 12
Poll Sequence Example-3270 (With Data Transfer) ..... 13
Select Sequence Example-3270 ..... 14
T.P. Cable Chart ..... 18
T.P. Terms, Definition of ..... 2


\section*{DEFINITION OF T.P. TERMS}

\section*{Point To Point}

A point to point data link consists of a communications facility with two and only two stations attached. These stations may be combinations of CPUs and/or terminals.

A point to point link may be established over either leased communication lines or a switched network.

\section*{Multipoint}

A multipoint data link consists of a communications facility with two or more stations attached utilizing multipoint data link control. These stations may be CPUs and/or terminals.
One station on this data link must be designated the control station. The control station is responsible for polling tributary stations and for selecting any tributary station for which it has a message. All tributary stations must have a unique address.

Multipoint links must be established over dedicated communications facilities (leased or private).

\section*{Leased Line Network}

A data link which uses dedicated communications facilities. All stations on the link are always connected.

\section*{Switched Network}

A data link which uses dial-up voice grade communications facilities. The two stations must establish the link before communications can begin.

Two Wire
A data link which utilizes the same physical pair of wires for both transmission and reception of information. This link can be established over either leased or switched communications lines.

\section*{Four Wire}

A data link which utilizes one physical pair of wires for transmission and a different physical pair of wires for reception. This link is normally established over leased or private communications lines.

\section*{Full Duplex}

The ability to transmitt and receive data at the same time.
When used in relation to System/3 it has the same meaning as four wire.

\section*{Half Duplex}

The ability to EITHER transmitt or receive data at a given time.
When used in relation to System/3 it has the same meaning as two wire.

\section*{Stations}

The aggregate of the equipment and communication control attached to any one of the several ends of a communication channel is called a "station."

Stations are defined related to their permanent and temporal states in the data link.
1. In a multipoint data link the stations are defined permanently as either the control station or tributary station(s).
2. In a point-to-point data link the stations are defined permanently as either the primary station or as the secondary station.
3. The temporal states of any station are defined as being either one of two states (three for multipoint links): master, slave, or passive (multipoint only) states.

\section*{Primary Station (Permanent State)}

The primary station is defined as the station on a point-to-point line where contention exists which will gain control of the line and have the priority to transmit messages in the event that a contest for the right to transmit arises.

\section*{Secondary Station (Permanent State)}

The secondary station is defined as the station on a point-to-point line where contention exists which will relinquish its bid for the line and become a slave in the event a contest for the right to transmit arises.

\section*{Control Station (Permanent State)}

A control station is defined as the on/y station on a given data link that has the right to transmit a polling or selection supervisory sequence. A control station is also responsible for establishing order on the line in the event that control is lost during an exchange with a tributary station. Only one station on a multipoint data link can be designated the control station at any one time.

\section*{Tributary Station (Permanent State)}

A tributary station is defined as any station other than the control station on a multipoint line where the line is controlled (i.e., polling and selection is used).

\section*{Master (Temporal State)}

The master is defined as that station which has the right to transmit a message at a given instant. The master, at this given time, can be for a multipoint link either the control station or a tributary station, and for the point-to-point can be either the primary or secondary station which has gained control of the line. It is the master station's responsibility to transmit the message and be responsible for returning the data link to control mode once the transmission of the message has been completed.

\section*{Slave (Temporal State)}

The slave is defined as that station which is receiving a message from a master and which is obliged to transmit appropriate responses. Slave responses to transmission (data and control sequences) give the master station information as to the correctness of the received transmission and the condition of the slave station to receive additional transmissions.
T. P. \(\mathbf{- 3}\)

\section*{Passive (Temporal State)}

A station must maintain awareness of the operations on a multipoint data link without actually participating. During these periods, a station is said to be in the passive state when it is not master or slave during message transfer state.

This passive state or awareness of the line control without participation is necessary so that a station does not falsely interpret a text sequence as a control sequence.

\section*{New Sync}

The new sync option should be used at the multipoint control station. Its purpose is to assure rapid resynchronization on a sequence of incoming messages from different multipoint tributaries.


\section*{BSCA 1/BSCA 2 OPERATOR'S CONSOLE}

The following indicators are located on the CPU Operator's Console and indicate the operational status of the adapter.

BSCA Attn:

Unit Check:*
DT Term Ready:

DT Set Ready:

Clear to Send:

Receive Trigger:

TSM Trigger:

Receive Mode:

TSM Mode:

Receive Initial:

Busy:

Char Phase:

Data Mode:

Control Mode:
Station Select Feature)

Digit Present:
(Auto Call Feature)
ACU Pwr Off:
(Auto Call Feature)

This light is on when the I/O Attention is caused by one of the not ready or check conditions.

This light is on when any Status Bit from Byte 2 is on.
This light indicates that the BSCA is enabled and that the Data Terminal Ready line to the modem is on. With two WTC modems, this indicator shows the status of the signal, "Connect Data Set to Line."

This light indicates that the Data Set Ready line from the modem is on and the modem is ready for use.

This light indicates that the Clear to Send line from the modem is on and that the adapter may now transmit.

This light indicates the status of the Receive Trigger. The light is on when the trigger is at a binary " 0 " state (equivalent to a "Space" on the Communication Line).

This light indicates the status of the Transmit Trigger. The light is on when the trigger is at a binary " 0 " state (equivalent to a "Space" on the Communication Line).

This light indicates that the BSCA has been instructed to perform a receive operation.
This light indicates that the BSCA has been instructed to perform a transmit operation
This light is turned on by a Receive Initial instruction. It is turned off at the end of the Receive Initial operation.
This light indicates that the BSCA is executing a Receive Initial, Transmit and Receive, Auto Call, Receive, or Loop Test instruction.

This light indicates that the adapter has established character sync with the transmitting station by receiving two successive SYN characters. The light is turned off at the end of the receive operation.
This light is turned on by the decode of an SOH or STX during a transmit or receive operation. It is turned off at the end of the transmit or receive operation.

This light is turned on when an EOT sequence is detected in a Transmit, Receive, or Receive Initial monitor operation. It is turned off by decode of an SOH or STX.

This light is turned on by the BSCA when a new dial digit is present on ACU interface.

This light indicates that the Auto Call Unit has power off.
*When an SNS Transition of SNS Stop Register instruction is executed, it is possible for a LSR, S Register or DBI Register Parity Check to occur resulting in a Unit Check condition. Under this condition, the Byte 2 Status Bits may be all zero.

Call Request: (Auto Call Feature)
DT Line in Use: (Auto Call Feature)

Test Mode:

EXT Test SW:

This light indicates that the BSCA has received an Auto Call instruction and is performing an Auto Call operation.
This light indicates that the Data Line Occupied line from the ACU is on.

This light indicates that the program has placed the adapter in a test mode of operation.
This light indicates that the switch at the modem end of the Medium Speed modem cable is in the TEST position. For High Speed modems this indicator will be active when the Local Test Switch is in the on position.

\section*{MLTA OPERATOR'S CONSOLE}

MLTA Attn:

MLTA Check

MLTA Busy \(\quad\) This light is On when any data adapter within the MLTA is executing a Receive, Transmit \& Receive, Receive Initial, Reset, Auto Call, Loop Test, or Auto Poll instruction
This light is On when the I/O Attention is caused by one of the instruction reject conditions.

This light is On when any hardware parity check is detected within the MLTA

\section*{BSCC OPERATOR'S CONSOLE}
\begin{tabular}{ll} 
BSCC Attention: & BSCC Attn is lit whenever the attention condition exists for \\
the line being displayed. \\
Data term ready indicates that the microcode is loaded and \\
Data Terminal Ready: \\
has begun operation. It is turned on as soon as the micro- \\
(DTR) \\
code is operational and remains on until the system is \\
powered down. \\
Data set ready indicates the DSR line from the data set is \\
active for the selected line and normally means that the \\
modem is ready for data communications. If the local ElA \\
feature is instalied, this line active indicates that the locally \\
attached device is ready.
\end{tabular}

NOTE: * \(=\mathrm{S} / 3\) program via microcode program.
\begin{tabular}{|c|c|}
\hline Busy: & Busy indicates that a line is busy as a result of processing a receive or transmit/receive SIO command. \\
\hline Send/Receive Data: & This is a diagnostic light which indicates a ' 0 ' bit is being transmitted or received, when it is lit. The ' 0 ' bit further indicates that a space condition is present on the line. \\
\hline Unit Check: & Indicates the BSCC has an I/O check condition and cannot continue until it is corrected. \\
\hline
\end{tabular} continue until it is corrected.

\section*{BSC COMMUNICATIONS CONTROL CHARACTERS}

These functions are defined as follows:

\section*{- SOH-Start of Heading}

A communication control character used as the first character of the heading of an information message.
- STX-Start of Text

A communication control character that precedes a text and is used to terminate a heading.

\section*{- ETB-End of Transmission Block}

A communication control character that is used to indicate the end of a transmitted block of data when the data is divided into such blocks for transmission purposes.
- ETX-End of Text

A communication control character that terminates the text of a message.
- EOT-End of Transmission

A communication control character that is used to indicate the conclusion or termination of the transmission. When EOT is transmitted or received all stations reset to the control state.
- ENQ-Enquiry

A communication control character that is used as a request for a response from a remote station.
- NAK-Negative Acknowledge

A communication control character, transmitted by a slave station, that is a negative response to the master station.

\section*{- SYN-Synchronous Idle}

A communication control character that is used by all BSC stations when there is an absence of any other character (idle condition). This character provides a signal that is used to retain synchronism between the master and the slave stations.
- DLE-Data Line Escape

A communication control character that changes the meaning of the character that follows it. It is used exclusively to provide supplementary data transmission control functions.

\section*{- ITB-End of Intermediate Transmission Block}

A character used to delimit a message block (for error checking purposes) without causing a reversal of the direction of transmission.
- ACKO-Even Acknowledge

A communication control character transmitted by the slave station that is a positive response to the master station (in response to even blocks of data).

\section*{- ACK1-Odd Acknowledge}

A communication control character that is transmitted only in message transfer state by the slave station as a positive response to the master station (in response to odd blocks of data).

\section*{- WACK-Wait Before Transmit-Positive Acknowledge}

A communication control character that is transmitted by the slave station to the master station to indicate the slave station is temporarily not ready to continue to receive.
- RVI-Reverse Interrupt

A communication control sequence used:
- As a slave station's response to a master station's request for a premature termination of the current master station's transmission. This response initiates a reversal in direction of data transfer.
- As a tributary station's response to a selection sequence on a multipoint line to indicate that the tributary cannot receive because it has previously entered a transmit mode and a polling sequence is, or will be, required first.

\section*{- TTD-Temporary Text Delay}

A communication control sequence (STX-ENQ) transmitted by the master station to:
- Inform the slave station of a temporary time delay ( 2 seconds or more from the receipt of the previous acknowledgement) before the next transmission block is transmitted.
- To initiate a controlled forward abort of the current transmission by the master station.
- XSTX-Transparent Start of Text

A communication control sequence (DLE STX) that must precede a transparent text. It is used to terminate the heading (always nontransparent) and to initiate the transparent text.
- XITB-Transparent End of Intermediate Transmission Block

A communication control sequence (DLE IUS) that is available for use only in the transparent mode. It is used to delimit the end of a transparent text block, for error checking purposes, without causing a reversal of the direction of transmission. It is identical in function to the ITB character used in normal text.

\section*{- XETX-Transparent End of Text}

A communication control sequence (DLE ETX) that terminates a message having as its last block a transparent block. This sequence is identical in function to the ETX character used in normal text.
- XETB-Transparent End of Transmission

A communication control sequence (DLE ETB) used to indicate the end of a transmission of a block of transparent data where data is divided into such blocks for transmission purposes. This sequence is identical in function to the ETB character used in normal text.

\section*{- XSYN-Transparent Synchronous Idle}

A communication control sequence (DLE SYN) used with transparent data to maintain bit synchronism.

\section*{- XENO-Transparent Block Cancel}

A communication control sequence (DLE ENO) transmitted to signal that the block should be discarded.
- XTTD-Transparent Temporary Text Delay

A communications control sequence (DLE STX DLE ENO) that is functionally identical to TTD function but is restricted to those stations that are permanently set (that is, via a manual switch setting) to transparent transmit mode.
- XDLE-Data DLE in Transparent Mode

A communication control sequence (DLE DLE) that is used to allow the transmission of the bit pattern for the DLE character during transparent operation.


COMMUNICATION CONTROL CHARACTERS
\begin{tabular}{|c|c|c|c|}
\hline FUNCTION & MNEMONIC & EBCDIC & ASCII \\
\hline START OF HEADING & SOH & 01 & 01 \\
\hline START OF TEXT & STX & 02 & 02 \\
\hline END OF TRANSMISSION BLOCK & ETB & 26 & 17 \\
\hline END OF TEXT & ETX & 03 & 03 \\
\hline END OF TRANSMISSION & EOT & 37 & 04 \\
\hline ENQUIRY & ENO & 2D & 05 \\
\hline NEGATIVE ACKNOWLEDGE & NAK & 3D & 15 \\
\hline SYNCHRONOUS IDLE & SYN & 32 & 16 \\
\hline DATA LINK ESCAPE & DLE & 10 & 10 \\
\hline INTERMEDIATE BLOCK & ITB & 1F & 1 F \\
\hline EVEN ACKNOWLEDGE & ACKO & 1070 & 1030 \\
\hline ODD ACKNOWLEDGE & ACK1 & 1061 & 1031 \\
\hline WAIT BEFORE TRANSMIT POSITIVE ACK & WACK & 1068 & 103B \\
\hline MANDATORY DISCONNECT & DISC & 1037 & 1004 \\
\hline REVERSE INTERRUPT & RVI & 107C & 103 C \\
\hline TEMPORARY TEXT DELAY & TTD & 0220 & 0205 \\
\hline TRANSPARENT START OF TEXT & XSTX & 1002 & \\
\hline TRANSPARENT INTERMEDIATE BLOCK & XITB & \(101 F\) & \\
\hline TRANSPARENT END OF TEXT & XETX & 1003 & \\
\hline TRANSPARENT END OF TRANSMISSION BLOCK & XETB & 1026 & \\
\hline TRANSPARENT SYNCHRONOUS IDLE & XSYN & 1032 & \\
\hline TRANSPARENT BLOCK CANCEL & XENQ & 102D & \\
\hline \multirow[t]{2}{*}{TRANSPARENT TTD} & XTTD & 1002 & \\
\hline & XTTD & 1020 & \\
\hline DATA IDLE IN TRANSPARENT MODE & XDLE & 1010 & \\
\hline ESCAPE & ESC & 27 & 1B \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
LEADING PAD \(\times 55\) \\
TRAILING PAD \(\times 3 F\) or \(\times 7 F\) or \(\times F F\)
\end{tabular}}} \\
\hline & & & \\
\hline
\end{tabular}

\section*{3270 POLL SEQUENCE EXAMPLE}

\section*{No Data Transfer}

System/3
For 'CU' 0 EBCDIC addr \(=40\)
For 'DV' 0 EBCDIC addr \(=40\)
\begin{tabular}{ccccccccccccccc}
\(P\) & \(S\) & \(S\) & \(E\) & \(P\) & \(P\) & \(P\) & \(S\) & \(S\) & \(S\) & & & \(E\) & \(P\) \\
\(A\) & \(Y\) & \(Y\) & \(O\) & \(A\) & \(A\) & \(A\) & \(Y\) & \(Y\) & \(Y\) & \(C\) & \(C\) & \(D\) & \(D\) & \(N\)
\end{tabular}
\begin{tabular}{ccccc} 
& & & & 3270 \\
\(P\) & \(S\) & \(S\) & \(E\) & \(P\) \\
\(A\) & \(Y\) & \(Y\) & \(O\) & \(A\) \\
\(D\) & \(N\) & \(N\) & \(T\) & \(D\) \\
\hline 55 & 32 & 32 & 37 & \(F F\)
\end{tabular}

For 'CU' 0 EBCDIC addr \(=40\)
For 'DV' 1 EBCDIC addr \(=C 1\)
\begin{tabular}{ccccccccccccccc}
\(P\) & \(S\) & \(S\) & \(E\) & \(P\) & \(P\) & \(P\) & \(S\) & \(S\) & \(S\) & & & \(E\) & \(P\) \\
\(A\) & \(Y\) & \(Y\) & \(O\) & \(A\) & \(A\) & \(A\) & \(Y\) & \(Y\) & \(Y\) & \(C\) & \(C\) & \(D\) & \(D\) & \(N\)
\end{tabular}
\[

\]
"3F' for BSCC Inboard Polling

\section*{3270 POLL SEQUENCE EXAMPLE (continued)}

\section*{With Data Transfer}

System/3
For 'CU' 0 EBCDIC addr \(=40\)
For 'DV' 0 EBCDIC addr \(=40\)
\begin{tabular}{ccccccccccccccc}
\(P\) & \(S\) & \(S\) & \(E\) & \(P\) & \(P\) & \(P\) & \(S\) & \(S\) & \(S\) & & & \(E\) & \(P\) \\
\(A\) & \(Y\) & \(Y\) & \(O\) & \(A\) & \(A\) & \(A\) & \(Y\) & \(Y\) & \(Y\) & \(C\) & \(C\) & \(D\) & \(D\) & \(N\)
\end{tabular}

3270


System/3
\begin{tabular}{|c|c|c|c|c|c|}
\hline P & S & S & \multicolumn{2}{|l|}{\multirow{3}{*}{ACKO}} & P \\
\hline A & \(Y\) & Y & & & A \\
\hline D & N & N & & & D \\
\hline 55 & 32 & 32 & 10 & 70 & FF \\
\hline
\end{tabular}

If error on receive ACKO would be NAK (3D) to request 3270 to re transmit data block

'3F' for BSCC Inboard Polling

For 'CU' 0, EBCDIC addr \(=60\) (select addr)
For 'DV' 0, EBCDIC addr \(=40\)
\begin{tabular}{ccccccccccccccc}
\(P\) & \(S\) & \(S\) & \(E\) & \(P\) & \(P\) & \(P\) & \(S\) & \(S\) & \(S\) & & & \(E\) & \(P\) \\
\(A\) & \(Y\) & \(Y\) & \(O\) & \(A\) & \(A\) & \(A\) & \(Y\) & \(Y\) & \(Y\) & \(C\) & \(C\) & \(D\) & \(D\) & \(N\)
\end{tabular}


System/3


System/3
\begin{tabular}{|c|c|c|c|c|}
\hline P & S & S & E & P \\
\hline A & \(Y\) & \(Y\) & 0 & A \\
\hline D & N & N & T & D \\
\hline 5 & 32 & 32 & 37 & FF \\
\hline
\end{tabular}

System/3
For 'CU' 0, EBCDIC addr \(=60\)
For 'DV' 1, EBCDIC addr \(=C 1\)
\[
\left.\begin{array}{ccccccccccccccc}
P & S & S & E & P & P & P & S & S & S & & E & P \\
A & Y & Y & O & A & A & A & Y & Y & Y & C & C & D & D & N
\end{array}\right] A
\]

System/3 selects next DV (device) and sequence is repeated.

CONTROL UNIT AND DEVICE ADDRESSING FOR 3270 SYSTEM
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Cu \\
or \\
Device \\
Number
\end{tabular}} & \multicolumn{2}{|l|}{Control Unit Polling Address/ Device Polling or Selection Address} & \multicolumn{2}{|c|}{Control Unit Selection Address} \\
\hline & EBCDIC & ASCII & EBCDIC & ASCII \\
\hline 0 & 40 & 20 & 60 & 2 D \\
\hline 1 & C1 & 41 & 61 & 2F \\
\hline 2 & C2 & 42 & E2 & 53 \\
\hline 3 & C3 & 43 & E3 & 54 \\
\hline 4 & C4 & 44 & E4 & 55 \\
\hline 5 & C5 & 45 & E5 & 56 \\
\hline 6 & C6 & 46 & E6 & 57 \\
\hline 7 & C7 & 47 & E7 & 58 \\
\hline 8 & C8 & 48 & E8 & 59 \\
\hline 9 & C9 & 49 & E9 & 5A \\
\hline 10 & 4 A & 5B & 6 A & 7 C \\
\hline 11 & 4 B & 2E & 6B & 2 C \\
\hline 12 & 4 C & 3 C & 6 C & 25 \\
\hline 13 & 4 D & 28 & 6D & 5 F \\
\hline 14 & 4E & 2B & 6 E & 3E \\
\hline 15 & 4F & 21 & 6 F & 3 F \\
\hline 16 & 50 & 26 & FO & 30 \\
\hline 17 & D1 & 4A & F1 & 31 \\
\hline 18 & D2 & 4 B & F2 & 32 \\
\hline 19 & D3 & 4 C & F3 & 33 \\
\hline 20 & D4 & 4D & F4 & 34 \\
\hline 21 & D5 & 4E & F5 & 35 \\
\hline 22 & D6 & 4F & F6 & 36 \\
\hline 23 & D7 & 50 & F7 & 37 \\
\hline 24 & D8 & 51 & F8 & 38 \\
\hline 25 & D9 & 52 & F9 & 39 \\
\hline 26 & 5A & 5 D & 7A & 3A \\
\hline 27 & 5B & 24 & 78 & 23 \\
\hline 28 & 5 C & 2A & 7 C & 40 \\
\hline 29 & 5D & 29 & 70 & 27 \\
\hline 30 & 5E & 38 & \(7 E\) & 3D \\
\hline 31 & 5F & 5E & 7F & 22 \\
\hline
\end{tabular}

\section*{S/3 COMMUNICATIONS ATTACHMENTS}

BSCA-1/BSCA. 2 (Binary Synchronous Communications Adapter 1/2)
- Medium Speed - 600 BPS to 9.6 K BPS
- High Speed above 9.6K BPS to 50.0K BPS
- Feature Identification
- ASCII \(\quad \mathrm{Q} 2\) is \(\mathrm{P} / \mathrm{N} 5857632\)
- Auto Call

R2 is \(P / N 5858872\)
H 3 is \(\mathrm{P} / \mathrm{N} 5855851\)
- High Speed B3 is P/N 5857630
- Internal Clock Card in F2
- Local Modemless EIA Card in F2
- Multipoint Control Station

H 2 is \(\mathrm{P} / \mathrm{N} 5855855\) and polling used by \(\mathrm{S} / 3\) to address tributaries
- Multipoint Tributary \(\quad \mathrm{H} 2\) is \(\mathrm{P} / \mathrm{N} 5857650\)
- Switched Network DTR H2 is P/N 5857644
- Switched Network

CDSTL (World Trade) H2 is P/N 5857645
- MINI-12 (1200 BPS Integrated Modem)
- Switched or leased line
- Identifiable by cards in D4, E4 and F4

LCA (Local Communications Adapter)
- Mutually exclusive with BSCA-1
- Uses BSCA- 1 instruction set
- Reduced function BSCA-1
- Only supported BSCA- 1 features are:
- EBCDIC
- Local Modemless EIA
- 2400 BPS

MLTA (Muitiple Line Terminal Adapter) RPQ
- Low speed start/stop
- Speeds of 134.5 BPS to 1200 BPS
- One to eight lines available
- Feature Identification
- Autopoll B/M 5555180 installed
- Under the-Cover Line Adapter B3 board installed
- BMT card 2 card in B4F4
- BMT card 3 card in B4K4
- BMT card 4 card in B4F2

BSCC (Binary Synchronous Communications Controller)
- Available on Model 15D only
- Mutually exclusive with MLTA
- One or two medium speed lines (600 BPS to 9600 BPS)
- Multipoint control station only
- Either line can have one of the following interfaces
- EIA
- EIA Local Modemless
- 38LS (1200 BPS Intergrated Modem)
- DDSA (Dataphone Digital Service Adapter)

T. P. CABLE CHART


T. P. CABLE CHART (continued)


NOTES:
1. Cable supplied by attaching BSC device
2. Attaching BSC device.
3. System/3 internal cable terminates at tailgate with EIA RS232 connector
4. Integrated 1200 BPS Modem (Mini-12) can be installed on BSCA 1 and/or BSCA 2.
5. \(P / N 5133611, P / N 2590800\) and \(P / N 4835381\) are functionally the same for domestic use.
6. \(P / N 5133613\) and \(P / N 2590802\) are functionally the same.

EBCDIC AND ASCII TABLE
\begin{tabular}{|c|c|c|}
\hline CHARACTER & EBCDIC & ASCII \\
\hline A & C2 & 41 \\
B & C2 & 42 \\
C & C3 & 43 \\
D & C4 & 44 \\
E & C5 & 45 \\
& & \\
F & C6 & 46 \\
G & C7 & 47 \\
H & C8 & 48 \\
I & C9 & 49 \\
J & D1 & 4 A \\
& & \\
K & D2 & 4 B \\
L & D3 & 4 C \\
M & D4 & \(4 D\) \\
N & D5 & 4 E \\
O & D6 & 4 F \\
P & & \\
Q & D7 & 50 \\
R & D8 & 51 \\
S & E2 & 52 \\
T & E3 & 53 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline CHARACTER & EBCDIC & ASCII \\
\hline U & E4 & 55 \\
\hline V & E5 & 56 \\
\hline w & E6 & 57 \\
\hline \(\times\) & E7 & 58 \\
\hline Y & E8 & 59 \\
\hline 2 & E9 & 5 A \\
\hline 0 & F0 & 30 \\
\hline 1 & F1 & 31 \\
\hline 2 & F2 & 32 \\
\hline 3 & F3 & 33 \\
\hline 4 & F4 & 34 \\
\hline 5 & F5 & 35 \\
\hline 6 & F6 & 36 \\
\hline 7 & F7 & 37 \\
\hline 8 & F8 & 38 \\
\hline 9 & F9 & 39 \\
\hline
\end{tabular}

\section*{CCP ON-LINE TERMINAL TESTS}

The procedures for inttating CCP ON-LINE TERMINAL TESTS may also be found in the System/3 CCP Terminal Operator's Guide. Your customer will have this book and the System Opetator's Guide referenced in the above paragraph.

Online tests

What to do in case of errors

3270 test

The online terminal test is a method of checking the proper operation of a terminal. If your installation allows online testing you can request a test, whenever you are allowed to send data. The system operator can also request an online test on your terminal untess it is a 3270 or 3735. When the system operator sequests an onlme test, the data is written at your terminal.

If you determine that your termenal is not operating properly, notify the system operator by using the message command or, contact the data processing personnel by telephone and inform them of the difficulty.

\section*{TEST FOR 3270}

You can perform a test on your 3270 terminal at any time. Perform the following steps to initiate a test
1. Press CLEAR and immediately press RESET to cled the screen. The cursor should be at position 1 and the screen should be blank. It the A11 CLEAR message appears, repeat CLEAR RESET until the: screetl is blank.
2. Type in a message in this format


1 A number from 23 to 34 specifying the desired test. (See Test Types in this chapter.)

2 A number from 01 to 99 specifying the number of times the test is to be written. The test can be sent to a printer only once. It is normally sufficient to send the test to a display station only once. However, you may wish to send the test more than once, for example, in cases where an error occurs intermittently

3 The number four indicating the length of the address.
4 The address of your terminal. The address is a sequence of four alphameric characters that specify the control unit and a device to which the test is to be sent. Alphabetic char acters must be uppercase. Your installation must tell you the address of your 3270. If the address you specify is not the correct address of your terminal, unpredictable results may occur to other terminals on the system.

\section*{3. Press TEST REQUEST.}
4. When the test is complete, follow it with input to CCP, such as a message command or CLEAR key action, to ensure proper completion of the test and resumption of normal processing.

When the online tests are complete, you and the system operator have a list of the test results. Record your test results.

\section*{An example of a test request is: 25014 . \(A\) A}
\[
\begin{aligned}
25 & =\text { Test number } \\
01 & =\text { Number of times test is to be sent } \\
4 & =\text { Length of control unit/device address } \\
. & =\text { Control unit address } \\
\text { AA } & =\text { Device address }
\end{aligned}
\]

\section*{Notes:}
1. To resume communication with an application program you must press CLEAR, wait for message A11 CLEAR to appear, and then press the ENTER key. The application program is informed that you cleared the screen. If your terminal is in command mode at the time you enter online test, you can resume commands when A11 CLEAR appears.
2. If the system does not recognize your onlıne test request and your terminal is in command mode, CCP returns an error message. If you are in communication with an application program when you make an unrecognized test request, the program should treat the test request as invalid data. (The program does not treat the test request as invalid data, however, if it is not designed to do so.)

\section*{Test Types}

The abbreviations of the orders tested on the 3270 are:
EM End of message
IC Insert cursor

NL New line
SBA Set buffer address
SF Start field
WCC Write control character
Test types Test Title and Description

Test \(2323 \quad 3270\) Basic EBCDIC Test Message
This test checks all alphameric characters at a display station or printer. It also checks the use of the WCC to sound the alarm and allows attribute fieid specifications to be checked at a display station. It prints 40 characters per line.

Test 24243270 Model 1 Align EBCDIC Test Pattern
This test checks position alignment for the 480 -character dis play station. It also checks the WCC to sound the alarm and it prints 40 characters per line.

Test Types

Test 25

Test 26

Test 27

Test 28

Tests 29-34

Test Title and Description

253270 Model 1 Align EBCDIC Test Pattern
This test checks position alignment for the 1920 character dis play station. It also checks the WCC to sound the alarm and it prints 80 characters per line.

3270 Orders EBCDIC Test Message
This test checks 3270 orders, the WCC to sound the alarm, and uses display and intensified brightness. It prints 64 characters per line.

273270 EBCDIC Universal Character Set Test Pattern
This test uses the erase/write command, displaying the universal character set in EBCDIC. It checks the WCC to start the printer, sounds the alarm (on a display), and prints 132 characters per line. NL and EM are used on a printer. SF, NL, and EM are used on a display.

3270 NL/EM EBCDIC Test Pattern
This test is mainly intended to test EM and NL on the printer. The WCC is checked to start the printer and sound the alarm on a display. It prints 132 characters per line.
29. 343270 ASCII Test Pattern

These tests correspond to tests \(23 \cdot 28\) except that transmission is in ASCII.

Note:
Your terminal is either EBCDIC or ASCII, not both, and you can find out which from your data processing personnel.

\(\square\)

\section*{COMMONLY USED PARTS INDEX}
1403-All . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1403-Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3340 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5422 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5424 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
5444 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

PARTS - 1
\begin{tabular}{|c|c|}
\hline 473990 & Belt Main Drive \\
\hline 474217 & Belt Tractor \\
\hline 197894 & Brush Carriage Read \\
\hline 451529 & Cleaner, Type Chain \\
\hline 322779 & Fuse FNA 1/10 \\
\hline 492658 & Fuse, Hammer Dr. \\
\hline 252592 & Fuse FNM \(11 / 4\) \\
\hline 322784 & Fuse FNA 2 \\
\hline 334826 & Fuse FNA 3 \\
\hline 107666 & Fuse FNM 5 \\
\hline 369675 & Lamp 261 E1 P/C \\
\hline 719293 & Lamp Intlk. Panel \\
\hline 477567 & Oil Hydraulic Gal \\
\hline 638026 & Oil Hydraulic-Pint \\
\hline 856744 & Paper Guide LT Tractor \\
\hline 856743 & Paper Guide RT Tractor \\
\hline 473813 & Ribbon Shield \\
\hline 889524 & Sealant Ribbon Shield \\
\hline 528324 & Switch End of Forms \\
\hline 474653 & Switch Forms Check \\
\hline 475415 & Thermistor \\
\hline 856481 & Wrench Hammer Unit Box \\
\hline 474180 & Contact Recep Gold \\
\hline 214442 & Contact Recep Silver \\
\hline 145729 & Contact Cable Head Silver \\
\hline 479753 & Contact Cable Head Gold \\
\hline 474004 & Hydraulic Unit \\
\hline 2414871 & Lamp-Oper Panel N1 \\
\hline 719293 & Lamp Oper Panel-Mod 1-7 \\
\hline 477567 & Oil-Hydral-Gal \\
\hline 638026 & Oil-Hydral-Pint \\
\hline 1797703 & Oil-Train N 1 \\
\hline 460052 & Oil \#6 -Chain Mod 1-7 \\
\hline 428470 & Pre Punched Carr Tape \\
\hline 2532227 & Reed Sw-Hammer on 5421 \\
\hline 474267 & Ribbon Brake Lower \\
\hline 474173 & Ribbon Brake Upper \\
\hline 847032 & Roller-Ribbon Correct \\
\hline 836892 & SP/SK Arm Stop \\
\hline 444271 & SP/SK Armature \\
\hline 444269 & SP/SK Arm Pivot \\
\hline 853561 & Stacker Roll N1 \\
\hline 528324 & Switch-EOF \\
\hline 474653 & Switch-Form Jam \\
\hline 441162 & Switch-6/8, Brush, T Casting \\
\hline 474080 & Timing Drum Mod 1-7 \\
\hline 473848 & Transducer-Mod 1-7 \\
\hline 856153 & Transducer N1 \\
\hline 856138 & Timing Drum N1 \\
\hline 856582 & Train Oil Pump \\
\hline 475955 & Torsion Bar Left \\
\hline 475956 & Torsion Bar Right \\
\hline 804714 & Valve Stem \\
\hline
\end{tabular}
\begin{tabular}{ll}
1403 Model 2 \\
PART NO. & DESCRIPTION \\
& \\
524312 & Filter Hammer Blower \\
474805 & Hammer Print \\
804642 & Hammer Print-Plastic Insert \\
369675 & Lamp \#261 Aux. Ribbon Drive \\
475857 & Magnet Print Lower \\
475856 & Magnet Print Upper \\
475639 & Pivit Tractor Door \\
836885 & Residual \\
836886 & Residual \\
847032 & Roller Ribbon Correct \\
889584 & Wire UCS Chain Drive
\end{tabular}

1403 Model N1
PART NO. DESCRIPTION

838348 Belt Cover Raise
856138 Emitter Gear
518409 Filter Main Blower
254628 Fuse FNM 3/10
107663 Fuse FNM 2 1/2
2414871 Lamp 755 OP Panel
856094 Magnet Print
856381 Oil Print Train
856571 Residual
829728 Switch Cover InIk.

3340
PART NO. DESCRIPTION

2745584 Air Switch-New Style
745586 Tubing Air SW 40 In
2414970
New Bulb
\begin{tabular}{ll}
3344 \\
PART NO. DESCRIPTION \\
2758811 & HDA
\end{tabular}

PART NO. DESCRIPTION
\begin{tabular}{rl}
4688386 & Belt, Chain Drive Mod \(1 \varepsilon 2\) \\
4254745 & Belt, Chain Drive Mod 3 \\
804618 & Emitter, Carriage \(\varepsilon\) UCS
\end{tabular}

4253423 Emitter, Chain
2153723 Filter, P\&B
4253455 Filter, Hammer Unit Blower
1176668 Fuse, Chain Mod \(1 \varepsilon 2\)
2639101 Fuse, Chain Mod 3
4035556 Glass, Top Cover
4253763 Class, Holder Clip (14)
740660 Lamp, Incrementor
2391204 Lamp, Interlock
2391023 Lamp, Ready 4.5V
856094 Mag. Asm, Hammer Mod \(1 \& 2\)
2639126 Mag. Asm, Hammer Mod 3
4253798 Press. Roll Asm-Forms
4687940 Push Rod Asm-Hammer
4687954 Residual Hammer-Mag.
4254862 Sprint, Incrementor-CLU
4254282 Spring, Carriage-CLU
4688454 Switch, Hammer Bar Right
4254720 Brass Disk Notched-Carr
4254277 Carr Arbor
4254269 Carriage Clutch Asm
4254275 Carr Clutch Shaft
4254434 Carriage Mag Asm
4254283 Carr Clutch Sleeve
4688002 Detent Spring Incr/Carr
4688466 Drum-Emitter Mod 1 \&2
4253864 Drum-Emitter Mod 3
4254482 Incr CAM 100 LPM Red Dot
4254678 Incr CAM 100 LPM 2 Dot
4254483 Incr CAM 200 LPM Red Dot
4254682 Incr CAM 200 LPM 2 Dot
4253856 Incr CAM 300 LPM
4254538 Incrementor Hub
4254435 Increment Mag Asm
2391023 Lamp-Check Ind
2391204 Lamp-Ready
398298 Oil-Chain Mod 1 \&2
1797703 Oil-Train Mod 3
4688348 Ribbon Correction Asm
4253274 Rib Shield 132 Pos Mod \(1 \varepsilon 2\)
4254885 Rib Shield 132 Pos Mod 3
749332 Solar Cell
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{5213} \\
\hline PART NO. & DESCRIPTION \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{5700 Head Asm, Print Stage 1}} \\
\hline & \\
\hline 2495630 & Head Asm, Print Stage 2 \\
\hline 2526595 & Magnet \& Hammer Asm \\
\hline 2526991 & Ribbon Drive Asm Stage 1 \\
\hline 2526527 & Roller-Ribbon Drag CLU Asm \\
\hline 854610 & Transducer, Print \& Fdbk \\
\hline 2526815 & Carr Contact Asm \\
\hline 2629770 & Carr Clutch Spring \\
\hline 2528858 & Cover Stayarm-Left Hd \\
\hline 2495539 & Margin Sw Left \\
\hline 2495540 & Margin Sw Right-Mod 2 \\
\hline 2632658 & Margin Sw Right-Mod 3 \\
\hline 2629759 & Oil-Print Head \\
\hline 2525700 & Print Head-Old \\
\hline 1804867 & Print Head New \\
\hline 2645458 & Conversion Kit Old to New \\
\hline 2495570 & Timing Disk-Stepper Motor \\
\hline \multicolumn{2}{|l|}{5406} \\
\hline PART NO. & DESCRIPTION \\
\hline 5128844 & Filter, A Gate \\
\hline 5133528 & Filter, B Gate \\
\hline 5133527 & Filter, Power Supply \\
\hline 5129089 & Filter, File Enclosure \\
\hline 5232826 & Filter, Old Bulk Supply \\
\hline 5372183 & Lamp-Clear, CE Panel \\
\hline 5372182 & Lamp-Amber, CE Panel \\
\hline 2122160 & Lamp, Console \\
\hline 586305 & Lamp, Thermal \\
\hline 2391121 & Lamp, 4.5V \\
\hline
\end{tabular}


\section*{5410}

PART NO. DESCRIPTION
\begin{tabular}{rl}
5357013 & Filter \\
2590223 & Filter Gate A \\
2590287 & Filter Regulator \\
2391062 & Lamp Display \\
2391023 & Lamp Processor Check \\
2391023 & Lamp Ready Primary and Secondary \\
454612 & Lamp Stick \\
812526 & Lamp Stick Ind Panel \\
2391121 & Lamp Stop Prg Load \\
453559 & Handbook Binder \\
5232826 & Filter Old Bulk Supply \\
5554646 & Filter 5415 B Gate \\
5373660 & Housing Sys Reset SW \\
827842 & Housing Start SW \\
2391204 & Lamp-Disk Ready \\
2391023 & Lamp-BSCA, I/O Att, Proc. \\
& \(\quad\) Proc Ck, Roller, Open \\
5372183 & Lamp-l/O Ck, Addr Comp \\
2391062 & Lamp-Mach Cycle, Clock \\
2391121 & Lamp-Stop, Interrupt \\
300793 & Mode Sel Knob \\
452528 & MST Wire Stripper \\
452527 & MST Wire Wrap \\
812526 & Stick Light Board \\
2590891 & Switch Sys Reset \\
2590891 & Switch-Start
\end{tabular}

5422
PART NO. DESCRIPTION
\(7367443 \quad\) Filter



5424 (cont.)
\begin{tabular}{rl}
2591806 & Print Mag \\
2591640 & Punch Ck Asm \\
2591730 & Punch Eject Asm \\
2591665 & Punch Press Roll \\
2590967 & Rattlesnake \\
2592819 & Read Feed Roll Shaft \\
2592807 & Read Press Roll Right Up \\
2592806 & Read Press Roll Left Up \\
2592825 & Read Station \\
2591155 & Resistor Corner Kicker \\
2592677 & Ribbon Roll \\
2590957 & Shock-Frict/Stepp Front \\
2592735 & Shock-Stepper Rear \\
2592219 & Stacker Tray \\
829728 & Switch-Disk Door \\
2592503 & Throat Spring \\
2418518 & Wrench-Hopper Roll Adj
\end{tabular}
\(\square\)

\begin{tabular}{ll}
5444 & \\
PART NO. & DESCRIPTION \\
2537371 & Belt, Drive \\
2537371 & Belt, Drive (Friction) \\
2600599 & Belt, Drive (Step) \\
2536376 & Brush (1) \\
2536285 & Brush (4) and Holder Asm \\
2270032 & Bumper-Rubber \\
2536358 & Disk, Drive (Friction) \\
2597938 & Disk, Fixed Replacement Kit \\
2597939 & Filter/File, Additional See 5424 \\
3344 & Fuse 2 Amp (Low Speed Dr.) \\
6324 & Fuse 3 Amp (High Speed Dr.) \\
2250961 & Head Rd/Wr Downward Facing \\
2250963 & Head Rd/Wr Upward Facing \\
2538047 & Lamp, Encoder Disk \\
369675 & Lamp, All Except Encoder Disk \\
5144418 & Motor, Drive 208 Volts \\
5144418 & Motor, Drive 230 Volts \\
2538037 & Motor Asm, Disk Stepper \\
2426288 & Switch Micro, Button \\
681123 & Switch, Micro Head Load \\
682902 & Switch Micro, Roller \\
2598021 & Tyre (Friction) \\
5831904 & Washer (For Drive Disk) \\
2538111 & Actuator Asm-Stepper \\
5144617 & Bearing-Lead Screw \\
5144472 & Brush Unit Asm \\
5831851 & Detent Pawl \\
5831627 & Disk Pack Sliding Knob \\
5297939 & Filter-Absolute \\
338165 & Fuse-3.0A Lag High Speed \\
5393558 & Fuse-3. 2A Lag High Speed \\
5144418 & Motor-208/230V \\
2590967 & Rattlesnake \\
2538036 & Stepper Motor Asm-Complet \\
228093 & Switch-Brush Unit \\
537382 & Voice Coil Asm \\
2537391 & Voice Coil-Coil Only \\
& \\
\hline
\end{tabular}


5445
PART NO. DESCRIPTION
\begin{tabular}{|c|c|}
\hline 2285316 & Belt Drive 60 Hz \\
\hline 2267731 & Brush Cleaning Cycle \\
\hline 2200106 & Brush Head \\
\hline 3285318 & Diaphram Detent \\
\hline 2218105 & Filter 2316 Pack BTM \\
\hline 5357013 & Filter B Gate \\
\hline 2250816 & Filter Drawer Large \\
\hline 2218349 & Filter Drawer Small \\
\hline 2218348 & Filter Main Absolute \\
\hline 2128556 & Filter Power Supply \\
\hline 2184104 & Filter SLT Main Gate \\
\hline 5374369 & Filter TROS SLT Gate \\
\hline 111256 & Fuse AGC \(11 / 2\) \\
\hline 6324 & Fuse AGC 3 \\
\hline 111257 & Fuse AGC 4 \\
\hline 107667 & Fuse FNM \(61 / 4\) \\
\hline 107668 & Fuse FNM 8 \\
\hline 596676 & Fuse 15 Amp \\
\hline 5353883 & Lamp Amber CE Panel \\
\hline 5353889 & Lamp Clear CE Panel \\
\hline 5362163 & Lamp Drive Ready \\
\hline 5440629 & Lamp Green CE Panel \\
\hline 5353890 & Lamp Red CE Panel \\
\hline 2250960 & R/W Head A-Down \\
\hline 2250962 & R/W Head A-Up \\
\hline 2250961 & R/W Head B-Down \\
\hline 2250963 & R/W Head B-Up \\
\hline 2271010 & Actuator Unit \\
\hline 2218005 & Carriage Asm \\
\hline 2180511 & Detent \\
\hline 2285318 & Detent Diaphram \\
\hline 2285316 & Drive Belt \\
\hline 2218348 & Filter Absolute \\
\hline 2250816 & Filter Front Door \\
\hline 2250844 & Head Load Armature \\
\hline 2218034 & Head Load Cam \\
\hline 2267770 & Head Load Cam Follower \\
\hline 2154212 & Head Load Cam Foll Spring \\
\hline 2244898 & Head Load Mag Asm \\
\hline 5362163 & Lamp Front Panel \\
\hline 2164584 & Oil-Hydraulic \\
\hline 2261617 & Rattlesnake (Cable Ret.) \\
\hline 2218674 & Spindle Asm \\
\hline 2154329 & Spring-Head Retract \\
\hline 355343 & Switch-Head Retract \\
\hline 2162551 & Switch-Brush \\
\hline
\end{tabular}
\begin{tabular}{ll}
5471 & \\
PART NO. & DESCRIPTION \\
5173811 & Belt-Motor \\
1175579 & Cord-Tab \\
1128380 & Cord-Carrier Return \\
1175579 & Cord-Tab \\
1148714 & Fluid Clutch \\
338165 & Fuse \\
2391121 & Lamp \\
1148022 & Motor-1/35 HP \\
1460074 & Motor-1/20 HP \\
1452391 & Reed Switch-Trans BIk Asm \\
1148080 & Reed-EOF, Margin, Tab \\
1148265 & Reed Switch-Index \\
1148895 & Reed-Prt Feedback \\
1166551 & Spring-Cycle Clutch \\
1147374 & Tape-Rotate \\
1147371 & Tape-Tilt \\
1173132 & Tape-Velocity \\
1167998 & Type Ball
\end{tabular}
\(\square\)
\(\square\)
\(\square\)

\section*{PROGRAMMING SECTION INDEX}
BSC Trace ..... 37
CCED Operating Procedures (5415) ..... 2
CCED Operating Procedures (5412) ..... 4
CP-MLMP/MLTA Trace ..... 36
EFE Dump Procedures ..... 16
Dump All of Main Storage ..... 16
Dump Selected Portions of Main Storage ..... 16
Dump Selected Portions of Disk ..... 17
Dump BSCC Storage to the Printer ..... 18
Dump All of Main Storage to Disk File ..... 18
Code Conversion Chart ..... 47
Condition Register Results ..... 12
CPU Instructions (5412 C) ..... 65
LCP/SCP Instructions ..... 65
Command CPU (CCP) ..... 66
CPU Instructions (5415) ..... 67
LCP/SCP Instructions ..... 67
Command CPU (CCP) ..... 71
Disk Dump ..... 26
Disk Rebuild Program (\$\$DISK) ..... 33
Disk Storage Dump Procedure (Commercial) ..... 9
Disk and Tape Dump Program (\$DUMP) ..... 26
Disk/Tape Dumps ..... 14
Dump, Determining Which One to Use ..... 13
Dump to Disk Program ..... 19
Error Log and Statistical Data Recording (5406) ..... 8
FE Utility Program for Basic ..... 8
File Compress Program (\$FCOMP) ..... 32
Hex and Decimal Conversion/Addition ..... 46
Instruction Format ..... 57
Interrupt Trace Program (\$TRACE) ..... 40
Starting the Interrupt Trace ..... 40
Displaying the Trace Table ..... 41
Ending the Interrupt Trace ..... 42
OCC Trace Command ..... 42
Trace Table Format of \$TRACE Entries ..... 44
3741 I.P.L. Simulation Program ..... 5
Load I/O Instructions ..... 96
Local Storage Register (LSR) Display Procedure ..... 6
Main Storage Dumps ..... 13
Main Storage Dump (Hand Load Procedure) ..... 15
Main Storage Dump Procedure (Commercial) ..... 8
p Code/Instruction Description ..... 54
Program Check Information ..... 5
PTF Installation (5406 Basic) ..... 11
PTF Installation (5406 Commercial) ..... 11
Sense Instruction Formats ..... 72
Serv-Aid Display Program ..... 24
Serv-Aid Dump/Display Programs ..... 21
Stand-Alone Dump Program ..... 21
tart I/O (SIO) Instructions ..... 107
tape Dump ..... 26
Test I/O and Branch (TIO) Instructions ..... 102

\section*{5415 CCED OPERATING PROCEDURES}

\section*{Customen Set Up}

0 \(\quad 10 \mathrm{~K}\) daviable in patition bemg prepared for CCED execution. 14 K is required when executing 2560 dragnostics of ERAP on systems with tape attached
- Assign console as reader to the partition being prepared for chagnostics
- Stop spool in the partition being prepared for diagnostics.
o Device to be tested miust be avalable.
- Stop spooled reader, writer or punch if assigned to device to be tested.
- Partition prepared for CCED execution at EJ.
o If possible, use the 1403 as logging device.

PF KEYS

PF 10 To enter a command
PF12 To respond to a message

Ruaning Procedure
- Startpartition
-.. Depress PF 12 key, then move cursor to the CCED partition message line. (This message line should initially be at EJ halt.)
- Depress ENTER key
- Display History

If 1403 is not avalable as the diagnostic log device. the diagnostic information will be available in the system history area and can be seen by using the D H (Display History) command

\section*{Example:}
```

Depress PF 10 key
Enter D H
Depress ENTER key

```

When history is displayed, a ' 810 ' appears in the upper left corner of the screen. If this ' \(B 10\) ' is altered to an 'F10', the screen will scroll forward for 10 lines instead of backward. If a ' C ' is entered, the Display History function is cancelled. The number of lines to scroll can be altered by changing the ' 10 ' to any number between ' \(01-10\) '
- Log
-. If 1403 is avaitable as the log device, enter the following OCL:
// LOG 1403. NOEJECT
Depress ERASE EOF key
Depress ENTER key
o Loading CCED - Enter following OCL
// HALT
// LOG 1403, NOEJECT (Optional - used if logging to 1403)
// LOAD \$CEOLD, uu - where \(u u\) is the unit that contains \$CEOLD. (F1, F2, R1, or R2)
Depress ERASE EOF key
Depress ENTER key
// RUN
Depress ERASE EOF key
Depress ENTER key
- Responding to CCED Messages

When responding to the console prompting messages, the PF 12 key must precede the keyboard entry for the three character program ID or the three digit routine number. After keyboard entry is made, the ENTER key is depressed.

Example: Depress PF 12 key
E12 lentered via keyboard to load printer diagnostic)
Depress ENTER key
Depress PF12 key
00 C (entered via keyboard to load ripple
print routine of diagnostic E12)
Depress ENTER key
o Terminate CCED - Enter the following:
\(E E\) - to terminate the device test
EJ - to terminate CCED

Loading ERAP

If only the disk ERAP printout is desired, substıtute \$CEFF7 for \$CEOLD in the load statement.

NOTE: SCEFF7 or FF7, on completion, will always go to EJ .

\section*{5412 CCED OPERATING PROCEDURES}

Customer Set Uu
Minimum of 8 K available in P 1
EJ Halt displayed in P1
Device to be tested must not be assigned to a
customer's program or program level
Running Procedure
- Set Dual Program Select Switch to Program 1 P.KB
.. Depress the INTERRUPT key
-- When the 5471 PROCEED light comes on, enter the following OCL statements:
//NAME JOB SPOOL NO
ILOAD \$CEOLD, XX
//RUN
NOTE 1: If only the disk ERAP pirintout is desired. substitute SCEFF7 for SCEOLD in the load statement.

NOTE 2: \(\quad X X\) is the simulation area on the 3340 which contains the C.E. diagnostic programs. \(X X=F 1, R 1, F 2\). or R2.

All C.C.E.D. halts are indicated by 'cE' in the P1 stick lights accompanied by a printed Halt ID and/or a message on the 5471. (See Diagnostic User's Guide MDM Vol. 1A for Halt ID references.) For all other stick light halts,
refer to the customers' halt guide.
To Respond To the 'cE' Halt
- Depress P1 HALT RESET
- Enter the desired response to the prompting message
- Depress the END key

To Terminate, Enter The Following
- EE - To terminate the device test
- EJ - To terminate C.C.E.D.
- Depress the END key

\section*{PROGRAM CHECK INFORMATION}
\begin{tabular}{|c|c|c|c|}
\hline Displ & Label & \begin{tabular}{l}
Lng in \\
bytes
\end{tabular} & Description \\
\hline \(\mathrm{X}^{\prime} 0100{ }^{\prime}\) & PCSTAT & 0 & Ptogram check information start \\
\hline \(\times^{\prime} 0100{ }^{\prime}\) & PCADRG & 2 & Program check address register \\
\hline \multirow[t]{17}{*}{X'0102'} & \multirow[t]{17}{*}{PCSTRG} & \multirow[t]{17}{*}{2} & Program check status register \\
\hline & & & Byte 1 \\
\hline & & & \(\mathrm{X}^{\prime} 80^{\prime}=\) Greater than 256 K \\
\hline & & & \(X^{\prime} 40^{\prime}=\) reserved \\
\hline & & & \(\mathrm{X}^{\prime} 20^{\prime}=\) Interrupt level ID (4 bit) \\
\hline & & & \(\mathrm{X}^{\prime} 10^{\prime}\) - Interrupt level ID (2 bit) \\
\hline & & & \(X^{\prime} 08{ }^{\prime}=\) Interrupt level ID (1 bit) \\
\hline & & & \(\mathrm{X}^{\prime} 04^{\prime}\) - Any interrupt level \\
\hline & & & \(\mathrm{X}^{\prime} 02\) ' - Greater than 64 K \\
\hline & & & \(\mathrm{X}^{\prime} 01^{\prime}\) - Greater than 128K \\
\hline & & & Byte 2 \\
\hline & & & \(\mathrm{X}^{\prime} 80^{\prime}=\) Storage violation \\
\hline & & & \(\mathrm{X}^{\prime} 40^{\prime}=\) Invalid Q - byte \\
\hline & & & \(X^{\prime} 20^{\prime}=\) Invalid Op code \\
\hline & & & \(\mathrm{X}^{\prime} 10^{\prime}=\) Invalıd address \\
\hline & & & \(\mathrm{X}^{\prime} 088^{\prime}=\) Privileged operation \\
\hline & & & \(X^{\prime} 07^{\prime}=\) reserved \\
\hline \(\mathrm{X}^{\prime} 0104{ }^{\prime}\) & PCIAI & 2 & Interrupt level IAR \\
\hline X'0106' & PCPMR & 2 & Interrupt level PMR \\
\hline \(\mathrm{X}^{\prime} 0108^{\prime}\) & PCPSR & 2 & PSR \\
\hline \(\times^{\prime} 010 A^{\prime}\) & PCXR2 & 2 & XR2 \\
\hline X'010C' & PCXR1 & 2 & XR1 \\
\hline X'010E & PCTCB & 2 & Address of associated TCB (if known) \\
\hline
\end{tabular}

\section*{3741 I.P.L. SIMULATION PROGRAM}

This program will simulate IPL from the 3741 on \(5412 / 5415\) SYSTEMS where the 3741 is not the ALTERNATE LOAD DEVICE

Manually insert the following 29 byte bootstrap in storage starting at Address 0100
\begin{tabular}{|c|c|c|c|c|}
\hline ADDRESS & \multicolumn{3}{|l|}{DATA} & \\
\hline 0100 & C2 & 02 & 0100 & LOAD INDEX REG \(=0100\) \\
\hline 0104 & 81 & 41 & 18 & LOAD FUNCT. REG. \(=4000\) \\
\hline 0107 & B1 & 42 & 1 C & LOAD REC. LENGTH \(=128\) \\
\hline 010A & F3 & 43 & 08 & FORCE RESPONSE \\
\hline 0100 & B1 & 44 & 19 & LOAD DATA ADDR. \(=0000\) \\
\hline 0110 & F3 & 41 & 00 & READ ONE SECTOR \\
\hline 0113 & E1 & 42 & 13 & LOOP ON BUSY \\
\hline 0116 & CO & 87 & 0000 & GO EXECUTE 1ST SECTOR \\
\hline 011A & 40 & 00 & & \\
\hline 011C & 7 F & & & \\
\hline
\end{tabular}

PROG. - 5

\section*{LOCAL STORAGE REGISTER (LSR) DISPLAY PROCEDURE}

This display procedure allows the user to display the contents of any local storage register without destroying the contents of that regrster

1 Depress SYSTEM RESET

2 Set mode selector switch to ALTER STORAGE
3. Enter the following into stor age
\begin{tabular}{llll} 
F0 & \(5 D\) & \(6 F\) & \\
30 & 00 & 0008 & \\
34 & 01 & 0013 & \\
\(0 C\) & 00 & 0001 & 0013 \\
F0 & 00 & 00 & \\
C0 & 87 & 0000 &
\end{tabular}
4. Set mode selector switch to ALTER SAR and enter 0003
5. Set mode selector switch to PROCESS
6. Set console address/data switches as follows
a. The two leftmost switches to 34 (to store a register) or 30 (to sense a register).
b. The two rightmost switches to the register to be displayed (see following chart)

7 Press console START. A halt condition is displayed on the console bights. Ignore the halt. The O code of this halt is the high-order byte of the register being dispiayed. This is displayed by the lights on rolles 3.)
8. Press console START again Another halt condition occurs. The Q code of this halt is the low-order byte of the register being displayed. (This is displayed by the lights on roller 3.)
9. Set the rightmost console address/data switches to the next register to be displayed.

\section*{LSR DISPLAY PROCEDURE (Continued)}
- Switch Settıngs


PROG. - 7

The BASIC program system accumulates two types of error recording. All \(1 / O\) device errors are recorded in an area called OBR (outboard recording). Various counts of temp orary errors (ones subsequently overcome by retry) and other statistical data are te corded in an area called SDR (statistical data recording). OBR I/O errors cause the Q, R, sense bytes and other data to be recorded in the OBR table located on sectors 7 and 8 of the fixed disk on drive 1. The most current OBR entry is found by using the first two bytes of sector 7 as displacement from the beginning of sector 7 .

Sectors 3 through 6 contain 512 two byte counters which are used to accumulat. statistics about temporary and permanent I/O errors which have occurred. This data in these count ers is called SDR (statistical data recording) SDR data is recorded on sectors 3 through 6 of the fixed disk on drive 1.

The OBR and SDR data are retrieved from the disk and printed on the printer by the CE utility program ERAP.

The ERAP ID is FF7 and is called in via DCP

\section*{FE UTILITY PROGRAM FOR BASIC}

\section*{OPERATING INSTRUCTIONS}
1. Manually record the IAR and ARR.
2. Press System Reset and then System Start. (Message Printed CD, DD, VM, CP, DP, DC, DW, H, R, T. . )
3. Type the letter (s) representing the desired function and press the carriage return key. The functions available are:
\begin{tabular}{ll} 
CD & Core Dump \\
DD & Disk Dump \\
VM & Virtual Memory Dump \\
CP & Core Patch \\
DP & Disk Patch \\
DC & Disk Compare \\
DW & Disk Write \\
H & Halt \\
R & Return to Operating System \\
\(T\) & Trace
\end{tabular}
4. The system will request additional information such as core addresses, disk addresses or line numbers. Incorrect entries will cause the system to make a second request. The carriage return must be pressed following each entry. Use the Disk Address conversion chart to find the addresses for disk sectors.
5. When the Utility functions are complete press " \(R\) " to return to normal operation.

\section*{MAIN STORAGE DUMP PROCEDURE (COMMERCIAL)}
1. Set address/data switches to 'CEFE'.
2. Press system reset.
3. Press start. A halt ' \(D\) ' results.
4. Set rightmost address/data switch to ' 0 '
5. Press start. A halt ' \(D 1\) ' results.
6. Set the two leftmost address/data switches to the 'start of dump address'. Set the two rightmost address/data switches to the end of dump address.

Note: Only the two high-order hexadecimal digits of the storage address are used for dump addresses. The two low-order hexadecimal digits are not required.

\section*{FE UTILITY PROGRAM FOR BASIC (continued)}

\section*{MAIN STORAGE DUMP PROCEDURE (COMMERCIAL) (continued)}
7. Press start. If a halt 'D4' results, press start once more

After the specified area of main storage has been dumped, a halt ' \(D\) ' (step 3 previous) is displayed. At this point, another request for a main storage or disk storage dump can be made.

Note: If the address/data switches are set to anything other than 'CEFE' when system reset and start are pressed, only the first 400 bytes of main storage are dumped followed by a halt 'D5'.

To initiate any other action, an IPL must be performed

\section*{DISK STORAGE DUMP PROCEDURE (COMMERCIAL)}
1. Set address/data switches to 'CEFE'.
2. Press system reset.
3. Press start. A halt ' \(D\) ' results.
4. Set the rightmost address/data switch to ' 2 '.
5. Press start. A halt 'D2' results.
6. Enter the starting disk address into the address/data switches. Use the 'CCSS' format shown in the table.
7. Press start. A halt 'D3' resulis.
8. Enter the ending disk address into the address/data switches.
9. Press start. The sectors specified will be dumped. At completion, a halt 'D2' (step 5 above) will occur. At this point, only additional disk dumps can be initiated or an IPL performed.

Note: When multiple main storage and disk dumps are required, it is advisable to take all main storage dumps before doing the disk dumps.

PROG. - 9

\section*{FE UTILITY PROGRAM FOR BASIC (continued)}

The following address/data switch settings are used to indicate the specified area on disk that is to be displayed.
\begin{tabular}{lll} 
SWITCH & SETTING & MEANING \\
\begin{tabular}{l} 
The two leftmost \\
address/data switches
\end{tabular} & \(00 \cdot C 8\)
\end{tabular}\(\quad\)\begin{tabular}{l} 
Selected cylinder number on the specified disk (CC) \\
\begin{tabular}{l} 
The two rightmost \\
address/data switches
\end{tabular} \\
\begin{tabular}{l} 
See the \\
following \\
table
\end{tabular}
\end{tabular} \begin{tabular}{l} 
Sector number (beginning of end) on the specified \\
disk that is to be displayed (SS).
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{Settings for the Specified Disk} & \multicolumn{5}{|l|}{Settings for the Specified Disk} \\
\hline & R1 & F1 & R2 & F2 & & R1 & F1 & R2 & F2 \\
\hline 0 & 00 & 01 & 02 & 03 & 24 & 80 & 81 & 82 & 83 \\
\hline 1 & 04 & 05 & 06 & 07 & 25 & 84 & 85 & 86 & 87 \\
\hline 2 & 08 & 09 & OA & OB & 26 & 88 & 89 & 8 A & 88 \\
\hline 3 & OC & OD & OE & OF & 27 & 8C & 8D & 8E & 8F \\
\hline 4 & 10 & 11 & 12 & 13 & 28 & 90 & 91 & 92 & 93 \\
\hline 5 & 14 & 15 & 16 & 17 & 29 & 94 & 95 & 96 & 97 \\
\hline 6 & 18 & 19 & 1 A & 1 B & 30 & 98 & 99 & 9 A & 98 \\
\hline 7 & 1 C & 1D & 1 E & 1 F & 31 & 9C & 9D & 9 E & 9F \\
\hline 8 & 20 & 21 & 22 & 23 & 32 & A0 & A 1 & A2 & A3 \\
\hline 9 & 24 & 25 & 26 & 27 & 33 & A4 & A5 & A6 & A7 \\
\hline 10 & 28 & 29 & 2 A & 2B & 34 & A8 & A9 & AA & \(A B\) \\
\hline 11 & 2C & 2D & 2E & 2 F & 35 & AC & AD & AE & AF \\
\hline 12 & 30 & 31 & 32 & 33 & 36 & B0 & B1 & B2 & 83 \\
\hline 13 & 34 & 35 & 36 & 37 & 37 & B4 & B5 & B6 & B7 \\
\hline 14 & 38 & 39 & 3A & 3B & 38 & B8 & B9 & BA & BB \\
\hline 15 & 3 C & 30 & 3E & 3F & 39 & BC & BD & BE & BF \\
\hline 16 & 40 & 41 & 42 & 43 & 40 & C0 & C1 & C2 & C3 \\
\hline 17 & 44 & 45 & 46 & 47 & 41 & C4 & C5 & C6 & C7 \\
\hline 18 & 48 & 49 & 4A & 4 B & 42 & C8 & C9 & CA & CB \\
\hline 19 & 4C & 4D & 4 E & 4F & 43 & CC & CD & CE & CF \\
\hline 20 & 50 & 51 & 52 & 53 & 44 & D0 & D1 & D2 & D3 \\
\hline 21 & 54 & 55 & 56 & 57 & 45 & D4 & D5 & D6 & D7 \\
\hline 22 & 58 & 59 & 5A & 58 & 46 & D8 & D9 & DA & DB \\
\hline 23 & 5 C & 50 & 5 E & 5 F & 47 & DC & DD & DE & DF \\
\hline
\end{tabular}

\section*{PTF INSTALLATION}

BASIC
1. IPL the system and enter the date.
2. Type 'PTF' when system is ready.
3. Enter PTF just as it appears in the RETAIN message. (Sample below)
\begin{tabular}{ll} 
HDR & BS001 2A44 R1 \\
PTF & \#DPRIN 009BBA \\
DATA & B9F4 OBFD 6E \\
END & \(6 B 4 C\)
\end{tabular}
4. Type "ASSIGN.WORKAREA" to update the programs in the workarea.
5. Verify that the problem has been corrected.

\section*{COMMERCIAL}
1. IPL the system and enter the date.
2. When "READY" is printed enter LOAD.
3. Follow the sample to enter the PTF data. The underlined portions have to be entered by the operator, the rest is printed by the system.

\section*{SAMPLE ONLY}
\begin{tabular}{llll}
010 & LOAD & NAME. & \$SGPTF \\
011 & & UNIT & R1 \\
020 & DATE \((11 / 1 / 70)\) & & \\
030 & SWITCH \((00000000)\) & & \\
040 & FILE & NAME. &
\end{tabular}

MODIFY
RUN
ENTER CONTROL STATEMENT
\begin{tabular}{ll} 
HDR & \(\$ \$ R 001, ~ 3 D B 8, ~ R 1 ~\) \\
\hline HDR & \(\$ \$ 2001, ~ 3 D B 8, ~ R 1 ~\)
\end{tabular}
ENTER CONTROL STATEMENT
\begin{tabular}{ll} 
PTF & O\$\$RBIP, 01, E1FE \\
\hline PTF & \(0 \$ \$ R B I P, 01, E 1 F E\)
\end{tabular}

ENTER CONTROL STATEMENT
DATA FBB4, 04DE, E8C4, C1C5, D9
DATA FBB4, 04DE, E8C4, C1C5, D9
ENTER CONTROL STATEMENT
END ADOC
END ADOC
ENTER CONTROL STATEMENT

CONDITION REGISTER RESULTS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Bits & 2 & 3 & 4 & 5 & 6 & 7 \\
\hline \begin{tabular}{l}
Binary \\
Value
\end{tabular} & 2 & 1 & 8 & 4 & 2 & 1 \\
\hline Decimal Arith & & & Over flow & \begin{tabular}{l}
Result \\
Is \\
Positive
\end{tabular} & \begin{tabular}{l}
Result \\
Negative
\end{tabular} & \begin{tabular}{l}
Result \\
is \\
Zero
\end{tabular} \\
\hline \begin{tabular}{l}
Compare \\
Logical
\end{tabular} & & & & \[
\begin{aligned}
& \text { Op1 } \\
& > \\
& \text { Op2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Op1 } \\
& < \\
& \text { Op2 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { Op1 } \\
& \text { Op2 }
\end{aligned}
\] \\
\hline Sub Logical & & & & \(B>A\) & \(B<A\) & \(A=B\) \\
\hline Add Logical and Add Register & Over. flow & & & \begin{tabular}{l}
Carry \\
and \\
not \\
Zero \\
Result
\end{tabular} & No Carry and not zern Result & \begin{tabular}{l}
Result \\
is \\
Zero
\end{tabular} \\
\hline Edit & & & & Positive & Negative & \[
\begin{aligned}
& \text { Source } \\
& \text { is } \\
& \text { Zero }
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Test } \\
& \text { Bits }
\end{aligned}
\] & & Test False & & & & \\
\hline Branch or Jump on Condition* & & \begin{tabular}{l}
Test \\
False \\
Reset \\
if \\
Tested
\end{tabular} & \begin{tabular}{l}
Over. \\
flow \\
Reset \\
if \\
Tested
\end{tabular} & & & \\
\hline Condition & Binary Over. flow & False & Decimal Over flow & \begin{tabular}{l}
High or \\
Positive
\end{tabular} & Low or Negative & \[
\begin{aligned}
& \text { Equal } \\
& \text { or } \\
& \text { Zero }
\end{aligned}
\] \\
\hline
\end{tabular}
\(\square\)
* Branch on Condition

Q Bit \(0=0\) Absence of Condition
Q Bit \(0=1\) Presence of Condition

\section*{DETERMINING WHICH DUMP TO USE}

Diterminng which dump program to use depends on why the dump is needed. The following chat is give the futctions of and when to use each dump program:

Main Storage Dumps

\begin{tabular}{ll} 
Dump & Functions \\
CEFE
\end{tabular}

\section*{When to Use}

When gathering
APAR materials for system problems.

\section*{How to Use \({ }^{3}\)}

See CEFE Dump
Procedures in
this section.

Also, dumps all of mam storage and transient area and BSCC storage to a disk file. (See note.)

Stand.
Alone \({ }^{1}\)
\begin{tabular}{ll} 
OCC \(^{2}\) & Dumps partition Pn \\
DUMP & from 0000 to end of \\
Pn,m & \begin{tabular}{l} 
partition, then cancels \\
job. \((\mathrm{m}=\) cancel \\
option 2 or 3\().\) \\
\\
\\
\\
\end{tabular}
\end{tabular}

When canceling execution of a job

Operator's
Same as CEFE (up to
When CEFE fails.
See Stand alone 64 K ) to the printer.
\(\mathrm{OCC}^{4,5} \quad\) Dumps all of main
DUMP storage except
SYSTEM
transtent area to the printer. Also, dumps all of main storage to a disk file. (Stee note.)


Select D Option to

Dumps partition associ Messages 2 ated with message, file share area, and transient area, if required, then effects 3 option. (See note.)
with a dump of the partition and system problems not suspected.

When dumps of Operator's both partitions are Guide. required, transient area is not needed, and continued execution is desired.

To dump partition at Operator's Guide a particular message. and Message Only works if mes. Manual. Only works if mes sage was issued by partition 1,2 , or 3 and a D option was allowed.

Note: Also dumps saved transtent area if owned by ABTERMED task.
In addition, SWA, and SHA are placed in the dump disk file.

\footnotetext{
\({ }^{1} \mathrm{IPL}\) is necessary after this dump. The output cannot be spooled.
\({ }^{2}\) IPL is not necessary after this dump. The output can be spooled.
\({ }^{3}\) The logic of these dumps (except for SVAID) is documented in the IBM System/3 Model 15 Supervisor and IOS Logic Manual, SY21.0033. The logic of SVAID is documented in the IBM System/3 System Services Program Logic Manual, SY 21 -0036.
\({ }^{4}\) Output cannot be spooled.
\({ }^{5}\) See Dump to Disk for more information.
}

\section*{Main Storage Dumps (Continued)}
\begin{tabular}{llll} 
Dump & Functions & When to Use & How to Use \\
SVAID \({ }^{4}\) & \begin{tabular}{l} 
Dumps selected areas \\
of main storage (menu \\
options)
\end{tabular} & \begin{tabular}{l} 
When desirable to \\
continue execution \\
(See note.)
\end{tabular} & \begin{tabular}{l} 
See SERV-AID \\
Dump/Display
\end{tabular} \\
& & \begin{tabular}{l} 
of jobs after dump \\
compled.
\end{tabular} & \begin{tabular}{l} 
Programs in this \\
Section.
\end{tabular}
\end{tabular}

Note: Also dumps saved transient area if owned by ABTERMED task.

Disk/Tape Dumps
\begin{tabular}{|c|c|c|c|}
\hline Dump & Functions & When to Use & How to Use \\
\hline CEFE \({ }^{1,3,5}\) & Dumps simulation area storage fonly the simulation area loaded by IPL to the printer. Also dumps to disk the SWA for P1, P2, and P3, the transient area, and a part of the SHA. & When SVAID cannot be used to dumpsys tem residence disk. Another IPL is necessary. & \begin{tabular}{l}
See CEFE Dump \\
Procedures in this seciton.
\end{tabular} \\
\hline SVAID & Dumps selected areas of simulation areas and main data areas (menu options). & When dump of selected areas needed and then continue executing jobs in system. & See SERV•AID Dump/Display Programs in this section. \\
\hline \$DUMP & Dumps tape and disk. & Use as a separate job step in the jobstream. & See Disk and Tape Dump Program in this section. \\
\hline \begin{tabular}{l}
OCC \\
DUMP \\
SYSTEM
\end{tabular} & Dumps SWA for P1, \(P 2\), and P3, the transient area at \(P C\), and part of the SHA to disk. & When a dump of all main storage is needed and continued execution is desired. & See Operator's Guide. \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) The logic of this dump is documented in the IBM System/3 Model 15 Supervisor and IOS Logic Manual, SY21-0033.
\({ }^{2}\) The logic of these dumps is documented in the IBM System \(/ 3\) Model 15 System Services Logic Manual, SY \(21-0036\).
\({ }^{3}\) The logic of these dumps (except for SVAID) is documented in the IBM System/3 Model 15 Supervisor and IOS Logic Manual, SY 210033 . The logic of SVAID is documented in the /BM System/3 System Services Program Logic Manual. SY 210036
\({ }^{4}\) Output cannot be spooled
\({ }^{5}\) See Dump to Disk for more information.
}


\section*{HAND LOAD MAIN STORAGE DUMP PROCEDURE}

If the mair storage dump procedures fail, it may be because low core has been overlaid,
of the Supervisor Dump linkage has been destroyed. The following routine may be used to obtan a CEFE dump
1. Depress System Reset.
2. Set Morde Selector to Alter SAR.
3. Set Data Switches to 1000 and press start.
4. Set Mode Selector to Alter STOR
5. Enter the following into Main Storage

6. Alter SAR to 1000 .
7. Set Mode Selector to process.
8. Press start

Note: Do not attempt to use dump to disk option.

\section*{CEFE DUMP PROCEDURES}


1. Dump afl at mans stordge to the prathen

2 Dump selected portion of mata stordge: to the penten

3 Dump selected portion of disk ster dge to the pronta
4. Dump all of man sturage. SWA for P1, P2. and P3, thathment des, pidet of SHA and the BSCC stomaqe to disk
5. Dump the BSCC storage to the prant:-

\section*{Operating Procedures to Dump All of Main Storage}
1. Set console data switches to greato: than hex CEFE
2. PIess SYSTEM RESET KEY
3. Piess START key

\section*{Operating Procedures to Dump Selected Portions of Main Storage}
1. Set console data switches to hex CEFE or less.
2. Press SYSTEM RESET key
3. Press Start key.
4. When 50 message occurs, set for leave) data swithes to ath even vatide (bat met ' \(X\) XDD' or ' \(X\) XEE')
5. Press START key
 wa data swithes in muituples of 256 (hex 1001 that is OOEO entered in the data switches represents physical address OOE OOO
7. Piess START key.
8. When EC hatt occurs, enter address to tend dumping.
9. Press START key.
10. After storage is printed, return to step \(4(50\) halt) to (fump other selecteri portions of storage.

Note: CEFE stores the program ARR at iocations 6 and 7 of than storage after the SYSTEM RESET and START keys have been pressed

The following information is stored in the transient area by the CEFE dump program


\section*{Description}

OF AO.OFBF OF CO.OFDF OFEO-OFE1
OFE2-OFE3
OF E4-OFE5
OF E6-OFE7
OF E8-OF E9
OFEA OFEB
OFEC.OFED
OFEE-OFEF
ATRs (31.0)
SPRs (31-0)
ILO IAR
\(1 L 1\) IAR
IL2 IAR
IL3 IAR
IL4 IAR
\(1 L 5\) IAR
IL6 IAR
IL7 IAR
OFFO-OFF3
OFF4 OFF5
OFF6.OFF7
Timer value
CAR (BSCA 1)
CAR (BSCA 2)
CAR (BSCC 1)
OFF8-0FF9
CAR (BSCC 2)

\section*{Operating Procedures to Dump Selected Portions of Disk}
1. Set console switches to hex CEFE or less
2. Press SYSTEM RESET key.

3 Press START key
4. When 50 message occurs, set (or leave) data address switches to an odd value (but not 'XXDD' or ' XXEE ').
5. Press START key
6. When 55 message occurs, enter beginning sector address. The disk address is entered via the data switches. Switches 1 and 2 specify cylinder number, switches 3 and 4 specify sector. The sector number is the nearest multiple of four less than or equal to the specified number.
7. Press START key
8. When ES message occurs, enter end sector address
9. Press START key
10. After disk area is printed, return to step 4 (50 message) to dump other portions of disk.


\section*{Operating Procedure to Dump BSCC Storage to the Printer}
1. Set the console switches to CEFE or les
2. Piess SYSTEM RESET key
3. Piess START key
4. When 50 message occurs. set for leavel the data adtress switches to hex \(\times \times E E\)

5 Press START key

6 After BSCC storage is prated, seturn to step 4 ( 50 message) to do another dump. If BSCC is not sumported of if the mierocote has not been foaded to the attachment, the 50 message will lecun

Note: When this option is used, mann storaqe between hex COOO and EFFF is not preserved.

Operating Procedure to Dump All of Main Storage, SWA for P1, P2, and P3, 32 Sectors of SHA, Transient Area, Transient Area at PC (if available) and the BSCC Storage fif applicable) to a Disk File
1. Set console switches to hex CEFE or less

Note: The dump file SSYSDUMP must be on the inan data area of the IPLed pack ot this time.
2. Press SYSTEM RESET key.
3. Press START key
4. When 50 message occurs, set (or leave) the data address switches to hex \(\times \times D D\)
5. Press START key

6 After the data is dumped to the disk fite, an E4 message will occur

To do other dumps, go back to step 1 or set switches and piess START key.

Note: The use of this option will cause man storage between hex COOO and EFFF to be overlaid. If a printer dump of this area is required in addition to the disk dump. the printer dump must be done first

\section*{Restrictions}
- If a disk dump is taken first and then a main storage dump, the transient area is not guaranteed
- The SYSLOG print buffer located at 077C-0800 is not preserved.
- The 5C message address must be less than the EC message address.
- The 55 message address must be less than or equal to the E5 message address.
- The highest valid address that can be entered via the data switches is one greater than the amount of main storage the machine has. Thus 0400 is the highest valid request for a machine with 256 K . Any request greater than this causes an immediate return to 50 message.
- If low storage (address 0 ) is destroyed, CEFE does not function by RESET and START.
- An illegal cylinder or sector specification effects an HE message after which the main option 50 message returns.
- Printer error conditions during a CEFE dump causes a \(\forall P\) halt.
- If the dump-to-disk option or the BSCC storage option is used, main storage between hex COOO and EFFF is not preserved.

\section*{DUMP TO DISK PROGRAM}

You must ensure that a file labeled \$SYSDUMP is on the main data area of the IPLed pack before you use the dump-to-disk option of either the CEFE dump program or the OCC dump program. If more than one \$SYSDUMP file exists, the dump will be written to the file with the most recent date.

The minimum size of \$SYSDUMP depends on the main storage size of the system to be dumped. The following table will help you determine the size of \$SYSDUMP:

\section*{Main Storage}
Size in Bytes Tracks
96K 20

128K 22
160K 25
192K 27
\(224 K \quad 30\)
256K 33
384K 43
512K 54

PROG. - 19
 informatrom


CC:HH +B 1 through rad of file

SWA for Pl
SWA for P2
SWA tor P3
SHA
Tambent datal CEFE unty

BSCC stotage, it dubleathe
(CEFE unty)
Masin stordge

\% FILE NAME COPYOPACK name, UNIT unit, RETAINP. 1. ABEL SSYSDUMP. TRACKS \(\times x{ }^{\prime}\) FILE NAME COPYIN. UNIT UnIt
\(\therefore\) RUN
© COPYFILE OUTPUT DISK
\(\therefore\) OUTDM
\(\therefore E N D\)

A/* record (end of file) must then be read by the mint device listed as UNIF on the COPYIN statement.

When SSYSDUMP is full, it can be printed by the print utity SCPRNT.

The following OCL is required
/ LOAD SCPRNT, UNIT
(f FILE NAME SSYSDUMP, UNIT-unit. PACK name
\(\therefore\) RUN

You should not run SCPRNT and use the OCC dump to disk command smaltatecously because the printout of the SSYSDUMP file will be invalid.

\footnotetext{
\({ }^{1}\) Refer to table on preceding page
}

\section*{STAND-ALONE DUMP PROGRAM}

When the CEFE main storage dump fails to function properly because some error has destroved the low storage linkage to the dump routine, or the dump routine itself, a card loadable main storage dump can be used to dump main storage to the printer.

The main storage dump program that can be loaded by IPL from an alternate input device is provided on the PID pack. The program must have been previously punched from the source library (LIBRARY-S) using \$MAINT.

The program named \$D96AN can be used with an MFCU as an alternate IPL device and a printer with an AN or an LC chain.

The dump program itself occupies 768 (hex 300 ) bytes of main storage. The 768 bytes can be anywhere in the machine. Choose an area that does not contain pertinent information. The bootstrap loader used to load the dump program into main storage occupies the first 256 bytes of main storage. The dump program dumps only the first 64 K of storage.

To use the card-loadable dump program:
1. Place the program in the primary MFCU hopper.
2. Set the PROGRAM LOAD SELECTOR switch to ALTERNATE.
3. Press PROGRAM LOAD key.
4. When the CU halt appears, dial in the location at which the dump program is to be loaded, then press START key.
5. When the \(5 E\) message appears, dial in the bounds of storage you wish to dump. The left two dials set the high-order two digits of the beginning dump location, the right two dials set the high-order two digits of the ending dump location. After setting the dials, press START key (if the 5E message remains, the begin location was set higher than the end location).
6.

After printing the dump, the dump program returns to the \(5 E\) message. At this time, it you wish to dump another area of main storage, you can do so without reloading the dump program.

\section*{SERV.AID DUMP/DISPLAY PROGRAMS}

The SERV-AID dump/display programs provide the customer engineer with a choice of two types of output: hardcopy (printer) or display screen. The data dumped on the printer can be selected via an option menu. The display screen is used only for main storage display.

\section*{SERV.AID Dump Program}

The SERV-AID dump program provides the customer engineer with a selective dump that can be used without destroying data in the system. The program runs completely in the transient area. Upon completion of the required dump(s), the system continues operating.

Each recognizable data area is printed with the first byte referenced as location 0000 . This allows easy reference from the data area formats described in section 2 of this manual.

\section*{CAUTION}

The selected data is printed even if the printer is being used by spool or a partition program.

\section*{Starting Program and Selecting Options}

The program can be called at any point of system operation by the following steps:
1. Press program function key PF10.
2. Key in DISPLAY SVAID (or D SV).
3. The option is displayed.
```

C - X-NNNNNN,NNNNNN ENTER REPLY
SVAID OPTION MENU
C . EDJ 08. SHA
01. P1 09. SPOOL FILE
02. P2 10. DTFS
03. P3 11. FILE SHARE AREA
04. COMMS 12. CHECKPOINT/RESTART
05. TCBS 13-16. SWA - P1,P2,P3,ALL
06. SPVR DI-D4H -- PHYSICAL AREA
07. N/A ON DISK
(ERROR MESSAGES)
ENTER DISPLAY REQUEST MSG NOT RSP O2

```
4. Key in desired option number or option number and limits; press ENTER key. If invalid limits are entered, the option menu is refreshed and a diagnostic message is displayed.

Note: On printer I/O error halt (bP), ready the printer and press the START key
5. When requested dump is finished, the option menu is displayed for further selection.

\section*{Ending Program}

To end the program, select option \(C\) (cancell when the option menu is displayed. The system resumes operation at the point that the program was interrupted for this display

To cancel a dump during printing, set the console data switches to FFFF. When the cc message occurs, leave the switches at FFFF and press the START key. To continue the dump after the cc message, set one of the data switches to a non- \(F\) value and press the START key.

\section*{Dump/Display Options}

\section*{Options Description}

C Cancel the program and continue system operation.

01-03 Program partitions. Print all of main storage assigned to that partition if limits are not specified. To selectively print main storage, limits are entered irr hexadecimal following the option number ( \(01-\times \times \times x, \times \times \times x)\).

Communications areas. Print SYSCOM and all PLCAs.

Task control blocks. Print all TCBs in order of priority.

Note: Except for the wait and console management TCBs, all TCBs are printed with dispatchability bit (TCB DS1) set to nondispatchable (hex 80).

Supervisor. Print all of main storage from hex 0000 to the start of partition 1 (includes trace table if \$TRACE is active).

07 Not applicable

System history area. Print system history area from system pack.

09 Spool file. Print contents of spool file.

10 DTFs. Print DTFs for all program partitions. Print associated IOBs for all opened disk and tape DTFs.

File share area. Prints out file share area. (File share queue, short DTFs, common area.)

Checkpoint restart. Prints out the checkpoint/restart area.

SWA-P1, SWA-P2, SWA-P3, all scheduler work areas.

PROG. - 23

\section*{Options}

\section*{Description}

D1-D4H
(physical areas on disk):

Causes a dump of either a main data area, a simulation area, a VTOC for a main data area, or a VTOC for a simulation area Valid options for VTOC
VTOC of main data area-D1, D2, D3, D4, D31, D32, D33, D34, D41, D42, D43, D44. VTOC of simulation area-D1A, D1B, D1C, D1D, D2A, D2B, D2C, D2D, D3A, D3B, D3C, D3D, D3E, D3F, D3G, D3H, D4A, D4B D4C, D4D, D4E, D4F, D4G, D4H.
VTOC dumps include the volume label, the fite index and the file labels.

Valid options for disk: Same as VTOC except that a D must be inserted after the option (for example, D16-D-CCHHRR, CCHHRR for main data area and DIA-D-CCSS, CCSS for simulation areal The start and end address of the simulation area must be given as hexadecimal values in the format CCSS,CCSS, where CC is the cylinder address and SS is the sector address.
The start and end address of the main data area must be given as hexadecimal values in the format CCHHRR,CCHHRR, where CC is the cylinder address, HH is the head number, and RR is the record number.

Note: If an error occurs, a diagnostic message is displayed in line 11 of the display screen, or printed on the line printer.

For 3340/3344, cylinder 0 head 0 limits are records \(0-3\) and 25-48.

\section*{SERV-AID Display Program}

The SERV-AID display program provides the customer engineer with a method of dynamically displaying (on the display screen) up to 80 bytes of main storage

\section*{Starting the Display}

The program is loaded into and executes from the transient area. The program can be called at any point in system operation by performing the following steps
1. Press program function key PF10.
2. Key in DISPLAY CORE (or D CORE).
3. Press the ENTER key.

The first 80 bytes of storage are then displayed.

\section*{Displaying More Data}

Additional areas of main storage can be displayed if storage areas and limits are specified. These specifications are entered starting in position 1 of line 1
ssss,eeee
= Start and end hexadecimal addresses of main storage, without regard for program partitions.
ssss,eeee, P1 = Start and end hexadecimal addresses of main storage used by program partition 1. (Hex 0000 is end of partition 1.)
ssss,eeee, P2 = Start and end hexadecimal addresses of main storage used by program partition 2. (Hex 0000-1000 are considered part of partition 2.)
ssss, eeee, P3 = Start and end hexadecimal address of main storage used by program partition 3.
ssss,eeee, \(X X X=\) Start and end hexadecimal addresses of main storage used by CCP program task. The value of \(X X X\) is listed as follows:
```

xxxx,eeee,CCC -- CM communications manager
xxxxx,eeee,CDD - DFF display format facility
xxxx,eeee,CEE - CCP user task
xxxx,eeee,CTT - Termination task
xxxx,eeee,CPP - Command processor
xxxx,eeee,C44
xx\timesx ,eeee,C55
x\timesxxx,eeee,C66
xxxx,eeee,C77
xx\timesx,eeee,C88
xx\timesxx,eeee,C99
xxxx,eeee,CGG
xxxx,eeee,CHH
xxxx,eeee,CUU
xxxx,eeee,CVV
xxxx,eeee,CWW
XXXx,eeee,CXX
Xxxx,eeee,CYY
xxxx,eeee,CZZ)

```

Position 0 of line 1 must be blank when addresses are entered.

\section*{Scrolling Through Storage}

When an F (forward) or a B (backward) is entered in position 0 of line 1, the display scrolls forward (toward higher addresses) or backward (toward 0000). Each time the ENTER key is pressed, 80 more positions are displayed. When console switch 4 is set to an F and ENTER is pressed once, the display is made to scroll repetitively until the switch is set to a non-F value. Scrolling stops when end of storage is reached on forward scroll - end of partition (if \(P x\) was specified) or end of main storage or 64 K (whichever is lower, if \(\mathrm{P}_{\mathrm{x}}\) was not specified).
Scrolling stops when hex 0000 is reached on backward scroll.

\section*{Cancelling Display Program}

To cancel the SERV-AID display program, enter a \(C\) in position 0 of line 1 and press ENTER.


\section*{DISK AND TAPE DUMP PROGRAM (\$DUMP)}
\$DUMP provides the facility to list the contents of disk or magnetic tape.

Prompt messages are displayed on the display screen, and the user enters selec tions on the keyboard.

\section*{Control Statements}

The following control statements are needed to load the dump program.
```

// LOAD \$DUMP,code
// RUN

```

Code Meaning
R1 R1 simulation area
F1 F1 simulation area

R2 R2 simulation area
F2 F2 simulation area

\section*{Selecting Options}

After the dump program is loaded, communications between the user and the program is through the keyboard/display screen. The first prompt to the user is ta determine which type of dump is to be done, tape or disk.


The user enters a request over the X :
```

D = 5444/3340 disk
T = Tape
C=Cancel
M = 3344 disk (will not appear if 3344 not supported)

```

The program analyzes the response and continues prompting for information regarding the selected dump. If an invalid request is entered, the prompt is reissued.

\section*{Disk Dump Operating Instructions}

After the disk dump function has been selected, communications between the user and the program continues via the keyboard/display screen as tollows:

3340 Only


Note: The units listed indicate system configuration.
*R1, F1, R2, F2* UNIT XX
\(X X\) should contain F1, R1, F2, R2, or left as \(X X\) if a 3340 main data area disk dump is being requested.

\section*{START CYL/SEC \(X X X X\) END CYL/SEC \(X X X X\)}

The cylinder number is placed in the first two positions and must be a hexadecimal number between 00-CA.

Note: 01, 02, and 03 are invalid cylinder numbers for simulation areas on the 3340 or 3344 logical volumes.

The sector number is placed in the last two positions. This number must be between \(00-5 \mathrm{C}\) or \(80-\mathrm{DC}\). If the sector number specified is not a multiple of 4 , it is rounded down to a multiple of 4 .

The end address must be greater than or equal to the start address.
*D1, D2, D3, D4*
UNIT XX
\(X X\) should contain D1, D2, D3, or D4 - or be left as \(X X\) if a simulated disk dump is being requested.

\section*{STRT C/H/R \(\times \times \times \times \times \times\) END C/H/R \(\times \times \times \times \times \times\)}

The first two positions are the cylinder number, which must be hex 00-D1

The second two positions are the head number, which must be hex 00-13.

The last two positions are the record number, which must be hex 00-30.

The following exceptions apply

CYL 00 HEAD 00-Only records 1, 2, 3, 19-30
CYL 00 HEAD 03-Only records 1.16

The last address that can be read is CYL. D1. HEAD 07, REC 30

The end address must be greater than or equal to the start address.

3344 On/y

*D31, D32, D33, D34 UNIT XXX
\(X X X\) should contain one of the four logical volumes on D3 (D31, D32, D33, D34) or be left as \(X X X\) if a logical volume on D4 is being requested.
```

STRT C/H/R $\times \times \times \times \times X$
END $C / H / R \times X \times \times \times \times$

```
*D41, D42, D43, D44 UNIT \(\times \times \times\)
\(X X X\) shouid contain one of the four logical volumes on D4 (D41, D42, D43, D44) or be left as \(X X X\) if a logical volume on D3 is being requested.

\section*{STRT C/IH/R \(X \times X \times X X\) \\ ENO C/H/R \(\times \times \times \times \times \times\)}

The first two positions are the cylinder number, which must be hex 00-D1

The second two provide the head number, which must be hex 00-13

The last two positions are the record number, which must be hex 00.30 .

The following exceptions apply:

CYL OO HEAD 00-Only records 1, 2, 3, 19.30
CYL 00 HEAD 03- Only records 1.16

The end address must be greater than or equal to the start address.

The user enters the required data as follows
1. Press the tab \((\longrightarrow\) | key tureach the wrine locat . . . \(\longrightarrow\).

3. Press the ENTER key.
4. If you recerve any of the follown ferror messages, smply correct the error and press the ENTER key

INVALID OR MISSING UNIT, RETRY INVALID OR MISSING START/END ADDR, RETRY
5. When a!! the disk requested has been printed, the following end of job message is displayed


If \(D\) or \(M\) is keyed in, repear steps 1 through 5. If \(C\) is keyed in, program goes to normal end of job. Otherwise the program redisplays the initial \$DUMP display.


\section*{Tape Dump Operating Instructions}

After the tape dump function has been selected, communications between the user and the program continues via the keyboard/display screen as follows


The user then enters the option character over the \(V\).

\section*{Option Meaning}
\begin{tabular}{ll}
1 & List tape on tape unit 1 \\
2 & List tape on tape unit 2 \\
3 & List tape on tape unit 3 \\
4 & List tape on tape unit 4 \\
R & Return to initial \$DUMP display \\
D & Go to simulation area/3340 disk dump display \\
C & End of job \\
M & Go to 3344 disk dump display
\end{tabular}

If the tape specified is a 7-track tape, the program displays:


TU is the tape unit that has been entered for the previous display. The user enters 0,1 , or 2 over the \(W\) to indicate 200,556, or 800 bpi respectively. The user enters \(0,1,2,3\), or 4 over the \(X\) to indicate one of the following parity checks:
\begin{tabular}{ll}
0 & Indicates even parity \\
1 & Indicates odd parity \\
2 & Indicates even parity translate \\
3 & Indicates odd parity translate \\
4 & Indicates odd parity convert
\end{tabular}

Note: A 2 option (even parity translate) must be taken to dump a standard label. After the label has been dumped, the parity option used to create the data must be taken. If incorrect options are taken for either the tape density or parity, a data check/tape runaway or other unpredictable results can occur.

The program then displays (for both 7 - and 9 -track) a request for option and block count:


TU is the tape unit specified in the first tape dump display. The user enters 0,1 . 2, 3, C, D, F over the \(Y\) to indicate one of the following options:
\begin{tabular}{ll}
0 & Skip \\
1 & Read and print \\
2 & Backspace \\
3 & Rewind \\
R & Return to initial \$DUMP display \\
D & Go to \(5444 / 3340\) disk dump display \\
C & End of job (cancel) \\
M & Go to 3344 disk dump display
\end{tabular}

The user enters the number of blocks to skip, read and print, or backspace over the ZZZZZZ. The number must be a decimal number from 1 to 99999 . Options 0,1 , and 2 are performed one block at a time. The block count is decreased by one each time the operation is done. If a block count of zero is reached, the display reappears, and another option and block count can be specified. If a tape mark is read from a 9 -track tape, TAPE MARK READ is displayed on the message line, and another option can be selected. If a tape mark is read from a 7 track tape, the display to select parity and density appears first, followed by TAPE MARK READ. If a permanent error occurs, PERMANENT I/O ERROR BLOCK NUMBER-0000 appears and another option can be selected.

If option 3 is selected (the rewind request), the tape is rewound and the initial tape dump display is reprompted.

\section*{FILE COMPRESS PROGRAM (\$FCOMP)}
\$FCOMP can copy files from one main data area to another main data area without FILE statements. \$FCOMP can continue copying files even though a permanent I/O error is detected on a track within a file.

The data on the defective track is lost during the copy operation, but the rest of the data is recovered. The cylinder and head address of the missing data on the receiving main data area is logged to the logging device.

The following OCL statements are required if you wish to continue to copy files even though a permanent I/O error has been detected
```

// LOAD \$FCOMP, unit
// SWITCH 11111111
// RUN
// COPYFILES FROM-code, TO-code [,PACKIN-name] [PACKO-name]
// END

```

More information about control statement is in IBM System/3 Model 15 System Control Programming Concepts and Reference Manual, GC21-5162. The SWITCH statement is not documented there because it allows the user to bypass permanent 1/O errors.

\section*{DISK REBUILD PROGRAM (SSDISK)}

This program is designed to allow a simple display, correction, replacement, and verification of any disk information. The following OCL statements load the program:
// LOAD \$\$DISK,unit
// RUN

If the system input device is the console, the program functions as if a DISPLAY statement has been read. If the system input device is not the console, the program reads records from the system input device.

\section*{Function}

The disk rebuild program performs the following functions at the customer engineer's request, based on the display prompts:
- Displays data from a specified disk location ( 64 bytes at a time) from 3344s or 3340s. The program allows access to simulation areas on the 3340 or 3344 that have simulation area addresses. The main data area of the 3340 or 3344 is accessible with main data area addresses. The alternate tracks are accessible only by the addresses of the tracks to which they are assigned.
- Scrolls backward and forward through a record or sector; permits desired changes to be made in a temporary buffer that contains one record or sector.
- Prints the contents of the temporary buffer.
- Writes the contents of the temporary buffer to a specified disk location.
- Reads the next record from the system input device.
- Goes to end of job.

The disk rebuild program performs the following functions from the system input device:
- Reads, verifies, and replaces data from a specified disk location.
- issues display prompts if a DISPLAY statement is read.
- Goes to end of job.

When this program is loaded, it issues a warning message. The customer engineer can continue or cancel the program at this point. There is no checking to determine if a specified unit is supported or is being used by another partition.

\section*{input}

Statements are read from the system input device or from a procedure. The statements should be in one of the following formats (small letters represent a code and capitalized letters must be entered as shown):
\begin{tabular}{|c|c|c|}
\hline 1. & VREP uu cchhrrdd vv, \(\times \times \times \times \times x\) & 3340 VREP \\
\hline 2. & VREP unu cchhrrdd vv, \(\times \times \times \times \times \times\) & 3344 VREP \\
\hline 3. & VREP qqccssdd \(v v, x \times\) & Simulation area VREP \\
\hline 4. & // DISPLAY & DISPLAY statement \\
\hline 5. & x \(\times\) & Data statement (valid only if data in the preceding statement was terminated by a comma). \\
\hline 6. & // END & END statement \\
\hline Code & Meaning & Column \\
\hline uu & Unit (D1, D2, D3, D4) & 6-7(3340) \\
\hline unu & \[
\begin{aligned}
& \text { Unit (D31,D32, D33, D34, } \\
& \text { D41, D42, D43, D44) }
\end{aligned}
\] & 6-8(3344) \\
\hline q9 & \(Q\) code for simulation area & 6-7 \\
\hline cc & Cylinder & 9-10 (3340) \\
\hline & & 10-11 (3344) \\
\hline & & 8-9 (simulation area) \\
\hline hh & Head & 11-12 (3340) \\
\hline rr & Record & 13-14 (3340) \\
\hline & & \(15-16\) (3344) \\
\hline ss & Sector & 10-11 (simulation area) \\
\hline & & \(12-13\) (3344) \\
\hline dd & Displacement & 15-16(3340) \\
\hline & & 16-17 (3344) \\
\hline & & 12-13 (simulation area) \\
\hline vv & Verify Data & 18-19(3340) \\
\hline & & 19-20 (3344) \\
\hline & & 15-16 (simulation area) \\
\hline \multirow[t]{4}{*}{\(\mathbf{x x}\)} & Data & 21 and on (3340) \\
\hline & . & 22 and on (3344) \\
\hline & - . & 18 and on (simulation area) \\
\hline & & First nonblank character on data statement \\
\hline
\end{tabular}


Data statement (valid only if data in the preceding statement was terminated by a comma)

END statement

All of the information (except for the \(3340 / 3344\) unit) must be in hexadecimal For the simulation area \(Q\) code, only the first 5 bits are important. Thus, \(A O\) to A7 designates R1; A8 to AF - F1; B0 to B7-R2; and B8 to BF - F2. VREP must be in columns 1 through 4. The first blank following the data terminates the scan. Commas can be interspersed with data (on a byte boundary). XX coded instead of hexadecimal data leaves 1 byte unchanged. If the data is terminated by a comma, the next statement is assumed to be continuation data unless it has VREP in columns 1 through 4 or DISPLAY in the first non-blank positions. Data is not replaced across a sector or record boundary without another VREP statement.

\section*{Output}

For a VREP statement, data from a good statement is written to disk. A diagnostic message is issued for bad input or unverifiable input.

The DISPLAY statement causes the following initial option menu to be displayed on the display screen (bottom five lines of display screen are for the system):


Note: \% designates the placement of the control character.
If \(C\) is entered as the control character, the program goes to end of job. If \(I\) is entered as the control character, the program reads statements from the system input device or from a procedure. If 4 is entered as the control character, the following display prompts for the simulation area location to be displayed (capitalized letters are displayed as they appear; small letters represent a code):


Code
uu
Other codes

Meaning

Simulation area (F1, F2, R1, R2)
Same meaning as described previously

\section*{CCP-MLMP/MLTA TRACE}

The procedures for initiating BSCA. BSCC or MLTA trace can be tount in th. System, 3 Communications Control Program System Operator's Guide for all systems except the Model 4 for which they may be found in the Operator's Guide. Brietty, thering CCP Startup, the keywords TRACEMLTA and/or TRACEMIMP must he specified is resporme. to Startup message SU011, SU025, or SU045. Durnq CCP operation, TRACE abhe printing can be controlled by the TRACE Command: TRACEspaceONorOFF MLTA. BSCC or BSCA. If a permanent error is encountered on a TP line while TRACE is active the in core TRACE Table will be written to the system printer. The format of the TRACE Table can be found in the System/3 Movels 4,6,8,10 and 12 System Data Areas and Diagnostics Aids Handbook. SY 21.0045 . Refer to your PSR if adctitional help is needeat CAUTION - BE SURE THAT THE CUSTOMER IS AWARE THAT ANY JOB FORM BEING RUN ON THE SYSTEM PRINTER WILL HAVE TRACE DATA WRITTEN ON IT!

\section*{BSC TRACE}

The BSC trace module must be link edited into the user program. The trace is active at all times. It cannot be turned on or off.

The assembler user can include the trace module in the program by specifying EXTRN \$\$BSTT in the program or by placing an INCLUDE card in the linkage editor input deck.

\section*{// INCLUDE NAME-\$\$BSTT,UNIT-xx}

Note: If an INCLUDE card is used to call the trace module, the overlay linkage editor generates a name not referenced error message (0L031). This error does not affect the output of the linkage editor, however, and should be ignored.

If the user is running under RPG II BSCA or RPG II BSCA with an assembler subroutine, \(\$ \$ B S M T\) is automatically linkedited as a dummy trace module. If the user wants to include the actual trace module in the program, the dummy and actual trace modules must be renamed. After the modules are renamed, the user program must be recompiled in order for the actual module to be link-edited. The following statements are used to rename the trace modules:
```

// LOAD \$MAINT, xx
// RUN
// RENAME FROM-xx,LIBRARY-R,NAME-\$\$BSMT,NEWNAME-\$\$BSAV
// RENAME FROM-xx,LIBRARY-R,NAME-\$\$BSTT,NEWNAME-\$\$BSMT
// END

```

To replace the actual trace module with the dummy trace module:
1. Rename the modules:
// LOAD \$MAINT, xx
// RUN
// RENAME FROM-xx,LIBRARY-R,NAME-\$\$BSMT,NEWNAME-\$\$BSTT // RENAME FROM-xx,LIBRARY-R,NAME-\$\$BSAV,NEWNAME-\$\$BSMT // END
2. Recompile the program.

\section*{Trace Considerations}
- ITB interrupts, BSCA enabling operations, and BSCA disabling operations are not recorded by the trace routine.
- Trace entries are recorded and are independent of user programming operations. That is, entries are recorded when an interrupt occurs regardless of current operations occurring in the user program, and can be recorded at any time, even during a snap dump. Consequently, be aware that entries may have been made in the trace table after a user request to dump the table.
- The BSC trace requires 549 bytes of main storage.

\section*{How to Find the BSC Trace Table}

The BSC trace table can be located on a dump by the eyecatcher characters BSML. The trace table starts immediately after these characters.

\section*{BSC Trace Table Format}

The format of the trace table is:


Data


Q Byte - From the BSCA SIO instruction initiating the event recorded

Control Code - From the SIO instruction initiating the event recorded; 1 byte

\section*{Sense/Status Bytes.}

Hex 8000 Timeout status:
a. A receive timeout occurred during a receive operation with the adapter in the busy state.
b. An auto call operation was terminated by an abandon call and retry signal from the auto calling unit (ACU), indicating that a connection was not established.

Hex 4000 Data check during receive operation:
a. A BCC ccmpare check occurred (EBCDIC).
b. A VRC check occurred (ASCII).

Note: Characters having VRC checks are distinguished by a high-order bit in main storage. These characters are never recognized as control characters by the BSCA

Hex 2000 Adapter check during transmit operation:
a. DBI register parity check
b. \(1 / O\) cycle steal overrun
c. LSR or shift register parity check
d. Transmit control register check

Hex 1000 Adapter check during receive operation:
a. DBI register parity check
b. I/O cycle steal overrun
c. LSR or shift register parity check

Hex 0800 Invalid ASCII character (A byte fetched from main storage by an adapter using ASCII code contained a 1 -bit in the high-order bit position.)

Hex 0400 Abortive disconnect. Indicates BSCA on switched network was enabled, then the data set became ready, then not ready. This indicates the connection has been released and causes data terminal ready to turn off.

Hex 0200 Disconnect timeout. Indicates disconnect timeout occurred on a switched network. Disconnect timeout causes data terminal ready to turn off. (May not apply to systems using the IBM remote job entry program.)

Note: The program must perform a disconnect operation.

Hex 01FC Not assigned

Hex 0002 Data set ready. This indicates that the data set is ready to operate and that the BSCA has been enabled.

Hex 0001 Data line occupied. This bit is used on a switched network when the BSCA is equipped with the auto call feature. This bit indicates that the data receive initial instruction will be rejected.

Data \(=\)

D1 - Contents, at the time the I/O operation was started, of the byte addressed by the current address register (CAR) and the 2 bytes that follow

D2 -- Contents, at the time the I/O operation was started, of the 3 bytes preceding the byte addressed by the transition address register (TAR)

D3 - Contents, at the time the I/O operation was completed, of byte addressed by the TAR and the 2 bytes that follow

D4 - Contents, at the time the I/O operation was completed, of the 3 bytes preceding the byte addressed by the CAR

Note: When a 2 -second timeout occurs, D1-D4 are set to hex FF. When a receive timeout occurs, D3 and D4 are set to hex FF. When the I/O operation is receiveinitial (RCV1), receive only (RCVO), or autocall, D2 and D3 are set to hex FF.


\section*{INTERRUPT TRACE PROGRAM (\$TRACE)}

The interrupt trace program stores information in a trace table as an interrupt occurs. The program can trace all interrupts or only selected interrupts, depending on options on the control statements.

When the main storage trace table is filled, it is written to a disk file if the user included a FILE statement. If a FILE statement is not included, the main storage table wraps around when it is full.

The main storage trace table information is displayed via option 06 of the SVAID program. The trace information that was stored in a disk file can be printed by the \$TRPRT system service program.

\section*{Starting the Interrupt Trace}

The trace program must be loaded into partition 1. The program is loaded and started by the following OCL statements:
// LOAD \$TRACE, unit
// FILE NAME-\$TRACE,UNIT-F1,RETAIN-T,PACK-xxxxxx,TRACKS-nnn
(Optional. Include FILE statement only if trace file is to be written on disk.)
// RUN
// TRACE TYPE. \(\left\{\begin{array}{l}\text { ALL } \\ \text { SVC } \\ \text { SIO } \\ \text { OPEND } \\ \text { TASKSW } \\ \text { CRT } \\ \text { CCP } \\ \text { TIMER } \\ \text { AFCOR } \\ \text { COMN } \\ \text { END } \\ \text { TSTAMP }\end{array}\right\}\) TABLE• \(\left\{\begin{array}{l}\frac{2 K}{3 K} \\ 4 K \\ 5 K \\ 6 K \\ 7 K \\ 8 K\end{array}\right\}\)

\footnotetext{
// END
ALL \(=\) All entries specified in Figure 3-2 except TSTAMP
\(\overline{\text { SVC }}=\) All SVC RIBs
SIO = All F8 entries
OPEND = All F2, F3, and F5 entries
TASKSW = All FF entries
CRT = All F1 entries
\(\mathrm{CCP}=\mathrm{AlIE7}, \mathrm{E}, \mathrm{E9}, \mathrm{EA}, \mathrm{EB}, \mathrm{EC}, \mathrm{ED}, \mathrm{EE}, \mathrm{FB}, \mathrm{FC}\), and FE entries
TIMER = All F6 entries
AFCOR \(=\) All F9 and FA entries
COMN = All BA entries
}

If CRT is specified, and the 3284 Printer is attached, op ends for the 3284 are traced under the CRT/3284. (See Figure 3-2.)

The FILE statement causes the main storage trace table to be written to disk When the table is full. The STRACE file must be on the system pack. For best utilization of file space, assign an even number of tracks.

You must specify temporary (T) in the RETAIN parameter on the FILE statement when starting the interrupt trace.

The TYPE parameter specifies which interrupts are to be traced. Sublists are Hlowed in the TYPE parameter (Example: TYPE-'SVC,SIO,CRT').

TSTAMP gives the current timer value of the TRACE entry. Bytes 7 and 8 of an 8 -byte entry or bytes 11 and 12 of a 16 byte entry are overlaid if TSTAMP is specified. TSTAMP must be the last entry in a sublist on a TYPE parameter. For example: TYPE•'ALL,TSTAMP' or TYPE•SIO,SVC,TSTAMP'. TSTAMP must never be used alone.

The TABLE parameter specifies the size of the main storage trace table. Each interrupt that is traced results in an 8 - or 16 -byte entry in the trace table. The larger the table, the more interrupts can be traced before the table is filled. The TABLE parameter must leave at least \(8 K\) for program partition 1 to execute.

When the trace program and table are loaded into partition 1, the start of partition 1 is incremented to the next 2 K boundary (see Figure 3-1).

\section*{Displaying the Trace Table}

The trace table is displayed in two ways:
1. The SVAID system service program is used to dump the supervisor (option 06). The trace table and program are displayed as part of the supervisor. Figure 3-2 shows how to find the trace table and the format of the trace table entries for each type interrupt. Interrupts are not traced while the SVAID program is active.
2. The \$TRPRT system service program is used to print the trace table information stored on disk. \$TRPRT must be run after the trace is ended. \$TRPRT is loaded by the following OCL:
```

// LOAD $TRPRT,unit
// FILE NAME-$TRACE,UNIT-F1,RETAIN-S,PACK-xxmxxx
// RUN

```

Note: The RETAIN-S parameter must be used in order for the file to be removed at end of job.

The printed output from \$TRPRT is formatted into 8 - and 16 -byte entries. The constant END TRAC is printed after the last entry written to disk.

\section*{Ending the Intorrupt Trace}

The interrupt trace is stopped and the main storage trace table is written to disk (if a FILE statement wes included) when you enter the following OCL:
// LOAD \$TRACE,unit
// FILE NAME-same as file statement used to start the trace
(The FILE statement should be included only if it was included when the trace was started.)
// RUN
// TRACE TYPE-END
// END

The start and size of partition 1 is returned to normal, and the trace program and trace table are overlaid by end-of-job processing.

\section*{OCC TRACE COMMAND}

The interrupt trace can be started and stopped via the OCC TRACE command. The trace program must have been previously loaded.

The format of the OCC TRACE command is:
\(\underset{\text { (E) }}{\text { TRACE }}\left\{\begin{array}{l}O N \\ \text { OFF }\end{array}\right\},\left\{\begin{array}{c}\text { SYSTEM } \\ \text { (S) } \\ \text { MLTA } \\ \text { BSCA } \\ \text { BSCC }\end{array}\right\}\)

Note: More options are available when CCP is used (see IBM System/3 Model 15 Communications Control Program System Operator's Guide, GC21-7619).

\section*{Considerations When Using Trace}
- If more trace entries are written to disk than there is room for (specified by the TRACKS parameter of the FILE statement), the trace table entries wrap around and overlay the oldest disk entries.
- The disk trace uses one block ( 64 bytes) of the assign/free area.
- When the trace is ended (TRACE TYPE-END control statement), the main storage trace table is written to disk. The constant END TRAC is printed after the last disk write. This constant is needed if the disk space has wrapped around. The entry preceding the END TRAC constant was the last entry traced.
- If a permanent disk error is encountered while the system is writing to disk, an attempt is made to write on the next available track (if it is still within the area specified on the FILE statement) or wrap around to the beginning of the STRACE file if more than one track was allocated. However, if neither of these can be done, the trace continues with only the main storage trace table. When the trace is ended, error message VFTBO5 is displayed, indicating that a permanent disk error occurred during the trace. The user should then dump the main storage trace table, using SVAID, before responding to the halt. Then run the \$TRPRT system service program.
- If a larger trace table is needed, the constant DATALOST is written to disk. Trace entries have been lost. The table size should be increased.


Figure 3-1. Effect of Trace Program on Partition 1 Location


Figure 3-2 (Part 1 of 2). Trace Table Format of \$TRACE Entries

\section*{8-Byte and 16-Byte Trace Table Entry}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Type trace & & 2 & 3 & 4 & 5 & 6 & & 8 & 9 & 10 & 12 & 13 & 4 & 5 & 16 \\
\hline SVC & R1B & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { IAR } \\
& \text { Sense } \\
& \hline
\end{aligned}
\]}} & \multicolumn{4}{|r|}{\(X R 12\)} & PMR & \multicolumn{7}{|c|}{Reserved} \\
\hline RT/3284 & Fi & & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{XR}} & & & & \multicolumn{7}{|c|}{Reserved} \\
\hline END (BSCA) & F2 & 8 & R & & & 1085 & SNS & & \multicolumn{7}{|c|}{Reserved} \\
\hline 5 SND (MLTA) & F 3 & \multicolumn{2}{|l|}{Sense} & \multicolumn{5}{|l|}{} & \multicolumn{7}{|c|}{Reserved} \\
\hline OPEND (BSCC) & F 3 & \multicolumn{2}{|l|}{\begin{tabular}{l}
At - \\
tach- \\
ment \\
Status
\end{tabular}} & \(\cdots\) &  &  & &  & \multicolumn{7}{|c|}{Reserved} \\
\hline OPEND ( 11.5 & F5 & \multicolumn{2}{|l|}{\(13 \mathrm{R}^{3}\)} & \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{7}{|c|}{Reserved} \\
\hline Timer interrupt & F6 & FLG & & & & & & & \multicolumn{7}{|c|}{\multirow[t]{2}{*}{Reserved}} \\
\hline S10 & F8 & 2 & R & \multicolumn{2}{|l|}{XR1} & \multicolumn{3}{|l|}{pmer value} & & & & & & & \\
\hline Sto (BSCC) & F 8 & Q & & XR1 & \multicolumn{11}{|c|}{Reserved} \\
\hline - IO (DISK) & F8 & 9 & R & \multicolumn{2}{|l|}{XR1} & c゙ & 11 & R & N & & IOBSNS & \(Q^{4}\) & C & S & N \\
\hline ssiun Main ctoraye & F9 & \multicolumn{2}{|l|}{IAR} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { storaqe } \\
& \text { ASSIGND }
\end{aligned}
\]} & \multicolumn{2}{|l|}{- of bytes} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { CJS of } \\
& \text { REQSTOR } \\
& \hline
\end{aligned}
\]} & \begin{tabular}{l|l|} 
Old & Active \\
TCB & TCB d \\
\hline
\end{tabular} & \multicolumn{2}{|l|}{- \begin{tabular}{l} 
Active \\
TCB d \\
\hline
\end{tabular}} & \multicolumn{3}{|l|}{Reserved} \\
\hline Free Main
Storage & FA & \multicolumn{2}{|l|}{\(1 A^{\prime}\)} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { Storayea } \\
& \text { FREED } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { of } \\
& \text { bytes }
\end{aligned}
\]} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { C/S of } \\
& \text { REOSTOK } \\
& \hline
\end{aligned}
\]} & \[
\begin{aligned}
& \text { OId } \\
& \text { TCB }
\end{aligned}
\] & \multicolumn{2}{|l|}{\begin{tabular}{|l|} 
Active \\
TCB i
\end{tabular}} & \multicolumn{3}{|l|}{Reserved} \\
\hline TASKSW & FF & \multicolumn{2}{|l|}{IAR} & \multicolumn{2}{|l|}{INEWTCB} & \multicolumn{2}{|l|}{\({ }^{\text {a }}\) ARB} & PMR & \multicolumn{7}{|l|}{Reserved R} \\
\hline Common Interface & BA & \multicolumn{14}{|c|}{Currently used by MRJE} \\
\hline \[
\begin{aligned}
& \text { Transient } \\
& \text { Call } \\
& \hline
\end{aligned}
\] & E) & \[
\begin{array}{|l|}
\hline \text { TCB } \\
\hline 10 \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{XR2} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{XCLEE} & \multicolumn{2}{|l|}{TAXPRM} & \multicolumn{5}{|l|}{Reserved} \\
\hline \[
\begin{gathered}
\text { Exit from } \\
\text { GETMAIN }
\end{gathered}
\] & E8 & \[
\begin{array}{|l|}
\hline \text { TCB } \\
\text { ID } \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{XR2} & \multicolumn{2}{|l|}{3 of GETMA IN} & \multicolumn{2}{|l|}{GMSI2E} & \multicolumn{7}{|l|}{SFLGC Reserved} \\
\hline \[
\begin{aligned}
& \text { Entry to } \\
& \text { fREEMAIN }
\end{aligned}
\] & Ey & \[
\begin{array}{|c|}
\hline \text { TC } B \\
\mathrm{IC} \\
\hline
\end{array}
\] & \multicolumn{2}{|r|}{\[
\mathrm{xR} 2
\]} & \multicolumn{2}{|l|}{\[
\begin{array}{|ll|}
\hline \text { a of } \\
\text { FREEMAIN } \\
\hline
\end{array}
\]} & \multicolumn{2}{|l|}{FMS12E} & \multicolumn{7}{|l|}{SFLGC Reserved} \\
\hline nery to TP CHK Routine & EA & \[
\begin{array}{|l|}
\hline \text { TCR } \\
\text { ID } \\
\hline
\end{array}
\] & \[
\begin{array}{|cc|}
\hline S & 0 \\
0 & P \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { SMD } \\
& \text { CMP }
\end{aligned}
\] & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { SBDRE: } \\
& \text { SMDCRL } \\
& \hline
\end{aligned}
\]} & \multicolumn{2}{|l|}{aTUB} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { dof Parm } \\
& \text { List }
\end{aligned}
\]} & DTF & \multicolumn{2}{|l|}{SBDWKB} & \begin{tabular}{l} 
OPP \\
END \\
\hline 1
\end{tabular} & \begin{tabular}{|l|}
\hline TUB \\
AT2 \\
\hline P1 \\
\hline
\end{tabular} \\
\hline MLTA 510 & EB & \[
\begin{array}{|l|}
\hline \text { TCA } \\
10 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { SMD } \\
& \text { OPC } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& \text { SMD } \\
& \text { OSC }
\end{aligned}
\] & \multicolumn{2}{|l|}{0000} & \multicolumn{2}{|l|}{dTUB} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { dof Farm } \\
& \text { List }
\end{aligned}
\]} & - DTF & \(\left\lvert\, \begin{aligned} & \text { PLS } \\ & \text { OPM }\end{aligned}\right.\) & \[
\begin{aligned}
& \mathrm{PLS} \\
& \mathrm{OPC} \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{PL} \\
\mathrm{OPM} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \mathrm{PL} \\
& \mathrm{OPC} \\
& \hline
\end{aligned}
\] \\
\hline Entry to liser 1/0 Interface & EC & \[
\begin{array}{|l|}
\hline \text { TCA } \\
\text { ID } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TCA } \\
\hline 11 C \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TUR } \\
\text { AT } 2 \\
\hline
\end{array}
\] & \multicolumn{2}{|r|}{0000} & \multicolumn{2}{|l|}{-TUB} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { din Parm } \\
& \text { Last }
\end{aligned}
\]} & \[
\begin{aligned}
& \text { TNT } \\
& \text { Entry }
\end{aligned}
\] & \multicolumn{2}{|l|}{PLRECA} & \(\left\lvert\, \begin{array}{r}P L \\ O P M\end{array}\right.\) & \[
\begin{array}{|l|}
\hline \mathrm{PL} \\
\mathrm{OPC} \\
\hline
\end{array}
\] \\
\hline Entry to SYS
I/O Interface & ED & \[
\begin{array}{|l|}
\hline \text { TCB } \\
\hline \text { ID } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { SMD } \\
\hline \text { OPC } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { SMD } \\
\hline \text { AT 2 } \\
\hline
\end{array}
\] & \multicolumn{2}{|r|}{0000} & \multicolumn{2}{|l|}{dTUB} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { dof Parm } \\
& \text { List }
\end{aligned}
\]} & 0000 & \multicolumn{2}{|l|}{PLRECA} & \begin{tabular}{|r|} 
PL \\
OPM
\end{tabular} & PL OPC \\
\hline Return from 1/O Interface & Ef & \[
\begin{array}{|l|}
\hline \text { TCB } \\
\text { ID } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { LCB } \\
\text { ATR } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TUB } \\
\text { AT2 } \\
\hline
\end{array}
\] & \[
\begin{array}{|l|}
\hline \text { TUA } \\
\text { TA1 } \\
\hline
\end{array}
\] & \[
\begin{aligned}
& \text { TU'H } \\
& \text { TA } 2 \\
& \hline
\end{aligned}
\] & \multicolumn{2}{|l|}{¢TUB} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { a of Varm } \\
& \text { List }
\end{aligned}
\]} & PLRTC & \multicolumn{2}{|l|}{PLEFFL} & \begin{tabular}{|r|} 
PL \\
\hline OPM \\
\hline PL
\end{tabular} & \[
\begin{aligned}
& \hline \mathrm{PL} \\
& \mathrm{OPC} \\
& \hline
\end{aligned}
\] \\
\hline BSCA SIO & FB & \[
\begin{aligned}
& \text { TCB } \\
& \text { ID } \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 5 B D \\
& \hline \text { OPC } \\
& \hline
\end{aligned}
\] & \[
\begin{array}{l|}
\hline \text { SBD } \\
\mathrm{CMP} \\
\hline
\end{array}
\] & \multicolumn{2}{|r|}{0000} & \multicolumn{2}{|l|}{dTUB} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { of Parm } \\
& \text { List }
\end{aligned}
\]} & d DTF & \multicolumn{2}{|l|}{\begin{tabular}{l} 
PLS \\
\hline QPM \\
\hline OPC
\end{tabular}} & \[
\begin{array}{|r|}
\hline \mathrm{PL} \\
\mathrm{QPM}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{PL} \\
& \mathrm{OPC}
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \text { Entry to } \\
& \text { DFF }
\end{aligned}
\] & FC & \[
\begin{array}{|c|}
\hline \text { TCB } \\
\hline 10 \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{TCBAAS} & \multicolumn{2}{|l|}{PLOUTL} & \multicolumn{2}{|l|}{PTU8} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { dof Parm } \\
& \text { List }
\end{aligned}
\]} & PLSRTC & \multicolumn{2}{|l|}{PLRECA} & \begin{tabular}{|c|}
\(P L\) \\
\hline\(P M\)
\end{tabular} & PL OPC \\
\hline \[
\begin{array}{ll}
\text { Exit from } \\
\text { DFF } & \\
\hline
\end{array}
\] & FE & \[
\begin{array}{|l|}
\hline \text { TCB } \\
\text { ID } \\
\hline
\end{array}
\] & \multicolumn{2}{|l|}{TCASAS} & \multicolumn{2}{|l|}{Proutt.} & \multicolumn{2}{|l|}{aTub} & \multicolumn{2}{|l|}{\[
\begin{aligned}
& \text { of Parm } \\
& \text { Last }
\end{aligned}
\]} & RLSRTC & \multicolumn{2}{|l|}{PLRECA} & \begin{tabular}{|r|} 
PL \\
\hline PM
\end{tabular} & \begin{tabular}{l} 
PL \\
OPC \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Hex 80 means do not write to disk. Hex 01 means buffer 1 has just been dumped.
\({ }^{2}\) On SVC trace, if RIB is hex 80 or C0, bytes \(4-5\) contain C/S.
\({ }^{3} \mathrm{Q}\) code and R bytes may not be meaningful on 3340 op end.
\({ }^{4}\) If the entry was a simulation area SIO, then the \(\mathrm{Q} / \mathrm{C} / \mathrm{S} / \mathrm{N}\) are given, as well as the C/H/R.
}

Figure 3.2 (Part 2 of 2). Trace Table Format of \$TRACE Entries

HEX AND DECIMAL CONVERSION/ADDITION

To find the decimal number, locate the hex number and its decimal equivalent for each position. Add these to obtain the decimal number To find the hex number, locate the next lower decimal number and its hex equivalent. Each difference is used to obtain the next hex number until the entire number is developed.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{4}{|c|}{BYTE} & \multicolumn{4}{|c|}{BYTE} & \multicolumn{4}{|c|}{B Y TE} \\
\hline \multicolumn{2}{|r|}{0123} & \multicolumn{2}{|r|}{4567} & \multicolumn{2}{|r|}{0123} & \multicolumn{2}{|r|}{4567} & \multicolumn{2}{|r|}{0123} & \multicolumn{2}{|r|}{4567} \\
\hline HEX & DEC & HEX & - DEC & HEX & DEC & HEX & DEC & HEX & DEC & HEX & DEC \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & 1,048,576 & 1 & 65,536 & 1 & 4, 096 & 1 & 256 & 1 & 16 & 1 & 1 \\
\hline 2 & 2,097, 152 & 2 & 131,072 & 2 & 8, 192 & 2 & \(5: 2\) & 2 & 32 & 2 & 2 \\
\hline 3 & 3, 145, 728 & 3 & 196,608 & 3 & 12, 288 & 3 & 768 & 3 & 48 & 3 & 3 \\
\hline 4 & 4, 194, 304 & 4 & 262, 144 & 4 & 16,384 & 4 & 1,024 & 4 & 64 & 4 & 4 \\
\hline 5 & 5, 242,880 & 5 & 327,680 & 5 & 20,480 & 5 & 1,280 & 5 & 80 & 5 & 5 \\
\hline 6 & 6,291,456 & 6 & 393, 216 & 6 & 24, 576 & 6 & 1,536 & 6 & 96 & 6 & 6 \\
\hline 7 & 7, 340, 032 & 7 & 458, 752 & 7 & 28,672 & 7 & 1,792 & 7 & 112 & 7 & 7 \\
\hline 8 & \(8,388,608\) & 8 & 524, 288 & 8 & 32, 768 & 8 & 2,048 & 8 & 128 & 8 & 8 \\
\hline 9 & 9, 437, 184 & 9 & 589, 824 & 9 & 36,864 & 9 & 2, 304 & 9 & 144 & 9 & 9 \\
\hline A & 10,485, 760 & A & 655,360 & A & 40,960 & A & 2,560 & A & 160 & A & 10 \\
\hline B & 11, 534, 336 & B & 720,896 & B & 45, 056 & B & 2,816 & B & 176 & B & 11 \\
\hline C & 12,582,912 & C & 786,432 & C & 49, 152 & C & 3,072 & C & 192 & C & 12 \\
\hline D & 13,631, 488 & & 851,968 & D & 53, 248 & D & 3,328 & D & 208 & D & 13 \\
\hline E & 14,680, 064 & & 917,504 & E & 57, 344 & E & 3,584 & E & 224 & E & 14 \\
\hline F & 15, 728, 640 & & 983,040 & F & 61,440 & F & 3,840 & F & 240 & \(F\) & 15 \\
\hline & 6 & & 5 & & 4 & & 3 & & 2 & & 1 - \\
\hline
\end{tabular}

HI ©AHCIMAI ADHIION
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 1 & \(\therefore\) & 1 & 4 & , & 1. & \(i\) & * & \(y\) & 1 & 11 & \((1\) & 1) & 1 & 1 \\
\hline 1 & 0.1 & 0.3 & 04 & 05 & 01. & 07 & \(0 \times\) & 09 & 01 & OH & \(0{ }^{\circ}\) & \(01)\) & 0 t & 0 t & 10 \\
\hline - & 0.3 & 04 & 0.1 & ut, & 07 & 0* & 09 & 0 N & 013 & U & 01) & 01 & \(0 \cdot\) & 10 & 11 \\
\hline : & 04 & 0. & U6 & 07 & 08 & uy & 0.4 & リ13 & 0 & 01) & Ot & ut & 10 & 11 & 12 \\
\hline 4 & 05 & \(0{ }^{\text {a }}\) & 07 & \(0 \times\) & 09 & UA & 013 & \(0{ }^{\circ}\) & 01) & 0 t & \(0 \vdash\) & 10 & 11 & 1. & 1.1 \\
\hline 5 & 0 C & 07 & us & 09 & OA & OB & \(0{ }^{\circ}\) & 01) & UF & ur & 10 & 11 & 1. & 11 & 14 \\
\hline 4, & 07 & \(0 \times\) & UY & OA & 0 H & \(0{ }^{\circ}\) & 01) & 0 t & 0 t & 10 & 11 & 1: & 11 & 14 & 15 \\
\hline 7 & \(0 \times\) & 09 & OA & 0 H & 00 & 01) & 0 t & U H & 10 & 11 & 1 ' & \(1:\) & 14 & 1 , & 11. \\
\hline \(\cdots\) & 09 & \(0 \lambda\) & 0 O & O' & 01) & Of & 0 F & 10 & 11 & 1. & 11 & 14 & 1. & 11. & 17 \\
\hline 9 & 0A & 0 B & \(0{ }^{\prime}\) & 01) & Ot & 0 F & 10 & 11 & 1. & 11 & 14 & 1) & 1.1 & 17 & in \\
\hline \(\lambda\) & 0 H & \(00^{\circ}\) & \(01)\) & 0 r & Ot & 10 & 11 & 1: & 1.1 & 14 & 1.1 & 14. & 17 & \(1 \times\) & 19 \\
\hline 1 & \(00^{\circ}\) & 01) & 0 F & 0 ) & 10 & 11 & 1: & 13 & 14 & 1. & 11. & 17 & \(1 \%\) & 19 & 1 A \\
\hline (- & 01) & 0 t & 0 F & 10 & 11 & 1. & 1.1 & 14 & 1. & 11. & 17 & \(1 \times\) & 19 & 1 A & 15 \\
\hline () & 0 t & Or & 10 & 11 & 1. & 1.5 & 14 & 13 & 14, & 17 & 14 & 19 & 1 A & 111 & 16 \\
\hline t. & 0 F & 10 & 11 & 12 & 1.1 & 14 & 15 & 11, & 17 & 18 & 19 & 14 & 111 & 10 & \(11)\) \\
\hline - & 10 & 11 & 12 & 1.1 & 14 & 15 & 16 & 17 & 18 & 19 & \(1 \lambda\) & 111 & 10 & \(11)\) & 11 \\
\hline
\end{tabular}

\section*{CODE CONVERSION CHART}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Sec & Hex Val & 96-Column Card Code DCBA8421 & Mnem & \[
\begin{array}{r}
18 \\
17173
\end{array}
\] & \[
\frac{L^{*}}{T 2 T 3}
\] & EBCDIC & Symbol & 80. Column \\
\hline \[
\begin{aligned}
& 000 \\
& 001 \\
& 002 \\
& 003
\end{aligned}
\] & \[
\begin{aligned}
& 00 \\
& 01 \\
& 02 \\
& 03
\end{aligned}
\] & \begin{tabular}{ll} 
C & \\
DCBA & 1 \\
DCBA & 2 \\
DCBA & 21
\end{tabular} & & \(\begin{array}{ll} & 4 \\ A & @ \\ B & @ \\ C & @\end{array}\) & \(\begin{array}{ll} & 1 \\ \text { A } & 3 \\ \text { B } & 3 \\ \text { C } & 3\end{array}\) & \[
\begin{aligned}
& 00000000 \\
& 00000001 \\
& 00000010 \\
& 00000011
\end{aligned}
\] & & \[
\begin{aligned}
& 12 \cdot 0 \cdot 9 \cdot 8 \cdot 1 \\
& 12 \cdot 9 \cdot 1 \\
& 12 \cdot 9 \cdot 2 \\
& 12 \cdot 9 \cdot 3
\end{aligned}
\] \\
\hline 004
005
006
007 & \[
\begin{aligned}
& 04 \\
& 05 \\
& 06 \\
& 07
\end{aligned}
\] & \[
\left\lvert\, \begin{array}{ll}
\text { DCBA } & 4 \\
\text { DCBA } & 4 \\
\text { DCBA } & 42 \\
\text { DCBA } & 421
\end{array}\right.
\] & \[
\begin{aligned}
& Z A Z \\
& A Z \\
& S Z
\end{aligned}
\] & D @ & \[
\begin{array}{ll}
\text { D } & 3 \\
\text { E } & 3 \\
\text { F } & 3 \\
\text { G } & 3
\end{array}
\] & \[
\begin{aligned}
& 00000100 \\
& 00000101 \\
& 00000110 \\
& 00000111
\end{aligned}
\] & & \begin{tabular}{l}
12.9.4 \\
12.9 .5 \\
12.9.6 \\
12.9.7
\end{tabular} \\
\hline \[
\begin{aligned}
& 008 \\
& 009 \\
& 010 \\
& 011
\end{aligned}
\] & \[
\begin{aligned}
& 08 \\
& 09 \\
& 0 A \\
& O B
\end{aligned}
\] & \[
\begin{array}{cc}
\hline \text { DCBA8 } & \\
\text { DCBA8 } & 1 \\
\text { CBA8 } & 2 \\
\text { CBA8 } & 21
\end{array}
\] & \[
\begin{aligned}
& \text { MVX } \\
& \text { ED } \\
& \text { ITC }
\end{aligned}
\] & H @ & \(\begin{array}{ll}H & 3 \\ 1 & 3 \\ \text { C } & 1 \\ & 1\end{array}\) & \[
\begin{aligned}
& 00001000 \\
& 00001001 \\
& 00001010 \\
& 00001011
\end{aligned}
\] & & \[
\begin{aligned}
& 12 \cdot 9 \cdot 8 \\
& 12 \cdot 9 \cdot 8 \cdot 1 \\
& 12 \cdot 9 \cdot 8 \cdot 2 \\
& 12 \cdot 9 \cdot 8 \cdot 3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 012 \\
& 013 \\
& 014 \\
& 015
\end{aligned}
\] & \[
\begin{aligned}
& \hline O C \\
& O D \\
& O E \\
& O F
\end{aligned}
\] & \[
\begin{aligned}
& \text { CBA84 } \\
& \text { CBA84 } 1 \\
& \text { CBA842 } \\
& \text { CBA8421 }
\end{aligned}
\] & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} & \(\begin{array}{ll}< & 4 \\ 1 & 4 \\ + & 4 \\ 1 & 4\end{array}\) & \[
\left[\begin{array}{ll}
< & 1 \\
1 & 1 \\
+ & 1 \\
1 & 1
\end{array}\right.
\] & \[
\begin{aligned}
& 00001100 \\
& 000011101 \\
& 00001110 \\
& 00001111
\end{aligned}
\] & & \[
\begin{aligned}
& 12.9 \cdot 8.4 \\
& 12.9 .8 .5 \\
& 12.9 .86 \\
& 12.9 .8 .7
\end{aligned}
\] \\
\hline \begin{tabular}{|l|}
\hline 016 \\
017 \\
018 \\
019 \\
\hline
\end{tabular} & \begin{tabular}{|l|l|}
10 \\
11 \\
12 \\
13
\end{tabular} & \begin{tabular}{|cc} 
C A8 & 2 \\
DCB & 1 \\
DCB & 2 \\
DCB & 21
\end{tabular} & & \begin{tabular}{ll}
8 & 4 \\
\(J\) & \(@\) \\
\(K\) & \(@\) \\
\(L\) & \(@\) \\
\hline
\end{tabular} & \(\begin{array}{ll}8 & 1 \\ j & 3 \\ k & 3 \\ L & 3\end{array}\) & \[
\begin{aligned}
& 00010000 \\
& 00010001 \\
& 00010010 \\
& 00010011
\end{aligned}
\] & & \[
\begin{aligned}
& 1211.9 .8 .1 \\
& 11.91 \\
& 11.9 .2 \\
& 11.9 .3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 020 \\
& 021 \\
& 022 \\
& 023
\end{aligned}
\] & \[
\begin{aligned}
& 14 \\
& 15 \\
& 16 \\
& 17
\end{aligned}
\] & \begin{tabular}{ll} 
DCB & 4 \\
DCB & 4 \\
DCB & 1 \\
DCB & 421
\end{tabular} & \[
\begin{aligned}
& Z A Z \\
& A Z \\
& S Z
\end{aligned}
\] & M @ & \(\begin{array}{ll}M & 3 \\ N & 3 \\ O & 3 \\ P & 3\end{array}\) & \[
\begin{aligned}
& 00010100 \\
& 00010101 \\
& 00010110 \\
& 00010111
\end{aligned}
\] & & \[
\begin{aligned}
& 11.9 .4 \\
& 11.9 .5 \\
& 11.9 .6 \\
& 11.9 .7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 024 \\
& 025 \\
& 026 \\
& 027
\end{aligned}
\] & \[
\begin{aligned}
& 18 \\
& 19 \\
& 1 A \\
& 18
\end{aligned}
\] & \[
\left\lvert\, \begin{array}{rll}
\text { DCB } & 8 & \\
\text { DCB } & 8 & 1 \\
C B & 8 & 2 \\
C B & 8 & 21
\end{array}\right.
\] & \[
\begin{aligned}
& M \vee X \\
& E D \\
& I T C
\end{aligned}
\] & O @ & \(\begin{array}{ll}0 & 3 \\ R & 3 \\ 1 & 1 \\ \$ & 1\end{array}\) & \[
\begin{aligned}
& 00011000 \\
& 00011001 \\
& 00011010 \\
& 00011011
\end{aligned}
\] & & \[
\begin{aligned}
& 11.9 .8 \\
& 11.9 .8 \cdot 1 \\
& 11.9 .8 .2 \\
& 11.9 .8 .3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 028 \\
& 029 \\
& 030 \\
& 031
\end{aligned}
\] & \[
\begin{aligned}
& 1 C \\
& 10 \\
& 1 E \\
& 1 F
\end{aligned}
\] & \begin{tabular}{ll} 
CB & 84 \\
CB & 84 \\
CB & 842 \\
CB & 8421
\end{tabular} & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} & \(\begin{array}{r}-4 \\ 14 \\ \hline 1 \\ \hline\end{array}\) & \(\begin{array}{rr}\cdot & 1 \\ 1 & 1 \\ -1 \\ -1 & 1\end{array}\) & \[
\begin{aligned}
& 000111100 \\
& 000111101 \\
& 000111110 \\
& 000111111
\end{aligned}
\] & & \[
\begin{aligned}
& 11.9 .8 .4 \\
& 11.9 .8 .5 \\
& 11.9 .8 .6 \\
& 11.9 .8 .7
\end{aligned}
\] \\
\hline \[
\begin{array}{r}
32 \\
033 \\
034 \\
035
\end{array}
\] & \[
\begin{aligned}
& 20 \\
& 21 \\
& 22 \\
& 23
\end{aligned}
\] & \(|\)\begin{tabular}{ccc}
\(C B\) & \\
\(C\) & \(A\) & 1 \\
\(D C\) & \(A\) & 2 \\
\(D C\) & \(A\) & 21
\end{tabular} & & \(\left\lvert\, \begin{array}{cc} & 4 \\ & 4 \\ S & \text { (0) } \\ T & \text { @ }\end{array}\right.\) & \(\begin{array}{ll} & 1 \\ \text { C } & 1 \\ S & 3 \\ T & 3\end{array}\) & \[
\begin{aligned}
& 00100000 \\
& 00100001 \\
& 00100010 \\
& 00100011
\end{aligned}
\] & & \[
\begin{aligned}
& 11 \cdot 0.9 \cdot 8 \cdot 1 \\
& 0.9 .1 \\
& 0.9 .2 \\
& 0.93
\end{aligned}
\] \\
\hline 036
037
038
039 & \[
\begin{aligned}
& 24 \\
& 25 \\
& 26 \\
& 27
\end{aligned}
\] & \begin{tabular}{l}
DC A 4 \\
DC A 41 \\
DC A 42 \\
DC A 421
\end{tabular} & \[
\begin{aligned}
& Z A Z \\
& A Z \\
& S Z
\end{aligned}
\] & \(\begin{array}{ll}U & 凶 \\ V & @ \\ W & (n) \\ X & @\end{array}\) & \[
\begin{array}{ll}
u & 3 \\
v & 3 \\
w & 3 \\
x & 3
\end{array}
\] & \[
\begin{aligned}
& 00100100 \\
& 00100101 \\
& 00100110 \\
& 00100111
\end{aligned}
\] & & \[
\begin{aligned}
& 0.9 .4 \\
& 0.9 .5 \\
& 0.9 .6 \\
& 0.9 .7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 340 \\
& 041 \\
& 042 \\
& 043
\end{aligned}
\] & \[
\begin{aligned}
& 28 \\
& 29 \\
& 2 A \\
& 2 B
\end{aligned}
\] & \[
\begin{array}{lll}
\hline O C & A 8 & \\
O C & A 8 & 1 \\
D C B A & \\
C & A 8 & 21
\end{array}
\] & \[
\begin{aligned}
& M \vee X \\
& E O \\
& \text { ITC }
\end{aligned}
\] & \(\left\lvert\, \begin{array}{cc}Y & \\ Z & \omega \\ \} & 0 \\ & 4\end{array}\right.\) & \[
\begin{array}{ll}
y & 3 \\
z & 3 \\
3 & 3
\end{array}
\] & \[
\begin{aligned}
& 00101000 \\
& 00101001 \\
& 00101010 \\
& 00101011
\end{aligned}
\] & & \[
\begin{aligned}
& 0.9 \cdot 8 \\
& 0.9 \cdot 8 \cdot 1 \\
& 0.9 \cdot 8 \cdot 2 \\
& 0.9 \cdot 8 \cdot 3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 044 \\
& 045 \\
& 046 \\
& 7 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2 \mathrm{C} \\
& 2 \mathrm{D} \\
& 2 \mathrm{E} \\
& 2 \mathrm{~F}
\end{aligned}
\] & \[
\begin{array}{ll}
\hline C & \text { A84 } \\
C & \text { A84 } \\
\text { 1 } \\
C & A 842 \\
C & A 8421
\end{array}
\] & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} & \% 4 & \begin{tabular}{l}
\(\%\) \\
\hline
\end{tabular} & \[
\begin{aligned}
& 00101100 \\
& 00101101 \\
& 00101110 \\
& 00101111
\end{aligned}
\] & & \[
\begin{aligned}
& 0.9 .8 \cdot 4 \\
& 0.9 .8-5 \\
& 0.9 .8-6 \\
& 0.9 .8 .7 \\
& \hline
\end{aligned}
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dec } \\
& \text { Va! }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
\text { Hex } \\
\text { Val }
\end{array}\right|
\]} & \multirow[t]{2}{*}{96 Column Card Code DCBA8421} & \multirow[t]{2}{*}{Mnem} & \multicolumn{2}{|l|}{IPL} & \multirow[t]{2}{*}{EBCDIC} & \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{80 Column} \\
\hline & & & & T1T3 & T2T3 & & & \\
\hline \[
\begin{aligned}
& 048 \\
& 049 \\
& 050 \\
& 05,1
\end{aligned}
\] & 30
31
12
12 & \[
\left|\begin{array}{ccc}
1 x & A & \\
1 x & & 1 \\
1 x & 2 \\
1 x & 21
\end{array}\right|
\] & SNS & \(\left\lvert\, \begin{array}{ll}0 & \cdots \\ 1 & \\ 2 & \cdots \\ 3 & \end{array}\right.\) & \(\begin{array}{ll}0 & 3 \\ 1 & 3 \\ 2 & 3 \\ 3 & 3\end{array}\) & \[
\begin{aligned}
& 00110000 \\
& 00110001 \\
& 00110010 \\
& 00110011
\end{aligned}
\] & & \[
\begin{aligned}
& 12.110 .9 .8 .1 \\
& 9.1 \\
& 9.2 \\
& 93
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& \hline 05,2 \\
& 05,3 \\
& 05,4 \\
& 05,5
\end{aligned}
\] & \[
\begin{aligned}
& 34 \\
& 35 \\
& 36 \\
& 17
\end{aligned}
\] & \[
\begin{array}{|ll|}
\hline 1 x & 4 \\
1 x & 41 \\
1 x & 42 \\
1 x & 421
\end{array}
\] & S T & \(\begin{array}{cc}4 & \cdots \\ 5 & \\ 6 & \cdots \\ 7 & \end{array}\) & \(\begin{array}{ll}4 & 3 \\ 5 & 3 \\ 6 & 3 \\ 7 & 3\end{array}\) & \[
\begin{aligned}
& 00110100 \\
& 00110101 \\
& 00110110 \\
& 00110111
\end{aligned}
\] & & \[
\begin{aligned}
& 9.4 \\
& 9.5 \\
& 9.6 \\
& 9.7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 056 \\
& 05,7 \\
& 058 \\
& 0,99
\end{aligned}
\] & \[
\left[\begin{array}{l}
38 \\
39 \\
3 A \\
38
\end{array}\right]
\] & \[
\left|\begin{array}{ccc}
0 c & 8 & \\
D C & 8 & 1 \\
C & 8 & 2 \\
C & 8 & 21
\end{array}\right|
\] & \[
\begin{aligned}
& \text { TBN } \\
& \text { TBF } \\
& \text { SBN } \\
& \text { SBF }
\end{aligned}
\] & \(\begin{array}{cc}8 & 6 \\ 9 & \\ : & 4 \\ : & 4\end{array}\) & \(\begin{array}{r}8 \\ 9 \\ 9 \\ \\ \\ =1 \\ \hline\end{array}\) & \begin{tabular}{l}
00111000 \\
00111001 \\
00111010 \\
00111011
\end{tabular} & & \[
\begin{aligned}
& 9.8 \\
& 9.81 \\
& 9.82 \\
& 9.8 .3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 060 \\
& 061 \\
& 062 \\
& 063
\end{aligned}
\] & \[
\begin{aligned}
& 3 \mathrm{C} \\
& 3 \mathrm{D} \\
& 3 \mathrm{E} \\
& 3 \mathrm{~F}
\end{aligned}
\] & \begin{tabular}{ll}
C & 84 \\
C & 841 \\
C & 842 \\
C & 8421
\end{tabular} & \[
\begin{aligned}
& \mathrm{MVI} \\
& \mathrm{CLI}
\end{aligned}
\] & (1) \(\begin{array}{r}4 \\ 4 \\ 4 \\ 4 \\ 4\end{array}\) &  & \begin{tabular}{l}
00111100 \\
00111101 \\
00111110 \\
00111111
\end{tabular} & & \[
\begin{aligned}
& 9.8 .4 \\
& 9.8 .5 \\
& 9.8 .6 \\
& 9.8 .7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 064 \\
& 065 \\
& 066 \\
& 067
\end{aligned}
\] & \[
\begin{aligned}
& 40 \\
& 41 \\
& 42 \\
& 43
\end{aligned}
\] & \begin{tabular}{lll}
\multicolumn{1}{l}{\begin{tabular}{l} 
None \\
D
\end{tabular}} & \\
BA & 1 \\
\(D\) & \(B A\) & 2 \\
\(D\) & \(B A\) & 21
\end{tabular} & & A 8
B 8
C 8 & \(\begin{array}{ll}A & 2 \\ 8 & 2 \\ C & 2\end{array}\) & \[
\begin{aligned}
& 01000000 \\
& 01000001 \\
& 01000010 \\
& 01000011
\end{aligned}
\] & Space & No punches
\[
\begin{aligned}
& 12.0 .91 \\
& 12 \cdot 0.9 \cdot 2 \\
& 12.0 .9 .3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 068 \\
& 069 \\
& 070 \\
& 071
\end{aligned}
\] & \[
\begin{aligned}
& 44 \\
& 45 \\
& 46 \\
& 47
\end{aligned}
\] & \[
\begin{array}{llll}
D & B A & 4 \\
D & B A & 4 & 1 \\
D & B A & 42 \\
D & B A & 42 & 1
\end{array}
\] & \begin{tabular}{l}
\[
2 A Z
\] \\
AZ \\
SZ
\end{tabular} & \(\begin{array}{ll}\text { D } & 8 \\ \text { E } & 8 \\ \text { F } & 8 \\ \text { i. } & 8\end{array}\) & \[
\begin{array}{ll}
D & 2 \\
E & 2 \\
F & 2 \\
G & 2
\end{array}
\] & \[
\begin{aligned}
& 01000100 \\
& 01000101 \\
& 01000110 \\
& 01000111
\end{aligned}
\] & & \[
\begin{aligned}
& 12 \cdot 0 \cdot 9 \cdot 4 \\
& 12 \cdot 0 \cdot 9 \cdot 5 \\
& 12 \cdot 0 \cdot 9 \cdot 6 \\
& 12 \cdot 0 \cdot 9 \cdot 7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 072 \\
& 073 \\
& 074 \\
& 075
\end{aligned}
\] & \[
\begin{aligned}
& 48 \\
& 49 \\
& 4 \mathrm{~A} \\
& 48
\end{aligned}
\] & \[
\begin{array}{lll}
D & B A B & \\
0 & B A B & 1 \\
& B A 8 & 2 \\
& B A 8 & 21
\end{array}
\] & \[
\begin{aligned}
& M V X \\
& \text { ED } \\
& \text { ITC }
\end{aligned}
\] & \(H\)
1
1
\(C\)
\(C\) & \(\begin{array}{ll}H & 2 \\ 1 & 2 \\ C & \end{array}\) & \[
\begin{aligned}
& 01001000 \\
& 01001001 \\
& 01001010 \\
& 01001011
\end{aligned}
\] & \(\xi\) & \[
\begin{aligned}
& 12 \cdot 0 \cdot 9 \cdot 8 \\
& 12 \cdot 8 \cdot 1 \\
& 12 \cdot 8 \cdot 2 \\
& 12 \cdot 8 \cdot 3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 076 \\
& 077 \\
& 078 \\
& 079
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline 4 C \\
40 \\
4 E \\
4 F
\end{array}
\] & \[
\begin{aligned}
& \text { BA84 } \\
& \text { BA84 } \\
& \text { BA842 } \\
& \text { BA842 }
\end{aligned}
\] & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} &  &  & \[
\begin{aligned}
& 01001100 \\
& 01001101 \\
& 01001110 \\
& 01001111
\end{aligned}
\] &  & \[
\begin{aligned}
& 12.8-4 \\
& 12.8 .5 \\
& 12.8-6 \\
& 12.8 .7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 080 \\
& 081 \\
& 082 \\
& 083
\end{aligned}
\] & \[
\begin{aligned}
& 50 \\
& 51 \\
& 52 \\
& 53
\end{aligned}
\] & \begin{tabular}{llll} 
& \multicolumn{3}{c}{ A8 } \\
D & B & 1 \\
\(D\) & 8 & 2 \\
\(D\) & \(B\) & 21
\end{tabular} & & \(\begin{array}{ll}\& & \\ J & 8 \\ \mathrm{~K} & 8 \\ \mathrm{~L} & 8\end{array}\) & \(\begin{array}{ll}8 & \\ j & 2 \\ \mathrm{~K} & 2 \\ \mathrm{~L} & 2\end{array}\) & \[
\begin{aligned}
& 01010000 \\
& 01010001 \\
& 01010010 \\
& 01010011
\end{aligned}
\] & \& & \[
\begin{aligned}
& 12 \\
& 12 \cdot 11 \cdot 9 \cdot 1 \\
& 12 \cdot 11 \cdot 9 \cdot 2 \\
& 12 \cdot 11 \cdot 9 \cdot 3
\end{aligned}
\] \\
\hline \begin{tabular}{l}
084 \\
085 \\
086 \\
087
\end{tabular} & \[
\begin{aligned}
& 54 \\
& 55 \\
& 56 \\
& 57
\end{aligned}
\] & \begin{tabular}{lll}
\(D\) & \(B\) & 4 \\
\(D\) & \(B\) & 4 \\
\(D\) & \(B\) & 42 \\
\(D\) & \(B\) & 421
\end{tabular} & \[
\begin{aligned}
& Z A Z \\
& A Z \\
& S Z
\end{aligned}
\] & \[
\begin{array}{cc}
M & 8 \\
N & 8 \\
0 & 8 \\
P & 8
\end{array}
\] & \begin{tabular}{l}
M 2 \\
N 2 \\
02 \\
P 2
\end{tabular} & \[
\begin{aligned}
& 01010100 \\
& 01010101 \\
& 01010110 \\
& 01010111
\end{aligned}
\] & & \[
\begin{aligned}
& 12.11 .9 .4 \\
& 12.11 .9 .5 \\
& 12.11 .9-6 \\
& 12.11 .9 .7
\end{aligned}
\] \\
\hline \begin{tabular}{l}
088 \\
089 \\
090 \\
091
\end{tabular} & \[
\begin{aligned}
& 58 \\
& 59 \\
& 5 \mathrm{~A} \\
& 5 \mathrm{~B}
\end{aligned}
\] & \[
\left.\begin{array}{cccc}
\mathrm{D} & \mathrm{~B} & 8 & \\
\mathrm{D} & \mathrm{~B} & 8 & 1 \\
& \mathrm{~B} & 8 & 2 \\
& \mathrm{~B} & 8 & 21
\end{array} \right\rvert\,
\] & \[
\begin{aligned}
& M \vee X \\
& \text { ED } \\
& \text { ITC }
\end{aligned}
\] & \[
\begin{array}{ll}
0 & 8 \\
R & 8 \\
1 \\
\$ &
\end{array}
\] & \[
\begin{array}{ll}
\mathrm{O} & 2 \\
\text { R } & 2 \\
1 & \\
\$ &
\end{array}
\] & \[
\begin{aligned}
& 01011000 \\
& 01011001 \\
& 01011010 \\
& 01011011
\end{aligned}
\] & \$ & \[
\begin{aligned}
& 12.11 .9 .8 \\
& 11.8 .1 \\
& 11.8-2 \\
& 11-8.3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 092 \\
& 093 \\
& 094 \\
& 095
\end{aligned}
\] & \[
\begin{aligned}
& 5 C \\
& 50 \\
& 5 E \\
& 5 F
\end{aligned}
\] & \begin{tabular}{lll}
\(B\) & 84 \\
\(B\) & 84 & 1 \\
\(B\) & 842 \\
\(B\) & 8421
\end{tabular} & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} & \(\checkmark\) & \(\urcorner\) & \[
\begin{aligned}
& 01011100 \\
& 01011101 \\
& 01011110 \\
& 01011111
\end{aligned}
\] & 1 & \[
\begin{aligned}
& 11.8 .4 \\
& 11.8 .5 \\
& 11.8 .6 \\
& 11.8 .7
\end{aligned}
\] \\
\hline
\end{tabular}


\section*{CODE CONVERSION CHART (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Dec \\
Val
\end{tabular}} & \multirow[t]{2}{*}{\[
\left|\begin{array}{ll}
\mathrm{Hex} \\
\mathrm{Val}
\end{array}\right|
\]} & \multirow[t]{2}{*}{96 Column Card Code DCBA8421} & \multirow[t]{2}{*}{Mnem} & \multicolumn{2}{|l|}{IPL} & \multirow[t]{2}{*}{EBCDIC} & \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{80-Column} \\
\hline & & & & T1T3 & T2T3 & & & \\
\hline \[
\begin{aligned}
& 096 \\
& 097 \\
& 098 \\
& 099
\end{aligned}
\] & \[
\begin{aligned}
& 60 \\
& 61 \\
& 62 \\
& 63
\end{aligned}
\] & \[
\begin{array}{ccc} 
& B & \\
& A & 1 \\
0 & A & 2 \\
D & A & 21
\end{array}
\] & & \(\begin{array}{ll}1 \\ S & 8 \\ \text { T } & 8\end{array}\) & \(\begin{array}{ll}1 & \\ \text { S } & 2 \\ \text { T } & 2\end{array}\) & \[
\begin{aligned}
& 01100000 \\
& 01100001 \\
& 01100010 \\
& 01100011
\end{aligned}
\] & - & \[
\begin{aligned}
& 11 \\
& 0 \cdot 1 \\
& 11 \cdot 0 \cdot 9 \cdot 2 \\
& 11 \cdot 0 \cdot 9 \cdot 3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 100 \\
& 101 \\
& 102 \\
& 103
\end{aligned}
\] & \[
\begin{aligned}
& 64 \\
& 65 \\
& 66 \\
& 67
\end{aligned}
\] & \begin{tabular}{llll}
\(D\) & \(A\) & 4 \\
\(D\) & \(A\) & 4 & 1 \\
\(D\) & \(A\) & 42 \\
\(D\) & \(A\) & 42 & 1
\end{tabular} & \[
\begin{aligned}
& Z A Z \\
& A Z \\
& S Z
\end{aligned}
\] & \[
\begin{array}{rr}
U & 8 \\
V & 8 \\
W & 8 \\
\times 8
\end{array}
\] & \[
\begin{array}{ll}
u & 2 \\
v & 2 \\
w & 2 \\
x & 2
\end{array}
\] & \[
\begin{aligned}
& 01100100 \\
& 01100101 \\
& 01100110 \\
& 01100111
\end{aligned}
\] & & \[
\begin{aligned}
& 11.0 .9 .4 \\
& 11.0 .9 .5 \\
& 11.0 .9 .6 \\
& 11.0 .9 .7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 104 \\
& 105 \\
& 10 € \\
& 107
\end{aligned}
\] & \[
\begin{aligned}
& 68 \\
& 69 \\
& 6 A \\
& 6 B
\end{aligned}
\] & \[
\left|\begin{array}{cll}
D & A 8 & \\
D & A 8 & 1 \\
D & B A & \\
& A 8 & 21
\end{array}\right|
\] & \[
\begin{aligned}
& M V X \\
& \text { ED } \\
& \text { ITC }
\end{aligned}
\] & \(\begin{array}{ll}Y & 8 \\ 2 & 8 \\ 3 & 8\end{array}\) & \(\begin{array}{ll}Y & 2 \\ z & 2 \\ 3 & 2\end{array}\) & \[
\begin{aligned}
& 01101000 \\
& 01101001 \\
& 01101010 \\
& 01101011
\end{aligned}
\] & : & \[
\begin{aligned}
& 11 \cdot 0 \cdot 9 \cdot 8 \\
& 0.8 \cdot 1 \\
& 12 \cdot 11 \\
& 0.8 \cdot 3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 108 \\
& 109 \\
& 11 c \\
& 111
\end{aligned}
\] & \[
\left.\begin{aligned}
& 6 C \\
& 6 D \\
& 6 E \\
& 6 F
\end{aligned} \right\rvert\,
\] & \[
\begin{aligned}
& \text { A84 } \\
& \text { A84 } \\
& \text { A842 } \\
& \text { A8421 }
\end{aligned}
\] & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} & \[
\begin{aligned}
& \% \\
& 3 \\
& 3
\end{aligned}
\] & \begin{tabular}{l}
\% \\
\(>\) \\
,
\end{tabular} & \begin{tabular}{l}
01101100 \\
01101101 \\
01101110 \\
01101111
\end{tabular} & \[
\%
\] & \[
\begin{aligned}
& 0.8 .4 \\
& 0.8 .5 \\
& 0.8 .6 \\
& 0.8 .7
\end{aligned}
\] \\
\hline 112
113
114
115 & \[
\begin{aligned}
& 70 \\
& 71 \\
& 72 \\
& 73
\end{aligned}
\] & \[
\left|\begin{array}{lll}
D & A & \\
D & & 1 \\
D & & 2 \\
D & & 21
\end{array}\right|
\] & \[
\begin{aligned}
& \text { SNS } \\
& \text { LIO }
\end{aligned}
\] & \(\begin{array}{ll}0 & 8 \\ 1 & 8 \\ 2 & 8 \\ 3 & 8\end{array}\) & \(\begin{array}{ll}0 & 2 \\ 1 & 2 \\ 2 & 2 \\ 3 & 2\end{array}\) & \begin{tabular}{l}
01110000 \\
01110001 \\
01110 C 10 \\
01110011
\end{tabular} & & \[
\begin{aligned}
& 12 \cdot 11.0 \\
& 12 \cdot 11 \cdot 0.9 \cdot 1 \\
& 12 \cdot 11.0 .9 .2 \\
& 12 \cdot 11
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 116 \\
& 117 \\
& 118 \\
& 119
\end{aligned}
\] & \[
\begin{aligned}
& 74 \\
& 75 \\
& 76 \\
& 77
\end{aligned}
\] & \begin{tabular}{ll}
D & 4 \\
\(D\) & 41 \\
\(D\) & 42 \\
\(D\) & 421
\end{tabular} & \[
\begin{aligned}
& \mathrm{ST} \\
& \mathrm{~L} \\
& \mathrm{~A}
\end{aligned}
\] & \(\begin{array}{ll}4 & 8 \\ 5 & 8 \\ 6 & 8 \\ 7 & 8\end{array}\) & \(\begin{array}{ll}4 & 2 \\ 5 & 2 \\ 6 & 2 \\ 7 & 2\end{array}\) & \begin{tabular}{l}
01110100 \\
01110101 \\
01110110 \\
01110111
\end{tabular} & & \[
\begin{aligned}
& 12 \cdot 11 \cdot 0 \cdot 9 \cdot 4 \\
& 12 \cdot 11 \cdot 0 \cdot 9 \cdot 5 \\
& 12 \cdot 11 \cdot 0 \cdot 9 \cdot 6 \\
& 12 \cdot 11 \cdot 0 \cdot 9 \cdot 7
\end{aligned}
\] \\
\hline 120
121
122
123 & \[
\begin{array}{|c|c|}
\hline 78 \\
79 \\
7 A \\
78 \\
\hline
\end{array}
\] & \(\begin{array}{llll}D & 8 & \\ D & 8 & 1 \\ & 8 & 2 \\ & 8 & 21\end{array}\) & \begin{tabular}{l}
TBN \\
TBF \\
SBN \\
SBF
\end{tabular} &  & \[
\begin{array}{ll}
8 & 2 \\
9 & 2
\end{array}
\]
\[
=
\] & 01111000 01111001 01111010 01111011 & \(=\) & \[
\begin{aligned}
& 12 \cdot 11 \cdot 0 \cdot 9 \cdot 8 \\
& 8 \cdot 1 \\
& 8 \cdot 2 \\
& 8 \cdot 3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 124 \\
& 125 \\
& 126 \\
& 127
\end{aligned}
\] & \[
\begin{array}{|l|l|}
\hline 7 & 7 \mathrm{C} \\
\hline & 70 \\
\hline 6 & 7 \mathrm{E} \\
7 & 7 \mathrm{~F} \\
\hline
\end{array}
\] & 84
84
842
8421 & \[
\begin{aligned}
& \mathrm{MVI} \\
& \mathrm{CLI}
\end{aligned}
\] & (2) & @ & \[
\begin{aligned}
& 0111111100 \\
& 0111111101 \\
& 0111111110 \\
& 0 \\
& 0
\end{aligned} 1111111111
\] & & \[
\begin{aligned}
& 8.4 \\
& 8.5 \\
& 8.6 \\
& 8.7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 128 \\
& 129 \\
& 130 \\
& 131
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 80 \\
81 \\
82 \\
\hline 83
\end{array}
\] & \[
\begin{array}{ll}
\text { DC } & \\
\text { CBA } & 1 \\
\text { CBA } & 2 \\
\text { CBA } & 21
\end{array}
\] & & \(\begin{array}{ll} & \text { @ } \\ A & 4 \\ B & 4 \\ C & 4\end{array}\) & \(\begin{array}{ll} & 3 \\ \text { A } & 1 \\ \text { B } & 1 \\ \text { C } & 1\end{array}\) & \[
\begin{aligned}
& 10000000 \\
& 10000001 \\
& 10000010 \\
& 10000011
\end{aligned}
\] & a
b
c & \[
\begin{aligned}
& 12.0 .8 \cdot 1 \\
& 12.0 .1 \\
& 12.0 .2 \\
& 12.0 .3
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 132 \\
& 133 \\
& 134 \\
& 135
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 84 \\
85 \\
86 \\
87
\end{array}
\] & \[
\begin{array}{lll}
\text { CBA } & 4 \\
\text { CBA } & 4 & 1 \\
\text { CBA } & 42 \\
\text { CBA } & 421
\end{array}
\] & \[
\begin{aligned}
& \mathrm{ZAZ} \\
& \mathrm{AZ} \\
& \mathrm{SZ}
\end{aligned}
\] & \(\begin{array}{ll}\text { D } & 4 \\ \text { E } & 4 \\ \text { F } & 4 \\ \text { G } & 4\end{array}\) & \[
\begin{array}{ll}
\text { D } & 1 \\
\text { E } & 1 \\
\text { F } & 1 \\
\text { G } & 1
\end{array}
\] & \[
\begin{aligned}
& 10000100 \\
& 10000101 \\
& 10000110 \\
& 10000111
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{d} \\
& \mathrm{e} \\
& \mathrm{f} \\
& \mathrm{~g}
\end{aligned}
\] & \[
\begin{aligned}
& 12.0 .4 \\
& 12.0 .5 \\
& 12.0 .6 \\
& 12.0 .7
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 136 \\
& 137 \\
& 138 \\
& 139
\end{aligned}
\] & \[
\begin{array}{|l|}
\hline 88 \\
89 \\
8 A \\
8 B
\end{array}
\] & CBAB
CBA8
DCBA8 2
DCBA8 21 & \[
\begin{aligned}
& M \vee X \\
& E D \\
& I T C
\end{aligned}
\] & \(\begin{array}{cc}H & 4 \\ 1 & 4 \\ c & @ \\ & @\end{array}\) & \[
\begin{array}{ll}
H & 1 \\
1 & 1 \\
\mathrm{c} & 3 \\
& 3
\end{array}
\] & \[
\begin{aligned}
& 10001000 \\
& 10001001 \\
& 10001010 \\
& 10001011
\end{aligned}
\] & h & \[
\begin{aligned}
& 12 \cdot 0.8 \\
& 12 \cdot 0 \cdot 9 \\
& 12 \cdot 0 \cdot 8 \cdot 2 \\
& 12 \cdot 0 \cdot 8 \cdot 3
\end{aligned}
\] \\
\hline 140
141
142
143 & \[
\begin{array}{|l|l|}
\hline & 8 \mathrm{C} \\
1 & 80 \\
2 & 8 \mathrm{E} \\
3 & 8 \mathrm{~F}
\end{array}
\] & \[
\begin{aligned}
& \text { DCBA84 } \\
& \text { DCBA84 } \\
& \text { DCBA842 } \\
& \text { DCBA842 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { MVC } \\
& \text { CLC } \\
& \text { ALC } \\
& \text { SLC }
\end{aligned}
\] & < @ & \[
\begin{aligned}
& <3 \\
& 13 \\
& +3 \\
& 13
\end{aligned}
\] & \[
\begin{aligned}
& 10001100 \\
& 10001101 \\
& 10001110 \\
& 10001111
\end{aligned}
\] & \[
\leqslant
\] & \[
\begin{aligned}
& 12.0 .8 .4 \\
& 12.0 .8 .5 \\
& 12.0 .86 \\
& 12.0 .8 .7
\end{aligned}
\] \\
\hline
\end{tabular}
* Symbols for Dec Vol 129 through 143 are not handled by six bit devices.

Note 1: Symbols printed by System/3 devices equipped with TN cherecter sets. \(8 D\) and 8 E are superscript characters.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { Dec } \\
& \text { Val }
\end{aligned}
\]} & \multirow[t]{2}{*}{\[
\left\lvert\, \begin{aligned}
& H e x \\
& V_{\text {al }}
\end{aligned}\right.
\]} & \multirow[t]{2}{*}{36 Column Card Code DCBAB421} & \multirow[t]{2}{*}{Mriem} & \multicolumn{2}{|l|}{\(1 P_{L}\)} & \multirow[t]{2}{*}{EBCDIC} & \multirow[t]{2}{*}{Symbor} & \multirow[t]{2}{*}{80 Cozamm} \\
\hline & & & & T1T3 & T2T3 & & & \\
\hline \[
\begin{aligned}
& 144 \\
& 14 t_{3} \\
& 14 t_{3} \\
& 14 y
\end{aligned}
\] & 90
91
97
93 & \begin{tabular}{cc} 
CBA & \\
CB & 1 \\
CB & 2 \\
(B & 21
\end{tabular} & & | \(\begin{array}{rl}3 & 4 \\ j & 4 \\ \text { r } & 4 \\ 1 & 4\end{array}\) & \(\begin{array}{ll}\} & 1 \\ j & 1 \\ k & 1 \\ 1 & 1\end{array}\) & \[
\begin{aligned}
& 10010000 \\
& 10010001 \\
& 10010010 \\
& 10010011
\end{aligned}
\] & k & \[
\begin{array}{lllll}
12 & 1 & 1 & 8 & 1 \\
12 & 1 & 1 & 1 \\
12 & 1 & 1 & 2 \\
12 & 1 & 1 & 3
\end{array}
\] \\
\hline \[
\begin{aligned}
& 148 \\
& 145 \\
& 150 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& 94 \\
& 95 \\
& 96 \\
& y
\end{aligned}
\] & \[
\begin{array}{ll}
C B & 4 \\
C H & 4 \\
C B & 42 \\
C B & 421
\end{array}
\] & \[
\begin{aligned}
& \text { TAI } \\
& A I \\
& S I
\end{aligned}
\] & \(\begin{array}{cc}M & 4 \\ N & 4 \\ O & 4 \\ P & 4\end{array}\) & \(\begin{array}{cc}M & 1 \\ N & 1 \\ U & 1 \\ F & 1\end{array}\) & \[
\begin{aligned}
& 10010100 \\
& 10010101 \\
& 10010110 \\
& 10010111
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{m} \\
& 1 \\
& 0 \\
& 0 \\
& 11
\end{aligned}
\] & \[
\begin{array}{lllll}
12 & 1 & 1 & 4 \\
12 & 1 & 1 & 5 \\
12 & 1 & 1 & 6 \\
12 & 1 & 1 & 7
\end{array}
\] \\
\hline \[
\begin{aligned}
& 15,5 \\
& 15,3 \\
& 154 \\
& 15,5
\end{aligned}
\] & \[
\begin{aligned}
& 98 \\
& 99 \\
& 9 A \\
& 7 H
\end{aligned}
\] & \[
\begin{array}{cc}
\text { CH } & 8 \\
\text { CH } & 8 \\
\text { OCB } & 8 \\
\text { OCB } & 8 \\
\text { O } & 21
\end{array}
\] & \[
\begin{aligned}
& M \vee x \\
& E O \\
& \text { TTC }
\end{aligned}
\] & (1) 4 & \(\begin{array}{ll}0 & 1 \\ 1 & 1 \\ 1 & 3 \\ 5 & 3\end{array}\) & \[
\begin{aligned}
& 10011000 \\
& 10011001 \\
& 10011010 \\
& 10011011
\end{aligned}
\] & 4 & \[
\begin{array}{llll}
12 & 11 & 8 \\
12 & 1 & 1 & 9 \\
12 & 11 & 8 & 2 \\
12 & 11 & 8 & 3
\end{array}
\] \\
\hline \[
\begin{aligned}
& 156 \\
& 157 \\
& 158 \\
& 159
\end{aligned}
\] & \[
\begin{aligned}
& 9 \mathrm{C} \\
& 96 \\
& 96 \\
& 9 F
\end{aligned}
\] &  & \begin{tabular}{l}
MVC \\
CLC \\
ALC \\
SLC
\end{tabular} &  & 3
+3
3
\(7 \quad 3\) & \[
\begin{aligned}
& 10011100 \\
& 10011101 \\
& 10011110 \\
& 10011111
\end{aligned}
\] & : & \[
\begin{array}{lllll}
12 & 11 & 8 & 4 \\
12 & 11 & 8 & 5 \\
12 & 11 & 8 & 6 \\
12 & 11 & 8
\end{array}
\] \\
\hline \[
\begin{aligned}
& 160 \\
& 161 \\
& 162 \\
& 163
\end{aligned}
\] & \[
\begin{aligned}
& A_{0} \\
& A_{1} \\
& A_{2} \\
& A_{3}
\end{aligned}
\] & \[
\left\{\begin{array}{rll}
O C & B & \\
O C & A & 1 \\
C & A & 2 \\
C & A & 21
\end{array}\right.
\] & & Cla & \begin{tabular}{ll} 
& 3 \\
& 3 \\
5 & 1 \\
\hline
\end{tabular} & \[
\begin{aligned}
& 10100000 \\
& 10100001 \\
& 10100010 \\
& 10100011
\end{aligned}
\] & 1 & \[
\begin{aligned}
& 11081 \\
& 1101 \\
& 1102 \\
& 1103
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 164 \\
& 165 \\
& 166 \\
& 167
\end{aligned}
\] & A4
A 5
A6
A 7 & \[
\begin{array}{llll}
C & A & 4 \\
C & A & 4 & 1 \\
C & A & 42 \\
C & A & 42 & 1
\end{array}
\] & \[
\begin{aligned}
& Z \mathrm{~A} Z \\
& \mathrm{AZ} \\
& \mathrm{~S} Z
\end{aligned}
\] & \(\begin{array}{cc}11 & 4 \\ V & 4 \\ W & 4 \\ \times & 4\end{array}\) & \(\begin{array}{cc}u & 1 \\ V & 1 \\ W & 1 \\ \times & 1\end{array}\) & \[
\begin{aligned}
& 10100100 \\
& 10100101 \\
& 10100110 \\
& 10100111
\end{aligned}
\] & \(w\) & \[
\begin{aligned}
& 1104 \\
& 1105 \\
& 1106 \\
& 1107
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 168 \\
& 169 \\
& 170 \\
& 171
\end{aligned}
\] & \[
\begin{aligned}
& A 8 \\
& A 9 \\
& A A \\
& A B
\end{aligned}
\] & \(\begin{array}{ccc}C & 48 & \\ \text { C } & 48 & 1 \\ D C & 48 & 2 \\ D C & 48 & 21\end{array}\) & \[
\begin{aligned}
& M \vee X \\
& E D \\
& \text { TOC }
\end{aligned}
\] & \(\begin{array}{cc}y & 4 \\ Z & 4 \\ 8 & \\ 8 & \\ & \\ & v\end{array}\) & \(\begin{array}{ll}\gamma & 1 \\ z & 1 \\ 8 & 3 \\ & 3\end{array}\) & \[
\begin{aligned}
& 10101000 \\
& 10101001 \\
& 10101010 \\
& 10101011
\end{aligned}
\] & \% & \[
\begin{aligned}
& 1108 \\
& 1109 \\
& 110.82 \\
& 110.83
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 172 \\
& 113 \\
& 114 \\
& 175
\end{aligned}
\] & \[
\begin{aligned}
& A C \\
& A D \\
& A E \\
& A F
\end{aligned}
\] & \begin{tabular}{l}
D( A84 \\
DC A84 1 \\
OC \(A 842\) \\
DC AB421
\end{tabular} & \begin{tabular}{l}
MVO Cl C \\
ALC \\
SLC
\end{tabular} &  & 3
\(\cdots 3\)
\(\cdots 3\)
-3 & \[
\begin{aligned}
& 10101100 \\
& 10101101 \\
& 10101110 \\
& 10101111
\end{aligned}
\] & 1 & \[
\begin{aligned}
& 11084 \\
& 11085 \\
& 11086 \\
& 11087
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 176 \\
& 177 \\
& 178 \\
& 179
\end{aligned}
\] & \[
\begin{aligned}
& B 0 \\
& B 1 \\
& 82 \\
& 83
\end{aligned}
\] & \begin{tabular}{cc}
\(C\) & \\
\(C\) & 1 \\
\(C\) & 2 \\
\(C\) & 21
\end{tabular} & SNS
LIO & \(\begin{array}{ll}0 & 4 \\ 1 & 4 \\ 2 & 4 \\ 3 & 4\end{array}\) & \[
\begin{array}{ll}
0 & 1 \\
1 & 1 \\
2 & 1 \\
3 & 1
\end{array}
\] & \[
\begin{aligned}
& 10110000 \\
& 10110001 \\
& 10110010 \\
& 10110011
\end{aligned}
\] & I & \[
\begin{aligned}
& 12 \cdot 11.0 .8 \cdot 1 \\
& 12 \cdot 11.0 .1 \\
& 12.11 .0 .2 \\
& 12.11
\end{aligned}
\] \\
\hline \[
\begin{aligned}
& 180 \\
& 181 \\
& 182 \\
& 183
\end{aligned}
\] & \[
\begin{aligned}
& 84 \\
& 85 \\
& 86 \\
& 13
\end{aligned}
\] & \begin{tabular}{ll} 
C & 4 \\
\(C\) & 41 \\
C & 42 \\
C & 421
\end{tabular} & \[
\begin{aligned}
& S T \\
& L \\
& A
\end{aligned}
\] & \(\begin{array}{ll}4 & 4 \\ 5 & 4 \\ 6 & 4 \\ 7 & 4\end{array}\) & \[
\begin{array}{ll}
4 & 1 \\
5 & 1 \\
6 & 1 \\
7 & 1
\end{array}
\] & \[
\begin{aligned}
& 10110100 \\
& 10110101 \\
& 10110110 \\
& 10110111
\end{aligned}
\] & \[
\begin{aligned}
& 4 \\
& 5
\end{aligned}
\] & \[
\begin{aligned}
& 12
\end{aligned} \cdot 1110.4
\] \\
\hline \[
\begin{aligned}
& 184 \\
& 185 \\
& 186 \\
& 187
\end{aligned}
\] & \[
\begin{aligned}
& B 8 \\
& B 9 \\
& B A \\
& B B
\end{aligned}
\] & \[
\left|\begin{array}{rll}
\mathrm{C} & 8 & \\
\mathrm{C} & 8 & 1 \\
\mathrm{DC} & 8 & 2 \\
\mathrm{DC} & 8 & 21
\end{array}\right|
\] & \begin{tabular}{l}
TBN \\
TBF \\
SBN \\
SBF
\end{tabular} & \begin{tabular}{cc}
8 & 4 \\
9 & 4 \\
\\
\hline
\end{tabular} & \[
\begin{array}{ll}
8 & 1 \\
9 & 1 \\
& 3 \\
: & 3
\end{array}
\] & \[
\begin{aligned}
& 10111000 \\
& 10111001 \\
& 10111010 \\
& 10111011
\end{aligned}
\] & - &  \\
\hline 188
189
190
191 & \[
\begin{aligned}
& B C \\
& B D \\
& B E \\
& B F
\end{aligned}
\] & \(\left\lvert\, \begin{array}{ll}\text { DC } & 84 \\ D C & 841 \\ D C & 842 \\ D C & 8421\end{array}\right.\) & \[
\begin{aligned}
& \mathrm{MVI} \\
& \mathrm{CLI}
\end{aligned}
\] & \begin{tabular}{rr} 
(1) @ \\
\\
@ \\
@ \\
@ \\
\hline
\end{tabular} & (a) \(\begin{array}{r} \\ \\ 3 \\ =3 \\ \therefore \quad 3\end{array}\) & \[
\begin{aligned}
& 10111100 \\
& 10111101 \\
& 10111110 \\
& 10111111
\end{aligned}
\] & \[
1
\] & \[
\begin{aligned}
& 1211 \\
& 12.11 \\
& 12.0 .8 .5 \\
& 12 \\
& 12 \\
& 12
\end{aligned} 110.08 .87
\] \\
\hline
\end{tabular}
- These characters are not handled by six bit devices

Note 1: Symbols printed by System/3 devices equipped with TN character sets. 9D, A0, and B0 through B9 are superscript characters

\section*{CODE CONVERSION CHART (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\[
\begin{array}{|l|}
\hline \mathrm{Dec} \\
\mathrm{Val}
\end{array}
\]} & \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
\text { Hex } \\
\text { Val }
\end{array}\right|
\]} & \multirow[t]{2}{*}{96 -Column Card Code DCBA8421} & \multirow[t]{2}{*}{Mnem} & \multicolumn{2}{|r|}{IPL} & \multirow[t]{2}{*}{EBCDIC} & \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{80. Column} \\
\hline & & & & \multicolumn{2}{|l|}{T1T3 T2T3} & & & \\
\hline 192 & co & D & BC & B & 2 & 11000000 & & 12.0 \\
\hline 193 & C1 & BA 1 & tio & A & A & 11000001 & A & 12.1 \\
\hline 194 & C2 & BA 2 & LA & B & B & 11000010 & B & 12.2 \\
\hline 195 & C3 & BA 21 & & c & C & 11000011 & c & 12.3 \\
\hline 196 & C4 & BA 4 & & D & D & 11000100 & D & 12.4 \\
\hline 197 & C5 & BA 411 & & E & E & 11000101 & E & :2.5 \\
\hline 198 & C6 & BA 42 & & F & F & 11000110 & F & 12.6 \\
\hline 199 & C7 & BA 421 & & G & G & 11000111 & G & 12.7 \\
\hline 200 & C8 & BAB & & H & H & 11001000 & H & 12.8 \\
\hline 201 & C9 & BAB 1 & & & 1 & 11001001 & 1 & 12.9 \\
\hline 202 & CA & D BA8 2 & & ¢ 8 & ¢ 2 & 11001010 & - & 12.0.9.8.2 \\
\hline 203 & CB & D BA8 21 & & 8 & 2 & 11001011 & & 12.0-9.8.3 \\
\hline 204 & CC & D BA84 & & < 8 & \(<2\) & 11001100 & & 12.0.9-8.4 \\
\hline 205 & CD & D BA84 1 & & 18 & 12 & 11001101 & & 12.0.9.8.5 \\
\hline 206 & CE & D BA842 & & + 8 & + 2 & 11001110 & & 12.0.9.8.6 \\
\hline 207 & CF & D BA8421 & & 18 & 12 & 11001111 & & 12.0.9-8.7 \\
\hline 208 & D0 & BA & BC & \} & \} & 11010000 & \} & 11.0 \\
\hline 209 & D1 & B 1 & tio & , & J & 11010001 & J & 11.1 \\
\hline 210 & D2 & \(B \quad 2\) & LA & \(k\) & K & 11010010 & \(k\) & 11.2 \\
\hline 211 & D3 & B 21 & & L & L & 11010011 & L & 11.3 \\
\hline 212 & D4 & 84 & & M & M & 11010100 & M & 11.4 \\
\hline 213 & D5 & B 411 & & N & N & 11010101 & \(N\) & 11.5 \\
\hline 214 & D6 & B 42 & & - & - & 11010110 & \(\bigcirc\) & 11.6 \\
\hline 215 & D7 & B 421 & & P & P & 11010111 & P & 11.7 \\
\hline 216 & D8 & 88 & & 0 & 0 & 11011000 & 0 & 11.8 \\
\hline 217 & D9 & \(\begin{array}{llll}\text { B } & 8 & 1\end{array}\) & & R & & \[
11011001
\] & R & \[
11.9
\] \\
\hline 218 & DA & \begin{tabular}{llllll}
\hline 0 & B & 8 & 2
\end{tabular} & & 1 8 & 12 & 11011010 & & 12.11-9.8-2 \\
\hline 219 & OB & \begin{tabular}{lllllll}
\hline 0 & B & 8 & 21
\end{tabular} & & \$ 8 & \$ 2 & 11011011 & & 12-11-9.8.3 \\
\hline 220 & DC & & & & & & & 12.11.9-8.4 \\
\hline 221 & DO & \(\begin{array}{lllllll}\text { D } & \text { B } & 84 & 1\end{array}\) & & 1 8 & 12 & 11011101 & & 12.11.9.8.5 \\
\hline 222 & DE & D \(\begin{aligned} & \text { B } \\ & 0\end{aligned} 842\) & & 8 & . 2 & 11011110 & & 12.11.9.8.6 \\
\hline 223 & OF & D \begin{tabular}{l} 
B \\
\hline 8421
\end{tabular} & & 78 & 12 & 11011111 & & 12.11.9.8.7 \\
\hline 224 & E0 & & & & & & & \\
\hline 225 & E 1 & D A 1 & tio & ) 8 & , 2 & \[
11100601
\] & & \[
11 \cdot 0 \cdot 9 \cdot 1
\] \\
\hline 226 & E2 & A 2 & LA & S & S & 11100010 & S & 0.2 \\
\hline 227 & E3 & A 21 & & T & T & 11100011 & T & 0.3 \\
\hline 228 & E4 & & & & & 11100100 & \(u\) & 0.4 \\
\hline 229 & E5 & A 41 & & v & \(v\) & 11100101 & \(v\) & 0.5 \\
\hline 230 & E6 & A 42 & & w & w & 11100110 & w & 0.6 \\
\hline 231 & E7 & A 421 & & \(\times\) & \(\times\) & 11100111 & \(\times\) & 0.7 \\
\hline 232 & E8 & A8 & & r & Y & 11101000 & Y & \(0-8\) \\
\hline 233 & E9 & A8 1 & & 2. & 2 & 11101001 & \(z\) & \[
0.9
\] \\
\hline 234 & EA & D \(\begin{array}{llll} & A 8 & 2 \\ D & A 8 & 21\end{array}\) & & \& 8 & \& 2 & 11101010 & & \[
11 \cdot 0 \cdot 9 \cdot 8 \cdot 2
\] \\
\hline 235 & EB & D A8 21 & & & 2 & 11101011 & & \[
11 \cdot 0 \cdot 9 \cdot 8 \cdot 3
\] \\
\hline 236 & EC & D A84 & & \% 8 & \% 2 & 11101100 & & 11-0.9.8.4 \\
\hline 237 & ED & D A84 \({ }^{\text {D }}\) & & -8 & -2 & 11101101 & & \[
11 \cdot 0 \cdot 9 \cdot 8 \cdot 5
\] \\
\hline 238 & EE & D A842 & & >8 & \(>2\) & 11101110 & & 11-0.9-8.6 \\
\hline 239 & Ef & D A8421 & & , 8 & , 2 & 11101111 & & 11-0.9.8.7 \\
\hline
\end{tabular}

\footnotetext{
- These characters are not handled by six-bit devices.
}

Note 1: Symbols printed by System/3 devices equipped with TN character sets.

\section*{CODE CONVERSION CHART (continued)}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Dec Val} & \multirow[t]{2}{*}{\[
\left|\begin{array}{c}
\mathrm{Hex} \\
\mathrm{Val}
\end{array}\right|
\]} & \multirow[t]{2}{*}{96 Column Card Code DCBA8421} & \multirow[t]{2}{*}{Mnem} & \multicolumn{2}{|r|}{IPL*} & \multirow[t]{2}{*}{EBCDIC} & \multirow[t]{2}{*}{Symbol} & \multirow[t]{2}{*}{80 Column} \\
\hline & & & & T1T3 & T2T3 & & & \\
\hline 240 & FO & A & HPL & 0 & 0 & 11110000 & 0 & 0 \\
\hline 241 & F1 & 1 & APL & 1 & 1 & 11110001 & 1 & 1 \\
\hline 242 & F2 & 2 & JC & 2 & 2 & 11110010 & 2 & 2 \\
\hline 243 & F3 & 21 & Sto & 3 & 3 & 11110011 & 3 & 3 \\
\hline 244 & F4 & 4 & & 4 & 4 & 11110100 & 4 & 4 \\
\hline 245 & F5 & 41 & & 5 & 5 & 11110101 & 5 & 5 \\
\hline 246 & F6 & 42 & & 6 & 6 & 11110110 & 6 & 6 \\
\hline 247 & F7 & 421 & & 7 & 7 & 11110111 & 7 & 7 \\
\hline 248 & F8 & 8 & & 8 & 8 & 11111000 & 8 & 8 \\
\hline 249 & F9 & 81 & & 9 & 9 & 11111001 & 9. & 9 \\
\hline 250 & FA & D 82 & & 8 & 2 & 11111010 & * & 12.11-0.9.8.2 \\
\hline 251 & FB & D 821 & & \# 8 & \# 2 & 11111011 & & \(12 \cdot 11 \cdot 0 \cdot 9 \cdot 8 \cdot 3\) \\
\hline 252 & FC & D 84 & & @ 8 & @ 2 & 11111100 & & 12.11.0.9.8.4 \\
\hline 253 & FD & D 841 & & - 8 & - 2 & 11111101 & & 12.11 .0 .98 .5 \\
\hline 254 & FE & D 842 & & \(=8\) & \(=2\) & 11111110 & & 12.11-0.9.8-6 \\
\hline 255 & FF & D 8421 & & " 8 & \(\cdots 2\) & 11111111 & & \(12 \cdot 11 \cdot 0.9 \cdot 8 \cdot 7\) \\
\hline
\end{tabular}


Character to Punch in Tier 3 When
Tier 2 is Punched
Character to Punch in Tier 2
Character to Punch in Tier 3 When
Tier 1 is Punched
Character to Punch in Tier 1
*During IPL from the 542464 characters are read in:
Tier \(1-32\) characters are combined with Tier \(3-8 \& 4\) bits
Tier 2-32 characters are combined with Tier 3-2 \& 1 bits

\section*{CODE CONVERSION CHART (continued)}

\[
\text { Column Group } 1=\mathrm{CC} 1, \mathrm{CC} 3, \& \text { CC65 }
\]

Both Tier 1 and Tier 2 May Require Tier 3 Punches Use the Chart Below to Determine the Resultant

Combination Character to Punch in Tier 3

Tier 3 Character Addition Table
\begin{tabular}{l}
\multicolumn{6}{c|}{\begin{tabular}{c} 
Tier 3 Card Bits \\
Required by Tier 2 \\
Character
\end{tabular}} \\
\cline { 2 - 5 } \\
\cline { 2 - 5 } \\
\hline
\end{tabular}

\section*{OP CODE/INSTRUCTION DESCRIPTION}
\(A=\) Contents of the 2 byte field specified by the operand address is added binarity to the contents of the LSR specified by the Q code. The result replaces the register contents. The operand is addressed by the right most byte
Note Only 1 register should be selected at a time.
ALC \(=1\). Positive binary number in Op 2 is added byte by byte to positive binary number in operand 1 , result stored in Op 1
2. Q-byte specifies length of operands
3. Operand 2 not changed unless it overlaps operand 1
\(A P L=1\). The instruction loops if condition specified by \(N\) code of Q byte is present
2. If condition is not present the instruction is no oped
\(A Z=1\). Second operand added algebraically to first operand
2. Operands addressed by rightmost bytes
3. Zone bits except rightmost set to zeros
4. Q-byte specifies length of both operands
5. Second operand remains unchanged unless overlapped
6. No check is made for valid digits in operands
\(\mathrm{BC}=\) Condition register is tested under control of Q-byte; if condition register satisfied condition tested for, the next instruction is taken from the branch address

CCP \(=5415\) only
1 Forces an interrupt to level 0
2. Controls enable, disable, and reset of program level (LvI 7) interrupt
3. Performs a load current PMR (immediate operand) (5415 and 5412C)
\(C L C=1\). First operand compared to second operand. Condition register is set
2. Operands addressed by rightmost byte
3. Q-code specifies length of operands
\(\mathrm{CLI}=\) Binary immediate operand contained in Q byte is compared with binary operand in storage location of operand address; result sets condition register; neither operand is changed
\(E D=1\). Decimal numeric characters in operand replace bytes containing 20 in first operand
2. Operands addressed by rightmost byte
3. Q-byte specifies length of Op 1

HPL \(=\) Prevents the execution of the next sequential instruction and displays a halt identifier which is controlled by the bits in the halt identifier bytes
\(I T C=1\). Single character at second operand address replaces all the characters in the first operand to the first significant digit
2. First operand addressed by leftmost byte that can contain a character that should be replaced
3. \(Q\)-code contains length in bytes of operand 1
\(J C=\) Condition register is tested under control of \(Q\)-code. If condition register satisfies condition tested for, the control code is added to the IAR and the sum becomes the address of the next instruction.

\section*{OP CODE/INSTRUCTION DESCRIPTION (continued)}
\(L \quad=\) Contents of two byte field addressed by operand are placed in LSR specified by Q-byte
Note: Not to be used for setting more than one register at a time

LA \(=1\). If instruction is D2 or E2, one byte operand is added to contents of index register specified by operand code and loaded into LSR specified by \(Q\)-code
2. If instruction is C 2 , operand is loaded into register specified by Q-byte
LCP \(=5415\) and 5412 only.
The coments of the 2-byte field specified by operand 1 address are loaded as specified by the Q -code.
\(\mathrm{LIO}=1\). The contents of the two bytes addressed by the operand are transferred to the destination specified by the N code of the Q -byte
2. A Q-byte of 00 results in a No Op
3. With dual programming installed, a LIO to a busy device results in a program level advance
MVC \(=1\). Second operand placed byte by byte in first operand location
2. Operands addressed by rightmost byte
3. Q-byte specifies length of operation
4. Does not affect condition register

MVI \(=1\). Data contained in Q-byte moved to byte located at operand address

MVX \(=1\). Numeric portion or zone portion of single byte second operand is placed in corresponding portion of first operand
2. Q-byte specifies portion of each operand
\begin{tabular}{lll}
00 & \(=Z\) to \(Z\) & \\
01 & \(=N\) to \(Z\) & \(Z=Z\) Zone \\
02 & \(=Z\) to \(N\) & \(N=\) Numeric \\
03 & \(=N\) to \(N\) &
\end{tabular}
3. Condition register not affected

SBF \(=\) Byte of data set into \(\mathbf{Q} \cdot\) byte is used to set to zero corresponding bits of the byte located at operand address
\(\mathrm{SBN}=1\). Byte of data contained in mask is used to set to one the corresponding bits in byte located at operand address
\(\mathrm{SCP}=5415\) and 5412 C only
This instruction stores the contents of the register or registers specified by the \(\mathbf{Q}\)-byte in the storage location specified by the operand 1 address. The storage location specified is addressed by its low-order (rightmost) byte
\(\mathrm{SIO}=1\). No Op if unit check condition that prevents the execution of the SIO exists in addressed device
2. Is executed if it specifies the reset of an interrupt condition regardless of unit check condition
3. Resets any unit check condition that does not prevent execution of that SIO

\section*{OP CODE/INSTRUCTION DESCRIPTION (continued)}

SLC = 1. Positive binary number in operand 2 subtracted from positive binary number in operand 1 , result stored in operand 1
2. Result can never be negative
3. Q-byte specifies length of operands
4. Both operands must be same length
5. Second operand not changed unless overlap

SNS : Contents of data source specified by \(N\) portion of Q-byte are placed in two byte field specified by operand address
ST = Contents of register specified by \(\mathbf{Q}\)-code are placed in field addressed by operand address
Note: Not to be used for setting more than one register at a time
\(S Z=1\). Operand 2 subtracted algebraically from Op 1 byte by byte; result in Op 1
2. Operands addressed by rightmost byte
3. Q-byte specifies length of operands
4. No check for valid decimal digits

TBF \(=\) Bits of storage located at operand address are tested for bit \(=0\) as defined by mask contained in Q -byte
TBN \(=\) Bits of storage located at operand address are tested for bit = 1 as defined by mask contained in Q-byte, storage operand is not changed
\(\mathrm{TIO}=1\). Condition specified by Q byte is tested in the addressed device if condition is present. Branch to address is transferred to IAR. If condition is not present, branch to address is transferred to ARR (no branch)
\(Z A Z=1\). Second operand placed byte by byte into first operand
2. High-order zeros inserted
3. Zone bits except rightmost set to ones
4. Operands addressed by rightmost byte
5. Q-byte designates length of both operands

\section*{INSTRUCTION FORMAT}

\section*{2 ADDRESS 6 BYTE INSTRUCTIONS}


2 ADDRESS 5 BYTE INSTRUCTIONS

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{OPCODE} & Q.CODE \\
\hline Hex & MNEM & Description & tength \\
\hline 14 & \(\angle A Z\) & Lerodalitad zutee & \(1 \mathrm{~L}^{\circ}\) \\
\hline 16 & A 2 & Add zoned decimal & 11 L2* \\
\hline \(1 /\) & SC & Smbinal zoned decamal & \(11^{\circ}\) \\
\hline 18 & MVX & Move Hex character & \\
\hline 1 A & ED & Edi: & L1" \\
\hline 1 B & ITC & Insirt and test characters & L. \({ }^{\text {. }}\). \\
\hline 1 C & MVC & Niovecharactels & L... \\
\hline 10 & CLC & Compare logical chaturters & L... \\
\hline IE & ALC & Add logical chatacters & L... \\
\hline IF & SLC & Subtract logical characters & L** \\
\hline
\end{tabular}
\[
\begin{aligned}
& L 2+1=\text { Length of A Field } \\
& L 1=\text { Number of bytes B Field is longer than A Field } \\
& \cdots \quad L 1+1=L \text { ength of B Field } \\
& \cdots \quad L+1=\text { Length of } A \text { and B Field }
\end{aligned}
\]

\section*{INSTRUCTION FORMAT (continued)}

2 ADDRESS 5 BYTE INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Format} & \multicolumn{4}{|r|}{B Field (2.byte-direct)} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { A Field } \\
\text { (1.byte } \times \text { R2 }
\end{gathered}
\]} & \multirow[b]{3}{*}{EB} \\
\hline & Op Code & & Q.Code & Operand 1 Address & & & \\
\hline Cycle Pattern & \multicolumn{2}{|l|}{IOP} & 10 & IH1 ILI & \(1 \times 2\) & EA & \\
\hline & \multicolumn{4}{|c|}{OP CODE} & Q.CODE & & \\
\hline & Hex & MNEM & \multicolumn{2}{|c|}{Description} & Length & & \\
\hline & 24 & ZAZ & \multicolumn{2}{|r|}{Zero and add zoned} & L1 L2* & & \\
\hline & 26 & AZ & \multicolumn{2}{|r|}{Add zoned decimal} & L1 L2* & & \\
\hline & 27 & SZ & \multicolumn{2}{|r|}{Subtract zoned decimal} & \multirow[t]{2}{*}{L1 L2*} & & \\
\hline & 28 & MVX & \multicolumn{2}{|r|}{Move Hex character} & & & \\
\hline & 2A & ED & \multicolumn{2}{|l|}{Edit} & L1** & & \\
\hline & 2B & ITC & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{insert and test characters Move characters}} & L1** & & \\
\hline & 2 C & MVC & & & L". & & \\
\hline & 2 D & CLC & \multicolumn{2}{|r|}{Compare logical characters} & L** & & \\
\hline & 2 E & ALC & \multicolumn{2}{|r|}{Add logical characters} & L"* & & \\
\hline & 2 F & SLC & \multicolumn{2}{|r|}{Subtract logical characters} & L** & & \\
\hline & \multicolumn{6}{|l|}{- L2+1 = Length of A Field} & \\
\hline & \multicolumn{2}{|r|}{L. \(1=\)} & \multicolumn{4}{|l|}{Number of bytes B Field is longer than A Field} & \\
\hline & * L1 & \(1+1=\) & \multicolumn{2}{|l|}{Length of B Field} & \multirow[t]{2}{*}{} & & \\
\hline & \(\cdots\) & \(+1=\) & \(=\) Length & and B Field & & & \\
\hline
\end{tabular}

1 ADDRESS 4 BYTE INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{18}{*}{Format Cycle Pattern} & & & & B Field
(2-byte direct) & \\
\hline & Op Code & & Q Code & Operand 1 Address & \\
\hline & \multicolumn{2}{|c|}{IOP} & 10 & IH1 IL1 & EB \\
\hline & \multicolumn{4}{|c|}{OP CODE} & QCODE \\
\hline & Hex & MNEM & & tion & \\
\hline & 30 & SNS & & & DA.M. \({ }^{\text {² }}\) \\
\hline & 31 & 1.10 & & & DA.M.N* \\
\hline & 34 & ST & & gister & REG \\
\hline & 35 & L & & gister & REG \\
\hline & 36 & A & & register & REG \\
\hline & 38 & TBN & & on & MASK \\
\hline & 39 & TBF & & oft & MASK \\
\hline & 3 A & SBN & & on & MASK \\
\hline & 38 & SBF & & off & MASK \\
\hline & 3 C & MVI & & gical immediate & \(12^{\cdots} \cdots\) \\
\hline & 3 D & CLI & & e logical immediate & \(12 \times \cdots\) \\
\hline & 3 E & SCP & & & REG** \\
\hline & 3F & LCP & & & REG** \\
\hline
\end{tabular}
- Refer to \(1 / O\) device section for Q code significance
* 5415 only refer to 5415 section for details
..* 12 = byte of immediate data

INSTRUCTION FORMAT (continued)
2 ADDREAS 5 EYTE INSTAUCTIONS


2 ADDRESS 4 BYTE INSTRUCTION

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{OP CODE} & Q-Code \\
\hline Hex & MNEM & Description & Length \\
\hline 54 & ZAZ & Zero and add zoned & L1 L2* \\
\hline 56 & AZ & Add zoned decimal & L1 L2* \\
\hline 57 & SZ & Subtract zoned decimal & L1 L2* \\
\hline 58 & MVX & Move Hex cheracters & \\
\hline 5A & ED & Edit & L1** \\
\hline 58 & ITC & Insert and test cherscters & L1** \\
\hline 5C & MVC & Move characters & L** \\
\hline 50 & CLC & Compare logical characters & L** \\
\hline 6E & ALC & Add logical charscters & \(L^{* * *}\) \\
\hline 6F & SLC & Subtrect logical cheracters & L** \\
\hline
\end{tabular}
\begin{tabular}{rl} 
*2 +1 & \(=\) Length of \(A\) Field \\
\(L 1\) & \(=\) Number of bytes B Fisld is longer than \(A\) Fieid \\
\(* \quad L 1+1\) & \(=\) Length of B Field \\
\(\cdots\) & \(L+1\)
\end{tabular}

\section*{INSTRUCTION FORMAT (continued)}

2 ADDRESS 4 BYTE INSTRUCTION


- L2 \(\quad L=\) Length of \(A\) Field
\(L 1=\) Number of bytes B Field is longer than A Field
* \(L 1+1=\) Length of \(B\) Field
\(\cdots \quad L+1=\) Length of \(A\) and \(B\) Field

1 ADDRESS 3 BYTE INSTRUCTIONS
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|c|}{B Field
(1 byte - XR1)} & \multicolumn{2}{|l|}{B Field} \\
\hline Format & Op Code & Q Code & D1 & \\
\hline Cycle Pattern & IOP & 10 & | \(\times 1\) & EB \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{OP CODE} & O-CODE \\
\hline Hex & MNEM & Description & Length \\
\hline 70 & SNS & Sense I/O & DA-M.N* \\
\hline 71 & LIO & Load I/O & DA.M.N* \\
\hline 74 & ST & Store register & REG \\
\hline 75 & L. & Load register & REG \\
\hline 76 & A & Add to register & REG \\
\hline 78 & TBN & Test bits on & MASK \\
\hline 79 & TBF & Test bits off & MASK \\
\hline 7 A & SBN & Set bits on & MASK \\
\hline 78 & SBF & Set bits off & MASK \\
\hline 7 C & MVI & Move logical immediate & 12** \\
\hline 7 D & CLI & Compare logical immediate & 12*** \\
\hline 7E & SCP & Store CPU & REG** \\
\hline 7F & LCP & Load CPU & REG** \\
\hline
\end{tabular}
- Refer to I/O device section for O-code significance
* 5415 only - refer to 5415 section for details
... 12 = byte of immediate data

\section*{INSTRUCTION FORMAT (continued)}

\section*{2 ADDRESS 5 BYTE INSTRUCTION}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Format} & & & \[
\begin{gathered}
\text { B Field } \\
\text { (1-byte - XR2) }
\end{gathered}
\] & \begin{tabular}{l}
A Field \\
(2-byte - direct)
\end{tabular} \\
\hline & Op Code & Q.Code & D1 & Operand 2 Address \\
\hline Cycle Pattern & IOP & 10 & IX. 1 & IH2 IL2 \\
\hline
\end{tabular}

EA EB
Format
Cycle Pattern
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{OP CODE} & O-CODE \\
\hline Hex & MNEM & Description & Length \\
\hline 84 & ZAZ & Zero and add zoned & L1 L2* \\
\hline 86 & AZ & Add zoned decimal & L1 L2* \\
\hline 87 & SZ & Subtract zoned decimal & L1 L2* \\
\hline 88 & MVX & Move Hex character & \\
\hline 8A & ED & Edit & L1** \\
\hline 8B & ITC & Insert and test characters & \(\mathrm{LI}^{* *}\) \\
\hline 8C & MVC & Move characters & L** \\
\hline 80 & CLC & Compare logical characters & L*** \\
\hline 8 E & ALC & Add logical characters & L** \\
\hline BF & SLC & Subtract logical characters & L** \\
\hline
\end{tabular}
\begin{tabular}{rl}
\(L 2+1\) & \(=\) Length of \(A\) Field \\
\(L 1\) & \(=\) Number of bytes B Field is longer than \(A\) Field \\
\(* \quad L 1+1\) & \(=\) Length of B Field \\
\(* \quad L+1\) & \(=\) Length of \(A\) and \(B\) Field
\end{tabular}

2 ADDRESS 4 BYTE INSTRUCTION

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{OP CODE} & Q-CODE \\
\hline Hex & MNEM & Description & Length \\
\hline 94 & ZAZ & Zero and add zoned & L1 L2* \\
\hline 96 & AZ & Add zoned decimal & L1 L2* \\
\hline 97 & SZ & Subtract zoned decimal & L1 L2* \\
\hline 98 & MVX & Move Hex character & \\
\hline 9A & ED & Edit & L1* \\
\hline 98 & ITC & Insert and test characters & L1** \\
\hline 9 C & MVC & Move characters & L** \\
\hline 90 & CLC & Compare logical characters & L** \\
\hline \(9 E\) & ALC & Add logical characters & L** \\
\hline 9 F & SLC & Subtract logical characters & L*** \\
\hline
\end{tabular}
\[
\begin{aligned}
\mathrm{L} 2+1 & =\text { Length of A Field } \\
\mathrm{L} 1 & =\text { Number of bytes } B \text { Field is longer than } A \text { Fieid } \\
\cdots \quad \mathrm{L}+1 & =\text { Length of } B \text { Field } \\
\mathrm{L}+1 & =\text { Length of } A \text { and } B \text { Field }
\end{aligned}
\]

\section*{INSTRUCTION FORMAT (continued)}

2 ADDRESS 4 BYTE INSTRUCTION


ADDRESS 3 BYTE INSTRUCTIONS

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|c|}{ OP CODE } & Q-CODE \\
\hline Hex & MNEM & Description & \\
\hline BO & SNS & Sense I/O & DA•M•N* \\
B1 & LIO & Load I/O & DA•M.N** \\
B4 & ST & Store register & REG \\
B5 & L & Load register & REG \\
B6 & A & Add to register & REG \\
B8 & TBN & Test bits on & MASK \\
B9 & TBF & Test bits off & MASK \\
BA & SBN & Set bits on & MASK \\
BB & SBF & Set bits off & MASK \\
BC & MVI & Move logical immediate & \(12^{* * *}\) \\
BD & CLI & Compare logical immediate & \(12 * * *\) \\
BE & SCP & Store CPU & REG** \\
BF & LCP & Load CPU & REG** \\
\hline
\end{tabular}

* Refer to 1/O device section for Q-code significance
* 5415 only - refer to 5415 section for details
** 12 = Byte of immediate data

\section*{INSTRUCTION FORMAT (continued)}

I ADDRESS 4 BYTE INSTRUCTIONS

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ OP CODE } & Q.CODE \\
\hline Hex & MNEM & Description & \\
\hline C0 & BC & Branch on condition & Condition \\
C1 & TiO & Test I/O and branch & DA.M.N* \\
C2 & LA & Load address & REG** \\
\hline
\end{tabular}
- Refer to I/O device section for \(\mathbf{Q}\) code significance
- Q-bit \(6 \cdot\) XR2

Q-bit 7 - XR1
** "Branch to" address or data to be loaded

1 ADDRESS 3 BYTE INSTRUCTIONS

\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{3}{|c|}{ OP CODE } & Q-CODE \\
\hline Hex & MNEM & Description & \\
\hline D0 & BC & Branch on condition & Condition \\
D1 & TIO & Test I/O and branch & DA-M \(\cdot N^{*}\) \\
D2 & LA & Load address & REG ** \\
\hline
\end{tabular}
* Refer to I/O device section for \(Q\)-code significance
* Q-bit 6 . XR2

Q-bit 7 - XR1
*. "Branch to" address or data to be loaded
,

\section*{INISTRUCTION FORMAT (continued)}

\section*{1 ADDRESS 3 BYTE INSTRUCTIONS}

Format
Cycle Pattern

\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ OP CODE } & Q.CODE \\
\hline Hex & MNEM & Description & \\
\hline EO & BC & Branch on condition & Condition \\
E1 & TIO & Test \(1 / O\) and branch & DA \(\cdot N^{*}\) \\
E2 & LA & Load address & REG** \\
\hline
\end{tabular}
* Refer to I/O device section for O-Code significance
* \(\quad\) Q-bit 6 . XR2

Q-bit 7. XR1
** Branch "to" address or data to be loaded

COMMAND 3 BYTE INSTRUCTION
\begin{tabular}{l|c|c|c|}
\hline Format \\
Cycle Pattern & Op Code & Q Code & R Byte \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ OP CODE } & Q-Code & R-Byte \\
\hline Hex & MNEM & Description & & \\
\hline F0 & HPL & Halt program level & DISP HI & DISP LO \\
F1 & APL & Advance program level & DA•M-N & \\
F2 & JC & Jump on condition & MASK & \# of bytes \\
& & & & to jump \\
F3 & SIO & Start IO & DA-M•N & Control \\
F4 & CCP & Command CPU & Function & Control \\
\hline
\end{tabular}


\section*{5412 MODEL C}

CPU INSTRUCTIONS (Model 12 With More Than 64K Bytes of Main Storage)

\section*{LCP/SCP Instructions}

CCP, LCP, and SCP instructions are not supported by System/3 Basic Assembler
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Op Code \\
0
\[
7
\]
\end{tabular} & \[
\] & \begin{tabular}{|l|l|l} 
& \multicolumn{3}{|c}{ Operand 1 Addre } \\
\hline 16 & 23 & 24 \\
\hline
\end{tabular} & \\
\hline 3F-LCP & \multirow[t]{6}{*}{Register to be loaded or stored (see below)} & \multicolumn{2}{|l|}{2-byte direct address} \\
\hline 7F-LCP & & \multicolumn{2}{|l|}{1 -byte indexed by XR1} \\
\hline BF-LCP & & \multicolumn{2}{|l|}{1 -byte indexed by XR2} \\
\hline 3E-SCP & & \multicolumn{2}{|l|}{2-byte direct address} \\
\hline 7ESCP & & \multicolumn{2}{|l|}{1-byte indexed by XR1} \\
\hline BE.SCP & & \multicolumn{2}{|l|}{1-byte indexed by XR2} \\
\hline \multirow{26}{*}{\[
\begin{aligned}
& \text { LCP } \\
& \text { or } \\
& \text { SCP }
\end{aligned}
\]} & & EB2
Operand address -1 & EB1
Operand address \\
\hline & 00 & Att register 01 & Att register 00 \\
\hline & 01 & Att register 03 & Att register 02 \\
\hline & 02 & Att register 05 & Att register 04 \\
\hline & 03 & Att register 07 & Att register 06 \\
\hline & 04 & Att register 09 & Att register 08 \\
\hline & 05 & Att register OB & Att register OA \\
\hline & 06 & Att register 00 & Att register OC \\
\hline & 07 & Att register OF & Att register OE \\
\hline & 08 & Att register 11 & Att registedr 10 \\
\hline & 09 & Att register 13 & Att register 12 \\
\hline & OA & Att register 15 & Att register 14 \\
\hline & OB & Att register 17 & Att register 16 \\
\hline & 0 C & Att register 19 & Att register 18 \\
\hline & 0 D & Att register 1B & Att register 1A \\
\hline & OE & Att register 10 & Att register 1C \\
\hline & 0 F & Att register 1 F & Att register 1E \\
\hline & 10 & & PMR program leve! 1 \\
\hline & 11 & & PMR program level 2 \\
\hline & 18 & & PMR interrupt level 0 \\
\hline & 19 & \multirow[t]{5}{*}{\begin{tabular}{l}
Note: SCP (EB2 cycle) \\
Storage location addressed is set to 00 LCP (EB2 cycle) no data is transferred
\end{tabular}} & PMR interrupt level 1 \\
\hline & 1 A & & PMR interrupt level 2 \\
\hline & 1 B & & PMR interrupt level 3 \\
\hline & 1 C & & PMR interrupt level 4 \\
\hline & & & \\
\hline & 40 & & PMR current level \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Bit & Att Significance & \[
\begin{array}{|l|}
\hline \text { PMR } \\
\text { Bit }
\end{array}
\] & \begin{tabular}{l}
Byte 1 \\
Significance
\end{tabular} \\
\hline 0 & Not used & 0 & Not used \\
\hline 1 & Not used & 1 & EB cycle address translate \\
\hline 2 & E15 & 2 & EA cycle address translate \\
\hline 3 & 0 & 3 & I cycle address translate \\
\hline 4 & 1 Bits to & 4 & Not used \\
\hline 5 & 2 MSAR & 5 & 1/O trans bit \\
\hline 6 & 3 & 6 & Not used \\
\hline 7 & \(4)\) & 7 & MASK interrupt state \\
\hline
\end{tabular}


\section*{5412 N.ODEL C}

Command CPU (CCP)
\begin{tabular}{|c|c|c|c|}
\hline Op Code & Q Code & \multicolumn{2}{|l|}{Command Code} \\
\hline \multirow[t]{9}{*}{F4} & \multirow[t]{9}{*}{30} & Immediate bits
\[
01234567
\] & Load current PMR \\
\hline & & \[
\begin{aligned}
& \mathrm{Bit} \\
& 0 \\
& \hline
\end{aligned}
\] & Unused \\
\hline & & 1 & E8 cycle address translate \\
\hline & & 2 & EA cycle address translate \\
\hline & & 3 & I cycle address translate \\
\hline & & 4 & Unused \\
\hline & & 5 & 1/O cycle address translate \\
\hline & & 6 & Unused \\
\hline & & 7 & MASK interrupt state \\
\hline
\end{tabular}

5415 MODEL A, B, C, D
LCP/SCP Instructions
\begin{tabular}{|c|c|c|c|}
\hline Op Code & a Code & Operand 1 Addrese & \multirow[b]{2}{*}{----71} \\
\hline \(0 \quad 7\) & 815 & 16 23 24 & \\
\hline 3F-LCP & \multirow[t]{6}{*}{\begin{tabular}{l} 
Register \\
to be \\
Loaded or \\
stored \\
(see \\
below) \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{} \\
\hline 7F-LCP & & \multicolumn{2}{|l|}{\[
1 \text { byte indexed by XR1 }
\]} \\
\hline BF-LCP & & \multicolumn{2}{|l|}{1 byte indexed by XR2} \\
\hline 3E-SCP & & \multicolumn{2}{|l|}{2 byte direct address} \\
\hline 7E-SCP & & \multicolumn{2}{|l|}{1 byte indexed by XR1} \\
\hline BE-SCP & & \multicolumn{2}{|l|}{1 byte indexed by XR2} \\
\hline \multirow[t]{10}{*}{\begin{tabular}{l}
LCP \\
or \\
SCP
\end{tabular}} & 10 & & PMR program leval \\
\hline & 18 & & PMR interrupt level 0 \\
\hline & 19 & & PMR interrupt level 1 \\
\hline & 1A & \multirow[t]{7}{*}{```
Note: SCP (EB2 cycle) storage location addressed is set to 00. LCP (EB2 cycle) no data is transferred. True except for Models D25 and D26.
```} & PMR interrupt level 2 \\
\hline & 18 & & PMR interrupt level 3 \\
\hline & 1 C & & PMR interrupt level 4 \\
\hline & 1 D & & PMR interrupt level 5 \\
\hline & 1 E & & PMR interrupt level 6 \\
\hline & 1 F & & PMR interrupt level 7 \\
\hline & 40 & & PMR current level \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
PMR \\
Bit
\end{tabular} & EB-2
Significence & PMR Bit & EB-1 Significance \\
\hline \[
\begin{aligned}
& \hline 0-6 \\
& 7
\end{aligned}
\] & Reserved I/O greater than 256 K & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7
\end{array}
\] & \begin{tabular}{l}
I/O start address is greater than or equal to 128 K EB cycle address translate EA cycle address translate I cycle address translate Privileged state I/O > 64 K \\
Protect state MASK interrupt state
\end{tabular} \\
\hline
\end{tabular}

5415 MODEL A, B, C, D
LCP/SCP Instructions (Continued)

\section*{ATT/SPT Operand Byte}

Bit Significance
\begin{tabular}{|c|c|cccccc|}
\hline \(\mathbf{0}\) & \(\mathbf{1}\) & \(\mathbf{2}\) & \(\mathbf{3}\) & \(\mathbf{4}\) & \(\mathbf{5}\) & \(\mathbf{6}\) & \(\mathbf{7}\) \\
\hline \begin{tabular}{l}
Read \\
prot. \\
key
\end{tabular} & \begin{tabular}{l}
Write \\
prot. \\
key
\end{tabular} & \begin{tabular}{l}
6 High order \\
memory address bits
\end{tabular} & & \\
\hline
\end{tabular}

\section*{5415 MODEL C \& D}

LCP/SCP Instructions (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{lll}
\hline \multicolumn{2}{l}{\(\begin{array}{l}\text { Op } \\
\text { Code } \\
\\
\\
0\end{array}\)} & \\
\hline
\end{tabular}} & Q Code & \multicolumn{4}{|l|}{Operand 1 Address} \\
\hline & \(8 \quad 15\) & & \multicolumn{3}{|l|}{23 [24 31]} \\
\hline & & \multicolumn{2}{|l|}{EB2
Operand Address-1} & \multicolumn{2}{|l|}{EB1
Operand Address} \\
\hline \multirow{34}{*}{\begin{tabular}{l}
Greater \\
than \\
\(64 K\) \\
but \\
less \\
than \\
512 K
\end{tabular}} & 50 & Att register & 01 & Att register & 00 \\
\hline & 51 & Att register & 03 & & 02 \\
\hline & 52 & Att register & 05 & Att register & 04 \\
\hline & 53 & Att register & 07 & Att register & 06 \\
\hline & 54 & Att register & 09 & Att register & 08 \\
\hline & 55 & Att register & OB & Att register & OA \\
\hline & 56 & Att register & OD & Att register & 0 C \\
\hline & 57 & Att register & OF & Att register & OE \\
\hline & 58 & Att register & 11 & Att register & 10 \\
\hline & 59 & Att register & 13 & Au register & 12 \\
\hline & 5A & Att register & 15 & Att register & 14 \\
\hline & 58 & Att register & 17 & Att register & 16 \\
\hline & 5 C & Att register & 19 & Att register & 18 \\
\hline & 5D & Att register & 18 & Att register & 1 A \\
\hline & 5E & Att register & 10 & Att register & 1 C \\
\hline & 5 F & Att register & 1 F & Att register & 1 E \\
\hline & 60 & Storage protect & 01 & Storage protect & 00 \\
\hline & 61 & Storage protect & 03 & Storage protect & 02 \\
\hline & 62 & Storage protect & 05 & Storage protect & 04 \\
\hline & 63 & Storage protect & 07 & Storage protect & 06 \\
\hline & 64 & Storage protect & 09 & Storage protect & 08 \\
\hline & 65 & Storage protect & OB & Storage protect & OA \\
\hline & 66 & Storage protect & OD & Storage protect & 0 C \\
\hline & 67 & Storage protect & OF & Storage protect & OE \\
\hline & 68 & Storage protect & 11 & Storage protect & 10 \\
\hline & 69 & Storage protect & 13 & Storage protect & 12 \\
\hline & 6A & Storage protect & 15 & Storage protect & 14 \\
\hline & 6B & Storage protect & 17 & Storage protect & 16 \\
\hline & 6C & Storage protect & 19 & Storage protect & 18 \\
\hline & 6 D & Storage protect & 18 & Storage protect & 1A \\
\hline & 6 E & Storage protect & 10 & Storage protect & 1 C \\
\hline & 6 F & Storage protect & 1 F & Storage protect & 1 E \\
\hline & 20 & \multicolumn{4}{|l|}{Program check address register} \\
\hline & 30 & \multicolumn{4}{|l|}{Program check status register} \\
\hline
\end{tabular}

\section*{Operand Byte}

5415 MODEL A, B, C, D

\section*{LCP/ SCP Instructions (Continued)}
\begin{tabular}{|c|c|c|c|}
\hline Op Code & Q Code & \begin{tabular}{l}
EB2 \\
Operand 1 Addrest
\end{tabular} & \begin{tabular}{l}
EB1 \\
Operand Address
\end{tabular} \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
SCP \\
or LCP
\end{tabular}} & \multirow[t]{2}{*}{\[
\begin{aligned}
& 20 \\
& \text { Prog } \\
& \text { check } \\
& \text { address reg } \\
& \hline
\end{aligned}
\]} & PCAR HI & PCAR LOW \\
\hline & & \multicolumn{2}{|l|}{Note: When a PGM check is detected, MSAR bits 0.15 are gated into PCAR and MSAR E15 is gated into PCSR bit \(6 \mathrm{H}_{1}\)} \\
\hline \multirow[t]{2}{*}{LCP only} & \multirow[t]{2}{*}{\begin{tabular}{l}
21 \\
memory \\
Diag \\
Fetch
\end{tabular}} & \begin{tabular}{l}
PCAR HI \\
PCAR \(\mathrm{Hi}_{i}\) is toaded with uncorrected memory data bits from even address (FDR bits \(8-15\))
\end{tabular} & \begin{tabular}{l}
PCAR LOW \\
PCAR Low is loaded with uncorrected memory data bits from \\
odd address \\
(FDR bits 0.7)
\end{tabular} \\
\hline & & \multicolumn{2}{|l|}{Note: Operand 1 must specify an odd memory address.} \\
\hline LCP only & \begin{tabular}{l}
22 \\
memory FDR \\
reset (Diag \\
CMD)
\end{tabular} & \multicolumn{2}{|l|}{\begin{tabular}{l}
* Functions same as Q-Code 21 except memory FDR is first forced to all ones (FF FF) \\
- This CMD is used by CE diagnostics to force ECC errors.
\end{tabular}} \\
\hline LCP only & \begin{tabular}{l}
23 \\
memory \\
check bit \\
Fetch \\
(Diag \\
CMD)
\end{tabular} & \begin{tabular}{l}
PCAR HI \\
PCAR Hi is forced to all ones \\
Bit \\
0 Forced to 1 \\
1 Forced to 1 \\
2 Forced to 1 \\
3 Forced to 1 \\
4 Forced to 1 \\
5 Forced to 1 \\
6 Forced to 1 \\
7 Forced to 1
\end{tabular} & \begin{tabular}{l}
PCAR LOW \\
PCAR Low is loaded with memory check bits: \\
Bit \\
0 Mernory check bit C1 \\
1 Memory check bit C2 \\
2 Memory check bit C3 \\
3 Memory check bit C4 \\
4 Memory check bit C5 \\
5 Memory check bit C6 \\
6 Forced to 1 \\
7 Forced to 1
\end{tabular} \\
\hline & & \multicolumn{2}{|l|}{Note: Operand 1 must specify an odd memory address} \\
\hline \begin{tabular}{l}
SCP \\
or LCP
\end{tabular} & \begin{tabular}{l}
30 \\
Prog \\
check \\
status \\
reg
\end{tabular} & ```
 PCSR HI
Bit
0 > 256 Addr
1 Reserved
2 Bin int 4
3 Bin int }
4 Bin int }
5 Any int 0.7
6>64 K Addr bit(MSAR E 15)
7>128 Addr
``` & \begin{tabular}{l}
PCSR LOW \\
Bit \\
0 Address violation \\
1 Inv 0 \\
2 Inv Op \\
3 Inv address \\
4 Privileged Op \\
5 Correctable memory error \\
6 Uncorrectable memory error \\
7 Memory data check
\end{tabular} \\
\hline
\end{tabular}

5415 MODEL A, B, C, D
Command CPU (CCP)
\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Op \\
Code
\end{tabular} & O Code
a Code & Command Code & \\
\hline \multirow[t]{22}{*}{F4} & & & \\
\hline & \multirow[t]{3}{*}{10} & 01234567 & Supervisor call (SVC) \\
\hline & & 00000000 & Request interrupt level 0 \\
\hline & & 00000010 & Reset interrupt level 0 \\
\hline & \multirow[t]{5}{*}{20} & 01234567 & Program check interrupt \\
\hline & & \(0000 \quad 0001\) & Enable interrupt level 7 \\
\hline & & 00000010 & Reset interrupt request, disable interrupt \\
\hline & & 00000011 & Reset interrupt, enable interrupt \\
\hline & & 00000000 & Disable interrupt \\
\hline & \multirow[t]{10}{*}{30} & \[
\begin{aligned}
& \text { Immediate bits } \\
& 0123 \quad 4567 \\
& \hline
\end{aligned}
\] & Load current PMR \\
\hline & & \[
\begin{aligned}
& \hline \text { Bit } \\
& 0 \\
& \hline
\end{aligned}
\] & I/O start address is greater than or equal to 128 K \\
\hline & & 1 & EB cycle address translate \\
\hline & & 2 & EA cycle address translate \\
\hline & & 3 & I cycle address translate \\
\hline & & 4 & Privileged state \\
\hline & & 5 & 1/O, 64 K \\
\hline & & 6 & Protect state \\
\hline & & 7 & MASK interrupt state \\
\hline & & 1/O 256 Not & hanged \\
\hline & \multirow[t]{3}{*}{40} & 01234567 & Diag mode \\
\hline & & 00000000 & Set slow speed \\
\hline & & 00000010 & Set fast speed \\
\hline
\end{tabular}

PROG. - 71

SENSE (SNS) INSTRUCTION FORMATS

In Q-code sequerice

 Typamatic key identifier
Not used

Data character identifier
Command kev identifier Function character identifier World trade identifier ot used

SENSE (SNS) INSTRUCTION FORMATS (Continued)


PROG. - 73

SENSE (SNS) INSTRUCTION FORMATS (Continued)


SENSE (SNS) INSTRUCTION FORMATS (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Code} & \multicolumn{3}{|c|}{O Code} & \multicolumn{2}{|l|}{Operand 1 Address} \\
\hline & \begin{tabular}{|c|}
\hline DA \\
8
\end{tabular} 11 & M
\[
12
\] & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & \(16 \quad 23\) & \[
24
\]
\[
31
\] \\
\hline \multirow[t]{5}{*}{MLTA} & 0010 & & & & Device address MLTA \\
\hline & & 0 & & & Individual line instruction \\
\hline & & & \begin{tabular}{l}
000 \\
001 \\
010 \\
011 \\
100 \\
101 \\
110 \\
111
\end{tabular} & & \begin{tabular}{l}
Sense LRC and diagnostic buffers \\
Sense current length count and timeout buffers \\
Sense transaction address buffers \\
Sense line status \\
Sense flag and receive length count buffers \\
Sense control and branch buffers \\
Sense current address buffers \\
Sense cycle steal and line interface buffers
\end{tabular} \\
\hline & & 1 & & & General adapter instruction \\
\hline & & & \[
\begin{aligned}
& 000 \\
& 001 \\
& 010 \\
& 011 \\
& 1 \times x
\end{aligned}
\] & & \begin{tabular}{l}
Sense control storage \\
Sense op end interrupt source \\
Sense PCl interrupt source \\
Sense storage address buffer \\
Invalid N code
\end{tabular} \\
\hline
\end{tabular}


\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}

\(\square\)

SENSE (SNS) INSTRUCTION FORMATS (Continued)


SENSE (SNS) INSTRUCTION FORMATS (Continued)


SENSE (SNS) INSTRUCTION FORMATS (Continued)



SENSE (SNS) INSTRUCTION FORMATS (Continued)

(Continued)

Use this chart if bit 7 is on
0 - ALU FRU error
1. Instruction CTR error
ABO parity error
4 - Instruction tag error
\}used
5 - Spare
- This bit on
                                    Not used
- Dev 1 op end
2 - Dev 2 op end
Dev 3 op end
Mod, 8, 12 and 15 only
Forced to 0
5

SENSE (SNS) INSTRUCTION FORMATS (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Cede} & & Cede & & Operand I Adre & & \\
\hline & \(\square\) & \[
\begin{aligned}
& M \\
& 12
\end{aligned}
\] & \[
\begin{array}{|c|}
\hline N \\
1315 \\
\hline
\end{array}
\] & \(16 \quad 23\) & \[
24
\] &  \\
\hline \multirow[t]{11}{*}{B8CA} & \multirow[t]{11}{*}{1000} & & & \multicolumn{3}{|c|}{Device address BSCA (8)} \\
\hline & & 0 & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{ESCA 1}} \\
\hline & & 1 & & & & \\
\hline & & & 000 & & \begin{tabular}{l}
0 - Roserved \\
1. Bit time counter 4 \\
2 - Bit time counter 2 \\
3 - Bit time counter 1 \\
4 - Reserved \\
5-Transmit trigger \\
6- Receive triger \\
7. CE SNS bit
\end{tabular} & \begin{tabular}{l}
0 - Reserved \\
1 - Reserved \\
2-Reserved \\
3 -Reserved \\
4-Block cycle steal request IITB, BCC or VRC check) \\
5 - LSR/ahift register parity chack \\
6-1/0 cycle steel overrun \\
7. DBI perity chock
\end{tabular} \\
\hline & & & 001 & \multicolumn{3}{|r|}{Stop eddress register} \\
\hline & & & 010 & \multicolumn{3}{|c|}{Transition eddress regigter} \\
\hline & & & 011 & & \begin{tabular}{l}
0-Time-out \\
1.CRC/LRC/VRC \\
2- Adapter check on trimsmit \\
3 - Adepter check on rectiver \\
4. Invalid AsClI charecter \\
5-Abortive disconnect \\
6 - Disconnect time-out \\
7 - Resenved
\end{tabular} & \begin{tabular}{l}
0 -Reserved \\
1-Reserved \\
2 -Reserved \\
3 -Reserved \\
4. Reserved \\
5-Reserved \\
6 - Deta set ready \\
7 - Data line occupied
\end{tabular} \\
\hline & & & 100 & \multicolumn{3}{|c|}{Current addrest repister} \\
\hline & & & 101 & \multicolumn{3}{|c|}{Invalid} \\
\hline & & & 110 & & \begin{tabular}{l}
\[
\begin{aligned}
& \hline 0 \\
& 1 \\
& 2 \\
& 3 \\
& 4 \\
& 4 \\
& 5 \\
& 6 \\
& 7
\end{aligned}
\] \\
Invelig
\end{tabular} & \(\left.\begin{array}{l}0 \\
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7\end{array}\right)\)\begin{tabular}{l} 
\\
CRC low \\
ILRC for \\
ASCII)
\end{tabular} \\
\hline & & & 111 & Xxxx xxxx & \multicolumn{2}{|l|}{Operand address (sense by te destination)} \\
\hline
\end{tabular}

\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}


\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}


\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}

- Seek 3 complete (mal 15 only )
*Seek 4 complete (mdi 15 only
\(\cdots\) Dev/Op end interrupt imal 15 only)
... Op end (mdl 15 only)

SENSE (SNS) INSTRUCTION FORMATS (Continued)


SENSE (SNS) INSTRUCTION FORMATS (Continued)


Continued)

\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}


\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}


\section*{SENSE (SNS) INSTRUCTION FORMATS (Continued)}


PROG. - 91

(Continued)


SENSE (SNS) INSTRUCTION FORMATS (Continued)

(Continued)

SENSE (SNS) INSTRUCTION FORMATS (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Op \\
Code
\end{tabular}} & \multicolumn{3}{|c|}{Q Code} & \multicolumn{3}{|l|}{Operand 1 Address} \\
\hline & \[
\begin{array}{cc}
D A \\
8 & 11
\end{array}
\] & \(M\)
12 & \[
\begin{gathered}
\text { N } \\
1315
\end{gathered}
\] & 16 23 & \[
\int_{24}
\] & \\
\hline \[
\begin{aligned}
& 2560 \\
& \text { (cont) }
\end{aligned}
\] & & \[
1
\] & 011 & This info will be available when the attach is in diag MTAP mode & \begin{tabular}{l}
Diag MTAP Mode \\
- Solar cell 6 cvr \\
1 Punch push CB1 \\
2 Print CB1 \\
3 Print CB2 \\
4 Punch CB 1 \\
5 Punch CB2 \\
6 Incr drive CBA \\
7 Incr drive CBB
\end{tabular} & \begin{tabular}{l}
Diag MTAP Moore \\
O Pitpres rollithold \\
1 Nprtples rout holed \\
2 Prihpr switch \\
3 Sechpr switch \\
4 Mir relay sel \\
5 Read SC2 \& 3 exp \\
6 Read SC2 exo \\
17 ReadSC3exp
\end{tabular} \\
\hline & & 1 & 011 & This info will be avaslable when the attach is in diag read evaluation mode & \(\left[\begin{array}{ll}0 & \text { Diag Read Eva } \\ 0 & \text { Read emitter } \\ 1 & \\ 2 & \text { Read SC12 exp } \\ 3 & \text { Read SC11 exp } \\ 4 & \text { Read SC0 exp } \\ 5 & \text { Read SC1 exp } \\ 6 & \text { Read SC2 exp } \\ 7 & \text { Read SC3 exp }\end{array}\right.\) & ation Mode
\[
\left\lvert\, \begin{array}{ll}
0 & \\
1 & \\
2 & \text { Read SC4 exp } \\
3 & \text { Read SC5 exp } \\
4 & \text { Read SC6 exp } \\
5 & \text { Read SC7 exp } \\
6 & \text { Read SC8 exp } \\
7 & \text { Read SC9 exp } \\
\hline
\end{array}\right.
\] \\
\hline
\end{tabular}
+

SENSE (SNS) INSTRUCTION FORMATS (Continued)


\section*{LOAD 1/O}

The followng instruction tormats ette: ill Co erode requenct


\section*{LOAD I/O (Continued)}


\section*{Load 1/O (Continued)}



\section*{LOAD I/O (Continued)}


PROG. - 99

\section*{LOAD I/O (Continued)}


\section*{LOAD I/O (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Op \\
Code
\end{tabular} & \multicolumn{3}{|c|}{Q Code} & \multicolumn{2}{|l|}{Operand 1 Address} \\
\hline \[
0 \quad 7
\] & \[
\] & M
\[
12
\] & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & 16 23 &  \\
\hline 2560 & 1111 & & & 2560 device address & \\
\hline & & 0 & & Normal mode & \\
\hline & & 1 & & Diagnostic mode & \\
\hline & & 0 & 000 & Unused & Read length \\
\hline & & 0 & 001 & *Micro MTAP or read evaluatio & \\
\hline & & 1 & 001 & - Micro RAP mode & \\
\hline & & 0 & 010 & Punch length & Unused \\
\hline & & 0 & 011 & **Print length & Print head select \\
\hline & & 0 & 100 & Load print address reg & \\
\hline & & 0 & 101 & Load read address reg & \\
\hline & & 0 & 110 & Load punch address reg & \\
\hline
\end{tabular}
*LIO '001' EB1 format
\(\begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{8}{|l|}{Register Addr} \\
\hline 0 & 1 & 00 & \(\rightarrow\) & 3 F & & & Diag & g RAP & mode \\
\hline 1 & 0 & \(\times \times\) & \(x\) & X & X & X & Diag & MTA & AP mode \\
\hline 1 & 1 & \(\times \times\) & \(\times\) & \(\times\) & X & \(\times\) & Diag & g read & evaluation \\
\hline
\end{tabular}

In diag RAP mode, EB1 will load the address of the register and EB2 will load the data. The microprograni will then load the data from EB2 into the register addressed by EB 1 .

If the ' \(M\) ' bit is on, the 2560 box will be electrically disconnected from the attachment.
* Print Head Select Format
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & \\
\hline \(\times\) & X & & & & & & 1 & Hd 1 \\
\hline X & x & & & & & 1 & & Hd 2 \\
\hline X & \(x\) & & & & 1 & & & Hd 3 \\
\hline X & \(\times\) & & & 1 & & & & Hd 4 \\
\hline x & x & & 1 & & & & & Hd 5 \\
\hline X & X & 1 & & & & & & Hd 6 \\
\hline
\end{tabular}

The read, punch, print length plus print hd select must be loaded prior to issueing respective read, punch, or print SIOs. Any length count of zero will result in a no-op of that respective command; ie, if read iength is zero. any SIO that involves reading will be nooped. The length counts only have to be loaded once.

\section*{TEST I/O AND BRANCH (TIO) INSTRUCTION}

In Q-byte sequence
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Code} & \multicolumn{3}{|c|}{Q Code} & \multicolumn{2}{|l|}{Branch to Addrass} \\
\hline & \[
\left\lvert\, \begin{array}{ll}
\text { DA } \\
8 & 11
\end{array}\right.
\] & \[
\begin{aligned}
& M \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & \(16 \quad 23\) & \(24 \quad 31 \frac{1}{1}\) \\
\hline C1 & & & & & 2 byre direct address \\
\hline D1 & & & & & 1 byte indexed by XR1 \\
\hline E 1 & & & & & 1 byte indexed by \(\times R 2\) \\
\hline \multirow[t]{3}{*}{5415} & \multirow[b]{3}{*}{} & & & & \\
\hline & & 1 & & & \\
\hline & & & 001 & & Not ready-to-ready Interrupt pending \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 5408 \\
& 5410 \\
& 5412 \\
& \text { DPF }
\end{aligned}
\]} & 0000 & & & & Device address DPF (0) \\
\hline & \multirow[t]{3}{*}{} & 0 & & & Mius: tue ciou \\
\hline & & & \[
\begin{aligned}
& 0 \times x \\
& 1 \times x \\
& \times 00 \\
& \times 01 \\
& \times 10 \\
& \times 11
\end{aligned}
\] & & \begin{tabular}{l}
Program level 1 \\
Program level 2 \\
Cancel program level \\
Tests setting of DPF switch \\
Load program level \\
from MFCU/AUX 2 \\
Load from console 1/O \\
Load prog from \\
ALT/AUX 1
\end{tabular} \\
\hline & & & & \(x \times x x\) xxxx & Branch to address if condition is met Op codes D1 and E1 are indexed. \\
\hline \multirow[t]{2}{*}{Model Key. board/ 5471/ 5475} & \multirow[t]{2}{*}{001} & & & & Device address keyboard \\
\hline & & \multicolumn{4}{|l|}{Test \(1 / \mathrm{O}\) is invalid and results in invalid Q-by te processor check.} \\
\hline \multirow[t]{10}{*}{\[
\begin{aligned}
& 3277 \\
& 3284
\end{aligned}
\]} & 0001 & & & & Attachment Address \\
\hline & \multirow[t]{9}{*}{} & 0 & & & No - Op \\
\hline & & 1 & 000 & & Attachment not ready \\
\hline & & & 001 & & Pending interrupt line 0 or 1 \\
\hline & & & 010 & & HDB/External Pty Chk \\
\hline & & & 011 & & Control Storage Pty Check \\
\hline & & & 100 & & Storage Address pty chk \\
\hline & & & 101 & & Attachment check \\
\hline & & & 110 & & Storage write data pty chk \\
\hline & & & 171 & & Attachment busy \\
\hline \multirow[t]{6}{*}{BSCC} & \multirow[t]{6}{*}{0010} & 0 & & & Device address BSCC \\
\hline & & & 000 & & Not rdy/unit check \\
\hline & & & 001 & & Op end interrupt \\
\hline & & & 010 & & System/3 - to - micro buffer full \\
\hline & & & 100 & & Interrupt pending \\
\hline & & & 101 & & Micro - to System/3 buffer full \\
\hline \multirow[t]{6}{*}{MLTA} & 0010 & & & & Device address MLTA (2) \\
\hline & \multirow[t]{5}{*}{} & 0 & & & Individual tine instruction \\
\hline & & & \[
\begin{array}{r}
\times 00 \\
\times 01 \\
\times 10 \\
\times 11 \\
\hline
\end{array}
\] & & \begin{tabular}{l}
Line unit check \\
Op-end interrupt pending \\
Line busy \\
PCl interrupt pending
\end{tabular} \\
\hline & & 1 & & & General adapter instruction \\
\hline & & & \begin{tabular}{l}
000 \\
001 \\
010 \\
011 \\
100 \\
101 \\
110 \\
111 \\
\hline
\end{tabular} & & \begin{tabular}{l}
Adapter not ready \\
Line opend interrupt pending \\
Any line busy \\
Line PCl pending \\
Any line unit check \\
Adapter check \\
Diagnostic bit \\
Any tine seiected
\end{tabular} \\
\hline & & & & \(x \times x \times x \times x\) & Branch to address if condition met. \\
\hline
\end{tabular}

TEST I/O AND BRANCH (TIO) INSTRUCTION (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Op Code & \multicolumn{3}{|c|}{Q Code} & \multicolumn{2}{|l|}{Branch to Address} \\
\hline 0 7 & \[
\] & \[
\begin{aligned}
& \mathrm{M} \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
\text { N } \\
1315
\end{gathered}
\] & \(16 \quad 23\) &  \\
\hline \multirow[t]{5}{*}{SIOC} & 0011 & & & & Device address SIOC \\
\hline & & 0 & & & \(M\) bit not used \\
\hline & & & 000 & & SIOC not ready \\
\hline & & & 010 & & SIOC busy \\
\hline & & & & xxxx \(\quad\) x \(x\) x \({ }^{\text {a }}\) & Branch to address if condition met. \\
\hline \multirow[t]{5}{*}{2501} & 0011 & & & & 2501 Device address \\
\hline & & 1 & & & Must be 1 \\
\hline & & & 000 & & 2501 not ready or error \\
\hline & & & 001 & & 2501 interrupt pending (Mod 15 only) \\
\hline & & & 010 & & 2501 busy \\
\hline \multirow[t]{3}{*}{3741} & 0100 & 0 & & & \\
\hline & & & 000 & & Attachment not ready/check \\
\hline & & & 010 & & Attachment busy \\
\hline \multirow[t]{5}{*}{1442} & 0101 & & & & Device address 1442 (5) \\
\hline & & 0 & & & Must be zero \\
\hline & & & 000 & & Test for 1442 not ready \\
\hline & & & 010 & & \begin{tabular}{l}
Test for 1442 busy \\
Note: All other N codes invalid
\end{tabular} \\
\hline & & & & xxxx xxxx & Branch to address if condition is met. D1 and E1 are indexed. \\
\hline \multirow[t]{8}{*}{\begin{tabular}{l}
DA/ \\
LDA \\
Attach \\
Con- \\
trol
\end{tabular}} & 0101 & & & & \\
\hline & \multirow[t]{7}{*}{\(\square\)} & 1 & & & \\
\hline & & & 000 & & Attachment not ready. \\
\hline & & & 010 & & High density buffer/external check (diagnostic): also sets attachment check \\
\hline & & & 011 & & Control storage check (diagnostic); also sets attachment check \\
\hline & & & 100 & & Storage address check (diagnostic): also sets attachment check \\
\hline & & & 101 & & Attachment check (diagnostic) \\
\hline & & & 110 & & Storage write check (diagnostic); also sets attachment check \\
\hline \multirow[t]{5}{*}{1442} & 0101 & & & & 1442 Device address \\
\hline & & 0 & & & Must be zero \\
\hline & & & 000 & & 1442 not ready or error \\
\hline & & & 010 & & 1442 busy \\
\hline & & & 101 & & 1442 interrupt pending (Mod 15 \& 12 only) \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& 3410 \\
& 3411
\end{aligned}
\]} & 0110 & 0 & & & Tape unit " 0 " \\
\hline & 0110 & 1 & & & Tape unit " 1 " \\
\hline & 0111 & 0 & & & Tape unit " 2 " \\
\hline & 0111 & 1 & & & Tape unit " 3 " \\
\hline & & & 000 & & Not ready/unit check \\
\hline & & & 001 & & (5415 only) \begin{tabular}{l} 
Opend interrupt \\
pending
\end{tabular} \\
\hline & & & 010 & & Busy \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& \text { BSCA } \\
& \text { LCA } \\
& \text { ICA }
\end{aligned}
\]} & 1000 & & & & Device address BSCA \\
\hline & \multirow[t]{8}{*}{} & 0 & & & BSCA 1 \\
\hline & & 1 & & & BSCA 2 \\
\hline & & & 000 & & Not ready/unit check \\
\hline & & & 001 & & Op end interrupt \\
\hline & & & 010 & & Busy \\
\hline & & & 011 & & ITB interrupt \\
\hline & & & 100 & & Interrupt pending (Diag) \\
\hline & & & 110 & & New data (Diag) \\
\hline
\end{tabular}

PROG. - 103

TEST I/O AND BRANCH (TIO) INSTRUCTION (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Code} & \multicolumn{3}{|c|}{Q Code} & \multicolumn{2}{|l|}{Branch to Address} \\
\hline & \[
\begin{array}{|c|}
\hline
\end{array}
\] & \(M\)
12 & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & \(16 \quad 23\) &  \\
\hline \multirow[t]{7}{*}{\begin{tabular}{l}
DA/ \\
LDA \\
Term \\
Con. \\
trol
\end{tabular}} & \multirow[t]{7}{*}{1000} & & & & \\
\hline & & 1 & & & \\
\hline & & & 000 & & Not ready/unit check \\
\hline & & & 001 & & Op end interrupt \\
\hline & & & 010 & & Busy \\
\hline & & & 011 & & 1TB interrupt \\
\hline & & & 100 & & Interrupt pending \\
\hline \multirow[t]{5}{*}{2265} & \multirow[t]{5}{*}{1001} & & & & Device address display screen \\
\hline & & 0 & & & \(M\) bit is not used; it should be zero \\
\hline & & & \(\times 1 \times\) & & Display screen tusy \\
\hline & & & \(\times 0 \times\) & & Display screen check ( \(D\)-register parity error "" display screen not ready) \\
\hline & & & & \(x \times x \times x \times x\) x & Branch to address if condition met \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& 5444 / \\
& 5447
\end{aligned}
\]} & 1010 & & & & Drive 1 \\
\hline & \multirow[t]{7}{*}{1011} & & & & Drive 2 \\
\hline & & 0 & & & Removable disk \\
\hline & & 1 & & & Fixed disk \\
\hline & & & 000 & & Not ready or error \({ }^{1}\) \\
\hline & & & 010 & & Busy data transfer in process \\
\hline & & & 100 & & Scan found \\
\hline & & & & \(x \times x \times x \times x x\) & Branch to address if condition is met \\
\hline \multirow[t]{8}{*}{\[
\begin{aligned}
& 5448 \\
& \text { Disk. }
\end{aligned}
\]} & 1100 & & & & Drive 1 \\
\hline & \multirow[t]{7}{*}{1101} & & & & Drive 2 \\
\hline & & 0 & & & Upper disk \\
\hline & & 1 & & & Lower disk \\
\hline & & & 000 & & Not ready or error \\
\hline & & & 010 & & Busy data transfer in process \\
\hline & & & 100 & & Scan found \\
\hline & & & &  & Branch to address if condition is met \\
\hline \multirow[t]{9}{*}{5445} & \multirow[t]{2}{*}{1100} & 0 & & & 5445 disk drive 1 device address \\
\hline & & 1 & & & 5445 disk drive 2 device address \\
\hline & \multirow[t]{7}{*}{1101} & 0 & & & 5445 disk drive 3 device address \\
\hline & & 1 & & & 5445 disk drive 4 device address \\
\hline & & & 000 & & Not ready/unit check \\
\hline & & & 001 & & Seek busy \\
\hline & & & 010 & & Attachment busy \\
\hline & & & 011 & & Scan hit \\
\hline & & & 100 & & Int pend - 15 only \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& 3340 \\
& 3344
\end{aligned}
\]} & 1100 & 0 & & & 3340 drive 1 \\
\hline & 1100 & 1 & & & 3340 drive 2 \\
\hline & 1101 & 0 & & & 3340 drive 3 \\
\hline & 1101 & 1 & & & 3340 drive 4 \\
\hline & & & 000 & & Not ready/unit check \\
\hline & & & 001 & & Seek busy \\
\hline & & & 010 & & Attachment busy \\
\hline & & & 011 & & Scan hit \\
\hline & & & 100 & & Interrupt pending \\
\hline \multirow[t]{8}{*}{1403} & 1110 & & & & 1403 device address \\
\hline & \multirow[t]{7}{*}{} & \multirow{6}{*}{0} & & & Condition tested \\
\hline & & & 000 & & Not ready/no op \\
\hline & & & 010 & & Print buffer busy \\
\hline & & & 011 & & Interrupt pending 5415 \\
\hline & & & 100 & & Carrage busy \\
\hline & & & 110 & & Printer busy \\
\hline & & 1 & 001 & & Diagnostic mode off \\
\hline
\end{tabular}


PROG. - 105

TEST I/O AND BRANCH (TIO) INSTRUCTION (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Op Code & \multicolumn{3}{|c|}{O Code} & \multicolumn{3}{|l|}{Branch to Address} \\
\hline \begin{tabular}{l}
0 \\
7
\end{tabular} & \[
\begin{array}{cc}
\text { DA } \\
8 & 11
\end{array}
\] & \[
\begin{aligned}
& M \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
\text { N } \\
1315
\end{gathered}
\] & 16 & 23 &  \\
\hline \multirow[t]{11}{*}{2560} & 1111 & & & & & 2560 device address \\
\hline & & 0 & & & & Primary feed \\
\hline & & 1 & & & & Secondary feed \\
\hline & & & 000 & & & Feed not rdy/errot \\
\hline & & 0 & 001 & & & Read busy \\
\hline & & 0 & 010 & & & Punch busy \\
\hline & & 0 & 100 & & & Print busy \\
\hline & & 0 & 011 & & & Any trusy \\
\hline & & 0 & 110 & & & Punch or print busy \\
\hline & & 0 & 010 & & & Interrupts enabled \\
\hline & & 0 & 111 & & & Interrupts pending \\
\hline
\end{tabular}

\section*{STARTI/O}

In Q code sequence
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Op Code \\
0 \\
7
\end{tabular}} & \multicolumn{3}{|c|}{Q Code} & Control Code (R-byte) & \\
\hline & 811 & 12 & 1315 & \(16 \quad 23\) & \\
\hline F3 & & & & 01234567 & Start 1/O operation \\
\hline \multirow[t]{3}{*}{5415} & 0000 & & & & CPU device address \\
\hline & & 1 & 000 & \multicolumn{2}{|l|}{Timer and not-ready-to ready} \\
\hline & & & & \begin{tabular}{|cc} 
Bits & 567 \\
0000 & \(0 \times x 1\) \\
0000 & \(0 \times 0 \times\) \\
0000 & \(0 \times 1 \times\) \\
0000 & \(00 \times x\) \\
0000 & \(01 \times x\)
\end{tabular} & \begin{tabular}{l}
Reset interrupt request \\
Disable interrupt \\
Enable interrupt \\
Stop timer \\
Start timer
\end{tabular} \\
\hline \multirow[t]{2}{*}{\[
\begin{aligned}
& 5408 \\
& 5410 \\
& 5412
\end{aligned}
\]} & 0000 & 0 & 000 & & Device address - DPF - M and N must be zero \\
\hline & & & & \begin{tabular}{ccc}
0000 & 0 & \\
& 1 \\
& 0 & 1 \\
& & 1 \\
& & \\
& & 0 \\
& & \\
& & 1
\end{tabular} & \begin{tabular}{l}
Not used \\
Enable dual programming mode \\
Disable dual programming mode \\
Enable interrupt level 0 (system contiol panel interrupt) key \\
Disable interrupt level 0 \\
Reset interrupt request 0 . All other N codes invalid
\end{tabular} \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& 3277 \\
& 3284
\end{aligned}
\]} & \multirow[t]{7}{*}{0001} & & & & Attachment address \\
\hline & & 0 & & & Non-immediate (eventual Op end interrupt) \\
\hline & & & 000 & & Line address \(=0=3277\) \\
\hline & & & 001 & & Line address \(=1=3284\) \\
\hline & & & & \begin{tabular}{lll}
000 & & \\
010 & & \\
100 & & \\
110 & & \\
& 00000 \\
& \multicolumn{2}{c}{1} \\
& & 00 \\
& & \\
& & 0 \\
& & 1 \\
& & 00 \\
& & 01 \\
& & 10 \\
& & 11
\end{tabular} & \begin{tabular}{l}
Control only \\
Read (with control) \\
Write (with control) \\
Erase unprotected (with control) \\
No control (unlock keyboard) \\
Use buffer address reg and count reg \\
Reserved for expansion (must be 00 ) \\
3277 unlock keyboard \\
3277 lock keyboard \\
3284 prtr format \(=\) NL and EM control \\
3284 prtr format \(=40\) character print line \\
3284 prtr format \(=64\) character print line \\
3284 prte format \(=80\) character print line
\end{tabular} \\
\hline & & 1 & 000 & & Immediate (no Op end interrupt) \\
\hline & & & & \begin{tabular}{ll}
\(10 x\) & \(000 \times x\) \\
\(11 x\) & \(000 \times x\) \\
\(1 \times 0\) & \(000 \times x\) \\
\(1 \times 1\) & \(000 \times x\) \\
\(\times x x\) & \(000 \times 0\) \\
\(\times x \times\) & \(000 \times 1\) \\
\(x \times x\) & \(0001 x\)
\end{tabular} & \begin{tabular}{l}
Disable attachment \\
Enable attachment \\
Disable Microcontroller \\
Enable Microcontrofler \\
Disable interrupt \\
Enable interrupt \\
Reset interrupt request
\end{tabular} \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
Mod \\
4/6 \\
Con- \\
sole \\
Key- \\
board
\end{tabular}} & 0001 & & & & Device address keyboard \\
\hline & & 0 & & & \(M\) bit is not used; it should be zero \\
\hline & & & 000 & & N field is not used; it should be zero \\
\hline & & & & \begin{tabular}{ll}
\(\times \times 10\) & 0000 \\
\(\times \times 01\) & 0000 \\
\(\times \times 00\) & 1000 \\
\(\times \times 00\) & 0100 \\
\(\times \times 00\) & 0010 \\
\(\times \times 00\) & 0000 \\
\(\times \times 00\) & 0001
\end{tabular} & \begin{tabular}{l}
CE diagnostic (set interrupt request) \\
Reset parity check \\
Drop bail (lock keyboard) \\
Pick up bail (unlock keyboard) \\
Enable interrupt \\
Disable interrupt \\
Turn off current interrupt request
\end{tabular} \\
\hline
\end{tabular}

START I/O (Continued)


START I/O (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Op Code & \multicolumn{3}{|c|}{O Code} & Contral Code (R-byte) & \\
\hline 7 & \[
\begin{aligned}
& \text { DA } \\
& 8 \quad 11
\end{aligned}
\] & \[
\begin{aligned}
& M \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
\mathrm{N} \\
1315
\end{gathered}
\] & \(16 \quad 23\) & \\
\hline \multirow[t]{9}{*}{MLTA} & 0010 & & & & Device address MLTA (2) \\
\hline & \multirow[t]{8}{*}{} & 0 & & & Individual line instruction \\
\hline & & & 000
001
010
011
100
101
110
111 & & \begin{tabular}{l}
Control \\
Recerve \\
Transmit and receive \\
Receive initial \\
Spare \\
Reser \\
Loop test \\
Auto polt
\end{tabular} \\
\hline & & & & \[
\begin{array}{cc}
1 \times x \times x \\
0 \times x \times x \\
1 \\
0 & \\
1 & \\
0 & 1 \\
0 & \\
\hline
\end{array}
\] & \begin{tabular}{l}
If a 1 , bits 1, 2, 3, and 4 of control code are effective \\
If a 0 , bits 1, 2, 3, and 4 of control code are disregarded \\
Enable data adapter \\
Disable data adapter \\
Enable test mode \\
Disable test mode \\
Select switched line facility \\
Select nonswitched line facility
\end{tabular} \\
\hline & & & & \[
\begin{array}{ll}
\hline 1 & \\
0 & \\
1 \\
1 \\
0 & \\
& 1 \\
& 0 \\
& 1 \\
& 1 \\
& 0
\end{array}
\] & \begin{tabular}{l}
Select 600 bps line speed \\
Select 134.5 bps line speed \\
Start interval time-out \\
Cancel interval time-out \\
Reset PCI interrupt \\
No action \\
Reset op end interrupt request \\
No action
\end{tabular} \\
\hline & & 1 & & & General adapter instruction \\
\hline & & & \[
\begin{array}{r}
000 \\
\times \times \times \\
\hline
\end{array}
\] & & \begin{tabular}{l}
Control \\
Invalid N field
\end{tabular} \\
\hline & & & & \(1 \times x \times \times\)
\(0 \times x \times x\)
0
1
0
1
0
1 & \begin{tabular}{l}
If a 1 , bits 1, 2, 3, and 4 of control code are effective \\
If a 0 , bits \(1,2,3\), and 4 of control \\
code are disregarded \\
Disable MLTA \\
Enable MLTA \\
Disable microcontroller \\
Enable microcontroller \\
Disable wrap mode \\
Enable wrap mode
\end{tabular} \\
\hline & & & & \begin{tabular}{ll}
0 \\
1 \\
0 \\
1 \\
0 \\
0 \\
1 \\
& 0 \\
& 1
\end{tabular} & \begin{tabular}{l}
Spare \\
Spare \\
Spare \\
Spare \\
Disable PCl interrupt capability \\
Enable PCl interrupt capability \\
Disable op end interrupt capability \\
Enable op end interrupt capability
\end{tabular} \\
\hline
\end{tabular}

PROG. -109

\section*{START I/O (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Op \\
Code \\
0
\end{tabular}} & \multicolumn{3}{|c|}{O Code} & \begin{tabular}{l}
Control \\
Code (R-byte)
\end{tabular} & \\
\hline & \[
\left|\begin{array}{cc}
\text { DA } \\
8 & 11
\end{array}\right|
\] & M
\[
12
\] & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & \(16 \quad 23\) & \\
\hline \multirow[t]{10}{*}{BSCC} & 0010 & & & & \\
\hline & \multirow[t]{9}{*}{} & 0 & & & \\
\hline & & & 000 & Control & \\
\hline & & & & \begin{tabular}{ll} 
Bits & \\
0123 & 4567 \\
0000 & 0001 \\
0000 & 0010 \\
0000 & 0100 \\
0000 & 1000 \\
0001 & 0000 \\
0010 & 0000 \\
0100 & 0000 \\
1000 & 0001 \\
1000 & 0010 \\
1000 & 0100 \\
1000 & 1000 \\
1001 & 0000 \\
1010 & 0000 \\
1100 & 0000
\end{tabular} & \begin{tabular}{l}
Function Specified \\
Enables interrupt request \\
Load micro-to.System \(/ 3\) buffer \\
Not used \\
Set IMPL \\
Enabie single cycle \\
Set micro reset \\
Enable attachment \\
Disable interrupt request \\
Reset interrupt pending \\
Not used \\
Micro start clock pulse \\
Disable single cycle \\
Reset micro reset \\
Disable attachment
\end{tabular} \\
\hline & & & 001 & & Receive only \\
\hline & & & 010 & & Transmit and recerve \\
\hline & & & 011 & & Recerve inutral \\
\hline & & & 101 & & Microcontroller contro! \\
\hline & & & & \begin{tabular}{ll} 
Bits & \\
0123 & 4567 \\
0000 & 0001 \\
0000 & 0010 \\
0000 & 0100 \\
0000 & 1000 \\
0001 & 0000 \\
0010 & 0000 \\
0100 & 0000 \\
1000 & 0001 \\
1000 & 0010 \\
1000 & 0100 \\
1000 & 1000 \\
1001 & 0000 \\
1010 & 0000 \\
1100 & 0000
\end{tabular} & \begin{tabular}{l}
Function specified \\
Start 2 second timer \\
Not used \\
Not used \\
Start CE trace \\
Not used \\
Not used \\
Set test mode on \\
Cancel 2 second timer \\
Disabie line selected \\
Stop CE trace \\
Not used \\
Not used \\
Stop polling \\
Set test mode oif
\end{tabular} \\
\hline & & & 110 & & CE diagnostic tused to dump CE trace) \\
\hline
\end{tabular}


\section*{START I/O (Continued)}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{Op Code
\[
0
\]}} & & Code & & Control Code (R-byte) & \\
\hline & & \[
\] & M
\[
12
\] & \[
\begin{gathered}
\mathrm{N} \\
1315 \\
\hline
\end{gathered}
\] & \(16 \quad 23\) & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{8}{*}{SIOC}} & 0011 & & & & Device address SIOC (3) \\
\hline & & \multirow[t]{7}{*}{\(\bigcirc\)} & 0 & & & Not used A zero is preferred \\
\hline & & & \multirow{6}{*}{0} & 000
000
000
000
000
001
010
011 & \begin{tabular}{ll}
0000 & 0001 \\
0000 & 0010 \\
0000 & 0100 \\
0000 & 1000 \\
0001 & 0000 \\
0000 & 0000 \\
0000 & 0000
\end{tabular} & \begin{tabular}{ll|}
\hline Reset interrupt request & These control \\
Enable interrupt ability & codes may also be \\
Reset interrupt ability & used with \(N\) codes \\
Remove SIOC from busy state & 001 or 010 below \\
Set interrupt request & \\
Read \(I / O\) device & \\
Write \(I / O\) device & \\
\(1 / O\) control 1 &
\end{tabular} \\
\hline & & & & & \[
\begin{aligned}
& 1 \\
& 1 \\
& 1 \\
& 1 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
1/O select 8 \\
1/O select 7 \\
1/O select 6 \\
1/O select 5
\end{tabular} \\
\hline & & & & & \[
\begin{aligned}
& \hline 1 \\
& 1 \\
& 1 \\
& \\
& \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
\(1 / 0\) select 4 \\
I/O select 3 \\
1/O select 2 \\
1/O select 1
\end{tabular} \\
\hline & & & & 100 & & 1/O control 2 \\
\hline & & & & & \[
\begin{gathered}
1 \\
1 \\
1 \\
\\
\hline
\end{gathered}
\] & \begin{tabular}{l}
\(1 / 0\) select 14 \\
I/O select 13 \\
I/O select 12 \\
1/O select 11
\end{tabular} \\
\hline & & & & & \[
\begin{gathered}
1 \\
1 \\
1 \\
\\
\\
\hline
\end{gathered}
\] & \begin{tabular}{ll} 
I/O select 10 & \\
I/O select 9 & \\
I/O unit 2 select & All other \(N\) codes \\
I/O unit 1 select & invalid \\
\hline
\end{tabular} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{2501}} & 0011 & & & & 2501 Device address \\
\hline & & \multirow[t]{2}{*}{\(\square\)} & 1 & & & Must be 1 \\
\hline & & & & \[
\begin{aligned}
& 000 \\
& 001 \\
& 011
\end{aligned}
\] & \begin{tabular}{ll}
0123 & 4567 \\
\(\times \times 0 x\) & \(0 \times \times x\) \\
\(\times x 0 x\) & \(1 \times x \times\) \\
\(\times \times 1 \times\) & \(0 \times x \times\) \\
\(x \times 1 \times\) & \(1 \times x \times\)
\end{tabular} & \begin{tabular}{l}
SIO interrupt control \\
Read translate \\
Read card image \\
Disable interrupts \\
Enable interrupts \\
Reset/disable interrupts \\
Reset/enable interrupts
\end{tabular} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{3741}} & 0100 & \multirow[t]{2}{*}{0} & & & \\
\hline & & & &  & \begin{tabular}{ll}
0000 & 0001 \\
0000 & 0010 \\
0000 & 0100 \\
0000 & 1000 \\
0001 & 0000 \\
0000 & 0000 \\
0000 & 0000 \\
0001 & 0100 \\
0000 & 1000 \\
0101 & 0000 \\
0001 & 0000 \\
1001 & 0000 \\
0011 & 0000
\end{tabular} & \begin{tabular}{l}
Reset interrupt \\
Enable interrupt \\
Disable interrupt \\
Remove from busy state \\
Set interrupt request \\
Read from 3741 \\
Write to 3741 \\
Wrong mode sense response \\
Normal response \\
End of job-in response \\
Record length error response \\
Parity error response \\
End of data set-in response
\end{tabular} \\
\hline
\end{tabular}
\(\square\)


\section*{START I/O (Continued)}


\section*{START I/O (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Code} & \multicolumn{3}{|c|}{Q Code} & Control Code (R-byte) & \\
\hline & \[
\] & \[
\begin{aligned}
& M \\
& 12
\end{aligned}
\] & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & \[
16 \quad 23
\] & \\
\hline \multirow[t]{5}{*}{\[
\begin{aligned}
& 5444 / \\
& 5447
\end{aligned}
\]} & 1010 & & & & Device address disk drive 1(A) \\
\hline & 1011 & & & & Device address disk drive 2 (B) \\
\hline & & 0 & & & Upper disk (removable) \\
\hline & & 1 & & & Lower disk (fixed) \\
\hline & & & 000
001
001
001
001
010
010
011
011
011 & \begin{tabular}{ll}
0000 & 0000 \\
0000 & 0000 \\
0000 & 0001 \\
0000 & 0010 \\
0000 & 0111 \\
0000 & 0000 \\
0000 & 0001 \\
0000 & 0000 \\
0000 & 0001 \\
0000 & 0010
\end{tabular} & \begin{tabular}{l}
Control seek \\
Read data \\
Read identifier \\
Read diagnostic \\
Read verify \\
Write data \\
Write identifier \\
Scan equal \\
Scan low or equal \\
Scan high or equal
\end{tabular} \\
\hline \multirow[t]{5}{*}{5448} & 1100 & & & & Drive 1 \\
\hline & 1101 & & & & Drive 2 \\
\hline & & 0 & & & Upper disk \\
\hline & & 1 & & & Lower disk \\
\hline & & & 000
001
001
001
001
010
010
011
011
011 & \begin{tabular}{ll}
0000 & 0000 \\
0000 & 0000 \\
0000 & 0001 \\
0000 & 0010 \\
0000 & 0111 \\
0000 & 0000 \\
0000 & 0001 \\
0000 & 0000 \\
0000 & 0001 \\
0000 & 0010
\end{tabular} & \begin{tabular}{l}
Control seek \\
Read data \\
Read identifier \\
Read diagnostic \\
Read verify \\
Write data \\
Write identifier \\
Scan equal \\
Scan low or equal \\
Scan high or equal
\end{tabular} \\
\hline & & & & & \begin{tabular}{cl} 
Notes: & 1. Bits \(16-23\) are not used by the \\
attachment. \\
2. All other N codes unvalid
\end{tabular} \\
\hline
\end{tabular}

2. All other \(N\) codes mvalid

START I/O (Continued)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Op Code \\
0
\end{tabular}} & \multicolumn{3}{|c|}{O Code} & Control Code (R-byte) & \\
\hline & \begin{tabular}{|cc|}
\hline \multicolumn{2}{c}{ DA } \\
8 & 11
\end{tabular} & M
\[
12
\] & \[
\begin{array}{|c|}
\hline \\
13 \\
\hline
\end{array}
\] & \(16 \quad 23\) & \\
\hline \multirow[t]{9}{*}{5445} & 1100 & 0 & & & 5445 disk drive 1 device address \\
\hline & & 1 & & & 5445 disk drive 2 device address \\
\hline & 1101 & 0 & & & 5445 disk drive 3 device address \\
\hline & & 1 & & & 5445 disk drive 4 device address \\
\hline & & & 000 & \[
\begin{aligned}
& 0000 \\
& 0001 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Control \\
Seek \\
Recalibrate
\end{tabular} \\
\hline & & & 001 & 0000 0001 0010 0011 0100 0111 & \begin{tabular}{l}
Read \\
Key-data \\
Home address and record R0 \\
Count-key data \\
Verify-key data \\
Count-key-data diagnostic \\
Buffer diagnostic
\end{tabular} \\
\hline & & & 010 & \[
\begin{aligned}
& 0000 \\
& 0001 \\
& 0010 \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Write \\
Key-data \\
Home address and record RO \\
Count-key-data
\end{tabular} \\
\hline & & & 011 & \[
\begin{aligned}
& 1000^{*} \\
& 1001^{\circ} \\
& 1010^{\circ} \\
& \hline
\end{aligned}
\] & \begin{tabular}{l}
Scan \\
Scan key-data, equal \\
Scan key-data, low or equal \\
Scan kev-data, high or equal
\end{tabular} \\
\hline & & & 100 & \[
\begin{array}{ll}
1000 & \\
0100 & \\
0010 & \\
0001 & \\
& 1000 \\
& 0100 \\
& 0010
\end{array}
\] & \begin{tabular}{l}
Interrupt (Mod 15 only) \\
Enable interrupt \\
Reset seek 1 interrupt \\
Reset seek 2 interrupt \\
Reset seek 3 interrupt \\
Reset seek 4 interrupt \\
Reset op end interrupt \\
Reset enable interrupt \\
Note: An unassigned R byte specification causes the attachment to hang-up in the busy state
\end{tabular} \\
\hline
\end{tabular}

STARTI/O (Continued)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Code} & \multicolumn{3}{|c|}{Q Code} & \begin{tabular}{l}
Control \\
Code (R-byte)
\end{tabular} & &  \\
\hline & \[
\] & M
\[
12
\] & \[
\begin{gathered}
N \\
1315
\end{gathered}
\] & \(16 \quad 23\) & &  \\
\hline \multirow[t]{9}{*}{\[
\begin{aligned}
& 3340 \\
& 3344
\end{aligned}
\]} & 1100 & 0 & & & 3340/3344 disk drive 1 druce adidress & \\
\hline & 1100 & 1 & & & \(3340 / 3344\) disk druve 2 device dodit-ss & \\
\hline & 1101 & 0 & & & 33403344 disk driwn 3 devers adtres5 & \\
\hline & & 1 & & & \(3340 / 3344\) disk trive 4 device scichess & \\
\hline & &  & 000 & \[
\begin{aligned}
& 0000 \\
& 0001
\end{aligned}
\] & \begin{tabular}{l}
Control \\
Seek \\
Recalibrate
\end{tabular} &  \\
\hline & & & 001 & \[
\begin{aligned}
& 0000 \\
& 0001 \\
& 0010 \\
& 0011 \\
& 0100 \\
& 0101 \\
& 0111 \\
& 1000 \\
& 1001 \\
& 1011 \\
& 1101
\end{aligned}
\] & \begin{tabular}{l}
Read \\
Key dara \\
HA and Ro count even \\
Comnt kev data \\
Verify key data \\
Count kev data diagnostic and \\
reset buffered tou \\
Diagnostic sense \\
Ro key data odd \\
HA and RO count odd \\
Extended functional sense \\
Data module controt reset
\end{tabular} &  \\
\hline & & & 010 & \[
\begin{aligned}
& 0000 \\
& 0001 \\
& 0010 \\
& 0011 \\
& 0110 \\
& 1000 \\
& 1001
\end{aligned}
\] & \begin{tabular}{l}
Write \\
Key data \\
HA and RO even \\
Count key data \\
Repeat key gata \\
Ro odd \\
Write count compressed data \\
HA and Po odi
\end{tabular} & \\
\hline & & & 011 & \[
\begin{aligned}
& 0000 \\
& 0010 \\
& 1100 \\
& 1101
\end{aligned}
\] & \begin{tabular}{l}
 \\
Read or equai \\
Read or nigh or equa!
\end{tabular} & \\
\hline & & & 100 & \[
\begin{array}{ll}
1000 & 1000 \\
0100 & \\
0010 & \\
0001 & \\
& 1000 \\
& 0100 \\
& 0010 \\
& 0001
\end{array}
\] & \begin{tabular}{l}
Interrupt control \\
Enable interrupt \\
Reset seek compiere I \\
Reset seek comglie te 2 \\
Reser seek complete 3 \\
Reset seek complete 4 \\
Reset op end \\
Reset enabie intetrupt \\
Program IPL enable \(\qquad\)
\end{tabular} & \\
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& 5213 \\
& 2222 \\
& \text { Printer }
\end{aligned}
\]} & 1110 & & & & Device address seria! printe: ............................ & \\
\hline & & 0
1 & & & \begin{tabular}{l}
Selects printer \\
Selects LCD
\end{tabular} &  \\
\hline & & & x \(\times\) x & & \(N\) fietd is not used, zetos are prefermet & \\
\hline & & & & \begin{tabular}{ll}
0000 & 0000 \\
0000 & 0003
\end{tabular} & \begin{tabular}{l}
Serial print operation \\
Line print operation
\end{tabular} & \\
\hline
\end{tabular}

\section*{START I/O (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Op \\
Code
\end{tabular}} & \multicolumn{3}{|c|}{Q Code} & \begin{tabular}{l}
Control \\
Code (R-byte)
\end{tabular} & \\
\hline & \[
\] & M
\[
12
\] & \[
\begin{gathered}
\mathrm{N} \\
1315 \\
\hline
\end{gathered}
\] & \[
16 \quad 23
\] & \\
\hline \multirow[t]{8}{*}{5203} & 1110 & & & & 5203 Device address \\
\hline & \multirow[t]{7}{*}{} & 0 & & & \multirow[t]{2}{*}{\begin{tabular}{l}
Left carriage is used (single feed carriage) \\
Right carriage is used
\end{tabular}} \\
\hline & & 1 & & & \\
\hline & & & 000 & & Space only \\
\hline & & & 010 & & Print followed by spacing \\
\hline & & & 100 & & Skip only \\
\hline & & & 110 & & Print followed by skip \\
\hline & & & & \begin{tabular}{ll}
0000 & 0000 \\
0000 & 0001 \\
0000 & 0010 \\
0000 & 0011 \\
0000 & 0001 \\
0000 & 0010 \\
& \\
0110 & 1111 \\
0111 & 0000
\end{tabular} &  \\
\hline \multirow[t]{9}{*}{1403} & 1110 & & & & 1403 Device address \\
\hline & & 0 & 000 & & Space only \\
\hline & & & 010 & & Print followed by spacing \\
\hline & & & 100 & & Skip only \\
\hline & & & 110 & & Print tollowed by skip. \\
\hline & & 1 & 001 & & Diag inst 1 \\
\hline & & & 010 & & Diag inst 2 \\
\hline & & & & \begin{tabular}{ll}
0000 & 0000 \\
0000 & 0001 \\
0000 & 0010 \\
0000 & 0011 \\
0000 & 0001 \\
0000 & 0010 \\
1111 & 1111 \\
1111 & 1111 \\
0110 & 1111 \\
0111 & 0000
\end{tabular} & \begin{tabular}{l}
\(\left.\begin{array}{l}\text { No space } \\
\text { One space } \\
\text { Double space } \\
\text { Triple space } \\
\text { Skip to line 1 } \\
\text { Skip to tine } 2 \\
1 \\
1 \\
\text { Skip to line 110 } \\
\text { Skip to line } 112\end{array}\right\}\)\begin{tabular}{l} 
A number greater than \\
3 is not permitted and \\
will result in a space \\
zero operation
\end{tabular} \\
\begin{tabular}{l}
112 lines are the maxi- \\
mum length of a form \\
18 lines per inch)
\end{tabular} \\
\hline
\end{tabular} \\
\hline & & & \[
\begin{gathered}
011 \\
5415 \\
\text { only }
\end{gathered}
\] & \begin{tabular}{|ll}
1000 & 0000 \\
0000 & 0000 \\
0100 & 0000 \\
0010 & 0000 \\
\hline
\end{tabular} & \begin{tabular}{l}
Enable interrupt \\
Disable interrupt \\
Reset interrupt (buffer busy) \\
Reset interrupt (carriage busy)
\end{tabular} \\
\hline
\end{tabular}


\section*{START I/O (Continued)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Op Code} & \multicolumn{3}{|c|}{Q Code} & Control Code (R-byte) & \\
\hline & \[
\begin{array}{|c|}
\hline D A \\
\hline 8
\end{array} 11
\] & M
\[
12
\] & \[
\begin{gathered}
\mathrm{N} \\
1315
\end{gathered}
\] & \[
16 \quad 23
\] & \\
\hline \multirow[t]{12}{*}{2560} & \multirow[t]{12}{*}{1111} & & & & 2560 Device address \\
\hline & & 0 & & & Use primary feed \\
\hline & & 1 & & & Use secondary feed \\
\hline & & & 000 & & Feed only \\
\hline & & & 001 & & Read \\
\hline & & & 010 & & Punch and feed \\
\hline & & & 011 & & Punch and read \\
\hline & & & 100 & & Print and no feed \\
\hline & & & 101 & & SIO interrupt handler \\
\hline & & & 110 & & Print punch -teed \\
\hline & & & 111 & & Print-punch-read \\
\hline & & & & \begin{tabular}{ll}
0123 & 4567 \\
\(x \times x x\) & \(x 000\) \\
\(x x x x\) & \(x 001\) \\
\(x x x x\) & \(x 010\) \\
\(x x x x\) & \(x 011\) \\
\(x x x x\) & \(x 100\) \\
\(x \times x x\) & \(x 101\) \\
\(00 x x\) & \(x \times x x\) \\
\(01 x x\) & \(x x x x\) \\
\(10 x x\) & \(x x x x\) \\
\(11 x x\) & \(x \times x x\)
\end{tabular} &  \\
\hline \multirow[t]{7}{*}{\[
\begin{aligned}
& 5496 \\
& 129
\end{aligned}
\]} & \multirow[t]{7}{*}{F} & & & & Data recorder device address \\
\hline & & 0 & & & M-bit is not used, it should be zero \\
\hline & & & \(\times 01\) & & Read a card \\
\hline & & & +10 & & Punch a card \\
\hline & & & +11 & & Diagnostic data \\
\hline & & & \(\times 00\) & & Diagnostic cycle steal \\
\hline & & & & \(x \times x \times x \times x\) drex & Data used in diagnostic data \\
\hline \multirow[t]{13}{*}{5424} & \multirow[t]{13}{*}{1111} & & & & 5424 Device address \\
\hline & & 0 & & & Primary card path is used \\
\hline & & 1 & & & Secondary card path is used \\
\hline & & & 000 & & Feed \\
\hline & & & 001 & & Read \\
\hline & & & 010 & & Punch feed \\
\hline & & & 011 & & Punch read \\
\hline & & & 100 & & Print feed \\
\hline & & & 101 & & Print read \\
\hline & & & 110 & & Punch print feed \\
\hline & & & 111 & & Punch print read \\
\hline & & & & \[
\begin{array}{|l|}
\hline 0 \\
1 \\
\hline
\end{array}
\] & Printbuffer 1 is used Printbuffer 2 is used \\
\hline & & & &  & \begin{tabular}{l}
8 bit IPL read \\
Print 4 lines \\
Reserved \\
Reserved \\
No selection \\
Select stacker 4 \\
Select stacker 1 \\
Select stacker 2 \\
Select stacker 3
\end{tabular} \\
\hline
\end{tabular}

Notes

Notes

\(\qquad\)

\(\qquad\)
\(\qquad\)

-
\(\qquad\)
\(\qquad\)
\(\qquad\)
\(\qquad\)

\(\qquad\)
-


工-

\(\square\)

3

\section*{S229-8032-1}

\section*{音}

\section*{International Business Machines Corporation}

General Systems Division
4111 Northside Parkway, N.W.
P.O. Box 2150

Atlanta, Georgia 30301
(U.S.A. only)

\section*{General Business Group/International}

44 South Broadway
White Plains, New York 10601
U.S.A
(International)

E \(\varnothing 1\)
PRINTER TESTS. (SYS/3)
1. PLACF D.P.C. AND E®I IN PRIMARY CARD READER.
2. PRESS PROGRAM LOAD.
3. SYSTEM LOADS DCK, AND PRINTS SENSE SWITCH DATA.
4. SET SWITCHES TO "F 105. PRESS START " " " TIMES.
5. LOAD BLANK CARDS IN SKCONDARY HOPPER AND READY.
6. RESET SWITCHES TO "O 000 . PRESS START.
7. MFEO PRINTS INSTRUCTIONS ON CARDS and stacks them in hopper " 4 ."
8. FOLIO W DIRECTIONS ON CARDS. PRESS START.
9. if printer malfuctions seuerlt, then set SENSE SUITCH" \&" AURING STEA 4. "F 104 ." aLSo SET " 5 ". THIS in HIBITS PRINTING INSTRUGTIONS.```


[^0]:    1 1. -3741 and 3411 request an I/O cycle.
    [ -3411 gets cycie request granted (04) on DBO. The 3741 must wait.
    4 - $\mathbf{3 4 1 1}$ attach. sends 5 and 7 to select "MTDAR" LSR at clock 8. This will be repeated at clock 4 and, if necessary, at clock 0 and 2 (not shown in timing chart).

    1. -3741 again request an 1/O cycle.
    2. -3741 attach. gets cycle request granted (30) on DBO.

    1-3741 attach. sends 4 and 5 to select "DSAR" I/O LSR at clock 8 (cik 4, 0, 2 not shown) Note: Refer to part 2 for other devices.

[^1]:    *Not affected by parity check switch.

[^2]:    1 Enter the first digit of the ATT register number into switch 1 , and the second digit of the ATT register number into switch 2 to identify the desired ATT register. ATT registers are numbered sequentrally in hex from 00 to $1 F$

