

IBM System/3 Multiline/Multipoint Binary Synchronous Communications Reference Manual

Program Numbers:

5702-SC1 Model 10
5704-SC1 Model 15
5704-SC2 Model 15
5705-SC1 Model 12

Fifth Edition (December 1976)

This is a major revision of, and replaces, GC21-7573-3 and Technical Newsletters GN21-7775, GN21-5279, and GN21-5363. Changes are indicated by a vertical line at the left of the change. New or extensively revised illustrations are indicated by the symbol to the le t of the caption.

This edition applies to Program Number 5702-SC1 (version 10 and modification 00) of IBM System/3 Model 10 Disk System, Program Number 5704-SC1 (version 01 and modification 00) cf IBM System/3 Model 15, Program Number 5704-SC2 (version 01 and modification 00) of IBM System/3 Model 15, and Program Number 5705SC1 (version 02 arid modification 00) of IBM System/3 Model 12, and to all subsequent versions and modifications until otherwise indicated in new editions or technical newsletters.

Changes to the information herein are made periodically. Before using this publication to operate an IBM system, refer to the latest IBM System/3 Bibliography. GC20-8080, for the editions that are applicable and current.

Requests for copits of IBM publications should be made to your IBM representative or to the IBM branch office serving your locality.

A Readers Comments form is provided at the back of this publication. If the form has been removed, comments may be addressed to IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.

This manual provides the programming information required to use the Multiline/Multipoint Feature (MLMP) with System/3 Model 10, Model 12, or Model 15 binary synchronous communications programs.

On the Model 10 and Model 12, MLMP is a feature of the System Control Programming (5702-SC1, Features 6030 and 6031). On the Model 15, MLMP is included in the base | System Control Programming (5704-SC1 or 5704-SC2).

Hereafter, the terms "MLMP" and "System/3" should be understood as applying to the System/3 Model 10 Disk System, the Model 12, and the Model 15, unless qualified by "Model 10 and Model 12 only" or "Model 15 only."

This reference manual is intended for applications programmers who are familiar with:

- Basic telecommunications concepts and practices
- IBM System/3 Basic Assembler language
- IBM System/3 Model 10 Disk System, Model 12, or Model 15

The manual describes MLMP and the functions of MLMP. the System/3 MLMP macro instructions, and the MLMP diagnostics and diagnostic aids. The book also lists MLMP system requirements and considerations. Appendixes contain a list of MLMP considerations unique to certain terminals, examples of coded MLMP macro instructions and a sample program, data area formats, BSC line control characters and codes, and a macro instruction summary.

As noted in the text, many of the cross references in this manual address index entries.

SYSTEM/3 MODEL 8

The System/3 Model 8 is supported by System/3 Model 10 Disk System control programming and program products. The facilities described in this publication for the Model 10 are also applicable to the Model 8, although the Model 8 is not referenced. However, the Integrated Communications Adapter (ICA) is only available on the Model 8. If you | have either the ICA or local display adapter, it is always designated as BSCA line 2. Therefore, you must specify line 2 whenever the ICA or local display adapter is used, or enter the BSCA OCL statement (// BSCA LINE-2) at execution time. It should be noted that not all devices and features which are available on the Model 10 are available on the Model 8. Therefore, Model 8 users should be familiar with the contents of IBM System $/ 3$ Model 8 Introduction, GC21-5114.

Prerequisite Publications

- General Information: Binary Synchronous Communications, GA27-3004
- IBM System/3 Models 8, 10, 12, and 15 Components Reference Manual, GA21-9236

Related Publications

- IBM System/3 Basic Assembler Reference Manual, SC21.7509

I IBM System/3 Mode/s 4, 6, 8, 10, and 12 System Generation Reference Manual, GC21-5126 or IBM System/3 Model 15 System Generation Reference Manual, GC21-7616

- IBM System/3 Model 8 Operator's Guide, GC21-7634, IBM System/3 Model 10 Disk System Operator's Guide, GC21-7508 or IBM System/3 Model 15 Operator's Guide, GC21-5075
- IBM System/3 Model 10 Disk System Control Programming Reference Manual, GC21-7512; IBM System/3 Model 15 System Control Programming Reference Manual (5704-SC1), GC21-5077, or IBM System/3 Model 15 System Control Programming Concepts and Reference Manual, (5704-SC2), GC21-5162
- IBM System/3 Model 10 Disk System Halt Guide, GC21-7540 or IBM System/3 Model 15 System Messages, GC21-5076
- IBM System/3 Disk System Control Programming Macros Reference Manual, GC21-7562 or IBM System/3 Model 15 System Control Programming Macros Programming Reference Manual, GC21-7608
- IBM System $/ 3$ Overlay Linkage Editor Reference Manual, GC21-7561
- IBM System/3 Multiple Line Terminal Adapter RPO Program Reference and Component Description Manual, GC21-7560
- IBM System/3 Model 12 System Control Programming Reference Manual, GC21-5130
- IBM System/3 Model 12 Operator's Guide, GC21-5144
- IBM System $/ 3$ Model 12 User's Guide, GC21.5142
- IBM System $/ 3$ Models 8, 10, 12, and 15 Components Reference Manual, GA21-9236
- IBM System $/ 3$ Model 12 Halt Guide, GC21-5145
- IBM System/7 Systems Summary, GA34-0002
- IBM System/7 Binary Synchronous Communications Module (RPG), Programming Guide and Reference Manual, SC34-1510
- IBM System/7 Teleprocessing Multiplexor "TPMM" Programming Guide and Reference Manual Supporting RPO D08011, SC34-1506
- System Components: IBM 2770 Data Communication System, GA27-3013
- IBM 2780 Data Transmission Terminal: Component Description, GA27-3005
- Component Description: IBM 2972 Models 8 and 11 General Banking Terminal System, GL27-3020
- IBM 3270 Information Display System Component Description, GA27-2749
- IBM 3735 Programmer's Guide, GC30-3001
- IBM Systems 3735 Support Program Coding M'anual, GC21-5096
- IBM 3600 Finance Communication System Programmer's Guide and Component Description, GC27-0004
CHAPTER 1. MULTILINE/MULTIPOINT BINARY SYNCHRONOUS COMMUNICATIONS 1
Telecommunications Lines Supported 5
Functions 6
Multiple Line Terminal Adapter 6
CHAPTER 2. SYSTEM/3 MACRO INSTRUCTIONS 7
Description 7
Conventions 8
CHAPTER 3. MLMP PROGRAMMING 9
Preparing for Data Transfer 9
Generate Common Equates (\$COMN) 10
Generate BSC DTF Displacements and Labels (\$DTOB) 10
Define the File for BSC (\$DTFB) 10
Allocate BSC Files (\$ALOC) 16
Open BSC Files (\$OPEN) 18
Generate a Model 10 and Model 12 Checklist (\$CKL) 17
Generate a Model 15 Checklist (\$CKL) 18
Generate a Polling/Addressing List (\$POLB) 19
Change a Polling List (\$BCPL 20
Generate a Parameter List for Changing a Polling List or a Switched ID List (\$CHGB) 21
Allocate the Terminal Statistics Logging Area (\$LOGB) 21
Generate a Switched ID List (SSWIB) 22
Change a Switched ID List (\$BCSW) 23
Generate a Translate Parameter List (\$TRL) 24
Generate a Translate Table (\$TRTB) 24
Generate an Interface to the Translate Routine (STRAN) 25
Generate an Online Test Parameter List (\$RFTL) 26
Initiating Data Transfer 27
Move Mode 27
Issue a GET Request (\$GETB) 27
Issue a PUT Request (\$PUTB) 28
Cancel a GET Request (\$CANB) 29
Check for I/O Completion (\$CHK) 29
Techniques for Initiating Data Transfer 31
Terminating Data Transfer 39
Terminate BSC Files 39
Close BSC Files (\$CLOS) 39
CHAPTER 4. DIAGNOSTICS AND DIAGNOSTIC AIDS 41
Mnotes 41
Halts 45
Completion Codes 45
BSC Counters 50
Initializing MLTERFIL 50
Online Test 51
Trace 54
Snap Dump Main Storage (\$SNAP) 55
CHAPTER 5. REQUIREMENTS AND CONSIDERATIONS 57
System Configuration 57
Model 8 57
Model 10 57
Model 12 58
Model 15 58
Storage Requirements 59
Programming Requirements 59
MLMP Frogramming Considerations 59
APPENDIX A. DEVICE-DEPENDENT CONSIDERATIONS 61
IBM 2972 Banking Terminal System 61
IBM 3270 Information Display System 61
Polling/Addressing a 3270 61
Reading From and Writing To a Remote 3270 62
How to Request an Online Test from a 3270 71
Status/Sense Messages 71
Polling/Addressing a 3270 via the Display Adapter 76
IBM 3735 Programmable Termina 77
Form Descriptor Convert Routine ($\$ \$ \mathrm{BSCN}$) 77
Additional 3735 Considerations 78
APPENDIX B. SAMPLES 79
Sample ML.MP Macro Instructions 79
Model 10 and Model 12 Sample Program:
Communicating with the 3270 87
APPENDIXC. DATA AREAS, PARAMETER LISTS. AND MESSAGE FORMATS 105
BSC DTF 105
MLMP I/O Area 109
Terminal Statistics Logging Area 109
Trace Table 110
BSC I/O Registers 111
Checklist 111
Polling/Addressing List 112
Switched ID List 112
Parameter List for Changing a Polling List or
Switched ID List 112
Translate Parameter List 113
Online Test Parameter List 113
Online Test Requests 114
MLMP Message Formats 115
APPENDIXD. CONTROL CHARACTERS AND CODES 117
EBCDIC 117
ASCII 118
Hexadecimal Representations 119
Tributary System/3 Polling and AddressingCharacters119
APPENDIX E. MACRO INSTRUCTION SUMMARY 121
INDEX 123

Chapter 1. Multiline/Multipoint Binary Synchronous Communications

Multiline/Multipoint (MLMP) is a binary synchronous communications (BSC) feature of System/3. MLMP provides the assembler programmer access to the BSC I/O routines that support the Binary Synchronous Communications Adapter (BSCA) as an I/O device. For a description of the BSCA, see the appropriate components reference manual for your system listed in the Preface.

MLMP enables the assembler programmer to transmit and receive binary synchronous data over two telecommunications lines simultaneously (each line requires a BSCA). The two lines can be used in the same program or can be used independently in separate program levels (on Model 10 or Model 12 that has the dual programming feature in-
| stalled) or in the program partitions (on Model 15). The lines can be nonswitched or switched. Figure 1 gives examples of the line configurations possible with MLMP.

${ }^{1}$ The Integrated Communications Adapter (ICA) must be addressed as BSCA line 2. The manual ICA switch can have only one interface active at any one time.
${ }^{2}$ See Figure 1 (Part 1 of 2) for examples of BSCA line configurations
Figure 1 (Part 2 of 2). Examples of MLMP BSC Networks

The MLMP user specifies the functions of MLMP I/O routines by using System/3 assembler macro instructions (see Chapter 2). The IBM System/3 Macros Feature expands these macro instructions into linkage to MLMP routines.

Linkage to the MLMP routines is assembled as part of the user's program. The IBM System/3 Overlay Linkage Editor is then used to incorporate the MLMP routines in the user's object program.

Figure 2 shows the relation of MLMP to the macro processor, the overlay linkage editor, and user programs.

Figure 3 shows the relationship of a user MLMP program to MLMP I/O routines, BSC DTFs, BSC IOBs and buffers, and the BSCA.

Figure 2. Generation of a User MLMP Object Program

Telecommunications Lines Supported

Following are the terminals and line connections supported by MLMP. For considerations unique to using a given terminal with MLMP, see Appendix A.

Nonswitched Point-to.Point

MLMP supports point-to-point nonswitched connections with central processing units programmed according to the conventions described in General Information: Binary Synchronous Communications, GA27-3004. MLMP also supports point-to-point nonswitched connections with the:

- IBM System/7 Teleprocessing Multiplexor (TPMM) as described in IBM System/7 Teleprocessing Multiplexor "TPMM" Programming Guide and Reference Manual Supporting RPQ D08011, SC34-1506
- IBM 2770 Data Communication System as described in System Components: IBM 2770 Data Communication System, GA27-3013
- IBM 2780 Data Transmission Terminal as described in IBM 2780 Data Transmission Terminal: Component Description, GA27-3005

Multipoint

MLMP supports System/3 as a control station and as a multidropped terminal. As a control station, System/3 can exchange binary synchronous data with:

- IBM System/3
- IBM System/7 as described in /BM System/7 Binary Synchronous Communications Module Programming Guide and Reference Manual, SC34-1510
- IBM System/7 Teleprocessing Multiplexor (TPMM) as described in IBM System/7 Teleprocessing Multiplexor "TPMM" Programming Guide and Reference Manual Supporting RPO D08011, SC34-1506
- IBM 2770 Data Communication System as described in System Components: IBM 2770 Data Communication System, GA27-3013
- IBM 2780 Data Transmission Terminal as described in IBM 2780 Data Transmission Terminal: Component Description, GA27-3005
- IBM 2972/2980 Banking Terminal System (supported in the United States only) as described in Component Description: IBM 2972 Models 8 and 11 General Banking Terminal Systems, GL27-3020
- IBM 3270 Information Display System as described in IBM 3270 Information Display System Component Description, GA27-2749
- IBM 3735 Programmable Terminal as described in IBM 3735 Programmer's Guide, GC30-3001
- IBM 3600 Finance Communication System (Model 15 only) as described in IBM 3600 Finance Communication System Programmer's Guide and Component Description, GC27-0004

When System/3 is a control station, MLMP does not support intermixing of terminals on one line.

Note: For information on how to generate IBM 3735 form descriptor programs (FDPs) on System/3, see IBM System/3 Model 10 Disk System 3735 Application Package Coding Manual, GC21-5096. A conversion routine (FDP/Convert) is provided with MLMP to convert FDPs generated on OS or DOS to a format suitable for transmission from Model 10 or Model 12 to a 3735. For a description of FDP/Convert, see index entry FDP/Convert.

Switched Point-to-Point

MLMP supports point-to-point switched connections with the following:

- Central processing units programmed according to the conventions described in General Information: Binary Synchronous Communications, GA27-3004
- IBM System/7 Teleprocessing Multiplexor (TPMM) as described in IBM System/7 Teleprocessing Multiplexor "TPMM" Programming Guide and Reference Manual Supporting RPQ D08011, SC34-1506
- IBM 2770 Data Communication System as described in System Components: IBM 2770 Data Communication System, GA27-3013
- IBM 2780 Data Transmission Terminal as described in IBM 2780 Data Transmission Terminal: Component Description, GA27-3005
- IBM 3275 Display Station as described in IBM 3270 Information Display System Component Description, GA27-2749
- IBM 3735 Programmable Terminals as described in IBM 3735 Programmer's Guide, GC30-3001
- IBM System/7 as described in /BM System/7 Systems Summary, GA34-0002

For switched connections, MLMP supports autocall (United States only), manual call, autoanswer, manual answer, and the exchange of station identification characters.

Note: For information on how to generate IBM 3735 form descriptor programs (FDPs) on System/3, see /BM System/3 Model 10 Disk System 3735 Support Program Reference Manual, GC21-5096. A conversion routine (FDP/Convert) is provided with MLMP to convert FDPs generated on OS or DOS to a format suitable for transmission from Model 10 to a 3735. For a description of FDP/Convert, see index entry FDP/Convert.

Functions

The following program functions are available to the MLMP user:

1. Receive only (receive input data from a remote terminal).
2. Receive with transmittal of conversational reply (receive input data from a remote terminal and, when required, transmit data as an acknowledgement).
3. Transmit only (transmit data to a remote terminal).
4. Transmit with reception of conversational reply (transmit data to a remote terminal and, when required, receive data as an acknowledgement).
5. Transmit and receive-no conversational reply. Four modes of operation are possible:
a. Transmit a file, then receive another file.
b. Receive a file, then transmit another file.
c. Transmit records of a file interspersed with receiving records of another file (receive RVI).
d. Receive records of a file interspersed with transmitting records of another file (transmit RVI).

Depending on the terminal used and whether or not data is exchanged in conversational mode, records transmitted and received can be fixed length, variable length, or spanned (one record can occupy space in two contiguous blocks). Data can be exchanged in EBCDIC (Extended Binary Coded Decimal Interchange Code) or in ASCII (American National Standard Code for Information Interchange), depending on the BSCA used. Data translation is supported by translate tables generated with macro instructions. EBCDIC transparency and ITB (Intermediate Block Checking) are supported by MLMP.

MLMP does not transmit leading graphics. MLMP can receive leading graphics, but does not pass them to the user.

During program execution, MLMP automatically does the following:

- Blocks and deblocks data as required.
- Moves user data from the user's logical buffer to the telecommunications I/O buffers when sending data (PUT requests).
- Moves user data from the telecommunications I/O buffers to the user's logical buffer when receiving data (GET requests).
- Inserts and removes data-link control characters as necessary.

MLMP provides error recovery, error recording anid, at user's request, online test (OLT). A trace module and a dump routine are also provided with MLMP.

Multiple Line Terminal Adapter

The BSCA and the Multiple Line Terminal Adapter (MLTA) can be used concurrently on the disk system. For information regarding MLTA, see IBM System/3 Multiple Line Terminal Adapter RPQ Program Reference and Component Description Manual, GC21-7560.

You inform MLMP of the functions your binary synchronous communications program requires by using System/3 macro instructions.

Description

A System/3 macro instruction causes a specified sequence of assembler source instructions to be generated. The format of a System $/ 3$ macro instruction is:

1	8			14		72
Name		Operation	Operands			
$\begin{array}{l}\text { symbol } \\ \text { or blank }\end{array}$	b	$\begin{array}{l}\text { macro } \\ \text { name }\end{array}$	b	$\begin{array}{l}\text { no operands } \\ \text { or one or } \\ \text { more } \\ \text { operands } \\ \text { separated by } \\ \text { commas }\end{array}$		

Name

If you specify a name, it is assigned to the generated sequence of assembler instructions. The name becomes the symbolic address of the first byte of code generated by the macro instruction and it can be used to reference the code - that is, to modify the code or to branch to the code.

A name:

- Must begin with an alphabetic character in position 1 of the Assembler Coding Form
- Can be from one to six alphameric characters in length
- Must contain no special characters or blanks

Note: System/3 macro instructions generate labels beginning with the dollar sign (\$). If you also define labels beginning with $\$$ when you use System $/ 3$ macro instructions, duplicate labels may result.

Operation

The operation entry is the mnemonic operation code of the macro instruction. Each operation entry must begin in position 8 of the Assembler Coding Form.

Operands

Operands qualify the operation by specifying functions to be performed and data to be modified. Each operand consists of a keyword and a parameter joined by a dash. Keywords and parameters are predefined symbols available for use with individual macro instructions. You select keywords and parameters according to the rules that apply to the macro instruction you are writing.

- The first operand must begin in position 14 of the Assembler Coding Form.
- Operands must be separated by commas.
- Blanks are not permitted between operands coded on the same line.
- Blanks are not permitted between keywords and parameters.
- Operands cannot be specified beyond position 71.
- Operands can be written in any order.

Continuation Lines

The number of operands involved in some macro instructions may require more than one line of coding. If continuation is required, column 72 must contain a character and the last operand must be followed by a comma. An operand cannot be divided and continued on the next line. The operands of the continued field must begin in column 14. For an example of continuation coding, see Figure 4.

Comments

Comments can be placed after the last operand in a line if the comment is separated from the operand or comma by a blank. If a macro instruction has no operands, comments can be placed in the operand field if position 14 is left blank (Figure 4).

Figure 4. Sample of Continued Macro Instructions and Comments

Conventions

Certain symbols are used in this manual to abbreviate the descriptions of macro instructions.

1	8	14
[name]	\$OP	KEYWORD-A/B/C

BRACKETS [] indicate an optional entry.
SLASHES / separate entries when a choice exists.

UNDERSCORE __indicates the default if a parameter is not specified.

UPPER CASE LETTERS indicate words or abbreviations that must be entered as shown.

LOWER CASE LETTERS indicate information you must supply.

Each MLMP macro instruction is described in detail in Chapter 3. All MLMP macro instructions are summarized in a chart in Appendix E . The chart also gives the approximate length of code generated by each macro instruction.

Every MLMP program you write must accomplish three major functions:

1. Prepare BSC files for reception and/or transmission of data.
2. Initiate the transfer of data: receive and/or transmit.
3. Terminate the transfer of data.

Before programming these functions, however, note that one EXTRN must be defined in every MLMP program (\$\$BSMS). Other required EXTRNs are generated by the MLMP macro instructions when MLMP programs are assembled.

PREPARING FOR DATA TRANSFER

Preparing for data transfer always includes the following three steps:

1. Generate labels and equates for use by the various macro instructions and generate field displacements and labels for the BSC DTFs. Common labels and equates are generated by the \$COMN macro instruction when your MLMP program is assembled. BSC DTF field displacements and labels are generated by the \$DTOB macro instruction when your MLMP program is assembled.
2. Prepare BSC data files. Each BSC file must be:
a. Defined (\$DTFB macro instruction)
b. Allocated (\$ALOC macro instruction)
c. Opened (\$OPEN macro instruction)
3. Create a checklist to check for I/O completion. Entries in the checklist are created by the \$CKL macro instruction.

If your station is a control station, you must create a polling/addressing list. Entries in a polling/addressing list are created by the \$POLB macro instruction. Entries in a polling list can be activated or deactivated by using the \$BCPL macro instruction (stations identified in active entries in a polling list are polled, stations identified in inactive entries are not polled). The \$CHGB macro instruction can be used to generate the parameter list required by \$BCPL.

Control stations must also provide space for logging terminal statistics. The \$LOGB macro instruction can be used to allocate space for the Terminal Statistics Logging Area.

If you are using a switched answer line, you can create a list containing the station identification sequences (station IDs) your station will accept from a remote terminal. Entries in the switched ID list are created by the \$SWIB macro instruction. The \$BCSW macro instruction can be used to activate or deactivate entries in the list. (If an entry is inactive, your station will not accept the station ID given in that entry.) The \$CHGB macro instruction can be used to generate the parameter list required by $\$ B C S W$.

If data in your BSC files requires translation, either before it is transmitted or after it is received, you must provide for data translation by constructing translate tables (\$TRTB macro instruction for EBCDIC/ASCII tables) and generating a translate parameter list (\$TRL macro instruction). When you want to translate data, generate the interface to the IBM-provided translate routine (\$TRAN macro instruction).

Note: If you are transmitting translated data or receiving data that must be translated, be sure you have given the following information in the correct data code (EBCDIC or ASCII):

1. Polling and/or addressing characters if you are a control or tributary station.
2. Station identification sequences if you are on a switched line.
3. Online test parameter lists (generated by the \$RFTL macro instruction) and online test messages if you intend to request online tests (see index entry online test).

Generate Common Equates (\$COMN)

The \$COMN macro instruction generates labels and equates used by System/3 macro instructions. This macro instruction must be issued once in every assembler program containing System/3 macro instructions.

\$COMN Macro Instruction Format

SCOMN

Generate BSC DTF Displacements and Labels (\$DTOB)

BSC DTF field displacements and labels must be defined once in every MLMP program. The \$DTOB macro instruction generates field displacements and associated labels for BSC DTFs. These displacements and labels, as well as BSC DTF byte and bit definitions and a definition of MLMP completion codes (see index entry completion code), are included in your assembly listing.

See index entry BSC DTF for the labels generated by \$DTOB.

\$DTOB Macro Instruction Format

Define the File for BSC (\$DTFB)

The \$DTFB macro instruction generates a BSC DTF. More than one BSC file can be defined for each telecommunications line. See Appendix C for the format of the BSC DTFs. See also index entry open BSC files (\$OPEN).

\$DTFB Macro Instruction Format

[name]	\$DTFB	RECL-decdig,BLKL-decdig, RCAD-address,FTYP-RCV/TSM [,BUFST-address,BUFEND-acldress] [,BUFNO-decdig] [,CODE-E/A] [,LINE-1/2] [,UP-binary/0] [,CHN-name] [.CONV-Y/N] [.ITB-Y/N] [.TRANSP-Y/N] [,RVIADR-address,RVIMSK-hex] [,OLYCT-decdig] [,TYPE-PP/MP/CS/AC/MC/AA/MA] [,TERMAD-hex] [,AUTORS-Y/N] [,LISTAD-address,ERR LOG-address] [,POLRES-Y/N] [,LIMIT-dedig] [,DIAL-address,DIALCT-decdig] [,RCVID-address,RCVCT-deadig/ ,SWLIST-Y/N] [,SNDID-address,SNDCT-decdig] [.SPAN-Y/N] [.RECSEP-hex] [.ERRCT-decdig]

The generated BSC DTF labels are used by the code your MLMP macro instructions generate and you can use the labels to reference fields in the BSC DTFs.

name

If a name is specified, it is assigned to the first byte of the generated BSC DTF

RECL-decdig

Specifies, in decimal, the maximum record length for this file, excluding line control characters. Record length is limited by available storage and terminal characteristics such as those listed in Appendix A. See index entry $\$ D T F B$ considerations.

BLKL-decdig

Specifies, in decimal, the maximum block length for this file, excluding line control characters. Block length must be equal to or greater than record length (RECL operand). See index entry \$DTFB considerations.

RCAD-address

Specifies the symbolic address identifying the first byte of your logical buffer. The required size of the logical buffer depends upon the kind of operations requested for this file:

- If this is a receive file and OPC- N will be specified in GET requests for this file, the logical buffer must be large enough to contain one record for this file.
- If this is a receive file and OPC-BLK will be specified in GET requests for this file, the logical buffer must be large enough to contain the largest block of data expected, including line control characters.

For a description of OPC-N and OPC-BLK, see index entry \$GETB macro instruction.

- If this is a transmit file, the logical buffer must be large enough to contain one record for this file.

Records are moved from the logical buffer to the BSC I/O buffers on PUT requests (\$PUTB macro instruction), and moved from the BSC I/O buffers to the logical buffer on GET requests (\$GETB macro instruction). See index entry move mode.

FTYP-RCV/TSM

Indicates whether the first operation for this file is receive (RCV) or transmit (TSM). If you define a receive file (RCV), the first I/O request for the file must be a GET request (see index entry \$GETB macro instruction); if you define a transmit file (TSM), the first I/O request for the file must be a PUT request or a request for an online test (see index entries \$PUTB macro instruction and online test).

BUFST--address

Specifies the symbolic address identifying the first byte of the area available to this file for I/O buffers and IOBs (input/output blocks).

Note: Each BSC file requires a unique $1 /()$ area.

BUFEND-address

Specifies the symbolic address identifying the last byte of the area available to this file for I/O buffers and IOBs. For formulas necessary to calculate the length of MLMP I/O areas, see index entry MLMP I/O area. See also index entry online test if you intend to use the online test.

BUFNO-decdig
Specifies the number of I / O buffers and $1 O B$ s to be contained in the I/O area for this file, and specifies that the $1 / O$ area is to be allocated by this \$DTFB macro instruction. (See index entry MLMP I/O area.)

Note: Either BUFST and BUFEND or BUFNO should be specified. Otherwise, the SDTFB macro instruction allocates enough I/O area to contain only one IOB and buffer.

CODE-E/A

Specifies whether the character code of your data is EBCDIC (E) or ASCII (A). The character code you use is determined by the transmission code feature installed on your BSCA.

LINE-1/2

Specifies the BSCA this file uses; adapter 1 or adapter 2.
The// BSCA operation control language (OCL) statement can override this operand. For OCL information, see the appropriate system control programming reference manual listed in the Preface.

UP--binary/O

Specifies the conditional opening of a DTF. If the bits specified, in isinary, are on in the external indicator setting given by the last SWITCH OCL statement, the DTF is opened. The default 0 specifies the unconditional opening of a DTF. For GCL information, see the appropriate system control programming reference manual listed in the Preface.

CHN-name

Specifies the symbolic address of the next DTF in the chain. Chained DTFs are allocated, opened, or closed at the same time as the first DTF in the chain. An end ofchain indicator, X'FFFF', is entered in the DTF if no chain operand is given.

CONV-Y/N

Specifies whether conversational replies can be sent from or to this file: Y if yes, N if no.

Note: Block length (BLKL operand) must equal record length (RECL operand) for a conversational file.

ITB-Y/

Specifies whether intermediate block checking is requested; Y if yes, N if no. Intermediate block checking is not permitted for a conversational file.

TRANSP-Y/N

| Specifies whether data for this file will be transmitted in transparent mode; Y if yes, N if no. Transparency may be specified only if the transparency feature is installed on the BSCA used. If N is specified and transparent data is received, no error occurs and the \$BCRAN bit is set in the \$BDATT field of the BSC DTF.
RVIADR-address

Specifies the symbolic address of a one-by te field you provide. The field is used with the mask specified in the RVIMSK operand (following paragraph) to indicate when a reverse interrupt request ($R V I$) is received or is to be sent. See index entry reverse interrift for example; of using reverse interrupts. RVIADR-address requires the RVIMSK operand.

RVIMSK - hex

Specifies two hexadecimal characters to represent the reverse interrupt (RVi) mask. The bits represented by the mask are set on by MLMP in the RVIADR field (preceding paragraph) if a reverse interrupt request ($R V I$) is received from a remote terminal. If a reverse interrupt request is to be sent to a remote terminal, you must set on the mask in the RVIADR field. See index entry reverse interrupt for examples of using reverse interrupts. RVIMSK-hex requires the RVIADR operand.

DLYCT-decdig

Specifies a decimal delay count. The delay count is the number of seconds after receiving or transmitting a block of data that MLMP will wait for you to receive or transmit another block of data for the same file. MLMP waits the specified number of seconds by using the WACK ENO and TTD NAK line control sequences.

Except when you have received or transmitted end of file, MLMP aborts transmission and posts the \$BCLST completion code if the delay count is exhausted between transmissions. (See index entry completion code.)

If you do not specify a number, a 180 -second delay count is assumed. If you do specify a delay count, consider the time that may be required for such things as device errors, hal ts, and readying $1 / O$ devices.

TYPE-

This operand specifies the type of line connection to be established for this file. You must have the appropriate network attachment feature installed before specifying one of the following line types:

PP

Specifies that this file will use a point-to-point nonswitched line. PP is assumed if no line type is specified.

MP

Specifies that this file will use a muitipoint line, and this station is a tributary station. TYPE-MP requires the TERMAD operand.

CS

Specifies that this file will use a multipoint line, and this station is the control station. TYPE-CS requires the LISTAD and ERRLOG operands.

AC

Specifies that this file will use a switched line, autocall. TYPE-AC requires the DIAL and DIALCT operands.

MC
Specifies that this file will use a switched line, manual call.

AA

Specifies that this file will use a switched line, auto answer.

MA

Specifies that this file will use a switched line, manual answer.

TERMAD-he ${ }^{x}$

Specifies the hexadecimal representation of the twocharacter polling or addressing sequence used by this file. If this is a transmit file (FTYP-TSM), TEFBMAD specifies polling characters; if this is a receive file (FTYP-RCV). TERMAD specifies addressing characters.

Each tributary station on a multipoint line must have unique polling and/or addressing characters. See index entry tributary System $/ 3$ polling and addressing characters for the polling and addressing characters available to identify System/3 tributary stations. See also index entry pollingi' addressing.

The TERMAD operand is used only when TYPE-MP is specified.

AUTORS-Y/
Specifies whether MLMP will automatically send a negative response to polling and addressing sequences received after data transfer for this file is complete; Y if yes, N if no. If AUTORS $-Y$ is specified, MLMP will continue to respond negatively to polling and addressing sequences until another MLMP I/O request (\$GETB, \$PUTB, or \$RFT) is issued for the line, or until a request to close the MLMP files (\$CLOS) is issued. (See index entry macro instructions.) If AUTORS $-N$ is specified or if AUTORS is not specified at all for a tributary station, the tributary station will be online with the control station only when an IMLMP I/O request (\$GETB, \$PUTB, or \$RFT) has been accepted.

AUTORS-Y enables a tributary station to remain online with the control station after initial data transfer, even though data transfer is not occurring. When a tributary remains online until all data transfer between it and the control station is complete, the control station spends no time waiting for the tributary to respond to polling or addressing.

AUTORS is used only when TYPE-MP is specified, and the AUTORS operand must be specified the same way in all \$DTFB macro instructions written for the same BSC line.

LISTAD-address

Specifies the symbolic address identifying the first byte of the polling or addressing list used by this file. If this is a transmit file (FTYP--TSM), LISTAD points to an addressing list; if this is a receive file (FTYP-RCV), LISTAD points to a polling list. See index entry polling/addressing.

LISTAD is required only when TYPE-CS is specified.

ERRLOG-address

Specifies the symbolic address identifying the first byte of an area in main storage to be used for logging transmission statistics by terminal. You must provide one such area for each telecommunications line used (\$LOGB macro instruction); and each area must be large enough to contain statistics for each unique polling and addressing sequence used in your program. For the format of this logging area and a formula for computing its size, see index entries $\$$ LOGB Macro Instruction and Terminal Statistics Logging Area.

ERRLOG is required only when TYPE-CS is specified.
Note: Only one terminal statistics logging area per line is required in your program. Therefore, all ERRLOG operands specified for DTFs using the same line will be identical.

POLRES-Y/N

Specifies whether the control station modules required to poll and address tributaries, log terminal statistics, and close active files are to be resident in main storage; Y if yes, N if no.

Specifying POLRES-Y for control stations saves a significant amount of execution time because transient modules do not have to be found and loaded from the disk object library each time the control station polls or addresses a tributary, logs terminal statistics, or closes an active file.

POLRES is used only when TYPE-CS is specified, and the POLRES operand must be specified the same way in all \$DTFB macro instructions written for the same BSC line.

LIMIT-decdig

Specifies the number of times, in decimal, MLMP will accept a negative response from each terminal in a wrapped polling or addressing list before posting the \$BCNEG completion code (see index entry completion code). Valid entries are 1-254. If no number is specified, MLMP passes through a wrapped list until a positive response is received, an error is encountered, or the poll is canceled (see index entry \$CANB macro instruction).

LIMIT is used only when TYPE-CS is specified.
Note: Consider defining LIMIT for any addressing list created by a \$POLB macro instruction in which LASTWRAP was specified. See index entry \$POLB macro instruction.

DIAL-address

Specifies the symbolic address identifying the first byte of the field containing the decimal number that must be dialed to extablish a switched connection. This operand is used only when TYPE-AC is specified. DIAL-address requires the DIALCT operand (see following paragraph).

DIALCT-decdig

Specifies, in decimal, the length of the number that must be dialed to establish a switched autocall connection. The maximum length permitted is 12 . This operand is used only when TYPE-AC is specified, and requires the DIAL operand.

RCVID-address

Specifies the symbolic address of the first byte of either the identification sequence required from the remote station or of the switched ID list (see index entry switched ID list for the format of the list). RCVID-address requires either the RCVCT operand or SWLIST - Y. Using RCVID and RCVCT or RCVID and SWLIST-Y improves data security on switched lines; these operands are recommended for all switched lines.

RCVCT-decdig

Specifies, in decimal, the length of the identification sequence required from the remote station. Length can be $1-15$. If 1 is specified, MLMP expects to receive 2 characters - duplicates of the character addressed by the RCVID operand (preceding paragraph). If no length is specified, 0 is assumed. RCVCT-decdig requires the RCVID operand.

SWLIST-Y/N

Specifies whether this switched answer line will use the switched ID list (see index entry switched ID list for the format of the list); Y if yes, N if no. SWLIST- Y can be specified only when TYPE-AA or TYPE-MA is specified. SWLIST-Y requires the RCVID operand.

SNDID-address

Specifies the symbolic address of the first byte of the identification sequence required by the remote station. SNDIDaddress requires the SNDCT operand. Using the SNDID and SNDCT operands improves data security on switched lines; these operands are recommended for all switched lines.

SNDCT-decdig

Specifies, in decimal, the length of the identification sequence required by the remote station. Length can be 1-15. If 1 is specified, MLMP transmits 2 characters - duplicates of the character addressed by the SNDID operand (preceding paragraph). SNDCT-decdig requires the SNDID operand.

SPAN-Y/

Specifies whether records in this file will span blocks of text; \mathbf{Y} if yes, N if no. A spanned record must be contained within two contiguous blocks of text.

When spanned records are received or transrnitted, DTF fields \$BDWKB and \$BDREL are altered. The fields are restored after successful I/O completion. If an error occurs during transmission of spanned records, you must restore \$BDWKB and \$BDREL before requesting another operation for the file.

SPAN-Y requires the RECSEP operand if this is a receive file (FTYP-RCV). See index entry $\$ 0 T F B$ considerations. See also index entry BSC DTF for the format of the BSC DTF.

RECSEP-hex

Specifies the hexadecimal representation of a one-character record separator used to separate variable length records in blocks of text. See index entry $\$ D T F B$ considerations.

ERRCT-decdig

Specifies the number of times, in decimal, that MLMP retries an unsuccessful operation before posting an error condition. Valid entries are 1-254. If no number is specified, an error retry count of 7 is assumed.

Note: ERRCT specifies an error retry count only for the local MLMP program; ERRCT does not affect the remote terminal. In an error situation occurring between two terminals with different retry counts, the lower retry count determines when the error becomes permanent.

\$DTFB Considerations

MLMP supports three kinds of record formats: fixed length, variable length, and spanned. The kind of format you choose determines the way in which four \$DTFB operands must be specified: RECL-decdig, BLKL-decdig, SPAN-Y/ \mathbb{N}, and RESCEP-hex.

Fixed Length: If you choose to use fixed length records:

1. Specify the record length in the RECL operand.
2. Specify a multiple of the record length in the BLKL operand.
3. Do not code the SPAN and RECSEP operands.

Variable Length: Variable length records can change in length from one transmission to another. If you choose to use variable length records:

1. RECL-The vaiue specified in the RECL operand should be the maximum expected record length. However, when you transmit variable length records you must move the length of each record to \$BDREL in the DTF before you issue \$PUTB to transmit the jord. 'See index eniry BSC DTF for the format of the DTF.) After each successful GET request issued to receive one or more variable length records (comletion code $=\$ B C D N E$):

- The length of the block received, including control characters, is moved to \$BDREL if you specified OPC-BLK in \$GETB (see index entry $\$ G E T B$ macro instruction),
or
- The length of the record received, including the record separator, is moved to \$BDREL if you specified the RECSEP operand in \$DTFB (see item 4 following).

2. BLKL-The block length you specify should be the maximum expected block length.
3. SPAN-Variable length records may or may not be spanned (see following paragraph).
4. RECSEP—Although record separators are not rejuired with variable length records, you may want to use a record separator to delimit the records. If you do specify a record separator, MLMP automatially inserts the record separator at the end of each record transmitted. The record separator is the last data character moved to your logical buffer (addressed by the RCAD operand) when you receive variable length records.

OPC-BLK is recommended for each GET request (see index entry $\$ G E T B$ macro instruction) if you are to receive variable length records that do not contain record separators. When OPC-BLK is specified in a GET request, the length of the block received is moved to \$BDREL in the DTF. See index entry BSC DTF for the format of the DTF.

Spanned: Spanned records can be fixed or variable length. If you choose to use spanned records:

1. Specify RECL and BLKL according to the format, f:xed or variable length, you choose (see two preceding paragraphs).
2. Specify SPAN-Y.
3. Specify a record separator character (RECSEP operand). See index entry MLMP message formats for an illustration of spanned records.

Note: The 3735 transmits spanned records. For formatting considerations unique to the 3735 , see $/ B M$ 3735 Programmer's Guide, GC30-3001.

Allocate BSC Files (\$ALOC)

Every BSC file must be allocated; that is, the BSCA required by each file must be reserved for the file before the file can be processed. All files in your program must be allocated before you begin any telecommunications I/O operations. The \$ALOC macro instruction generates code that effects a branch to a system allocate routine. The system allocate routine reserves the devices identified by the \$ALOC macro instruction.

Note: \$ALOC must not be issued while BSC I/O operations are being executed.

\$ALOC Macro Instruction Format

If you specify the keyword DTF, enter, as the parameter, the name of the DTF (file) to be allocated. If the operand is not given, the address of the DTF is assumed to be in register 2.

If the DTF specified is in a chain, all DTFs following in the chain are opened by this request. (MLTA DTFs must not be in the chain. For information regarding MLTA, see IBM System/3 Multiple Line Terminal Adapter RPO Program Reference and Component Description Manual, GC21-7560.)

After \$ALOC is executed, register 2 contains the address of the first DTF allocated.

Open BSC Files (\$OPEN)

Every BSC file must be opened. The DTF and I/O area used by the file must be prepared to accommodate the data composing the file, and a DTF must be generated. The \$OPEN macro instruction generates code that effects a branch to a system open routine; the routine opens the files identified by the SOPEN macro instruction.

Note: If you reopen a BSC file that has been closed (see index entry \$CLOS macro instruction), record length, block length, and all other file attributes will be the same as they were at the time the file was closed.

\$OPEN Macro Instruction Format

[name]	\$OPEN	[DTF-name]

If you specify the keyword DTF, enter, as the parameter, the name of the DTF (file) to be opened. If the operand is not given, the address of the DTF is assumed to be in register 2 .

If the DTF specified is in a chain, all DTFs following in the chain are opened by this request. (MLTA DTFs must not be in the chain. For information regarding MLTA, see IBM System/3 Multiple Line Terminal Adapter RPQ Program Reference and Component Description Manual, GC21-7560.)

After \$OPEN is executed, register 2 contains the address of the last DTF opened.

Generate a Model 10 and Model 12 Checklist (\$CKL)

The Model 10 Disk System, Model 12, and Model 15 use a macro named \$CKL to generate a checklist. Since there are differences in parameters and in function, checklist macros are discussed separately.

One \$CKL macro instruction creates one entry in a checklist. A checklist identifies DTFs to be checked for I/O completion by the \$CHK macro instruction. The kinds of DTFs that can be identified by the checklist are: BSC DTFs, MLTA DTFs, and console DTFs. The SCKL macro instructions required to create a particular checklist must be coded consecutively. See index entry checklist for the format of the checklist. See also index entry check for I/O completion ($\$ \mathrm{CHK}$).

Model 10 and Model 12 \$CKL Macro Instruction Format

name

A name given to a $\$ C K L$ macro instruction becomes the symbolic address of the first byte of the generated checklist entry. The name can then be used to address the entry if you want to change the entry.

DTF-address
Specifies the symbolic address of the first byte of the DTF for which this entry is being created.

SKIP-Y/N.
Specifies whether this entry should be skipped when the checklist is scanned; Y if yes, N if no.

REOK $-\mathrm{Y} / \mathrm{N}$ or CONS-Y/N

Specifies whether the check routine (see index entry $\$ \mathrm{CHK}$ macro instruction) should check for console requests (REO key pressed); Y if yes, N if no. Whenever you want the check routine to check for console requests, you must include a console DTF in the checklist and specify REOK-Y or CONS-Y for that entry. REQK-Y and CONS-Y are ignored if they are specified for a DTF that is not a console DTF. (A device code of $X^{\prime} 10^{\prime}$ in the first byte of a DTF, field \$BDDEV, denotes a console DTF.) If the operator has pressed the REQ key, a completion code of $X^{\prime} 50$ ' is posted in the console DTF.

If a console DTF is to be used for both request key and data input at the same time, two entries (REOK-Y and REOK $-N$) must be specified in the checklist for that DTF.

For more information regarding console operations, see IBM System $/ 3$ Models 10 and 12 Control Programming Macros Reference Manual, GC21-7562.

RTN-Y/N

Specifies whether you want control returned from the check routine even if no I/O operation is complete; Y if yes, N if no. The RTN operand is effective only when specified for the first entry in the checklist, and applies to all entries in the list. See completion code \$BCCMP (index entry completion code).

LAST-Y/N
Specifies whether this is the last entry in the checklist; Y if yes, N if no. LAST-Y must be specified for the last entry in the checklist.

Generate a Model 15 Checklist (\$CKL)

One \$CKL macro instruction creates one entry in a checklist. A checklist identifies DTFs to be checked for I/O completion or for depression of Program Function Key 9 (PF9). The kinds of DTFs that can be identified by the checklist are: BSC DTFs, and dummy DTFs which are 15-byte DTFs used for the PF9 key. See index entry checklist for the format of the checklist. See also index entry check for I/O completion (\$CHK).

Model 15 \$CKL Macro Instruction Format

[name]	\$CKL	DTF -address[,SKIP-Y/N] $[R E Q K-Y / N]$ $[, R T N-Y / N][, L A S T-Y / N]$

name

A name given to a $\$ C K L$ macro instruction becomes the symbolic address of the first byte of the generated check. list entry. The name can then be used to address the entry if you want to change the entry.

DTF-address
Specifies the symbolic address of the first byte of the DTF for which this entry is being created. A 15 -byte dummy DTF is required to check whether Program Function Key 9 has been pressed. Displacement $X^{\prime} 00^{\prime}$ should contain $X^{\prime} 10^{\prime}$ and a completion code will be returned in displacement $\mathrm{X}^{\prime} \mathrm{O}$

SKIP--Y/N
Specifies whether this entry should be skipped when the checklist is scanned; Y if yes, N if no.

REOK-Y/N
Specifies whether the check routine (see index entry \$CHK macro instruction) should check to see if the Program Function Key 9 (PF9) has been pressed; Y if yes, N if no. Whenever you want the check routine to check for PF9 requests, you must include a dummy DTF in the checklist and specify REQK-Y for that entry. REQK-Y is ignored if it is specified for a DTF that is not a dummy (PF9) DTF. (A device code of $X^{\prime} 10^{\prime}$ in the first byte of a DTF denotes a dummy [PF9] DTF.) If the operator has pressed the PF9 key, a completion code of $X^{\prime} 50^{\prime}$ is posted at displacement $X^{\prime} 0 E^{\prime}$ of the dummy (PF9) [JTF.

For more information regarding PF9 operations, see IBM System/3 Model 15 System Control Programming Macros Reference Manual, GC21-7608.

RTN-Y/ \mathbf{N}

Specifies whether you want control returned from the check routine even if no $1 / O$ operation is complete; Y if yes, N if no. The RTN operand is effective only when specified for the first entry in the checklist, and applies to all entries in the list. See completion code \$BCCMP (index entry completion code).

LAST-Y/ \underline{N}

Specifies whether this is the last entry in the checklist, Y if yes, \mathbf{N} if no. LAST- Y must be specified for the last entry in the checklist.

Generate a Polling/Addressing List (\$POLB)

If your station is a control station (TYPE-CS in the \$DTFB macro instruction), you must generate a polling or addressing list in order to poll or address tributary stations. GET requests require a polling list; PUT requests require an addressing list. See index entries $\$$ GETB macro instruction, and \$PUTB macro instruction.

One \$POLB macro instruction creates one entry in a polling or addressing list; each entry contains one sequence of polling or addressing characters. An addressing list contains only one entry. Polling lists may contain a number of entries; the \$POLB macro instructions that create a polling list must be coded consecutively.

For the format of polling/addressing lists, see index entry polling/addressing list. See also index entry tributary System/3 polling and addressing characters.

\$POLB Macro Instruction Format

[name]	\$POLB	ID-hex,TERMAD-hex,LEN-decdig [,LAST-N/OPEN/WRAP]

name

A name giver to a \$POLB macro instruction becomes the symbolic address of the first byte of the polling/addressing entry generated. The name can then be used to address the entry if you want to change the entry. See also index entry change a polling list (\$BCPL).

ID-hex

Specifies two hexadecimal characters to identify this entry in the polling/addressing list. Valid entries are $X^{\prime} 00^{\prime}$ through $X^{\prime} E F^{\prime}$.

When an entry in a polling/addressing list is used to poll or address a tributary station, MLMP places the entry ID in the BSC DTF at \$BDIND (see index entry BSCC DTF for the format of the DTF). If you specify a unique ID for each entry in a polling list, you can determine which station was polled last by checking the contents of \$BDIIND after a completion code has been posted (see index entry $\$ \mathrm{CHK}$ macro instruction).

You can specify which station will be polled first in a polling sequence by moving the ID from the related polling list entry to the DTF before you issue the first GET request for that file (see index entry $\$ G E T B$ macro instruction). The ID you move must be different from the previous ID in SBDIND.

If you move X^{\prime} FO' to \$BDIND all entries in the list are activated, and polling begins with the first entry in the list. If you move X'F1' to \$BDIND polling begins with the first entry in the list, but only entries that are currently active are included in the poll.

When an MLMP program is assembled, \$BDIND is set to $X^{\prime} F 1^{\prime}$. MLMP always considers addressing lists to be active.

For more information on how to change a polling list, see index entry change a polling list (\$BCPL).

TERMAD-hex

Specifies the hexadecimal representation of up to 7 polling or addressing characters. The polling or addressing characters must not include any of the line control characters shown in Appendix D. Appendix D also show; the polling and addressing characters available for System/3 tributary stations.

LEN-decdig

Specifies, in decimal, the number of bytes represented in the TERMAD operand. Decdig must not be greater than 7 .

LAST-N

Specifies that this entry is not the last entry in the polling list.
-OPEN

Specifies that this is the last entry in the polling/addressing list, and that polling or addressing must end even if a positive response is not received (\$BCNEG completion code).

Note: After polling the last station in an open polling list, move the ID of the first entry in the polling list, ($\mathrm{X}^{\prime} \mathrm{FO}^{\prime}$, or $\mathrm{X}^{\prime} \mathrm{F} 1^{\prime}$) to \$BDIND if you expect to use the polling list again in your program. See the preceding description of the ID operand.

-WRAP

Specifies that this is the last entry in a polling list, or is an addressing entry. If a positive response is not received, polling must continue from the beginning of the list, or addressing must continue, until a positive response is received, an error is encountered, or LIMIT is reached (LIMIT is defined in the \$DTFB macro instruction).

Either LAST-OPEN or LAST-WRAP is required in the last entry of a polling list and in all addressing entries. If LAST-WRAP is specified for a polling list, the polling cycle can always be canceled by the \$CANB macro instruction (see index entry \$CANB macro instruction). However, to prevent an infinite addressing loop in the event that a negative response (NAK) is received from the terminal addressed, LIMIT must be defined in \$DTFB (see index entry \$DTFB macro instruction) whenever LAST-WRAP is specified for an addressing list.

Change a Polling List (\$BCPL)

The \$BCPL macro instruction enables you to activate and deactivate selected entries in a polling list created by the \$POLB macro instruction. For example, you can use the \$BCPL macro instruction to:

- Deactivate entries you have decided not to use. You may want to deactivate an entry if the terminal does not respond to polling (\$BCNON completion code). See index entry completion code.
- Reactivate entries that have been deactivated.

Note: $\$ B C P L$ requires approximately 110 bytes of main storage plus the space required by the parameter list. Unless you have a large number of polling entries to change, you can activate and deactivate polling entries more efficiently yourself by changing the status byte in polling entries. See index entry polling/addressing list

\$BCPL Macro Instruction Format

[name]	\$BCPL	[PARM-address]

PARM-address

Specifies the symbolic address of a parameter list you provide. The parameter list defines the changes you want to make to a polling list. For the format of the parameter list, see index entry parameter list for changing a polling list or switched ID list. You can use the \$CHGB macro instruction to generate the parameter list. See index entry $\$ C H G B$ macro instruction.

If the PARM operand is not specified, the address of the parameter list is assumed to be in register 1.

After \$BCPL is executed, register 1 contains the address of the parameter list.

Generate a Parameter List for Changing a Polling List or a Switched ID List (\$CHGB)

The $\$$ CHGB macro instruction generates a parameter list for changing a polling list (see index entry $\$ B C P L$ macro instruction) and for changing a switched ID list (see index entry $\$ B C S W$ macro instruction). For the format of this parameter list, see index entry parameter list for changing a polling list or switched $I D$ fist.

\$CHGB Macro Instruction Format

[name]	\$CHGB	TYPE-AM/AN/DM/DN,DTF-address, NUM-hex,CHARS-hex

name

A name given to a \$CHGB macro instruction becomes the symbolic address of the first byte of the generated parameter list. The name can then be used to address specific fields in the list if you want to change the fieids.

TYPE-

Specifies the changes to be made in the polling/addressing or switched ID list.

AM

Activates selected entries, selecting only those entries whose characters exactly match the characters specified in the CHARS operand.

AN

Activates selected entries, selecting only those entries whose first N characters match the first N characters specified in the CHARS operand, where N is the number specified in the NUM operand.

DM

Deactivates selected entries, selecting only those entries whose characters exactly match the characters specified in the CHARS operand.

Deactivates selected entries, selecting only those entires whose first N characters match the first N characters specified in the CHARS operand, where N is the number specified in the NUM operand.

DTF--address

Specifies the symbolic address of the DTF whose polling list or switched ID list is to be changed.

NUM-hex

Specifies in hexadecimal how many of the characters specified in the CHARS operand are to be compared to characters in polling list or switched ID list entries.

CHARS--hex

Specifies the hexadecimal representation of characters to be compared to characters in polling list or switched ID list entries.

Allocate the Terminal Statistics Logging Areai (\$LOGB)

The \$LOGB macro instruction allocates space for the Terminal Statistics Logging Area (see index entry Terminal Statistics Logging Area) for control stations (TYPE-CS in \$DTFB)

\$LOGB Macro Instruction Format

[name]	\$LOGB	NUM-decdig,LEN-decdig

name

A name given to a $\$$ LOGB macro instruction becomes the symbolic address of the first byte of the allocated Terminal Statistics Logging Area and can be specified in the ERRLOG operand of the appropriate \$DTFB macro instruction.

NUM-decdig

Specifies in decimal the number of entries the Terminal Statistics Logging Area must contain. The value for NUM is calculated in one of two ways:

1. Polling and/or addressing, no clusters:

NUM $=$ number of terminals to be polled + [number of terminals to be addressed or number of terminals for which an online test may be requested (see index entry online test)]

For example:

Polled terminals $=4$
Addressed terminals $=4$

NUM $=8$
2. Polling and/or addressing clusters:

NUM = number of control units to be polled + number of devices to be polled + number of devices to be addressed

For example:

Control units polled $=3$
Devices polled $=8$
Devices addressed $=8$

NUM $=19$

LEN-decdig

Specifies in decimal the number of polling/addressing characters used in a polling/addressing sequence for this program. The maximum number for each terminal is 7 .

Generate a Switched ID List (\$SWIB)

If your station is an autoanswer or manual answer station (TYPE-AA or TYPE-MA in \$DTFB), you can use the \$SWIB macro instruction to generate a switched ID list containing the station identification sequences that your station will accept. For the format of this list, slee index entry switched ID list format.

Each $\$$ SWIB macro instruction creates one entry in the switched ID list; each entry contains one sequence of station ID characters. \$SWIB macro instructions must be coded consecutively.
\$SWIB Macro Instruction Format

[name]	$\$$ SWIB	SELECT-hex,STATID-he $\%$, LEN-decdig [,LAST-Y/N]

name

A name given to a \$SWIB macro instruction becomes the symbolic address of the first byte of the switched ID entry generated. The name can then be used to address the entry if you want to change the entry (for example, activate or deactivate an entry) by using the \$\$BCSW macro instruction.

SELECT-hex

Specifies two hexadecimal characters for selecting this entry in the switched ID list. Valid entry selection characters are $X^{\prime} 00^{\prime}$ through $X^{\prime} E F^{\prime}$.

When an entry in the switched ID list is compared to an identification sequence received from a remote terminal, MLMP places the entry selection characters in the BSC DTF at SBDRLN (see index entry BSC DTF for the format of the DTF). If you specify unique entry selection characters for each entry in a switched ID list, you can determine which identification sequence you accepted last by checking the contents of \$BDRLN after a completion code has been posted on your last MLMP I/O request.

If you want to communicate with only one of several possible terminals, move the entry selection characters associated with the terminal's expected identification sequence to the DTF before you issue the first GET request to that file. The entry selection characters you move must be different from the previous entry selection characters in \$BDRLN.

If you move X^{\prime} FO' to \$BDRLN, all entries in the switched ID list are activated before the identification sequence received is inspected. Entries in the switched ID list are then compared to the ID received, beginning with the first entry in the list. If you move $\mathrm{X}^{\prime} \mathrm{F} 1$ ' to $\$$ BDRLN, only those entries currently active in the switched ID list are used to inspect a received station ID.

When an MLMP program specifying SWLIST- Y in \$DTFB is assembled, \$BDRLN is set to $\mathrm{X}^{\prime} \mathrm{F} 1^{\prime}$ to indicate that any active identification sequence in the switched ID list is acceptable.

For more information on how to change a switched ID list, see index entry $\$ C H G B$ macro instruction.

STATID-hex

Specifies the hexadecimal representation of a station identification sequence. The maximum number of characters is 15.

LEN-decdig

Specifies, in decimal, the number of bytes represented in the STATID operand. The maximum number of bytes is 15.

If you are using a switched ID list but you are willing to establish a connection with a terminal that does not send an identification sequence, you must define in your list an entry with LEN-0 specified. (If an entry with length = zero is encountered in the list, a connection is established with the calling station whether a station ID was received or not. Consequently, if an entry with LEN-0 must be used, place the entry at the end of your list so you can check station IDs that are received.)

LAST-Y/N
Specifies whether this is the last entry in the switched ID list; Y if yes, N if no. LAST- Y causes a one-byte end-oflist indicator to be generated. If end-of-list is encountered before an acceptable station identification sequence has been received, an invalid ID completion code (\$BCBID) is posted (see index entry completion code).

Change a Switched ID List (\$BCSW)

The \$BCSW macro instruction enables you to activate and deactivate selected entries in a switched ID list created by the \$SWIB macro instruction. For example, you can use \$BCSW to:

- Deactivate entries you have decided not to use. You may want to deactivate an entry to prevent communication with a particular terminal, or to prevent communication with a terminal that does not send an identification sequence (deactivate the entry with LEN -0 specified).
- Reactivate entries that have been deactivated.

Note: $\$ B C S W$ requires approximately 110 bytes of main storage plus the space required by the parameter list. Unless you have a large number of switched ID entries to change, you can activate and deactivate switched ID entries more efficiently yourself by changing the status byte in switched ID entries. See index entry switched ID list.

\$BCSW Macro Instruction Format

[name]	\$BCSW	[PARM-address]

PARM-address

Specifies the symbolic address of a parameter list you provide. The parameter list defines the changes you want to make to a switched ID list. For the format of the parameter list, see index entry parameter list for changing a polling list or a switched ID list. You can use the \$CHGB macro instruction to generate the parameter list. See index entry $\$ \mathrm{CHGB}$ macro instruction.

If the PARM operand is not specified, the address of the parameter list is assumed to be in register 1.

After \$BCSW is executed, register 1 contains the address of the parameter list.

Generate a Translate Parameter List (\$TRL)

The \$TRL macro instruction generates the parameter list required by the System/3 translate routine. Appendix C shows the format of the parameter list.
\$TRL Macro Instruction Format

[name]	$\$ T R L$	TO-address,FROM-address, LEN-decdig,TRT-address

A name given to a \$TRL macro instruction becomes the symbolic address of the first byte in the generated parameter list. The name can then be used to address specific fields in the list if you want to alter the fields.

TO - address

Specifies the symbolic address of the first byte of the area to which translated data will be moved.

FROM - address
Specifies the symbolic address of the first byte of the data field to be translated. This address can be the same as the address specified in the TO operand.

LEN - decdig

Specifies the decimal length of the FROM field.

TRT - address

Specifies the symbolic address of the first byte of the translate table.

Generate a Translate Table (\$TRTB)

The \$TRTB macro instruction generates an EBCDIC to ASCII or an ASCII to EBCDIC translate table. The table is generated in the format required by the \$TRL macro instruction (see index entry $\$ T R L$ macro instruction), and can be addressed by \$TRL when you translate data.

\$TRTB Macro Instruction Format

[name]	\$TRTB	[CODE-E/A] [,HEX-hex]

name

A name given to a \$TRTB macro instruction becomes the symbolic address of the first byte of the generated translate table.

CODE-E/A
Specifies whether the character code of the data to be translated is EBCDIC (E) or ASCII (A). \$TRTB generates a 258 -byte table if CODE-E is specified and a 131 -byte table if CODE-A is specified.

Note: If you specify CODE-A, you might want to code "DC $128 \times 11^{\prime} \mathrm{FF}^{\prime \prime}$ ' after the \$TRTB macro instruction to allow for the occurrence of invalid ASCII characters. See index entry System/3 translate tables.

HEX-hex

Specifies the hexadecimal pattern with which to replace any invalid characters found during translation. If the HEX operand is not specified, the replacement character is the substitute character - EBCDIC-3F, ASCII-1A.

System/3 Translate Tables

Trans/ate Tables Generated by \$TRTB: Translate tables generated by the \$TRTB macro instruction are generated in the following format:

Byte	Field Description
0	Contains X'FF'. This is the hexadecimal value used in the translate table to identify characters that cannot be translated from
	EBCDIC to ASCII if CODE-E was specified
in \$TRTB or from ASCII to EBCDIC if	
CODE-A was specified.	

The translate table, bytes $2-n$, is constructed so that the hexadecimal value of a character to be translated can be used as a displacement (from byte 2) to locate the correct translation in the table.

When the correct translation for a byte is located in the table, the translation is compared to byte 0 . If the two bytes are the same:

- The completion code in the translate parameter list (see index entry translate parameter list) is set to indicate that an invalid character was detected, and
- The contents of byte 1 are substituted for the original character.

If the translation of a character is not the same as the contents of byte 0 , the hexadecimal value in the translate table is substituted for the original character.

User-Defined Translate Tables: If you don't want to translate certain valid EBCDIC or ASCII characters (you might not want to translate BSC line control characters, for example), you can generate your own translate table. However, you must generate the table in the format clescribed in the preceding paragraphs.

Choose hexadecimal values for bytes 0 and 1 of the table. Then, as you construct the rest of the table, substitute the value of byte 0 for each character that cannot be translated and for each valid character that you choose not to translate.

Generate an Interface to the Translate Routine (\$TRAN)

The \$TRAN macro instruction generates linkage to the the System/3 translate routine. After issuing \$TRAN, check the completion code in the translate parameter list to determine whether or not invalid characters were found. See index entry translate parameter list for the format of the translate parameter list.

[name]	\$TRAN	[TRL-address]

TRL-address

Specifies the symbolic address of the translate parameter list. If not given, the address is assumed to be in register 1. After \$TRAN is executed, register 1 contains the address of the translate parameter list.

Generate an Online Test Parameter List (\$RFTL)

The SRFTL macro instruction generates the parameter list required for online test requests (see index entry online test requests). For the format of the parameter list, see index entry online test parameter list.

\$RFTL Macro Instruction Format

[name]	SRFTL	TYPE-00/01/06/14,NUM-decdig, LEN-decdig [,CODE-E/A] [,TERMAD-hex]

name

A name given to a \$RFTL macro instruction becomes the symbolic address of the first byte of the generated parameter list. The name can then be used to address specific fields in the list if you want to change the fields.

TYPE-

Specifies, in decimal, the online test type:

00

Receive and acknowledge the test message the number of times specified in the NUM operand. The formatted test request must not be more than 300 characters long. See index entry online test requests.

01
Transmit the test message the number of times specified in the NUM operand. The formatted test request must not be more than 300 characters long. See index'entry online test requests.

Transmit 36 alphameric characters, A-Z and 0-9, the number of times specified in the NUM operand. Transmit the characters in ASCII (ASCII adapter only).

14

Transmit 36 alphameric characters, A.Z and 0-7, the number of times specified in the NUM operancl. Transmit the characters in EBCDIC (EBCDIC adapter only).

NUM-decdig
Specifies, in decimal, the number of times to transmit or receive the test message. Valid entries are 1.99 (leading zeroes must not be used).

LEN-decdig

Specifies, in decimal, the number of addressing characters (0-7). LEN must be 0 for:

- All non-multipoint lines (TYPE-PP,AC,MC,AA, or MA in \$DTFB)
- Multipoint control stations (TYPE-CS in \$DTFB)
- Multipoint tributary stations (TYPE-MP in \$L)TFB) requesting online test type 00.

LEN must be greater than 0 only for muitipoint tributary stations (TYPE-MP in \$DTFB) requesting some test type other than 00.

CODE-E/A
Specifies whether the character code of your data is EBCDIC (E) or ASCII (A). The character code you use is determined by the transmission code feature of your BSCA.

TERMAD-hex

Specifies the hexadecimal representation of the addressing characters to be used, not more than 7 bytes. The number of bytes required to contain the addressing character's must be equal to the number specified in the LEN operand.

INITIATING DATA TRANSFER

To initiate data transfer you must issue:

- GET requests to receive data (\$GETB macro instruction), or
- PUT requests to transmit data (\$PUTB macro instruction).

All GET and PUT requests are executed in move mode. The first request causes MLMP to establish line connections according to the operands specified in the \$DTFB macro instruction. An initial GET request can be canceled after it has been issued (\$CANB macro instruction).

You must check for the completion of every BSC I/O operation you initiate (\$CHK macro instruction). That is, you must issue \$CHK after every GET request, PUT request, and request for online test (see index entry online test) before you issue another GET request for the same line, PUT request, or request for online test. You must also issue \$CHK after each \$CANB macro instruction.

Move Mode

Data is moved from the MLMP I/O buffers to your logical buffer on GET requests, and from your logical buffer to the MLMP I/O buffers on PUT requests. A single GET or PUT request does not necessarily result in the actual transmission of data over a telecommunications line.

Records for conversational files (CONV-Y in the \$DTFB macro instruction) are transmitted one at a time. Consequently, each GET or PUT request causes MLMP to receive or transmit one record.

For all nonconversational files, however, a GET request causes data to be transmitted from the remote terminal only if the GET request moves to your logical buffer the last record contained in an MLMP I/O buffer. After the GET request is executed, an I/O buffer is empty and available to MLMP for receiving more data, and transmission from the remote terminal can continue.

A PUT request for a nonconversational file causes data to be transmitted to the remote terminal only if the record to be moved to an MLMP I/O buffer cannot be contained in the current I/O buffer.

Issue a GET Request (\$GETB)

The \$GETB macro instruction instructs ML.MP to move data from an MLMP I/O buffer to your logical buffer. Do not attempt to move data to or from your logical buffer after issuing a GET request until you have been posted a DTF completion code by the check routine. See index entry \$CHK macro instruction.

\$GETB Macro Instruction Format

[name]	\$GETB	[DTF-address] [,REJJCT-address] [,OPC-N/BLK]

DTF-address
Specifies the symbolic address of the DTF (file) for which the GET request is issued. If not given, the address of the DTF is assumed to be in register 2.

After \$GETB is executed, register 2 contains the address of the DTF for which the GET request was issued.

REJECT-address

Specifies the symbolic address of a user routine to receive control if the GET request cannot be accepted by MLMP. You must provide the routine. The routine should check the DTF completion code to determine why the GET request was not accepted. See index entry completion code.

If the REJECT operand is not specified, check for a DTF completion code of \$BCREQ after each GEF request to determine whether or not the request was accepted. See index entry completion code.

You might want to print a message to signal rejected GET request. In most cases, a request is rejected because of a logic error in your program. Check your logic flow, parameter lists, and DTF for errors. Consider using the \$SNAP macro instruction to dump your program. See index entry \$SNAP macro instruction.

OPC-N

Specifies normal blocking and deblocking; that is, data received will be stripped of control characters and moved to your logical buffer (addressed by the RCAD operand in \$DTFB) one record at a time.

OPC-BLK

Specifies that data received will be moved to logical buffer one block at a time. Each block of data moved will include line control characters. The length of the block moved will be placed by MLMP in \$BDREL of the DTF. For the format of the DTF, see index entry $B S C D T F$.

OPC-BLK is recommended for GET requests for conversational files. See index entry conversational reply for the significance of OPC-BLK in GET requests for a conversational file. OPC-BLK is also recommended for GET requests issued to receive variable length records that do not contain record separators. See index entry $\$ D T F B$ considerations for more information on variable length records.

Note: If you specify OPC--BLK, be sure your logical buffer (identified by the RCAD operand in the \$DTFB macro instruction) is large enough to contain an entire block of data plus line control characters. For a description of the RCAD operand, see index entry \$DTFB macro instruction.

Issue a PUT Request (\$PUTB)

The \$PUTB macro instruction instructs MLMP to move data from your logical buffer to an MLMP 1/O buffer. Do not attempt to move data to from your logical buffer after issuing a PUT request until you have been posted a DTF completion code by the check routine. See index entry \$CHK macro instruction.
\$PUTB Macro Instruction Format

[name]	\$PUTB	[DTF-address] [,REJECT-address] l.OPC-N/EOB/EOF/EOW]

DTF-address

Specifies the symbolic address of the DTF (file) for which the PUT request is issued. If not given, the address of the DTF is assumed to be in register 2.

After \$PUTB is executed, register 2 contains the address of the DTF for which the PUT request was issued.

REJECT-address

Specifies the symbolic address of a user routine to receive control if the PUT request cannot be accepted by MLMP. You must provide the routine. The routine should check the DTF completion code to determine why the PUT request was not accepted. See index entry completion code.

If the REJECT operand is not specified, check for a DTF completion code of \$BCREQ after each PUT request to determine whether or not the request was accepted. See index entry completion code.

You might want to print a message to signal a rejected PUT request. In most cases, a request is rejected because of a logic error in your program. Check your logic flow, parameter lists, and DTF for errors. Consider using the \$SNAP macro instruction to dump your program. See index entry \$SNAP macro instruction.
$\mathrm{OPC}-\underline{\mathrm{N}}$
Specifies normal blocking and deblocking. That is, data will be moved from your logical buffer (addressed by the RCAD operand in \$DTFB) to available I/O buffers one record at a time.

OPC-EOB
Specifies that in addition to performing normal blocking operations, MLMP must make the current record the last record in the current output buffer, thereby forcing an end-of-block condition. ETB (ETX for conversational files) is transmitted at the end of this record.

See index entry conversational reply for the significance of OPC-EOB in PUT requests for conversational files.

OPC-EOF

Specifies that MLMP transmit EOT to indicate end-of-file.
Note: If you specify OPC-EOF in the first PUT request for a file, or in a PUT request that immediately follows a GET request for the same file, the PUT request will be rejected and the \$BCIGN completion code will be posted in the DTF. See index entry completion code.

OPC-EOW

Specifies that EOT will be sent after each record in response to ACK or WACK. Each transmission consists of only one record when OPC-EOW is specified.

If OPC-EOW is specified in PUT requests for a System $/ 3$ control station's files (TYPE-CS in the \$DTFB macro instruction), tributary stations can process each record as it is received from the control station without delaying transmissions between the control station and other tributaries in the network. After EOT has been sent to a tributary in response to ACK or WACK, other tributaries can be polled or addressed. The tributary that received EOT can also be polled or addressed again.

For more efficient use of line time, OPC-EOW is recommended when you transmit from a control station to a 2972/ 2980 terminal. You must specify OPC-EOW if you are transmitting to a 3270 printer. However, EOT is not a valid response to WACK for every kind of terminal. Know the restrictions pertaining to the terminals you use before specifying OPC-EOW.

Note: Don't specify OPC-EOW for a conversational file (CONV - Y in the \$DTFB macro instruction) if you expect to receive a conversational reply. If you do specify OPCEOW for a conversational file, conversational replies will be ignored and lost.

Cancel a GET Request (\$CANB)

The \$CANB macro instruction instructs MLMP to cancel a GET operation that is in progress. \$CANB enables you to override wrapped polling lists if you are a control station (TYPE-CS in the \$DTFB macro instruction) and cancel initial GET requests.

Issue \$CHK for each accepted cancel GET request. If the check routine posts the \$BCEOT completion code, the GET request was canceled by SCANB. If any other completion code is posted, it pertains to the GET request-\$CANB has been ignored and you must proceed according to the completion code posted for the GET request.
\$CHK needn't be issued for a GET request thefore it is canceled. However, if you are polling with a wrapped polling list or waiting to be addressed, a way to determine whether or not to cancel the GET request is:

1. Check the GET request with RTN-Y specified in \$CKL (see index entry SCKL macro instruction).
2. Look for the \$BCCMP completion cocie (see index entry completion code). If \$BCCMP is posted by the check routine and none of the DT|Fs in the checklist indicate completion yet, you might want to stop polling or waiting to be addressed.

\$CANB Macro Instruction Format

[name]	\$CANB	[DTF-qddress]

DTF-address

Specifies the symbolic address of the DTF (file) for which the cancel request is issued. If not given, the address is assumed to be in register 2.

After \$CANB is executed, register 2 contains the address of the DTF for which the cancel GET request was issued.

Check for I/O Completion (\$CHK)

The \$CHK macro instruction generates linkaye to a check routine. The check routine checks for I/O completion by examining the DTFs identified in the list created by the \$CKL macro instruction. See index entries checklist and \$CKL macro instruction for a description of the checklist.

If an I/O operation is complete, the address of the completed DTF is returned in register 2 after the completion code is posted in the DTF (see index entry completion code).

- Model 10 and Model 12: If the REQ key on the 5471 Printer Keyboard was pressed, and the related DTF appears in the checklist (REQK--Y or CONS-- Y specified for the entry in the checklist), a completion code of $X^{\prime} 50^{\prime}$ is posted in the console DTF and the address of the DTF is returned in register 2.
- Model 15: If the Program Function Key 9 (PF9) was pressed and the related dummy DTF appears in the checklist (REQK-Y specified for the entry in the checklist), a completion code of $X^{\prime} 50^{\prime}$ is posted in the dummy DTF and the address of the DTF is returned in register 2.

Subsequent DTFs in the checklist are not tested if a completed DTF or a console/PF9 request is found.

To get completion codes posted in all DTFs in a list, continue to issue $\$ C H K$. If the check routine finds a completed BSC DTF with a \$BCERR, \$BCTIM, \$BCDAT, SBCLOS, \$BCCON, \$BCRSP, or \$BCADP completion code (see index entry completion code). MLMP logs the following message on the system logging device:

If no I/O completion is found, the $\$ B C C M F$ or $\$ B C A C D$ completion code is posted in the last DTF in the checklist and the address of the DTF is returned in register 2 if:

- You specified RTN--Y in the \$CKL macro instruction that created the first entry in the checklist (\$BCCMP completion code), or
- Each entry in the checklist is closed, inactive, or has the skip indicator on (SKIP-Y specified in \$CKL,) (\$BCACD completion code).

Model 10 and Model 12: Otherwise, the check routine does not return control, but issues a halt and waits for an interrupt. The halt displayed on the stick lights is []. After a BSCA or MLTA interrupt, the [] halt is automatically reset and the check routine searches the checklist again from the beginning. The check routine does not automatically reset the [] halt after 5471 completions; you must manually reset the [] halt if you are currently using the printer keyboard.

You must check for completion of all telecommunications I/O operations, including those controlled by MLTA. (For information regarding MLTA, see IBM System/3 Multiple Line Terminal Adapter RPQ Program Reference and Component Description Manual, GC21-7560.) Issue \$CHK for every accepted GET request (\$GETB), PUT request (\$PUTB), and request for online test (\$RFT) before issuing another \$GETB, \$PUTB, or \$RFT for the same line. (For a description of online test, see index entry online test.)

You must also issue \$CHK after accepted cancel GET requests (\$CANB). You can issue \$CHK to check fir completion of printer-keyboard I/O and request operations.
(Model 10 and Model 12) or PF9 key requests (Model 15).
You can save time in your program by doing some processing, that is independent of a particular I/O request, before you check the request. When \$CHK is then issued, the check routine will not have to wait so long for completion to occur, and will return control to you sooner.

Model 10 and Model 12 Note: If you want to use the printer keyboard REO key for operator interaction and your program is running in a DPF (dual programming feature) system, allocate the REO key to your program by link-editing the program as an inquiry invoking module (ATTR-INO! in thè // OPTIONS statement). For more information on link editing, see IBM System/3 Overlay Linkage Editor Reference Manual, GC21-7561. For information on DPF, see the appropriate components reference manual listed in the Preface.

\$CHK Macro Instruction Format

[name]	\$CHK	[CKL-address]

CKL--address
Specifies the symbolic address of the first byte of a checklist or group of checklist entries. If none is given, the address of the checklist or checklist entries is assumed to be in register 2.

Techniques for Initiating Data Transfer

Poll (Control Stations)

If your station is a control station (TYPE-CS in the \$DTFB macro instruction), MLMP polls the tributary stations to receive data from them. To poll a tributary station:

1. Issue a GET request (\$GETB) for the receive file. When the request is accepted, MLMP will poll the first station in the polling list identified by the receive file's DTF. MLMP continues to poll stations in the list until:

- A station responds by sending data.
- An active station fails to respond.
- All stations are polled the number of times specified in the LIMIT operand of the SDTFB macro instruction.
- No active entries exist in the polling list.

2. After issuing \$GETB, determine whether the GET request was accepted (see index entry completion code). (If you specified REJECT-address in the \$GETB macro instruction, you don't have to determine whether the GET request was accepted. See index entry \$GETB macro instruction.)
3. If the GET request was accepted by MLMP, issue a check request (\$CHK).
4. Continue according to the completion code posted. If the \$BCDNE completion code (successful completion) is posted, you can continue to receive data (issue \$GETB) until the \$BCEOT completion code (end-of-file received) is posted. Another GET request then reinitiates polling; a PUT request (\$PUTB) initiates addressing.

Address (Control Stations)

If your station is a control station (TYPE--CS in the \$DTFB macro instruction), MLMP addresses a tributary station to transmit data to it. To address a tributary station:

1. Issue a PUT request (\$PUTB) for the transmit file. When the request is accepted, MLMP will address the station in the addressing list identified by the transmit file's DTF.
2. After issuing \$PUTB, determine whether the PUT request was accepted (see index entry completion code). (If you specified REJECT-address in the \$PUTB macro instruction, you don't: have to determine whether the PUT request was accepted. See index entry $\$ P U T B$ macro instruction.)
3. If the PUT request is accepted by MLMP, issue a check request (\$CHK).
4. Continue according to the completion code posted.

If the completion code is \$BCNEG, you may have received a reverse interrupt request (RVI) from the addressed terminal. Check RVIADR (specified in the \$DTFB macro instruction) to determine whether or not you received an RVI whenever the \$BCNEG completion code is posted to an addressing attempt. If you did receive an RVI from the addressed terminal, poll the terminal (see index entry pol/).

Addressing Considerations: If files for the tributaries in a network are the same in terms of record length, block length, line code, conversational mode, ITB checking, and transparency, you need only one DTF to address all the tributary stations in the network. Using only one DTF, you can address the tributaries in either of the following two ways. (Though completion codes are not discussed in the following procedures, check for completion as always.)

1. Use several addressing entries:
a. Create an addressing entry for each tributary you want to address (see index entry \$POLB macro instruction).
b. Specify in the LISTAD operand of the \$DTFB macro instruction the location of the first addressing entry you want to use.
c. Issue a PUT request (\$PUTB).
d. Issue a PUT request with OPC-EOF specified (see index entry \$PUTB macro instruction) when you are done transmitting to the tributary.
e. Change field \$BDLST in your DTF (see index entry BSC DTF for the format of the DTF) to point to the next addressing entry you want to use.

Repeat steps (c) through (e) until you have finished transmitting.
2. Use only one addressing entry:
a. Create an addressing entry for the first tributary you want to address (see index entry \$POLB macro instruction).
b. Specify in the LISTAD operand of the \$DTFB macro instruction the location of the addressing entry.
c. Issue a PUT request (\$PUTB).
d. Issue a PUT request with OPC-EOF specified (see index entry \$PUTB macro instruction) when you are done transmitting to the tributary.
e. Move the next tributary's addressing characters into the third field of the existing addressing entry (see index entry polling/addressing list for the format of addressing entries).

Repeat steps (c) through (e) until you have finished transmitting.

A tributary station (TYPE-MP in the \$DTFB macro instruction) monitors a multipoint line for polling or addressing characters only when the tributary is in control mode. MLMP establishes control mode by performing a receiveinitial (RCVI) operation. The receive-initial operation is performed when the tributary issues the first PUT (\$PUTB) or GET (\$GETB) request. If the tributary then receives its polling or addressing characters, the tributary enters text mode and data transmission to or from the control station can proceed.

To monitor the line for polling characters, issue a PUT request. If the $\$ B C D N E$ completion code is posted after an accepted PUT request, you have transmitted data to the control station.

To monitor the line for addressing characters, issue a GET request. If the \$BCDNE completion code is posted after an accepted GET request, you have received data from the control station.

To re-enter control mode after transmitting or receiving end-of-file (EOT), issue a PUT or GET request. (Control mode is re-established automatically if you specified AUTORS- Y in your \$DTFB macro instructions. See index entry \$DTFB macro instruction.)

Note: A System/3 tributary station is committed at any particular time to monitoring either for polling or for addressing characters. If you are looking for one kind and the control station is transmitting the other, data transmission between you and the control station will not occur; you will be posted the \$BCNCN completion code (see index entry completion code).

Receive Only

Issue GET requests (\$GETB) for the receive file until the \$BCEOT completion code is posted in the DTF (after \$CHK is issued). \$BCEOT indicates that you have received end-of-file (EOT) from the remote terminal. See index entry terminating data transfer for MLMP end-of-job information.

Transmit Only

Issue PUT requests (\$PUTB)-for the transmit file until the entire file has been transmitted, then send end-of-file (EOT). End-of-file can be sent by specifying OPC-EOF in a PUT request (see index entry \$PUTB macro instruction), by issuing a request for a different file, or by closing (\$CLOS) the file. See index entry terminating data transfer for MLMP end-of-job information.

Conversational Reply

If you want to transmit or receive conversational replies, you should be aware of the BSC line conventions pertaining to the use of the ETB, ETX, and EOT line control characters. The following discussion describes the conventions as they relate to conversational replies. Whenever a BSC program violates the conventions described, the effect upon the program may not be predictable.

Transmitting from a Conversational File: When you transmit from a conversational file (CONV - Y in the \$DTFB macro instruction), each PUT request for which OPC-N is specified causes transmission of one record in the following format:

D	S		E
L	T	Text	T
E	X		B
Transparency Only			

C

PUT requests for which OPC-EOB is specified causes transmission of records in this format:

By convention, you cannot send a conversational reply in response to a message ending with ETB. If you are transmitting to a terminal that may want to send a conversational reply back to you and you are ready to accept a conversational reply, you must notify the terminal that you will accept a conversational reply by transmitting a message ending with ETX. Since line procedure requires that at least two messages be sent from one terminal before the other terminal can respond with a conversational reply, you must transmit a message ending with ETX in one of two ways:

- If you are transmitting two or more consecutive messages to the remote terminal, specify OPC-EOB in the last PUT request issued.
- If you are transmitting only one data message to the remote terminal, follow the message with a null message. A null message is STX ETX, and is transmitted by changing \$BDREL in the DTF to zero, then issuing a PUT request for which OPC-EOB is specified. Before transmitting a null message, however, be sure the remote terminal can accept null messages. (If a null message is received, the \$BCNDT completion code is posted. See index entry completion code.)

Once you have transmitted a message from a conversational file, even if it was a null message, you must wait for the \$BCCRP completion code to be posted before you can issue a GET request for the file (see index entry completion code).

Note: If you are going to transmit from a conversational file after you have received records for the file, reset \$BDREL if the record length you want to transmit is different from the record length you've been receiving.

Receiving to a Conversational File: If you are receiving messages to a conversational file (CONV $-Y$ in the SDTFB macro instruction) and you want to transmit a conversational reply, you can determine whether the remote terminal will accept a conversational reply by looking for a message ending with ETX. By specifying OPC-BLK in the GET requests for a conversational file, you can have a message plus its control characters moved from the BSC I/O buffers to your logical buffer (addressed by the RCAD operand in SDTFB). That is, messages received will be moved to your logical buffer in the following format:

Since the length of the message received is in \$BDREL of the DTF, you can use \$BDREL to locate the last character received to determine whether it was ETB or ETX. If the message ended with ETB, you cannot send a conversational reply; you can send a conversational reply if the message ended with ETX.

Closing a Conversational File: After all messages for a conversational file have been sent and received, the terminal that sent the last message, even if it were a null message, must also send EOT. EOT can be sent by specifying OPCEOF in a PUT request (see index entry \$PUTB macro instruction), by issuing a request for a different file, or by closing (\$CLOS) the file. See index entry terminating data transfer for MLMP end-of-job information.

Always send EOT immediately after transmitting the last message for a file. If the terminal receiving the last message should transmit EOT before you do, your conversational file will be terminated with a permanent error posted in the DTF (\$BCERR completion code).

Summary:

- If you are transmitting from a conversational file, notify the remote terminal that you will accept a conversational reply by: (1) specifying OPC-EOB in your last PUT request if you are sending two or more consecutive messages, or (2) transmitting a null message.
- If you are receiving messages to a conversational file, specify OPC-BLK in your GET requests and look for ETX at the end of messages received to determine when you can send a conversational reply.
- If all messages for your conversational file have been sent and received and you sent the last message, transmit EOT.

The two flowcharts that follow outline the techniques for transmit-with-reception-of-conversational-reply and receive-with-transmittal-of-conversational-reply.

Transmit with Reception of Conversational Reply: The

GET and PUT requests shown are issued for the same file.
See index entry completion code for a definition of the codes appearing in the following flowchart.

Receive with Transmittal of Conversational Reply: The
GET and PUT requests shown are issued for the same file.
See index entry completion code for a definition of the codes appearing in the following flowehart.

Receive Interspersed with Transmit

Receive-interspersed-with-transmit differs from receive-with-transmittal-of-conversational-reply in two ways:

- One DTF is required to receive data; another is required to transmit data.
- Reverse interrupt (RVI) request is used.

Issue \$GETB to receive data. Issue \$CHK to check for I/O completion.

The following chart outlines the technique for receive-interspersed-with-transmit. See index entry completion code for a definition of the codes appearing in the following flowchart.

Transmit Interspersed with Receive

Transmit-interspersed-with-receive differs from transmit-with-reception-of-conversational-reply in two ways:

- One DTF is required to transmit data; another is required to receive data.
- Reverse interrupt request (RVI) is used.

The following chart outlines the technique for transmit-interspersed-with-receive. See index entry completion code for a definition of codes appearing in the following flowchart.

Note: Use this technique as many times as necessary to process the files in your program.

TERMINATING DATA TRANSFER

Data transfer is terminated by:

- Terminating BSC files.
- Closing BSC files (\$CLOS macro instruction).

Terminate BSC Files

Receive Files (FTYP-RCV)

Non-conversational receive files are terminated when an end-of-file indication (EOT) is received for the file (\$BCEOT completion code posted). For information about terminating conversational files (CONV-Y in the \$DTFB macro instruction), see index entry closing a conversational file.

Transmit Files (FTYP-TSM)

Transmit files are terminated by:

- A \$CLOS macro instruction.
- A \$PUTB macro instruction that specifies end-of-file (OPC-EOF).
- A GET request (\$GETB), PUT request (\$PUTB), or online test request (\$RFT) for another DTF defined for the same telecommunications line.

When you issue a GET, PUT, or online test request for another DTF defined for the line, MLMP terminates the previous transmit file by transmitting any data remaining in the output buffers, then transmitting an end-of-file indication before accepting the new request.

Close BSC Files (\$CLOS)

At the end of your MLMP program, you should close all files. The \$CLOS macro instruction generates code that effects a branch to a system close routine. The system close routine then closes the DTFs identified in the \$CLOS macro instruction.
\$CLOS Macro Instruction Format

$$
\begin{array}{|l|l|l|}
\hline \text { [name] } & \text { SCLOS } & \text { [DTF-address] } \\
\hline
\end{array}
$$

If you specify the keyword DTF, enter, as the parameter, the name of the DTF (file) you want to close. If the operand is not given, the address of the DTF is assumed to be in register 2.

If the DTF specified is in a chain, all DTFs following in the chain will be closed by this request. (MLTA DTFs must not be in the chain. For information regarcling MLTA, see IBM System/3 Multiple Line Terminal Adapter RPO Program Reference and Component Description Manual, GC21.7560.)

After \$CLOS is executed, register 2 contains the address of the last DTF closed by the macro instruction.

Considerations for Closing Files

- To ensure that all data is transmitted ancl/or received satisfactorily, check (\$CHK) for the completion of any outstanding I/O requests before you close the associated files.
- If you have established connection on a switched line with one terminal and want to use the line to communicate with a different terminal, you must close the file for the first terminal before you can establish connection with the second terminal. (When you close a file for a switched line, MLMP transmits DISC and disables the line.)
- If you reopen a BSC file that has been closed, record length, block length, and all other file attributes are the same as they were when the file was closed.

MLMP diagnoses many of the errors possible in writing macro instructions and in program execution. These errors are recorded in mnotes, halts, BSC DTF completion codes, and the BSC counters.

Also provided with MLMP are aids to help you isolate undetermined programming problems. The diagnostic aids provided are the online test, a trace module, and a dump routine.

Mnotes

Mnotes are error codes and messages pertaining to macro instruction formats (Figure 5). Mnotes are included in your assembly listing, printed beneath the macro instruction to which the mnotes apply.

MLMP Mnote Format

SC- Severity code; 04 or 08 . Mnotes with a severity code of 04 are warnings, and are preceded by an asterisk (*) in column 1. Mnotes with a severity code of 08 are terminal and generate assembly errors.

B- Indicates that this mnote applies to MLMP.
SS- System message code; $00,10,20,30,40$, or 50. 00 -Signals miscellaneous errors not covered in the following five categories.
10-MISSING REQUIRED OPERAND. This operand is always required, or is required by another operand that is specified.
20-CONFLICTING OPERAND(S). This operand conflicts with another.
30-INVALID PARAMETER IN OPERAND. This parameter is not valid in this operand.
40-CONFLICTING PARAMETER(S). This parameter, as coded to the listed operand(s), conflicts with a parameter in another operand.
50-MISSING OPERAND. This operand is not always required, but may be required in this instance.

Note: If you get an mnote with a system message other than $00,10,20,30,40$, or 50 , contact your local IBM representative.

EE- Explanation code. Explanation codes identify specific operands and parameters.

	Related	
Mnote	Macro	
Number	Instruction	Explanation
B0001	\$DTFB	Station IDs are recommended for switched lines.
B0002	\$DTFB	If BUFST is specified, the BUFNO operand is ignored.
B0003	\$DTFB	If CONV $-Y$ is specified, the parameter specified in the BUFNO operand should tee 1.
B1001	\$POLB	The ID operand is required.
B1002	\$POLB	The LEN operand is required.
81003	\$POLB	The TERMAD operand is required.
B1004	\$DTFB	The RCAD operand is required.
B1005	\$DTFB	If TYPE-AC is specified, the DIAL operand is required.
B1006	\$DTFB	If TYPE-MC is specified, the TERMAD operand is required.
B1007	\$DTFB	If TYPE-CS is specified, the LISTAD operand is required.
B1008	\$DTFB	If TYPE-AC is specified, the DIALCT operand is required.
81009	\$DTFB	If RCVID is specified, the RCVCT operand is required.
B1010	\$DTFB	If RCVCT is specified, the RCVID operand is required.
81011	\$DTFB	If SNDID is specified, the SNDCT operand is required.
B1012	\$DTFB	If SNDCT is specified, the SNDID operand is required.
B1013	\$DTFB	The RECL operand is required.
B1014	\$DTFB	The BLKL operand is required.
B1015	\$DTFB	The BUFST operand is required.
B1016	\$DTFB	The BUFEND operand is required.
B1017	\$DTFB	If TYPE-CS is specified, the ERRLOG operand is required.
B1018	\$CHGB	The TYPE operand is required.
B1019	\$CHGB	The DTF operand is required.
B1020	\$CHGB	The NUM operand is required.
B1021	\$CHGB	The CHARS operand is required.
B1023	\$LOGB	The NUM operand is required.

Figure 5 (Part 1 of 3). Explanations for BSC Mnotes

	Related	
Mnote	Macro	
Number	Instruction	Explanation
B1024	\$LOGB	The LEN operand is required.
B1025	\$RFTL	The TYPE operand is required
B1026	\$RFTL	The LEN operand is required.
B1027	\$RFTL	The TERMAD operand is required.
B1028	\$SWIB	The SELECT operand is required.
B1029	\$SWIB	The LEN operand is required.
B1030	\$SWIB	The STATID operand is required.
B2001	\$DTFB	If TYPE-AC is not specified, the DIAL operand is invalid.
B2002	\$DTFB	If TYPE-MP is not specified, the TERMAD operand is invalid.
B2003	\$DTFB	If TYPE-CS is not specified, the LISTAD operand is invalid.
B2004	\$DTFB	If TYPE-AC is not specified, the DIALCT operand is invalid.
B2005	\$DTFB	If TYPE-AC, MC, AA, or MA is not specified, the RCVID is invalid.
B2006	\$DTFB	If TYPE-AC, MC, AA, or MA is not specified, the RCVID and RCVCT operands are invalid.
B2007	\$DTFB	If TYPE-AC, MC, AA, or MA is not specified, the SNDID and SNDCT operands are invalid.
B2008	\$DTFB	If TYPE-AC, MC, AA, or MA is not specified, the SNDCT operand is invalid.
B2009	\$DTFB	If RVIADR is specified, the RVIMSK operand is required. If RVIMSK is specified, the RVIADR operand is required.
B2010	\$DTFB	If TYPE-AA or TYPE-MA is not specified, the SWLIST operand is invalid.
B2011	\$DTFB	If TYPE-MP is not specified, the AUTORS operand is invalid.
B2012	\$DTFB	If TYPE-CS is not specified, the POLRES operand is invalid.
B2013	\$RFTL	If LEN-0 is specified, the TERMAD operand is invalid and is ignored.
B3001	\$POLB	The parameter specified ini the ID operand must be less than $X^{\prime} \mathrm{FO}^{\prime}$.
B3002	\$POLB	The parameter specified in the LEN operand must not be greater than 7.

Figure 5 (Part 2 of 3). Explanations for BSC Mnotes

	Related	
Mnote	Macro	
Number	Instruction	Explanation
B3003	\$POLB	OPEN or WRAP must be specified in the LAST operand.
B3004	\$DTFB	The parameter specified in the DIALCT operand must not be greater than 12.
B3005	\$DTFB	The parameter specified in the RCVCT operand must not be greater than 15 .
B3006	\$DTFB	The parameter specified in the SNDCT operand must not be greater than 15 .
B3007	SRFTL	The parameter specified in the NUM operand must be greater than 0 and less than 100.
B3008	\$RFTL	The parameter specified in the LEN operand must not be greater than 7 .
B3009	\$RFTL	The parameter specified in the TYPE operand is invalid.
B3010	\$SWIB	The parameter specified in the LEN operand must not be greater than 15.
B3011	\$SWIB	The parameter specified in the SELECT operand must be less than FO.
B3012	\$SWIB	The parameter specified in the LAST operand is invalid.
B3013	\$TRTB	The parameter specified in the CODE operand is invalid.
B4001	\$DTFB	The parameter specified with BLKL must be greater than or equal to the parameter specified with RECL.
B4002	\$DTFB	If CONV $-Y$ is specified, the parameter specified with BLKL must be equal to the parameter specified with RECL.
B4003	\$DTFB	If CONV $-Y$ is specified, ITB-Y is invalid.
B4004	\$DTFB	If CODE-A is specified, TRANSP-Y is invalid.
B4005	\$DTFB	If SPAN-Y is specified for a receive file, the RECSEP operand is required.
B4006	\$DTFB	If neither BUFST and BUFEND nor BUFNO is specified, a default of BUFNO-1 is used.
85001	\$RFT	If online terminal test type 00 or 01 is requested, the LEN operand is required.
B5002	\$RFT	If online terminal test type 00 or 01 is requested, the FROM operand is required.

[^0]
Halts

Figure 6 shows halts issued by MLMP that require an operator response. For correct responses to the halts shown in Figure 6, see the appropriate halt/messages manual listed in the Preface.

On the Model 10 and Model 12, MLMP also issues the halt []. However, this halt does not usually require a response, but indicates the check routine is waiting for an interrupt. See index entry check for I/O complation ($\$ \mathrm{CHK}$) for more information regarding [] and the check routine.

Display	Meaning
P9	Error in running FDP/Convert
Y6	Error in: - Logging the control station terminal statistics - Opening a BSC file when: 1. Buffer area is not large enough 2. Record length $=0$ - Attempting to initialize MLTERFIL on a disk file other than F1 (Model 10 and Model 12) Attempting to use line 2 in an RPG II telecommunications program that was compiled on a system having only one BSC line. - DA microcode module cannot be found DA microcode cannot be loaded correctly into adapter
Y7	Perform a manual call
Y8	Perform a manual answer

Figure 6. MLMP Halts that Require an Operator Response

Completion Codes

MLMP monitors every receive and transnit operation. MLMP indicates the status of each operation by posting a completion code in the associated DTF at \$BDCMP (see index entry BSC DTF for the format of the BSC DTF). If an error occurs during polling or addressing, MLMP will retry the operation three times before posting a completion code; the error recovery retry count for other transmit and receive operations is seven (unless you specified some other retry count in the ERRCT operand of \$DTFB -see index entry \$DTFB macro instruction).

The completion codes and the action you should take in response to them follow. The codes are divided into two groups: those posted after an I/O request (\$GETB, \$CANB, \$PUTB, or \$RFT) and those posted after a check request (\$CHK).

Label Value Description
\$BCREO $X^{\prime} 00^{\prime} \quad$ The request is being processed. Check for $1 / O$ completion (\$CHK).
\$BCUER X‘4
\$BCOLT X'48'
\$BCIGN X'4A
\$BCCAL X‘4D $X^{\prime} 4 D^{\prime}$

You issued one of the following invalid requests:

- A request for a new file before a previous receive file reached end-of-file.
- A PUT request after a conversational reply was received.
- A GET request for a conversational transmit file (FTYP-TSM, CONV-Y in \$DTFB) before \$BCCRP was posted.

Issue a GET request for the active receive file, a PUT request for the conversational transnnit file or close the MLMP files (\$CLOS).

Check Completion Codes

Label	Value	Description
\$BCCRP	X 46	A record has been received from the remote station and is available in an MLMP I/O buffer (conversational reply pending). Issue a GET request for this file.
\$BCNDT	$\times 47^{\circ}$	No data is available for this conversational GET request (a null message was received).
\$BCOLT	$X^{\prime} 48^{\prime}$	An error has occurred in executing a request for online test (\$RFT), or an online test request you received was not followed by EOT. Check the format of your request (see index entry online test) if you just requested an online test. Use the trace module (\$\$BSTT) if problems persist (see index entry trace).
\$BCNAC	$x^{\prime} 49^{\circ}$	None of the entries in the polling list is active. You can:
		- Activate an entry and poll a specific terminal.
		- Activate all entries in the list and reinitiate polling from the beginning of the list.
		- Close the MLMP files (\$CLOS).
\$BCASC	$X^{\prime} 4 B^{\prime}$	An invalid ASCII character exists in the data. Close this file (\$CLOS) and issue a request for another file, or close all MLMP files.
		Note: If you are transmitting or receiving ASCII data on a switched line, be sure all station IDs have been given in ASCII. If you are a control station transmitting or receiving ASCII data, be sure polling and addressing characters have been given in ASCII.
\$BCNCN	$x^{\prime} 4 c^{\prime}$	MLMP has been unable to establish a connection with the remote station. Issue your last request again, issue a request for another file, or continue with other processing. Otherwise, close the MLMP files (\$CLOS).
\$BCLST	$X^{\prime} 4 E^{\prime}$	You did not send or receive a block of data within the time specified in the active DTF. (specified in the DLYCT operand of \$DTFB). Issue a request for this or another file, or close the MLMP files (\$CLOS).
\$BCERR	$X^{\prime} 4 F^{\prime}$	MLMP encountered a permanent error condition. Some permanent errors are:
		EOT received in response to data transmitted.
		Forward abort received. That is:

- EOT or DISC is transmitted after an error recovery retry count has been exceeded.

Label	Value	Description
\$BCTIM	X'50'	The remote station does not respond to attempted data transfer. Issue a request for this or another file, or close the MLMP files (\$CLOS).
		Note: X'50' posted in a console DTF indicates that the operator pressed the REQ key (Model 10 and Model 12). X'50' posted in a dummy DTF indicates that the operator pressed the PF9 key (Model 15).
\$BCDAT	X ${ }^{\prime} 1^{\prime}$	Data was received incorrectly (data check). Issue your last request again, or issue a request for another file. Otherwise, close the MLMP files (\$CLOS).
\$BCLOS	X'52'	Data received was lost because it exceeded the size of the input buffer, had no ending control character, or because no record separator was found within two contiguous blocks of-spanned records. Issue your last request again, or issue a request to another station. Otherwise, close the MLMP files (\$CLOS).
\$BCCON	X'53'	The switched line connection with the remote station has been lost, or DISC was received in response to text. Issue your last request again, or issue a request for another file or station. Otherwise, close the MLMP files (\$CLOS).
\$BCRSP	X'54'	An invalid response was received from the remote station. Issue your last request again, or issue a request to another station. Otherwise, close the MLMP files (\$CLOS).
\$BCADP	X'55'	The BSCA is not working correctly (adapter check). Issue your last request again, or issue a request for another file. Otherwise, close the MLMP files (\$CLOS).
		Note: The BSC line is disabled if:
		- The connection was lost (\$BCCON completion code condition),
		- DISC was received (\$BCCON completion code condition), or
		- Normal end of file was received (\$BCEOT completion code condition).
\$BCCMP	X ${ }^{\prime} 56^{\prime}$	None of the DTFs in the checklist indicates completion, but you have regained control as you requested in the first $\$ C K L$ macro instruction (RTN-Y). See index entry $\$ C K L$ macro instruction.
		\$BCCMP is posted in the last DTF in the checklist.
\$BCACD	X'57'	All the DT.Fs in the checklist are inactive or have been exempted from the test for completion.
		\$BCACD is posted in the last DTF in the checklist.
\$BCRLE	X'58'	The record received was larger than the specified maximum record length (RECL in \$DTFB).
		Note: This completion code applies only if you are receiving spanned records separated by record separators.

Note: All data in the MLMP I/O buffers at the time one of the following completion codes is posted may be lost:

\$BCASC	\$BCTIM	\$BCCON	\$BCRLE
\$BCLST	\$BCDAT	\$BCRSP	
\$BCERR	\$BCLOS	\$BCADP	

The amount of data in the MLMP I/O buffers at any given time depends on record length, block size, buffer size, and the number of buffers you are using, as we!l as the number of I/O requests you have issued. See index entry move mode.

ESC Counters

MLMP compiles the following statistics as it monitors receive and transmit operations:

1. Number of text blocks sent successfully.
2. Number of text blocks received successfully.
3. Number of negative acknowledgements (NAK) received in response to text sent.
4. Number of data checks that occurred on text received
5. Number of forward aborts received. A forward abort received is:
$\begin{array}{ll}\text { Received TDD } \\ \text { Transmitted } & \text { EOT or DISC } \\ \text { NAK }\end{array}$
6. Number of EOTs (\$BCERR completion code) received in response to data transmitted.
7. Number of adapter checks that occurred while transmitting.
8. Number of adapter checks that occurred while receiving.
9. Number of invalid responses received to text transmitted.
10. Number of inquiries (ENQ) sent in response to positive acknowledgements (ACK).
11. Number of blocks received from which data was lost.
12. Number of disconnect timeouts and abortive (cancel) disconnects.
13. Number of timeouts that occurred while receiving text.

For multipoint control stations the following statistics are also recorded (see the ERRLOG operand of the SDTFB macro instruction):

1. Number of unsuccessful transmissions for each terminal address.
2. Number of successful transmissions for each terminal address.

BSC counters and statistics are recorded in main storage whenever a BSC file is closed or before an online test. All BSC counters and statistics are logged to disk at end-of-job. After the BSC program is terminated, BSC counters and statistics can be displayed by the Device Counter Log-out program (\$\$BSDL). For operating procedures required to display the statistics, see the appropriate system operators guide listed in the Preface.

BSCA Terminal Log Area

You must provide a permanent file on F1 for logging control station terminal statistics (see index entry Terminal Statistics Logging Area). The permanent file, named MLTERFIL, requires one track. Part of MLTERFIL comprises the BSCA Terminal Log Area and is used for logging the control station terminal statistics. Another part of MLTERFIL is used for logging MLTA statistics if MLTA is present (see IBM System/3 Multiple Line Termirial Adapter RPQ Reference and Component Description Manual, GC21-7560).

Initializing MLTERFIL

To initialize MLTERFIL, MLMP provides, in the object library, module $\$ \$ B S F I$. The OCL required to initialize MLTERFIL is:

```
// LOAD $$BSFI,unit
// FILE NAME-MLTERFIL,UNIT-F1,PACK-pack,
    TRACKS-1,LOCATION-track number (optional),
    RETAIN-P
```


// RUN

MLTERFIL must be initialized after BSCA system generation, and before using MLMP or MLTA. If MLMP cannot find MLTERFIL on F1 while transmitting or receiving data for a control station, MLMP issues the Y6 halt. For a complete description of the Y6 halt, see the appropriate halt/messages manual listed in the Preface.

Note: MLTERFIL need be initialized only once to accomodate both MLMP and MLTA statistics. Don't initialize the file twice if you use both MLMP and MLTA.

Online Test

The online test enables you, or an IBM customer engineer, to test a line connection without interrupting data transfer on the other line. The test consists of sending a known message over a line, then determining whether the message was received accurately. When the test is completed, results are logged as follows: (see index entry online test results).

- Model 10 and Model 12 - Halt/Syslog is called to log the online test results on the system log device.
- Model 15 - Online test results are logged to the System History Area (SHA) and will be printed only if the printer is logged.

Requesting Online Test

To request an online test:

1. Build a test parameter list (see index entries \$RFTL macro instruction and online test parameter list).
2. Provide a test message if one is required (see index entry online test requests).
3. Issue the \$RFT macro instruction
4. Check the I/O request completion code to determine whether the request was accepted (see index entry completion code).
5. Check for completion of the test (\$CHK).

Note: The \$BCDNE completion code, after an online test request, indicates completion of the test; \$BCDNE does not indicate that the line is okay. To determine what happened on the line during the test, the operator must examine the logged results of the test (see index entry online test results).
\$RFT Macro Instruction: The format of the \$RFT macro instruction is:

[name]	\$RFT	PARM-address [,FROM-address] [,LEN-decdig] [,DTF-address] [,REJECT-address]

PARM-address

Specifies the symbolic address of the first byte of the online test parameter list. See index entry online test parameter list for the format.

FROM-address

Specifies the symbolic address of the first byte of the test message, including control characters. Use this operand only for test types 00 and 01 (see index entry online test parameter list for test type descriptions).

LEN-decdig
Specifies in decimal the length of the test message, including control characters. See index entry online test parameter list for restrictions on the length of a test message. Use this operand only for test types 00 and 01 (see index entry online test parameter list for test type descriptions).

DTF-address

Specifies the symbolic address of the PUT DTF (FTYPTSM) for which the online test request is issued. If not given, the address of the DTF is assumed to be in register 2. After \$RFT is executed, register 2 contains the address of the DTF for which the online test request was issued.

REJECT--address

Specifies the symbolic address of a user routine to receive control if the online test request cannot be accepted by MLMP. You must provide the routine.

If the REJECT operand is not specified, check for the \$BCREQ DTF completion code after each online test request to determine whether or not the request was accepted. See index entry completion code.

Accepting an Online Test Request

Valid online test requests transmitted from a remote terminal are accepted when you issue an initial GET request. MLMP then performs the test automatically, logs the results to your system logging device (see index entry online test results), and reissues the GET request to receive data.

If System $/ 3$ does not recognize an online test request you receive, the request is passed to you as data. The online test types recognized by System/3 are:

Test

Type Description
00 Receive and acknowledge the test message the number of times specified in bytes $Y Y$ of the online test parameter list (see index entry online test parameter list). The formatted test request must not be more than 300 characters long. See index entry online test requests.

01 Transmit the test message the number of times specified in bytes YY of the online test parameter list (see index entry online test parameter /ist). The formatted test request must not be more than 300 characters long. See index entry online test requests).

06 Transmit 36 alphameric characters, $A \cdot Z$ and $0-9$, the number of times specified in bytes YY of the online test parameter list (see index entry online test parameter list). Transmit the characters in ASCII (ASCII adapter only).

14 Transmit 36 alphameric characters, A.Z and $0-9$, the number of times specified in bytes YY of the online test parameter list (see index entry online test parameter list). Transmit the characters in EBCDIC (EBCDIC adapter only).

3270 basic EBCDIC test message:
This test checks all alphameric characters at a display station or printer. It checks the use of the WCC to sound the audible alarm and allows attribute field specifications to be checked at a display station. It starts a printer, printing only 40 characters to a line.

Description

3270 Model 1 align EBCDIC test pattern:

This test checks position alignment for the 480-character display station. It also checks the WCC to sound the audible alarm. It starts a printer, printing 40 characters to a line.

3270 Model 2 align EBCDIC test pattern:
This test checks position alignment for the 1920-character display station. It also checks the WCC to sound the audible alarm. It will start a printer, printing 80 characters to a line.

3270 orders EBCDIC test message:
This tests 3270 orders (SF, SBA, etc.), checks the WCC to sound the audible alarm, and uses display and intensified brightness. It starts the printer, printing 64 characters to a line.

3270 EBCDIC Universal Character Set test pattern:
This test uses the Erase/Write command, displaying the Universal Character Set in EBCDIC. It checks the WCC to start the printer, sound the audible alarm (on a display), and print 132 characters per line on the printer. NL and EM are also tested on a printer. Display intensity is used. The SF, NL, EM, and IC orders are used.

3270 NL/EM EBCDIC test pattern:

This test is mainly intended to test the end of message (EM) order and multiple new line (NL) orders on the printer. The WCC is checked to start the printer, sound the alarm (on a display), and print 132 characters to a line on the printer.

3270 ASCII test patterns:
These tests correspond to tests 23-28 except that transmission is in ASCII.

Online Test Results

Results are logged in one of two formats, depending on whether the test message (not the test request) was transmitted or received.

Test Message Transmitted:

```
*BSC ONLINE TEST, LINE \(\{1\) or 2\(\}\) [TERMINAL ADDR HEX hex]
MESSAGE TYPE \(t \mathrm{t}\), MESSAGE COUNT cc
    ACK RCVD NAK RCVD TIMEOUT INVLDMSG
        \(x \times \quad x \times \quad x \times x\)
* END ONLine TESt
```

TERMINAL ADDR HEX hex identifies the terminal to which the test message was sent if the logging station is a control station (TYPE-CS in \$DTFB).
tt identifies the test message type. See index entry online test parameter list for a description of the test types.
cc is the number of times the test message was to be transmitted. The message count is specified in the online test parameter list.

ACK RCVD) $x x$ is the number of times ACK was received as a reply to the test message.

NAK RCVD $x x$ is the number of times NAK was received as a reply to the test message.

TIMEOUT $x x$ is the number of 3 -second timeouts recorded during the online test by the BSCA.

INVLD MSG $x x$ is the number of invalid replies received in response to test messages sent.

Test Message Received:

- bSC ONLINE TEST, LINE $\{1$ or 2$\}$ [TERMINAL ADDR HEX hex] MESSAGE TYPE tt, MESSAGE COUNT cc
TXTRCVE DATACHK TIMEOUT INVLDMSG
* END ONLINE TEST

TERMINAL ADDR HEX hex identifies the terminal that transmitted the test message if the logging station is a control station (TYPE-CS in SDTFB).
tt identifies the test message type. See index entry online test parameter list for a description of the test types.
cc is the number of times the test message was to be transmitted. The message count is specified in the online test parameter list.

TXT RCVD $x x$ is the number of times the test message was received correctly.

DATA CHK $x x$ is the number of data checks recorded dur. ing the online test by the BSCA.

TIMEOUT $x x$ is the number of 3 -second timeouts recorded during the online test by the BSCA.

INVLD MSG $x x$ is the number of test messages received incorrectly for which a data check or timeout was not recorded.

An online test only indicates line conditions existing at the time of the test. If the test reveals the presence of line problems, you must decide whether the probability of successful transmission is great enough to justify continued trans. mission over the line.

To discover significant trends in the appearance of line problems, consider online test results in conjunction with the BSC counters and control station terminal statistics (see index entry BSC counters).

Online Test Considerations

If you want to request an online test or expect to receive a request for an online test, consider that:

- The MLMP I/O buffers must be large enough to accomodate an online test request. See the RECL and BLKL operands in the \$DTFB macro instruction, and index entries online test requests and MLMP I/O area.
- No data except the online test message can be sent or received over a line that is being tested until the online test is complete.
- An online test request that is not recogrized by MLMP is accepted as data and moved to your logical buffer.

Considerations unique to requesting an online test are:

- An online test request for System/3 must be the first and only text message transmitted over a line. An online test request transmitted to System/3 after text has been sent will be received by System/3 and passed to you as data.
- You must transmit EOT after transmitting an online test request to System $/ 3$ if the message type is not 00 . If you transmit data other than the test message before you send EOT, System/3 aborts transmission and posts the System/3 user with the \$BCOLT completion code (see index entry completion code). The data transmitted before EOT is lost.
- \$RFT should not be used unless the remote device can accept remotely initiated online test requests.
- \$RFT must be issued only for a PUT DTF (FTYP--TSM in SDTFB) that is opened but not being used for data transfer
- A multipoint control station (TYPE-CS in \$DTFB) can only request test type 00 for a tributary station. See index entry online test parameter list for a description of the test types.
- A System/3 multipoint tributary (TYPE-MP in \$DTFB) cannot request that an online test be sent to another System/3 tributary in the network.

See also index entry how to request an online test from a 3270.

Trace

If you are familiar with System/3 BSCA hardware and BSC line control procedures, you may find a record of the BSCA I/O sequence helpful in isolating an MLMP programming problem. MLMP provides a trace module (\$\$BSTT) to record $1 / O$ information after each BSCA interrupt. This information can be examined by you or an IBM customer engineer to diagnose a problem.

Once the trace module is included in your program, each MLMP I/O operation calls Trace to record the event in a trace table. The format of the table is shown in Appendix C. Dump the trace table when you are ready to examine the information recorded in it. You can use the \$SNAP macro instruction to dump the table (see index entry SSNAP macro instruction). Dump main storage from symbolic address MTBSML to symbolic address MTBSMM, the beginning and ending addresses of the trace table. (MTBSML and MTBSMM each require that an EXTRN be defined in the program requesting the dump.)

Include Trace, Assembler

Include the trace module in your program by specifying EXTRN \$\$BSTT in your program, or by placing an IN. CLUDE card in the linkage editor input deck:

// INCLUDE NAME-\$\$BSTT,UNIT- $x x$
($x x$ is the unit name R1, F1, R2, or F2)

Note: If you use an INCLUDE statement to call the trace module, the overlay linkage editor generates a name not referenced error message (0L031). This error does not affect the output of the linkage editor, however, and should be ignored.

Include Trace, RPG I/

If you are running under RPG II as a subroutine, \$\$BSMT is automatically link-edited as a dummy trace module. If you want to include the actual trace module in your program you must rename the dummy and actual trace modules. After renaming the modules, recompile your program to get the actual module link-edited. The following statements are used to rename the trace modules:

```
// LOAD $MAINT,xx
// RUN
// RENAME FROM-xx,LIBRARY-R,NAME-$$BSMT,
    NEWNAME-$$BSAV
// RENAME FROM-xx,LIBRARY-R,NAME-$$BSTT,
    NEWNAME--$$BSMT
// END
(xx is the unitname R1, F1, R2, or F2)
```

To replace the actual trace module with dummy trace module:

1. Rename the modules:
```
// LOAD $MAINT,xx
// RUN
// RENAME FROM-xx,LIBRARY-R,NAME-$$BSMT,
    NEWNAME-$$BSTT
// RENAME FROM-xx,LIBRARY-R,NAME-$$BSAV,
    NEWNAME--$$BSMT
// END
```

($x \times$ is the unitname R1, F1, R2, or F2)
2. Recompile your program.

Trace Considerations

- ITB interrupts, BSCA enabling operations, and BSCA disabling operations are not recorded by Trace.
- Trace entries are recorded independently of your programming operations. That is, entries are recorded when an interrupt occurs regardless of current operations occurring in your program, and can be recorded at any time, even during a snap dump (see following discussion). Consequently, be aware that entries may have been made to the trace table after a request to clump the table.
- Trace requires 512 bytes of main storage.
- For program efficiency, include Trace in your program only when you are trying to diagnose a problem.

Snap Dump Main Storage (\$SNAP)

The \$SNAP macro instruction generates linkage to a system storage dump routine. You must provide dump identification and dump limits. The output from the dump routine is printed on the system logging device. Output consists of:

1. The dump identification.
2. The contents of registers 1 and 2.
3. The address of the next sequential instruction after the \$SNAP macro instruction.
4. The contents of main storage identified by the dump limits.

Since a printer is much faster than the console, it is recommended that the system logging device be a printer when you intend to use \$SNAP.
\$SNAP Macro Instruction Format

[name]	SSNAP	ID-hex,START-address, END-address

1D-hex

Specifies a 2-byte parameter to identify the dump. The parameter is printed at the beginning of the dump output.

START-address

Specifies the symbolic address of where the duinp should begin.

END-address

Specifies the symbolic address of where the dump should end.

SYSTEM CONFIGURATION

The minimum system configuration and optional device support for MLMP is:

Model 8

The minimum Model 8 configuration is:

- 5408 Processing Unit Model A14 (16K bytes)
- 5444 Disk Storage Drive Model A1
- 5203 Printer Model 1
- 5471 Printer-Keyboard Model 1 or Directly attached 3741 Data Station Model 1
- Binary Synchronous Communications Adapter (BSCA), Local Display Adapter, or Integrated Communications Adapter (ICA)

Additional devices supported for the Model 8 are:

- 5408 Processing Unit Model A16 (32K), A17 (48K), or A18 (64K)
- 5444 Disk Storage Drive Model A2 or A3
- 5203 Printer Model 2 or 3
- Binary Synchronous Communications Adapter (BSCA), Local Display Adapter, or Integrated Communications Adapter (ICA)

Note: Two adapters can be present. The local display adapter, ICA, and BSCA- 2 are mutually exclusive.

- Directly attached 3741 Data Station Model 2 or Programmable Work Station Model 3 or 4

Model 10

The minimum Model 10 configuration is:

- 5410 Processing Unit Model A13 (12K bytes) (if not a control station, a Model A14 (16K) is required for a control station)
- 5444 Disk Storage Drive Model 1
- 5424 MFCU Model A1
- 5203 Printer Model 1
- Binary Synchronous Communications Adapter (BSCA). or Local Communications Adapter (LCA)

Additional devices supported for the Model 10 are:

- 5410 Processing Unit Model A14 (16K), A15 (24K), A16 (32K), or A 17 (48K)
- 5444 Disk Storage Drive Model 2, 3, A1, A2, or A3
- 5445 Disk Storage Model 1, 2 , or 3
- 3410/3411 Magnetic Tape Subsystem Nodels 1, 2, and 3
- 1442 Card Read Punch Model 6 or 7
- 5471 Printer-Keyboard
- 5203 Printer Model 2 or 3
- 1403 Printer Model 2 or N1
- 5424 MFCU Model A2
- Binary Synchronous Communications Adapter (BSCA), or Local Communications Adapter (LCA) (both can be present)
- Directly attached 3741 Data Station Model 1 or 2, or Programmable Work Station Model 3 or 4

Model 12

The minimum Model 12 configuration is:

- 5412 Processing Unit Model B 16 (32K bytes)
- 3340 Direct Access Storage Facility Model C2
- 5424 MFCU Model A1
- 5203 Printer Model 1
- Integrated Communications Adapter (ICA), Local Display Adapter, or Binary Synchronous Communications Adapter (BSCA)

Additional devices supported for the Model 12 are:

- 5412 Processing Unit Model B17 (48K) or B18 (64K)
- $3410 / 3411$ Magnetic Tape Subsystem Models 1, 2, and 3
- 1442 Card Read Punch Models 6 or 7
- 5471 Printer-Keyboard
- 5203 Printer Model 2 or 3
- 1403 Printer Model 2, 5, or N1
- 5424 MFCU Model A2
- Binary Synchronous Communications Adapter (BSCA), Local Display Adapter, or Integrated Communications Adapter (ICA)

Note: Two adapters can be present. The local display adapter, ICA, and BSCA-2 are mutually exclusive.

- Directly attached 3741 Data Station Model 1 or 2 or Programmable Work Station Model 3 or 4

Model 15

The minimum Model 15 configuration is:

- 5415 Processing Unit Model A17 (48K bytes) and a 5444 Disk Stoarge Drive Model A2
or
5415 Processing Unit Model B17 (48K bytes) and a 3340 Direct Access Storage Facility Model A2
- 3277 Display Station (CRT/Keyboard)
- 5424 MFCU Model A1 or A2, 2560 MFCM Model A1 or A2
or
1442 Card Read Punch Model 6 or 7
- 1403 Printer Model 5
- Binary Synchronous Communications Adapter (BSCA), Display Adapter, or Local Communications Adapter (LCA)

Additonial devices supported for the Model 15 are:

- 5415 Processing Unit Model A18 (64 K), A19 (96K), or A20 (128K) (with 5444/5445 disk units)
- 5415 Processing Unit Model B18 (64 K), B 19 (96 K), or B20 (128K) (with 3340 disk units)
- 5415 Processing Unit Model C21 (160K), C22 (192K), C23 (224K), or C24 (256K) (with 3340 disk units)
- 5415 Processing Unit Model D19 (96K), D20 (128K), D21 (160K), D22 (192K), D23 (224K), D24 (256K) (with 3340/3344 disk units), D25 (384K), or D26 (512K)
- 3340 Direct Access Storage Facility Model B1 or B2 (available with 5415-B, -C, and -D models)
- 5444 Disk Storage Drive Model A3 (available with 5415-A models)
- 5445 Disk Storage Model 1, 2, or 3 (available with 5415. A models)
- 3410/3411 Magnetic Tape Subsystem Models 1, 2, and 3
- 1403 Printer Model 2 or N1
- 3284 Printer
- 2501 Card Reader
- Interval Timer
- Directly attached 3741 Data Station Model 1 or 2 or Programmable Work Station Model 3 or 4
- Binary Synchronous Communications Adapter (BSCA), Display Adapter, or Local Communications Adapter (LCA)

Note: Two adapters can be present.

Storage Requirements

MLMP resides in the Model 10 Disk System, Model 12, or Model 15 libraries and requires:

- 0.25 K in the system nucleus. (The module $\$ \$ B S I N$ is 1 required in main storage at execution time - Model 10 only.)
- 5.25 K of main storage to include:

> \$\$BMS-MLMP Data Management
> \$\$BMCH-Check Routine
> \$\$BSLG-Terminal Statistics Logging Routine \$\$BSAT-Line 2 Work Area

Additional main storage requirements for MLMP are:

0.25 K for $\$ \$$ BSMD if AUTORS $-Y$ is specified in \$DTFB

2.00K for \$\$BSMA, \$\$BSMB, \$\$BSMC, and \$\$BSMF if POLRES $-Y$ is specified in \$DTFB

0.50 K for $\$ \$$ BSID if the display adapter is supported
0.75 K for Trace (\$\$BSTT) if Trace is used

- Main storage for user's code, including I/O buffers, DTFs, polling lists, \$GETBs, \$PUTBs, etc.
- Two cylinders of disk storage space for object code.
- Five tracks of disk storage space in the source library for MLMP macro instructions.
- One track of disk storage space for error logging. See index entry BSCA Terminal Log Area.

Programming Requirements

A. Model 10

- IBM System/3 Model 10 Disk System Management (5702-SC1).
- IBM System/3 Assembler (5702-AS1) or its equivalent.
- IBM System/3 Model 10 Disk System Miacros Feature (Feature Number 6020 or 6021).
- IBM System/3 Model 10 Disk System Overlay Linkage Editor (Feature Number 6026 or 6027), unless MLMP programs are written as subroutine to an RPG II program.
B. Model 12
- IBM System/3 Model 12 Disk System Mênagement (5705-SC1). This includes the System Macros and Overlay Linkage Editor.
- IBM System/3 Assembler (5705-AS1) or its equivalent.
C. Model 15
- IBM System/3 Model 15 Disk System Management (5704-SC1 or 5705-SC2). This includes the System Macros and Overlay Linkage Editor.
| • IBM System/3 Assembler (5704-AS1 or 5704-AS2) or its equivalent.

MLMP Programming Considerations

- The user must define one EXTRN in every MLMP program: $\$ \$ B S M S$. Other required EXTRNs are generated by the MLMP macro instructions when MLMP programs are assembled.
- MLMP Data Management (\$\$BSMS), BSC DTFs, MLMP 1/O areas, and user logical luffers must be in the root seg. ment. They must nor be overlaid. The Allocate, Rollout, and Tape End of Volume functions cannot be performad while BSCA files are open. See IBM System/3 Overlay Linkage Editor Reference Nanual, GC21-7561.

If AUTORS--Y is specified in a \$DTFB macro instruction, \$\$BSMD must be in the roor segment. If POLRES $-Y$ is specified in a \$DTFB macro instruction, \$\$BSMA, \$\$BSMB, and $\$ \$$ BSMF must be in the root segment.

- Binary and packed decimal data must be transmitted in transparent mode (EBCDIC only).
- A System/3 RPG II program using the RPG II Telecommunications Feature must not call an assembler subroutine to use a BSCA. (For information on writing an assembler subroutine for an RPG 11 program, see /BM System/3 Basic Assembler Reference Manual, SC2 7!509.)

The MLMP user should also be familiar with the unique BSC characteristics of the terminals to be used. Some BSC characteristics are listed by machine in Appendix A. For more information regarding the terminals that can be used with MLMP, see the publicaitons listed in the front of this manual.

Appendix A. Device-Dependent Considerations

IBM 2972 BANKING TERMINAL SYSTEM

- Data received from the 2972 includes the terminal ID and keyboard shift characters.
- Data transmitted to the 2972 must include keyboard shift characters for upper case and lower case as well as NL, HT , and other appropriate commands.
- More than one record can be transmitted to the 2972 before you have to transmit a new line command.
- If you've been transmitting to one 2980, you must transmit EOT before transmitting data to another 2980 (see index entry terminating transmit files).

For more information regarding the 2972, see Component Description: IBM 2972 Models 8 and 11 General Banking Terminal Systems, GL27-3020.

IBM 3270 INFORMATION DISPLAY SYSTEM

Before writing an application program using a 3270, you must understand the 3270's physical characteristics and capabilities as they are described in /BM 3270 information Display System Component Description, GA27-2749. After reading the 3270 component description, use this section as a guide to coding MLMP macro instructions to control and define $1 / O$ for a 3270 . Use the 3270 compolent description to construct data areas (called data stream) to send to a 3270 to display an image or print a line, and to interpret data strearns received from a 3270. Data strearn formats are shown in this section, but you must have read the component description to understand the terms within the formats.

Y'ou must also understand binary synchronous telecommunications procedures as described in General Information: Binary Synchronous Communications, GA27-3004.

A sample MLMP program that communicates with a 3270 application is shown in Appendix B.

Polling/Addressing a 3270

There are two kinds of polling for remote 3270 devices:

- General polling. In a general poll a response is sought from any device attached to a particular control unit; the control unit has the responsibility of querying each device in turn for readiness to provide input.
- Specific polling. In a specific poll a particular device attached to a particular control unit is queried for a response.

Addressing (station selection) is always directed to a specific device.

Polling/addressing list entries are derived from the TERMAD operand in \$POLB macro instructions (see index entry $\$ P O L B$ macro instruction) and are in the following formats:

General Polling:

Specific Polling and Addressing:

CU	CU	Device	Device
Address	Address	Address Address	

The control unit and device addresses are repeated because binary synchronous multipoint communications for the 3270 uses double addressing as a check against intermittent transmission line errors. The hexadecimal values for defining a polling/addressing list depend on which control unit and device are specified and whether the transmission is to be in EBCDIC or ASCII.

Usually, general polling lists are kept separate from specific polling and addressing lists.

Note: The \$CANB macro instruction can be used to terminate polling. See index entry \$CANB macro instruction.

Reading From and Writing To a Remote 3270

I/O control of a remote 3270 is maintained by a combination of \$GETB and/or \$PUTB macro instructions, \$CHK macro instructions, and, in some cases, by special characters in the data stream called an escape command sequence. Details of initiating data transfer to and from the 3270 are discussed under Read Operations and Write Operations, following, and summarized in Figure 8.

In the discussion that follows of read and write operations, the transmission control characters (STX, ETX, etc.), device control characters, and field definition information are shown in data stream formats; these characters are described in IBM 3270 Information Display System Component Description, GA27-2749.

Read Operations

Reading from a remote 3270, you can:

- Read modified fields from a display station buffer after a terminal operator has completed his entry and caused an attention (for instance, by pressing the ENTER key).
- Read from a display station buffer fields modified by an operator without waiting for an attention indication.
- Read only those modified fields beginning at a specified buffer location.
- Read the entire buffer contents, both modified and unmodified data, including attribute characters.
- Read the buffer contents, both modified and unmodified data, including attribute characters, beginning at a specific buffer location.
(Attribute characters and modified and unmodified data are described in the 3270 component description.)

Each of the following five read operations can be terminated by transmitting an RVI to the terminal (see index entry reverse interrupt).

Read Modified Fields after Operator Action: The basic means of reading data entered by a terminal operator, this function is performed by issuing an initial GET request ($\$ G E T B$) and at least one subsequent GET request. The first \$GETB initiates a general or specific polling sequence. Data is read by the first and subsequent GET requests when a terminal is encountered at which the operator has done one of the following:

- Pressed one of these keys:

ENTER

PF (program function) keys 1-12
PA (program attention) keys 1-3
TEST REQUEST
CLEAR

- Selected a detectable field with the selector pen. (See the Component Description for establishing a detectable field.)
- Inserted a card in the operator identification card reader.

All modified fields are read from the terminal buffer into the receiver's $1 / \mathrm{O}$ buffers. A maximum of 256 bytes of data, including control characters, are read for each GET request. By issuing \$GETB with OPC-BLK specified (see index entry $\$ G E T B$ macro instruction) and monitoring the logical buffer for ETX (meaning that no more message blocks remain to be read), you can determine whether all available data has been read.

After the initial \$GETB, at least one more \$GETB must be issued. If all data is read on the first \$GETB, the next \$GETB must be issued to be posted with end-of-file (\$BCEOT completion code). The message read by the initial \$GETB will be in one of the formats shown in Figure 7. (See the 3270 component description for an explanation of the AID, cursor address, SBA, and other data stream characters illustrated in Figure 7.)

The ID byte in the BSC DTF (\$BDIND) identifies the polling list entry of the responding terminal. Either \$BDIND or the control unit and device address bytes in the data stream may be used to determine which device responded postively to polling.

If the operator presses the ENTER key, a PF (program function) key, or selects a detectable field with the selector pen, the message read is in this format (assuming the terminal buffer is formatted):

| STX | CU
 Address | Device
 Address | AID | Cursor
 Address | SBA | Buffer
 Address | Text
 Ad | SBA | Buffer
 Address | $\left\{\begin{array}{c}\text { ETB }\end{array}\right.$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

If, in the above case, no fields were modified by the operator (or already set to be modified by the program), the format of the input message is:

STX	CU Address	Device Address	AID	Cursor Address	ETX

If the terminal buffer is unformatted, the input message is:

| STX | CU
 Address | Device
 Address | AID | Cursor
 Address | Text |
| :---: | :---: | :---: | :---: | :---: | :---: |\(\left\{\begin{array}{c}\left\{\begin{array}{c}ETB

ETX\end{array}\right\}

\hline\end{array}\right.\)

If the operator presses the CLEAR key or presses PA (program attention), the input message is:

STX	CU Address	Device Address	AID	ETX

If a card or cards are read by means of the identification card reader, the input message is:

| STX | CU
 Address | Device
 Address | AID | $0-37$
 Characters | EOR
 EOI | LRC |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ETX | ETH |
| :--- |

If a test request message is entered, the input message is in this format (although the application is not normally aware of it):

| SOH | $\%$ | 1 | STX | Text | ETX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If a status message is read (see Figures 9 and 10), the message received is in the following format:

SOH	$\%$	R	STX	CU Address	Device Address	Sense Status 1	Sense/ Status 2	ETX

Note: Your program must be prepared to receive status messages.
In all of the above cases, at least one \$GETB is issued to read successive blocks of the message if the message ends with ETB, or to get an EOF completion if the message ends in ETX.

A message block received as the result of subsequent \$GETBs has this format (unless it is unformatted):

STX	$\sum 2$	SBA	Buffer Address	Text	SBA	Buffer Address)	$\left\{\begin{array}{l}\text { ETB } \\ \text { ETX }\end{array}\right\}$

Figure 7. Message Formats Received from thel $\mathbf{3 2 7 0}$

Read Modified Fields: This function is similar to reading modified fields after operator action except that the operation is directed to a specific device and is performed immediately; it does not depend on an attention-causing action by the terminal operator. The purpose of this process is to read all modified fields in the device buffer.

Read modified fields by issuing:

- A \$PUTB macro instruction with OPC-EOB specified (see index entry \$PUTB macro instruction), and
- One or more \$GETB macro instructions with OPC-BLK specified (see index entry \$GETB macro instruction.

When \$PUTB is issued, the logical buffer must contain:

\section*{| ESC | 6 |
| :--- | :--- |}

Record length (\$BDREL) must be 2, and the DTF must be a conversational DTF (CONV-Y sepcified in \$DTFB). If the \$BCCRP completion code is posted after checking the PUT request for completion (\$CHK), issue \$GETB.

Only modified fields are read. Issue \$GETBs to read all the modified fields in the terminal buffer. That is, issue \$GETB until the \$BCEOT completion code is posted.

The input data stream received will be in one of the formats shown in Figure 7.

Read Modified Fields from Position: This function reads all modified fields beginning at a specified position in the device buffer. As the with read modified fields function, no operator attention-causing action is required. The process is directed to a specific device. It can be used in a manner similar to that for reading modified fields except that the program selects only a certain portion of the screen (terminal buffer) to read, even though the terminal operator may have modified other portions of the screen.

Read modified fields from position by issuing:

- A \$PUTB macro instruction with OPC-EOB specified (see index entry \$PUTB macro instruction),
- A second \$PUTB macro instruction with OPC--EOB specified, and
- One or more \$GETB macro instructions with OPC-BLK specified (see index entry \$GETB macro instruction).

When the first \$PUTB is issued the logical buffer must contain:

ESC	1	WCC	SBA	Buffer Address

The output data stream can also include, following the WCC, data to be written to the terminal. The WCC should be set to inhibit resetting of modified data tags, and the last buffer address should be the position from which the read modified operation is to start.

When the second \$PUTB is issued, the logical buffer must contain:

ESC	6

Record length (\$BDREL) must be 2, and the DTF must be a conversational DTF (CONV-Y specified in \$DTFB). If the \$BCCRP completion code is posted after checking the second PUT request for completion (\$CHK), issue \$GETB.

A maximum of 256 bytes of data, including control characters, will be read by the first \$GETB. The data is read from the terminal buffer location established by the first \$PUTB. The input data stream will be in one of the formats shown in Figure 7.

Read the remaining message blocks by issuing \$GETB until the \$BCEOT completion code is posted.

Fiead Buffer: This function reads the entire contents of a specified terminal buffer, including moclified and unmodified fields, attribute characters, and nulls ($\mathrm{X}^{\prime} 00^{\prime}$). It is intended primarily for diagnostic use.

Read a buffer by issuing:

- A \$PUTB macro instruction with OPC-EOB specified (see index entry \$PUTB macro instruction), and
- One or more \$GETB macro instructions with OPC-BLK specified (see index entry \$GETB macro instruction).

When \$PUTB is issued, the logical buffer must contain:

Record length (\$BDREL) must be 2, and the DTF must be a conversational DTF (CONV $-Y$ specified in \$DTFB). If the \$BCCRP completion code is posted after checking the PUT request for completion (\$CHK), issue \$GETB.

After this message has been written to the device, the \$GETB reads the first message block from the terminal buffer (since only a maximum of 256 bytes can be transmitted by one \$GETB macro instruction, more read operations will be required to read the entire buffer). Subsequent \$GETBs are then issued to read as many remaining blocks of the terminal buffer as the program requires.

All data beginning at location 0 in the terminal buffer is read. In addition, a special character (SF) is inserted by the hardware into the input data stream to indicate the beginning of each field. The input data streann for the first message block, if the terminal buffer is formatted, appears as:

STX	Cu Address	Device Address	AID	Cursor Address	,	SF	Attr Char	Text	SF	Attr Char)	$\left\{\begin{array}{l}\text { ETB } \\ \text { ETX }\end{array}\right\}$

Subsequent message blocks appear as:

STX	,	SF	Attr Char	Text	SF	Attr Char		$\left\{\begin{array}{l}\text { ETB } \\ \text { ETX }\end{array}\right\}$

If the terminal buffer is unformatted, no SF characters are inserted since there are no fields. The input following the cursor address would consist of all character locations in the buffer, including nulls.

Read Buffer from Position: This function reads the contents of a specified terminal buffer beginning at a specified buffer position. All fields, modified and unmodified, attribute characters, and nulls ($\mathrm{X}^{\prime} 00^{\prime}$) are read. As with reading a buffer, reading a buffer from position is intended primarily for diagnostic uses.

Read a buffer from position by issuing:

- A \$PUTB macro instruction with OPC-EOB specified (see index entry \$PUTB macro instruction).
- A second \$PUTB macro instruction with OPC-EOB specified, and
- One or more \$GETB macro instructions with OPC--BLK specified (see index entry \$GETB macro instruction).

When the first \$PUTB is issued the logical buffer must contain:

ESC	1	WCC	SBA	Buffer Address

The output data stream could also include, following the WCC, data to be written to the terminal. The WCC should be set to inhibit resetting of modified data tags; and the buffer address should be the position from which the read buffer from position operation is to begin.

When the second \$PUTB is issued the logical buffer must contain:

\section*{| | |
| :--- | :--- |}

Record length (\$BDREL) must be 2, and the DTF must be a conversational DTF (CONV $-Y$ specified in \$DTFB). If the \$BCCRP completion code is posted after checking the PUT request for completion (\$CHK), issue \$GETB.

The \$CETB reads the first message block from the terminal buffer beginning at the location specified in the first \$PUTB. Ali data beginning at the specified location is read. In addition, a special character (SF) is inserted into the input data stream to indicate the beginning of each field. The input data stream for the first message block, if the terminal buffer is formatted, appears as:

| $S T X$ | SF | Attr
 Char | Text | SF | Attr
 Char | ETB
 ETX |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

If the terminal buffer from the specified beginning location is unformatted, no SF characters can be inserted, since there are no fields. The input following the cursor address would consist of all character locations in the buffer, including nulis.

Write Operations

Writing to a remote 3270, you can:

- Write data to any desired position in a display station or printer buffer.
- Erase the data presently at the device buffer (on the screen or in the printer buffer) and write data to any buffer location.
- Erase all unprotected fields in the display or printer buffer. Protected and unprotected data are described in the $\mathbf{3 2 7 0}$ component description.
- Copy data in one device buffer to the buffer of a device attached to the same control unit. (For instance, have the contents of a display station buffer printed at a nearby printer.)
- Transmit conversational replies.

Note that if you are transmitting to one terminal attached to a 3271 control unit, you must transmit EOT before you can transmit to a different terminal att:ached to the same control unit. See index entry terminating transmit files. In the description of write operations that follows, consider also that whenever you write to a 3270 printer you must specify \$PUTB OPC-EOW for each record, and need not transmit EOT. EOT will be transmitted automatically.

Write: The write function writes a message to a terminal (display station or printer) buffer. To write to a remote 3270:

- Issue a \$PUTB macro instruction, and
- Transmit EOT (see index entry terminating transmit files).

When \$PUTB is issued, the logical buffer must contain:

An SBA order sequence should follow immediately after the WCC, so that the write operation can be retried if an error occurs. See IBM 3270 Information Display System Component Description, GA27-2749, for how to write the WCC, SBA, and other data stream characters.

To send the message in blocks instead of in one data stream, additional \$PUTBs may be issued with the output area in the format described above. To terminate the process, transmit EOT.

Programming Note: If a terminal operator has made an entry and pressed the ENTER key but no initial \$GETB has been issued, an initial \$PUTB to the display may nullify the operator input. This situation may be avoided by reserving areas of the display for operator input only (nothing will be written to these areas) and then setting the reset modified data (RMD) bit to zero (meaning do not reset modified data tags) in the write control character (WCC) of the initial \$PUTB message. Setting the RMD bit off in the WCC is required because if modified data tags are reset as part of the initial \$PUTB the pending attention will not be honored since there will be an indication that no fields have been modified.

Erase and Write: The erase and write function erases the buffer of a selected terminal, and then writes a message to the terminal buffer. The erasure consists of changing each character location in the buffer to $\mathrm{X}^{\prime} 00^{\prime}$. With the message omitted, the process can be used just to erase the buffer.

Erase and write by:

- Issuing a \$PUTB macro instruction, and
- Transmitting EOT (see index entry terminating transmit files).

When \$PUTB is issued the logical buffer must contain:

An SBA order sequence should follow immediately after the WCC so that the write operation can be retried if an error occurs.

To send the message in blocks instead of in one data stream from one large output area, subsequent \$PUTBs may be issued with ESC code 1 and WCC specified (see the write function).

To erase and write, the data stream placed in the logical buffer would contain an ESC code 5. To simply erase the buffer, orders and text would be omitted from the data stream.

Erase Unprotected Fields: The erase unprotected fields function sets all unprotected fields in a selected terminal buffer to nulls ($\mathrm{X}^{\prime} 00^{\prime}$). It also resets the modified data tag (MDT) bits in the attribute characters of unprotected data fields to 0 , restores the keyborad, resets the AID, and repositions the cursor to the first character location in the first unprotected field in the buffer. If the buffer is completely protected, the keyboard is restored, and AID reset, the cursor moved to location 0 , and no erasure takes place. (See the component description for a description of the attribute and AID characters.)

Erase unprotected fields by:

- Issuing \$PUTB with OPC-EOB specified (see index entry \$PUTB macro instruction), and
- Transmitting EOT (see index entry terminating transmit files).

When \$PUTB is issued the logical buffer must contain:

ESC	$?$

Copy: The copy function selects a device and copies into its buffer the contents of the buffer of another device attached to the same 3271 control unit. Copy can be used to transfer the contents of a display station screen to a printer to get a printout of the screen or to copy the contents of one screen onto another.

To copy:

- Issue \$PUTB with OPC-EOB (OPC-EOW if you are copying to a 3270 printer) specified (see index entry \$PUTB macro instruction), and
- Transmit EOT (see index entry terminating transmit files).

When \$PUTB is issued the logical buffer must contain:

ESC	7	CCC	From Device Address

See the component description for a description of the CCC. The from device address is the one-byte address of the device from which the data is copied.

Reply Conversationally: Any of the 3270 write operations described on previous page can be transmitted as a conversational reply to a specific terminal. Instead of issuing \$GETB to receive end of file after you receive a block of text ending with ETX, issue a \$PUTB to transmit text to the terminal. The \$PUTB must be issued for the same DTF for which you issued the last \$GETB, and CONV-Y (as well as FTYP-RCV) must have been specified for the DTF. (See index entry conversational reply for a detailed description of conversational techniques.)

Conversational replies save line time because you don't have to receive EOT and initiate a new addressing sequence in order to transmit a response to text received. However, to avoid two-second timeouts that lead to a possible abort situation, conversational replies should not be used if a significant amount of processing must occur on the data received before you will be ready to reply to the terminal from which the data was received. (A significant amount of processing would be, for example, 2 or 3 disk I/O operations.)

To Do This . . .	Use These Macro Instructions ${ }^{1}$	With This ESC Code . .
Read Modified Fields After Operator Action	\$GETB OPC-BLK	None
Read Modified Fields	\$PUTB OPC-EOB	6
Read Modified Fields from Position	Then \$GETB = OPC - BLK	

Figure 8. 3270 Read and Write Functions

How to Request an Online Test from a 3270

One $\mathbf{3 2 7 0}$ can test another 3270 in the same network (or test itself) by transmitting an online test request to the System/3 control station. To initiate an online test, a 3270 display station operator must:

1. Ensure that the screen is unformatted ione way to do this is to press CLEAR, then RESET).
2. With the cursor at location 0 , type in a message with the format:

where $X X$ is a number from 23 through 34 (see index entry online test parameter /ist) specifying the desired test; YY is a number from 01 through 99 specifying the number of times the test is to be written to the device (if the test is a printer, the test can only be sent one time); \mathbf{N} is the number four, indicating the length of Address; where Address is a sequence of four alphameric characters specifying the control unit and device to which the test is to be sent. Alphabetic characters must be typed in upper case. Because double addressing is used, each control unit and device character must be repeated. For example, to send a test message to control unit 0 , device 1 , in EBCDIC transmission, the operator would press the minus (-) key twice and type two A's.

3. Press TEST REQUEST.

The test should now appear at the selected display station or printer.

After the online test is completed, the 3270 operator must inform the MLMP program that the previous display was erased for the test. (One way to do this is to press CLEAR, providing that the MLMP user's program recognizes the CLEAR key AID sequence. If the sequence is recognized, the MLMP user can issue \$PUTBs to refresh the 3270 screen.)

3270 Online Test Considerations

- If System/3 does not recognize the online test request or cannot accept the request, the online test request is passed to the MLMP user as data. Be sure that the requested test number is correct, and that the MLMP 1/O buffers are large enough to accommodate an online test request. See index entry online test.
- If, in response to a general poll by System/3, you request an online test after one or more stations in your cluster have transmitted data to the System/3, the System/3 will be unable to recognize the online test request, and will pass the request to the System/3 user as data.
- If you respond first to a System/3 general poll by requesting an online test (message type not 00) and another station in your cluster transmits data after you request the test, and before EOT has been transmitted, System $/ 3$ aborts transmission and posts the System $/ 3$ user with the \$BCOLT completion code (see index entry completion code). The data transmitted subsequent to your request is lost.

Note: To avoid the last two situations described, try to ensure that your station will be the only one responding to a general poll by System/3 if you want to request an online test in response to a general poll.

Status/Sense Messages

Because the 3270 cannot accept data when status is pending, you must poll the 3270 for status before you can initiate or continue transmission to a 3270 on which status is pending. After you attempt to transmit to a 3270 , status may be pending if the \$BCERR completion code is posted or if the \$BCNEG completion code is posted along with the RVI switch set on. In either case, poll the 327Cl for status by issuing \$GETB for the terminal for which you issued the unsuccessful \$PUTB. (To avoid a polling loop, specify LAST-WRAP in SPOLB and a LIMIT of 2 or 3 in \$DTFB.) After receiving the status, you must issue a second \$GETB to receive EOF (\$BCEOT completion code).

If The Status/Sense Bytes Contain . . .	Mnemonic	This Means . .	Applicable To...	See This Action Number in Figure 10
X'4050'	IR	Intervention required for one of these reasons: - A command attempted to start a printer but found it not ready (out of paper, hung, etc.). The printout is suppressed. - The power is off on the printer.	3271, 3275	3A
		- The control unit received a selection addressing sequence or specific polling sequence for a device that is unavailable or went not ready during a printout. (A general poll does not respond to an unavailable or not ready indication and proceeds to the next device.) - The control unit receives a command other than diagnostic read or write, for a device that the CU has logged as unavailable/not ready.	3271	
		- The printer went not ready during a printout.	3275	
X'4060'	CR	Command reject. Receipt of an invalid or illega! 3270 channel command (for example, NOP, Sense, Seiect. or Copy if not installed).	3271, 3275	4
X'40C ${ }^{\prime}$	OC	Operation check. Any of the following: - An illegal buffer address or an incomplete order sequence received on a write or erase/write command.	3271, 3275	4
		- CCC or from address not received on a copy command.	3271	
		- Invalid command sequence (ESC is not received in second data character position). - An I/O interface overrun is detected. This occurs during a command when a data byte is presented to the control unit by the TCU before the operation required by the previous data byte has completed.	3271, 3275	
X'40C2'	CC	Control check-timeout. A device has failed to respond to control unit communications within à specified period of time.	3271	2 A
${ }^{1}$ In analyzing a status/sense message, the programmer may need to determine whether the device is a 3271 or a 3275 . One way to do this is to compare the device specified in the status/sense message with a list of all 3275 's; if the device is not found in this list, a 3271 can be assumed.				

Figure 9 (Part 1 of 3). Analyzing $\mathbf{3 2 7 0}$ Status/Sense Messagas

If The Status/Sense Bytes Contain...	Mnemonic	This Means...	Applicable To ... ${ }^{1}$	See This Action Number In Figure 10
X'40C3'	CC, OC	Control check, operation check. The condition above was detected while the control unit was executing an operation with the from device during a copy command.	3271	1B
X'40C4 ${ }^{\prime}$	DC	Data check. Either one of the following: - An internal parity check or a cursor check occurred in either the control unit or device buffer.	3271, 3275	2A
		- A transmit parity check occurred on data sent between the device and the control unit.	3271	
X'40C6 ${ }^{\prime}$	DC, OC	Data check, operation check. A condition above occurred while the control unit was executing an operation with the from device during a copy command.	3271	1 B
X'4001 ${ }^{\prime}$	IR, OC	Intervention required, operation check. Either of the following: - A copy command contains a from address specifying an unavailable device. - An IR condition (see IR) is detected while the $\mathrm{C} U$ is executing an operation with the from device during a copy command.	3271	3B
$X^{\prime} 4640$	DB, US	Device busy, unit specify. The addressed device is presently busy executing an operation or a busy condition was detected previously by a command.	3271, 3275	9
X'4E40'	DB, US, DE	Device busy, unit specify, device end. A busy condition was detected. However, a device end indication means the device is no longer busy and the operation should be retried.	3271, 3275	2A
X'C140'	TC	Detection of a BSC error on the TCU transmission.	3275	11
$\mathrm{X}^{\prime} \mathrm{C4C1}{ }^{\prime}$	OC, US	Operation check, unit specify. A from address on a copy command specified a device with a locked buffer. (The device was not authorized to be copied from.)	3271	12
${ }^{1}$ In analyzing a status/sense message, the programmer may need to determine whether the device is a 3271 or a 3275 . Onie way to do this is to compare the device specified in the status/sense message with a list of all 3275 's; if the device is not found in this list, a 3271 can be assumed.				

Figure 9 (Part 2 of 3). Analyzing 3270 Status/Sense Messages
$\begin{array}{|l|l|l|l|l|}\hline \begin{array}{l}\text { If The } \\ \text { Status/Sense } \\ \text { Bytes } \\ \text { Contain . . }\end{array} & \text { Mnemonic }\end{array}$ This Means . . . $\left.\begin{array}{l}\text { See This } \\ \text { Action } \\ \text { Number In } \\ \text { Figure 10 }\end{array}\right\}$

Figure 9 (Part 3 of 3). Analyzing 3270 Status/Sense Messages

Action Number	Programmer Action
1A	Execute a new address selection sequence and retransmit the message starting with the command sequence which was teing executed when the error occurred. If the operation is not successful after two retries, consider this an unrecoverable error and follow procedure 5A.
1B	Same as 1A except follow procedure 5 B after two retries.
1 C	Same as 1A except retransmit the entire failing chain of commands.
2A	It is suggested that the user reconstruct the entire screen buffer image if this is possible and retry the failing chain of commands (within the BSC sequence of operations). If the information in the screen buffer is such that it cannot or need not be reconstructed, the operation may still bee retried. If the operation is not successful after three retries, consider this an unrecoverable error and follow procedure 5A.
2B	The error occurred during the execution of a copy command. Execute procedure 2A except that it is the buffer of the from device specified by the copy command that should be reconstructed. After three retries, execute procedure 5B.
3A	The error indicates that the printer is out of paper, has the cover open, has the print mechanism hung, or the device is unavailable. Wait for the display operator or system operator to intervene and mechanically ready the printer. Then retry the printout by issuing a \$PUTB with the WCC and no data stream. (There is no data error and the data is still intact in the device buffer and can be sensed.) Otherwise, execute procedure 2A.
3B	The error indicates that the from device specified in a copy command is unavailable. The device address associated with the error status/sense information is not the one requiring readying. The device requiring corrective action is the from device specified in the copy command. This from device should be determined and made ready. Then execute procedure 1B.
4	An unrecoverable programming error has occurred. Examine the data stream to locate the probiem.
5A	Request maintenance on the device giving the trouble. After repair, attempt to reconstruct the screen buffer image it possible, starting with an erase/vurite command in order to correct a missing or multiple cursor situation in the device buffer. Retry the failing operations as done in the procedure previous to 5 A .
5B	The from device specified by the copy command in the failing operation is malfunctioning. The from device should bea determined from the data stream information, and maintenance should be requested on the device. After repair, reconstruct the screen buffer image, if possible. The sequence of commands used to reconstruct the image should start with an erase/write command to correct a missing or multiple cursor situation in the device buffer. Retry failing operations as done in the procedure previous to 5 B .
6	The error occurred during a printing and indicates either a character generator readout error or a print mechanism hang. There is no data error. The proper error recovery procedure is application dependent, since the user may or may not want a new printout. If a new printout is required, follow procedure 3 A .
7	A data error occurrecl in the device buffer during printing; follow procedure 2A.

Action Number	Programmer Action
8	A specific poll detected that the addressed device is busy. Periodically issue a specific poll to pick up the device end status/sense bit which is sent by the device to the TCU when the device becomes not busy (unless this status change is detected on a selection addressing sequence).
9	A command was erroneously addressed to a busy device. Periodically issue an initial \$GETB with a specific poll to pick up the device end status/sense bit, which is sent by the device to the TCU when the device becomes not busy; then follow procedure 2A.
10	This error indicates that in attempting to execute a copy command the from device was found to be busy. Execute procedure 1 A when the from device is not busy. (A specific poll read picks up the device end status/sense bit.) The device address associated with the status/sense message is the address of the to device and not that of the busy from device.
11	A BSC error was detected during a text transmission from the TCU. Follow procedure 2A if the failing command is a write command which has a data stream of more than 1 byte or if it is in a chain of commands and one of the previous commands in the chain is a write command without an SBA order immediately following the WCC character. In all other cases, follow procedure 1C. If, after following the above retry procedure, the problem is not corrected, follow procedure 5A.
12	An unauthorized attempt was made to read data. An effort was made to execute a copy com-. mand but access to the from device data was not authorized. The device address associated with the error status/sense bits is that of the to device.

Figure 10 (Part 2 of 2). Suggested Actions Based on 3270 Status/Sense Messages

Polling/Addressing a $\mathbf{3 2 7 0}$ via the Display Adapter

The display adapter is supported by Models 8, 12, and 15 only. User assembler programs for the display adapter are coded similar to programs for the BSC adapter with the following exceptions:

- The display adapter requires another link-edit of your R-module using a new INCLUDE card:

// INCLUDE NAME-\$\$BSID,UNIT-xx
 ($\mathrm{x} x=$ the unit name R1, F1, R2, F2)

- The display adapter emulates both the System/3 BSCA line 2 attachment and the 3271 control unit of the 3270 system.
- The display adapter provides a continuous poll function which polls the specified devices in the order given. (Devices can be repeated more than once to set up priorities.)
- The poll/address line buffer must contain valid device addresses or you will get a unit check (see index entry \$POLB macro instruction).

A maximum of 12 unique device addresses can be specified for the Models 8 and 12, and a maximum of 30 can be specified for the Model 15.

- 255 total polling entries can be specified in the user program (see index entry $\$ P O L B$ macro instruction).
- The display adapter is supported on line 2 only.
- The display adapter addressing (station selection) is always directed to a specified device.
- Display adapter continuous polling line buffer:

- Address and polling characters for the display adapter are $6060 \times x x x$ and $4040 x x x x$ respectively ($x x x x$ are the device address characters).

See Appendix B for samples.

IBM 3735 PROGRAMMABLE TERMINAL

Form Descriptor Convert Routine (\$\$BSCN)

The Form Descriptor Convert routine (FDP/Convert) is provided with MLMP to convert form descriptor programs (FDPs) generated on OS or DOS to a format suitable for transmission from System/3 to an IBM 3735 Programmable Terminal. FDP/Convert converts to a System/3 file an FDP generated by OS or DOS FDP utility programs end punched into cards by IEBPTPCH or an equivalent punch routine. The System/3 file can then be transmetec io a 3735 by an MLMP program. (For information on how to generate FDPs on System/3, see IBM Systems 3735 Support Program Coding Manual, GC21-5096.)

Whatever the punch routine used to generate the input deck for FDP/Convert, the data must be punched in the following 'mma'

- Six cards: data in columns 1.72, sequence number in columns 73-80;
- Every seventh card: data in columns 1-44, sequence number in columns 73-80.

That is, seven cards of input for FDP/Convert must contain a maximum of 476 bytes, and be equivalent to one $O S$ or DOS FDP disk record. (OS FDP disk records always contain a maximum of 476 bytes. DOS FDP disk records, however, can cuntain a maximum of 486 bytes. The first 10 bytes ot each DOS FDP disk record contain an 8-byte name and
2 -byte sequence number. If you are punching FDP records generated on DOS, do not punch the first 10 bytes of the disk records.)

Note: FDP/Convert checks the sequence of input decks. If an input card is out of sequence, FDP/Convert issues the 'P9' halt. See the appropriate halt/messages manual listed in the Preface for a complete description of the 'P9' halt. For information regarding IEBPTPCH, see IBM System/360 Operating System Utilities, GC28-6586.

FDP/Convert can convert:

- 80-column FDP cards to 96 -column expanded format cards.
- 80-column FDP cards to a user-specified consecutive 5444 disk file.
- 96-column expanded format FDP cards to a user-specified consecutive 5444 disk file.

Note: Only the disk files are formatted for transmission to a 3735 .

80-Column to 96-Column

For each 80 -column input card, FDP/Convert generates a maximum of two 96 -col nn cards. The information in the input card, eycept null characters, is expanded for printability and punched in columns $1-86$ of a 96 -column card. (Null characters [$\mathrm{X}^{\prime} \uparrow 070^{\prime}$] are inserted into FDP records by OS and DOS to pad a record to 476 bytes.)

As an example of the expansion for printability, the 80 column input:

Column | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 4 | 7 | 4 | 7 |
| 3 | 2 | E | 0 |

Is converted by FDP/Convert to:

Column Hex value	1	2	3	4	5	6			8
	F	F	F	F	F	C			
	4	3	7	2	4	5			0
Character	4	3	7	2	4	E			0

To generate a deck of 96 -column FDP cards from a deck of 80 -column cards:

1. Place, as shown, the following OCL statements and data in the 1442 Card Reader/Punch:
```
// LOAD $$BSCN,unit
// RUN
// CONVERT TO-MFCU,FDPNUM-nnn
80-column FDP deck(s)
/*
```

2. Place blank 96 -column cards in MFCU2.
3. Begin reading from the 1442.

The FDP number specified in the // CONVERT statement (FDPNUM) is punched in columns 89-91 of each 96 -column card. Each 96 -column card also contains a sequence number punched in columns 92-96.

80-Column to Consecutive 5444 Disk

FDP/Convert builds a maximum of one 476-byte disk record for every seven 80 -column FDP cards. Null characters are deleted.

To generate from an 80 -column card deck a consecutive 5444 disk file containing one or more FDPs:

1. Place, as shown, the following OCL statements and data in the 1442 Card Reader/Punch:
```
// LOAD $$BSCN,unit
// FILE NAME-$WORK,UNIT-xx,PACK-pack,
    LABEL-your filename,RECORDS-number,
    RETAIN-{\begin{array}{l}{P}\\{T}\\{S}\end{array}}{\mp@code{}}}=
// RUN
// CONVERT TO-DISK
80-column FDP deck(s)
/*
```

2. Begin reading from the 1442.

RECORDS-number in the // FILE OCL statement specifies the number of records required to contain the FDP file. The maximum number of records required is n divided by 7 , where $n=$ the number of cards in the 80 -column input deck.

Expanded 96-Column to Consecutive 5444 Disk

FDP/Convert repacks expanded format 96 -column FDP cards, then builds 476 -byte disk records from the repacked data.

To generate from a 96 -column card deck a consecutive 5444 disk file containing one or more FDPs:

1. Place, as shown, the following OCL statements and data in MFCU1:

[^1]// RUN
// CONVERT TO-DISK
(The // CONVERT
statement is optional.)
96-column FDP deck(s)
/*
2. Begin reading from the MFCU.

RECORDS-number on the // FILE OCL statement specifies the number of records required to contain the FDP file. The number of records required is n divided by 952 , where $\mathrm{n}=$ total number of columns, excluding columns 89-96, punched in the 96 -column input deck. The number of records required is approximately one disk record for every eleven input cards.

FDP/Convert Considerations

- FDP/Convert requires a 1442 Card Reader/Punch to convert 80 -column FDP cards. If you don't have a 1442, you can use an IBM Business Systems Center or another customer installation to run FDP/Convert. Arrangements for using an IBM Business Systems Center can be made through your IBM representative or the IBM branch office serving your locality.
- All FDPs must be generated initially by System $/ 3$ Model 10 Disk System, OS, or DOS. You can have your FDPs generated at an IBM Business Systems Center or at a customer installation. Arrangements for using an IBM Business Systems Center can be made through your IBM representative or the IBM branch office serving your locality.
- To avoid billable maintenance by IBM, be sure your FDPs are generated on the current version/modification level of System/3, OS, or DOS. IBM may charge you to fix an FDP problem if the FDP was generated on an old level of System/3 OS, or DOS, and the problem is fixed on the current level.

Additional 3735 Considarations

The 3735 has unique data formatting requirements as described in IBM 3735 Programmer's Guide, GC30-3001.
You must be familiar with these requirements before you attempt to communicate with the 3735.

This appendix contains examples of ML.MP macro instructions, coded with a minimum of associated assembler statements, and a complete sample program written to communicate with the IBM 3270 Information Display System.

Sample MLMP Macro Instructions

In pages 8-16 of the following sample MLMP macro instructions, the label \$DTF is equated to XR2 by the \$COMN macro instruction, and other labels used are equated by the \$DTOB macro instruction.

Model 10 and Model 12 Sample Program: Communicating with the 3270

$¢ 3770$		FXTFRNAL SYMRIL LIST							
SYMRSL	tyor		VFR	14,	M 90	00	08/26/77	DACF	1
52270	Mrcill								
\$\$9SMS	FXTRN								
\$SRSTT	F XTRN								
\$ \% BMCH	FXTRN								
\$ \$ ¢ ¢ L \%	EXTRN								

```
S3270 ML MD \270 INFRRMATIGN DISPLAY SYSTFM SAMPIF PRTRGRAM
```


$0001 \quad 3$ S327n START O
0002 FXTRN \&\&RSTT

Page of GC21.7573-4
Issued 25 November 1977
By TNL: GN21-5587

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21-5587

```
S3270 YLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM
```

ERR LOC CBJECT CODE
ADDR STMT SOURCE STATEMENT VER 14 , MOD 00 08/26/77 PAGE 6

53270 MAD 3270 INFORMATION DISOLAY SYSTEM SAMPLE PROGRAM

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21-5587
S 3270 MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM
ERR LOC CBJECT CODE
ADDR STMT SOURCE STATEMENT
VER 14, MOD 00 0 $0 / 26 / 77$ PAGE 8

010 F	80
O1F0	00
$01 F 1$	41
O1F2	88
OLE 3	0000
OIES	C210)
O1F7	C0000000
OLES	0443
O1ED	00
OLEE	00
OlEF	0000
O1F1	00
O1F2.	060 F
0154	Fl
0155	CO
01F6	CA
$01 F 7$	00
O1F8	000000
O1FB	0094
$01 F 0$	0068
01 FF	C068
0201	0258
0203	02 FC
0205	0000000000
020A	80
O2OB	0718
0200	000000000000
0213	08
0214	C0
0215	000000000000
9218	05 F 5


```
ADOR STMT SOURCE STATEMENT
VER 14, MOD DO 08/26/77 PAGE 10
```

320 \# RUFFER AREAS CATA AREAS HALT/SYSLOG PARAMETERS

		0258	222	BUF1	EQU	＊				
0258	C000000000000000	02FC	323	B1END	DC	XL146＇00＇	BUFFER	FOR	LTF	1
$0 \geq 63$	c000000000000000		323							
0268	0500000000000000		323							
0273	0000000000000000		323							
0278	0000000000000000		323							
0283	0000000000000000		323							
0288	0000000000000000		3？3							
0293	0000000000000000		323							
0298	0000000000000000		$\times 23$							
02A3	0000000000000000		323							
02AB	0000000000000000		323							
0293	c000000000000000		323							
OJRR	0000000000000000		323							
O）C3	0000000000000000		323							
O2r8	C 000000000000000		323							
3203	0000000000000000		$3 ? 3$							
O2DA	0000000000000000		323							
O2F3	0000000000000000		323							
O2F9	c000		373							
		O2FD	324	RUF 2	FQU	＊				
02 F	0000000000000000	0442	325	B ZEND	DC	$342 \times 1.00 \cdot$	BUFFER	FOR	DTF	2
02F5	C000000000000000		325							
つ？FD	0090000000000000		325							
0205	0000000000000000		$3 ? 5$							
9300	C000000000000000		$3 ? 5$							
0315	ワ000000000000000		325							
0310	c000000000000000		325							
0375	0000000000000000		$3>5$							
0320	（000000000000000		325							
2335	c000000000000000		$3 ? 5$							
0×97	C000000000000000		325							
0345	0000000000000000		325							
0340	0000000000000000		$3 ? 5$							
0355	C000000000000000		3 35							
0350	0000090000000000		325							
9365	0000000000000000		325							
03か口	c000000000000000		$3 ? 5$							
0375	0000000000000000		325							
－ 370	2000000000090000		325							
0985	c000000000000000		335							
0380	0000000000000000		325							
0395	0000000000000000		325							
0390	c000000000000000		325							
93A5	C000000000000000		3.35							
O3AD	0000000000000000		325							
0395	0000000000000000		$3 ? 5$							
$03 \mathrm{\square}$ ก	c000000000000000		3．35							
03 C 5	0000000000000000		325							
03 CN	C000000000090000		$3 \geq 5$							
0375	C000000000000000		325							
0300	0000000000000000		325							
O3F5	C900000000000000		325							

Page of GC21-7573-4
Issued 25 November 1977

By TNL: GN21-5:587

S3270 MP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM
ERR LOC CBJECT CODE
ADDR STMT SOURCE STATEMENT VER 14. MOD 00 08/26/77 PAGE 11

03F0 C000000000000000 $03 F 50000000000000000$ 03 FD 0000000000000000 04050000000000000000 04000000000000000000 0415 C 000000000000000 0410 C 000000600000000 04250000000000000000 0420 C000000000000000 04350000000000000000 $043 \mathrm{D} \mathrm{C00000000000}$

0443 27F5C71140C410F0 044 B [5C1C4C5406040 0452104013
04554040404040404040 04504040404040404040 04654040404040404040 04604040404040404040 0475 10F $011 \mathrm{ClD41DFO}$ 047 C C1C4C4D9C5E2E240 0485 0484 6040 04861040 048840404040404040400487 04904040404040404040 04984040404040404040 $04 A 0404040404040$ $04 A 6$ 1DF 011404 D
$04 A B \quad 000000000000000005$ 04 B3 C000000000000000 04 BB C000000000000000 $04 C 30000000000000000$ O4CB 0000000000000000 04030000000000000000 04DB 0000000000000000 04E3 0000000000000000 04EB 0000000000000000 $04 F 30000000000000000$ 04FB 0000000C00000000 05030000000000000000 050 B 0000000000000000 05130000000 C 00000000 051 B C 000000000000000 05230000000000000000 052 B C000000000000000 0533 C000000000000000 053 B 0000000000000000 0543 C 000000000000000 054 B 0000000000000000 05530000000000000000 055 B C000000000000000 0563 C000000C00000000 056 B C000000000000000 05730000050000000000
$04 A 5 \quad 335$
335
$04 A B$

325
325
325
325
325
325
325
325
325
325
325
325
326 * COMMAND AND DRDER CHAIN FOR 3270 DISPLAY
0443327 WORKI EQU *
044 A 328 DC XL8.27F5C71140C410FO.
0451329 DC CLTMNAE -
0454330
$\begin{array}{ll}0454 & 330 \\ 0431\end{array}$
331
331
331
331
447
$0485 \quad 333$
333
33
$0487 \quad 334$ 335
335 335
335 335
335 $34 A A 5$
336 WORK2 EQU *

DC XL5'1DFO11404D SET END OF FIELD AND BUFFER ADD DC 300XL1'00'

ASSIGNEO NAME FIELD

DC XL7'10FO11C10410FO
DC CLIO'ADORESS -
DC XL2.1040
DC CL30.
ASSIGNEO ADORESS FIELD

OPERATOR RESPONSE BUFFER

ERR	LDC
	OBJFCT CCDE
0578	$C 0000000000000000$
0583	0000000000000000
0588	0000000000000000
0593	0000000000000000
0598	0000000000000000
$05 A 3$	$C 000000000000000$
$05 A B$	$C 000000000000000$
0583	0000000000000000
0588	$C 000000000000000$
$05 C 3$	000000000000000
$05 C B$	0000000000000000
0503	$C 0000000$

ADDR STMT SOURCE STATEMENT VER 14, MOD 00 08/26/77 PAGE 12

0507200020
05DA C628
050 DC 200030
05DF 0688
$05 E 1200030$
05 F4 C6B8
$05 F 6200020$
O5F9 C648
O5EB 200030
OSEE CGEB
05 FO 290020
O5F3 0668
05F5 001A
5FF7 C000000C00000000 05FF 0000000000000000 0607 C 000000000000000

338
338
338
338
338
338
338
338
338 338 338 338 338 338
338 338

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21-5587
S2370 W1 NP 2つTO INFRRMATITN DISPIAY SYSTEM SAMPLE PROGRAM

FRR LOC CAJFAT CONF

$061 F$	29
0620	0105
$062 ?$	20
0673	0210
0625	016509

ADDR STMT SOUREE STATFMENT VER 14. MOO 00 08/26/77 PAGE 13

3617	$380+1$ ISTI	DC	AL $1(0+0+32+0+0)$	ENTRY STATUS	BYTE.
0671	981+	OC	Al 2 (OTF1)	DIF ADDRESS.	
	383 *IST2	\$CKL	DTF-DTF 2, LAST-Y		
962?	$384+1$ IST2	OC	$A L 1(0+0+32+0+0)$	ENTRY StATUS	BYTE.
0624	$385+$	OC	AL 2(DTF2)	OTF ACDRESS.	

0627	397	STATUS OC	XL 3.016CO9'
$04 \Pi 6$	388	NFIELD FOU	WCRK $2+43$

04 ח6 388 NFIELD EOU WCRK2+43
3452389 AFIFLD EQU WCRK2+71
$0001390 \times R 1$ EQU 1
$0007391 \times R 2$ FOU
0003 39? ETX FQU 2
OOFO 393 ZFRT EQU X'FO'
0060394 CLEAR EQU $\quad{ }^{\prime} 60^{\circ}$
007C 395 FNIFR EQU $\times 170^{\circ}$
0080396 RVI EQU X.80.
OOOS 397 NINF EQU 9
0012398 FIGTFN EQU 18
OUF9 399 NONPRT EQU X'Fg'
0 0228 400 REIRN EGL *

0630 C6040703C5E3C906
0638 「540C306C4C54OC9 0640 E240604040404040

401
401
$0648 \quad 401$ ERMESS FQU
9648 C905E5C1D3C 9C440
$0650[2 C 5=840 C 8 C 1 E 240$
0658 C $2 \mathrm{C} 5 \mathrm{5}, 50540 \mathrm{~F} 4 \mathrm{~F} 2 \mathrm{C} 5$ 0660 C440404040404040

403

0668 C 3C 5C. $6 \mathrm{C} .540 \mathrm{C} .306090687 \begin{array}{lll}9668 & 404 \\ 065 & 405\end{array}$
0670 (540C4E404D74004 0678 C1E840D5D6E640C2 0680 C 540 F3C102C50540 405
405 0688 [5C1D4C540D2C5ER 06884 0690 C5C4406C40404040 06984040
$0644040404040404040 \quad 0687$
DGA2 4040404040404040
O6AA 4040404040404040
$\begin{array}{ll}\text { O6AA } & 40404040404040 \\ \text { OSR2 } & 404040404040\end{array}$
4
$0688 \quad 409$ ABFGIN FQU
06B8 C1C4C409C5E2F240 06C9 41
06C0 C2C5ERC5C4406040
36C8 4040
O6CA 4040404040404040 4 410
06024040404040404040 O6E7 411
O6DA 4040404C40404040
O6E2 404040404040
O6F 800
06F9 Cl
O6F9
O6FA
39
$\begin{array}{llllll} & \text { O6FA } & 414 & \text { SB39 } & \text { DC } & \times \\ & \text { O6FB } & 415 & \text { SMSG } & \text { EOU } & *\end{array}$

411
AEND DO Cl30'.
411
$06 E 8 \quad 412$ SCOUNY DC XLI.CO• 06F9 413 ONE DC XL1.01.

OC CL 30'STATUS MESSAGF RECEIVED IS -
$\varsigma 3270$ MLMD $3: 279$ INF ПRMATION DISPLAY SYSTFM SAMPLE PROGRAM

ERR LOC CB.JFGT CODE
ADDR STMT SOURCF STATEMFNT

$06 F 3$	C5F2F2C1C 7C54009		416			
0678	C5C305C.9F5C5C440		416			
0703	C9E 740 CC4040		416			
		0709	417	SIATB	EQU	*
9709	4040404040404040	071 A	418	stat	DC	CL18*
0711	$4040404 C 40404040$		418			
0719	4040		418			
071 B	00	071 R	41		Or	

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21.5587
53270 MLNO 3270 INFORMATION OISPLAY SYSTEM SAMPLE PROGRAM
ERR LTC OBJECT CODE

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21-5587
$S 3270$ MLMP 3270 INFORMATION DISPLAY SYSTEM SAMPLE PROGRAM
ERR LOC OBJECT CODE

| ADDR STMT SOURCE STATEMENT | | VER 14, MOD 00 08/26/77 PAGE 16 | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0001 | $475+\$ B O N E ~ E Q U ~$ | | | OFFSET FOR CONSTANT ONE |
| 0003 | $476+\$ B T R E ~ E Q U ~$ | 3 | OFFSET FOR CONSTANT THREE | |

	478+*		OFFSETS FOR BSCA DTF.	
0000	$479+\$ 800 E V$	EQU	0	DEVICEID.
0001	$480+5$ BDUFS	EQU	1	UPSI.
0002	$481+5 B D A T T$	EQU	2	ATTRIBUTE BYTE I
0080	$482+5$ BCINP	EQU	$\times^{\prime} 80^{\prime}$	INPUT FILE.
0040	$483+5 \mathrm{BCOUT}$	EQU	X'40'	OUPUT FILE.
00 C 0	$484+5$ BCCNV	EQU	$x^{\circ} \mathrm{CO} 0^{\prime}$	CONVERSATICNAL FILE.
0020	$485+5$ BCITE	EQU	$x^{\prime \prime} 20^{\prime}$	ITB MODE.
0010	$486+\$$ BCRAN	EQU	$x^{\prime} 101$	TR ANSPARENCY.
0008	$487+\$$ BCGET	FOU	$x^{\prime \prime} 08$.	GET FILE.
0004	$488+\$ 8 C A S K$	EQU	$\chi^{\prime} 04^{\prime}$	ON-ASCII; OFF-EBCDIC.
0001	$489+5$ BCASM	EQU	$x^{\prime} 01{ }^{\prime \prime}$	ASSEM DTF.
0003	$490+\$$ BDATR	EQU	3	ATTRIBUTE BYTE 2.
0088	$491+\$$ BCMCN	EQU	$x^{*} 88^{\prime}$	MULTIPOINT CONTROL STATION.
0080	$492+\$$ BCMPT	EQU	$x^{\prime} 80{ }^{\prime}$	MUETIPOINT TRIBUTARY.
0020	$493+\$$ BCMAN	EQU	$x^{\prime \prime} 20$.	MANUAL LINE.
0010	$494+5$ BCANS	EGU	$x^{*} 10^{\prime}$	ANSWER LINE.
0008	$495+\$$ RCSWI	EQU	$x \cdot 08$.	SWITCHED LINE.
0004	$496+\$$ BCUSO	EQU	$x^{\prime} 04^{\prime \prime}$	FILE USED.
0002	$497+$ BCAC	EQU	$x^{\prime} 02{ }^{\prime}$	FILE ACTIVE.
0001	$498+5$ RCOPN	EQU	x'01'	FILE OPENFD.
0005	$499+\$$ BDCHN	EQU	5	POST OPEN OTF CHAINING PTR.
0007	$500+5$ BDNXT	FQU	7	OTF CHAININE POINTER.
0009	$501+580 W K 1$	EQU	9	WORK AREA.
000 B	$502+$ B D DWK2	EQU	11	WORK AREA.
9000	$503+8$ BDWKB	EQU	13	ADDRESS OF U'SER'S LOGICAL BUFF.
000 E	$504+5$ BDCMP	EQU	14	COMPLETION CODE.
0000	505+\$BCREC	EQU	$x^{\prime} 00{ }^{\prime}$	REQUEST ACCEPTED.
0040	$506+$ BCDNE	EQU	$x^{\prime} 40^{\prime}$	NORMAL CCMFLETION.
0041	$507+\$$ BCUER	EOU	X.41'	USER ERROR.
0042	$508+\$ 8 C E O T$	EQU	$x^{\prime} 42^{\prime}$	END OF FILE.
0043	$509+5$ BCBID	EQU	X'43.	INVALIDID.
0044	$510+\$$ BCNEG	EQU	X'44'	NEGATIVE RESPONSE TO POLL/ADOR.
0045	$511+5 B C N O N$	EQU	$x^{\prime \prime} 4^{\prime \prime}$	NO RESPCNSE TO POLL/ADCR.
0046	$512+\$ B C C R P$	EQU	X'46'	CONV REPLY PENDING.
0047	$513+5$ BCNDT	EQU	X'47'	NO DATA FOR CONV GET.
0048	$514+8 \mathrm{BCOL}$ T	EQU	X'48	INVALID RFT RECUEST.
0049	$515+5 B C N A C$	EQU	X'49'	NO ACT ENTRY IN POLL LIST.
004A	$516+58 C I G N$	EQU	$x^{\prime \prime} 4 A^{\prime \prime}$	REQUEST IGNORED.
004 B	$517+5 B C A S C$	EOU	$x \cdot 48^{\prime}$	INVALID ASCII CHARACTER.
004 C	$518+\$$ BCNCN	EOU	X'4C'	NO-CONNECTION.
0040	$519+5$ BCCAL	EQU	$x^{\prime \prime} 40^{\prime}$	INVALID REQUEST.
004 E	$520+\$$ BCLS	EQU	X'4E'	DELAY COUNT EXCEEDED.
004F	$521+\$ 8 C E R R$	EQU	$X^{\prime} 4 \mathrm{~F}$,	PERM ERROR.
0050	$522+58 C T I M$	EQU	X'50'	NO RESP FRCM REMOTE DEV.
0051	$523+5$ BCDAT	EQU	X'51'	DATA CHECK.
0052	$524+5$ BCLOS	EQU	$\times^{\prime \prime} 52^{\prime}$	LOST DATA.
0053	$525+5$ BCCON	EQU	$X^{\prime} 53^{\prime}$	LOST CONNECTION.
0054	$526+5$ BCRSP	EQU	X'54,	INVALID RESP FROM REMOTE DEV.
0055	$527+5 B C A D P$	EQU	X'55'	ADAPTER CHECK.
0056	$528+5$ BCCMP	EQU	X'56 ${ }^{\prime}$	NO CCMPLETIONS IN CHECK LIST.

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21-5587
S 3270 MLNP 2270 INFCRMATION CISPLAY SYSTEM SAMPLE PROGRAM
ERR LOC CRJFCT CODE

TOTAL STATFMFNTS IN ERROR IN THIS ASSEMBLY = 0

Page of GC21-7573-4
Issued 25 November 1977
By TNL: GN21-5587
53770

SYMBOL LEN VALUE DEFN
\$ $\$$ BMCH 00100030080
\$SASLG OC1 0004 0251 \$\$BSMS OO1 00010003 \$\$BSTT OCL 00020004 SARR 001 0008 0594 * BBACI OO1 0001 0464 \$BCAAL OC1 00010540 \$RCACD OC1 00570529 \$RCACT OO1 00020497 \$BCADP OC1 00550527 \$BCANS OC1 00100494 \$BCASC CC1 00480517 \$BCASK COL 00040488 SBCASM OCl OOC1 0489 \$BCBID OCI 0043 0505 \$BCCAL OO1 00400519 $\begin{array}{llll}\$ B C C M P & 001 & 0056 & 0528\end{array}$ SBCCNV CC1 OOCO 0484 SBCCON OC1 00530525 \$BCCRP OC1 OO4t 0512 \$ACDAT OC1 00510523 \$ PCDNE OC1 00400506 $\begin{array}{llll}\$ \text { BCDNE } & 0 C 1 & 0040 & 0506 \\ \$ \text { BCEDR } & 0 C 1 & 0042 & 0508\end{array}$ \& BCERR 001004 F 0521 \$BCGET 00100080487 \$DCIGN OCl OO4A 0516 \& BCIND CC1 00800482 $\begin{array}{llll}\text { SECITB OCI } & 0020 & 0485\end{array}$ \$8CLOS OC1 00520524 \$BCLST OCl OO4E 0520 \$BCMAN OC1 OO20 0493 SBCMCN OC1 00880491 $\$$ BCMPT 001 00800492 $\$$ BCNAC 00100490515 \$BCNCN OC1 004C 0518 \$BCNDT 00100470512 \$PCNEG OC1 00440510 $\$ B C N O N \quad O C 1 \quad 00450511$ \$ ACNOW OC1 00040572 \$BCOFL 00100040542 $\$ B C O L T \quad O C 1 \quad 00480514$ SACOPN OCl 00010498 \$ ACOUT OCl 00400483 \$ECPLR OCL 00400575 \$BCPOL OC1 00020541 \$BCPUT OCI 00080573 \$BCRAN 001 00100486
\$BCRCL OC1 00080543 SBCREQ OCL 00000505 \$PCRES OO1 00100574 \$GCRLE OC1 00580530 SACRSP OC1 00540526 \&BCSEP OO1 0001 0570 \$BCSPN OCl 00020571 \$BCSWD 001 00800545 $\begin{array}{llll}\$ B C S W & 001 & 0080 & 0545 \\ \$ B C S W I & 001 & 0008 & 0495\end{array}$

CRCSS REFERENCE

REFER	NCES					VER	14,	MOD	00	08/26/77	PAGE
0078	0137										
0060	0119										
0061	0064*	0109	0112*	0120	C123*						
0063	0071	0122	0130								
0055	0113										
0056	0116										
$\begin{aligned} & 0088 \\ & 0139 \end{aligned}$	0141										
$\begin{aligned} & 0067 \\ & 0107 \end{aligned}$	0126										
0082											
$\begin{aligned} & 0052 \\ & 0053 \end{aligned}$	0106										
0050	0059	0104									

SYMBEL	LEN	VALUE	DEFN	REFERE	Ences					VER	14, MOD	00	08/26/7	7	GE 20
SBCTIM	OC1	0050	0522												
SECTWO	001	0010	0544												
\$ ACUER	0 Cl	0041	0507	0069	0128										
SBCUSD	OCI	0004	0496												
\$BDADD	OC1	0012	0539												
\$ biadon	0 Cl	0010	0470												
spoara	OC1	0043	0584												
\$PCATR	OCl	000*	0490	0052	0106										
sbdat	001	0002	0481	0053	0055	0107	0113								
SBDAT 1	OCl	0034	0569												
SBDBKL	001	0021	0559												
\$ PDBKX	001	0025	0561												
\$BDCHN	001	0005	0499												
\$BOCMP	001	000e	0504	$\begin{aligned} & 0050 \\ & 0130 * \end{aligned}$	$\begin{aligned} & 0056 \\ & 0139 \end{aligned}$	$\begin{aligned} & 0059 * \\ & 0141 \end{aligned}$	$\begin{aligned} & 0067 * \\ & 0217 \end{aligned}$	$\begin{aligned} & 0069 * \\ & 0718 \end{aligned}$	0071*	0082	0088	0104	0116	0126	0128*
SBDCNT	OCI	0017	0552												
S EDOCC	0 Cl	0015	0549												
SBDDC ${ }^{\text {d }}$	0 Cl	0014	0546												
SRODED	001	0033	0568												
SRDDEV	001	0000	0479												
SBDOLY	001	0010	0557												
\$boERr	OCl	0044	0585												
\$BDIND	001	0015	0550												
SPDINT	OC1	0032	0567												
\$boiob	OCl	0023	0560	0062	0110	0121									
SRDISA	001	0080	3461												
SBOITR	001	0027	0562												
\$ADLID	OC1	0018	0554												
\$RDLST	001	0014	0548												
SBDMRL	OC1	0011	0538												
\$ BONDX	OC1	002E	0565												
SRONXT	CO1	0007	0500												
SBDOPC	OCl	000F	0531	0058*	0115	0118*									
sedprm	001	002a	0563												
\$ROPSC	OC1	0014	0547												
SBDRCL	OCI	0041	0583												
spdrel	001	$001 F$	0558												
\$ ADRFT	001	003 B	0575												
Stideid	00_{1}	0017	0551												
\$PDRLN	OC1	0018	0553												
\$ BORLO	OC 1	003 F	0582												
s edrvi	OC1	0020	0564												
\$ POSRF	001	0037	0577												
SRDSEP	OCl	0035	0576												
\& bosio	001	001 A	9555												
SADSLN	OCI	0018	0556												
sbospl	OCl	0039	0578												
BBDT	001	000 ?	0473												
sbotsa	OCl	0030	0580												
sbdila	OCl	0046	0586												
\$ Boups	001	0001	0480												
\$BTWKA	OC1	0030	0566												
\$BOWK	0 Cl	0000	0503												
\$9DWK1	001	0009	0501												
\$ BOWK 2	OCl	000B	0502												
\$80375	0 Cl	0049	0587												

53270

SYMBOL	LEN	value	DEFN	REFERE	NCES					VER	14, MOO	00	08/26/77	7 PAGE	22
ABEGIN	OCl	06B8	0409	0349											
ADOR	001	05F1	0347	0205											
$\triangle E N D$	030	O6E7	0411	0204*											
\triangle IELD	OCl	04F2	0389	0204											
BADRET	001	019 F	0215	0073	0089	0132	0142								
BUFI	001	0258	0322	0274											
BUF2	0 Cl	02F0	0324	0310											
BlEND	146	02EC	0327	0275											
B 2 END	0 C1	0442	0325	0311											
CKGOOD	CCl	0078	0087	0083											
CLEAR	OCl	0060	0394	0143											
Close	OC1	0101	0236	0196											
DATA	OCl	0175	0194	0148											
CTF1	OCl	91 DF	0252	0032	0037	0049	0239	0381							
DTF2	OCl	0210	0288	0103	0258	0385									
EIGTEN	OC1	0012	0398	0174											
FNTER	OCl	0070	0395	0147											
ERMESS	OCl	0648	0402	0352											
ERROR	001	05E6	0350	0149											
FTX	0 Cl	0003	0392	0195											
HLMESS	OCl	05 F 0	0356	0229											
HMESS	0 Cl	0668	0404	0358											
LIST1	OCl	061 F	0380	0077											
LIST2	0 Cl	0622	0384	0136											
LCG	001	05F5	0359	0283	0318										
MASK	OC1	0718	0415	0084	0085*	0278									
MORE	OCl	007 F	0095	0144	0155	C189	0211								
MTVST	CCl	0130	0166	0172											
NAME	OCl	050r.	0344	0198											
NREGIN	0 Cl	0688	0408	0346											
NENO	030	0687	0408	0197*											
NFIELD	0 Cl	0406	0388	0197											
NINE	0 Cl	0009	0397	0163											
NONPRT	0 Cl	00F9	0399	0176	0219										
NCSR39	OC1	$015 B$	0175	0177											
NOSET	OCl	O1BC	0222	0220											
CNF	OC1	O6E9	0413	0171	0181										
POLL	OC1	$0 \in 17$	0372	0301											
DSTAT	OC1	0114	0160	0146											
RESPON	OCl	007 F	0098	0086											
RET	032	0647	0401	0216	0216*	0217*	0218*	0219	0221*						
RFTRN	0 Cl	0628	0400	0343											
RFTURN	OC1	0507	0341	0223											
RVI	OC1	0080	0396	0084	0085										
S 239	001	06EA	0414	0178	0221										
SCOUNT	OCl	06E 8	0412	0163*	$0171 *$	0174*	0181*								
SFLECT	OCl	O60F	0364	0265											
SETOIS	001	0012	0045	0140											
SETPRT	OC1	0150	0175	0182											
SMESSG	OCI	05ER	0353	0183											
SMSG	OCl	06EB	0415	0355											
STAT	018	0714	0418	0161*	0162	0162*									
STATB	001	0709	0417	0164	0173										
STATUS	003	0627	0387	0145											
S3270	OCl	0000	0002	0603											
WORK1	001	0443	0327	0260											
WTRK2	OCI	04 AB	0337	0143	0145	0147	0165	0195	0296	0388	0389				
XR1	OCI	0001	0390	0164	0167	0168	0169	$016{ }^{*}$	$0173 *$	0176	0178	0180	0180*		
$X R 2$	0 Cl	0002	0301	0149*	0165*	0167	0168	0170	$0170 *$	$0183 *$	0158*	0205*	0223* 0	0229*	
ZERO	001	OOFO	0393	0161											
YOTAL S	TATEM	FNTS	IN ERR	IN TH	IS ASS	SEMBLY	$=$	0							

OL105 I THE CODE LENGTH OF S3270 IS 1820 DECIMAL
OL103 T TTTAL NUMRER OF LIRRARY SECTORS REQUIRFD IS
AAME-S 3270, PACK-RIRIR1,UNIT-R1,RETAIN-T, LIBRARY-R,CATEGORY-OOO

BSC DTF

| Displacement
 Hex
 Decimal | Label | Length
 in Bytes | Description |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figure 11 (Part 1 of 4). BSC DTF

Displacement Hox Decimal		Label	Length in Bytes	Description		
E	14	\$BDCMP	1	Completion codes		
				Value	Label	Description
				X'00'	\$BCREQ	Request accepted
				X'40'	\$BCDNE	Normal completion
				X'41'	\$BCUER	User error
				X'42'	\$BCEOT	End of file
				X'43'	\$BCBID	Invalid ID
				X'44'	\$BCNEG	Negative response to poll/address
				X'45'	\$BCNON	No response to poll/address
				X'46'	\$BCCRP	Conversational reply pending
				X'47'	\$BCNDT	No data for conversational GET (null message received)
				X'48'	\$BCOLT	Invalid \$RFT (request for online test)
				X'49'	\$BCNAC	No active entry in polling list
				X'4A'	\$BCIGN	Request ignored
				X'4B'	\$BCASC	Invalid ASCII character
				X'4C'	\$BCNCN	No connection
				X'4D'	\$BCCAL	Invalid request
				X'4E'	\$BCLST	Delay count (DLYCT in \$DTFB) exceeded
				X'4F'	\$BCERR	Permanent error
				X'50'	\$BCTIM	No response from remote device
				X'51'	\$BCDAT	Data check
				X'52'	\$BCLOS	Lost data or no RECSEP character within 2 contiguous blocks of spanned records
				$\mathrm{X}^{\prime 5} 5{ }^{\prime}$	\$BCCON	Lost connection or DISC received
				X'54'	\$BCRSP	Invalid response received
				X'55'	\$BCADP	Adapter check
				X'56'	\$BCCMP	No completion in check list
				X'57'	\$BCACD	No active DTFs in check list
				X'58'	\$BCRLE	Maximum record length exceeded
F	15	\$8DOPC	1	Operation	codes	
				Value	Label	Description
				X'40'	\$BOPUT	PUT
				X'41'	\$BOPEB	PUT end-of-block
				X'42'	\$BOPEF	PUT end-of-file
				X'44'	\$BOPEW	PUT EOT to WACK response
				X'80'	\$BOGET	GET
				X'81'	\$BOGBK	GET a block
11	17	\$BDMRL	2	Maximum	record lengt	

Figure 11 (Part 2 of 4). BSC DTF

| Displacement
 Hex
 Decimal | Label | Length
 in Bytes | Description |
| :--- | :--- | :--- | :--- | :--- |

Figure 11 (Part 3 of 4). BSC DTF

Disp Hex	acement Decimal	Label	Length in Bytes	Description
2D	45	\$BDRVI	3	RVI (reverse interrupt request) mask and displacement. First byte is mask; next two bytes are address. Address must be valid. Mask must be zero if not used.
2 E	46	\$BDNDX	1	Index for line initialization
30	48	\$BDWKA	2	Address of BSC work area
32	50	\$BDINT	2	Disk address of line initialization module
33	51	\$BDDED	1	Work area for MLMP routines
34	52	\$BDAT1	1	Terminal attribute byte
				Value Label Description
				X'01' \$BCSEP Record separator used
				X'02' SBCSPN Spanned records used
				$\mathrm{X}^{\prime} 04{ }^{\prime}$ \$BCNOW Spanning in process
				$\mathrm{X}^{\prime} 08^{\prime}$ \$BCPUT PUT span file
				$\mathrm{X}^{\prime} 10$ ' \$BCRES Restore after spanning
				X'40' \$BCPLR Polling resident
35	53	\$BDSEP	1	Record separator character
37	55	\$BDSBF	2	Save area for user's logical buffer address
39	57	\$BDSRL	2	Save area for record length
3B	59	\$BDRFT	2	Save area for address of online test parameter list
3D	61	\$BDTSA	2	Address of terminal statistics logging area
				The following are in the DTF only if core resident polling, auto response, or user error retry count is present:
3F	63	\$BDRLO	2	Address of \$\$BSMA
41	65	\$BDRCL	2	Address of \$\$BSMC \quad(POLRES-- Y
43	67	\$BDARA	2	Address of \$\$BSMD ${ }^{\text {a }}$ in \$DTFB)
44	68	\$BDERR	1	Error retry count
46	70	\$BDT1A	2	Disk address of online test module
48	72	\$BDEX@	2	CCP user exit address (CCP only)
49	73	-	3	Reserved (This field is present only if AUTORS--Y, POLRES-Y, or ERRCT-decdig was specified in \$DTFB)

Figure 11 (Part 4 of 4). BSC DTF

MLMP I/O Area

The MLMP I/O area for a file is defined by the BUFST and BUFEND operands of \$DTFB, or by the BUFNO operand of \$DTFB. When the file is opened, MLMP formats the allocated I/O area into as many IOBs and buffers as the area can contain (see Figure 12).

Note: Conversational files (CONV-Y in \$DTFB) are permitted only one IOB and buffer.

Figure 12. MLMP Multiple Buffers

The BSC IOB is 21 bytes long. The IOB controls the flow of data to and from the associated buffer. Each buffer contains one block of data as described in \$DTFB (see Figure 13).

Figure 13. Sample MLMP Buffers

The length of each buffer, including the IOB, is calculated as follows:

- Conversational mode:

Buffer length $=($ record length $\times 2)+28$

- Non-conversational mode:

Buffer length $=$ (record length \times blocking factors) $+C$ + number of characters needed for ITB

Blocking factor = number of records per block C $=44$ for ITB transparent PUT; 42 in all other cases Number of characters needed for $1 T B=$ (blocking factor - 1) \times ITB count
1 TB count $=0$ for non -1 TB
1 for ITB non-transparent 3 for ITB transparent GET 5 for ITB transparent PUT

If you want multiple buffers, double the computed buffer length to have double buffers, triple the computed buffer length to have triple buffers, etc. Multiple buffering uses a telecommunications line more efficiently than single buffering: you can be moving data to or from one buffer while data is being transmitted from or to another.

Note: A conversational file (CONV-Y in \$DTFB) cannot have multiple buffers.

Terminal Statistics Logging Area

The Terminal Statistics Logging Area is a table in main storage used by the terminal statistics logging routine to record terminal statistics for multipoint control stations. The table is addressed by the ERRLOG operand (required if you specify TYPE-CS) of \$DTFB. You can use the \$LOGB macro instruction to allocate the Terminal Statistics Logging Area. The format of the area is:

Each entry in the table is formatted by the terminal statistics logging routine:

| p | \ldots. | C . . | Number of
 Errors |
| :--- | :--- | :--- | :--- | | Number of |
| :--- |
| Successes |

$\mathrm{pp}=$ Number of polling or addressing characters (1 byte).
$\mathrm{C}=$ Polling or addressing characters, as many as 7.
Errors $=$ Transmissions containing I/O errors (2 bytes).
Successes $=$ Successful transmissions (4 bytes) .
Space in main storage must be available for the table. The number of bytes required by the table (and entered as the length of the table in the first two bytes) is: $4+p(7+n)$ where:
$p=$ Number of unique sets of polling and addressing characters referenced in this program by this DTF. (If one terminal has both a set of polling characters and a set of addressing characters, two entries are required for the terminal.)
$n=$ Maximum number of polling or addressing characters per entry.

If you define space in main storage for the Terminal Statistics Logging Area but you don't use \$LOGB, specify the length of the entire table in the first two bytes of the table, and initialize the rest of the table to $X^{\prime} 00^{\prime}$.

Note: If the area you define is not large enough to contain all the terminal statistics, MLMP will issue the Y 6 halt. For a complete description of the Y 6 halt, see the appropriate halt/messages manual listed in the Preface.

Trace Table

The trace table contains I/O information recorded by the trace module (\$\$BSTT). The trace table is 323 bytes long, beginning at symbolic address MTBSML and ending at symbolic address MTBSMM. The format of the trace table is:

Pointer $=$ Address of the first byte of the last entry in the table used by Trace (2 bytes).

WRAP = Status byte:
$X^{\prime} 00^{\prime}-$ No more than 20 entries have been written to the the table.
$X^{\prime} 01$ '-Each entry has been filled at least once, and entries are now being overlaid, beginning with entry entry 1.

Entry = $\mathbf{1 6}$ bytes. The format of each entry is:

Q Byte-From the BSCA SIO instruction initiating the event recorded.

Control Code-From the SIO instruction initiating the event recorded; 1 byte.

Sense/Status Bytes:

Byte Bit Meaning When Set to 1

10 Timeout status.
a. A receive timeout occurred during a receive operation with the adapter in the busy state.
b. An autocall operation was terminated by an abandon call and retry signal from the autocalling unit, (ACU), indicating that a connection was not established.

11 Data check during receive operation.
a. A BCC compare check occurred (EBCDIC).
b. A VRC check occurred (ASCII).
(Note: Characters having VRC
checks are distinguished by a highorder bit in core storage. These characters are never recognized as control characters by the BSCA.)

12 Adapter check during transmit operation.
a. DBI register parity check.
b. 1/O cycle steal overrun.
c. LSR or shift register parity check.
d. Transmit control register check.

3 Adapter check during receive operation.
a. DBI register parity check.
b. I/O cycle steal overrun.
c. LSR or shift register parity check.

14 Invalid ASCII character. (A byte fetched from core by an adapter using ASCll code contained a 1 -bit in the high order bit position.)

15 Abortive disconnect. Indicates BSCA on switched network was enabled, then the data set became ready, then not ready. This indicates the connection has been released and causes data terminal ready to turn off.

6 Disconnect timeout. Indicates disconnect timeout occurred on a switched network. Disconnect timeout causes data terminal ready to turn off. (May not apply to systems using the IBM remote job entry program.)
Note: The program must perform a disconnect operation.

17 Not assigned.
$\left.\begin{array}{ll}2 & 0 \\ 2 & 1 \\ 2 & 2 \\ 2 & 3 \\ 2 & 4 \\ 2 & 5\end{array}\right\}$ Not assigned.

26 Data set ready. This indicates that the data set is ready to operate and that the BSCA has been enabled.

27
Data line occupied. This bit is used on a switched network when the BSCA is equipped with the autocall feature. This bit indicates that the data receive initial instruction will be rejected.

Note: Byte 1 equals leftmost byte; byte 2 equals rightmost byte.

Data $=$
D1-Contents, at the time the I/O operation was started, of the byte addressed by the current address register (CAR) and the two bytes that follow.

D2-Contents, at the time the I/O operation was started, of the three bytes preceding the byte addressed by the transition address register (TAR).

D3-Contents, at the time the I/O operation was completed, of byte addressed by the TAR and the two bytes follow.

D4-Contents, at the time the I/O operation was completed, of the three bytes preceding the byte addressed by the CAR.

Note: When a 2 -second timeout occurs, D1-D4 are set to X'FF's. When a receive timeout occurs, D3 and D4 are set to $X^{\prime} F F^{\prime}$. When the I/O operation is receive-initial (RCVI), receive only (RCVO), or autocall, D2 and D3 are set to X'FF'.

BSC I/O Registers

Transmission proceeds until CAR equals TAR, when receive mode is entered. An interrupt is generated and the operation is terminated if CAR equals SAR, if a line turnaround sequence is received, or if a timeout occurs.

For a complete description of the BSCA instruction set and the BSCA registers, see the appropriate components reference manual listed in the Preface.

Checklist

The format of the checklist entries created by the \$CKL macro instruction is:
Byte $1=$ Status byte:
X‘80'- Skip this entry
$X^{\prime} 40^{\prime}-$ This is a printer-keyboard request DTF
$X^{\prime} 20^{\prime}$ - This is the last entry in the checklist
$X^{\prime} 10^{\prime}$ - Return control to user if no completed events (significant in the first checklist entry only)
$X^{\prime} 04{ }^{\prime}$ - Program function key not available
Bytes 2-3 = Symbolic address of the DTF for this entry

The format of the checklist is:

Entry 1	Entry 2		

See also index entry generate a check/ist (\$CKL).

Polling/Addressing List

The format of the entries generated by the \$POLB macro instruction is:

One Entry

END = End byte:
$X^{\prime} \mathrm{FE}^{\prime}$-Open list
$X^{\prime} F^{\prime}$ - Wrap list
See also index entry generate a polling or addressing list ($\$ \mathrm{PO}, \mathrm{B}$).

Switched ID List

The format of the entries generated by the \$SWIB macro instruction is:

$E S n=$ Entry selection characters, $X^{\prime} 00^{\prime}$ through $X^{\prime} E F^{\prime}$

L = Number of station identification characters
$\operatorname{Sin}=$ Station identification characters, as many as 15

ST = Status byte: X'80'--Inactive entry $X^{\prime} 00^{\prime}-$ Active entry

END = End byte: $X^{\prime}{ }^{\prime} F^{\prime}$

Parameter List for Changing a Polling List or Switched ID List

The format of the parameter list generated by the \$CHGB macro instruction is:

Type	DTF Address	N	...Chars...

Type

Bit 0:

Bit 1:

DTF
Address: \quad Address of the DTF whose polling list or switched ID list is to be changed.
N :
Hexadecimal number of characters in the Chars field (below) to be compared to characters in polling list or switched ID list entries.

Chars: Hexadecimal representation of characters to be compared to characters in polling list or switched ID list entries.

See also index entries $\$ B C P L$ macro instruction and $\$ C H G B$ macro instruction.

The translate parameter list is used by the \$TRAN macro instruction to translate data. See also index entry generate an interface to the translate routine (\$TRAN).

Field

Length
Field Description
2
Address of translate table generated by the \$TRTB macro instruction (see index entry \$TRTB macro instruction)

2 FROM field for translation

2 TO field for translation
2 Number of bytes to translate

1

Return Code

$X^{\prime} 00^{\prime}$-translation complete, no errors $X^{\prime} F^{\prime}$ '-invalid character detected

Online Test Parameter List

The format of the online test parameter list required by the \$RFT macro instruction is:

X	X	Y	Y	N	Address

Test
 Type

00 Receive and acknowledge the test message the number of times specified in bytes Y . The formatted test request must not be more than 300 characters long. See index entry online test requests.
01

Description

Transmit the test message the number of times specified in bytes $Y Y$. The formatted test request must not be more than 300 characters long. See index entry online test requests.信 3 can accept all of the following test types. (Types 23 through 34 are only accepted from a 3270.)

Description

Transmit 36 alphameric characters, A-Z and $0-9$, the number of times specified in bytes YY. Transmit the characters in ASCII (ASCII adapter only).

Transmit 36 alphameric characters, $A-Z$ and $0-9$, the number of times specified in bytes YY. Transmit the characters in EBCDIC (EBCDIC adapter only).

3270 basic EBCDIC test message:

This test checks all alphameric characters at a display station or printer. It also checks the use of the WCC to sound the audible alarm and allows attribute field specifications to be checked at a display station. It starts a printer, printing only 40 characters to a line.

3270 Model 1 align EBCDIC test pattern: This test checks position alignment for the 480 -character display station. It also checks the WCC to sound the audible alarm. It starts a printer, printing 40 characters to a line.

3270 Model 2 align EBCDIC test pattern:

This test checks position alignment for the 1920-character display station. It also checks the WCC to sound the audible alarm. It starts a printer, printing 80 characters to a line.

3270 orders EBCDIC test message:
Tests 3270 orders (SF, SBA, etc.), checks the WCC to sound the audible alarm, and uses display and intensified brightness. It starts the printer, printing 64 characters to a line.

3270 EBCDIC universal character set test pattern:
This test uses the erase/write command, displaying the universal character set in EBCDIC. It checks the WCC to start the printer, sounds the audible alarm (on a display), and prints 132 characters per line on the printer. NL and EM are also tested on a printer. Display intensity is used. The SF, NL, EM, and IC orders are used.

Test

Type Description

3270 NL/EM EBCDIC test pattern:

This test is mainly intended to test the end of message (EM) order and multiple new line (NL) orders on the printer. The WCC is checked to start the printer, sound the alarm (on a display), and print 132 characters to a line on the printer.

3270 ASCII test patterns:
These tests correspond to tests 23-28 except that transmission is in ASCII.
$Y \mathrm{Y}=$ Decimal number specifying the number of times to transmit or receive the test message.
$N=$ Decimal number specifying the number of addressing characters ($0-7$). N equals 0 except when a tributary station requests a test other than type 00.

Address $=$ Addressing characters to be used, not more than 7.

Note: Decimal numbers and addressing characters must be given in the code used by the BSCA (EBCDIC or ASCII).

The message type specified determines the buffer space required to transmit or receive an online test request. In all cases, block length specified for System/3 (BLKL in \$DTFB) must be equal to or greater than the test message length (LEN in \$RFT), whether System/3 is sending or receiving the online test request.

Where $m=$ test message length, including framing characters (see index entry online test requests), and
$n=$ number of addressing characters,
the minimum BLKL required to send or receive an online test request is:

Message type 00
BLKL $=9$ or m, whichever is greater
Message type 01
Point-to-point nonswitched and switched lines:

$$
B L K L=7+m
$$

Multipoint lines:

Tributary station:

$B L K L=7+m+n$

Control station:

$$
\text { BLKL }=11+m+2 n
$$

Message types 06 and 14
BLKL must be greater than or equal to 40.
Message types 23-34
BLKL must be greater than or equal to $\mathbf{3 0 0}$.

Online Test Requests

Online test requests are written as follows:

- Test type 01

Given the online test parameter list and a test message,

FROM Operand
of \$RFT

MLMP constructs and transmits the following online test request:

- All test types other than 01

Given the online test parameter list,

PARM Operand
of \$RFT
Online Test Parameter List

MLMP constructs and transmits the following online test request:

Note: The parameter list and the test message must both be given in the appropriate line code, EBCDIC or ASCII (translation may be required-see index entries generate a translate parameter list (\$TRL) and generate an interface to the translate routine (\$TRAN)).

MLMP Message Formats

MLMP builds and recognizes the following message formats:

- Non-ITB, non-transparent

- Non-ITB, text transparency

- ITB, non-transparent

- ITB, text transparency

Spanned records can be used with or without ITB, and can be transparent or non-transparent. The following format shows spanned records-non-ITB, text transparency:

D	S						E
L	T	ord 3	R	Record 4	R	Recor	S
E	X						B

D	S					E
L	T	d 5	R	Record 6	R	E
E	X					

[^2]| | | Main Storage Bit Positions 0, 1, 2, 3 | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Main Storage Bit Positions | | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| | Hex | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | A | в | c | 0 | E | F |
| 0000 | 0 | NUL | DLE | DS | | SP | $\stackrel{1}{ }$ | - | | | | | | ¢ | 3 | \} | 0 |
| 0001 | 1 | SOH | DCI | sos | | | | , | | a | j | \sim | | A | J | | 1 |
| 0010 | 2 | 5Tx | DC2 | fs | SYN | | | | | b | k | s | | 8 | k | 5 | 2 |
| 0011 | 3 | ETX | DC3 | | | | | | | c | 1 | + | | c | L | T | 3 |
| 0100 | 4 | PF | RES | BYP | PN | | | | | d | m | \checkmark | | D | M | u | 4 |
| 0101 | 5 | ht | NL | LF | RS | | | | | e | n | \checkmark | | E | N | \checkmark | 5 |
| 0110 | 6 | LC | BS | EOB/ | UC | | | | | f | - | w | | F | 0 | w | \bigcirc |
| 011 | 7 | DEL | H | $\begin{array}{r} \text { PRE } \\ \hline \end{array}$ | EOT | | | | | 9 | P | * | | G | P | \times | 7 |
| 1000 | 8 | | CAN | | | | | | | h | 9 | y | | H | \bigcirc | Y | 8 |
| 1001 | 9 | RLF | EM | | | | | | 1 | ; | ' | z | | 1 | R | z | 9 |
| 1010 | A | SMM | CC | SM | | * | $!$ | ! | : | | | | | | | | |
| 1011 | 8 | vt | | | | . | s | , | * | | | | | | | | |
| 1100 | c | FF | Ifs | | DC4 | $<$ | * | \% | ${ }^{\sim}$ | | | | | | | | |
| 1101 | D | CR | 165 | ENQ | NaK | 1 |) | - | , | | | | | | | | |
| 110 | E | so | IRS | ACK | | + | ; | $>$ | = | | | | | | | | |
| 111 | F | SI | ius | bel | SUB | 1 | \neg | ? | " | | | | | | | | |

		Main Storage Bit Pceitiont 0, 1, 2, 3															
Main Storage Bit Positions 4, 5, 6, 7		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	HEX	0	1	2	3	4	5	6	7	8	\bigcirc	A	B	C	0	E	F
0000	0	NUL	DLE	SP	0	@	P	,	p								
0001	1	SOH	DCI	1	1	A	Q	0	9								
0010	2	STX	DC2	"	2	8	R	b	r								
0011	3	ETX	DC3	,	3	C	5	c	s								
0100	4	EOT	DC4	\$	4	D	T	d	\dagger								
0101	5	ENQ	NAK	\%	5	E	u	-	\checkmark								
0110	6	ACK	SYN	8	6	F	\checkmark	f	\checkmark								
0111	7	bel	ETB	,	7	G	W	8	w								
1000	8	BS	CAN	1	8	H	X	h	*								
1001	9	HT	EM)	9	1	Y	i	y								
1010	A	Lf	SUB	*	:	J	Z	i	2								
1011	B	$V T$	ESC	+	;	K	[k	\{								
1100	C	FF	FS	,	$<$	L	\backslash	1	1								
1101	D	CR	GS	-	=	N]	m	$\}$								
1110	E	so	RS	.	$>$	N	\square	n	\sim								
1111	F	SI	US	/	?	0	-	-	DEL								

BSC control characters are represented by the following values:

	EBCDIC	ASCII
ACKO	$X^{\prime} 1070^{\prime}$	$X^{\prime} 1030^{\prime}$
ACK1	$X^{\prime} 1061^{\prime}$	$X^{\prime} 1031^{\prime}$
DISC	$X^{\prime} 1037^{\prime}$	$X^{\prime} 1004^{\prime}$
DLE	$X^{\prime} 10^{\prime}$	$X^{\prime} 10^{\prime}$
ENQ	$X^{\prime} 2 D^{\prime}$	$X^{\prime} 05^{\prime}$
EOT	$X^{\prime} 37^{\prime}$	$X^{\prime} 04^{\prime}$
ETB	$X^{\prime} 26^{\prime}$	$X^{\prime} 17^{\prime}$
ETX	$X^{\prime} 03^{\prime}$	$X^{\prime} 03^{\prime}$
ITB	$X^{\prime} 1 F^{\prime}$	$X^{\prime} 1 F^{\prime}$
NAK	$X^{\prime} 3 D^{\prime}$	$X^{\prime} 15^{\prime}$
RVI	$X^{\prime} 107 C^{\prime}$	$X^{\prime} 103 C^{\prime}$
SOH	$X^{\prime} 01^{\prime}$	$X^{\prime} 01^{\prime}$
STX	$X^{\prime} 02^{\prime}$	$X^{\prime} 02^{\prime}$
SYN	$X^{\prime} 32^{\prime}$	$X^{\prime} 16^{\prime}$
TTD	$X^{\prime} 022 D^{\prime}$	$X^{\prime} 0205^{\prime}$
WACK	$X^{\prime} 106 B^{\prime}$	$X^{\prime} 103 B^{\prime}$

Tributary System/3 Polling and Addressing Characters
Polling and addressing characters must be used in pairs:
that is, once a polling character is selected, the complementary addressing character is determined; once an addressing character is selected, the complementary polling character is determined.

ASCII

Polling	Hexadecimal	Addressing	Hexadecimal
Character	Representation	Character	Representation

AA	4141	aa	6161
BB	4242	bb	6262
CC	4343	cc	6363
DD	4444	dd	6464
EE	4545	ee	6565
FF	4646	$f f$	6666
GG	4747	gg	6767
HH	4848	hh	6868
II	4949	ii	6969
JJ	4A4A	jj	6A6A
KK	4B4B	kk	6B6B
LL	4C4C	II	6C6C
MM	4D4D	mm	6D6D
NN	4E4E	nn	6E6E
00	4F4F	oo	6F6F
PP	5050	pp	7070
OQ	5151	qq	7171
RR	5252	rr	7272
SS	5353	ss	7373
TT	5454	tt	7474
UU	5555	uu	7575
VV	5656	vv	7676
Ww	5757	ww	7777
XX	5858	xx	7878
YY	5959	yy	7979
ZZ	5A5A	zz	7A7A

EBCDIC

Polling	Hexadecimal	Addressing	Mexadecimal
Character	Representation	Character	Representation

BB	C2C2	SS	E2E2
CC	C3C3	TT	E3E3
DD	C4C4	UU	E4E4
EE	C5C5	VV	E5E5
FF	C6C6	WW	E6E6
GG	C7C7	XX	E7E7
HH	C8C8	YY	E8E8
II	C9C9	ZZ	E9E9
JJ	D1D1	11	F1F1
KK	D2D2	22	F2F2
LL	D3D3	33	F3F3
MM	D4D4	44	F4F4
NN	D5D5	55	F5F5
OO	D6D6	66	F6F6
PP	D7D7	77	F7F7
QQ	D8D8	88	F8F8
RR	D9D9	99	F9F9

Appendix E. Macro Instruction Summary

Figure 14 (Part 1 of 2). Macro Instruction Summary Chart

Macro Instruction	Format			Function	Approximate Number of Instructions Generated, Excluding Mnotes	Approximate Number of Bytes Required, Excluding Mnotes
\$DTOB		\$DTOB		Generates displacements and labels for BSC DTFs.	(137 lines)	0
\$GETB	[name]	\$GETB	```[DTF-address] [,REJECT-address] [,OPC-N/BLK]```	Instructs Model 10 BSC to receive (GET) data.	31	94
\$LOGB	[name]	\$LOGB	NUM-decdig,LEN-decdig	Allocates the Terminal Statistics Logging Area.	(5 lines)	Depends on the number of terminals and number of polling/addressing characters.
\$OPEN	[name]	\$OPEN	[DTF-name]	Opens files.	3	9
\$POLB	[name]	\$POLB	10-hex.TERMAD-hex, LEN-decdig [,LAST-N/OPEN/WRAP]	Creates entries in polling and addressing lists.	(5 lines)	4 (plus poll/addressing characters)
\$PUTB	[name]	\$PUTB	[DTF-address] [,REJECT-address] [,OPC-N/EOB/EOF/EOW]	Instructs Model 10 BSC to transmit (PUT) data.	26	77
\$RFT	[name]	\$RFT	PARM-address [.FROM-address] [,LEN-decdig] [.DTF-address] [,REJECT-address]	Instructs Model 10 BSC to perform an online test.	25	86
\$RFTL	[name]	\$RFTL	TYPE-00/01/06/14, NUM-decdig,LEN-decdig [,CODE-E/A] [,TERMAD-hex]	Generates the online test parameter list.	(5-6 lines)	7-12
\$SNAP	[name]	\$SNAP	ID-hex,START-address, END-address	Dumps main storage.	(4 lines)	10
\$SWIB	[name]	\$SWIB	$\begin{aligned} & \text { SELECT-hex,STATID-hex, } \\ & \text { LEN-deodia [.LAST-Y/N] } \end{aligned}$	Creates entries in a switched ID list.	(3-6 lines)	3-18
\$TRAN	[name]	\$TRAN	[TRL-address]	Translates data.	8	8
\$TRL	[name]	\$TRL	TO-address,FROM-address, LEN-decdig,TRT-address	Creates a translate list.	(13 lines)	9
\$TRTB	[name]	\$TRTB	[CODE-E/A] [,HEX-hex]	Generates a translate table.	If CODE-A, 12 lines; if CODE-E, 20 lines.	If CODE-A, 130 bytes; if CODE-E, 258 bytes.

Figure 14 (Part 2 of 2). Macro Instruction Summary Chart
[] halt $\mathbf{3 0 , 4 5}$
\$\$BSCN (form descriptor convert routine) (we FDP/convert)
\$\$BSFI (MLTERFIL initialization moduio) $\mathbf{5 0}$
\$\$BSMS, EXTRN 9,57
\$ALOC macro instruction
description 16
format 16
summary 121
\$BCPL macro instruction
description 20
format 20
summary 121
\$BCSW macro instruction
description 23
format 23
summary 121
\$CANB macro instruction
description 29
format 29
summary 121
\$CHGB macro instruction
description 21
format 21
summary 121
\$CHK macro instruction
(see also \$CKL macro instruction)
description 29
format 29
summary 121
\$CKL (Model 10) macro instruction
description 17
format 17
summary 121
SCKL (Model 15) macro instruction
description 18
format 18
summary 121
\$CLOS macro instruction
description 39
format 39
summary 121
\$COMN macro instruction
description 10
format 10
summary 121
\$DTFB macro instructions
considerations 15
description 10
format 10
summary 121
\$DTOB macro instruction
description 10
format 10
summary 122
\$GETB macro instruction
description 27
format 27
summary 122
\$LOGB macro instruction description 21
format 21
summary 122
\$OPEN macro instruction
description 17
format 17
summary 122
$\$$ \$OLB macro instruction
description 19
format 19
summary 122
SPUTB macro instruction
description 28
format 28
summary 122
\$RFT macro instruction
(see also online test)
description 51
format 51
summary 122
\$RFTL macro instruction
(see also online test)
description 26
format 26
summary 122
SSNAP macro instruction
description 55
format 55
summary 122
$\$$ \$WIB macro instruction
description 22
format 22
summery : 122
\$TRAN mecro instruction
description 25
format 26
summary 122
\$TRL macro instruction
description 24
formet 24
summary 122
\$TRTB macro instruction
description 24
format 24
summary 122
accepting an online test request 51,53
activating a polling list entry 19,20
address (control stations) 31
addressing considerations 32
addressing/polling (see polling/addressing)
addressing/polling characters (see polling/addressing characters)
addressing/polling list (see polling/addressing list)
allocate BSC files (\$ALOC) 16
allocate the terminal statistics logging area (\$LOGB) 21 ASCII
control characters and codes 118, 119
line code 6,12
polling/addressing characters 119
autoanswer 6,13
autocall 6,13

Banking Terminal System, 2972 (see MLMP, device-dependent considerations)
binary data 57
binary synchronous communications (see BSC)
Binary Synchronous Communications Adapter (see BSCA)
binary synchronous data 1.5
block length
considerations 16
for conversational files 12
specifying 11
blocking and deblocking data
and move mode 27
specifying in \$GETB 28
specifying in \$PUTB 28
BSC (binary synchronous communications) 1
BSC counters 50
BSC DTF
format 105
generation of by \$DTFB 9, 10
in MLMP overview 4
label generation 9
BSC I/O registers 111
BSC line conventions and conversational replies 34,36
(see also control characters and codes)
BSC MLMP networks, examples of 1
BSCA (Binary Synchronous Communications Adapter)
in MLMP overview 4
line code 6, 12
requirement 1,57
BSCA SIO sense/status bytes 110
BSCA terminal log area 50
buffers
and move mode 27
calculating length of $109,110,114$
defining 11
in MLMP I/O area 109
in MLMP overview 4
sample 109
calculating buffer length 109, 110, 114
cancel a GET request (\$CANB) 29
chained DTFs

allocating 17

closing 39
opening 17
specifying 12
change a polling list (\$BCPL) 20
change a switched ID list (\$BCSW) 23
check for I/O completion (\$CHK) 29
check routine 29
check routine completion codes 45,47
checklist
(see also \$CHK)
format 111
generation of by \$CKL 17
close BSC files (\$CLOS) 39
closing a conversational file 34
completion code 45
completion message 30
considerations
\$DTFB 15
addressing 32
closing files 34, 39
device-dependent (see MLMP, device-dependent considerations)
FDP/convert 77
MLMP programming 57
online test 71
trace 54
3270 online test 71
console DTF 18,30
control characters and codes
ASCII 118,119
EBCDIC 117.119
tributary System/3 polling and addressing characters 118
control mode 32
conventions for describing System/3 macro instructions 7
conversational files
and move mode 27
closing 34
specifying 12
conversational replies 28,29,33
data
binary 57
binary synchronous 1,5
packed decimal 57
translation (see data translation)
data areas, parameter lists, and message formats 105
data transfer
initiating 27
preparing for 9
terminating 39
data trarslation 5,9
(see also \$TRAN macro instructions; \$TRL macro instruction)
data-link control characters and codes 117
deactivating a polling list entry 20
define the file for BSC (\$DTFB) 10
delay count 12
description of System/3 macro instructions 7
device-dependent considerations (see MLMP, device-dependent
considerations)
diagnostics and diagnostic aids 40
dial number, specifying for autocall 15
display adapter 76
DPF (dual programming feature) 1, 30
DTF (see BSC DTF)
(see also \$CKL macro instruction)
dual programming feature (DPF) 1,30
dump routine 6
(see also \$\$SNAP macro instruction)

FDP (form descriptor program) (see FDP/convert)
FDP/convert
considerations 78
description 4,77
expanded 96 -column to consecutive 5444 disk 78
80 -column to consecutive 5444 disk 78
80 -column to 96 -column 77
fixed length records (see record type, fixed length)
form descriptor convert routine (\$\$BSCN) (see FDP/convert)
form descriptor program (FDP) (see FDP/convert)
functional control and data flow of MLMP 4
functions of MLMP 6,9
generate a checklist (\$CKL) 17
generate a parameter list for changing a polling list or a switched ID list (\$CHGB) 21
generate a polling/addressing list (\$POLB) 19
generate a switched ID list (\$SWIB) 22
generate a translate parameter list (\$TRL) 24
generate a translate table (\$TRTB) 24
generate an interface to the translate routine (\$TRAN) 25
generate an online test parameter list (\$RFTL) 26
generate BSC DTF displacements and labels (\$DTOB) 10
generate common equates (\$COMN) 10
generation of a user MLMP object program 2
GET request (see \$GETB macro instruction)
halts 45
how to request an online test from a 327071
//O area, MLMP 109
1/O buffers
defining: $\$$
in MLMP I/O area 109
in MLMP overview 4
I/O registers, BSC 111
$1 / O$ requests completion code 45,46
I/O routines, MLMP 4
|BM System/3 macros feature 2,57
IBM System/3 overlay linkage editor 2,57
including trace
assembler 54
RPG II 54
Information Display System 3270 (see MLMP, device-dependent
considerations)
(see also 3270 sample program)
initial GET 29, 32
initializing MLTERFIL 50
initiating data transfer 27
intermediate block checking (ITB) 5, 12
intermixing of terminals, restriction 4
10B
defining 11
in MLMP I/O area 109
in MLMP overview 4
issue a GET request (\$GETB) 27
issue a PUT request (\$PUTB) 28
ITB (intermediate block checking)
6.12

leading graphics	6	
line		
code, specifying	12	
supported by MLMP	5	
type, specifying	13	
1 or 2 specifying	12	
local display adapter	76	
logical buffer		
in MLMP overview	4	
specifying	11	

machine requirements, MLMP 57
macro instructions
\$ALOC (see \$ALOC macro instruction)
\$BCPL (see \$BCPL macro instruction)
\$BCSW (see \$BCSW macro instruction)
\$CANB (see \$CANB macro instruction)
\$CHGB (see \$CHGB macro instruction)
\$CHK (see \$CHK macro instruction)
\$CKL (see \$CKL macro instruction)
\$CLOS (see \$CLOS macro instruction)
\$COMN (see \$COMN macro instruction)
\$DTFB (see \$DTFB macro instruction)
\$DTOB (see \$DTOB macro instruction)
\$GETB (see \$GETB macro instruction)
\$LOGB (see \$LOGB macro instruction)
\$OPEN (see \$OPEN macro instruction)
\$POLB (see \$POLB macro instruction)
\$PUTB (see \$PUTB macro instruction)
\$RFT (see \$RFT macro instruction)
\$RFTL (see \$RFTL macro instruction)
\$SNAP (see \$SNAP macro instruction)
\$SWIB (see \$SWIB macro instruction)
\$TRAN (see \$TRAN macro instruction)
\$TRL (see \$TRL macro instruction)
\$TRTB (see \$TRTB macro instruction)
description of System/3 7
examples 79
in MLMP overview 4
summary chart 121
macro processor 2,57
manual answer 6
manual call 6
message formats
completion 30
MLMP 115
online test 114
message formats, data areas, and parameter tists 105
MLMP (Multiline/Multipoint)
BSC networks, examples of 1
buffers (see buffers)
device-dependent considerations
IBM 2972 Banking Terminal System 61
IBM 3270 Information Display System 61
IBM 3735 Programmable Terminal 77
diagnostics and diagnostic aids 41
error recordings 41
error recovery 45
error statistics 50
examples (see examples)
functional control and data flow 4
functions 6,9
I/O area 109

MiLMP (Multiline/Muitipoint) (continued)
I/O routines 1,4
introduction 1
lines supported 5
macro instructions (see macro instructions)
message formats 115
mnotes 41
networks, examples of 1
object program, generation of 2
programming
considerations 57
exampies (see examples)
initiating data transfer 27
preparing for data transfer 9
terminating data transfer 39
requirements and considerations 57
statistics 50
telecommunications lines supported 5
terminal statistics 50
terminal supported 5
MLTA (Multiple Line Terminal Adapter) 6
MLTERFIL 50
(see also terminal statistics logging area)
mnotes 41
move mode 27
MTBSML, EXTRN 54
MTBSMN, EXTRN 54
Multiline/Multipoint (see MLMP)
multiple buffers 109
Multiple Line Terminal Adapter (MLTA) 6
networds, examples of MLMP BSC 1
no completion in checklist, specifying return on 18 nonconversational files and move mode 27
object program, generation of MLMP 2
OLT (see online test)
online test (OLT)
accepting a request for 51,53
calculating buffer space 114
considerations 53
discussion 51
from a $3270 \quad 71$
message format 115
parameter list 113
requesting 51
requests 114
results 53
test types 51, 114
open BSC files (\$OPEN) 17
open polling list specifying an 20
opening a DTF conditionally 12
overlay linkage editor
and trace 54
in generating an MLMP object program 2
requirement 57
overview of MLMP 4
packed decimal data 57
parameter list
for changing a polling list or switched ID list 112
ontine test 113
translate 113
parameter lists, message formats, and data areas 105
poll (control stations) 31
polling/address list
changing a 20,21
format 112
generation of 19
identifying a 14
specifying entry IDs for a 19
polling/addressing
and $3270 \quad 59$
initiate 31
respond to 32
polling/addressing characters
ASCII 119
EBCDIC 119
specifying 19
preparing for data transfer 9
program level 1
programmable terminal, 3735 (see MLMP, device-dependent considerations)
programming considerations, ML.MP 57
programming requirements, ML.MP 57
PUT request (see \$PUTB macro instruction)

RCVI (receive-initial) 32
reading from and writing to a remote $3270 \quad 60$
receive
(see also \$GETB macro instruction)
a block of data at a time 28
file, specifying a 11
interspersed with transmit only 33
to a conversational file 33
with transmittal of a conversational reply 36
receive-initial (RCVI) 32
recognizing an online test request 51,53
(see also online test)
record length
considerations 15
specifying 11
record separator 15,116
record type
fixed length 15
spanned
considerations 15
format 116
specifying 15
supported 5
variable length 5,15
reject routine
for \$GETB 27
for \$PUTB 28
for \$RFT 51
REOKey 17,30
requesting an online test 51,53
requirements and considerations, MLMP 57
respond to polling or addressing (tributary stations) 32
return on no completion in checklist, specifying 18
reverse interrupt (RVI)
and addressing 31
and transmit/receive interspersed 37,38
specifying 12
supported 6
RPG $\|$
and trace 54
consideration 57
RVI (see reverse interrupt)
\$SNAP dump main storage (\$SNAP) 55
samples (see examples)
sense/status bvies, BSCA SIO 110
skip entries in checklist 17,30
spanned record (see record type, spanned)
station identification sequence, specifying 15
statistics, MLMP BSC 50
status/sense messages, $3270 \quad 71$
storage requirements, MLMP 57
switched ID list
changing a 21,23
format 112
generation of 22
identifyinga 15
SVstem/3 macro instructions 2,7
System/3 translate routine 25,26
translate tables 25
table
trace 54,110
translate 24
techniques for initiating data transfer address (control station) 31
conversational reply 33
poll (tributary stations) 31
receive interspersed with transmit 37
receive only 33
respond to polling or addressing (tributary stations) 32
transmit interspersed with receive 38
transmit only 33
telecommunications lines supported 5
terminal statistics logging area
and \$LOGB 21
and MLTERFIL 50
defining 14,21
format 109
terminals supported 5
terminating BSC files

receive files 39

transmit files 39
terminating data transfer 39
text mode 32
trace
considerations 55
description 54
including 54
table 54, 110
translate parameter list 113
translate routines, System/3 25, 26
translate tables, System/3 25
translation data 6,9
(see also \$TRAN macro instruction; \$TRL macro instruction; \$TRTB macro instruction)
transmit
(see also \$PUTB macro instruction)
file, specifying a 11
from a conversational file 33
interspersed with receive 38
only 33
with reception of a conversational reply 35
transparency 6,12
tributary. System $/ 3$ polling and addressing characters
ASCII 119
EBCDIC 119
variable length record (see record type, variable length)
wrapped polling list
and \$CANB 29
and \$DTFB 14
specifying 20

2972 Banking Terminal System (see MLMP, device-
dependent considerations)
3270 Information Display System (see MLMP, devicedependent considerations)
(see also 3270 sample program)
3270 online test considerations 71
3270 sample program 87
3270 status/sense messages 71
3735 programmable terminal (see MLMP, device-
dependent considerations)

This Newsletter No. GN21-5587
Date 25 November 1977

Base Publication No. GC21-7573-4
File No. S3-30

Previous Newsletters
None

IBM System/3
Multiline/Multipoint
Binary Synchronous Communications
Reference Manual

(C) IBM Corp. 1972, 1973, 1974, 1976

This technical newsletter, a part of version 02, modification 00 of the IBM System/3 Model 15 SCP (Program Number 5704-SC2), also applicable to version 06, modification 00 of the IBM System/3 Model 15 SCP (Program Number 5704-SC1), provides replacement pages for the subject publication. These replacement pages remair effect for subsequent versions and modifications unless specifically altered. Pages to be inserted and/or removed are:

iii, iv	57,58
11,12	87 through 104
53,54	

Changes to text and illustrations are indicated by a vertical line at the left of the change except for the updated sample program.

Summary of Amendments

Updated sample program and miscellaneous technical corrections.
Note: Please file this cover letter at the back of the manual to provide a record of changes.

This Newsletter No. GN21-5691
Date 21 December 1979

Base Publication No. GC21-7573-4
File No. S3-30

Previous Newsletters None

IBM System/3
Multiline/Multipoint
Binary Synchronous Communications
Reference Manual

(C) IBM Corp. 1972, 1973, 1974, 1976

This technical newsletter applies to the current versions and modifications of the applicable System/3 programs listed in the edition notice and provides replacement pages for the subject publication.
These replacement pages remain in effect for subsequent versions and modifications unless specifically altered. Pages to be inserted and/or removed are:

Pages 17 and 18 of this reference manual have been transposed. The pages in question are enclosed in the correct sequence.

Summary of Amendments
Correct out-of-sequence pages

Note: Please file this cover letter at the back of the manual to provide a record of changes.

[^0]: Figure 5 (Part 3 of 3). Explanations for BSC Mnotes

[^1]: // LOAD \$\$BSCN,unit
 // FILE NAME-\$WORK,UNIT-xx,PACK-pack, LABEL-your filename,RECORDS-number, RETAIN- $\left\{\begin{array}{l}\mathbf{P} \\ \mathbf{T} \\ \mathbf{S}\end{array}\right\}$

[^2]: RS = Record separator

