PREFACE

This manual contains the theory of operations, maintenance diagrams, and service information for the IBM 5415 Processing Unit Models D25 and D26. All references to Model 15D mean Models 15 D25 and 15 D26.

The Models 15 D19 through 15 D24 have a maximum of 256 K bytes of storage, while the Models 15 D25 and 15 26 have 384 K and 512 K bytes of storage respectively. To handle the additional storage, the Models 15 D25 and 15 D26 have the following changes:

- Replacement of the $>64 \mathrm{~K}$ and $>128 \mathrm{~K}$ ADDR BITS toggle switches with an eight-position rotary switch to provide a>256K selection.
- Addition of $\mathrm{a}>256 \mathrm{~K}$ PH latch and circuit.
- Addition of a 19th bit circuit to condition SAR bit E13.
- Replacement of the roller drum to include an I/O $>$ 256 K position.

The Model D processing unit includes fast \mid cycle process ing, a maximum of 512 K bytes of main storage, and 3340/3344 disk drives. Refer to SY31-0367 for information about 5415 Model C, or SY31-0464 for information about 5415 Models D19 through D24.

A 16-bit ALU was added to the Model D CPU for fast cycle processing and is referred to in this manual as th auxiliary (aux) ALU. Wherever just ALU is used, it refers to the original Model 15 ALU

This manual is intended for use by GSD customer engineers for use in the classroom and for recall when servicing in a free-lance mode.

The manual gives an explanation of the logical circuit fun tions and major objectives. With this information, the CE can interpret the operation of circuits illustrated in the companion diagrams.

Machine operations are presented in operational flowcharts, most of which are two-level. The general flow path indiated by the heavy line of the two-level charts shows the major objectives of an operation or instruction. Detailed low paths of major objectives are to the right of the general flow path.

Positive-logic diagrams support the operational flowcharts. They show logical circuit operation without regard to signal They show logical circuit operation without regard to signal levels. Most of the logic diagrams in this manual are not diagrams). Rather, only blocks necessary for a logical understanding of the operation are shown.

For machine characteristics and installation instructions, refer to the IBM System/3 Installation Manual-Physical Planning, GA21-9084.

First Edition (November 1977)

Changes are continually made to the specifications herein;
reported in subsequent revisions or technical newsletters
Address comments concerning the contents of this publication to IBM Corporation, Publications, Dep
property of IBM.
©Copyright International Business Machines Corporation 1977

SAFETY

Personal Safety

Read and follow the safety suggestions in the CE Safety Practices Manual, S229-1264, a pocketsized card issued to all IBM customer engineers.

Remember

- Loose clothing can become entangled in moving parts of the machine
- Drive belts, because of their internal cable con struction, can cause serious injury. DO NOT crank a machine by pulling on the drive belts.
- Heat sinks are at an electrical potential. DO NOT short heat sinks to each other or to the machine side frame.
- Always unplug machine power and wait ONE FULL MINUTE before attempting repairs or adjustments in the power supply area.
- Voltages developed in the resonant circuit of regulating power supplies are apt to be much greater than the line voltages.
- Follow the specific safety precautions that ac company many of the adjustment procedures in this manual.

Be aware that an $1 / \mathrm{O}$ device motor and/or clutches can operate unexpectedly. Conditions that could cause this are:

- Program commands.
- Loss of dc voltage to a machine, gate, board or chassis, card, or pin.
- Removing or inserting a card or cable.

等

- Probing and accidentally shorting a pin.

Equipment Safety

Electrical

Always replace blown fuses with fuses of the sam ype and rating. Using fuses of a different type or higher rating could result in component damage.

Remove power from the machine before replacing logic cards, magnets, or solenoids. Failure to do
this could result in damage to the card being re
placed or to other cards in the net.

Mechanical

Do not operate the machine under power with units disassembled, removed, or maladjusted. Keep tools lear of the mechanism when the machine is oper ating under power

CAUTION: Do not use IBM cleaning fluid on plastic parts.

CONTENTS	
Preface	ii
SAFETY	iii
Personal Safety	iii
Equipment Safety	iii
Electrical	iii
Mechanical	iii
CONTENTS	iv
LEGEND	vii
AbBREVIATIONS	viii
introduction	$1-1$
IBM SYSTEM/3 MODEL 15D	$1-1$
System Control Programming.	$1-2$
Multiprogramming	1.2
1/O Devices.	1 -2
3277 Display Station/Keyboard	1 -2
IBM 3284 Printer. . .	1 -2
IBM 2501 Card Reader	1.2
IBM 2560 Multi-Function Card Machine	1.3
IBM 3340 Direct Access Storage Facility	1.3
IBM 3741 Data Station Models 1 and 2 IBM 3741	
Programmable Work Station Models 3 and 4	1-3
IBM 3344 Direct Access Storage .	1.3
IBM 5424 Multi-Function Card Unit	1.4
IBM 1442 Card Read Punch	1.4
IBM 3410 Magnetic Tape Unit	$1-4$
IBM 1403 Printer Model 2, Model 5, and Model	
SIOC.	1-5
BSCA.	15
Display Adapter	$1-5$
LCA (Local Communications Adapter)	1-5
MLTA (RPQ) .	1-5
BSCC (Binary Synchronous Communications Controiler)	$1-5$
Channel Terminate Feature	1.5
System Maintenance .	$1-5$
Scheduled Maintenance .	1.5
5415 PROCESSING UNIT (CPU)	1-6
Introduction	1-6
Fast I-Cycles	$1-6$
Data Flow	1.7
I-Cycle Operation	1.7
E Cycle Operation	1-7
CPU Timing	1.7
Parity Checking and Generation	1.7
Unit Check.	1.7
Errors	1.7
Processor Data Flow	1.8
Machine Language	1.9

mber Systems	
Decimal Number System	$1-9$
Binary Number System	$1-9$
Hexadecimal Number System.	1-9
Number System Conversions	1-10
Hexadecimal to Decimal	1-10
Decimal to Hexadecimal	1-10
Hexadecimal to Binary and Binary	exadecimal 1-10
Data Formats	1-10
Instruction Formats	$1-11$
Operation Code	1-11
a-Code	1-11
Control Code	1-11
Storage Addresses	1.11
Addressing	$1-12$
Direct Addressing	1-12
Indexed Addressing	$1-12$
Instruction and Execute Cycle	1-12
Sequential Instruction Execution	1-12
Branching	$1 \cdot 13$
Interrupt Routines	$1-13$
1/O Cycle Steal	1-13
PROCESSOR FUNCTIONAL UNITS	2-1
CPU CLOCK	2-1
CYCLE CONTROLS	2-2
RUN CONTROLS	2.4
ALU	2-8
AND/OR and Test False	2-8
ALU DATA FLOW	$2 \cdot 9$
Binary Subtraction	2-10
Binary Addition	11
Decimal Subtraction.	2.11
ALU P Bit Generation	2-12
Decimal Addition	$2 \cdot 13$
Recomplement	2.14
ALU CONTROLS	2-15
CHECK ALU	2-17
Parity Generation and Parity Check	2.17
Carry Check	2.17
ALU Parity Checking	2-18
Carry Check	2-19
A-REGISTER AND CONTROLS	$2 \cdot 20$
A-Register	2-20
B REGISTER AND CONTROLS	2.21
A/B REGISTER PARITY CHECKING	2-22
AUXILIARY ALU	2.23
AUXILIARY ALU CARD CHECK	2-24
AUXILIARY B REGISTER	2.25
CONDITION REGISTER (CR)	2-26
Condition Register Settings	$2 \cdot 26$
PROGRAM MODE REGISTERS (PMR)	2-28
Byte 1	2.28
Byte 2	2-28
LOCAL STORAGE REGISTERS (LSR)	2.30

AR (A-Address Register)

$$
\text { Index Register } 1 \text { and Index Register } 2
$$

LSR Controls .
NTERRUPTS
Load I/O
Start 1/O
One Byte Fetch
DATA FLOW
ARR (Address Recall Register)
LCR (Length Count Register)
RR (Data Recall Register)
SR (Program Status Register)
MRDAR (MFCU Read Data Address Register)
MPCAR (MFCU Punch Data Address Register)

$$
\begin{aligned}
& \text { MPTAR (MFCU Print Data Address Register) } \\
& \text { LPDAR (Line Printer Data Address Register) }
\end{aligned}
$$

LPIAR (Line Printer Imaae Address Reaister)
LPIAR (Line Printer Image Address Register)
rocessing Unit LSRs

$$
\begin{aligned}
& \text { /O LSRs } \\
& \text { SR Addre }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LSR Addressing } \\
& \text { CPU LSR Select }
\end{aligned}
$$

$$
\begin{array}{llll}
\text { CPU LSR Select } \\
\text { LSR Select (I/O Channel Bank 1) } & . & . & 2-34 \\
\hline
\end{array}
$$

$$
\text { LSR Select (//O Channel Bank 2) }{ }_{2}^{2-35}
$$

$$
\text { LSR Select (I/O Channel Bank 3) } 2-37
$$

$$
\text { I/O LSR Address Bit Generation } 2-38
$$

O LSR Select Check
OP REGISTER
Privileged Mode

$$
\text { Model } 10 \text { Compatibility }
$$

$$
\text { lodel } 10 \text { Compatibility . . . } 242
$$

$$
\begin{aligned}
& \text { Invalid Op Code and Privileged Op Check } \\
& \text { Q REGISTER }
\end{aligned}
$$

p and Q Register Parity

$$
\begin{aligned}
& \text { Op and Q Register Parity } \\
& \text { PROGRAM CHECK REGISTERS } \\
& \text { PROGRAM CHECK ASSEMBLER, STORE DATA }
\end{aligned}
$$

ROGRAM CHECK REGISTERS
Supervisor Program (Interrupt Level 0) $\quad 2.50$
Op End Interrupt (Interrupt Level 5) 2-50
Program Check Interrupt (Interrupt Level 7) . . . 2-50
NTERVAL TIMER 2.52
MAIN STORAGE ADDRESSING 2.54
I/O LSR 17th, 18th, and 19th Bits $2-55$
Storage Protect 2-56
Address Parity Checks . . ${ }_{2}^{2-57}$
Invalid Address/Storage Protect Check 2-58
Unit Record Restart 2-59
MAIN StORAGE 3-1
One Byte Store
Dual Byte Fetch
Dual Byte Store
MAIN STORAGE LOCATIONS
BSM WRITE OPERATION
Q REGISTER.

$$
\begin{aligned}
& \text { ASSEMBLER } \\
& \text { INTERRUPTS }
\end{aligned}
$$

BSM READ OPERATION .
BYTE CONTROL AND CHECK BIT GENERATION $\begin{aligned} & 3-6 \\ & 3-6\end{aligned}$
Store Data Parity Check

BSM.

Controls.
Addressing
Addressing
Timing .
Timing DETCH REGISTER AND CONTRO
ERROR CHECKING AND CORRECTION
Fetch Check Bit Generato
yndrome Bit Generator
yndrome Bit Decod
Invert Data Switch
Crror Classification Logic
Correctable Error
Diagnostic Mode
MEMORY OUTPUT (MOP)
MAIN STORAGE MAINTENANCE $\quad \because \quad \begin{aligned} & 3-13 \\ & 3-14\end{aligned}$
/O INTERFACE. 400
CHANNEL CABLING (CPU) 40010
DBO TRANSLATOR (5424) 4009
DBI TRANSLATOR (5424)
/O INTERFACE LINES
DBO AND TRANSLATOR
CONSOLE SWITCHES
BI AND TRANSLATOR $\quad 4.1$
CHANNEL DBO PARITY, INVALID DEVICE ADDRESS
DBO PARITY $4-12$
DBI PARITY 4.130
CPU INSTRUCTIONS
NSTRUCTIONS AND SIGNAL REEERENCE
SSTRUCTION CYCLES (FASTI-CYCLE)
TWO-ADDRESS INSTRUCTIONS
I-Cycles
Op Cycle
Op Cycle
-H and I-L Cycles
-H2 and I-L2 Cycles
ndexing (I-X Cycles)
Execution Cycles .
A-Cycle
Add Logical Characters-ALC
Subtract Logical Characters-SLC
Compare Logical Characters-CLC
Move Characters-MVC
Move Characters or Compare, Add, or Subtrac Logical Characters.
Add or Subtract Zoned Decimal-AZ-SZ
Recomplement Cycles

Recomplementing	
Zero and Add Zoned - ZAZ	5-21
ero and Add Zoned and Add or Subtract Zoned	
Decimal	5-22
t-ED	5-26
Insert and Test Character-ITC	5-30
Move Hex Character - MVX	5-34
ONE ADDRESS INSTRUCTIONS	5-38
I-Cycles	5-38
Move Logical Immediate-MVI	5-38
Compare Logical Immediate-CLI	5-38
Move Logical Immediate or Compare Logical Immediate	
Set Bits On/Off Masked and Test Bits On/Off	
Masked	5-42
Set Bits On Masked-SBN	5-42
et Bits Off Masked-SBF	5-42
est Bits On Masked-TBN	5.42
Test Bits Off Masked-TBF	5-42
Set Bits On Masked	5-43
Set Bits Off Masked	$5 \cdot 43$
Test Bits On Masked.	-43
Test Bits Off Masked	5-43
Store, Load, or Add to Register	5-46
Store Register-ST	5-46
Load Register-L	5-46
Add to Register-A	5-46
Load Address-LA	5-50
Branch On Condition-BC	5-51
Store CPU (SCP)	5-52
Load CPU (LCP)	5-53
Load/Store CPU	5-54
COMMAND INSTRUCTIONS	5-63
1 R Cycle	5-63
Jump On Condition-JC	5-65
Halt Program Level (HPL)	5-66
Command CPU (CCP)	5-67
I/O INSTRUCTIONS	5-68
Start 1/O-SIO.	5-68
I/O Instruction I-Cycles	5-69
I/O Cycle	$5-70$
Example 1:.	5-70
Example 2:	5-70
1/O Cycle Data Transfer	$5-71$
Cycle Steal Priority (CSP)	5-72
Load I/O-LIO	$5-73$
Sense I/O-SNS	5.76
Test I/O and Branch-TIO	5.79
Advance Program Level-APL	
SYSTEM OPERATIONS	6-1
INITIAL PROGRAM LOAD-IPL	6.1
SYSTEM RESET	
Objectives	6-2
ALTER STORAGE/INITIAL MEMORY SCAN	
ial Memory Sca	

ALTER STORAGE/INITIAL MEMORY SCAN Initial Memory Scan.

Alter Storage	
DISPLAY STORAGE	
es	
ATT/PMR	6-12
bjectives	6-12
ALTER SAR	6-1
Objectives	6 -1
DISPLAY SAR/MSAR	6-18
STEM CONSOLE	
OPERATOR CONTROLS	
The Emergency Power-Off (EPO) Pull Switch (
YA102)	
Usage Meter (ALD YA104)	
File Control Panel	
PROGRAM LOAD SELECTOR Switch without 3344 installed (ALD PC101, YD100 PROGRAM LOAD SELECTOR Switch	
with 3344 installed (ALD PC101, YD100)	
PROCESSOR CHECK Light (ALD PC111)	
POWER ON/OFF Switch (ALD YA102, PC111)	
StART Key (ALD PC111)	
Message Display Unit (ALD PB131)	
I/O ATTENTION Light (ALD PC111)	
PROGRAM LOAD Key (ALD PC111)	
STOP Key/Light (ALD PC111)	
CONSOLE DISPLAY	
INT LEV (Interrupt Level) Light (ALD PB111)	
PWR CHK (Power Check) Light (ALD YA102)	
TH CHK (Thermal Check) Light (ALD YA102) .	
ACHINE CYCLE Indicators (ALD PB111).	
LOCK Indicators (ALD PB121)	
LAMP TEST Key (ALD YA 102)	
Register Display Unit (ALD PB101, PC101)	
BSCA OPERATOR'S PANEL	
BSCA Attention Light	
Unit Check Light .	
Data Terminal Ready Light	
Data Set Ready Light	
Clear To Send Light	
Receive Trigger Light	
Transmit Trigger Light	
Receive Mode Light	
Transmit Mode Light	
Receive Initial Light .	
Busy Light	
Character Phase Light	
Data Mode Light	
Control Mode Light	
Digit Present Light	
Auto Call Unit Power Off Light	
Call Request Light	
Data Line in Use Light	
Test Mode Light	
External Test Switch Light	

ce controls
ADDRESS/DATA Switches (Below Console
Display) (ALD PA111)
SYSTEM RESET Key (ALD PC101)
CE Key Switch (ALD PC111)
CHECK RESET Key (ALD PC101)
BSCA STEP Key (ALD HE160)
ADDRESS COMPARE Light (ALD PB121)
I/O CHECK Light (ALD PB121).
LSR DISPLAY SELECTOR (ALD PC111)
CE MODE SELECTOR (ALD PA101)
PROCESS
STEP.
CE Switches
EXTENDED SAR ADDRESS BITS Switch
$>64 \mathrm{~K}$ ADDR BIT Switch (ALD PA101)
SAR/MSAR Display Switch (ALD 'sel MSAR sw' PA101)
I/O OVERLAP Switch (ALD PC121) . . . $7-9$
DISPLAY CHK (Check) BITS Switch (ALD PC121)
BSCA/LCA LOCAL TEST (ALD HE160)
I/O CHECK Switch (ALD PA101)
PARITY CHECK Switch (ALD PA101)
STORAGE TEST Switch (ALD PA101)
(ALD PA101)
ADDRESS COMPARE Switches (ALD PA101) $7-9$
POWER SUPPLY .
INTRODUCTION
AC/DC Voltage $\quad 8.2$
Input Power Requirements
Parts Replacement
Checks and Adjustments
DC Bulk Supplies.
POWER SUPPLY REGULATORS
Start-Up Control
Voltage Regulation
Overvoltage Protection
Overcurrent Protection
Undervoltage Protection
-4 Volt Undervat Ci.
+6 Volt Undervoltage Circuit (Reg No. 1)
BASIC -4 Vdc NO. 1 LOGIC SUPPLY (Include
Add-On and Bypass Resistor)
Basic -4 Vdc No. 1 Supply
Add-On Regulato
Bypass Resistors
End View of -4V Regulator

SUPPLY NO. 3 (Lower Boards)	
Voltage Adjustment.	
End View of -4V Regulator Card	
6 VOLT LOGIC SUPPLY	
+6 Vdc Regulator	
+6V Expansion Bulk Supply (Feature) .	
Voltage Adjustment	
End View of +6 V Regulator Card	
Main storage power supply	
Voltage Adjustments	
+3.4 Vdc	
$+8.5 \mathrm{Vdc}$	
Sequencing	
Overvoltage (OV)/Undervoltage (UV) Portectio	
Sequence Card (A1)	
Regulator Card (A2) .	
+3.4 Vdc	
+8.5 Vdc	
Sense Relay	
EXPANSION MAIN STORAGE POWER	
UPPLY	
Voltage Adjustments	
+3.4 Vdc	
$+8.5 \mathrm{Vdc}$	
Sequencing	
Overvoltage (OV)/Undervoltage (UV) Protection	
Sequence Card (A1)	
Regulator Card (A2).	
+3.4 Vdc	
. Vdc	
Sense Relay	
± 3 VOLT LOGIC SUPPLIES	
± 3 Volt Regulator Card.	
$\pm 3 \mathrm{Vdc}$ Regulator Card	
± 3 Volt Power Supply	
$\pm 3 \mathrm{Vdc}$ Power Supply	
Voltage Adjustments	
$\pm 3 \mathrm{Vdc}$ Regulator Card	
+3 Vdc Level Adjustment	
-3 Vdc Level Adjustment	
$\pm 3 \mathrm{Vdc}$ Power Supply	
-3 Vdc Level Adjustment	
+3 Vdc Level Adjustment	
± 5 VOLT FEATURE POWER SUPPLY	
$\pm 5 \mathrm{Vdc}$ Feature Regulator (BSCC)	
$\pm 12 /-12$ VOLT FEATURE POWER SUPPLIES	8.2
$\pm 12 \mathrm{Vdc}$ Feature Regulator (MLTA and BSCA)	
-12 Vdc Feature Supply (BSCA or BSCC, With	
1200 bps Modem and not MLTA)	
+24 VOLT LOGIC SUPPLY	
POWER SEQUENCE	
Power Up Sequence	
Normal Power Down Sequence	8-2
Power Off Sequence	
L AND POWER CHECKS	

Power Check and Thermal Check Indicators	28
Test Points (TPs)	28
System Sequencing and Sensing Relays	$8-29$
Power On Sequence	8-29
Abnormal Power Off	8-29
Overvoltage and Overcurrent Power Off Sequence	8-29
Undervoltage Power Off Sequence	8-29
Thermal Power Off Sequence.	29
Emergency Power Off	29
COIL/RELAY FUNCTIONAL DESCRIPTIONS	$8 \cdot 30$
Convenience Outlet (YA102)	8-30
-5V Sense	30
Thermal Relay, Relay Panel (YA102)	$8 \cdot 30$
$\pm 12 \mathrm{~V}$ Supply Sense, Located on Power Supply (MLTA/BSCA-YA140)	30
AC Voltage to Bulk Power Supply (YA102)	8-31
-4V No. 1 (A gate) Sense (YA102A)	8-31
+6V (+5V for BSCC only) Sense (YA102A)	8.3
+6V UV Detect (YA102B)	8-31
Main Storage Supply Sense (YA102A)	8-31
I/O AC Power (YA101 and YA102)	8-31
I/O AC Power (YA101 and YA102)	8-31
7.25 Vac and 41 Vac Distribution (Lamp and	
Meter - YA102)	$8 \cdot 3$
I/O Power Sense (YA102A)	8-31
+60V Sense (YA102A) .	8-31
Power Sequence Complete.	8-32
-4V No. 1 (A gate) OV/OC Fault	$8-32$
-4 V No. 1 (A gate) UV or $+6 \mathrm{~V}(+5 \mathrm{~V}$ for BSCC only) OV/OC Fault	8-32
+6V (+5 V for BSCC only) UV Fault	8-32
-4V No. 2 OV/OC Fault	8.32
-4V No. 2 Sense and -5V Sense	8-32
-4V No. 3 OV/OC Fault	8-32
-4V No. 3 Sense	8-32
B Gate FET Protect	8-32
B Gate FET Protect for No. 3 Feature Power	
Supply.	8-33
Expansion Main Storage Power Supply (Feature)	8-33
-12V Supply Sense (BSCA/BSCC)	8-33
APPENDIX A. CROSS REFERENCE	A-1
FEALD - CARD CROSS-REFERENCE LIST	A-1
LOGIC CARD REFERENCE	A-2
index	X-1

LEGEND

Farity Check on Bus Line Parity Generator generated.)

Two ways to turn FF on: Two ways to turn FF off: 1. B and C active 1. C and D active . 2. A active 2. E active
A.
(RPQ-xxx)
Offpage Cònnector Special Reference
for RPO Circuits
Interface Connector

On page
Connecto
On page
Connector

Joining Lines
Lines cross over
but do not join

Boolean Algebra Symbols
In a line name means AND

+ In a line name means OR
($x \mathrm{x} \cdots \mathrm{x}$) Indicates a line name that does not exist as an actual ALD name, but used to bet a line or block

Anithmetic Logic

Singleshot A positive shift on C causes a
$2.5 \mu \mathrm{~s}$ shift on D

Exclusive OR Either A or B must be active
for C to be active, but if both are active or neither active
C will be inactive

Indicates a shift is required after the gate pulse is present. $\mathrm{P}=$ positive shift required

$N=$ negative shift required

Decision Block on a Flowchart (Asks a question.)

Processing Block on a Flowchart

Single quotes in the block indicate a line flip flop name

Keying Operation on Flowchart

Refers to another Flowchart

ABBREVIATIONS		FDR	Fetch Data Register	OC
		FE	Field Engineering	Op
A	Ampere	FEALD	Field Engineering Automated	ov
AAR	A Address Register		Logic Diagram	P
ac	Alternating Current	hex	Hexadecimal	PCB
ALD	Automated Logic Diagram	Hz	Hertz	PEB
ALU	Arithmetic and Logic Unit	IAR	Instruction Address Register	PG
Arith	Arithmetic	Instr	Instruction	PH
ARR	Address Recall Register	I/O	Input/Output	PMR
ASCII	American Standard Code for	IPL	Initial Program Load	POT
	Information Interchange	K	K equal 1024	POR
ATT	Address Translation Table	LCR	Length Count Register	PSR
AUX	Auxiliary	LCRR	Length Count Recall Register	PSS
BAR	B Address Register	LIO	Load Input/Output	PTR
BCD	Binary Coded Decimal	LPDAR	Line Printer Data Address	Rd
BSCA	Binary Synchronous Com-		Register	Reg
	munications Adapter	LPIAR	Line Printer Image Address	RPQ
BSCC	Binary Synchronous Com-		Register \quad A	SAR
	munications Controller	LSR	Local Storage Register	SCR
CB	Circuit Breaker	MAP	Maintenance Analysis Pro-	SDBo
CE	Customer Engineer		cedures	SDR
Ckts	Circuits	M/C	Machine Cycle	SIO
cm	Centimeter	MFCM	Multi-Function Card Machine	SIOC
CPU	Processing Unit	MFCU	Multi-Function Card Unit	SLD
CR	Condition Register	MLTA	Multiple Line Terminal Adapt-	SLT
CRR	Condition Recall Register		er	SMS
Ctrl	Control	MOSFET	Metal Oxide Semiconductor	SNS
DA	Device Address		Field Effect Transistor	SPT
DAR	Data Address Register	MPCAR	MFCU Punch Data Address	SS
DBI	Data Bus In		Register	Sync
DBO	Data Bus Out	MPTAR	MFCU Print Data Address	s/Z
DDSA	Data-Phone* Digital Service	MPTAR	Register	TIO
	Adapter	MRDAR	mFCU Read Data Address	TP
DFCR	Data File Control Address		Register	TR Pac
	Register	MS	Main Storage	UV
DFDR	Data File Data Address Regis-	MST	Monolithic System Technol-	\checkmark
	ter		ogy	Vac
Disp	Display	mV	Millivolt	Vdc
DRR	Data Recall Register	ns	Nanosecond	wr
EBCDIC	Extended Binary Coded Deci-			XR
	mal Interchange Code			z
EC	Engineering Change			Z
ECC	Error Checking and Correction			>
EIA	Electronic Industries			$<$

[^0]
INTRODUCTION

BM SYSTEM/3 MODEL 15D
The System/3 Model 15D provides a greater processing speed and greater disk storage than previous Model 15s. The processing speed is increased by accessing storage twice during instruction (I) cycles. The addition of the 3344 DSA provides the greater disk storage

The various configurations of the System/3 Mode 5D provide complete unit record type functions including card reading, punching, interpreting, ollating, reproducing, summary punching, computing, and printing. In addition, magnetic tape ad disk storage drive removable disks offer practically unlimited data storage growth.

A minimum configuration of Model 15D consists f a Fast I-cycle processing Unit (96 K bytes of torage), a 3277 Display Station Model 1 with a eyboard (feature no. 4632), a 3340 Direct Acces Storage Facility, a 1403 Printer, and one of the llowing 5424 MFCU 2560 MFCM 1442 Card Read Punch, or 3741 Data Station (cardless ystems).

The 3277 Display Station Model 1 with the keyooard (feature no. 4632) is called CRT/keyboard in this manual.

The System/3 Model 15D operates in a multiprogramming environment without the Model 10 Dual Program Feature. The CPU has the same basic instruction set, cycle time, and access time as other System $/ 3$ models.

Features include:

- MOSFET (metal oxide semiconductor field effect transistor) monolithic storage with ECC (error correction and checking) for CPU main storage.
- Maximum of 512 K bytes of storage available.
- Write/fetch storage protection (for CPU cycles only) in 2 K -byte segments. This feature is used by the supervisor to keep user programs from interfering with each other or with the super visor.
- Three additional instructions to control multi programming and other new enhancements.
- Address translation capability to address main storage above 64 K .
- Four additional interrupt levels.
- Operation end interrupts for all input/output devices.
- Provisions to mask off (inhibit) all interrupts except program check.
- Privileged mode of operation. Privileged instructions are executed only by the system control programming.
- Program check interrupt to prevent a hard stop for invalid storage or device address, invalid operation code, storage protection violation, and privileged mode operation error.
- Complete overlap of all I/O operations without data overrun errors.
- A two-byte disk data channel to reduce CPU burden (1/O cycle steals) during data transfer
- An internal timer to provide time-of-day services.
- Unit record restart to allow program detection of an I/O device not-ready to ready transition.
- Fast l-cycle processing unit (Model 15D) increases execution rate of instruction cycles.

System Control Programming

Multiprogramming

One user program can reside in each of th System $/ 3$ Model 15 program partitions. The pro grams then share the CPU facilities, thus reducing grams then share the CPU facilities, thus re
the time that the system is in a wait state.

Program partition priority is controlled by the supervisor. All programs operate with interrupts enabled; when an interrupt occurs, the superviso enabled; when an interrupt occurs, the superviso control to the highest priority partition that is in a ready state. The high priority partition gives up control when it encounters a condition that prevents further processing. The supervisor takes control away from the low priority partition at the completion of an event for which the high priority partition is waiting.

3277 Display Station/Keyboard
The CRT/keyboard used on System/3 Model 15 is composed of

- An IBM 3277 Display Station Model 1 cathod ray tube (CRT) screen
- A 78 -key operator console keyboard.

The CRT/keyboard is the operator/system com munication device for Model 15, and is required on every system. It attaches directly to the CPU and is on the system table top. The operator uses the CRT/keyboard for inquiry, secondary output, limited key entry of data, and operator/program interaction.

The CRT displays 480 characters (12 lines of 40 characters each) and supports a 64 -character se (36 alphameric characters, 27 special characters, and a blank). The keyboard is a movable 78 -key EBCDIC (Extended Binary Coded Decimal Interchange Code) keyboard that has 45 alphameric keys, 21 control keys and 12 program function keys. The CRT displays each character as it is keyed.

IBM 3284 Printer

The 3284 Model 1 Printer can be attached to System/3 Model 15 as an auxiliary printer.

The primary use of the 3284 is to obtain hard copy output of system messages that appear on the CRT The 3284 can also be used for low volume output of other programs.

The 3284 Printer uses a matrix print head and pin feed platen, and prints 40 characters per second. It uses a character set of 64 EBCDIC characters and can produce print lines of 120,126 , or 132 print positions.

BM 2501 Card Reader

System/3 Model 15 supports the IBM 2501 Card Reader Models A1 and A2. Models A1 and A2 read 80-column cards at a maximum rate of 600 nd 1000 cards per minute, espectively. The card image feature is available; however, it is supported oly by the Basic Assembler.

IBM 2560 Multi-Function Card Machin

The IBM 2560 Multi-Function Card Machine (MFCM) is an 80 -column card device available (MFCM) is an 80 -column card device avaliable MFCM

- Read cards from either of two hoppers. Model A1 reads 500 cards per minute; Model A2 reads 310 cards per minute.
- Punch cards at 160 columns per second (Model A1) or 120 columns per second (Model A2).
- Print on cards (Model A1 with optional print feature) at 140 positions per second
- Stack cards in any of five stackers (Model A1) or four stackers (Model A2).

The MFCM can be used to match records within two files, merge two files, select records, or sort card files.

IBM 3340 Direct Access Storage Facility
The IBM 3340 Direct Access Storage Facility provides the IBM System $/ 3$ Model 15D with a maximum of 205 megabytes of direct access sto ge. The system requires at least one 3340 Mode A2 and can also be equipped with either a 3340 22al B1

Two, three, or four drives can be attached to single system in the following configurations:

Configuration of Models	Total Number of Drives	Total Capacity in Data Bytes
13340 Model A2 only	2	$102,924,288$
13340 Model A2 and	3	$154,386,432$
13340 Model B1		

Each 3340 drive contains the mechanical and lectrical components needed to house, load, filter, and drive a 3348 Model 70 Data Module. The 3340 Model A2 also provides logic and power for all the 3340 drives.

BM 3741 Data Station Models 1 and 2 BM 3741 Programmable Work Station Models 3 and 4

The System/3 Model 15 supports all four models Data Station Models 1 or 2, or the Programmable Work Station Models 3 or 4) of the 3741. The 374 (all models) is a standalone device with one opera or station, which has one keyboard unit, one dis play unit, one or two diskette units, and a control unit. Models 2 and 4 are alsc equipped with the binary synchronous communications adapter.

The 3741 can be used online as a diskette input/ output device or offline to perform such 3741 functions as data entry, communications, and as a programmable work station (Models 3 and 4 only). In the online mode, the 3741 keyboard isansfer between the 3741 and the system is ata twe the system and diskete, ner bebetween the system and the diskette, never beween the system and the keyboard/display screen.

A 3741 Model 1, 2, 3, or 4 is required on all 5415 D cardless systems (channel terminate feature installed).

IBM 3344 Direct Access Storage

The 3344 Direct Access Storage Model B2 is a two-drive unit that attaches to the 3340 Direct Aco-drive unit that attaches to the 3340 Direct Access Storage Facity Model A2 on 3344 uld moth disk murfaces and readwrite heads are sealed with each 3344 data module.

The two drives of a 3344 provide approximately 407 million bytes of direct access storage.

IBM 1442 Card Read Punch

An IBM 1442 Card Read Punch Model 6 or Mode 7 can be attached to the System $/ 3$ Model 15 to provide 80 -column card reading and punching. Model 6 reads 300 cards per minute and punches 80 columns per second; Model 7 reads 400 cards per minute and punches 160 columns per second

The 1442 can perform the following operations:

- Read
- Punch with no feed
- Punch and feed
- Stack cards in either of two stackers
- Read column binary (card image)-supported only by the Basic Assembler program.

IBM 3410 Magnetic Tape Unit

The 3410/3411 Magnetic Tape Units read and write half-inch magnetic tape. The 3410 is a tap write half-inch magnetic tape. The 3410 is a tape unit only; the 3411 is a tape unit and a contro
unit in the same frame. From one to four tape units can be attached to System $/ 3$ Model 15 .

The $3410 / 3411$ Models 1,2 , and 3 have data rate of 20,40 , and 80 kilobytes per second, respectivel All units in a magnetic tape system must be the same model. Recording density can be 800 or 1600 bits per inch (bpi) for nine-track tape, or 200 556 , or 800 bpi for seven-track tape.

Both the 3410 and 3411 are desk high units with tape reels mounted horizontally rather than vertically. A transparent sliding cover provides easy access to the tape reels.
Each 3410/3411 tape unit must be equipped with special feature that specifies the read/write format desired. The features are single density, dua density, and seven-track. Dual-density and seven rack features cannot be installed on the same sub system.

BM 1403 Printer Model 2, Model 5, and Model N

The IBM 1403 Printer (Model 2, 5, or N1) is required on every System $/ 3$ Model 15 . It is attached via an IBM 5421 Printer Con rol Unit. Each model produces a 132 -print-position line. The character set can be expanded from 48 characters (basic) to as many as 120 characters if the universal character set specia feature is used.

Note: The Models 2 and 5 require an interchangeable chain car ridge adapter special feature for installation of the universal character set.

Various type fonts, styles, and character arrangements are avai able.

The 1403 printers use a type cartridge with 240 characters. The standard 48 character set is repeated five times on the cartridge to permit the following throughput (single line spacing):

The Serial Input/Output Channel (SIOC) allows attachment of the same devices as on the System/3 Model 10 , such as $1231,1255,1419$, etc.

BSCA

System/3 Model 15 supports the same communications capabilities that are presently available on the System/3 Model 10. One or two binary synchronous communications adapters (BSCA) are available to allow synchronous communication transmission rates from 600 bps to $50,000 \mathrm{bps}$. Communication with other IBM processors as wel as with batch and interactive terminals is possible with BSCA on both point-to-point and multipoint basis. The EIA Local feacure permits atachment orminals without the addition data communication lines.

IBM 1403 Printer Model N1

The display adapter provides control and 1/O hannel interfacing for the 3277 Display Station and 3284/86/88 auxiliary printers without the equirement of a 3271 Control Unit and a remote ommunications line. Each terminal connects irectly to the display ada cable. The terminal may feet from the system

The display adapter interacts with the program like a BSCA device (EBCDIC only, point-to-point nonswitched). Up to 30 devices, display stations, or printers can be used.

This feature cannot be used with BSCA-2. When installed, it uses the BSCA- 2 channel address. interrupt level and cycle steal priority.

LCA (Local Communications Adapter)

The LCA provides a directly connected binary syn
 Model 15 and allows the attachment of 3741 Model 2 without the use of modems. Also, a direct connection to $3271 / 3275$ provides limited function local CRT attachment. The LCA feature is a sim ed, reduced function BSCA similar to the exist gSCA-1 on the System/3 Model 10. Attached den math a bSCA feature with a point-to ork rode, and a local EIA data set interface. A data rate of $2,400 \mathrm{bps}$ is standard.

MLTA (RPQ)

The multiple line terminal adapter (MLTA) provides attachment capability for IBM's low-speed tart/stop terminals. MLTA allows attachment of one to eight communication lines with multiple terminals per line. Transmission speeds are 134.5 bps to 1200 bps . Terminals may be attached on an unlimited, limited, or in-house basis.

BSCC (Binary Synchronous Communications Controller)

The BSCC permits the IBM System/3 to function as a point-to-point or a multipoint processor erminal. One or two BSCC lines are available and each line handles 1273270 -type devices. The BSC lines allow synchronous communications Th BSCC ebsc ent a cluster of local terminals with use of modems or data communication lines.

Channel Terminate Feature

The channel terminate feature terminates channel bank 1 on 5415D cardless systems. The card I/O board ($01 \mathrm{~A}-\mathrm{A} 3$) is replaced by the channel terminate board which has two MST line terminator cards installed in locations U2 and U3.

A directly attached 3741 is required on all 54150 cardless systems. The 3741 becomes the APLD (alternate program load device).

Installation of the channel terminator featur does not prevent attachment of the 2501 as a card input device.

System Maintenance

The primary sources available for failure detection and isolation are the diagnostics and Maintenance Analysis Procedures (MAPs) used in conjunction with one another. The System/3 also logs certain errors in storage to assist with failure analysis. All this is described in the diagnostic user's quide.

This manual provides theory, major operation objectives, data flow, and conceptual positive logic diagrams for learning the system, then as an aid to finding a machine failure using the MAPs.

Scheduled Maintenance

Every 6 months:

1. Check filters visually and replace if necessary.
2. Check cooling fans for proper operation.
/O scheduled maintenance procedures are in the maintenance manual for each I/O device

5415 PROCESSING UNIT (CPU)

introduction

The IBM 5415 CPU contains the facilities for addressing storage, arithmetic and logical processing of data, sequencing instructions, and controlling the transfer of data between main torage and attached input/output devices. The basic unit of information is the byte which epresents one alphabetic, numeric, or special character. In arithmetic operations, a byte contains one numeric character and a zone. The low order bye conains the sign in the one portion. Byes may be hand -

The CPU main storage (MOSFET technology) is available in $96,128,160,192,224,256,384$ and 512 K byte capacity. Since the System $/ 3$ data path allows addressing only 64 K of main storage an address translation table (ATT) is used. Through use of the ATT, the 512 K of main storage can be addressed.

IBM 5415 Processing Unit Model D

The supervisor program uses storage protection to protect main storage in 2 K -byte segments. Write protect prevents one user program from writing over another user program or the supervisor pro gram. Fetch protect prevents an unauthorized user from accessing data.

The CPU main storage unit read and write cycle time is 480 ns each. There is calculation time tween the read/write time providing a basic chine (read/compute/write) time of $1.52 \mu \mathrm{~s}$.
nterrupts allow the system to make optimum use of the I/O devices, to handle program checks, and to execute data handling routines. An interrupt that originates at an $1 / O$ device signals operation end or requests special attention from the CPU. intrrupt a current instruction sequence perform intring instruction sequence, and return to the interrupted program.

The CPU has direct control over the I/O devices attached to it. Program instructions that determine which operation is performed (read, write etc.) and which unit is to be used test and initiate $1 / \mathrm{O}$ opera lions. ions.
The CPU is available for processing during most of each $1 / O$ operation even though many devices may be functioning simultaneously. This overlap of I/O perations and CPU processing is made possible cycle steal capability by which an $1 / O$ device, we performing an lo opera on, be to into
 exas har xat da, wh placed in the proper storge locard during IO cycles. The main program then con inues processing until the next row of data is avai ble. Thus, the cycle steal capability provides the benefit of a buffer without sacrificing storage cap acity or requiring a special buffer. When the oper ation end interrupt occurs, the CPU executes the tion end interrupt occurs, the CPU executes the card.

Step-by-step data processing is controlled by regis ters lop register, Q register, and condition register) that contain the operation code for the instruction being performed and the additional information required to execute the instruction.
he arithmetic and logical unit (ALU) performs calculations within the CPU. The CPU routes all data to be processed through the ALU, which is capable of performing the desired action.

In the CPU, odd parity is provided for all bytes of data to provide a means of validity checking. As a do is chits for correct data transter. As data ruis ch ch ant byte is determined by a second ALU (check ALU) and the generated parity is then checked the ALU latched output.

In addition to parity checking, as the program is executed, the CPU checks each operation code to ensure that it contains a valid instruction.

Only the supervisor program can execute certain CPU instructions (privileged mode) unless the CPU is in Model 10 mode. A program mode register (PMR) controls this Model 10 mode as well as oth CPU functions. There are nine such registers, one to control each program level.

Fast I-Cycles

The execution rate of instruction (1) cycles is increased in the 54 15D by accessing storage twice (two instruction bytes) during a 1.52 usec machine cycle. A four byte instruction (I-Op, I-Q, I-H1, and I-L1 cycle) previously taking four machine cycles to complete now requires only two. See simplified timing diagram \boldsymbol{A} for relationship between previous I cycle processing and fast I cycle operation. o access storage twice during a single machine storage fetch is required This two byte update is storage The aux ALU is also used to flush data from storage to the proper register on all fast I cycles and to perform base displacement operations e displacement operation dưring I-X cycles.

Certain CPU operations must be performed at normal processing speed. For those operations, the last half of each I cycle is followed by an idle or dummy half cycle. For example, a dummy half cycle is taken following the last cycle of a 3 or Cessor is idte with no storage fetches or IAR ers is O . dert extends over the entire machine cycle.

Those operations that require normal processing speed include

I/O and Halt instructions
The last cycle of a 3 or 5 byte instruction
Certain time dependent diagnostic programs
Cycles during which program checks occur
Refer to the instruction cycle diagram on page $5-2$ for the 1 cycle, dummy half cycle, and machine cycle relationship of all instruction types.

Previous Rat

Instruction Cycle
Storage Fetch
AR Update
Fast I Cycle Rate
Instruction Cycle
Storage Fetch
IAR Update

5415 PROCESSING UNIT (Continued)

Data Flow

Data flows serially through the machine in 8 -bit bytes plus one parity bit through ALU and aux ALU. The output from ALU and aux ALU is gated and distributed to the remaining functiona units of the machine.

1-Cycle Operation

The aux ALU receives data from the local store egisters (two-bytes wide) or the SDBO (one-byte wide) and can either pass the inputs directly through aux ALU unchanged or combine them with an ADD or AND funclon. Ded by +1 if the directly through can be

The auxiliary ALU output is gated to the local The auxiliary ALU output is gated ore tocal p register. Refer to section 5 for a detailed description of each I-cycle operation.

E Cycle Operation

The ALU receives two bytes of data and combines them in parallel into one byte. ALU performs decimal add and subtract, binary add and subtract, and logical AND and OR operations. All data to the $A L U$ comes from the A and B registers, and the output is the contents of B modified by the contents of A.

Output of the ALU is available to the $1 / \mathrm{O}$ attac ments on the data bus out (DBO) in one of two forms: either translated from EBCDIC to System/ 3 card code, or straight from the ALU. FY data transferred to orforrad: one through $A L U$, the data can be transered. Corgh ALU, ALU output is also available for entry into main storond to the on and registers for instruction de. code to the condition register (CR), and to the local storage registers (LSR) for temporary storage.

CPU Timing

The length of the CPU machine cycle is 1.52μ. Each machine cycle contains a storage read and an optional storage write time

Each machine cycle is divided into nine clock tirnes; clock 0 through clock 8. Clock 0 and clock 1 are each 200 ns and all of the remaining clock times are 160 ns. Each clock is divided into 40 ns phases. A clock 9 time, consisting of five phase pulses (200 ns), is taken each cycle during cycles of the following operations (1) system reset, (2) step mode, (3) alter SAR, (4) alter ATT/PMR, and (5) alter/display storage with the storage test switch in its step position

Parity Checking and Generation

The CPU checks for dropped or extra bits during data transfer by checking for an odd number of bits after the transfer. The parity checking (P) and parity generating (PG) points are shown in datà flow diagram.

Correct ALU output parity is generated. After the data leaves the A and B registers, it can bè altered by the decimal and binary complement circuits, the ALU, the decimal correct circuits, and the sign control circuits. The parity changes caused by all these make it necessary to generate parity for the ALU output.

Unit Check

Unit check handling of testable indicators is con trolled by programs. Restart procedures are conveyed to the operator by programmed halt operations, halt identifiers displayed on the console, and recovery/restart procedure listings.

Errors

The types of CPU errors are Processor checks and Program checks.

Machine Language (Part 1 of 5)

Number Systems

To understand the operation of the CPU, it is necessary to understand the number systems and character codes used. Accordingly, the following topics discuss the decimal, binary, and hexadecimal number systems.

Decimal Number System

The decimal number system has ten symbols: 0 The decimal number system has ten symbols: 0 , is 10 .

Counting starts in the units position with 0 and proceeds through the next nine symbols. When 9 is reached, there are no more symbols; therefore a 1 is placed in the position to the left (tens position) and the count resumes with a 0 in the original position:

Continuing the count, it takes one hundred on numbers (count began with zero) before a third position (hundreds position) is required to express
a 3-digit number. Similarly, it takes one thousand a 3 -digit number. Similarly, it takes one thousand position) is required to express a 4 -digit number Bescause of the role that the powers of 10 play in the representation of a number, (10 unique symbals), 10 is said to be the base of the decima system.

A number is made up of coefficients defined by the power of their position. Each coefficient is multiplied by a power of 10 and some number from 0 to 9 . For example, the number 123 break down as follows:

Binary Number System

The binary number system has two symbols: 0 and . The base of the system is 2 .

Digital computers use binary circuits and binary mathematics. The binary, or base 2 system, use wo symbols, 0 and 1 , to represent all quantities. Counting is started in the same manner as in the decimal system, with 0 for zero and 1 for one. The number 2 is expressed by placing a 1 in the next position to the left and starting again with 0 in the original position. Thus binary 10 is equivaent to 2 in the decimal system. Counting continues with a carry to the next higher order every time a 2 is reached instead of every time a ollows: follows:

Binary	Decimal	Binary	Decimal
0	0	110	6
1	1	111	7
10	2	1000	8
11	3	1001	9
100	4	1010	10
101	5	1011	11

The 1 's and 0 's of a binary number represent the coefficients of the ascending powers of 2 . To il lustrate, assume the binary number 1111011; the number is expressed as:
$\left(1 \times 2^{6}\right)+\left(1 \times 2^{5}\right)+\left(1 \times 2^{4}\right)+\left(1 \times 2^{3}\right)+\left(0 \times 2^{2}\right)$
$+\left(1 \times 2^{1}\right)+\left(1 \times 2^{0}\right)$
The various terms do not have the meanings of units, tens, hundreds, thousands, etc., as in the decimal system, but signify units, twos, fours, eights, sixteens, etc. Thus the binary number breaks down as follows (compared with decima equivalent):

Binary
Decimal

Hexadecimal Number System

- System has 16 symbols: $0,1,2,3,4,5,6,7$ 8,9, A, B, C, D, E, and F.
- Base of system is 16
- System is shorthand notation for binary num bers.
- Four binary bits are represented by one hexa decimal symbol.
bols

Binary numbers have approximately 3.3 times as many coefficients as their decimal counterparts. This increased length presents a problem when talking or writing about binary numbers. A long string of 1 s and 0 s cannot be effectively spoken or read. A shorthand system is necessary, one that has a simple relationship to the binary system and that is compatible with the basic 8 -bit byte used in the CPU. The hexadecimal number system meets these requirements.

Counting is performed as in the decimal and binar systems. When the last symbol (F) is reached, a 1 is placed in the next position to the left and coun ing resumes with a 0 in the original position, as follows

0	10	20
1	11	21
2	12	22
3	13	23
4	14	
5	15	
6	16	
7	17	
8	18	
9	19	
A	1 A	9 A
B	1 B	9 B
C	1 C	9 C
D	1 D	9 D
E	1 E	9 E
F	1 F	9 F

One hexadecimal symbol can represent four binary bits. Hence byte, can be represented by two hexadecimal symbols. The relationship between the hexadecimal, binary, and decimal systems is as follows:
Hexadecimal Binary Decimal

0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
A	1010	10
B	1011	11
C	1100	12
D	1101	13
E	1110	14
F	1111	15

It is important to remember that four binary positions are equivalent to one hexadecimal position.

Hexadecimal numbers are represented in the same manner as decimal and binary numbers, except that the base is 16 . The terms of ne number represent the coefficients of the ascending powers of 16 as in the following example of the hexadecimal number 257 (decimal equivalent equal 599)
$257=\left(2 \times 16^{2}\right)+\left(5 \times 16^{1}\right)+\left(7 \times 16^{0}\right.$
$=(2 \times 256)+(5 \times 16)+(7 \times 1)$
$=512+80+7$
$=599$

Machine Language (Part 2 of 5)

Number System Conversions

In the preceding examples, numbering systems derive decimal equivalents by multiplying the coe ficients of the ascending powers of the base. Large numbers are difficult to convert with this method. Simpler methods for converting hexadecimal to decimal and back, and hexadecimal to binary and back are as follows.

exadecimal to Decima

To convert a hexadecimal number to decimal

1. Convert any term represented by a letter symbol to its decimal equivalent.
2. Multiply the high order term by 16 .
3. Add the next lower order term to the product obtained in step 2.
4. Multiply the result obtained in step 3 by 16
5. Add the next lower order term to the product obtained in step 4.
6. Continue multiplying and adding until the low order term has been added

As an example, convert the hexadecimal number 273 to its decimal equivalent.

As a second example, convert the hexadecimal mal equivalents yields 10711

Decimal to Hexadecimal

To convert a decimal number to hexadecimal

1. Divide the decimal number by 16 ; the re mainder of this first division becomes the low order term of the final answer.
2. Divide the quotient (obtained from the first division) by 16 ; again the remainder becomes part of the final answer (next higher order term).
3. Repeat steps 1 and 2 until the quotient is less than 16 . This final quotient is the high order term of the final answer
4. Convert any term between 10 and 15 to its hexadecimal letter-symbol equivalent.
For example, convert the decimal number, 471 to hexadecimal

answer $=1 \mathrm{D7}$

Hexadecimal to Binary and Binary to Hexadecimal

Hexadecimal 0 through F, which have the decimal values of 0 through 15 , respectively, are repre sented in the binary system by four binary bits. To convert a hexadecimal number to its binary equivalent, express each term in its equivalent four-bit binary group. To convert binary numbers to hexadecimal numbers, reverse the process

For Example:

Hexadecimal: $3 \quad 7 \quad$ B 1
$\begin{array}{lllll}\text { Binary: } & 0011 & 0111 & 1011 & 0001\end{array}$
Hexadecimal: A $\quad 6 \quad 5 \quad$ F
Binary: $1010 \quad 0110 \quad 0101 \quad 111$

Data Formats

The basic unit of information in the CPU is the byte. Each byte is eight bits or two hexadecimal characters long. An additional bit (P bit) is added to each 8 -bit byte to maintain odd parity. The bit structure of a byte is:

```
Zone | Numeric
```


Each main storage address location contains one byte of information. Therefore, each time main storage is addressed a full byte is read from storage.

Each byte is divided into two parts. Bits 4 to 7 represent the numeric portion of a character and bits 0 to 3 represent the zone portion. Therefore, a byte can represent numeric, alphabetic, or special characters. These characters are expressed in EBCDIC (Extended Binary Coded Decimal Interchange Code).

When used as a numeric quantity, each byte contains one numeric digit in bits 4 to 7 with the sign of the entire field contained in the zone portion of the low-order byte. The zone portion of the rest of the bytes in the field contain the EBCDIC for a numeric digit (hex F). The EBCDIC for plus is hex F and for minus hex D. Internally, the CPU also recognizes the ASCII-8 (American Nationa Standard Code for Information Interchange) for minus (hex B) but changes it to EBCDIC in the result field of a decimal operation. The CPU considers any other zone combination to be plus (BA and A)

A B-zone punched over the units position of a field indicates a minus field to the CPU. A plus field contains no zone punch. This chart shows conversion for EBCDIC and card cod

$\begin{aligned} & \text { EBCD } \\ & \text { Bits } \end{aligned}$	$\text { IC } 0123$	1100	1101	1110	1111
4567	Digit Zone Punch	BA	B	A	
0000					${ }^{*} \phi$
0001	1	A	J		1
0010	2	B	K	S	2
0011	21	C	L	T	3
0100	4	D	M	U	4
0101	41	E	N	V	5
0110	42	F	0	w	6
0111	421	G	P	X	7
1000	8	H	0	Y	8
1001	81	1	R	z	9

*Card Code for Numeric Zero is A Only
The maximum length of a source field is 16 digits and the maximum length of a result field is 31 digits.

Instruction Format

The instruction length is three to six bytes. Bits 0.3 of the operation code determine the type of instruction and addressing.
The CPU executes three types of instructions. They are:

- One address instructions.
- Two address instructions.

One address instructions address only one field within main storage and therefore contain one address. (The load address instruction contains the needed data rather than an address.) Twoaddress instructions are those instructions that address two separate fields within main storage and therefore contain two addresses. Command instructions are those instructions that do not address main storage and therefore contain no addresses

Each instruction has an operation code and a Q code. Either a control code, or one or two addresses follow them. Thus, the length of the in struction varies from three to six bytes depending upon the type of instruction and the type of addressing specified (direct or indexed).

Operation Code
The first byte of each instruction is the operation code (op code). This op code specifies the kind of instruction, the method of addressing and the operation to be performed.

The first half byte (bits $0-3$) specifies the kind of the instruction and the method of addressing to be used.

$\begin{array}{\|l\|} \hline \text { Op Code } \\ \text { Bits } \\ 01 \\ 01 \end{array}$	Number of Bytes in Address	B Field Address	A Field Address
(1) 00	2	Direct	Direct
01 01	1	Indexed XR1	Indexed XR1
10 10	1	Indexed XR2	Indexed XR2
11 : 11		No address	No address

If all four bits of the first half byte are on (all ones), the instruction is a command instruction. The bits are grouped in pairs (bits 0-1 and bits 2.3). If both bits in either group are on, the instruction is a one-address instruction; if neither group has both bits on, the instruction is a two address instruction. If a bit is on in either of the bits ane an in add moss inctruction, the address is indexed Both bits off in either pair indicates is indexed. Both b

The second half byte (bits 4-7) of the op code de termines the actual operation to be performed. The complete instruction set executed by the CPU is shown in the following chart:

a.Code

The second byte of each instruction is the Q-code. Depending upon the operation specified, the O -code is used to further define the instruction \boldsymbol{A}

Refer to the description of each instruction for details of its Q -code.

Control Code

The control code is the third byte used in the five command instructions and contains additional data pertaining to the command being executed.

Storage Addresses

Instructions in a one- or two-address format use the third and following bytes for main or register storage addressing

Machine Language (Part 4 of 5)

Addressing

When executing instructions, the CPU uses two ypes of addressing; direct addressing and indexed ddressing

Direct Addressing

Direct addressing requires a two-byte address for each field or location used by the instruction. For ne-address instructions, the first two-byte addres hat follows the O -code is the address of the result or destination field (B field). For two-address or destination field (B field). For two-address code is the address of the result or destination field (B field) and the second two-byte address is the source field (A field). The BAR (B address register) maintains the B field address and the AAR (A address register) maintains the A field address.

Most addresses given in the instructions are for the ocation of the low-order or rightmost digit of the field. Therefore, the CPU executes the instruction, processes each digit position, and decrements the BAR and ARR to address storage in descending order. An exception is the insert and test character instruction. The CPU executes this instruc tion from high-order to low-order digits and increments the BAR

Indexed Addressing

Indexed addressing provides the programmer with a means of changing addresses within a program without changing the instruction. An indexed address is a single byte within the instruction. This single byte is added to the contents of a wo-byte index register to form a new address. This new address is then loaded into the BAR or AAR depending upon the address being indexed.
ndexing is used to. (1) execute an instruction with an indexed address, (2) add a constant to the index register, and (3) branch to an address to execute the instruction at a different main storage location. Thus it is possible to execute an instruction or series of instructions many times without wasting main storage

Wo index regiters (XR1 or XR2) are arable or indexing. The recognition of indexed addresses and the selection of each index register is covered under Instruction Formats.

Instruction and Execute Cycle

There are two types of machine cycles used in the internal operation of the CPU. These are instruc ion cycles (1-cycles) and execute cycles (A-cycles and B -cycles)

- 1-cycles read out instructions from storage.
- A-cycles and B -cycles execute the instruction
-cycles move the instructions from storage to the various registers used to execute the instruction. the instruction does not require additional use of main storage after the completion of I -cycles, (such as a branch instruction), the operation complete without execute cycles. However, most operations require the use of data from one or two main storage fields. Execute cycles mipulate this data to perform the operation.

The CPU uses two types of execute cycles; A-cycles to address main storage source fields, and B-cylces to address the main storage result field. If only one field is involved with the instruction, B-cycles address main storag

Sequential Instruction Execution

- Instructions are located in consecutive, ascend ing main storage locations.
- Instruction address register (IAR) is incremented by one each instruction cycle.
fomputations are performed manually, severa steps can be combined into a single step. For example, in a payroll operation, all deductions can be added together in one step. However, the CPU performs computations in a step-by-step pro cedure and must add each deduction into the deduction total in a separate operation.

Example

Manual		CPU		
Federal Tax	17.50		Federal Tax	17.50
State Tax	6.30	State Tax	6.30	
Charity	1.50	Total Charity	$\underline{23.80}$	
Total	1.50			
Deductions	25.30	Total Deductions	25.30	

In the example shown the CPU requires three steps. Since it would be desirable to retain the federal tax figure, the total deductions are calculated in a separate location. Therefore, the first step is to reset the total deduction field to zeros and add the federal tax into the total deduction field (zero and add zoned). Then, in separate steps, the state tax and charity field zoned decimal

Because of this sequential method of processing the instructions are in ascending storage location in the CPU Instruction sequence is maitain by retaining the address of the storage location in the IAR. The IAR is a two-byte ISR (local storage register) and is incremented each cycle so the next ascending storage location can be addressed.

In the sample program the IAR contains the stor age location 1000 which is addressed during an -cycle. The operation code is read from storage is can be addressed during the next cycle. This aress contines utithe stora location 10 has been addressed. The CPU then executes the instruction. After the instruction execution is complete the IAR again addresses storage location 1006 (operation code of next instruction).
1013
Address of Federal Tax Field
(A Field)
Storage
Location

Add Zoned	O Code	Address of Tota

Add Zoned Decimal Operation Code O Code (Length of Two Fields) Address of Total Deductions Field (B Field) 00000110 (

Address of Tota
Deductions Field

| Add Zoned |
| :--- | :--- | ---: |
| Decimal |
| Operation |
| Code |\quad| Q Code |
| :--- |
| (Length of |
| Two Fields) |\quad| Address of Total |
| ---: |
| Deductions Field |
| (B Field) |

Storage
1012
Locatio
It is possible to address over 64K positions storage with the two-byte address by using the ATT (address translate table). Refer to page $2-54$ for a complete description of the ATT.

A branch instruction, an I/O cycle, or an inter rupt routine alters the sequential or an inter addressing previously discussed An I/O cy or interrupt routine always returns control to the interrupted program and resumes its pro gram execution where it stopped; a branch instruction does not

Machine Language (Part 5 of 5)

Branching

The CPU can use branching to alter the instruction sequence. Branching provides flexibility within a given CPU program. When the program branches to a different storage location and skips certain steps, it alters the results of the stored program. A sample program that contains a branching operation is shown. In this example, the company has a stock option plan that permits employees who earn $\$ 80.00$ or more to purchase stock. If they earn less than $\$ 80.00$ the stock deduction is bypassed.

During the subtract zoned decimal operation, the CR (condition register) is set to high, low, or equa depending upon the result. The condition register is set after all arithmetic and cond condition register but the CR setting varies with the operation perormed. For the subtract zoned decimal operation, the CR is set to low if the result is negative. If $\$ 80.00$ is subtracted from the salary field, an salary of less than $\$ 80.00$ results in a minus total.

The Q -code bit structure determines the branch condition for a branch on condition instruction. In the following example, the branching condition is a CR low setting. If the CR is set at high or equal, the next sequential instruction (storage location 1028) is executed. However, if the CR which is set at low, the branch-to address (storage location 1034) replaces the next sequential addres 1028.

Storage
Storage

Branch On Condition Operation Code	O Code (Branch On CR Low)	Branch to Address (Storage Location 1034) (B Field)					
11000000	00000010	00010000	00110100				
1025					1026		

Locatio

Add Zoned Decimal Operation Code	Q Code (Length of 2 Fields)	Address of Total Deduction Field (B Field)	Address of Stock Deduction Field (A Field) 00000110		

Storage
1028
029
1030
1031
103

Interrupt Routines

The 5415 CPU has eight interrupt levels. Five of these levels are devoted to I/O devices and three levels support CPU functions.

The supervisor program, the interval timer, and the program check interrupt are all assigned an in terrupt level which supports the CPU operation

An interrupt routine interrupts the main program with a separate program routine. For this reason, all interrupts except program check interrupts can occur only at the completion of an instruction. following the program check

Interrupts are assigned priorities; the highest interrupt level takes precedence over lower level interrupts which means it is possible for one interrupt routine to interrupt another routine of lower priority. The assigned priority from high to low is:

Program level 7 Program check
6 Interval timer/Unit record restar SIOC
MLTA/BSCC
BSCA

Op-end

1 CRT
Supervisor program

I/O Cycle Steal

The CPU issues a start $1 / \mathrm{O}$ (SIO) instruction which starts the I/O device. Whenever the I/O device reaches a point in its mechanical operation where it needs data from storage (write, print, punch) or has data to send to storage (read), the device requests an I/O cycle. The CPU uses two methods for transferring data to and from the various I/O devices: cycle steal and sense/load during an interrupt routine.

The 5424 uses the cycle steal method of trans ferring its data. An I/O cycle request can occur during any cycle and is granted before the nex CPU cycle. The attachmnet then has complete control of data flow, LSR selection, and storag during that cycle.
Since more than one device attachment ma request a cycle at a time, each device is assigned a cycle steal priority.

PROCESSOR FUNCTIONAL UNITS CPU CLOCK

A 25 MHz oscillator drives this group of binary triggers which supply the basic timing pulses for both the CPU internal operations and the I/O attachments. There are nine ($0-8$) basic clock times. (The CE can force a clock nine for diagnostics.) Clock times 0,1 and 9 are each 200 ns long while the remaining clock times are each 160 ns long. All clock times are divided into 40 n phase pulses. Clock times 0,1 and 9 have five phases (A through E); the other clock times have only four (A through D).

RUN CONTROLS (Part 3 of 4)

The ALU (arithmetic and logic unit) is a murtip function unit that receives information from the A and B registers and performs the following functions with the A and B register data:

- Logical OR
- Logical AND
- Tests for presence or absence of bits
- Pass B register through
- Pass A register through
- Binary subtract
- Binary add
- Decimal subtract
- Decimal add

The ALU processes a full byte of information at a time. Register A or B can supply the full byte or depending upon the operation only one-half of the byte. The ALU is used four times during each machine cycle and is loaded each even cloc

AND/OR and Test False

The following figure illustrates the AND/OR and test false functions for a single bit position. Ou put from the test false lines sets the CR test
false latch. The output depends upon the presence or absence or bis IAND or OR) Users false output is discussed with individur ual operation descriptions.

The AND function is a bit-by-bit comparison o the two registers. If the same bit is on in each register the output is active. The OR function output is active if a bit is present in eithe ger. the AND and OR control lines are:

Binary Subtraction

The following figure shows a decimal comparison between the conventional method of subtraction and the type of subtraction used by the System $/ 3$.

System 3
(increase subrrahend
by 1 with carry)

Under the conventional method, whenever it is necessary to borrow from the next position, the minuend is increased by 10 in the position wher the subtraction is taking place and decreased by 1 in the position that is borrowed from. For instance, when subtracting the 6 from the 4 in the units positions, after borrowing from the tens position, the units position of the minuend becomes 14. Because of the borrow, the tens porrow is necessary so, after the bompe, ano positions of the minuend is 11 , this method continues to the end of the problem.

The same result is reached if, instead of reducing the minuend by 1 after borrowing, the subtrahend is increased by 1 with a carry. Thus, in the tens position of the preceding example, the carry 11 as in the conventional method

Binary subtracting is done in the same way excep for the value of the borrows. Because decimal numbers have ascending powers of 10 , a borrow has value of 10 . Similarly, since binary numbers have ascending powers of 2 , a borrow has a value of 2 . The following figure illustrates this by subtracting the hexadecimal value BF from the hexadecimal value EB.

After subtracting the first two positions, it becomes necessary to borrow in order to subtract the third position. This borrow has a value of 2 and the result of the subtraction is 1 . Using the carry method of subtraction, a carry to the fourth position gives the subtrahend a value of 2 . This forces a borrow from the next position which This method continues to the end of the problem

The minuend enters the ALU from the B register and the subtrahend enters from the A register.

The subtrahend is subtracted bit-by-bit, starting with bit 7 and continuing through bit 0 . Carries from bit to bit are internal but if there is a carry needed in bit 7 . This figure illustrates the subtract function for a single bit position

Binary Addition

Binary addition is accomplished by complementing the A register and subtracting the result from the B register. The A register is complemented when a bit is replaced by a no-bit and a no-bit is replaced by a bit. In order to get a true complement, it is necessary to force a carry into the low-order bit of the first character. For example,
to add the hexadecimal values 8 F 83 and 3 F 93

Borrowed Amount	32	22222	
Minuend (true)	10001111	10000011	
Subtrahend			
(complement)	11000000	01101100	
Carry	1	111111	Forc
ALU Total	11001111	00010110	

8F 83 plus 3F 93
The ALU controls and circuits for binary addition are similar to binary subtract. The exceptions are: the A register input to $A L U$ is complemented; and a carry is forced into bit 7 during the first cycle.

Arithmetic Carry Out
(First cycle of operation)

Decimal Subtraction

The ALU subtracts the binary numbers in bytes. However, because a single decimal number only uses one-half of each byte, the ALU must subtract each half separately. Thus, a carry from bit 4 to bit 3 is used to set the digit carry trigger.

Subtraction is done is the same way as binary subtraction as long as the minuend (B register) is la ger than the subtrahend (A register). But, because ger than the subtrahend (A register). But, because
the ALU is capable of handling digits up to 15 (hex F) and in this case the digits have a maximum value of 9 , the ALU reaches an incorrect decimal result when there is a borrow from the next digit (A register larger than B register). This difference of 6 must be subtracted from the result in order to reach a correct result.

$\begin{aligned} & \text { B Larger Than A } \\ & 8-3 \end{aligned}$		$\begin{gathered} \text { A Larger than B } \\ 3-8 \end{gathered}$	
	222		2
B register	1000	B register	0011
A register	0011	A register	1000
Carry	111	Carry	
Total	0101	Total	$\overline{1011}$
Note:Subtract and complement			2
		Total	1011
functions affect only the		Decimal Co	-rrect 0110
digit portions. The zone		Carr	$\mathrm{y}^{*} 1$
portion is not	affected.	Corrected	Total 0101

The decimal correct circuits are activated by the carry from the bit 4 position.

The following figure shows the data flow for decimal subtraction and contains a table of the bit correction for the legitimate decimal characters.

Bits 0 to 3 of the low-order decimal character con tain the sign of the field. The ALU output for cuits and is discussed with the individual opera tion descriptions.

Decimal Addition

To add decimal digits, it is necessary to complement the A register and subtract it from the B register. However, since the characters being complemented are decimal, the binary equivalent of the 9 s complement is used.

B Register
A Register Complema

Cotral $\frac{1111}{1011}$ —Forced
\(\begin{array}{rc} \& 2

Total \& 1011

Decimal\)| Corret | 0110 |
| ---: | :--- |
| Carry* | 1 |\end{array}

Corrected Total $\overline{0101}$

B Register (3) plus A Register (2)
-Mathematical carry; not done by carry circuits
As in subtraction, if the complemented A register digit is larger than the B register, the result must be corrected.

The following figure shows the decimal add data flow with a table for the 9s complement of the legitimate decimal digits.

Recomplement

Decimal adding or subtracting under certain conditions produces a result that is a complement form of the correct result. This requires a recomplement
apration whereby he result is fed hrough
ALU a send

An add operation with unlike signs for the two fields and the A-field is larger than the B-field

- A subtract operation with like signs for the two fields and the A -field is larger than the B -field
- A result is minus zero.

The need for a recomplement cycle is signaled by carry from the high order position of the field In the case of a minus zero result, the recomplement is signaled by the condition register and is contains the data flow for recomplementing.

The following figure illustrates the method used to ecomplement. After subtracting 52 from 27, the LU result is 75. To recomplement, the result is ed back through the B register and is decimal com lemented before entering the AlU. The A regis lemen is to 1 on the first cycle and is left blagk each

A register is subtracted from the B register com-
A register is subtracted from the B register com-
plement. A carry is forced into the first digit just
as in regular complementing. The final result is the 10's complement of the original result.

Subtract Cycles

CHECK ALU

Parity Generation and Parity Check

Correct parity is generated for the ALU output. After the data leaves the A and B registers, it can be altered by the decimal and binary complement circuits, the ALU, the decimal correct circuits, and the sign control circuits. The parity changes caused by the ALU and these circuits make it necessary to generate correct parity for the ALU output.

A second ALU, or check ALU, is provided to determine the parity changes which take place within the ALU

The check ALU does not have a latched output, decimal correction, or sign control, but otherwise performs similarly to the ALU. The output of the check ALU is a group of exclusive ORs that count the number of changes made to the B register complement after it enters the ALU.

The check ALU output is then added to the changes caused by the B register complement, sign control, and the decimal correct circuits to determine if a P bit is required for the ALU. The output of the ALU is then checked to ensure that it has odd parity.
The A register complement circuits are checked separately. Incorrect parity from either the ALU the A register complement circuits cause an ALU parity error.

Carry Check

An additional set of carry triggers is used to conrol carries from the high order bit of the check ALU. The triggers function identically to the digit carry trigger and the temporary carry trigge used for the ALU. The outputs of the two carry control groups are then compared to check for the correct number of carries for the ALU

ALU Parity Checking

 isplay ALU output, to position 4 to display ALU controls and carries.

A-REGISTER AND CONTROLS

A-Register

All data that modifies the contents of the B register in the ALU is buffered in the one-byte A register. The modifier comes from the local storage register (LSR), the condition register (CR), or from an I/O device on data bus in (DBI). For normal address modification, output of the LSRs is fed to the B register and through the ALU while the A register provides the forced modifier.
With the exception of disk operations, all incom. ing I/O data is fed through the A register and into the ALU. However, on disk operations two bytes of ata are transerred at one lime. One byte is main thegster ALU and his to main storage. on the extended channel.

B REGISTER AND CONTROLS

The B register is a one-byte data buffer. The B register contents are gated to the ALU where the data can be modified by the A register. The data in the FDR (fetch data register) is normally gated into the B register every machine cycle, but can be inhibited if the operation requires. During an I/O cycle, the attachment has control of gating the data to the B register

AUXILIARY ALU
The auxilary ALU is a 16 bit multiple function unit that receives data from the auxilary B register and the storage data bus out (SDBO) and performs the following three functions with that data

- Pass SDBO and auxilary
B register data through
- AND
- ADD

The aux ALU is used to update the two byte IAR and to pass data from storage to the proper register during all fast I cycle operations. It is also used to update the base displacement during $1-X$ cycles
Data can be passed directly through the aux ALU or combined by the AND and ADD functions. Data passed directly through the aux ALU can be incremented by +1 if the carry in signal is active.

Correct parity is generated for the aux ALU outCorrect parity is generated for the aux ALU output and the output gated to the local store registers, ondition register, Q register, and op register. The operation.

The auxiliary B register is a two byte register used to buffer the local store register and used to buffer the local store register and
condition register during fast I-cycle operation condition register during fast 1 -cycle operation.
The output of the aux B register is gated to the The output
aux ALU.

CONDITION REGISTER (CR) (Part 1 of 2)

The condition register is a six-bit register that contains the six conditions the system may test as a result of instruction execution. These six bits are tested as follows:
$x \times \times \times \times 1$ Equal conditio
$x \times \times \times 1 \times \quad$ Low condition
$x \times 1 \times x \times x \quad$ Decimal overflow condition
$\times 1 \times \times \times \times$ Test false condition
$1 \times \times \times \times \times \quad$ Binary overflow condition
The equal, low, high, and binary overflow cond tions reflect the result of executing the last instruc tion that affected them (one of the following):

- Add zoned decimal
- Zero and add zoned
- Subtract zoned decimal
- Edit
- Compare logical characters
- Add logical characters
- Subtract logical characters
- Add to register
- Compare logical immediate

The decimal overflow or the test false condition can be reset by:

- Branch on condition
- Jump on condition
- Load register (PSR) instruction.
- System reset.

System reset initializes the condition register to:

- Equal condition
- Not overflow condition
- Not test false condition.

The condition register may be loaded from the ALU output, but normally the bits are set individually in the latches by the CPU logic as a re dividually in the latches by the CPU logic as a re-
sult of instruction execution. When the CR consult of instruction execution. When the CR con-
tents are needed for program testing, its output is fed to the A register and into the ALU.

The lower six bits of the PSR (program status register) contain the image of the condition register for the specific program level. PSR is used to save and to initialize condition register settings of the individual program levels.

The conditions of the $1 / 0$ attachment logic are stored in registers in the attachment and do not affect the state of the condition register.

Condition Register Settings

Operation	Bit	Decimal Arithmetic	Logical Compare Sub Logical	Add Logical Add to Register	Edit	Test Bits	Branch or Jump on Condition
Equal	7	Result is Zero	First Operand is Equal to Second	Result is Zero	Source is Zero		
Low	6	Negative	First Operand is Lower than Second	No Carry and Non-Zero Result	Negative		
High	5	Positive	First Operand is Higher than Second	Carry and Non-Zero Result	Positive		
Decimal Overflow	4	Overflow					Overflow Reset if Tested
Test False	3					Test False	Test False Reset if Tested
Binary Overflow	2			Overflow			

The nine program mode registers (PMR) control the Model 15 CPU functions and are the interface between the programmer and the CPU hardware.

Each of the nine PMRs is uniquely associated with one of the eight interrupt levels plus the program level. Since each machine level has its own PMR the interrupt routines and the main program can independently use the enhanced functions of the CPU.

As interrupts occur and take control from the main program or lower level interrupts, the PMR for that interrupt is selected. When interrupts are re set, system control falls back to its previous level. The PMR that was in control previously is selected and processing resumes as if the interrupt never occurred

When a program changes the contents of the current PMR, the new contents are effective at NSI (next sequential instruction)

The contents of the PMRs are indeterminate after power up. The controlling set of polarity holds lactive PMR) are, however, forced to privileged mod then referred to as being in Model 10 mos. Th CPU remains in this mode until the first load PMR instruction is executed.

The program level PMR must first be loaded, then the interrupt level PMRs are loaded. This must be done before any interrupts occur to prevent pos sible checks caused by using the indeterminate contents of the PMRs after power up.

The ATT control bits (1, 2, and 3) and the storage protect bit (6) must not be turned on until th contents of the ATT/SPT have been set by the program. To do so would result in checks be cause the ATT/SPT contents are also indeterminate after power up.

A

on next page).

Byte 1

Bit 0 I/O 18th bit
This bit is used in conjunction with LIO and SNS commands to load and sense the 18 th address bit associated with each $1 / O$ device LSR.

If this bit is on and an LIO is issued to a device LSR, the 18 th bit in the selected LSR is turned on. If this bit is off and an LIO is issued to a device LSR, the 18th bit in the selected LSR is turned off. When a SNS command is issued to a device LSR, the 18 th bit in the PMR (bit 0) is set to the state of the 18 th bit in the selected device LSR. The PMR may be stored in memory and bit 0 inspected to determine the contents of the device LSR. Since a two instruction equence (LCP, LIO or SNS, SCP) is reed to set or inspect the 18th bit in he I/O LSR, an interrupt may occur wween these instructions. Each inerrupt level, however, has its own PMR ane level will not destroy the results another. It is not necessary to set on his two-instruction sequence.

Bit 1 Address translation EB cycles
When this bit is on, the output of the ATT used to develop a 18 -bit real addres during EB cycles only. EB cycles are used ofetch, modify, and store the contents of the B field (operand 1). If the B fiel s above 64 K of storage, this bit must be on and the ATT must be appropriately loaded. If the B field is below 64 K of torage, the ATT may be used but is not required. This bit must not be turned on until the ATT contents are set after power on. This bit should be off while the ATT contents are changed.

Bit 2 Address translation EAcycles

When this bit is on, the output of the ATT is used to develop a 18 -bit real address during EA cycles only. EA cycles are used to fetch the contents of the A field (operand 2). If the A field is above 64 K this bit must be on and the ATT must be appropriately loaded. If the A field is below 64 K of storage, the ATT may be used but is not required. This bit must not be set on until the ATT con tents are set after power on.

Bit 3 Address translation I cycles
When this bit is on, the output of the ATT is used to develop a 18 -bit read address during l cycles. I cycles are used oo fetch the instruction to be executed from main storage. If the instruction to be executed is above 64 K of storage, this bit must be on and the ATT must be appropriately loaded. If the instruction to be executed is below 64 K of storage, the ATT may be used but is not required. This bit must not be set on until the ATT contents are set after power on.

Bit $4 \quad$ Privileged mod
When this bit is on, the system is in privileged mode and all instructions can be used. If the bit is off, the following in structions cannot be used

LIO
SNS
SNS
SIO
SIO
TIO
TIO
APL
HPL
CCP except when Q equals 10
LCP
SCP
L, ST, A except when Q equals 01,02 , 04, 08, 10, 20, or 40

If an attempt is made to execute these instructions, a program check interrup results (a processor check if interrupt leve) 7 is not enabled). This bit has no significance for interrupt level 0 . The system is automatically in privileged mode when the CPU is in interrupt level 0 .

Bit $5 \quad$ I/O 17th bit
This bit is used in conjunction with LIO and SNS commands to load and sense the 17th address bit associated with each I/O device LSR.

If this bit is on and a LIO is issued to a device LSR, the 17th bit in the selected LSR will be set on. If this bit is off and a LIO is issued to a device LSR, the 17th bit in the LSR will be set off. When a SNS command is issued to a device LSR, the PMR 17th bit (bit 5) will be set to the state of the 17th bit in the selected LSR. The PMR may be stored in memory and bit 5 inspected to determine the contents of the device LSR. Since a twoinstruction sequence (LCP, LIO or SNS, SCP) is required to set or inspect the 17th bit in the I/O LSR, an interrupt may occur between these instructions. Each interrupt level, however, has its own PMR and one level will not destroy the results of another. It is not necessary to set on
the mask interrupt bit while executing
this two instruction sequence.
Bit 6 Storage protec
When this bit is on, the storage protect keys in the SPT (bits 0 and 1) are inspected for each memory cycle except 1/O cycles. A violation causes a program check interrupt or, if interrupt level 7 is not enabled, a processor check occurs. When this bit is off, the protect keys are ignored and al locations are available to the program. This bit must not be set until the SPT has been properly loaded. Furthermore, to prevent an error indication, this bit must be off whenever the SPT contents are changed

Bit 7 Mask interrupts
When this bit is on, all interrupt requests (except program check) remain pending and the CPU remains in its present inte upt level.

This bit may be set in the program level or any interrupt level. Once set, the CPU cannot change levels until the bit is set off. This bit must be set off before any inter upt is reset. Failure to do so causes the CPU to remain in that interrupt level. Caution should be exercised when using this bit because it could iause an overrun in those devices whose interrupts must time.

Bits 1 through 6 exist for each machine evel, but bit 7 is common to all levels. Once bit 7 is set, the machine cannot pass to another level. Independent control of the mask bit is not required

The mask bit is always effective immed ately to prevent or allow interrupts that could occur before the next instruction.

Bit 7 1/O 19th bit
This bit is used in conjunction with $L 10$ and SNS commands to load and sense the 19th address bit associated with each I/O device LSR

If this bit is on and an LIO is issued to device LSR, the 19th bit in the selected LSR will be set on. If this bit is off and an LIO is issued to a device LSR, the 19t bit in the LSR will be set off. When an SNS command is issued to a device LSR the PMR 19th bit (bit 7) will be set to the state of the 19th bit in the selected LSR. The PMR may be stored in memory and bit inspected to determine the contents of the device LSR. Since a twoinstruction sequence (LCP, LIO or SNS, SCP) is required to set or inspect the 19th bit in the I/O LSR, an interrupt may occur between these instructions. Each interrupt level, however, has its own PMR and one level will not destroy the resuls the mask interrupt bit while executing this two instruction sequence

LOCAL STORAGE REGISTERS (LSR)

The LSRs consist of two addressable HDB (high density buffer) units that maintain:

- Sequential instruction addresses.
- Current operand addresses during instruction execution.

I/O data area addresses
In addition, LSRs contain:

- Index registers for modification of operand ad dresses.
- Interim storage for data, length count, and pro gram condition status referred to as scratch pad type of storage

Page 2-33 list the LSRs for the system and avail able features. To read out data, only the select nes are needed. ' WR ' 'det' 'write sil or ollowing are summaries of the functions of the be system LSRs:

IAR (Instruction Address Register)

The IAR contains the location of the next sequen tial instruction byte that is read out of storage. A the beginning of each I -cycle, the address in the IAR is gated into the SAR so that the address can be decoded. During each I-cycle, the contents of the IAR is incremented by 1 in preparation for the next I-cycle.

AAR (A-Address Register)

The AAR contains the storage address of the next byte that is addressed in the A-field. During 1 -cycles, the A-field address is taken from the instruction and loaded into the AAR. At the beginning of each A-cycle, the address in the AAR is gated into the SAR. During each A-cycle, preparation for the next A-cycle.

BAR (B-Address Register)

The BAR contains the storage address of the nex byte that is addressed in the B-field. During 1 -cycles, the B -field address is taken from the instruction and loaded into the BAR. At the
beginning of each B -cycle, the address in the BAR is gated into the SAR. During each B-cycle, the contents of the BAR is normally decremented by 1 in preparation for the next B -cycle.

Index Register 1 and Index Register 2

These registers can each store a two-byte address to be used in indexing operations. During an indexing operation, the CPU automatically adds the single byte displacement from the instructio to the contents of XR1 or XR2 to obtain the actual B or A-field address. The contents of the index registers are not changed as a result of the addition. The resulting address is placed in the
BAR or the AAR.

ARR (Address Recall Register)

On a branch instruction, the ARR contains the 'branch to' address. On a decimal instruction, the ARR retains the starting address of the B -field in the event recomplementing is required. On an insert and test characters instruction, the ARR contains the address of the first significant digit encountered.

LCR (Length Count Register)

The LCR is a one byte register that contains the length count of the B and A-fields. It is decremented by 1 on each B-cycle except the first one

DRR (Data Recall Register)

The DRR is a one byte register that provides temporary storage for the data character read out of storage during each A -cycle. It is also used to store the Q code of single address instructions.

PSR (Program Status Register)

The high byte of the PSR is used as the LCRR (length count recall register). The LCRR is used only during a recomplement operation. It stores the length of the data fields and is decremented on each recomplement cycle except the first. The low byte of the PSR is used as the condition recall register (CRR). The CRR is an image of the
condition register and is used to store the contents of the condition register.

MRDAR (MFCU Read Data Address Register)*

The MRDAR contains the storage position that is to be addressed next while reading data from a card into the card read area in core storage.

MPCAR (MFCU Punch Data Address Register)*

The MPCAR contains the storage position in the MFCU punch data area that is to be addressed next during a punch operation.

MPTAR (MFCU Print Data Address Register)*

The MPTAR contains the storage position in the MFCU print data area that is to be addressed next during an MFCU print operation.

LPDAR (Line Printer Data Address Register)
The LPDAR contains the storage position in the line printer data area that is to be addressed next during a print operation.

LPIAR (Line Printer Image Address Register)

The LPIAR contains the storage position in the chain image area that is to be addressed next during a print operation of the line printer.

Interrupt Level 0.7 Instruction Address RegistersThese registers contain the address of the next sequential instruction byte to be read out of storage during an interrupt level operation.

Interrupt Level 0-7 Address Recall RegistersThese registers have the same function as the P-ARR, but are active only during that interrupt level operation.

The registers are paired to give an LSR Hi (the highorder byte) and an LSR Lo (the low-order byte). Only one byte can be written into an LSR at a time. Wo Hi' or 'LSR write Lo' All 18 bits for LSSR Hí 'LSA wite Lo'. All 8 bind the LSR selected are avariable at the output of the LSR are B register (9 bits), and the A register (9 bits) for modification of the addresses in these registers.

LSR select and write lines are normally controlled by the CPU. However, during an I/O cycle, the I/O attachment can control the select lines for the LSR assigned to it.

A description of the CPU LSRs and LSR parity checking may be found on page 2-31.

A description of the I/O LSRs may be found on page 2-32.

A description of the 1/O LSR select checking may be found on page 2-40.

ALU Input

I/O LSR bits
17,18 and 19

1/O LSRs have a 17th, 18th and 19th bit position. These bit positions are turned on by an ALU overflow during an I/O LSR update, or during an LIO with PMR bit 5 (17th bit) of byte 1 bit 0 (18th bit) of byte 1 , or bit 7 (19th bit) of byte 2 on. The circuit is shown on page 2-32

HDB Address		$\begin{array}{\|l\|} \text { Channel } \\ \text { Bank } \\ \hline \end{array}$	$\begin{aligned} & \text { LSR } \\ & \text { Name } \end{aligned}$	$\begin{aligned} & \hline \text { LSR } \\ & \text { Function } \\ & \hline \end{aligned}$
Hex	16842			
00	000000			
01	$\begin{array}{llllll}0 & 0 & 0 & 0 & 1\end{array}$	-	BAR*	B Address Register
02	0000010	2	CRTAR	CRT Address Register
03	$\begin{array}{lllll}0 & 0 & 0 & 1 & 1\end{array}$	1	mrdar	5424/2560 Read Address Register
04	000100	2	mtap	Tape
05	$\begin{array}{llllll}0 & 0 & 1 & 0 & 1\end{array}$	1	MPCAR	5424/2560 Punch Address Register
06	$\begin{array}{llllll}0 & 0 & 1 & 1 & 0\end{array}$	1	LPDAR	Line Printer Data Address Register
07	$\begin{array}{llllll}0 & 0 & 1 & 1 & 1\end{array}$	2		
08	010000	2	--	Custom System (Spare)
09	$0 \begin{array}{lllll}0 & 1 & 0 & 1\end{array}$	1	MPTAR	5424/2560 Print Address Register/ 1442 Read Punch Address Register
OA	010	1	LPIAR	Line Printer Image Address Register
ов	$\begin{array}{llllll}0 & 1 & 0 & 1 & 1\end{array}$	2		
OC		1	DOCR	3340/3344 Control
OD	$\begin{array}{llllll}0 & 1 & 1 & 0 & 1\end{array}$	2	--	Custom System (1442 RPQ)
0E	0011110	-	--	Not Available
OF	$\begin{array}{llllll}0 & 1 & 1 & 1 & 1\end{array}$	-	--	Not Available
10	0000	2	bscar 1	Binary Sync Comm Adapter-1
11	100001	1	DDDR	3340/3344 Control
12	100010	1		
13	$1 \begin{array}{lllll}1 & 0 & 1 & 1\end{array}$	2		
14	$\begin{array}{lllll}1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1\end{array}$	1		
15	$\begin{array}{llllll}1 & 0 & 1 & 0 & 1\end{array}$	2		
16	$1 \begin{array}{lllll}1 & 0 & 1 & 1 & 0\end{array}$	3	BSCC-2	Binary Sync Comm Controller Line 2
17	0111	3		
18	11000	1		
19	$1 \begin{array}{lllll}1 & 0 & 0 & 1\end{array}$	2		
1 A	11010	3	BSCAR-2	Binary Sync Comm Adapter-2
18	110011	3	BSCAR-2	Display Adapter
1 C	$\begin{array}{lllll}1 & 1 & 1 & 0 & 0\end{array}$	3	BSCC-1	Binary Sync Comm Controller Line 1
10	$\begin{array}{llllll}1 & 1 & 1 & 0 & 1\end{array}$	3	DSAR	3741 Data Station
1 E	$\begin{array}{lllll}1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 & 1\end{array}$	3		
1 F	1111	-	P.PSR ${ }^{\text {* }}$	Program Status Register (LCRR)

Note: The MLTA addresses main storage by using the

*Only one LSR can be selected in an HDB module at a time. Most CPU operations require selecting
only one LSR. However, the following operations only one LSR. However, the following operations
require selecting two LSRs at the same time; A sys. tem reset operation selects the P-PSR and IAR Ire-
(er to page 6-2); A branch, TIO, or decimal instruc
fion selects the BAR and the ARR during th
cycles. Refer to page 5-8. Therefore, the BAR
but function as CPU LSRs.

LSR Select (I/O Channel Bank 1)

LSR Controls

The op register stores one-byte CPU op codes. The op codes are sent to the op register from main storage through the SDR, the B register, and the ALU. Decode of the op register is performed to determine which instruction the machine should
 Oal lines which are a dir decode logic.

PRIVILEGED MODE/MODEL 10 COMPATIBILITY

Privileged Mode

Privileged mode prevents user programs from issuing I/O commands that could destroy efficient multiprogramming or destroy another user's program. Privileged instructions are issued only by the supervisor when the CPU is in privileged mode.

The privileged commands include all $1 / \mathrm{O}$ commands, APL, HPL, store CPU, load CPU, command $C P U$ (except $Q=10$), and register commands (L, ST, A) that handle interrupt IARs. These privileged commands can only be executed when the system is in privileged mode. Attempts to execute these commands when the system is not in a privileged state causes a program check interrupt or a processor check if program check interrupt is disabled (see page 2-43),

Privileged mode is controlled by bit 4 of the PMR xcept when the system is forced to privileged except when the system is forced to privilege n all other levels, the program controls privileged mode through the PMR.

Model 10 Compatibility

The CPU is forced to Model 10 mode by system reset, IPL, or power on. The Model 15 enhance ments are disabled and privileged mode is on (all instructions are executable). The system remains in this mode regardless of the contents of any PMR, until the first instruction to load any PMR is encountered. At that point, the PMR contents determine the system mode.

While in Model 10 mode, the Model 15 will execute Model 10 programs with the following restrictions:

1. Programs that fail on a Model 10 may fail in Programs that fall on a Model
a different manner on the Model 15. The nstructions that were added to the Model 15 re invalid on the Model 10 Furthermore O devices have N codes defined for op-end interrupt control that are invalid on the Model 10
2. Dual programming does not exist on the Model 15. Therefore TIO SIO, and APL instructions do not select the P2 IAR Instead, the O code selects the P1 ARR.
3. TIO, SIO, and APL instructions with a device address of 0 (Model 10 DPF) are treated as a no-op.

All instructions include a Q byte that serves to extend or modify the op code. During the xecution of an instruction, the Q byte is stored in the O register. This register is loaded through the same data path as the op register and its output is decoded to determine the necessary information for the CPU to execute the in tructions. During the execution of I / O instructions, the O register stores the O byte, but each I/O device also receives the Q byte from the ALU output on DBO at the same time. The CPU does not use the Q byte of the I / O in. truction even though it is stored in the Q register.

Op and Q Register Parity

If multiprogramming is to be efficient errors caused by one user must not stop the system and caused by one user must not stop the sys
deprive another user of processing time.

Through the use of the program check interrupt and the program check registers, the CPU program can (1) analyze the conditions that caused the check (2) print out an error message, and (3) transfer CPU control to another user.

The program check registers contain information saved from the cycle during which a check last occurred. If interrupt 7 (program check) is enabled, these registers are set to reflect the system condition when a program check occurs. The register information is reset when interrupt level 7 is reset.

The program check registers can also be loaded with a load CPU instruction (LCP) or their contents can be moved to storage with a store CPU instruction (SCP).

The CPU performs its computations in a step-bystep procedure until altered by a branch (refer to page $5-51$) or an interrupt.

All interrupts follow the same general outline; (1) interrupt the program in progress (always at op-end), (2) execute the requested program, (3) return control to the interrupted program.
The 5415 processing unit has eight interrupt levels. Five of these levels are devoted to I / O devices and hree support CPU functions. The interrupts listed below are from highest priority to lowest:

Interrupt Level	Priority	Function Performed
7^{*}	1	Program check - Handles soft errors.
6	2	Interval timer SIOC MLTA/BSCC \quad B BSCA\quadI/O control and data transfer
4	3	
3	4	Device op-end - Notifies the CPU that the I/O device has reached end of operation.
2	5	CRT display - I/O control and data transfer
5^{*}	6	Supervisor program - trans- fers control from a problem program to the supervisor program.
0^{*}	8	Main program level
None		

*Description on facing page
The interrupt routine being performed is estab lished by the interrupt priority latches. As in cycle steal, the highest interrupt level device takes precedence over lower level devices. Thus, it is possible for an interrupt routine to interrupt a routine of a lower priority device. However, eac device maintains its interrupt request untio is satisfied, so the lower priont dice routine.

Each interrupt level has a separate IAR, ARR and PMR in the CPU so these registers for the main Program are not disturbed. Any other registers caut be stored the begning ind re established at the end of each interrupt routine.

The stored program controls the capability of a device to interrupt by enabling and disabling the device through SIO, LIO, or SVC instructions. Once an interrupt has occurred, the interrupt routine is also ended by the same instruction.
uring the I-Q cycle, device selection occurs in he same manner as any SIO instruction. Then at clock 5 of the I-R cycle, the control code is sent to the device attachment on DBO. The nent to tch remans on until a disable control code is ent in another instruction.

If a device has a need to interrupt, the 'interrupt request' latch is turned on. At the end of the operation being performed in the CPU, an interrupt poll is sent to the device. This activates the 'DBI bit' line to turn on the interrupt latch for the device in the CPU. If more than one 'DB bit' line is active, only the highest priority interrupt latch is turned on (see diagram on page 2-51)

With any interrupt latch on, the selection of the normal IAR/ARR is blocked and the IAR/ARR for the active interrupt level latch is selected.
The interrupt request latch in the device attachment stays on until an instruction with the proper control code resets it.

Interrupt Mask

A mask function is provided to simplify interrupt processing. This function gives the programmer the ability to complete a routine before it is interrupted by a higher priority program. The mask interrupt function is controlled by a bit in the PMR. When this bit is on, any higher priority interrupt request remains pending un la 7 (a) affected by the mask.

The interrupt mask bit in the PMR must be set off before an interrupt is reset. Failure to do so will cause the CPU to remain in that interrupt.

NTERRUPTS (Part 2 of 3)

Supervisor Program (Interrupt Level 0)

A user program passes CPU control to the supervisor by initiating an interrupt on level 0 . This is accomplished by using the Command CPU instruction with a Q code of 10 (supervisor call). Refer to Command CPU instruction description on page 5-67

Op End Interrupt (Interrupt Level 5)

When an I/O device has completed the operation in progress, and 'op end interrupt' is enabled in the device, 'op end interrupt request' is activated. At he end of the CPU operation being performed, interrupt poll' is activated. 'Interrupt poll' and interrupt request' combine to turn on the interrupt level 5 ' latch in the CPU

Once CPU control is transferred to the interrupt level 5 program, that program determines which device initiated the op end interrupt. This is done through TIO and SNS instructions. The determination of which device requested the interrupt and what priority each device holds, is a programming function.

Program Check Interrupt (Interrupt Level 7)

For the Model 15, program check interrupt allows the CPU to enter an interrupt routine rather than processor check hard stop condition. Errors causing a program check interrupt are:

- Invalid address
- Invalid O
- Invalid Op
- Privileged Op
- Storage violation

The occurrence of any of these errors during the rogram check interrupt routine causes a processor check hard stop. Invalid address durin /O cycles also causes a processor check hard stop.

The program check interrupt routine can analyze he cause of the error from status provided by the CPU hardware, prepare a message for the user causing the error, and then transfer CPU control to another user thereby making maximum use of the CPU time.

The program check interrupt is assigned to level which is the highest priority interrupt. The program check function must be enabled by a command CPU instruction. If the function is no enabled, the CPU performs like a Model 10 in that the checks mentioned cause a processor check hard stop. The command CPU instruction is also used to disable and reset interrupt level 7 . The status required to analyze the error source is provided in registers that may be stored using the CPU instruction. Tis staus include ddress at the time of error, and the cctive interrupt level, if any, at the time of error.

A description of the program check registers can be found on page 2-46. A description of the program mode registers can be found on page 2-28.

The interval timer is a 24 bit (3 byte) binary counter that is decremented every 3.3 ms . The CPU treats the timer like an I/O device. LIO, SIO and SNS instructions are used for control. 1/O timer does stem I/O burden.

A value is set into the counter by an LIO instruc tion and the contents sensed by using an SNS instruction. SIO instructions are used to enable disable, and start the counter. Once started, the counter is decremented by one every 3.33 ms . ('adv int timer'). The counter overflows when (he count goes from zero to a negative value and an interrupt request is generated (level 6). If a value of FF FF FF is loaded and the timer started an interrupt occurs approximately 15.5 hours later

The timer uses a separate oscillator and clock that continues to decrement the timer during halts, stops, and interrupts. Also, the timer does not stop when an overflow occurs. It continues to un until stopped by an LIO, a stop timer com system clock. Once stopped, the timer does no resume counting until an SIO is issued

I/O instruction format is shown in the following illustrations.

Load I/O

 (two LIO instructions), the timer is started by an SIO (timer control) instruction.

Sense I/O

When moving the timer contents to main storage, the low-order byte must be stored first. When timer circuits detect an SNS byte with the N code equal to 0 , the three-byte counter is transferred a three-byte register. This prevents the possiblity of presenting erroneous timer data if the t the timer contents.

Start I/O

Does not reset an interrupt in
process but prevents any new interrupts from occurring.

A start I/O command is always accepted

System/3 data flow uses 2 byte (16 bit) addresses. Sixteen bits control addressing up to 64 K bytes of Sixteen bits control addressing up to 64 K bytes of
storage. To address 512 K bytes of storage, three storage. To address 512 K bytes of storage, thre
more address bits are required. These bits are more address bits are required. These bits are
provided by an Address Translate Table (ATT) for CPU operations, an I/O LSR 17th, 18th, and 19 th bit for I / O operations, and a $>64 \mathrm{~K},>128 \mathrm{~K}$, and $>256 \mathrm{~K}$ CE rotary switch for console operations.

Address Translate Table
The address translate table consists of 32 registers (00-1F) that can be loaded by the program. The registers provide the high order six bits of the main storage address when the translator is bein used. The PMR controls the translator with 3 bits:

Bit 1 on $=$ translate on B cycles
Bit 2 on = translate on A cycles
Bit 3 on = translate on 1 cycles
o use the ATT, the programmer must first load the ATT registers with the desired bits using LCP commands (ATT is not power on reset) and the scribed previously.

Example:
Assume the following instruction is ready to be executed

Op	O	B field	A field
MVC	length	operand 1	operand 2
$\mathbf{O C}$	00	0501	E401

- The PMR is set up to translate on A cycles only.
- ATT register 1C (hex) has previously been loaded with a value of 7 A

The A field address is E401 and is considered a logical address since it is to be translated into real address by the ATT. The real memory ad dress for this example is 3D401

During the A cycle, address translation occurs:

- Five high order bits from SAR address the ATT A
- Seven ATT bits and 11 SAR bits form the MSAR address 3D401 B . During the B cycle, address translation is inactive. Sixteen SAR bits form the MSAR address C
written into address 0501

MAIN STORAGE ADDRESSING (Part 2 of 3)

I/O LSR 17th, 18th, and 19th Bits

Because the ATT is not used on I/O cycles, each I/O LSR must contain the proper number of bits to address storage. The number of bits in each I/O LSR varies with main storage size (the maximum being 19 bits for 512 K of storage). The following discussion assumes a main storage size of greater than 128 K bytes.

I/O LSR bits 17, 18, and 19 are gated into the SAR E15, SAR E14, and SAR E13 positions during I/O cycles.

The SAR then addresses storage untranslated

I/O LSRs are loaded by LIO instructions. The loworder 16 bits are loaded from storage during two consecutive B cycles; the 17 th, 18 th, and 19 th bits are conditioned on the same LIO by the PMR 17th bit (bit 5), PMR 18th bit (bit 0), and PMR 19th bit (bit 7 of byte 2) respectively.

The 17th, 18th, and 19th I/O LSR bits are modified during I/O cycles each time a 64 K boundary is crossed.
When an SNS instruction is issued to an I/O LSR, the 16 low-order bits are transferred to the specified main storage locations and the 17th bit is gated into the PMR 17th bit (bit 5) position. The 8th bit is gated int the PMR 18 th bit (bit 0) 19th bit (bit 7 of byte 2).

MAIN STORAGE ADDRESSING (Part 3 of 3)

Storage Protect

Storage protect provides the ability to protect main Storage protect provides the abiity to protect
storage from unauthorized or accidental fetch and store operations. This is accomplished with two bits in each of the 32 registers of the storage protect table (SPT, protect keys). Bit 0 is the fetch protect key; bit 1 is the write protect key.

The storage protect function is activated by the storage protect bit in the PMR. When this bit is on, the protect keys in the SPT are inspected for every main storage cycle except $1 / O$ cycles. If the bit is off, the protect keys in the SPT are not inspected and any available location can be accessed or written into.

The storage protect hardware does not function on I/O cycles. The supervisor program must verify that I/O buffers reside in a user's allocated storage.

If attempts are made to fetch or write protected locations, a storage violation occurs and the CPU forces a program check interrupt (a processor check if the program check interrupt is not enabled).

The protect keys are changed or saved with CPU instructions LCP/SCP. The contents of the pro tect keys cannot be predicted after the power up sequence and must be loaded by the user. The store protect bit in the PMR is set off during the power up sequence, so protection is not used until it is activated by the program.

Address Parity Checks

Unit Record Restart

The unit record restart circuits detect a device not-ready to ready transition and interrupts the CPU program. Interrupt level 6 is shared with the interval timer. The interrupt routine determines which function interrupted on level 6 then

The CPU can enable, disable, and reset the inter rupt using a SIO instruction and test for interrupt request pending using a test $1 / O$ instruction.

ruction Forma

SIO Not-Ready to Ready Interrupt Control
OByte RByte
$00001001 \quad 0123456$

$0=$ Disable interrupt
$1=$ Enable interrupt

- $1=$ Reset the interrupt

Not used
TIO Not-Ready to Ready Interrupt Request
Q Byte Condition Tested
00001001 Not-ready/ready
DA $|M| N$ Interrupt request

MAIN STORAGE

The Model D provides the customer with a maxi mum of 512 K bytes of main storage. Seven storage capacities are available (96, 128, 160, 192, 224, 384 , and 512 K). On the Models 15 D25 and 15 26, the lower 256 K (0 K through 256 K) of main torage is mounted on circuit board A-B4 and the pper 256 K (384 K through 512 K) on circuit board A-A4
The upper 256K of main storage contains its own iming, addressing, ECC (error check and correction) generation, fetch data register, ECC logic, ad byte control circuitry. Each of these function operates identically to, but independently of, the lower 256K.

MOSFET circuitry is used in this main storage. A read operation is nondestructive and, therefore is not always followed by a write operation. A write cycle is required only when it is desired to change data at the addressed location.

Within the BSM (basic storage module), two each storage cycle.

\section*{| $0 \ldots \ldots \ldots$ 15 | C1 C2 C3 C4 C5 C6 |
| :--- | :--- | :--- |}

Thus, 96 K of main storage is divided into 48 K addressable storage positions. The 15 th address bit (SAR 15) is not used to access these storage positions and the same two bytes are accessed if SAR $15=0$ or SAR $15=1$. The two byte storge position always begins at an even address and SAR 15 then selects one of the 2 bytes later on the data path.
During a normal store/fetch operation, only one byte of the addressed storage position is used (the PU data path can sowe of posion is ur SAR 15 is used to select one of the two bytes, A disk operation, however, uses both bytes; one is gated through the CPU data path, the other is yated to/from the extended channel This dual byte operation allows the disks to transfer two bytes of data during one CPU (disk I/O) cycle. The disk must activate dual byte mode and the storage address must be an even number.
he six check bits allow the ECC circuits to detect and correct any single bit errors. Errors involving more than one bit are detected but not corrected (causing an SDBO processor check). ECC is described later in this section

One Byte Fetch

The BSM executes a fetch cycle to read out two bytes of data (plus 6 check bits). SAR bit 15 determines which byte is gated to the SDBO (store data bus out); if SAR bit 15 equals 0 , SDBO bits $8-15$ are gated A; if SAR 15 equals 1 , SDBO bits
0.7 are gated to the \mathbf{B} register \mathbf{B}

One Byte Store
A fetch operation precedes each store operation. If SAR bit 15 equals 0 , the contents of the SDBI (store data bus in) are gated to replace main storage bits $8-15$ A. If SAR bit 15 equals 1 , the contents of SDBI are gated to replace main storage bits $0-7$ B . Because two bytes are written on one cycle, . Byte that was read from storage dur he fetch operation is automatically restored.

Dual Byte Fetch

The BSM executes a fetch cycle to read out two bytes of data. These two bytes always start on an even address. The even address byte is gated to the CPU data path; the odd address byte is gated to the extended channel. To accomplish this two byte transfer, SAR bit 15 must be zero and the disk must activate 'dual byte mode'

Dual Byte Store

After the BSM executes a fetch cycle, the byte from the extended channel is stored as main storage bits 0.7 (odd address), and the byte from the CPU data path is stored as main storage bits 8.15 (even address). To accomplish this two byte whe operation, SAR bit 15 uls be ze te 'dual byte mode'

BSM WRITE OPERATION

*
Note: Diagnostic read operation (3) is
covered by the LCP description on page 5-53.

BYte control and check bit generation

Store Check Bit Generator

- Generates a unique group of check bits determined by the number of logical 1^{\prime} in the 16 data bits to be stored.
- Each data bit is connected to three even blocks.
- Each even block is fed by eight data bit lines.
- An even block generates a check bit an even number of eight input lines (unshaded squares) are active.
- Resulting 22 bits have even parity

Example:

Storage Location	Data
0000	F2
0001	F1

Keep a count of the number of unshaded squares in the C -bit line that correspond to a 1 in the dat hne. When all of the unshaded squares for a par whether the count is odd or even, if the count is even, that C bit is active; if odd it is off th this example, an even number (6) of C 1 bits unshaded squares) are theref
active.
This check is repeated for each of the C -bit lines. Four of the six check bits are active (C1, C2, C4 and C6) in this example.

Ten data bits (in the example) plus the four check bits equal 14 bits active, or even parity.

Byte Control	ALD	Card (SDBI)
BSM 1	UJ200-210	A-BAP2
BSM 2	UJ520-521	A-A4P2

Cards and ALD pages for store check bit generation

Generation	ALD	Card (SDB1)
BSM 1	UJ220	A-B4P2
BSM 2	UJ522	A-A4P2

Store Data Parity Check
The store data parity check indicates wrong parity on the store data bus. It prevents the store operation.

This check causes an SDBI processor check

Controls

The BSM controls, which move data into and out of main storage, consist of the addressing scheme for locating words in the storage unit, read/write or locating words in the storage unit, read/write
control signals, and a clock for timing operations control signals, and a clock for timing operations
within the storage cycle. To start a storage cycle, the CPU sends an address read (not BSM write) or write (BSM write), and a select pulse to the BSM. The ycle proceeds under control of the storage unit lock and data is gated into or out of the BSM

Addressing

Addressing is a method of locating information in the BSM. The main storage address coming rom the CPU consists of 19 bits plus three parity bits A
SAR bits E14, E15, and 0 through 14 are decoded B and provide the address of the are decoded B and provide the address of the selected doubl f storage at a time, SAR bit 15 is not used for ftorage at a time, SAR bit 15 is not used for

BSM 1 and BSM 2 selection and output gating (MOP) is controlled by SAR bit E13 (board select) D

When SAR E13 is not active, BSM 1 is selected. When SAR E13 is active, then BSM 2 is selected and the write signal to the first board is degated. On a fetch operation the SAR bit E13 controls which output data (BSM 1 or BSM 2) is gated to the CPU. See page 3-12.

Note: BSM write is active on write operations and nactive on read operations.

A delay line clock and timing latches make up the timing mechanism. The delay line clock is started by the BSM select pulse E. As the pulse travels through the delay line it sets and resets the timing latches.
$A_{\text {MSAR }}$

MSAR
PEXXI E13 E14 E15 P0.7 0 1 2 3 4 5 6 7 P8-15 8 9 10 11 12

E Timing
nd
nd
onirol
or detailed
oescription of
ddress se-
ection, se

Cards and ALD pages for main storage timing and contro

Timing and Control	ALD	Card (ADC)
BSM 1	UJ100-110	A.B4R2
BSM 2	UJ510-511	A-A4R2

Cards and ALD pages for fetch data register (FDR)

FDR	ALD	Card (SDBO)
BSM 1	UJ300-310, UJ330	A-B4M2
BSM 2	UJ530-531, UJ533	A-A4M2

The data transferred to main storage during a write operation consists of 16 data bits plus the corresponding two parity bits. The store check bit generator generates six check bits to add to the generator generates six check bits to add to
the dit parity is correct, the two parity bits are dropped at this point. The 16 data bits plus the six generated check bits are then stored as a 22 bit word on the array cards.
he 22 bits coming from the BSM during a read peration are stored in the fetch data register ECC logic detects and corrects (single bit errors) he error and indicates the type of error to system. Using the 16 correct data bits, two parity bits are generated (one for each byte). These two bytes of data are then available to the system.

Fetch Check Bit Generator A

The fetch check bit generator generates six heck bits (C1-C6) from the 16 fetch data bits coming from the FDR. These checks e generated in the same manner as in the store check bit generator

The syndrome bit generator generates six syndrome bits by comparing, bit by bit, the six generated heck bits ($\mathrm{C} 1-\mathrm{C} 6$) with the six check bits from torage. If all check bits compare, all six syndrome bits are zero. Each unequal compare generates one for the syndrome bit.

For diagnostic purposes, the six syndrome bits connected to test points on the SDBO card.

Syndrome Bit Decoder C

This circuit decodes the six syndrome bits and generates the 'invert data' lines that identify the failing data bit in case of a single bit error. It also fangifies multiple errors or no errors.

Only one syndrome bit decoder output line is active at a time.

Cards and ALD pages for fetch check and syndrome bit generato

Generators	ALD	Card (SDBO)
BSM 1	U 320	A-B4M2
BSM 2	U 532	A-A4M2

Cards and ALD pages for syndrome bit decoder

Decoder	ALD	Card (SDBO)
BSM 1	UJ340	A-B4M2
BSM 2	UJ534	A-A4M2

nvert Data Switch A

he invert data switch corrects a single bit erro by inverting the failing bit. It also corrects the by inverting the failing bit. It also corrects corrected.

Error Classification Logic B

This circuit identifies the type of error and generates the error lines 'correctable error' and 'uncorrectable error.'
ne number of active syndrome bits relates directly to the kind of error. (See syndrome bit decoder on page 3-10.)

Syndrome Bits	Type of Error
all 6 bits $=0$	No error
3 bits $=0$ 3 bits $=1$	Single data bit error
5 bits $=0$ 1 bit $=1$	Single check bit error
All other bit combinations	Multiple bit error

The error classification logic also generates an 'invert parity' line for each single data bit error

Correctable Error

The correctable error signal indicates a correct able error has occurred during a fetch operation (a single bit error has occurred).
Uncorrectable Error
When a multiple bit error occurs, the syndrome bit combination does not allow an output from the decoder. Main storage circuits cannot correct this type of error. The result is an uncorrectable error indication and an SDBO processor check.

Diagnostic Mode
This line inhibits error correction of the fetched data. The current contents of the fetch data register are available at the SDBO bus.

MEMIORY OUTPUT (MOP)

On a fetch operation, the fetched data (SDBO bits) enters the memory output circuitry where SAR bit 13 controls which BSM output is gated to the CPU. The memory output cards select the active bus only to repower the bus lines to the CPU

SDBI/SDBO PROCESSOR CHECKS

MAIN STORAGE MAINTENANCE

The following scope wave forms are provided to
help you service the 5415 main storage unit.
Operation: Alter storage - Loop all positions of main storage (description is on page 6-4).

Tektronix
453 Scope: Sync Ext Minus +Clk 0 A-B3T2SO

Ch 1 and Ch $2 \quad 50 \mathrm{mV} /$ div
Time Base $0.1 \mu \mathrm{~s} / \mathrm{div}$
All Probes $\quad \times 10$
Note: Ground probes at panel to
avoid excessive ringing

$+100 \mathrm{~ns} \mathrm{Osc}^{\prime}$
BSM 1 - A-B4R2M02 (UJ100)
BSM 2 - A-A4R2M02* (UJ510

${ }^{\prime}+$ Card Select 0 '
BSM 1 - A.B4R2B07 (UJ120)
BSM 2 - A.A4R2B07* (U512

*Use this test point when altering upper storage (>256K)
*Trademark of Tektronix, Incorporated.

MAIN STORAGE MAINTENANCE

This page intentionally left blank.

I/O INTERFACE

All I/O devices communicate with the CPU over the I/O channel. This attachment interface consists of several major functions:

DBI, DBO drivers and terminators \boldsymbol{A}
2. Extended DBI, DBO for disk only B
3. DBI and DBO translators C (description is on page 4.095).
4. Cycle steal hardware (description is on page 5-72).
5. Input lines for console switches \boldsymbol{E} (descrip tion is on page 4-110)

Note: An open in channel wiring between driver and voltage divider can cause incorrect wave shape.

Example:
Clock $\underset{\text { Correct }}{\square} \underset{\text { Open Channel }}{\square}$

CHANNEL CABLING (CPU)

This diagram shows the channel cable connections within the CPU. If any feature board is not
installed, then the cables run between the existing boards. If. for instance, the A 1 board on B gate
is not installed, the cables would run from the B-A2 board to the B-B1 board

DBO TRANSLATOR (5424)

The DBO translator is used during clock 4 and 5 time to translate ALIJ data (EBCDIC) to 96 -colum card code. The DBO translator is not used during every $1 / \mathrm{O}$ cycle and if the 'translate out' line is inactive, the data is transferred to the $1 / O$ attach ment unchanged. The figure below shows a 'translat out' conversion table

See page 4.107 for DBO and translator circuits.

$\underbrace{}_{\text {Used }} \quad$ B A

onir IPL

Example

\section*{| 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | 0 | | | | |}

| 0 | 1 | 2 | | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

ALU Bit Positions
ALU Bits
Ebcdic
Translated 96-Column
Card Code
Character
24

ALU

	0	1	2	3	4	5	6	7	8	9	A	в	c	D	E	F
0	40	5A	60	Do	$\left\|\begin{array}{c} 00 \\ \text { SPACE } \end{array}\right\|$	$\begin{gathered} 1 \mathrm{~A} \\ \underset{Q}{1} \end{gathered}$	20	90	co	70	E0	50	80	$\begin{gathered} 30 \\ \vdots \end{gathered}$	A0	10 0
1	F1	E1	51	C1	B1	A1	11	81	71	61	D1	41	$\begin{aligned} & 31 \\ & A \end{aligned}$	$\begin{aligned} & 21 \\ & 1 \end{aligned}$	91	01 1
2	F2	E2	D2	C2	B2	A2	92	82	72	62	52	42	$\begin{aligned} & 32 \\ & \mathrm{~B} \end{aligned}$	$\begin{aligned} & 22 \\ & k \end{aligned}$	$\begin{aligned} & 12 \\ & 5 \end{aligned}$	02 2
3	F3	E3	D3	с3	в3	A3	93	83	73	63	53	43	$\begin{gathered} 33 \\ c \end{gathered}$	23	$\begin{aligned} & 13 \\ & T \end{aligned}$	03 3
4	F4	E4	D4	C4	84	A4	94	84	74	64	54	44	$\begin{gathered} 34 \\ 0 \end{gathered}$	$\begin{aligned} & 24 \\ & M \end{aligned}$	$\stackrel{14}{4}$	04 4
. 5	F5	E5	D5	C5	B5	A5	95	85	75	65	55	45	$\begin{gathered} 35 \\ \mathrm{E} \end{gathered}$	$\begin{aligned} & 25 \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & 15 \\ & v \end{aligned}$	- 05
6	F6	E6	D6	c6	B6	A6	96	86	76	66	56	46	$\begin{gathered} 36 \\ F \end{gathered}$	$\begin{gathered} 26 \\ 0 \end{gathered}$	$\begin{aligned} & 16 \\ & w \end{aligned}$	06 6
7	F7	E7	D7	C7	B7	A7	97	87	77	67	57	47	$\begin{aligned} & 37 \\ & 6 \end{aligned}$	$\begin{aligned} & 27 \\ & \mathrm{p} \end{aligned}$	17 \times	07 7
8	F8	E8	D8	C8	в8	A8	98	88	78	68	58	48	$\begin{gathered} 38 \\ H \end{gathered}$	$\begin{gathered} 28 \\ 0 \end{gathered}$	$\begin{aligned} & 18 \\ & r \end{aligned}$	08 8
9	F9	E9	D9	c9	B9	A9	99	89	79	69	59	49	$\begin{gathered} 39 \\ 1 \end{gathered}$	$\begin{array}{\|c} 29 \\ \mathrm{R} \end{array}$	$\begin{gathered} 19 \\ z \end{gathered}$	09 9
A	7 A	6 A	Fo	4A	$3 A$	$2 \mathrm{~A}$	во	OA	FA	EA	DA	CA	BA	AA	9A	8 A
в	78	6B	58	48	зв	$\begin{array}{\|c} 28 \\ \$ \end{array}$	${ }^{18}$	$\begin{array}{\|l\|} \hline \text { OB } \end{array}$	FB	Eb	DB	Св	BB	AB	98	8B
c	70	6C	5 C	4C	$\stackrel{3 C}{<}$	${ }^{20}$	$\begin{aligned} & 1 \mathrm{c} \\ & \% \end{aligned}$	$\begin{aligned} & \text { oc } \\ & \text { @ } \end{aligned}$	FC	EC	DC	CC	BC	AC	9 C	8 C
D	70	6D	50	4D	30	$\begin{gathered} 20 \\ 1 \end{gathered}$	1D	OD	FD	ED	DD	CD	BD	AD	9 D	8 D
E	7 E	6 E	5E	4 E	3E	2 E	$\stackrel{1 E}{>}$	OE	FE	EE	de	CE	BE	AE	9 E	8 E
F	7F	6 F	5 F	4 F	$\stackrel{3}{3 F}$	2 F	$\stackrel{1 F}{?}$	$\stackrel{\circ}{\circ}$	FF	EF	DF	CF	BF	AF	9 F	8 F

DBI TRANSLATOR (5424)

The DBI translator is used during clock 2 and time to translate the 96 -column card code into EBCDIC. The translator is not used in every 1/O cycle and if the 'translate in' line is inactive, the I / O data is transferred to the A register unchanged. The figure below shows a 'translate in conversion table.

Used onlv
 $\begin{array}{ll}01234567 & \text { OBI bin }\end{array}$

Examp

0	1	2	3	4	5	6	7
	0			0		0	

0	1	1	0	0	1	0	0

obl bits
Translated Codr III EBCDIC

DBI

Note: Rotate drum switch to position 7 to
display CS priority bits, position 5 to display
ALU output
ALU output

INSTRUCTION CYCLES (FAST I-CYCLE)

Not all instructions are executed at fast I-cycle speed. Certain instruction types require normal processing speed.
These operations that require normal processing speed include:

- I/O and Halt instructions
- The last cycle of a 3- or 5-byte instruction
- Certain time dependent diagnostic programs
- Cycles during which program checks occu

The following instruction cycle diagram shows the l-cycle, dummy half cycle, and machine cyc relationship for all instruction types.

TWO-ADDRESS INSTRUCTIONS

-Cycles

- Load operation code into op register. A
- Load Q code into Q register, LCR, and LCRR. B
- Load B field address into BAR. C
- Load B field address into ARR for decimal instructions. C
- Load A field address into AAR. D

To perform two-address instructions, you must know:

1. What operation.
2. Location of the fields.
3. Length of the fields and any special con sideration that must be given them

I-cycles are used to load the various controlling registers with this information.

First, an I-op cycle transfers the operation code from main storage to the op register. For twodress instructions, the Q code generally con保 aion in which the Q code controls the data flow Difference in O code use are covered under the Difference in Q code use are covered under the 1 - Q cycle loads the Q code into the Q register, LCR and the LCRR

- H1 and I-L1 cycles load the B field address into the BAR. For decimal instructions, the B field address is also loaded into the ARR. If indexing is used, a single $\mathrm{I}-\mathrm{X} 1$ cycle replaces the $\mathrm{I}-\mathrm{H} 1$ and I-L1 cycles. I-H2 and I-L2 cycles load the A field address into
the AAR. The A field address can also be indexed by replacing the I-H2 and I-L2 cycles with a single X2 cycle.

The first step in an l-op cycle, as in all cycles, is to address the storage location to be used during tor cle. The contis of the are trans

The two-byte IAR is incremented in parallel with the storage fetch operation. The IAR is trans ferred through the aux B register and incremented by +1 in aux ALU (aux ALU carry in active) \mathbf{E}

At clock 3 time the operation register byte is read from storage and transferred through aux ALU and stored in the op register.

. O Cycle

- Load Q code into Q register and: (1) length count register (LCR) and length count recall register (LCRR), or (2) data recall register
- Increment instruction address register

The l-O cycle is the same as an l-op cycle, except that the Q code byte is stored in the LCR, the LCRR, and the Q register. F

The IAR is incremented in the same manner as for an l-op cycle. E

I-Op and I-Q Cycles

I-H and I-L Cycles

- Load B address register except during load address instruction.
- Load selected index register for load address instruction.
- Load A address register for second address.
- Load address recall register for branch or decimal instructions.

I-H1 and I-L1 cycles are the same as the I-op and I-O cycles except that the data bytes, B field address, are stored in the BAR. During the I-H cycle, the first byte is stored in the high order position of the BAR.

Indexing (I-X Cycles Part 1 of 4)

- A single byte from the instruction is added to two bytes fron an index register to create a new storage address.
- This new address is loaded into the B Address Register.
- This index cycle does not change the instruc tion byte or the address in the index register If either is to be changed, an additional CPU instruction is required.

The need for I-X cycles is determined by the bit structure of bits 0 through 3 of the operation regis ter. An I-X1 cycle results from the presence of either bit 0 or bit 1 , but not both; an 1 -X2 cycle from either bit 2 or 3 , but not both. The bit that is present also determines the index register used.

Operation Register Bit	Index Register Selected	Cycle
1	XR1	I-X1
0	XR2	
3	XR1	I-X2
2	XR2	

Instruction Format	Op Bits				B Address Register Contains:	A Address Register Contains:
	0		2	3		
Two Address	000	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$			Two bytes from storage unchanged	Two bytes from storage unchanged
						One byte from storage added to address from XR1
						One byte from storage added to address from XR2
	0			0	One byte from storage added to address from XR1	Two bytes from storage unchanged
				1		One byte from storage added to address from XR1
				0		One byte from storage added to address from XR2
			- $\begin{aligned} & 0 \\ & 0 \\ & 1\end{aligned}$	0	One byte from storage added to address from XR2	Two bytes from storage unchanged
				1		One byte from storage added to address from XR1
		0		0		One byte from storage added to address from XR2

During I-X cycles the IAR is selected and loaded into the SAR tn the same manner as for other instruction cycles. A storage fetch cycle is started and the B field address fetched from storage.

The two-byte IAR is incremented in parallel with the storage fetch operation. When the IAR is gated to SAR it is also transferred through the aux B register and incremented by +1 in the aux ALU (aux ALU carry in active)

The selected index register (XR1 or XR2) is transferred to the aux B register (right side of aux ALU) The B field address is read from storage and enters the left side of the aux ALU. The index register and the \mathbf{B} field address are then added in the aux ALU B

The aux ALU output is written into th

If the operation is a decimal or branch operation, the results are also stored in the ARR. An I-X2 cycle operation is the same as a $1-X 1$ except the results are wirtten in the AAR.

Indexing (I-X Cycles)

Indexing (IX Cycles)

Execution Cycles

Because only one byte at a time can be removed from or placed into main storage, two cycles per byte are required when controlling data between two different storage locations. During the Acycle, the A field byte is removed from storage and retained. The B -cyle is then used to remove
 with each byte.

A.Cycle

Because the A-cycle data flow is the same, regard less of the operation, it can be covered as a separ te topic. Some operations require the condition register to be reset to equal during the first A. cycle and some require the use of sign control for the A field character, but the basic data flow remains the same.

- Store A field byte in DRR.

The first step in an A-cycle, as in all cycles, is to address the storage location to be used during that cycle. At clock 0 time, the contents of the AAR are transferred to the SAR in the same manner that the IAR was transferred.

No data is transferred during clock 1 and 2 times as the CPU waits for the data to be read from storage and enter the FDR. During clock 3 and 4 times, the byte is transferred through the B register and ALU and stored in the DRR.

The rest of the cycle is then used to decrement the AAR so that the next position of the A field can be addressed if necessary. The example below shows that a 1 is subtracted from the AAR. Two steps are required because of the possibility of a carry from the low-order to the high-order position

B-Cycle

Add Logical Characters-ALC

$\begin{array}{llllllllll} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Bits } & \\ \text { Op Code } & x & x & x & x & 1 & 1 & 1 & 0\end{array}$

- Binary add A field to B field data
- A and B fields are the same length (O code plus 1).

The add logical characters operation adds the A field data, one byte at a time, to the B field data. The entire A field byte (bits 7 through 0) is binary added to the B field byte. The operation begins with the low order position of each field and continues until the high order position is reached. Both fields are the same length, which is 1 more than the Q code.

The CPU performs the add logical characters operation with a series of A - and B -cycles. First an A cycle removes the first A field byte from storage and retains it in the DRR. Then a B-cycle removes the first B field byte from storage, adds it to the A field byte, and stores the result in the B field units location. The next A field byte is then add ed to the second B field byte through the same to the end of the field.

After the first A field byte has been stored in the DRR and the AAR has been decremented (refer to A-cycle), the CPU enters a B-cycle. The BAR is selected and loaded into the SAR in the same manner that the IAR was transferred.

The B field units byte is read from storage and is loaded into the B register. The A field byte is transferred from the DRR to the A register and the two bytes are binary added in the ALU. The resul is then stored into the B field units storage location.

Gate SDR to B
Gate LSR Lo Normal to A (DRR)

The BAR is then decremented in the same manner that the AAR was decremented. The Q register is tested to see if the end of the field has been reached (blank Q register). If the Q register is not blank, to add the next characters if the Q register is add the 'oxt chact triger is the α egster is bat, operation ends.

During clock 1 and 2 of each B-cycle, except for the first, the LCR is decremented

The LCR contains the field length which was stored there during the $1-Q$ cycle. The result which is iatched into the ALU at clock 2CD time, is loaded into the Q register at clock 3 time. By not decrementing the LCR on the first B-cycle, the field length becomes 1 more than the Q code.

An additional function of the add logical chara ters operation is to set the condition register.

Equal	Low	High	Binary Overflow
Result	No Carry is zero and non- zero re- Curry and	Result too non-zero result	large for field (no high order carry)

During clock 1 and 2 of the first B -cycle of the operation, the condition register is reset to equal. During each B -cycle, after computing the A and B field data at clock 3 and 4 time, the ALU output is sampled. If the ALU output is all zeros, the condition register remains set to equal. How ever, if an ALU output occurs during any B-cycle the result can no longer be equal and the equal condition is reset.

Once the equal condition has been reset the final high or low setting of the condition register is not determined until the last B -cycle of the operation In the meantime, because of the machine circuitry, a CR high condition will be indicated. During the a last B -cycle (O register all zeros) if a carry results from the computation, the CR is set to low; if no carry occurs the condition register remains set to high.

If there is no carry from the high order position, the CR binary overflow condition is also set. This is an indication that the result is too large to be contained in the B field.

Subtract Logical Characters-SLC

$\begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

- Binary subtract A field characters from B field characters.
- A and B fields are the same length (0 code plus 1).

The subtract logical characters operation is the same as the add logical characters operation except that the A field data is subtracted from the B field data.

Compare Logical Characters-CLC

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

- Compare A field data to B field data.
- A and B fields are the same length (Q cod plus 1).

During the compare logical characters operation, the CPU compares the two fields by binary subtracting the A field data from the B field data. The operation is the same as a subtract logical operation except that the results are not entered into storage.

Gate SDR to B \qquad Gate LSR Lo Normal to A (DRR)

The A and B fields remain unchanged by the operation, and the ALU results are used merely to set the condition register:

Equal	Low	High
A and B	B field is	B field is
fields are equal	lower than A field	higher than A field

Move Characters-MVC

$\begin{array}{lllllllll}\text { Bits } & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

- Move A field characters to B field location.
- A and B fields are the same length (O cod plus 1)

The move characters operation moves the A field data, one byte at a time, into the B field location. The operation begins with the low-order position of each field and continues through the high order position.

The operation is the same as add logical character (previous page), except that the B field character is not loaded into the B register.

When the B register is blank, the operation is the
same as adding the A tield to zero.
The AAR , the BAR and the LCR are decremented
the same way and the operation ends in the same ener (O register all zeros). However, the cond ion register setting is not changed.

Move Characters or Compare, Add, or Subtract

 Logical Cháracters
Objectives

1. Move Characters

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ Op Code $\mathrm{x} \times \mathrm{x} \times 11100$

- Move the contents of the \mathbf{A} field to the B field.

2. Compare Logical Characters

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

$$
\begin{array}{lllllllll}
\text { Bits } \\
\text { Op Code } & x & x & x & x & 1 & 1 & 1 & 0
\end{array} 1
$$

- Compare the A field data with the B field data.

3. Add Logical Characters

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Op Code $\quad \mathrm{x} \times \mathrm{x} \times \mathrm{x} 1111 \begin{aligned} & 1\end{aligned}$

- Binary add the A field data to the B field data and store results in B field location.

4. Subtract Logical Characters

Bits
01234567
Binary subtract the A field data from the B field data and store results in B field location
5. All Operations

- A and B fields are same length.
- Length of field is O code plus 1 .
- Set condition register except during move operation

Wait or Alter-Disp ATT-PMR

Wait or Alter-Disp ATTPMR
Fast I-Cycle
System Reset

Machine Cycle					EA									Eb					Reference
Clock	$\xrightarrow[+1-1]{ }$	$11^{1}+1$	$\xrightarrow[+1]{1+1}$	1			$\stackrel{6}{1}$	1			$11^{1} 11$		$1 \stackrel{3}{1}$	1	$+1$	1	17	$1 \stackrel{8}{1}$	KC122
BSM Select																			KC132
Load SAR																			KC142
AAR Select																			KL12?
bAR Select																			KL121
LCR/DRR Select				DRR							LCR		DRR						KL121
A Reg Input						Force Bit 1					Force Bit 1		DRR		Force Bit 1				RA111
B Reg Input				SDR		AAR Lo		AAR Hi			LCR		SDR		bar Lo		BAR Hi		RA101
Load A and B Reg																			RA101
Bin Compl A Reg													(Move	nd Add Orivi					KY121
Binary Subtract Gate																			KY121
Load ALU																			AV132
Alu Output.																			AV142
Load LSR					DRR		AAR LO		AAR Hi $^{\text {a }}$			LCR				BAR Lo		BAR Hi	KL101
BSM Write														(Except	Compare)				KC132
Load Q Reg																			KD141
CR Control											Reset								KG111
Op End															Set				KD131

Condition Register				
Operation	Equal	Low	High	Binary Overflow
Move				
Add	If result is zero	If result not zero and a high order carry	If result not zero and no high order carry	Result too large for field (no high order carry)
Subtract	If A field equals B field	If B field is lower than A field	If B field is higher than A field	
Compare	If A field equals B field	If B field is lower than A field	If B field is higher than A field	

Add or Subtract Zoned Decimal-AZ-SZ

Decimal add A field data to B field data for add instruction with like signs and subtract instruc tion with unlike signs.

Decimal subtract A field data from B field data for add instruction with unlike signs and subrract instruction with like signs.

- Signs are in zone portion of low order bytes
- Length of A field is a numeric portion of O code plus 1.
- B field is longer than A field by amount in zon portion of Q code.

Although the add zoned decimal and subtract zoned decimal operations have different operatio odes, the execution of each operation is the sam instance, an add instruction with unlike signs for the two fields (1 minus and 1 plus) actually sub. racts the A field from the B field Likewise, a subtract instruction with unlike signs actually adds the A field to the B field. In either instance, the operations are the same except for the add or sub tract function of the ALU.

The operations begin with the low order position of each field and continue until the high order position of the B field is reached. First an A. cycle removes the first A field byte from storage and retains it in the DRR. Then a B-cycle removes he first B field byte from storage, transfers it to the B register, and adds or subtracts the registers in the ALU. This process continues until the end of the A field, which can be shorter than the B field, and then B -cycles continue to the end of the B field.
with it. If is in true form, nothing more is done with it. If the result is in complement form, the result must be recomplemented. Results are in complement form when

- Operation has a subtract function (no A regis. ter complement) and the A field is larger than the B field.

Recomplement begins with the low order position of the B field and continues to the high order posiion. Continuous B -cycles remove the bytes from storage and recomplement them in the ALU.

The numeric portion of the Q code plus 1 is the length of the A field. The B field is longer than the A field by the amount in the zone portion of the Q code.

After an A-cycle has stored the first A field byte in the DRR and the AAR has been decremented the CPU enters into a B -cycle. During the B -cycle, the first B field byte is read from storage and is oaded into the B register. The A field byte is transferred from the DRR to the A register and, f the two fields the two bytes and he signs the two fieds,

Add or Subtract Zoned Decimal-Add or Subtract Character

The result is then stored in the B field storage to cation.

The BAR is decremented and the Q register is tested to see if the end of the A field (O register numeric portion all zeros) or if the end of the B field (Q register all zeros) has been reached. If the numeric portion of the Q register is not all zeros, the CPU takes another A-cycle and another B-cycle to add or subtract the next characters. If the numeric portion is all zeros but the zone portion still con tains bits, 'EA eliminate' is activated to block A cycles and the CPU takes a B-cycle.

If the O register is all zeros, a check is made to determine if the total is in true or complement form. If the operation function is decimal sub tract (A register not complemented) and a carry occurs from the high order byte, 'recomplement cycle is activated to start recomplementing. Un der all other conditions, except a minus zero re sult, the 'op-end' trigger is turned on and the oper ation ends. A minus zero result, which is also re complemented, is determined by the CR setting and is discussed later

During clock 1 and 2 of each B -cycle, except for the first, the LCR is decremented. The LCR con tains the length count that was stored there during the l-Q cycle. The result, which is latched into the ALU at 2CD time, is loaded into the O register at clock 3 time. Until the Q register numeric por
 bit; after the numeric portion is all zeros, decre. menting is done with a 3 bit.

Decrementing Length Count-Unequal Length Fields

- Result is minus zero.

During each A-and B-cycle, 'sign control' is activated to provide the EBCDIC code for the sign of each field. The sign is in bit $0-3$ of the first byte of each field. EBCDIC sign for minus is 1101 and ASCU 8 code for minus (1011) but sign cont changes this to EBCDIC After the first byte of eath field all zone bits (11111) are provided fo each character During the first B cycle, the sig ce, the sign

During clock 1 and 2 of the first A-cycle, the condition register is reset to equal. Then in the first B-cycle, the 'CR Io/hi' latch is set by the result sign (lo for minus, hi for plus). However, if no numeric output occurs from the ALU (all zeros), the condition register remains set to equal. If, during any B -cycle, a non-zero ALU output occurs, the result can no longer be equal and the equal condition is reset. The setting of the ' CR lo/hi latch is then used to determine the CR setting.

If the CR equal condition has not been reset before the last B -cycle and the 'CR lo/hi' latch is set to lo (minus) the result is minus zero. All zero results are considered plus and 'recomplement cycle' is activated to recomplement the results.
If the operation is an add function (decimal complement A register) and no carry occurs from the high order position, the CR decimal overflow condition is also set. This is an indication that the reThe following chart shows the significan of the CR settings. he CR settings.

| | $\begin{array}{l}\text { Con- } \\ \text { dition } \\ \text { Register }\end{array}$ | Equal | Low | High |
| :--- | :--- | :--- | :--- | :--- | \(\left.\begin{array}{l}Decimal

Over-

flow\end{array}\right]\)| ALU
 result | Result
 is zero | Result
 is minus |
| :--- | :--- | :--- |
| Result
 is plus | Result
 too large
 for field | |

Recomplement Cycles

Addressing for recomplement cycles is controlled by the ARR which contains the low order addres of the B field (refer to $\mathrm{I}-\mathrm{H} 1$ and I-L1 cycles). The ARR is decremented each recomplement cycle in the same manner that the AAR and BAR are decremented in other operations.
'EA eliminate' is active through the entire recom plement operation causing continuous B -cycles Each byte is read from storage and loaded into the B register.

Recomplementing

The A register has a 1 forced into it on the first recomplement cycle and is left with all zeros for the remainder of the cycles. Both the A and B registers are decimal complemented.

The length of the field is determined by the LCRR which was loaded during the I-Q cycle. Decrement ing of the LCRR is the same as for the LCR in a decimal add or subtract operation.

The Q register is tested each cycle to see if the end of the field has been reached (all zeros in the O register). When the Q register is all zeros, the 'op end' trigger is turned on and the operation ends.

Because recomplement is necessary only when the A field is larger than the B field or the result is minus zero, sign control is activated to reverse on the first cycle and the CR setting is determin the same way as during decimal add or subtract.

Zero and Add Zoned-ZAZ

- Decimal add A field data to zeros and place re sult in B field.
- B field is longer than A field by amount in zone portion of the Q code.

The zero and add zoned operation is similar to an add zoned decimal operation except the function is always add, without consideration of the fields signs. Another difference is that the B field characters are not loaded into the B register.

With the B register all 0^{\prime} 's, the operation is the same as adding the A field to zero. The only other sighificant difference is that the A field sign is entered as the sign of the result instead of the B field sign.
The address registers and the LCR are decremented in the same way. The operation ends in the same manner. Recomplementing is not necessary undess the result is minus zero. The CR settings are
shown in the chart below.

Con- dition Register	Equal	Low	High	Decimal Over- flow
ALU result	Result is zero	Result is minus	Result is plus	Result too large for field

Zero and Add Zoned and Add or Subtract

 Zoned Decimal
Objectives:

Zero and Add Zoned
Bits $\quad \begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 \\ \times\end{array}$ Op Code $\mathrm{x} \times \mathrm{x} \times \mathrm{x} 010$

- Decimally add A field data to zeros and place results in B field location.

2. Add Zoned Decimal

Subtract Zoned Decimal
$\begin{array}{llllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \text { Op Code } \\ x & x & x & x & 0 & 1 & 1 & 0\end{array}$
Op Code $\begin{array}{lllllllll}x & x & x & x & 0 & 1 & 1 & 0 \\ & x & x & x & x & 0 & 1 & 1 & 1\end{array}$

- Decimally add A field data to B field or
subtract A field data from B field
- Instruction and signs of fields determine add or subtract function.

3. All Operations

- Length of A field is numeric portion of

Q code + 1 .

- B field is longer than A field by amoun

Zero and Add Zoned and Add or Subtract Zoned Decimal

.

ALD References KL121
KL121 RA101
KY121 KY121
KY121
KY121 KG111
KD141

Condition Register				
Operation	Equal	Low	High	Decimal Overflow
Zero and Add Zoned	Result is zero	Result is minus	Resuit is plus	-
Add or Subtract Zoned	Result is zero	Result is minus	Result is plus	Result is too large for field

Edit-ED

$\begin{array}{lllllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ & 0\end{array}$

- Replace hex $2 / 0$ in B field with A field data.
- Skip other characters in B field leaving them as they were.
- Length of B field is Q code plus 1 .
- A field sign stored in condition register

An edit operation inserts punctuation (decimal points, commas, or other symbols) into an amount

Example:
A field 090715
B field before edit \quad Blank B ield after edit $_{0,907.15}$ *
$x=$ Replaceable Character (2/0)
The A field represents the total nine-hundred seven dollars and fifteen cents. The B field is the pre established edit pattern. The total is then moved into the edit pattern to replace those positions that contained a replaceable character (2/0).

The operation begins with the low order position of each field and continues until the high order position is reached. First, an A-cycle removes the first A field byte from storage and retains it in the DRR. Then a B -cycle removes the first B field byte from storage, transfers it to the B register, and checks to see if the character is a replaceable character. Only a hex $2 / 0$ is recognized. If the character is $2 / 0$, the A field character is stored in that location; if the character is not $2 / 0$, the A field character is retained and the next B field character is checked.

The Q code plus 1 is the length, in bytes, of the B field. The A field characters are assumed to be decimal numeric, and their zone portions are all set to F before entering them into the B field. However, the sign of the A field before the oper ation is used to control the setting of the condition register. The following chart shows the sig nificance of the condition register settings.

Equal	Low	High
A field is zero	A field is negative	A field

After an A-cycle has stored the first A field byte in the DRR, the CPU enters into a B-cycle. During the B-cycle the A field byte is transferred from the DRR to the A register. The first B field byte is read from storage and is loaded into the B register. The 'AND' and 'OR' lines are activated to move the A register byte through the ALU

The B register is checked to see if it contains the character $2 / 0$. If it does, the ALU result is stored in the B field units storage location. Since the A field byte was stored, the machine takes another A-cycle to read out the next A field character and store it in the DRR.

If the B register byte is not $2 / 0$, the ALU output is not entered into the SDR and the B register byte is regenerated back into main storage. In this case 'EA eliminate' is activated, the A field byte is retained in the DRR, and the machine takes another B-cycle to read the next B field byte from storage
During each B -cycle, except the first B -cycle, the LCR is decremented. The LCR contains the B field length count which was stored there during the I-Q cycle. The result, which is latched into the ALU at clock 2CD time, is loaded into the Q register at clock 3 time

The Q register is tested each B -cycle to see if the end of the field has been reached (all zeros in the Q register). If the Q register is all zeros, the 'op end' trigger is turned on and the operation ends. By not decrementing the LCR on the first B-cycle, the B field length becomes one more than the Q code.

The cycles required to complete a typical edit operation are:

Cycle	A	B	B	B	A	B	A	B	B	A	B	A	B	A	8	B
B register	5		b	\times	1	\times	7		\times	0	\times	9	\times	0		\times
A register		5	5	5		1		7	7		0		9		0	0
Data recall register	5	5	5	5	1	1	7	7	7	0	0	9	9	0	0	0
Regenerate	5		b		1		7			0		9		0		
New data				5		1			7		0		9			0
Length count	9	9	8	7	7	6	6	5	4	4	3	3	2	2	1	-

$x=$ Replaceable Character (2/0)
A field 090715
B field before edit $\quad x, \times x \times . x$
B field after edi
blank
Note: Since the A and B registers are loaded each odd CD clock time, the figures shown apply only to clock 3 and 4 time when the main storage data is being analyzed.

During the first A-cycle, the A field low order byte, in this case a 5 , is stored in the DRR. Dur ing the following two B -cycles, as the asterisk and space are read from storage, the 5 is retained in the DRR. On the third B-cycle, when the replace able character is read from storage, the 5 replaces the $2 / 0$ in the B field location. Another A-cycle follows to read out the next A field character, and so on until the length count is reduced to zero.
During clock 1 and 2 of the first A-cycle, the con dition register is set to equal. The sign of the A field (which is contained in the zone portion of the low order byte) is checked while the byte is the B register. If sign is minus he latch is curned on, 1 not the lach is left of. Dur. at clock 3 and 4 time, the ALU output is sampled If the ALU output is all zeros, the condition regis ter remains set to equal and the equal condition takes precedence over the sign of the field. However, if an ALU output occurs during any B-cycle the result can no longer be equal and the equal condition is reset.

Once the equal condition has been reset, the fina high or low setting of the condition register is de termined by the CR low latch. If the CR low latch is on, a CR low condition is indicated; if the CR low latch is off, a CR high condition is indicated.

During each A-cycle, as the A field byte goes
through the ALU, 'sign control' is activated Thus, each byte is entered into the DRR as a decimal numeric character (zone bits all present).

nsert and Test Character-ITC

$\begin{array}{llllllllll} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Bits } & 0 & \\ \text { Opde } & x & x & x & x & 1 & 0 & 1 & 1\end{array}$

- Replace all characters to left of first significan digit in B field with A field character.
- Only numeric characters 1 through 9 are considered significant digits.

The insert and test character operation inserts a single A field character into each B field position to the left high order significant digit. Only nu meric characters 1 through 9 are considered to be significant digits.

An example of an insert and test character opera. ion is:
$\begin{array}{ll}\text { B field before operation } & \$ 001.98 \\ \text { B field after operation } & \$^{* * 1.98}\end{array}$
field after operation
The B field starting address is the high order posiion and the operation continues until either, the low order position of the field is reached, or a sig nificant digit is found. The B field length is one more than the Q code

After the A field byte has been stored in the DR the CPU enters into a B-cycle. The B field high order byte is read from storage and is loaded into the B register. The A field byte is transferred fro the DRR to the Argist and the AND and OR"ALU Ares act A field byte through the ALU

If the B register contains a character other than numeric 1 through 9 , the A field byte is stored in the B field high order location.

The BAR is then incremented in the same manner that the IAR is incremented during I-cycles. ' $E A$ eliminate' prevents the CPU from taking anothe A-cycle. Another B-cycle reads the next descend ing B field position from storage and it is checked in the same manner.

If the B field byte contains a significant digit the B field byte is regenerated back into storage and the 'op-end' trigger is turned on and the operation ends. Meanwhile, the LCR is decremented each B-cycle, except the first B-cycle, and is transferred to the Q register. If no significant digit is found before the length count is reduced to zero, the all zero O register ends the operation.

Each B-cycle in which no significant digit is found, the address of the next B field byte is stored in the ARR for programming purposes. At the end of the operation, he ARR will contain he address of the first signican ARgit. If wo signt dig is encountered, the ARR will contain the addre of the byte to the right of the B field.

Machine Cycle Clock	$\xrightarrow{+1+1}$	$\xrightarrow{1+1}$	${ }^{2}+1$	1_{1+1}	$1 \stackrel{4}{1}$	$1{ }^{5}$	$1{ }^{6}$	$\stackrel{7}{1+1}$	$\stackrel{8}{1+1}^{\text {1 }}$		$\left.1\right\|^{1} \\|$	11^{2}	$\stackrel{3}{3}_{1}{ }^{\text {d }}$	$\stackrel{4}{4}^{+}$	$1{ }^{5} 1$	111	111	$1{ }^{8}$	KC122
Load SAR																			KC142
BSM Select																			KC132
AAR Select																			KL121
bAR Select																			KL121
DRR Select																			KL121
LCR Select																			KL121
ARR Select																			KL121
Load A and B Reg											m								RA101
A Reg Input						Force	Bit 7					DRR			Force	Bit 7			RA111
B Reg Input				SDR							LCR		SDR		BAR Lo,		BAR Hi		RA101
ALU Output																			AV142
																			KY101
Binary Sub Gate																			KY121
Bin Compl A Reg																			KY 121
Load LSR					DFR ${ }^{\text {a }}$							LCR				BAR Lo		BAR Hi,	KL101
Significant Digit (1-9																			KD131
Load Q Reg																			KD141
BSM Write																			KC132
EA Eliminate																			KY111
																			KD132
												2							

objectives

Insert and Test Character
Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
Op Code $\quad \begin{array}{llllllll}x & \times & \times & 1 & 0 & 1 & 1\end{array}$

- Replace all characters to left of first significant digit in B field with A field character.
- Only numeric characters 1 to 9 are considered significant digits.
- Length of B field is Q code +1 .
- A field is only 1 character in length.

Example:
Edited field before operation \$001.98
A field character
Edited field after operation
B field starting add̈ress
$\${ }^{* *} 1.98$

Move Hex Character - MVX

$\begin{array}{lllllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

- Move half (zone or numeric) of A address byte to the numeric or zone portion of the B address byte
- Do not change the other half of the B addres byte
- Bits 6 and 7 of Q code specify the portion of each byte used

The move hex character operation moves a half byte of information from one main storage location to another. Either half of the A field byte (zone o meric) may be placed in either portion of the B field byte (zone or numeric) without changing the other half of the B field byte. The type of move is determined by bits 6 and 7 of the O code. The following example shows the four types of moves possible and gives the Q code bit structur for each type of move. Since each field is only one character in length, one A cycle and one cycle are all that are required to complete the operation.
Before Operation
After Operation
A Field B Field

Byte	Byte
[3\|6	$\boxed{4} / 7$

		Byte
ts	Zone to Zone	37
67		
	Numeric to Nu	
11	Zone to Numeric	4
10	Zone to Numeric	4
01	ic to Zon	

After an A cycle has stored the A field byte in the DRR, the CPU enters into a B cycle. During the B cycle, bits 6 and 7 of the 0 code control the data flow

The following figure shows that if the half byte is to be moved to the same relative position in the B field byte, the bits are transferred from the DRR to the A register in their normal positions. However, if the move is to the opposite portion of the B field byte, the A field byte enters the A register with the zone and numeric portions crossed. For example, a 3 bit enters the A register
as a 7 bit, a 2 bit enters as a 6 bit, and so forth.

The portion of the B register byte that is to be changed by the A field half byte determines the ALU controls. The 'AND' and 'OR' ALU contro lines are activated only for that portion that is to be changed.

The other half of the B register byte passes
through the ALU without any ALU controls and
the new byte is entered into storage. At clock 8 time the 'op end' trigger is turned on and the operation ends.

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

Objectives:

- Move numeric (lower,four bits) or zone (upper four bits) portion of the byte in the location specified by the A address register, to the numeric or zone portion of the byte in the location specified by the B address register.
- Do not change the other half of the B address location byte.
- Do not change the A address location byte.
- Bits 6 and 7 of Q code specify portion used.

This page intentionally left blank

ONE ADDRESS INSTRUCTIONS

I-Cycles

- Load operation code into op register
- Load Q code into Q register and DRR.
- Load B field address into BAR except for load address instruction.
- Load index register for load address instruction.
- Load B field address into ARR for branch instruction.

Single address instructions require a maximum B field length of two bytes. Therefore, it is not necessary to maintain a field length count in the Q code for them. Because it is not necessary to maintain a field length count in the Q code, the Q code can be used for controlling the functions necessary to execute the single address instru ions. Use of the Q code is discussed with the individual instruction descriptions.
-cycles for single address instructions are either three or four cycles in length. First, an l-op cycle transfers the operation code from main storage to the op register. Second, an I-Q cycle transfers th Q code into the Q register and the DRR

Two cycles, an I-H1 and an I-L1 cycle, are then used to load the B field address into the BAR For branch instructions, the \mathbf{B} field address is also loaded into the ARR. For a load address instruction, and index register is loaded instead of the BAR. This is discussed with Load Address.
If indexing is used, a single $\mathrm{I}-\mathrm{X} 1$ cycle replaces the $\mathrm{I} \cdot \mathrm{H} 1$ and $\mathrm{I}-\mathrm{L} 1$ cycles.
-op and $\mathrm{I}-\mathrm{Q}$ cycles are the same as in 2 address instructions except the Q code is stored in the DRR instead of the LCR and LCRR. I-HI and L1 cycles are the sam und a load address

The need for an $1-\times 1$ cycles is determined by (1) either op bit 0 or 1 , but not both, or (2) bit 2 or 3, but not both. The I -X1 cycle description and the index register selected are the same as in two address instructions.

Any additional considerations made during the l-cycles are discussed with the individual opera tion descriptions.

The l-cycle description begins on page 5-3

Move Logical Immediate-MVI

Bits $\quad 01234567$
Op Code $\mathrm{x} \times 1 \begin{array}{llllllllllll}1 & 1 & 1 & 1 & 0 & 0\end{array}$

- Move the Q code byte to the B address storag location.

The move logical immediate operation moves the byte of data which is contained in the Q code portion of the instruction to the B address storage location. Since only one byte is being moved, the operation is executed with a single B-cycle.

During the B -cycle, the storage location is addressed by the BAR, and at clock 3 and 4 tim the DRR is transferred to the A register.

Gate LSR Lo Normal To A (DRR)

The DRR contains the Q code that was stored in it during the I-Q cycle. The data in storage, if any is present, is not transferred to the B register and the A register is binary added to the zeros in the \mathbf{B} A register is binary added to the zeros in the B
register. The result is written into the B address location. The op-end trigger is then turned on and the operation ends.

Compare Logical Immediate-CL

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 \\ \times\end{array}$
Op Code $\begin{array}{lllllllll}x & x & 1 & 1 & 1 & 1 & 0 & 1\end{array}$

- Compare Q code with byte in B address storage location.

The compare logical immediate operation compares the byte of data that is contained in O cod portion of the instruction with the B address storage location byte. Since only one storage position is involved, the operation requires a single B-cycle.

The operation is similar to a move logical operation except the B address byte is loaded into the B register and the Q code byte is binary subtracted from it.

The results are not entered into storage but are used to set the condition register

Equal	Low	High
B address and Q bytes are equal	B address byte is lower than O byte	B address byte is higher than O byte

Objectives

Move Logital Immediate
Bits $\quad 0123456$
Op Code $\times \times 1111100$
Store the Q code, which is located in the Data Recall Register, in the location specified by the B address register

Compare Logical Immediate

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Op Code $\quad \times \times 1 \begin{array}{lllll}1 & 1 & 1 & 0 & 1\end{array}$

- Compare the Q code, which is located in the Data Recall Register, with the data in the location specified by the B address register.
- Record the result of the comparison in the condition register.

Set Bits On Masked-SBN

- Place bits that are present in the Q code into the \mathbf{B} address storage location.
- Do not change the remainder of B address byte.

The set bits on masked operation, turns on the bits in the B address storage location that correspond to the Q code bits. Bits that were already on in the B address byte are left on.

$$
\begin{array}{lll}
\text { Example: } & \text { O Code Byte } & 11000111 \\
& \text { B Address Byte } & \\
& \text { New B Address Byte } & \frac{10010010}{11010111}
\end{array}
$$

The operation requires a single B -cycle and OR s the O code byte, which was stored in the DRR during the $\mathrm{I}-\mathrm{Q}$ cycle, with the B address byte. The result is written into storage. The op-end trigger is turned on and the operation ends.

Set Bits Off Masked-SBF

- Remove bits that are present in the Q code from the \mathbf{B} address storage location.
- Do not change the remainder of the B address byte.

The set bits off masked operation turns off the bits in the B address storage location that correspond to the Q code bits. The rest of the bits in the B address byte are left unchanged.

Example:	Q code byte 11000111 B address byte New B address byte	10010010 00010000

The operation requires a single B-cycle and ANDs the B address byte with the binary complement o the Q code. The result is written into storage and the op-end trigger is turned on to end the oper ation. The Q code was stored in the DRR during the I-Q cycle of the operation.

Test Bits On Masked -TBN

- Activate 'CR test false' if bits present in the O code are not all present in the B address storage location

The test bits on masked operation tests to determine if all bits present in the Q code are also determine all bits presen in the Q code are also are not, the 'CR test fase' latch is turned on

The operation requires a single B-cycle and uses the 'OR' control line in the ALU. The Q code is transferred from the DRR to the A register and the B-field byte is loaded into the B register. Any bit in the \mathbf{A} register that is not present in the B egister gives a 'test false' output. The results are not written into storage but are used merely to set the condition register.

Test Bits Off Masked-TBF

- Activate 'CR test false' latch if any bits present in the O code are also present in the B address storage location.

The test bits off masked operation tests to determine if all bits present in the Q code are absent from the B address storage location. If they are not, the 'CR test false' latch is turned on

The operation requires a single B -cycle. The C code is transferred from the DRR to the A register The A register is binary complemented and the AND control line in the ALU is used to give a 'test false' output for any bit in the Q code which has a corresponding bit in the B address byte. The results are not written into storage but are used merely to set the condition register

Set Bits On/Off Masked and Test Bits On/Off Masked (Part 2 of 3)

Objectives:

Set Bits On Masked
$\begin{array}{llllllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Op } \\ x & x & 1 & 1 & 1 & 0 & 1 & c\end{array}$

- If a bit is present in the Q code, turn on the corresponding bit in the storage location specified by the B address register
- Do not change bits which correspond with bits not present in the Q code.

Set Bits Off Masked

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ Op Code $\times \times 111110111$

- If a bit is present in the Q code, turn off the corresponding bit in the storage location specified by the B address register.
- Do not change bits which correspond with bits not present in the Q code

Test Bits On Masked

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$ Op Code $\begin{array}{lllllllllll}x & 1 & 1 & 1 & 0 & 0 & 0\end{array}$

- If a bit is present in the Q code, test to see if the corresponding bit in the storage location specified by the B address register is on.
- Ignore bits that correspond with bits not present in the O code.
- Turn on 'test false' latch if selected bits are not all on.

Test Bits Off Masked

Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Op Code $\times \times 1111001$

- If a bit is present in the Q code, test to see if the corresponding bit in the storage location specified by the B address register is off.
- Ignore bits that correspond with bits not present in the Q code.
- Turn on 'test false' latch if selected bits are not all off.

Machine Cycle
Clock
Clock
BSM Select
Load SAR
DRR Select
BAR Select
${ }^{\text {B }}$ B Reg Input (SDR)
A Reg Input (DRR)
Load A and B Reg
Load ALU
Bin Compl A Reg (test bin ALU Control (and/or) ALU Output (test false) CR Control Op End

Test Bits On/Off									
0	1	2	3	4	5	6	7	8	ALD
- 111	- ل11	111	+1_	」11	-	-11	- ل1	لـ1	122
									KC132
									C142
									L121
									L21
									Ral01
									Ra111
									Ra101
									AV1
									KY121
									KY101
									AV142
					\square				KG101
									KD131

tore, Load, or Add to Register

Store Register - ST
Bits $\quad \begin{array}{lllllll}0 & 1 & 23 & 4 & 5 & 67\end{array}$
Op Code $\mathrm{x} \times 1101000$
Store the registers that are selected by the Q code into the location specified by the BAR

The store register instruction stores an LSR in the field storage locations. LSR selection is divided into two different groups depending upon the presence or absence of Q bit 0 .

O Code Bits	Register Selected	
	When \mathbf{O} Bit $0=1$	When \mathbf{Q} Bit $0=0$
1	Interrupt 1-IAR	P-ARR
2	Interrupt 2-IAR	P-IAR
3	Interrupt 3-IAR	IAR**
4	Interrupt 4-1AR	ARR*
5	Interrupt 5-IAR	PSR
6	Interrupt 6-IAR	XR2
7	Interrupt 7-IAR	XR1

ote: When Q bit $0=1$ and all other Q bits $=0$, Interrupt 0-IAR is selected

* Current registers in use. Can be program level any interrupt level registers.

Since the LSRs are two bytes long, the store register intruction requires two B cycles. During the first cyce, the Q register selects the LSR and the lo der position is transleded B A grer Aregi. This mas LSR by Al and into storage.

The BAR is decremented and in the second B cycle, the high order byte of the LSR is moved. The op end' trigger is then turned on and the oper ation ends.

Load Register - L
Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Op Code $\begin{array}{llllllll}x & x & 1 & 1 & 0 & 1 & 0\end{array}$

- Load the registers that are selected by the O code with data from the location specified by the BAR

The load register operation loads an LSR with the contents of the B field storage locations. LSR section is the Bame as for a store register ope ation.

During the first B cycle, the Q register selects the LSR and the first B field byte is passed through he ALU without any ALU controls. The ALU output is then written into the low order position of the LSR.

The BAR is decremented and in the second B cycle, the next byte is written into the high order position of the selected LSR. The 'op-end' trigger is turned on to end the operation

If the LSR selected by the Q code is the PSR (Q bit 5 and not bit 0), an additional function is performed. Since the PSR low order position is used as the CRR the CR is also set by the ALU output during the first B cycle.

CR setting for Load PSR

ALU Output Bits	CR Results
7	Equal
6 not 7	Low
not 6 not 7	High
2	Binary Overflow
3	Test False
4	Decimal Overflow

Add to Register - A

Bits

1234567
Op Code $\times \times 1 \begin{array}{llllll}1 & 0 & 1 & 1 & 0\end{array}$

- Add the data from the location specified by the BAR to the contents of the registers that are selected by the Q code.
- Load the results into the selected registers.

The add to register operation adds the B field to an SR and loads the result into the LSR. LSR selection is the same as for a store register operation

During the first B cycle, the Q register selects the LSR and the low order position of the LSR is transferred to the A register.

$$
\begin{aligned}
& 1 \text { st }-\operatorname{lin}^{\text {Gate LSR Hi to A }} \\
& \text { Bycle Gate LSR Lo Normal to A }
\end{aligned}
$$

Gate SDR to

The first B field byte is loaded into the B register and binary added to the A register. The results are written into the low order position of the LSR
The BAR is decremented and the process is repeated for the high order position of the LSR. The 'op-end' trigger is turned on to end the operation

The results of the addition are also used to set the condition register.

Equal	Low	High	Binary Overflow
Result is zero	No Carry and non- zero result	Carry and non-zero result	Result too large for register (no high order carry)

Store, Load, or Add to Register (Part 2 of 4)

Machine Cycle					1st EB									2nd EB					D Reference
Clock	$\underline{+1-1}$	+ ¹ 1	+ ${ }_{1}^{1}$	$1 \stackrel{3}{1}$	$\stackrel{4}{1}$	1	$\xrightarrow[1]{1}$	1 ${ }_{1}$	$\xrightarrow[1]{1}$	$1{ }^{\text {1-1 }}$	$1{ }^{1+1}$	$1{ }_{1}^{2}$	$1{ }_{1}^{3} 1$	1	$1{ }_{1}^{5}$	\sim_{1}^{6}	1	$\xrightarrow[+1]{+1}$	KC122
BSM Select																			KC132
Load SAR																			KC142
BAR Select																			KLi21
LSR Select (Determined by a Code)																			KL121
B Reg Input				Add and Loa	d Reg (SDR)	bar Lo		BAR Hi					$\begin{aligned} & \text { Add and Loa } \\ & \hline \end{aligned}$	Reg (SDR)	bar Lo		BAR Hi		RA101
A Reg Input				Add and Sto	IIITIT	Force 1							Add and Sto	-	Force 1				RA111
Load A and B Reg				-															RA101
Bin Compl A Reg				Add an	d Store Reg								Add an	d Store Reg					KY121
Bin Sub Gate				Add an	a Store	0π							Add an	Store	\%				KY101
Load ALU																			AV132
ALU Output							BAR Lo		BAR H							BAR Lo		Hi	AV142
Load LSR					Lo		bar Lo		bar $\mathrm{Hi}^{\text {a }}$					Hi		bar Lo		bar Hi	KL101
CR Control (Load and Add Reg)		Reset				Set									Set (Add	Reg only)			KG111
EA Eliminate																			KY111
BSM Write (Store Reg Operation)																			KC132
First E Cycle																			KD111
Op End																			

Condition Register							
Operation	Equal	Low	High	Binary Overflow	Test False	Decimal Overflow	
Load PSR	If ALU bit 7	If ALU bit 6, not 7	If ALU not bit 6 or 7	If ALU bit 2	If ALU bit 3	If ALU bit 4	
Add to Register	If Result is zero	If Result is not zero and a high order carry	If Result is not zero and no high order carry	If Result is too large for Register (no high order carry)	-		

LSR Selection		
Q Code bits	Q bit 0=1	With No Q bit 0=0
1	Interrupt 1-IAR	P-IAR
2	Interrupt 2-IAR	P-ARR
3	Interrupt 3-IAR	Current IAR
4	Interrupt 4-IAR	Current ARR
5	Interrupt 5-IAR	PSR
6	Interrupt 6-IAR	XR2
7	Interrupt 7-IAR	XR1
No other bits	Interrupt 0 IAR	

Load Address-LA

Bits $\quad 0123456$
Op Code $11 \times \times 0010$
Load one or two bytes from storage into one of the two index registers.

- If instruction format is four bytes, load two byte address into index register selected by 0 code bits 6 and 7.
- If instruction format is three bytes, add las instruction byte to index register selected by op code bits 2 and 3 .
- Load result into index register selected by 0 code bits 6 and 7 .

Index Register Selection for Load Address

O Code Bit	Register Selected
6	XR2
7	XR1

- Take I-H and I-L cycles (four byte format)

See Page 5 -8

- Take I-X cycle (three byte format)

See Page 5-12

he load address instruction performs one of two possible operations, depending on the instruction ength. If the instruction is four bytes long, the last two bytes of the instruction are taken from storage and loaded into the index register selected by bits 6 and 7 of the Q code; if the instruction is three bytes long, the last byte of the instruction is taken from storage, added to the contents of the index register selected by bits $0-3$ of the op code, and then loaded into the index register selected by bits 6 and 7 of the Q code.

Load Address Data Flow-Indexed

A four byte format requires one I-H1 cycle and one L1 cycle. During the I-H1 cycle bits 6 and 7 of the Q code select one of the two index registers. it 7 O code select one of che wo index registers. on selects XR2. Data is transferred from the storage position addressed by the IAR to the B register, through the ALU, and into the high order register, through the ALU, and into the high order
position of the selected index register. The IAR is incremented and during the I-L1 cycle the process is repeated for the low order position of the index register.

A three-byte format requires going through only one $1-X$ cycle. Data is transferred from the storage location address by the IAR to the B register and at clock 3 time is added to the contents of the selected index register (bits 0 through 3 of the op code). Bits 6 or 7 of the Q code selects one of the index registers at clock 4 time and the sum in the ALU is loaded into that register. The IAR is incre nented for the next operation.

Branch On Condition-BC
Bits $\quad \begin{array}{llllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Op Code $11 \times \times 0000$

- Condition register is tested for the condition pecified in Q code.
- Branch to address is placed in ARR.
- Branch to address becomes next sequentia instruction.

The branch on condition operation loads the two byte branch to address into the ARR. If the condition specified in bits 2 through 7 of the Q code is satisfied, an IAR/ARR interchang occurs at op end. The ARR is then used as the IAR.

Bit 0 of the Q code is used to specify if the branch is to be performed on condition true or condition false. If bit 0 is on and at least one of the con ditions specified by the O code is present, the branch is performed. If bit 0 is off and all conditions specified by the Q code are missing, the branch is performed

During the $1-\mathrm{Q}$ cycle, the Q code data is transferred from storage, through the B register, and into the ALU. The contents of the condition register are decoded and enter the ALU through the A register. An ALU AND function is per formed (both input bits must be the same to get an output), and the output is checked for nonzero. The resut is placed in the Q register. Bregite bro ndi-zes is need to satisfy the sum of coo ition The following list shows the function of each Q cod bit when testing condition register.
a Bit Condition Tested
0 Presence of Condition Not 0
7
6
6
5

Absence of Condition
Equal
High
Decimal Overflow
Test False
Binary Overflow

During the $\mathrm{I}-\mathrm{H} 1$ cycle, the ARR is selected and the
high order position of the branch to address is
transferred from storage through the B register,
ALU and into ARR high. The IAR is incremented and the process is repeated for the low order
position.

Store CPU (SCP

$\begin{array}{llllllllll} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Bits } & x & x & 1 & 1 & 1 & 1 & 1 & 0\end{array}$

- Place the contents of the register selected by the Q code into the B field storage location.
- This is a privileged instruction.

The store CPU instruction is very similar to the tore register instruction. It stores the register secified into the B field storage focation.
Registers selected by this instruction are divided into four groups depending on Q bits 1,2 , and 3

1. Address translation/storage protect registers
2. Program mode registers
3. Program check address registe
4. Program check status register

The store CPU instruction requires two B-cycles. During the first B -cycle the Q register bits are decoded to select the required register. The firs byte is transferred to the A register and the B register is left all zeros so the \mathbf{A} register is binary added to zero to move the byte through ALU and into storage.
The BAR is decremented and in the second B cycle, the high order byte is moved. The 'op-end igger is then turned on and the operais che is take and data is transerred The result bits 0 through 6 are all zeros and bit 7 is set to PMR 19th bit.

LOAD CPU (LCP)

$$
\text { Bits } \quad \begin{array}{llllllll}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7
\end{array}
$$

- Place the contents of the B field (two bytes) into the register selected by the Q code.
- This is a privileged instruction.

The load CPU instruction is very similar to the load register instruction. It loads a register with the contents of the two byte B field storage location.

The Q codes used in the Store CPU instruction are also used for this instruction. In addition, three other Q codes are defined only for a Load CPU instruction \mathbf{A}.

During the first B cycle the O register selects the register to be loaded. The first B field byte passe through ALU without any controls. The ALU output is then written into the low order register position
The BAR is decremented and in the second B cycle, the next byte is written into the high order position of the selected register. The op-end trigger is turned on to end the operation. If this trigger is turned on to end the operation. If this instruction is to load PMR, a second EB cycle is taken and data is transferred. Bit 7 is used to control the PMR 19th bit of the selected register Bits $0-6$ have no effect.
The following pages further describe the Load/ Store CPU operations.

Op Code O Code

0	0	0	1	02 and 03
0	0	1	0	04 and 05
1	1	1	0	IC and ID
1	1	1	1	IE and IF

Contents of odd
Contents of even numbered register

1. Operand bits 2 through 7 are loaded into the selected ATT register. Bits 0 and 1 are loaded with zeros.
2. Operand bits 0 and 1 are loaded into the selected SPT register

3. Operand bits 0 through 7 are loaded into the selected ATT register.
4. The SPT register is not affected

\section*{| 0 | 1 |
| :--- | :--- |}

Contents of even
numbered register

Notes

1. Operand bits 0 and 1 are loaded into the selected SPT register
2. The ATT register is not affected
3. Memory Diagnostic Fetch (O Code $X^{\prime} 21^{\prime}$

The data in the main storage location addressed is loaded into the program check address register. The storage location must begin with an odd address so that the proper two byte are fetched.

During the fetch, ECC is disabled so the program check register receives the exact contents of main storage. Because one bit errors now appear program check status register is set on

The first main storage byte (bits $0-7$) is loaded into byte 1 of the program check address register; the second byte (bits $8-15$) is loaded into byte 2.
2. Memory FDR Reset (O Code $\mathrm{X}^{\prime} 22^{\prime}$)

The fetch data register is reset to hex FFFF then loaded into the program check address register.

The check bits are not affected and the ECC is not disabled.

The storage location must begin with an odd address. Then the first main storage byte (bits $0-7$) is loaded into byte 1 of the program check address register; the second byte (bits $8-15$) is loaded into byte 2 .
3. Memory FDR Reset and Diagnostic Fetch (O Code $\mathrm{X}^{\prime} 23^{\prime}$)

The memory check bits are loaded into bits 0.5 f byte 1 of the program check address register Bits 6 and 7 of byte 1 and all of byte 2 will contain 1's.

The storage location must begin with an odd ddress so that the proper two bytes will be fetched.

Store CPU
$\begin{array}{lllllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Op Code } & x & x & 1 & 1 & 1 & 1 & 1 & 0\end{array}$

- Store the registers that are selected by the O code into the location specified by the BAR

Load CPU
$\begin{array}{lllllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Op Code } & x & x & 1 & 1 & 1 & 1 & 1 & 1\end{array}$

- Load the registers that are selected by the 0 code with data from the location specified by the BAR.

Load/Store CPU (Part 4 of 9)

Load/Store CPU (Part 6 of 9)

Machine Cycle
Clock
bSM Select
Load SAR
bar Select
B Reg Input
A Reg Input
Load A and B Reg
Bin Compl A Reg
Bin Sub Gate
oad ALU
ALU Output
Load LSR
EA Eliminate
SSM write (Store CPU Operation)
First E Cycle
Op End
Load PMR
Load ATT
Load Prog Chk Reg

				1st EB									2nd EB	5			
		$1{ }_{1}^{2}$	$1 \stackrel{3}{1}$	$1 \stackrel{4}{1}$	$1{ }_{1}^{5}$	$\xrightarrow[1]{1}$	$1{ }_{1}^{7}$	$\underbrace{8}$	$\xrightarrow[+1-1]{ }$	+1.1+1.	1	$\xrightarrow[+]{3}$	$\xrightarrow[1]{4}$	$\xrightarrow{5}$	1 -	$\xrightarrow[1]{7}$	$\xrightarrow[+1]{1}$
					Store CPU									$\begin{array}{\|l\|} \hline \text { Store CPU } \\ \hline \end{array}$			
			Load CP	U	bar Lo		bar hi					Load CPU	U	bAR Lo		bar hi	
			Store CPU	-	Force 1							Store CPU	-	Force 1			
			Store									Store CP					
			Store	cpu	070							Store CP		¢m			
				-									-				
						bar L	Lo	bar H							bar Lo		${ }^{\mathrm{Hi}}$
				Lo		BAR Lo		BAR Hi					Hi		BARLo		BAR $\mathrm{Hi}^{\text {i }}$

ALD Reference
KC122
KC132
KC142
KL.121
RA 101
RA111
RA101
KY121
KY101
AV132
AV142
KL101
KY111
KC132
KD111
KD131
KP122
KP112
KE272

COMMAND INSTRUCTIONS

- Command instructions are: halt program level, advance program level, jump on condition, start I/O, and command CPU.
- Load operation code into op register
- Q code used to define command.
- Control code is third byte of instruction and contains additional information pertaining to the command.
1.cycles for command operations are three cycles in length; first, an l-op cycle transfers the operation code from main storage to the op register. Second, an I O cycle transfers the Q-code into the Q -register and DRR. If the operation is a branch or jump, the condition register is also
tested for true or false. Third, an I R cycle is then used to transfer from storage the control code needed to execute the command. The details for use of the control code are discussed with specific operation descriptions.

R Cycle (Part 1 of 2)

Objectives:

- Execute command instruction, unless program interlocked
- Increment or decrement instruction addres register.

Cycle					1R					ALD Refere
Clock			11_{1}^{2}	${ }_{1}^{3}$	$\stackrel{4}{11}$	$1{ }_{1}^{5}$	$\stackrel{6}{1}$	171	$\stackrel{8}{1}$	
Load SAR										KC142
BSM Select										KC132
IAR Select										KL141
LSR Load					* $\sim^{\text {a }}$		Lo		Hi	KL101
Load A and B Reg										Ra101
A Reg input				*IAR		Force bit 7				ral11
B Reg input				SDR		IAR Lo		IAR Hi		raio1
Load ALU										AV132
ALU Output										AV142
bin Compl A Reg										KY121
bin Sub Gate										KY121
**Cmd CPU SVC										KN121
**Cma CPU Prog chk										KN111
**Cmd CPU Ld PMR										KP102
Op End										d131

* Determined by O decode Cmd CPU circuits are on page 5-67

Jump On Condition-JC

Bits $\quad \begin{array}{lllllll}0 & 1 & 2 & 3 & 4 & 5 & 6\end{array}$
$\begin{array}{lllllllll} \\ \text { Op Code } \\ & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0\end{array}$

- Condition register is tested for condition specified in Q code.
- If tested condition is satisfied, control code is If tested condition is satisfied, control code is
- Q code bit 0 is used to specify if jump is performed on condition true or condition false.
- Take I-R cycle.

The jump on condition operation is similar to branch on condition except for the instruction branch on condition except for the instruction
address modification. If the condition register contents satisfy the condition specified in the O code, the control code byte is added to the IAR.

a Bit	Condition Tested
0	Presence of condition
Not 0	Absence of condition
7	Equal
6	Low
5	High
4	Decimal overflow
3	Test false
2	Binary overflow

During the I-Q cycle, the Q code is transferred from storage, through the B register and into the ALU. The condition register is decoded to the theut bits must b input bits must hecked for non-zero.

Bit 0 of the Q register is used to specify if the ump is to be performed on condition true or condition false. If bit 0 is on and any one of the conditions specified by the O code is present, the ump is performed. If bit 0 is off and all conitions specified by the Q code are missing, the jump is performed.
uring the IR cycle, if the jump condition was ode is added to that register.

Halt Program Level (HPL)

$\begin{array}{llllllllll} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ \text { Bits } & 1 & 1 & \end{array}$

- Prevents execution of the next sequential instruction
- Loops on halt instruction until the start key is pressed.
- Instruction format bytes two and three displayed on the console.

The halt program level instruction prevents execution of the next sequential instruction During the $1-\mathrm{Q}$ cycle, the tens position of the halt identifier (instruction byte two) is displayed in the console display and program interlock is forced. During the I-R cycle the units position of the halt identifier (instruction byte three) is displayed. I-R cycle and program interlock displayed. $-R$ cycle and program interloct
activates $1-R$ program back-up. Program activates I-R program back-up. Program
back-up decrements the IAR by two ('force back-up decrements the IAR by two ('force
bit 6 to A ') and this loop continues until the bit 6 to A^{\prime}) and this loop continues until the
system Start key is pressed. Pressing the Start key eliminates the program interlock and the next sequential instruction is executed.

If a halt is executed during an interrupt level, program interlock is blocked and the IAR is advanced in the normal manner.

Tens

Example:
$\bar{Z}_{1}^{\prime}=$ Bits -012344567 State - $\begin{array}{rlllllll}1 & 1 & 1 & 0 & 1 & 1 & 0\end{array}$ Hex Codes 76

Command CPU (CCP)

This instruction is used to control certain functions of the CPU as defined by the Q code. This page as well as the others referenced provide the instruction description.

Op Code a Code Command Code

[^1][^2]
I/O INSTRUCTIONS

I/O instructions are of two types: one address instructions and command instructions. The Q code contains the address of the I/O device, the code the function to be perfory unit involved, and troll Where o be formed (read, wre, con tains additional information for the device (space, stacker selection, etc.).

I cycles follow the same cycle pattern as in other 1 address or command instructions. The I cycle link with the I/O attachments is discussed with the individual operation descriptions.

Start I/O - SIO
Bits $\quad 01234567$
Op Code $\begin{array}{lllllllll}1 & 1 & 1 & 0 & 0 & 1 & 1\end{array}$

- Start an I/O device.
- Q code contains device address and function to be performed (read, punch, print)
- Control code contains additional instructions for device (space, stacker selections, etc.)
- Enable/disable op-end interrupt.

The start 1/O instruction starts the mechanical function of any $1 / O$ device. The particular device selected and the function to be performed are The device address (DA) is coneined in bits 0 of the Q code, Bit 4 of the Q code contains the of the Q code. Bit 4 of the Q code contains th secondary unit of the device \boldsymbol{A}. Bits 5-7 secondary unit of the device \boldsymbol{A}. Bits $5-7$
contain the N field which is the function to be performed by the device. The following three N codes are common to all devices, but the remainder are assigned by the individual devices.

Bits	N Field $\mathbf{5 6 7}$
	Function
000	Control or Equivalent
001	Read or Equivalent
010	Write or Equivalent

The control code byte of the instruction further defines the device function. For instance, it may define the stacker pocket selected in the MFCU or it may define the type of spacing for the line printer. Use of the control code varies with the ices. Refer to the manual for the attachments.

CPU control of the operation ends with the IR cycle of the instruction. If the addressed device is not busy or does not need attention and the O byte and control byte reach the device without error the CPU continues with the next sequential instruction. If the device cannot execute the command, the program loops on the SIO instruction until the device is no longer busy or until the operator has corrected the attention condition.

Once the device has accepted the instruction, the operation is performed by the attachment circuitry. Whenever the device needs data from storage (write, print, punch) or has data to send to storage (read) the attachment breaks into the program to use the number of cycles it requires.

Device Address	$\begin{aligned} & \text { M } \\ & \text { Bit } \end{aligned}$	Assigned
$\begin{aligned} & \text { Bits } \\ & 0123 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 4 \end{aligned}$	
0000	0	CPU console
0000	1	Interval timer/Unit record restart
0001	0	3277 Display station and keyboard
0001	1	
0010	0	MLTA individual line/BSCC
0010	1	MLTA general adapter
0011	0	SIOC
0011	1	2501 Card Reader
0100	0	3741 Data Station
0100	1	Display Adapter
0101	0	1442
0101	1	Display Adapter
0110	0	Magnetic tape drive 0
0110	1	Magnetic tape drive 1
0111	0	Magnetic tape drive 2
0111	1	Magnetic tape drive 3
1000	0	BSCA1
1000	1	BSCA2/Display Adapter
1001	-	Spare
1010	-	Spare
1010	-	Spare
1011	-	Spare
1011	-	Spare
1100	0	3340 disk drive 1
1100	1	3340 disk drive 2
1101	0	3340/3344 disk drive 3
1101	1	3340/3344 disk drive 4
1110	0	1403 printer
1110	1	1403 printer - diagnostics
1111	0	$5424 \mathrm{MFCU} / 2560 \mathrm{MFCM}$
1111	1	$5424 \mathrm{MFCU} / 2560 \mathrm{MFCM}$

If unit check exists which will not prevent execution of SO, instruction is executed and unit check is reset.
*Additional codes determined by the individual devices.

At clock 5 time of the 1 - Q cycle, when the Q code is latched in the ALU latches, the ALU output is sent to the devices on the DBO. This Q byte by passes the DBO translator.

Each device attempts to decode the address. If an device recognizes the address and if the Q byte contains a valid N code, the device activates either I/O condition A or I/O condition B. A

If the device is 'busy' or 'not ready and no errors', 'I/O condition A^{\prime} only is activated and at clock 8 time of the $\mathrm{I}-\mathrm{O}$ cycle, the CPU activates 'program interlock'. If the device is able to execute the instruction, I/O condition B only is activated blocking the gate to the 'program interlock' trigger. If device is "not ready with errors', 1/O condition B is instruction.

IAR modification is dependent upon the 'program interlock' trigger. During I-R cycle clock 5 and 6 time, if program interlock is inactive, 1 is added to the IAR to increment it in the normal manner B If, however, 'program interlock' is active, the IAR is decremented by 2 to retry the instruction. During clock 7 and 8 the ALU controls remain the same as clock 5 and 6 to modify the high order position of the IAR.

During the I-O and I-R cycles, the DBO is also parity checked. If a parity check occurs the processor is signaled by activating both I/O condition A and I / O condition B. A
The following table shows the significance of settings for the ' I / O condition A ' and ' I / O condition B^{\prime} lines.

Line Activated By Any Device	Significance
'I/O condition B' only	Correct address, valid N code, device not busy and does not need attention-instruction accepted.
I/O condition A' only	Correct address, valid N code, device busy or needs attention- instruction rejected.
Both lines	Incorrect parity-causes proces- sor check and DBO parity check.
Neither line	Invalid address or N code- causes processor check and invalid device address.

I/O Cycle

Device controls data flow and functional unit control lines within CPU.

I/O cycles follow the same general data manipulation procedure as CPU cycles. That is

- Clock 0 - address storage
- Clocks 1 and 2 - Miscellaneous (generally LSR alteration)
- Clocks 3 and 4 - compute (data manipulation between CPU and I/O device)
- Clocks 5 through 8 - address register modifica-

If an I/O cycle does not require all of these functions, the I/O device blocks them by controlling the CPU data flow control lines. The following examples represent a method of transferring data between the CPU and I/O devices. The actual method used depends upon the result desired by the individual attachments.

Example 1:

A device is given the cycle steal assignment at clock 7D prior to the actual I/O cycle. In order to have SAR loaded at clock 0 of the I/O cycle. select lines at clock 8 prior to the I/O The LSR select buffer will select the LSR during clock 0 The device can set LSR during Clock 0 . He dile can select LSRs at four same LSR , different LSR, or no LSR.

The A register is loaded at odd CD clocks with the information that the device puts on DBI at even clocks. This data may be translated from card code to hexadecimal during clocks 2 and 3 .

The B register is loaded at odd CD clocks with the following data:

B R 00

Contents of SDR or 00 Controlled by attachment
Selected LSR low-order byte or
00 if no LSR is selected
Selected LSR high-order byte or
00 if no LSR is selected

ALU output during the $1 / O$ cycle is the contents of the B register minus the contents of the A register or A A B register plus the contents through 'chan bin sub' ALU output is the following dat at following tock

Clocks	ALU Output Data
2D to 4C	\pm DBI
4D to 6C	B Register \pm DBI
6D to 8C	LSR low \pm DBI
8D to 2C	
of next	
cycle	LSR high \pm DBI

DBO equals the ALU outputs as latched except during clocks 7D to 0 C . This allows the device to use ALU out data.

If the device needs data from storage (MFCU punch) the device does not block the 'gate SDR to B^{\prime} line and the data is transferred from storage to the B register (next page). No data is entered into the A register from DBI so the B register is binary added to the blank A register to effectively move the B register through the ALU. The data is latched into the ALU latches and is available to the I/O device on DBO. The device activates the 'chan in transl out' line if the byte needs to be translated to card code as operation.

Not all I/O cycles move the data unchanged through the ALU. The following example shows the function of each cycle taken by the line printer to print a character. The objectives of the three cycles in the example are:

1. Remove the data byte to be printed from storage and retain it.
2. Remove the chain image character from storage and compare it with the data byte to print the character.
3. Place the value $4 / 0$ into the data byte loca been printed.

Example 2:

In the first print cycle steal, the LPDAR (line print er data address register) addresses storage. The byte of data is added to zeros in the A register to move the byte through the ALU and is sent to the printer attachment where it is retained

In the second cycle, the LPIAR (line printer image address register) addresses storage and the chain image character is read out and placed in the B register. The byte of data transferred to the attach ment during cycle 1 is sent back to the CPU from the printer attachment and enters the \mathbf{A} register from DBI. The printer attachment activates the 'chan in bin sub' line to subtract the A register from the B register. The result is sent to the print er attachment. If the result is zero, the two characters are the same and the printer prints the character.

In the third print cycle, the LPDAR again addresse storage and the printer attachment activates the 'I/O block SDR' line to prevent the character from entering the B register.

The printer attachment sends the hex value $4 / 0$ to the CPU on DBI. This value is added to the zeros in the B register to move the $4 / 0$ through the $A L U$ The printer attachment activates store new to enter the $4 / 0$ into storage.

Address modification is the same as in a CPU cy cle except that register selection, ALU controls, and the modification amount are all controlled by the $1 / O$ device During clock 5 and 6 , the LSR is selected in the same manner as during clock 0 .

The amount the register is to be increased or de creased is entered into the A register from DBI, Incrementing or decrementing is determined by controlling the 'bin comp \mathbf{A} reg' line \mathbf{A}

Address modification does not take place in all I/O cycles. For instance, during the third print cycle taken to print a character the printer attach ment must address the same storage location as during the first print cycle. In all three print cycles, the printer attachment sends the value 12 to
the CPU on DBI. This 12 is added to the LPDAR in all three cycles. However, in the first two cycles, incrementing is blocked by activating the 'chan in inh LSR' line to prevent the results from being written into the LPDAR.

[^3]
Cycle Steal Priority (CSP)

- Devise requests cycle.
- CPU assigns cycle by device priority.
- I/O cycle can occur between any two CPU cycles.

Whenever an I/O device needs data from storage (write, print, punch) or has data to send to storage (read), the device requests an I/O cycle. An I/O cycle request can occur during any cycle and is always granted by the CPU. More than one I/O device may request an $1 / O$ cycle at the same time so each device is assigned a particular cycle steal priority.

Cycle steal requests are generated by the attach ments at even clock times. Because of the inter nal circuit delays, these lines are not sampled until the next clock pulse

During CPU odd clock times, requests for cycle steal enter the CPU from the attachments on the 'priority request' lines. These requests are entered into the 'priority request' latches and triggers. If more than one device requests an 1/O cycle during the same clock time, the bit triggers
with the highest priority prevent the lower priority with the highest priority prevent the lower priority clock time resets the triggers and latches for any previous request.

At clock 7D time, the bit structure for the highest priority device among those requesting a cycle is sent to the devices on the DBO, bypassing the DBO translator. 'Any CSP request' blocks the 'machine advance' pulse preventing the CPU from advancing to the next CPU cycle.

Odd parity is maintained for the priority bits on DBO. A P bit is available on DBO when the parity latch is off. Thus, if no request is received, a P bit is available on DBO at clock 7D time. For clocks 1,3 , and 5 , each device turns on 2 bit positions to be sent on DBO. The parity latch is off and provides the needed P bit. During clock 7, only one bit position is turned on by the requesting device, and requires the P bit latch be turned on to eliminate unneeded parity bit.

The following priority is assigned to the devices using cycle steal:

Priority Request	Cycle Steal Request Line	CPU Clock	Attachment	DBO Lines
1	-	-	Spare	-
2	-	-	Spare	-
3	5	7	3410 Tape Unit	000000100
4	6	7	SIOC	000000010
5	-	-	Spare	-
6	8	5	BSCA-1	110010000
7	4	5	5424 Read/Punch	110001000
7	4	5	2560 Read/Punch/Print	110001000
8	5	5	2501 Card Reader	110000100
9	6	5	MLTA/BSCC	110000010
10	7	5	BSCA-2/Display Adapter	110000001
11	3	3	1442 Card Read Punch	101010000
12	4	3	5424 Print	101001000
$13-14$	-	-	Spare	-
15	7	3	3340/3344 Disk Storage Facility	101000001
16	3	1	3741 Data Station	100110000
17	4	1	1403 Printer	100101000
18	5	1	3277 Display Station/Keyboard	100100100
19	6	1	Spare	-
20	-	-	Spare	-
	-			

This priority assignment makes it possible for the interface to operate on a time sharing basis with out the need for $1 / O$ buffers. Once a cycle steal request has been granted, the attachment has com-

Load I/O-LIO (Part 1 of 3)

Bits $\quad \begin{array}{lllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

- Moves two bytes from storage to register selected by I/O attachment.
- Follows command format if device is busy or needs attention
- A Q code of $0 / 0$ results in a no op condition.
- Provides op-end interrupt control on some de. vices.
The load I/O instruction is a single address instrucTion that cannot be executed if the addressed I/O device is busy and needs attention. If the instruc ion cannot be executed because the addressed device is busy and needs attention it follows a mmand format and loops on the instruction the same manner as an SIO instruction.

When it can be executed, the load I/O instruction removes two bytes from storage and loads them into a register selected by the device attachment.

The register may be located in the attachment or may be an LSR in the CPU. In either case, two B-cycles are required to remove the bytes from storage.

The device address and M fields are located in bits 0.4 of the Q byte just as in any I / O instruction. The N field (bits 5-7) contains the register to be selected by the device attachment or op-end inter rupt control for some I/O devices. Refer to the manual for the individual attachments for a de scription of the N field codes.

During the $\mathrm{I}-\mathrm{O}$ cycles, device selection and $1 / \mathrm{O}$ condition A ' and ' I / O condition B ' line control shown in the following chart:

Line Activated By Any

 DeviceI/O condition B' only Significance

Correct address, valid N code, device not busy and does not need at-tention-instruction accepted
/O condition A^{\prime} only
Correct address, valid N code, device busy or needs attention-instruction rejected.
Incorrect parity-causes processor check an
BO parity check
Neither line
Invalid address or \mathbf{N} code-causes processor check and invalid de-
vice address.

If program interlock is activated, an I-R cycle is forced. During the I-R cycle, because program in terlock is active, I-R program back-up is activated to loop the instruction in the same manner as in an SIO instruction.

If the device attachment can execute the instruc tion, the B field address is loaded into the BAR with either $\mathrm{I}-\mathrm{H} 1$ and $\mathrm{I}-\mathrm{L} 1$ cycles or an $\mathrm{I}-\mathrm{X} 1$ cycle. After the I-cycles, the CPU enters into the first of two B -cycles

During the first B -cycle, the first byte is loaded in the B register and is passed through the ALU with no ALU controls. If the device attachment selects an LSR, the ALU output is written into the low order position of the selected LSR. If no LSR is selected, the ALU output is available on DBO to be entered into a register selected in the device attachment.

The BAR is decremented during clocks 5 to 8 times and in the second B -cycle, the data byte is entered and in the second B -cycle, the data byte is entered into The opd triger is of the selected regis er. The tion ends.

A
Gate SDR To B

Sense I/O-SNS (Part 1 of 3)

Bits $\quad 01234567$

- Moves two bytes from the register selected by the I/O attachment to storage.
- Instruction executed even if device is busy or needs attention.
- \mathbf{Q} code of hex $0 / 0$ senses console address/data switches.

The sense $1 / 0$ instruction moves two bytes of data from a register selected by the device attachment to main storage. The register may be located in the attachment or may be an LSR in the CPU. The device is busy or not

The device address and M fields are located in bits $0-4$ of the Q byte just as in any I / O instruction. The N field (bits $5-7$) contains the code for the register to be selected by the device attachment. Refer to the manual for the individual attachments for the register selection codes and the information contained in those registers.

If the Q code contains a hex $0 / 0$, the two bytes of data set up in the console address/data switches are moved the address specified in the B field cyess moses the da mins one. The first switches, and the second B-cycle moves the data set up in the two left-most switches.

During the $\mathrm{I}-\mathrm{Q}$ cycle, device selection is the same as in a start $1 / \mathrm{O}$ instruction except that the device attachment activates the ' $1 / \mathrm{O}$ condition B ' line whether it is busy or not. Valid address checking and valid N code checking remain the same.

Line Activated By Any Device	Significance
'I/O condition B' only	Correct address, valid N code, device not busy and does not need at-tention-instruction accepted.
'I/O condition A^{\prime} only	Correct address, valid N code, device busy or needs attention-instruction rejected.
Both lines	Incorrect parity-causes processor check and DBO parity check.
Neither line	Invalid address or N code-causes processor check and invalid device address.

The B field address is loaded into the BAR in the same manner as in all one-address instructions. After the I -cycles, the CPU takes two B-cycles to store the registers in the B field storage location.

If the register selected by the attachment is an LSR, the CPU activates 'gate LSR low normal to A^{\prime} during clock 3 and 4 of the first B-cycle.

The low order of the selected LSR is then loaded into the A register where it is binary added to the B register and written into storage. Since the B register contains all 0 's, the result is the same as the LSR low order byte.

The BAR is decremented and the LSR high ord byte is transferred in the second B cycle. The op-end trigger is turned on and the operation ends.

If the register selected by the attachment is not an LSR gate I / O bus to A is activated in both B -cycles and the bytes enter the A register from DBI.

Cycle
Clock
BSM Select
Load SAR
bAR Select
SR Select (I/O attachme
A Reg Input
B Reg Input
Load A and B Reg
Bin Comp A Reg
Bin Sub Gate
Load ALU
ALU Output
BSM Write
Load LSR
First E Cycle
EA Eliminate
Op End

Test I/O and Branch-TIO

$\begin{array}{llllllllll}\text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$
Op Code $\begin{array}{lllllll}1 & 1 \times \times 0 & 0 & 0 & 1\end{array}$

- Test for I/O condition specified in Q code N
field.
- Branch to address is loaded into ARR.
- Use branch-to address for next instruction if tested condition exists. (IAR/ARR interchange occurs.)

The test $1 / O$ and branch instruction is a one address instruction that tests an I/O device for a specified condition and branches if that condition exists. The instruction is the same as a normal branch ex cept that the I/O device is tested instead of the CR.
The device address and M fields are located in bits $0-4$ of the Q byte just as in any I / O instruction. The N field (bits 5-7) contains the code for the condition being tested. The conditions vary with each

Branching is determined by the device control of Brancing is deter A ' ${ }^{\prime}$ ' 'IIO condition B ' lines. The following chart shows the significance of the The following chart line settings.

Line Activated By Any Device	Significance
'I/O condition B' only B	Correct address, valid N code, condition for branching not metproceed with next sequential instruction.
'I/O condition A^{\prime} only A	Correct address, valid N code, condition for branching met-branch to new address.
Both lines	Incorrect parity-causes processor check and DBO parity check.
Neither line	Invalid address or N code-causes processor check and invalid device address.

During the I / O cycle, device selection is the same as in other I/O operations. The device attachment as in other I/O operations. The device attachmen If the condition is met, the attachment activates the ' I / O condition A ' line. With the ' I / O condition ${ }_{B}{ }^{\prime}$ line inactive at clock 8 time, the branch condition is latched in the CPU.

The ARR is loaded with I-H1 and I-L1 cycles or an I-X1 cycle the same as in a normal branch oper ation. The 'LSR intchg pulse' is then activated to switch the IAR and ARR. Refer to Branch to Condition, page 5-51, for the IAR/ARR interchange explanation.

Advance Program Level-APL

$\begin{array}{llllllllll} \\ \text { Bits } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7\end{array}$

The 5415 does not have the dual program feature. Therefore, an APL instruction is executed just like the basic 5410 . The APL instruction exists in the 5415 to allow Model 10 users to run their program unchanged.

- Test for I/O condition specified in Q code N field.
- Loop on APL instruction until condition tested for no longer exists.
- Q code N field of all zeros causes automatic advance to next sequential instruction.

An all zero Q code is recognized as an automatic advance instruction. With this condition the IR program back-up' line is blocked and the IAR is incremented in the normal manner. Thus, an automatic advance instruction is equivalent to a no-op operation.

Line Activated By Any

 Device'I/O condition B' only
Correct address, valid N code, device not busy and doesn't need atten-tion-instruction accepted.
'I/O condition A' only Correct address, valid N code, device busy N code, device busy
or needs attentioninstruction rejected.

Both lines

Neither line

	code-causes processor check and invalid de- vice address.

de program level instruction tests for the The N code is the same as in TIO and varies with each attachment. If the advance condition is met, the attachment activates the I / O condition A line just as in the TIO.
With the 'I/O condition B ' line inactive, program interlock is activated in the I-Q cycle the same as in a start I/O instruction. During the I-R cycle, with program interlock active, 'IR prog back-up' decrements the IAR by 2 just as in the SIO instruction. When the advance condition is not met, and ' $1 / \mathrm{O}$ condition B ' is activated by the attach ment, the IAR is incremented in the normal man ner.

SYSTEM OPERATIONS

INITIAL PROGRAM LOAD - IPL

- Program load key initiates a system reset cycle.
- If this is first IPL or system reset since power on, perform an initial main storage scan.
- IPL activates data bus out 7 for the alternate IPL device (5424, 2560, 1442, or 3741).
- IPL activates data bus out 5 for disk read.
he initial program load operation is started by pressing the program load key. Pressing this key initiates a system reset cycle and selects the card device or file by activating a Data Bus Out line. DBO bit 7 selects the card read device while DBO 5 selects the disk. The input device selected is determined by the program load selector switch on the operators console (see page 2-4 for circuit)

After the input device is selected, it activates the select line to add all zeros into its DAR and the IAR. The Data Bus Out line causes the device to load one card or block into main storage begining at adress 00 by using the normal cycle steal
 dition B ivin ma hin IAR Bar r. location 0000 .

- Enter an immediate idle state.
- CPU registers, controls, and status indicators are reset.
- Perform initial main storage scan if this is the first IPL or system reset since power on.

Note: Before attempting a CE operation immedhately following power on, press SYSTEM RESET to activate 'initial memory scan'. Main storage heck bits are not reset with a power on reset.

SYSTEM RESET (Part 2 of 2)

- Operation is the same as alter storage operation with the STORAGE TEST switch set to RUN.
- Transfer data from the two right-most console ADDRESS/DATA switches (one byte) into 0 register and storage location designated by SAR.
- Increment SAR one address each cycle, and repeat data transfer.
- Increment SAR E15, SAR E14, and SAR E13 to alter the remaining BSMs.
- Continue operation until ALU carry occurs eight times.

The Model 15 main storage check bits cannot be predicted after power on. Therefore, the contents of storage must be altered to generate check bits that will not cause an error. This is accomplished by storing the contents of the console data switches in every main storage location.

The initial memory scan cycles are taken the first time SYSTEM RESET or IPL is pressed after a power on.
'Initial memory scan request' is activated with the POR relay. T 2 cl 8 of the first system reset activates 'initial memory scan'. 'Initial memory scan then starts an alter storage operation. The alter storage operation is the same except the STORAGE TEST switch and START key functions are bypassed.
The contents of the console switches are stored sequentially in every storage address until an ALU carry occurs eight times (IAR update resulted in an overflow when the address for 64 K was passed) all main storage positions are in correct parity.

Main storage size is not considered because an in valid address check is prevented by inhibiting valid address check is prevented by inhibiting page 2-18 or ALD KB141).

ALTER STORAGE/INITIAL MEMORY SCAN (Part 2 of 4)

Alter Storage

- Transfer data from right-most two console Address/Data switches (one byte) into Q reg and storage location designated by SAR
- With storage test switch in STEP, pressing start key advances clock through 4 time. Releasing start key advances clock through 9 time.
- With storage test switch in RUN, clock re-cycles, skipping 9 time, until switch is returned to STEP.
- Address Increment switch ON causes IAR to be incremented each CPU cycle.
- The EXTENDED SAR ADDRESS BITS rotary switch determines which BSM is addressed (SAR E13, E14, and E15 are not incremented)
- Address Increment switch OFF causes console

ALTER STORAGE/INITIAL MEMORY

 SCAN (Part 3 of 4)

ALTER STORAGE/INITIAL MEMORY SCAN (Part 4 of 4)

ADDR INCREM Switch

ON - IAR incremented by one each CPU cycle.

OFF - IAR addresses same storage position each CPU cycle.

Clock
Force Clock 9
BSM Select
Load SAR
Enable Clock Run
IAR Select
A Reg Input
B Reg Input
Load A or B Reg
Bin Compl A Reg
Bin Sub Gate
Load ALU
Load LSR
BSM Write
Load Q Reg

$\mid 1^{0} 1$	$\mid \\|^{1} 1$	L1」	$\stackrel{3}{3}^{\text {l }}$	$\stackrel{1}{4}^{4}$	$\mid 1_{1+1}^{5}$	$\stackrel{6}{1}$	\| ${ }^{7} 1$	- $\stackrel{8}{8}^{1}$	$11^{0} 1$
									$\overrightarrow{\text { Recycles until }}$Storage Test switchis changed to STEPor if in initial mem-ory scan, until'memory scan com-plete' is active.
	Console Bits	(Hi)	Console B	ts (Lo)	Force	Bit 7			Note: If in initial memory scan, tim
									memory scan, tim
									the Storage
									Test switch we set to RUN.

DISPLAY STORAGE (Part 1 of 3)

Objectives

- Transfer data from storage position addressed by SAR into Q register and display in consol lights. Drum switch (roller display) is in position 5 for ALU output, postion 3 for Q register output.
- DISPLAY CHK BITS switch set on determines if display is data or check bits (ALD KA322).
- With STORAGE TEST switch in STEP; pressing start key advances clock through 4 time. Re. leasing start key advances clock through 9 time.
- With STORAGE TEST switch in RUN; clock recycles, skipping 9 time, until switch is returned to STEP.
- ADDR INCREM switch ON causes IAR to be incremented each CPU cycle.
- EXTENDED SAR ADDRESS BITS rotary switch selects BSM (SAR E15, E14, and E13 are not incremented).
- ADDR INCREM switch OFF causes data to be transferred from the same storage location each cycle.
- If storage address is displayed SAR/MSAR switch should be on MSAR (see page 6-18).

This page intentionally left blank

DISPLAY STORAGE (Part 3 of 3)

$8 \quad 1 \quad 2$ (1) $6 \quad 4$ EXTENDED SAR ADDRESS BITS	$\overbrace{\substack{\text { ON }}}^{\text {OFF }}$			$\begin{array}{ll}\text { ADDRESS } & \text { I/O } \\ \text { COMPARE } & \text { CHECK (CE key) }\end{array}$
$\bigcap_{\substack{\text { RUN } \\ \text { SHOP } \\ \text { CHECK }}}^{\substack{\text { PTORITY } \\ \text { CHECK }}}$		ICYCLE ECYCLE @ ADDRESS COMPARE	ABR- Nommal	
SYSTEM RESET CHECK RESET			(entiole	

$$
\begin{gathered}
\text { ADDR INCREM Switch: } \\
\text { ON - IAR incremented by } \\
\text { one each CPU cycle. } \\
\text { OFF - IAR addresses same } \\
\text { storage position each } \\
\text { CPU cycle. }
\end{gathered}
$$

Clock BSM Select Load SAR Enable Clock Run

IAR Select
A Reg Inpui
B Reg Inout
Load A or B Reg
Bin Compl A Reg
Bin Sub Gate
Load ALU
Load LSR
Load Q Reg

KA232 KC132

KC142
KA232
KL141
RA111
RA101
RA101
KY121
KY121
AV132
KL101
KD141

ALTER ATT/PMR (Part 1 of 2)

Objectives

- Move address from left-most two console ADDRESS/DATA switches into Q register.
- Address ATT/PMR
- Move data from right-most two console switcnes into ATT or PMR register addressed.

ALTER SAR (Part 1 of 3)

Objectives

- Load contents of four console Address/Data switches into the Instruction Address Registe (IAR) by way of Data Bus In, A register and ALU.
- Load SAR from the IAR and the $>64 \mathrm{~K}$, $>128 \mathrm{~K}$, and $>256 \mathrm{~K}$ PHs (ALD KP132) at clock 9 time.
- When start key is pressed, the clock runs 0 through 4. When start key is released, clock runs from 5 through 9 .
- SAR/MSAR switch should be on MSAR (see page 6-18).

DISPLAY SAR/MSAR
SAR DISPLAY switch determines what is dis played in roller position 1.

Switch Setting	Displays
SAR	All SAR positions ex- cept E13, E14, and E15
MSAR (translate active)	ATT contents plus SAR positions 5-15
MSAR (translate inac- tive)	All SAR positions in cluding E13, E14, and

Roller Position 1

SYSTEM CONSOLE

The system control panel contains the lights and switches required to operate and control System/3.

System controls include the: operator controls, console display, and customer engineering (CE) console display, and customer engmeerng Ce trols required for normal operation. The console display panel provides the operator and the CE with a visual record of the contents of the various registers in the CPU and the status of the major CPU controls. The CE controls serve as diagnostic aids in locating malfunctions.

OPERATOR CONTROLS

The Emergency Power-Off (EPO) Pull Switch (ALD YA102)

Pulling this switch turns off the power beyond the power-input terminal on every unit that is part of the system. The switch latches when you pull it out.

When the emergency pull switch is out, the POWER ON/OFF switch is ineffective.

Usage Meter (ALD YA104)

The customer usage meter records system operating time. The meter begins recording time when you press START or PROGRAM LOAD and ends when the job is completed.

However, when operating in one of the step modes, the meter runs for 400μ s each time START is pressed.

Time is not recorded if one of the following cond tions exists:

- Manual or programmed halts stop the proces sing unit. (However, time is recorded when I/O operations are being performed during a programmed halt.)
- A processor check occurs
- Power is lost.
- The CE key is turned off for system servicing.

PROGRAM LOAD SELECTOR Switch without 3344 installed (ALD PC101, YD100)

This switch is used to select 3340 disk drive 1 . The 3340 F1 and R1 switch positions refer to 5444 simulation areas on the 3348 data module.

The alternate position refers to one of the card Q devices desirnted as IPL device. Thes O devices designated as an IPL device. These or 5424 for reading 96 -column cards.

Note: When the channel terminate feature (cardless system) is installed the 3741 becomes the Iternate program load device.

PROGRAM LOAD SELECTOR Switch with 334

 installed (ALD PC101, YD100)This switch is used to select disk drive 1 (3340 or disk drive 3 (3344). The DISK 1 F1 and R1 witch positions refer to 5444 simulation areas , 3348 dat 544 ink Fl and switch positions refer to 5444 simulation areas on the 3344 fixed media storage.

The alternate position refers to one of the card I/O devices designated as an IPL device. These I/O devices are the 1442 or 2560 for reading 80 -colmn cards, or 5424 for reading 96 -column cards.

Note: When the channel terminate feature (card less system) is installed the 3741 becons the alternate program load device.

SK 3
R1

This light being on indicates one of the following

- An invalid operation code, an invalid address, or a parity error is detected in the CPU.
- The device address (including the M field) and the N field of an I / O instruction is not recog the N nized.
- The $1 / O$ device recognizes a parity error on data bus out at the $1 / O$ attachment
- The immediate I / O error stop is on and an I / O error occurs.

This light is turned off when a system reset occurs or when the CE check-reset key is activated.

The processor stops on any of the above errors, and I/O data may be lost. The console display shows the error. Following a processor check, use the program load procedure for a normal restart.

POWER ON/OFF Switch (ALD YA102, PC111)

This switch initiates the power on/off sequence of the system. As part of the power on/off sequence, a system reset is performed so that no $1 / O$ operations take place until they are specifically directed The contents of main storage are not guaranteed after power on/off sequence.

Note: A power check occurs if the power on/off switch is turned on before a normal system power off sequence is completed.

START Key (ALD PC111)

Pressing the start key takes the processor out of its stopped state, turns off the stop light, and allows the processor to continue. In the CE mode of operation the start key is also used to start the processor clock and then sequentially advance it.

Message Display Unit (ALD PB131

This two-position message display unit keeps a running display of the halt identifier portion of a halt instruction.

Refer to page $5-66^{\prime}$ for halt instruction description

Identifier	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
Tens	Reserved	Ind A^{\prime}	Ind B	Ind C	Ind D	Ind E	Ind F	Ind G
Units	Reserved	Ind A	Ind B	Ind C	Ind D	Ind E	Ind F	Ind G

I/O ATTENTION Light (ALD PC111)

I/O ATTENTION lights when an addressed I / O device requires normal operator intervention. Normal operator intervention includes:

- Printer - forms out, cover interlock.

MFCU - hopper empty, stacker full, chip box full, cover interlock.

The light goes off when the operator has inter vened and returned the device to the ready state I/O attention does not stop normal CPU processing. However, most start I/O or load I/O instruc tions are not accepted. The exception is: Interupt enable/disable instructions are always accepted.

PROGRAM LOAD Key (ALD PC111)
This key is pressed to start initial program loading from the IPL device. The I/O device is selected with the program load selector switch. A system reset is performed as part of the program load sequence.

Pressing PROGRAM LOAD allows the first record or card from the disk file or card device to be read and stored in main storage, beginning at location 0000 . When the key is released, the CPU proceed to execute the instruction sequence starting at location 0000 . Normal program load from the

Shold the I/O device selected be not ready, 1/O ATTENTION lights when PROGRAM LOAD is Arssed Normally, to complete the program loa function, it is only necessary to ready the device.

STOP Key/Light (ALD PC111)

Pressing this key stops the processor at the end of the operation being performed. I/O transters are completed without losing information. STOP lights to indicate processor stop. The processor may be restarted without loss of information by pressing START

CONSOLE DISPLAY

INT LEV (Interrupt Level) Light (ALD

 PB111) AA single indicator lamp is used to monitor whether any interrupt level is being serviced. The INT 1 , INT 2, and INT 4 lights indicate which interrupt level (binary encoded) is being serviced.

PWR CHK (Power Check) Light (ALD YA102) B

This light comes on when a machine power supply malfunctions or when a thermal condition exists. This light also comes on during a power on se quence and remains on until the sequence is completed.

For additional information refer to the chart be low.

TH CHK (Thermal Check) Light (ALD

 YA102) CThe thermal check light and the power check light come on when overheating occurs in the CPU mai frame. Turning OFF the POWER switch turns off the PWR CHK light. The TH CHK light remains on until the thermal condition is corrected. Then the normal power on sequence can be performed.

Console Display

MACHINE CYCLE Indicators (ALD PB111) D

Twelve indicator lamps represent the twelve machine cycles. They identify the processor cycl ust completed in all modes except the CE Clo thode, in the CE clock step mode, hey mps indicate the SAR/LSR HI EXTENDED te the SAR/LSR HI EXTENDED condition.

CLOCK Indicators (ALD PB121) E

Ten indicator lamps represent clocks 0 through 9 which can be stepped through in the CE clock ste mode. In the normal process mode, a machine
sed with the CE step and test modes.

LAMP TEST Key (ALD YA102) F

This key turns on all system lights so that you can check for burned out lamps.

	Power Check/Thermal Indications			
Fault	POWER ON/ OFF Switch	Indicators		
	PWR CHK	TH CHK	Action	

Register Display Unit (ALD PB101, PC101)

G The register display unit consists of a row of twen ty lights and eight legend strips mounted on an eight-position roller. At any one time, only one of the eight strips is visible through a cutout in the cons the corresponding register displayed by the row ligh alit th the eight positio switch.

Each legend strip, by number, is as follows:

1. SAR HI/SAR LO-Contents of storage address register (high and low) or MSAR depending on SAR display toggle switch. The SAR/LSR HI EXTENDED lights are also used.
2. LSR HI/LSR LO-Contents of LSR selected by the LSR display selector. The SAR/LSR HI EXTENDED lights are also used
3. OP REG-Contents of the op register Q REG-Contents of the Q register
4. B REG-Contents of the B register. ALU CTL-The state of the following ALU controls are displayed as follows:

DIG CAR (digital carry) DEC (decimal instruction) RE COMP (recomplement) ADD (addition)
SUB (subtraction)
CAR (temporary carry)
AND
OR

5. A REG-Contents of the A register ALU OUT-Contents of the output of the ALU.
6. ATT-Contents of the address translate table registers. The ATT displayed will be the active ATT register unless the alter/display ATT function is being used. In this case, the addressed ATT register will be displayed COND REG-The contents of the condition register is displayed as follows:

BIN OVF (binary overflow)
TF (test false)
DEC OVF (decimal overflow)
HI (high)
LO (low)
EO (equal)
7. CS ASNMT-Cycle steal assignment is dis played as it is presented to the I / O devices on the $1 / O$ interface
PMR-The PMR displayed is the active PMR unless the alter/display PMR function is being used. In this case, the addressed PMR will be displayed
8. PROC CHK-The processor checks are dis played as follows:

I/O LSR indicates selection of an LSR by an I/O device was not performed correctly.

LSR indicates parity is incorrect on the output of the LSR (see CE LSR Display Selector).

SAR/ATT indicates parity is incorrect in the storage address register or in the ATT register.

MSAR indicates parity is incorrect at the memory end of the storage address register output lines.

INV ADDR indicates that the SAR contains an invalid address (storage address ex ceeds the system storage size)

STOR PROT indicates an attempt was made to read from or write into a protected address in main storage.

SDBI indicates parity is incorrect at the in put to main storage

SDBO indicates an uncorrectable main stor age data error occurred.

CAR indicates the carry out of the ALU is incorrect.

DBI indicates parity is incorrect on the CPU end of the data bus in coming from the $1 / O$ devices.
A / B indicates parity is incorrect in the A register or B register

ALU indicates parity is incorrect at the out put of the ALU.

CPU DBO indicates parity is incorrect on the CPU end of the data bus out to the $1 / O$ devices.
OP / Q indicates parity is incorrect in the op register or Q register

PRIV OP indicates an attempt was made to execute a privileged instruction when the system was not in privileged mode.

INV OP indicates an invalid op code in the op register.

CHAN DBO indicates parity is incorrect on the I / O device end of the data bus out from the CPU

INV Q indicates an invalid Q byte is present in an I / O instruction.

BSCA OPERATOR'S PANEL

BSCA Attention Light

The following table shows the conditions indicated by this light:

Instruction	Condition Indicated
Any receive or transmit and receive or (on non- switched and multipoint networks only) receive initial.	Data set is not ready.
Auto call or receive initial on switched network.	Auto call unit power is off or data line is being used.
Any SIO except control SIO.	Either (1) the BSCA is dis- abbed, or (2) the external test switch is on and BSCA is not in test mode.
None.	Data set is not ready.

Unit Check Light

This light turns on when any bit in status byte 2 is on. Also, when an SNS transition or SNS stop register instruction is executed, it is possible for an LSR, S register, or DBI register parity check to occur, resulting in a unit check condition with the unit check light on. Under such a condition, the status byte 2 bits may all be zero

The unit check indicator signifies that the BSCA program should enter an error recovery procedure.

Data Terminal Ready Light

This light indicates that the BSCA is enabled and that the data terminal is ready for use.

Data Set Ready Light

The DT SET READY light indicates that the data set ready line from the data set is on and that the data set is ready for use.

- Rate select switch is for machines used outside the United the BSCAs, it will be made available to both.
** MLTA is available by RPQ only.
$\dagger \quad$ This reads LCA on mach ines equipped with the loca
This reads LCA/BSCA on machines equipped with the

Clear To Send Light

This light indicates that the clear to send line from the data set is on and that the adapter may now transmit.

Receive Trigger Ligh

This light indicates the status of the receive trigger. The light is on when the trigger is at a binary 0 state.

Transmit Trigger Light

The TSM TRIGGER light indicates the status of the transmit trigger. The light is on when the trigger is at a binary 0 state

Receive Mode Light

This light indicates that the adapter has been instructed to perform a receive operation.

Transmit Mode Ligh

Auto Call Unit Power Off Light

that the adapter has been instructed to perform a transmit operation.

Receive Initial Light

This light is turned on by an SIO receive initial instruction. It is turned off at the end of the receive initial operation.

Busy Light

This light indicates that the communication adapter is executing a receive initial, transmit and receive, auto call, receive or loop test instruction

Character Phase Light

The CHAR PHASE light indicates that the adapter has established character synchronism with the transmitting station. This light is turned on at the end of receive operations and whenever character synchronism is lost.

Data Mode Light

This light is turned on by the decoding of an SOH or STX during a transmit or a receive operation. It is turned off at the end of the transmit or receive operation.

Control Mode Light

This indicator is used only on systems that have the station select feature installed. The light is turned on by an EOT sequence during a transmit, receive, or receive initial monitor operation, when the station select feature is installed. It is turned off by the decoding of an SOH or STX.

Digit Present Light

This light indicates that a digit has been obtained from storage for the auto call unit when the auto call feature has been installed

The ACU PWR OFF light indicates that the auto call unit (special feature) power is off.

Call Request Light

On systems with the auto call feature installed, this light indicates that the communication adapter has received an SIO auto call instruction and is performing an auto call operation.

Data Line in Use Light

On systems with the auto call unit installed the DT LINE IN USE light indicates that the dat line occupied line from the auto call unit is on.

Test Mode Light

This light indicates that the program has placed the adapter in a test mode of operation.

External Test Switch Light

The EXT TEST SW light indicates that the switch at the data set end of the medium speed data set cable is in the test position. For high speed data sets, this light is on when the local test switch on the CE panel is in the on position.

Rate Select Switch

This switch, which is present only on system installed outside the U.S.A. that have the rate selection feature as well, controls the rate of transmission and reception of data.

CE CONTROLS

CE control switches should be changed only when the CPU is stopped.

ADDRESS/DATA Switches (Below Console

 Display) (ALD PA111)These four switches set up addresses or data. An address (16 bits) is loaded into the instruction address register (IAR). Data can be entered into main storage - 8 bits when operating in test mode or 16 bits via a program.

SYSTEM RESET Key (ALD PC101)

When SYSTEM RESET is pressed, the system enters an immediate idle state. CPU registers, controls, and status indicators are reset and the processor clock is allowed to 'idle'.

The program instruction address register (P-IAR) and program status register (P-PSR) are both reset to zero by a system reset. The active PMR is set to ATT off, SP off, MI off, I/O 17th and 18th bits off, and privileged mode on

The system must be in the PROCESS mode of operation for the pushbutton to be operative. After power on, the system reset key should be pressed prior to any CE operation. Refer to page 6.2 for system reset cycle description.

CE Key Switch (ALD PC111)

This switch, when turned to the CE position, prevents the customer use meter from running.

Note: A processor check may occur if the switch position is changed while the clock is running.

CHECK RESET Key (ALD PC101)

This key is pressed to cause a reset of the Proces sor and/or Input/Output check conditions.

A check reset removes the current error conditions, thus allowing the processor to resume its operation after the Start key is pressed.

CE MODE SELECTOR (ALD PA101)

This rotary switch selects one of three processor operating modes: (1) TEST; (2) PROCESS; (3) STEP. PROCESS is the mode for normal system operation.

Notes:

1. To prevent a processor check, the CPU should be in a halt state before changing the position of the CE MODE SELECTOR switch.
2. After power on, the CE MODE SELECTOR switch should be placed in the PROCESS mode position and the SYSTEM RESET key pressed. This restores main storage to correct parity.

test A

The switch settings under test mode permit the following:

- DISPLAY STOR (display storage). The contents of the storage location specified by SAR are transferred into the B register when START is pressed, and into the Q register when the key is released.

The ATT is not active and the address used is the 16 bits from the IAR plus the $>64 \mathrm{~K}, 128 \mathrm{~K}$ and $>256 \mathrm{~K}$ bit values (set with the $>64 \mathrm{~K}$, $>128 \mathrm{~K}$ and $>256 \mathrm{~K}$ PH CE). If the value in the IAR is not the desired address, it can be changed using an alter SAR operation.

- ALTER STOR (alter storage). Pressing START allows transfer of the data set up in the right most two address/data switches, into the A register. Releasing START causes this data to be placed in storage and the Q register. The storage address is specified by the IAR and the $>64 \mathrm{~K},>128 \mathrm{~K}$, and $>256 \mathrm{~K}$ PHs. Refer to Alter Storage Cycle description.
- ALTER SAR. Thé address set up in the address/ data switches and the EXTENDED SAR DDRESS BITS switch is transferred into the AR and the $>64 \mathrm{~K}>128 \mathrm{~K}$ and $>256 \mathrm{~K}$ PHs.

When alter SAR is used to enter an address in preparation for an alter/display storage opera tion the address entered must be the real address. The ATT is disabled in test mode. When alter SAR is used to enter an address for manual branching to a routine, the address entered must be a logical address. The EXTENDED SAR ADDRESS BITS switch is ignored when de selector is switched to PROCESS or STEP.

Refer to page 6-14 for Alter SAR cycle descrip tion.

- Alter ATT/PMR. Pressing START transfers data from the two right-most console data switches into the A register. Releasing START transfers this same data into the ATT register or PMA specified by the two left-most switches.*

Note: Invalid addresses are not detected in test mode.

- DISPLAY ATT/PMR. If an ATT register address is set into the two left-most address switches,* pressing START transfers the address to the ATT where one of the 32 registers is selected for display. The content of the selected register is displayed in roller position 6 .

If the two left-most address switches select PMR register,* pressing START transfers the address into the O register. This, in turn, selects the PMR and displays the contents of that regis ter in roller position 7.

Refer to page 2.54 for a complete description of the ATT registers. Refer to page $2-28$ for cons ition of the PMR.
*Hex 00 through 1 F are used to address the 32 ATT registers. Hex 20 and 28 through $2 F$ (30 and 38 through 3 F for the $1 / \mathrm{O}>256 \mathrm{~K}$ PMR bit) are used to address the nine program mode registers (PMR). (Hex $20=$ program level PMR $28=$ interrupt 0 PMR, $29=$ interrupt 1 PMR.)

路

The CE mode selector switch is set to this position for normal system operation.

STEP C

In the step mode, the rotary switch setting con trols the manner in which the processor performs the stored program

- INSTR (instruction). Each time START is pressed and released, one complete instruction is performed. The I phase is performed while the key is pressed, and the \mathbf{E} phase, if any, when it is released.

Note: Any SIO instruction that causes the clock to run, as described under CLOCK in the follow ing paragraph, also causes the next sequential instruction to be executed without pressing START

- MACHINE CYCLE. Each time START pressed and released, the instruction is advanced through one machine cycle. Pressing START causes data in storage to be accessed and modi fied as required, and causes the result to be displayed in the arithmetic and logical unit (ALU) indicators of the roller display. Release of START, depending upon the operation being performed, writes either the old data or the new result back into storage.
- CLOCK. Each time START is pressed, the clock advances through an odd-numbered clock each time START is released, the clock advances through an even-numbered clock. The integrity of I / O data transfers is preserved by allowing the clock to run from I phase end of every exe cutable start I/O instruction to the time the device is finished transferring data. START is not functional while this I/O transfer is taking place.

Note: The halt identifier lights do not turn on in any step mode switch setting,

CE Switches

EXTENDED SAR ADDRESS BITS Switch

This switch is used to enter SAR bits E13, E14, or E15 for an alter/display storage or an address compare operation above $256 \mathrm{~K}, 128 \mathrm{~K}$, or 64 K of storage respectively.

The switch bit is set in a PH; then, on an alter/ display storage or address compare stop, the bit is gated into SAR E13, E14, or E15.

The switch is inactive in process mode (except for address compare stop).

>64K ADDR BIT Switch (ALD PA101)

This switch is used to enter SAR bit E15 for an Iter/display storage or an address compare operation when storage above 64 K must be addressed.

The switch bit is set into a PH , then, on an alter/ display storage or address compare stop, is gated into SAR E15.

The switch is inactive in process mode except for address compare stop).

SAR/MSAR Display Switch (ALD 'sel MSAR sw' PA101)

This switch controls the display in roller position one.

If the switch is in the SAR position, the untranslated or logical address is displayed.

If the switch is in the MSAR position, the actual address sent to main storage is displayed. If trans lation is active, the ATT contents and SAR posiall SAR positions including E13, E14 and E15 all SAR positions in
are displayed.

SAR E13, E14, and E15 may be set by an I/O LSR or the $>256 \mathrm{~K},>128 \mathrm{~K}$, and $>64 \mathrm{~K}$ PHs.

I/O OVERLAP Switch (ALD PC121)

This switch controls the system so that I/O oper tions may be executed in either an overlap or a nonoverlap mode. With the switch in the normal ON position, I/O operations are executed in an ove lap mode. When the switch is in the off position O operation is completed prior to execution of the next sequential instruction (nonoverlap). To avoid processor checks, be sure the CPU is stopped before changing this switch.

DISPLAY CHK (Check) BITS Switch (ALD PC121)

This switch is used only in display storage mode when set ON, it displays the six main storage heck bits for the current half-word. These check bits are displayed in positions 0.5 of the Q egister display lights. Q register bit positions 6 and 7 are always on.

These lights are accurate only when SAR is odd.

BSCA/LCA LOCAL TEST (ALD HE160)

This switch sets the high speed data set into loca est mode and causes data to be wrapped around through the data set with a SIO loop test instrue tion.

/ O CHECK Switch (ALD PA101)

This switch forces the processor to come to a immediate stop on an I/O error. The switch is normally set to RUN. With the switch set to the console display indicates the processor statu tt the time the error stop occurred

A check reset followed by pressing START allows the program to continue.

PARITY CHECK Switch (ALD PA101)

This switch allows processor parity errors to be ignored.

The switch is normally set to STOP. This causes the processor to come to an immediate stop whenever a parity error is detected. Pressing CHECK RESET followed by START allows the program to continue. With the PARITY CHECK switch set to RUN, parity errors are detected and dis played, but the processor is nto stopped

STORAGE TEST Switch (ALD PA101

This switch enables the altering or displaying of storage as follows

1. When the switch is set to STEP, a storage location is accessed each time START is pressed.
2. When the switch is set to RUN, pressing START causes storage to loop on either he same location repetitively or all addresses sequentially within one BSM switch.)

Note 1: SAR bits E13, E14, and E15 are not changed during console operations. Looping occurs only in the BSM addressed at the beginning of the operation.

Note 2: The STORAGE TEST switch must be in the STEP position to avoid a processor check while switching the CE mode selector between ALTER STOR and DISPLAY STOR

ADDR INCREM (Address Increment) Switch (ALD PA101)

This switch enables address incrementing in CE test mode switch settings of alter storage or display storage. With the switch set ON , the contents of SAR are incremented by 1 after each storage access. When the switch is set OFF, SAR is not incremented.

Note: SAR bits E13, E14, and E15 are not changed during console operations. Looping occurs only in the BSM addressed at the beginning of the operation.

ADDRESS COMPARE Switches (ALD PA101)

The two ADDRESS COMPARE switches A are used with SAR DISPLAY to stop on 1 cycles, and or stop on E cycles, and/or I/O cycles of either a real or logical address.

When the SAR DISPLAY switch is set to SAR, the logical address is compared to the address set in the four console address switches. The $>64 \mathrm{~K}$, $>128 \mathrm{~K}$, and $>256 \mathrm{~K}$ PHs are ignored.

When the SAR DISPLAY switch is set to MSAR the real address is compared to the address set in he four console address switches plus the
EXTENDED SAR ADDRESS BITS switch
When both compare switches are set to RUN, no processor stop will occur. When the ADDRESS COMPARE switch is set to I CYCLE, an addres compare stop will occur in 1 cycles.

When the ADDRESS COMPARE switch is set to E CYCLE, an address compare stop will occur on E cycles and I/O cycles.

If both switches are set to stop, an address com pare stop will occur whenever a compare is detected.

Note: When an address compare occurs, proces sing stops and all cycle lights are off. Since the translate function is gated with either ADDRES COMPARE switch being set to RUN, the SAR display will not necessarily match the switches.

If either switch is set to stop and a match occurs, the processor will stop at the completion of this cycle. The clock continues to run. If an I/O operation is not complete, that operation continues until completed. Therefore, after stopping the processor with an address match, the I/O device may change SAR to some address different from the one set into the address switches.

The processor is restarted by pressing START
Address compare circuits are shown on page 2-5
Note: To prevent stopping on an address match (used as a sync point), tie up 01A-B3R2M02 to 01A-B3U5B02. Sync point is 01A-B3R2U12 (ALD KA222).

CE Panel

POWER SUPPLY

INTRODUCTION
AC/DC Voltage
AC POWER
A The 5415 CPU supplies primary ac input power to the following devices

1442 Card Read/Punch
2501 Card Reader
2560 MFCM ($50 \mathrm{~Hz}-220 \mathrm{Vac}$ and above)
3277 Display
5415 Power Supplies
5424 MFCU
B The 5421 supplies primary ac power to the
1403. It also supplies primary ac power for the 2560 when the input power is 60 hertz or 200 Vac 50 hertz.

DC POWER
A The following dc voltages are used by the 5415

- Voltages (dc) developed within the CPU:
$-4 \mathrm{Vdc}(\mathrm{A}$ gate basic)
-4 Vdc (B gate basic)
4 Vdc (B gate feature)
6 Vdc (basic)
+8.5 Vdc and +3.4 Vdc (FET storage) +24 Vdc (EPO and sequencing) +24 Vdc (3340 without 5424)
$\pm 12 \mathrm{Vdc}$ (MLTA and BSCA features)
$\pm 3 \mathrm{Vdc}(1442,2501,2560$ features)
$+5 \mathrm{Vdc}(3277$ Attachment)
+5 Vdc (BSCC feature)
-5 Vdc (BSCC feature with DDSA or 38LS option)
- Voltages (dc) supplied by I/O devices for use by the CPU:

Note: See manual of individual ।/O device for dc voltage requirements.

INTRODUCTION

Basic Uní

The primary power input (ac) is distributed to bulk supplies located in the CPU. The bulk supplies sup ply unregulated filtered dc to the regulator assemblies. The regulators provide the voltage regulation required to operate the system logic. The regu lated dc output is distributed to gates A and B and to the appropriate I / O devices.

Input Power Requirements

The input power requirements for System $/ 3$ are three-phase power at 30A. Domestic and World Trade input voltage requirements are:

- 60 Hertz: $200 \mathrm{Vac}, 208 \mathrm{Vac}$, and 230 Vac ($\pm 10 \%$)
- 50 Hertz: 200 Vac, 220 Vac, $235 \mathrm{Vac}, 380$ Vac, and $408 \mathrm{Vac}(\pm 10 \%)$

Parts Replacement

The power system is designed for replacement of power supply subassemblies rather than discrete components. The exceptions include fuses, volt age regulator cards, and relays. However, in large assemblies like the primary control box or bulk supply No. 1 , it will be necessary to replace com ponents (filter capacitors, etc.).

Checks and Adjustments

DANGER: After the emergency power switch is opened, power is available at $K 1$ K3 and K9B input terminals an at transformer (T 1) terminals.

All voltage measurements should be made in a nor mal environment (temperature between 68 degrees and 86 degrees F) with a recently calibrated Weston* 901 meter or its equivalent.
*Trademark of Weston, Inc.

POWER SUPPLIES AND COOLING

POWER SUPPLIES AND COOLING

Notes:

1. If the primary power input is 235 Vac or 408 Vac, an autotransformer is required to sup ply power to the 2560 or 2501 (if these features are installed).
2. Primary power for the 2560 is supplied by the 5421 on all 60 Hz and 200 Vac 50 Hz systems.
3. Resistor assembly is used to load the No. 1 bulk supply when the 6 Vdc expansion fea ture is installed. Power to the 6 V regulato
is supplied by the 6 Vdc expansion supply.

Each bulk power supply contains a ferro-resonant transformer with multiple secondary windings. The transformer outputs are rectified, filtered, and made available to dc regulators for additional regulation. The No. 1 bulk supply is shown in the example. The No. 2 and No. 3 bulk supplies are similar but contain dc bulk and bias voltages for the 4 V regulators only.

Note: All outputs (dc bulk and bias voltages) ar floating. The outputs are referenced to ground
via external wiring.

POWER SUPPLY REGULATORS

The -4 V and +6 V regulators have identical ter minals (E1-E14) A that perform identical
functions,
The individual regulators \mathbf{B} receive the unregulated, filtered dc voltage from the bulk power supplies C and provide the voltage regulation required to operate the system logic.

The dc regulators function as a variable resistance Din series with the load.

The control circuit regulator card \mathbf{E} continually monitors the voltage across the load and adjusts the current flow through the series transistors in the regulator to maintain a constant voltage output.

OWER SUPPLY REGULATORS

Start-Up Control

A regulatar requires three inputs to enable a regulated output voltage:

1. Bulk supply voltage \mathbf{A} ($E 1$ and $E 2$) pro vides the desired regulator input voltage. vides the desired regulator input voltage.
This voltage is reduced to the desired level by the series transistors in the regulator.
2. Bias voltage B (E9 and E10) provides operating and reference voltages for the regulator
3. Start signal C(E12) enables the regulator to turn on. This input is connected through relay sense logic D to the most positive output of the supp

Simplified Diagram (+6V regulator is shown)

Voltage Regulation

Regulator output terminals E3 and E4 are connected to terminals E13 and E14 (sense - and +) of the regu lator card. A differential amplifier on the regulator with an internal reference voltoge The e differential amplifier is applied to the base ransistors Q1 and Q13 from terminal D11.

If an increase in output voltage is sensed, a negative voltage is applied to the base of transistors Q 1 and Q13 causing the current to decrease through these transistors. A decrease in current results in a decrease in current through transistors $\mathbf{Q} 2$ through Q12, thereby causing a decrease in output voltage. For a decrease in output voltage, the current through transistors Q1 and Q13 increases causin an increase in current through transistors Q2 through Q12. Therefore, output voltage increases to the normal level.

Notes:

1. To increase current output, add additional transistors in parallel.
2. Connected externally to provide feedback reference to regulator card.
3. To start +6 Vdc regulator, pick K5-2 K17-1, and K19-1. To start -4 Vdc regu lators (number 1 through number 3) E12 must be at ground.

POWER SUPPLY REGULATORS

Overvoltage Protection

An overvoltage protection circuit in the voltage regulator card monitors terminal E13 and E14. If the output voltage rises beyond the maximum normal limits, the regulator card turns off O 1 and Q13. Transistors $\mathrm{Q1}$ and $\mathrm{Q13}$ then turn off transistors $\mathrm{Q2}$ through Q 12 reducing the output voltage to zero. This action protects the logic cir cuts from and gounds terminal $\mathrm{E8}$ (point to ground) wia terminal DO2 to indicate a fault condition. Groun ing terminal E8 causes the OV/OC rens Grounding terminal 88 causes the $\mathrm{OV} / \mathrm{OC}$ relay to ene gize. Energizing the OV/OC relay de-energize primary of the bulk supply.

The fault that caused the power down is determined by probing the test points on the power control box (see page 8-28). Fault relays are reset by pressing CHECK RESET if the power switch is off.

Overcurrent Protection

The overcurrent protection circuit protects the regulator if load current exceeds the limits of the regulator. An overcurrent condition is sensed at terminal J02 of the regulator card.
The voltage drop across R4 through R24 (evennumbered resistors) is proportional to the load current. R5 through R25 (odd-numbered resistors) average these individual voltages. The average volt card via a minal 02 If the predetermined cur rent limit for the average voltage is exceeded a fault indication energizes the OV/OC relay by grounding terminal E8. If the OV/OC relays K13 K14, K16, or K18 are energized contactor K3 K14, K 16 , or K 18 are energized contactor K3
is de-energized which removes power from the primary of the bulk supply.

The fault that caused the power down is determined by probing the test points on the power control box (see page 8-28). Fault relays are reset by pressing CHECK RESET if the power switch is off.

POWER SUPPLY REGULATORS

Undervoltage Protection

An undervoltage protection circuit for the -4 V upply and the +6 V supply is necessary because damage to the print magnets can occur if +6 V is applied to the 5424 MFCU or the 1403 printer when the -4 V regulator output is low or decreases 0 . In order to protect the 5424 MFCU and the 1403 printer, a silicon-controlled rectifier (SCR) wired across the output of the +6 V regulator. The SCR starts to conduct if

1. The +6 V regulator senses an overvoltage or an overcurrent condition.

The -4 V undervoltage control assembly senses an undervoltage condition.

When the SCR conducts, the +6 V output is effecively shorted. This results in an overcurrent con dition which, in turn, causes an immediate system power down.

4 Volt Undervoltage Circuit (Reg No. 1)

he -4 V undervoltage control assembly (Ax Drive) monitors the -4 V brass plate. If the -4 V output decreases to -3.2 to -3.8 volts an error signal is enerated. The error signal fires an SCR in the +6 V regulator effectively shorting its output. This shorts at the +6 V regulator output causing an overcurren ondition. The +6 V regulator senses this simulated vercurrent condition and, as a result, picks K14. This, in turn, de-energizes K3, causing an immed ate system power off. The action of shorting (axing) the +6 V regulator when a -4 V No. 1 under voltage condition is sensed protects the 5424 and he logic circuits.

+6 Volt Undervoltage Circuit

The +6 V undervoltage circuit monitors the +6 V egulator E4 (+ out) If a +6 Vdc undervoltage is egulator $E 4$ (+ out). If a +6 Vdc undervoltage is he K6A-1 point. This causes the system to power down by dropping relay K9 (ac to $1 / 0$).

Notes:

1. The -4 Vdc undervoltage control assembly shorts the output of the +6 V regulator with an SCR when a -4 V undervoltage $(-3.2 \mathrm{~V}$ to -3.8 V) condition is detected.
2. Relay K 3 (ac to bulk PS) is dropped when the K $14-2 \mathrm{n} / \mathrm{c}$ points open.
3. Relay $K 6 \mathrm{~A}$ is picked if the +6 V regulator out put drops to +5.7 Vdc or less.

Basic -4 Vdc No. 1 Supply A

The $\mathbf{- 4}$ Vdc No. 1 supply provides regulated -4 Vdc for the system logic (A gate, etc.). The -4 Vdc assembly also provides start control, regulation, and ov/oc detection (see page 8-8 for description).
The - 4 Vdc add-on and resistor box assembly ex pand the capacity of the -4 Vdc No. 1 supply.

Add-On Regulator B

The add-on regulator contains series transistors wired in parailel with the basic -4 Vdc No. 1 regulator. These transistors are controlled by the regulator card in the -4 V 70 amp regulator for the No. 1 power supply.

Bypass Resistors [

The resistor box assembly contains two 0.32 ohm resistors in parallel that shunt current around the -4 V No. 1 and add-on regulators. The maximum cur rent through these resistors is less than minimum required by the CPU, thereby maintaining voltage regulation.

Gate A

Voltage Adjustmen

1. Connect the meter between brass plate \#2 (-4V) and brass plate \# 1 (ground) behind the CPU console
2. Set the voltage for -4.20 V

Voltage Pot (To increase output voltage, turn clockwise)
a. Overvoltage: Replace regulator card if voltage between -4.37 to -5 Vdc fails to trip regulator.
b. Undervoltage: $\mathrm{A}+6 \mathrm{Vdc}$ failure indication (TP13 $=+24 \mathrm{Vdc}$) should occur when voltage drops between -3.8 Vdc to 3.2 Vdc .

OC Pot (sealed)

End View of -4V Regulator Card
Connect the meter across A-A1C2B06 (-4V) and A-A1C2D08 (ground). This voltage should measure between -3.85 V and -4.2 V
4. If the voltage measured in step 3 is out of tolerance, readjust the -4 V supply or check distribution cables for high resistance connections.

B GATE -4V LOGIC SUPPLY NO. 2

 (Upper Boards) and B GATE -4V FEA TURE LOGIC SUPPLY NO. 3 (Lower Boards)The -4 V logic supply No. 2 A provides -4 volts for the B gate. As features are installed on the gate, the -4 V feature logic supply No. 3 B is added to meet the increased power requireme (lower B gate boards).

Each logic supply (No. 2 and No. 3) has its own
bulk transformer, regulator, and cooling system.

Voltage Adjustment

1. Connect the meter across the -4 V load be tween position 6 and ground (position 7) on B gate upper laminar bus if adjusting -4 V supply No. 2 or B gate; lower laminar bus if adjusting -4 V supply No. 3.

2. Set the voltage adjustment potentiometer to -4.05 Vdc .Voltage Pot (To increase output voltage turn clockwise.)
a. Overvoltage: Replace regulator card if voltage between -4.37 Vdc to -5 Vdc fails to trip regulator.
b. Undervoltage: $\mathrm{A}+6 \mathrm{Vdc}$ failure indica tion (TB13 = +24 Vdc) should occur when voltage drops between -3.8 Vd to -3.2 Vdc .
(D) OC Pot (sealed)

End View of -4V Regulator Card

3. Connect the meter across PEBTB 2-7 (ground) and PEBTB $2.8(-4 \mathrm{~V})$ on the printer electron ics gate. This voltage should measure be tween -4.20 V and -3.85 V .

4. If voltage measured in step 3 is out of toler ance readjust the -4 V No. 2 supply or chec distribution cables for high resistance connections.

6 VOLT LOGIC SUPPLY

+6 Vdc Regulator A

The +6 Vdc regulator provides a regulated 6 Vdc output to operate the system logic (A and B gates). A regulator card in the regulator assembly provides the regulated output and circuit protection.

The 6 V output is also used by the resistor box to supply (via voltage divider network) +5 Vdc to the $3277 / 3284$ attachment.

Voltage Pot (To increase voltage, turn
a. Overvoltage: Replace regulator card if overvoltage condition (greater than 6.85 Vdc) fails to trip regulator
b. Undervoltage: 5.28 Vdc or less cause +6 Vdc failure indication (TP13 $=$ $+24 \mathrm{Vdc})$.

O/C Pot (sealed)*
0

The instalation of the +6 V expansion bulk is ac complished by removing the present 6 V regulator from the No. 1 bulk output, adding a resistor load (preload) in its place, and installing the 6 V expansion bulk (see diagram).

+6V Expansion Bulk Supply (Feature) B

The +6 V expansion bulk supply is required when the feature configuration requires more current at +6 Vdc than the No. 1 bulk is capable of supplying.

Voltage Adjustment

1. Connect meter between brass plate \#3 + + Vdc terminal) and brass plate \#1 (ground terminal) behind the CPU console.
2. Set voltage adjustment potentiometer for +6 Vdc.

MAIN STORAGE POWER SUPPLY

The main storage power supply receives primary ac input power via relay K3 and generates two bulk dc voltages. The bulk voltages are regulated within the supply to +3.4 Vdc and +8.5 Vdc . The +3.4 Vdc and +8.5 Vdc supply provides power

$+3.4 \mathrm{Vdc}$

1. Connect meter across E7 (common) and E9 (+3.4 Vdc)
2. Set voltage for 3.45 Vdc .
3. Connect meter between A gate lower lamin bus position $8(+3.4 \mathrm{Vdc})$ and position 7 (grd). This voltage should measure +3.4 Vd If not readjust the +3.4 Vdc supply.

$+8.5 \mathrm{Vdc}$

1. Connect meter across E 7 (common) and $E 4(+8.5 \mathrm{Vdc})$.
2. Set voltage for +8.55 Vdc .
3. Connect meter between \mathbf{A} gate lower lamina bus position $10(+8.5 \mathrm{Vdc})$ and position 7 (grd). This voltage should measure +8.5 Vdc. If not, readjust +8.5 Vdc supply.

Sequencing

1. $A C$ Power - $A C$ to bulks via K3.
2. +24 V Control Voitage (E2) - Powers the sequence card.
3. +24 V Start/Stop (E3) - Signals the sequence card to begin monitoring the -4 V sense line.
4. $-4 \vee$ Sense (E1) - The supply is turned on when this line reaches approximately -3 Vdc when this line reaches approximately -3 Vdc
(monitored at the brass plate). The No. 2 -4 Vdc power supply, the No. 3-4 Vdc
power supply (if channel bank No. 3 FET protect is installed), and expansion main storage power supply (if expansion main storage is installed) are all powered up.

Overvoltage (OV)/Undervoltage (UV)

Protection

Sequence Card (A1)

The sequence card provides sequence control for the +3.4 Vdc and +8.5 Vdc regulators. The +3.4 Vdc supply is sequenced up first on power-up and down last on power-down.

Regulator Card (A2)

The regulator card provides voltage regulation for the two series regulators of which the outputs are +3.4 Vdc and +8.5 Vdc . The regulator card +3.4 Vdc level and one for adjusting the +8.5

dc level.

3.4 Vdc

$\mathrm{A}+3.4 \mathrm{Vdc} \mathrm{OV}(+4.2 \mathrm{Vdc})$ or $\mathrm{UV}(+2.5 \mathrm{Vdc})$ is sensed by the sequence card, which provides gate signals to bias on both Q1 and Q2 (SCRs). The SCRs cause short circuits across the +3.4 Vdc and 8.5 Vdc supplies, tripping CB1 and CB2. At the same time, the sequence card turns off both regu lators.
Note: CB1 and CB2 may or may not trip depending on the cause of the overvoltage, but both regulators stay off until system power is recycled on.

$+8.5 \mathrm{Vdc}$

$\mathrm{A}+8.5 \mathrm{Vdc} \mathrm{OV}(+9.5 \mathrm{Vdc})$ or $\mathrm{UV}(+2.5 \mathrm{Vdc})$ is sensed by the sequence card, which provides a gate signal to bias on 01 (SCR). Q1 causes a short circuit across the +8.5 Vdc . This trips CB1 which disconnects the bulk voltage to the +8.5 Vdc regulator.

Sense Relay

The sense relay (K 8) is energized when all the +3.4 Vdc and +8.5 Vdc supplies, fed by the main storage power supply, are up.

EXPANSION MAIN STORAGE POWER SUPPLY (Part 1 of 2)

The expansion main storage power supply is electrically identical to the main storage power supply but is physically different due to packaging. It is installed when greater than 256 K memory is being installed. When installed, this power supply supplies the +8.5 Vdc and the +3.4 Vdc power to the $01 \mathrm{~A}-\mathrm{A} 4$ board position for expansion main storage.

The expansion main storage power supply receives primary ac input power via relay $K 3$ and generates two bulk dc voltages. The bulk voltages are regulated within the supply to +3.4 Vdc and +8.5 Vdc.

$+3.4 \mathrm{Vdc}$

1. Connect meter across E7 (common) and E9 (+3.4 Vdc).
2. Set voltage for 3.45 Vdc .
3. Connect meter between A gate lower lamina bus position $1(+3.4 \mathrm{Vdc})$ and position 7 (grd). This voltage should measure +3.4 Vdc. If not, readjust the +3.4 Vdc supply.
$+8.5 \mathrm{Vdc}$
4. Connect meter across E 7 (common) and $\mathrm{E} 4(+8.5 \mathrm{Vdc})$.
5. Set voltage for +8.55 Vdc
6. Connect meter between 01A-A4L2D07 (+8.5 $\mathrm{Vdc})$ and position 7 (grd).

Sequencing

The following inputs are required to sequence up the main storage power supply:

1. AC Power - AC to bulks via K3.
2. +24 V Control Voltage (E2) - Powers the sequence card.
3. +24 V Start/Stop (E3) - Signals the sequence card to begin monitoring the -4 V sense line.
4. -4V Sense (E1) - The supply is turned on when this line reaches approximately -3 Vdc (monitored at the 02 brass plate).

The sequence card provides sequence control for the +3.4 Vdc and +8.5 Vdc regulators. The +3.4 Vdc supply is sequenced up first on power-up and down last on power-down.

Regulator Card (A2)

The regulator card provides voltage regulation for the two series regulators of which the outputs are +3.4 Vdc and +8.5 Vdc . The regulator card contains two potentiometers, one for adjusting th
+3.4 Vdc level and one for adjusting the +8.5 Vdc level.

+3.4 Vdc

$\mathrm{A}+3.4 \mathrm{Vdc} \mathrm{OV}(+4.2 \mathrm{Vdc})$ or $\mathrm{UV}(+2.5 \mathrm{Vdc})$ is sensed by the sequence card, which provides gate sCRs to bias on both Q1 and Q2 (SCRs). The SCRs cause short circuits across the +3.4 Vdc and 8.5 Vdc supplies, tripping CB1 and CB2. At the lators.

Note: CB1 and CB2 may or may not trip depend ing on the cause of the overvoltage, but both regu lators stay off until system power is recycled on.

$+8.5 \mathrm{Vdc}$

$\mathrm{A}+8.5 \mathrm{Vdc} \mathrm{OV}(+9.5 \mathrm{Vdc})$ or $\mathrm{UV}(+2.5 \mathrm{Vdc})$ is sensed by the sequence card, which provides a gate signal to bias on 01 (SCR). 01 causes a shor circuit across the +8.5 Vdc . This trips CB1 which lator.

Sense Relay

The sequence relay (K 24) is energized when both
the +3.4 Vdc and +8.5 Vdc portions of the expan son main storage power supply are up.
ote: K24 points are shown on the main storage power supply page

± 3 VOLT LOGIC SUPPLIES (Part 1 of 2)

The system uses two different $\pm 3 \mathrm{Vdc}$ supplies depending on the card reader attached. If the 1442 and/or 2501 are attached, a $\pm 3 \mathrm{Vdc}$ regulator card A supplies the required voltage. If the system uses a $\mathbf{2 5 6 0}$ MFCM, a $\pm 3 \mathrm{Vdc}$ power supply B is ower for the 1442 and/or 2501 (if installed).

± 3 Volt Regulator Card

The output of this regulator is +3 Vdc and -3 Vdc The inputs are -4 Vdc (from the -4 V No. 1 supply) for the -3 V circuit and +6 V (regulated output of the +6 Vdc regulator) for the +3 V circuit.

± 3 Vdc Regulator Card A

If an OC condition occurs in either the +3 Vdc or 3 Vdc circuits, the OC condition is sensed by the regulator that supplies input to the SMS circuit in error. For example, the -4 V No. 1 regulator sense an OC in the -3V SMS circuit and TP12 identifies the failure. Likewise, if an OC condition occurs in the +3 V SMS circuit, the +6 V regulator senses the OC and TP13 identifies the error.

The $\pm 3 \mathrm{~V}$ power supply receives primary ac power through relay $K 3$ and provides a regulated $\pm 3 \mathrm{Vd}$ output at 6.5 amps. An SMS card provides the regulating circuits.

± 3 Vdc Power Supply B

Both the +3 V and -3 V outputs must be active to pick relay K1 (located in the $\pm 3 \mathrm{~V}$ supply). If one or both of the voltages are not up when K12 (power sequence complete) picks, fault relay K15 is energized through the K14-4 points (see diagram) Fuse one provides overcurrent protection.

Voltage Adjustment

± 3 Vdc Regulator Card

The ± 3 Vdc regulator card output is adjusted while monitoring the voltage at the attached device. If both the 1442 and 2501 are installed the +3 V and checked at both devices and the aver ge taken.
+3 Vdc Level Adjustment

1. Connect meter between either the 1442 TB8-5 (+3 Vdc) and TB8-8 (grd) or 2501 GTB1-5 (+3 Vdc) and GTB1-8 (grd)
2. Set voltage adjustment potentiometer for +3 Vdc.
+3V adjustment potentiometer

2501 Card Reade
3. If both the $\mathbf{1 4 4 2}$ and $\mathbf{2 5 0 1}$ are installed, connect the meter between the TB points (1442 2501) not used in step 1. Record the voltag level.
4. If the voltage level recorded differs from that set in step 2 , readjust the +3 Vdc potentiometer to the mean.

For example, if the voltage recorded in step 3 is 3.04 Vdc , readjust the +3 Vdc potentiometer until the voltage level at the device used in step 3 is 3.02 Vdc .

Note. The voltage at either device is not to be less than $\pm 2.88 \mathrm{Vdc}$ following the mean adjustment.

Vdc Level Adjustment

5. Connect meter between either the 1442 TB8-11 (-3Vdc) and TB8-8 (grd) or 250 GTB1-11 (-3Vdc) and GTB1-8 (grd).
6. Set voltage adjustment potentiometer for -3 Vdc
7. If both the 1442 and 2501 are installed con nect the meter between the TB points (1442 2501) not used in step 5. Record the voltage level.
8. Adjust the -3 Vdc potentiometer to voltage mean if necessary.

Note: If only the 1442 or 2501 is installed adjust voltage at that device to the appropriate +3 V and -3 V levels (use only those steps required).

1442 Card Reader

± 3 Vdc Power Supply

The $\pm 3 \mathrm{Vdc}$ power supply is adjusted while monitoring the output voltage at the 2560

2560 Card Reader

-3 Vdc Level Adjustment

1. Connect meter between 2560 GTB1-10 $(-3 \mathrm{Vdc})$ and GTB1-9 (grd).
2. Set voltage adjustment potentiometer for SCJ . -3 Vdc .
+3 Vdc Level Adjustmen
3. Connect meter between 2560 GTB1-4 (+3 Vdc) and GTB1-9 (grd).
 +3 Vdc .

Note: If the 1442 and/or 2501 are also installed, adjusting the $\pm 3 \mathrm{Vdc}$ power supply at the 2560 only is sufficient.

± 5 VOLT FEATURE POWER SUPPLY

± 5 Vdc Feature Regulator (BSCC)

he +5 Vdc power supply is required when BSCC is installed. The +5 Vdc is regulated to $+10 \%$ and to -9.5% and is derived from the +6 Vdc supply at the brass plate. It uses the $\pm 6 \mathrm{Vdc}$ regulator for overcurrent and overvoltage protection.

The -5 Vdc power supply is required when BSCC and either the Data-Phone Digital Service Adapter DDSA) or the 38LS modem is installed. The -5 Vdc is regulated to $+10 \%$ and -9.5%, and is derived from the No. 1 bulk power supply trans former (ac) at the 12 Vac bulk level (6 Vdc regulated bulk). The 12 Vac is rectified and regulated with an ICVR and a pass transistor. The regulator is current protected by a feedback rcuit within itself. The 12 Vac input is fuse head of the rectifier and regulator. The -5 Vdc buk power suply. If 5 Vda is w the N elay K17 cannot pick, the system will not ower up, and the power check indicator will up, and the power check indicator will turn on.

-5 Vdc

12/-12 VOLT FEATURE POWER

SUPPLIES

 SCA)The $\pm 12 \mathrm{Vdc}$ supply is required when the MLTA eature is installed. This supply is also required with BSCA and not MLTA if the BSCA feature ontains the 1200 bps integrated modem. The ± 12 Vdc supply is not required if BSCA without 1200 bps integrated modem is installed (BSCA without this modem uses -12 Vdc only)

A secondary winding of the bulk supply (also used by +6 V basic regulator) is used to supply unregulated ac voltage to the $\pm 12 \mathrm{~V}$ supply where fll-wave rectifier provides $\pm 12 \mathrm{Vdc}$ to the MLTA feature. Both inputs to $\pm 12 \mathrm{~V}$ supply are fused.

-12 Vdc Feature Supply (BSCA or BSCC Without 1200 bps Modem and not MLTA) A

The $\mathbf{- 1 2} \mathrm{Vdc}$ feature power supply is required only when the BSCA or BSCC features without 1200 bps integrated modem is installed. The description given for $\pm 12 \mathrm{Vdc}$ regulator is valid for this provided

Test point 9 monitors the $\pm 12 \mathrm{Vdc}$ (MLTA) or -12 Vdc (BSCA or BSCC) supplies. If the supplies fail to (Buequ or BSc, supplies. If the supplies

Wote: Retay K2 (112 Vdc supply) picks whol ore. Relay $K 2(\pm 12$ Vdc supply) picks when dc supply) picks when -12 Vdc is present.

This page intentionally left blank.

+24 VOLT LOGIC SUPPLY

The $+24 \mathrm{Vdc}(25 \mathrm{amp})$ power supply is normally contained in the 5424. Those system configurations without a 5424 installed have a +24 Vdc 5 amp supply mounted in the 5415D. This supply is shown in the diagram.
The +24 Vdc power supply receives primary ac power via relay K 9 and provides an unregulated +24 Vdc output at 4.5 amps . The +24 Vdc output is used by the 5421 and 2560 .

Test point 7 monitors the +24 Vdc supply. If the supply fails to sequence up, test point 7 indicates the error

POWER SEQUENCE (Part 1 of 3)

These pages describe the sequential action of the system power supplies and their functional units. The purpose of the relays and coils is described on page 8-28. Reference logic pages YA102 through YA103A.

Power Up Sequence

Normal conditions with system POWER switch set OFF, main CB on, line source on, and no power faults:

1. K13 and K14 are not energized (EPO must not be pulled and no point to ground fault)
a. K13-1 is not picked (allows +24 V to be passed to K14-2).
b. K14-2 is not picked fallows +24 V to be passed through power switch sec tion A in the off position to the the mal switches to energize K2)
2. +24 Vdc control voltage is available (TP2 $=24 \mathrm{Vdc}$).
3. K1 is energized (convenience outlet on).
4. K 2 is energized if
a. No thermal switch is open
b. +24 Vdc control is available (main CB on).

Note: Abnormal power down conditions are described on page 8-27.
5. Lamp test switch is active (only TH CHK and PWR CHK lights will light with lamp test).

stem POWER switch to ON.

ecions A, B, and C of the power switch transfer

1. Section C turns on PWR CHK light (turns off when K12-2 picks). Section C is also used to inhibit a point-to-ground fault reset while the POWER switch is set ON.
2. Section B provides +24 V control to the $3340 / 3344,+24 \mathrm{~V}$ control to the main $3340 / 3344,+24 \mathrm{~V}$ control to the main
storage supply, and +24 V to the n/o K6-2 contacts.
3. Section A energizes $K 3$ coil through $K 2-4$ n/o points. (The thermal relay [K2] is now held through K2-3 n / o points.)

K3 relay picks:

1. Power (ac) is applied to all fans.
2. Power (ac) is applied to No. 1, 2, and 3 bulk power supplies, to the +6 V expansion power supply, and to the -5 V power supply (when installed).
3. Power (ac) is applied to the main storage supply basic and expansion main storage power supply.
(2)

Bulk logic supply voltage energizes regulators:

1. Bias voltage ($20 \mathrm{Vdc} \pm 10 \%$) is applied to -4 V (No. 1, 2, and 3) and +6 V regu lators (terminals E 9 and E 10 of each)
2. Bulk voltages are applied to each regulator (terminals E1 and E2 of each).
a. 9.37 V to 11.3 Vdc to -4 V regulator b. 10.77 V to 13.5 Vdc to +6 Vdc regula tor
3. $46 \mathrm{Vdc}(\pm 10 \%)$ is applied to the resistor box assembly (30V section).
4. Approximately 25 Vac is applied to the 12 V supply (BSCA/MLTA feature).
5. K30 is energized (senses BSCA -12V sup. ply) or K2 is energized (senses $\pm 12 \mathrm{~V}$ sup ply).
6. $\mathrm{K} 30-1$ or $\mathrm{K} 2-1$ picks (TP9 $=0 \mathrm{Vdc})$.

Note: The $\pm 12 \mathrm{~V}$ power supply relay K 2 should not be confused with K2 in the system (mounted on relay panel).
4. Power (ac) is applied to $\pm 3 \mathrm{~V}$ supply for 2560 (when installed).

Power On Sequence

1. Main CB On (power switch OFF)
2. +24 Vdc control voltage
3. K 1 (convenience outlets)
4. K2 (TH CHK light turns off)
5. Turn Power switch ON
6. K3 (ac voltage to logic supplies and fans) and -5 Vdc power on (BSCC only) K5 (-4V power on)
7. K24 Expansion main storage power supply K5-2, K17-1 (+6V power on) and +5 Vdc power on (BSCC only)
8. K6 (6V sensed)
9. (8.5V power on)
10. K8 (8.5 V sensed)
11. K9-B (lamp and meter voltage)
12. K9-A (ac voltage to 3277 and 3284)
13. K9 (ac voltage to I/O devices)
14. K9 (ac voltage to I / O devices)
15.

(+24 V power on in $5415 / 5424$)
18. K1 in 5421 (5421 start up)
19. K 7 in $5421(+6 \mathrm{~V},-12 \mathrm{~V},+60 \mathrm{~V}$ in 5421$)$
20. $\mathrm{K} 10(+24 \mathrm{~V}$ sensed)
21. $\mathrm{K} 11(+60 \mathrm{~V}$ sensed)
22. K 12 (remove POR)

POWER SEQUENCE (Part 3 of 3)

Normal Power Down Sequence
 !

ve the POWER switch to OFF
Sections A, B, and C of the power switch transfer

1. Section C deactivates the -4 V UV detec tion circuit. (Applies 'Ax inhibit' to tion circuit. (Applies Ax in
2. Section A opens. K10-1 and K11-1 hold K3 energized until both the +24 V supply and +60 V supply are powered down on a normal power off sequence.
3. Section B de-energizes: K9, K9A, and K9B (1/O supplies). $+3.4 / 8.5 \mathrm{~V}$ main storage supply.

Main storage supply and the expansion main stor age power supply (feature) powers down.

1. K 8 is de-energized.
2. K8-1 drops (used in power on sequence)
3. $\mathrm{K} 8-2$ drops (TP6 $=24 \mathrm{Vdc})$
4. K 12 is de-energized.
5. K12-2 drops (PWR CHK light comes on)
6. K12-3 drops (inhibits K15 from being ener gized)
7. K12-4 drops lactivates 'power on reset' to the CPU)
+60 V and +24 V supplies power down. (I/O supplies de-energize more slowly than the main torage supply.)
8. K10 and K11 are de-energized
9. K10-2 and K11-2 drop (TPs).
10. K10-1 and K11-1 (de-energize K3)

Power Off Sequenc

Main CB

+24 Vdc control vol tage
K1 (convenience outlet)
K2 (thermal interlock)
Kurn POWER switch OFF
K9A (ac voltage to 3277 and 3284)
K9B (lamp and meter voltage)
K1 in $5421(+60,+6$, and $-12 \mathrm{Vdc})$
K11 + 60 Vdc sensed)
11. $\mathrm{K} 10(+24 \mathrm{Vdc}$ sensed)
12. K12 (turn on POR)
13. K7 in 5421
14. K8
14. K8 and K24
15. $(+3.4 \mathrm{Vdc})$
15. \quad (+3.4 Vdc)
16. K3 (ac voltage to logic supplies and fans)
17. K6 (+6 Vdc sensed)
18. $\mathrm{K} 5(-4 \mathrm{Vdc}$ sensed)

thermal and power checks

Abnormal Power Indications

An abnormal power down can be caused by

 power check or a thermal check.
A PWR CHK light ind

- An abnormal power down sequence A
- An abnormal power up sequence
- An overvoltage, overcurrent, or an undervoltage power failure \mathbf{C}
- A thermal condition exists (TH CHK light will be on also) D

A thermal check indicates that one of the following areas has overheated:

- A or B gate logic
- Bulk supply
- Regulator stack
- Main storage supply
- Expansion main storage supply (feature)
- 5421 and 2560 supplies
- 5421 logic gate

A An abnormal power down sequence occurs only when the POWER switch is moved to OFF (the operator intends to power down the system). If all system power supplies power down as expected, no power check occurs. If they do not, he PWR CHK light stays on (comes on during normal pow down sequence and 24 Vdc may may not be available on one of the test points.

Any one of the following faults could cause an abnormal power down sequence.

1. Section A, B, or C of the power switch failed to open.
2. K 3 relay did not drop
3. K9 relay did not drop.

$\mathrm{A}-4 \mathrm{~V}$ or +6 V overvoltage, overcurrent, or a undervoltage power failure can be detected during normal power on. With this type of failure he system powers down abruptly as soon as the fault is detected. +24 V is measured on the TP of he supply that detected an OV, OC, or UV power failure. The respective regulators sense voltage and current load drain and if preset limits are ein E8 of point-to-ground signal is presented on pin E8 of the respective regulator. This point-to-ground signal (ground potential) is used to energize the appropriate OV/OC sense relay which, Undervoltage wer failures also cause abrupt system power down. Two special UV detection circuits are used sense the output of the -4 V and +6 V regulator f either regulator's output drops below criteria, K6/K15 (+6V UV) or KIA (- W UV) is energized and powers down the system. However, $\mathrm{a}+6 \mathrm{~V}$ UV does not power down the system abruptly but causes a power check with all CPU logic supplies up.

Overcurrent (OC) power failure example: system is in a normal power up state

A -4 V short-to-ground fault occurs (can be nywhere on the system where -4 V from the No. 1 bulk is used)
2. The fault causes excessive current drain on the -4 V regulator.
3. $\mathrm{A}-4 \mathrm{~V}$ OC fault is sensed by the -4 V regulator card
4. A point-to-ground signal is presented to 13. (The ground side of K13 is normally open to ground.)
5. K13 is energized.
6. K13-2 picks (latches K13 on)
7. K13-1 picks (TP12 $=+24 \mathrm{Vdc})$. When this relay transfers, +24 Vdc control voltage is moved from all relay coils ($\mathrm{K} 2, \mathrm{~K} 3$, and K9 in particular)
8. System powers down abruptly.
. PWR CHK comes on as soon as K 12 drops and he POWER switch stays ON.
the POWER switch is moved to OFF the PWR CHK light goes off, but comes on again each tim e switch is moved to on. The system stays tched in the fault state until the fault relay reset and the point-to-ground fault is removed.

The fault relay can be reset by setting the POWER witch to OFF and pressing CHECK RESET. With the POWER switch set OFF, +24 V energize 13 coil through the closed check reset switch. With check reset open, K13 de-energizes and K13-2 drops (latch) and K13-1 drops. K2 is now energized by the +24 V control voltage and the ystem is ready for a normal power up sequence.
he preceding description can be used similarly for 4 V OV/OC, -4V UV, and +6 V OV/OC power Ialures. Only different supplies and relays are in volved.
$A+6 \mathrm{~V}$ power failure does not cause abrup sstem power down. Instead, special solid sta ircuits sense the +6 V regulator output and, if 5.7 Vdc or lower is sensed, coil K6A is energized. Relay K6A-1 picks and causes K15 to energize. Then K15-4 picks and de-energizes K9, K9A, and Kich causes K10 and K11 to drop. The PWR CHK hich causes K 10 and K 1 to drop. lign cons + , b K
ndervoltage control circuits are used to ensure that:
+6 V is removed when the +6 V output falls below +5.3 Volts.
-4 V is always present when +6 V is present in the 5424, or CPU logic gate.
the above is not controlled, damage results in /O device control circuits and electro-magnetic components.

Normally a power supply itself cannot cause an OC failure. If an OC condition prevails, an I/O device, logic circuits, or cables have caused the failure. If he supply is abnormally overloaded, an OC cond ion prevails over an UV condition. Even though the regulated supply voltage may drop, normally he OC sensing by the regulator has powered the system down before UV can be detected.

A thermal check, caused by one of the foloverheated areas, causes the system to down in a sequential manner rather than abruptly.

Thermal check example: System is in a normal power on state

1. A thermal switch opens from an overheating condition.
2. +24 V is interrupted to K 2 coil, K 2 de energizes.
3. K2-3 and K2-4 transfer.
. K2-3 interrupts +24 V to $\mathrm{K} 9, \mathrm{~K} 9 \mathrm{~A}$, and K9B /O supplies power down) and passes +24 V to the thermal light.
4. K2-4 transfers, and $K 3$ is held energized through K10-1 and K11-1 until both the +24 power supply and the +60 V power supply are down.
5. System powers down as a normal power down sequence, except that the TH CHK light is on.

If the POWER switch is set OFF, the TH CHK light stays on if the thermal fault still exists. If he fault is corrected, moving the switch to OFF llows K2 to be energized again and the TH CHK light goes off.

THERMAL AND POWER CHECKS

Power Check and Thermal Check Indicators

The PWR CHK light comes on during the power on sequence and goes off when the power on sequence is completed. It also lights with the TH CHK light (see chart below) when an overtemperature condi tion occurs or whenever any power trouble is present.

A 'power on reset' occurs every time the PWR CHK lights. PWR CHK stays off if the 24 Vdc output of the control transformer/rectifier pack (T/R Pac) is missing.

Test Points (TPs)

Test points (TPs) are on the power control box When a voltage failure occurs, check these test When a voltage failure occurs, check these test voltage that failed.

If the power on sequence is not completed, the PWR CHK light remains on and the TPs from TP2 to TP9 indicate where the sequence stopped.

For example, $\mathrm{a}+6 \mathrm{~V}$ regulator sequencing failure is indicated if TPs $2-4$ were zero volts and +24 V appeared at TP5.

The machine powers down in any of the conditions detected in TP10-14. Twenty-four volts is readable in TP10-14 until CHECK RESET is pressed. Loss of either the -4 V or +6 V while the machine is running powers down the system and 24 V is present at TP10-14. Loss of +24 V while me machine is running does not cause power dow of the machine.

For example, an overvoltage/overcurrent failur in the -4 V No. 1 regulator occurred if +24 V ap peared at TP12.

Test Points	Type of Failure If TP = 24 Vdc (Nominal)	Power Supply Checked
TP1	Ground	
TP2	Sequence	-4V \#1 logic supply (A gate)
TP3	Sequence	-4 V \#2 logic supply (B gate) -5V logic supply (BSCC only)
TP4	Sequence	$-4 \mathrm{~V} \# 3$ logic supply (Feat) B gate
TP5	Sequence	${ }^{+6 \mathrm{~V}}$ Supply
TP6	Sequence	$+3.4 \mathrm{~V} /+8.5 \mathrm{~V}$ main storage power supply
TP7	Sequence	5415/5424 (+24V basic) 5421 (+60V PS1, -12 V , $+6 \mathrm{~V},+60 \mathrm{~V}$ multilevel)
TP8	Sequence	$\begin{aligned} & 5421 \text { (+60V supply } \\ & \text { SNS circuit) } \end{aligned}$
TP9	Sequence	Feature supply (-12V supply or $\pm 12 \mathrm{~V}$ supply)
TP10	ov/oc	-4 V \#3 logic supply (Feature) B gate
TP11	ov/oc	$-4 \mathrm{~V} \# 2$ logic supply (B gate) -5 V logic supply (feature)
TP12	ov/oc	-4V \#1 logic supply (A gate)
TP13	ov/oc uv	$\begin{aligned} & +6 \mathrm{~V} \text { supply } \\ & -4 \mathrm{~V} \# 1 \text { logic supply } \\ & \text { (A gate) } \end{aligned}$
TP14	Sequence	$\pm 3 \mathrm{~V}$ feature supply (2560)
	UV	${ }^{+6 \mathrm{~V}}$ supply

System Sequencing and Sensing Relays
This is a simplified diagram of the system sequenc-
This is a simplified diagram of the system sequenc
ing and sensing relays.

1

Power On Sequence
K1 picks if the interlock between the CPU and 5421 is complete and the 24 V control voltage is present through the EPO switch. A quick service check for this 24 V control voltage power supply can be made by pressing LAMP TEST while powe is off and observing the TH CHK and PWR CHK lights. If they light, the 24 V supply is functioning. K2 picks if the CPU, 2560 (if installed), and 5421 thermals are closed, and all fault relays are deenergized.
Note: K1 and K2 pick with the POWER switch on or off.

K3 picks when the POWER switch is turned ON.
K12 picks when the power on sequence is com plete.

Abnormal Power Off

The five causes for an abnormal power off sequence are:

Overvoltage (OV)
2. Overcurrent (OC)
3. Undervoltage (UV)
. sequence)
5. Emergency power off (EPO) switch opened

Overvoitag

Whenever an overvoltage or an overcurrent condition is sensed, one of the OV/OC relays, K13, K14 K16, or K 18 is picked. Energizing an OV/OC re ay results in de-energizing contactor K 3 . Derergizing contactor $K 3$ removes power from the logic and main storage supoly.

On an abnormal power off, the power check indicator turns on to indicate a failure. Test points indicate the power supply that failed. The energized OV/OC relay contacts hold the relay enered until CHECK RESET is pressed with the POWER switch OFF.

After an overvoltage, overcurrent, or an undervoltage failure, CHECK RESET must be pressed with the POWER switch set OFF to de-energize the quenc

Only the -4 V and the +6 V outputs sense for under voltage conditions. If the -4 V No. 1 regulator UV circuit senses an undervoltage condition, the -4 V UV circuit (a separate card) immediately signals +6 V regulator output. This is a +6 V simulated overcurrent condition and the OV/OC/UV relay K 14 energizes. The K $14-2$ contacts removed +24 V from contactor K3. Contactor K3, in turn, removes power to the logic and main storage bulk supply. This results in an immediate system power off
Because K $14 \mathrm{OV} / \mathrm{OC} / \mathrm{UV}$ relay energizes, +24 V is present at TP13 to indicate a +6 V power failure However, a +6 V overvol tage, $\mathrm{a}+6 \mathrm{~V}$ overcurrent, or a -4 V undervoltage could cause the failure condition (see MAPs, Maintenance Analysis Procedures).

Thermal Power Off Sequence

A thermal condition causes relay K 2 to be de-energized. The K2-3 contacts turn on the TH CHK light to indicate overheating. Power then sequences off the same as a normal power off sequence by opening the power switch circuit.

The TH CHK light and the PWR CHK light are on when the system power off sequence ends. Turning the POWER switch OFF turns off the until the over-temperature condition has been corrected and the POWER switch has been turned OFF. Power can then be restored to the system by turning the POWER switch ON

Emergency Power Of

Pulling the emergency power off switch removes +24 V to K1, K2, K3, etc causing system power to drop immediately.

Note: In a normal system power off state, TP2 will read +24 Vdc . Because of a system power failure (power check), +24 Vdc measured on TP2 indicates the -4 Vdc failed to sequence on.

COIL/RELAY FUNCTIONAL DESCRIP-

 IONSThe coils/relays described below are classified into wo groups: sequence relays or fault relays. Se quence relays allow the system to sequentially power up or power down. Fault relays identify a failing power supply and, in some cases, cause the ystem to abruptly power down to avoid circuit/ component damage.

Sequence Relays

1***
${ }_{* K} \mathrm{~K}^{* *}$ (+12 V
${ }^{K 2}$ ($\pm 12 \mathrm{~V}$ sense)
K3 (bulk power)
*K5 (((4V M Nower) 1 sense)
*K6 (+6 V sense)
*K6 (+6V sense)
K 8 (main stor
ply sense)
K9 (1/O supply and
K9 (I/O supply and
+24 Vdc power
supply input)
K9A (115 Vac distribu-
tion)
K9B (41 Vac and 7.25
Vac distribution)
K10 (+24 V sense -
5415/5424
K11 (+60V sense 5421)

Fault Relays K2 (thermal)

K6A (+6 V UV) K12 (power check) $\Delta K 13(-4 V$ OV/OC)
$\triangle K 14$ (-4V UV or +6 V OV/OC) sense)
$\Delta \mathrm{K} 16$ (-4V No. 2 OV/OC)
$K 12$ (power supply up
sense) OV/OC)
K17 (-4V No. 2 sense and -5 V regulator)
*K19 (-4V No. 3 sense)
K30 (-12V sense) with
and not MLTA
*These relays are also fault relays because they identify the failing power supoly.
*This K 2 is located in $\pm 12 \mathrm{~V}$ supply, and not in the sequence control box
**This K1 is located on the -5 Vdc power supply and is a sense relay.
Δ These relays cause an abrupt system power off; all others do not.

Note: K4 and K7 are not used.

K1 Convenience Outlet (YA102)

- Pick
- 24 V control voltage power up - EPO switch closed (pushed in)
- Drop
- EPO switch opened (pulled out) - Loss of 24 V control voltage
- Function

K1-1, 2 provides control of 115 Vac to system convenience outlets.

K1 -5V Sens

- Pick

At about 5 V when -5 V regulator is powered
up

- Drop
- Loss of -5V
- K17 dropping
- Function

Protects the FET substrate

- Gives a TP3 indication when failure occurs

K2 Thermal Relay, Relay Panel (YA102)

- Pick
- System in normal power off state
- All thermal switches closed
- Drop
- Any system thermal open
- Function
- K2-1 not used
- K2-2 not used
- K2-3
a. Provides hold POWER is ON.
for K2 coil when
b. Interrupts hold current to K9, K9A, K9B coils and drops power-on signals to 5421
and $3340 / 3344$ devices on a thermal fault.
c. Provides power to the TH CHK indicator
c. Provides power to the TH CHK indicator light when a thermal fault is detected.
d. Provides input voltage to main storage supply sequence card.
- K2.4
a. On normal sequence on, provides a path to allow K3 to pick if no thermal fault is present.
b. Provides for sequential shutdown of K 3 on a power fault condition.
c. Inhibits -4 V UV sense after a therma fault.
drops power-up signal to main storage supply.

K2 $\pm 12 \mathrm{~V}$ Supply Sense, Located on Power $\pm 12 \mathrm{~V}$ Supply Sense, Located on
Supply (MLTA/BSCA-YA140)

- Pick

When the MLTA $\pm 12 \mathrm{~V}$ supply output is ap proximately $\pm 12 \mathrm{Vdc}$.

- Drop

Loss of either +12 V or -12 V outpu

- Function
- K2-2
a. Provides a path for +24 V to TP9 when
$\pm 12 \mathrm{~V}$ supply is not up.
b. Provides the $\pm 12 \mathrm{~V}$ link in the power com plete sequence chain.

Note: The $\pm 12 \mathrm{Vdc}$ supply is required when the MLTA feature is installed. This supply is also used with BSCA and not MLTA if the BSCA feature contains the 1200 bps integrated modem. This supply is not required if BSCA with out 200 bps modem is intalled (BSCA and/or BSCC without this modem uses -12 Vdc only).

COIL/RELAY FUNCTIONAL DESCRIP

 TIONSK3 AC Voltage to Bulk Power Supply (YA102)

- Pick
- Transferring the power switch (section A) after being in a normal power off state.
- Drop
- A - 4 V OV/OC power fault
- A - 4 V UV or +6 V OV/OC power fault
- Loss of +24 V . +60 V levels after a thermal - Lault. \quad Loss of +24 V . +60 V levels after transferring the power switch to the "OFF" position.
- Function
- K3-1, 2, 3 controls ac distribution to all CPU bulk supplies:
a. No. 1 logic $-4 \mathrm{~V} /-5 \mathrm{~V} /+6 \mathrm{~V} /-30 \mathrm{~V}$ and 25

Vac to $-/ \pm 12 \mathrm{~V}$ supply
b. No. 2 logic -4 V
d. Main storage power supply $+8.5 \mathrm{~V} /+3.4 \mathrm{~V}$
e. -6 V expansion +6 V
f. $\pm 3 \mathrm{~V} 2560 \pm 3 \mathrm{~V}$
g. $+8.5 \mathrm{~V}+3.4 \mathrm{~V}$ expansion main storage power supply
Note: The outputs of the +6 V regulator, +8.5 V requlator, and +3.4 V regulator have additional controlling functions.

- Provides ac voltage to all CPU cooling fans.

K5 -4V No. 1 (A gate) Sense (YA102A)

- Pick
-4 V No. 1 (A gate) output at approximatel 4 Vdc
- Drop

Loss of - 4 V No. 1 (A gate) output

- Function
- K5.1
a. Provides path for +24 V to TP2 when -4 V No. 1 (A gate) level is not up
b. Provides control of the PWR CHK ligh
during power down sequence
c. Provides the -4 V No. 1 (A gate) link in the power complete (K12) sequence chain.
a. Provides the -4 V No. 1 (A gate) link the start up control for the +6 V regul tor
+6 V (+5V for BSCC only) Sens (YA102A)
$-+6 \mathrm{~V} /+5 \mathrm{~V}$ output at approximately +6 Vd
- Drop
- Loss of +6 V output
- Function

K6-2 provides the +6 V up-link of the chain required to energize K9, K9A, and K9B re lays that provide ac voltage to I / O devices attached to the system
K6-3 provides voltage to -4 V UV sense cir cuit. This line ensures that a $-4 V$ UV fault will not be sensed before the +6 V supply is up.
-K 6.4
a. Provides a path for +24 V to TP5 when +6 V level is not up. For +24 V to appear on $T P 5$, all -4 V supples, -12 V or $\pm 12 \mathrm{~V}$ suply,
must be up.
Provides the +6 V link in the power com plete sequence chain.

K6A +6V UV Detect (YA102B)

- Pick

Loss of +6 V output while system is in a normal power on state.

- Drop
$-{ }^{+6 V}$ power restored
- Function
- K6A-1 provides path for picking the +6 UV fault relay ($K 15$) when system is in a normal power on state, and a +6 V undervoltage is detected
Note: K 6 A is energized with +24 V only when the ground side of this coil is connected to ground. Transistors Q1 and Q2 sample able, 01 and O 2 dont sents an open circuit to the groud side of K6A and inhibits this coil from being ene gized. If +6 V is not available, transistors O and Q 2 conduct and the ground side of K6A and Q2 conduct and the ground side of K6A
is at ground potential and allows K6A to be is at ground potential and allows K6A to be
energized. This causes K15 fault relay to energized. This causes K15 fault relay to (K9 drops, K10 drops, K12 drops, PWR CHK light on).

Main Storage Supply Sense (YA102A)

- Pick
-+8.5 V output at approximately 8.5 Vdc
- Drop
- Loss of +8.5 V output
- Function

K8-1 provides the +8.5 V required to ener gize K9, K9A, and K9B relays that provide ac voltage to the I/O devices attached to the system.

- K8-2
a. Provides a path for +24 V to TP6 when +8.5 V level is not up. For +24 V to ap pear on TP6, all -4 V supplies, -12 V or $\pm 12 \mathrm{~V}$ supply, $\pm 3 \mathrm{~V} 2560$ supply lif in
stalle, and 8 V supply must be un.
b. Provides the +8.5 V link in the powe complete sequence chain.

Note: The +8.5 V supply depends on the +3.4 V supply being up. The +3.4 V supply is not associated with any relay coil. How ever, the availability of this voltage provides a start-up to the +8.5 V supply. Hence, both must be up before K 8 can pick.

K9 I/O AC Power (YA101 and YA102)

- Pick
-+6 V power up and +8.5 V power up
- Drop
- Any OV/UV/OC fault on -4V or +6 V
- Thermal fault
- POWER switch being set OF
- Loss of the +8.5 V level when in a normal power up state
- Function

K9-1, 2,3 controls ac voltage distribution to the +24 Vdc power supply and the following 1/O devices:
a. 2560
b. 5424
c. 1442

Note: Primary power for the 2560 is supplied by the 5421 on all 60 Hz and 200 Vac 50 Hz systems.

K9A I/O AC Power (YA101 and YA102)

- Pick
-+6 V power up and +8.5 V power up
- Any OV/UV/OC fault on -4 V or +6 V - Thermal faul
- POWER switch being set OFF
- Loss of the +8.5 V level when in a norma power up state
- Function

K9A-1, 3 controls ac power distribution to the 3277 and 3284.

K9B 7.25 Vac and 41 Vac Distribution (Lamp and Nieter - YA102)

- Pick
-+6 V power up and +8.5 V power up
- Any OV/UV/OC fault on -4 V or +6 V - Thermal fault
- POWER switch being set OFF
- Loss of the +8.5 V level when in a normal power up state
- Function

K9B-1 controls distribution of the 7.25 Vac power to the indicator lamp bus.

- K9B-2 controls distribution of the 41 Vac power to the meter control card.

K10 I/O Power Sense (YA102A)

- Pick

All 5421 power supplies $1+60 \mathrm{~V}$ MFCU, +60 V PS $1,+6 \mathrm{~V}$, and -12 V) and $5415 / 5424+24 \mathrm{~V}$ power supplies are up.

- Drop

Loss of any 5421 power supply (+60 V MFCU, +60 V PS1, +6 V , or -12 V)

- Loss of $5415 / 5424+24 \mathrm{~V}$ power supply.
- Function
a. Provides path to hold K3 energized after a thermal fault or setting the POWER switch OFF.
b. Provides path to supply +24 V to regula tor for main storage supply sequence/ sense circuits.

K10-2
a. Provides a path for +24 V to TP7 when +24 V in $5415 / 5424$ or one of the 5421 5421 supply levels is not up. For +24 V to appear on TP7, all -4 V supplies, 12 V or $\pm 12 \mathrm{~V}$ supply, $\pm 3 \mathrm{~V} 2560$ supply (if installed), +6 V supply, and +8.5 V sup ply must be up.
b. Provides the +24 V and all 5421 supplies link in the power complete sequence link in
chain.

K11 +60V Sense (YA102A)

- +60V supply in 5421 up to approximately +60 V
+60 V
- Drop

Loss of +60 V output

- Function

K11-1
a. Provides a path to hold K 3 energized afte a thermal fault or setting the POWER switch OFF.
b. Provides a path to supply +24 V to regulator for main storage supply sequence/ sense circuits
K11-2
a. Provides a path for +24 V to TP8 when +60 V in 5421 is not up. For +24 V to appear on TP8, all -4 V supplies, $-12 \mathrm{~V} /$ $\pm 12 \mathrm{~V}$ supply, $\pm 3 \mathrm{~V} 2560$ supply (if in. stalled), +6 V supply, +8.5 V supply, +24 V in $5415 / 5424$, and all 5421 supplies mus be up.

Note: Because loss on any 5421 supply that includes +60 V also controls TP7, TP8 should never indicate +24 V unles the sense circuit itself is failing.
b. Provides the +60 V link in the power com plete sequence chain.

Note: While it appears that K 10 and K 11 have duplicate functions, the holding on of K3 until +60 V to the MFCU is down (K11-1 n / o) is sufficient justification for K11 being present.

COIL/RELAY FUNCTIONAL DESCRIP TIONS

K 12 Power Sequence Complete

- Pick
- All -4V power supplies sensed up (K5, K17, K19), -12 V or $\pm 12 \mathrm{~V}$ power supply sensed up ($K 30, K 2$ in MLTA supply), $\pm 3 \mathrm{~V}$ power supply sensed up (K12), +6 V power supply sensed up (K6), +8.5 V power supply sensed up (K8), +24 V in 5415/5424 and all 5421 supplies sensed up ($K 10$), and +60 V power supply in 5421 sensed up (K11).
- Drop
- Loss of any of the above supply outputs - OV/OC fault on -4V or +6 V levels - UV fault on -4V level
- Function
- K12-1
a. Provides power sequence complete to 5421 and 5424.
b. Provides +24 V to 2560 switch lines (2) c. Provides control line to 3411
- K12-2
a. Provides +24 V to PWR CHK light with POWER switch ON and K12 not picked, or with POWER switch OFF though K12 not picked and -4 V No. 1 supply (K5) still up.
a. Enables picking of +6 V UV fault relay (K15) but only after power sequence is complete finhibits a +6 V UV fault during a normal power up and power down sequence)
- K12-4
a. Disables 'power on reset' signal to CPU (clock 9 no longer on)

K13 - 4 V No. 1 (A gate) OV/OC Fault

- Pick
- An overvoltage or overcurrent condition detected by -4 V No. 1 (A gate) regulator
- Drop

Pressing CHECK RESET with the POWER switch OFF.

- Function
- K13-1
a. Provides a path for +24 V to TP12
b. Provides control of distribution of +24 V to all sequence control circuits.
a. Provides a hold path for K 13 requiring a manual reset to clear the fault indicator.

K14 -4 V No. 1 (A gate) UV or $+6 \mathrm{~V}(+5 \mathrm{~V}$ for BSCC only) OV/OC Fault

- Pick

An overvoltage or overcurrent condition detected by the +6 V regulator

- An undervoltage condition detected by the 4 V No. 1 (A-gate) UV sense circuit.
- Drop
- Pressing CHECK RESET with the POWER switch OFF.
- Drop

Pressing CHECK RESET with the POWER switch OFF.

- Function
a. Provides a hold path for K14 requiring a manual reset to clear the fault indica tor.
a. Provides a path for +24 V to TP13.
b. Provides control of distribution of +24 V to all sequence control circuits.

- K14-3 not used.

- K14-4
a. Inhibits picking of K15 when K14 is picked.

Note: K14-4 and K15-1 are used to preven picking two fault relays when a power fault ($\mathrm{OV} / \mathrm{OC}$) occurs. When the system abruptly powers down and K3 is dropped, a race con dition (to power down) exists for the -4 V and nate erroneous test point indications.

K15 +6V (+5V for BSCC only) UV Faut
K 15 is used as a +6 V UV detection sense relay and as a $\pm 3 \mathrm{~V}$ sequence sense (2560 feature) relay.

Pick

- A UV condition causing K6A-1 n/o points to close with power complete ($\mathrm{K} 12-3 \mathrm{n} / \mathrm{o}$ points closed) and no -4 V UV fault or +6 V OV/OC fault ($K 14-4 \mathrm{n} / \mathrm{c}$ points closed).
- Drop

Pressing CHECK RESET with the POWER switch OFF.

- Function

K15-1
a. Inhibit +24 V to TP 7 on +6 V UV condition.

- K15-2
a. Provides a path for +24 V to TP14

K15-3
a. Provides a hold path for K 15 requiring a manual reset to clear the fault indicator K15-4
a. Provides control of +24 V to K9, K9A and K9B coils and power up signal to 5421.

-4V No. 2 OV/OC Fault

- Pick

An overvoltage or overcurrent condition de tected by -4 V No. 2 regulator.

Drop
Pressing CHECK RESET with POWER switch OFF.

- Function

K16-1
a. Provides a path for +24 V to TP11
b. Provides control of distribution of +24 V to all sequence control circuits.
K16-2
a. Provides a hold path for K 16 requiring a manual reset to clear the fault indicator.

K17-4V No. 2 Sense and -5V Sense

- Pick
-4 V No. 2 output at approximately -4 Vdc and K 1 picked due to -5 V supply being up
- Drop
- Loss of -4V No. 2 output
- Loss of -5 V output
- Function
a. Provides the -4 V No. 2 link in the start up control for the +6 V regulator.

K17-2
a. Provides a path for +24 V to TP3 when -4 V No. 2 level is not up. For +24 V to appear on TP3, -4V No. 1 (A gate) and 4 V No. 3 supplies must be up.
b. Provides the -4 V No. 2 link and a -5 V link in the power complete sequence chain

K18 -4V No. 3 OV/OC Fault

- Pick
- An overvoltage or overcurrent condition de tected by -4 V No. 3 regulator

Drop switch OFF.

- Function
a. Provides a path for +24 V to TP10.
b. Provides control of distribution of +24 V to all sequence control circuits.
- K18-2
a. Provides a hold path for K 18 requiring a manual reset to clear the fault indicator.

K19. -4V No. 3 Sense

- Pick
-4 V No. 3 output at approximately -4 Vdc
- Drop
- Loss of -4V No. 3 output
- Function
- K19-1
a. Provides the -4 V No. 3 link in the start up control for the +6 V regulator.
- K19-2
a. Provides a path for +24 V to TP4 when -4 V No. 3 level is not up. For +24 V to appear on TP4, -4V No. 1 (A gate) sup ply must be up.
Provides the -4 V No. 3
complete sequence chain

K20 B Gate FET Protect

- Pick

No. 2 power supply output at approx mately -4 Vdc .

- Drop
- Loss of -4 V No. 2 power supply output.
- Function

K K $20-1$
a. Prevents basic main storage power Prevents basic main storage power
supply from operating if the -4 VNo . power supply does not power up or if it powers down abruptly.

COIL/RELAY FUNCTIONAL DESCRIP

 TIONSK21 B Gate FET Protect for No. 3 Feature Power Supply

- Pick
-4 V no. 3 feature power supply output at approximately -4 Vdc

Drop
Loss of -4 V no. 3 feature power supply output.

- Function
- K21-1
a. Prevents basic main storage power supply from operating if 4 VNo 3 power upply does not power up or if it powers down abruptly.
b. Installed only if +8.5 V and +3.4 V are used on channel bank no. 3

K24 Expansion Main Storage Powe

 Supply (Feature)- Pick
+8.5 V expansion main storage powe supply powered up.
- Drop

Loss of +8.5 V expansion main storag power supply output.

- Function
- Prevents the basic main storage power supply from powering up until after the pownaio main storage power supply has powered up
-12V Supply Sense (BSCA/BSCC)
- Pick

The BSCA/BSCC -12 V supply output is approximately -12 Vdc

- Drop
- Loss of -12V supply output
- Function
a. Provides a path for +24 V to $\mathrm{TP9}$ when the -12 V supply is not up.
b. Provides the -12 V link in the power com plete sequence chain.

Note: If MLTA and BSCA features are installed, a $\pm 12 \mathrm{~V}$ supply is installed instead of the -12 V supply. In that case, K2 is used to sense its output.

This page intentionally left blank

APPENDIX A. CROSS REFERENCE

FEALD - CARD CROSS-REFERENCE LIST

Function	Board/Card	FEALD	FETMD
A and B registers	B3F2	RA101	2-20, 2-21
ALU	B3H2	AV102	2.8
Aux ALU	B302	AB101	2-23
ALU controls	в3м2	KY101	2.15
CE mode	B3V3	PA101	7.8
Channel bank 2 terminators	B2E4	MD101	4.005
	B2F4	MD111	--
Channel bank 3 terminators	B2E5	MD201	4.005
	B2F5	MD211	--
	B2G5	MD221	--
Channel entry/exit	--	WB101	4.100
Channel in	B2J2	KE101	4.115
Channel out	B2H2	KE201	4-107
Clock controls	B3T2	KC102	$2 \cdot 1$
Clock indicators	B3V2	PB121	7.4
CPU to storage	--	WS010	--
Cycle controls	B3S2	KD101	2-2
DBO bank 2	B2F2	MC101	4.005
	B2E2	MC111	--
	B2D2	MC121	--
	B2C2	MC131	--
DBO bank 3	B2F3	MC201	4.005
	B2E3	MC211	--
	B2D3	MC221	--
	B2C3	MC231	--
Display selector drum	B2U5	PC101	7.5
Drum indicators	B2V5	PB101	7.4
External address gate	вЗАЗ	MB101	--
Halt ID Circuits	B2K4	KT201	5-66
Halt ID Indicators	B2V4	PB131	7.3
Initial memory scan	B3U4	KA312	6-4
Instruction and program check control	B3G2	KN101	--
Interrupt card	B3L2	KM101	2-49
Interval timer	B2K3	KT601	2-52
Interval timer oscillator	B2K2	KT701	---
LSR card	B3C2	MA202	2.30
LSR controls	B3P2	KL101	2-34
	B3N2	KG101	2-34
LSR select bank 2	B2D4	KE301	2.36
LSR select bank 3	B2G2	KE401	2.37
LSR select and operator indicators	B3V4	PC111	7-7
Machine cycle indicators	B3U2	PB111	7.4
Main storage	A4/B4	UJ011	3-1
Meter control	B3U3	CS101	--
Miscellaneous console	B3V5	PC121	7-1
Op and Q registers	B3J2	RN101	2-41, 2-44
Oscillator	B2S5	KA101	2-1
PMR	B3E2	KP102	2-28
Processor check latches and display	ВЗк2	KB101	1.8

Function	Board/Card	FEALD	FETMD
Program check registers	B3D2	KR201	$2-46$
Rotary bit switches	B2V3	PA111	7.7
Run controls	B3R2	KA202	2.4
SAR card	B3B2	MA102	2.54
Store data LSR lo assembler to A register	B3D2	KR242	$2-48$
Timer	B2M2	KT501	$2-52$
Use meter	B2S4	CR101	--

Index

A

A (add to register) 5
A cycles 5-14
A-register and controls 2-20 A / B register parity checking $\quad 2-22$ ac power 8-2
add logical characters (ALC) 5-15
add to register (A) $\quad 5.46$
add zoned decimal (AZ) 5-20
add-on regulator 8-11
address bit generation, I/O LSR 2-38
address bit switch 7.9
address compare light 7-7
address compare switches $7-10$
E cycle stop 7.10
1 cycle stop $\quad 7-10$
address increment switch 7-9 address parity check 2.57 address selection, main storage $\quad 3-8$ address translate table 2.54 address violation c addressing main
addressing main storage checks $\quad 3-6,3-8$ addressing, BSM 3 -7
addressing, main storage 2.54 advance program level (APL) $5-80$ $\begin{array}{ll}\text { advance program level (APL) } & \text { 5-8 } \\ \text { ALC (add logical characters) } & 5-15\end{array}$ alter ATT/PMR 6-12
alter SAR 6-14
alter storage 6 -5
ALU
auxiliary 2.23
card check, auxiliary 2-24
controls 2-15
description $2-8$
parity checking $\quad 2-18$
$\begin{array}{ll}\text { P-bit generation } & 2-12\end{array}$
APL (advance program level) $\quad 5.80$ auxiliary ALU $\quad 2.23$ auxiliary ALU card check $\quad 2-24$ auxiliary B register 2-25 AZ (add zoned decimal) $\quad 5-20$

B

cycles 5-14
gate -4 V feature logic supply no. 3 8-12
gate -4 V logic supply no. $2 \quad 8-12$
register, auxiliary $2-25$
3-register and controls 2-21
basic -4 Vdc no. 1 supply 8 -
basic unit, power distribution 8 -3
BC (branch on condition) 5-51
binary
$\begin{array}{ll}\text { addition } & 2-11\end{array}$
$\begin{array}{ll}\text { addition } \\ \text { subtraction } & 2-10\end{array}$
branch on condition (BC) 5-51
branching 1-13
BSCA/LCA control panel
BSCA/LCA local test switch
BSM addressing 3-7
BSM write operation
bulk power supplies
no. 1, 2, and 38
+6 V expansion $8-13$
bypass resistors $8-11$
byte control, main storage 3-6

C

card check, auxiliary ALU 2-2
carry check, ALU 2-19
CCP (command CPU) 5.67
CE controls 7-7
CE switches
key switch 7-7
mode selector witch 7.8
chanel 4005,4-010
channel DBO parity $4-120$
channel interface $4-005,4-010$ channel lines 4-100
channel terminators 4.005
check ALU $\quad 2$-17
extended SAR address bits 2-55, 7-9
channel terminate feature $1-5$
check bit generation, main storage 3-6, 3-10 check reset key 7-7
checks and adjustments 8-3
CLC (compare logical characters) 5-16
clock indicators 7.4
coil/relay functional description $8-26$ command CPU (CCP) $\quad 5-67$
$\begin{array}{llll}\text { command instructions } & 5-63 \\ \text { compare logical characters (CLC) } & 5-16\end{array}$ compare logical characters condition register 2-23

console swit

$\begin{array}{ll}\text { decimal to hexadecimal } & 1-10\end{array}$
hexadecimal to decimal $1-10$

cPu

data flow 1-8
DBO parity 4-125
LSRs 2.28
cycle controls 2.2
cycle steal priority 5.72

D

data flow
CPU 1.8
main storage 3-3
data format $\quad 1-10$
data transfer, I/O cycle 5.71
DBI and translator $4-115$
DBI parity $4-130$
DBI translator 4.095
DBO
parity 4-120, 4-125
translator 4-095
DBO and translator 4-107
dc bulk power supplies 8-6
dc power 8-2
decimal
addition 2-13
subtraction 2-11
display adapter 1-5
display check bit switch 7-9
display SAR/MSAR 6-1
display storage 6-8

E

ECC (error checking and correction) 3-10 ED (edit) 5-26
dit (ED) 5-26
emergency power off (EPO) switch 7-1 EPO switch 7-1
error checking and correction (ECC) $\quad 3-10$ error classification logic, main storage 3-1 errors 1.7
execute cycles 5.14
expansion main storage power supply 8-1

F

fast I cycles 1-7
fault relays 8-9, 8-30

FEALD/card cross reference list A-1
fotch data register and control 3-9
file control panel $\quad 7-2$

H

halt program level (HPL) 5-66 HPL (halt program level) 5-66

I

1 cycles 5-3
5 1-op
I/O
attention light 7-3
check light 7-7
check switch 7.9
cycle 5-70
cycle data transfer $5-71$

cycle steal	1.13

instructions 5-68
interface 4.005, 4-010
interface lines
LSR select check 2-4
$\begin{array}{lll}\text { LSR select check } & 2-40 \\ \text { LSR } 17 \text { th and } 18 \text { th bit } & 2.55\end{array}$
overlap switch 7.9

IH cycles 5 5-7

$\begin{array}{ll}\text { IH cycles } & 5-7 \\ \text { IL cycles } & 5-7\end{array}$
$\begin{array}{ll} \\ \text { indexing } & 5-10\end{array}$
initial memory scan 6-4 initial program load (IPL) 6-1 input power requirements 8.3 insert and test characters (ITC) 5-30 instruction and signal reference 5-1 instruction cycles (fast I cycles) 5-2
instruction format 1-11
interrupt
priority $\quad 2-49$
not ready to ready $\quad 2.59$
$\begin{array}{ll}\text { request } & 2-51 \\ \text { routines } & 1-13\end{array}$
routines 1-13
interrupt level light 7-4
interrupt mask 2-49
interrupts 2.49
interval timer 2-52
introduction
$\begin{array}{lll}\text { processor } & 1-6 \\ \text { system } & 1-1\end{array}$
$\begin{array}{ll}\text { system } \\ \text { invalid address check } & 2-58\end{array}$
invalid device address $\quad 4$-120 invalid op code check 2.43 invalid $Q \quad 4-120$
IPL (initial program load) 6-1
IQ cycle 5-3
ITC (insert and test characters) 5-30
IX cycles 5-10

J

JC (jump on condition) 5-65 jump on condition (JC) 5-65

K

key switch, CE 7.7

L

LA (load address) $\quad 5-50$
LCA/BSCA control panel 7.6
LCP (load CPU) 5 -53
LIO (load I/O) 5-73
Load ATT flowchart 5 -56
Load ATT flowchart 5
$\begin{array}{ll}\text { load address (LA) } & 5-50 \\ \text { load CPU (LCP) } & 5-53\end{array}$ $\begin{array}{lll}l o a d ~ C P U ~(L C P) ~ & 5-53 \\ \text { load I/O (LIO) } & 5-73\end{array}$
load, store CPU flowcharts 5-54
local storage registers (LSR) $\quad 2.30$
locations, power supply 8-4
logic card reference A-2
LSR (local storage registers)
addressing 2.33
$\begin{array}{lll}\text { controls } & 2.39\end{array}$
description 2-30
display selector switch 7-7
select
check (1/O) 2-40
CPU 2-34
$1 / 0$ address bit generation $2-3$
1/O channel bank $1 \quad 2-35$
I/O channel bank $2 \quad 2-3$
1/O channel bank $3 \quad 2.37$
LSRs
$\begin{array}{ll}\text { CPU } & 2-3\end{array}$
machine cycle indicators 7-4
machine language 1.9
main storage
addressing $\quad 2-54$
address selection 3-8
checks, addressing 3-6, 3-8
data flow 3-3
locations 3-2
locations
power supply
8
power supply 8-14
vervoltage/undervoltage protection 8-15
regulator card 8 -1
sense relay $8-15$
sense relay
sequence card $8-15$
sequence card 8
sequencing 8.15
voltage adjustment 8-14
power supply (expansion) $8-16$
overvoltage/undervoltage protection 8-17
regulator card 8-17
sense relay 8-17
sequence card 8 -17
sequencing 8-17
$\begin{array}{lll}\text { voltage adjustment } & \\ \text { do operation, BSM } & & 3-5\end{array}$

rear

diagnostic fetch $\quad 5-53,5-60$
FDR reset $\quad 5-53,5-60$
Model 10 compatibility 2.42
Model 0 compatibinity ${ }^{2-42}$
mode selector swich 7-8.16
move hex character (MVX) $\quad 5-34$ move logical immediate (MVI) 5.38 MVC (move characters) $\quad 5-16$ MVI (move logical immediate) 5-38 MVX (move hex character) 5-34

m

not ready to ready interrupt $\quad 2-59$ number
conversions 1.9
systems 1.9

0

e-address instructions description 5-38
$\begin{array}{ll}\text { op register } & 2.41\end{array}$
op- and Q-register parity $\quad 2.45$
$\begin{array}{ll}\text { operator panel } & 7-1 \\ \text { overcurrent protectio }\end{array}$
vercurrent protection 8-9

P
P-bit generation, ALU 2-12
parity check switch 7-9
parts replacement (power) 8-3
PMR (program mode register) 2-28
power check light (lamp) 7-4, 8-2
power distribution 8-3, 8-5
+5 Vdc to $3277 / 3284$ attachment $8-21$
+5 Vdc to $\mathrm{BSCC} \quad 8-2$
power off
abnormal 8-27, 8-29
emergency 8-29
OC/OV/UV failure 8-27, 8-29
sequence $8-26$
thermal
power on
abnormal 8-27
sequence $8-24,8-25,8-29$
power on/off switch 7-3
power supply
regulators 8-7
start up control 8-8
$\pm 3 \mathrm{Vdc}$ 8-18, 8-19
-4 Vdc (add-on regulator) 8-11
-4 Vdc basic no. 1 supply adjustment $8-11$
-4 Vdc logic supplies no. 2 and no. 3
adjustments 8-12
-4 Vdc undervoltage circuit (regulator
no. 1) 8-10
$\pm 5 \mathrm{Vdc}$ feature regulator (BSCC) $8-20$
+6 Vdc expansion bulk supply (feature) 8-13
6 Vdc regulator adjustment $\quad 8-13$
$\begin{array}{ll}+6 \mathrm{Vdc} \text { undervoltage circuit } & 8-10 \\ \pm 12 \mathrm{Vdc} \text { supply (feature) } & 8-21\end{array}$
$\pm 12 \mathrm{Vdc}$ supply (feature) $\quad 8-21$
-12 Vdc supply (feature) 8.21
+24 Vdc supply $8-23$
$\begin{array}{ll} \\ \\ \text { privileged mode } & \\ & 242\end{array}$

privileged mode	
privileged op check	$2-42$

processor characteristics 1-6
processor check
A-B register P check $\quad 2-22$
address violation check (store protect) $\quad 2.58$
ALU P check 2-18
$\begin{array}{ll}\text { carry check } & 2-19\end{array}$
channel DBO P check 4-120
channel I/O check 1-7
CPU DBO P check 4-125
CPU SAR check (SAR/ATT) 2.57
DBI P check 4.130
DBO P check (CPU DBO) 4-125
description 1-7
invalid address 2-58
invalid device address check (invalid Q) 4-120
invalid op check $\quad 2.43$
invalid Q (invalid device address) check 4 -120

I/O LSR select check 2-40
light 7-3
LSR parity check $\quad 2.31$
memory SAR P check 2.57
op/ O register P check $\quad 2-45$
privileged op check 2-43
SAR/ATT (CPU SAR check) 2-57
SDBI check 3-13
SDBO check 3-13
store protect (address violation) $\quad 2.58$
program check
address violation check (store protect) 2-58
assembler 2.48
description 1.7
$\begin{array}{ll}\text { interrupt } & 2.49 \\ \text { invalid address } \\ 2\end{array}$
invalid address 2.58
check (invalid O) 4-120
invalid op check 2.43
registers 2-46
program load selector switch 7-2
program mode register (PMR) $\quad \mathbf{2 - 2 8}$

Q

O register parity $\quad 2-45$

R

read operation, main storage $3-5$ recomplement 2-14
register display unit 7 -5
roller display 7.5
rotary address switch 6-9, 6-15
$\begin{array}{ll}\text { run controls } & 2-4\end{array}$

S

SAR E14 and E15 bit 2-55
SAR/MSAR display switch
$\begin{array}{lrr} & & \\ \text { SBF } & \text { (set bits off masked) } & 5-42\end{array}$
$\begin{array}{ll}\text { SBF (set bits off masked) } & 5-42 \\ \text { SBN (set bits on masked) } & 5-42\end{array}$
SCP (store CPU) 5.52
SDBI main storage checks 3 -13
SDBO main storage checks 3-13
select check (I/O LSR) 2.40
ense I/O (SNS) 5.76
sequence relays (sensing) 8-30
sequential instruction execution 1-12
set bits off masked (SBF) $\quad 5-42$
st bits on masked (SBN) 5-42
seventeenth and eighteenth bit (1/O LSR) $\quad 2.55$

SLC (subtract logical characters) 5-15 SNS (sense I/O) \quad 5-76
ST (store register) 5-46
start I/O (SIO) $\quad 5.68$
start key 7-3
stop key/light 7-3
storage
protection 2.56
test switch 7.9
storage protect check 2.58
$\begin{array}{ll}\text { store ATT flowchart } & 5-58 \\ \text { store } \\ \text { CPU (SCP) } & 5-52\end{array}$
store CPU (SCP) \quad 5-52
$\begin{array}{lll}\text { store data assembler } & 2.48 \\ \text { store register (ST) } & 5-46\end{array}$
store, load CPU flowchart 5
subtract logical characters (SLC)
s-15
subtract logical characters (SLC) 5
$\begin{array}{ll}\text { subtract } \\ \text { supervisor call } & 5-67\end{array}$
supervisor program $\quad 2-50$
syndrome bit
decoder 3-10
generator 3-10
system console 7-1
system reset
description 6-2
key 7-7
system sequencing and sensing relays $\quad 8-29$
SZ (subtract zoned decimal) 5-20

\square

TBF (test bits off masked) $\quad 5-42$ TBN (test bits on masked) $\quad 5-42$ $\begin{array}{ll}\text { test bits off masked (TBF) } & 5-42 \\ & \end{array}$ $\begin{array}{lll}\text { test bits on masked (TN) } & 5-42 \\ \text { test } 1 / O \text { and branch (TIO) } & 5-79\end{array}$ test points (TPs), power supply $8-28$ thermal check $8-27,8-28$ $\begin{array}{ll}\text { thermal check } & 8-27,8-28 \\ \text { thermal check light } & 7-4\end{array}$
TIO (test I/O and branch) 5-79 two-address instruction 5-3

U

uncorrectable error (main storage) 3-1
undervoltage protection 8-10
unit check 1.7
unit record restart 2-59
usage meter 7-1

Z

ZAZ (zero and add zoned) 5-2
zero and add zoned (ZAZ) 5-21
$8-8$

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.

Inaccurate or misleading information in this publication. Please tell us about it by using this postage-paid form. We will correct or clarify the publication, or tell you why a change is not being made, provided you include your name and address.

Page Number Comment

Note: All comments and suggestions become the property of IBM

- No postage necessary if mailed in the U.S.A.
 Check if reply is requested}

Name
Address \qquad

READER'S COMMENT FORM

Please use this form only to identify publication errors or request changes to publications. Technical questions about IBM systems, changes in IBM programming support, requests for additional publications, etc, should be directed to your IBM representative or to the IBM branch office nearest your location.

Error in publication (typographical, illustration, and so on). No reply.
Page Number Error

Inaccurate or misleading information in this publication. Please tell us about it by using this postage-paid form. We will correct or clarify the publication, or tell you why a change is not being made, provided you include your name and address.

Check if reply is requested. \qquad
first class PERMIT No． 387 ROCHESTER，MINN．

BUSINESS REPLY MAIL

BUSINESS REPLY MAIL

no postage stamp necessary if mailed in the united states
postage will be paid by

IBM Corporation
General Systems Division
Development Laboratory
Publications，Dept． 245
Rochester，Minnesota 55901

Fold

产喜言音

nternational Business Machines Corporation
General Systems Division
5775D Glenridge Drive N
Atlanta，Georgia 30301
（U．S．A．Only）

General Business Group／International

44 South Broadway
White Plains，New York 1060
U．S．A．
（International）

191

International Business Machines Corporation
General Systems Division
5775D Glenridge Drive N．E．
Atlanta，Georgia 30301
（U．S．A．Only）
General Business Group／International
44 South Broadway
White Plains，New York 10601
U．S．A．
（International）

[10

International Business Machines Corporation
General Systems Division
5775D Glenridge Drive N.E.
Atlanta, Georgia 30301
(USA Only)
General Business Group/International
44 South Broadway
White Plains, New York 10601
U.S.A.
(International)

[^0]: Overcurrent
 Operation; Operand
 Overvoltag
 Parity
 Printer Control Board
 Printer Electronic Board
 Parity Generation
 Polarity Hold
 Program Mode Register
 Potentiometer
 Power On Reset
 Program Status Register
 Print Subscan
 Printer
 Read
 Register
 Request Price Quotation
 Storage Address Register Silicon Controlled Rectifier Storage Data Bus Out
 Storage Data Register
 Start Input/Output
 Serial Input/Output Channel
 Solid Logic Dense
 Solid Logic Technology
 Solid Logic Technology
 Sense
 Storage Protect Table
 Single Shot
 Synchronize
 Sense/Inhibit
 Test Input/Output and Branch
 Test Point
 Transformer/R
 Under voltage
 Volts
 Volts Alternating Current
 Volts Direct Current
 write
 Index Register
 Inhibit
 Equals
 Greater than
 Less than

[^1]: This instruction will

[^2]: the LCP instruction).

[^3]: -DBO during a cycle steal equals ALU Out
 except during 7 D to 0 O when the cycle
 except during 7 D to OC when the cyc
 steal assignment is gated on DBO.

