oo
iy
o
~
s
5
N
O
-

File No. S34-36

SC21-7751-3

File No. S34-36

IBM System/34
Interactive Communications Feature
Reference Manual
Program Number 5726-SS1

Fourth Edition (January 1982)

This is a major revision of, and obsoletes, SC21-7751-2 and Technical Newsletter
SN21-8154. This manual has been changed extensively. A new chapter has been
added to describe BASIC support for SSP-ICF, the manual has been reorganized,
and the coding examples and return codes description have been completely
rewritten.

This edition applies to release 8 of the IBM System/34 System Support Program
Product (Program 5726-SS1) and to all subsequent releases until otherwise
indicated in new editions or technical newsletters.

Changes are periodically made to the information herein; changes will be reported
in technical newsletters or in new editions of this publication.

Use this publication only for the purposes stated in the Preface.

It is possible that this material may contain reference to, or information about,
IBM products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address below. Requests for copies of IBM
publications and for technical information about the system should be made to
your IBM representative or to the branch office serving your locality.

This publication could contain technical inaccuracies or typographical errors. Use
the Reader's Comment Form at the back of this publication to make comments
about this publication. If the form has been removed, address your comments to
IBM Corporation, Publications, Department 245, Rochester, Minnesota 55901.
IBM may use and distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever. You may, of
course, continue to use the information you supply.

© Copyright International Business Machines Corporation 1979, 1980, 1982

This manual is intended primarily for application
programmers who must write interactive
communications programs. The manual also contains
information for System/34 system programmers and
host system programmers. This manual serves as both
a reference manual and a programmer’s guide, giving
detailed reference material as well as concepts,
programming considerations, and examples.

Before reading this manual, you should be familiar with
System/34 programming terminology, particularly work
station programming, and you should be able to
program in whatever language you intend to use. In
some instances, you must also be familiar with the
terminology of the remote system. The terms introduced
in this manual are defined in the glossary.

This manual contains the following chapters:

« Chapter 1. Introduction to Interactive Communications,
which describes interactive communications in
general.

« Chapter 2. Interactive Communications Programming,
which gives an overview of interactive
communications programs and how they are
constructed and run.

« Chapter 3. Interactive Communications Programming
with Assembler, which describes the assembler
programming support for interactive communications.

« Chapter 4. Interactive Communications Programming
with BASIC, which describes the BASIC programming
support for interactive communications.

« Chapter 5. Interactive Communications Programming
with COBOL, which describes the COBOL
programming support for interactive communications.

« Chapter 6. Interactive Communications Programming
with RPG I, which describes the RPG Il programming
support for interactive communications.

o Chapter 7. The Intra Subsystem, which provides
programming information for using the Intra
subsystem to communicate with programs in the
same system.

Preface

« Chapter 8. The BSCEL Subsystem, which provides
programming information for using the BSCEL (BSC
equivalence link) subsystem to communicate with
application programs on another System/34 and
other BSC systems.

« Chapter 9. The BSC CCP Subsystem, which provides
programming information for using the BSC CCP
subsystem to communicate with System/3 Model 15
CCP application programs.

« Chapter 10. The BSC CICS Subsystem, which
provides programming information for using the BSC
CICS subsystem to communicate with CICS/VS
application programs.

o Chapter 11. The BSC IMS/IRSS Subsystem, which
provides programming information for using the BSC
IMS/IRSS subsystem to communicate with IMS/VS
IRSS application programs.

o Chapter 12. The BSC 3270 Support Subsystem,
which provides programming information for using
the 3270 BSC support subsystem to communicate
with CICS/VS, IMS/VS, or CCP application programs
using 3270 BSC protocols.

« Chapter 13. The Finance Subsystem, which provides
programming information for using the Finance
subsystem to communicate with the 3601 Finance
Controller and devices attached to the 3601, and the
3694 Document Processor.

o Chapter 14. The SNA Peer Subsystem, which
provides programming information for using the SNA
peer subsystem to communicate with other
System/34s.

« Chapter 15. The SNA Upline Facility Subsystem,
which provides programming information for using
the SNA upline facility (SNUF) subsystem to
communicate with IMS/VS and CICS/VS application
programs in SNA networks.

Note: Throughout this manual, the term remote system
refers to the system or device with which the
System/34 is communicating. When the Intra
subsystem is being used, remote system refers to the
same System/34 because the Intra subsystem is used
to communicate with another program on the same
system.

HOW TO USE THIS MANUAL

Read Chapter 1, Introduction to Interactive Communications for a general description
of the interactive communications feature.

l

Read Chapter 2, Interactive Communications Programming for a description of the tasks
you need to do to use the interactive communications feature.

Read one of the following chapters for a description of how you can use your
programming language to write a program that uses the interactive communications
feature.

Chapter 3, Interactive Communications
Programming with Assembler

Y
Chapter 4, Interactive Communications
Programming with BASIC

Y
Chapter 5, Interactive Communications Programming
with COBOL

)

Y
Chapter 6, Interactive Communications
Programming with RPG Il

<

Read How to Write a Program That Uses the Intra Subsystem in Chapter 7.

|

— Read the appropriate subsystem chapter for a description of how to configure your
subsystem, for the procedures for programming your subsystem, and for a continuation
of the programming example in Chapter 7.

l

The appendixes contain charts and aids for use with the interactive communications
feature. For example, Appendix F contains planning charts to help you configure your
subsystem.

PREREQUISITE PUBLICATIONS

The following manuals should be read, or the equivalent
knowledge obtained, before reading this manual:

« IBM System/34 Introduction, GC21-5153
« IBM System/34 Planning Guide, GC21-5154
» Data Communications Concepts, GC21-5169

The following manuals must be used in conjunction with
this manual:

+ IBM System/34 System Support Reference Manual,
SC21-51565

« IBM System/34 RPG Il Reference Manual, SC21-7667

« IBM System/34 Basic Assembler and Macro Processor
Reference Manual, SC21-7705

« IBM System/34 COBOL Reference Manual,
SC21-7741

« IBM System/34 BASIC Reference Manual, SC21-7835

RELATED PUBLICATIONS

« IBM System/34 Installation and Modification Reference
Manual, SC21-7689

« IBM System/34 Data Communications Reference
Manual, SC21-7703

« IBM System/34 System Data Areas and Diagnostic
Aids Manual, LY21-0049

« IBM System/34 Operator's Guide, SC21-5158

+ IBM System/34 3270 Device Emulation Program
Product User’s Guide, SC21-7868

« Systems Network Architecture Reference Summary,
GA27-3136

« 3270 Information Display System Components
Description Manual, GA27-2749

« IBM System/3 CCP Messages Manual, GC21-5170

« IBM System/3 Communications Control Program
System Reference Manual, GC21-7620

« CICS/VS Messages and Codes Manual, SC33-0081

« Advanced Communications Function for VTAM
(ACF/VTAM) System Programmer’s Guide,
SC38-0258

« IMS/VS Advanced Function for Communications,
SH20-9054

« IMS/VS Version 1 Installation Guide, SH20-9081

o Customer Information Control System/Virtual Storage
3790 Guide, SC33-0075

« CICS/VS System Programmer’s Reference Manual,
SC33-0069

« CICS/VS Application Programmer's Reference Manual
(Command Level), SC33-0077

Notes:

1. This manual contains several references to an SNA
3270 subsystem and to 3270 device emulation.
These topics apply only to the 3270 Device Emulation
Program Product, and are described in the 3270
Device Emulation User’s Guide.

2. The System/34 application programmer might be
concerned with line protocols and internal subsystem
logic. The line sequences and control flows for each
operation are documented in the subsystem chapters
of the IBM System/34 Interactive Communications
Feature Program Logic Manual, LY21-0581.

vi

This page is intentionally left blank.

CHAPTER 1. INTRODUCTION TO INTERACTIVE
COMMUNICATIONS
Structure of the Interactive Communications
Feature . e e e e e e e e e e e
Sessions and Transactnons
Storage Requirements

CHAPTER 2. INTERACTIVE COMMUNICATIONS
PROGRAMMING
Configuring the Interactive Communications
Environment . . .
Enabling the Subsystem
SESSION OCL Statement
Issuing Interactive Communications Operations
Starting a Session
Acquire Operation
Evoke Operation
Performing Input and Output
Put Operation
Invite Operation .
Accept Operation
Get Operation
Performing Other Operations
Request to Change Direction Operation
Negative Response Operation
Fail Operation
Cancel Operation .
Set Timer Operation
Get Attributes Operation .
Pass-Through Operations
Ending a Session ..
Put End of Transaction Operatlon ..
Release Operation
End of Session Operation .
Note About Ending an Acquired Session
Checking Return Codes
Major Codes . .
Minor Codes
Remote Initiation of Procedures . . e e e e
Writing Procedures to be Started by Incomlng
Procedure Requests R
Special Considerations
Disabling the Subsystem .
Interactive Communications Programming
Techniques
Session Types
IDs
SRT and MRT Program Consnderatlons
Interprogram/ Interprocedure Communication
Read Under Format

INNNI?)'?)MMNM
O WWOWONNNOPW

MNP?NN
PN ey
—_-—_00

Contents

CHAPTER 3. INTERACTIVE COMMUNICATIONS
PROGRAMMING WITH ASSEMBLER
Macroinstructions .
$DTFW
$WSIO
$EVOK
Assembler Operations Summary Chart
Return Codes . . .
Interactive Communications Assembler Subroutmes
Coding Examples

CHAPTER 4. INTERACTIVE COMMUNICATIONS
PROGRAMMING WITH BASIC
Beginning a Session
OPEN Statement Examples
WRITE Statement Format . ..
Beginning a Program or Procedure at the Remote
System
Sending Program Data with the Evoke Operation . .
Sending Data . e
Receiving Data
Notes About Receiving Data . . .
Checking Return Codes
Ending a Communications Transaction
Ending a Session .
Other SSP-ICF Operatlons You Can Do
Asking for a Change in Transmission Direction .
Using SSP-ICF and Work Station Timer Operations .
Sending a Negative Response
Sending a Fail Operation
Issuing a Cancel Operation
Using Pass-Through Operations
BASIC Operations Summary Chart . . .
Note About Writing BASIC Programs for SSP-ICF .
Coding Examples

CHAPTER 5. INTERACTIVE COMMUNICATIONS
PROGRAMMING WITH COBOL

File Definition
ASSIGN Clause ..
ORGANIZATION Clause
FILE STATUS Clause
ACCESS MODE Clause
CONTROL-AREA Clause

Formats .
Procedure/ Program Initiation (Evoke)
Transmit Data
Request to Change Direction
Set Timer Interrupt Value
Send Negative Response
Cancel
Fail e e e e e e e e
End of Session
Pass-Through Support

Contents

gaaaaaaaaaaaaaaaq
OO DEWWWNNN ==

vii

HOW TO WRITE PROGRAMS THAT USE THE

Work Station Operations 5-7
ACQUIRE 5-7 INTRA SUBSYSTEM 7-10
READo 5-8 Configuration Parameters 7-12
WRITE s 5-9 How to Write a BASIC Program that Uses the
DROPo 5-9 Intra Subsystem L. 7-13
COBOL Operations Summary Chart 5-10 OCL Statements 7-13
Return Code Processing 5-11 Data Flow and Operations 714
Coding Examples 5-12 How to Check Return Codes with BASIC 7-20
: How to Write a COBOL Program that Uses the
CHAPTER 6. INTERACTIVE COMMUNICATIONS Intra Subsystem 7-22
PROGRAMMING WITHRPGH 6-1 OCL Statements 7-22
File Description Specification e 6-1 File Control for Program A and Program B 7-24
Formats PR 6-2 Data Division (File Section) for Program Aand B . . 7-26
Evoke Lo 0oL, 6-3 Working Storage for Program B 7-28
TransmitData 6-4 Display Information for Program A 7-28 -
Request to Change Direction 6-5 Data Records for Program A 7-30
Set Timer Interrupt Value e 6-5 Data Records for Program B 17-30
Send Negative Response 6-6 Data Flow and Operations 7-32
Fail00 6-7 How to Check Return Codes with COBOL 7-38
Cancel 6-7 How to Write an RPG Il Program that Uses
Endof Session 6-7 the Intra Subsystem 7-40
Pass-Through Formats 6-7 OCL Statements 7-40
WORKSTN Operations 6-8 Program Indicators 7-44
ACQ (Acquire)o 6-8 Data Flow and Operations 7-46
REL (Release) 6-9 How to Check Return Codes with RPG Il 7-50
NEXT e e 6-10 Screen Format and Program Listings 7-52
READo 6-11 Screen Format Listing . . P 7-52
RPG Cycle Input 6-11 BASIC Program Listing 7-53
RPG Il Operations Summary Chart 6-12 COBOL Program Listing 7-56

Return Code Processing
INFSR Coding Consnderatlons

RPG Il Status Value '

RPG Il Programming Considerations
Continuation Lines on the File Specification
SRT and MRT Program Considerations
End of File Considerations
Release Considerations
Restrictions for WORKSTN Files
Input and Qutput Considerations

RPG Il Program Listing
INTRA SUBSYSTEM RETURN CODES
Major Code 00
Major Code O1
Major Code 02
Major Code 03
Major Code 04 e e e e e e .
Major Code 08-34
MajorCode 80 -
Major Code 82 e e e e

Coding Examples 6-24 Major Code 83 e e e e e e e e 7-92

CHAPTER 7. THE INTRA SUBSYSTEM 71 CHAPTER 8. THE BSCEL SUBSYSTEM 8-1

Setting Up the Intra Subsystem 7-1 Setting Up the BSCEL Subsystem . . . R 8-3
Display 1.0 Subsystem Member Configuration . . . 7-2 Display 1.0 Subsystem Member Conflguratnon R 8-4
Display 2.0 Common SSP-ICF Parameters for Display 2.0 Common SSP-ICF Parameters for Each

Each Subsystem 7-3 Subsystem oo 8-5
Display 3.0 General Subsystem Parameters R 7-4 Display 3.0 General Subsystem Parameters 8-6
Starting and Ending the Intra Subsystem 7-5 ‘Display 4.0 Line Information for SSP-ICF Subsystem 8-7
Starting Intra Subsystem Applications 7-5 Display 5.0 BSC General Subsystem Parameters | 8-8
SESSION OCL Statement e e 7-5 Display 5.1 BSC General Subsystem Parameters Il . 8-10
Procedure Requests 7-6 Display 6.0 BSCEL Subsystem‘Parameters 8-12
Operation Considerations 7-6 Starting and Ending the BSCEL Subsystem 8-13
Acquire Operation 7-6 Starting BSCEL Subsystem Applications 8-13
Evoke Operations e 7-6 SESSION OCL Statement e e 8-13
Put Operations e e e e e 7-7 Incoming Procedure Start Requests 8-16
Input Operations 7-7 Operation Considerations 8-17
Request to Change Direction Operation 7-7 Acquire Operation 8-17
Negative Response Operation e 7-8 Evoke Operation e e e e e e e 8-18
Cancel Operation 7-8 Put Operationso ... 8-19
Fail Operation 7-8 Input Operations 8-20
Release Operation 7-9 Request to Change Direction Operation 8-20
End of Session Operation 7-9 Release Operation 8-21
Get Attributes Operation. 7-9 End of Session Operation 8-21
Set Timer Operation 7-9 Get Attributes Operation 8-21
Pass-Through Operations 7-9 Set Timer Operation 8-21

viii

Programming Considerations
Online Messages
Data Formats
3740 Multiple Files
Using Switched Lines
3740 Data Entry System Considerations

BSCEL Commands
*ACQ Command
*REL Command
Procedure Start Request
*EOX Command

HOW TO WRITE PROGRAMS THAT USE

THE BSCEL SUBSYSTEM
Configuration Parameters
OCL Statements
Other Applications for BSCEL

BSCEL SUBSYSTEM RETURN CODES
Major Code 00 .
Major Code 01 .
Major Code 02
Major Code O3
Major Code 04
Major Codes 08-34
MajorCode 80
Major Code 81
MajorCode 82
MajorCode 83

CHAPTER 9. THE BSC CCP SUBSYSTEM
Setting Up the CCP Subsystem
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameter for Each
Subsystem
Display 3.0 General Subsystem Parameters
Display 4.0 Line Information for SSC-ICF
Subsystem
Display 5.0 BSC General Subsystem Parameters |
Display 5.1 BSC General Subsystem Parameters |l
Display 10.0 BSC Multipoint Session Addresses .
Display 11.0 BSC CCP Subsystem Parameters . . .
CCP Generation . . .
CCP Assignment Set Considerations
Starting and Ending the CCP Subsystem . .
Starting CCP Subsystem Applications
SESSION OCL Statement
Incoming Procedure Start Requests
Operation Considerations
Acquire Operation
Evoke Operation
Put Operation
Input Operations
Request to Change Direction Operation
Release Operation
End of Session Operation
Get Attributes Operation
Set Timer Operation
Programming Considerations
CCP Commands
Messages From CCP
Using Switch Lines
HOW TO WRITE PROGRAMS THAT USE
THE CCP SUBSYSTEM
Configuration Parameters
OCL Statements e e
Changes for the Programming Example

Remote Procedure Start Request Example

CCP SUBSYSTEM RETURN CODES 9-41
Major Code OO 9-43
Major Code O1 9-45
Major Code 02 9-46
Major Code 03 9-48
Major Code 04 9-49
Major Codes 08-34 9-49
MajorCode 80 9-51
MajorCode 81 9-54
MajorCode 82o 9-59
MajorCode 83 9-66

CHAPTER 10. THE BSC CICS SUBSYSTEM 101

Setting Up the BSC CICS Subsystem 10-2
Display 1.0 Subsystem Member Configuration . . . 10-2
Display 2.0 Common SSP-ICF Parameters for

Each Subsystem 10-3
Display 3.0 General Subsystem

Parameters 10-4
Display 4.0 Line Information for the SSP-ICF

Subsystem 10-5
Display 5.0 BSC General Subsystem Parameters | 10-6
Display 5.1 BSC General Subsystem Parameters || 10-7
Display 7.0 Subsystem Interactive Destination

Messages 10-8
Display 10.0 BSC Multipoint Session Addresses . . 10-8

CICS/VS Configuration Considerations 10-9

Starting and Ending the CICS Subsystem 10-12

Starting CICS Subsystem Applications 10-13
Incoming Procedure Start Requests 10-15

Operation Considerations 10-16
Acquire Operation 10-16
Evoke Operations 10-17
Put Operations 10-18
Input Operations 10-19
Get Attributes Operation 10-19
Set Timer Operation 10-19
Release Operation 10-19
End of Session Operation 10-19

Programming Considerations 10-20
Performance Considerations 10-20
Security Considerations 10-20

CICS/VS Messages« 10-21
Using Switched Lines 10-22

HOW TO WRITE PROGRAMS THAT USE TH

CICSSUBSYSTEM 10-32
Configuration Parameters 10-33
OCL Statements 10-35
Changes for the Screen Format 10-36
Changes for the Programming Example 10-37
Remote Procedure Start Request Example 10-40

CICS SUBSYSTEM RETURN CODES 10-41
Major Code 00 10-43
Major Code O1 10-44
Major Code 02 10-45
Major Code 03 10-46
Major Code 04-34 10-47
MajorCode 80 10-49
Major Code 81 10-51
MajorCode 82 10-53
MajorCode 83 10-58

Contents ix

CHAPTER 11. THE BSC IMS/IRSS SUBSYSTEM
Setting Up the IMS/IRSS Subsystem
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for Each
Subsystemo
Display 3.0 General Subsystem
Parameters
Display 5.0 BSC General Subsystem Parameters |
Display 7.0 Subsystem Inactive Destination
Message
Display 12.0 BSC IMS/IRSS Subsystem PTERMs
Setting Up the IMS/VS System
Starting and Ending the IMS/IRSS Subsystem
Starting IMS/IRSS Subsystem Applications
SESSION OCL Statement
Incoming Procedure Requests
Operation Considerations
Acquire Operation
Evoke Operations
Put Operations
Input Operations
Release Operation
End of Session Operation
Get Attributes Operation.
Set Timer Operation
Programming Considerations
IMS/VS System Messages
IMS/VS Commands
DataBlocks
Error Blocks Received by System/34
HOW TO WRITE PROGRAMS THAT USE
THE IMS/IRSS SUBSYSTEM
Configuration Parameters
OCL Statements
Changes for the Screen Format
Changes for the Programming Example
Remote Procedure Start Request Example
Inquiry Application Example
IMS/IRSS SUBSYSTEM RETURN CODES
Major Code 00
Major Code O1
MajorCode 02
Major Code 03
Major Code 04
Major Codes 08-34
MajorCode 80
MajorCode 81
MajorCode 82
MajorCode 83

CHAPTER 12. THE BSC 3270 SUPPORT

SUBSYSTEMo 121
Setting Up the 3270 Subsystem 12-2
Display 1.0 Subsystem Member. Configuration . . . 12-2
Display 2.0 Common SSP-ICF Parameters for Each
Subsystemo 12-3
Display 3.0 General Subsystem Parameters 12-4
Display 4.0 Line Information for SSP-ICF
Subsystem 12-5
Display 14.0 3270 Subsystem General Parameters 12-5

Display 15.0 BSC 3270 Subsystem Device Parameters 12-6

Host System Configuration 12-8
Starting and Ending the 3270 Subsystem 12-8
SESSION OCL Statement 12-9
Operation Considerations 12-1
Acquire Operation 12-11
Evoke Operations 12-12
Put Operations 12-13
Input Operations 12-13
Release Operation 12-15
End of Session Operation 12-15
Get Attributes Operation 12-15
Set Timer Operation 12-15
Host System Status Information 12-16
Considerations for Host Systems Using VTAM 12-17
Considerations for IMS/VS Hosts 12-18
System/34 Programming Considerations . 12-18
IMS/VS Generation Considerations 12-21
Startup for IMS/VS 12-21
IMS/VS Message Formatting Services
Considerations 12-22
IMS/VS Programming Considerations 12-22
Coding Example 12-23
Considerations for Host Systems Using CCP 12-28
CCP Assignment Set Considerations 12-28
Startup for CCP 12-28
SigningOntoCCP 12-29
New CCP Applications 12-29
CCP Applications That Use DFF 12-30
Programming Considerations for CCP Application
Programso e e e 12-30
_Coding Example 12-31
Considerations for Host Systems Using CICS/VS . . 12-38
Newly Developed CICS Applications 12-38
Existing CICS Applications That Do Not Use
BMSMapso 12-39
CICS Applications That Use BMS Maps 12-40
General Program Flow 12-43
CICS System Generation Considerations 12-45
Startup for CICS/VS e e 12-46
Sample Programs 12-46
3270 SUBSYSTEM RETURN CODES 12-51
Major Code 00 12-53
Major Code 02 12-54
Major Code 03 e e e e 12-55
Major Codes 04-34 12-56
MajorCode 80 12-58
MajorCode 82 12-60
MajorCode 83 12-65

CHAPTER 13. THE FINANCE SUBSYSTEM
Setting Up the Finance Subsystem e
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for
Each Subsystem
Display 3.0 General Subsystem Parameters
Display 3.1 SDLC General Subsystem
Parameters L. L.
Display 4.0 Line Information for SSP-ICF
Subsystem 0oL
Display 17.0 Finance Subsystem Parameters
Starting and Ending the Finance Subsystem L.
Enable Procedure
Disable Procedure
Starting Finance Subsystem Applications
Session OCL Statement
Incoming Procedure Requests
Operation Considerations
Acquire Operations
Put Operations
Input Operations
Release Operations
End of Session Operation
Get Attributes Operation
Set Timer Operation
Transmitting an Operational Diskette Image . NN
Encryption/Decryption Subroutines
SUBR30 for RPG Il
SUBR31 forCOBOL
#SBDE for Assembler
3601/4701 and 3694 Programming Considerations
Control Fields and Indicators
Message Types
Responses R
3694 Program Considersions

HOW TO WRITE PROGRAMS THAT USE THE FINANCE

SUBSYSTEM
Configuration Parameters
OCL Statements
Programming Examples for Program B

FINANCE SUBSYSTEM RETURN CODES
Major Codes 00-03
Major Codes 04-34 -
Major Code 80
Major Code81
Major Code 82 e e e e
MajorCode 83

CHAPTER 14. THE SNA PEER SUBSYSTEM .
Setting Up the SNA Peer Subsystem . .-.
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for Each
Subsystem L.
Display 3.0 General Subsystem
Parameters
Display 3.1 SDLC General Subsystem Parameters
Display 4.0 Line Information for SSP-ICF
Subsystem L. ..
Display 13.0 SNA Peer Subsystem Parameters . . .
Disk Space Requirements
Switched Line Considerations
Starting and Ending the SNA Peer Subsystem
ENABLE Procedure e
DISABLE Procedure

13-6

13-6

13-7

13-9

13-9
13-11
13-12
13-12
13-12
13-13
13-13
13-14
13-14
13-14
13-14
13-14
13-14
13-15
13-17
13-17
13-21
13-23
13-24
13-24
13-25
13-29
13-30

13-31
13-32
13-33
13-34
13-40
13-42
13-44
13-46
13-49
13-52
13-56

141
14-1
14-2

14-3

14-6
14-7
14-9

14-10

14-13
14-13
14-15
14-16

SESSION OCL Statement
Incoming Procedure Requests
Operation Considerations
Acquire Operation -
Evoke Operation
Put Operations
Input Operations
Request to Change Direction Operation
Fail Operation
Release Operation
End of Session Operation
Get Attributes Operation
Set Timer Operation
HOW TO WRITE PROGRAMS THAT USE THE PEER
SUBSYSTEM
Configuration Examples
OCL Statements R
PEER SUBSYSTEM RETURN CODES
Major Code 00
Major Code O1
Major Code 02
Major Code O3 L.
Major Codes 04-34
Major Code 80
MajorCode 81
MajorCode 82
Major Code 83 L. L.

CHAPTER 15. THE SNA UPLINE FACILITY
SUBSYSTEM
Setting Up the SNUF Subsystem R
Display 1.0 Subsystem Member Configuration . . .
Display 2.0 Common SSP-ICF Parameters for Each
Subsystem L. ..
Display 3.0 General Subsystem
Parameters L.
Display 4.0 Line Information for SSP-ICF Subsystem
Display 7.0 Subsystem Inactive Destination
Messages
Display 8.0 SNA Upline Subsystem Parameters | . .
Display 9.0 SNA Upline Subsystem Parameters ||
Display 9.1 SNA Upline/3270 Station Parameters
Disk Space Requirements
Setting Up the Host System
Starting and Ending the SNUF Subsystem
Starting SNUF Subsystem Applications
SESSION OCL Statement
Incoming Procedure Start Requests
Operation Considerations
Acquire Operation e e
Evoke Operation
Put Operations
Input Operations
Request to Change Direction Operation
Release Operation
Negative Response Operation
Cancel Operation
End of Session Operation
Get Attributes Operation
Set Timer Operation
Switched Line Considerations
Programming Considerations
Chains R
Function Management Headers
Half-Duplex Flip-Flop Protocols
Session Restart and Recovery

14-16
14-16
14-17
14-17
14-17
14-18
14-18
14-19
14-19
14-19
14-20
14-20
14-20

14-21
14-22
14-23
14-24
14-26
14-29
14-32
14-34
14-35
14-37
14-39
14-42
14-47

15-1
15-1
15-2

15-3

15-4
15-5

15-6
16-6
15-8
15-9
15-10
15-11
15-11
16-12
15-12
15-14
15-15
15-15
15-15
15-16
15-17
15-18
15-18
15-18
15-19
15-19
15-19
15-19
15-20
15-23
15-23
15-25
15-26
15-27

Contents xi

VTAM/NCP Considerations 15-28

IMS/VS Considerations 15-32
IMS/VS Generation Considerations 15-32
Terminal Response Mode 15-34
Evoke End of Transaction 15-35
IMS/VS Ready to Receive Option 15-36
IMS/VS Message Format Services 15-36
IMS/VS Message Headers 15-37
Procedure Start 15-37
IMS/VS Commands 15-38
IMS/VS Security 15-38
Error Handling 15-38

HOW TO WRITE PROGRAMS THAT USE

THE SNUF SUBSYSTEM 15-39
Configuration Parameters 15-40
OCL Statements 15-42
Changes for the Screen Format 15-43
Changes for the Programming Example for CICS . 15-44
Changes for the Programming Example for IMS . 15-47

Remote Procedure Start Request Example for IMS 15-52
Remote Procedure Start Request Example for CICS 15-53
Terminal Response and Non-Terminal Respons Mode

Example forIMS 15-54
CICS/VS Considerations 15-56
CICS/VS System Programming 15-56
Evoke End of Transaction 15-57
Security oL L oo 15-57
SNUF SUBSYSTEM RETURN CODES 15-58
MajorCode 00 15-60
Major Code 01 15-65
MajorCode 02 15-68
MajorCode 03 15-72
Major Codes 04-34 15-73
MajorCode 80 15-75
MajorCode 81 15-77
MajorCode 82 15-80
MajorCode 83 15-85
APPENDIX A. SUMMARY CHARTS A-1
Return Code Summary Chart A-1
Input/Output Operations Summary Chart A-7

APPENDIX B. SNA PASS-THROUGH SUPPORT . . . B-1
BASIC, COBOL, and RPG |l Pass-Through

Programmingo B-2
$SPTINVo B-2
$SPTPUTo B-3

Basic Assembler Pass-Through Programming B-4
Define B-4
Get B-5
Invite L Lo oL B-6
Accept L L. Lo o B-7
Put B-8
Command B-10

SNA Input/Output Area B-12

SNA Operations B-13

SNA Completion Codes B-15

i

SNACommands B-18
Bid B-18
Cancel B-18
Chase B-19
Logical Unit Status B-19
Quiesce at End of Chain B-19
Quiesce Complete e e e e e e e B-19
Ready to Receive B-19
Release Quiesce B-19
Request Recovery B-19
Request Shutdown B-20
Set and Test Sequence Numbers B-20
Shutdown L. B-20
Shutdown Complete B-20
Signal o000 B-20

APPENDIX C. BSC TO SNA MIGRATION C-1

IMS/VS Considerations c-1
Uninvited Data e Cc-1
End of Transaction Operations C-2
BATCH Parameter on the SESSION OCL

Statement C-2
Converting IMS/IRSS Programs to SNUF
Programs C-3

System/34 Conversion Considerations Cc-4

CICS/VS Considerations c-4

APPENDIX D. DEBUGGING INTERACTIVE

COMMUNICATIONS PROGRAMS D-1

Status Displays D-1
Subsystem Status L. D-2
Session Status L. D-4
Work Station Operation Code Modifiers D-6
Work Station Operation Codes D-6

Debug Facility e D-7
ICFDEBUG Procedure D-7
Debug File Information D-8
Printing the Debug File D-10
Displaying the Debug File D-11

APPENDIX E. SSP-ICF INSTALLATION VERIFICATION E-1
Session Parameter Descriptions E-5

APPENDIX F. PLANNING CHARTS FOR

CONFIGURING SUBSYSTEM F-1
APPENDIX G. THE DEFINELU PROCEDURE oo . G
GLOSSARY e, H-1
INDEX e X-1

Chapter 1. Introduction to Interactive Communications

"The System/34 interactive communications support allows distributed
processing to be implemented on System/34. The interactive communications
support is designed to be easy to learn and use. It is provided as a feature of
the System/34 System Support Program Product.

The interactive communications feature includes support for
program-to-program communications using BSC and SNA as well as
communications between programs within the same system. The feature also
allows programs on other systems to initiate System/34 procedures and allows
System/34 programs to initiate programs or procedures on other systems
without remote system operator intervention. These other systems include
System/3, System/370, and System/34. To facilitate incoming procedure
requests, the interactive communications support can maintain a connection on
a communications line when no System/34 application program is active.

Past communications support required that the application program control the
format of the data passed on the communications line. This meant that the
programmer required familiarity with the line protocol (BSC, for example).
Above the BSC or SDLC line protocol can be another level of protocols (IRSS
or SNA) with still other control programs such as IMS, CICS, VTAM, and CCP
above them. The interactive communications feature isolates the application
program from all these levels of protocol, thereby simplifying the effort
required to write System/34 application programs that use communications.

Previous System/34 data communications support (RPG BSC support, MRJE,
and SRJE) is designed primarily for batch communications. The interactive
communications feature is designed primarily for interactive communications.
Interactive communications differs conceptually from batch communications in
that in interactive communications, the sequence of events is not necessarily
predetermined; either program can logically start, alter, or stop the
communication. In addition, batch communications is characterized by the
transfer of large quantities of data in one direction, whereas interactive
communications usually consists of a brief exchange of data (such as an
inquiry and a response).

Introduction to Interactive Communications 1-1

1-2

The application programming interface to the interactive communications
feature is provided via enhancements to the assembler macroinstructions, the
BASIC work station support, the COBOL work station support, and the RPG Il
work station support. This interface shields the application program from most
of the differences in communications protocols and remote communications
support. With proper design, a user can develop programs for an existing BSC
network and then move them to an SNA network without changing the
communications code within the application program.

Because the interactive communications feature uses work station support,
programmers familiar with work station operations will require very little
training to successfully write programs that use the interactive communications
feature. Also, many of the options (such as read under format and local data
area) available for work station programming are also available for
communications. The same statements that control input and output for
display stations can also be used for communications. An inquiry program, for
example, can receive input from either a display station or a remote program as
a result of a single input operation.

STRUCTURE OF THE INTERACTIVE COMMUNICATIONS FEATURE

The interactive communications feature consists of interactive communications
data management, specific subsystem support for communicating with different
systems, and interrupt handlers.

Data Management

T ——
(1]
icati Interactive Interrupt
Application . _ e D . Subsystem P p
Communications Handler

Interactive communications data management is the interface between an
application program and the subsystem. Interactive communications data
management is similar to work station data management; application
programs perform interactive communications operations in the same way
that they perform work station operations.

Because communications can occur with different systems and each has
different protocols, a subsystem, designed for a specific remote system,
isolates most system-dependent considerations from the application
program. The following subsystems are provided:

Subsystem Communicates With

Intra Other programs in the same System/34

BSC Equivalence Link System/34, System/32, and others

BSC CCP System/3 Model 15 CCP

BSC CICS. CICS/VS (BTAM)

BSC IMS/IRSS IMS/VS via IRSS (BTAM)

BSC 3270 IMS/VS, CICS/VS, and System/3 CCP
Finance 3601 Finance Controller and

3694 Document Processor
SNA Peer System/34
SNA Upline Facility CICS/VS or IMS/VS
SNA 3270 IMS/VS and CICS/VS

An interrupt handler is the interface between the subsystem and the
communications hardware. A BSC interrupt handler controls
communication on the line for the BSC subsystems. (The BSC 3270
support subsystem has a different BSC interrupt handler than the one
that supports the other BSC subsystems.) For the SNA subsystems, an
SDLC task controls communication on the line. The SDLC task could be
primary or secondary SDLC, .or both. The SNA Upline Facility (SNUF)
subsystem requires an SNA task, which is the interface between the
subsystem and the SDLC task. The Intra subsystem has no interrupt
handler because the Intra subsystem does not use a communications line.

"The SNA 3270 subsystem is not described in this manual because it is not supported
by SSP-ICF. It is supported by the 3270 Device Emulation Program Product, and it is
described in the 3270 Device Emulation User’s Guide.

Introduction to Interactive Communications

SESSIONS AND TRANSACTIONS

S/34 Application

Operation

Acquire a session

When using the interactive communications feature, each application program
communicates through a session using a transaction. A session is a logical
connection or pipeline to the remote system. A transaction is the
communications between the System/34 application program and another
application program. A session must exist before a transaction can take place.

Sessions are defined at both systems during configuration. The connection
allowing these sessions is established when the subsystem is started (enabled).
A session can then be started by a System/34 application program or by a
remote application program. Depending on how the session was started, the
characteristics of the session are different.

If a System/34 program requests (acquires) a session, the session is called an
acquired session. When the System/34 application program acquires a session
from the subsystem through interactive communications data management (not
illustrated), the subsystem assigns or reserves a session for that application
program. An indication (return code) is then given to the application program
indicating the success or failure of the acquire.

S/34 Subsystem Remote Subsystem Remote Application

Return Code

S/34 Application

Session acquired

After the session has been started, communications with the remote
application can begin. The System/34 application program requests the
subsystem to start the remote application and thereby begin a transaction with
that application program.

S/34 Subsystem Remote Subsystem Remote Application

1-4

Operation

Acquire a session

Start program A

Return Code

A

Session acquired

> » Start program A —}———1»- Program A starts

Transaction started Acknowledgement

A

successfully

S/34 Application

The transaction remains active as long as communication between the two

application programs continues. Either program can end the transaction.

S/34 Subsystem

Operation

Acquire a session

Start program A

End the transaction

S/34 Application

Return Code

Session acquired -

e

Remote Subsystem

-4——— Transaction started <¢————————— Acknowledgement

successfully

e

%

<LStart program A ——————Program A starts

Remote Application

<T—_.

Transaction ended
successfully

>

Program A ends

When the transaction ends, the session still exists. The System/34 application
program can start another transaction on the same session, and can continue

to request transactions consecutively until all desired transactions are complete
and the session is ended by either application program.

S/34 Subsystem

Operation

Acquire a session

Start program A

End the transaction

Start program B

End the session

P

Return Code

Session acquired

.

Remote Subsystem

Remote Application

- Start program A

successfully

2

e

-——1— Transaction started <¢—————————— Acknowledgement

|

e

- Program A starts

- Program A ends

D

>

Transaction ended
successfully

-

—- Start program B

-
>

Transaction started -

Acknowledgement

successfully

|

<

—————»> Program B starts

End the transaction

Transaction ended -

Session ended

Introduction to Interactive Communications 1-5

S/34 Application

An acquired session remains active for as many transactions as desired until
the application program requests that it be terminated (or an error causes the
session to be abnormally terminated).

A session can also be started by an incoming procedure request. For this type
of session, an application sends a specially formatted message to the
System/34 subsystem requesting that a procedure be started. As a result, an
application program on the System/34 begins running and communication
between the two applications can begin.

Program C starts

S/34 Application

S/34 Subsystem Remote Subsystem Remote Application
rStart PROCC, - < Send procedure
which runs start message for
program C PROCC

When a session is started by an incoming procedure request, the transaction
begins when the session begins. The transaction ends whenever either
program requests an end of transaction. The session consists of only one
transaction and ends when the transaction ends.

S/34 Subsystem Remote Subsystem Remote Application

Program C starts J————Start PROCC, -

Send procedure
start message for
PROCC

which runs
program C

End the transaction

Transaction and =

session ended

STORAGE REQUIREMENTS

1-6

To use any of the interactive communications feature subsystems that require a
communications line, you must have a minimum of 64 K bytes of main storage;
if you use only the Intra subsystem, however, the minimum is 48 K bytes of
main storage. To make full use of the capabilities of the interactive
communications feature, such as multiple concurrent sessions, or to improve
performance, you should have at least 96 K bytes of main storage. Specific
information on main storage and secondary storage requirements of the
interactive communications feature is available in the Planning Guide and the
subsystem chapters of this manual.

Chapter 2. Interactive Communications Programming

This chapter describes the elements of interactive communications
programming that concern the application programmer. These elements are:

« Configuring the interactive communications environment
« Enabling the subsystem

« SESSION OCL statement

« Issuing interactive communications operations

« Starting a session

« Performing input and output

« Performing other operations

« Checking return codes

« Ending a session

« Remote initiation of procedures

« Disabling the subsystem

Interactive Communications Programming 2-1

The following illustration shows the hierarchy of levels that exist during normal
operation of System/34 interactive communications programs. Each of these
levels is described in more detail later in this chapter.

- Subsystem enabled
— Program started with an associated SESSION OCL statement

— Session acquired

"“ — — n — Data sent and received

End of transaction issued

— Session released

— Program terminated

L— Subsystem disabled

n Before any interactive communications programs begin-sessions, a
subsystem configuration must be enabled. Certain configuration
parameters can be modified during the enable. The enabled configuration
remains active until it is disabled. \

n Associated with each session to be started by the program is a SESSION
OCL statement. This statement defines subsystem-dependent
parameters as well as the session ID and location name (described later
in this section) associated with the session. The parameters remain in
effect until the program terminates.

Within each application program, sessions can be started (acquired). A
session allows communication between the System/34 application
program and its subsystem. The session remains active until it is
released.

n Within each session, transactions can be started (evoked) to allow
communications with the remote application. Transactions are started by
evoking a remote application program. Communication between the two
programs continues until an end of transaction occurs.

Within each transaction, data can be sent and received by the program.

Each level can occur repeatedly within the next higher level. For example,
multiple sessions can be acquired and released within the same program, and
multiple programs can be run without disabling and reenabling the subsystem
configuration.

Transaction started (remote program evoked)

Levels 2, 3, and 4 are specifically for acquired sessions. Sessions started by
incoming procedure requests do not require SESSION OCL statements, cannot
be acquired, and cannot evoke transactions. These functions are performed by
the remote application with its procedure start request. In this case, the
remote application fulfills the role of a display station operator.

The connection between the levels is maintained by several parameters. The
subsystem configuration name identifies the particular subsystem configuration.
The ENABLE procedure specifies the subsystem configuration name to be
enabled. The location name, specified during configuration, is included on the
SESSION OCL statement to identify the location being referenced. Also
specified on the SESSION OCL statement is the symbolic session ID. This is
the same session ID specified when the session is acquired by the application
program. Thus, the configuration can be changed without affecting the
application program.

CONFIGURING THE INTERACTIVE COMMUNICATIONS ENVIRONMENT

The first step in preparing to run interactive communications programs is
configuration. During system configuration, you specify whether you want
interactive communications in your system. If you do, you must run a special
interactive communications procedure called CNFIGICF. This procedure
prompts you for the subsystem types (CCP, for example) and for specific
parameters for each subsystem type. You can define multiple configurations of
each type, each identified by a unique name. The details, including the
prompts and parameter descriptions, are described in the appropriate
subsystem chapter later in this manual.

Interactive Communications Programming 2-3

2-4

. ENABLING THE SUBSYSTEM

To run an application program that uses interactive communications, you must
activate (enable) the particular subsystem configuration that you want to use.
An application program that uses interactive communication can be loaded
before the subsystem is activated, but no sessions can be started. The Peer
subsystem also allows enabling of a specific location. See Chapter 14 for
details.

An ENABLE procedure activates the subsystem and allows some modification
of configuration variables. The ENABLE procedure performs the following
functions:

+ Determines whether the line requested is available.

« Loads and attaches the subsystem if it is not already active.

+ Loads and attaches any other required tasks (BSC or SNA and SDLC) if
they are not already active.

« Assigns storage for required data areas and buffers.

After the subsystem is enabled, programs can begin using that subsystem.
You can enable a subsystem by having the ENABLE procedure automatically
run after IPL. See the Installation and Modification Reference Manual for a
description of how to specify a procedure to be run automatically after IPL.

Note: If a subsystem is enabled, procedures that require a dedicated system,
such as COMPRESS, cannot be run.

The format of the ENABLE procedure command is:

IBRARY SHOW .
ENABLE name , %mBT;a;e] » line number , I‘|Q§HOW] ,[locatlon]

name: Specifies the member name of the subsystem configuration to be
enabled.

library name: Specifies the name of the library that contains the specified
subsystem configuration. The default is #LIBRARY.

line number: Specifies the number of the communications line for which this
subsystem is to be enabled. This parameter can be omitted for the Intra
subsystem.

SHOW /NOSHOW: Specifies whether subsystem configuration parameters are to
be displayed before the subsystem is enabled. If SHOW is specified, they are
displayed, and some of the configuration parameters can be changed.

location: Specifies the name of the remote location to be enabled. Location
name can be specified only if the subsystem being enabled is a Peer
subsystem. This name must have been specified as a remote location name
during subsystem configuration.

Interactive Communications Programming 2-5

2-6

SESSION OCL STATEMENT

Each program that acquires an interactive communications session must have a
SESSION OCL statement associated with that session.!” SESSION OCL
statements are similar to WORKSTN OCL statements and must appear
between the LOAD and RUN statements. The SESSION statement references
the subsystem configuration that the application program uses and the ID of
the session to be acquired.

Each subsystem has its own specific parameters on the SESSION OCL
statement.

The format of the SESSION OCL statement is:

// SESSION LOCATION-name,SYMID-session-id
E)ptional subsystem-dependent parameters]

LOCATION: Specifies the location name associated with this session. The
location name is defined during subsystem configuration, and refers to the
name of the remote location with which communication is to take place.

SYMID: Specifies the symbolic ID of the session with which this OCL
statement is associated. The symbolic ID must be two characters, with the
first character numeric (0 through 9) and the second character alphabetic (A
through Z, #, $, or @). This is the same ID that the application program uses
when referring to this session. This ID is the equivalent of a symbolic display
station ID as specified on the WORKSTN OCL statement. This parameter has
no default.

The optional subsystem-dependent parameters are described in each of the
subsystem chapters.

"If the program is a BASIC program and the subystem is Intra, Peer, or CCP, a
SESSION statement might not be required. See Chapter 4, Interactive Communications
Programming with BASIC for more information.

ISSUING INTERACTIVE COMMUNICATIONS OPERATIONS

Interactive communications data management has a set of operations to
establish and control sessions and transactions. The following sections include
a general description of each operation. The operations are issued differently in
BASIC, COBOL, and RPG Il than they are in assembler. For more details on
how to use these operations, see the programming language chapters. For
specific subsystem considerations about each operation, see the chapter on the
pertinent subsystem.

Each language chapter also contains a language summary chart that lists all the
operations that are valid for that language and indicates all the subystems for
which each operation is valid. The chart also shows the operation codes
(mnemonics) that must be coded in that language to perform the operations.
You will probably want to refer to one of these language summary charts when
you are coding a program in a particular language and subsystem.

Appendix A contains a different type of operations summary chart. The

Input /Output Operations Summary Chart shows all of the operations (for all the
languages) as input, output, or combined input/output operations, and
indicates in which subystem each operation is valid.

STARTING A SESSION

After the subsystem has been enabled, communications can be started. Two
operations are required to begin communicating:

. Acquire, to start the session

. Evoke, to start the transaction

Acquire Operation

The acquire operation establishes a session. Associated with the acquire is a
session ID (corresponding to the SYMID parameter given on the SESSION
OCL statement) that identifies this session. When the acquire operation
completes successfully, a session with this ID exists. Communication with the
remote system might or might not have been started (depending on the
subsystem), but the session is reserved for this program.

Interactive Communications Programming 2-7

2-8

Evoke Operation

The evoke operation starts a procedure or an application program on the
remote system and, thereby, begins a transaction. An evoke can occur only
after a session has been acquired, but multiple evokes can be issued in each

‘session if the previous transaction has ended before the next evoke is issued.

Several types of evokes can be issued:

« Evoke issues an evoke operation and then waits until the remote system
acknowledges the operation. The issuing application program can then
begin transmitting data.

« Evoke then invite issues an evoke followed by an invite. The invite enables
the remote application program to send data first for this transaction. (See
Invite Operation later in this chapter.) Control is returned to the issuing
application program without waiting for completion of the evoke.

« Evoke then get issues an evoke and then waits for input from the evoked
application. (See Get Operation later in this chapter.)

« Evoke end of transaction issues an evoke and then ends the transaction.
This means that no further communication takes place between the issuing
program and the evoked program. See the special considerations in Remote
Initiation of Procedures later in this chapter if you will be using evoke end of
transaction to initiate a System/34 procedure.

Associated with each evoke is an evoke parameter list, which contains the
procedure name, library name, password, and user ID associated with the
program to be evoked. The evoke operation can optionally include data to be
sent to the remote application. See Remote Initiation of Procedures later in this
chapter for more information about evoking System/34 procedures.

The evoke operation can include a function management header. See Chapter
15 for a description of function management headers.

PERFORMING INPUT AND OUTPUT

After the session and transaction have been established, input and output
operations can be performed. The following operations are available for
performing input and output:

« Put, to send records
« Invite, to allow input and accept, to obtain invited input

« Get, to request input

Put Operation

The put operation passes data from the issuing program to the remote
application program. The following types of put operations can be issued:

« Put issues a put to the subsystem and returns control to the application
program without waiting for the operation to complete. If multiple put
operations are issued, the current put operation is not started until the
previous put operation is complete. If the previous put operation failed, the
current put is not performed and the application program is informed via the
appropriate return code.

« Put then invite issues a put followed by an invite. The invite allows the
remote application program to begin sending data on this session. (See
Invite Operation later in this chapter.) Control is returned to the vapplication
program without waiting for the remote system to send the data.

« Put then get issues a put operation and then waits for the remote
application program to send data. (See Get Operation later in this chapter.)

« Put end of chain or put end of file issues a put operation that indicates to
the remote system that this is the last record in a group of data. The put
end of chain operation is used for the Intra, SNUF, and Peer subsystems.
The put end of file operation is used for the BSC subsystems. Control is
returned to the user program after the remote system acknowledges receipt
of the end of chain, or after end of file is sent by the BSC interrupt handler.
The put end of file and put end of chain operations translate to the same
operation code (and are issued the same way in BASIC, COBOL, and RPG Il
programs); therefore, these operations need not be recoded when going
from BSC to SNA or vice versa. See Appendix C for more information
concerning BSC to SNA migration.

Interactive Communications Programming

¢ Put function management header issues a put, put then invite, or put then get
operation and indicates to the remote application program that a function
management header is included in the data. Put function management
header is valid only for the Intra and SNUF subsystems.

« Put end of transaction issues a put operation and then indicates to the
remote application program that this transaction is ended and no more
communication will take place between the two applications. Control is
returned to the user program after the remote system acknowledges receipt
of the end of transaction.

Invite Operation

The invite operation asks for input data, but the issuing program receives
control without waiting for the input. To obtain the data, the user program
must subsequently issue an accept or get operation. The invite operation can
be issued alone or as a modifier with an evoke, put, cancel, negative response,
or request change direction operation. If the invite operation is issued as a
modifier for an operation that is not supported by a subsystem, the invite is
ignored.

Accept Operation

The accept operation allows the issuing program to obtain data from any
previously invited program or display station, to allow new requesters, or to
check whether the timer has expired (see Set Timer Operation later in this
chapter). If data is available from more than one display station or program,
the data received by the program is the data from the first display station or
program that sent it. An accept to receive data should be issued only after a
previous invite or set timer request; however, if the program is a MRT NEP, an
accept without a previous invite or set timer request allows the program to
wait for a new requester.

Get Operation

The get operation provides the issuing program with data from a specific
program. The issuing program receives control when data is available. The get
operation differs from the accept operation in that the get operation is directed
to a specific program (or display station), whereas an accept operation allows
input to be obtained from any previously invited session or display station.

PERFORMING OTHER OPERATIONS

Most programs can be written using only the previous input and output
operations. However, if additional functions are required, the following
operations are available:

+ Request to change direction
« Negative response

« Fail

» Cancel

« Set timer

« Get attributes

« Pass-through operations

Request to Change Direction Operation

The request to change direction operation indicates that the issuing program
wants to transmit data. The operation can only be issued by a program that is
receiving. The request to change direction operation has two forms: request to
change direction then invite and request to change direction then get. After
issuing either operation, the issuing program should continue to receive data
until it receives a return code indicating that the remote program is ready to
begin receiving. The issuing program can then begin sending data.

A user program that receives a request to change direction is notified via a
return code following a put operation. (See Checking Return Codes later in this
chapter for a description of return codes.)

Negative Response Operation

The negative response operation sends a negative response to the remote
application. A negative response indicates that the application program
detected something wrong with the data received. The response can include
eight characters of sense information to inform the remote system of the
reason for the negative response. The negative response operation can be
issued alone or with a get or invite. The negative response operation should
be used only when receiving data from the remote program.

A user program that receives a negative response is notified via a return code
following a put operation. (See Checking Return Codes later in this chapter for
a description of return codes.) The only valid response to a negative response
is a cancel.

Interactive Communications Programming

2-12

Fail Operation

The fail operation indicates to the remote program that an abnormal c;)ndition
has occurred within the application program. The fail operation can be issued
while the program is sending or receiving. If a program issues a fail operation
while sending, it indicates that the data just sent was in error. All data sent
before the fail operation is transmitted to the receiving program, and a return
code indicating the fail is given to the receiving program. If a program issues a
fail operation while receiving, it indicates that the data received was in error.
The subsystem discards all subsequent data until the transmitting subsystem
acknowledges receipt of the fail operation. In either case, the program that
issued the fail operation must transmit, and the program that receives the fail
return code must receive. If both programs issue a fail operation
simultaneously, the program that was receiving will be successful and must
transmit. The program that was transmitting will receive an unsuccessful return
code and must begin receiving. No data can accompany the fail operation.

Cancel Operation

The cancel operation sends a cancel command to the remote program. The
cancel command indicates to abnormally end this group (chain) of data records
and to disregard previous records in this group (all records sent since the
previous end of chain). The cancel operation can be issued alone or with an
invite or a get. The cancel operation should be issued only while transmitting
data. A cancel operation does not end a session; recovery from a cancel
operation depends on the subsystem.

A user program that receives a cancel is notified via a return code. (See
Checking Return Codes later in this chapter for a description of return codes.)

The cancel and negative response operations can be considered as a pair.
Cancel is the appropriate response when a negative response is received.
However, if the transmitting program discovers an error, cancel can be sent
without first receiving a negative response.

Set Timer Operation

The set timer operation specifies an interval of time (in hours, minutes, and
seconds) to wait before issuing a timer expired return code. The issuing
program continues to execute, and all operations are valid during the time
interval. When the time interval expires, the issuing program receives a return
code from an accept operation indicating that the time interval has expired.
The session or work station ID field is not changed when the accept- operation
for the timer has completed.

The set timer operation can be useful in retrying other operations that fail
because of a temporary lack of resources. To do this, issue the set timer
operation and then continue to do accepts until the timer expires. The accepts
allow the program to continue to receive input from other programs and display
stations while waiting for the timer. Only one time interval can be maintained
for a program. If a previous set timer operation has been issued and has not
yet expired, the old time interval is replaced by the new interval. If you are
using RPG Il or the BASIC $$TIMER operation, at least one requester or
acquired device must be attached to the program before the program issues
the set timer operation.

Interactive Communications Programming 2-13

Get Attributes Operation
The get attributes operation returns status information about a specific session
to the issuing program. The status information includes the session status, the
invite status, and the 8-character location name (specified during configuration)
associated with this session. '
The session status is one of the following:
« The session has a SESSION OCL statement but has not yet been acquired.

« The session has been acquired.

« The session is an evoked session; that is, a procedure start request has
been issued by the remote system, and the transaction has not yet ended.

The invite status is one of the following:
« This session has not been invited.
« This session has been invited, but no data has been received.

« This session has been invited, and data is ready.

Pass-Through Operations

Pass-through operations (either pass-through put or pass-through invite) are
issued for a pass-through session with either the SNUF subsystem or the Intra
subsystem. Pass-through operations indicate that data management and the

subsystem are not to translate the user program data stream (including SNA
control information), but are to pass it to the user program. The pass-through

support is described in Appendix B.

ENDING A SESSION

When all required communications are complete, the session can be ended.
Depending on whether the session is an acquired session or was started by an
incoming procedure request, the following operations either end the session or
pass it on to the next step in the job:

« Put end of transaction
« Release
« End of session

The following sections describe the effect of these operations.

Put End of Transaction Operation

A put end of transaction operation can be issued by either program. This
operation always ends the transaction. If it is issued for a session started by
an incoming procedure request, put end of transaction also ends the session.

Release Operation

The release operation is an attempt by the issuing program to terminate
communication with the session. Release performs two different actions
depending on the type of session:

« If the session was acquired by the issuing program, the release operation
requests the subsystem to end the session. If the release operation was
successful (return code less than 0402), the session is terminated. If the
release operation was not successful, the end of session operation can be
issued to terminate the session. The same or another session can then be
acquired. (See Acquire Operation earlier in this chapter.)

« If the session was started by an incoming procedure request and the issuing
program is an MRT program, the release operation passes the session to
the next step in the procedure. The SSP then executes any further OCL in
the procedure.

« If the session was started by an incoming procedure request and the issuing
program is an SRT program, the release is delayed until the issuing program
terminates. However, any subsequent operations by the issuing program to
the session result in an error return code indicating that communications is
being attempted to a released requester (return code 2800). After the
issuing program terminates, the session is passed to the next step in the
procedure.

Note: A release for an acquired session can be performed only if no

transaction is active; that is, end of transaction has been successfully sent or
received.

Interactive Communications Programming

End of Session Operation

The end of session operation terminates a session. End of session can also be
issued after a session that was started by an incoming procedure request
receives an end of transaction return code (see Special Considerations in this
section). The end of session operation frees that session for subsequent
procedure start requests. If the end of session is not used, the session
remains allocated until the job terminates. End of session can also be issued
after an error resulted from the previous operation.

The end of session operation always terminates the session and gives a normal
completion returﬁ code.
|

When end of session is issued for a session, one of the following occurs:

« If no transaction is active and no error occurred, the session is terminated
normally.

« If a transaction is active or an irrecoverable error occurred during the
‘session, the session is terminated abnormally.

If the procedure was started by an incoming procedure request, all subsequent
job steps run without a requester whether the session ended normally or
abnormally. If the session ended abnormally, a return code of 8158 is placed
in the OCL condition code (CD) for the job. You can prevent the subsequent
job steps from running by adding the following OCL statement to each job
step: ’

// IF ?2CD?/8158 CANCEL
For more information on the IF statement, see the SSP Reference Manual.
If the end of session operation is issued for a session that does not exist or is

not being used by the issuing program, no session is terminated; however, a
normal return code is given to the issuing program.

Note About Ending an Acquired Session

You should end a session by using either the release operation or the end of
session operation before your terminate your program. If you do not end the
session, the system will end it when your program ends. If an error occurs
while the system is ending the session, your program cannot handle the return
code. A message is displayed on the system console, and the operator must
handle the error.

Use the end of session operation if you want the session ended and do not
want to check the session status. A normal completion return code is issued
to your program regardiess of whether the session ended normally or
abnormally, and, although a message is displayed on the system console, no
operator intervention is required.

Use the release operation if you want your program to check whether the
session ended normally or abnormally.

Interactive Communications Programming 2-17

CHECKING RETURN CODES

After each operation, a return code is passed to the application program. This
return code should be checked by the program to determine the status of the
operation just performed, and to determine which operation should be
performed next. Each code returned to an assembler program is 2 bytes long
and in binary form. Each code returned to a BASIC, COBOL, or RPG I
program is 4 bytes long and in hexadecimal (EBCDIC) form.

Every return code has four digits, and consists of two parts: a major code (2
digits), and a minor code (2 digits). The major code identifies the general
condition for a group of return codes, and is usually sufficient to determine the’
action to be taken. The minor code identifies the specific condition and
indicates the specific action that should be taken next.

Usually, the application program can determine what action to take by checking
the major code only. Most programs might check only a few minor codes for
specific conditions that might occur in that particular application or
communications configuration. At a minimum, when the code is returned as a
result of an input operation, it should be checked to see if the last of the 4
digits is even (bit 7 is off). This check determines whether an input operation
is allowed as the next operation.

The description of each return code that is valid for a subsystem is contained

in the chapter describing that subsystem. (If the code can be issued by more

than one subsystem, its description occurs in more than one chapter and may

vary from one chapter to another.) A summary chart in Appendix A shows all

the return codes, and indicates all the subsystems for which each code is valid.
Major Codes

All major codes that represent normal or output exception conditions have

values less than 0800, and those that represent error conditions have values

equal to or greater than 0800. This division enables the application program to

make a quick comparison to determine the type of action required.

The main groups of major return codes are:

« Operation was completed successfully (00xx, 01xx, 02xx)

« Successful operation, but no data was received (03xx)

« Output exception occurred (04xx)

« Subsystem error occurred; session has been terminated (80xx)

+ Nonrecoverable session error occurred; session has been terminated (81xx)

« Acquire operation failed; session was not started (82xx)

« Session error occurred; recovery might be possible (83xx)

Minor Codes
The minor part of a return code identifies the specific condition within the
general condition identified by the major part of the code. Some examples of
the minor codes are:

« Some data was received on an input operation (xx01)

« End of transaction indication was received (xx08)

Invalid evoke operation was issued (xx29)
« Maximum number of sessions are already active (xxA8)

Some return codes occur in pairs: one resulting from an input operation, and
the other resulting from an output operation. The purpose of each pair is to
help determine, during a combined input/output operation, which part of the
operation the error occurred in. For example, the return codes 8183 and 8184
are valid for most of the subsystems. Both codes indicate that an MLCA
controller check occurred: 8183 indicates the check occurred on an output
operation, and 8184 indicates the check occurred on an input operation. If
8184 was returned after a put then get operation, the put portion worked
correctly and the error occurred during the get portion of the combined
operation.

Interactive Communications Programming 2-19

2-20

REMOTE INITIATION OF PROCEDURES

If you expect to have procedures initiated on the System/34 from remote
locations, you must have the subsystem enabled before the remote request
arrives. You can enable the subsystem by having a procedure automatically run
following IPL. (See Enabling the Subsystem earlier in this chapter for more
information.) '

To initiate procedures on the System/34, the remote application (if not on
another System/34 with the interactive communications feature) must send a
procedure start request. The procedure start request, sent by the remote
system, initiates a session and starts a System/34 procedure by evoking the
first program in that procedure. There are four types of procedure start request
statements:

« *EXEC
o *EXEX
« *EXNC
o *EXNX

Note: If the system attempting to start a procedure on the System/34 is
another System/34 with the interactive communications feature, the remote
program can issue an evoke operation instead of these procedure start
requests.

The format of each of these procedure requests is:

*EXxx procedure Eiata or parameterg Eser icﬂ

Eibrary namﬂ E)assword] Eecord Iengtlﬂ E)Iock lengtlﬂ

Eecord separatoﬂ [l:l] [ﬁ] [l)\l(]

The procedure name must begin in position 7 and must be separated from the
data and parameters by one or more blanks. The parameters following the
password are valid for the BSCEL subsystem only.

The data and parameters are considered to be everything from the first
nonblank character following the procedure name through position 127, and are
available as data to the application program or as positional procedure
parameters.

The user id begins in position 128, the library name begins in position 136, and
the password begins in position 144; the password must be 4 bytes long. If a
library is not specified, #LIBRARY is assumed. The user id, library name, and
password fields are positional and must be padded on the right with blanks if
any field follows. If the System/34 does not use security, then the user ID and
password are not required.

The remaining parameters are used with the *EXEC and *EXNC procedure start
requests for the BSCEL subsystem. Parameters specified with the procedure
start request are used for the session being started instead of parameters
specified during subsystem configuration or with the ENABLE procedure.

The record length is the maximum user record length (4-digit decimal,
right-justified). The record length begins in position 148.

The block length is the length of the block of data records to be transmitted or
received (4-digit decimal, right-justified). The block length begins in position
152. If the block length is 0000, data records will not be blocked.

The record separator is the hexadecimal value for the record separator
character. The record separator character begins in position 156. If you specify
00, no record separator character is used.

| is the indicator for ITB mode. The indicator is in position 158. If you specify
I, ITB mode is used (ITB characters are used to separate data records in a
block). If you specify N, ITB mode is not used.

CT is the indicator for blank compression or blank truncation. This indicator is
in position 159. If you specify C, blank compression is used. If you specify T,
blank truncation is used. If you specify N, no blank compression or blank
truncation is used.

X is the indicator for transparency. This indicator begins in position 160. If you
specify X, data is transmitted in transparent mode. If you specify N, data is
transmitted in nontransparent mode.

Interactive Communications Programming

2-21

If a parameter is blank, the parameter specified during configuration or when
the subsystem was enabled is used. For example:

Use the value specified
during configuration

or enable.
1 7 128 136 144 148 152 15§ 160
XEIC] JPROCH I«ﬁu, BT
HERRREA ||
E 4 [. — L
— Use a record separator
character of 1E for
this session.
Use a record length
of 128 for this
session.
1 7] 128 136 144 148 152 156 160
XEICT PRIO[CAT PAIRMIT. P ¥ / N
L | Iy Il

Do not use transparency

for this session. For all
' other parameters, use

the value specified

during configuration

or enable.

See Data Formats in Chapter 8 for more information about blocking, record
separators, ITB characters, and blank truncation and compression.

2-22

The record containing the procedure start request can end with the last usable
character. For example, if no parameter is required after the library name and
the library name is 4 bytes long, the record could be 139 bytes long; if a
6-character procedure name is the only field sent, the record can be 12 bytes
long. Depending on the subsystem, procedure start requests longer than 147
bytes could cause errors. The BSCEL subsystem accepts procedure start
requests up to 160 bytes long.

7 128 136 144 148 152 156 160
KE ICA y 2
—on-—P[[| ——J
XEIC CA PARMLI, 20 [1/ /1 1IS3HIIDL] | JULTBLL | | PX[3IA0[0[8I0/05H00IGNNIN
l ENENRRNRNNEERERNNI | L i
BS(;EL
Parameters

The *EXEC statement requests that a procedure be started and that a session
be held with a program in the procedure.

The *EXEX statement requests that a noncommunicating procedure be started;
a program within that procedure can, however, request that a session be
started. See Special Considerations later in this chapter for more information.

The *EXNC and *EXNX statements are valid only with the BSCEL subsystem.
These statements serve the same functions as *EXEC and *EXEX respectively,
except that no messages generated during program initiation are sent to the
remote system. The *EXNC and *EXNX statements are normally used by‘ a
device, such as a 3741, that wants to start a procedure on the System/34 but
cannot process messages.

Note: Because some systems (for example, the 3741) cannot transmit records
longer than 128 bytes, the BSCEL subsystem allows a procedure start request
to be broken into two records. The first record has the same format as
described previously through column 127. If a second record is required to
include the user ID, library name, password, and/or BSCEL parameters, the
first record must contain a C in column 6. The user ID begins in column 7 of
the second record, the library name begins in column 15, and so on. Column
128 of the first record and columns 1 through 6 of the second record are
ignored.

If you are communicating between System/34s, the evoke operation causes
the subsystem to build and send the procedure start request. The receiving
subsystem handles the request and, if the procedure was coded to accept data
(PDATA-YES), passes any data to the started program on its first input
operation. An evoked System/34 application program can perform an input or
output operation as its first interactive communications operation. See the
following paragraph, Writing Procedures to be Started by Incoming Procedure
Requests, for more information.

Interactive Communications Programming

2-23

2-24

Writing Procedures to be Started by Incoming Procedure Requests

When writing procedures that are to be started by incoming procedure
requests, keep several considerations in mind. ‘

No SESSION OCL statement is allowed for sessions that are started by
incoming procedure requests. If the program that the procedure runs acquires
any sessions, SESSION OCL statements must be included for them.

If data is to be sent with an SRT procedure start request, PDATA-YES must
be specified on the COPY utility control statement for SMAINT when the
procedure is created, or the prompt for data on the end of job option menu
(PROGRAM DATA IN INCLUDE STATEMENTS) must be answered yes when
using SEU. MRT procedures always allow data. If data is sent with the’

~ procedure start request and the program is not prepared to receive it, the data

is treated as procedure parameters. This could result in error messages,
because only 11 parameters are allowed, each 8 characters long and separated
by commas.

An SRT program started by an incoming procedure start request can do an
output operation as the first operation. When doing an output operation first,
consider the following items:

« The session ID for the session to which the output operation is sent must
be ¥b (blanks).

« If data was sent with the incoming procedure start request, the data is lost.
« If the incoming procedure start request was an end of transaction, the
requester is released, and any data the SRT program sends with the output

operation is lost.

A procedure started by an incoming procedure request has all the capabilities
of other procedures. For example, the procedure has:

« Access to and update of its own local data area
« Full IF statement capability
« Ability to place jobs in the input job queue

« Ability to evoke other jobs (which could initiate communication back to the
system that started the job)

« Ability to change the user library for requesting procedures and programs

« Full OCL substitution capability

The only restriction is that functions that display screen formats to the
requester cannot be included in the procedure. These are:

« // PROMPT
« // MENU

o« /1

« SEU

« SDA

-« DFU

« BASIC

Interactive Communications Programming 2-25

2-26

Special Considerations

The following chart and notes describe what happens when a program is
started with end of transaction (by *EXEX, *EXNX, or evoke end of
transaction). ’

SRT
PDATA-YES PDATA-NO MRT
Data include with | Data passed to Procedure runs Data passed to program’
the request program’ without requester?®
No data included |Procedure runs without |Procedure runs Session ID and no data
with the request |a requester® without a requester® |passed to the program?

' After the program performs its initial input operation to receive the data, the SSP

frees the session. All subsequent job steps run without a requester. (No subsequent steps can exist
in an MRT procedure.) The program receives a return code indicating new requester and
end of transaction (0118) on its initial input operation. If the program is coded in RPG Il, the
program should issue a release or end of session operation to free the entry in the internal
table of IDs for the WORKSTN file.

2The conditions are the same as those in Note 1, but no data is passed to the program with
the initial input operation.

3If the program issues an initial input operation for the work station file, a return code
indicating no invites outstanding (1100) is given to the program. If the program is an RPG Il
program, this return code sets on the end of file condition, which terminates the program if
the work station file is the primary file.

DISABLING THE SUBSYSTEM

To terminate a subsystem, the DISABLE procedure must be run. The Peer
subsystem allows disabling of a specific location. See Chapter 14 for details.
When a disable is requested for a subsystem configuration, the following
functions are performed:

« If no active sessions are using this subsystem, the subsystem configuration
is disabled, and the main storage being used is freed. If this subsystem is
not active on any line, the subsystem is terminated; any interrupt handler
(BSC or SNA and SDLC) is also terminated if it is not currently in use.

« If active sessions are using this subsystem, a message is issued to the

system operator with the following options:

— Hold the disable. New sessions are prevented from being started and,
when all sessions complete, a normal disable occurs.'

— Retry the disable. Check again for any active sessions.

— Cancel active sessions and disable. Active sessions are immediately
terminated, and the disable is performed. »

— lIgnore the disable request. The DISABLE procedure is canceled and must
be run again when a disable is desired.

« If a disable is pending or in progress, a message is issued to the system
operator. The message indicates either that the disable request is not
allowed, or that the operator can request an immediate disable or wait for
the current disable to complete.

The format of the DISABLE procedure is:
DISABLE name , Iocation]

name: Specifies the member name of the subsystem configuration to be
disabled.

location: Specifies the name of the remote location to be disabled. The SNA
location can be specified only if the subsystem being disabled is a Peer
subsystem. This name must have been specified as a remote location name
during subsystem configuration.

"When a disable is held, each successful operation will receive a major return code
“indicating that a disable is pending (02).

Interactive Communications Programming 2-27

2-28

INTERACTIVE COMMUNICATIONS PROGRAMMING TECHNIQUES

Before writing programs that issue interactive communications operations, you
should understand the work station file operations and how they relate to
display stations and sessions.

Session Types

On a System/34, there are two ways to configure a display station: (1)
command mode (that is, jobs can be initiated from the display station), and (2)
data mode (that is, a program must acquire the display station before an
operator can interact with an application).

As indicated in.Chapter 1, there are two types of sessions: (1) an acquired
session, and (2) a session initiated via an incoming procedure start request. An
acquired session has many of the attributes of a data mode display station,
and likewise the session started by an incoming procedure request has many
of the attributes of a command mode display station.

An acquired session, like an acquired data display station, is active only for the
duration of the program that acquired the session, or until that program issues
a release or end of session operation. A session started by an incoming
procedure request, however, can exist for the duration of an entire job, which
can consist of many steps (programs). The parallel between this type of
session and a command display station is that either can serve as a requester
for multiple programs. You can take advantage of this parallel by breaking the
procedure into simpler logical units of work (programs). As with a command
display station, the session serves as a requester for the next job step
whenever the previous job step ends or releases the session. The session is
terminated when the job ends or when any program issues an end of
transaction or an end of session operation. After the session is terminated, the
remaining job steps, if any, run without a requester.

IDs

Most work station file operations require a symbolic ID to direct the data
management to the program or display station for which the output operation
is intended. The ID is a 2-character field that corresponds to the following
naming conventions:

« If the ID is bb (two blanks) and if the program is an SRT program, the
operation is directed to the program’s requester (either the display station or
the session that requested the start of the procedure). This ID is invalid if
the program is an MRT program or has no requester. b is a valid ID for an
accept operation or set timer operation. RPG, however, requires a nonblank
ID for any output or timer request.

« If the ID is nn (where nn is from 00 through 99), the operation is directed to
a session.

« If the ID is na where n is from O through 9 and a is not numeric), the
operation is directed to an acquired session with the corresponding SYMID
value from the SESSION OCL statement.

« If the ID is ax (where a is not numeric and x is any character), the operation
is directed to a display station whose physical ID is ax or to the display
station with the corresponding SYMID value on the WORKSTN OCL
statement.

On returning to the application program following a work station file operation,
data management returns an ID with one of the following values:

« An ID of ax, which represents the physical ID of a display station or the ID
of a display station with the corresponding SYMID value on the WORKSTN
OCL statement.

« An ID of nn, which represents the physical ID assigned by data
management to a session that was started by an incoming procedure
request.

« An ID of na, which represents an acquired session with the corresponding
SYMID value on the SESSION OCL statement.

The ID field is unchanged by data management for an input operation whose

return code indicates that no invites are outstanding or that the time interval
has expired.

Interactive Communications Programming

2-29

©2-30

SRT and MRT Program Considerations

The concept of SRT and MRT programs applies to interactive communications

programs as well as to other display station programs. An incoming procedure
request is treated as a requester just as if a display station were requesting the
procedure.

Programs that are coded as SRT programs that want to handle only display
station requesters can prevent programs from inadvertently requesting the
program by modifying the OCL for that procedure. The IF EVOKED OCL test
can be used to determine whether the procedure request was the result of an
incoming procedure start request or an EVOKE OCL statement. The IF
EVOKED OCL test can also be included in a MRT procedure, but the test is
performed only for the original requester.

If an MRT program is to be started by a session, be certain the MRTMAX
parameter is large enough. If the maximum number of requesters is already
attached to the program, the incoming procedure request is queued until the
program releases one of its active requesters. This queuing could result in
unacceptable delays.

An SRT program can have only one requester but can acquire more display
stations and sessions. The acquired display stations and sessions can be
released explicitly within the program, but the requester is not completely
released until the program ends.

A requester can be released before the program begins if RELEASE-YES is
specified on the ATTR OCL statement. MRT programs can release requesters
within the program. MRT programs should release the display stations and
sessions when processing completes or they will remain attached to the
program until it ends.

Interprogram/Interprocedure Communication

Program information can be passed from program to program and from
program to procedure within a work session (from display station sign on to
display station sign off or for the duration of an evoked session). A full screen
of information or an entire transaction record can be passed from program to
program using the read under format technique. The work station local data
area and user program switches (UPSI) can also be used to pass up to 256
bytes of data or switches from program to program or from program to
procedure. This can be done by using the programming language and OCL
support provided to access and update these areas.

If an application is written as a series of related programs, the local data area
or UPSI can be used to control program flow for a given procedure. An
example of this would be the execution of a nested procedure based on
program logic. Assume that at some point a program determines that the next
procedure to be executed is one named SPECIAL. To run this procedure, the
program first reads the local data area. This ensures that the areas that are not
to be changed by the program will retain their values. Next, the program
moves the literal SPECIAL into a field that is located (for this example) in the
first seven positions of the program-defined local data area buffer. The
program then calls the appropriate subroutine to write the program data area to
the work station local data area. When the program ends, the OCL is read. If
the next statement is // INCLUDE ?L'1,7°?, the next procedure executed will
be the procedure named SPECIAL.

Interactive Communications Programming 2-31

2-32

Read Under Format

A read under format allows one program in a procedure to display a format
and a subsequent program in the procedure to read.it. The first program
displays the format using a normal output operation ($$SEND, or without
suppressing input) and then goes to end of job or releases the display station
or session. While the second program is initiating, the operator keys
information into the displayed format, or the remote program sends data. The
input information is then sent to the second program. This technique can be
effective in hiding the program load time because it can be overlapped with the
input operation.

Read under format can also be used with sessions started by incoming
procedure requests. In this case, one program step in the procedure invites the
session for input and then releases it. The process of initiating the next
program step is overlapped with data arrival on the invited session.

The following steps occur in a read under format:

1. With a normal output operation, the first program displays a format at
the work station or invites a session.

2. The first program either ends if the program is an SRT program or
releases the requester if the program is an MRT program.

3. The second program is initiated. (Data cannot be passed to the second
program from an INCLUDE OCL statement.)

4. The second program performs a normal input operation as the first
operation.

Chapter 3. Interactive Communications Programming with Assembler

The interactive communications portion of an assembler program consists of
preparing data for transmission, processing data that was received, using
macroinstructions to define control blocks and perform operations, and
checking and reacting to the return codes. Because the data preparation and
processing vary greatly by application, those functions are not described in this
chapter.

MACROINSTRUCTIONS

To assist the assembler language programmer in writing interactive
communications programs, the following macroinstructions are provided as part
of the Basic Assembler and Macro Processor Program Product:

+ $DTFW (define an interactive communications DTF)
« $WSIO (perform an interactive communications operation)
« $EVOK (define an evoke parameter list)

The $DTFW and $WSIO macroinstructions are also used for work station input
and output. The $ALOC, $OPEN, $CLOS, and $DTFO macroinstructions are
also required for interactive communications programs. The WS-Y and
FIELD-Y parameters must be specified on the $DTFO macroinstruction; the
other macroinstructions remain unchanged.

The ICRTC-Y parameter must be specified on the $DTFO macroinstruction to
generate the labels for the interactive communications return codes.

The following sections describe the $DTFW, $WSIO, and $EVOK
macroinstructions as used for interactive communications only. More
parameters and operations are available on $DTFW and $WSIO for display
station input and output; for the complete description, see the Basic Assembler
Reference Manual. Each description includes an example or examples of
correctly coded macroinstructions. For examples of how macroinstructions can
be used with specific subsystems, see the appropriate subsystem chapter.

The $DTFW and $WSIO macroinstructions define and modify fields in the

work station DTF. The complete format of the DTF, including field labels is in
the Data Areas and Diagnostic Aids Manual.

Interactive Communications Programming with Assembler 3-1

3-2

$DTFW

The following is the format of the $DTFW macroinstruction as used to
generate an interactive communications DTF:

EILENAME 00000000
[1abel] $DTFW [NAME- { pryg— }] [, UPSI- { gpit UPS|}]
] [(2]
[> CHAIN {DTF st] L™ { gt e
bb ' 0000 '
[» TERMID- {session id }] ETlDTAB- session id table address}]

[’ENTLEN' le ngth}] [TNUM {number of entnes}] [HALTS- {N}]

NAME: Specifies the file name associated with this DTF. Interactive
communications data management does not use this name. If this parameter is
not specified, FILENAME is assumed.

UPSI: Specifies a string of eight binary digits used to condition the opening of
this DTF. When the corresponding bits are on in the switch (as specified in the
SWITCH OCL statement), the DTF is opened. For example, to test bits O, 3, 5,
and 7, you would code UPSI-10010101. If this operand is omitted, zeros are
assumed, and no test is done.

CHAIN: Specifies the address of the next DTF in the chain. If this parameter is
omitted, hex FFFF is assumed, and the chain is ended.

INLEN: Specifies, in decimal, the maximum amount of input data that the user
program is prepared to receive. This number must not be greater than 65535.
Note that although the macroinstruction allows any value up to 65535, the
subsystem restriction is 4075 for all BSC and SNA subsystems and 40952 for
the Intra subsystem. If this parameter is omitted, zeros are assumed, and no
data can be transferred unless this field is modified (by the $WSIO
macroinstruction).

TERMID: Specifies the ID of the session to communicate with. This ID must
be the same as that specified on the SESSION OCL statement if this session is
acquired as a SRT. If this parameter is omitted, blanks are assumed, but
communications on the session can still take place normally if this program is
evoked remotely. Data management assigns an ID to the session with the
remote program that evoked this program, and places that ID in this field
(SWSNAME).

TIDTAB: Specifies the address of the session and work station 1D table.
Programs that support multiple display stations and sessions typically want to
maintain a list of IDs and associated status indicators. By specifying the
TIDTAB, TNUM, and ENTLEN parameters, an area is reserved for this list.
During open, the ID of the session or display station that requested the
program is placed in the first 2 bytes of the first entry in the list. In addition,
the first 2 bits of the third byte are set on. For each WORKSTN and SESSION
OCL statement, an entry is created with each SYMID for the first 2 bytes. The
first bit of the next byte is set on if REQD-YES was specified; the second bit
is set off. The table must be large enough to contain each of these IDs plus
enough additional entries up to the MRTMAX value. After open is complete,
the user program must maintain the list. If an end of session operation is
issued or if a return code of hex 80 or 81 is received, interactive
communications data management places zeros in the first 2 bytes and the
first 2 bits of the third byte in the appropriate entry. The first 2 bytes and the
first 2 bits of the third byte must be set to zeros before the DTF is opened. If
this parameter is omitted, zeros are assumed, and no table is built.

ENTLEN: Specifies, the decimal length (in bytes) of each entry in the session
and work station ID table. If the TIDTAB parameter was specified, ENTLEN
must be specified and should be 3 or greater.

TNUM: Specifies the number of entries in the session and work station ID
table. The TNUM value should be greater than or equal to the maximum
number of concurrent active sessions and attached display stations. If the
TIDTAB parameter was specified, TNUM must also be specified.

HALTS: Specifies whether interactive communications data management
should halt for any permanent communications error (major return code greater
than or equal to hex 80). If Y or YES is specified, data management issues a
system message that allows the operator the option of returning control to the
user program with a permanent error return code or ending the job. If N or NO
is specified, data management logs an informational message to the system
console, and the user program receives control with the permanent error return
code.

Example

The following example shows a DTF that can be used for multiple sessions.
This DTF is part of a DTF chain; the next DTF is a printer DTF. Any permanent
communications errors result in a system message.

ICDTF1 $DTFW CHAIN-PRTDTF, INLEN-256,
HALTS-Y)

The examples shown later in this chapter under $WSIO use this DTF.

Interactive Communications Programming with Assembler

3-3

3-4

$WsSIO

The following is the format of the $WSIO macroinstruction, as used to perform
interactive communications operations:

[labei] swsio [DTF-abel] [,OUTLEN-length] [, INLEN-tength]
[, RcAD-address] [,TERMID-id] [,OPM-modifier]

[Lopccode] [, PL@-address]

DTF: Specifies the address of the leftmost byte of the DTF. This is the label
specified on the $DTFW macroinstruction. If this parameter is omitted, the
address of the DTF is assumed to be in index register 2.

OUTLEN: Specifies, in decimal, the length of the data in the buffer pointed to
by the RCAD parameter. If this parameter is omitted, the field in the DTF
remains unchanged. This parameter is used only for output operations;
however, the DTF field it modifies is also used for input operations. Therefore,
whenever the output operation follows an input operation, this parameter
should be specified.

INLEN: Specifies, in decimal, the maximum amount of input data that the user
program is prepared to receive. This number must not be greater than 65535.
Note that although the macroinstruction allows any value up to 65535, the

subsystem restriction is 4096 for all BSC and SNA subsystems and 40952 for
the Intra subsystem. If this parameter is omitted, the DTF remains unchanged.

RCAD: Specifies the address of the leftmost byte of the user program logical
record buffer. This parameter must be specified in the first $WSIO issued that
requires a record area. Thereafter, if the operand is omitted, the DTF remains
unchanged. If the buffer is also to be used for display station input, it must be
on an 8-byte boundary.

TERMID: Specifies the 2-character ID of the session for which this operation
is intended. This ID should be the same as the SYMID on the corresponding
SESSION OCL statement for acquired sessions or the same as the ID returned
in the DTF following the initial accept operation for a remotely started session.
The ID should be specified in a program that has multiple sessions and/or
display stations to assure that the operation is issued to the correct location. If
this operand is omitted, the DTF remains unchanged. Following each accept
operation, data management returns the ID of the session from which data
was received in this field (SWSNAME).

OPM: Specifies the operation modifier to be associated with this operation. If
this parameter is omitted, the DTF remains unchanged. The following list
shows the valid modifiers for sessions and their descriptions:

Modifier

FMH

ZERO

PTH

Description

Indicates that a function management
header is with the data associated
with the evoke. This modifier is valid
only with the evoke operation for the
SNUF or Intra subsystems.

Resets the operation modifier to
be no modifier.

Indicates that the specified
operations (either GET or PTI)
is a pass-through operation.

OPC: Specifies the operation desired. If this parameter is omitted, the DTF
remains unchanged. For a chart of all the valid assembler operations and the
operation codes that can be specified in this parameter, see Assembler
Operations Summary Chart later in this chapter.

©

Interactive Communications Programming with Assembler 3-5

3-6

The get attributes (GTA) operation returns status information about a specific
session. If the session is active or a SESSION OCL statement exists for the ID
(TERMID) specified, the first 10 bytes of the record area (RCAD) are as
follows:

Position Value Meaning

1 A Session not yet acquired
C Session is an acquired session

Session is an evoked session

2 N Input not invited for this session

1 Input invited for this session,
but no input is available

(0] Invited input is available
for this session

3-10 name Location name (specified during
configuration and on the
SESSION OCL st.atement)

Note: If the ID for the operation is not that of a session, the format of the
attribute information is somewhat different. See the Basic Assembler Reference
Manual for the format of attribute data for display stations.

The set timer (STM) operation specifies an interval of time to wait before
issuing a timer expired return code. The first 6 bytes of the user record area
specify the time interval in the format hhmmss, where hh is hours, mm is
minutes, and ss is seconds. A timer expired return code is returned on the first
accept following expiration of the timer. The TERMID returned with the timer
expired return code has no meaning. If a set timer operation has been issued
and has not yet expired, the old value is discarded and the new interval is set.

PL@: Specifies the address of an associated evoke parameter list. This is the
label on the $EVOK macroinstruction. This parameter must be specified on the
first evoke, and remains unchanged if not specified thereafter.

The following chart shows the operation codes and the corresponding
parameters on the $WSIO macroinstruction. An R indicates the parameter is
required, O indicates optional, | indicates ignored, and the X in the OPM
column indicates that ZERO must be specified; even though a parameter is
required, it does not have to be specified if the parameter was previously
specified and the value is the same.

DTF OUTLEN |INLEN RCAD TERMID OPM OPC

AClI o) | R R | |

ACQ (0] | I | R |

CAN o} | | | R X
CANG 0] | R R R X
CANI 0] | | | R X
EOS (0] | [| R X
EVE 0] R’ | R? R 03
EVG 0] R’ R R? R 03
EVI (0] R’ | R? R 03
EVK o} R’ | R? R (o8
FAIL 0] 0] | (0] R X
GET (0] | R R R o’
GTA (0] | | R* R I

INV (0] | | | R o’
NRP 0] 0O | 0Os R X
NRPG 0] 0s R R R X
NRPI (0] os | 0® R X
PEC 0] R | R? R X
PEF 0] R’ | R? R X
PEX 0] R i R? R X
PFM (0] R | R R X
PFMG 0] R R R R X
PFMI (0] R | R R X
PTG 0] R R R? R X
PTI (0] R’ | R? R o7
PUT 0] R | R? R o’
RCDG 0] | R R R X
RCDI 0] ! | | R X
REL (0] | | | R |

ST™M 0] | | R® | |

bo.v B v B v B v B « B B« B « b o [« [« [o B v B o B v B i o i o [« o o i « s » [v [t v [t w B v S B w i o i o

'If zero, no data accompanies the request, and the RCAD value is ignored.
2Only required if the OUTLEN value is not zero.

3An OPM-FMH can be specified on all evoke operations. FMH indicates that a
function management header is in the record area pointed to by the RCAD
parameter. If OPM is not FMH, it must be ZERO.

4The record area must be at least 10 bytes long.

5Up to 8 bytes of negative response information can be sent. Therefore, the
OUTLEN parameter gives the length and, if it is not zero, the RCAD parameter
gives the address of the leftmost byte of the information to be sent.

5The RCAD parameter points to a 6-byte zoned decimal field that specifies
the timer value being set in the format, hhmmss.

7OPM-PTH can be specified.

Interactive Communications Programming with Assembler

3-7

Examples

The following are examples of the $WSIO macroinstruction. All use the DTF
as defined in the $DTFW example shown previously.

The following example issues an acquire for session 1S.

BEGIN $WSIO DTF-ICDTF1,0PM-ZERO,OPC-ACQ,
TERMID-1S

The following example evokes a transaction on the session that was acquired
and then waits for input. The evoke parameter list begins at label EVKLST (and
is shown in the $EVOK example later in this chapter). INLEN is not specified,
because it was specified on the $DTFW macroinstruction.

EVOK $WSIO DTF-ICDTF1,0PC-EVG,
PLa-EVKLST,RCAD-INBUFF

The following example puts data to the session and transaction previously
begun. The data is 256 bytes long and is stored at label OTBUFF.

OTPT $WSIO DTF-ICDTF1,RCAD-OTBUFF,
OPC-PUT,OUTLEN-256

$EVOK

The $EVOK macroinstruction builds a parameter list to be associated with an
evoke operation. The label on this macroinstruction should be the label
specified on the PL@ parameter of the $WSIO macroinstruction. The following
is the format of the $EVOK macroinstruction: '

EQU
[1abel] sEVOK [V-{ALL}] [, PNAME-address]
DC

[, LNAME-address] [, U1D-address]

[, PWORD-address]

V: Specifies the type of expansion for the parameter list. If EQU is specified,
only the displacement labels are generated, and all other parameters are
ignored. If DC is specified, only the parameter list is generated. If ALL is
specified, both the labels and the parameter list are generated. If this
parameter is omitted, DC is assumed. A $EVOK that includes the equates
must be specified once and only once within a program.

PNAME: Specifies the address of the first character of the name of the remote
procedure to be evoked. The procedure name must be followed by blanks up
to the 8-character length of the field. If this parameter is omitted, an address
of hex FFFE is assumed, and no procedure name is passed on the evoke.

LNAME: Specifies the address of the first character of the library name
associated with the procedure. The library name must be followed by blanks
up to the 8-character length of the field. If this parameter is omitted, an
address of hex FFFE is assumed, and no library name is passed on the evoke.

UID: Specifies the address of the first character of the user ID. The ID must
be followed by blanks up to the 8-character length of the field. If this
parameter is omitted, an address of hex FFFE is assumed, and no user ID is
passed on the evoke.

PWORD: Specifies the address of the first character of the password. The
password must be followed by blanks up to the 8-character length of the field.
If this parameter is omitted, an address of hex FFFE is assumed, and no
password is passed on the evoke.

Examples
The following example shows a $EVOK macroinstruction as used by the evoke
operation shown in a $WSIO example earlier in this chapter. The procedure
name stored as ICPROC is started from the library ICLIB.
EVKLST $EVOK V-ALL,PNAME-ICPROC,
LNAME-ICLIB,UID-S341ID,
PWORD-PASS
The following example is a second evoke parameter list for the same program.
The procedure name stored as R3PR in ICLIB is started on a system that does

not require security.

EVKL2 $EVOK V-DC,PNAME-R3PR,LNAME-ICLIB

Interactive Communications Programming with Assembler 3-9

ASSEMBLER OPERATIONS SUMMARY CHART

The following chart shows all the operations that are valid for assembler, their

operation codes, and all the subsystems for which each operation is valid. An

x in a subsystem column indicates that the system supports the operation. A -
indicates that the subsystem does not support the operation.

For a description of each of these operations (except GTA and STM), see

Chapter 2.
Communications Subsystem
Operation
Assembler Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input ACI X X X
Acquire ACQ X X
Cancel CAN X - - - - - - - X
Cancel then get CANG X - - - - - - - X
Cancel then invite . CANI X - - - - - - - X
End of session EOS X X X X X X X X X
Evoke EVK bs X X X X x2 - X X
Evoke end of transaction EVE X X - X X - - X X
Evoke then get EVG x X X X x2 - X X
Evoke then invite EVI X X X X X x2 - X X
Fail FAIL X - - - - - - X -
Get) GET X X X X X X X X X
Get attributes GTA X X X X X X X
Invite INV X X X X X X X
Negative response NRP X - - - - - - - X
Negative response then get NRPG X - - - - - - -
Negative response then invite NRPI X - - - - - - -
Pass~-through put PUT? X - - - - - - -
Pass-through put then invite PTI? X - - - - - - - X
Pass-through invite INV? x - - - - - - - X
Put PUT X X X X X - X X
Put end of file/chain PEF/PEC X X x bs - X x b's X
Put end of transaction PEX X X - X X - - X X
Put then get PTG X X X X X X X X X
Put then invite PTI X X X X X X X X X
Put FMH PFM X - - - - - X - X
Put FMH then get PFMG X - - - - - X - X
Put FMH then invite PFMI X - - - - - X - X
Release REL X X X X X X
Request to change direction then RCDG X X X - - - -
get
Request to change direction then RCDI X X X - - - - X X
invite
Set timer STM X X X X X X X X X

'Valid only when OPM-PTH is specified with the $WSIO macro.
2valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME
parameter on the SESSION statement is CICS or IMS.

RETURN CODES

Whenever an interactive communications operation is issued (using the $WSIO
macroinstruction), the next instruction should check the return code. The return
code indicates the result of the operation and/or the status of the session or
transaction. For general information about return codes, see Checking Return
Codes in Chapter 2.

Each return code contains two parts (a major code and a minor code), and at
least the major code should be checked. The major code is located at offset
$WSRTC in the DTF, and the minor code is at offset $WSRSIQ in the DTF.
For a description of each return code that can be returned for a subsystem,
refer to the last section of that subsystem chapter. A chart in Appendix A
shows which codes are valid for each subsystem.

Interactive Communications Programming with Assembler 3-11

INTERACTIVE COMMUNICATIONS ASSEMBLER SUBROUTINES

Because of the additional capability and flexibility available in the assembler
‘interactive communications support, you might want to write subroutines for
high-level language programs. The considerations and restrictions for writing
interactive communications subroutines must be carefully observed to make

this approach feasible. The recommended approach is to write a complete
program in assembler, and then use the Intra subsystem to communicate to

the high-level language program. If, however, you use an assembler
subroutine, keep the following considerations in mind:

« All input operations should be done in the same place, that is, either the
subroutine or the main program. If there is a work station file in the main
program, input should be done in the main program. Any input that is done
in the subroutine should include thorough error recovery; the subroutine
must also consider the effects of errors and.exceptions on the main
program.

« The subroutine cannot issue a release or end of session operation, unless
the DTF is in the subroutine; that is, the main program has no work station
file.

« The DTF must reside in a portion of the program that is not overlaid.

« If the subroutine and the main program both have a work station file, the
format member name ($WSFMBR) in the subroutine DTF must be set to
blanks before the DTF is opened.

CODING EXAMPLES

The following program is a sample interactive communications program written
in assembler language. This program acquires a session with the remote
system and sends a request. The program receives the data, saves it in a disk
file, and then releases the session. Presumably a subsequent job or job step
processes the data from the disk file. The SESSION OCL statement, assuming
all subsystem-dependent parameters were configured correctly, would be:

// SESSION LOCATION-RW34PC,SYMID-1S

IEM

1BM System/34 Basic Assembler Coding Form

Gx21-9279-
Printed in U.8.A.

PROGRAM KEYING GRAPHIC l l | race | or L]
PROGRAMMER an INSTRUCTIONS | CHARACTER l I I CARD ELECTRO NUMBER I
STATEMENT
Name Operation Oporand Romarks Seauence
123 456 7 8]oh011 1213 14[15{16 17 16 19 20 21 22 23 24 26 26 27 26 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 BS 56 57 58 59 60 61 62 63 64 65 06 67 00 69 7071 72 73 74 76 76 77 78 79 80 81 62 83 64 85 86 87]ef80 90 91 92 93 94 9596

ElQ |

1]

[T
o lae

[T

0 e 3 el a¢io¢ pie] i 9] 0 o oo b 3 o il
ol P 1 [| il
ll*l LILIO/CIA ‘E O/PEIN| [TME| [DITIF '}s]ﬁ
M -
(3¢ 3¢ 3¢ e wi2e a2 ¢ el o e e el | 3903 W o ot e3¢ ol
LiolC - DIKIDITIF]L C F|
D[T[F[- 11 EN [FILE
WK w4 o Eacalon 1] a3 ¢ o o e o o e et o] ok 2 e
1 JHEREREN TTIT 1 jHRNNAREEER
(W ACQUTRE IFLE ESSITIOIN [AIND] E[VO[KE [TIRE| [REM TE~£H§C Cl
& 11] |
a6 1 ot oo 9 a3 | oo oo o o o e o ok o] o _v_.*!!l o | |
AICIQIULIRIE] | [$MWSITIo [O[T[F-(T|CIDIT]F], [TIE[RMID-[2[S!, j0PC|-|ACIE) ACIQUIIRE] SIEISISITIOIN
- LT [[$MSIRTICIC l),'sl' - ICIHE
N D101 J IIF
{EIVIOKE HEH —z%i, L0/~ [EIVIKILISTT], [TEIRMI(D- 115 EIVIOKE] [T/ NSIACTTITION|
Tl 1 ISmSIRITICIC], X[RI2D], X[1@l HECIK] |F BEESIETM
NIE EINIDISIE|S) HGETuREG EIS[SITION!

123 456 789 101112131415161718 19 20 21 22 23 24 26 26 27 26 29 30 31 32 33 34 36 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 5960 61 62 63 64 66 66 67 68 69 70 71 72 73 74 T8 76 77 78

90 8102 83 84 85 86 8788

90 91 92 93 94 05 98

IBM

1BM System/34 Basic Assembler Coding Form

GX21-9279
Printed in US.A.

EN

HE

PROGRAM xaviNg aRAPHIC [T TJeam 2 o U j
PROGRAMMER lnrl INSTRUCTIONS | CHARACTER l I I CARD ELECTRO NUMBER —I
STATEMENT
Name Operation Operand Remarks Sequence
129 456 s 8000111213 14{15]18 17 18 19 20 21 22 23 24 28 26 27 26 29 30 31 32 33 34 35 36 37 30 39 40 41 42 43 44 45 46 47 48 49 60 81 52 3 64 66 50 b7 58 59 80 81 67 63 64 65 068 6/ 68 69 7071 72 7 74 75 76 77 78 79 80 81 62 83 84 85 86 87]aglew 90 91 92 93 94 9596|

P

SIUL

W

O

]
ml
=]

oo |

DK

==

Fi

S T lIalwn

L X

I
XA NA

K
K3

i

X

pa]]

E

Sis|

J;QHJ I

bér

£

EE
11

123456 7 8910111213 14151617 18 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 56 56 57 58 5960 61 62 63 64 65 66 67 66 69 70 71 72 73 74 76 76 77 78 7980 81 82 83 84 85 66 8758 8 90 91 92 93 94 95 9

Interactive Communications Programming with Assembler

3-13

GX21-9278-

IBK IBM System/34 Basic Assembler Coding Form Printed in U.S.A.

s

PROGRAM KEYING GRAPHIC] I L l'mx 2 oF |+

PROGRAMMER l DATE INSTRUCTIONS | CHARACTER l | L l CARD ELECTRO NUMBER
STATEMENT
Neme Operation Operand Remarks Sequence
12345 6 7 890011 12131415116 17 18 19 20 21 22 23 24 25 26 27 26 29 30 31 32 33 34 36 36 37 36 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 707 72 73 74 75 76 77 76 79 80 81 B2 63 84 85 86 87]ag8Y 90 91 92 93 94 9598

SIS Fl- cl-1e STION | IUEI l

piice
B

F- PRINT [SIEIS €
J Li0S

“%I_)! X)Gr

1]

0o Cclio IC
—
+)
nl{=Juv]ia]

s (3 [0
=

-

T
[
[}
(723
—t

|
[k

743
3
i
]
>
=l
]
i

]
Y
[
il
X
1
|
&)
=
.
[
D
(72
=

C \

ﬂ,—: 0 -] T

T AL . HE 3 M LTS
T%I - |- -Iv rﬁ REEEE

] [T T 1T T

m)|
0
R
e
=
N
[
fale=)
0
m

=

WLl N

T
EV

]
0y
v
=)

tmmn
>
)

123456 7 8 910111213141516 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 47 43 44 45 46 47 48 4950 51 52 53 54 55 56 57 58 5960 61 62 63 64 66 66 67 68 69 70 71 72 73 74 7576 77 78 7980 81 62 83 84 85 85 8760 $9 90 91 92 93 94 95 96

Gx21-9278-
IB}% 1BM System/34 Basic Assembler Coding Form Printed in US.A.
b
PROGRAM | xevine [anaenic T 11 pace Ll or U
PROGRAMMER I DATE | INSTRUCTIONS Icuum:u I I | I CARD ELECTRO NUMBER
STATEMENT
Name Operstion Operand Remarks Sequence
2 5 6 7 8|9 101112 13 14|16}16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 5) 52 53 54 65 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74 75 76 77 78 79 B0 81 62 83 84 85 86 87|69 90 91 92 93 94 95 96|

ool
XL

e

[
0

“
)
=
Y
|
W

XL
CIL

N
_%

|
OO

)
ESI=
T
72
=
=
e

(=3

m
()

I
OK)

123456 7 8 9101112131415 1617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 3¢ 35 36 37 38 39 40 41 42 43 44 45 46 47 48 4950 51 52 53 54 §5 56 57 56 5960 61 62 63 64 65 66 67 68 69 70 71 72 73 74 7576 77 78 7980 81 82 83 84 85 56 8780 80 90 91 92 93 94 95 96

Chapter 4. Interactive Communications Programming with BASIC

To use the BASIC language with the interactive communications feature, do
the following:

« Configure and enable the subsystem. (These operations are described in the
appropriate subsystem chapter.)

« Begin a communications session by opening an SSP-ICF file.

« Begin a program or procedure at the remote system and start a
communications transaction. (If you are using the Intra subsystem, the
program or procedure being started is in the same System/34.)

« Send or receive data.

« Check return codes.

« End the communications transaction.

« End the communications session.

The operations you do to process data before it is sent and after it is received

are the same as the operations. you do when you are not using data

communications. Therefore, these operations are not described in this manual.

Only the operations you need for interactive communications are described

here. Interactive communications operations are a lot like work station
operations.

Interactive Communications Programming with BASIC 4-1

4-2

BEGINNING A SESSION

To begin (acquire) a session, use the OPEN statement to open the SSP-ICF file
you are using for this session. Each OPEN statement begins one session
between your program and the remote system. If your program is evoked by
an incoming procedure start request, no session ID or location name is needed
on the OPEN statement.

The following is the format of the OPEN statement and a description of each
SSP-ICF parameter. See the BASIC Reference Manual for a description of
other OPEN statement parameters.

=gession 1D

=current WSID$ | , RECL=record length”
, LOC=location name

»

. .. WS
OPEN #file-ref: SESSlON}

EXIT line reference
[,OUTIN] [,INTERNAL] [,SEQUENTIAL] [lOERR line reference]

Parameter Meaning

WS or SESSION Input is either from a work station or an
SSP-ICF session, and output is to either a
work station or an SSP-ICF session.

ID The 2-character identifier for the session
being started. This is the same as the
identifier (SYMID) on the SESSION OCL
statement. If you do not enter a session
ID or if the program is evoked by the
remote system, the current value of
WSID$ is the session ID.

LOC The name of the remote location you will
be communicating with during this
session. If you enter a location name, a
SESSION OCL statement is not required
for the Intra (unless you need to specify
BATCH-YES on the SESSION statement),
Peer, or CCP subsystems.

a RECL The length of the longest record (or
system message) you expect to transmit
or receive. A system message is 75 bytes
for the Intra subsystem.

Note: If you enter a LIBR or KEYS parameter in the OPEN statement, they are
ignored.

OPEN Statement Examples

Example 1:

OPEN #1: "SESSION,ID=1S,RECL§5" IOERR ICEERR

An example SESSION OCL statement for this OPEN statement is:

// SESSION LOCATION-lNTRA,SYMI}-1S,BATCH—YES
Example 2:

OPEN #1: "SESSION,RECL=255" IOERR ICFERR (Evoked Program)
A SESSION statement is not required for the evoked session; however, an
evoked program can begin (acquire) sessions once evoked. In this case, a
SESSION statement may be required for each additional session that the
evoked program begins.
n Open interactive communications file #1.
u In the first example, the session ID is 1S. In the second example, the ID
is set to the current value of WSID$ when your program is evoked by the
remote system. The value in WSID$ is set by SSP-ICF and BASIC.

The maximum record length that can be sent or received is 255 bytes.

n The program goes to ICFERR if an error occurs.

Interactive Communications Programming with BASIC 4-3

4-4

WRITE STATEMENT FORMAT

The following is the format of the WRITE statement and a description of the
SSP-ICF FORMAT parameter. See the BASIC Reference Manual for a

description of other WRITE statement parameters.

) , USING fline reference}
WRITE #file-ref [4

character-exp

[
MAT array name) | , {MAT array name). ..
variable variable

FORMAT format name] :

FORMAT is the name of the format for the SSP-ICF operation. See BASIC
Operations Summary Chart later in this chapter for a list of the operations you
can use with the FORMAT parameter. Any of the operations beginning with $$
can be used.

The WRITE statement is used in many of the examples that follow.

BEGINNING A PROGRAM OR PROCEDURE AT THE REMOTE SYSTEM

To begin a program or procedure at the remote system, and start a
communications transaction, use the WRITE statement to do one of the
following evoke operations. See WRITE Statement Format in this chapter for
the format of the WRITE statement.

« $$EVOKNI performs an evoke operation, which begins a program or
procedure at the remote system.

« $$EVOK performs an evoke then invite operation, which begins a program or
procedure at the remote system and tells the remote system to transmit

first.

o $$EVOKET performs an evoke end of transaction operation, which begins a
program or procedure at the remote system, and then ends the

communications transaction.

If your program is evoked by an incoming procedure start request, you do not
use the evoke operation since your program is started by the remote system.

With an evoke operation you must send the following parameters:

Positions

1 through 8

9 through 16

17 through 24

25 through 32

33 through xxxx

Meaning

The name of the program or procedure to be
started (left-justified)

The password you use to sign onto the
remote system (left-justified)

The user ID you use to sign onto the remote
system (left-justified)

The name of the remote system library that
contains the program or procedure to be
started (left-justified)

User data or positional procedure
parameters; leading blanks are ignored.

If a field is not used, enter the correct number of blanks for the unused field.

Interactive Communications Programming with BASIC

4-5

The following is an example of starting a program or procedure at the remote
system.

1]

A

30 WRITE #1,USING 40 FORMAT “$$EVOK'': "BASICR",PASS$, USERIDS$, &
&"#LIBRARY",”"ICFPROG,USERLIB" I0ERR ICFERR

40 FORM 4*C 8,C 20 4 '

B B

Write data to interactive communications file #1 using the FORM
statement at line 40.

Begin the procedure BASICR, which is in #LIBRARY.

(- I~ B -

The password and user ID needed to sign onto the remote system.

The BASIC program (ICFPROG) to be called by the procedure BASICR is
in the user library (USERLIB).

B O

Send four fields of 8 characters each (evoke parameters).

Send 20 bytes of positional parameters.

If an error occurs during the WRITE operation, the program goes to
ICFERR.

[~

Sending Program Data with the Evoke Operation

Data sent with the evoke operation consists of either parameters to be used by
the evoked procedure, as shown in the previous example, or data to be used
by the evoked program. If you send procedure parameters, answer no to the
prompt PROGRAM DATA IN THE INCLUDE STATEMENTS on the end of

the job option menu of the SEU procedure or specify PDATA-NO on the
COPY control statement for SMAINT. If you send program data, answer yes to
the SEU prompt for program data or specify PDATA-YES on the COPY control
statement. See Writing Procedures to be Started by Incoming Procedure
Requests in Chapter 2 for more information.

BASICR Procedure: You cannot use the BASICR procedure if you send
program. data with the evoke operation, because this procedure expects
procedural parameters. The following is an example of a procedure that can be
used when program data is sent:

// LIBRARY NAME-#BLLIB

// MEMBER PROGRAM-#BL#M1,PROGRAM2-#BL#M2,USER1-#BL#M1

// LIBRARY NAME-user library——Jf]]

// REGION SIZE-BASIC region size—J}

// LOAD #BLSIC

// INCLUDE procedure member—E}

// RUN

// BASIC MEMBER-name,LIBRARY -user library WORKAREA-size,STATUS-Y or N

// END a a

You must supply the information for the following parameters:

Enter the name of the current user library.

(~ I -

Enter the BASIC region size (24 to 64).

a

Enter the procedure name to be included. If there is no procedure name
to be included, you can delete this statement.

Enter the name of your BASIC program.

I >

Enter the name of the library that contains your BASIC program.

Enter the size of the work area needed for your program.

-]

Enter Y if you want status information printed. Enter N if you do not
want status information printed.

Interactive Communications Programming with BASIC

4-8

SENDING DATA

To send a data record to a remote system or program, use the WRITE
statement and one of the following send operations. See WRITE Statement
Format in this chapter for the format of the WRITE statement.

« $$SENDNI performs a put operation, which sends one record to the
program or procedure at the remote system.

o $$SEND performs a put then invite operation, which sends one record to the
program or procedure at the remote system and tells the remote system to
transmit.

o $$SENDE performs a put end of file operation, which ends the file when you
use BSC. It performs a put end of chain operation, which ends the chain
when you use SNA.

o $$SENDET performs a put end of transaction operation, which ends the
‘ program or procedure at the remote system.

o $$SENDNF performs a put function management header operation, which
sends one record containing a functior, management header to the remote
system. The $SSENDNF operation is valid with the Finance, Intra, and
SNUF subsystems only.

o $$SENDFM performs a put function management header then invite
operation, which sends one record containing a function management
header to the remote system and tells the remote system to transmit. The
$$SENDFM operation is valid with the Finance, Intra, and SNUF subsystems
only.

For example, the following WRITE statement is used to send one data record:

A A A

36 WRITE #1, USING 40‘,’ FORMAT “$$SEND"": DATA$‘ IOERR ICFERR
40 FORM C 255
e e/

Write to interactive communications file #1 using the FORM statement at
line 40.

Send the data record in DATA$ and tell the remote system to transmit.

Ba =2

If an error occurs, the program goes to ICFERR.

The length of the data record in DATAS is 255 bytes.

RECEIVING DATA

To receive a data record, use the READ statement to get the data record from
an SSP-ICF session. If you precede the READ statement with a WAITIO
statement, the program waits until data is available from any work station or
SSP-ICF session. If you do not precede the READ statement with the WAITIO
statement, the program waits until data is available from the work station or
SSP-ICF session corresponding to the file number entered in the OPEN
statement. The WAITIO statement also sets the intrinsic function FILENUM to
the file reference of the communications session from which data is to be read.

For example, the following READ and WAITIO statements read one data
record into the variable DATAS.

30 WAITIO IOERR/ICFERR
40 READ #FILENUM, USING 50: DATAS IOERR ICFERR
50 FORM V 255

The WAITIO statement at line 30 causes the READ statement at line 40
to read data from any work station or SSP-ICF session. Without the
WAITIO statement at line 30, the READ statement waits until data is
available from the work station or SSP-ICF session assigned to the file
reference (#FILENUM) specified in the READ statement, then reads the
data into DATAS$.

n The intrinsic function FILENUM contains the file reference of the work
station or session from which the data is to be read.

Up to 255 characters are read into the variable DATA$.

n Use the V parameter on the FORM statement if you do not know the
length of the data record received.

For example, the following statements read a system message, which can
be up to 80 characters, into the variable MESSAGES$:

40 IF ERR=70 THEN&
&READ #1,USING “"FORM V 80': MESSAGES$ IOERR ICFERR

Q If a system message is received (ERR=70), then read the message
into MESSAGES$.

@ Up to 80 characters of the system message are read.

Interactive Communications Programming with BASIC

4-9

4-10

Notes About Receiving Data

1.

You should use EOF with the READ statement to test for an end of
transaction received from the remote system (SSP-ICF return code xx08).
If you want to do another evoke operation before you close the
communications file, use another READ statement with the EOF clause
before you do the evoke operation.

You can use the STOPS intrinsic function to test for a major return code
of 02 (subsystem disable pending). If STOP$ equals Y, a 02 major return
code has been issued to your program indicating that a system shut
down has been requested; if not, STOP$ equals N.

The READ statement does an SSP-ICF get operation. And the WAITIO
statement followed by the READ statement does an SSP-ICF accept
operation. See Chapter 2 for more information about the get and accept
operations.

CHECKING RETURN CODES

You should use the IOERR parameter on all READ, REREAD, WRITE, OPEN,
CLOSE, or WAITIO statements to check the status of the input or output
operation. Use the RETCODES$, ERR, or FILE intrinsic function to determine the
execution status of the last operation. The meaning of the intrinsic functions
are:

« RETCODES$ contains the status of the last SSP-ICF operation. The status
tells whether the operation was successful or unsuccessful and gives you
additional information about the results of the operation.

« ERR contains the meaning of the error for the last unsuccessful BASIC
operation.

« FILE indicates only that the last operation was either successful or
unsuccessful. If FILE is O, the operation was successful; if file is 1, the
operation was unsuccessful.

The value in RETCODES is the 4-digit (major and minor) SSP-ICF return code.
These codes are described in each subsystem chapter. A summary chart in
Appendix A shows all of the return codes and shows which return codes are
valid for each subsystem. For general information about return codes, read
Checking Return Codes in Chapter 2.

The value in ERR depends upon the SSP-ICF return code in RETCODE$ as
shown in the following chart. Use this chart to determine the SSP-ICF return
code that corresponds to the ERR value. Then see the description of the
SSP-ICF return code in your subsystem chapter.

For an example of how to check return codes, see How to Write a BASIC
Program that Uses the Intra Subsystem in Chapter 7.

Interactive Communications Programming with BASIC 4-11

RETCODE$ ERR

RETCODE$ ERR

RETCODE$ ERR

' Value Value Value Value Value Value
(ICF) (BASIC) | (ICF) (BASIC) | (ICF) (BASIC)
0000 0 0212 0 8192 55
0001 0220 70 8193
0003 0221 8194
0004 0228 8195
0005 0230 8196
0007 0231 8197
0008 0238 8198
000C 0300 0 8199
0010 69 0301 819A
0012 0 0302 71 819B
0020 70 0303 54 819C
0021 0308 819D
0028 0310 73 819E
0030 0402 71 819F
0031 0411 70 81A3
0038 0412 71 81B5
0100 68 0800 0 81B6
0101 1100 64 81B8
0103 2800 55 81B9
0104 3401 55 81BA
0105 8081 55 81BC
0107 8082 820A 55
0108 8083 820D
010C 8084 8213 72
0118 80BD 8215
0200 o 8136 55 821E 55
0201 8137 8233
0203 8183 8236
0204 8184 8281
0205 8185 72 8282
0207 8186 8283
0208 8187 55 8285 72
020C 8191 8286

RETCODE$ ERR RETCODE$ ERR RETCODE$ ERR
Value Value Value Value Value Value
(ICF) (BASIC) | (ICF) (BASIC) | (ICF) (BASIC)
8288 72 82B0 55 832A 7
8289 55 82B1 72 832B

828A 82B2 832C

828B 82B3 832D

828C 82B4 832E

828D 82BB 55 832F

828E 82BC 8330 72
828F 830B 71 8331

8290 830D 8332

8291 830E 8333

8293 8313 8334

8296 8314 8336

8297 8315 8338

829B 8316 8339

829F 8317 833C

82A0 8319 70 8383

82A1 831A 8384

82A2 831B 72 8385

82A5 831C 70 8386

82A6 831D 71 8391

82A7 72 831E 8392

82A8 831F 8397

82A9 55 8320 8398

82AA 72 8322 8399

82AB 8323 839A

82AC 8324 839B

82AD 8326 839C

82AE 55 8327 83A7

82AF 8329 83B0

Interactive Communications Programming with BASIC 4-13

ENDING A COMMUNICATIONS TRANSACTION

Befpre you end yoUi' pfbgram, you must end the communications transaction
by using the $$SENDET or $$EVOKET operation with the WRITE statement, or
the remote system must end the transaction. For example:

i your program is done transmitting data, use the $$SENDET operation to
tell the remote system that you have no more data to send.

« If your program is receiving data, check for an end of transaction received
from the remote system to determine when the remote system is done
transmitting (see Receiving Data in this chapter).

« If you want to start a program or procedure at the remote system and then

end the transaction, use the $$EVOKET operation. For example:

— Your program starts program A at the remote system and sends data to
program A.

— Program A stores the data on disk.

— When your program is done sending data to program A, your program
uses the $$SENDET to end program A.

— Your program then uses the $$EVOKET operation to start program B at
the remote system.

— Program B processes the data that program A stored on disk previously.

Once the transaction has ended, you can end the session or start another
transaction with this or another session.

The following statement sends an end of transaction and, therefore, tells the
remote system that this is the end of this communications transaction:

30 WRITE #1, FORMAT ""$$SENDET"': IOERR ICFERR

See Ending a Session in Chapter 2 for more information about ending a
transaction.

ENDING A SESSION

To end a session with a remote system, use the CLOSE statement, or use the
$$EOS operation followed by the CLOSE statement. See Ending a Session in
Chapter 2 for more information about ending a session.

Note: The $$REL operation cannot be used with BASIC; however, the CLOSE
statement is the same as the $$REL operation.

The CLOSE statement ends the session and closes the communications file.
All transactions with the program at the remote system must be complete

before you end the session.

For example, this CLOSE statement closes (releases) the SSP-ICF session for
file #1:

99 CLOSE #1: I0ERR ICFERR

If an error occurs when closing the session, your program goes to ICFERR,
and BASIC issues a $$EOS operation to end the session.

Interactive Communications Programming with BASIC ~ 4-15

OTHER SSP-ICF OPERATIONS YOU CAN DO

The following are optional operations you can do with SSP-ICF. Use the
WRITE statement to do these operations. See WRITE Statement Format in this
chapter for the format of the WRITE statement.

.« Ask for a change in transmission direction
+ Use SSP-ICF or work station timer operations

» Send a negative response to the remote system (used only with the Intra
and SNUF subsystems)

« Send a fail operation (used only with the Intra and Peer subsystems)

« Cancel a group (chain) of data records (used only with the Intra and SNUF
subsystems)

« Use pass-through operations (used only with the Intra and SNUF
subsystems)

Asking for a Change in Transmission Direction

If your program is receiving data, you can ask the remote system to stop
sending so your program can send data. To ask for a change in the direction
of transmission, use the WRITE statement to do a request to change direction
operation ($$RCD). After you issue the $$RCD operation, your program must
continue to receive data until an end of transaction or change of direction
indication is received from the remote system. There are no parameters or
data needed with the $3RCD operation. See Request to Change Direction
Operation in Chapter 2 for more information about this operation.

For example, this statement asks the remote system to stop sending so that
your program can send data:

30 WRITE #1,FORMAT “$$RCD": IOERR ICFERR

Using SSP-ICF and Work Station Timer Operations

To use the SSP-ICF and work station timer, use the $$TIMER operation or the
TIMER intrinsic function to set the timer, and use the WAITIO statement to
determine when the time has ended. Return code 0310 (RETCODES$) or 73
(ERR) is returned when the time has ended.

Example of Using the $$TIMER Operation

If you use the $STIMER operation, a work station or session must be attached
to your program before you can set the time.

You specify the time in hours, minutes, and seconds in the format:
hhmmss
For example:

K¥—o030 A$= "013000"
040 WRITE #1,USING 50,FORMAT "“$$TIMER": A$ IOERR ICFERR

050 FORM C 6—}
060 WAITIO 10ERR TIME

:
910 TIME: IF ERR <> 73 THEN GO TO ICFERR

The timer is set to 1 hour, 30 minutes, and 00 seconds.

There are 6 characters used to set the time (hhmmss).

If an 1/0 error occurs when the WAITIO statement is executed, go to
TIME and check for the timer return code.

a

If the return code does not indicate that the timer expired (ERR is not
73), go to ICFERR. If the return code does indicate the time expired,
perform operations based upon the reason for the time-out. For
example, display a message indicating that the remote system did not
respond within the time allowed.

Interactive Communications Programming with BASIC 4-17

Example of Using the TIMER Intrinsic Function

If you use the TIMER intrinsic function to set the timer, a work station or
session does not have to be attached to the program; however SSP-ICF must
be active. To set the timer, use the TIMER intrinsic function in the format:

TIMER(time$), where time$ is the time in the format "hhmmss’’. For example:

030 TIME=TIMER("013000"")
040 IF TIME=1 THEN PRINT "SSP-ICF IS NOT ACTIVE” ELSE WAITIO |OERR TIME1
. e, e’ . v o

4]

910 TIME1: IF ERR<>73 THEN GOTO ICFERR
h—v'-—d

The timer is set to 1 hour, 30 minutes, and 00 seconds.

If SSP-ICF is not active, the timer is not set and TIME is set to 1. If
TIME is 1, print a message.

(~ I -

H

If TIME is O, the timer is set and the WAITIO statement is executed.

If a return code is returned when the WAITIO statement is executed, go
to TIME1 and check the return code.

]

If the return code does not indicate that the timer expired (ERR is not
73), go to ICFERR. If the return code does indicate the time expired,
perform operations based upon the reason for the time-out. For
example, display a message indicating that the remote system did not
respond within the time allowed.

Sending a Negative Response

To tell the remote system or program that your program found something
wrong with the data it received (to send a negative response), use one of the
following operations. Both types of negative response operations are for the

Intra and SNUF subsystems only. See Negative Response Operation in Chapter
2 for more information.

« $$NRSPNI performs a negative response operation, which transmits a
negative response to the remote system or program.

« $$NRSP performs a negative response then invite operation, which transmits
a negative response and tells the remote system or program to transmit.

Optional sense data can be sent with the negative response. The following is
the format of the data:

Data Positions Meaning

1 through 8 The sense data transmitted with the negative
response. The sense data must begin with
10xx, 08xx, or 0000 (for the Intra and SNUF
subsystems). All other positions are user
defined.

For example, the following statements send a negative response with the
sense data 08008000:

20 SENSE$="08008000"

30 WRITE #1,USING 40,FORMAT “$$NRSPNI"": SENSE$ IOERR ICFERR
40 FORM C 8

Interactive Communications Programming with BASIC 4-19

4-20

Sending a Fail Operagion

To tell the remote system that your program detected an abnormal condition
(for example, received incorrect data), use the $$FAIL operation. The fail
operation does not need any parameters, and no data can be sent with the fail
operation. The fail operation is used only with the Intra and Peer subsystems.
See Fail Operation in Chapter 2 for more information. ’

For example, the following statement sends a fail operation to SSP-ICF:

30 WRITE #1,FORMAT “"$$FAIL": IOERR ICFERR

Issuing a Cancel Operation

To cancel a group of records, use one of the following cancel operations. The
cancel operation does not need any parameters or data. The cancel operation
is used only with the Intra and SNUF subsystems. See Cancel Operation in -
Chapter 2 for more information.

« $$CANLNI performs a cancel operation, which cancels the current group
(chain) of data records.

« $$CANL performs a cancel then invite operation, which cancels the current
group of data records and allows the remote system or program to transmit.

For example, the following statement cancels the current chain of records:

30 WRITE #1,FORMAT "“$$CANL": IOERR ICFERR

Using Pass-Through Operations

Pass-through operations are used only with the Intra and SNUF subsystems.
See Appendix B for a description of pass-through operations.

BASIC OPERATIONS SUMMARY CHART

The following chart shows the valid BASIC operations for each subsystem. An
x in a subsystem column indicates the subsystem supports the operation. A -

indicates the subsystem does not support the operation.

Communications Subsystem

Operation

BASIC Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input WAITIO!
Acquire OPEN X
Cancel $SCANLNI - - - - - - - X
Cancel then invite $$CANL - - - - - - - X
End of session $$EOS X x X X X X X
Evoke $SEVOKNI X X x2 -
Evoke end of transaction $$SEVOKET - - -
Evoke then invite $$SEVOK X x2 -
Fail $SFAIL - - - - - - -
Get READ
Invite® x
Negative response $SNRSPNI - - - - - - -
Negative response then invite $ENRSP — - - - - - -
Pass-through put then invite $SPTPUT X - - - - - - - X
Pass-through invite $SPTINV X - - - - - - - X
Put $SSENDNI X x x X - X X
Put end of file/chain $$SSENDE X X X - X X X X
Put end of transaction $$SSENDET X X - X X - - X X
Put FMH $SSENDNF X - - - - - X - X
Put FMH then invite $$SSENDFM X - - - - - X - x
Put then invite $SSEND X X X X x X X X x
Release CLOSE X X X X X X
Request to change direction then $$RCD X - - - - X

invite
Set timer $$TIMER? X X x X X X X X x

'Valid only when followed by a READ operation.
2yalid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME
parameter on the SESSION statement is CICS or IMS.
3valid only when used with another operation or by using a $$SEND operation with a record length of 0.

4The timer can also be set by the TIMER intrinsic function.

Interactive Communications Programming with BASIC

4-21

4-22

* NOTES ABOUT WRITING BASIC PROGRAMS FOR SSP-ICF

1. You can use the WSID intrinsic functlon to determine the ID of the most
recently accessed sessnon For example

40 WAITIO IOERR ICFERR
50 A$=WSID$

The value of A$ is the ID of the last SSP-ICF session accessed by the
WAITIO statement.

2. You can use the FILENUM intrinsic function to determine the file
reference of the most recently accessed session.

3. You should use the EXIT or IOERR parameter on all SSP-ICF I/0
statements. See Checking Return Codes in this chapter for more
information.

4. You can use the ATTRIBUTES$ intrinsic function to determine the status
of a session. See the BASIC Reference Manual for a description of the
ATTRIBUTES$ intrinsic function.

5. Do not use PAUSE, BREAK, PRINT, INPUT, LINPUT, or TRACE in an
evoked program (by a remote procedure start request) to put information
on the display station screen.

CODING EXAMPLES

See How to Write Programs that Use the Intra Subsystem for an example of
how to write a BASIC program that uses the Intra subsystem. The same
programming example described in the Intra chapter is shown in the other
subsystem chapters if any changes are needed to allow communications with
that remote system.

Chapter 5. Interactive Communications Programming with COBOL

The interactive communications portion of a COBOL program consists of
preparing data for transmission, processing data that was received, using the
predefined formats and work station operations to perform communications
operations, and properly handling return codes. Because the data preparation
and processing vary greatly by application, those functions are not described in
this manual. The processing of interactive communications operations is very
similar to that for work station operations. The file used is a TRANSACTION
file, the input operations are identical, and the output operations are performed
via formats. TRANSACTION file programming considerations are in the COBOL
Reference Manual.

FILE DEFINITION
The TRANSACTION file must be defined by a SELECT statement in the
FILE-CONTROL paragraph. Only one TRANSACTION file is allowed per
program. The format of the SELECT statement for a TRANSACTION file using
interactive communications is:
SELECT file-name
ASSIGN TO assignment-name
ORGANIZATION IS TRANSACTION
[FILE STATUS IS data-name-1 [,data-name-4]]

[ACCE§S MODE 1S SEQUENTIAL]

[CONTROL-AREA IS data-name-5].

Interactive Communications Programming with COBOL 5-1

ASSIGN Clause

The ASSIGN clause associates the TRANSACTION file with devices through
the use of the assignment-name. Assignment-name has the following
structure:

type.[name]
name-formats

The value for each field is as follows:
Type: WORKSTATION

Name: 1- to 8-character name that specifies the external
name of the SFGR generated load member that contains
the screen formats. This field is not required if
the file is to be used with sessions only.

Formats: A two-digit numeric value that is equal to or
or greater than the number of formats in the
SFGR load member referenced in the name field.
The maximum value and the default value for the
number of formats is 32. This field is not
required if the file is to be used with sessions
only.

ORGANIZATION Clause

The ORGANIZATION clause specifies the logical structure of a file.
TRANSACTION organization signifies user-controlled input and output of
records.

FILE STATUS Clause

The FILE STATUS clause allows you to monitor the execution of input and
output operations from or to a file. The FILE STATUS area consists of a
2-byte COBOL return code (data-name-1) and a 4-byte IBM file status code
(data-name-4) that contains the interactive communications return code. The
interactive communications return code consists of two 2-byte return codes
resulting from TRANSACTION file processing (a major and minor return code).

5-2

ACCESS MODE Clause

The ACCESS MODE clause must always be SEQUENTIAL for TRANSACTION
files.

CONTROL-AREA Clause

The CONTROL-AREA clause specifies the 12-byte data item that receives
feedback information after each TRANSACTION file input operation. The third
and fourth characters of this area contain the symbolic ID of the session or
display station from which input was obtained. The symbolic ID must be
defined as a 2-byte alphanumeric data item. The remainder of the characters
contain information céncerning display stations only, and are described in the
COBOL Reference Manual. For an example of how to code this control area,
see the sample programs at the end of this chapter.

FORMATS

Access to some of the functions of interactive communications in COBOL is
provided by predefined formats. These formats are used in the same way that
display screen formats are used for work station operations; that is, they are
issued by the FORMAT option of the WRITE statement. The predefined"
formats are not identical to display screen formats, however, because the
predefined formats are recognized by data management, making it unnecessary
to separately store and process the formats via a screen format generator. The
predefined format names should not be used in any display screen format
members. The following sections describe the available formats and the
operations they perform. For more detail on the operations that these formats
perform, see the operation descriptions in Chapter 2.

For more information on how to issue these formats, see the WRITE statement
description later in this chapter.

Interactive Communications Programming with COBOL 5-3

5-4

Procedure/Program Initiation (Evoke)

To start a remote procedure or program (transaction), the evoke operation is
used.

Three formats are provided for evoking a transaction:

« $$EVOKNI performs an evoke operation.

« $SEVOK performs an evoke then invite operation.

« $$EVOKET performs an evoke end of transaction operation.

Each evoke request can be accompanied by several parameters; the first four
form the evoke parameter list. All the parameters must be defined by the
application program in the output area for the evoke formats. All values in

these fields must be character values. If a field is not used, space must still be
reserved for it in the output area.

Size Description

8 The name of the remote procedure to be evoked
8 The password sent to the remote systenri

8 The user ID sent to the remote system

8 The library name containing the remote procedure
20 Reserved

4 Length, in decimal, of user data, if any

XXXX User data or positional procedure parameters

Transmit Data
Four formats are provided for transmitting a record:
« $$SENDNI performs a put operation.
« $$SEND performs a put then invite operation.

« $$SENDE performs a put end of file operation for BSC or a put end of chain
operation for SNA.

« $$SENDET performs a put end of transaction operation.
« $$SENDNF performs a put function management header operation.

« $$SENDFM performs a put function manangement header then invite
operation.

The transmit requests require two fields in the output area.

Size Description
4 Length, in decimal, of the user data’
XXXX User data to be transmitted

Request to Change Direction
The $$RCD format is used for a request to change direction operation. This
format has no output data associated with it.

Set Timer Interrupt Value

The $STIMER format is used for a set timer operation. The following output
data is required with the format.

Size Description

6 Interval of time to be set. The time should
be specified in hours, minutes, and seconds
(hhmmss).

'An output length of zero for $$SEND performs an invite operation. An output
length of zero is allowed for $$SENDE and $$SENDET, because the end of
chain/file and end of transaction can be sent without data.

Interactive Communications Programming with COBOL

5-5

5-6

Send Negative Response
Two formats are provided for sending a negative response:
« $SNRSPNI performs a negative response operation.
« $SNRSP performs a negative response then invite operation.
The negative response operations can be used only for the Intra or SNUF
subsystems. The negative response format can optionally have the following
two fields in the output area: '

Size Description

1 Length of sense data (must be O or blank if no sense
data, or 8 if sense data is present)

8 The sense data to be sent with the negative response

Note: The sense data is user-defined, but the first four characters must be
10xx, 08xx, or 0000.

Cancel
Two formats are provided for issuing a cancel operation:
o $BCANLNI performs a cancel operation.
« $$CANL performs a cancel then invite operation.
The cancel formats are valid only for the SNUF and Intra subsystems. These
formats have no output data associated with them.

Fail
The $SFAIL format is used to issue a fail operation. This format has no output
data associated with it. The $$FAIL format is valid only for the Intra and Peer
subsystems.

End of Session
The $$EOS format is used to issue an end of session operation. This format
has no output data associated with it.

Pass-Through Support
Two formats ($$PTPUT and $$PTINV) are provided for pass-through

operations. These formats and a complete description of pass-through support
are contained in Appendix B.

WORK STATION OPERATIONS

Several of the existing work station operations are used for interactive
communications operations. They are: '

« ACQUIRE
« READ
« WRITE
« DROP
A description of these operations as they are used for interactive
communications follows.
ACQUIRE

The ACQUIRE statement acquires the specified session for the TRANSACTION
file.

If a literal is specified for the session ID, it must be a 2-character
alphanumeric literal with the first character numeric; if an identifier is specified,
it must refer to a 2-character alphanumeric data item with the first character
numeric. The session ID must correspond to the SYMID parameter specified
on a SESSION OCL statement. The file name must refer to a TRANSACTION
file.

The format of the ACQUIRE statement is:

literal

ACQUIRE {identifier

} FOR file-name

Interactive Communications Programming with COBOL 5-7

READ

The READ statement performs either a get or accept operation depending on
the TERMINAL option. If the TERMINAL option is specified, a get operation is
performed for the session specified. If the TERMINAL option is not specified
and only one session or display station is attached to the file, a get operation
is performed for that session or display station. If the TERMINAL option is not
specified and multiple sessions and display stations are attached, an accept
operation is performed.

A NO DATA option is available on the READ statement that allows execution
of another statement if data is not available for the READ statement.

Also available is an AT END option. This option allows a statement to be
executed when the READ statement is issued with no invited display stations

or sessions.

The format of the READ statement is:

READ file-name RECORD

[InTo identifier-1] [TERMINAL IS {ide"“ﬁer 2}]

literal-1

[M) DATA imperative-statement-ﬂ

[AT END imperative-statement-2]

For more information on the READ statement, see the COBOL Reference
Manual.

WRITE

The WRITE statement requests one of the formats to be performed. The
FORMAT option specifies the name of the format. The record name specifies
the output area that contains any of the information required with the format.
The TERMINAL option can be used to specify a particular session. If the
TERMINAL option is not used, the operation is performed for the session or
display station associated with the last READ or WRITE.

The format of the WRITE statement is:

WRITE record-name [FROM identifier-1]

FORMAT IS |.dent|f|er-2
| — literal-1

—

TERMINAL |s{if"e"tiﬁe”3}]

literal-2
[~ INDICATOR
INDICATORS identifier-8
| INDIC

DROP

The DROP statement issues a release operation for a particular session. The
name of the TRANSACTION file associated with this session must be
specified. If a literal is specified for the session ID, it must be a 2-character
alphanumeric literal with the first character numeric; if an identifier is specified,
it must refer to a 2-character alphanumeric data item with the first character
numeric. The session ID must correspond to the SYMID parameter specified
on a SESSION OCL statement.

The format of the DROP statement is:

literal
identifier

DRQP { } EFROM file-name

All acquired sessions are automatically released when the application program
terminates normally.

Interactive Communications Programming with COBOL

COBOL OPERATIONS SUMMARY CHART

The following chart shows the: valid COBOL operations for each subsystem. An
X in a subsystem column indicates the subsystem supports the operation. A -
indicates the subsystem does not support the operation.

Communications Subsystem
Operation
COBOL Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input’ READ
Acquire ACQUIRE
Cancel $$SCANLNI - - - - - - -
Cancel then invite $$SCANL - - - - - - -
End of session $$EOS X X X X X X X
Evoke $SEVOKNI x x2 -
Evoke end of transaction $SEVOKET X - - - X
Evoke then invite $$EVOK X X X X x x2 - x x
Fail $SFAIL x - - - - - - X -
Get' READ X x X x X X X X
Get attributes?® ACCEPT X X X X X X X X x
Invite* X X X X X X X X
Negative response $SNRSPNI X - - - - - - - X
Negative response then invite $SNRSP X - - - - - - - X
Pass-through put then invite $SPTPUT X - - - - - - - X
Pass-through invite $SPTINV X - - - - - - - X
Put $$SENDNI X X X X - X X
Put end of file/chain $$SSENDE X X X - X X X X
Put end of transaction $$SSENDET X X - X X - - X x
Put FMH $SSENDNF X - - - - - X - X
Put FMH then invite $$SENDFM X - - - - - X - X
Put then invite $$SEND X X X X X X X x X
Release CLOSE X X X X X X
Request to change direction then $$RCD X - - - - X
invite
Set timer $$TIMER X X X X X X X X X
'"The READ statement performs either a get or an accept input operation, depending on whether the TERMINAL option is
specified and depending on the number of sessions acquired.
2Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME)
parameter on the SESSION statement is CICS or IMS.
3Valid only when the ATTRIBUTE-DATA keyword is used on the ACCEPT statement.
“Valid only in conjunction with another operation or by using a $$SEND with a record length of 0.

RETURN CODE PROCESSING

Following each operation, a return code consisting of a major code and a minor
code is given to the user program in the IBM-extended FILE STATUS area. In
addition, a COBOL return code is given in the FILE STATUS field identifying
the status of the operation. The following list shows the COBOL file status
values as returned in the appropriate FILE STATUS data field.

if

Use this list to determine the SSP-ICF return code (or group of return codes,
the major portion of the code is followed by xx) that corresponds to the file
status value. Then see the description of the SSP-ICF major code in your
subsystem chapter. (For example, the 02xx group below is described in each
subsystem chapter in the Major Code 02 box description, which applies to all
the return codes beginning with 02.) All of the return codes that are valid for
your subsystem are described in that chapter. A summary chart of all the
codes for all the subsystems is in Appendix A.

Return Code

Groups COBOL File Status
00xx, 03xx, 0800 00
01xx 01
02xx ‘ 9A
04xx 9l
1100 10
2800 9E
3401 9G
80xx 30
81xx 92
82xx 9C
83xx 9N

Interactive Communications Programming with COBOL 5-11

CODING EXAMPLES

See How to Write Programs that Use the Intra Subsystem in Chapter 7 for an
example of how to write a COBOL program that uses SSP-ICF and the Intra
subsystem. The programming example described in the Intra chapter is also
shown in each of the other subsystem chapters with the changes needed to
allow communications with that remote system.

Chapter 6. Interactive Communications Programming with RPG I

The interactive communications portion of an RPG |l program consists of
preparing data for transmission, processing data that was received, using the
predefined formats and existing work station operations to perform
communications operations, and properly handling return codes. Because the
data preparation and processing vary greatly by application, those functions are
not described in this manual. The processing of interactive communications
operations is very similar to that for work station operations. The file used is a
WORKSTN file, the same input operations used, and the output operations are
performed via formats.

FILE DESCRIPTION SPECIFICATION

When using RPG Il for interactive communications, the file description
specification must be completed. This specification should contain the same
information as you would code for a WORKSTN file. The description of how
to fill out the file description specification for a WORKSTN file is in the RPG I
Reference Manual.

File Description Specifications

File Type Mode of Processing File Addition/Unondiened
File Designation Length of Key Field or = Extent Exut Number of Toacks
End of Fe of Record Address Field @ for DAM for Cyhinder Overflow
Filename Pa— Record Address Type < Symbolic g :‘_ias:; 21" Numbiee of | stent:
Type 9! F_-Ic Device Device 3 al .
File Format ™ Organization or g] Rewind
" S 5 Additional Area 5 - Storage Index ‘F e
@ = - $ il
Q 3| Block Record x|E|overtion thaicatorf 2 Condition
& SIS @G| Langth | Lengn sls Key Freid | & urug,
e Slo 2 % % X Starting |W Continuation Lines 2| ue
€ Sla| |ef= = Location | | 5 S
N S|a |wi< External Record Name K Option Entry < «
s16]7 8 9 1011 1213 14 is]relt7]18]s 122 23 24 26 26 5 4
6F"" szgl_r____ 27”3303!2&#_3%&.3_7‘:18 40‘![‘243!44546474849502_&53545&;%2&&606!67636465666/0969]0“I7H'M
Flrlceltiel | Iclp 8 WORISTN]
F
M 2 1
. 1NFDls| RECD| |]
F
INF[SR E' S 14
I3
FMTis o INIE '
G I]

Interactive Communications Programming with RPG Il 6-1

6-2

FORMATS

To assist in coding interactive communications operations in RPG Il, predefined
formats are provided. These formats are used in the same way that display
screen formats are used. They are not identical, however, because the
interactive communications formats are recognized by data management,
making it unnecessary to separately store and process the formats via a screen
format generator.

Note: Some of the formats have data fields associated with them. Space for
these fields, in the locations described, must be reserved even if the field is

not explicitly coded. All values in these fields must be character values.

The following sections describe the available formats.

Evoke

Three formats are provided for evoking a transaction:
« $SEVOKNI performs an evoke operation.
« $$EVOK performs an evoke then invite operation.
« $$EVOKET performs an evoke end of transaction operation.
Each evoke request has several parameters associated with it; the first four
parameters form the evoke parameter list. These parameters are defined as
fields for the evoke formats.

Location Description

1-8 The name of the remote

procedure to be evoked

(left-justified)

9-16 The password sent to the
remote system (left-justified)

17-24 The user ID sent to the
remote system (left-justified)

25-32 The library name containing
the remote procedure
(left-justified)

33-52 Reserved

53-56 Length, -in decimal, of user
data, if any (right-justified)

57 -xxxx User data or positional
procedure parameters

et T .
IBM e rvicns s s coporion RPG OUTPUT SPECIFICATIONS Pt OSA
12 S.A.
Program Keying Graphic Card Electro Number Program 75 76 77 78 79 80
Programmer l Date Instruction Key Page of . e
o) £
=15
W8 ISpace] Skip Output Indicators Zero Balances " X = Remove
5 E Field Name Commes] toprim _ |MSPIR] 7| pussion |4 g
S|= or Y = Date i
Filename ZlEle], EXCPT Name Yes Yes 1 Al Field Edit User
,§ or HaHE And And ¢ End Yes o 2 B | K(zezme " | Defined
Li Record Name = U] Position o es 3 c|tL
ine g DJE|L § g g S| in No No M ol wm Suppress
- alofo] & | < 85| outeut |5
olr s b 3 “AUTO £] 2| Record |& Constant or Edit Word
~Ino i = Sl 123 456 7 8 910111213 14151617 18 19 20 21 2223 24 *
3 4 567 8 9 101112 13)14)15|16[1718]19 20]21 22|23(24|25|26 |27 |28] 20 30|31} 32 33 34 35 36 37 40 41 42 43[44[45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74
ol'] JollICIFITILIE
L | K| I SHEVOK!”
0|3 ""'_ ~ 7
o 3 ['ICR I
0|4 \ 7/
0 L2] [N XHKIL
oL *USERPKGH)
24| 1'US 4
ols| |O| VT /
30| [MICIFILIT
0)7 (o] 5' 6 \ L 0 7
ofs Ly 7
o 66| [NIINQ JALBHAL
ole| lo
11o0] |o|

Interactive Communications Programming with RPG Il 6-3

Transmit Data

Four formats are provided for transmitting a record:

« $$SENDNI performs a put operation.

« $$SEND performs a put then invite operation.

« $$SENDE performs a put end of file operation for BSC or a put end of chain

operation for SNA.

« $SSENDET performs a put end of transaction operation.

o $SSENDNF performs a put function management header operation.

« $$SENDFM performs a put function management header then invite

operation.

Each transmit request has two fields associated with it.

Location Description

1-4 Length, in decimal, of the
user data’

B-xx User data to be transmitted

6-4

IB M I1nternational Business Machines Corporation

RPG OUTPUT SPECIFICATIONS

GX21-9090-4 UM/050°
Printed in US.A.

00| [>=| |

Program Keying Graphic Card Electro Number , m . Program 75 76 77 78 79]30
’ age o o
Programmer [Date Instruction Key
0 5
tj i Output Indicators Zero Balances " _ | X = Remove
e E Sosce] S i Field Name Commas | ™o priny___| N Sion | CR PusSin | o o
3 or Yes Yes 1 Al ¥ = Date User
Filename = g | 1 EXCPT Name Fiold Edit | i eg
& t £ And And End Yo No 2 B Klz-20r0
= or >Rl]|< | Position No You 3 ClL| suppress
Line § Record Name olelL] 8 g 3| in = No No 4 0| M
- alolo] 3 | < g § Output |5 i
olR H 5 3 *AUTO £|2| Record 1 Constant or Edit Word
nOo W) @] 1 2 3 456 7 8 9 1011 121314151617 1819 2021 22 23 24
4 slef? a 9 1011 12 13f1afisli6]17)18]19 20|21 22|23|24|25]28 27 |28] 28| 30|31} 32 33 34 38 36 37 41 42 43]44[45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 83 €9 70]71 72 73 ¢
' CIFILIL

olofololo]o]~
olQololo]o]-

'An output length of zero or blanks for $$SEND performs an invite operation.
An output length of zero or blanks is also allowed for $$SENDE and $$SENDET,
because the end of chain/file and end of transaction can be sent without data.

Request to Change Direction
The $$RCD format performs a request to change direction operation. This
format has no fields associated with it.

Set Timer Interrupt Value

The $$TIMER format performs a set timer operation. The following field is
required with this format.
Location Description

Interval of time to be set. The time should be
specified in hours, minutes, and seconds (hhmmss).

1-6

Note: The $$TIMER format cannot be issued unless at least one requester or
acquired device is attached to the program.

To check that the time has ended, use a READ operation not preceded by a
NEXT operation. The NEXT operation causes input to come from a specified
session (not the timer) during the READ operation (see NEXT and READ later in
this chapter for more information about these operations).

RPG OUTPUT SPECIFICATIONS

nternational Business Machines Corporation

GX21-9090- UM/050°
Printed in U.S.A.

12 75 76 77 78 79 80
Program Keying Graphic Card Electro Number D] Program
: Page of :
Programmer Date Instruction | g —
= .
O G|space| Skip Output Indicators Commas | 2er0 Batances | “C T T T - Remove
o &" Field Name 1o Print Plus Sign |5 g =
E * or Yes Yes 1 A9 |Y=Date Iy
Filename I EXCPT Name Yes No 2 B | K Field Edit] .~ .
T|als|s _ Defined
Line or M i End No Yes 3 c | L |Z= Zero
Record N [JLILIES And And «| Position No No 4 oM™ Suppress
g cord Name Han M
$ gl § < [3
.g alolo] €| & |5 5 5 S| Output |3 Constant or Edit Word
5 o[r e <) z z *AUTO £|2| Recora |3
a
- A D e 123 45 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24
3 4 5 7 8 9 10 11 12 13|14[15[16{17{18]19 20|21 22|23{24[25|26 |27{28{29]|30 (31|32 33 34 35 36 37]38 40 41 42 434445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 7071 72 73 74
01

TCFAILE | |E 3

-

=)
IS
O|0fO0|O0|O|O|O |

Interactive Communications Programming with RPG ||

6-5

Send Negative Response
Two formats are provided for sending a negative response:
« $SNRSPNI performs a negative response operation.
. $$NRSP performs a negative response then invite operation.
The negative response formats can be used only for the Intra or SNUF
subsystems. The negative response format can have the following two fields
associated with it:

Location Description

1 Length of sense data (must be 0 or blank indicating
no sense data, or 8 if sense data is present)

2-9 The sense data to be sent with the negative response

Note: The sense data is user-defined, but the first four characters must be
10xx, 08xx, or 0000. ‘

RPG OUTPUT SPECIFICATIONS

GX21-9090- UM/050°

IERT Printed in U.S.A.
ESFETE international Business Machines Corporation
- 12 75 76 77 78 79 80
Program Keying Graphic Card Electro Number e ED o Program
Programmer Date Instruction Key — Identification
T
o _ gsw:e Skip Output Indicators Fiold N Commas z,,&%:,i:‘,:m NoSign | CR | - | X = Remove
@l iel lame Plus Sign 5.9=
S 2 or Yes Yes 1 A [g]Y=Dae |,
Filename NEHE EXCPT Name Yes ' No 2 B | K Field Edit| p e oo
Line or = 21ote End No Yes 3 C | L {Z= Zero
Record Name | & 1=t~ Aoa A &| Position No No 4 D™ Suppress

& =lo]EfL] o § 2l in «

E Alo[o] £ | & |5 3 8 g Output | 3 Constant or Edit Word

5 olr LN I 2 2 *AUTO £12) Record |@

* A) e © 1.2 3 456 78 9 101112131415 1617 1819 20 21 22 23 24 *
3456789|0|||2|3|l|516|7‘8|92ﬂ212_2_|'232‘752627qnw:ﬂ’%}%%ﬁ33738E40‘14243“64647434950_5112_2__53"_5:15556575559503162536‘5586676869707'7?7374
[o
of2f |O
bl JelLCIFTILE 9 .
el o 4 [6$NRSA
ols| |o NBDE:E
e 9 ["paLlddds’
07| |o
ol8| {O

6-6

Fail

The $$FAIL format is used to issue a fail operation. This format has no fields
associated with it. The $$FAIL format is valid only for the Intra and Peer

subsystems.

Cancel

Two formats are provided for issuing a cancel operation:
o $SCANLNI performs a cancel operation.
« $$CANL performs a cancel then invite operation.

The cancel formats are valid only for the SNUF and Intra subsystems. These
formats have no fields associated with them.

End of Session

The $$EOS format is used to issue an end of session operation. This format
has no fields associated with it.

Pass-Through Formats

Two formats ($$PTPUT and $$PTINV) are provided for pass-through
operations. These formats and a complete description of pass-through support

are in Appendix B.

Interactive Communications Programming with RPG Il 6-7

WORKSTN OPERATIONS

Several of the existing WORKSTN operations are used for interactive
communications operations. They are:

« ACQ (acquire)
« REL (release)
« NEXT

« READ

« RPG cycle input

ACQ (Acquire)

The ACQ operation acquires the session specified by the 1D (literal or variable)
in factor 1. If the session is available, ACQ obtains it for this program. Factor
2 specifies the name of the WORKSTN file from the file description
specification.

If the session cannot be acquired, an error occurs. If an indicator is specified
in columns 56 and 57 for this operation, the indicator is set on and the next
calculation step is executed. If no indicator is specified, the program halts,
unless the INFSR subroutine is specified in the program. If the INFSR
subroutine is specified, the subroutine receives control. See Return Code
Processing later in this chapter for more details on error handling.

IEM RPG CALCULATION SPECIFICATIONS GX21-8083 UM/050°
*% International Business Machines Corporation Printed in U.S.A.
Program Keying Graphic Card Electro Number L2 Program 75 76 77 78 79 80
Programmer 10.(. Instruction Key P-ge[D of -
c],; Indicators Result Field Resulting
& Indicators
3 z I T e Arithmetic
3 S And And 81z | Plus [Minusf 2ero
g § % Factor 1 Operation Factor 2 g = Compare Comments
o el Name | Lengtn 3| SIT T3]
s o £ < [Cookup(Factor 2y
« -
. (e ¢7§ - f 2 ; 3 ; High | Low [Equal|
s|e 8lol10ff12131af1s|16{17[18 19 20 21 22 23 24 25 26 27 8 20 30 31 32{33 34 35 36 37 38 39 40 41 42[43 44 45 48 47 48]49 50 51[52[s3]54 55)68 57|58 59)60 61 62 83 64 €5 68 67 68 60 70 1 72 73 4
ofhl e n ‘L s]l c RPGEEMA
012 |C I OIR|-
QONCEETED SISINT al | lrclelr 914
of4| [cl
ofs| |c

6-8

REL (Release)

The REL operation issues a release for the session specified in factor 1 (literal
or variable). Factor 2 specifies the name of the WORKSTN file from the file
description specification.

If an error occurs on the attempt to release the session, the indicator specified
in columns 56 and 57 is set on and the next calculation step is executed. If no
indicator is specified, the program halts, unless the INFSR subroutine is
specified in the program. If the INFSR subroutine is specified, the subroutine
receives control. See Return Code Processing later in this chapter for more
details on error handling.

IEM RPG CALCULATION SPECIFICATIONS GX21-9003- UM/060°
% International Business Machines Corporation Printed in US.A.
12
Program Keving Graphic Card Electro Number progam (B8 IL78.78 80
Programmer l Date Instruction [y Page of ificati
. Indi : Resulting
c 5 nleron Resuit Field Indicators
HE B e]
s “ inus|
g § H And And Factor 1 Operation Factor 2 £ f Compare = Comments
Line |Fls & Name Lmﬁgngn
E 3 : § -2 | [Lookup(Factor 2)i
2|8 S ¥ H &2 [Wig] Low [aual
3 4 s|e|7 sfsjrohijr2hr3fiars 17118 19 20 21 22 23 24 26 26 27 28 29 30 31 32|33 34 35 36 37 38 39 40 41 42]43 44 45 48 47 4849 50 55|56 57|88 S9[60 61 62 63 64 65 66 67 88 69 70 71 72 73 74
‘Il l]lo ‘xlgf ol [frdelzh)
of2| |l | okl [T
oplid | 1B NILD gl | Ixiclelzle 99
ofs] |cl
ols| lc|

For more specific information about the release operation, see the appropriate
subsystem chapter.

Interactive Communications Programming with RPG Il 6-9

NEXT

The NEXT operation code forces the next input to the program to come from
the session specified in factor 1 (literal or variable). Factor 2 contains the name
of the WORKSTN file for which the operation is requested.

If NEXT is specified more than once between input (READ or primary file input)
operations, only the last operation has any effect.

If an error occurs on the NEXT operation, the indicator in columns 56 and 57 is
set on and the next calculation step is executed. If no indicator is specified,
the program halts, unless the INFSR subroutine is specified in the program. If
the INFSR subroutine is specified, the subroutine receives control.

See Return Code Processing later in this chapter for more details on error

handling.
IEM RPG CALCULATION SPECIFICATIONS GX21-9003. UM/050"
% International Butiness Machines Corporation 12 FPrinted in U S.A.
Program Keying Graphic Card Electro Number Program 75 76 77 78 79 80
" P: f e l I
Programmer I Date Instruction Key o °
. . Resulting
c I§ Indicators Result Field Indicators
Sz I I e ‘Arithmetic
= A A S| [Plus [Minus{ Zero
s § % Factor 1 Operation Factor 2 3% Compare Comments
tne |15 & Neme | Length |3 13 [T> 27 <2[1-7]
E :. "l . £ | [Cookup(Factor 2|
{rq g - f 2z § g E4 High | Low |Equal
34se1a9|ou121:14'5wnvamzom222324252527m29303|32%:4353&373&3940"4243«45434743495051 3|54 55|56 57|58 59)60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
of1] e ' ! NIEIX FITILIE
o2 fe HOR- <
o[e SISNTD et [TICFIILE &)
0f4 C]
ofs| e
ole| |c]

6-10

READ

The READ operation requests input from any display station or session (accept
operation) or, when used with the NEXT operation, from a specific display
station or session (get operation). If the NUM field on the file description
specification is 1, the READ does a get operation. If a NEXT operation has
been executed since the last READ, the READ does a get to the session
specified by the NEXT operation. If no NEXT has been executed since the last
READ, the READ does an accept. Factor 2 contains the name of the file from
which a record should be read.

If an error occurs during the READ operation, the indicator in columns 56 and
57 is set on. If no indicator is specified, the program halts, unless the INFSR
subroutine is specified in the program. If the INFSR subroutine is specified,
the subroutine receives control. See Return Code Processing later in this
chapter for more details on error handling.

Columns 58 and 59 can contain an indicator to be set on when the end of file
condition occurs. The end of file condition occurs for a session when an
accept is issued with no outstanding invites. (See End of File Considerations
later in this chapter for more information.) The end of file indicator is not set
on when an end of transaction occurs. The INFDS must be checked to
determine the end of a transaction.

IEM RPG CALCULATION SPECIFICATIONS GX21-9093 UM/050°
k internatfonal Business Machines Corporstion Printed in US.A.
1.2
Frogram Keying Graphic Card Electro Number . Program 75 76 77 18 79 80
Programmer I Date Instruction Key age of W I | l I I
- Indicators R : Resulting
c 5 esult Field ——
3 z I I . Alvithnr::;ic
— And And LT[Plus |Mi 2Zero
2 3 % Factor 1 Operation Factor 2 é = Compare Comments
une [Pz & Name Lenvm,%wz‘-z
g §=~ - o 3 E12 [Cookup(Factor 20
(e i 2 2 3 t4 High | Low |Equal
3 & 567 sf9frof11)12|1314|15]18|17]18 19 20 21 22 23 24 25 26 27|28 29 30 31 32|33 34 35 36 37 38 39 40 41 42]43 44 45 48 47 48]49 50 51{52]5.]54 5556 57|38 5960 €1 62 63 64 €5 66 67 68 60 70 11 72 73 74
ol
= IMCFlLiLE
of2| |
of3| Ic|

RPG Cycle Input

The RPG program cycle includes a step to read a record from the primary file.
If the primary file is a WORKSTN file, the input operation performed is an
accept. The detail of the RPG program cycle is in the RPG Il Reference Manual.
Specifically, a section on WORKSTN file input processing describes the details
of the cycle as it affects WORKSTN files.

Interactive Communications Programming with RPG Il 6-11

RPG Il OPERATIONS SUMMARY CHART

The following chart shows the valid RPG Il operations for each subsystem. An
X in a subsystem column indicates that the subystem supports the operation.
A - indicates that the subsystem does not support the operation.

Communicaﬁons Subsystem
Operation
RPG 1l Operation Mnemonic Intra BSCEL CCP CICS IMS 3270 Finance Peer SNUF
Accept input’ READ X X X X
Acquire ACQ x X X X
Cancel $$CANLNI X - - - - - - -
Cancel then invite $$SCANL X - - - - - - -
End of session $SEOS X X X X X X X X
Evoke $SEVOKNI X X x X x x3 -
Evoke end of transaction $SEVOKET X X - X X - -
Evoke then invite $$EVOK x X x X X x3 -
Fail $SFAIL X - - - - - - X -
Get! ’ READ
Invite? X X X X X X X X X
Negative response $SNRSPNI X - - - - — - -
Negative response then invite $SNRSP X - - - - - - -
Pass-through put then invite $SPTPUT x - - - - - - - X
Pass-through invite $SPTINV X - - - - - - - X
Put $$SSENDNI X X X X - bs X
Put end of file/chain $$SENDE X x x - X X X x
Put end of transaction $$SENDET X X - X X - - X x
Put FMH $SSENDNF X - - - - - x - X
Put FMH then invite $$SENDM X - - - - - X - X
Put then invite $$SEND X X X X X X X X X
Release REL X X X X X X X
Request to change direction then $$RCD X - - - - X
invite
Set timer $$1]MER x X X X X X X X X

'If the NEXT operation is executed before the READ operation, the READ operation is a get; otherwise, the operation is an accept
input.

2valid only when used with another operation or by using a $$SEND operation with a record length of 0.

3valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the HOSTNAME
parameter on the SESSION statement is CICS or IMS.

RETURN CODE PROCESSING

Folilowing each operation, a return code that indicates the results of the
operation is issued.

The exception/error processing subroutine (INFSR) and error indicators in
columns 56 and 57 of the WORKSTN operation codes (REL, ACQ, NEXT, and
READ) allow the programmer to control the program logic if errors occur during
WORKSTN file processing. The WORKSTN file information data structure
(INFDS) contains status information that the program can check to determine
what type of exception or error occurred. Using the information in the INFDS,
the program can then determine which conditions to handle in the INFSR

subroutine.
File Description Specifications
F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or Extent Exit Number of Tracks
a2 -
o of Fie of Record Address Field o for DAM for Cyhinder Overflow
Record Address Type | . |&| Nameot Number of Extents
| Sequence S . Symbolic a3 .
Filename i o Dy orFie Device Dovice 3| LabelExi -~
File Format ganization or g e Rewind
’ 5 L - Storage Index
Line w E 5 Additional Area 5 Fite
Q 3| Block Record x[E[overttow tndicator| 2 Condition
g Sls @G| Length | Length HE Koy Fiaid | £ ULue,
= Qe 3 -3 [Starting | Continuation Lines 2| uc
£ Slal (o= 3 <5 Location | | > 5
& 2la |wi External Record Name K Option Entry I <
3 4 51617 8 9-10 11 12 13 14115]16]17 Il“ﬂ?‘ 22&22&2‘27”3@ 3'2”&‘;”’ 40 41 42 43 44 45 46 ‘7“‘9&2“ 52 {53] 55 56 57 S8 59 |60 61 62 63 64 65]|66(67168 69]70}71 7273 74
. m B ERREERE EARE iis SR
ol2| |FITICFITILE] | |C ORK/S| |
ofa| |F KriNE 051 NE0|DS
ofe| |F v
ofs| |¢ 10 MWS|LD
ols| [F TINFISR| [EIRRS VB
IEM RPG INPUT SPECIFICATIONS Gx21.9088.4 UM 050"
¥R International Business Machines Corporation) Printed in U.S.A
1
Program Keying Graphic Card Electro Number P*D]ol Program 75 76 77 78 79 80
Programmer Date Instruction Key)
I 5 External Field Name . Field
= Field Location Indi
Filename 3 Record Identification Codes Py < ndicators
- 7 . 2 ; 2|
1 Record Name |5 s 3 B From To 5 RPG 2 ls 5 K
o 2], g 8| FieldName | 2 |2 2| 2 Zero
Line ¢ e EN] s 5|3 Data Structure < 21z ¢ M
5 HA S - Zlol% N HRHAS % 3 |€ 2] & |Pus
S Dota TR é 5|3 Position (£ S 8| Position |= g g Position | £ S g HE £ S|EE]l o Blank
s £ N]]
el B e HHE 3[5)3 HEH 3[SIE|RIE] O | cenen | LA EH
3 4 sl6|7 8 9 1011 12i3phafishie|17{18 19 20|21 22 23 24|25|26 |27 |28 29 30 31 35 36 37 45 46 47]48 49 5Su 51]52|53 54 55 56 57 58|59 60]61 62|63 64]65 66|67 68169 70|71 72 73 74
o1
IITNEloIDIS| Dis| [1] | LT
2
o2] |1 STATT jsiriatuls|
o] |x 2/3{ | |24 MalsiclaD
o4 T 2] 1NC|aD
o] Jr LOTLEETT]

If neither the INFSR subroutine nor error indicators are specified, an error is
handled by the RPG Il error handling routine, which causes a program to halt.
The operator must choose the appropriate option.

The INFDS data structure, if specified, contains the return code identifying the
exception or error that occurred. The INFDS also contains status information
on normal conditions as well as exceptions or errors. The information in the
INFDS is updated for each operation. If an exception or error occurs, the
programmer can use the INFDS information to determine the cause and to
control the resulting program logic.

Interactive Communications Programming with RPG Il 6-13

The following chart and description show the steps in processing return codes.

Update *STATUS
and return code
in INFDS

Status
less than

Error
indicator
specified in cols
56 & 57

No

INFSR
specified

No

Yes

Set on
indicator

Continue

Execute
INFSR
subroutine

Yes

RPG 11 error handling
(program halts). If
INFSR called by
EXSR, returns to next
sequential instruction.

Factor 2
blank on
ENDSR

Go to point in
RPG Il cycle
specified by
factor 2 entry
on ENDSR

*GETIN (Beginning of next cycle)
*DETC (Detail calculations)
*CANCL (Cancel program)

When an operation is completed the status information (*STATUS and
the return code) is updated in INFDS.

If the condition is normal, the next instruction in the RPG program is
executed.

If the condition is an exception or error (*STATUS greater than 99), a
check is made to see whether an indicator was specified in columns 56
and 57 of the calculation specification for a READ, ACQ, REL, or NEXT
operation.

If an indicator was specified, that indicator is set on, and the next
instruction in the RPG program is executed. In this case, if the INFSR
subroutine is to be executed, an EXSR operation can be issued.

If no indicator was specified, a check is made to see whether an INFSR
was specified. If not or if factor 2 on the ENDSR is blank, RPG issues a
halt on the system console.

If INFSR was specified and factor 2 of the ENDSR is not blank, control is
passed to the point specified by factor 2 on the ENDSR. Factor 2 can be
*GETIN to go to the beginning of the next input cycle, *DETC to perform
detail calculations, *CANCL to cancel the program, or a variable that
contains one of these values.

Interactive Communications Programming with RPG ||

6-15

INFSR Coding Considerations

If an INFSR subroutine is coded, return codes 80xx and 81xx should be
handled. If any of these codes occur, the INFSR subroutine should issue a
release operation to the display station or session. This clears the RPG internal
table entry for that display station or session and allows that entry to be used
by a subsequent requester. For the session errors mentioned above, an end of
session operation ($$EOS) can also be issued.

The return code indicating timer expired (code 0310) causes the INFSR
subroutine to be executed. If the set timer operation ($$TIMER) is Gsed, be
sure to check for this return code.

When the INFSR subroutine is specified for the WORKSTN file, any exception
error encountered for that file causes the INFSR subroutine to be executed.
Therefore, if operations are issued from the subroutine to the WORKSTN file
that can cause exceptions or errors, be careful to code the subroutine to
prevent loops. An advisable technique is shown as follows:

RPG CALCULATION SPECIFICATIONS Gxa1.9083. UMog0*
Ig%% International Business Machines Corporation : ' 2 -
Program Keying Graphic Card Electro Number Program 75 76 77 78 79 80
Programmer I Date Instruction Key Fooe of ificati
c 5 Indicators Result Field :‘:;':::fs
S I l " ‘Arithmetic
2 & S|Z [Plus [Minus| Zero
2 g % And And Factor 1 Operation Factor 2 3 ; Compare Comments
e |82 S Name |Length ;§1>z1=2
ne e 3 g - £ | [Cookup(Factor 2)is
HEEE 3 5 &|2[Figh | Low [Equa
345Géﬂ9101'12‘3|4|516|7|8|920212123242523272829303'323334353337383940‘|‘243«‘5‘3474849505""' 54 55156 5758 59)60 61 62 63 64 66 66 67 68 69 70 71 72 73 74
TT ISR ERRSU 111
T [19
of2 el [[512 FIAC|T2
ol el 11151 T0 IEND'S
ol4] |c
ols| e E ["KGETIN' FACTIZ
ofe] Je | [|
o7l fe ilsls|ule] Irlelcio[vielriyl lo|pieirialt]ijoju
ols| |c] _
olo| ||
o ¢ ENDS TAG
11]¢ SETOF %ﬂ
T Je ENDSRIFACTZ I

Indicator 50 is set on whenever the INFSR subroutine (ERRSUB) is entered for
the first time. If any errors occur in ERRSUB that would cause the subroutine
to be reentered, the subroutine exits to the RPG error handler (factor 2 is
blanks). The error handler displays the appropriate error message. If the
operations issued in the subroutine do not cause exceptions or errors, the
subroutine exits to the start of the RPG cycle.

PN

RPG Il STATUS VALUE

The following shows the *STATUS values as returned in the RPG Il INFDS for
each major and minor return code. Use this list to determine the SSP-ICF
return code or group of codes that corresponds to the *STATUS value. Then
see the description of the major and minor return codes in your subsystem
chapter. All of the return codes that are valid for your subsystem are described
in that chapter. A summary chart in Appendix A shows which codes are valid
for each subsystem.

Return Codes
Major Minor *STATUS
00, 01, 02 {All (except 10) 00000
00, 02 10 01321
03 00 01311
03 01, 02, 03 01299
03 08 01275
03 10 01331
04 02, 11, 12 01299
08 00 01285
1 00 00011
28 00 00000
34 01 01201
80, 81, 83 |All 01251
82 All 01281

Note: RPG |l performs additional error checking before passing a request to
data management. If an error is found, the status value is updated, and the
return code field remains unchanged.

Interactive Communications Programming with RPG Il 6-17

RPG Il PROGRAMMING CONSIDERATIONS

When writing interactive communications programs in RPG Il, keep the
following considerations in mind:

Continuation lines on the file specification
« SRT and MRT considerations

« End of file considerations

« Release considerations

« Restrictions for WORKSTN files

Input and output considerations
Information on these and other considerations for WORKSTN file programming
is in Chapter 13 of the RPG Il Reference Manual.

Continuation Lines on the File Specification

The following continuation options can be coded on the file specification for
WORKSTN files:

« NUM

« SAVDS
« IND

« SLN

« ID

« INFSR
« INFDS

« FMTS

NUM

The NUM continuation option is used to specify the maximum number of
display stations and sessions that can be attached to the file at one time. This
number should include the number of requesters as specified by the MRTMAX
parameter plus the number of display stations and sessions that the program
acquires at a time. The number of display stations and sessions specified by
the MRTMAX parameter are reserved for requesters and the remaining display
stations and sessions can be acquired. For example, if the MRTMAX is 4 and
the NUM value is 5, only one session can be acquired at a time. The number
specified must be right-justified in columns 60 through 65.

Note: Even if the program is an SRT program, a NUM value of 2 (or more)
must be specified if the program also acquires any sessions or display stations.

SAVDS

IND

The SAVDS continuation option specifies the name of a data structure that can
be saved and restored for each display station and each session in this file.
This data structure cannot be a display station local data area, and it cannot
contain a compile-time array or a preexecution-time array.

Note: Only one copy of the data structure is available at a time; for example, if
a program receives input from a session, only the data structure for the session
is available; the data structure for the display station is not available. The only
SAVDS available is that of the display station or session from which the last
input came. Therefore, you should not use this data structure to save the ID of
a display station for which an interactive communications request has been
made.

The IND continuation option specifies the indicators associated with each
display station and session that are to be saved and restored. The indicators
numbered 01 through the number specified by the IND value are saved. The
entry must be right-justified in columns 60 through 65.

Note: Only one copy of the indicators is available at a time; for example, if a
program receives input from a session, only the indicators for the session are
available; the indicators for the display station are not available. The only IND
available is that of the display station or session from which the last input
came.

Interactive Communications Programming with RPG Il

6-19

6-20

SLN

ID

The SLN continuation option is used to specify the starting line number for
display screen formats. The SLN option does not apply to sessions.

The ID continuation option specifies the name of a 2-character field to contain
the ID of the current display station or session. Following input operations, the
field contains the ID of the display station or session from which the input was
received. Any output operations are directed to the display station or session
whose ID is in the field. Thus, by changing the contents of the field, the
output can be directed to any session or display station. A session ID must be
numeric-alphabetic (for example, 1S); a display station ID must be
alphabetic-numeric (for example, W1).

INFSR

The INFSR continuation option specifies the name of a subroutine to be used
for exception/error handling. Return Code Processing earlier in this chapter
describes INFSR in more detail.

INFDS

The INFDS continuation option specifies the name of a data structure to
contain information concerning exceptions and errors. Return Code Processing
earlier in this chapter describes INFDS in more detail.

FMTS

The FMTS continuation option specifies the name on the display screen format
load member containing the formats for this program. The name entered in
this option is used to override the name normally assumed by the RPG ||
compiler (the program name followed by FM). If the only formats used in the
program are the interactive communications formats, *NONE must be specified
for this parameter.

SRT and MRT Program Considerations

An SRT program can have only one requesting display station or only one
requesting session. SRT programs can acquire multiple sessions or display
stations, using the ACQ operation. If an SRT program acquires any display
stations or sessions, the NUM value on the file description specification must
reflect the maximum number of concurrently attached sessions and display
stations (all those that are acquired plus one requester).

An MRT program can have multiple requesting display stations and/or
sessions. The first requester of an MRT program causes the program to be
loaded and initiated. Each succeeding requester attaches to the program at the
beginning of an input cycle or when a READ operation is performed. The
program is notified of the new requester via a return code on the input
operation. MRT programs can also acquire additional display stations and
sessions. The NUM value on the file description specification must include the
maximum number of requesters plus the number of sessions and display
stations that are acquired and that are active simultaneously.

End of File Considerations

The effects of end of file on the program depend on whether the file is a
demand file or a primary file.

- End of file for a demand or primary file occurs only on an input operation (not
preceded by a NEXT operation) and only when no display stations or sessions
have been requested for input; that is, there are no outstanding invites. (This
second condition could occur because no invites were issued or because all
display stations and sessions have been released.) If the program has the NEP
attribute, the previous two conditions must be satisfied and the system
operator must have entered the STOP SYSTEM command.

For primary WORKSTN file, an end of file condition sets on the LR indicator,
and the program goes to end of job.

For a demand WORKSTN file, an end of file condition sets on the indicator in
columns 58 and 59 of the READ operation that detected the end of file. This

" indicator can be the LR indicator, or the program can set on the LR indicator
later.

Interactive Communications Programming with RPG Il 6-21-

6-22

Release Considerations

A release can be performed explicitly by using the REL operation (described
earlier in this chapter) or by coding an R in column 16 of the output
specifications. If a format name is specified in the same specification that
contains an R in column 16, the format is displayed or the interactive
communications operation is performed before the display station or session is
released. If a program terminates before releasing any display stations or
sessions, they are automatically released.

If a session was acquired, the release terminates that session. If a display
station was acquired, the release places the display station in standby mode.

If the session was started by a remote request or a display station requests the
program, the release passes the session or display station on to the next step
in the procedure. If the program is an MRT program, the session or display
station is released immediately. If the program is an SRT program, the session
or display is released when the program terminates. If the program is the last
step in the job, the display station returns to the command display or the
session is terminated when the program ends.

Restrictions for WORKSTN Files

The following restrictions apply to using a WORKSTN file in an RPG |l
interactive communications program:

« WORKSTN file programs cannot be run from the input job queue, and
cannot be initiated by an EVOKE OCL statement.

« The WORKSTN file must be specified as a combined file (capable of both
input and output).

« |If the WORKSTN file is specified as a primary file, no secondary files are
allowed in the program.

o Only one WORKSTN file is allowed per program.

« A program cannot contain a KEYBORD, CRT, or CONSOLE file if it contains
a WORKSTN file.

« Control level indicators, match field values, and look-ahead fields are not
allowed.

« The first page indicator (1P) is not allowed.

Input and Output Considerations

Considerations for when output can be sent and what input operations are
required depend on whether the communication is with a display station or
session that is acquired or is a requester.

When a requester (either a display station or a session) attaches to a program,
the first operation is an input operation. The input operation fills in the ID field,
which is used to direct subsequent operations to the appropriate session or
display station. If data accompanied the request, the data is passed to the
program on this first input operation; if no data accompanied the request, a
blank record is passed to the program. If the program is an SRT program,
output to the requester may precede input; however, if output precedes input,
data with the request is lost. This is accomplished by placing the requester’s
ID or blanks in the ID field and performing output as the first operation to the
file. (See Writing Procedures to be Started by Incoming Procedure Requests in
Chapter 2 for other considerations.)

When a session or display station is acquired, the next input operation
retrieves a blank record. If an output operation (any put or evoke with data) is
performed in the same cycle as the acquire, the next input operation retrieves a
data record.

Interactive Communications Programming with RPG II 6-23

CODING EXAMPLES

See How to Write Programs that Use the Intra Subsystem in Chapter 7 for an
example of how to write an RPG |l program that uses SSP-ICF and the Intra
subsystem. The programming example described in the Intra chapter is also
shown in each of the other subsystem chapters with the changes needed to
allow communications with that remote system.

6-24

Chapter 7. The Intra Subsystem

The Intra subsystem provides distributed data processing support to users of
the System/34 SSP by providing an interactive interface between application
programs on the same System/34. The Intra subsystem can support multiple
application programs communicating concurrently.

The Intra subsystem allows System/34 application programs to initiate
procedures on the same system. Some System/34 security options are
supported.

The Intra subsystem is useful for several types of applications. Some of these
are:

« To test new interactive communications applications without using a
communications line. You might have to make some coding changes before
actually running the program. In particular, the return code checking might
need to be modified.

« To allow the same program to make inquiries into both the local and remote
systems.

When figuring the number of concurrent sessions, be aware that each Intra
session with an active transaction counts as two sessions (one for each
program) against the system maximum of 100 sessions.

SETTING UP THE INTRA SUBSYSTEM

The SSP procedures CNFIGSSP and INSTALL are used to include the
interactive communications feature and Intra subsystem support on the
System/34. The general interactive communications support is included when
it is requested on the appropriate CNFIGSSP prompt. The Intra subsystem
support is copied to the system library when the appropriate responses to the
INSTALL procedure prompts are taken. The CNFIGSSP and INSTALL
procedures, with their displays and related responses, are described in the
Installation and Modification Reference Manual.

After the Intra subsystem has been installed, the CNFIGICF procedure is used
to define the subsystem support. The operation of the CNFIGICF procedure is
also explained in the Installation and Modification Reference Manual. Before
running ‘the CNFIGICF procedure, however, you should fill out a planning chart
for each subsystem that you want to define. Copies of the planning chart for
each subsystem are available in Appendix F of this manual and in the
Installation and Modification Reference Manual. The following sections explain
how to fill out the planning chart for the Intra subsystem.

The Intra Subsystem ‘7-1

Display 1.0 Subsystem Member Configuration

1.0

Subsystem Member Configuration

1. Subsystem configuration member name (8 characters) e o e e
2. Subsystem library name (8 characters) o o e
Select:
1. Create new member 4. Delete a member
2. Edit existing member 5. Review a member

3. Create new member from existing member
3. Enter selection: ________
Existing member name: o _ _
b. Existing member library name: . _

b

Subsystem configuration member name: Specify a name for this configuration
of the subsystem. This name is used to store the member in a library, and is
referenced in the ENABLE and DISABLE procedures.

Library name: Specify the name of the library in which the configuration is
stored or to be stored. The default is #LIBRARY, however, you should
probably store the configuration in a user library.

Enter selection: Specify one of the five options: (1) create a new member, (2)
edit an existing member, (3) create a new member from an existing member,
(4) delete a member, or (5) review a member without changing it.

Existing member name: This prompt appears if option 3 was selected. Specify
the name of the existing subsystem configuration member that is to be used to
create the new member. The existing member remains unchanged.

Existing member library name: This prompt appears if option 3 was selected.
Specify the library name where the existing member resides.

Display 2.0 Common SSP-ICF Parameters for Each Subsystem

2.0 Common SSP-ICF Parameters for Each Subsystem

1. SSP-ICF common queue space: (2 - 42 K)
2. Define the subsystem type:

1 Intra 2 BSC IMS/IRSS
3 BSCEL 4 BSC CICS

5 BSC CCP 6 SNA Upline

7 SNA Peer 8 BSC 3270

9 SNA 3270 10 Finance

=1

SSP-ICF common queue space: Specify the size, in multiples of 2 K bytes, of
the common queue space. The common queue space requirements for each

configuration of the Intra subsystem enabled are 32 bytes.

The common queue space value specified for the first subsystem that is

enabled becomes the size of the common queue space. Be sure that the value
specified for common queue space size takes into account the requirements of

any other subsystem that might be active concurrently.

The size of the common queue space plus the total subsystem queue space of

all the enabled Intra subsystem cannot exceed 42 K bytes.
The default common queue space size is 4 K bytes.

Define the subsystem type: Specify a 1 for the Intra subsystem.

The Intra Subsystem

7-3

Display 3.0 General Subsystem Parameters

General Subsystem Parameters

Liotation name: (8 characters) . _ .
Subsystem queue space: (0-40 K)
Subsystem support swappable: (0-No 1-Yes)

7-4

Location name: Specify up to 8 characters for the name of the location
associated with this configuration. The location name is used in some
displayed message texts, and must be coded on the SESSION OCL statement.
The location name refers to the name of the location with which
communications is to take place. If you do not enter a location name, the
system uses the subsystem configuration member name for the location name.

Subsystem queue space: Specify the size, in multiple of 2 K bytes, of the
subsystem queue space. The subsystem queue space requirements for each
configuration of the Intra subsystem enabled is:

S=L,+L,+..+L

where:
S = number of bytes required for the subsystem queue space
L = maximum record length for each acquired session

The size of the common queue space plus the total subsystems queue space
of all the enabled Intra subsystem cannot exceed 42 K bytes.

The default subsystem queue space size is 4 K bytes. If the subsystem queue
space is set to O K bytes, the common queue space is used. In this case, the
subsystem requirements must be added to the common queue space
requirements.

Subsystem support swappable: Specify whether you want the subsystem to be
swappable. Consider the total system performance, the size of the subsystem,
and the amount of user main storage when determining whether you want the
subsystem swappable. The Intra subsystem requires 2 K bytes of main
storage.

STARTING AND ENDING THE INTRA SUBSYSTEM

The ENABLE procedure is the means of starting the Intra subsystem on the
System/34. The ENABLE procedure associates the subsystem with a particular
configuration.

The DISABLE procedure stops the subsystem. When a disable is performed,
the Intra subsystem no longer handles application program requests.

The formats of the ENABLE and DISABLE procedure commands are in
Chapter 2.

STARTING INTRA SUBSYSTEM APPLICATIONS

System/34 Intra subsystem applications can be started by a display station
operator entering a procedure command or by a request from another
application program. Procedures that are started by a System/34 operator
must have a SESSION OCL statement for each session to be started. The
following sections describe the SESSION OCL statement and the procedure
start requests.

SESSION OCL Statement

The format of the SESSION OCL statement for the Intra subsystem is:

// SESSION LOCATION-name , SYMID-session-id

[orren {3)]

LOCATION: Specifies the location name associated with this session. The
location name is defined during subsystem configuration, and refers to the
name of the location with which communication is to take place.

SYMID: Specifies the symbolic ID of the session with which this OCL
statement is associated. The symbolic ID must be two characters, with the
first character numeric (O through 9) and the second character alphabetic (A
through Z, #, $, or @). This is the same ID that the application program uses
when referring to this session. This ID is the equivalent of the symbolic display
station ID as specified on the WORKSTN OCL statement. This parameter has
no default. K

BATCH: Specifies whether batch-oriented operations (request to change
direction, negative response, cancel, and function management header
operations) can be issued for this session. YES indicates that they can be
issued; NO indicates that they cannot, and is the default.

Note: If the application program is a BASIC program, the SESSION statement
is not required unless you need to specify BATCH-YES.

The Intra Subsystem

Procedure Requests
For application programs to initiate procedures on the System/34, the program
must issue an evoke operation. The subsystem then starts the System/34
application and communications can begin.

OPERATION CONSIDERATIONS

The following sections describe the operations supported by the Intra
subsystem. A complete chart of all the interactive communications operations
and the subsystems that support them is in each language chapter. The chart
also shows the keyword or format name used to code the operation. More
information about how an operation is coded is also described in the
appropriate programming language chapter.

Whether an operation completes successfully or unsuccessfully, a return code
is given to the application program. All of the return codes that are valid for
the Intra subsystem are described at the end of this chapter. A summary chart
in Appendix A lists all the return codes and the subsystems for which they are
valid.

Acquire Operation

The acquire operation establishes a session. Associated with the acquire is a
session ID (corresponding to the SYMID parameter on the SESSION OCL
statement) that identifies this session. When the acquire operation completes
successfully, a session with this ID exists.

Evoke Operations

The evoke operation ($$EVOK, $$SEVOKNI, or $SEVOKET) initiates a procedure.
For an evoke operation with procedure parameters and data specified, the total
length of the procedure name, parameters, and data cannot exceed 120 bytes.

When security is active, the subsystem compares the user ID from the evoke
operation with user ID specified at sign on to the display station running the
application program. If the IDs are the same, further security checking is
bypassed.

The evoke operation with the function management header modifier (assembler
only) is valid only if BATCH-YES was specified on the SESSION OCL
statement of the program that acquired the session. See Chapter 15 for a
description of function management headers.

Put Operations

The put operation ($$SEND, $$SENDNI, $$SENDE, or $$SENDET) sends a
record to the other application program. Put operations are valid only during a
transaction.

Put function management header is valid only if BATCH-YES was specified on
the SESSION OCL statement for the program that acquired the session. Any
put function management header operation causes the receiving program to get
a return code indicating that a function management header is included with
the record. The Intra subsystem does not check the format or contents of
function management headers. See Chapter 15 for a description of function
management header operations. (Function management headers have no
particular use in the Intra subsystem environment, but are supported for
compatability with the SNUF subsystem.)

Input Operations

The input operations for the Intra subsystem are invite, get, and accept. The
invite operation can be issued only as a combined operation with a put or
evoke operation ($$SEND, $$EVOK) in BASIC, COBOL, and RPG Il. Assembler
language users can issue an invite operation explicitly. Either a get or invite
operation signals the subsystem to obtain data on the session for the
application program. A get operation causes the application program to wait
for the data to be available. When a program issues an invite operation, it
receives the data with the next accept operation. The accept operation allows
data from any previously invited session.

Request to Change Direction Operation

The Intra subsystem allows a request to change direction operation ($$RCD)
only during a transaction and only when the issuing program is receiving. If the
issuing program is receiving data, the operation results in a return code being
given to the other application program for the next output operation. If the
issuing program is not receiving and not transmitting, the request to change
direction operation has no effect. The operation is valid only if BATCH-YES
was specified on the SESSION OCL statement for the program that acquired
the session.

The Intra Subsystem 7-7

Negative Response Operation

The negative response operation ($$NRSP or $$NRSPNI) indicates to the other
application program that data was not received correctly. Eight bytes of data
are passed with the negative response indication. Negative response is only
valid while receiving data within a chain or as the first operation after the end
of chain, and only if BATCH-YES was specified on the SESSION OCL
statement for the program that acquired the session.

The 8 characters of user data should contain user-defined sense information to
indicate the reason for the negative response. The Intra subsystem checks to
ensure that the first 4 characters are 10xx, 08xx, or 0000.

The program that receives the negative response gets a return code indicating
the condition. That program must then do an input operation to receive the
data. The only valid response to a negative response is a cancel.

Cancel Operation

The cancel operation ($$CANL, $$CANLNI) sends a cancel return code to the
other application program. The cancel return code indicates to the receiving
program to abnormally end this group (chain) of data records and to disregard
previous records in this group (all records sent since the previous end of chain).
The cancel operation can be issued alone or with an invite or get. The cancel
operation should only be issued while transmitting data. A cancel operation
does not end a session.

The cancel and negative response operations can be considered as a pair.
Cancel is the appropriate response to a negative response. However, if the
transmitting program detects an error, cancel can be sent without first receiving
a negative response. The cancel operation is valid only if BATCH-YES was
specified on the SESSION OCL statement for the program that acquired the
session.

Fail Operation

The fail operation ($$FAIL) indicates to the receiving program that an abnormal
condition has occurred. The fail operation can be issued while the program is
sending or receiving. If a program issues a fail operation while sending, it
indicates that the data just sent was in error. All data sent before the fail
operation is transmitted to the receiving program, and a return code indicating
the fail is given to the receiving program. If a program issues a fail operation
while receiving, it indicates that the data received was in error. The subsystem
discards all subsequent data until the transmitting subsystem acknowledges
receipt of the fail operation. In either case, the program that issued the fail
operation must transmit, and the program that receives the fail return code.
must receive. If both programs issue a fail operation simultaneously, the
program that was receiving will be successful and must transmit. The program
that was transmitting will receive an unsuccessful return code and must begin
receiving. No data can accompany the fail operation.

Release Operation

The release operation is an attempt by the issuing program to terminate the
session. Release performs different actions depending on the type of session:

« If the session was acquired by the issuing program, the release operation
terminates the session. The same or another session can then be acquired.

« If the session was started by an incoming procedure request and the issuing
program is a MRT program, the release operation passes the session to the
next step in the procedure. The SSP then executes any further OCL in the
procedure.

« If the session was started by an incoming procedure request and the issuing
program is a SRT program, the release is delayed until the issuing program
terminates. After the issuing program terminates, the session is passed to
the next step in the procedure.

A release operation for an acquired session can only be performed if no
transaction is active; that is, end of transaction has been successfully sent or
received. See Chapter 2 for more information about the release operation.

End of Session Operation

The end of session operation ($$EOS) always results in a normal completion
return code. The session is always terminated by the end of session operation.
If the session is still communicating when the end of session operation is
issued, the transaction is abnormally terminated by the Intra subsystem, and
abnormal termination of the other application program could result.

Get Attributes Operation
The get attributes operation (assembler only) can be issued at any time to
determine the status of a session. If you are using BASIC, you can use the
ATTRIBUTES intrinsic function to determine the status of a session.
Set Timer Operation
The set timer operation ($$TIMER) results in a timer expired return code (0310)
after a specific time interval in hours, minutes, and seconds has expired.
Pass-Through Operations
Pass-through operations to be used with the SNUF subsystem are allowed,
but not fully supported, by the Intra subsystem. Return codes given by the

Intra subsystem may differ from those that the SNUF subsystem issues for the
same operation.

The Intra Subsystem

How to Write Programs that Use the Intra Subsystem

The following programming examples show you how to write a BASIC, a
COBOL, and an RPG Il program that uses the Intra subsystem. The
configuration parameters and OCL statements used for the programming
examples are also shown.

These examples are used for all subsystems except the 3270 subsystem. Each
subsystem chapter contains a description of the configuration parameters and
the OCL statements for that subsystem. If any changes are required to the
programs for that remote system, those changes are shown in that subsystem
chapter.

The following inquiry application is used in the programming examples:

Display

System/34

[Application
Program B

Application |
Program A

System
Support
Program

SSP-ICF
Intra
Subsystem

Application program A displays a prompt asking an operator to enter an
item number requesting the stock status for the item °

When the operator enters the item number, program A reads the number
and searches disk file A (the local file) for the item number e

If the item number is in the local file, program A displays the stock status
on the screen @).

If the item is not in the local file, program A uses the Intra subystem to
send the item number to application program B Q

Application program B uses the item number to search disk file B (remote
file) for the item @.

If the item is found in the remote file, program B uses the Intra
subsystem to send the stock status to program A Q If the item is not
in the remote file, program B sends the characters *** to program A.

If program A receives the stock status, it displays it. If the program
receives the characters **¥, it displays the message ITEM NOT FOUND

The Intra Subsystem

CONFIGURATION PARAMETERS

The following configuration parameters are used for this example:

CREATE/ZEUIT *% 1.0 SURBSYSTEM MEMBER CONFIGURATION %
1. SUBSYSTEM CONFIGURATION MEMRBER NaAME ¢ IINTRA 'l
2. SURSYSTEM LIBRARY NAME $ ICFLIER
1 CREATE NEW MEMBER 4 DELETE A MEMBER
2 EDIT ENISTING MEMBER S REVIEW A MEMBER
3 CREATE NEW MEMBER FROM EXISTING MEMEER
3. ENTER SELECTION ¢ 2

#% 2,0 COMMON SGF-ICF FARAMETERS FOR EACH SUBSYSTEM *x

KEY ANY CHANGES AND FPRESS ENTER TO CONTINUE

1. 8SP-TCF COMMON QUEUE SPACE (2 = 42K) o2
2. DEFINE THE SUBSYSTEM TYFE 1
1 INTRA 2 BSC IMS/IRSS
2 BECEL 4 BEC CILCS
% RSC CCF & SNA UPLINE
7 GNA FEER 8 BSC 3270
9 SNa 3270 10 FINANCE

#% Z,0 GENERAL SUBSYSTEM FARAMETERS »x
KEY ANY CHANGES anl PRESS ENTER 10 CONTINUES

1. LOCATION NAME INTRA
2. SUBSYSTEM QUEUE SFACE (0-40K)
3. SUBRSYSTEM SUFFPORT SWAFFABLE? (O-NO 1-YES)

o2
1

»-—-'*"'

On display 1.0, the configuration member name (INTRA) and the library
name (ICFLIBR) in which the member is stored are specified.

On display 2.0, an SSP-ICF common queue space of 2 K bytes is
specified, and the subsystem type selected is the Intra subsystem.

On display 3.0, the remote system location name is specified (INTRA),
and a subsystem queue space of 2 K bytes is specified. The location
name must also be entered on the SESSION OCL statement.

HOW TO WRITE A BASIC PROGRAM THAT USES THE INTRA SUBSYSTEM

The following example shows how to write a BASIC program to use the Intra
subsystem for the inquiry application described previously. The example shows
two programs (A and B) in the order of execution. The entire programs are not
shown; however, listings of the complete programs and the screen format
follow the examples. (See Screen Format and Programs Listings.) You may
want to refer to these listings while you read the example.

OCL Statements

The following procedures and OCL statement are used for the BASIC example:

. . S Procedure and OCL statement
a. HASICR ITEMARAS,; ITEMRAS, 30, , BASSESS for program A. The BASICR

/ procedure includes the

SESSION statement.

b. 7/ SESSION LOCATION-INTRA,SYMID-15]
I

The remote system location is INTRA (also specified
on display 3.0 of the CNFIGICF procedure), and the
session identifier (SYMID) is 18S.

Procedure for program B.
c. BASICK [TEMERAS, ITEMBAS, 30 A SESSION statement is

not required for program B.

The procedure for program B will be started by an incoming procedure start
request from program A. When you create the procedure for program B,
specify PDATA-YES on the copy utility statement for SMAINT or answer yes
to the prompt for program data in the INCLUDE statement if you use SEU to
create the procedure. You must specify PDATA-YES because program B is an
SRT program, and program A sends data to program B with the evoke
operation. See Writing Procedures to be Started by Incoming Procedure Start
Requests in Chapter 2 for more information.

The Intra Subsystem 7-13

Data Flow and Operations

The following charts and the BASIC program on the facing page show the data
flow and the operations that program A and B issue to the Intra subsystem
during program execution:

Program A A Intra Subsystem'’ Program B

Bl Set up variables @). Open
the work station file and
data files @). Display the
input prompt using FORM1

Read the item number
from the display €.

If the operator pressed
command key 7, go to
CLSFILE G If the item
number is zero or blank,
set up to display an error
message and go back to
DISPLY o

Search the local file for the
item @. If the item is
there, go to DISPLY and
display the item status.

If the item is not found iN=——t————-
the local file, begin a
session. (Open file #3 to
begin SSP-ICF session 1S

o)

- Return code

B Start program B. Write —————s
evoke operation ($$EVOK)
@ 2nd send evoke
parameters) with the
item number to program B

Return code

tpom—

'If an error occurs, the program goes to ICFERR to check the return code. This routine is described in the
discussion of How to Check Return Codes with BASIC later in this example.

Program A

QON70 L
QO0HO UM’: N #’? b4
O0OP0 INDICHL D

00140 D [‘:F'I. YIWRETE] #1 ,U"‘ING 150, FORMAT
C AQTYR2,RTYS, 4, ME'.:$ SRT .DDL %y REAGONS

Q01O HJF\M C ...3;4*N 4,C 30

00160 MESH=" " IRT r:nnmw"" XF\FA“‘L’)N‘.SN""

00170
00180
00190 IC4C183)="110
88.2)?8 lum“(ﬂﬂ.ﬂmxldlﬂﬂllﬂ -
b] .) =4
00220 ME. b‘.t .y INUALIH ITFM NUMPM..R E:.N T k:.kE.n" /o
00230 INDICECL L)="O " S INDICE (383 ="
00240 GOTO _DISFLY

00310 READF ILE |F\hAI" w2 g USING 320,REY=ITEM$? QTV1,QTY2,0TY3,QATYA NOKEY ICK|
OO320 FORM X
OO330 GOTO DISFL Y

00370 1(..F‘"1F INI.’I'IC$(4‘4)="1" THEN EVOK
00.590 O D ;

UITEMBEAS' , "USER' , "USERY ; &

IOFRR

v &as

'.T CI'~ E RF(

The Intra Subsystem 7-15

Program A

Intra Subsystem'

Program B

P rmmm———

Return code

~Open files @ and read the
item number sent by program

A Q.

Return code

Search the remote file for the
data @. If the data is in the
remote file, send it to program
A @. If the data is not found,
send the characters *** to
program A @.

-

Read the data from
program B @.

Return code

B End the transaction: Send™|
$SSENDET @.

Return code

Return code

e—

~Read the end of transaction Q

Close files and end the job).

'If an error occurs, the program goes to ICFERR to check the return code. This routine is described in

‘the discussion of How to Check Return Codes with BASIC later in this example.

Program B

0006 111
QOO0

0013

001 40

001

QOLY w1, U%
QO200 265 4%N

00240 SE NDUATA X OP‘(‘ CITAE: 4

00410 7
00420 T T %,
30430 GOTO 300

Program A

00340 QTOF‘

The Intra Subsystem 7-17

Program A Intra Subsystem’ Program B

Check the record from
program B. If the data is
not *** @, go to DISPLY
and display the status
from program B @. If the
data is *** go to DISPLY
and display the message
ITEM NUMBER NOT
FOUND e

B If the operator pressed
Command key 7, go to
CLSFILE @ to close files,
and end the job. (See

step 2 @.)

'If an error occurs, the program goes to ICFERR to check the return code. This routine is described in
the discussion of How to Check Return Codes with BASIC later in this example.

INDI(".I;(13 1)-="0“‘ IN)I]I(“.B(!: Fymtryr
GOTO DISFLY

HEN CLOGE #33

The Intra Subsystem 7-19

7-20

How to Check Return Codes with BASIC

The following description and the example on the facing page show how to
check SSP-ICF return codes with BASIC.

Program A Return Code Routine

1. The progrém prints the return code, operation code, and item number as
an aid for problem determination @).

2. If the return code is greater than or equal to 04xx Q the program goes
to OUTCHK; otherwise, it goes to SENDEOS to send $$EOS and end the
session 0 and then goes to DISPLY to display the return code.

3. If the return code is greater than 04xx e the program goes to
ACQCHK. If not, the return code is 04xx (output exception); data or a
system message is ready to be read. The program reads the data or
message Q goes to subroutine SENDEOS to end the session 0 and
then goes to DISPLY to display the data or message.

4. If the return code is 82xx G the session was not acquired. The program
goes to DISPLY to display the message UNABLE TO ACQUIRE Q It
also displays the return code to show the operator why the session was
not acquired.

5. If the return code is greater than O4xx and not 82xx, the program goes to
SENDEOS and ends the session, then goes to DISPLY to display the
return code @.

Program B Return Code Routine

Program B displays and prints any return codes that it receives.

Note About Checking Return Codes

In this example, only the return codes that needed to be checked were
checked. All other return codes were displayed or printed. Depending upon
your remote system, you may need to check for return codes other than those
shown in this example. However, you should display and/or print all return
codes as an aid to problem determination. If any codes that are not error
codes are returned repeatedly, you may want to include these in your return
code routine. If an error code is returned, you should, of course, correct the
condition causing the error.

The return codes are described in each subsystem chapter. Only the codes
that are valid for that subsystem are described.

Program A P

00820 | » *
00830 1% / ICFERR ROUTINE *
TCFERRIPRINT #3255, USTNG 6403 "RETURN CODE ",RETCODES,” OPCODE 1S

0O
QOO TNIIIC$(122)I»=“OO"
QOPLHO BO!::UB Sl: ND!: (81:3

NDICH(132)=" 10"
QLO3N GOSUEI SENDEQS r-\e
01040 GOTO DISFLY

007?740 1w
00750 % SENDEDS SUBROUTINE
007?760 iu
00770 SE
00780 :
00790 Gl $

00800 1Nﬂ10$<4:4)a"o"
00810 RETURN

x XX

Program B

00440 %
QOATO 1% ICFERR ROUTINE

OOAL0 %

00470 ICFERRIIF RETCODE$="0308" OR RETCOUE$="0100" THEN CONTINULE

00480 PRINT $285,USING 4908 “"RETURN COLE " ,RETCODES,' OPCODE IS
&' ITEM NUMBEF\ 18 “, ITEMS

GO490 FORM SKIF 2,C 12,C 4,0 11,0 6,C 16,C 23

QOS00 STOR

XXX

'JOPCODES &

The Intra Subsystem 7-21

7-22

HOW TO WRITE A COBOL PROGRAM THAT USES THE INTRA SUBSYSTEM

The following example shows how to write a COBOL program to use the Intra
subsystem for-the inquiry application described previously. The example shows
two programs (A and B) in the order of execution. The entire programs are not
shown; however, listings of the complete programs and the screen format,
follow the examples. You may want to refer to these listings while you read
the example. (See Screen Format and Program Listings.)

OCL Statements

The following OCL statements are used for the COBOL example:

Procedure for Program A

/7 LOAL XTEMAC

/7 FILE NAME-FILEA

/7 SESSION|LOCATION-INTRA,SYMIN-19 —K
/7 RUN

The remote system location is INTRA (also specified on display 3.0 of the
CNFIGICF procedure), and the session identifier (SYMID) is 1S n

Procedure for Program B

/7 LOADR ITEMRC
/7 FILE NAME-FILER
/7 RUN

The procedure for program B wiill be started by an incoming procedure start
request from program A. When you create the procedure for program B,
specify PDATA-YES on the copy utility statement for SMAINT or answer yes
to the prompt for program data in the INCLUDE statement if you use SEU to
create the procedure. You must specify PDATA-YES because program B is an
SRT program, and program A sends data to program B with the evoke
operation. See Writing Procedures to be Started by Incoming Procedure Start
Requests in Chapter 2 for more information.

This page is intentionally left blank.

The Intra Subsystem 7-23

File Control for Program A and B

« Use the transaction file for ICF sessions and work stations and define the
transaction file with the SELECT statement @.

« The file status specifications (WS-FS and ICF-FS) Q are used to test the
completion status of transaction file input and output operations.

« Disk data file A (DISK-FILEA) G is searched first when the operator enters
the item number. Disk file B (DISK-FILEB) G is searched next if the item is

not found in file A.

« The file PRINT-FILE Q is used to print file status return codes and error
messages.

7-24

Program A

INFUT-OUTFUT SECTION.
FILE-CONTROL. .

SELECT [TRANSACTION-F LLE
ASSIGN TO WORKSTATION-ITEMFM-O1,
ORGANXZATION IS TRANSACTION,
FILE STATUS IS|WS-FS, ICF-FS,
CONTROL.~-AREA 16 wS"CONTﬁ?LwﬁREﬁ‘

SELECT FILEA-FILE ASSIGN TO
ORGANTZATION IS INDEXED, ACLESS 18 RANDOM,
RECORIY KEY 18 FILEA-NUMBER.

/

SELECT [PRINT-FILE ASSIGN TO PRINTER-PRINTER.

Program B
INFUT-0UTFUT SECTION.
FILE--CONTROL .
SELECTI1RA§QAL110N -FILE |
ASSIGN TO WORKSTATION,
?

ORGQNIZATION IS TRANSACTION
FILE STATUS IS |[WS-FS, ICF-FS,|
CONTROLMAREA I" WS-CONTROL.~AREA .

SELECT FILER-FILE ASSIGN 7O |DISK-FILER,
ORGANIZATION IS INDEXEXD, ACCESS I8 RANDOM,
RECORD KEY IS FILER-NUMBER.

SELECT|PRINT-FILE ASSIGN TO FRINTER-FRINTER. |

The Intra Subsystem 7-25

B} Data Division (File Section) for Program A and B

The data division defines the records for the SSP-ICF files o disk files A and
B @ and the print files @.

Working Storage for Program A

« Your program must know whether input and output is from or to a work
station or an SSP-ICF session and, if there is more than one active session,
which session is currently in use. (In this example, there is only one
session.) The identifier for the SSP-ICF session is 1S Q The value in
WS-I1D G is set to the ID of the last session or work station accessed.

e CMD-KEY 7 G is used in the program to determine whether the operator
pressed command key 7 to request end of job processing.

« Your program must check return codes after each input/output operation.
In this example, the return code is returned in ICF-FS @ and checked by
the return code routine, which is described later in this example under How
to Check Return Codes with COBOL.

7-26

Program A

DATA DIVISION.
FILE_SECTION.

FIt | TRANSACTION-FILE, LABEL RECORDS ARE OMITTED.
01 | TRANSACTION-RECORD FPIC X(296).
FI | FILEA-FILE, LARBEL RECORDS ARE STANDARD.
Ol | FILEA~RECORID,

03 FILEA-NUMEER FIC X(2X).

03 FILLER FIC XXX

0% FILEA-QTY-1 FIC 9¢6).

03 FILEA-QTY-2 FIC 9¢6).,

03 FILEA-QTY-3 FIC 9(&).

03 FILEA-QTY-4 FIC 9¢(&6).
FO | FRINT-FILE, LAREL RECORIS ARE OMITTED,
01 | FRINT-RECORD FIC X(132).
Program B

NATA DIVISION.
FILE SECTION.

FII [TRANSACTION-FILE, LAREL RECORDS ARE OMITTED.
01 | TRANSACTION-RECORD FIC X(256) .
FOo [FILER-FILE, LAREL RECORUS ARE STANDARD.
01 |FILEB-RECORD.
03 FILERB-NUMBER FIC X(23).
03 FILLER FIC XXX,
03 FILER-QTYS.
0% FILER-QTY-1 FIC 92¢&6),
05 FILEB-QTY-2 FIC 9¢6),
0% FILER-QTY-3 FIC 9¢&).
0% FILEB-QTY-4 FIC 9¢&).
FR [PRINT-FILE, LAREL RECORDS ARE OMITTED.
03 |PRINT-RECORD FIC XC(132).
Program A

WORKING-STORAGE. SECTION.

[TCF-SESSTON FLIC XX UALUE '19'.}/Q

>y
7
s

01

SAVE-ID FIC XX VALUE SPACES.

SAVE~ I TEM--NUMEER FIC X(23).

WS-IIUMMY -AREAS .

03 WS-CONTROL-~AREA .
05 AID-RBYTE FIC 99. /e

88 CMD-KEY~-? VALUE 7.
05 WS—IN— PIC XX
0% FILLER FIC X(8).
03 RETURN-CODES .
05 WS-F4G FIC XX.

07 MINOR-RETURN-CODE FIC XX.

05 ICF-F8,
07 MAJOR-RETURN-CODE PIC XX.

The Intra Subsystem

7-27

Working Storage for Program B

Program B does not require a work station; therefore, there is no work station
identifier. The session identifier (ICF-SESSION) O is set by SSP-ICF because
program B is an evoked program.

Display Information for Program A
« The display screen indicators Q are used as follows:
— If indicator 101 is on (1), the message line is not displayed.
— If indicator 102 is on, the return code line is not displayed.

— |If indicator 103 is on, the item number is displayed in reverse image.

« The display screen messages 0 are explained under Data Flow and
Operations later in this example.

7-28

n Program B

WORKING-STORAGE SECTION.

01 YXCF-XTEM-NUMEER-~IN PIC X(23) VALUE SFPACES.

01 WS-DUMMY-AREAS.,
03 WS—-CONTROL~AREA.

05 ALD-RBYTE PIC 99. 40
o5 ICF-SESSION— FIC XX.
05 FILLER FIC X(8).

03 RETURN-CODES.
05 WS-FS FIC XX

0% ICF-FS.
07 MAJOR-RETURN-CODE FIC XX.
07 MINOR-RETURN-CODE FPIC XX.

Program A

01 [BCREEN-INDICATORS. : /e
03 IOt PIC 1 VALUE ZERO, INDICATOR O1.
03 102 FIC 1 VALUE ZERO, INDICATOR 02.
03 103 FIC 1 VALUE ZERO, INDICATOR 03.

01 | SCREEN-MESSAGES .
03 INVALID-ITEM-MSG. .
05 FILLER FIC X(14) VALUE SPACES.
OS5 INVALID--MSG PIC X(70)
VALUE *INVALID ITEM NUMBER ENTERED.?.

03 ITEM-NOT-FOUND-MSG.

o5 FILLER FIC X(14) VALUE SFACES.

05 FILLER PIC X(12) VALUE *ITEM NUMERER *.
05 ITEM-NOT-FOUND FIC X(23) VALUE SPACES.

05 FILLER FIC X(35) VALUE * NOT FOUND.? .

The Intra Subsystem 7-29

7-30

B Data Records for Program A

You must define the evoke record that is used to start the remote program
or procedure (program B in this example). The record includes the
procedure or program name @), the password and user 1D) that the
remote system requires before the program or procedure is started, and the
name of the library Q that contains the program or procedure to be started.

In this example, data (the item number) is sent with the evoke
parameters . -

ICF-RECORD-IN describes the data fields for the record from program B.
ICF-RECORD-CHECK @ and ICF-RECORD-OK @) describe the fields of
ICF-RECORD-IN.

SCREEN-RECORD e is the data and constants to be displayed on the
screen.

PRINT-CODES 0 is used when printing return codes and operation codes.

Data Records for Program B

[

ICF-RECORD-0OUT Q is the item status that program B sends to program
A if the item number is found in file B.

ERROR-RECORD-OUT 0 is the *** message that program B sends to
program A if the item is not found in file B.

PRINT-CODES Q is used when printing return codes and operation codes.

B Program A

0

01 EVORKE-RECORT. e
03 PROCEDURE - NAME FIC X(8) VALUE |[? ITEMBCORB? +
03 PASSWORT FIC X(8) VALUE [TUSER?’, __e
03 USER-IN FIC X(8) VALUE [?USER?.
03 LIBRARY-NAME FIC X<(8) VALUE [*ICFLIBR? ol-\e
03 FILLER FIC X(20).
03 UATA~LENGTH FIC XXXX VALUE 00237,
03 |[ICF-TITEM~-NUMBER-QUT FIC X(23).
01 ICF-RECORD-IN.
03 [QCF-RECORI-CHECK.
0% FIRST-3-CHARACTERS FIC X(3).
o5 REST-OF-DATA FIC X(253), \e
0% ICF-RECORD-0OK REDEFINES ICF-RECORD~-CHECK.
05 FILLER FIC X(32).
05 ICF-ITEM-NUMEER~IN FIC X(23).
0% FILLER FLC X(145) . /e
0% ICF-QTY-1 FIC 9¢6).
0% ICF-QTY-2 FIC 9¢4).
0% ICF-QTY-3 FIC 9¢6).,
0% ICF-QTY -4 FIC 96,
0% FILLER FIC X<(32).
01 | SCREEN-RECORII.
03 ITEM-NUMRER PIC X(23).,
03 QTY-1 FIC 9C¢4).
03 QrTY-2 FPIC 9¢6).
03 QATY-3 FIC 9C¢6).
03 QTrY—-4 FIC 9¢(&6).
03 MG FIC X(80).
03 RETURN-CODE FIC X<4),
03 REASON-WHY FIC X(30).
01 |FRINT-CODES.
03 FILLER FIC X(14) VALUE *RETURN CODE *.
03 FRINT-RETURN-CODE FIC XXXX.
03 FILLER FIC X{(11) VALUE * OPCODE IS *.
03 OPCOQE FIC X(6).
03 FILLER FIC X(11) VALUE ? DATA SENT .
03 PRINT-LTEM-NUMRBER FIC X(23).
Program B
01 ICF-RECORD-OUT .
03 LATA-LENGTH FIC X(4) VALUE 02247,
03 FILLER FIC X(32).
03 ICF-ITEM-NUMBER-QOUT FIC X(23) .,
03 FILLER FIC X(145).,
03 ICF-QTYS.
0% ICF-QTY-3 FIC 9¢6),
0% ICF-QTY-2 FIC 9¢&6).
0% ICF-QTY-3 FIC 9¢6),
0% ICF-QTY-4 FIC 9(&48).
01 ERROR-RECORD-QUT . /o
03 DATA-LENRGTH FIC XXXX VALUE 00037,
03 FILLER FIC XXX VALUE ?%%x?,
01 PRINT-CODES.
03 FILLER FIC X<(14) VALUE *RETURN CODE *.
03 FRINT-RETURN-CODE FIC XXXX.
03 FILLER FIC X<11) VALUE ?* OFCODE IS *.
03 QOFCODE FIC X(&6).

The Intra Subsystem 7-31

Data Flow and Operations

The following charts and the program on the facing pages show the data flow
and the operations that program A and B issue to the Intra subsystem during
program execution:

Program A Intra Subsystem’ Program B

Kl Open files @ and set on
indicators 01 and 02 @.
Restore WS-1D and
display the input prompt
using screen format
FORM1 Q

E Read the item number
from the display). Save
the WS-ID G If the
operator pressed
command key 7, go to
CLOSE-FILES G If the
item number is zero or
blank, set up to display an
error message @
(INVALID ITEM NUMBER
ENTERED) and go back to
ITEM-INQUIRY.

Search the local file for
the item @). If the item is
there, move data to
SCREEN-RECORD and go
to ITEM-INQUIRY to
display the data). If the
item is not found in the
local file, begin a session—t——e
(ACQUIRE) and check the
return code @.

Return code

B Start program B.—————
Write evoke operation
(3EVOK) @: send evoke
parameters with the item
number to program B.

-+ Return code

Check the return code.

"Return codes are checked by the return code routine, which is described in the discussion of How to
‘Check Return Codes with COBOL later in this example.

Program A

PROCEDURE DIVISTION.

OFEN~-FILES.
OFEN I-0 TRANSACTTION-FILE. /e
OFEN QUTPUT PRINT-FILE.
OFEN INFUT FILEA-FTILE.,
MOVE B?*1°* TO IT01, IO2, |\9
MOVE SFACES TO SCREEN-RECORD.
TTEM-INQUIRY,
MOVE SAVE-TI TO WS-I.
WRITE TRANSACTION-RECORD FROM SCREEN-RECORD /e
FORMAT IS *FORML?, TERMINAL I8 WS-ID,
INDICATORS ARE SCREEN-INDICATORS .

B REAL TRANSACTION-FTLE RECORD INTO SCREEN-RECORI,
TERMINAL I8 WS-IN.

MOVE WS—1N TO SAVE-ID N

MOVE E’1°’ T0O 101, 102,

MOVE. B*0?* TO 103,

IF CMO-KEY-7 G0 _TO CLOSE-FILES.

IF ITEM-NUMBER = SFACES OR ITEM-NUMBER = ZEROS
MOUVE INVALID-TTEM-MSG TO MSG,
MOVE H’0* TO 101,

MOVE. ®*1°* TO 103,
GO TO ITEM-INQUIRY.,

B] READ-FILEA-FILE,
MOVE SFACES TO FILEA-RECORD,
MOVE ITEM~-NUMBER TO FILEA-NUMBER.
[READ FILEA-FILE, @
INVALID REY
GO TO ICF.
MOVE FILEA-QRTY~1 TD QTY-1.
MOVE FILEA-QTY-2 TO m'v~~:e./0
MOVE FILEA-QTY-3 TO QTY-3,
MOVE FILEA-QTY-4 TO QTY-4,
50 TO ITEM-INQUIRY.

ICF .
[ACQUIRE TEF-SESSION FOR TRANSACTION-FILE.]
MOVE: *ACQR* TO OPCODE.
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.
IF 102 = RB*0?
GO TO ITEM~-INRQUIRY.

n MOVE ITEM-NUMEBER TO ICF-ITEM-NUMBER-QUT.
WRITE TRANSACTION-RECORD FROM EVORE-RECORD \°

FORMAT 16 *$$EVOK?, TERMINAL IS ICF-SESSION.
MOVE. *EVOK?* TO OFCODE.
PERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END .
TF 102 = R*0?

PERFORM SEND-EOS,

GO TO TTEM-INQUIRY.

The Intra Subsystem

7-33

7-34

Program A

Intra Subsystem'

Program B

Return code

~Open files @) and read the
item number sent by program

~O.

Print the return code and
operation code (.

Return code

~Search the remote file for the

data @). If the data is in the
remote file, send it to program

A @ and @. If the data is not

found, send the characters ***
to program A @ and @.

p

Print the return code and
operation code ().

Read the data frome—————
program B).

Check the return code.

Return code

B End the transaction: Send—
$$SENDET @.

Check the return code.

——

R

Return code

Return code

e

—Read the end of transaction

-~

Print the return code and
operation code (.

Go to CLOSE-FILES and end

the job @.

"Return codes are checked by the return code routine, which is described in the discussion of How to
Check Return Codes with COBOL later in this example.

Program B

B FROCETIURE. DIVISTON.
OFEN-FILES.

OFEN I—-0 TRANSACTION-FILE. /o
OFEN DUTPUT PRINT-FILE.
OFEN INFUT FILEB-FILE.,
|READ TRANSACTION-FILE RECORI INTO ICF-ITEM-NUMBER-IN.

MOVE *ACCEFT* TO OPCODE.
FERFORM WRITE-CODES THRU WRITE--CODES-END.

READ-FILEB-FILE.
MOVE SPACES TO FILER-RECORD.
MOVE. ICF-TTEM-NUMBER-IN TO FILEB-NUMBER. 0

READ FILEB-FILE,]|—
INUALTD KEY /G
MOVE ERROR-RECORD-OUT TO TRANSACTION-RECORD,

GO_TO SEND-DATA.
MOVE FILER-NUMRER TO ICF-ITEM~NUMBER-OUT.

MOVE FILER-QTYS TO ICF-QTYS. \G
MOVE ICF-RECORD-QUT TO TRANSACTION-RECORD.

SEND-DATA,
WRITE TRANSACTION-RECORD FORMAT IS ?*$4SEND?, /@

MOVE ?SEND? T0O OPCODE.
PERFORM WRITE-CODES THRU WRITE-COLNES-END, \

Program A

MOVE SFACES TO ICF-RECORD--IN. /o
READ TRANSACTION-FILE RECORD INTO ICF-RECORD-IN,

TERMINAL 1S ICF-SESGION.
MOVE *GET* TO OFCODE.
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.
IF 102 = R*0O?

FERFORM SEND-EOS,
GO TO ITEM-INQUIRY.

B MOVE SPACES TO TRANSACTION-RECORD.
WRITE TRANSACTION-RECORD

FORMAT I8 *$$SENDET?, TERMINAL IS ICF-SESSION.
MOVE. *SENDET?® TO OFCODE.
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.
IF 102 = RBR*0O*

FERFORM SEND-EDS.

L

Program B

a [REAL TRANSACTION-FILE RECORD YERMINAL IS ICF-SESSION. |/c
MOVE *GET?* TO OPCODE.
(FERFORM WRITE-CODES THRU WRITE-COLES-END. |\°

m CLOSE-FILES.,
CLOSE TRANSACTION-FILE, FILEE-FILE, PRINT-FILE. \m

STOF RUN.

The Intra Subsystem 7-35

Program A Intra Subsystem’ Program B

Release the session @.—1—

:Return code

g

Check the return code.

Check the record from
program B. If the record
is *** @, set up to
display the message ITEM
NOT FOUND e If the
record is not *** set up
to display the data). Go
to ITEM-INQUIRY to
display the data or the
message @.

If the operator pressed
command key 7, go to
CLOSE-FILES and end the
job. (See step 2 @.)

"Return codes are checked by the return code routine, which is described in the discussion of How to
Check Return Codes with COBOL later in this example.

7-36

Program A

IF 102 = Br1° I/’/Q
[DROF_TCF-SEGBION FROM TRANGAGTION-FILE,

MOVE *DROF? TO OFCODE,
FERFORM CHECK~RETURN-CONE THRU CHECK-RETURN-CODE~END.,
IF 102 = R*O?

FERFORM SEND-EOS.

MOVE R*1* TO IOLl, IO2.
MOVE LTEM-NUMBER TO SAVE-IXTEM-NUMEBER.

MOVE SFACES T0O SCREEN-RECORD, '——___’____,Q
[IF FIRST-3-CHARACTERS = *%%%?

MOVE SAVE-TITEM-NUMBER TO ITEM-NOT-FOUND, ITEM«NUMBER,/G
MOVE ITEM-NOT-FOUND-MSG TO MSG,
MOVE E*0’ TO 101, MOVE K?1’ TO 103,
ELSE
MOVE ICF~ITEM-NUMBER-IN TO TTEM-NUMBER,
MOVE ICF-RTY-1 TO QTY-1,
MOVE ICF-QTY-2 TO QTY-2, r——*”":'
MOVE ICF-QTY-3 TO QATY-3,
MOVE ICF-QTY-4 TO QTY-4,

[GO TO ITEM-INQUIRY. I\G

CLOSE~FILES.

CLOSE TRANSACTION-FILE, FILEA-FILE, PRINT-FILE.
STOF RUN.

The Intra Subsystem 7-37

7-38

How to Check Return Codes with COBOL

The following description and the example on the facing page show how to
check SSP-ICF return codes with COBOL. '

Program A Return Code Routine

1. If the return code is less than 04xx @), the return code does not indicate
an error and the routine is ended. :

2. If the return code is greater than or equal to 04xx, the return code is
printed as an aid to problem determination G

3. If the return code is 04xx (output exception) ° data or a system
message is ready to be read. The program reads the data or message
Q, and sets up fields and indicators o so that the data or message and
the return code are displayed on the work station screen when the
program goes to ITEM-INQUIRY.

4, If the return code is 82xx o the session was not acquired. Move the
message UNABLE TO ACQUIRE and set up indicators e so that the
message and return code are displayed to show the operator why the
session was not acquired.

5. If the return code is greater than 04xx and not 82xx, the program sets up
indicators @) to send an end of session ($$EOS) operation) and moves
the return code to RETURN-CODE to be displayed as an aid to problem
determination.

Program B Return Code Routine

Program B displays and prints any return codes that it receives o

Note About Checking Return Codes

In this example, only the return codes that needed to be checked were
checked. All other return codes were displayed or printed. Depending upon
your remote system, you may need to check for return codes other than those
shown in this example. However, you should display and/or print all return
codes as an aid to problem determination. If any codes that are not error
codes are returned repeatedly, you may want to include these in your return
code routine. If an error code is returned, you should, of course, correct the
condition causing the error.

The return codes are described in each subsystem chapter. Only the codes
that are valid for that subsystem are described.

Program A

CHECK-RETURN-CORIE. o

IF HMAJOR-RETURN-CODE ¢ ?047 /o

GO TO CHECK-RETURN-CODE-~ENLD o

MOVE ITEM-NUMBER TO PRINT-ITEM-NUMBER .
MOVE TICF-FS TO PRINT-RETURN-CODE .

WRITE FRINT-RECORD FROM FRINT-CODES
_AFTER ADVANCING 2 LINES,

MOVE. SFACES T0O RETURN-CODE.

/e

IF MAJOR-RETURN--CODE = 04

MOVE TCF-FS TO RETURN-CODE,

MOVE. 2 OUTFLUT EXCEFTION? TO REASON-WHY,

0

EL.SE

TERMINAL 1S ICF-SESSION,

READ TRANSACTION-FILE RECORD

INTO ICF-RECORD~CHECK., /e

MOVE &*0? TO 101, I02,

MOVE ICF-RECORD-CHECK TO MSG,

—0

IF MAJOR-RETURN~CODE = 82

MOVE. TCF-FS TO RETURN-CODE,

MOVE *UNABLE TO ACQUIRE?

TO

REASON-WAY ;|

MOVE E*1? TO 101, MOVE B?0* TO 102,

ELSE

IF MAJOR-RETURN-CODE > *04?
MOVE TCF-FS TO RETURN-CODE,
MOVE E?1? TO 101, MOVE R*°0* TO I02.

—0

CHECK~RE TURN-COUE ~END o

SEND-EQS

MOVE SFACES TO TRANSACTION-RECORD.

WRITE TRANSACTION-RECURD
FORMAT T8 *$4E0S?, TERMINAL I8 ICF-SESSION.

0

MOVE *EQ0S? TO OFCODE.

MOVE. ICF-FS TO PRINT-RETURN-CORE .

WRITE FRINT-RECORD FROM PRINT-CORES
AFTER ALNVANCING 2 LINES.

Program B

WRITE-CODES.
MOVE XCF-FG
WRI

AFTER AIVANCING 2 LINES.

WRITE-~CODES~END .

TO PRINT-RETURN-CODE .
TE PRINT-RECORD FROM FRINT-CODES

The Intra Subsystem

7-39

7-40

HOW TO WRITE AN RPG il PROGRAM THAT USES THE INTRA SUBSYSTEM

The following example shows how to write an RPG Il program to use the Intra
subsystem for the inquiry application described previously. The example shows
two programs (A and B) in the order of execution. The entire programs are not
shown; however, listings of the complete programs follow the examples. You
may want to refer to these listings while you read the example. (See Screen
Format and Program Listings.)

OCL Statements

The following OCL statements are used for the COBOL example:

Procedure for Program A

/7 LOAD LTEMAR

s/ FILE NAME~FILEA

/7 SESSLON [LOCATION-?1*INTRA’??,8YMIN-16
/7 RUN

The remote system location is INTRA (also specified on display 3.0 of the
CNFIGICF procedure), and the session identifier (SYMID) is 1S n

Procedure for Program B

/7 LOAD ITEMER
/7 FILE NAME-FILER
/7 RUN

The procedure for program B will be started by an incoming procedure start
request from program A. When you create the procedure for program B,
specify PDATA-YES on the copy utility statement for SMAINT or answer yes
to the prompt for program data in the INCLUDE statement if you use SEU to
create the procedure. You must specify PDATA-YES because program B is an
SRT program, and program A sends data to program B with the evoke
operation. See Writing Procedures to be Started by Incoming Procedure Start
Requests in Chapter 2 for more information.

™

This page is intentionally left blank.

The Intra Subsystem 7-41

7-42

File and Input Specifications

The file WSFILE is a work station file o On an input operation, data from
WSFILE comes from the display screen or from an SSP-ICF session.
Output to WSFILE goes to the display screen or to an SSP-ICF session.

The number of devices and SSP-ICF sessions used by this program Q

ITEMFM is the display screen format used to display prompts and output

The ID for both the display station and SSP-ICF session Q

The INFDS and INFSR (G in program A; 0 in program B) are used to
check return codes.

The print file (@ in program A; @ in program B) is used to print return
codes so that you have a record of all return codes returned to the program.
You can then use this record to help solve problems if they occur and to
decide whether you want to include any of the return codes in the return
code checking routine. See Note About Checking Return Codes later in this
example.

No screen formats are used by program B).
The return code field in INFDS is RTCODE @.
Error G contains the following fields:

1-5 STATUS

6-10 Operation

11-18 Format

23-24 Major Return Code
25-26 Minor Return Code

Program A

FWSF ILED
-

.

E

e

£

FFILEA

FRRTFILE

IWSFILE

o

b aad

FILEA

P fei fed b el

P

INFS

Program B

FUSF TLE
‘l:'

F

lZ'f

FFTLER
FRRTF ILE

TUWSFILE
I
IFILER

X

I
LINFIS
X

Ic
0

NS
NG

NG

(B

NS

NG

F 80 5SOR23AL
F 132 132

10 1 Cx 2
11 3c

14

s

S50 SOR23AL
132 132

NS

1 DISK

WORKSTN

KNUM

KFMTS

KID

KINFIIS
RKINFSR

3 Cx

33
201
207
213
219

24

WORKSTN

1 DIsK

G5 TTMe
2060QTY1
2120QTY2
2180QTY3
2240QTY4

23 TTME
80 MSG

QA TTM=
F20QTYL
380QTY2
440QTY3
S00QTY4

26 ERROR

KFMTS
KINFDS
KINFSR

27

2B LTME
S50 QATYS

TTEMFM

m|_e

INFDS

INF SR \e

*NONE.

INFRS

INFSR

26 [ERROR

The Intra Subsystem

a

7-43

Program Indicators
The following indicators are used in the RPG Il programming examples. You
may want to refer to this list while you read the example. When the indicators
are on they mean the following:
Program A Indicators
. 01: The message line is not displayed.
« 02: The return code message is not displayed.
« 03: The item number is displayed in reverse image.
o 04: The return code is 04xx.
« 05: The $$EVOK operation is issued.
« 06: The $$SENDET operation is issued.
o 07: The $$EOS operation is issued.
« 08: This is not the first program cycle.
« 09: The screen format (FORM1 of ITEMFM) is displayed.

« 10: The data received from program B indicates that the item number was
not found in the remote file.

o 11: The data received from program B is the stock status.
e« 12: Input is from the work station display screen.

» 13: The item is not in the local file.

e 14: Input is from the local file.

« 82: The return code is 82xx.

Program B Indicators
o 03: The $$SEND operation is issued.
« 98: The end of transaction was received from program A.

« 99: The item number was not found in the remote file (file B).

7-44

This page is intentionally left blank.

The Intra Subsystem 7-45

Data Flow and Operations

Program A Intra Subsystem’ Program B

Bl Set on indicator 08 @) to
indicate not first cycle.
Display the input prompt
using FORM1 @).

El Read the item number @.
If the operator pressed
command key 7, go to
EOJ @ If the item
number is zero or blank,
set up to display an error
message (@ and go back
to ITMINQ.

F Search the local file for
the item @. If the item is
there, go to ITMINQ and
display the data; if not go
to step 4.

n Begin a session (ACQf—T1—*
<+—>—Return code

Start program B
Send evoke parameters
($$EVOK operation) @
with data (the item
number) @@ to program B.

. <+——>———Return code

'Return codes are checked by the INFSR subroutine, which is described later in this example in the
discussion of How to Check Return Codes with RPG II.

7-46

Program A

¢ NO8
G

C

G

[

C

G
OWSFILE E
0

0O

0

O

0

Q

ITHMING

09

SETON

TAG

MOVE, * ¢ in

010208

SETON
EXCET
SETOF

09

02

W&
29
35
41
47

ITM%

QYYl B
RTY2 B
QTY3 1
QrY4 B

P FORML?

G

¢ KRG

[REAT wsurxuﬂ\e
GOTO EOQJ |

™
¢
o
O

> NOZ
¢ 03
(4 03
0

0

SETOF ‘\\\\\C>

*ZERQS
#BL.ANKS

SETOF

SETON
LM
LTt

COM-
COMF
SETOF
GOTO 1TMING

O3NLO
OG3N1O

030410
82
0102

03
03
o1

88

80 *INVALID ITEM NUMBER?’
TENTERED?

C
G N13

[y M

CHAINFTLEA l\o
GOTO ITMING

i R 14

ACKR WSFILE

<

C
¢
0 E
0
0
0
¥
0
W]
O

MOVIE
SETON
EXCEFT

i R0

I

SETOF

OUNO?

Ké

12
20
31

H Gé

T$FEVOR?

 ITEMBRIFG?

PUSER?
FUSER?
P ICFLIRR?
* Q023

K4

The Intra Subsystem

7-47

7-48

| Program A

Intra Subsystem'’

Program B

Return code

Aprne—

~Read the item number from
program A @ and search the
remote file for the data @.

—

-If the data is in the remote file,
send it to program A ($$SEND)
©: otherwise, send a blank
record beginning with *** @.

Return code et
B Read the data from e
program B.
Return code
B Send $$SENDET to end
the transaction @.
-~ Return code
10} ~———Read the end of transaction

Return code

ety

Release the session @)—
If indicator 10 is on, set
up indicators to display
the message ITEM
NUMBER NOT FOUND
@ Go to ITMINQ to
display the message or
data.

@ !f an error occurs while
reading the end of transaction,
print the error return code (@.

— e o

~End of job @).

End of job if the operator
pressed command key 7

(step 2 @)

'Return codes are checked by the INFSR subroutine, which is described later in this example in the
discussion of How to Check Return Codes with RPG I.

(7

Program B

C
C

[READ WSFILE |- e

PR

mﬂiﬂﬁﬁﬂdﬂ&L~_‘) [99]

C
[

0
0
Q
0
W}
0

OWSE TLE

o3

SETON 03

EXCET

K6 ? $EBEND?
} 4 102247
1T M 59

o
P

QTYS Dog
/ 4 700037 /Q

7NN ?

Program A

©
C

182

NEXT WS TLE
READ WHFTLE

SETON 06
EXCET
SETOF 06

QAHNOQ? >G
K8 *4SENDET?

Program B

C
G N?G
[

REAT NQFIEE}f——”‘i }///43 98

TERUGFRTE TLE ERROR
SETON LRW—*AG’

Program A

G o2
G 10
C 16
(
0
0
0

[?18*

ree werie —O

10
10
10

SETOF 01
SETON ' 03

GOTH ITTMING
T2 TITEM NUMBER?

M B 96
1046 TNOT FOUNID?

o
C

EQ.)

Tao
SETON LR

The Intra Subsystem

7-49

7-50

How to Check Return Codes with RPG II

The following example shows how to check ICF return codes with RPG II.

Program A

o Print the return code o If a problem occurs, you have a printout of what
the return code was at the time the problem occurred.

« Save the return code (defined previously as RTCODE) in SAVERT so that it
can be displayed later in the program G

« If the return code is 04xx (output exception) e data or a system message
has been received from the remote system. The program reads the data or
message), sends $$EOS to end the session @) and). sets up indicators
to display the message or data G and goes to detail calculations.

« If the return code is 82xx, the session was not acquired G The program
sets up indicators to display the message UNABLE TO ACQUIRE 0 and
the return code to help the operator determine why the session was not
acquired, and goes to detail calculations.

« If any other return codes were received, an error occurred. The program
sends $$EOS to end the session @ and @), sets up indicators to display
the return code, and goes to detail calculations.

Program B

Program B prints all error return codes.

Note About Checking Return Codes

In this example, only the return codes that needed to be checked were
checked. All other return codes were displayed or printed. Depending upon
your remote system, you may need to check for return codes other than those
shown in this example. However, you should display and/or print all return
codes as an aid to problem determination. If any codes that are not error
codes are returned repeatedly, you may want to include these in your return
code routine. If an error codes is returned, you should, of course, correct the
condition causing the error.

The return codes are described in each subsystem chapter. Only the codes
that are valid for that subsystem are described.

Program A

C8R
C
C 04

-~
=

C
™ 04

-0 04

L NO4
C

INF SR
in

BEGSR /G

DERUGERTE LLE ERROR|
GOTO SREND

[MOVE. RTCODE GAVERT 4|

MA

r1Ge

ComMFE 1 04? 04
NEXT WSFILE
READ WHFILE N

M

SRENI

COMF *82° a2
TAG
SETON '/G 07 /@

C
C [N82 EXCET
" SETOF 07

c
G

8
O
0
O
Q
0

Program B

SETOF 020506

ENDGR? %DETC?

NOINLO SAVERT B 131
a2 148 *UNARLE TO aACQUIRE?

04
G4
07

-G

I

LTME ?0
MGH 127

K5 7 m&tos;ﬂ\o
BEGSR

DERUGPRTF YLE ERROR
EENIIGIR? 2 CANCL. *

The Intra Subsystem 7-51

7-52

SCREEN FORMAT AND PROGRAM LISTINGS

The following listings show the screen format and complete programs for the
programming examples described previously.

Screen Format Listing

8 JITEMFM

SFORML
NSSFICF
DITEMING
DY TEMNUM
DX TM
CWH1
DaATYL
TWH2
DaTya
T3
DaATY3
4
DATYA
nMeG
DICF-MSG
nuaL. FOR
DRTCODE
UREASON
DFLOOLS
IFLOOLS

546857/085829

002001.1.9Y
00200219Y
00180415y
00230434Y
00180615Y
000604634Y
00180713Y
0004606734Y
00180815y
00060834Y
00180915y
00060934Y
008011.01Y
00451215Y

Y

RETURN CODE OF

00041241Y
00301315y
00201.346Y
00201502Y

370003
2Y Yy Y
Y

Y

Y

Y

Y

Y

Y

Y

Y

o1
02

02
02

o2

120/78

03

00000000 2070014
G
C 8s8PFP~-~1ICF
[ITEM INQUIRY

CITEM NUMBER+sses oo
CWARE HOUSE leseaee
CWARE HOUSE 2440040
CWARE HOUSE 3sesees

CWARE HOUSE 4400000

CCHECK ICF REFERENCE MANX

CFRESS ENTER TO RETRY
CCMD 73 END FROGRAM

BASIC Program Listing

Program A

QOO L) 130569630596 5 36 3 3 3636 36 33636 36 3 6 36 36 36 336 3636 3036 3 36 26 36 36 3¢ 26 36 36 3 36 36 336 3D 36 36 36 96 36 56 36 36 3636 36 3¢ 3 1 36
QOO0 % *
888%8 z* LTEMARAS -~ ITEM INQUIRY WRITTEN IN BASIC »*
* *
DOOSHO ¥ AEI69690 56 36365636 36 36 3656 36 3 36 56 36 6 6 250 6 3 336 36363636 36 36 36 36 2696 56 36 36 36 36 36 56 36 1 16 36 16 36 36 50 36 36 3636 36 3696 3¢
000A0 LIM TITEME*23,MESERB0, REASONE®30
QOO0 OFEN 18 “NS,NAME%IT&MFM.RECLnlél'LIBRwITEMBAS"
00080 OFEN #2t "NAME=FTLEA, SHR, RECL=50, KEYL =23, KEYF=1 , RAONDOM' , KEYED . INFUT
88?38 INnIL$(1 Pyt n

0OO11LO ‘* DISFLAY GSCREEN REQUESTING ITEM NUMBER. *
88%%8 :* IF CMD 7, CLOSE ALL FILES *

00140 DISFLYIWRITE 21,USING 150,FORMAT “"FORML", INDIC INDIC$S ITEM$,QTY1,&
&QTY2 ,NTY3,NTY4,M£%$,RTCO“E$,RL ASONS

QO1%0 FORM G 23,4%N &,0 80,C 4,C 30

00160 MES st 3 HIPOHF$*“"QRFA“ $w""

001770 READ #1,USING 1803 ITEME CONV 220

00180 FORM C 23

Q0190 INDICHCLE3)="110"

Q0200 IF CMIDREY=7 THEN CLSFILE

00210 IF ITEMSORPTE(" M, 23 THEN GOTO READFILE

Q0220 MESS="INVALID TTEM NUMBER ENTERED"
QO30 INDICS LI) ="Q" STNDICS(I3ZI=""2"
00240 GOTO DISFLY

QORGO 1%

Q0260 ' REAL LOCAL. FILE *FILEA? FOR REQUESTED ITEM MUMBER.IF
QORVO ITEM IS FOUND LOCALLY, DISPLAY ITEM INFORMATION.IF
DO280 e ITEM IS NOT FOUND LOL.AI LY, SEND ITEM NUMBER TO

882;88 : 3* P ITEMBBAS? USING IC

Q0310 RFADFILh‘RbAI Q,USING I20, KEY=ITEME? QTY1L,QTY2,QTY3I3,QTYA4A NOKEY ICF
00320 FORM X 26, b

QO330 GOTO DISEL \'

KK KK KX

0OI40) ! 3 %
QOJHO e ACQUIRE ICF-SESSTON (18) *
QOIEO ! % *

003?70 ICFIIF INDIC$H(A14)="1" THEN EVOK

00380 0PPODh$&”ALQ"

QO390 OFEN 238 "WSH, ID=18,RECL=256" I0ERR ICFERR
QOAOH e INDICEC(484)=4"

00410 *
ggzgg :n EVORE. FROCEDURE ? ITEMBBAS? IN LIBRARY ?ITEMBAS? *

00440 FUOK%OPLODh$$"hUOh"

Q0450 WRITE #3,USTHG A4460,FORMAT “$SEVOK" T "ITEMBBAS',"USER',“USER',&
AN TTEMRAS! , 1TEM$ JOERKR JCFERR

Q04460 FORM axC 8,C 23

GOAT70 Y ewem *
00480 ' x GET INFUT FROM ITEMBBAS *
DO490 ‘% *
00500 0PCOD£$N”GET“
OOBLO REAN 15 USING S208 nATAt,)TPM$,GVY1,QTY2,GTY3,GTY4 ICERR ICFERR
00B20 FO' 3,X 29,0 23,X 145,4%N
OOHIO *
OOTA0 !* SEND END OF TRANSACYTION *
DOBHO Y« 2
QOS&HO OPCONES="SENDET"
gg§zg ?RITE *3,FORMAT “$$SENDET"S IOERR ICFERR

ot 1 *
OOBYO Y% TF ITEM NUMEBER 1S NOT FDUND. DISPLAY MESSAGE *ITEM »*
Q0L6Q0 1% NOT FOUND* TO THE SCREEN. IF THE ITEM IS FOUND, *
882%8 :* UISFLAY THE INUFNTORY lNFURMAIION. *

00630 INDICH(LE2)="11"

Q04640 IF DATAGL > "sxx THEN DISFLY

OOATD MESS="LTEM NUMBER “A&ITEM$&'' NOT FOUND
QO&LHO INDICSH(131)="0" LINDICHE (I3 ="

0O&L70 GOTO DISFLY

The Intra Subsystem 7-53

7-54

OO??70
Q0?80
OO?90
00800
00810
QO8O0
00810
00840

0O8GO

DORED
0OB70

01030
01040

V& CLSFILE

ROUTINE

l.ﬁ_

ELEFILESCLOSE #1 3 1CLOSE 23

IF INDIC$(434)="1" THEN CLOSE #33

STOF

.

. %

! e SENDEDS SUBROUTINE

42

x Xk %

%PNEEOQ:OPCOnk$&"FO"“

ITE #3,FORMAT “$4E0G'! TOERR ICFERR

CLOSE £33 TOERR ICFERR
lNDIG$(484)%"O"
RETUR

*

1 ICFERR ROUTINE

13

%
%*
*
*
*

IPVFRRXPR1N1 #2055, USING 8608

P ?,C 12,C 4,C 11,C
hTQODF$ﬂ ET

YRETURN CODE ", RETCODES,'" OFCODE
ALF rogh$s" ITEM NUMBER I8 *, ITEM$

6,C 16,C 23

CODE .
F RETCODES(L2)>="04" THEN OUTCHK

GOSUR &ENHEOQ
GOTO DISFLY
OQUTCHRSTF RETCONES(132) 304"
REASONS="0UTFUT EXCEPTION"
READ #3,USING 940: MESSH
FORM U 80
1Nn10$(122)#"00“
SUB ShNﬁEOb
GO Pl
APGPHNXIF RETCODES (112> (>"a2n
REASONS="UNAEBLE T0O ACQUIRE"
INDICS(lX&)*"lO"
GOTO DISFLY
ENDSESSS INDICE(132)=" 10"
GOBUR SENDEQS
GOTO DISPLY

THEN ACQCHK

THEN ENDSESS

X 2%

IS "&

Program B

QOO L 1 3638636 3830 30 36 2 3036 3 336 2 3 3636 36 3¢ 34 36 J6I6 26 36 35 3362636 36 33636 3 2o 3 3 260 2 3 3036 3636 3 336 3626 36 36 3 296 6 36 2

OON20 e »*
[olelex TONRE ITEMERAS — ITEM INQUIRY WRITTEN IN BASIC *
00040 %

*
QOO0 1396324569626 36 36 6363 236 3 30 36 3836 36 36 3636 36 36 36 3 3636 36 363636 36 36 36 33 303 336 3 339 33096 2696 96 09636 96 3436 2 %
OO0&6H NIM ITEMS%23
00070 OFEN #1& “NAME=FILER,SHR, RECL=50, KEYL=23, KEYP=1 , RANDOM' , KEYED, INFUT
DOORO QEEN 2% "WS,RECL=256" TOERR YCFERR

88128 %: READ TO ACCEPT ITEM NUMBER SENT BY REQUESTOR
00120 ﬁﬁcnﬂﬁ$w"ACCEPT“

00130 WALTIO IOERR ICFERR

00140 READ %2,USING 180! TITEM$ JIOERR JCFERR
0OLEO fORM C 23

XXX

0O01LHO ! »
og%gg 3* READ FILER FILE, USING ITEM NUMBER SENT AS KEY *

[s1e V% *
Q0190 READF ILE SREAD &1 ,USING 200,KEY=ITEM$?! QTYL,QTY2,QTY3,QTY4A NOKEY &

AERRORKEY

Q0200 FORM X 26,4%N &

DO210 ' *
OO0 1w SEND INFORMATION TO0 REQUESTOR ﬁ

OOQ230 1w

00240 SENDDATASOPCODE $="GEND"

00250 WRITE £2,USING 260,FORMAT "$$SEND"! (TEM$,QTYL,QTY2,QTY3,QTY4 &
$I0ERR YCFERR

ggggg .MFORM X B2,0C 23,X 140,4%N &

gg%gg %; READ SENDET SENT RY REQUESTOR

OO300 dﬁCUﬂE$”“GET"

00310 READ #23 IO0ERR ICFERR

NOI20 Y

00330 % CLOSE FILES AND END

1R
00350 CLOSE +131CLOSE #2232
N0360 STOF

00380 1% ERRORKEY ROUTINE

! 3%
00400 ERRORKEY $ OFCODIE $=""SEND*"
00410 WRITE #2,USING 420, FORMAT “$$SENDME “wxx, ITEMS IOERR ICFERR
00420 FORM € Z,X 29,0 192
00430 \ GAOTO 300

00450 1% ICFERK ROUTINE

!
00470 ICFERRSITIF RETCODE$="0308" OR RETCODES$="0100" THEN CONTINUE
00460 PRINT $285,USING 49200 “RETURN COLE " ,RETCODES," OFCODE I8
& TTEM NUMBER IS ‘', ITEM$
00490 FORM SKIF 2,C 12,C 4,0 11,0 6,0 16,C 23
QOSSO0 STOR

x XX

x KX

KEX

L & &

+OFPCODES « &

The Intra Subsystem 7-55

7-56

COBOL Program Listing

Program A

FEIE 6 I I I I I I I I DC I I II6 DI I IETEIEIE T 36 H6I6 263 363626 3 336 ICI6 336 36 30 36 36 36 3636 36 36 I6 7 6 36 2 36 36 26 36 3 3 %

*
* ITEMACOB ~ TTEM INQUIRY WRITTEN IN COROL.
*

*
*
*

FFEIE IE I D634 36 36 2RI DE I I I I H I IEIE I IE I D I 3636 I I 36D 3 3 I I3 36 36 36 K- 3636 I6 3 3o 3 I 3 36 36 3 6 36 36 36 3 3 3 3¢

IDENTIFLCATION DIVISTION.
FROGRAM-ID. TTEMACOR.

ENVIRONMENT DIVISION.

CONF LIGURATION SECTION.
SOURCE-~-COMFUTER. TEM-S34.
ORJECT-COMPUTER. TEM-534.

INFUT-0OUTFUT SECTION.
FILE-CONTROL. .

BELECT TRANSACTION-F LLE
ASSIGN TO WORKSTATION-ITEMFM-OL1,
ORGANIZATION IS TRANSACTION,
FILE STATUS IS8 W6G-F&, ICF-FS,
CONTROL.~AREA 19 WS-CONTROL-AREA.

SELECT FILEA-FILE ASSIGN TO DISK-~FILEA,
ORGANIZATION IS INDEXED, ACCESS IS RANDOM,
RECORD KEY IS FILEA-NUMBER.

SELECT PRINT-FILE ASSIGN TO FRINTER-PRINTER.

DATA DIVISION.

FILE SECTION.

It TRANSACTION-FILE, LARBEL RECORDIS ARE OMITTED.
01 TRANSACTION-RECORD PIC X(256) .

FD FILEA-FILE, LABEL RECORDS ARE STANDARD.
01 FILEA-RECORI.

03 FILEA-NUMBER PIC X(2X) .
03 FILLER FIC XXX.
03 FILEA-QTY-1 FIC 9¢&6).
03 FILEA-QTY-2 FIC 9(&).
03 FILFEA-QTY-3 FIC 9¢&).
03 FILEA-QTY-4 FIC 9(&).
FI - PRINT-FILE, LAEEL RECORDIS ARE OMITTED.
01 FPRINT-RECORD FIC X(1325.
/
WORKING--STORAGE. SECTION.
Y ICF-SESSION FIC XX VaLUE *16?.
7. SAVE-ID FIC XX VALUE SPACES.
77 SAVE-ITEM-NUMBER FIC X(23).

01 WS~-DUMMY~AREAS .
03 WS-CONTROL~AREA .

05 AID-RYTE FIC 99.
88 OCMD-KEY-7? VALUE 7.
05 Ws~In PIC XX.
0% FILLER FIC X(8).
03 RETURN-CODES .
05 WG-FS FIC XX.

05 ICF-FS.
07 MAUDR-RETURN~CODE PIC XX.
07 MINOR-RETURN-CODE FIC XX.

) DISFLAY FORMAT INDICATOR DESCRIFTIONS (IF ON)$ *
» 01 — NONDISPLAY —— MESSAGE LINE ®
* 02 — NONDISFLAY ~- ERROR LINE - DISPLAY RETURN CODE *
* 03 - REVERSE IMAGE - ITEM NUMRER *
01 SCREEN-INDICATORS.
03 I01 FIC 1 VALUE ZERO, INDICATOR O1.
03 102 FIC 1 VALUE ZERO, INDICATOR 02
03 I03 FIC 1 VALUE ZERQ, INDICATOR 03.
01 SCREEN-MESSAGES.
03 INVAL ID-TITEM-M8G.
05 FILLER FLC X(14) VALUE SFACES.
05 INVALID-MSG FPIC X¢70)
VALUE *INVALID ITEM NUMBER ENTERED.?.
03 ITEM-NOT--FOUND-MSG.
05 FILLER FIC X(14) VALUE SFACES.
05 FILLER PIC X(12) VALUE *ITEM NUMBER *.
05 ITEM-NOT-FOUND FIC X(23) VaLUE SPACES.
05 FILLER FIC X(35) VALUE * NOT FOUND.®.
/
01 EVORE-RECORD.
03 FPROCEDURE--NAME FIC X(8) VALUE ?ITEMBCOB?.
03 PASSWORD FIC X(8) VALUE ?USER?.
03 USER-ID FIC X(8) VALUE ?USER?’.
03 LIBRARY-NAME FIC X(8) VALUE *ICFLIBR?.
0% FILLER PLIC X205,
03 ULATA-LENGTH FIC XXXX VALUE *00237.
03 ICF-ITEM-NUMBER-OUT FIC X(23).
01 ICF-RECORD-IN.
03 ICF-RECORL-CHECK.
0% FIRST-3-CHARACTERS FIC X(3).
0% REST-OF-DATA PIC X(2G3).
03 ICF-RECORD-OK REDEFINES ICF-RECORD-CHECK.
05 FILLER PIC X(32).
05 ICF-ITEM-NUMRBER~IN FIC X<(23).
03 FILLER FLC X(14%5).
0% ICF-QTY-1 FIC 9¢6).
05 ICF-QTY-2 FIC 9¢6).
0% ICF-QTY-3 FIC 9¢6).
05 ICF-QTY-4 FIC 9¢&).
03 FILLER FIC X<32).
01 SCREEN-RECORI.
03 ITEM~-NUMRBER PIC X<(23).
03 QTY-1 FIC 9(6).
03 QrYy-2 FIC 9¢6).
03 QTY-3 FIC 26,
03 Qry-4 FIC 9¢6).
03 MSG FIC X(80).
03 RETURN-CODE FIC X<(4).
03 REASON--WHY FIC X(30).
01 PRINT-CODES.
03 FILLER FIC X(14) VALUE ?*RETURN CODE ?.
03 FRINT-RETURN-CODE FLC XXXX.
03 FILLER FIC X{11) VALUE * OFCODE IS *.
03 OPCODE FIC X<6).
03 FILLER FLIC X<(11) VALUE ? DATA SENT ?.
03 PRINT-ITEM-NUMBER PIC X(23).

The Intra Subsystem

7-57

7-58

/
FROCEDURE DIVISION.
OFEN-FILES.
OFEN I~ TRANSACTION-FILE.
OFEN QUTFUT PRINT-FILE.,
OFEN INFUT FILEA-FILE.,
MOVE RB*1?* TO I0L, I02,
MOVE SPACES TO SCREEN-RECORIDN,

* DISFLAY SCREEN REQUESTING YTEM NUMRER. IF OCMD 7, GO TO *
* CLOSE FILES., SET UP INDICATORS TO DISPLAY ERROR IF ITEM %
* NUMBER 18 SPACES OR ZEROS. *
ITEM-INQUIRY .
MOVE. SAVE-TD TO WS-ID.
WRITE TRANSACTION-RECORD FROM SCREEN-RECORD
FORMAT I8 *FORM1?, TERMINAL IS WS-IN,
INDICATORS ARE SCREF INDICATORS .
READ TRANSACTION-FTLE RECORD INTO SCREEN-RECORD,
TERMINAL I8 WS-IND,
MOVE. WS-ID TO SAVE-ID.
MOVE E*1* TO T01L, 102,
MOVE. B*0G? TO T03.
IF CMD-REY-7 GO TO CLOSE-FILES.
IF ITEM-NUMBER = SFACES OR ITEM-~-NUMBER = ZEROS
MOVE INVALTD-TTEM-MS3 TO M8G,
MOVE. R*0O? TO I01,
MOVE ®B?1? TO I03,
GO0 TO ITTEM-TNQUIRY.
* READ LOCAL FILE *FILEA?* FOR REQUESTED ITEM NUMBER. *
* IF LTEM I8 FOUND LOCALLY, DISFLAY ITEM INFORMATION. *
» IF ITEM I8 NOT FOUND LOCALLY, INQUIRE OF ?ITEMBRCOR? *
* USING ICF. *

é

REAL-F ILEA-FILE .,

MOVE. SPACES TO FILEA-RECORI,
MOVE ITEM-NUMBER T0O FILEA-NUMBER.
READ FILEA-FILE,

INVALID KEY

GO TO ICF.

MOVE FILEA-QTY-1 TO QTY-1.
MOVE. FILEA-QTY-2 TO QTY-2.
MOVE FILEA-QTY-3 TO QTY--3.
MOVE FILEA-QTY-4 TO QTY-4.
GO TO ITEM-INQUIRY.

» JRo—
* ACQUIRE TCF-SESSTON (18) *
ICF . .
ACAUIRE ICHF-SESSION FOR TRANSACTION-FILE.
MOVE. *A0QR* TO OFCODE.,
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE~-END.
IF 102 = R*0?
GO TO ITEM-INRAJIRY.
* EVORKE FROCEDURE *TTEMBCOB? IN LIBRARY ?ICFLIBR? *

MOVE ITEM-NUMEBER TO ICF-ITEM-NUMBER-QUT.
WRITE TRANSACTION-RECORD FROM EVORKE-RECORD
FORMAT I6 *$$EVOK?, TERMINAL IS ICF-SESSION.
MOVE. *EVOK? TO OFCODE .
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.
IF 102 = R*O?
PERFORM SENU-EOS,
GO TO TTEM-INQUIRY.

X ¥ X

GET INFUT FROM ITEMBCO.

X

X

MOVE SFACES TO ICF-RECORD-IN.
READ TRANSACTION-FILE RECORD INTO ICF-RECORD-IN,
TERMINAL. 1S ICF-SESSION.
MOVE *GET* TO OFCODE.
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END .
IF 102 = R*O*
FERFORM SEND-EOS,
GO TO ITEM-INQUIRY .

¥ X ¥

SEND END OF TRANSACTION.

x

X X

MOVE SFACES TO TRANSACTION-RECORD.
WRITE TRANSACTION-RECORD

FORMAT 16 ?$$SENDET?, TERMINAL 18 ICF-SESSION.
MOVE *SENDET?* TO OFCODE.,)
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN-CODE-END.
IF 102 = R*°0*

FERFORM SEND-EDS.

X Kk ¥

RELEASE SESSTION (I NOT ALREADY ENDED RY 4E0S)

X ¥ X

IF T02 = Rm*1?
DROF ICF-SESSTON FROM TRANSACTION-FILE,
MOVE *DROF?* TO OFCODE,
FERFORM CHECK-RETURN-CODE THRU CHECK-RETURN--CODE-~END,
IF 102 = RB?*0O?
FERFORM SEND-EOS.

CHECK FOR ERROR MESSAGE (3 ASTERISKES)

IF ITEM NUMBER IS NOT FOUND, DISFLAY MESSAGE *ITEM NOT
FOUND? TO THE SCREEN.

TF THE ITEM IS FOURD, DISFLAY THE INVENTORY INFORMATION.

¥k % % % %X

MOVE. B*1* TO IOLl, I0Z,
MOVE LTEM-NUMBER TO SAVE-ITEM-NUMBER.
MOVE SPACES T0O SCREEN-RECORD.
IF FIRST-3-CHARAUTERS == ?3x%x%?
MOVE SAVE-TTEM~NUMEBER TO ITEM-NOT~-FOUND, ITEM--NUMERER,
MOVE ITEM-NOT--FOUND-MSG TO MSG,
MOVE B*0? TO T01, MOVE R?1? TO 103,
ELSE
MOVE TCF~ITEM-NUMBER-IN TO ITEM-NUMRER,
MOVE JCF-QTY--1 TO QTY-1,
MOVE TCOF-QTY-2 TO QTY-2,
MOVE ICF-QTY-3 TO QTY-3,
MOVE ICF-QTY-4 TO QTY--4.
GO TO ITEM-INQUIRY.

X K X K X X

X %

CLOSE FITLES AND END JOR.

*

CLOSE-FILES.,

CLOSE TRANSACTION-FILE, FILEA-FILE, PRINT-FILE.
STOF RUN.

The Intra Subsystem

X XK X

7-59

SEND--EQS,
MOVE SPACES TO TRANSACTION-RECORD.
WRITE TRANSACTION-RECORD
FORMAT 18 *44E0S?, TERMINAL IS ICF-SESSION.
MOVE *E0S? TO OPCODE.
JMOVE ICF-FS TO PRINT-RETURN-CODE .
WRITE PRINT-RECORD FROM PRINT-CORES
AFTER ANVANCING 2 LINEG.

CHECK~-RETURN~CODE .
IF MAJOR-RETURN--CODE ¢ 2047
GO TO CHECK-RETURN-CODE-~END.

MOVE ITEM-NUMBER TO FRINT-ITEM-NUMBER.

MOVE ICF-FS TO FRINT-RETURN-CODE.

WRITE FRINT-RECORD FROM PRINT-CODES
AFTER ATIWANCING 2 LINES.

MOVE SPACES TO RETURN-CODE.

IF MAJOR-RETURN-CODE = 04
MOVE ICF-FS TO RETURN-CODRE,
MOVE ?0UTPUT EXCEPTION? TO REASON-WHY,
READ TRANSACTION-FILE RECORD INTO ICF-RECORD~CHECK,
TERMINAL 1S ICF-SESSION,
MOVE. ICF-RECORD-CHECK TO M8G,
MOVE &*0* TO 101, I02,
EL.SE
IF MAJOR-RETURN-CODE = 82
MOVE. ICF-FS TO RETURN-CODE,
MOVE. *UNABLE TO ACQUIRE? TO REASON-WHY,
MOVE B*1? TO I01, MOVE B?0* TO 102,
ELSE
IF MAJOR-RETURN-CODE > *04?
MOVE ICF-FS TO RETURN-COLE,
MOVE B?1* TO 101, MOVE R?0* TO IO02,.
CHECK~RETURN-COTE-END o

Program B

38 36 26 26 I I 2 I 36 3 IE D I 3 IE I I6 I FEICIE ICHE I IETE D6 IEIE I I 3626 D 3V I IE I A I T e I Ao I He Fe I I T I 36 3 W A 3 W I N

% »
* ITEMBCOEB ~ ITEM INQUIRY WRITTEN IN COBOL *
* »
02696 56 36 3636 36 36 33356 2 I I I 3636 36 26 3636 36 363636 363632333 H I M 333 2K D6 D262 W2 H 226 2606 26 3636 3 9 K

TRENTIFICATION DIVISTION.
FROGRAM-11 . TTEMBCOR.

ENVIRONMENT DIVISION.

CONFLIGURATION SECTION.
SOURCE-COMFUTER. TEM-534.,
ORJECT-COMFUTER. TBM-534.,

INFUT-OUTFUT SECTION.
FILE~-CONTROL .

SELECT TRANSACTION-FILE
ASSIGN TO WORKSTATION,
ORGANIZATION IS TRANSACTION,
FILE STATUS IS8 WS-FS, ICF-FS,
CONTROL.~AREA 1S WS-CONTROL.~AREA .

SELECT FILER-FILE ASSIGN TO DISK-FILER,
ORGANIZATION 1S INDEXEXD, ACCESS IS RANDOM,
RECORD KEY 18 FILER-NUMRER.

SELECT FRINT-FILE ASSIGN TO PRINTER-PRINTER.
NATA OIVISION.

FILE SECTION.
FIU TRANSACTION-FILE, LABEL RECORDS ARE OMITTED.

Gl TRANSACTION-RECORD FIC X(2546).
FO o FILER-FILE, LAREL RECORNS ARE STANDARD .
01 FILER-RECORD.,
03 FILER-NUMEER FIC X(23).
03 FILLER FIC XXX,
03 FILER-QTYS.
0% FILER-OTY-1 FIC 9¢&6).
0% FILEB-QTY-2 FIC 9¢&6).
o5 FILER-QTY-3 FIC 9¢&).
05 FILER-QTY-4 FIC 9¢&).

FI PRINT-FILE, LAREL RECORDS ARE OMITTED.
01 PRINT-RECORD FIC X<132).

The Intra Subsystem

7-61

7-62

WORKING-STORAGE SECTION,
01 ICF-ITEM-NUMBER-IN

01 WS-DUMMY-AREAS .
03 WS-CONTROL~AREA.
05 AID-RYTE
0% ICF-SEGSION
05 FILLER
03 RETURN-CODES.
05 WS-F8
0% ICF-F8.,
07 MAJOR-RETURN-CODE
07 MINOR-RETURN-CODE

01 ICF-RECORD-OUT.
03 DATA-LENGTH
03 FILLER
03 ICF-ITEM-NUMBER-OUY
03 FILLER
03 ICF-QTYS.
0% ICF-QATY-1
0% ICF-QTY-2
0% ICF-QTY-3
05 ICF-QTY-4

01 ERROR-RECORD-OUT.
0% DATA~-LENGTH
03 FILLER

01 PRINT-CODES.
03 FILLER
03 PRINT-RETURN-CODE
03 FILLER
03 OPCODE

PIC

FIC
PIC
FIC

FIC

PIC
FIC

FPIC
FPIC
PIC
FIC

PIC
FIC
PIC
FIC

FPIC
FPIC

PIC
FIC
PIC
FIC

X{(23) VALUE SFPACES.

99.
XX
X8,

XX o

XX
XX

X<(4) VaLUE 702247,
X(32).
X(23) .
X145,

F4Y- 2
PLEI .
P¢6) .
PhH) .

XXXX VALUE 00037,
XXX VALUE ?%%x?,

X(14) VALUE *RETURN CODE ?.
XXXX o
X<11) VALUE * OPCODE IS *.
XCh) .

/

FROCETDURE. DIVISTION,.

OPEN-FILES.
OFEN I-0 TRANSACTION-FILE.
OFEN DUTFUT PRINT-FILE.,
OFEN INFUT FILER-FILE.,

* ACCEFT ITEM NUMBER SENT HY REQUESTOR. *
READ TRANSACTION-FILE RECORI INTO ICF-ITEM-NUMBER-IN.
MOVE *ACCEFT? TO OFRCODE.
FERFORM WRITE-CODES THRU WRITE-CODES-END,
* READ FILER FILE, USING ITEM NUMBER SENT AS KEY. *
READ-FILEB-FILE.
MOVE SPACES TO FILEBR-RECORD.
MOVE ICF-ITEM-NUMBER-IN TO FILEB-NUMBER.
READ FILEB-FILE,
INVALID KEY
MOVE! ERROR-RECORD-OUT TO TRANSACTION--RECORD,
GO TO SEND-DATA.
MOVE FILER-NUMRER T0O ICF-ITEM-NUMEBER-QUT.
MOVE FILEER-QTYS TO ICF-QTYS.
MOVE ICF-RECORI-OUT TO TRANSACTION-RECORD.
* SEND INFORMATION TO REQUESTOR. *
SEND-DATA.
' WRITE TRANSACTION-RECORD FORMAT IS *4SEND?,
TERMINAL 18 ICF-SESSION.
MOVE ?SEND? T0O OFCODE.
PERFORM WRITE-CODES THRU WRITE-CODES—-END.
* READ SENDET SENT RBY REQUESTOR. *
REALD TRANSACTION-FILE RECORD TERMINAL IS ICF-SESSION.
MOVE *GET? TO OFCODE.
PERFORM WRITE~-CODES THRU WRITE-CONES-END.
#® CLOSE FILES AND END. *

CLOSE-FILES.
CLOSE TRANSACTION-FILE, FILER-FILE, PRINT-FILE.
STOF RUN.

WRITE-CODRES.
MOVE XCF-FS TO PRINT-RETURN-CODE .
WRITE PRINT-RECORD FROM PRINT-CODES
AFTER ADNVANCING 2 LINES.
WRITE-CODES~END,

The Intra Subsystem

7-63

RPG Il Program Listing

Program A

F/ZEJECT
FWSKFILE CDh 256 WORKSTN

h

KNUM 2
KEMTE TTEMFM
KID In
KINFIIS INFNS
KINFSR INFSR

i i H

FFILEA IC F 50 BOR23AL 1 DISK

K o e *
Fa FRINTER FILE IS USED FOR DEBUG ONLY. *
=3 [e 3
FPRTFILE O F 132 132 FRINTER

F

I/7EJECT

T
T INFUT TO “WSFILE"™ CAN BE OF THREE TYRES?

Yo 1) ERROR RECORT RETURNED FROM HOST; FIRST 3

T% CHARACTERS ARE #xx, REST OF RECORI IS BLANK

T 23 INFORMATION RECORD RETURNED FROM HOST WITH THE
T FOLLOWING FORMAT ¢

Y% COLUMNG 1 - 32 BLANKS

Ta IE -~ BY ITEM NUMRER

1% g6 - 200 BlL.ANKS

T 201 ~ 224 QUANTITIES

T 3 ITEM NUMBER READ FROM THE WORKSTAION

1 wo e rape—p— srsen

IWGFILE N8 310 1 Cx 2 0w 3 Ox

X NS 11 o

i
i
}
XK K K KK K K X K %X

33 05 TTMd
201 2060QTYL
207 2L20QTY2
213 2180QTY3
219 2240QTY4

123 Trmd
. 24 80 M8G
I

ot

T T [—— e
T FILEA IS THE LOCAL FILE ~ SEARCHED FIRST *
JE TIPS 440 ar0e 4000 ons s01s 0010 4000 B0rn sh0s 4R20 40 000 0400 ar0t 000 M
IFJLEA NS 14

X 1 23 TTM

I : a2 320QTYL

X 33 380QTYL

¥ 39 440QTY3

X 4% GO0QTY4

T

T INFORMATION DATA STRUCTURE #*

LTINS 133
X 1 26 ERROR
1 23 26 RTCOME
1 23 24 MAJ
1/7BJECT

7-64

(96 3636 36 2636 36 26 36 36 36 3636 36 3 3636 36 3¢ 3 36 36 I 36 363 A 30 36 36 36 I6 3 36 36 36 3636 I 366 e A 6 36 3 3 6 3 36303 3 3 26 56 36 2 2 36 36 2

Cx ¥
G I TMINQ - TTEM INGQGQUIRY *
() *
596 96 36 36 3 6 36 36 6 36 36 36 I8 36 363036 I 366 3¢ 36 36 3636 3 I 30 363636 36 36 36 36 I 36 36 36 9636 36 3 36 3 36 3 36 36 3¢ 36 3036 36 I 3 3 3602
G *
Cx INCYIALYZE TNI‘II("AHI)R ON FIRST CYCLE C%*
L tmmn e *
¢ NO8 SETON 010208

(8)

2 - e
Cat SET I TO F-.F“QUF.."‘TOh AN DISHLAY SCREEN FORMAT *FORML1? #
C:* SRR ; %
C ITMING TAG

C MOVE *+ in

C SETON 09

C EXCPT

C SETOF 09

[3

5 e eoeeommeme cosmannn e 4mee cavmcone cese drns cnte aven cnce saan dane cam snnn sren anes ssns et soreasie *
Cx READ TTEM NUMBER FROM SCRE LN. IF COMMAND KEY 7 WAS *
o FRESSED, 6GOTO E0J. OTHERWISE, RESET INDICATORS. *
Ca [T SEppp— %
G READ WSFILE

C KRG GOTO EOJ

2 SETOF 030410

G SETOF 82

(M SETON 0102

G

G CHECK FOR TTEM NUMRBER EGQUAL TO ZERO OR BLANK. IF SO *
e I86UE MESSAGE. *
(5B e vmee oe c00e 0o erem cesectmm soce s wnen sose e sans sa0svese enne o o wore ason saos aare vane cve L
£ *ZEIF\OS COMP TTME 03

C NOZ HBLANKS COMP LM 03

C 03 SETOF o1

< 03 GOTO LTMINGQ

Cx*

) “aeh ahes shet suss 0mt Shes Sere Suth SHet S0bs Fne ai0s Ghen F3oe saen Sons Ses dene sab o woes s soee 3
(S REAL L..()Cm. rTl‘."M ¥ Il t.. - lLI: At IF TTEM NUMBER IS *
() FOUND, GO T TTMING. IF TTEM NUMBER IS NOT FOUND,)
Cie ©CONTIMNUE ANI‘I '[\!QUH’& THROUGH 1(.4— . £
36 4404 0001 0000 suan 4ene ases sean sne ssus e0es sasn ases boes Sans eree dore sres sens . 3
C I CHATNFILEA 13

> N13 GOTO ITMINGQ

C*

[") e eane sone evea sonaorer even sare 3%
G ACQUIRE ICF SESSTON s, *
(3 38 v o e e en e e 4 st s s s om0 210 18 e A 810 e e 20 %
¢ 1850 AR WBFILE

Cx

{94 2T e o0 o s v 128 48 a4 a4 v n ne nne *
Cx EVORE FROCEDURE * ITEMBRIFG? . L

The Intra Subsystem 7-65

7-66

-y

[MOVE 2182 I
¢ SETON
C EXCET
™ SETOF
Cx

" 3¢ - s seee eove o e0e sane wern o st von

[GET TNF’OI’LMATT[J ‘3! NT HY ’.I.'!E..NBRF‘C"

G SEND FNLI OF TRANSAC H.ON.

N g T ImE ceevsasesseneons eraesaes sons s e s s onn %
o ’18’ NEXT WSFILE
C READ WSFILE
G
[B T T e LT 4 ease ess sa80 anse acan bevs 2200 aaat o TR —— %

m.—.m*

Cx —
o SETON
C L’.Xt‘.tl T
' SETOF
Cx

C* 0000 1500 a0es save 100t 1ese sese mats sere o

06

0é&

Cie RELEASE TCF

"3

SESE)1 JN t1se F\NI.I GO TO TITTMINGQ.

> 02 rLee REL WSFILE
. 10 SETOF

- 10 SETON

C GOTHD ITMING
o

01
03

RO Y

Cae END OF JOB

X XK X

C E0.J TAG
¢ SETON
Cax

LR

096 96 36 3656 36 36 36 36 3636 36 3636 36 36 36 36 36 36 36 30 336 36 3 3636 36 36 36 36 36 36 363636 36 K36 36 3696 3 30 3¢ 3 3 3 0 3636 2 26 26 36 7 36 I 6 A

%
% SUBROUT I NIE I NF 8 R
Cx

3w
*
w

(096 36 636 36 36 56 56 36 36 36 36 3636 36 36 36 36 36 2 3 6 36 3 3 3 36 36 36 3636 36 3636 3636 I6 36 3626 36 He 3 3 P 3 36 3 30 36 3636 96 36 36 36 36 3 3 3¢

CBR INF G BEGESR

¢ I DERUGFRTF LLE ERROR

C 04 GOTO SRENKD
c-.
(36 oveeoume e conn sase cvm ane sens seee ss0s snne cnn sens

Cx SAVE RE TUhN ("(’Hll’

¥ K X

33 oom oo sone mrm ccsacnan s conn s cnnn som s s e e e 00 2020 sa04 s00s 8o sun s0nt oare 400t des sass smse s bess &

¢ MOVE. RTCOGE SAVERT

O

4

(Mo eomr covs nen cvnm s cnns crne csss s snnessre e ee eare cnem avas ooee avme

o CHECK FOR MAJOR RE IU}\N COonE 04 ~ OUTPUT EXCEFTION
(e ISSUE INPFUT OPERATION TO GET MESSAGE OR DATA

v S

C MA.) COMF 042

C 04 R NEXT WSFIILE
e 04 READ WHSFILE
Cx

ove

o000 ssas sase asee

X X B X

e nene ssm s o nen oo - e
G CHECK FOR MA l('ll‘x l“\k. TU}\N ConE 82 - ACRAUIRE FAILED *
(5 9o cone: e senn ans coosorus et csos4nrw rme sa0s anen s arve desnaten sons anas e sran anse s ainn [— %
C NO4 M COMP *822 82
C SRENID TAG
Cx

36 oe voo [Epe—" *
[SENIY ERD OF SESS ION I¥ NOT ACQUIRE FAILURE, SET UF ¥*
(e INDICATORS TO DISFLAY ERROR AND RETURN TO DETAIL CALCS. =
Cx» sens sers suet suce sase cuts 4is ens sare rse oes sese suee srenonme 3
C “l "T ON o7
C N82 EXCFT
C SETOF o7
C SETOF 020506
C ENDGR? 2 DETC?

Q/EJECT

Ox OUTPUT FORMAT FORML OF SOURCE MEMBER ITEMFM *
OQWSFILE E 09

8] K P FORML ?

Q LT 23

0 Qryi BO29

Q QrY2 B35

0 QTY3 B4l

0 f; !TY4 B 47

0 oo et sens sees seaswame o120 sass sons wons eve »*

0% INDICATOR O3 ON & 1 0 NOT ON - INVALID ITEM & MESSAGE *

)3 oros o coon e e tnen cone et e sensomm s s e s e sne eame s bt Saus suae ahes does s anne ss0s 200t sure wowe obe obs M

0 03N’l 0 80 P ITNVALTIL ITEM NUMEBER?

0 O3N1LO 88 ?ENTERED?

T390 ovam womeesos cnve soun vne smne cosn cove aane soascone s0ma ce0n s 1ns onne s aune 4ens nens e ahes sy s duve snansens shes e 3%

Ox INDICATOR 10 ON IT!} M NOT FOUND MESSAGE *

[DT T - rassaes s anes sont sevnasen - 3*

0 10 TR P ITEM NUMBER?

0 10 LM B 96

0 10 106 *NOT FOUNID?

(136 oo onerenn S 3%

0 IF INDICATORS 03 & 3 () N(.H {JN, OUTEUT ICF INFORMATION *

8t's PR, t4es smae sans ene suve wucs seas shen sore sons dues anes sane 3%

0 NOINLO SAVERT B 131

0 82 148 *UNARLE TO aACQUIRE?

0 G4]’ T KLY

O 04 D 127

I [JECT s ot M

(% OUTRUT ‘.H;)“ VOK SENDING ITEM NUMEBER *

[T Sar s ases sons snst ses sons sooy s0cs sass 4rsa tons ans s00s 41sn sets avss anet 00.@ wen ssow s e

0 E ()‘::N()’?

0 Ké ?$HEVOK?

0 8 ITEMRRPG?

0 12 *USER?

0 20 *USER?

0 31 *ICFLIRBR?

O H6 10023

0 I'rms: Y

The Intra Subsystem 7-67

7-68

I ooreoore oo voncss e aone ceve sans s ante cosn anse anvt s

0% OUTFUY $HSENDET SEND END OF

THRANSACTION

98 e cooe amne menmsne ceon man v s snee anan e camn s saan trna s aras s crnn e o
0 E Q&ENOT?
Q

1136 rmrem s e e n s s e s s 1 108 e e e et o s e s e e

(e OUTFUT $4%E0S ~ END OF SESSTON

O E 07
0

P HESENDET?

PEHEQS?

e 3o

RO ¥)

Program B
F/EJECT
FWSFILE ©CD 254 WORKSTN
¥ KFMTS %NONE
¥ KINFDS INFDS
¥ KINFSR INFSR
S JLER IC F 50 S0R23AT 1 DISK
= 3¢ cune ssnn s ees oo 00t oves wornosenenee *
F FRINTER FILE IS USED FOR BEBUG ONLY. *
I~ % e [, %
FRFRTFILE O F o132 132 FRINTER
F/78FACE
:{ 36 oo JROP.
T WS INFUT I8 FROM TCF

:[L 00 suse aoes seus ssns sene [PR——

X X X

TWSFILE NS

T 1 23 ITME
IFILER NG

X

I

LINFIS ne

I

I/ZEJECT

) PP o

Coe ACCEPT TNPUT SENT

DB omas raaenen cansteos i 0000 400 100 40 s arn a0an snas snan e snas aaen s anns snns st nnnsanstnne

o READ WSFILE
)

()
Cx READ FILE “FILER"

C* e

¥ : ITM% CHATINFILER 9
O
(it
Cx RETURN RESULTS VIa ICF

N g
>

23 ITHd
50 QATYS

N
<N e

s

26 ERROR

X Xk X

X X X

t 2 3 J

C SETON 03
[. EXCHT

G
[t TR
G ACCERT SENDET
(‘_:.u..... o
C READ WOSFILE %8

G NG DEBUGFRTFILE ERROR

[SETON LR

%

(96303036 36 36 3 36 36 56 36 36 3096 36 36 36 36 76 26 36 96 3 3 3 3 3 36 3636 3636 3636 J6 I6 3 6 36 36 3o 3 36 3696 36 3 2o 9696 96 3
1M *
% ; INF SR »*
Ca “
(506 336 5696 36 96 36 56 9636 J6 96 36 36 36 36 36 36 36 36 2636 36 30 3 3 36 36 36 36 36 36 36 36 36365036 36 3 36 36 96 3 96 36 3 96 96 96 9%
CHR INFSR BREGSKR

*X%xx

¢ DEBUGPRTFILE ERROR
C ENDSR * ¥CANCL, *
C/EJECT |

The Intra Subsystem 7-69

7-70

()96 +s one sooe mre 2000 orsarmm e sans e seses0m e 0000

O3 OUTFUT $ESENDET. IF ITEM {8 NOT FOUND,

(e INDICATOR 99 I8 ON,; ANl OUTPUT sx,

X %k X X

13¢-
$ X

OWsFILE &

0
8]
0
0
0
0O

o3

@
¥4

ITHME
QTYS

Ké
4
9o
228
4

?

P HEBEND?

102024

10003
? %N ?

Intra Subsystem Return Codes

This part of Chapter 7 describes all the return codes that are valid for the Intra
subsystem. These are interactive communications return codes that are sent at
the end of each subsystem operation to indicate the results of that operation.
The appropriate return code is sent by the subsystem to the application
program that issued the operation; the program can then check the results and
act accordingly.

The return code is a four-digit value; the first two digits contain the major
code, and the last two digits contain the minor code. Assembler programs
receive the return codes in binary form (2 bytes long). BASIC, COBOL, and
RPG Il programs receive the return codes in EBCDIC hexadecimal form

(4 bytes).

Note: In the return code descriptions, your program refers to the local
System/34 application program that initiates the operation and receives the
return code from the subsystem. The other program refers to the other
application program in the same System/34 with which this program is
communicating through SSP-ICF.

Several references are also made in the descriptions to input and output
operations. The following chart shows all the input, output, and combined
input/output operations that are valid for the Intra subsystem. Although all the
operations shown are valid for Intra, the primary purpose for a few of them is -
to allow operations that are valid in other subsystems to be tested in the Intra
subsystem. The validity of these operations also depends on the logical
sequence of communications events occurring between the two programs in
the System/34.

Intra Return Codes 7-71

7-72

Input Operations
to Your Program

Output Operations
from Your Program

Combined Operations
in Your Program

Accept input

Acquire’

Cancel

Cancel then get?
Cancel then invite

End of session

Evoke?®
Evoke end of transaction®

Evoke then get??
Evoke then invite®

Fail

Get
Get attributes*

Invite

Negative response

Negative response then get?
Negative response then invite

Pass-through invite

Pass-through put?

Pass-through put then invite

Put
Put end of chain
Put end of transaction

Put then get?
Put then invite

Put FMH Put FMH then get?
Put FMH then invite
Release
Request to change direction then get?
Request to change direction then invite
Set timer®

"Normally, the acquire operation should be followed by an evoke operation in order to establish a
transaction. However, it can also be followed by a set timer or get attributes (ATTRIBUTES, in BASIC)

operation.

2Valid only in assembler language.
3Evoke operations in assembler can have OPM-FMH specified with the $WSIO macro.
4Valid only in assembler and COBOL languages.

5For BASIC and RPG Il programs, the set timer operation can only be issued in a session that is currently

active, or to an acquired device that is currently attached to the program.

Major Code 00 — Operation completed successfully.

General Description: The inpuf or output operation issued by your program

was completed successfully. The operation sent or received some
data.

General Considerations: Check the minor return code for an end of

transaction indication, and continue with the next operation.

Code

Indication/Action

Normal Indication: For input operations performed by your program,
0000 indicates that some data and a change direction indication were
received on a successful input operation. The other program now
wants to receive some data; your program must send it.

For output operations performed by your program, 0000 indicates that
the last output operation was completed successfully and that your
program can continue to send data.

Normal Action: If a change direction indication was received on an
input operation, issue an output operation.

For the actions that can be taken (in this session) after 0000 is
returned for an output operation, refer to the following chart:

Intra Return Codes

7-73

7-74

0001

0003

In This Session,
If Your

And the Last Output

(evoked the other
program)

Program: Operation Was: Then (in This Session):
Initiated the Acquire operation Issue another output (except acquire)
transaction operation, or issue an input operation.

End of transaction
(evoke or put)
operation

Issue an(other) evoke operation, issue a
release operation, continue local
processing, or terminate your program.

Any other output
operation

Issue another output (except evoke)
operation, or issue an input operation.

Was evoked' (by
another program)

Put end of transaction
operation

Your session has ended; continue local
processing, or terminate your program.

Any other output
operation

Issue another output (except evoke)
operation, or issue an input operation.

'An evoked program (started by an evoke operation issued by another System/34 program)
cannot issue an evoke operation in this session; it can issue an evoke only in a different
session that it has first acquired. An evoked program that is part of a multiple-program
procedure can issue a release operation at any time to pass the session on to the next
program in the procedure. (An end of session operation would end the session, not pass it.) If
the evoked program is an SRT program and it issues another communications operation after it
issues the release operation, error code 2800 is returned to that program. Subsequent
communicating operations in the next program, however, are processed normally.

Normal Indication: Your program has received some data on a
successful input operation. It must continue to receive input until
SSP-ICF returns a code of xx00 (a change direction indication, which
allows your program to send data), or xx08 (an end of transaction

indication).

Normal Action: Issue another input operation. If your program can
detect something equivalent to a change direction indication, indicating
that the last of the data in the chain was just received, it can issue an

output operation.

Normal Indication: An end of chain (SNA) indication was received
with some data on a successful input operation; the last record in the
chain has been received.

Normal Action: Issue another input operation to receive the next

chain.

0004 Normal Indication: A function management header' and a change
direction indication were received with some data on a successful
input operation. The other program wants to receive some data.

Normal Action: Your program now has control of the session;
process the function management header and issue an output
operation.

0005 Normal Indication: A function management header' was received
with some data on a successful input operation. Your program must
continue to receive input until SSP-ICF returns a code of xx00 (a
change direction indication) or xx08 (an end of transaction indication).

Normal Action: Process the function management header and issue
another input operation.

0008 Normal Indication: An end of transaction indication was received
with the last of the data on a successful input operation. The
transaction has ended, and the session with your program has ended.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a
release operation (to either perform local processing or start another
session), or it can terminate. If a remote procedure start request
initiated the transaction, your program can either issue an end of
session operation or terminate.

000C Normal Indication: A function management header' was received
with an end of transaction indication and the last of the data on a
successful input operation. The transaction has ended, and the
session with your program has ended.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a
release operation (to either perform local processing or start another
session), or it can terminate. If a remote procedure start request
initiated the transaction, your program can either issue an end of
session operation or terminate.

0010 Normal Indication: A request to change direction was received from
the other program on a successful output operation for your program;
the other program wants to send data as soon as possible. You
should allow the other program to send its data.

Normal Action: Issue an input operation as soon as possible.

'The function management header is used in SNA only. However, you can use it with
the Intra subsystem to test programs that use the SNUF subsystem. The header
describes the format to be used for the data being received (following the header).

Intra Return Codes

7-76

0028

0038

Normal Indication: An end of transaction indication was received
with a system message on a successful input operation. The message,
now in your program’s input buffer, describes the status of the
transaction that has ended. The session with your program has ended.

Normal Action: Handle the message in the input buffer (possibly
display it). Also, if your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a
release operation (to either perform local processing or start another
session), or it can terminate. If your program was evoked, either issue
an end of session operation or terminate.

Normal Indication: An end of transaction indication was received
with a truncated system message on a successful input operation. The
message, truncated because it was too long for your program’s input
buffer, describes the status of the transaction that has ended. The
session with your program has ended.

Normal Action: Handle the truncated message (possibly display it) in
your program’s input buffer. Also, if your program initiated the
transaction, it can issue another evoke operation (to start another
program), it can issue a release operation (to either perform local
processing or start another session), or it can terminate. If your
program was evoked, either issue an end of session operation or
terminate.

Major Code 01 — Successful operation with a new requester.

A new requester return code indicates to your program that it was
started by another program in the System/34. Your program was
started by an evoke operation (EVK or $$EVOKNI) that was sent by
the other program. The request caused your program to be evoked if it
is an SRT program or if it is an MRT program that was not already
loaded and active. The request may have included some data for your
program.

Normal Description: Each of the following return codes indicate that either
the input operation issued by your program and responded to by a new
requester completed successfully, or the output operation issued by
your program in response to a new requester completed successfully.

If the operation was an input operation and data was included with the
evoke operation, then that data is in your program’s input buffer.

If your program is an SRT program that was evoked and the initial
operation is an output operation, the operation sent some data to the
new requester. However, although the operation did complete
successfully, if the evoke request also included data for your program,
that data is lost. Or, if an end of transaction indication was sent with
the request, the data sent by your output operation is lost and the
requesting program is released from your program.

If your program is an assembler program, the length of the data is

returned in the input length field of the program’s DTF. If the input
length in the DTF is zero, no data was sent by the requester; if the
input length is greater than zero, data was sent.

Note: The new requester return codes are returned only to evoked SRT
programs and to active or evoked MRT programs.

General Considerations: Check the minor return code for an end of
transaction indication, and continue with the next operation.

Code Indication/Action

0100 Normal Indication: On a successful input operation from a new
requester, a procedure start request and a change direction indication
were received, and a data record may have been received with the
request. The other program now wants to receive some data; your
program must send it.

For output operations performed by an evoked SRT program, the
operation completed successfully.

Normal Action: For an input operation, handle any data that may
have been passed with the request. For both input and output
operations, perform any necessary record keeping' for the new
requester, and issue an output operation or an input operation.

'For some situations, no record keeping for the session is necessary. In other situations,
you should record the session ID of the new requester. You may also want to keep a
table containing the IDs of all active requesters, or to maintain a history log of all
requests.

Intra Return Codes

0101 Normal Indication: On a successful input operation from a new
requester, a procedure start request was received and some data may
have been received. Your program must continue to receive input until

- 8SP-ICF returns a code of xx00 (a change direction indication) or xx08
(an end of transaction indication).

Normal Action: Handle any data passed with the request, perform

" any necessary record keeping® for the new requester, and issue
another input operation. If your program can detect something
equivalent to a change direction indication, indicating that the last of
the data in the chain was just received, it can issue an output
operation.

0104 Normal Indication: On a successful input operation from a new
requester, a procedure start request, a function management header',
and a change direction indication were received with some data. The
other program now wants to receive some data.

Normal Action: Your program now has control of the session:
process the function management header, handle the data passed with
the request, perform any necessary record keeping' for the new
requester, and issue an output operation to the other program.

0105 Normal Indication: On a successful input operation from a new
requester, a procedure start request and a function management
header? were received with some data. Your program must continue
to receive input until SSP-ICF returns a code of xx00 (a change
direction indication) or xx08 (an end of transaction indication).

Normal Action: Process the function management header, handle the
data passed with the request, perform any necessary record keeping'
for the new requester, and issue an input operation.

'For some situations, no record keeping for the session is necessary. In other situations,
you should record the session ID of the new requester. You may also want to keep a
table containing the IDs of all active requesters, or to maintain a history log of all
requests.

2The function management header is used in SNA only. However, you can use it with
the Intra subsystem to test programs that use the SNUF subsystem. The header
describes the format to be used for the data being received (following the header).

7-78

0108

010C

Normal Indication: On a successful input operation from a new
requester, a procedure start request and an end of transaction
indication were received, and some data may have been received. (A
complete transaction was started and ended by the other program.)
The session with your program has ended.

If your program is an SRT program (evoked by a new requester) that
issued an output operation as its first operation, no data was sent to
the requester even though the output operation completed
successfully. Because an end of transaction indication was also
received with the incoming procedure start request, the requester is
released from your program, and any data sent by the initial output
operation is lost. And, if any data was sent by the requester, that data
is lost also.

Note: Return code 0118 is returned only to the first program in a
multiple-program procedure (and only for the first operation). Return
code 0108 is returned only to each one of the succeeding programs in
that procedure (and only for the first operation in each program).

Normal Action: Perform any necessary record keeping' for the new
requester of the transaction that has ended. Then, either issue an end
of session operation or terminate your program.

Normal Indication: On a successful input operation from a new
requester, a procedure start request and a function management
header? were received with data and an end of transaction indication.
(A complete transaction was started and ended by the other program.)
The session with your program has ended.

Normal Action: Process the function management header, handle the
data passed with the request, and perform any necessary record
keeping' for the new requester. Then, either issue an end of session
operation or terminate your program.

'For some situations, no record keeping for the session is necessary. In other situations,
you should record the session ID of the new requester. You may also want to keep a
table containing the IDs of all active requesters, or to maintain a history log of all
requests.

"The function management header is used in SNA only. However, you can use it with
the Intra subsystem to test programs that use the SNUF subsystem. The header
describes the format to be used for the data being received (following the header).

Intra Return Codes

7-79

0118 Normal Indication: On a successful input operation from a new
requester, a procedure start request was received with an end of
transaction indication, and some data may have been received. (A
complete transaction was started and ended by the other program.)
The session has been ended.

If your program is an SRT program (evoked by a new requester) that
issued an output operation as its first operation, no data was sent to
the requester even though the output operation completed
successfully. Because an end of transaction indication was also
received with the incoming procedure start request, the requester is
released from your program, and any data sent by the initial output
operation is lost.

Note: Return code 0118 is returned only to the first program in a
multiple-program procedure (and only for the first operation).

Normal Action: Handle any data passed with the request, and
perform any necessary record keeping' for the new requester of the
transaction that has ended. Then, because your program was evoked,
either issue an end of session operation or terminate.

Major Code 02 — Successful operation, but a stop system request or a
disable subsystem request is pending.

Normal Description: The input operation issued by your program was
completed successfully. Your program received some data. However,
because a stop system request or a disable subsystem request is
pending, no new sessions using the subsystem can be initiated.

General Considerations: Your program should complete its
communications processing as soon as reasonably possible so that the
pending request to stop the system or to disable the subsystem can be
completed in an orderly manner. (For example, you can issue a request
to change direction operation to stop receiving input, or you can issue
an end of session operation at the earliest logical stopping point.) Also,
check the minor return code for an end of transaction indication, and
continue with the next operation.

Code Indication/Action

0200 Normal Indication: On a successful input operation, an indication was
received that a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated. Also,
0200 indicates that some data and a change direction indication were
received. The other program now wants to receive some data; your
program must send it.

Normal Action: Issue an output operation.

'For some situations, no record keeping for the session is necessary. In other situations,
you should record the session ID of the new requester. You may also want to keep a
table containing the IDs of all active requesters, or to maintain a history log of all
requests.

0201

0203

0204

0205

Normal Indication: Your program has received some data on a
successful input operation. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem
can be initiated. Your program must continue to receive input until
SSP-ICF returns a code of xx00 (a change direction indication) or xx08
(an end of transaction indication).

Normal Action: Issue another input operation. If your program can
detect something equivalent to a change direction indication, indicating
that the last of the data in the chain was just received, it can issue an
output operation.

Normal Indication: An end of chain (SNA) indication was received
with some data on a successful input operation; the last record in the
chain has been received. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem
can be initiated.

Normal Action: Issue another input operation to receive the next
chain.

Normal Indication: A function management header' and a change
direction indication were received with some data on a successful
input operation. The other program now wants to receive some data.
Also, a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated.

Normal Action: Your program now has control of the session;
process the function management header and issue an output
operation.

Normal Indication: A function management header' was received
with some data on a successful input operation. Also, a stop system
request or a disable subsystem request is pending; no new sessions
using the subsystem can be initiated. Your program must continue to
receive input until SSP-ICF returns a code of xx00 (a change direction
indication) or xx08 (an end of transaction indication).

Normal Action: Process the function management header and issue
another input operation.

'The function management header is used in SNA only. However, you can use it with
the Intra subsystem to test programs that use the SNUF subsystem. The header
describes the format to be used for the data being received (following the header).

Intra Return Codes

7-81

0208 Normal Indication: An end of transaction indication was received
with the last of the data on a successful input operation. The
transaction has ended, and the session with your program has ended.
Also, a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (only if a disable subsystem request condition
is pending) to start another program, it can issue a release operation
(to perform local processing), or it can terminate. If a remote
procedure start request initiated the transaction, your program can
either issue an end of session operation or terminate.

020C Normal Indication: A function management header' and an end of
transaction indication were received with the last of the data on a
successful input operation. The transaction has ended, and the
session with your program has ended. Also, a stop system request or
a disable subsystem request is pending; no new sessions using the
subsystem can be initiated.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (only if a disable subsystem request condition
is pending) to start another program, it can issue a release operation
(to perform local processing), or it can terminate. If a remote
procedure start request initiated the transaction, your program can
either issue an end of session operation or terminate.

0228 Normal Indication: An end of transaction indication was received
with a system message on a successful input operation. The message
(now in your program’s input buffer) describes the status of the
transaction that has ended. The session with your program has ended.
Also, a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated.

Normal Action: Handle the message in the input buffer (display it, for
example). If your program initiated the transaction, it can issue
another evoke operation (only if a disable subsystem request condition
is pending) to start another program, it can issue a release operation
(to perform local processing), or it can terminate. If your program was
evoked, either issue an end of session operation or terminate.

'The function management header is used in SNA only. However, you can use it with
the Intra subsystem to test programs that use the SNUF subsystem. The header
describes the format to be used for the data being received (following the header).

7-82

0238 Normal Indication: An end of transaction indication was received
with a truncated system message on a successful input operation. The
message, truncated because it was too long for your program’s input
buffer, describes the status of the transaction that has ended. The
session with your program has ended. Also, a stop system request or
a disable subsystem request is pending; no new sessions using the
subsystem can be initiated.

Normal Action: Handle the truncated message in your program’s
input buffer (display it, for example). If your program initiated the
transaction, it can issue another evoke operation (only if a disable
subsystem request condition is pending) to start another program, it
can issue a release operation (to perform local processing), or it can
terminate. If your program was evoked, either issue an end of session
operation or terminate.

Major Code 03 — Successful operation, but no data received.

Normal Description: The input or set timer (output) operation just
performed was completed successfully, but no data was sent or
received.

General Considerations: Check the minor return code for an end of
transaction indication, and continue with the next operation.

Code Indication/Action

0300 Normal Indication: A change direction indication with no data was
received on a successful input operation.

Normal Action: Issue an output operation or continue to issue input
operations.

0301 Normal Indication: On a successful input operation, no data was
received. Your program must continue to receive input until SSP-ICF
returns a code of xx00 (a change direction indication, which allows
your program to send data), or xx08 (an end of transaction indication).

Normal Action: Issue another input operation.

0302 Normal Indication: A fail indication was received with no data on a
successful input operation. The other program has issued a fail
operation to indicate, for example, that the previous data that it sent

was in error.

Normal Action: Issue another input operation.

Intra Return Codes

7-83

7-84

0303

0308

0310

Normal Indication: An end of chain indication was received without
data on a successful input operation; the last record in the chain has
already been received.

Normal Action: Consider the data chain complete and issue another
input operation to receive the next chain.

Normal Indication: An end of transaction indication was received
without data on a successful input operation. The transaction has
ended, and the session with your program has ended.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program) or it can issue a
release operation (to either perform local processing or start another
session). If a remote procedure start request initiated the transaction,
your program can either issue an end of session operation or
terminate.

Normal Indication: The time interval specified by a set timer
operation in your program has expired.

Note: If your program has an exception handling routine, you should
check for the 0310 return code before you make any checks based on
the WSID field.

Normal Action: Issue the operation that is to perform the intended
function (such as displaying a message) after the specified time
interval has expired.

Major Code 04 — Output exception occurred.

Normal (Exception) Description: An output exception occurred because

your program attempted to send output when it should be receiving
the output that has already been sent by the other program. Your
output was not sent and should be sent later.

Note: If your program issues another output operation, an error return
code of 831C or 8323 will be received.

General Recovery Actions: Issue an input operation to receive data or a

message from the other program, or to allow the other program to
send a change direction indication.

Code

0402

0411

0412

Indication/Action

Normal Indication: A fail operation was issued by the other program
to indicate that the data sent by your program was in error and caused
an exception condition in the other program.

Recovery Action: Issue an input operation to begin performing the
recovery actions that were previously agreed to by the programmers of
both this program and the other program.

Normal Indication: The other program has sent a message for your
program, but because your program also attempted an output
operation, the message is still in the subsystem input buffer, waiting
to be received. Your program must receive the message before it can
perform an output operation.

Normal Action: Issue an input operation to receive the message.

Normal Indication: The other program has sent data for your
program, but because your program also attempted an output
operation, the data is still in the subsystem input buffer, waiting to be
received. Your program must receive the data before it can perform
an output operation.

Normal Action: Issue an input operation to receive the data.

Major Codes 08-34 — Miscellaneous program errors.

Error Description: An operation attempted by your program failed. The

Recovery Action: Refer to the individual return code descriptions for the

error may have occurred because an operation was issued at the
wrong time or because a data record was too long.

appropriate recovery actions.

Intra Return Codes

7-85

7-86

Code

0800

1100

2800

3401

Indication/Action

Error Indication: The acquire operation just performed was not
successful. It tried to acquire a session that has already been acquired
by your program and that is still active.

Recovery Action: If the session requested by the original acquire
operation is the one needed, your program can begin communicating
in the session because it is already available. If a different session is
desired, issue another acquire operation for a different session by
specifying a different session ID. (The identifier must have been
specified in the SYMID parameter of a SESSION statement that
preceded the program.)

Error Indication: The accept operation just performed in your
program was not successful for one of the following reasons: (1) Your
MRT program may have just released its last requester, indicating that
your program can begin to terminate normally. (2) Your program may
have attempted to accept input when no invite operations have been
issued and the program is not an MRT or NEP program. (3) Your
program is both an MRT and an NEP program, and a stop system
condition is in effect, which suppresses the implied invites to all
potential requesters.

Recovery Action: If you still have a requester or an acquired session,
issue an invite operation (or a combined operation that includes an
invite) followed by an accept input operation. This return code
indicates the logical end of file for WORKSTN files in RPG Il programs
and TRANSACTION files in COBOL programs.

Error Indication: Your program (which is an SRT program that has
been evoked by another program) has issued a release operation in the
session in which it was evoked, and is now attempting to
communicate with the evoking program. Because that session was
released from your program, this operation was not performed, and
any further attempts to communicate with that program results in
another 2800 return code. (The session is ended for your program
only, if it is part of a multiple-program procedure.)

Recovery Action: Continue local processing or terminate your
program. Your program may be in error; you should correct it so that
the release operation is issued after all communications with the other
program have been completed.

Error Indication: This input operation was rejected because the
record length of the data sent by the other program exceeds the
length of your program’s input buffer.

Recovery Action: Issue a message about the error to the local
system and terminate your program. Then, in your program, change
the record length of the input buffer to be at least as long as the
longest data record to be received. For assembler programs only, the
record length of the rejected data is contained in the DTF, at offset
SWSEFFL. For other program types, the length is not available; only
the error indication is received.

Major Code 80 — Permanent (nonrecoverable) subsystem error.

Error Description: A nonrecoverable error has occurred in the subsystem;
the subsystem has been (or is being) disabled, and your session has
been terminated. The error indication has been sent as a message to
the display station or to the system console; the operator can refer to
the System/34 Messages Guide for additional information. The error
indication is also returned to your program as a return code; the minor
code portion indicates the specific cause. (Each return code is
described on the following pages.) The subsystem must be enabled
again before communications can resume.

General Recovery Actions: The following general actions can be taken for
each 80xx return code. Other specific actions are given in each return
code description.

« lIssue, to the system operator or to the display station operator who
started the program, a message requesting that the subsystem be
enabled again.

« lIssue an end of session (EOS or $$EOS) operation for the session
that has terminated. Your program can: (1) wait for the subsystem
to be enabled by issuing (in COBOL and assembler only) a set timer
operation, or by using the TIMER intrinsic function (in BASIC only);
(2) continue local processing; or (3) terminate.

« If the session should be started again after the subsystem is
enabled, it must be reacquired by your program or restarted by the
other program.

Note: If the session is started again, it starts from the beginning, not
at the point where the session error occurred.

Intra Return Codes 7-87

Code

8081

8082

Indication/Action

Error Indication: An SSP-ICF error caused a processor check in this
subsystem.)

Recovery Action: This subsystem has been disabled; it must be
enabled again before communications can resume. Your program can
continue local processing, wait' to reissue the acquire operation, or
terminate.

If more than one subsystem was active when the error occurred, all
subsystems that were active when the error occurred should be
disabled. (Note that all other active Intra subsystems are automatically
disabled when the error occurs; all other types of active subsystems
must be manually disabled.)

If all subsystems (of all types) on the system are not disabled to
recover from the processor check, the common queue space used by
the failing subsystem cannot be freed. And if it is not freed, that
space is wasted, and an indication of insufficient common queue
space being available can occur. The indication can occur as a
message when the failing subsystem is reenabled or when a different
subsystem is enabled. The indication can also occur as an 8315 return
code for any subsystem that is performing an output operation in a
session.

Error Indication: This session is being terminated immediately
because the subsystem controlling the session is currently being
disabled; the subsystem is not waiting for any of its active sessions to
be completed normally.

Recovery Action: Communications with the other program cannot be
resumed until the subsystem has been enabled again. Your program
can continue local processing, wait' to reissue the acquire operation,
or terminate.

'For BASIC and RPG I, the set timer operation is not valid at this time because the
session is not active. (It /s valid in COBOL and assembler, and the TIMER intrinsic
function can be used in BASIC.)

Major Code 82 — Acquire operation failed.

Error Description: An attempt to acquire a session was not successful; the session
was not started. An error indication was returned to your program as a return
code; the minor portion of the code indicates the specific cause. (Each return
code is described on the following pages.) The error indication has also been sent
as a message to the display station or to the system console; the operator can
refer to the System/34 Messages Guide for additional information.

General Recovery Actions: The following general actions can be taken for each 82xx
return code. Other specific actions are given in each return code description.

1. Determine why the 82xx error code was returned to your program. Read the
description of that return code to determine what action is needed.

2. If a parameter value must be changed in the subsystem configuration record
or in the SESSION statement for your program:

a. To change a parameter value in the subsystem configuration, disable the
subsystem first, make the change in the subsystem’s configuration
record, then enable the subsystem again to make the change effective.

b. To change a parameter value in the SESSION statement associated with
your program, terminate only your program to change your SESSION
statement.

Note: When a parameter can be specified both in the SESSION statement
and in the subsystem configuration, the value in the SESSION statement
overrides the value in the subsystem configuration record (for your program
only). Therefore, in some cases, you may choose to make a change in the
SESSION statement rather than disabling the subsystem to make the change
in its configuration record.

3. If no change is needed in your program or in the subsystem, simply reissue
the acquire operation. It could be successful if the error was temporary (for
example, if not enough common queue space was available to support a new
session). If the acquire operation is again unsuccessful, it should be retried
only a limited number of times. (The limit for retries should be specified in
your program.)

4. Issue a set timer operation in your program so it can wait for a specified time
interval before reissuing the acquire operation. However, for RPG |l and
BASIC programs, the set timer operation is valid only in an active session and
cannot, therefore, be issued after an 82xx return code is received. (This
restriction does not apply to COBOL and assembler programs, or to the
TIMER intrinsic function in BASIC, which also can be used to wait for a
specified time interval.)

Intra Return Codes

7-89

Code Indication/Action

8233 Error Indication: On an unsuccessful acquire operation, an invalid
session identifier was detected. Either no SESSION statement was
specified between the LOAD and RUN statements for this program, or
the session identifier in your program does not match the identifier
specified on the SESSION statement for the session being acquired.
The session was not started.

Recovery Action: If the error is in your program, respecify the correct
session identifier in your program. If an incorrect identifier was
specified on the SESSION statement, specify the correct value in the
SYMID parameter.

8281 Error Indication: On an unsuccessful acquire operation, an SSP-ICF
error condition was detected. The error caused a processor check in
this subsystem.

Recovery Action: This subsystem has been disabled; it must be
enabled again before communications can resume. Your program can
continue local processing, wait' to reissue the acquire operation, or
terminate.

If more than one subsystem was active when the error occurred, all
subsystems that were active when the error occurred should be
disabled. (Note that all other active Intra subsystems are automatically
disabled when the error occurs; all other types of active subsystems
must be manually disabled.)

If all subsystems (of all types) on the system are not disabled to
recover from the processor check, the common queue space used by
the failing subsystem cannot be freed. And if it is not freed, that
space is wasted, and an indication of insufficient common queue
space being available can occur. The indication can occur as a
message when the failing subsystem is reenabled or when a different
subsystem is enabled. The indication can also occur as an 8315 return
code for any subsystem that is performing an output operation in a
session.

8282 Error Indication: The acquire operation just performed was
unsuccessful because the subsystem controlling the session is
currently being disabled; no sessions can be acquired in the
subsystem.

Recovery Action: Communications with the other program cannot be
resumed until the subsystem has been enabled again. Your program
can continue local processing, wait' to reissue the acquire operation,
or terminate.

"For BASIC and RPG Il, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

7-90

82A8

82AA

82AB

82B0

Error Indication: The acquire operation was not successful because
the maximum number of active sessions allowed in the system has
been reached. No more than 100 sessions can be active in the
System/34 at one time. The session was not started.

Recovery Action: Your program can wait' for another session to end
and then reissue the acquire operation. Otherwise, your program can
continue local processing or terminate.

Error Indication: The acquire operation just performed was not
successful because the specified subsystem has not been enabled or
has been disabled. The subsystem to be enabled is identified by the
location parameter in the SESSION statement. That location name
must also be specified in the subsystem configuration record (shown
on display 3.0 of the subsystem configuration planning charts). The
session was not started.

Recovery Action: Verify that the subsystem name was specified
correctly on the LOCATION parameter of the SESSION statement. If
the correct name was specified, contact the System/34 system
operator and request that the specified subsystem be enabled by
executing the ENABLE procedure command at the system console.
Then reissue the acquire operation. Otherwise, your program can
continue local processing, wait' to reissue the acquire operation, or
terminate.

Error Indication: The acquire operation just performed was not
successful because the specified subsystem is currently being enabled.
The session was not started.

Recovery Action: Your program can wait' until the subsystem has
been enabled, then reissue the acquire operation to start the session.

Error Indication: The acquire operation just performed was not
successful either because the specified subsystem is currently being
disabled, or because it has a disable subsystem request pending. No
new sessions can be started.

Recovery Action: Your program can wait' until the subsystem is
enabled again, and then reissue the acquire operation. Otherwise, your
program can continue local processing, or it can terminate.

'For BASIC and RPG I, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

Intra Return Codes 7-91

82B4 Error Indication: The acquire operation was not successful because
all of the resources needed for the session could not be allocated from
the assign/free area of the system. All available resources are already
being used in the system. The session was not started.
*

Recovery Action: Wait' for the needed resources to become
available, then reissue the acquire operation. Otherwise, continue local
processing or terminate.

Major Code 83 — Session error occurred.

Error Desdription: An error has occurred in the session, but the session is still active.
Recovery might be possible; the error indication was returned to your program as
a return code. The minor portion of the code indicates the specific cause. (Each
return code is described on the following pages.) The error indication has also
been sent as a message to the display station or to the system console; the
operator can refer to the System/34 Messages Guide for additional information.

General Recovery Actions: The following general actions can be taken for each 83xx
return code. Other specific actions are given in each return code description.

1. Determine why the 83xx error code was returned to your program. Read the
description of that return code to determine what action is needed.

2. If a parameter value must be changed in the subsystem configuration record
or in the SESSION statement for your program:

a. To change a parameter value in the subsystem configuration, disable the
subsystem first, make the change in the subsystem’s configuration
record, then enable the subsystem again to make the change effective.

b. To change a parameter value in the SESSION statement associated with
your program, terminate only your program before correcting your
SESSION statement. .

Note: When a parameter can be specified both in the SESSION statement
and in the subsystem configuration, the value in the SESSION statement
overrides the value in the subsystem configuration record (for your program
only). Therefore, in some cases, you may choose to make a change in the
SESSION statement rather than disabling the subsystem to make the change
in its configuration record.

3. If no change is needed in your program or in the subsystem, (and depending
on what the return code description says):
a. Check the other program to see if a change is required in it to correct
the error received.
C. Retry the operation, if possible; it could be successful. If it is not
successful, it should be retried only a limited number of times. (The
limit for retries should be specified in your program.)

'For BASIC and RPG I, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

7-92

Code

830B

8313

8314

8315

Indication/Action

Error Indication: Your program has attempted to execute a
communications input or output operation either before the session
was acquired or after it has ended. Your program_may have (1) issued
an input or output operation either before it issued an acquire
operation or after it has released the session (by a release or end of
session operation), or it may have (2) improperly handled an 81xx
(session was terminated) or 82xx (session was not acquired) error
return code.

Recovery Action: Check your program to ensure that no input or
output operation is attempted without an active session and to ensure
that an 81xx or 82xx return code is handled properly. If you want your
program to recover from an improperly handled error condition, issue
another acquire operation.

Error Indication: On an output operation, a queue space error
condition was detected. The output operation could not be performed
because no subsystem queue space was available at the time.

Recovery Action: Your program can issue a set timer operation and
wait for a period of time, then reissue the output operation. If an
unacceptable number of queue space errors occur, you can disable the
subsystem and change the subsystem configuration by specifying a
larger subsystem queue space size in the subsystem queue space
parameter. After the subsystem is enabled, reissue the acquire
operation to restart the session.

Error Indication: On an input operation, a queue space error condition
was detected. The input operation could not be performed because no
subsystem queue space was available at the time.

Recovery Action: Your program can issue a set timer operation and
wait for a period of time, then reissue the input operation. If an
unacceptable number of queue space errors occur, you can disable the
subsystem and change the subsystem configuration by specifying a
larger subsystem queue space size in the subsystem queue space
parameter. After the subsystem is enabled, reissue the acquire
operation to restart the session.

Error Indication: On an evoke operation, a queue space error
condition was detected. The evoke operation could not be performed
because no common queue space was available at the time.

Recovery Action: Your program can issue a set timer operation and
wait for a period of time, then reissue the evoke operation. If an
unacceptable number of queue space errors occur, you can disable all
the subsystems and change the subsystem configuration by specifying
a larger common queue space size in the SSP-ICF common queue
space parameter. After the subsystem is enabled, reissue the acquire
operation to restart the session.

Intra Return Codes 7-93

7-94

8319

831A

831B

831C

831E

Error Indication: A negative response to the previous output
operation was issued by the other (receiving) program. Sense data
was sent with the negative response and it is in the subsystem input
buffer waiting to be received by your program.

Recovery Action: Issue an input operation to receive the sense data.

Error Indication: An evoke operation failed to complete successfully,
or the evoked program terminated abnormally. A message describing
why it failed is waiting in the subsystem input buffer. The evoke
operation could have been the operation just performed, or a previous
operation (when the evoke operation was combined with another
operation, such as evoke then invite, or when the evoke was followed
by an accept input operation).

Recovery Action: Your program should issue an input operation to
receive the message so you can print or display it. Then it can reissue
the evoke operation to reestablish the transaction, it can issue an end
of session operation, or it can terminate.

Error Indication: On the previous negative response operation issued
by your program, invalid sense data was included. The data was not
sent.

Recovery Action: Correct your program so that, on a negative
response operation, valid sense data is sent. The sense data can be
no longer than 8 bytes, and it must begin with 10xx, 08xx, or 0000.

Error Indication: The output operation issued before this output
operation received a return code of 0411 or 0412 (indicating that the
other program sent a message or data for your program), but that
return code was not properly handled in your program. This output
operation was rejected as invalid at this time because your program
must first issue an input operation to receive the message or data.

Recovery Action: Issue an input operation to receive the message or
data.

Error Indication: The operation just issued by your program was
invalid. Either the operation code is an unrecognized code, or the
operation specified by the code is not supported by the subsystem.
Or, you may have attempted a batch operation, but BATCH-NO was
specified in the SESSION statement for your program. The session is
still active.

Recovery Action: Your program can try a different operation, issue a
release or end of session operation, or terminate. Correct the error in
your program or in the SESSION statement before attempting to
communicate with the other program.

831F

8322

8323

8326

Error Indication: On an output operation, an indication was received
that your program tried to send a data record having a length that
exceeds the maximum user record length specified for this session.
The session is still active.

Recovery Action: You can either change the record length in your
program and recompile it, or you can change the value specified for
the maximum user record length parameter in the subsystem
configuration. The maximum user record length must be large enough
for the longest record to be sent or received. Reissue the acquire
operation to restart the session after making these changes.

Error Indication: A put with no invite operation was erroneously
followed by a request to change direction then get operation, a request
to change direction then invite operation, or a negative response
operation. None of these operations are valid while your program is in
the send state. The session is still active.

Recovery Action: Your program can issue an output operation to
continue sending, issue an input operation to begin receiving, issue an
end of session operation to continue local processing, or terminate.
Correct the error in your program before attempting to communicate
with another program.

Error Indication: Either a cancel operation was issued while your
program was in receive state (the cancel operation is valid only in send
state); or your program received a fail indication while it was in send
state, and it issued another output operation (an input operation
should follow a received fail indication). The session is still active.

Recovery Action: Before attempting to communicate with another
program, correct the error in your program.

Error Indication: Following an output operation, an invalid cancel
operation was issued by your program. The cancel operation is valid
only within a chain, not preceding a chain or between chains. The
session is still active.

Recovery Action: Either continue local processing by ignoring the

error, or correct the error in your program before attempting to
communicate with another program.

Intra Return Codes

7-95

7-96

8327

8329

832A

832C

Error Indication: An invalid input or output operation was issued
when no transaction existed; your program may have expected more
data when there is none. Either the other program has already ended
the transaction, your program has ended the transaction, or your
program has not issued an evoke operation to start communicating
with the other program. The session is still active.

Recovery Action: If you want your program to dynamically recover
from this error, issue an evoke operation to start a transaction.
Otherwise, issue an end of session operation; then continue local
processing or terminate your program. If a coding error in your
program caused the error, correct your program.

Error Indication: An invalid evoke operation was detected in this
session. Your program was evoked by an evoke operation issued by
another program, and cannot, therefore, issue any evoke operations in
this session.

Recovery Action: If you want your program to dynamically recover
from this error, issue a different operation. If you want to issue the
evoke in another session, issue an acquire operation, then issue the
evoke operation. Otherwise, you can issue an end of session operation
to terminate this session; then continue local processing or terminate
your program. If a coding error in your program caused the error,
correct your program.

Error Indication: An indication that both programs were attempting to
receive input was detected by the subsystem. The program that was
in control of the transaction (in send state) issued an input operation
without indicating a change of direction, or the program that was in
receive state ignored the change direction indication and issued
another input operation. The session is still active.

Recovery Action: Either issue an output operation to send data, or
issue a request to change direction operation so the transaction can be
synchronized. If a coding error in your program caused the error,
correct your program.

Error Indication: An invalid release operation, following an invite
operation, was detected in your program. Because your program
issued the invite operation, it cannot issue a release operation to
terminate the invited session.

Recovery Action: Issue an accept or get operation to satisfy the
invite operation. Otherwise, issue an end of session operation to
terminate the session. If a coding error in your program caused the
error, correct your program.

832D

832F

8330

8331

8333

Error Indication: An invalid operation following an invite operation
was detected in your program. Once you have issued an invite
operation, the next subsystem operation must be a get or accept
operation.

Recovery Action: Issue a get operation or an accept input operation
to receive the input that was invited. Otherwise, issue an end of
session operation to terminate the session. If a coding error in your
program caused the error, correct your program.

Error Indication: An invalid evoke or release operation was issued
before a transaction was completed. The operation was not
performed. The session is still active.

Recovery Action: Your program can terminate the transaction by
issuing a put end of transaction operation; then it should issue a
release operation. If a coding error in your program caused the error,
correct your program.

Error Indication: On an input operation performed by this program, a
cancel operation and a change direction indication were received. The
other program canceled the transaction it was sending and now wants
to receive some data; your program must send it. (The session is still
active.)

Recovery Action: Issue an output operation.

Error Indication: On an input operation performed by this program, a
cancel operation was received without a change direction indication.
The other program canceled the transaction it was sending (possibly
because it detected an error in the data), but it wants to send the data
again or send different data. (The session is still active.) Your program
must continue to receive input until SSP-ICF returns a code of xx00 (a
change direction indication) or xx08 (an end of transaction indication).

Recovery Action: Discard the previously received input {or perform
any other agreed-to activity), then issue another input operation.

Error Indication: On an input or output operation, an invalid session
identifier was detected. The session is still active.

Recovery Action: Reissue the operation with the correct session
identifier. Otherwise, issue an end of session operation, then terminate
the program and correct the programming error that caused the
communications error.

Intra Return Codes

7-97

7-98

Chapter 8. The BSCEL Subsystem

The BSCEL (BSC equivalence link) subsystem provides distributed data
processing support to users of the System/34 SSP in conjunction with another
System/34 using the BSCEL subsystem. The BSCEL subsystem provides an
interactive interface between application programs on different System/34s.
The BSCEL subsystem also allows BSC communications with the following
systems:

« System/38

« System/34 with batch BSC

» System/32 with RPG Il or assembler

« System/3 with RPG Il or MLMP

« System/7 with MSP/7 (as a System/3)

+ 0S, 0S/VS, DOS/VS, or DOS BTAM.

« 0S or 0OS/VS TCAM

« IBM 3741 Model 2 Data Station or Model 4 Programmable Work Station
« IBM 3747 Data Converter

« IBM 5231 Data Collection Controller Model 2 (as a 3741 in transmit mode)
« IBM 3750 Switching System (World Trade only)

« IBM 3705 using NCP EP or PEP

+ IBM 5110 (as a 3741)

« Series 1 (as a System/3)

« IBM 5260 Point of Sale Terminal (as a 3741) |

« IBM 5280 Distributed Data System (as a 3741)

The BSCEL subsystem treats all these systems identically; any system
considerations must be handled by the application program.

The BSCEL Subsystem 8-1

8-2

The BSCEL subsystem supports up to four active lines. Each line must be one
of three types: =

« Point-to-point nonswitched

« Point-to-point switched (manual answer, automatic answer, manual call, or
automatic call)

« Multipoint tributary

The BSCEL subsystem supports one session on each line. One application
program can, however, conduct four concurrent sessions, provided they are on
four different lines and four different BSCEL configurations are enabled. Also,
one application program can conduct multiple sessions consecutively on one
line.

The BSCEL subsystem provides EBCDIC/ASCII translation. The application
program must process all data in EBCDIC. If ASCll is used, the subsystem
translates output data to ASCII before transmitting it, and translates input data
to EBCDIC before passing it to the application program.

The BSCEL subsystem also supports the following items, which are currently
supported by batch BSC, when communicating with the same remote systems:

« 3740 multiple files with null records separating the files
« 3780 format blank compression and truncation

« Record separator mode

« Intermediate block check mode

o Blocked records

The batch BSC support is described in the Data Communications Reference
Manual.

SETTING UP THE BSCEL SUBSYSTEM

The SSP procedures CNFIGSSP and INSTALL are used to include the
interactive communications feature and BSCEL subsystem support on the
System/34. The general interactive communications and line control support is
included when it is requested on the appropriate CNFIGSSP prompt. The
BSCEL subsystem support is copied to the system library when the appropriate
responses to the INSTALL procedure prompts are taken. The CNFIGSSP and
INSTALL procedures, with their displays and related responses, are described
in the Installation and Modification Reference Manual.

After the BSCEL subsystem has been installed, the CNFIGICF procedure is
used to tailor the subsystem support to an existing or proposed network. The
operation of the CNFIGICF procedure is also explained in the Installation and
Modification Reference Manual. Before running the CNFIGICF procedure,
however, you should fill out a planning chart for each subsystem that you want
to define.

Copies of the planning chart for each subsystem are available in Appendix F
of this manual and in the Installation and Modification Reference Manual. The
following sections éxplain how to fill out the planning chart for the BSCEL
subsystem.

The BSCEL Subsystem 8-3

Display 1.0 Subsystem Member Configuration

Subsystem Member Configuration

1. Subsystem configuration member name (8 characters)
2. Subsystem library name (8 characters)
Select:
1. Create new member 4. Delete a member
2. Edit existing member 5. Review a member

3. Create new member from existing member
3. Enter selection:
Existing member name:
5. Existing member library name:

»

Subsystem configuration member name: Specify a name for this configuration
of the subsystem. This name is used to store the member in a Iibrary,\and is
referenced in the ENABLE and DISABLE procedures.

Library name: Specify the name of the library in which the configuration is
stored or to be stored. The default is #LIBRARY, however, you should
probably store the configuration in a user library.

Enter selection: Specify one of the five options: (1) create a new member, (2)
edit an existing member, (3) create a new member from an existing member,
(4) delete a member, or (5) review a member without changing it.

Existing member name: This prompt appears if option 3 was selected. Specify
the name of the existing subsystem configuration member that is to be used to
create the new member. The existing member remains unchanged. '

Existing member library name: This prompt appears if option 3 was selected.
Specify the library name where the existing member resides.

Display 2.0 Common SSP-ICF Parameters for Each Subsystem

2.0 Common SSP-ICF Parameters for Each Subsystem

1. SSP-ICF common queue space: (2 - 42 K)
2. Define the subsystem type:

1 Intra 2 BSC IMS/IRSS
3 BSCEL 4 BSC CICS

5 BSC CCP 6 SNA Upline

7 SNA Peer 8 BSC 3270

9 SNA 3270 10 Finance

oo

SSP-ICF common queue space: Specify the size, in multiples of 2 K bytes, of
the common queue space. The common queue space requirements for each

configuration of the BSCEL subystem with an active session are:
C = 16N + 558

where:
C = number of bytes required for common queue space

N = number of remote switched line IDs (O if a nonswitched line is specified

or if only 1 remote ID is specified)

If ASCIl is selected, add 768 bytes to the common queue space requirements.

The common queue space value specified for the first subsystem that is
enabled becomes the size of the common queue space. Be sure that the value
specified for common queue space size takes into account the requirements of

any other subsystem that might be active concurrently.

The size of the common queue space plus the total subsystem queue space of

all the enabled BSCEL subsystems cannot exceed 42 K bytes.

The default common queue space size is 4 K bytes.

Define the subsystem type: Specify a 3 for the BSCEL subsystem.

The BSCEL Subsystem 8-5

Display 3.0 General Subsystem Parameters

General Subsystem Parameters

1. Location name: (8 characters) @ — o - —
2. Subsystem queue space: ’ (0-40 K) —_—
3. Subsystem support swappable: (0-No 1-Yes) —
4, Maximum user record length: (1-4075) —_—— -

Location name: Specify up to 8 characters for the name of the location
associated with this configuration. The location name is used in some of the
displayed message texts, and must be coded on the SESSION OCL statement.
The default is the subsystem configuration member name. The location name
refers to the name of the location with which communications is to take place.

Subsystem queue space: Specify the size, in multiples of 2 K bytes, of the
subsystem queue space. The subsystem queue space requirements for each
configuration of the BSCEL subsystem with an active session is:

S=2R+ 271,

where:
S = The number of bytes required for subsystem queue space
R = (The maximum user record length x F) + N

where:
F = The number of records per block (1 if no blocking is used)
N = The number of bytes needed for ITB or
record separator characters as follows:

= F if record separators are used

= (F-1) if nontransparent ITB mode is used
= (F-1) * 3 if transparent ITB mode is used
= 0 if no blocking is used

The size of the common queue space plus the total subsystem queue space of
all the enabled BSCEL subsystems cannot exceed 42 K bytes. The subsystem
queue space can be specified as 0 K bytes if these requirements are added to
the common queue space.

The default subsystem queue space size is 4 K bytes.

Subsystem support swappable: Specify whether you want the subsystem to be
swappable. Consider the total system performance, the size of the subsystem,
and the amount of user main storage when determining whether you want the
subsystem to be swappable. The BSCEL subsystem requires 10 K bytes of
main storage.

Maximum user record length: Specify the maximum record length (1 through
4075 bytes) to be sent or received by any System/34 application program
using this subsystem configuration. For sessions using partner-norm, the
maximum user record length must be at least 90 bytes. The default is 1024
bytes.

Display 4.0 Line Information for SSP-ICF Subsystem

4.0 Line Information for SSP-ICF Subsystem

1. Line type: 1-Multipoint
2-Nonswitched Pt-Pt
3-Switched Pt-Pt

3. Switch type:
1 Manual call 2 Auto answer
3 Manual answer

Line type: Specify the line type that is suitable to your communications
environment. The default is 3 (switched point-to-point).

Switch type: This prompt is displayed only if a switched point-to-point line
type was selected. Specify the switch type you want for the line. The default
is 1 (manual call). If you are using autocall, you should specify 1 (manual call).
If you are using the switched X.21 feature, specify 2 (auto answer). See Using
Switched Lines in this section for additional information.

The BSCEL Subsystem 8-7

Display 5.0 BSC General Subsystem Parameters |

5.0

BSC General Subsystem Parameters |

1. EBCDIC/ASCII: (1-EBCDIC - 2-ASCIl) —
2. Local station address: (2 hex) — —
3. Wait time: (1 - 999 seconds) , —_——
4, Transparency: (0-No 1-Yes) —
5. Multiple remote IDs: (0-No 1-Yes) —
6. Remote ID:

7 Local ID:

EBCDIC/ASCII: Specify which code you require. The code you select must be
compatible with the remote system. ASCII cannot be selected if you specify
transparency. The default is 1 (EBCDIC).

Local station address: Specify, in hexadecimal, the System/34 multipoint line
address identified for this configuration. You can specify B (C2) through R
(D9) for EBCDIC, or A (41) through Z (5A) for ASCIl. This prompt is displayed
only if a multipoint line was selected. Be sure to enter the hexadecimal
equivalent in the code (EBCDIC or ASCH) used.

Wait time: Specify the number of seconds to wait without line activity before a
permanent error is indicated. The default is 999, which indicates an infinite
wait time.

Transparency: Specify whether the EBCDIC data will be transmitted in
transparent mode. If you specify 1 (yes) with ASCII data, blank compression,
or record separators, an error message is displayed. If you specify 1 (yes) for
ITB mode, the application program can only receive. The System/34 cannot
transmit ITB characters in transparent mode. The default is O (no).

Multiple remote IDs: Specify whether more than one remote switched line 1D is
used. The default is O (no). If 1 (yes) is specified, the DEFINEID procedure is
executed after normal completion of the CNFIGICF procedure. This prompt is
displayed only if a switched line was selected.

Remote ID: Specify from 0 to 30 hexadecimal characters to be used for
identification of a remote device. The number of hexadecimal characters must
be a multiple of 2. The field is left-justified with all unused positions filled with
zeros. The hexadecimal characters cannot include any BSC control characters.
Therefore, the following hexadecimal characters cannot be used:

ASCII EBCDIC

(hex) (hex)
01 01
02 02
03 03
04 10
05 1F
10 26
15 2D
16 32
17 37
1F 3D
80

through

FF

If multiple remote IDs are selected, .:.-1 value for remote ID need not be
specified. Multiple remote |Ds are specified via the DEFINEID procedure. This
ID must be the same as the local ID of the remote BSCEL system. This
prompt is displayed only if a switched line was selected.

Local ID: Specify from 0 to 30 hexadecimal characters to be used for the local
switched line identification. The number of hexadecimal characters must be a
multiple of 2. The field is left-justified with all unused positions filled with
zeros. The hexadecimal characters cannot include any BSC control characters.
Therefore, the characters shown in the chart in the Remote ID description
cannot be used. The local ID must be the same as the remote ID of the
remote BSCEL system. This prompt is displayed only if a switched line was
selected.

The BSCEL Subsystem

8-9

Display 5.1 BSC General Subsystem Parameters Il

In the following prompt, parameters 1 and 2 are displayed only if you specified

a line type of switched pt-pt on display 4.0.

5.1

BSC General Subsystem Parameters 11

Nooswn =

Phone list name:

Refresh: (0-No 1-Yes)
Block length: (0—4075)
Record separator: (Hexadecimal)
ITB mode: (0-No 1-Yes)
Blank: (0-No, 1-Compression, 2-Truncation)
3740 Multiple files: (0-No 1-Yes)

Phone list name: Specify the name of the load member that contains the list of
phone numbers for the autocall feature or the list of numbers for the public
data network (X.21 feature) to be called by the System/34. The load member
must be in either #LIBRARY or in the same library as the configuration

member.

Use the refresh parameter to define how you want the list of humbers

processed.

Refresh: Specify 1 (yes) if you want the list reinitialized (calling to begin with
the first number on the list) after a successful call. If you enter a list name and

do not enter a value for refresh, refresh-yes is assumed.

Specify 0 (no) if you do not want the list reinitialized after a successful call.

Note: See Automatic Calling on Switched Lines in this chapter for more

information about the phone list and refresh parameters.

Block length: The length of the block of data records that is transmitted or
received. If you specify a block length, it must be at least as long as one

record. If you do not want blocking, enter a 0. The default is O.

The block length and the maximum yser record length are used to calculate the
size of the BSCEL subsystem input/output buffers. The buffer size cannot
exceed 4096 bytes or the capacity of the remote system. Use the following

formula to determine the buffer size:
Buffer size = (maximum user record length * F) + N + 21

where:

F = The number of records per block (1 if blocking is not used)

N = The number of bytes needed for ITB or record separator characters as

follows:

N = F if record separators are used

N = F-1 if ITB characters are used in nontransparent mode
N = (F-1) * 3 if ITB characters are used in transparent mode

N = 0 if blocking is not used

Record separator: The record separator character (in hexadecimal) used to
separate records when the records are blocked. You can enter any EBCDIC or
ASCII character except the following:

ASCII EBCDIC
(hex) (hex)

01 01
02 02
03 03
04 10
05 1F
10 26
15 2D
16 32
17 37
1F 3D
80

through

FF

If you do not want a record separator character, enter hexadecimal 00. The
default is hexadecimal 00.

Notes About Record Separators:

« If the data records have variable lengths, you should specify a record
separator character.

« If you specify blank compression or blank truncation and you do not specify
a record separator character, a hexadecimal 1E record separator character is
used.

« If you specify record separators, you must also specify a block length.

« Record separators cannot be used with ITB or transparency mode.

ITB mode: Specify 1 (yes) if you want an ITB character inserted after each
record in a block. The ITB character causes error checking at the end of each
record instead of at the end of the block.

Do not specify ITB mode if you use blank truncation, blank compression,
record separators, or 3740 multiple files. You cannot transmit data in

transparent mode if you select ITB mode. A block length must be specified if
you select ITB mode.

The BSCEL Subsystem

8-11

Blank: Specify whether or not you want blank truncation or blank compression.
Specify 2 (truncation) if you want trailing blanks truncated from each data
record. Specify 1 (compression) if you want each series of three or more
blanks deleted from each record. The blanks are replaced when the data is
received.

Do not specify compression with transparency or ITB mode. Do not specify
truncation with ITB mode. If you specify either compression or truncation, you
must also specify a block length. The default is O (no truncation or
compression).

3740 Multiple Files: Specify 1 (yes) if you are going to transmit and/or receive
3740 muiltiple files. See 3740 Multiple Files in this section for additional
information. Do not specify ITB mode if you specify 1 (yes) for 3740 multiple
files. The default is O (no).

Display 6.0 BSCEL Subsystem Parameters

BSCEL Subsystem Parameters

Partner (1-NORM 2-ATTR)

8-12

Partner: Specify the type of session you want with the remote system. A
partner attribute of NORM indicates that the remote system can recognize the
BSCEL transaction initiation commands, transaction termination commands,
and online messages. In most cases, NORM indicates that the remote system
is another System/34 with the BSCEL subsystem. A partner attribute of ATTR
indicates that the remote system cannot recognize the NORM commands or
messages. In most cases, ATTR is used when communicating with remote
systems such as a 3741 Data Entry Station or a 5230 Data Collection System.

STARTING AND ENDING THE BSCEL SUBSYSTEM

The ENABLE procedure is the means of starting the BSCEL subsystem on the
System/34. The ENABLE procedure associates the subsystem with a particular
BSC line. After being enabled, the subsystem monitors the line and waits for
application program requests.

The DISABLE procedure stops the subsystem. When a disable is performed,
the association between the subsystem and the BSC line is broken, and no
further activity occurs on the line. If the subsystem was active on a multipoint
line using the multiline communications adapter, the adapter will continue to
respond negatively if polled or selected after the disable has been completed.

The formats of the ENABLE and DISABLE procedure commands are in
Chapter 2.

STARTING BSCEL SUBSYSTEM APPLICATIONS

System/34 BSCEL subsystem applications can be started by a display station
operator entering a procedure command or by a request from the remote
system. Procedures that are started by a System/34 operator must have a
SESSION statement for each session to be started. Requests from the remote
system to start a procedure must be in a special format. The following -
sections describe the SESSION statement and the incoming procedure start
requests.

SESSION OCL Statement

The format of the SESSION statement for the BSCEL subsystem is:

// SESSION LOCATION-name , SYMID-session-id

AA
[, ReCL-nnnn] [,SWTYP- {MA}]
MC

g YES ATTR
, TRANSP- {NO }] [,PARTNER- {NORM}] [,RECSEP—character]

-

—

¢ YES
BLANK- T ¢ | [[,PHONE-name] [,REFRESH- {N——}]
) N ©

-

YES YES
L,RESTORE~{'\L) }] [,BLKL-nnnn] [,ITB-{NO }]

LOCATION: Specifies the location name associated with this session. The
location name is defined during subsystem configuration, and refers to the
name of the location with which communication is to take place.

The BSCEL Subsystem 8-13

8-14

SYMID: Specifies the symbolic ID of the session with which this SESSION
statement is associated. The symbolic ID must be two characters, with the
first character numeric (0 through 9) and the second character alphabetic (A
through Z, #, $, or @). This is the same ID that the application program uses
when referring to this session. This ID is the equivalent of the symbolic display
station ID as specified on the WORKSTN OCL statement. This parameter has
no default.

RECL: Specifies the maximum record length that will be transmitted or
received for this session. The record length can be any value from 1 through
4075 bytes, however, if PARTNER-NORM is specified, RECL must be at least
90 bytes to accommodate online messages.

SWTYP: Specifies the method of making a connection on a switched line. MC
indicates that the operator will initiate the call manually or that autocall is being
used. If the system is configured or enabled for autocall and a phone list is
specified, the system will dial the remote system automatically. See Autocall
Considerations in this section for additional information. AA indicates that the
System/34 will answer the call automatically. MA indicates that the operator
will answer the call manually.

TRANSP: Specifies whether data will be transmitted in transparent mode. |f
you specify YES when using ASCII, blank compression, or record separators,
an error message is displayed. If you specify YES for ITB mode, the
application program can receive only. The System/34 cannot transmit ITB
characters in transparent mode.

PARTNER: Specifies the partner attribute for this session. NORM indicates
that the BSCEL messages and commands can be recognized by the remote
system (usually another BSCEL system). ATTR indicates that these commands
and messages cannot be handled by the remote system (usually a device such
as a 3741).

RECSEP: Specifies the record separator character (in hexadecimal) used to
separate data records when the records are blocked. You can enter any ASCII|
or EBCDIC character except the following:

ASCII EBCDIC

{(hex) {hex)
01 01
02 02
03 03
04 10
05 1F
10 26
15 2D
16 32
17 37
1F 3D
7F

through

FF

BLANK: Specifies blank truncation or blank compression.

Specify T if you want trailing blanks truncated from each data record. Specify
C if you want each series of three or more blanks deleted from each record.
The blanks are replaced when the data is received. Specify N if you want
neither blank truncation nor blank compression.

PHONE: Specifies the name of the load member that contains the list of phone
numbers for the autocall feature or the list of numbers for the public data
network (X.21 feature) to be called by the System/34. The load member must
be in either the current user library or in #LIBRARY. If you do not specify a
list name, the name specified during subsystem configuration or the name
specified when the subsystem is enabled is used.

Use the REFRESH parameter and the RESTORE parameter to define how you
want the list of numbers processed.

REFRESH: Specifies whether you want the list reinitialized (calling to begin
with the first number on the list) after a successful call. If you enter a list
name and do not enter a value for REFRESH, REFRESH-YES is assumed.

Specify NO if you do not want the list reinitialized after a successful call.

RESTORE: Specifies whether you want the list used in a previous job step
reinitialized before executing the current job step.

Specify NO if you do not want the list used in a previous job step reinitialized.
If you specify a list and do not specify RESTORE, RESTORE-NO is assumed.

Note: See Automatic Calling on Switched Lines in this chapter for more
information about the PHONE, REFRESH, and RESTORE parameters.

BLKL: Specifies the length (1-4075 bytes) of the block of data records to be
transmitted or received. If you specify O, data records are not blocked.

ITB: Specifies ITB mode. Specify YES if you want ITB characters to be
inserted between data records when the data is blocked. The ITB character
causes error checking after each record instead of at the end of each block.

Note: See Data Formats in this section for additional information about record
separators, blank truncation, blank compression, and ITB characters.

If a value for RECL, SWTYP, TRANSP, PARTNER, BLKL, RECSEP, ITB, or
BLANK is not specified, the value defined during subsystem configuration or
enable is used.

The BSCEL Subsystem 8-15

8-16

Incoming Procedure Start Requests

For remote systems to initiate programs on the System/34, the remote system
must transmit an *EXEC, *EXEX, *EXNC, or *EXNX procedure start request.
The format of these requests is in Chapter 2. If the remote system is another
System/34 with BSCEL, the BSCEL subsystem formats and transmits the
appropriate procedure start request when an evoke operation is issued.

A session started from the remote system via a procedure start request does
not have a partner attribute. The format of the procedure start request defines
whether BSCEL commands and online messages are transmitted. *EXEC and
*EXEX implies that the remote system can recognize BSCEL commands and
online messages; *EXNC and *EXNX implies that the remote system cannot
recognize BSCEL commands and online messages. BSCEL commands and
online messages are not issued for *EXNC or *EXNX procedure start requests.

If one of the following parameters: maximum user record length, block length,
record separator, ITB mode, blank, and/or transparency is specified with the
*EXEC or *EXNC procedure start request, the parameter with the procedure
start request is used instead of the parameter specified during subsystem
configuration or the enable procedure.

The BSCEL subsystem can conduct only one session per line. If a procedure
start request is received from the remote system while the session is active,
the procedure cannot be started. The BSCEL subsystem abnormally terminates
the transmission and displays SYS-8131 on the system console. The active
session cannot receive or send any more data. If the application program
terminates the session normally, the BSCEL subsystem will terminate the
session normally. If the application program attempts to transmit or receive
more data, the BSCEL subsystem will abnormally terminate the session and
issue a return code (819D) to the application program to indicate that
unexpected data was received.

OPERATION CONSIDERATIONS

The following sections describe the operations supported by the BSCEL
subsystem. A complete chart of all interactive communications operations and
the subsystems that support them is in each language chapter. The chart also
shows the keyword or format name used to code the operation. More
information about how an operation is coded is in the appropriate programming
language chapter.

Whether an operation completes successfully or unsuccessfully, a return code
is given to the application program. All of the return codes that are valid for
this subsystem are described at the end of this chapter. A summary chart in
Appendix A lists all the return codes and the subsystems for which they are
valid.

Acquire Operation

The acquire operation is issued by the application program to establish a
session. Acquire performs the following functions:

« Verifies that the requested line is available.

« Reserves a line between the System/34 and the remote system. No other
program can acquire the line until the session terminates. If
PARTNER-NORM is specified and the remote system is a System/34 using
BSCEL, the line is also reserved on the remote system. No remote program
can acquire the line until the session terminates.

« Initializes the BSCEL subsystem with the parameters specified on the
SESSION OCL statement. Any parameter specified on the SESSION
statement overrides any corresponding parameter defined during subsystem
configuration or the ENABLE procedure.

« Allocates resources for use during the session; these include control blocks
and line buffers.

The BSCEL Subsystem

8-17

Evoke Operation

The evoke ($$EVOKNI), evoke then invite ($$EVOK), and evoke then get
(assembler only) operations initiate a transaction. The output length of any
evoke operation cannot exceed 120 bytes. If the evoke includes a procedure
name, the actual output length is the length of the data plus the length of the
procedure name plus 1. Depending on the partner attribute, the evoke
operation is interpreted in one of two ways.

If the partner attribute is NORM, the evoke operation sends a 160-byte
procedure start request to the remote system. This procedure start request
contains the parameters to initialize the procedure on the remote system and to
define the data format to be used for this session, such as the maximum user
record length and the block length. If the remote system is another System/34
that is also using the BSCEL subsystem, the procedure start request
parameters that define the data format override the corresponding
configuration parameters at the remote System/34. Thus, the remote
application program uses the same data format as the local application
program.

The remote system processes the procedure start request and initiates an
application program. The BSCEL subsystem waits for a message response to
the procedure start request. If a successful program start message is received,
the remote application is considered to be running, and the transaction is
initiated. If an error message is received in response to the procedure start
request, a return code (831A) is passed to the application program indicating
that the evoke operation failed and a message is waiting. The application
program can optionally issue an input operation to obtain the message.
Following the input operation, another evoke operation must be issued before
the transaction can be established.

If the partner attribute is ATTR, the evoke operation initiates the transaction.
This form of the evoke assumes that the remote application is already active;
that is, ready to exchange data with the local program. No line transmission
occurs as a result of this evoke operation, therefore, no data should
accompany the evoke. The next input or output operation following this evoke
initiates the transfer of data related to this transaction.

The evoke end of transaction operation ($$EVOKET) initiates a remote
procedure that does not communicate with the System/34 application
program. When this operation is issued, an *EXEX procedure start request is
transmitted to the remote system. The evoke end of transaction is not
completed until a response is received from the remote system. If a successful
program start message is received, a normal return code is given to the
application program. If an error message is received, the application program
receives a return code (831A) indicating that the evoke failed and a message is
waiting. The application program can optionally issue an input operation to
receive the message. Evoke end of transaction performs no function for
sessions with a partner attribute of ATTR.

Put Operations

The put operation is used to pass data from the System /34 application
program to the remote system. The put operation can be issued alone
($$SENDNI) or combined with an input operation ($$SEND).

If the put operation is combined with an input operation, the data followed by
an EOT (end of transmission), is sent. (The data is followed by a null record
when transmitting 3740 multiple files.) Then data is received by the
subsystem. In the case of a BASIC, COBOL, or RPG Il program, the input data
is made available to the application program on the next accept (READ)
operation. Assembler users can choose to wait for the input data by using a
put then get operation. If the put then get operation fails, the minor part of the
return code indicates whether the error occurred while the system was
receiving or transmitting.

If the put operation is not combined with an input operation, and blocking is
not used, one data record is sent for each put operation. If the put operation is
not combined with an input operation and blocking is used, data records are
blocked before being transmitted. When multiple put operations ($$SENDNI)
are issued sequentially, the application program is normally two or more puts
ahead of the communications line. If a communications line failure occurs
while transmitting, the application program is notified by a return code on its
current put operation, which is two or more puts ahead of the failing operation.
Therefore, if a line failure occurs, the application program can not determine if
all data was transmitted before the error occurred. The put end of file
operation ($$SENDE) is used to terminate a series of put operations that do
not request input. The associated data record is sent followed by an EOT, or a
null record, if 3740 multiple files are being transmitted.

Also available is the put end of transaction operation ($$SENDET). The put
end of transaction operation is issued by the locally initiated application
program to terminate the transaction or by the remotely initiated program to
terminate the session. Because only one transaction can be active at a time,
the active transaction must end before a new transaction can be established. A
transaction is considered terminated when an end of transaction is successfully
issued. If 3740 multiple files are being transmitted, see 3740 Multiple Files in
this section for additional information.

The BSCEL Subsystem 8-19

8-20

Input Operations

The input operations for the BSCEL subsystem are invite, get, and accept. The
invite operation can be issued only as a combined operation with a put, request
change direction, or evoke operation ($$SEND, $$RCD, $$EVOK) in BASIC,
COBOL, or RPG Il. Assembler language users can issue an invite operation
explicitly. A get or invite operation signals the subsystem to obtain data from a
particular session for the application program. A get operation causes the
application program to wait for the data to be available. When a program
issues an invite operation, it receives the data with the next accept operation.
The accept operation allows input from any previously invited session.

The end of file indication (EQT) is not received by the BSCEL subsystem with
the input data. Therefore, the return code that indicates end of file is 0300 (no
data received and EOT received). If 3740 multiple files are being received, see
3740 Muiltiple Files in this section for additional information.

The end of transaction indicator is received by the BSCEL subsystem with or
without input data. If the end of transaction is received with data, the return
code is 0008 (data and end of transaction). If the end of transaction is
received with a message, the return code is 0028 (message and end of
transaction). If the end of transaction is received without data, the return code
is 0308 (no data and end of transaction).

Request to Change Direction Operation

The BSCEL subsystem allows a request to change direction operation ($$RCD)
only during a transaction and only when the issuing program is not transmitting
data. The request to change direction operation results in a reverse interrupt
(RVI) being sent to the remote system as the response to the next data record
received. Only one RVI is sent to the remote system before the change
direction occurs; therefore only the first request to change direction operation
before the change direction occurs has any effect. If the issuing program is not
receiving and not transmitting, the operation has no effect.

Request to change direction is always accompanied by a get or invite
operation. Regardless of whether the RVI is sent, the invite or get operation is
performed.

Release Operation
The release operation is issued by the application program to terminate a
session it acquired or by a remotely initiated MRT program to pass the session

on to the next job step.

When issued by the program that acquired the session, the release operation
performs the following functions:

« Terminates the session; the line can then be acquired for another session.

« If the partner attribute is NORM and the remote system is using the BSCEL
subsystem, releases the line on the remote system. This allows a remote
application program to acquire a session on the line.

« If this line is a switched line, disconnects the line.

« Frees the resources that were used during the session.

End of Session Operation
The end of session operation (B$EOS) always results in a normal completion
return code. The session is always terminated by the end of session operation.
If the session is still communicating when the end of session operation is

issued, the transmission is abnormally terminated by the BSCEL subsystem,
and abnormal termination of the BSCEL application program could result.

Get Attributes Operation

The get attributes operation (assembler only) can be issued at any time to
determine the status of a session.

Set Timer Operation

The set timer operation ($$TIMER) results in a timer expired return code (0310)
after a specific time interval in hours, minutes, and seconds has expired.

The BSCEL Subsystem 8-21

8-22

PROGRAMMING CONSIDERATIONS

Online Messages

The BSCEL subsystem supports the receipt and optional transmission of online
messages. The online messages inform the subsystem and application
program of key events.

The BSCEL subsystem transmits an online message after receiving an *EXEC
or *EXEX procedure start request. The message informs the remote system of
the success or failure of the procedure start request.

If the partner attribute of the session is NORM, or if the session was started
by an *EXEC request, the BSCEL subsystem transmits an online message
when either of the following occurs:

« The application program abnormally terminates. The message informs the
remote system of the abnormal termination.

¢ A DISABLE command abnormally terminates the session. The message
informs the remote system of the disable.

An online message generated by the BSCEL subsystem is 90 bytes long and in
the following format:

ICFxb BSYS-nnnnbmessage-text

where x is an M (for an informational message) or an E (for an error message).
The nnnn is the message identification code of the message that was issued on
the local system. Note that if the message was not a system message, the
SYS would be replaced by the appropriate program product prefix, such as
RPG or CBL.

The BSCEL subsystem checks any incoming data record for an ICFM or ICFE
in the first four bytes of the record. The first 14 characters of each of these
messages is logged to the history file as SYS-8170. If a session is active
when the message is received, the application program must issue an input
operation to receive the message. If the next operation is not an input
operation, the operation is rejected with a message waiting return code. If no
session is active when the message is received, the first 14 characters are
displayed at the system console as SYS-8170.

The ICFM message (SYS-8190) received as a result of the evoke operation (in
response to a procedure start request) is not logged to the history file and
cannot be received by the application program. This message is used by the
BSCEL subsystem to indicate that the procedure start request was successful.

An ICFE message received as a result of an evoke operation (in response to a
procedure start request) can optionally be received by the application program.
The application program receives a return code (831A) indicating that the evoke
operation failed and a message is waiting. The application program can issue
an input operation to receive the message, issue another evoke operation, or
terminate the session.

If an ICFE message is received while a transaction is active, the application
program receives a return code (0028) indicating that a message and end of
transaction were received. If the session is an acquired session, another evoke
is necessary to begin the transaction, or the session can be terminated. If the
session was started by an incoming procedure start request, the next
application program operation must be an end of session operation, or the
program can terminate.

The BSCEL subsystem also recognizes a status message from the remote
system without an active session. This message is normally received from a
device, such as a 3741, after a session has been abnormally terminated. The
message has the following format:

% x

IOoWw
X -0
<
X < m

SOH is the start of header BSC control character.

% is the character representation of the percent sign.

X is a single character identifying the type of the remote system.

STX is the start of text BSC control character.

y is one or more characters identifying the status of the remote system.

ETX is the end of text BSC control character.

The status message is not analyzed by the BSCEL subsystem, but is displayed

on the system console as SYS-8170. The displayed message contains the text
%xby.

The BSCEL Subsystem 8-23

Data Formats
The BSCEL subsystem supports the following data formats:
« Unblocked data records in either transparent or nontransparent mode.
« Blocked data records in either transparent or nontransparent mode.
« Blocked data records with record separators in nontransparent mode.

« Blocked data records with ITB characters in nontransparent mode. (ITB
characters can be received in transparent mode, but not transmitted.)

« Blocked data records with blank compression in nontransparent mode.

» Blocked data records with blank truncation in either transparent or
nontransparent mode.

« 3740 multip_le files.

You select the above formats during subsystem configuration, with the
ENABLE procedure, with the SESSION statement, and/or with the procedure
start request. Both the transmitting and the receiving station must use the
same data format. Following is a description of each of the data formats.

Unblocked Data Records

If you do not specify a block length (entry of O for the block length), the
BSCEL subsystem transmits and receives unblocked data records. That is,
each put operation causes one record to be transmitted, and each get
operation causes one record to be received. Use this format for interactive
applications that transmit and receive fixed- or variable-length data records.

8-24

Blocked Data Records

If you specify a block length, the BSCEL subsystem places data records in
blocks before they are transmitted and removes data records from blocks when
they are received. As many records as possible are placed in a block
depending upon the following:

« Block length

o Maximum user record length

Whether blank truncation or blank compression is specified
» Whether the records are fixed or variable lengths

If the records are fixed-length, you should specify a maximum user record
length that is equal to the fixed length of a record and a block length that is a
multiple of the record length. For example, if the record length is 128 bytes, a
block length of 512 bytes would allow four records to be placed in a block
before the block is transmitted.

If the records are variable-length, you should specify a maximum user record
length that is equal to or greater than the longest record you expect to transmit
or receive. Also, specify a block length that is large enough to contain the
minimum number of records you want to transmit or expect to receive in one
block. For example, if the longest record is 128 bytes, a block length of 512
would allow a minimum of four records to be placed in a block.
Variable-length records are separated in a block by record separator characters
called IRS (interrecord separator) characters or by ITB (intermediate text block)
characters. The character used depends upon which of the following modes
you specify:

« Record separators
« |ITB mode

« Blank compression
« Blank truncation

If data is transmitted or received without record separators, ITB characters,
blank compression, or blank truncation, the data records must be fixed-length.

The BSCEL Subsystem

8-25

Blocked Record Formats

Fixed-Length Records: The following example shows how data is blocked with
fixed-length records for both nontransparent and transparent modes:

Nontransparent Mode

STX Record 1 Record 2 Record 3 . . . Record n ETB

OR

Transparent Mode

DLE STX Record 1 Record 2 Record 3 . .. Record n DLE ETB

Use this format for batch applications that transmit and receive fixed-length
data records. To configure the BSCEL subsystem to block fixed-length
records, specify the following:

« A block length large enough to contain the number of records you expect to
be transmitted or received in one block

» A record separator of hexadecimal 00

e No for ITB mode

« No for blank truncation or compression

8-26

Blocked Data with Record Separators: When data is transmitted or received with
record separators, a record separator character (IRS) is used to separate
records in a block as shown in the following example:

STX Record 1 IRS Record 2 IRS Record 3 IRS ... Record n IRS ETB

Use this format for batch applications that transmit and receive large numbers
of fixed or variable length records. To configure the BSCEL subsystem for this
format, specify the following:

« A maximum user record length equal to or greater than the longest record
to be transmitted or received

« A block length large enough to contain the number of records you want to
transmit or expect to receive in one block

« A record separator character other than hexadecimal 00

« No for ITB mode

« No for blank truncation or compression

Blocked Data Records with ITB Mode: When data is transmitted or received with
ITB mode, an ITB character is used to separate records in a block as shown in

the following example:

Nontransparent Data

STX Record 1 ITB Record 2 ITB Record 3 ITB ... Record n ETB

OR

Transparent Data (receive only)

DLE STX Record 1 DLE ITB DLE STX Record 2 DLE ITB DLE STX ... Record n DLE ETB

The BSCEL Subsystem 8-27

8-28

Normally, data is checked for errors after each data block is received.
However, when you use ITB mode, the ITB character causes the data to be
checked at the end of each record rather than at the end of the block.
Therefore, you can use this format to transmit or receive large numbers of
fixed- or variable-length records when additional error checking is required. To
configure the BSCEL subsystem for this format, specify the following:

« A maximum user record length that is equal to or greater than the longest
record you expect to transmit or receive

« A block length large enough to contain the number of records you want to
* transmit or expect to receive in one block '

« A record separator character of hexadecimal 00
« Yes for ITB mode

¢ No for blank truncation or blank compression

Blocked Data with Blank Compression: When transmitting data with blank
compression, any series of three or more blanks within the data is replaced by
an IGS (interchange group separator) character followed by a blank-count byte.
(The System/34 uses the same blank compression format as the IBM 3780.)
The blank count byte indicates the number of blanks deleted (compressed). Up
to 63 blanks can be deleted by one IGS character and one blank-count byte. If
more than 63 bytes are deleted, two or more IGS and blank-count byte pairs

~ are inserted. When data with IGS characters is received, the subsystem

replaces the blanks that were removed at the transmitting station as indicated
by the IGS character and blank-count byte. The following example shows the
format of data records with blank compression specified. The character (B) is
the blank-count byte:

STX Record 1 IGS(B) Record 1 IGS(B) Record 1 IRS Record 2 IGS(B)
IGS(B) Record 2 IRS . . . Record n IGS(B) Record n IGS(B) IRS ETB

The record separator character (IRS) is used to separate records in the block.
If you did not specify a record separator character, a default separator of
hexadecimal 1E is used.

You can use this format for batch applications that transmit and receive fixed-~
or variable-length data records that contain many blanks. To configure the

BSCEL subsystem for this format, specify the following:

+ A record length that is equal to or greater than the longest record you
expect to transmit or receive

» A block length large enough to contain the number of records you want to
transmit or receive in one block

« No for ITB mode

» Yes for blank compression

Blocked Data Records with Blank Truncation: When data is transmitted with
blank truncation, trailing blanks are removed from each record. The record
separator character you specified or the default record separator (hexadecimal
1E) is inserted after each record. When data records are received, blanks are
inserted at the end of each record. The number of blanks inserted depends
upon the maximum user record length. That is, the length of a record passed
to the application program is equal to the maximum user record length you
specified. If blank truncation is specified for transparent mode, blanks are not
truncated and record separators are not inserted. The data format used to
transmit the records is the same format that is used for blocked fixed-length
records in transparent mode.

The following example shows how blanks are removed and inserted:

Records from Application Program (transmitting)

/

Record b . .. b Record bb . . . b Record b ... b
N R
N S ! I | E R
~ ~ T R R RT //
SaX S S S B~
Blocked Records; 1y T T
Trailing Blanks Record | Record... | Record.....
Removed _ > . ' d
-~ !
- |
_
-~ |
-
-~ |
R "
Record b . . . b Record b . .. b || Recordb ... p |— Recordsto A?p-hcatmn
Program (receiving)

\

Unblocked Records: Blanks are added to each
record so that each record is equal to the
maximum user record length.

Use blank truncation for batch applications that transmit and receive data
records that contain many trailing blanks. To configure the BSCEL subsystem

for blank truncation, specify the following:

« A maximum user record length equal to or greater than the longest record
you expect to be transmitted or received

« A block length large enough to contain the number of records you expect to
transmit or receive in one block

¢« No for ITB mode

« Yes for blank truncation

The BSCEL Subsystem 8-29

Page of SC21-7751-3
Issued 8 October 1982
By TNL: SN21-8294

Receiving Null Records

When your program receives null records (STX ETX), return code 0301 (no
data and continue to receive) indicates that a null record has been received
from the remote system. Your program must issue an input operation for each
null record received.

3740 Muitiple Files

8-30

When you specify 3740 multiple files, the BSCEL subsystem can transmit and
receive multiple files in 3740 format. In 3740 format, multiple files are
transmitted during one transaction by transmitting a null record (STX ETX) after
each file to indicate the end of one file and the beginning of the next file.

In an application program, to indicate the end of a file (cause the BSCEL
subsystem to transmit a null record), use the put end of file operation. Then
begin transmitting the next file. To indicate the end of the last file and begin
receiving data, issue an input operation. This causes the subsystem to transmit
a null record followed by an EOT, which allows the remote system to begin
transmitting. To indicate the end of the last file and terminate the session,
issue a put end of transaction operation.

To configure the BSCEL subsystem for 3740 multiple files, select YES on the
prompt during subsystem configuration or specify YES in the ENABLE
procedure.

When 3740 multiple files are received, the return code 0301 (no data and
continue to receive) indicates the end of the logical file. Return code 0301 is
returned each time a null record is received. Return code 0300 (no data and
an EOT was received) indicates that all of the files have been received.

Using Switched Lines

To connect the System/34 to a remote location on switched lines, you can do
the following:

« Call a remote location manually
« Answer a call from a remote location manually

« Call a remote location automatically (if you have the autocall or switched
X.21 feature)

« Answer a call from a remote location automatically (if you have the auto
answer or switched X.21 feature)

Note: If you have the switched X.21 feature, the System/34 calls and answers
automatically. You cannot call or answer manually with the switched X.21
feature.

After the operator enables the BSCEL subsystem and before a session is
started, the System/34 monitors the switched line for incoming calls. If you
specified a partner attribute of NORM on the SESSION OCL statement or on
display 6.0 of the CNFIGICF procedure, the line is connected (or a message is
displayed asking the operator to connect the line) when the program issues the
acquire operation. If you specified a partner attribute of ATTR, the line is
connected (or the operator is asked to connect the line) when your program
first sends or receives.

If the System/34 called the remote system, the switched line is disconnected
when your program ends the session or when the remote system sends
disconnect. If the remote system called the System/34, the line is
disconnected when the remote system sends disconnect.

Manual Calling and Manual Answering on Switched Lines

If you want the operator to call a remote location manually, specify 1 (manual
call) on display 4.0 of the CNFIGICF procedure and do not specify a list name
for the phone list name parameter on display 5.1 or for the PHONE parameter
on the SESSION statement. The message OPERATOR DIAL REQUIRED is
displayed on the system console when the operator is to make the call.

If you want the operator to answer a call from a remote location manually,
specify a 3 (manual answer) on display 4.0 and do not specify a list name for
the phone list name parameter on display 5.1 or for the PHONE parameter on
the SESSION statement. The message OPERATOR ANSWER REQUIRED is
displayed on the system console when the operator is to answer the call.

The BSCEL Subsystem 8-31

8-32

Automatic Calling on Switched Lines

The System/34 can call remote locations automatically on switched. lines using
either the autocall or X.21 feature. To call a remote location automatically, you
must do the following:

« Specify the correct configuration parameters.

« Create a list of phone numbers for the autocall unit or a list of numbers for
the public data network.

« Enter the name of the list when you configure the subsystem, when you
enable the subsystem, or when you write the SESSION statement.

« Enable the subsystem on an autocall or switched X.21 line.

Configuring the Subsystem for the Autocall Feature: When you use the autocall
feature, the System/34 calls the remote location(s) automatically regardless of
the switch type parameter you specified during subsystem configuration or
enable. However, you should specify 1 (manual call), which allows the operator
to enable the subsysystem on a manual call line if an autocall line is not
available. A message is then displayed to ask the operator to dial the remote
location manually.

Configuring the Subsystem for the X.21 Feature: When you use the switched
X.21 feature, specify 2 (auto answer) for the switch type parameter on display
4.0 of the CNFIGICF procedure. The System/34 calls a location(s)
automatically and answers calls automatically when you specify auto answer.
You cannot call a location manually or answer a call manually with the X.21
feature.

Creating a Phone List for Autocall or a List of Numbers for the Public Data
Network: The phone list or list for the public data network contains the number
or numbers you want the System/34 to call. You create the list and store it in
a load member using the DEFINEPN or DEFINX21 procedure. These
procedures are described in the System Support Reference Manual.

If the list name is specified during subsystem configuration or when the
subystem is enabled, the load member containing the list must be in either
#LIBRARY or in the same librar as the configuration member. If the list name
is specified on the SESSION sta. ment, the load member must be in either
#LIBRARY or the current user library.

Iipllowing is an example of how the System/34 handles a list. Although the
example shows a list for the autocall feature, the System/34 handles a list for
a public data network (X.21 feature) in the same mannner except where noted.

Phone List Example

The System/34 calls the numbers in the order listed. When a number is
called, the call might be unsuccessful. A retry count specified during the
DEFINEPN procedure is associated with each number in the list. When a call
is unsuccessful, the retry count is decremented by 1, and the next number on
the list is called.

Note: If you are using the switched X.21 feature, the retry count is
decremented depending upon the reason for the unsuccessful call. A call
progress signal (CPS) gives the reason for the unsuccessful call. The call
progress signal is displayed on the system console with the unsuccessfull call
message. If the call progress signal begins with a 4, 5, or 7, the number is
attempted only once, the retry count is set to O, and the number is marked as
unsuccessfully called.

Phone

Number Retry Count

8672906 5 -1 =4 (The retry count is decremented
6286500 1 and the next number is called.)
6280363 3

This number will not be called again until the other numbers on the list have
been called, or until the phone list is reinitialized.

If the retry count reaches 0, a message is displayed on the system console
indicating that the call was unsuccessful, and the number is marked as
unsuccessfully called.

Phone

Number Retry Count

8672906 5-1=4

6286500 1 -1=0 (Unsuccessfully called)
6280363 3

When a number is marked as unsuccessfully called, it is not called again until
the phone list is reintialized.

If a number is successfully called, an operator message is displayed on the
system console, the line connection is established, and the number is marked
as successfully called.

Phone

Number Retry Count

8672906 5-1=4

6286500 1-1=0 (Unsuccessfully called)
6280363 3 (Successfully called)

The number is not called again until the list is reinitialized.

The BSCEL Subsystem 8-33

8-34

In the previous example, the first number in the list has not been marked as
called. Therefore, if an application program uses the phone list without
reinitializing it, the first number is the only number that can be called. If the
call is successful, the number is marked as successfully called.

Phone
Number Retry Count

8672906 4 (Successfully called)
6286500 0 (Unsuccessfully called)
6280363 3 (Successfully called)

The phone list must now.be reinitialized to be used again. If the list is not

reinitialized and an application program attempts to use the list, a message

PHONE LIST EXHAUSTED is displayed on the system console, and a return
code of xx86 is returned to the application program.

In the previous example, if the call to the first number in the list is
unsuccessful and the retry count reaches 0, the number is marked as
unsuccessfully called, a message NO NUMBERS REACHED is displayed on the
system console, and a return code of xx85 is returned to the application
program. The phone list must be reinitialized to be used again.

Phone
Number Retry Count

8672906 0 (Unsuccessfully called)
6286500 0 (Unsuccessfully called)
6280363 3 (Successfully called)

When the list is reinitialized, all retry counts are set to the counts specified
during the DEFINEPN procedure and calling begins with the first number in the
list when the list is used again.

The specification of the REFRESH and RESTORE parameters indicates how the
list is reinitialized. The REFRESH parameter can be specified during
configuration, during ENABLE, or on the SESSION statement. The RESTORE
parameter can be specified on the SESSION statement only. Following is a
description of the REFRESH and RESTORE parameters.

REFRESH Parameter

If you specify REFRESH-YES or do not specify REFRESH (the default is YES),
the list is reinitialized after the first successful call or after all numbers in the
list have been marked as unsuccessfully called.

If you specify REFRESH-NO, the list is not reinitialized after a successful call.
The list is reinitialized as follows:

o After the PHONE LIST EXHAUSTED message is displayed
« After the NO NUMBERS REACHED message is displayed

« As specified by the RESTORE parameter

RESTORE Parameter

If you specify RESTORE-YES on the SESSION statement, the phone list
specified is reinitialized prior to executing the current step in the procedure.
The current user library is searched first for the phone list. If the list is not
found, the system library is searched.

If you specify RESTORE-NO, the list is not reinitialized prior to executing the
current step in the procedure. The default is NO.

IF LISTDONE Conditional Expression

You can use the IF LISTDONE conditional expression to determine if all of the
numbers in a phone list used by a previous job step have been called. If all
numbers in the list are marked as successfully called or unsuccessfully called
(retry counts are 0), the expression is true. The expression is false if
REFRESH-YES was specified on the SESSION OCL statement and any number
in the list was successfully called. The expression can only be used to test lists
that have been specified on a SESSION statement. If the name of the list
tested was not specified on the SESSION statement, the expression is false.

Note: In some countries a delay is required before a call can be placed when
you use the autocall feature. If this delay is required in your country, you
specify the delay when you create the phone list using the DEFINEPN
procedure. See the System Support Reference Manual for information about the
DEFINEPN procedure and the DELAY parameter.

The BSCEL Subsystem 8-35°

The following examples show how you can use the refresh parameter, the
restore parameter, and the IF LISTDONE statement.

Example of Calling One Location

In this example, the System/34 calls one location many times. A list name
was entered for the phone list name parameter on display 5.1 of the CNFIGICF
procedure. The list in this example contains three numbers for the same
remote system in Chicago. When the remote system is called, it is not
important which number is called successfully, but we want the System/34 to
begin calling with the first number in the list each time the program uses the
list. To do this, 1 (yes) was specified for the refresh parameter on display 5.1.

Chicago

Minneapolis :

System/34

CHILIST

Number

Number

Number

lhone list with three numbers
for the same system.

The list and setup in this example can be used for either batch or interactive
communications with the remote system.

8-36

Example of Calling Multiple Locations (Refresh-Yes)

In this example, an MRT program is used for interactive communications with
three remote systems.

One list was created for each remote system with one number in each list. The
list names and refresh parameters are specified on three SESSION OCL
statements as follows:

// LOAD MRTPROG

// SESSION LOCATION-CHICAGO,SYMID-1S,PHONE-CHILIST
// SESSION LOCATION-DALLAS,SYMID-2S,PHONE-DALLIST
// SESSION LOCATION-NEWYORK,SYMID-3S,PHONE-NYLIST
// RUN

For example, the program calls the system in Chicago (session 1S) using the
list CHILIST. When the System/34 program processes the data from Chicago,
it determines that additional data is needed. The program then calls Dallas
(session 2S) using the list DALLIST to find the additional data. The data was
not at the Dallas location, so the program calls New York (session 3S) using
list NYLIST and gets the data it needs. After processing the data, the program
calls Chicago again and sends the results to the Chicago system.

Chicago
1S
Dallas
25

Minneapolis

3S New York
System/34

CHILIST DALLIST NYLIST

L 1] | i

One list for each location.

The BSCEL Subsystem 8-37

8-38

Example of Calling Multiple Locations (Refresh-No)

In the two previous examples, the refresh parameter was set to yes. In this
example, the parameter is set to no. One list is used, which was specified on
display 5.1 of the CNFIGICF procedure. The refresh parameter was also set to
0 (no) on this display.

The program in this example loops through the list calling each system in turn
to send one or more files of data to each system. The program checks for
return code 8285 (NO NUMBERS REACHED) or 8286 (PHONE LIST
EXHAUSTED) to determine when all numbers on the list have been called or

tried.

Minneapolis

Chicago

Dallas

System/34

New York

MULTLIST

Number

Number

~~—_Because the refresh parameter is no,

Number

each system is called in turn.

One list with one number
for each location.

Example of Calling Multiple Locations (RESTORE-YES)

In this example, the list is reinitialized by entering RESTORE-YES on the
SESSION statement. Two programs (A and B) in one procedure use the same
list to call the same remote system. If program A ends before all numbers
have been called, the list is not reinitialized. To ensure that the list is
reinitialized before program B uses the list, RESTORE-YES is entered on the
SESSION statement. This ensures that the first number on the list is called
when program B uses the list. For example:

// LOAD PROGA

// SESSION LOCATION-CHICAGO,SYMID-1S,
// PHONE-MULTLIST,REFRESH-NO

// RUN

// LOAD PROGB

// SESSION LOCATION-CHICAGO,SYMID-1S,
// PHONE-MULTLIST,REFRESH-NO,RESTORE-YES

// RUN

Minneapolis

Chicago

Dallas

System/34

New York

{

Number

Number

Number

The list is reinitialized before
the next program uses it.

The BSCEL Subsystem

8-39

8-40 -

Example of Using the IF LISTDONE OCL Statement

You can also use the IF LISTDONE OCL statement to test the status of the list
if your program does not test for a list done return code. This example shows.
how you can use the IF LISTDONE statement to check the list status.

Each time the program is loaded, it calls the next system, transmits or receives
one or more files of data, and ends. If the list is done, the procedure also
ends; otherwise, the program is loaded again and the next system is called.

/] TAG TOP i

//0apProcA HB

/] SESSION LOCATION-MULTIPLE,SYMID-1S,PHONE-MULTLIST, REFRESH-NO
// RUN

// \EE_LISTDONE-MULTLIST GOTO TOP

B Each location is called, one at a time.
The list contains one number for each location.
The parameter REFRESH-NO allows each number to be called.

@ 'f all numbers have not been called, go to TOP.

3740 Data Entry System Considerations

A procedure start request must be transmitted in unblocked records; therefore,
to start a System/34 procedure from a 3741 with the expanded
communications buffer feature, the first two files must contain one record in
each file. The files following the procedure start request are data files. For
example:

« File 1 on the 3741 contains the first record of the continuation procedure
start request.

« File 2 contains the second record of the continuation procedure start
request.

« Files 3 through n contain the data records to be transmitted (if any) to the
System/34.

« Files n+1 to x are set up to receive data (if any) from the System/34.

BSCEL COMMANDS

The BSCEL subsystem transmits several commands as a result of various
operations or conditions. The commands are transmitted only if the partner
attribute is NORM or if the session was started by an *EXEC procedure start
request. The System/34 application program that uses the BSCEL subsystem
will not see these commands; however, the BSCEL subsystem checks all
incoming data for these commands. The application programs should ensure
that they do not send data that looks like one of these commands.

*ACQ Command

The *ACQ command is transmitted as a result of an acquire operation. If the
BSCEL subsystem receives the *ACQ command, it indicates that the remote
system has acquired the line. The format of this command is the four
characters, *ACQ.

*REL Command

The *REL command is transmitted as a result of a release operation. If the
BSCEL subsystem receives an *REL command, it indicates that the remote
system has released the line. The format of this command is the four
characters, *REL.

Procedure Start Request

The *EXEC procedure start request is transmitted as a result of an evoke
operation. The *EXEX procedure start request is transmitted as a result of an
evoke end of transaction operation. The BSCEL subsystem can receive the
*EXEC and *EXEX requests as well as *EXNC and *EXNX requests. The
formats of these procedure start requests is in Chapter 2.

*EOX Command

The *EOX command is transmitted as a result of a put end of transaction
operation. If the BSCEL subsystem receives the *EOX command, it indicates
that the remote system has terminated the transaction. If data is not included
with the end of transaction, the format of the command is the four characters,
*EOX.

If data is included, the format depends on whether you are using blocking or
no blocking as follows:

« If you are using blocking, the following occurs:
— The data record is placed in the block.
— The block is transmitted.
— The *EOX command is transmitted.

« |If you are not using bloéking, the *EOX command is placed at the beginning
of the data record before the record is transmitted.

The BSCEL Subsystem 8-41

8-42

System/34

Application
Program A

System
Support
Program

SSP-ICF
BSCEL
Subsystem

Communications
Line

How to Write Programs that Use the BSCEL Subsystem

The following example shows the inquiry application used in the programming
examples: :

System/34

Program B

Application

System
Support
Program

SSP-ICF
BSCEL
Subsystem

Application program A (in the local System/34) displays a prompt asking
an operator to enter an item number requesting the stock status for the

item @.

When the operator enters the item number, program A reads the number
and searches file A (the local file) for the item O

If the item is found in the local file, program A displays the stock status

on the screen @).

If the item is not in the local file, program A uses the BSCEL subsystem
to send the item number to the remote System/34 @ and .

Program B (in the remote system) uses the item number to search the

remote file for the item @.

If the item is in the remote file, program B sends the stock status to
program A @ and G If the item is not in the remote file, program B

sends the characters ***,

If program A receives the stock status, it displays it. If it receives the
characters ***, it displays the message ITEM NOT FOUND o

Programs A and B in this example are the programs described in Chapter 7 for
the Intra subsystem. If you have not read the description of these programs in
Chapter 7, see How to Write Programs that Use the Intra Subsystem in that
chapter. The configuration and OCL examples in Chapter 7 are for the Intra
subsystem only; you do not need to read those. Following are the
configuration parameters and OCL statements for the BSCEL subsystem.

Configuration Parameters

The following configuration parameters are used for this example. For a
description of the configuration parameters, see Setting up the BSCEL
Subsystem at the beginning of this chapter.

CREATE/ZEINLT ¢ 1.0 SUBSYSTEM MEMBER CONFIGURATION
1. SUBSYSTEM CONFIGURATION MEMRER NAME @ BSCEL.
2. SUBSYSTEM LIBRARY NAME 3 ICFLIEBR
1 CREATE NEW MEMBER 4 DELETE A MEMBER
2 EDIT EXISTING MEMBER % REVIEW A& MEMBER
3 CREATE NEW MEMBER FROM EXISTING MEMBER
3. ENTER SELECTION ¢ 2

*% 2.0 COMMON SSF-ICF FARAMETERS FOR EACH SUBSYSTEM x%
KEY ANY CHANGES AND PRESS ENTER TO CONTINUE

1. 88P-ICF COMMON QUEUE SFACE (2 ~ 42K) o2
2 DEFINE THE SURSYSTEM TYPE 3
1 TNTRA 2 BSC IMS/IRSS
3 BGCEL 4 BSC CICS
S5 BSC CCP & SNA UPLINE
7 SNA FEER 8 BSC 3270
9 SNa 3270 10 FINANCE

*% 3,0 OGENERAL SURBSYSTEM PARAMMETERS %x

KEY ANY CHANGES AND FRESS ENTER TO CONTINUES Also specified on the
1. LOCATION NAME SESSION OCL
2. SUBSYSTEM QUEUE SFACE (0-40K) o2
3. SUBSYSTEM SUFFORT SWAFFABLE? O-NO 1-YES) 1 statement.
4. MAXIMUM USER RECORD LENGTH (L~ 4075) 0256

x% 4,0 LINE INFORMATION FOR S$SP-ICF SUBSYSTEM %%
KEY ANY CHANGES AND PRESS ENTER TO CONTINUE
1o LINE TYPRE?S 1 MULTIFOINT 2
2 NONSWITCHED PT-PT
3 SWITCHED FT-PT

The BSCEL Subsystem 8-43

8-44

3.
4.

3.
S
b
T

1.

Configuration Parameters (continued)

#x 5.0 BSC GENERAL SUBSYSTEM PARAMETERS

KEY ANY CHANGES AND PRESS ENTER TO CONTINUER

ERCOIC/ASCEY (1-EBCDIC 2-A8CID)
WAIT TIME (1 ~ 999 SECONDS)
TRANSFARENCY ? (O-NG 1~-YES)

*#% 5,1 BSC GENERAL SURSYSTEM PARAMETERS

KEY ANY CHANGES AND FRESS ENTER TO CONTINUES

BLOCK LENGTH (O -~ 407%)
RECORD SEFARATOR (HEXADECIMAL)
ITR MODE (O-NO 1-YES)
BLANK (O~-NO, 1-COMPRESSION, 2-TRUNCATION)
3740 MULTIPLE FILES (O~-NO 1-YES)

*% 6,0 BSCEL SUBSYSTEM FPARAMETERS %%
KEY ANY CHANGES AND PRESS ENTER TO CONTINUES

FARTNER € 3.~-NORM 2-ATTR)

I

II

*3

2

?9?

0000
00

w1

OCL Statements

The following procedure and OCL statement are used for the BASIC example:

RASTOR ITEMARAS , ITEMBAS, 30, , RSUSESS The BASICR procedure
includes the SESSION
/7 SESSION LOCATION-ESCELL SYMIN-{1.8] statement.

The location name (BSCEL) is also The SYMID (session ID) is explained
specified on display 3.0 of the in the description of the program.
- CNFIGICF procedure.

The following OCL statements are used for the COBOL example:

/7 LOARD TTEMAC
/7 FILE NAME-FILEA

// SESSION L.OCATION .SYMm-~
/7 RUN

The location name (BSCEL) is also The SYMID (session ID) is explained
specified on display 3.0 of the in the description of the program.
CNFIGICF procedure.

The following OCL statements are used for the RPG Il example:

/7 LOAD ITEMAR
/7 FILE NAME~FTLEA
/7 SESSION LOCATION-BSCELl SYMID-

/77 RUN
The location name (BSCEL) is also The SYMID (session ID) is explained
specified on display 3.0 of the in the description of the program.

CNFIGICF procedure.

Other Applications for BSCEL

The following are application examples for the BSCEL subsystem. These
examples are in addition to the example in Chapter 7; however, there are no
coded programming examples for these applications.

The BSCEL Subsystem

8-45

8-46

The following sample application flow shows communication between two
System /34 application programs. Each program is using the BSCEL subsystem

(PARTNER-NORM, and data records are blocked).

System/34 BSCEL Line BSCEL System/34
Application Subsystem Subsystem Application
Acquire —-—-——!—»Initiate session l
l Transmit *ACQ Reserve line |
<—-—1—' Return code l
e 1
Evoke with invite ———» I
——.—-' Return code '
| Procedure start l
request with data l
| Initiate procedure ————
| Response message '
| Initiate transaction I Accept
I Schedule get Return code with}
I data |
Read r———Receive data «<——————Data blocks—Transmit data 1 Put
Read Deblock and expand Block, compress, l :ut
Read records if necessary and truncate records l ut
l if necessary |
| Data record and Return code for. I
<—-—'[return code for each each put I
read
Read > Receive last data Transmit last block <-L—Put end of
Read l block and deblock of data I transaction
e and expand data I
I if necessary I
I Data record and I
<—————1| return code for each I
read I
Terminate Transmit *EOX I
| transaction Return code _i_-’
I —-i—End of session
Read o—————l—Return code Terminate session I
I return code
Release ! | Transmit *REL Release line |
Terminate session l
<-—!— Return code l

The following sample application flow shows communication between a
System /34 application program and a remote device (PARTNER-ATTR).

System/34
Application BSCEL
BSCEL 2 Subsystem

Acquire ——-T—Initiate session

Remote System
or Application

<——{- Return code
Evoke ———J'»lnitiate transaction
<—{— Return code
Read Y- Receive data
Read

I Deblock and expand
I data records if
a—— I necessary

1 Data record and
return code for

|
I
I
.
i {Transmlt data
|
I
|
I

Transmit EOT

I each read
Read i EOT
Put— i 1~ Transmit data

{Receive data

Put—

| Block, compress,
and truncate data
-— I records if necessary

‘ I Return code for
I each put

Put end of file ——L»-Transmit EOT

Put end of I
transaction
(no data) | Terminate

transaction

4—!— Return code
Release ———!-—Terminate session
o—!— Return code
1

I SR I

The BSCEL Subsystem 8-47

The following sample application flow shows communication between a
System /34 application program and a remote.system using 3740 multiple files
(PARTNER-ATTR). o

System/34 BSCEL
Application Subsystem Remote System

Acquire =———————»Initiate session
Return code

Evoke ————————|nitiate transaction

<—-—-i— Return code

Read —T—' Receive data from Transmit data from
Read l l file 1 file 1

. | Data and return

I code for each read
~<+—————Null record-End of file 1
| Transmit a null
I record
End of file 1

Read *—I—Return code = 0301
Read

—_J-———>Receive data from <——
Read | fite 2 '
) Data and return — Transmit data from

| code for each read file 2

| End of file 2 ~————Null record-End of file 2

Read <—-———-{— Return code = 0301 Transmit a null
J record
Read <————-—|—- Return code = 0300 «——EOT—— End of all files
Put Transmit data from — Transmit EOT
Put file 1 _—_L—-—Receive data
from file 1
, | Return code for
I |each put
Put end of file —-——i»Transmit anull Null recordy= Receive null record
record to end file 1 End of file 1
Return code
Put ——Transmit data Receive data from
Put | rom file 2 file 2
I Return code for
) I each put
Put end of ———-%—Transmit anull Null recordy+ Receive null record
transaction I record to end file 2 End of file 2
| Transmit EOT to Receive EOT
indicate end of End of files
| all files
l Terminate
| transaction
<——i—- Return code
Release ——-——-——}—Terminate session
<—!—Return code

e e — — — — — — — — — — — — — — — — — — — G— — — — — — — —— —— G S— — — — — — — ————

8-48

The following sample application flow shows the initiation of a System/34
procedure from a remote system and the communication between the
System/34 and.the remote system following the procedure initiation. The
maximum user record length is 128 bytes, the block length is 512 bytes, and
the record separator character is hexadecimal 1E.

System/34 BSCEL
Application Subsystem -

Remote System

|
<—-—|—Initiate procedure

Accept Receive data and
return code
Read -—i-Receive data
Read | Deblock the data
| and pass to the
application
4——_] program with a
' return code
Read EOT
Put i~Block records and
Put ' transmit data

Return code for
i each put

Put end of ——————=Transmit EOT

. |
transaction l

Terminate session

D Return code

*EXNCC PROCNAME DATA/PARAMETERS
*EXNC USERIDxxLIBRARYxPASS012805121ENNN

Transmit blocks of data

End of transmission

Receive blocked data

Receive end of transaction

The BSCEL Subsystem 8-49

8-50

BSCEL Subsystem Return Codes

"“This part of Chapter 8 describes all the return codes that are valid for the

BSCEL subsystem. These are interactive communications return codes that are
sent at the end of each subsystem operation to indicate the results of that
operation. The appropriate return code is sent by the subsystem to the
application program that issued the operation; the program can then check the
results and act accordingly.

The return code is a four-digit value; the first two digits contain the major
code, and the last two digits contain the minor code. Assembler programs
receive the return codes in binary form (2 bytes long). BASIC, COBOL, and
RPG 1l programs receive the return codes in EBCDIC hexadecimal form (4
bytes).

Note: In the return code descriptions, your program refers to the local
System/34 application program that initiates the operation and receives the
return code from the subsystem. The remote program refers to the application
program in the remote (or host) system with which the System/34 application
program is communicating through SSP-ICF.

Several references are also made in the descriptions to input and output
dperations. The following chart shows all the input, output, and combined
input/output operations that are valid for the BSCEL subsystem. Although all
the operations shown are valid for BSCEL, their validity also depends on the
logical sequence of communications events occurring between the System/34
and the remote system.

Input Operations to
Your Program

Output Operations from
Your Program

Combined Operations in Your Program

Accept input

Acquire’

End of session

Evoke
Evoke end of transaction

Evoke then get?
Evoke then invite

Get
Get attributes?®

Invite

Put
Put end of file
Put end of transaction

Put then get?
Put then invite

Release

Request to change direction then get?
Request to change direction then invite

Set timer*

"Normally, the acquire operation should be followed by an evoke operation in order to establish a

transaction. However, it can also be followed by a set timer or get attributes (ATTRIBUTES, in BASIC)

operation.

2valid only in assembler language.
3valid only in assembler and COBOL languages.

“For BASIC and RPG |l programs, the set timer operation can only be issued in a session that is currently

active, or to an acquired device that is currently attached to the program.

BSCEL Return Codes

8-51

8-52

Major Code 00 — Operation completed successfully.

General Description: The input or output operation issued by your program
was completed successfully. The operation sent or received some
data, or it received a message from the remote system.

General Considerations: Check the minor return code for an end of
transaction indication, and continue with the next operation.

Code

Indication/Action

Normal Indication: The output operation just performed by your
program was completed successfully; your program can continue to

send data.

Normal Action: For the actions that can be taken (in this session)
after 0000 is returned for an output operation, refer to the following

chart:

In This Session,

If Your Program:

And This Output
Operation Was:

Then (in This
Session):

Initiated the
transaction

Acquire operation

Issue an evoke operation.

End of transaction

Issue an(other) evoke operation, issue a
(evoke or put) operation |release operation, continue local
_|processing, or terminate your program.

(evoked the
remote program')
Any other output
operation

Issue another output (except evoke)
operation, or issue an input operation..

Was evoked? (by |Put end of transaction | Your session has ended: continue local

a remote operation processing, or terminate your program.
rocedure start

procedure sta Any other output Issue another output (except evoke)

request)

operation operation, or issue an input operation.

'A remote program is evoked only if PARTNER-NORM is specified in the SESSION statement
or in the subsystem configuration. If PARTNER-ATTR is specified, the transaction is initiated
without evoking a program.

?An evoked program (started by a procedure start request) cannot issue an evoke operation in
this session; it can issue an evoke only in a different session that it has first acquired. An
evoked program that is part of a multiple-program procedure can issue a release operation at
any time to pass the session on to the next program in the procedure. (An end of session
operation would end the session, not pass it.) If the evoked program is an SRT program and it
issues another communications operation after it issues the release operation, error code 2800
is returned to that program. Subsequent communicating operations in the next program,

however, are processed normally.

0001 Normal Indication: Your program has received some data on a
successful input operation. It can continue to receive input until
SSP-ICF returns a code of 0300 (an end of transmission indication,
which allows your program to send data), or xx08 (an end of
transaction indication).

Normal Action: Issue another input operation. If your program can
detect something equivalent to an end of file condition, indicating that
the last of the data was just received, it can issue an output operation.

0008 Normal Indication: An end of transaction indication was received
with the last of the data on a successful input operation.
Communications have ended with the remote program, but the session
with the remote system is still active.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a
release operation (to either perform local processing or start another
session), or it can terminate. If a remote procedure start request
initiated the transaction, your program can either issue an end of
session operation or terminate.

0010 Normal Indication: A request to change direction was received from
the remote program on a successful output operation for your
program; the remote program wants to send data as soon as possible.
(If the remote system is another System/34, it has issued a request to
change direction then get operation or a request to change direction
then invite operation.) You should allow the remote program to send
its data.

Normal Action: Issue an input operation as soon as possible.

0020 Normal Indication: A message from the remote system and an end
of transmission indication were received on a successful input
operation. The message, now in your program’s input buffer, was
received from the remote system as a result of your program’s
previous evoke operation that was unsuccessful. (That unsuccessful
operation caused return code 831A to be returned to your program.)

Normal Action: Handle the message in the input buffer (possibly
display it). Your program now has control of the session; issue
another evoke operation (to start another program), issue a release
operation (to either perform local processing or to start another
session), or terminate.

BSCEL Return Codes 8-53

8-54

0021

0028

0030

0031

Normal Indication: A message was received from the remote system
on a successful input operation. (The message is now in your
program’s input buffer.) Your program can continue to receive input.

Normal Action: Handle the message in the input buffer (possibly
display it), and issue another input operation. If your program can
detect something equivalent to an end of file condition, indicating that
the last of the data was just received, it can issue an output operation.

Normal Indication: An end of transaction indication was received
with a remote system message on a successful input operation. The
message, now in your program’s input buffer, describes the status of
the transaction that has ended. Communications have ended with the
remote program, but the session with the remote system is still active.

Normal Action: Handle the message in the input buffer (possibly
display it). Also, if your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a
release operation (to either perform local processing or start another
session), or it can terminate. If your program was evoked, either issue
an end of session operation or terminate.

Normal Indication: A truncated message from the remote system and
an end of transmission indication were received on a successful input
operation. (The message was truncated when it was placed in your
program’s input buffer, because it was too long for the buffer.) The
message was received from the remote system as a result of your
program’s previous evoke operation that was unsuccessful. (That
unsuccessful operation caused return code 831A to be returned to
your program.)

Normal Action: Handle the truncated message (possibly display it) in
the input buffer; then issue another evoke operation (to start another
program), issue a release operation (to either perform local processing
or to start another session), or terminate.

Normal Indication: A truncated message was received from the
remote system on a successful input operation. (The message was
truncated because it was too long for your program’s input buffer.)
Your program can continue to receive input.

Normal Action: Handle the truncated message (possibly display it) in
your program’s input buffer, and issue another input operation. |f your
program can detect something equivalent to an end of file condition,
indicating that the last of the data was just received, it can issue an
output operation.

0038

Normal Indication: An end of transaction indication was received
with a truncated remote system message on a successful input
operation. The message, truncated because it was too long for your
program’s input buffer, describes the status of the transaction that has
ended. Communications have ended with the remote program, but the
session with the remote system is still active.

Normal Action: Handle the truncated message (possibly display it) in
your program’s input buffer. Also, if your program initiated the
transaction, it can issue another evoke operation (to start another
program), it can issue a release operation (to either perform local
processing or start another session), or it can terminate. If your
program was evoked, either issue an end of session operation or
terminate.

Major Code 01 — Successful operation with a new requester.

The new requester is a program on a remote system that initiated a
session with your program by sending to the local system a procedure
start request. The request caused your program to be evoked if it is an
SRT program or if it is an MRT program that was not already loaded
and active. The procedure start request, initiated by the remote
program, was sent by the remote system in the form of an *EXEC,
*EXEX, *EXNC, or *EXNX procedure start statement. The request may
have included some data for your program.

Normal Description: Each of the following return codes indicates that

either the input operation issued by your program and responded to by
a new requester completed successfully, or that the output operation
issued by your program in response to a new requester completed
successfully.

If the operation was an input operation, your program may have
received some data from the requester. If any data was received on
the input operation, it was included by the remote system in the
incoming procedure start request statement.

If your program is an SRT program that was evoked by an incoming
procedure start request and the initial operation is an output operation,
the operation sent some data to the new requester. However, although
the operation did complete successfully, if the procedure start request
statement also included data for your program, that data is lost. Or, if
an end of transaction indication was sent with the request, the data
sent by your output operation is lost and the requesting program is
released from your program.

If your program is an assembler program, the length of the data is

returned in the input length field of the program’s DTF. If the input
length in the DTF is zero, no data was sent by the requester; if the
input length is greater than zero, data was sent.

Note: The new requester return codes are returned only to evoked SRT
programs and to active or evoked MRT programs.

General Considerations: Check the minor return code for an end of

transaction indication, and continue with the next operation.

BSCEL Return Codes

8-55

8-56

Code

0100

0101

0108

Indication/Action

Normal Indication: On a successful input operation from a new
requester, a procedure start request was received, and some data may
have been received with the request. The remote program may now
want to continue to send data, or it may want to receive data; your
program should issue the appropriate operation. For output operations
performed by an evoked SRT program, the operation completed
successfully. ¢

Normal Action: For an input operation, handle any data that may
have been passed with the request. For both input and output
operations, perform any necessary record keeping' for the new
requester, and issue an output operation or an input operation.

Normal Indication: On a successful input operation from a new
requester, a procedure start request was received and some data may
have been received. Your program can continue to receive input until
SSP-ICF returns a code of 0300 (an end of transmission indication) ar
xx08 (an end of transaction indication).

Normal Action: Handle any data passed with the request, perform
any necessary record keeping' for the new requester, and issue
another input operation. If your program can detect something
equivalent to an end of file condition, indicating that the last of the
data was just received, it can issue an output operation.

Normal Indication: On a successful input operation from a new
requester, a procedure start request and an end of transaction
indication were received, and some data may have been received. (A
complete transaction was started and ended by the remote program.
Its communications have ended with your program; however, the
session is still active between the local and remote systems.)

If your program is an SRT program (evoked by a new requester) that
issued an output operation as its first operation, no data was sent to
the requester even though the output operation completed
successfully. Because an end of transaction indication was also
received with the incoming procedure start request, the requester is
released from your program, and any data sent by the initial output
operation is lost. And, if any data was sent by the requester, that data
is lost also.

Note: Return code 0118 is returned only to the first program in a
multiple-program procedure (and only for the first operation). Return
code 0108 is returned only to each one of the succeeding programs in
that procedure (and only for the first operation in each program).

Normal Action: Perform any necessary record keeping' for the new
requester of the transaction that has ended. Then, either issue an end
of session operation or terminate your program.

1 I .
for §ome situations, no record keeping for the session is necessary. In other
situations, you should record the session ID of the new ‘requester. You may also want

to keep a table containing the IDs of all active requesters, or to maintain a history log
of all requests.

0118

Normal Indication: On a successful input operation from a new
requester, a procedure start request was received with an end of
transaction indication, and some data may have been received. (A
complete transaction was started and ended by the remote program.)
The session has been ended.

If your program is an SRT program (evoked by a new requester) that
issued an output operation as its first operation, no data was sent to
the requester even though the output operation completed
successfully. Because an end of transaction indication was also
received with the incoming procedure start request, the requester is
released from your program, and any data sent by the initial output
operation is lost.

Note: Return code 0118 is returned only to the first program in a
multiple-program procedure (and only for the first operation).

Normal Action: Handle any data passed with the request, and
perform any necessary record keeping' for the new requester of the

transaction that has ended. Then, because your program was evoked,

issue an end of session operation or terminate.

Major Code 02 — Successful operation, but a stop system request or a

disable subsystem request is pending.

Normal Description: The input operation issued by your program was

completed successfully. Your program received some data, or it

received a message from the remote system. However, because a stop

system request or a disable subsystem request is pending, no new
sessions using the subsystem can be initiated.

General Considerations: Your program should complete its

communications processing as soon as reasonably possible so that the

pending request to stop the system or to disable the subsystem can be
completed in an orderly manner. (For example, you can issue a request

to change direction operation to stop receiving input, or you can issue
an end of session operation at the earliest logical stopping point.) Also,
check the minor return code for an end of transaction indication, and
continue with the next operation.

'For some situations, no record keeping for the session is necessary. In other

situations, you should record the session ID of the new requester. You may also want
to keep a table containing the IDs of all active requesters, or to maintain a history log

of all requests.

BSCEL Return Codes

8-67

8-58

Code

0201

0208

0220

0221

Indication/Action

Normal Indication: Your program has received some data on a
successful input operation. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem
can be initiated. Your program can continue to receive input until
SSP-ICF returns a code of 0300 (an end of transmission indication) or
xx08 (an end of transaction indication).

Normal Action: Issue another input operation. If your program can
detect something equivalent to an end of file condition, indicating that
the last of the data was just received, it can issue an output operation.

Normal Indication: An end of transaction indication was received
with the last of the data on a successful input operation. Although
communications have ended with the remote program, the session
with the remote system is still active. Also, a stop system request or a
disable subsystem request is pending; no new sessions using the
subsystem can be initiated.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a
release operation (to perform local processing), or it can terminate. If
a remote procedure start request initiated the transaction, your
program can either issue an end of session operation or terminate.

Normal Indication: A message from the remote system and an end
of transmission indication were received on a successful input
operation. The message, now in your program'’s input buffer, was
received from the remote system as a result of your program’s
previous evoke operation that was unsuccessful. (That unsuccessful

operation caused return code 831A to be returned to your program.)
Also, a stop system request or a disable subsystem request is

pending; no new sessions using the subsystem can be initiated.

Normal Action: Handle the message in the input buffer (possibly
display it); then issue another evoke operation (to start another
program), issue a release operation (to perform local processing), or
terminate.

Normal Indication: A message was received from the remote system
on a successful input operation. (The message is now in your
program’s input buffer.) Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem
can be initiated. Your program can continue to receive input.

Normal Action: Handle the message in the input buffer (possibly
display it), and issue another input operation. If your program can
detect something equivalent to an end of file condition, indicating that
the last of the data was just received, it can issue an output operation.

0228

0230

0231

Normal Indication: An end of transaction indication was received
with a remote system message on a successful input operation. The
message (now in your program’s input buffer) describes the status of
the transaction that has ended. Although communications have ended
with the remote program, the session with the remote system is still
active. Also, a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated.

Normal Action: Handle the message in your program’s input buffer
(display it, for example). If your program initiated the transaction, it
can issue another evoke operation (to start another program), it can
issue a release operation (to perform local processing), or it can
terminate. If your program was evoked, either issue an end of session
operation or terminate.

Normal Indication: A truncated message from the remote system and
an end of transmission indication were received on a successful input
operation. (The message was truncated when it was placed in your
program’s input buffer, because it was too long for the buffer.) The
message was received from the remote system as a result of your
program’s previous evoke operation that was unsuccessful. (That
unsuccessful operation caused return code 831A to be returned to
your program.) '

Also, a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated.

Normal Action: Handle the truncated message (possibly display it) in
your program’s input buffer; then issue another evoke operation (to
start another program), issue a release operation (to perform local
processing), or terminate.

Normal Indication: A truncated message was received from the
remote system on a successful input operation. (The message was
truncated because it was too long for your program’s input buffer.)
Also, a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated. Your
program can continue to receive input.

Normal Action: Handle the truncated message (possibly display it) in
your program’s input buffer, and issue another input operation. If your
program can detect something equivalent to an end of file condition,
indicating that the last of the data was just received, it can issue an
output operation.

BSCEL Return Codes

8-59

Page of SC21-7751-3
Issued 8 October 1982
By TNL: SN21-8294

8-60

0238

Normal Indication: An end of transaction indication was received
with a truncated remote system message on a successful input
operation. The message, truncated because it was too long for your
program'’s input buffer, describes the status of the transaction that has
ended. Although communications have ended with the remote
program, the session with the remote system is still active. Also, a
stop system request or a disable subsystem request is pending; no
new sessions using the subsystem can be initiated.

Normal Action: Handle the truncated message in your program’s
input buffer (display it, for example). If your program initiated the
transaction, it can issue another evoke operation (to start another
program), it can issue a release operation (to perform local
processing), or it can terminate. If your program was evoked, either
issue an end of session operation or terminate.

Major Code 03 — Successful operation, but no data received.

Normal Description: The input or set timer (output) operation just

General Considerations: Check the minor return code for an end of

performed was completed successfully, but no data was sent or
received.

transaction indication, and continue with the next operation.

Code

0300

0301

Indication/Action

Normal Indication: An end of transmission indication with no data
was received on a successful input operation. The last record in the
file has been received. If yes was specified for the 3740 multiple files
parameter in the subsystem configuration, this return code indicates
that the last file has been received. Communications with the remote
program have ended; however, the session is still active between the
local and remote systems.)

Normal Action: Issue another input operation, issue an output
operation, or terminate the transaction with a put end of transaction
operation.

Normal Indication: On a successful input operation, no data (a null
record) was received. If yes was specified for the 3740 multiple files
parameter in the subsystem configuration, this return code indicates
that the last record in the file has been received. Your program can
continue to receive input until SSP-ICF returns a code of 0300 (an end
of transmission indication, which allows your program to send data), or
xx08 (an end of transaction indication).

Normal Action: Issue another input operation.

0308

0310

Normal Indication: An end of transaction indication was received
without data on a successful input operation. Although
communications have ended with the remote program, the session
with the remote system is still active.

Normal Action: If your program initiated. the transaction, it can issue
another evoke operation (to start another program) or it can issue a
release operation (to either perform local processing or start another
session). If a remote procedure start request initiated the transaction,
your program can either issue an end of session operation or
terminate.

Normal Indication: The time interval specified by a set timer
operation in your program has expired.

Note: If your program has an exception handling routine, you should
check for the 0310 return code before you make any checks based on
the WSID field.

Normal Action: Issue the operation that is to perform the intended
function (such as displaying a message) after the specified time
interval has expired.

Major Code 04 — Qutput éxception occurred.

Normal (Exception) Description: An output exception occurred because

your program attempted to send output when it should be receiving
the output that has already been sent by the remote program. Your
output, associated with this output operation and any previous output
operations for this file, was sent to the remote system. Your program
can attempt to send its output later.

Note: If your program issues another output operation, an error
return code of 831C will be received.

General Recovery Actions: Issue an input operation to receive data or a

message from the remote system.

Code

0411

Indication/Action

Normal Indication: The remote program has sent a message for your

program, but because your program also attempted an output
operation, the message is still in the subsystem input buffer, waiting
to be received. Your program must receive the message before it can
perform an output operation.

Normal Action: Issue an input operation to receive the message.

BSCEL Return Codes 8-61

8-62

0412

Normal Indication: The remote program has sent data for your
program, but because your program also attempted an output
operation, the data is still in the subsystem input buffer, waiting to be
received. Your program must receive the data before it can perform
an output operation.

Normal Action: Issue an input operation to receive the data.

Error Description: An operation attempted by your program failed. The

Major Codes 08-34 — Miscellaneous program errors.

wrong time or because a data record was too long.

Recovery Action: Refer to the individual return code descriptions for the

error may have occurred because an operation was issued at the

appropriate recovery actions.

Code

1100

Indication/Action

Error Indication: The acquire operation just performed was not
successful. It tried to acquire a session that has already been acquired
by your program and that is still active.

Recovery Action: If the session requested by the original acquire
operation is the one needed, your program can begin communicating
in the session because it is already available. If a different session is
desired, issue another acquire operation for a different session by
specifying a different session ID. (The identifier must have been
specified in the SYMID parameter of a SESSION statement that
preceded the program.)

Error Indication: The accept operation just performed in your
program was not successful for one of the following reasons: (1) Your
MRT program may have just released its last requester, indicating that
your program can begin to terminate normally. (2) Your program may
have attempted to accept input when no invite operations have been
issued and the program is not an MRT or NEP program. (3) Your
program is both an MRT and an NEP program, and a stop system
condition is in effect, which suppresses the implied invites to all
potential requesters.

Recovery Action: If you still have a requester or an acquired session,
issue an invite operation (or a combined operation that includes an
invite) followed by an accept input operation. This return code
indicates the logical end of file for WORKSTN files in RPG Il programs
and TRANSACTION files in COBOL programs.

2800

3401

Error Indication: Your program (which is an SRT program that has
been evoked by a new requester) has issued a release operation in the
session in which it was evoked, and is now attempting to
communicate with the evoking program. Because that session was
released from your program, this operation was not performed, and
any further attempts to communicate with that program results in
another 2800 return code. (The session is ended for your program
only, if it is part of a multiple-program procedure.)

Recovery Action: Continue local processing or terminate your
program. Your program may be in error; you should correct it so that
the release operation is issued after all communications with the
requesting program have been completed.

Error Indication: This input operation was rejected because the
record length of the data sent by the remote program exceeds the
length of your program’s input buffer.

Recovery Action: Issue a message about the error to the local
system and terminate your program. Then, in your program, change
the record length of the input buffer to be at least as long as the
longest data record to be received. For assembler programs only, the
record length of the rejected data is contained in the DTF, at offset
$WSEFFL. For other program types, the length is not available; only
the error indication is received.

BSCEL Return Coees

863

8-64

Major Code 80 — Permanent (nonrecoverable) subsystem error.

Error Description: A nonrecoverable error has occurred in the subsystem;
the subsystem has been (or is being) disabled, and your session has
been terminated. The error indication has been sent as a message to
the display station or to the system console; the operator can refer to
the System/34 Messages Guide for additional information. The error
indication is also returned to your program as a return code; the minor
code portion indicates the specific cause. (Each return code is
described on the following pages.) The subsystem must be enabled
again before communications can resume.

General Recovery Actions: The following general actions can be taken for
each 80xx return code. Other specific actions are given in each return
code description.

Issue, to the system operator or to the display station operator
who started the program, a message requesting that the
subsystem be enabled again.

Issue an end of session (EOS or $$EOS) operation for the session
that has terminated. Your program can: (1) wait for the
subsystem to be enabled by issuing (in COBOL and assembler
only) a set timer operation, or by using the TIMER intrinsic
function (in BASIC only); (2) continue local processing; or (3)
terminate.

If the session should be started again after the subsystem is
enabled, it must be reacquired by your program or restarted by
the remote program.

Note: If the session is started again, it starts from the beginning,
not at the point where the session error occurred.

Code

8081

8082

Indication/Action

Error Indication: An SSP-ICF error caused a processor check either
in this subsystem or in the interrupt handler.

Recovery Action: This subsystem has been disabled; it must be
enabled again before communications can resume. Your program can
continue local processing, wait' to reissue the acquire operation, or
terminate.

If more than one subsystem was active when the error occurred, all
subsystems that were active when the error occurred should be
disabled. (Note that all other active BSCEL subsystems are
automatically disabled when the error occurs; all other types of active
subsystems must be manually disabled.)

If all subsystems (of all types) on the system are not disabled to
recover from the processor check, the common queue space used by
the failing subsystem cannot be freed. And if it is not freed, that
space is wasted, and an indication of insufficient common queue
space being available can occur. The indication can occur as a
message when the failing subsystem is reenabled or when a different
subsystem is enabled. The indication can also occur as a return code
to your program for any subsystem that is starting a new session
(code 8215) or performing an output operation in any existing session
(code 8315).

Error Indication: This session is being terminated immediately
because the subsystem controlling the session is currently being
disabled; the subsystem is not waiting for any of its active sessions to
be completed normally.

Recovery Action: Communications with the remote program cannot
be resumed until the subsystem has been enabled again. Your
program can continue local processing, wait' to reissue the acquire
operation, or terminate.

' For BASIC and RPG I, the set timer operation is not valid at this time because the
session is not active. (It is valid in COBOL and assembler, and the TIMER intrinsic
function can be used in BASIC.)

BSCEL Return Codes

8-656

Major Code 81 — Permanent (nonrecoverable) session error.

Error Description: A nonrecoverable error has occurred in the session; the
session cannot be continued and has been terminated. The error
indication has been sent as a message to the display station or to the
system console; the operator can refer to the System/34 Messages
Guide for additional information. The error indication is also returned to
your program as a return code; the minor code portion indicates the
specific cause. (Each return code is described on the following pages.)
The session must be acquired again before communications can
resume.

General Recovery Actions: The following general actions can be taken for
each 81xx return code. Other specific actions are given in each return
code description.

« Several return codes indicate that an error condition must be
corrected by changing a value in the subsystem configuration record
or in the SESSION statement for your program.

— To change a parameter value in the subsystem configuration being
used by your program, you must disable the subsystem before
making the change in the subsystem’s configuration record, and
enable the subsystem again to make the change effective.

— To change a parameter value in the SESSION statement
associated with your program, you must terminate your program
only.

Note: When a parameter can be specified both in the SESSION
statement and in the subsystem configuration, the value in the
SESSION statement overrides the value in the subsystem
configuration record (for your program only). Therefore, in some
cases, you may choose to make a change in the SESSION statement
rather than disabling the subsystem to make the change in its
configuration record.

« If the session should be started again, it must be reacquired by your
program or restarted by the remote program before communications
can resume.

« An end of session (EOS or $$EOS) operation should be issued for
the session that has terminated. Your program can also continue
local processing, or it can terminate.

Note: If the session is started again, it starts from the beginning, not at
the point where the session error occurred.

Code

8136

8137

8183

8184

Indication/Action

Error Indication: On the first output operation requiring that a
switched line connection be established for the session, an invalid
remote identifier for the remote system (or device) was received from
the remote system; the session has been terminated. The received
remote identifier must match the remote identifier specified for this
subsystem configuration.

Recovery Action: Verify that the remote identifier specified for this
subsystem configuration was specified correctly either by the remote
ID parameter in the CNFIGICF procedure or by the SSP DEFINEID
procedure (when multiple remote identifiers are specified). If the
remote identifier was specified correctly, call the remote location to
correct the error at the remote end of the switched line.

Error Indication: On the first input operation requiring that a switched
line connection be established for the session, an invalid remote
identifier for the remote system (or device) was received from the
remote system; the session has been terminated. The received remote
identifier must match the remote identifier specified for this subsystem
configuration.

Recovery Action: Verify that the remote identifier specified for this
subsystem configuration was specified correctly either by the remote
ID parameter in the CNFIGICF procedure or by the SSP DEFINEID
procedure (when multiple remote identifiers are specified). If the
remote identifier was specified correctly, call the remote location to
correct the error at the remote end of the switched line.

Error Indication: An MLCA (multiline communications adapter)
controller check occurred on an output operation; data may have been
lost. The session has been terminated.

Recovery Action: If your program started the session, reissue the
acquire operation to restart the session. If your program was evoked,
it can wait' to be evoked again (MRT programs only), continue local
processing, or terminate.

Error Indication: An MLCA (multiline communications adapter)
controller check occurred on an input operation; data may have been
lost. The session has been terminated.

Recovery Action: If your program started the session, reissue the
acquire operation to restart the session. If your program was evoked,
it can wait’ to be evoked again (MRT programs only), continue local
processing, or terminate.

"For BASIC and RPG Il, the set timer operation is not valid at this time because the
session is not active. (It is valid in COBOL and assembier, and the TIMER intrinsic
function can be used in BASIC.)

BSCEL Return Codes 8-67

8185

8186

8191

8192

Error Indication: An attempt by this subsystem to automatically call
one or more remote locations using the autocall or X.21 feature was
not successful. All available numbers in the list of phone numbers or
in the list of public data network numbers were called, but no
connection was established. The session has been terminated.

Recovery Action: The list has been reinitialized. If the session should
be started again, reissue the acquire operation; calling will begin with
the first number in the list. Otherwise, your program can continue
local processing or terminate.

Error Indication: An attempt by this subsystem to automatically call
one or more remote locations using the autocall or X.21 feature was
not successful. All numbers in the list of phone numbers or in the list
of public data network numbers were already marked as called. The
message PHONE LIST EXHAUSTED (SYS-8607) has been displayed on
the system console, and the session has been terminated.

Recovery Action: The list has been reinitialized. If the session should
be started again, reissue the acquire operation; calling will begin with
the first number in the list. Otherwise, your program can continue
local processing or terminate.

Error Indication: A permanent line error occurred on an output
operatidn, and the system operator has taken a recovery option in
response to a permanent line error message. (You can find out what
type of line error occurred by asking the system operator.) The
session has been terminated.

Recovery Action: If your program started the session, reissue the
acquire operation to restart the session. If your program was evoked,
it can wait' to be evoked again (MRT programs only), continue local
processing, or terminate.

Error Indication: A permanent line error occurred on an input
operation, and the system operator has taken a recovery option in
response to a permanent line error message. (You can find out what
type of line error occurred by asking the system operator.) The
session has been terminated. .

Recovery Action: If your program started the session, reissue the
acquire operation to restart the session. If your program was evoked,
it can wait' to be evoked again (MRT programs only), continue local
processing, or terminate.

" For BASIC and RPG Il, the set timer operation is not valid at this time because the
session is not active. (It is valid in COBOL and assembler, and the TIMER intrinsic
function can be used in BASIC.)

8193 Error Indication: A disconnect indication (for switched lines only) was
received on an output operation. A disconnect time-out in the remote
system was exceeded, the line was unexpectedly disconnected, or
your program may have sent some invalid data. The session has been
terminated.

Recovery Action: Verify that your program did not cause a time-out
and that it did not send data that was invalid. Also, verify that it did
not try to send data after the transaction had ended. If your program
started the session, reissue the acquire operation to restart the
session. If your program was evoked, it can wait' to be evoked again
(MRT programs only), continue local processing, or terminate.

8194 Error Indication: A disconnect indication (for switched lines only) was
received on an input operation. A disconnect time-out in the remote
system was exceeded, or the line was unexpectedly disconnected. The
session has been terminated. :

Recovery Action: Verify that your program did not cause a time-out.
Also, verify that it did not try to receive data after it had received an
end of transaction indication. If your program started the session,
reissue the acquire operation to restart the session. If your program
was evoked, it can wait' to be evoked again (MRT programs only),
continue local processing, or terminate.

8197 Error Indication: An abort transmission sequence was received from
the remote system on an output operation; the remote system is
terminating the line transmission abnormally because it could not or
did not want to continue the session. The session has been
terminated.

Recovery Action: If your program started the session, reissue the
acquire operation to restart the session. If your program was evoked,
it can wait' to be evoked again (MRT programs only), continue local
processing, or terminate.

8198 Error Indication: An abort transmission sequence was received from
the remote system on an input operation; the remote system is
terminating the line transmission abnormally because it could not or
did not want to continue the session. The session has been
terminated.

Recovery Action: If your program started the session, reissue the
acquire operation to restart the session. If your program was evoked,
it can wait' to be evoked again (MRT programs only), continue local
processing, or terminate.

'For BASIC and RPG |l, the set timer operation is not valid at this time because the
session is not active. (It /s valid in COBOL and assembler, and the TIMER intrinsic
function can be used in BASIC.)

BSCEL Return Codes 8-69

8199

819A

819B

Error Indication: On an output operation, the time between
successive data blocks being sent to the remote system exceeded the
value specified for the wait time parameter in the subsystem
configuration.

Recovery Action: Check the wait time parameter value to ensure that
it is large enough for your program. Also check your program for
excessive delays between output operations. If your program started
the session, reissue the acquire operation to restart the session. If
your program was evoked, it can wait' to be evoked again (MRT
programs only), continue local processing, or terminate.

Error Indication: On an input operation, the time between successive
data blocks being received from the remote system exceeded the
value specified for the wait time parameter in the subsystem
configuration.

Recovery Action: Check the wait time parameter value in the
subsystem configuration to ensure that it is large enough for your
program. Also check your program for excessive delays between input
operations. If your program started the session, reissue the acquire
operation to restart the session. If your program was evoked, it can
wait' to be evoked again (MRT programs only), continue local
processing, or terminate.

Error Indication: On an output operation, in a put-versus-put
situation, the subsystem detected a block size error before it detected
that both your program and the remote system were attempting to
send data at the same time. The remote system sent data, but the
length of the data block exceeded the length of the subsystem's line
buffer. The session has been terminated.

Recovery Action: Check the maximum user record length (RECL)
parameter and block length (BLKL) parameter that are specified in the
subsystem configuration record and in the SESSION statement for
your program; then correct them if necessary. If the parameters are
correct, notify the remote system programmer and verify that the
record length or block length is correct. Then, if your program started
the session, reissue the acquire operation to restart the session. If
your program was evoked, it can wait' to be evoked again (MRT
programs only), continue local processing, or terminate.

"For BASIC and RPG II, the set timer operation is not valid at this time because the
session is not active. (It is valid in COBOL and assembler, and the TIMER intrinsic
function can be used in BASIC.)

SN

819C

819D

81B8

Error Indication: On an input operation, the length of the data block
sent by the remote system exceeded the length of the subsystem line
buffer. The session has been terminated.

Recovery Action: Check the maximum user record length (RECL)
parameter and block length (BLKL) parameter that are specified in the
subsystem configuration record and in the SESSION statement for
your program; then correct them if necessary. If the parameters are
correct, notify the remote system programmer and verify that the
record length or block length is correct. Then, if your program started
the session, reissue the acquire operation to restart the session. If
your program was evoked, it can wait' to be evoked again (MRT
programs only), continue local processing, or terminate.

Error Indication: On an input or output operation, unexpected data
was received from the remote system either after an end of
transaction indication was received or before an evoke operation was
issued by your program. The session has been terminated.

Recovery Action: Check that your program did not issue an end of
transaction operation before the transaction was completed. Also
check to see if the remote system sent a procedure start request while
your session was still active. If your program started the session,
reissue the acquire operation to restart the session. If your program
was evoked, it can wait' to be evoked again (MRT programs only),
continue local processing, or terminate.

Error Indication: On an output operation, in a put-versus-put
situation, the subsystem detected that a data record received from the
remote system is too long. (The subsystem detected the length error
before it detected that both your program and the remote system were
attempting to send data at the same time.) The record exceeds the
maximum user record length specified for this session. The session
has been terminated.

Recovery Action: Check that the maximum user record length
parameter (RECL) in the subsystem configuration or in the SESSION
statement is specified with a value that is large enough for the longest
record to be sent or received. If the value was specified correctly,
notify the remote system programmer and have the record length
changed at the remote end. If your program started the session,
reissue the acquire operation to restart the session. If your program
was evoked, it can wait' to be evoked again (MRT programs only),
continue local processing, or terminate.

"For BASIC and RPG I, the set timer operation is not valid at this time because the
session is not active. (It /s valid in COBOL and assembiler, and the TIMER intrinsic
function can be used in BASIC.)

BSCEL Return Codes

8-71

8.72

81B9

81BC

Error Indication: On an input operation, the subsystem detected that
a data record is too long for your program. The record, received from
the remote program, exceeds the maximum user record length
specified for the subsystem configuration. The session has been
terminated. '

Recovery Action: Check that the maximum user record length
parameter (RECL) in the subsystem configuration or in the SESSION
statement is specified with a value that is large enough for the longest
record to be sent or received. If the value was specified correctly,
notify the remote system programmer and have the record length
changed at the remote end. If your program started the session,
reissue the acquire operation to restart the session. If your program
was evoked, it can wait' to be evoked again (MRT programs only),
continue local processing, or terminate.

Error Indication: An attempt by this subsystem to automatically call a
remote location using the autocall or X.21 feature was not successful
because the wrong type of list was used to make the call. Either a list
of public data network numbers was used to make the call on an
autocall line, or a list of phone numbers was used to make the call on
an X.21 line. The session has been terminated.

Recovery Action: Change the name specified in the phone list name
parameter in the subsystem configuration, or in the PHONE parameter
of the SESSION statement for this program. Then reissue the acquire
operation to restart the session.

"For BASIC and RPG II, the set timer operation is not valid at this time because the
session is not active. (It /s valid in COBOL and assembler, and the TIMER intrinsic
function can be used in BASIC.)

Major Code 82 — Acquire operation failed.

Error Description: An attempt to acquire a session was not successful; the
session was not started. An error indication was returned to your
program as a return code; the minor portion of the code indicates the
specific cause. (Each return code is described on the following pages.)
The error indication has also been sent as a message to the display
station or to the system console; the operator can refer to the
System/34 Messages Guide for additional information.

General Recovery Actions: The following general actions can be taken for
each 82xx return code. Other specific actions are given in each return
code description.

1. Determine why the 82xx error code was returned to your program.
Read the description of that return code to determine what action
is needed.

2. If a parameter value must be changed in the subsystem
configuration record or in the SESSION statement for your
program:

a. To change a parameter value in the subsystem configuration,
disable the subsystem first, make the change in the
subsystem’s configuration record, then enable the subsystem
again to make the change effective.

b. To change a parameter value in the SESSION statement
associated with your program, terminate only your program
to change your SESSION statement.

Note: When a parameter can be specified both in the SESSION
statement and in the subsystem configuration, the value in the
SESSION statement overrides the value in the subsystem
-configuration record (for your program only). Therefore, in some
cases, you may choose to make a change in the SESSION
statement rather than disabling the subsystem to make the change
in its configuration record.

3. If no change is needed in your program or in the subsystem, (and
depending on what the return code description says):

a. Notify the remote location that a change is required on that
end to correct the error received.

b. Simply reissue the acquire operation. It could be successful
if the error occurred because there was not enough common
queue space available to support a new session, because an
isolated line error occurred, or because the remote system
was not active temporarily.

c. If the acquire operation is again unsuccessful, retry it only a
limited number of times. (The limit for retries should be
specified in your program.)

4. Issue a set timer operation in your program so it can wait for a
specified time interval before reissuing the acquire operation.
However, for RPG Il and BASIC programs, the set timer operation
is valid only in an active session and cannot, therefore, be issued
after an 82xx return code is received. (This restriction does not
apply to COBOL and assembler programs, or to the TIMER
intrinsic function in BASIC, which also can be used to wait for a
specified time interval.)

BSCEL Return Codes

8-73

Code Indication/Action

820A Error Indication: On an unsuccessful acquire operation, an invalid
combination of data attributes was detected. ASCIl code was
specified during subsystem configuration, but TRANSP-YES was
specified on the SESSION statement. The two values are not valid
together.

Recovery Action: Change either the configuration of the BSCEL
subsystem or the TRANSP (transparency) parameter on the SESSION
statement, and reissue the acquire operation.

8213 Error Indication: On an unsuccessful acquire operation, a queue
space error condition was detected. The session could not be started
because no subsystem queue space was available at the time.

Recovery Action: Your program can wait ' for a period of time, then
reissue the acquire operation. If an unacceptable number of queue
space errors occur, you can disable the subsystem and change the
subsystem configuration by specifying a larger subsystem queue space
size in the subsystem queue space parameter. After the subsystem is
enabled, reissue the acquire operation to start the session.

8215 Error Indication: On an unsuccessful acquire operation, a queue
space error condition was detected. The session cannot be started
because the size of the common queue space, specified during
subsystem configuration, is too small.

Recovery Action: Your program can wait' for a period of time, then
reissue the acquire operation. If an unacceptable number of queue
space errors occur, you can disable all the subsystems that are active
in the system, and change the subsystem configuration by specifying a
larger common queue space size in the SSP-ICF common queue
space parameter. After the subsystem is enabled, reissue the acquire
operation to start the session.

821E Error Indication: The acquire operation attempted by your program
(BASIC programs only) was unsuccessful because there was no
SESSION statement specified between the LOAD and RUN statements
for your program. The method used to issue the acquire operation is
not supported by the BSCEL subsystem. The session was not started.

Recovery Action: Issue a SESSION statement that specifies, in the
SYMID parameter, the identifier of the session to be acquired. The
same identifier must be specified in the ID parameter of the OPEN
statement.

"For BASIC and RPG II, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

8-74

8233

8236

8281

Error Indication: On an unsuccessful acquire operation, an invalid
session identifier was detected. Either no SESSION statement was
spegﬁfied between the LOAD and RUN statements for this program, or
the session identifier in your program does not match the identifier
specified on the SESSION statement for the session being acquired.
The session was not started.

Recovery Action: If the error is in your program, respecify the correct
session identifier in your program. If an incorrect identifier was
specified on the SESSION statement, specify the correct value in the
SYMID parameter.

Error Indication: On an unsuccessful acquire operation (of a session
over switched lines only), an invalid remote identifier was received
from the remote system or device with which the session is being
acquired. The received remote identifier must match the remote
identifier specified for this subsystem configuration.

Recovery Action: Verify that the remote identifier specified for this
subsystem configuration was specified correctly either by the remote
ID parameter in the CNFIGICF procedure or by the SSP DEFINEID
procedure (when multiple remote identifiers are specified). If the
remote identifier was specified correctly, call the remote location to
correct the error at the remote end of the switched line.

Error Indication: On an unsuccessful acquire operation, an SSP-ICF
error condition was detected. The error caused a processor check
either in this subsystem or in the interrupt handler.

Recovery Action: This subsystem has been disabled; it must be
enabled again before communications can resume. Your program can
continue local processing, wait' to reissue the acquire operation, or
terminate.

If more than one subsystem was active when the error occurred, all
subsystems that were active when the error occurred should be
disabled. (Note that all other active BSCEL subsystems are
automatically disabled when the error occurs; all other types of active
subsystems must be manually disabled.)

If all subsystems (of all types) on the system are not disabled to
recover from the processor check, the common queue space used by
the failing subsystem cannot be freed. And if it is not freed, that
space is wasted, and an indication of insufficient common queue
space being available can occur. The indication can occur as a
message when the failing subsystem is reenabled or when a different
subsystem is enabled. The indication can also occur as a return code

to your program for any subsystem that is starting a new session
(code 8215) or performing an output operation .in any existing session

(code 8315).

'For BASIC and RPG I, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

BSCEL Return Codes

8-75

8-76

8282

8283

8285

8286

8289

Error Indication: The acquire operation just performed was
unsuccessful because the subsystem controlling the session is
currently being disabled; no sessions can be acquired in the
subsystem.

Recovery Action: Communications with the remote program cannot
be resumed until the subsystem has been enabled again. Your
program can continue local processing, wait' to reissue the acquire
operation, or terminate.

Error Indication: On an unsuccessful acquire operation, an MLCA
(multiline communications adapter) controller check occurred. The
session was not started.

Recovery Action: Your program can reissue the acquire operation,
continue local processing, or terminate.

Error Indication: An acquire operation, for which the subsystem used
the autocall or X.21 feature to automatically call one or more remote
locations, was not successful. All available numbers in the list of
phone numbers or in the list of public data network numbers were
called, but no connection was established. The session was not
started.

Recovery Action: The list has been reinitialized. Your program can
reissue the acquire operation, continue local processing, or terminate.
(Calling will begin with the first number in the list.)

Error Indication: An acquire operation, for which the subsystem used
the autocall or X.21 feature to automatically call one or more remote
locations, was not successful. All the numbers in the list of phone
numbers or in the list of public data network numbers were already
marked as called. The message PHONE LIST EXHAUSTED (SYS-8607)
has been displayed on the system console, and the session was not
started.

Recovery Action: The list has been reinitialized. Your program can
reissue the acquire operation, continue local processing, or terminate.
(Calling will begin with the first number in the list.)

Error Indication: On an unsuccessful acquire operation, an invalid
combination of attributes was detected. Both a record separator was
specified (either during subsystem configuration or in the RECSEP
parameter of the SESSION statement) and transparent mode was
specified (either during configuration or in the TRANSP (transparency)
parameter of the SESSION statement). A record separator and
transparent mode cannot be specified together.

Recovery Action: Change the configuration of the BSCEL subsystem,
or change the value of the RECSEP or TRANSP parameter on the
SESSION statement; then reissue the acquire operation.

For BASIC and RPG II, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

828A

8288

828C

828D

Error Indication: On an unsuccessful acquire operation, an invalid
combination of attributes was detected. Both a record separator was
specified (either during subsystem configuration or in the RECSEP
parameter of the SESSION statement) and ITB (intermediate text
block) mode was specified (either during configuration or in the ITB
parameter of the SESSION statement). A record separator and ITB
mode cannot be specified together.

Recovery Action: Change the configuration of the BSCEL subsystem,
or change the value of the RECSEP or ITB parameter on the SESSION
statement; then reissue the acquire operation.

Error Indication: On an unsuccessful acquire operation, an invalid
combination of record length and block length attributes was detected.
The maximum user record length was specified (either during
subsystem configuration or in the RECL parameter of the SESSION
statement) to be greater than the block length (either during
configuration or in the BLKL parameter of the SESSION statement).
The block length must be greater than or equal to the maximum user
record length.

Recovery Action: Change the configuration of the BSCEL subsystem,
or change the value of the RECL or BLKL parameter on the SESSION
statement; then reissue the acquire operation.

Error Indication: On an unsuccessful acquire operation, an invalid
combination of ITB mode and 3740 file attributes was detected.
During subsystem configuration, the 3740 multiple files parameter was
specified as 1 (yes), and then ITB (intermediate text block) mode was
also specified in the ITB parameter of the SESSION statement used
for the session being acquired. The two values are not valid together.

Recovery Action: Change the configuration of the BSCEL subsystem,
or change the value of the ITB parameter on the SESSION statement;
then reissue the acquire operation.

Error Indication: On an unsuccessful acquire operation, an invalid
combination of data attributes was detected. Both blank compression
was specified (either during subsystem configuration or in the BLANK
parameter of the SESSION statement) and ITB (intermediate text
block) mode was specified (either during configuration or in the ITB
parameter of the SESSION statement). Blank compression and ITB
mode cannot be specified together.

Recovery Action: Change the configuration of the BSCEL subsystem,

or change the value of the BLANK or ITB parameter on the SESSION
statement; then reissue the acquire operation.

BSCEL Return Codes

8-77

8-78

828E

828F

8290

8291

8293

Error Indication: On an unsuccessful acquire operation, an invalid
combination of data attributes was detected. Both blank truncation
was specified (either during subsystem configuration or in the BLANK
parameter of the SESSION statement) and ITB (intermediate text
block) mode was specified (either during configuration or in the ITB
parameter of the SESSION statement). Blank truncation and ITB mode
cannot be specified together. '

Recovery Action: Change the configuration of the BSCEL subsystem,
or change the value of the BLANK or ITB parameter on the SESSION
statement; then reissue the acquire operation.

Error Indication: On an unsuccessful acquire operation, an invalid
block length was detected. The block length was specified as O (during
subsystem configuration or in the BLKL parameter of the SESSION
statement); O indicates no blocking. A block length greater than the
maximum user record length must be specified if any of the following
attributes are also specified for the subsystem: record separator, ITB
mode, blank compression, or blank truncation.

Recovery Action: Change the configuration of the subsystem, or
change the value(s) of the BLKL, RECSEP, ITB, or BLANK parameters
on the SESSION statement to specify either no blocking, or blocking
with at least one of the other attributes.

Error Indication: On an unsuccessful acquire operation, an invalid
combination of attributes was detected. Both blank compression was
specified (either during subsystem configuration or in the BLANK
parameter of the SESSION statement) and transparent mode was
specified (either during configuration or in the TRANSP parameter of
the SESSION statement). The two values are not valid together.

~ Recovery Action: Change the configuration of the BSCEL subsystem,

or change the value of the BLANK or TRANSP parameter on the
SESSION statement, then reissue the acquire operation.

Error Indication: A permanent line error occurred on an unsuccessful
acquire operation, and the system operator has taken a recovery
option in response to a permanent line error message. (You can find
out what type of line error occurred by asking the system operator.)
The session was not started.

Recovery Action: Your program can reissue the acquire operation,
continue local processing, or terminate.

Error Indication: A disconnect indication (for switched lines only) was
received on an unsuccessful acquire operation. The line was
unexpectedly disconnected. The session was not started.

Recovery Action: Check with your remote system location to
determine why the remote system sent a disconnect. Your program
can reissue the acquire operation, continue local processing, or
terminate. ‘

8297

82A0

82A7

82A8

82AA

Error Indication: An abort transmission sequence was received from
the remote system on an unsuccessful acquire operation; the remote
system is terminating the line abnormally because it could not continue
the communications. The session was not started.

Recovery Action: Your program can issue another acquire operation,
continue local processing, or terminate.

Error Indication: On an unsuccessful acquire operation, an invalid
record separator character was detected. The invalid record separator
character was specified in the RECSEP parameter of the SESSION
statement. The session was not started.

Recovery Action: Change the value of the record separator character
in the RECSEP parameter on the SESSION statement. Then reissue
the acquire operation to start the session.

Error Indication: The acquire operation was unsuccessful because the
specified communications line was already in use. The session was
not started.

Recovery Action: Your program can wait' for the line to become
available, then reissue the acquire operation. Otherwise, it can
continue local processing or terminate.

Error Indication: The acquire operation was not successful because
the maximum number of active sessions allowed in the system has
been reached. No more than 100 sessions can be active in the
System/34 at one time. The session was not started.

Recovery Action: Your program can wait' for another session to end
and then reissue the acquire operation. Otherwise, your program can
continue local processing or terminate.

Error Indication: The acquire operation just performed was not
successful because the specified subsystem has not been enabled or
has been disabled. The subsystem to be enabled is identified by the
location parameter in the SESSION statement. That location name
must also be specified in the subsystem configuration record (shown
on display 3.0 of the subsystem configuration planning charts). The
session was not started.

Recovery Action: Verify that the subsystem name was specified
correctly on the LOCATION parameter of the SESSION statement. If
the correct name was specified, contact the System/34 system
operator and request that the specified subsystem be enabled by
executing the ENABLE procedure command at the system console.
Then reissue the acquire operation. Otherwise, your program can
continue local processing, wait' to reissue the acquire operation, or
terminate.

"For BASIC and RPG I, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

BSCEL Return Codes

8-79

82AB

82B0

82B4

82BC

Error Indication: The acquire operation just performed was not
successful because the specified subsystem is currently being enabled.
The session was not started.

Recovery Action: Your program can wait' until the subsystem has
been enabled; then reissue the acquire operation to start the session.

Error Indication: The acquire operation just performed was not
successful either because the specified subsystem is currently being
disabled, or because it has a disable subsystem request pending. No
new sessions can be started.

Recovery Action: Your program can wait' until the subsystem is
enabled again, and then reissue the acquire operation. Otherwise,
your program can continue local processing, or it can terminate.

Error Indication: The acquire operation was not successful because
all of the resources needed for the session could not be allocated from
the assign/free area of the system. All available resources are already
being used in the system. The session was not started.

Recovery Action: Wait' for the needed resources to become
available, then reissue the acquire operation. Otherwise, continue local
processing or terminate. A

Error Indication: On an unsuccessful acquire operation, an invalid
type of list was detected by the subsystem when it attempted to
automatically call a remote location using the autocall or X.21 feature.
Either a list of public data network numbers was used to make the call
on an autocall line, or a list of phone numbers was used to make the
call on an X.21 line. The session was not started.

Recovery Action: Specify the name of the list that is of the correct
type for the line to be used. Change the name specified in the phone
list name parameter in the subsystem configuration, or in the PHONE
parameter of the SESSION statement for this program; then reissue

the acquire operation.

"For BASIC and RPG I, the set timer operation cannot be issued if the session was not
acquired. See item 4 in the boxed description of major code 82.

Major Code 83 — Session error occurred.

Error Description: An error has occurred in the session, but the session is

still active. Recovery might be possible; the error indication was
returned to your program as a return code. The minor portion of the
code indicates the specific cause. (Each return code is described on
the following pages.) The error indication has also been sent as a
message to the display station or to the system console; the operator
can refer to the System/34 Messages Guide for additional information.

General Recovery Actions: The following general actions can be taken for

each 83xx return code. Other specific actions are given in each return
code description.

1.

Determine why the 83xx error code was returned to your program.
Read the description of that return code to determine what action
is needed.

If a parameter value must be changed in the subsystem
configuration record or in the SESSION statement for your
program:

a. To change a parameter value in the subsystem configuration,
disable the subsystem first, make the change in the
subsystem’s configuration record, then enable the subsystem
again to make the change effective.

b. To change a parameter value in the SESSION statement
associated with your program, terminate only your program
before correcting your SESSION statement.

When a parameter can be specified both in the SESSION
statement and in the subsystem configuration, the value in the
SESSION statement overrides the value in the subsystem
configuration record (for your program only). Therefore, in some
cases, you may choose to make a change in the SESSION
statement rather than disabling the subsystem to make the change
in its configuration record.

Note: If the session is started again, it starts from the beginning,
not at the point where the session error occurred.

If no change is needed in your program or in the subsystem, (and

depending on what the return code description says):

a. Retry the operation, if possible. It could be successful if the
error occurred because there was not enough common
queue space available at the time or because of an isolated
line failure.

b. If another operation is not successful, retry it only a limited
number of times. (The limit for retries should be specified in
your program.)

c. Issue a set timer operation in your program so it can wait for
a specified time interval before reissuing the operation.

BSCEL Return Codes

8-81

8-82

Code

830B

8315

831A

831C

Indication/Action

Error Indication: Your program has attempted to execute a
communications input or output operation either before the session
was acquired or after it has ended. Your program may have (1) issued
an input or output operation either before it issued an acquire
operation or after it has released the session (by a release or end of
session operation), or it may have (2) improperly handled an 81xx
(session was terminated) or 82xx (session was not acquired) error
return code.

Recovery Action: Check your program to ensure that no input or
output operation is attempted without an active session and to ensure
that an 81xx or 82xx return code is handled properly. If you want your
program to recover from an improperly handled error condition, issue
another acquire operation.

Error Indication: On an evoke operation, a queue space error
condition was detected. The evoke operation could not be performed
because no common queue space was available at the time.

Recovery Action: Your program can issue a set timer operation and
wait for a period of time, and then reissue the evoke operation. If an
unacceptable number of queue space errors occur, you can disable all
the subsystems and change the subsystem configuration by specifying
a larger common queue space size in the SSP-ICF common queue
space parameter. After the subsystem is enabled, reissue the acquire
operation to restart the session.

Error Indication: An evoke operation failed to complete successfully,
or the evoked program terminated abnormally. A message from the
remote system describing why it failed is waiting in the subsystem
input buffer. The evoke operation could have been the operation just
performed, or a previous operation (when the evoke operation was
combined with another operation, such as evoke then invite, or when
the evoke was followed by an accept input operation).

Recovery Action: Your program should issue an input operation to
receive the message so you can print or display it. Then it can reissue
the evoke operation to reestablish the transaction, it can issue an end
of session operation, or it can terminate.

Error Indication: The output operation issued before this output
operation received a return code of 0411 or 0412 (indicating that the
remote program sent a message or data for your program), but that
return code was not properly handled in your program. This output
operation was rejected as invalid at this time because your program
must first issue an input operation to receive the message or data.

Recovery Action: Issue an input operation to receive the message or
data.

831E

831F

8322

8327

Error Indication: The operation just issued by your program was
invalid. Either the operation code is an unrecognized code, or the
operation specified by the code is not supported by the subsystem.
The session is still active, however.

Recovery Action: Your program can try a different operation, issue a
release or end of session operation, or terminate. Correct the error in
your program before attempting to communicate with the remote
program.

Error Indication: On an output operation, an indication was received
that your program tried to send a data record having a length that
exceeds the maximum user record length specified for this session. |f
this operation was an evoke operation, the length of your remote
procedure name (if any) plus the length of your data exceeds 120
bytes. The session is still active, however.

Recovery Action: If you want your program to recover dynamically,
reissue the output operation with a smaller output length. Otherwise,
you can either change the record length in your program and
recompile it, or you can change the value specified for the maximum
user record length parameter in the subsystem configuration or in the
SESSION statement. The maximum user record length must be large
enough for the longest record to be sent or received. Reissue the
acquire operation to restart the session after making these changes.

Error Indication: A put with no invite operation was erroneously
followed by a request to change direction then get operation or a
request to change direction then invite operation. Neither of these
operations is valid while your program is in the send state. The
session, however, is still active.

Recovery Action: Your program can issue an output operation to
continue sending, issue an input operation to begin receiving, issue an
end of session operation to continue local processing, or terminate.
Correct the error in your program before attempting to communicate
with another remote program.

Error Indication: An invalid input or output operation was issued
when no transaction existed; your program may have expected more
data when there is none. Either the remote program has already
ended the transaction, your program has ended the transaction, or
your program has not issued an evoke operation to start
communicating with the remote program. The session is still active.

Recovery Action: If you want your program to dynamically recover
from this error, issue an evoke operation to start a transaction.
Otherwise, issue an end of session operation, then continue local
processing or terminate your program. If a coding error in your
program caused the error, correct your program.

BSCEL Return Codes

8-83

8-84

8329

832C

832D

832F

8334

Error Indication: An invalid evoke operation was detected in this
session. Your program was evoked by an incoming procedure start
request and cannot, therefore, issue any evoke operations in this

session.

Recovery Action: If you want your program to dynamically recover
from this error, issue a different operation. If you want to issue the
evoke in another session, issue an acquire operation; then issue the
evoke operation. Otherwise, you can issue an end of session operation
to terminate this session; then continue local processing or terminate
your program. If a coding error in your program caused the error,
correct your program.

Error Indication: An invalid release operation, following an invite
operation, was detected in your program. Because your program
issued the invite operation, it cannot issue a release operation to
terminate the invited session.

Recovery Action: Issue an accept or get operation to satisfy the
invite operation. Otherwise, issue an end of session operation to
terminate the session. If a coding error in your program caused the
error, correct your program.

Error Indication: An invalid operation following an invite operation
was detected in your program. Once you have issued an invite
operation, the next subsystem operation must be a get or accept
operation.

Recovery Action: Issue a get operation or an accept input operation
to receive the input that was invited. Otherwise, issue an end of
session operation to terminate the session. If a coding error in your
program caused the error, correct your program.

Error Indication: An invalid evoke or release operation was issued
before a transaction was completed. The operation was not
performed. The session is still active.

Recovery Action: Your program can <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>