Contents

CONTROL PROCESSOR	. 2-1
DATA FLOW AND CLOCKS	. 2-1
Data Flow	. 2-1
Clocks	. 2-3
System	. 2-3
I/O Attachment and Controller	. 2-4
Storage	. 2-4
OPERATIONS	. 2-5
IPL-Customer User Programs	. 2-5
Control Storage Initial Program Load (CSIPL) .	. 2-5
Main Storage Initial Program Load (MSIPL) .	. 2-6
IPL Timing Sequence	. 2-7
Display Light Sequence (Byte 0)	. 2-7
Disk Operation	. 2-8
Disk Sequence	. 2-9
62EH Disk Timing	2-11
62PC Disk Timing	2-12
IPL-Customer SSP from Diskettes	2-13
IPL-CE Diagnostics	2-15
Diskette CSIPL Diagnostic Sequence	2-17
Diskette Timing (Level 1 Attachment)	2-18
Diskette Timing (Level 1 Attachment)	2-18
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment)	2-18 2-19
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment)	2-18 2-19 2-21
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment)	2-18 2-19 2-21
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment)	2-18 2-19 2-21 2-22
Diskette Timing (Level 1 Attachment)33FD/53FD CSIPL Flowchart (Level 1 Attachment)Diskette Timing (Level 2 Attachment)33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment)Error Indications	2-18 2-19 2-21 2-22 2-24
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment)	2-18 2-19 2-21 2-22 2-24 2-27
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment)	2-18 2-19 2-21 2-22 2-24 2-27 2-28
Diskette Timing (Level 1 Attachment)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28
Diskette Timing (Level 1 Attachment)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-28
Diskette Timing (Level 1 Attachment)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-28 2-29
Diskette Timing (Level 1 Attachment)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-29 2-30
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 2 Attachment) Error Indications CSIPL Switch Options Instructions Sequence and Timing Routine Printout INSTRUCTION EXECUTION	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-29 2-30 2-32
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) STror Indications CSIPL Switch Options Instructions Sequence and Timing Routine Printout INSTRUCTION EXECUTION Signals, Gating Lines, and Logical Functions for	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-28 2-29 2-30 2-32
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 2 Attachment) Error Indications CSIPL Switch Options Instructions Instruction Times Sequence and Timing Nnemonic Listing INSTRUCTION EXECUTION Signals, Gating Lines, and Logical Functions for Timing Charts	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-28 2-29 2-30 2-32 2-32
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 2 Attachment) Error Indications CSIPL Switch Options Instructions Instruction Times Sequence and Timing Nnemonic Listing INSTRUCTION EXECUTION Signals, Gating Lines, and Logical Functions for Timing Charts Branch (B)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-28 2-29 2-30 2-32 2-32 2-32
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 2 Attachment) Error Indications CSIPL Switch Options Instructions Instruction Times Sequence and Timing Nnemonic Listing INSTRUCTION EXECUTION Signals, Gating Lines, and Logical Functions for Timing Charts Branch (B)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-29 2-30 2-32 2-32 2-32 2-34 2-35
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 2 Attachment) Error Indications CSIPL Switch Options Instructions Instruction Times Sequence and Timing Routine Printout INSTRUCTION EXECUTION Signals, Gating Lines, and Logical Functions for Timing Charts Branch (B) Branch (Stop Condition) (B)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-29 2-30 2-32 2-32 2-32 2-34 2-35 2-36
Diskette Timing (Level 1 Attachment) 33FD/53FD CSIPL Flowchart (Level 1 Attachment) Diskette Timing (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 33FD/53FD/72MD CSIPL Flowchart (Level 2 Attachment) 2 Attachment) Error Indications CSIPL Switch Options Instructions Instruction Times Sequence and Timing Mnemonic Listing INSTRUCTION EXECUTION Signals, Gating Lines, and Logical Functions for Timing Charts Branch (B) Branch (Stop Condition) (B) Jump on Condition (JC)	2-18 2-19 2-21 2-22 2-24 2-27 2-28 2-28 2-28 2-28 2-29 2-30 2-32 2-32 2-32 2-34 2-35 2-36 2-38

Logical/Arithmetic 1 (XR, ZAR, OR, NCR, NR,	
OCR, DEC, ACYR, SR, AR, SCYR, INC)	2-42
Condition Code for Logical Operations	2-42
Condition Code for Arithmetic Operations	2-42
Logical/Arithmetic Functions	2-43
Logical/Arithmetic 2 (XR, ZAR, OR, NCR, NR,	
OCR, DEC, ACYR, SR, AR, SCYR, INC)	2-46
Condition Code for Logical Operations	2-46
Condition Code for Arithmetic Operations	2-46
Logical/Arithmetic Functions	2-47
Load Immediate (LI)	2-50
Compare Immediate (CI)	2-52
Subtract Immediate/Add Immediate (SI, AI)	2-54
Test Mask (TM)	2-56
Set Bits On (SBN)	2-58
Set Bits Off (SBF)	2-60
Storage (LC, LM, STC, STM)	2-63
Instruction List	2-63
Main Storage Access by Control	
Processor	2-66
Control Processor Control of MSAR	2-67
MSP Bus Line Control	2-68
Main Storage Address Decoding	2-69
Register Control (WMPR, RMPR)	2-73
Instruction List	2-73
Storage Direct (L. ST)	2-76
Move Local Storage Register (MVR)	2-78
Hexadecimal Branch (HBN, HBZ)	2-80
Hexadecimal Move (SRL, SRLD, MZZ, MZN)	2-82
I/O Immediate	2-88
I/O Load or I/O Control Load (IOL, IOCL) .	2-94
I/O Sense or I/O Control Sense (IOS, IOCS)	2-96
Sense Interrupt Level Status Byte (SILSB)	2-98
Control Processor Load Function (MPLF)	2-99
Control Processor Sense (MPS)	2-99
I/O Storage (WTCL, WTCH, RDCL, RDCH,	
WTM, RDM)	2-100
Instruction List	2-100
Jump on I/O Condition (JIO)	2-104
FUNCTIONAL UNITS	2-108
Control Storage	2-109
Storage Address Register	2-109
Micro-Operation Register	2-109
X-Registers and Y-Registers	2-109

Arithmetic and Logic Units
Arithmetic and Logic Unit Gates
Arithmetic and Logic Unit Parity Predict 2-111
Storage Data Register
Local Storage Registers
Processor Condition Register
Storage Gate High/Low
Status 1 Gate
Status 2 Gate
ERROR CONDITIONS
Control Processor Checks
Processor Errors
Error Conditions (Second Level)
Machine Check Interrupt and Processor
Check Generation
MSP Hardware Checks
Control Processor Checks
SDR Parity Check Generation
MOR Parity Check
Storage Gate High/Low Parity Check
and Generation
ALU Gate High Parity Check and
Generation
ALU Gate Low Parity Check and
Generation
Control Storage SAR Parity Check 2-128
MSP Check Bits 1 and 2

Contents for Control Processor

This page intentionally left blank.

Control Processor

The control processor is made up of eight cards (16K-word storage positions that can be addressed): six cards for the processor and two cards for storage. The control processor:

- Controls system input/output (I/O) operations
- Controls assigning of tasks
- Moves data between the I/O devices and the main storage processor
- Handles some of the system control programming
- Moves data between the control processor and the I/O devices that use the channel
- Performs channel command functions (load and sense)
- Moves data between the control processor and the main storage processor
- Controls the main storage processor clock

Control storage contains 16K words; each word is 2 bytes long. Control storage can be addressed one word at a time. The control processor executes control storage instructions that are in control storage. The control processor functions are performed by the control storage program. The control storage program is loaded in control storage during the control storage initial program load (CSIPL) sequence. Control storage is loaded from the disk during normal operations or from the DIAGXX diskettes for diagnostic programs. The diagnostic programs control the routines and work done by transients that are not loaded at CSIPL time.

DATA FLOW AND CLOCKS

Data Flow

The control processor works with either 1 or 2 bytes of data at a time. The instruction being executed determines the number of bytes and the exact path of the data.

The 'system bus in' lines (channel SBI) from the channel are 1 byte wide plus parity (9 lines), but the byte can be either a high- or low-order byte in the control processor. If the data on the 'system bus in' lines is to be sent directly to the main storage processor, the control storage program sends 1 byte plus parity at a time. The control processor can also address main storage and main storage processor registers.

Parity Checking

Odd parity by byte is maintained in the data flow. To ensure correct parity, System/34 has checking and generating stations. Parity is checked at the storage address register (SAR), storage data register (SDR), storage gates high and low, arithmetic and logic unit (ALU) gates high and low, micro-operation register (MOR), and on the channel data lines.

Parity generating stations are supplied for the status register, the control panel, switch bytes, and other internally generated data pertaining to the control processor (storage gate high and ALU gates high and low).

Default Conditions

If no hardware conditions are specified for the control processor, the control processor has automatic selections and functions that are default conditions. The default conditions for the functional units in the control processor are as follows:

Unit	Default Selection
Storage gate high	LSR high
Storage gate low	LSR low
ALU gate high	ALU high
ALU gate low	ALU low
ALU function	X-register plus 1

**See Card Locations for the A-A1 Board in Section 1.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$

2-2

Clocks

System

The control processor has a 100-nanosecond oscillator that runs continuously, supplying the 10-megahertz frequency needed for the clock pulses. The rise of this oscillator output causes

T-Time and Phase A Relationship

'trigger A' to change condition, while the fall of this oscillator output causes the 'phase A' line to change condition.

Four control processor clock triggers (C, D, E, and F) are decoded to determine control processor clock times T0 through T6.

When the current instruction is decoded, the control processor determines if some of the control processor clock times are needed and controls the gating of the triggers to skip the times that are not needed.

I/O Attachment and Controller

The control processor has eight continuously running clocks that are used by the I/O attachments and controllers. Seven of these clocks can be stopped and started for diagnostic testing. The 100-nanosecond, free-running internal oscillator generates the phase A' line which, in turn, generates the other seven clocks. Clock triggers are used to count the time needed in the generation of the seven clocks. The times of the clocks are:

- 100 nanoseconds (oscillator)
- 1 microsecond
- 4 microseconds
- 1 millisecond
- 512 microseconds
- 16 milliseconds
- 131 milliseconds
- 1,024 milliseconds

These clocks, except for the 100-nanosecond oscillator, are sensed by the I/O immediate instruction. The clocks must be in a stop condition before a program can execute an I/O immediate instruction (B76R or B66R).

Storage

During instruction times T0 through T2, time T0 fetches the microaddress register (MAR) contents from the local storage register (LSR) stack and places this data into the storage address register (SAR). Time TO also starts the storage clocks for the storage access. During times T1 and T2, storage is addressed to read the instruction.

The storage clocks are also used during burst-cycle-steal-mode operations and base-cycle-steal-mode operations. When an I/O device activates the 'disk/dskt block processor clock' line or the 'base cycle steal request' line, the control processor completes the instruction it is working on and then goes to the T7 condition where it is held until the 'disk/dskt block processor clock' line is not active. The rise of the 'disk/dskt (load) BC req' line¹ while the 'disk/dskt block processor clock' line is active generates a 'storage cycle request' line which, in turn, generates time T8 (clock SAR and X reg); time T8 is then used to load the storage address in the main storage address register (MSAR) or control storage address register (SAR). After the operation is completed, the 'disk/dskt block processor clock' line is not active and the control processor clocks are permitted to run. (See Burst Cycle Steal Mode in the Channel section of this manual.) The control processor storage clocks can also control main storage. (See Control Processor and Main Storage Processor Communication in the Interrupts and Cycle Steal Requests section of this manual.)

Storage Access Timings

Storage Function

OPERATIONS

IPL-Customer User Programs

MSIPL Switch in Disk Position; CSIPL Switch in Disk Position: Initial program load (IPL) is completed in three major stages from the time the Load key is pressed until the SYSTEM CONSOLE message is displayed on the system console display screen. Loading is done from the disk. The three stages of IPL are as follows:

IPL				
CSIPI	_	MSIPL		
Stage 1	Stage 2	Stage 3		
Control storage is loaded three times to run diagnostic routines and check hardware circuits (see Section 99 of the 5340 System Unit Maintenance Manual).	The control storage pro- gram loaded includes IPL routines that overlay stage 1 and are executed (see the <i>Control Storage</i> <i>Logic Manual</i>).	Main storage initialization is loaded in three phases (see the SSP Logic Manual: System).		

Control Storage Initial Program Load (CSIPL)

Stage 1

Stage 1 of the control storage initial program load (CSIPL) sequence loads control storage three times and performs a basic system check of the control processor and I/O functions. Nine display lights (display byte 0, bits P0 and 0 through 7), and the Load light on the CE panel are set to on by pressing the Load key. These lights are reset to off at various stages of the CSIPL by both hardware and software as programs are loaded and executed.

First Load: Load 16 sectors (2K words) that contain control processor diagnostic routines 1 through 19.

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- 2. Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0000 through 07FF.
- 3. Reset the microaddress register (MAR) for machine check (local storage register hexadecimal OA) to hexadecimal 0000 and execute any machine check log routines for control processor errors using interrupt level 0.
- Software set the microaddress register 4. (MAR) for main program level to hexadecimal 0292, branch to hexadecimal 00FF, and execute instructions for diagnostic routines 1 through 19.

If all tests run correctly, the following lights are reset to off in the sequence: bits P0, 0, and 1 of display byte 0, the Load light, and bit 2 of display byte 0.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- Display byte 0 does not contain correct results.
- · The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).

See Error Indications or Display Light Sequence later in this section.

Second Load: Load 16 sectors (2K words) that contain control processor diagnostic routines 20 through 70.

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- 2. Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0800 through OFFF.
- 3. Software set the microaddress register (MAR) for main program level to hexadecimal 0800 and execute instructions for diagnostic routines 20 through 70.

If all tests run correctly, bits 3 and 4 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- · The Processor Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).

See Error Indications or Display Light Sequence later in this section.

Third Load: Load 28 sectors (3.5K words) that contain control processor diagnostic routines 71 through 79 and device wrap loader tests.

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- Load 3.5K words (7,168 bytes) into 2. control storage at hexadecimal addresses 0080 through 0E7F.
- 3. Software set the microaddress register (MAR) to hexadecimal 0080 and execute instructions for diagnostic routines 71 through 79.

The wrap loader calls in each device wrap test and executes that test before it calls in the next wrap test.

If all tests run correctly, bits 5, 6, and 7 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- · The Processor Check light is set to on.
- · The Console Check light is set to on.
- Display byte 0 does not contain correct results.
- · The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).
- · Error messages are stored in control storage at hexadecimal locations 07A0 through 07BF and may also appear on the system console display screen.

See Error Indications or Display Light Sequence later in this section.

Stage 2

Stage 2 of the control storage initial program load (CSIPL) sequence loads the control storage program that contains the routines necessary to load:

- The work station controller program
- The printer controller program
- · The main storage nucleus initialization program (#MSNIP)

Then, perform the following tasks:

- 1. Load control storage from disk by a burst-cycle-steal-mode operation.
- 2. Load 62 sectors (9.75K words) into control storage at hexadecimal addresses 0000 through 26FF.
- 3. Software set the microaddress register (MAR) to hexadecimal 1E00 and the control processor takes control.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- The Console Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).
- Error messages are stored in control storage at hexadecimal locations 07A0 through 07BF and may also appear on the system console display screen.

See Error Indications or Display Light Sequence later in this section.

Main Storage Initial Program Load (MSIPL)

Stage 3

Initialization of main storage completes the hardware and software tasks necessary to load the System Support Program Product (SSP) and ready the system for customer user program requests. The initialization is performed in three phases.

Phase 1: The main storage module (#MSNIP) initializes main storage. This module is the basic first step for all other modules that will be used during the main storage initial program load (MSIPL) sequence. The main functions of #MSNIP are to:

- · Initialize the system communications area
- Assemble the resident library format 1
- · Determine the bad main storage locations
- Initialize the transient/transfer control table
- Determine the disk addresses as needed
- · Set the command processor task control block (TCB) to indicate any bad 2K storage blocks
- · Increase the size of the assign/free area to permit assigning of main storage
- · Load and pass control to software module #MSTWA (phase 2)

Phase 2: Software module #MSTWA initializes the task and work areas in main storage. The main functions of **#MSTWA** are to:

- · Initialize the transfer control table for the resident routine
- · Initialize the task work area index
- Initialize the terminal unit blocks
- Initialize the task work areas for each work station
- · Assemble the device allocate table
- · Load and pass control to software module #MSIPL (phase 3)

Phase 3: This phase controls the last main storage initial program load (MSIPL) and includes a group of software modules under the control of software module #MSIPL. The main functions of #MSIPL are to:

- · Perform the main storage initial program load sign-on request
- Process the override information if necessary
- · Initialize the print spool function
- Complete the nucleus initialization

Before MSIPL is complete, the #MSIPL module updates the instruction address register (IAR) in the request block (RB) stack to pass control to the command processor resident router. The supervisor task attach transient then attaches a task control block (TCB) to run file rebuild. Control then passes to the control processor resident router. The IPL SIGN-ON message is displayed on the system console display screen while phase 3 is completing many of the last tasks.

Initial program load is complete when SYSTEM CONSOLE DISPLAY appears on the display screen or COMMAND DISPLAY appears at one of the work stations. The customer now has an operational system and can process job requests.

Errors that occur during main storage initial program load cause two types of not normal terminations (abends):

- Task-associated abends do not stop the system (except for the command processor task), but a dump of main or control storage is written to disk and only the error task is terminated while other tasks continue.
- · System-associated abends are so severe that they do not permit any task to continue. The system must be stopped immediately so the damage can be contained and diagnosed. Two types of processor checks that cause system-related abends are:
- Hardware generated-The specified error is shown in the command processor unit status word indicators. (Set the Mode Selector switch on the CE panel to the Dply Chks position.)
- Software generated-Activated by the System Support Program Product when an error occurs that cannot permit the operation to continue. (A display of selected local storage registers describes the error more fully.)

For detailed information on errors, see Appendix G. Troubleshooting Aids and Appendix I. Hardware Diagnostic Information in the Data Areas Handbook.

To run a complete test of the I/O devices, run the SYSTST program. SYSTST checks all the mechanical parts of all the I/O devices, the system program, and the I/O routines.

IPL Timing Sequence

Pressing and releasing the Load switch starts the control storage initial program load (CSIPL) sequence and the Load light is set to on. The CSIPL, along with the ALU high 'data 4' and the '150-ns tgr' lines, causes the 'transfer complete' line to be activated.

	FSL	200 ns	1									
CSIPL Sequence	raye											т0
Load Pressed	OP110											
Phase A	PC110					- { { -						
System Reset	PC022											
(special) System Reset	PC022	(re:	set MAR	to 0000)				(rese	t MC MA	R to 000	0)	
New CSIPL Cycle (to I/O)	PC022								-			
CSIPL Cycle (and) ALU High Data 4 (and) 150-ns Trigger (4,096 bytes transferred) ¹	PC022											
Transfer Complete Latch	PC022											
Run Latch OCD	PC400						-					
Block Processor Clock (BPC tgr) ²	PC510			<u> </u>		<u> </u>						
Load Indicator (light)	PC022					<u> </u>						
Data Transfer						<u> </u>						
CP Clocks Run ¹	PC110										,	

Note: The Load light continues to be set on if: (1) the block processor clock is not de-activated, (2) the disk is not ready, or (3) a processor check occurs.

¹This line cannot be probed.

² The 'block processor clock' line is active as shown for 62EH disk drives. The line will be pulsing if 62PC disk drives are installed.

Each light is reset to off and remains off as follows: **PO**¹ The adapter has received the 'load' signal and made active the 'disk/dskt block processor clock' signal to start data transmission by a burst-cycle-steal-mode operation. 0¹ The first cycle steal request was received and data transmission was started (write trigger). 11 The transmission of 4,096 bytes of data was completed. Load¹ The data transmission was completed with no data check. 2 The branch and branch-on-condition routines have completed. Parity checks are reset during routine 2. 3 The second load of control storage was completed and the first instruction was executed. 4 The control storage test was run correctly. 5 The third load of control storage was completed and the first instruction was executed.

7

Display Light Sequence (Byte 0) The Load light and all nine display lights (display byte 0 on the CE panel) are set to on when the operator presses the Load switch. When the Load switch is released, the control storage initial program load (CSIPL) sequence starts and 2K words are moved into control storage (from either the disk or a diskette). At the end of the move of 2K words, the Load light is reset to off if no error was sensed. The lights are reset to off as described below as the sequence advances. If CSIPL is not completed, the lights that represent the part of CSIPL that was not completed continue to be set on. The Mode Selector switch must be in the Proc Run position for the lights to appear when set to on (clock running). If during the CSIPL, the system has a processor check, and byte 0 bits P0, 0, 1, and 2 are reset to off, and either bit 3, 4, 5, 6, or 7 is set to on, this indicates that the control processor has failed in one of its bring-up diagnostic routines. To determine which routine failed (for routine numbers larger than 08), display work register 3 low. This register will contain the hexadecimal number that identifies the failing routine. See Section 99 of the 5340 System Unit Maintenance Manual for routine numbers.

2

6 The main storage test ran correctly. Start executing the wrap loader control program.

The System Support Program Product or the diagnostic supervisor was loaded. After loading, the initial program load sequence is complete and the system is ready to run user programs or diagnostic programs.

¹Reset by hardware controls. The other lights are reset by control storage instructions.

Disk Operation

When the operator presses the Load switch, the control storage initial program load (CSIPL) sequence does three partial control storage loads. Then, it loads the control storage program from cylinder 0, track 1, sector 0-3B, and takes control at hexadecimal location 1E00 of control storage.

The control storage program has routines that load and control the main storage initialization along with loading the System Support Program Product.

First Load: Hardware loads 2K words into control storage at hexadecimal locations 0000 through 07FF. These words contain the following:

	Words
Direct area (the unit definition table and addresses)	128
Control processor instruction tests	1,408
Disk loader	512

Second Load: The disk loader loads 2K words into control storage at hexadecimal locations 0800 through 0FFF. These words contain the following:

	Words	
Remainder of control processor instruction tests	1,792	
Control storage tests	256	

Addresses (Hex) 0000-0EFF

Addresses (Hex)

0000-007F

0080-05FF

0600-07FF

0F00-0FFF

Third Load: The disk loader loads 3.5K words into control storage at hexadecimal locations 0080 through 0E7F. These words contain the following:

			00D0
	Words	Addresses (Hex)	00F0
Main starses presses	640	0000 0275	0100
havin storage processor	040	0080-027F	01C0
Dasic lesis			01E0
Wrap loader and control	128	0280.0255	0200
	120	0200-021 L	0280
program subroutines			0298
Wrap loader and control	512	0255-0475	02D4
program	512	0211-0471	02E0
program			0300
Wrap device identification	256	0480-057E	0310
and location table	200		0320
			0330
Wrap device and unit	256	0580-067F	0340
definition table			0350
			0360
Additional subroutines	128	0680-06FF	0370
			0300
Reserved	128	0700-077F	0308
			0390
Wrap error storage area	128	0780-07FF	0340
			0380
Work station display routine	640	0800-0A7F	0700
and CSIPL wrap error me	ssage		0700
CSIPI dovido wrop tosta	1 024	0480-0E7E	
Con L device wrap lests	1,024		0/C0

Fourth Load: The disk loader loads 9.75K words into control storage at hexadecimal locations 0000 through hexadecimal 26FF. Control is passed to hexadecimal location 1E00.

For more information on control storage initial program load, see Section 1 of the Control Storage Logic Manual.

Load MSIPL: The last CSIPL load routine of the main storage fixed nucleus and the variable nucleus (under control of the control storage program) are loaded into main storage. The size of the variable nucleus will rely on the system configuration.

2000

0800

1000

Start

Address

(Hex)

0000

Function	Words Assigned (Decimal
System Communication Area	208
Termination Dump IOB	32
Termination Dump ACE	16
ACE Queue Headers	192
Multipurpose IOB	32
CS Transient Loader IOB	32
Command Processor TCB	128
Task Work Area Index	24
System Diskette IOB	60
Disk Error Request Block	12
#Library Format 1	32
Alter/Display ACE	16
Alternative Sector ACE	16
Statistical Logout ACE	16
Interval Timer ACE	16
MS Processor Check ACE	16
Swap ACE	16
MS Transient Loader ACE	16
Diskette ERP ACE	16
Error Task-to-Task ACE	16
Dispatcher TQE	8 .
Midnight TQE	8
Statistics Logging TQE	8
System Queue Space/Failure TQE	8
MSIPL Free Area	848
Minimum Trace Buffer	256
or Alter Display Work Area and	170
CSIPL Error Log Work Area	64
Main Storage Transient Area	2.048
Variable Nucleus	
Terminal Unit Blocks	
Command Processor Work Area	
Command Processor Matrix Image	
Command Processor Mainline	
Disk Data Management	
Task-to-Task Communications	
Device Allocate Table	
Command Processor Error ACE	
Command Processor Task-to-Task ACE	
Command Processor TCB	
Spool Intercept	
Snool Intercent Ruffer	
Spool Write Buffer	
Display Station Data Management	
Work Station Quara Space	
work Station Queue Space	
Jond Address for IPL Diskotts	
LOau Address for IF L Diskelle	

See the SSP Logic Manual: System.

Disk Sequence

Main Storage Fixed Nucleus (4K Bytes)	4K Bytes
Variable Nucleus	
— 32K Machine	14K Bytes
— 48K Machine	30K Bytes
— 64K Machine	46K Bytes
Reserved for User Area — 32K Machine	14K Bytes
—48K Machine —64K Machine	

This page intentionally left blank.

DODODÓCCOCOCOCOCOCOCOCOCOCOCOCOCOCC

62EH Disk Timing

¹ Data transfers operate like read data or read diagnostic operations. Sector hit is forced.

62PC Disk Timing

A into control storage.

During power on, the common adapter will perform a seek calibration sequence after the disk becomes ready and is recalibrated. There will be a 20-second delay from power on to the start of the CSIPL sequence.

head 0.

to seek to cylinder 0 and select

Twelve more data records are read

adapter reads data record 2 of that

CSIPL reads the first 16 data records (4,096 bytes) from head 0, cylinder 0 of disk drive

IPL-Customer SSP from Diskettes

MSIPL Switch in Diskette Position; CSIPL Switch in Disk Position: Initial program load (IPL) is completed in three major stages from the time the Load key is pressed until the system operator does another IPL from disk and IPL SIGN-ON and SYSTEM CONSOLE DISPLAY have been displayed on the system console display screen. This type of IPL is necessary when the customer must update his SSP with a new release or exchange an existing SSP because it has been damaged.

Stage 1

The control storage initial program load (CSIPL) sequence loads control storage three times from the disk and performs a basic check of the control processor and I/O functions. Stage 1 is the same as the IPL operation on customer user programs. Nine display lights (display byte 0, bits PO and 0 through 7) and the Load light on the CE panel are set to on by pressing the Load key. These lights are reset to off at various stages of CSIPL by both hardware and software as programs are loaded and executed.

Stage 2

CSIPL loads the control storage program from the disk that contains the routines necessary to load:

• The work station controller program

The printer controller program

The MSIPL switch in the Diskette position is checked by the program and causes two operations to occur: 1) the main storage initialization is not done as before (IPL of customer user programs); 2) the IPL sign-on display is bypassed.

Stage 3

The first load program from diskette is loaded into main storage and starts executing the load routines. The SYSTEM CONSOLE DISPLAY message gives prompting messages to the operator to control the inserting of all necessary diskettes as they are again loaded on the disk. If the correct sequence is followed and all diskettes have been loaded, the COMPLETE message informs the operator that the programs are all loaded and the system is now ready for a normal customer IPL. Some additional prompting messages inform the operator to: 1) reset the CSIPL and MSIPL switches to the Disk position and 2) press the Load key to perform an IPL for customer user programs.

Control Storage Layout

Control Storage Fixed Area

······································		
Contains Entry	1080	Immediate SVC
Addresses of Immediate		🖕 (status word table)
SVC Functions	10BF	
Contains Masks		Delayed SVC
for Setting		(status word table)
ACW Bits	10DF	
	10E0	System Event
		🖌 Counter Table
	10F7	
	10F8	Resource Timer
		📩 Table
	10FF	
Contains Entry	1100	ACW Entry Address
Addresses of Delayed		🖕 Table
SVC Functions	113F	
Searched by	1140	ACW 0
Action Controller	1141	
	1142	ACW 2
	1143	ĀCW 3
Contains an Entry for	1144	Transient Transfer
Each Main Storage Transient that		Control Table
Can be Called by an		(for main storage)
Explicit RIB	1193	
	1194	Control Storage
		Register Stack
	11BD	
Contains Control Storage	11BE	Control Storage
Transient Module IDs and		Transient Table
Sector Addresses	11F6	
	11F7	Interrupt Level 2
		Post Table
	<u>11FF</u>	- -

Main Storage Layout

System Cor	mmunication Area	0000		
		ODEE		
Contains A ACE, TCB, for the Var See the Sys in Section <i>Logic Man</i>	ddresses of 1st TQE, and so on, on Queue ious Functions stem Queue Headers Table 5 of the <i>Control Storage</i> <i>ual.</i>	0100	Queue Headers Addr of ACE for Disk (example)	
Points to 1 for the Wo	st Available Space rk Station Queue	0180		
Points to 1 in System	st Available Space Queue Space	0182		
All ACEs, a Given Fu Together Example:	TUBs, and so on, for Inction are Chained The 1st Disk Input/Output / Contains a Pointer to the 2n Disk Input/Output ACE, and on.	ACE	ACE for Disk (example) System Queue Space ACE for Disk (example) Available Queue Space Available Work Station Queue Space ACE for Work Station (example)	
affranciae man n <u>a s</u> a ang ang ang ang ang ang ang ang ang an				

IPL-CE Diagnostics

MSIPL Switch Not Used; CSIPL Switch in Diskette Position: When the Load switch is pressed, the control storage initial program load (CSIPL) sequence does three partial loads and then loads the diagnostic control program. The four control storage loads are as follows:

IPL					
	CSIPL		· · · · ·		
Load 1	Load 2	Load 3	Load 4		
Loads control processor diagnostic routines 1-19 and executes	Loads control processor diagnostic routines 20-70 and executes	Loads control processor diagnostic routines 71-79, then executes and wraps	Loads CE diagnostic supervisor and executes		

See Section 99 of the 5340 System Unit Maintenance Manual.

Load 2: The diskette loader loads 2K words (8 Load 1: Hardware loads 2K words (16 sectors from track 0) into control storage at sectors from track 1) into control storage at hexadecimal addresses 0000 through 07FF. hexadecimal addresses 0800 through 0FFF. These words contain the following information These words contain the following information for control processor diagnostic routines 1 for control processor diagnostic routines 20 through 19: through 70:

Word

Direct area (the unit definition	128
table and addresses)	

Control processor instruction 1,408 tests

Diskette loader

Then, perform the following tasks:

- 1. Load control storage from diskette by a burst-cycle-steal-mode operation.
- 2. Load 2K words (4,096 bytes) into control storage at hexadecimal addresses 0000 through 07FF.
- 3. Software set the microaddress register (MAR) to hexadecimal 0000 and execute the instructions for diagnostic routines 1 through 19.

If all tests run correctly, the following lights are reset to off in the sequence: bits P0, 0, and 1 of display byte 0, the Load light, and bit 2 of display byte 0.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).

See Error Indicators or Display Light Sequence in this section.

ds	Addresses (Hex) 0000-007F		Words	Addresses (Hex)
		Remainder of control proce instruction tests	essor 1,792	0800-0EFF
8	0080-05FF	Control storage tests	256	0F00-0FFF

512 0600-07FF

Then, perform the following tasks:

- Load control storage from diskette by an 1. interrupt-level-mode operation.
- Load 2K words (4,096 bytes) into control 2. storage at hexadecimal addresses 0800 through OFFF.
- 3. Software set the microaddress register (MAR) to hexadecimal 0800 and execute the instructions for diagnostic routines 20 through 70.

If all tests run correctly, bits 3 and 4 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- · The Processor Check light is set to on.
- Display byte 0 does not contain correct results.
- The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).

See Error Indications or Display Light Sequence in this section.

Load 3: The diskette loader loads 3.5K words (track 2 and six sectors of track 3) into control storage at hexadecimal addresses 0080 through OE7F. These words contain the following information for control processor diagnostic routines 71 through 79 and device wrap tests:

	Words	Addresses (Hex)
Main storage processor basic tests	640	0080-027F
Wrap loader and control program subroutines	128	0280-02FE
Wrap loader and control program	512	02FF-047F
Wrap device identification and location table	256	0480-057F
Wrap device and unit definition table	256	0580-067F
Additional subroutines	128	0680-06FF
Reserved	128	0700-077F
Wrap error storage area	128	0780-07FF
Work station display routine and CSIPL wrap error message	640	0800-0A7F
CSIPL device wrap tests	1,024	0A80-0E7F

Then, perform the following tasks:

- 1. Load control storage from diskette by an interrupt-level-mode operation.
- 2. Load 3.5K words into control storage at hexadecimal addresses 0080 through 0E7F.
- 3. Software set the microaddress register (MAR) to hexadecimal 0080 and execute the instruction for diagnostic routines 71 through 79 and device wrap tests.

If all tests run correctly, bits 5, 6, and 7 of display byte 0 are reset to off.

To indicate a failure, one or more of the following occur:

- The Processor Check light is set to on.
- The Console Check light is set to on.
- Display byte 0 does not contain correct results.
- · The system goes into a loop during CSIPL (display byte 0 lights show the sequence of advance).
- · Error messages are stored in control storage at hexadecimal addresses 07A0 through 07BF and may also appear on the system console display screen.

See Error Indications or Display Light Sequence in this chapter.

Load 4: The diskette loader loads 15.75K words (8 tracks) into control storage at hexadecimal addresses 0000 through 3EFF. These words contain the diagnostic supervisor necessary to run selected diagnostic device tests.

Then, perform the following tasks:

- 1. Load control storage from diskette by an interrupt-level-mode operation.
- 2. Software set the microaddress register (MAR) to hexadecimal 0000 and execute the instructions to initialize the diagnostic supervisor.
- When the load operation is complete, the З. MAIN MENU message appears on the system console display screen.

Diagnostic options may be selected by the CE by using the address switches on the CE panel. For various switch settings and options, see CSIPL Switch Options later in this section.

Diskette CSIPL Diagnostic Sequence

Diskette Timing (Level 1 Attachment)

The following charts show the sequence of events on a diskette control storage initial program load operation.

For all scope probes, ground A-A2L2J12 (DL510) + CSIPL to Dskt. Grounding this pin prevents the reset of the 'seek counter' latch and can be used to hold the head on one track.

Set the CSIPL switch to the Diskette position.

Set the Mode Selector switch to the Insn Step/Dply LSR position.

Set the Store Sel switch to the Ctl position and the Add Comp switch to the Stop position.

Set the four Address/Data switches to zero.

Sync scope Ext/DC (-) A-A2L2G07 20 ms/div (DL110) - Dskt Cyc Steal.

Press the Load switch repeatedly.

Line Name	FSL Pag	0	20 	40 	60 	80	100 	120 	140 	160 	180 	200
33FD Index SS	DX010	L										
CSIPL Cycle	PC022											
Block Proc Clock	PC510	-								-		
All CRC Generate Pos Off ¹ Track 0	DL420	Ń			2K	Words	<u></u>		M_]	₩	
All CRC Generate Pos Off ¹ Track 4*	DL420	5	12	512	512 1	512 5	i12 γ 5	i12 γ 5	12			Γ
Byte Sync Found ¹	DL220											
Dskt Cyc Steal	DL110	M	mm		WWW	ww	WWW	www	W			
Dskt Sel (Low) Addr and Inc	cr DL110	W	WWW	MMW	WW	WW	MM	MM	M			
Storage Function	PC142	W	WW	WW	MM	WW	\mathbb{W}	ŴŴ	W			
CS Write Pulse Low	PC012		WW		MMM	$\mathcal{M}\mathcal{M}$			M			
CS Write Pulse High	PC012	_N	WW	WWW	WWW	ww	ww	\sim	W			
Data 4 (ALU) ¹	PC260					Tł da	nis will Ita tran	stop Isfer. –	-/			
Transfer Complete	PC022	 ,							-γ			
Load Indicator	PC022											
Dskt Standard Read Data	DM010	_₩	WWW	*****				WWW	WL_		W	L
33FD Raw Read Data	DX010	М	WWW		www	www	WW	www	ww	WWW	WW	MM
2F Osc Data Window	DM020	W	MW		www		MMM	MM	MM	MM	MM	W

*Manually crank head to track 4.

be pr

`d.

े∖s car∕′

These

Storage Cycle for Diskette

Jumper A-A1H2S07 (A-A1E2S07 on level 2 board) to ground (+ carry in) (PC260), which causes all data to be loaded into control storage at hexadecimal location 0000.

Line Name	0 FSL Page	0 100 200 30
Storage Function	PC142	
CSY Trigger to Channe	el PC030	
Write Trigger ¹	PC012	
150-ns Trigger ¹	PC012	
CS Write Pulse High	PC012	
CS Write Pulse Low	PC012	
CSX 1	PC020]
Dskt Cyc Steal	DL110	
Dskt DBI (any bit)	DL110	
MPXPO Data Out (any bit)	DL010	

Jumper A-A2L2J12 to ground (DL510).

Set the CSIPL switch to the Diskette position.

Sync scope Ext/DC (-) A-A1F2J05 (A-A1C2J05 on level 2 board) - storage function 100 ns/div, 2V/div.

gate CSIPL tch and adr & inc'	Reset 'read data com- mand' latch, 'byte sync found' latch, and 'AM byte good' latch
and the second sec	· · · · · · · · · · · · · · · · · · ·

C C C C C C C CO C C C C C C CO 1

Diskette Timing (Level 2 Attachment)

The following charts show the sequence of events on a diskette control storage initial program load operation.

Set the CSIPL switch to the Diskette position.

Set the Store Sel switch to the Ctl position and the Add Comp switch to the Stop position.

Set the four Address/Data switches to zero.

Sync score Ext/DC (-) A-A2L2G07 10 ms/div (72MD) or 20 ms/div (33FD/53FD) (FL110)-Dskt Cyc Steal Req.

Press the Load switch repeatedly.

Storage Cycle for Diskette

Jumper A-A1H2S07 (A-A1F2S07 on level 2 board) to ground (+ carry in) (PC260), which causes all data to be loaded into control storage at hexadecimal location 0000.

Set the CSIPL switch to the Diskette position.

		0	10 20	20 40	30 60	40 80	50 100	60 120	70 140	80 160	90 180	100 200	72MD 33FD/53FD
Line Name	FSL Page	,							I	1		ł	
33FD Index SS	FL560	L											
CSIPL Cycle	PC022	_											
Block Proc Clock	PC510		<u></u>										
Dskt Cyc Steal Req	FL110	7	*****	WWW	WWW	WWW	MMM	WWW	W		j,		
Dskt Sel (Low) Addr and Inc	or FL110	γ	WWW	WWW	WW	WW	VWW	WWW	M				
Storage Function	PC142				$\mathbb{W}\mathbb{W}$	WW	\sim	MMM	W				
CS Write Pulse Low	PC012		WWW	WWW	MIM	WW		www	M				
CS Write Pulse High	PC012		WWW	WWW		MW	ŴŴ		M			· · · · ·	
Data 4 (ALU) ¹	PC260					d	ata tra	nsfer	<u>+</u>]				
Transfer Complete	PC022								-γ-				
Load Indicator	PC022												

Line Name	0 FSL Page	200	400 	600
Storage Function	 PC142		केवर विस कीकार्तन्त्र के सुर्वेत सहेतन्त्र कर निक	
CSY Trigger to Chann	el PC030]		-
Write Trigger ¹	PC012 _			\
150-ns Trigger ¹	PC012 _			
CS Write Pulse High	PC012 _			В
CS Write Pulse Low	PC012 _			W_B
CSX 1	PC020 _			hu
Dskt Cyc Steal Reg	FL110 _	na na ang mang mang mang mang mang mang		

¹These lines cannot be probed.

Sync scope Ext/DC (-) A-A1F2J05 (A-A1C2J05 on the level 2 board) - storage function 200 ns/div, 2V/div.

CCCC

Press the Load switch.

Error Indications

If you press the Load switch and the correct display does not appear in the specified time (less than 90 seconds) and the display lights do not reset to off, you should suspect a machine failure.

Check the setting of the CE panel switches; then, check that the correct diskette is inserted in the machine correctly.

There are two types of machine errors: wrap test errors and processor check errors.

Wrap test errors: If the control storage initial program load diagnostic wrap test finds an error in a device adapter, the system console usually can be used to display the error as shown.

If this display appears, the same information is in the main program level work registers (1-6) and in control storage at hexadecimal locations 07A0-07BF.

If the display option is not taken, the wrap test errors remain in control storage at hexadecimal locations 07A0-07BF.

1 WRAP ERROR DISPLAY

2 AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD 3 AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD AABBCCDD 4 PRESS 'ENTER' TO CONTINUE SYS-0019 ERROR

Note: Initial program load uses only the top four lines on the console display.

Header decode for wrap errors is as follows:

AA	Device Identification
BB	Device Address
CC	Unit Address
DD	Wrap Module Number (for
	diskette and line printer, DD
	equals the TU that failed)

Device

Wrap Error AABBCCDD

020000XX	Main Storage Processor
1080XXXX	MLCA controller
525000XX	1255 Magnetic Character Reader
80XX01XX	Data Communications
82XXXXXX	Multiline Communications Adapter
A0A000XX	62EH Disk Drive A
A0B000XX	62EH Disk Drive B
A1A000XX	62PC Disk Drive A
A1A001XX	62PC Disk Drive B
A1A002XX	62PC Disk Drive C
A1A003XX	62PC Disk Drive D
COCOXXXX	Work Station
CAC000XX	Work Station Attachment
D0D000XX	Diskettes (Level 1)
D1D000XX	Diskettes (Level 2)
E0E000XX	5211 Line Printer
E2E000XX	3262 Line Printer

Processor Check Errors: The control storage initial program load diagnostic tests find an error and force a processor check (processor check halt instruction). The low-order byte of work register 3 contains the number of the failing routine when the failure occurs in routine 09 or above. Check the display lights (byte 0 on the CE panel) to determine when the failure occurred. See Section 99 of the 5340 System Unit Maintenance Manual to determine which specific function of the machine failed.

A control processor check during normal operation (running under control of SSP) will do a log operation of that error under the following conditions and sequence:

- 1. A control processor check occurs during normal operation (interrupt level 0 instruction stop condition).
- 2. The system operator does an IPL with no processor check (problem is intermittent).
- 3. Error information (from normal operation) is stored in control storage while executing the CSIPL (first load-2K word control processor diagnostic routines 1 through 19).
- 4. After the system operator has completed the IPL sign-on message task, the error information is logged from control storage to one complete sector on the disk.
- 5. IPL is completed with the log information on the disk as shown in the following error history table.

A main storage processor check causes an interrupt level 5 to the control processor and the error log operation is then executed by the control processor. The following information is contained in the error history table:

ERRO	DR H	HISTO BYT	RY T	ABLE	OR CO	ONTROL	_ PRO	CESSO	२						
PCR	ΙL	0	1	WRO	WR1	WR2	WR3	WR4	WR5	WR6	WR7	MAR	MAB	DATE	TIME
							HEX .							YYMMDD	HHMMSS
C 2	07	24	00	0000	24C2	0A02	8000	0000	674D	9200	2020	0000	21B0	770518	150200
C2	07	04	00	0000	04C2	0A02	8000	0000	674D	9200	2020	0000	21B0	770518	145500
92	07	08	00	A2F1	0892	1140	0200	0000	0000	0000	0006	A2F2	2144	770518	145200
C2	00	02	00	1000	02C2	1CAC	3800	0000	0000	A200	0008	159B	1597	770518	144800
01	07	80	00	00E0	8001	00F7	0080	0000	0000	9200	0008	0000	21AA	770518	144600
Α2	07	02	00	23FF	02A2	033D	4078	1040	1043	1001	0040	23B0	231C	770518	143800
91	07	BO	00	0000	B091	EEA2	2000	0000	0041	A228	2027	0152	0146	770518	111500
92	07	08	00	88C0	0892	0000	0080	0000	0000	9228	0008	88C1	21AA	770518	101500
C2	07	38	00	011C	38C2	BEA3	BEA3	BEA3	BEA3	0000	227E	227E	21A9	770518	083400
Α2	07	20	00	0840	20A2	5AFA	A2F1	0000	0000	0000	2021	21D0	21AE	770518	082500
Α2	07	20	00	0E00	20A2	0141	BEA3	0000	0000	0000	0000	21A8	21B0	770518	081500
22	07	08	00	0177	0822	0000	0000	21B4	B180	21B5	C3F2	F3B5	21B4	770518	080300
***	****	****	****	*****	*****	*****	k END	OF T/	ABLE >	*****	*****	*****	*****	*******	******

CR Processor Condition Register
L Interrupt Level
yte 0 Control Processor Check Byte Information
yte 1 Channel Check Byte Information
/RO
/R1
/R2
/R3 Contents of the Work Begisters Specified by the Interrupt Level Value
/R4 (
/R5
/R6
/R7 /
A D Mine and here. Designed and and a financial intermediate in a

MAR Microaddress Register contents of present Interrupt Level MAB Microaddress Backup Register contents of present Interrupt Level

Note: The 16 most current errors are stored.

IAR Instruction Address Register ARR Address Recall Register XR1 Index Register 1 XR2 Index Register 2 OP1 Operand 1 OP2 Operand 2 ATRS/IR Address Translation Register used by the Instruction Address Register ATRS/01 Address Translation Register used by Operand 1 ATRS/02 Address Translation Register used by Operand 2 **OP** Operation Code Q Q-byte Register Contents PROG/MR Program Mode Register PROG/SR Program Status Register STATUS/0 Main Storage Processor Register Status Byte 0 STATUS/2 Main Storage Processor Register Status Byte 2 STATUS/3 Main Storage Processor Register Status Byte 3

Note: The 16 most current errors are stored.

This page intentionally left blank.

CSIPL Swit	ch Options	EE00	Loads and executes the main storage processor MAP diagnostic integration	Option for FFXX Device Address
See Section	99 of the 5340 System Unit Manual for references given below		programs (see paragraph 99-015).	(Hexadecimal)
CSIPL option the Address	/Data switches are:	FF00	Bypasses all wrap tests and skips control processor tests that are affected by the	00
Address/Da Switch	nta		system configuration. Used to do a special load from a diskette that has not been	02
Settings	Function Performed		diskette from another system with a	52
F100	Bypasses wrap tests and executes work station MDI MAPs (see paragraph 99-062).		different storage or system configuration is used. Also use this setting if additional storage is being added to the system and	80
F101	Bypasses wrap tests and executes work station TU select (see paragraph 99-064).		the CE diskette has not yet been given the correct configuration.	82
F180	Runs work station diagnostics and prints results	0000	Normal position-runs all wrap tests.	Δ1
1100	(step mode) (see paragraph 99-062).			PO
F181	Bypasses wrap tests, executes work station TU select, and prints results (see paragraph 99-064).			CO
F800	Loads the diagnostic supervisor from disk (use this option to run MDI tests for the diskette).			СА
5404				DO
FAUI	the Address/Data switches to FB01 or FC01.			EO
FA02	Stops after the second load and permits changing of the Address/Data switches to FB02 or FC02.			
FB01	Loops on CSIPL number 1 and stops on errors.			
FB02	Loops on CSIPL number 2 and stops on errors.			
FC01	Loops on CSIPL number 1 and bypasses errors.			
FC02	Loops on CSIPL numbers 1 and 2 and bypasses errors.			
FDXX	Loops on CSIPL routine xx (routines 9 through 64 only) (see paragraph 99–020).			
FEXX	Loops on CSIPL routine xx and bypasses errors (except errors in routines that test control storage or main storage) (see paragraph 99-020 for a list of valid routine xx numbers).			
FFXX	Bypasses selected wrap tests indicated for the device with an identification of xx (see paragraph 99-060 for a complete list as shown on this page).			

Functions

Bypasses configuration tests and wrap tests

Main storage processor

1255 (MICR)

Communications

MLCA

62EH disk A wrap test

62PC disk A, B, C, or D wrap test

62EH disk B wrap test

Work station wrap test

Work station controller wrap test

Diskette wrap test

Printer wrap test

.

Instructions

The System/34 control storage program performs the following functions:

- Reads, decodes, and operates on data and system instructions in main storage that are not executed by the main storage processor. The supervisor call (SVC) instruction executed by the main storage processor sets interrupt level 5 in the control processor.
- Performs I/O operations for the system attachments.
- · Performs console operations.
- · Performs diagnostic operations.
- Performs task management functions.

The control storage program performs functions in the system operation. Each function has many instruction steps and may use several routines or part of a routine to complete its task. These instructions are executed in a specific sequence. To change the sequence, a branch-and-link instruction can be used to permit branching to another routine. A branch-and-link instruction stores a link address, which is the address of the next sequential instruction to be executed in the branched-from routine. The program can then return to the instruction after the branch-and-link instruction. Jump instructions and branch instructions are also used to change the instruction sequence. These instructions are described later in this section.

Each instruction is a 16-bit word that represents a machine instruction. This instruction has specific fields specified for controlling data flow of the system. A zone digit is the hexadecimal value represented in the 4 high-order bits (bits 0-3) of a byte. A numeric digit is the hexadecimal value represented in the 4 low-order bits (bits 4-7) of a byte. System/34 uses 20 basic instructions. Bits 0-3 of the instruction identify the type of instruction. The 20 instructions are described under *Instruction Execution* later in this section.

Instruction Times

Instructions are executed in two times: an instruction fetch time (I-time) and an execution time (E-time). During I-time, the control processor:

- Loads a control storage address from the microaddress register (MAR) into the storage address register (SAR).
- Addresses the control storage address in SAR.
- Gates the instruction from this address into the storage data register (SDR) and micro-operation register (MOR).
- · Adds 1 to the microaddress register (MAR).

For specific events that occur during the execution time, see the specific instruction description later in this section.

Sequence and Timing

A printout of the instructions may be obtained by using the diagnostic utilities program (see paragraph 99-055 of the 5340 System Unit Maintenance Manual). Module name identification may be indexed by using Section 4 of the Control Storage Logic Manual. Shown below is a sample printout.

Hex XXXX

Select LSR (MAR) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Stg Function Storage Cycle¹ CSX CSY Clock MOR Clock SDR Set ALU Mode (X + carry) Carry In ALU Gate High/Low from ALU High/Low Write LSR High/Low (MAR) Clock SAR Check Clock SDR Check Clock Stg Gate Check Clock ALU Gate Check

¹This line cannot be probed.

Note: SDR check after T2 actually is gated during E-cycle time T3.

Instruction Loop

00	50FF	ТМ
01	50FF	тм *
02	0000	В

Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A'
		cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

. 0

Routine Printout	Module Name				
	Control	Storage Routine Name			
	SHC1 HCSTG	- MACROPROCESSOR	STG ERROR REC	OVERY	
	ERR LOC OBJ	STMT SOURCE ST	ATEMENT		
		6823 ********* 6824 * 5 6825 ********	**************************************	********* GET IAR AN ********	**************************************
	1F28 A765 1F29 AF08 1F2A 4A97 1F2B 4297 1F2C 7280 1F2D EA71 1F2E C763 1F2F 2638 1F30 2F00	6827 HCIARSTG 6828 6829 6830 6831 6832 6833 6833 6834 6835	LI WR7(L),HI LI WR7(H),HI RMPR O(WR7),WI RMPR O(WR7),WI DEC WR2 ST D1HCSTG@ CI WR7(L),HI JZ HCSTGCOR RETRN	P1AR@ CXLT1 R2(H),-1 R2(L),-1 ,WR2 PIAR@-2	TEST IF SUPPOSED TO CORRECT BYTE JUMP IF YES
		6837 ********* 6838 * 5 6839 * 6 6840 * 6 6841 * F 6842 * 6842 * 6843 * 6844 * 6845 * 6846 ********	**************************************	******** RESTORE A THIS CO CTED BYTE S ON ENTRY CORRECTE DESTINAT ADDRESS	**************************************
	1F31 4A97 1F32 4297 1F33 72D3 1F34 672F 1F35 4AD7 1F36 42D7 1F37 0FD2	6848 HCRSTIDX F 6849 F 6850 7 6851 7 6852 7 6853 7 6854 1	RMPR O(WR7),WF RMPR O(WR7),WF AR WR2,WR3(L ZAR WR7(L),WF WMPR O(WR7),WF B HC3CONT	R2(H),-1 R2(L),-1 L) R7(H) R2(H),-1 R2(L),-1	READ INDEX REGISTER ADD DISPLACEMENT TO INDEX REG VALUE MOVE @ OF DESTINATION REGISTER RESTORE DESTROYED REGISTER
	Mach in Control Storage	Statement Sequence No e Code Address (2 bytes)	umber	Sourc Name Opera Opera Comn Colun Asteri	e Statement: Field—Column 1, length 8 htion Field—Column 10, length 5 and Field—Column 16, length 56 (if used) nent Field—Column 40, length 32 nn 72 is blank isk (*) in column 1 indicates a comment

Mnemonic Listing

Instruction	Mnemonic	Operation Code	Function or Instruction Definition	
Branch	В	0		
Branch and link	BAL	1		
Jump on condition		2	Bits 4-7 specify	
(includes a group		1	the jump condition	
of instruction sets)				
Jump on carry	JCY		0000	
Jump on high	JH		0001	
Jump on low	JL		0010	
Jump on equal	JE		0011	
Jump on positive	JP	ļ	0100	
Jump on all ones	JO		0100	
Jump on negative	JN		0101	
Jump on mixed	JM		0101	
Jump on zero	JZ	· ·	0110	
Jump on flag	JFLG		0111	
Jump on service	JSR		1000	
request				
Jump on not high	JNH		1001	
Jump on not low	JNL		1010	
Jump on not equal	JNE		1011	,
Jump on not	JNP		1100	
positive	ININI		1101	
Jump on not	JININ		1101	
	1017		1110	ana di kana di Sana di Kana di
Jump on not zero		ł		
lump on input/output		$\frac{1}{2}$	1111	
condition	310	5		
Input/output storage		4	Bit 8 = 0	
Write to control	WTCH/L	1		
storage high/low				
from input/output				
Read from control	RDCH/L			
storage high/low				
to input/output				
Write to main storage	WTM			
from input/output				
Read from main storage	RDM			
to input/output		<u> </u>		
Storage		4	Bit 8 = 1	
Load from	LC	•		
control storage				
Store to	STC			
control storage	0.0			
			and mentioned and a second second and a second s	
		*		

Instruction	Mnemonic
Storage (continued)	
Load from	LM
main storage	
Store to	STM
main storage	
Begister control	
Load main	WMPR
storage processor	
register	×.,
Sense main	RMPR
storage processor	
register	
Test mask	ТМ
Logical/arithmetic 1	
Zero and add	ZAR
register	
Exclusive OR	XR
OR	OR
AND register	NR
AND complement	NCR
OR complement	OCR
Decrement	DEC
register by 1	
Add registers	ACYR
with carry	CD
Subtract	SK
register	٨B
Shift laft	
	SEL
Subtract	SCYB
with borrow	00111
	INC
register by 1	
Logical/arithmetic 2	
Zero and add	ZAR
register	
Exclusive OR	XR
OR	OR
AND register	NR
AND complement	NCR
OR complement	OCR

Operation Code	Function or Instruction Definition
L .	
4	Bit 8 = 1 Bits 9-12 = 1010
ł	Bits 9-12 = 0010
5	
6	Bits 8-11 specify the function 0 0 1 0
	0001 0011 0110
	0101 0111 1000
	1001
	1100
	1 0 1 1 1 0 1 1
	1110
	1111
7	Bits 8-11 specify the function 0 0 1 0
	0001 0011 0110 0101 0111

Instruction	Mnemonic	Operation Code	Function or Instruction Definition	
Logical/arithmetic 2 (continued)				
Decrement register by 1	DEC	7	1000	
Add registers with carry	ACYR		1001	
Subtract register	SR		1100	2 bytes from 2 bytes
	SR		1010	1 high or low byte from 2 bytes Bit 12 = 0: Low Bit 12 = 1: High
Add register	AR		1011	2 bytes to 2 bytes Bit 12 = 0: Low Bit 12 = 1: High
	AR		1101	1 high or low byte to 2 bytes
Shift left logical double	SLLD		1011	
Subtract with borrow	SCYR		1110	
Increment	INC		1111	
register by 1		<u>+</u>		
Set bits off	SBF	8		
Set bits on	SBN	9		
Load immediate	LI	А		
Input/output immediate		B	Bits 8-11 speci the function	fy
Input/output load	IOL		0000	
Input/output control load	IOCL		1000	3
Input/output sense	IOS		0100	
Input/output control sense	IOCS		1100	
Control processor load function	MPLF		1010	
Control processor sense	MPS	<u> </u>	0110	
Compare immediate	CI	С		
Subtract immediate	SI	D		
Add immediate	ĄΙ	D	Assembler mne onlv	emonic

Instruction	Mnemonic	Operation Code	Function or Instruction Definition
Storage direct		E	
Load register	L		Bit 4 = 0
			Bit 8 = 0
Store register	ST	★.	Bit 4 = 1
	an a deservation of the second se		Bit 8 = 0
Move local storage register	MVR	E	Bit 8 = 1
Hexadecimal branch	· · · · · · · · · · · · · · · · · · ·	F	
Branch numeric	HBN		Bit 15 = 0
Branch zone	HBZ	<u>+</u>	Bit 15 = 1
Hexadecimal move	annan gila a sha an	F	
Shift right logical	SRL		Bits 9, 10 = 00
Shift right logical double	SRLD		Bits 9, 10 = 01
Move zone to zone	MZZ		Bits 9, 10 = 10
Move zone to numeric	MZN	. ↓	Bits 9, 10 = 11

INSTRUCTION EXECUTION

Signals, Gating Lines, and Logical Functions for Timing Charts

Local Storage Registers (High and Low)

- Selected by the 'LSR address bit 0-5' lines
- See FSL page PC230
- Active and can be probed at the T-time(s) when an LSR is selected for reading or writing
- Loaded by the 'write LSR high' or '-write LSR low' lines

Storage Gates (High and Low)

- Selected by the 'stg gt lo/hi bit 0-1' lines
- See FSL page PC230
- Active and can be probed at the T-time(s) when the storage gates are ready and receiving input from the system
- Decoded as follows:

Storage Gate High		Storage Gate Hi Bit 0 Fixed A-A1H2G03 (A-A1E2G03 on Level 2 Board) Storage Gate Hi Select Bit 1 A-A1H2G08 (A-A1E2G08 on Level 2 Board)					
Bit 0	Bit 1	Register Gated Through					
0	0	LSR High 0-7,P (G1)					
0	1	SDR High 0-7,P (G2)					
1	0	SBI Bits 8-15,P (G3) SBO High 0-7,P					
1	1	Bits 0-3 X-Reg Hi (G4)					
		4-7 SDR /					
		P Storage Gate Hi Generate P Bit					
Storage	e Gate Low	Storage Gate Lo Bit 0 A-A1H2D06 (A-A1H2D06 on Level 2 Board) Storage Gate Lo Bit 1 A-AH2D11 (A-A1E2D11 on Level 2 Board)					
Bit 0	Bit 1	Register Gated Through					
0	0	LSR Low 8-15,P (G1)					
0	1	SDR Low 8-15,P (G2) (SPO Low 8-15 P					
1	0	SBI Bits 8-15,P (G3)					

Micro-Operation Register and Storage Data Registers (High and Low)

- · Clocked by the 'CSY trg new' line
- See FSL page PC146

X-Registers (High and Low)

• Clocked by the 'clock SAR and X reg' line

• See FSL page PC210

Y-Registers (High and Low)

- Clocked by the 'T3 and phase A' line
- See FSL page PC210

Status 1 Gate

- · Gated out by selecting the 'status function 0-1' and 'status sel 0-2' lines
- See FSL page PC314
- Decoded as follows:

Status Gate High					
Card 0	Function 01	Select 012	Lines Gated Through		
0	00	000	Display Storage Gate High		
0	00	001	Spare		
0	00	010	Display Control Processor Check		
0	00	011	Display Processor Condition Register (PCR)		
0	00	100	Default Display Events (if not single cycle)		
0	00	101	Sense Console Switches 1 and 2		
0	00	110	Sense Control Processor Check		
0	00	111	Sense Processor Condition Register (PCR)		
0	01	XXX	I/O Control		
0	10	XXX	Clock Processor Condition Register (1-3)		
0	11	XXX	Clock Processor Condition Register (1-7)		
1	1X	XXX	Display Storage Gate High		
1	0X	X01	Display Console Switches 1 and 2		
	11	111			

A-A1J2B05 (A-A1F2B05 on Level 2 Board) A-A1J2D07 (A-A1F2D07 on Level 2 Board) A-A1J2D05 (A-A1F2D05 on Level 2 Board) A-A1J2D04 (A-A1F2D04 on Level 2 Board) A-A1J2B03 (A-A1F2B03 on Level 2 Board)

Status 2 Gate

- Gated out by selecting the 'status function 0-1' and 'status sel 0-2' lines
- See FSL pages PC402 and PC404
- Decoded as follows:

Statu	s Gate Low	,			
Card 0	Function 01	Select 012	Lines Gated Through		
1	00	X00	Sense Console Status		
1	00	X01	Sense/Display Conso	le Switches 3 and 4	
1	00	X10	Sense Clock Low		
1	00	011	Sense Clock High		
1	00	111	Sense Interrupt Level Backup Byte		
1	01	XXX	I/O Load		
1	1X	XXX	Gate Switches 3 and 4 (bits 4-7) PC422		
				A-A1K2M06 (A-A1G2M06 on Level 2 Boar	
			Status Sel 1	A-A1K2M05 (A-A1G2M05 on Level 2 Board	
		L	Status Sel O	A-A1K2P06 (A-A1G2P06 on Level 2 Board	
				A-A1K2P04	

Status Function 0

(A-A1G2P04 on Level 2 Board)

(A-A1G2G12 on Level 2 Board)

A-A1K2G12

Arithmetic and Logic Unit

- Gated out by selecting the 'ALU func bit 0-3' lines
- See FSL page PC260
- · Decoded as follows:

Select /	ALU Mode
Bits 0-3	Function Gated Through
0000	Not Used—Force ALU Hi/Lo, Not Carry
0001	X OE Y
0010	Y
0011	X OR Y
0100	Not Used
0101	X and Not Y
0110	X and Y
0111	X or Not Y
1000	X-1 +Carry
1001	X+Y +Carry
1010	X-Y 16/8
1011	X+Y 16-X or 8-Y
1100	X-Y 16 or 8
1101	X+Y 16/8
1110	X-Y-1 +Carry
1111	X+Carry
1111	- ALU Func Bit 3 A-A1H2B09
	(A-A1E2B09 on Level 2 Board)
	- ALU Func Bit 2 A-A1H2D09
	(A-A1E2D09 on Level 2 Board)
	- ALU Func Bit 1 A-A1H2D10
	(A-A1E2D10 on Level 2 Board)
L	- ALU Func Bit 0 A-A1H2B03
	(A-A1E2B03 on Level 2 Board)
	Carry In A-A1H2S07
	(A-A1E2S07 on Level 2 Board)

Arithmetic and Logic Unit Gates (High and Low)

- · Gated out by selecting the 'ALU gate hi/lo sel 0-2' lines
- See FSL page PC250
- · Decoded as follows:

ALU Gate Low					
Bits					
0-2	Gate	Function Gated Through			
000	G0	ALU Lo 8-15, Predict P Lo			
001	G1	SBO Lo 8-15, SBO Lo P1			
010	G2	ALU Hi 7, ALU Lo 8-14, A			
011	G3	ALU Lo 8-14, ALU Lo P G			
100	G0	ALU Lo 8-15, Predict P Lo			
101	G1	SBO Lo 8-15, SBO Lo P1			
110	G6	Gate Lo 8-11 from Y Lo 8-1			
		12-15 from ALU Lo 8-11/A			
111	G7	Y Reg 8-11, ALU 12-15, Al			
ALU Gate High					
Bits					
0-2	Gate	Function Gated Through			
000	G0	ALU Hi 0-7, Predict P Hi			
001	G1	SBO Hi 0-7, SBO Hi P			
010	G2	ALU Hi 0-6, ALU Hi P Gen			
011	G3	ALU Gate Lo 8-15, P			
100	G3	ALU Gate Lo 8-15, P			
101	G3	ALU Gate Lo 8-15, P			
110	G3	ALU Gate Lo 8-15, P			
111					
ALU Gate Hi/Lo Sel 2 A-A1H2G					
††t_	– ALU G	ALU Gate Lo 8-15, P ate Hi/Lo Sel 2 A-A1H2G (A-A1E2G			
	— ALU G	ate Hi/Lo Sel 2 A-A1H2G (A-A1E2G ate Hi/Lo Sel 1 A-A1H2G			
	— ALU G	ate Hi/Lo Sel 2 A-A1H2G (A-A1E2G ate Hi/Lo Sel 1 A-A1H2G (A-A1E2G (A-A1E2G			
	— ALU G — ALU G — ALU G	ALU Gate Lo 8-15, P ate Hi/Lo Sel 2 A-A1H2G (A-A1E2G ate Hi/Lo Sel 1 A-A1H2G (A-A1E2G ate Hi/Lo Sel 0 A-A1H2G			

Note: The storage gates, the ALU, and the ALU gates have default data paths when no-bit select values are used. During default operations, the gating times are a function of the data present at the circuit input.

Unit

Default Selection

Storage gate high LSR high Storage gate low ALU gate high ALU gate low ALU function

LSR low ALU high ALU low X-register plus 1

In the following instruction descriptions, lines in the timing charts that cannot be probed are included so that a better understanding of the data flow and the circuit timings can be maintained. These lines are noted with a superscript number.

1
, ALU Lo P Gen
Gen
_0
8-11/Gate Lo
/ALU Lo P (ZZ)
ALU Lo P (ZN)
an a

2G07

2G07 on Level 2 Board) 2G06

2G06 on Level 2 Board)

G04

2G04 on Level 2 Board)

Branch (B)

0	0	0	0		Branch Address	
0			3	4	15	-

This instruction is used for an unconditional branch operation. It permits branching to any one of the 4,096 word addresses in one control storage segment. There are four 4K-word segments in control storage:

Segment 0-hexadecimal addresses 0000 through 0FFF

Segment 1-hexadecimal addresses 1000 through 1FFF

Segment 2-hexadecimal addresses 2000 through 2FFF

Segment 3-hexadecimal addresses 3000 through 3FFF

Branch Address (Bits 4-15): This is a 12-bit branch address. These 12 bits and X-high bits 0-3 replace the comparable 16 bits in the storage address register (SAR), and the branch address becomes the address of the next sequential instruction. The microaddress register (MAR) is then updated during time T2 of the next cycle.

Condition Code

No change

Sequence and Timing

00	AOFE	11
01	0002	В
02	50FF	TN
03	0000	В

T0 is skipped to prevent loading SAR with the next sequential instruction

Horizontal	=	0.1 μ
		cycle

Vertical

Scope Setup

s/div uncalibrated to display one 'phase A' per division on chan 2.

= 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).
Branch (Stop Condition) (B)

Clock times T4, T5, and T6 can be taken if the control processor is executing a branch instruction and the 'run' latch is reset (branch stop condition) by one of the following:

- A control storage address compare with the Add Comp switch on the CE panel set to the Stop position
- Instruction step mode selected by setting the Mode Selector switch to any Insn Step position (not process condition)
- Processor check stop condition as a result of a processor check

Setting the Mode Selector switch to the Insn Step/Dply LSR position permits single stepping through a branch instruction. Any attempt to single step through a branch that is located in the last valid address of control storage causes a not valid control address check.

Timing of Control Processor Functions	for
Branch (Stop Condition)	

Timing of CP Functions	FSL Page
Select LSR (MAR)	PC230
Select Storage Gate High [from X high (0-3)/ from SDR high (4-7)]	PC230
Select Storage Gate Low (from SDR low)	PC230
Clock Low and X High (SAR, don't care)	PC210
Clock Storage Gate Check	PC230
Select Storage Gate Check	PC230
Control Storage Access	PC130
Storage Cycle	PC012
Clock SDR	PC220
ALU Function (pass)	PC260
Select ALU Gate High/Low (from ALU high/low)	PC250
Write LSR High/Low	PC160
Clock ALU Gate Check	PC160

	- I-Fetch						
200 ns							
то	T1	T2	Т3	T4	T5	Т6	то
					-		
					-		
					- †		
							-

Branch and Link (BAL)

0	0	0	1	Branch Address
0			3	4 15

This instruction is used for an unconditional branch-and-link operation. It permits branching to any address inside a 4,096-word address block in a control storage segment. Each segment is 4K words long, and there are four 4K-word segments in control storage of 16K words:

Segment 0-hexadecimal addresses 0000 through 0FFF

Segment 1-hexadecimal addresses 1000 through 1FFF

Segment 2-hexadecimal addresses 2000 through 2FFF

Segment 3-hexadecimal addresses 3000 through 3FFF

Branch Address (Bits 4-15): This is a 12-bit branch address that replaces the comparable 12 bits in the microaddress register (MAR).

When this instruction is executed, the address in the microaddress register (of the next sequential instruction) is kept in the microaddress backup register (MAB). The address in the microaddress backup register is the link address. The 12-bit branch address in the branch-and-link instruction replaces the address in the microaddress register. The address placed in the microaddress register is the next instruction that is to be executed.

A return instruction is used to return to the next sequential instruction following the branch-and-link instruction. The return instruction causes the address kept in the microaddress backup register to be placed into the microaddress register.

The microaddress register now contains the instruction following the branch-and-link instruction.

Condition Code

No change

Hex 1XXX

Select LSR (MAR) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Clock SAR from Stg Gate High/Low Storage Function Storage Cycle¹ CSX CSY Clock MOR Clock SDR Stg Gate High from X (0-3) SDR (4-7) Stg Gate Low from SDR (8-15) Set ALU Mode (X + carry) ALU Gate High/Low from ALU High/Low Write LSR High/Low (MAR) Select LSR (MAB) Write LSR High/Low (MAB) ALU Gate High/Low from Stg Gate High/Low Write LSR High/Low (MAR) Carry In Clock Stg Gate Check Gated Clock ALU Gate Check Trigger

¹This line cannot be probed.

Instruction Loop

00	AOFF	LI
01	50FF	тм
02	1000	BAL *

Scope Setup

Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

This page intentionally left blank.

Jump on Condition (JC)

 0	0	1	0	Co	ndition	Pag	e Address	
0			3	4	7	8	ĩ	15

This instruction permits branching inside a page boundary (256-word limit of hex 00 through hex FF) (specified by bits 8-15) if the condition specified by bits 4-7 is met. If the condition is met, the 8-bit page address replaces the comparable bits in the microaddress register (MAR) and the storage address register (SAR) to form the address of the next instruction to be executed.

Condition Tested (Bits 4-7): Indicates the function to be tested as follows:

Bits		
4-7	Mnemonic	Test Condition
0000	JCY	Carry
0001	JH	High (condition code bit 5)
0010	JL	Low (condition code bit 6)
0011	JE	Equal (condition code bit 7)
0100	JP	Positive (condition code bit 1)
0100	JO	All ones (condition code bit 1)
0101	JN	Negative (condition code bit 2)
0101	JM	Mixed (condition code bit 2)
0110	JZ	Zero (condition code bit 3)
0111	JFLG	Flag
1000	JSR	Service request
1001	JNH	Not high
1010	JNL	Not low
1011	JNE	Not equal
1100	JNP	Not positive
1101	JNN	Not negative
1110	JNZ	Not zero
1111	RETRN	Return

Page Address (Bits 8-15): Permits branching inside a page boundary (256-word limit of hex 00 through hex FF) in control storage only. The page address replaces the 8 low-order bits in the microaddress register when the tested condition is met.

Note: For the return condition (bits 4-7 equal 1111), the page address is not used. In this case, the microaddress backup register is selected for the address of the next instruction to be executed.

Condition Code

No change

Sequence and Timing

		+	I-Fetch	*	E-Phase	 I-F	etch
		200 ns					
	FSL						
	Page	то	T1	T2	ТЗ	T1	T2
Hex 2XXX							
Select LSR (MAR)	PC230						
Stg Gate High/Low from LSR	PC230						ļ
X-Reg from Stg Gate High/Low	PC210						
Clock SAR from Stg Gate High/Low							
Storage Function	PC012		2				
Storage Cycle ¹	PC012						
CSX	PC020						
CSY	PC020						
Clock MOR from CS	PC146						
Clock SDR from CS	PC220						
Set ALU Mode (X + carry)	PC260					Begin I-I	I Fetch fo
Carry In						the next	instruct
CPU Branch Condition Met	PC304						
Write LSR High/Low (MAR)	PC160						
Stg Gate High from X (0-3) SDR (4-7)	PC230					/	
Stg Gate Low from SDR (8-15)	PC230						
Clock SAR from Stg Gate High/Low							
X High/Low from Stg Gate High/Low							
Set ALU Mode (X + carry)	PC260						
Carry In							
ALU Gate High/Low from ALU High/Low	PC250						
Select LSR (MAR)							
Write LSR High/Low							
Sta Function	PC012						
Storage Cycle ¹	PC012						
CSX	PC020						
CSY	PC020						
Clock MOR	PC146						
Clock SDR	PC220						

Vertical

Scope Setup

Instruction Loop

00	AOFF	LI
01 02	50FF 2304*	IM JE
03	BEA3	Check Halt
04	0000	В

Horizontal	=	0.1 $\mu s/div$ uncalibrated to display one 'phase A'
		cycle per division on chan 2.

- = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Jump on Condition (Stop Condition) (JC)

Clock times T4, T5, and T6 can be taken if the control processor is executing a jump-on condition and the 'run' latch is reset by one of the following:

- A control storage address compare with the Add Comp switch on the CE panel set to the Stop position
- Instruction step mode selected by setting the Mode Selector switch to any Insn Step position (not process condition)
- Processor check stop condition as a result of a processor check

Setting the Mode Selector switch to the Insn Step/Dply LSR position permits single stepping through a jump-on-condition instruction. Any attempt to single step through a jump-on condition that is located in the last valid address of control storage, control storage segment, or 256-byte block (hex 00 through hex FF), causes a not valid control address check.

The function of the condition tested (bits 4-7) is the same as for the jump-on-condition instruction.

Timing

Timing of CP Functions	Pa
Select LSR (MAR: no return;	PC
MAB: return)	P
Select Storage Gate High (from LSR high)	PC
Select Storage Gate Low (from LSR low: not met; from SDR low: low and X high met)	PC
Clock X (SAR, don't care)	PC
Clock Storage Gate Check	PC
Control Storage Access	PC
Storage Cycle	PC
Clock SDR	PC
ALU Function (pass)	PC
Select ALU Gate High/Low (from ALU high/low)	PC
Write LSR High/Low	PC
Clock ALU Gate Check	PC

This page intentionally left blank.

Logical/Arithmetic 1 (XR, ZAR, OR, NCR, NR, OCR, DEC, ACYR, SR, AR, SCYR, INC)

0	1	1	0	H1	Reg	1	Fur	nction	H2	Reg	2
0			3	4	5	7	8	11	12	13	15

This instruction performs logical and arithmetic type functions that are performed in the arithmetic and logic unit (ALU). The logical/arithmetic 1 instruction is for 1-byte operations only.

H1 (Bit 4): Indicates which byte of the selected local storage register (register 1) is to be used in the current function:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register is operand 1 of the function and is changed at the end of the function.

Function (Bits 8-11): Determines the basic logical or arithmetic function to be performed.

H2 (Bit 12): Indicates which byte of the selected local storage register (register 2) is to be used in the current function:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register is operand 2 of the function. The selected register is not changed by the operation being performed.

Condition Code for Logical Operations

On logical operations, two actions are performed:

- The logical operation (OR, AND, exclusive OR, and so on) is performed.
- · Register 1 contents are combined, using an OR operation, with the ones complement of register 2 contents. This is shown as (register 1 or not register 2).

The condition code is set as follows to show the results of both operations, except when the result of the logical operation is zeros (bit 3 of the processor condition register):

- Positive (bit 1 of the processor condition register)-Set if the result of the logical operation is not equal to zero, and (register 1 or not register 2) is equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is not equal to all ones.
- Negative (bit 2 of the processor condition register)-Set if the result of the logical operation is not equal to all zeros, and (register 1 or not register 2) is not equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is equal to all ones.
- Zero (bit 3 of the processor condition register)-Set if the result of the logical operation is equal to all zeros. Reset if the result of the logical operation is not equal to all zeros.

Condition Code for Arithmetic Operations

Note: Borrow and carry in the processor condition register have the following meanings:

Borrow = No carry Carry = No borrow

- Positive (bit 1 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has a carry. Reset if the result is zero or there is no carry.
- Negative (bit 2 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has no carry. Reset if the result is zero or there is a carry.
- · Zero (bit 3 of the processor condition register)-Set if the result of the arithmetic operation is equal to zero. Reset if the result is not equal to zero.
- · Carry (bit 4 of the processor condition register)-Set if the arithmetic operation results in a carry. Reset by the I/O immediate instruction (reset carry-set equal function), by system reset, or if the operation results in no carry.
- High (bit 5 of the processor condition register)-Same as positive (bit 1).
- Low (bit 6 of the processor condition register)-Same as negative (bit 2).
- Equal (bit 7 of the processor condition register)-Reset if the result of the operation is not equal to zero. Set only by the I/Oimmediate instruction (reset carry-set equal function), or by system reset.

Logical/Arithmetic Functions

.

Bits 8 9 10 11	Mnemonic	Function	Description	Exan	nple	B 89	its 10	11	Mnemonic	Function	Description	Exar	nple
0 0 0 0 0 0 0 1	XR	Not used R1 (XOR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an ex- clusive OR function and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 <u>0 0 1 1 0 1 0 1</u> 1 0 0 0 1 0 0 1	1 0	0	1	ACYR	R1 + R2 + C → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The contents of the X and Y registers are added together and then added to the result of the carry trigger from a previous operation. The result is placed in the R1 location.	R1 R2 +C R1	$ \begin{array}{c} 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 \\ & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \end{array} $
0010	ZAR	R2+0 → R1	The contents of R2 are placed in the R1 location.	R2 +0 R1	1 0 1 1 1 1 0 0 <u>0 0 0 0 0 0 0 0 0</u> 1 0 1 1 1 1 0 0	1 0	1	0		Not used			
0011	OR	R1 (OR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an OR function and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 1 0 1 1 1 1	1 0	1	1 ¹	AR	R1 + R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The contents of the X and Y registers are added together in the ALU and the result is placed in the R1 location.	R1 R2 R1	10111100 00110101 11110001
0100		Not used				1 1	0	0	SR	R1 - R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in	R1 R2	10111100 <u>00110101</u>
0101	NCR	R1 (AND)	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register (R2), performs an AND function on the X and Y registers, and the result is	R1 <u>R2</u> R2 R1	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 <u>1 1 0 0 1 0 1 0</u> 1 0 0 0 1 0 0 0	1 1	0	1	201/5	Not used	the Y register. The Y register contents are subtracted from the X register contents, and the result is placed in the R1 location.	R1	10000111
0110	NR	R1 (AND) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an AND function on the X and Y registers, and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 1 0	1 1	1	0-	SCYR	K1 - K2 - C → K1	The contents of R1 are placed in the X regis- ter; the contents of R2 are placed in the Y register. The Y register contents are sub- tracted from the X register contents. The carry trigger from a previous operation is complemented and then subtracted from the result. The final result is placed in the R1	R1 R2 C_ -C R1	$ \begin{array}{c} 10111100\\ \underline{00110101}\\ 10000111\\ 1\\ \underline{0}\\ 10000111\\ 0\\ 10000111 \end{array} $
0111	OCR	R1 (OR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register contents (R2), performs an OR function on the X and Y registers, and the result is placed in the R1 location.	R1 R2 R2 R1	1 0 1 1 1 1 0 0 0 0 1 1 0 1 0 1 <u>1 1 0 0 1 0 1 0</u> 1 1 1 1 1 1 1 0	1 1	1	1	INC	R1+1→R <u>1</u>	The contents of R1 are placed in the X register. The 'carry in' line is activated by the instruction and 1 is added to the contents of the X register by the ALU. The result is placed in the R1 location.	R1 + 1 R1	1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
1000	DEC	R1 - 1 → R1	The contents of R1 are placed in the X register. This data is gated in the ALU. The ALU performs an X minus 1 function and the result is placed in the R1 location.	R1 - 1 R1	10111100 0000001 10111011	¹ By a shift ² C is	dding ed or the s	g a reg ne posi ame as	ister to itself (ition to the lef a borrow.	R1 + R1 → R1), the sh ft and the low-order bi	ift left logical function can be executed. This function : (bit 7) to be replaced with a zero. Mnemonic = SLL.	causes	the 8 bits to be
													From a
													previous

operation

.

Sequence and Timing

Hex 6132

Select LSR (operand 2) Stg Gate High/Low from LSR X Low from Stg Gate Low (Y high, don't care) Select LSR (operand 1) Stg Gate High/Low from LSR Y Low from Stg Gate Low (X high, don't care) Set ALU Mode (X or Y) (see Note 1) ALU Gate Low from ALU Low (ALU gate high, don't care) Write LSR Low Clock PCR (bits 1, 2, 3) Clock PCR (bits 4, 5, 6, 7) Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	AOFF	LI
01	6132	LA1 (OR) * (see Note 2)
02	0000	В

Notes:

1. ALU mode setting will vary with the setting of the function bits (8-11).

2. This instruction uses the low byte of each operand.

Scope Setup

Horizontal	=	0.1 µs/div uncalibrated to displa	ay one	'phase	A'
		cycle per division on chan 2.			

- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex 693A

Select LSR (operand 2) Stg Gate High from LSR Stg Gate Low from Stg Gate High Y Low from Stg Gate Low (Y high, don't care) Select LSR (operand 1) Stg Gate High from LSR Stg Gate Low from Stg Gate High X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X or Y) (see Note 1) ALU Gate High/Low from ALU High/Low Write LSR High Clock PCR (bits 1, 2, 3) Clock PCR (bits 4, 5, 6, 7) Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A0FF	LI
01	693A	LA1 (OR) * (see Note 2)
02	0000	В

Notes:

1. ALU mode setting will vary with the setting of the function bits (8-11).

2. This instruction uses the high byte of each operand.

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -- 'address compare' looking at the instruction referenced with an asterisk (*).

Logical/Arithmetic 2 (XR, ZAR, OR, NCR, NR, OCR, DEC, ACYR, SR, AR, SCYR, INC)

01	1 1 Reg	1	Function	n	H2	Reg	2
0	345	7	8 1	1	12	13	15

This instruction performs logical and arithmetic type functions. The logical/arithmetic 2 instruction always uses both bytes of operand 1 and one or both bytes of operand 2, as determined by the function. Both bytes of operand 2 are used unless the instruction is SR with a function modifier of hexadecimal A, or the instruction is AR with a function modifier of hexadecimal B. In the exception instructions, the selected byte (hi or lo) of operand 2 performs a logical or arithmetic operation on the low-order byte of operand 1.

When the operand 2 high byte is selected, the high byte of data is moved into the low-order data position of the storage gate. Then, Stg Gate Lo is moved to Y Reg Lo and Y Reg Hi is not gated.

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Both bytes of the selected local storage register represent operand 1. The selected local storage register is changed at the end of the function being performed.

Function (Bits 8-11): Determines the basic logical or arithmetic function to be performed.

H2 (Bit 12): Indicates which byte of the selected local storage register (register 2) is to be used in the current function:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected local storage register is operand 2 of the function. The selected local storage register is not changed by the operation being performed.

Condition Code for Logical Operations

On logical operations, two actions are performed:

- · The logical operation (OR, AND, exclusive OR, and so on) is performed.
- Register 1 contents are combined, using an OR operation, with the ones complement of register 2 contents. This is shown as (register 1 or not register 2).

The condition code is set as follows to show the results of both operations, except when the result of the logical operation is zeros (bit 3 of the processor condition register):

- Positive (bit 1 of the processor condition register)-Set if the result of the logical operation is not equal to zero, and (register 1 or not register 2) is equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is not equal to all ones.
- Negative (bit 2 of the processor condition) register)-Set if the result of the logical operation is not equal to all zeros, and (register 1 or not register 2) is not equal to all ones. Reset if the result of the logical operation is equal to all zeros, or (register 1 or not register 2) is equal to all ones.
- · Zero (bit 3 of the processor condition register)-Set if the result of the logical operation is equal to all zeros. Reset if the result of the logical operation is not equal to all zeros.

Condition Code for Arithmetic Operations

Note: Borrow and carry in the processor condition register have the following meanings:

- Borrow = No carry No borrow Carry =
- Positive (bit 1 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has a carry. Reset if the result is zero or there is no carry.
- · Negative (bit 2 of the processor condition register)-Set if the result of the arithmetic operation is not equal to zero and has no carry. Reset if the result is zero or there is a carry.
- Zero (bit 3 of the processor condition register)-Set if the result of the arithmetic operation is equal to zero. Reset if the result is not equal to zero.
- · Carry (bit 4 of the processor condition register)-Set if the arithmetic operation results in a carry. Reset by the I/O immediate instruction (reset carry-set equal function), by system reset, or if the operation results in no carry.
- High (bit 5 of the processor condition register)-Same as positive (bit 1).
- Low (bit 6 of the processor condition register)-Same as negative (bit 2).
- · Equal (bit 7 of the processor condition register)-Reset if the result of the operation is not equal to zero. Set only by the I/O immediate instruction (reset carry-set equal function) or by system reset.

L	.ogi	cal/Arith	metic Functi	ions					B	Bits				
	В	its						8	9) 1	0 1 1	Mnemonic	Function	Description
8 0	9 0	10 11 0 0	Mnemonic	Function Not used	Description	Exa	mple	1	0	0 0) 1	ACYR	R1 + R2 + C → R1	The contents of X register; the c in the Y register
C	0	0 1	XR	R1(XOR)R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an exclusive OR function and the result is placed in the R1 leasting.	R1 R2 R1	1011110011001101 0011010110101001 10001001							registers are add result of the car operation. The location.
C	0	1 0	ZAR	R2+0→R1	The contents of R2 are placed in the R1 location.	R2 + 0 R1	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 0 0	1	0) 1	0	SR	R1 – R2 → R1 1 byte	The contents of register; the cor the Y register. subtracted from the result is pla
C) ()	1 1	OR	R1 (OR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an OR function and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0	1	0) 1	1 ¹	AR	R1 + R2 → R1	The contents or register; the cor the Y register. registers are add the result is pla
C) 1	0 0		Not used				1	1	1 0	0	SR	R1 - R2 → R1	Same as (1010)
C) 1	0 1	NCR	R1 (AND) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register contents (R2), performs an AND function on the register contents, and the result is placed in the R1 location.	R1 R2 R2 R1	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0	1	1	1 C) 1	AR	$R1 + R2 \rightarrow R1$	Same as (1011)
C) 1	1 0	NR	R1 (AND) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU performs an AND function and the result is placed in the R1 location.	R1 R2 R1	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0	1	1	11	0 ²	SCYR	R1 – R2 – Ĉ → R1	The contents of ter; the content register. The Y tracted from the trigger from a p mented and the
C) 1	1 1	OCR	R1 (OR) R2 → R1	The contents of R1 are placed in the X register; the contents of R2 are placed in the Y register. The ALU complements the Y register contents (R2), performs an OR function on the register contents, and the result is placed in the R1 location.	R1 <u>R2</u> R2 R1	1011110011001101 001101011010001 <u>1100101001010110</u> 111111101101111	1	1	1 1	1	INC	R1 + 1 → R1	The final result The contents or register. The 'co instruction, and of the X registe placed in the R
1	0	00	DEC	R1 - 1 → R1	The contents of R1 are placed in the X register. This data is gated in the ALU. The ALU performs an X minus 1 function and the result is placed in the R1 location.	R1 - 1 R1	1011110011001101 0000000000000001 101110011001100	¹ B ¹ 01 2 C	ya ne	addi pos the	ng a reg ition to same a	gister to itself () the left and th as a borrow.	R1 + R1 → R1), the shi ne low-order bit (bit 15)	ft left logical doubl to be replaced wit

2

Logical/Arithmetic Functions

f R1 are placed in the contents of R2 are placed er. The contents of the two ded together and added to the rry trigger from a previous e result is placed in the R1

of R1 are placed in the X ontents of R2 are placed in The Y register contents are m the X register contents and aced in the R1 location.

of R1 are placed in the X ontents of R2 are placed in The contents of the two Ided together in the ALU and aced in the R1 location.

) SR.

AR.

of R1 are placed in the X registhe of R2 are placed in the Y Y register contents are subthe X register contents; the carry previous operation is completen subtracted from the result. t is placed in the R1 location.

of R1 are placed in the X carry in' line is activated by the of this is added to the contents er by the ALU. The result is R1 location.

Example

R1 R2 +C	$\begin{array}{c}1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ $
R1	1111001001110111
R1 R2 R1	1011110011001101 <u>10101001</u> 1011110000100100
R1 R2 R1	1011110011001101 <u>0011010110101001</u> 1111001001110110
R1 R2 R1	$\begin{array}{c}1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 0 \ 0 \ 1 \ 1 \ $
R1 R2 R1	1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 1 0 1 0
R1 R2 C_ - C	$\begin{array}{c} 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 &$
RĨ	1000011100100011
R1 + 1 R1	1011110011001100 00000000000000001 1011110011001110

ble function can be executed. This function causes the 16 bits to be shifted th a zero. Mnemonic = SLLD.

From a previous operation Sequence and Timing

Hex 7132

Select LSR (operand 2) Select Stg Gate High/Low from LSR Y High/Low from Stg Gate High/Low Select LSR (operand 1) Stg Gate High/Low from LSR X High/Low from Stg Gate High/Low Set ALU Mode (X or Y) (see Note 1) ALU Gate High/Low from ALU High/Low Write LSR High/Low Clock PCR (bits 1, 2, 3) Clock PCR (bits 4, 5, 6, 7) Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	50FF	ТМ
01	7132	LA2 (OR) * (see Note 2)
02	0000	В

Notes:

1. ALU mode setting will vary with the setting of the function bits (8-11).

2. This instruction uses both bytes of both operands.

Scope Setup

- Horizontal = 0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Hex 71D2

Select LSR (operand 2)	F
Stg Gate High/Low from LSR	F
Y High/Low from Stg Gate High/Low	F
Select LSR (operand 1)	F
Stg Gate High/Low from LSR	F
X High/Low from Stg Gate High/Low	F
Set ALU Mode (X+Y) (see Note 1)	F
Reset Y High	P
ALU Gate High/Low from ALU High/Low	P
Write LSR High/Low	P
Clock PCR (bits 1, 2, 3)	P
Clock PCR (bits 4, 5, 6, 7)	P
Clock Stg Gate Check	Р
Clock ALU Gate Check	P

Instruction Loop

00	50FF	TM
01	71D2	LA2 (X+Y) * (see Note 2)
02	0000	B
Note	e •	

Notes:

1. ALU mode setting will be either X+Y or X-Y. 2. These are the only two LA2 instructions that use only 1 byte from operand 2.

C C

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Load Immediate (LI)

Sequence and Timing

This instruction takes the data in the immediate byte (bits 8-15) and loads the data directly into the selected register of the local storage register stack. Data can be placed into the high- or low-order byte of the selected register.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Immediate Byte (Bits 8-15): The immediate byte of the instruction is loaded into the selected local storage register.

Condition Code

No change

2-50

Hex A9XX

Select LSR

Stg Gate High/Low from SDR High/Low X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low Write LSR High Carry In Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	AOFF	LI
01	A9FF	LI* (see note)
02	0000	В

Note: This instruction uses the high byte of the LSR.

Scope Setup

Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

			FSL Page					
Hex /	A1XX							
Selec	t LSR		PC23					
Stg G	Stg Gate High/Low from SDR High/Low							
X-Re	g from Stg	Gate High/Low	PC21					
Set A	Set ALU Mode (X + carry)							
ALU Gate Low from ALU Low								
ALU Gate High from ALU Gate Low								
Write LSR Low								
Carry	In							
Clock	Stg Gate (Check	PC14					
Clock	ALU Gate	e Check	PC16					
Instru	iction Loo	p						
00	A0FF	LI						
01	A1FF	LI * (see note)	Horiz					
02	0000	В	10112					
Note	This instr	ruction uses the low byte of the LSR.	Verti					

2

Scope Setup

- izontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cvcle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Compare Immediate (CI)

1	1	0	0	H1	Re	g 1	Imme	diate Byte
0			3	4	5	7	8	15

This instruction compares the 8 bits of data in the selected local storage register with the comparable 8 bits of data in the immediate byte. The results of the compare are set in the processor condition register. The selected local storage register is not changed by the compare immediate instruction.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used in the compare:

H1 = 0: Low-order byte

```
H1 = 1: High-order byte
```

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Immediate Byte (Bits 8-15): Contains the data to be compared with the data in the selected local storage register.

Condition Code

The condition code is set as follows:

- Positive (bit 1 of the processor condition register)—Register data is larger than the data field.
- Negative (bit 2 of the processor condition register)-Register data is less than the data field.
- Zero (bit 3 of the processor condition register)-Register data is equal to the data field.

Sequence and Timing

Hex C1XX

Select LSR

Stg Gate High/Low from LSR Y Low from SDR Low (Y high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X – Y – 1 + carry) ALU Gate Low from ALU Low ALU Gate High from ALU Low Clock PCR (bits 1, 2, 3) Carry Clock Stg Gate Check

Instruction Loop

00	AOFF	LI
01	C1FF	CI * (see note)
02	0000	В

Note: This instruction uses the low byte of the LSR.

Scope Setup

- Horizontal = 0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

PC230

Stg Gate High from LSR	PC2
Stg Gate Low from Stg Gate High	PC2
Y Low from SDR Low (Y high, don't care)	PC2
X Low from Stg Gate Low (X high, don't care)	PC2
Set ALU Mode (X-Y-1+carry)	PC2
ALU Gate Low from ALU Low (don't care)	PC2
ALU Gate High from ALU Gate Low (don't care)	PC2
Clock PCR (bits 1, 2, 3)	PC3
Carry	
Clock Stg Gate Check	PC1
Instruction Loop	

Hex C9XX

Select LSR

00	AOFF	LI	
01	C9FF	CI * (see note)	Horiz
02	0000	В	

Note: This instruction uses the high byte of the LSR.

Scope Setup

= 0.1 μ s/div uncalibrated to display one 'phase A' zontal cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

٠,

Subtract Immediate/Add Immediate (SI, AI)

1	1	0	1	H1	Reg	j 1	Immed	iate Byte
0			3	4	5	7	8	15

The data in the immediate byte of this instruction is subtracted from the data in the specified local storage register (register 1).

The add immediate instruction is valid for the control storage program only. To add immediate, the immediate data must be complemented by the assembler and then inserted in the immediate field of the instruction (complement subtract = addition). The immediate field then becomes a constant and is coded before assembly with the value to be used.

These instructions can also be used to compare two operands by testing the condition code after executing the instruction.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used in the subtract operation:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Immediate Byte (Bits 8-15): Contains the data to be subtracted from the data in the selected local storage register.

Condition Code

The condition code is set as follows:

- Positive (bit 1 of the processor condition register)-Register data is larger than the data field.
- Negative (bit 2 of the processor condition register)–Register data is less than the data field.
- Zero (bit 3 of the processor condition register)–Register data and the data field are equal.

Sequence and Timing

Hex D1XX

Select LSR Stg Gate High/Low from LSR Y Low from SDR Low (Y high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X - Y - 1 + carry)ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low (don't care) Write LSR Low Clock PCR (bits 1, 2, 3) Carry Clock Stg Gate Check

Instruction Loop

Clock ALU Gate Check

00	A1FF	LI
01	D100	SI * (see note)
02	0000	В

Note: This instruction uses the low byte of the LSR.

2

Scope Setup

- = $0.1 \,\mu s/div$ uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

	Page
Hex D9XX	
Select LSR	PC2
Stg Gate High from LSR	PC2
Stg Gate Low from Stg Gate High	PC2
Y Low from SDR Low (Y high, don't care)	PC2
X Low from Stg Gate Low (X high, don't care)	PC2
Set ALU Mode (X-Y-1+carry)	PC2
ALU Gate High/Low from ALU High/Low	PC2
Write LSR High	PC1
Clock PCR (bits 1, 2, 3)	PC3
Clock Stg Gate Check	PC1
Clock ALU Gate Check	PC1
Carry	

Instruction Loop

00	A9FF	LI	
01	D900	SI * (see note)	Ног
C2	0000	В	

Note: This instruction uses the high byte of the LSR.

C

Scope Setup

- rizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Test Mask (TM)

0	1	0	1	H1	Reg 1			Mask
0			3	4	5	7	8	15

This instruction tests the bits in 1 byte of a work register. A mask byte in the instruction identifies the bits to be tested. As a result of this test, one of the three following conditions will be found and this condition is set in the processor condition register:

- Positive = Ones-The tested bits are all equal to 1 (processor condition register bit 1 is set on).
- Negative = Mixed-The tested bits are a combination of ones and zeros (processor condition register bit 2 is set on).
- Zero = Zeros-The tested bits are all equal to 0 (processor condition register bit 3 is set on).

H1 (Bit 4): Selects the low- or high-order byte of the register:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Mask (Bits 8-15): Any bit set to 1 indicates that the comparable bit in the selected byte is to be tested. Any bit set to 0 indicates that the comparable bit is to be ignored.

Condition Code Sequence and Timing **Result of Test Condition Code** Start Tested bits all = 1 Positive Tested bits are mixed Negative Tested bits all = 0Zero I-fetch Example: I-fetch H1 = 0 operation Reg 1 = 011 Interrupt level = 0 = 0 0 1 0 1 0 0 1 Bits 2, 4, and 7 in Mask Select LSR per LSR 3 are to be bits 5-7 tested. LSR3 = 01101101Condition Code Set: Positive Load mask byte into Y low PCR = 01000000register Bits tested all equal 1. Bit 4 on Selected LSR (Hexadecimal) Bits Interrupt Level No 567 0 1 2 3 4 5 Load low byte 000 10 18 20 30 38 0 of selected LSR 001 19 31 39 11 21 1 into X low register 010 2 12 1A 22 32 3A 011 23 33 3B 3 13 1B 1C 34 3C 100 4 14 24 1D 25 35 3D 101 15 5 Test LSR byte 3E 1E 36 1 1 0 6 16 26 per mask bits 7 17 1F 27 37 3F 1 1 1

No

Yes

Hex 51XX

Select LSR Stg Gate High/Low from LSR Y Low from SDR Low (X high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X and Y) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low Clock PCR (bits 1, 2, 3) Clock Stg Gate Check

Instruction Loop

00	A1FF	LI
01	51FF	TM * (see note)
02	0000	В

Note: This instruction uses the low byte of the LSR.

Scope Setup

- Horizontal == 0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = 'address compare' looking at the instruction referenced with an asterisk (*).

Hex 59XX

	D
Stg Gate High from LSR	P
Stg Gate Low from Stg Gate High	Ρ
Y Low from SDR Low (Y high, don't care)	Ρ
X Low from Stg Gate Low (X high, don't care)	Ρ
Set ALU Mode (X and Y)	Ρ
ALU Gate Low from ALU Low	Ρ
ALU Gate High from ALU Gate Low	Ρ
Clock PCR (bits 1, 2, 3)	Ρ
Clock Stg Gate Check	P

Instruction Loop

00	A9FF	LI	
01	59FF	TM * (see note)	Ho
02	0000	B	

Note: This instruction uses the high byte of the LSR.

Scope Setup

- orizontal == $0.1 \,\mu s/div$ uncalibrated to display one 'phase A' cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Set Bits On (SBN)

Sequence and Timing

This instruction sets bits in the high- or low-order byte of the selected local storage register to 1.

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The byte of the register is combined, using an OR operation, with the data in the data field.

Data (Bits 8-15): The 8 bits of this field are compared with the 8 bits in the selected register. Any bit in the data field that is set to 1 causes the same bit in the selected register to be set to 1. Any bits in the data field that are set to 0 do not affect any bits in the selected register.

Condition Code

No change

Т3

E-Phase

T5

Т6

Т4

I-Fetch

T1

Basic I-Fetch

Т2

200 ns

Т0

FSL

Page

PC230

PC230

PC210

PC210

PC260

PC250

PC250

PC160

PC146

PC160

Hex 91XX

Select LSR

Stg Gate High/Low from LSR Y Low from SDR Low (Y high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X or Y) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low (don't care) Write LSR Low Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A1FF	LI		Scope Setup				
01	91FF	SBN * (see note)			00	A9FF	LI	
02	0000	B	Horizontal	= 0.1 μ s/div uncalibrated to display one 'phase A'	01	99FF	SBN * (see note)	
02	0000	D			00	0000		

Note: This instruction uses the low byte of the LSR.

cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = - 'address compare' looking at the instruction referenced with an asterisk (*).

Hex 99XX

Select LSR	F
Stg Gate High from LSR	F
Stg Gate Low from Stg Gate High	F
Y Low from SDR Low (Y high, don't care)	F
X Low from Stg Gate Low (X high, don't care)	F
Set ALU Mode (X or Y)	F
ALU Gate Low from ALU Low	F
ALU Gate High from ALU Low	F
Write LSR High	F
Clock Stg Gate Check	F
Clock ALU Gate Check	F

Instruction Loop

00	A9FF	LI	
01	99FF	SBN * (see note)	
02	0000	В	Н

Note: This instruction uses the high byte of the LSR.

Scope Setup

- lorizontal = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -- 'address compare' looking at the instruction referenced with an asterisk (*).

Set Bits Off (SBF)

Sequence and Timing

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The contents of the register are ANDed with the complement of the data in the data field.

Data (Bits 8-15): The 8 bits in this field are compared with the 8 bits of the selected register. Any bit in the data field that is set to 1 causes the same bit in the selected register to be set to 0. Any bits in the data field that are set to 0 do not affect any bits in the selected register.

Condition Code

No change

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array}$

Hex 81XX

Select LSR

Stg Gate High/Low from LSR Y Low from SDR Low (Y high, don't care) X Low from Stg Gate Low (X high, don't care) Set ALU Mode (X and not Y) ALU Gate Low from ALU Low ALU Gate High from ALU Gate Low Write LSR Low **Clock Stg Gate Check** Clock ALU Gate Check

Instruction Loop

00	A1FF	LI
01	81 F F	SBF * (see note)
02	0000	В

Note: This instruction uses the low byte of the LSR.

Scope Setup

- = $0.1 \,\mu s/div$ uncalibrated to display one 'phase A' Horizontal cycle per division on chan 2.
- = 0.2V/div using X10 probes. Vertical
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex 89XX

Select LSR	PC
Stg Gate High from LSR	PC
Stg Gate Low from Stg Gate High	PC
Y Low from SDR Low (Y high, don't care)	PC
X Low from Stg Gate Low (X high, don't care)	PC
Set ALU Mode (X and not Y)	PC
ALU Gate Low from ALU Low	PC
ALU Gate High from ALU Gate Low	PC
Write LSR High	PC
Clock Stg Gate Check	PC
Clock ALU Gate Check	PC

Instruction Loop

00	A9FF	LI	
01	89FF	SBF * (see note)	Ho
02	0000	В	

Note: This instruction uses the high byte of the LSR.

Scope Setup

- = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' prizontal cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

This page intentionally left blank.

Storage (LC, LM, STC, STM)	W (Bit 9): to be moved
LC (load from control storage) STC (store to control storage) LM (load from main storage)	W = 0: F local s
STM (store to main storage) 0 1 0 H1 Reg 1 1 W C D V Reg 2	W = 1: N stack a
0 3 4 5 7 8 9 10 11 12 13 15 This instruction permits access to either control	C (Bit 10): storage:
storage or main storage. Data can be moved to or from the local storage registers.	C = 0: So
	C = 1: Se
H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used: H1 = 0: Low-order byte	D (Bit 11): storage regis be increased
H1 = 1: High-order byte	D = 0: In registe
Bit 4 is not used when bit 10 is on. When bit 10 is on, both the high- and low-order bytes are selected.	D = 1: D registe
Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Data is moved to	V (Bit 12): in the local s 13-15) shou
or nom this register.	V = 0: Th not cha
Bit 8: If bit 8 = 1, the operation code (bits $0-3$) of the control storage instruction is changed. If bit 8 = 0, the instruction is an I/O storage instruction.	V = 1: Th storage by 1 as field D
	Register 2 (I

(Bit 9):	Identifies	the	direction	the	data	is
be moved:						

V = 0: Read from storage and move to the local storage register stack	4	8	9	10) 11	12
V = 1: Move from the local storage register	Х	1	0	1	0	1
stack and write to storage	Х	1	0	1	1	1
Bit 10): Selects main storage or control	Х	1	0	1	0	0
age:	Х	1	1	1	0	1
c = 0: Selects main storage	х	1	1	1	1	1
c = 1: Selects control storage	x	1	1	1	0	0
	н	1	0	0	0	1
age register (specified by bits 13-15) should ncreased or decreased:	н	1	0	0	1	1
	Н	1	0	0	0	0
) = 0: Increase the selected local storage register by the value of field V	н	1	1	0	0	1
) = 1: Decrease the selected local storage	н	1	1	0	1	1
register by the value of held v	н	1	1	0	0	0
Bit 12): Indicates the amount the address	Le	gei	nd '	for	Bi	t 4:
15) should be increased or decreased:		X	:			Not
		Н	= C):		Lov
 The selected local storage register is not changed (register 2). 		н	= 1	:		Hig

he address in the selected local e register is increased or decreased as determined by the bit setting of (register 2).

(Bits 13-15): Selects one of the eight work registers assigned to the current interrupt level that contains the storage address of the data. The address in the specified local storage register may be updated as specified by bit 11 (field D) and bit 12 (field V).

LC	Load from control storage,
	increase register 2 by 1.
LC	Load from control storage,
	decrease register 2 by 1.
LC	Load from control storage,
	no change to register 2.
STC	Store to control storage,
	increase register 2 by 1.
STC	Store to control storage,
	decrease register 2 by 1.
STC	Store to control storage,
	no change to register 2.
LM	Load from main storage,
	increase register 2 by 1.
LM	Load from main storage,
	decrease register 2 by 1.
LM	Load from main storage,
	no change to register 2.
STM	Store to main storage,
	increase register 2 by 1.
STM	Store to main storage,
	decrease register 2 by 1.
STM	Store to main storage,
	no change to register 2.

Description

1:

Instruction List

Mne-

monic

Bits

X :	Not used
H = 0:	Low-order byte
H = 1:	High-order byte

Condition Code

No change

2

Control Processor 2-63

Sequence and Timing for Reading from Storage (LC, LM)

Note: Bit in register control instruction format.

Hex 41AA

Select LSR (address) Stg Gate High/Low from LSR X High/Low from Stg Gate High/Low SAR from Stg Gate High/Low Stg Function Storage Cycle¹ CSX CSY Clock SDR from CS Stg Gate High/Low from SDR High/Low Set ALU Mode (X + carry) (see Note 1) ALU Gate High/Low from ALU High/Low Write LSR High/Low (address) ALU Gate High/Low from Stg Gate High/Low Select LSR (data) Write LSR High/Low (data) Carry **Clock SDR Check** Clock Stg Gate Check **Clock ALU Gate Check** Ctl Storage Address Check Ctl Storage SAR P Check

¹This line cannot be probed.

Instruction Loop

00	A2FF	LI
01	AA01	LI
02	41AA	LC * (see Note 2)
03	0000	В

Notes:

- 1. ALU mode setting may be pass or X-1 carry, depending on the instruction.
- 2. Control storage operation uses a forced 2-byte data path.

Scope Setup

Horizontal	= 0.1 μ s/div uncalibrated to display one 'phase A	Ľ
	cycle per division on chan 2.	

- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Sequence and Timing for Writing into Storage (STC, STM)

Hex 41EA

Select LSR (address) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low (address) SAR from Stg Gate High/Low Select LSR (data) Stg Gate High/Low from LSR CS from Stg Gate High/Low Stg Function Storage Cycle¹ CSX CSY CS Write Pulse High CS Write Pulse Low Set ALU Mode (X + carry) (see Note 1) ALU Gate High/Low from ALU High/Low Write LSR High/Low (address) Carry Clock SDR (echo check) Clock Stg Gate Check Clock ALU Gate Check Ctl Storage Address Check Ctl Storage SAR P Check Clock SDR Check

¹ This line cannot be probed.

Instruction Loop

00	A2FF	LI
01	AA01	LI
02	A100	LI
03	A900	LI
04	41 E A	STC * (see Note 2)
05	0000	В

Notes:

- 1. ALU mode setting may be X+carry or X-1+carry, depending on the instruction.
- 2. Control storage operation uses a forced 2-byte data path.

Note: Bit in register control instruction format.

Scope Setup

Horizontal		0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
Vertical	=	0.2V/div using X10 probes.
Sync External	=	-'address compare' looking at the instruction referenced with an asterisk (*).

Main Storage Access by Control Processor

2-66

Control Processor Control of MSAR

¹Level 2 board/cards only.

MSP Bus Line Control

MSP Control Card A-A1N2 (A-A1J2 on Level 2 Board)

Main Storage Address Decoding

MSP Storage Control Card A-A1Q2 (A-A1L2 Level 2 Board)

100-ns Clk-ATR 5-CP Clk SAR Gated-Stg Function Lth-CP Op Lth-CSX Tgr-CSY Tgr-CSY Sig-Wr Gt Tgr-End Tgr-Gt Card Sel-CSY 1, 2-MS Card Select (one of five lines)-

CC

Load from Main Storage (LM) FSL Step Page		200 ns							
		rs∟ Page	то	T1	T2	Т3	T4	T5	Т6
1	Select LSR (addr) (bits 13-15)	PC230						-	
2	Select Stg Gate Hi/Lo (from LSR hi/lo)	PC230							
3	Clock Stg Gate Check	PC146							
4	Clock X Hi, X Lo, SAR	PC210							
5	Clock MSAR	PC030				eineinei			
6	Select ALU Mode (X+carry)	PC230							
7	ALU Gate Hi/Lo (from ALU hi/lo)	PC250							
8	Select LSR (addr) (bits 13-15)	PC230							
9	Write LSR Hi/Lo (address)	PC160							
10	Clock ALU Gate Check	PC160							
11	Main Stg Op Trigger	PC030							
12	Control Gate from Main Storage	PM204							
13	CP Gate from Control Gate	PM380							
14	Clock SDR (from CP gate)	PC220							
15	Select Stg Gate Hi/Lo (from SDR hi/lo)	PC230							
16	Select ALU Gate Lo (from stg gate Io)	PC250							
17	Clock Stg Gate Check	PC146							ن ال
18	Select ALU Gate Hi (from ALU gate lo)	PC250							analasang pang
19	Clock ALU Gate Check	PC160							
20	Select LSR (data) (bits 5-7)	PC230							
21	Write LSR Hi if Bit 4=1, Lo if Bit 4=0	PC230							

Instruction Loop

00 AA01 LI Load Main Storage Address 01 A200 LI 418A LM* Load from Main Storage and 02 Increment Address (reg 2) 03 0000 B Branch

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2 V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Storage

LM = 418A Load from Main Storage and Increment Address (reg 2)

Register 1 (Bits 5-7): Selects an LSR, for the current interrupt level, that the main storage data will be written to.

Register 2 (Bits 13-15): Selects an LSR, for the current interrupt level, that contains the main storage address.

Steps 1-5 clock the main storage address from the selected LSR (reg 2) to MSAR.

Steps 6-10 increment the address (reg 2).

Steps 11-21 gate the main storage data to the selected LSR (reg 1).
Sto	re to Main Storage (STM)		200 ns						
Ste	p	FSL Page	то	T1	T2	Т3	T4	Т5	Т6
1	Select LSR (addr) (bits 13-15)	PC230							
2	Select Stg Gate Hi/Lo (from LSR hi/lo)	PC230							
3	Clock Stg Gate Check	PC146							
4	Clock X Hi, X Lo, SAR	PC210							
5	Clock MSAR	PC030							
6	Main Storage Op Trigger	PC030							-
7	Select LSR (data) (bits 5-7)	PC240							
8	Select Stg Gate Hi (from LSR hi)	PC230							
9	Select Stg Gate Io (from LSR Io if bit 4=0, from stg gate hi if bit 4=1)	PC230							-
10	Select MS Gate B (from SBO)	PM440							
11	Write Main Storage	PC030							
12	CSY Trigger New	PC030					-		
13	Set ALU Mode (X+carry)	PC230							
14	ALU Gate Hi/Lo (from ALU hi/lo)	PC250							
15	Select LSR (addr) (bits 13-15)	PC230							
16	Write LSR Hi/Lo (addr)	PC160							
17	Clock ALU Gate Check	PC160							

Instruction Loop

1

Scope Setup

- 00 A155 LI Load Data into WR 1 (L) 01 AA01 LI Load MS Address 02 A200 LI ∫ into WR 2 41CA STM*Store to Main Storage and 03 Increment Address (WR 2) 04 0000 B Branch
- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- = 0.2 V/div using X10 probes. Vertical
- Sync External = address compare' looking at the instruction referenced with an asterisk (*).

Main Storage and

Selects an LSR, for the , that contains the data

J: Selects an LSR, for the that contains the main register 1 will be written.

ain storage address from 2) to MSAR.

from the selected LSR

data into main storage.

the address (reg 2).

This page intentionally left blank.

Register Control (WMPR, RMPR)

WMPR (load main storage processor register) RMPR (sense main storage processor register)

0	1	0	0	H1	Re	g 1	1	W	0	1	0	Reg	32
0			3	4	5	7	8	9	10	11	12	13	15

This instruction moves 1 byte of data between a local storage register and a main storage processor register.

H1 (Bit 4): Selects the low- or high-order byte of the local storage register specified by bits 5-7 (register 1):

H1 = 0: Low-order byte

H1 = 1: High-order byte

Note: Specific main storage processor registers can be loaded only from the high-order byte.

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Data is moved to or from a main storage processor register. *Bit 8:* Changes the operation code (bits 0-3). Bit 8 is always a 1.

W (*Bit* 9): Identifies the direction the data is to be moved:

W = 0: Move the data from the selected main storage processor register to the selected local storage register

W = 1: Move the data from the selected local storage register to the selected main storage processor register

Bit 10: Bit 10 is always a 0.

Bit 11: Bit 11 is always a 1. Therefore, register 2 is always decreased by 1.

Bit 12: Bit 12 is always a 0. Bits 11 and 12 change the operation code (bits 0-3). For this instruction, register 2 is always decreased by 1.

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack used by the present interrupt level that contains the address of the main storage processor register to load data into or to read data from.

Instruction List

Bits						Mne							
4	8	9	10	11	12	mon	ic	Description					
н	1	.1	0	1	0	WMF	ΡR	Load main storage processor reg- ister, decrease register 2 by 1.					
н	1	0	0	1	0	RMP	'nR	Sense main storage processor reg- ister, decrease register 2 by 1.					

Condition Code

No change

MSAR Low Byte

Storage Control Commands CCR (configuration control reg ACR-Low (address compare reg ACR-High (address compare reg ACR-E (address compare exten BMR (backup mode register) Status byte 3 CMR (control mode register) PMR (program mode register)

Status Registers PSR (program status register) Status byte 0 Status byte 1 Status byte 2 Q-byte (rea!)

Main Storage Processor Registers Operand 1 Operand 2 IAR (instruction address register Q-register Op register XR1 XR2 ARR (address recall register) PSR (program status register ad not a valid PSR LCRR (length count recall regis R-byte if not executab

Expanded ATRs Task ATRs I/O ATRs

¹ Data is loaded into MSAR from the selected control processor LSR high byte only.

	Bits	8	9	10	11	12	13	14	15	Restrictions
		0	0	1	1	1	х	х	х	
ister)							0	0	0	Load high only ¹
gister)							0	0	1	Load high only ¹
gister)							0	1	0	Load high only ¹
id)							0	1	1	Load high only ¹
							1	0	0	Load high only ¹
							1	0	1	Sense only
							1	1	0	Load high only ¹
							1	1	1	Load high only ¹
		0	1	0	0	0	0	х	х	
								0	0	
								0	1	Sense only
								0	ì	Load only
								1	0	Sense only
								1	1	Sense only
		0	1	1	0	х	х	х	х	
						0	0	0	Н	H = 1 specifies
						0	0	1	Н	the high byte
er)						0	1	0	Н	
						0	1	1	0	
						0	1	1	1	
						1	0	0	Н	
						1	0	1	Н	
						1	1	0	Н	
idress)						1	1	1	0	
ster) ple						1	1	1	1	
		1	0	х	х	X	х	х	х	Load high only ¹
		1	1	0	Х	Х	Х	Х	Х	Load high only ¹
		1	1	1	Х	Х	Х	Х	Х	Load high only ¹

Sequence and Timing

Sense MSP Register

Register Control

0	1	0	0	Н1	Reg	1	1	w	0	1	0	Reg 2	2
0			3	4	5	7	8	9	10	11	12	13	15

RMPR = 4X9X Sense MSP Register

Register 1 (Bits 5-7): Selects an LSR, for the current interrupt level, that will store the data from the selected MSP register.

Register 2 (Bits 13-15): Selects an LSR, for the current interrupt level, that contains the address of the MSP register to be sensed.

Steps 1-5 clock the MSP register address (reg 2) to MSAR.

Steps 6-10 clock the contents of the selected MSP register into SDR.

Steps 7-9 decrement the address in the LSR (reg 2).

Steps 11-16 move the MSP register contents from the SDR to the selected LSR (reg 1).

Sense from MSP Register

Step		FSL Page	то	T1
1	Select LSR (bits 13-15)	PC230		
2	Storage Gate Hi/Lo (from LSR hi/lo)	PC230		
3	Clock Stg Gate Check	PC146		
4	Clock X Hi, X Lo, SAR	PC210		
5	Clock MSAR	PC030		
6	Sense Load MSP Regs	PC030		
7	ALU Mode (X-1)	PC260		
8	ALU Gate Hi/Lo (from ALU hi/lo)	PC250		
9	Write LSR Hi/Lo (address)	PC160		
10	Clock SDR (CSY trigger)	PC220		
11	Select Stg Gate Hi/Lo (from SDR hi/lo)	PC230		
12	Select ALU Gate Lo (from stg gate lo)	PC250		
13	Select ALU Gate Hi (from ALU gate Io)	PC250		
14	Clock ALU Gate Check	PC160		
15	Select LSR (bits 5-7)	PC240		
16	Write LSR (hi if bit 4=1, lo if bit 4=0) (data)	PC230		

Instruction Loop

A238	LI	Load MSP Reg Addr into WR 2 (L) Hex 38=CCR	Horizontal	=
4192	RMPR*	Read CCR into WR 1 (L)	Mantinal	
0000	В	Branch	vertical	=
	A238 4192 0000	A238 LI 4192 RMPR* 0000 B	A238LILoad MSP Reg Addr into WR 2 (L) Hex 38=CCR4192RMPR*Read CCR into WR 1 (L)0000BBranch	A238LILoad MSP Reg Addr into WR 2 (L) Hex 38=CCRHorizontal4192RMPR*Read CCR into WR 1 (L)Vertical0000BBranchVertical

200 ns

Т2	Т3	Т4	Т5	Т6
				. Aptomot

Scope Setup

= 0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

= 0.2 V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Load MSP Register

Register Control

6. ATRs

-											
0 1	0 0 H1 Reg 1 1 W 0 1 0 Reg 2										
0	3 4 5 7 8 9 10 11 12 13 15										
WMF	WMPR = 4XDX Load MSP Register										
Register 1 (Bits 5-7): Selects an LSR, for the current interrupt level, that contains the data to be sent to the selected MSP register.											
Register 2 (Bits 13-15): Selects an LSR, for the current interrupt level, that contains the address of an MSP register to be loaded.											
Step the L	s 1-5 clock the MSP register address from SR (reg 2) to MSAR.										
Step the s	s 6-10 gate data from the LSR (reg 1) to elected MSP register.										
Step addro	s 11-14 decrement the MSP register ess (reg 2).										
Data regis	to be written to the following MSP ters must be written from reg 1 high:										
1.	ACR (Hi, Lo, or Ext)										
2.	CCR										
3.	3. BMR										
4.	CMR										
5.	PMR										

Load MSP Register

Step	
1	Select LSR Hi/Lo (bits 13-15)
2	Select Stg Gate Hi/Lo (from LSR hi/lo)
3	Clock Stg Gate Check
4	Clock X Hi, X Lo, SAR
5	Clock MSAR
6	Sense Load MSP Reg
7	Select LSR (bits 5-7)
8	Select Stg Gate Hi (from LSR hi)
9	Select Stg Gate Lo (from LSR lo if bit 4=0, from stg gate hi if bit 4=1)
10	Write MSP Registers
11	ALU Mode (X-1)
12	ALU Gate Hi/Lo (from ALU hi/lo)
13	Clock ALU Gate Check
14	Write LSR Hi/Lo (address)
Instru	uction Loop

00	A907	LI	Load Data into WR 1 (H) (reg 1)	Horizontal	=	0.1 $\mu s/div$ uncalibrated to display one 'phase A'
01	A238	LI	Load MSP Reg Addr into			cycle per division on chan 2.
			WR 2 (L) (reg 2) Hex 38=CCR	Ventical		0.0 V/discussion V10
02	49D2	WMPR*	Write to MSP Reg (CCR)	vertical	-	0.2 V/div using X 10 probes.
03	0000	В	Branch	Sync External	=	'address compare' looking at the instruction

	200 ns						
FSL Page	то	T1	T2	Т3	Т4	Т5	T6
PC230							
PC230							
PC146							
PC210							
PC030							
PC030							an a
PC240							
PC230							
PC230							
PC030							
PC260							
PC250							
PC160							
PC160							

Scope Setup

- referenced with an asterisk (*).

Storage Direct (L, ST)

L (load register) ST (store register)

1	1	1	0	W	Reg 1		0	SAR	
0			3	4	5	7	8	9	15

This instruction has direct access to any of the first 128 addresses in the current 4K-word block of addresses of control storage (the fixed storage area) during read or write operations, and moves 2 bytes of data to or from control storage.

W (*Bit* 4): Indicates if a read or write operation is to occur:

- W = 0: Read from control storage to the selected register
- W = 1: Write to control storage using the selected register for source

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. Moves 2 bytes of data between this register and control storage.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 0.

Storage Address Register (Bits 9-15): Specifies one of the first 128 locations of the 4K-word block in control storage in which the current instruction is loaded. These 7 bits replace the comparable 7 bits in the storage address register. Bits 4 through 8 of the storage address register are set to zero. Bits 0-3 are left as is and point to the current 4K-word block of addresses.

Condition Code

No change

Sequence and Timing for:

Reading from Control Storage-L (load register) Writing into Control Storage-ST (store register)

L (load register)

Hex E17F

Reset SDR High Clock X High (MAR data from T0) Stg Gate High from X (0-3) SDR (4-7) Clock \$AR from Stg Gate High/Low Stg Function Storage Cycle¹ CSX CSY Clock SDR Stg Gate High/Low from SDR High/Low ALU Gate High/Low from Stg Gate High/Low Write LSR High/Low from ALU Gate High/Low Select LSR (data) Clock SDR Check Clock Stg Gate Check **Clock ALU Gate Check** Ctl Stg Address Check Ctl Stg SAR P Check

¹ This line cannot be probed.

Instruction Loop

00	A1FF	LI
01	E17F	L *
02	0000	В

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

.

ST (s	tore regist	ter)		1
			501	200 ns
			FSL Page	то
Hex E	97F			
Select Reset Clock Stg Ga Stg Ga Stg Fu Storag CSX CSY CS Wr Clock Clock Clock Clock Clock	LSR (dat SDR High X High (I ate High f ate Low fi SAR fron ate High/L unction ge Cycle ¹ ite Pulse I SDR (ech SDR Che g Address	ta) MAR data from T0) rom X (0-3) SDR (4-7) rom SDR (8-15) n Stg Gate High/Low Low from LSR High/Low to check) Check ck (see note) Check	PC230 PC220 PC210 PC230 PC230 PC012 PC012 PC020 PC020 PC020 PC146 PC160	
¹ This I	ine cannot	be probed.		
<i>Note:</i> actual	SDR che ly set at T	ck from this instruction is O of the next instruction.	Horizon	ntal =
Instru	ction Loo	p		
00 01	A155 A955		Vertical	=
02 03	E97F 0000	ST * B	Sync Ex	kternal =

Scope Setup

- 0.1 μs/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- = 0.2V/div using X10 probes.
- 'address compare' looking at the instruction referenced with an asterisk (*).

C

Move Local Storage Register (MVR)

1	1	1	0	Reg	1	1	s	Reg 2	
0			3	4	7	8	9	10	15

This instruction moves 2 bytes of data from one local storage register to another local storage register. This instruction permits access to any of the 64 local storage registers in the stack. For example, data can be moved either from register 1 to register 2 or from register 2 to register 1; data movement is controlled by the setting of bit 9.

Register 1 (Bits 4-7): Selects one of 16 local storage registers. The group selected is determined by the present interrupt level. Eight of these registers are always the microaddress register or the microaddress backup register stack (specified by bit 4 = 1). The other eight local storage registers are the work registers associated with the interrupt level selected. These registers are selected by specifying 0-7 in the register 1 field and then selecting from a group of eight registers assigned to each interrupt level (1-5) or the main program level interrupt. Hardware automatically selects stack 1 or stack 2 because of the interrupt level. Hardware then adds hex 00 or hex 10 for stack 1 and hex 20 or hex 30 for stack 2 to the register 1 bits to come up with the real hex address of the local storage register selected.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 1.

S (*Bit* 9): Indicates the direction the data is to be moved:

- S = 0: Register 1 is the source register and2 bytes of data are moved from register 1 to register 2.
- S = 1: Register 2 is the source register and 2 bytes of data are moved from register 2 to register 1.

Register 2 (Bits 10-15): The 6 bits of this field select one of the 64 local storage registers in the data flow (bit 10 = 0). Two bytes of data are moved to or from this field, as determined by the bit setting of the S field.

Condition Code

No change

Control Processor Local Storage Registers

Valid Field Register Specifications

Valid combinations of local storage registers that can be specified in the register 1 field of the move local storage registers are:

- If in main level or machine check, registers 00-07 and 08-0B can be specified.
- If in interrupt level 1, registers 10-17 and OC-OD can be specified.
- If in interrupt level 2, registers 18-1F and OE-OF can be specified.
- If in interrupt level 3, registers 20-27 and 28-29 can be specified.
- If in interrupt level 4, registers 30-37 and 2C-2D can be specified.
- If in interrupt level 5, registers 38-3F and 2E-2F can be specified.

Sequence and Timing

Select LSR (source) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) Carry ALU Gate High/Low from ALU High/Low Select LSR (destination) Write LSR High/Low Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A1FF	LI
01	A9FF	LI
02	E182	MVR*
03	0000	В

Note: Bit 9 determines the source field:

If bit 9 = 0, bits 4-7 specify the source LSR; bits 10-15 specify the destination LSR.

If bit 9 = 1, bits 10-15 specify the source LSR; bits 4-7 specify the destination LSR.

0

()()

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hexadecimal Branch (HBN, HBZ)

HBN (numeric) HBZ (zone)

1 1 1 H1 Reg 1 MAR' 0 ////// Z 0 3 4 5 7 8 11 12 13 14 15

This instruction operates as a 16-way branch without prerequisites. Either the zone or digit part of the high- or low-order byte of the selected register replaces bits 12-15 of the control storage microaddress register. Bits 8-11 of the control storage microaddress register are replaced by the bits contained in the hexadecimal branch instruction (bits 8-11).

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used in the hexadecimal branch:

H1 = 0: Low-order byte

H1 = 1: High-order byte

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The zone or digit part of the selected register replaces bits 12-15 of the control storage microaddress register.

MAR' (Bits 8-11): Replaces bits 8-11 of the control storage microaddress register. Bits 0-7 of the control storage microaddress register are not changed by this instruction.

Bit 12: Changes the operation code (bits 0-3). Bit 12 is always a 0.

Bits 13 and 14: Not used in this instruction.

Z (*Bit* 15): Causes either the zone or numeric part of the selected register to be used in the hexadecimal branch function:

- Z = 0: The numeric part of the data byte of the selected register replaces bits 12-15 of the control storage microaddress register.
- Z = 1: The zone part of the data byte of the selected register replaces bits 12-15 of the control storage microaddress register.

Condition Code

Sequence and Timing

Hex F100

Select LSR

Stg Gate High/Low from LSR Clock X-Reg from Stg Gate High/Low Clock Y Low from SDR Low (Y high, don't care) Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate Low (12-15) from ALU Low (12-15) ALU Gate High from ALU High Select LSR (MAR) Write LSR Low Carry Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A103	LI
01	F100	HBN *
02	BEA3	Proc
03	0000	В

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
Vertical	=	0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*). FSL Page

Hex F101

Select LSR	PC
Stg Gate High/Low from LSR High/Low	PC
Clock X-Reg from Stg Gate High/Low	PC
Clock Y Low from SDR Low (Y high, don't care)	PC
Set ALU Mode (X + carry)	PC
ALU Gate High from ALU High	PC
ALU Gate Low (8-11) from Y Low (8-11)	PC
ALU Gate Low (12-15) from ALU Low (8-11)	PC
Select LSR (MAR)	PC
Write LSR Low	PC
Carry	
Clock Stg Gate Check	PC
Clock ALU Gate Check	PC
Instruction Loop	

00	A103	LI	
01	F101	HBZ *	Hor
02	BEA3	Proc	
03	0000	В	
			Vert

_

CCC

C

Scope Setup

- rizontal = 0.1 µs/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hexadecimal Move (SRL, SRLD, MZZ, MZN)

SRL	(shift right logical)			
SRLD	(shift right logical double)			
MZZ	(link register 2 zone to register 1 numeric)			
MZN	(link register 2 zone to register 1 zone)			

1	1	1	1	H1	Reg	1	F	unction	H2	1	Reg	2
0			3	4	5	78	9	10) 11	12	13	15

This instruction performs the following functions:

- Shift right logical (SRL) 8 bits of register (register 1).
- · Shift right logical double (SRLD) 16 bits of register (register 1).
- Link the zone part of register 2 to the numeric part of register 1 (MZZ) and put the results into register 1 in the following format:

Reg2	Reg1
Zone	Numeric
20116	Numeric

· Link the zone part of register 2 to the zone part of register 1 (MZN) and put the results into register 1 in the following format:

Reg2	Reg1
Zone	Zone

H1 (Bit 4): Indicates which byte of the selected register in the local storage register stack is to be used:

H1 = 0: Low-order byte

H1 = 1: High-order byte

The H1 field is not used for shift-right-logical-double instructions.

Register 1 (Bits 5-7): Selects one of the eight work registers in the local storage register stack for the current interrupt level.

Bit 8: Not used in this instruction.

Function (Bits 9 and 10): Specifies one of the following functions:

- Bits 9 and 10 = binary 00: Register 1 shift right logical (SRL). The 8 bits of the selected byte are moved one position to the right. The high-order (leftmost) bit is replaced with a 0. The register 2 and H2 fields of the hexadecimal move instruction are not used for shift-right-logical functions.
- Bits 9 and 10 = binary 01: Register 1 shift right logical double (SRLD). The 16 bits of the selected register are moved one position to the right. The high-order bit (bit 0) is replaced with a 0. The H1, H2, and register 2 fields of the hexadecimal move instruction are not used for shift-right-logical-double functions.
- Bits 9 and 10 = binary 10: Link the zone part of register 2 to the zone part of register 1 (MZN). The zone digit of the register specified in register 2 is moved to the zone position of the register specified by register 1, and the zone digit of the register specified in register 1 is moved to the numeric position of the register specified in register 1. The results are put in the register specified by register 1 and have the following format:

Reg2 Zone	Reg1 Zone	

Example:	Register 1 Register 2	0110 1000 1111 0010
	Result	1111 0110

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array}$

• Bits 9 and 10 = binary 11: Link the zone part of register 2 to the numeric part of register 1 (MZZ). The zone digit of the register specified in register 2 is moved to the zone position of the register specified in register 1, and the numeric digit of the register specified by register 1 remains the same. The results are put in the register specified by register 1 and have the following format:

Reg2	Re	g1	
Zone	Nu	Imeric	
Examp	ole:	Register 1 Register 2	0110

Result (register 1)

H2 (Bit 11): Indicates which byte of the selected register (specified by register 2) in the local storage register stack is to be used:

H2 = 0: Low-order byte

H2 = 1: High-order byte

The H2 field is not used in the shift-right-logical and shift-right-logical-double functions.

Bit 12: Changes the operation code (bits 0-3). Bit 12 is always a 1.

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The register 2 field is not used in the shift-right-logical and shift-right-logical-double functions.

Condition Code

No change

1001 0010

Sequence and Timing

the numeric portion of the selected LSR.

Control Processor 2-83

Instruction Loop

00	A155	LI	
01	A000	LI	
02	F108	SRL * (see note)	F
03	0000	В	

Note: This instruction uses the low byte of the LSR.

ALU Gate Low (8) from ALU Low P Gen (0 bit)

		Scope Setup
Horizontal		0.1 μ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
Vertical	=	0.2V/div using X10 probes.
Sync External	=	'address compare' looking at the instruction referenced with an asterisk (*).

Saana Satur

Hex F908

Select LSR Stg Gate High from LSR Stg Gate Low from Stg Gate High X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low (9-15) from ALU Low (8-14) ALU Gate Low (8) from ALU Low P Gen (0 hit) ALU Gate High from ALU Gate Low Select LSR (MAR) Write LSR High Carry Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A155	LI
01	A900	LI
02	F908	SRL * (see note)
03	0000	В

Note: This instruction uses the high byte of the LSR.

Hex F108

Select LSR

Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low (9-15) from ALU Low (8-14)

Select LSR (MAR)

Clock Stg Gate Check

Clock ALU Gate Check

Write LSR Low

Carry

DODODÓDCOCOCOCOCOCOCÓCCOCOCCCC

Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A'
		cycle per division on chan 2.

- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex F128

Select LSR

Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low (9-15) from ALU Low (8-14) ALU Gate Low (8) from ALU High (7) ALU Gate High (1-7) from ALU High (0-6) Write LSR High Carry Clock Storage Gate Check Clock ALU Gate Check

Instruction Loop

00	A155	LI
01	A900	LI
02	F128	SRLD *
03	0000	В

Scope Setup

Horizontal	=	0.1 μ s/div uncalibrated to display one 'phase A'
		cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Control Processor 2-85

Hex F95A

Select LSR (operand 2) Stg Gate High from LSR High Stg Gate Low from Stg Gate High Y-Reg from Stg Gate High/Low Select LSR (operand 1) Stg Gate High from LSR High Stg Gate Low from Stg Gate High X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate High (12-15) from X Low (8-11) ALU Gate High from ALU High Write LSR High Carry **Clock Storage Gate Check** Clock ALU Gate Check

Instruction Loop

00	A9C1	LI
01	AAE1	LI
02	F95A	MZZ * (see note)
03	0000	В

Note: This instruction uses the high byte of both operands.

Scope Setup

- Horizontal = $0.1 \,\mu\text{s/div}$ uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex F14A
Select LSR (operand 2)
Stg Gate High/Low from LSR
Y-Reg from Stg Gate High/Low
Select LSR (operand 1)
X-Reg from Stg Gate High/Low

Set ALU Mode (X + carry)
ALU Gate Low (8-11) from Y Low (8-11)
ALU Gate Low (12-15) from ALU Low (8-11)
ALU Gate High from ALU Gate Low
Write LSR Low
Carry
Clock Storage Gate Check
Clock ALU Gate Check

Instruction Loop

00	A1C1	LI
01	A2E1	LI
02	F14A	MZZ * (see note)
03	0000	В

Note: This instruction uses the low byte of both operands.

Scope Setup

- Horizontal = $0.1 \,\mu s/div$ uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex F97A

Select LSR (operand 2) Stg Gate High from LSR Stg Gate Low from Stg Gate High Y-Reg from Stg Gate High/Low Select LSR (operand 1) Stg Gate High from LSR Stg Gate Low from Stg Gate High Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate Low (12-15) from ALU Low (12-15) ALU Gate High from ALU Gate Low Write LSR High Carry Clock Storage Gate Check Clock ALU Gate Check

Instruction Loop

00	A9C1	LI
01	AAE1	LI
02	F97A	MZN * (see note)
03	0000	В

Note: This instruction uses the high byte of both operands.

Scope Setup

Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.

Vertical = 0.2V/div using X10 probes.

Sync External = -'address compare' looking at the instruction referenced with an asterisk (*).

Hex F16A

Select LSR (operand 2) Stg Gate High/Low from LSR Y-Reg from Stg Gate High/Low Select LSR (operand 1) Stg Gate High/Low from LSR X-Reg from Stg Gate High/Low Set ALU Mode (X + carry) ALU Gate Low (8-11) from Y Low (8-11) ALU Gate Low (12-15) from ALU Low (12-15) ALU Gate High from ALU Gate Low Write LSR Low Carry Clock Stg Gate Check Clock ALU Gate Check

Instruction Loop

00	A1C1	LI
01	A2E1	LI
02	F16A	MZN * (see note)
03	0000	В

Note: This instruction uses the low byte of both operands.

C C

Scope Setup

- Horizontal = $0.1 \,\mu$ s/div uncalibrated to display one 'phase A' cycle per division on chan 2.
- Vertical = 0.2V/div using X10 probes.
- Sync External = -'address compare' looking at the instruction referenced with an asterisk (').

I/O Immediate

10	11	Мос	lifier	Fur	nction	Н2	Reg	2
0	3	4	7	8	11	12	13	15

The I/O immediate instruction has four main functions:

- Move 1 byte of data between the local storage registers and the I/O devices
- Direct control of the channel and the I/O functions that may or may not include data movement
- Direct control of the control processor functions
- Direct control of the main storage processor functions

Modifier (Bits 4-7): The modifier bits rely on the device usage and are sent to the I/O attachment. These bits, along with the command bus out (CBO) bits, specify what is to be done.

Function (Bits 8-11): The function bits are sent to the port where they are decoded as one of the following commands: load, sense, control load, or control sense. This command is then sent to the I/O attachment on the 'command bus out' lines.

If bits 10 and 11 = binary 10, the command does not go to the port but remains in the control processor. For a bit definition of the sense information, see the control processor sense chart in this section. H2 (Bit 12): Selects the high- or low-order byte of the selected local storage register.

H2 = 0: Low-order byte

H2 = 1: High-order byte

Reg 2 (Bits 13-15): This field selects one of the eight work registers in the local storage register stack for the current interrupt level. This register is used for the byte of data or control information that is to be sent or received.

Note: For control processor control instructions, bits 12-15 are used as a second set of modifier bits.

Timing of CP Functions

	ECI	
	Page	то
Select LSR (WR0)	PC240	
SDR High		
SDR Low		
LSR Low	PC230	
Select Storage Gate High (from SDR high)	PC230	
Clock X Low, X High, SAR	PC210	
Advance Time	PC518	
Select LSR (bits 13, 14, 15)	PC240	
Select Storage Gate High (from LSR high)	PC230	
Select Storage Gate Low (from channel bus: 9=1; from LSR: 9=0)	PC230	
Select ALU Gate Low (from storage gate low)	PC250	
Select ALU Gate High (from ALU gate low)	PC250	
Write LSR Low (9=1, 12=0)	PC160	
Write LSR High (9, 12=1)	PC160	

200 ns

T1

I-Fetch

T2

Т3

Note: A more complete description of the I/O immediate commands can be found under *Commands* in the *Channel* section of this manual.

T3E	 	Т4	Т5	Т6	T6E
	~ }				

Sequence of Port Communications

C

Control Processor 2-89

I/O Immediate Instructions

Op Code 0 1 2 3	Modifier 4 5 6 7	Function 8 9 10 11	Address of L Used by Instruction 12 13 14	.SR 15	WR0 Device Address Device Type	Op Code 0 1 2 3	Modifier 4 5 6 7	Function 8 9 10 11	Address of LSR Used by Instruction 12 13 14 15	WR0 Device Address De	evice Type
1 0 1 1	XXXX	0 0 0 0 I/O Load (IOL)	Z Z Z (WR0 = 00) Y R R (WR0 ≠ 00)	Z R	00 =Channel (see instruction list)50 =Unit record (MICR) 125580 =CommunicationsA0 =Disk AB0 =Disk BC0 =Work stationD0 =DisketteE0 =Line printer	1 0 1 1	X X X X For diag- nostic purposes only	1 1 0 0 I/O Control Sense (IOCS)	YRRR	$\begin{array}{rcrcr} 00 &= & Channel \\ 50 &= & Unit re \\ 80 &= & Comme \\ A0 &= & Disk A \\ B0 &= & Disk B \\ C0 &= & Work s \\ D0 &= & Diskett \\ E0 &= & Line pr \end{array}$	al cord (MICR) 125 unications tation te rinter
1 0 1 1	××××	0 1 0 0 I/O Sense (IOS)	YRR	R	00 =Channel (see chart and instr list)50 =Unit record (MICR) 125580 =CommunicationsA0 =Disk AB0 =Disk BC0 =Work stationD0 =DisketteE0 =Line printer	Legend:	X = Depe Y = High Z = Not R = Selec * = Inter	endent on speci or low byte of required or use sted LSR value rupt level	 ific function f selected LSR ed		
1011	××××	0 1 0 1 Sense Inter- rupt Level Status Byte (SILSB)	YRR	R	*0 = Channel (see chart and instr list) *Interrupt level of data	Note: See attachmen	<i>Commands</i> t section of	in the approp this manual.	riate		
1011	x x x x	0 1 1 0 Control Processor Sense (MPS)	YRR	R	N/A (see chart and instruction list)						
1011	××××	1 0 0 0 I/O Control Load (IOCL)	× × ×	×	00 =Channel (see instruction list)50 =Unit record (MICR) 125580 =CommunicationsA0 =Disk AB0 =Disk BC0 =Work stationD0 =DisketteE0 =Line printer						
1011	××××	1 0 1 0 Control Processor Load Function (MPLF)	× × ×	x	N/A (see instruction list)						

2-90

Control Processor Sense (MPS)

The contents of these bytes or switches are moved to an LSR. This data can then be used by the program.

4567	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
0 0 1 1 Interrupt status	Invalid Iogout					Interrupt code	Interrupt code	Interrupt code
0 1 0 0 Console status byte	Stop key	Main storage address compare	Overlap off	MSIPL device select switch	I/O request	Sys step mode	Go flag	Micro- interrupt check
0 1 0 1 Address/ Data switches 3 and 4	Switch 3 8	Switch 3 4	Switch 3 2	Switch 3 1	Switch 4 8	Switch 4 4	Switch 4 2	Switch 4 1
0 1 1 0 I/O clocks Iow byte	8.19 ms	16.38 ms	32.77 ms	65.54 ms	131.1 ms	262.1 ms	524.3 ms	1s
0 1 1 1 I/O clocks high byte	32 μs	64 µs	128 μs	256 μs	512 μs	1.02 ms	2.05 ms	4.10 ms
1 0 0 1 Address/ Data switches 1 and 2	Switch 1 8	Switch 1 4	Switch 1 2	Switch 1 1	Switch 2 8	Switch 2 4	Switch 2 2	Switch 2 1
1 0 1 0 CPU error byte	SDR P check	MOR P check	Storage gate P check	ALU gate P check	Control storage invalid addr/ SAR check	Microloop time-out/ SAR check	Main' storage invalid addr/ MSAR check	Main storage excep- tion/ MSAR check
1 0 1 1 PCR	Flag	Plus	Minus	Zero	Carry log	High log	Low log	Equal log

Control Processor Sense (Interrupt Status/Code)

The interrupt code indicates which hardware interrupt level the control processor was executing on when the error occurred that caused the logout. A decode of the interrupt code in terms of a hardware interrupt level is as follows:

Interrupt Code (Bits 5-7) (Hex)	Hardware Inte
0	5
1	4/Base cycle s
2	Base cycle ste
3	3
4	2
5	1/Burst cycle s
7	0/Main level

I/O Sense (IOS)

By checking channel check byte bit 6 = 1 (cycle steal check), the CE can determine if the interrupt was caused by a hardware level or a cycle steal operation.

IOS (Channel/Port)

		_	-	Contraction of the local division of the loc	Contraction of the local division of the loc							
	4	5	6	7	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Bit 6	Bit 7
Sense Port Register	0	0	0	0				Data]			
Sense Port Error Byte	0	0	0	1	MPXPO bus out	Invalid device address	DBI P check	I/O time-out check	CBI/DBI not zero	System bus out P check	Cycle steal check	Invalid port

errupt Level

steal eal/Burst cycle steal

steal

Valid I/O Immediate Instructions (Numeric Sequence by Instruction)

Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic
							B7AX	В	7	А	х	Reset event light 7	MPLF							
B00X	В	0	0	Х	Start fixed interval timer	IOL	B80X	В	8	0	X	Disable main storage	IOL	BFA5	В	F	А	5	Set 'stop' latch	MPLF
B04 R	В	0	4	R	Sense port register	IOS						processor level 5 request		BFA6	В	F	А	6	Reset 'retry' latch, reset	MPLF
B05R	В	0	5	R	Sense interrupt level	SILSB	B8AX	В	8	А	х	Set flag	MPLF						control processor loop	
					status byte		B90X	В	9	0	X	Enable main storage pro-	IOL						time-out, and set go	
B06R	В	0	6	R	Reserved	MPS						cessor interrupt level 5		BFA7	В	F	А	7	Set retry	MPLF
B08X	В	0	8	Х	Disable extended time-out	IOCL						request		BFA8	В	F	А	8	Enable I/O clocks	MPLF
BOAR	В	0	А	R	Load PCR (from high byte	MPLF	B96R	В	9	6	R	Address/Data switches 1-2	MPS	BFA9	В	F	А	9	No-op	MPLF
					of register only)		B9AF	B	9	A	F	No-op	MPLE	BFAA	В	F	А	А	Reset I/O clocks	MPLF
B10X	В	1	0	Х	Disable main storage pro-	IOL	BAOF	B	A-F	0	F	No-op	101	BFAB	В	F	А	В	Disable I/O clocks	MPLF
					cessor level 5 interrupt		BA6B	B	Δ	6	B	Common processor check	MPS	BFAC	В	F	А	С	No-op	MPLF
B14R	В	1	4	R	Sense port error byte	105	Brieff	U		Ū	••	byte 0		BFAD	В	F	А	D	Reset control processor	MPLF
B16R	В	1	6	R	No-op	MPS	BAAF	R	Δ	Δ	F	No-on	MPLE						working	
B18R	В	1	8	R	Load port register	1001	BB6B	B	B	6	B	Control processor	MPS	BEAE	в	F	А	E	Processor wait	MPLF
B1AX	В	1	A	X	Reset carry-set equal	MPLE	DDON	D	U	0		condition reg (PCB)		BITTE	2	•		-		
B20X	B	2	0	X	Reset main storage pro-	101	DDAE	D	D	۸	E	Poset flog		Reg 2 Le	gend					
	-	-	Ū.		cessor level 5 interrupt	102		D	D C	A ^	г. с	Ne ep		X =	Don't ca	re				
B26R	в	2	6	R	No-op	MPS		D		A _	г г	No-op		R =	Specify I	register				
B28X	B	2	8	x	Reset port check		BDAF	D		A		No-op				0				
B2AX	B	2	Δ	X	Reset event light 2	MPLE	BEAU	В	E 7	A	1	No-op								
B30X	B	3	0	X	Reset fixed interval		BEAT	В	E	A	1	Set I/O service request								
20071		U	Ũ	~	timer interrunt	102	BEA2	В	E	A	2	Reset I/O service request								
B36 B	в	3	6	R	Sense interrunt status	MPS	BEA3	В	E	A	3	Processor check halt								
B38X	B	3	8	X	Enable extended time-out		BEA4	В	E	A	4	Disable checks								
B34X	B	3	Δ	X	Beset event light 3	MDIE	BEA5	В	E	A	5	Enable interrupts								
B40X	B	1	0	X	Enable main storage pro-		BEA6	В	E	A	6	Disable interrupts								
DHUX	Б	4	0	Λ	concor lovel 5 interrupt	IUL	BEA/	В	Ĕ	A	/	Enable checks	MPLF							
BAGD	D	1	6	D		MDC	BEA8	В	E	A	8	Reset main storage	MPLF							
	D	4	0	n V	Beest interrupt level F	IVIP5			_			processor								
D40A	D	4	Ö	X	Reset Interrupt level 5	IUCL	BEA9	В	Е	A	9	Turn on System In Use	MPLF							
DAAV	р	4	٨	V	Prequest							light								
B4AX	В	4	A	X	Reset event light 4	MPLF	BEAA	В	E	А	А	Turn off System In Use	MPLF							
BSUX	В	5	0	X	Stop fixed interval timer	IOL						light								
B56R	В	5	6	К	Address/Data switches 3-4	MPS	BEAB	В	E	А	В	Start main storage	MPLF							
B28X	В	5	8	X	Set channel odd parity	IOCL						processor								
B5AX	В	5	A	Х	Reset event light 5	MPLF	BEAC	В	Е	А	С	No-op	MPLF							
B60X	В	6	0	Х	No-op	IOL	BEAD	В	Е	А	D	No-op	MPLF							
B66R	В	6	6	R	I/O clocks low byte	MPS	BEAE	В	Е	А	E	No-op	MPLF							
B68X	В	6	8	X	Set channel even parity	IOCL	BFA0	В	F	А	0	Set control processor	MPLF							
B6AX	В	6	A	Х	Reset event light 6	MPLF						working								
B70X	В	7	0	Х	Set main storage pro-	IOL	BFA1	В	F	А	1	Reset 'stop' latch	MPLF							
					cessor level 5 interrupt		BFA2	В	F	А	2	Reset 'machine check	MPLF							
B76R	В	7	6	R	I/O clocks high byte	MPS						interrupt' latch								
B78X	В	7	8	Х	Set interrupt level 5	IOCL	BFA3	В	F	А	3	Reset 'go' latch	MPLF							
					request		BFA4	В	F	А	4	Enable control processor	MPLF							
												Line Parts and								

loop time-out

MPLF

Valid I/O Immediate Instructions (Alphabetic Sequence by Description)

Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonis	Numeric	Op Code	Mod	Funct	Reg 2	Description	Mnemonic
B96R	В	9	6	R	Address/Data switches 1-2	MPS	BEA0	в	E	А	0	No-op	MPLF	B28X	В	2	8	X	Reset port check	IOCL
B56R	В	5	6	R	Address/Data switches 3-4	MPS	BFAC	В	F	A	С	No-op	MPLF	BFA6	в	F	А	6	Reset 'retry' latch, reset	MPLF
BA6R	В	А	6	R	Common processor check	MPS	BFA9	в	F	А	9	No-op	MPLF						control processor loop	
					byte 0		B60X	В	6	0	Х	No-op	IOL						time-out, and set go	
B46R	В	4	6	R	Console status byte	MPS	B9AF	В	9	А	F	No-op	MPLF	BFA1	В	F	А	1	Reset 'stop' latch	MPLF
BB6R	В	В	6	R	Control processor	MPS	BEA3	В	Е	А	3	Processor check halt	MPLF	B05R	В	0	5	R	Sense interrupt level	SILSB
					condition reg (PCR)		BFAE	В	F	А	E	Processor wait	MPLF						status byte	
BEA4	В	E	A	4	Disable checks	MPLF	B06R	В	0	6	R	Reserved	MPS	B36R	В	3	6	R	Sense interrupt status	MPS
BFAB	В	F	А	В	Disable I/O clocks	MPLF	B16R	В	1	6	R	No-op	MPS	B14R	В	1	4	R	Sense port error byte	IOS
BEA6	В	E	А	6	Disable interrupts	MPLF	B26R	В	2	6	R	No-op	MPS	B04 R	В	0	4	R	Sense port register	IOS
B10X	В	1	0	X	Disable main storage	IOL	B1AX	B	1	А	X	Reset carry-set equal	MPLF	B68X	В	6	8	X	Set channel even parity	IOCL
					processor level 5		BFAD	В	F	А	D	Reset control processor	MPLF	B58X	В	5	8	Х	Set channel odd parity	IOCL
					interrupt							working		BFA0	В	F	А	0	Set control processor	MPLF
B80X	В	8	0	X	Disable main storage	IÓL	B2AX	В	2	A	X	Reset event light 2	MPLF						working	
					processor level 5 request		B3AX	В	3	А	X	Reset event light 3	MPLF	B8AX	В	8	А	Х	Set flag	MPLF
B08X	В	0	8	х	Disable extended time-out	IOCL	B4AX	В	4	А	Х	Reset event light 4	MPLF	BEA1	В	Ē	А	1	Set I/O service request	MPLF
BEA7	В	Е	А	7	Enable checks	MPLF	B5AX	B	5	А	X	Reset event light 5	MPLF	B78X	В	7	8	Х	Set interrupt level 5	IOCL
BFA4	В	F	А	4	Enable control processor	MPLF	B6AX	В	6	A	X	Reset event light 6	MPLF						request	
					loop time-out	•	B7AX	В	7	A	Х	Reset event light 7	MPLF	B70X	В	7	0	Х	Set main storage processor	IOL
B38X	В	3	8	Х	Enable extended time-out	IOCL	B30X	В	3	0	. X	Reset fixed interval timer	IOL						level 5 interrupt	
BFA8	В	F	А	8	Enable I/O clocks	MPLF						interrupt		BFA7	В	F	А	7	Set retry	MPLF
BEA5	В	Е	А	5	Enable interrupts	MPLF	BBAF	В	В	A	F	Reset flag	MPLF	BFA5	B	F	А	5	Set 'stop' latch	MPLF
B40X	В	4	0	Х	Enable main storage	IOL	BFA3	В	F	А	3	Reset 'go' latch	MPLF	B00X	В	0	0	Х	Start fixed interval timer	IOL
					processor level 5		BFAA	В	F	А	A	Reset I/O clocks	MPLF	BEAB	В	Ë	А	В	Start main storage	MPLF
					interrupt		BEA2	B .	E	А	2	Reset I/O service request	MPLF						processor	
B90X	В	9	0	X	Enable main storage	IOL	B48X	B	4	8	X	Reset interrupt level 5	IOCL	B50X	В	5	0	Х	Stop fixed interval timer	IOL
					processor interrupt							request		BEAA	В	É	А	A	Turn off System In Use	MPLF
					level 5 request		BFA2	В	F	А	2	Reset 'machine check	MPLF						light	
B76R	В	7	6	R	I/O clocks high byte	MPS						interrupt' latch		BEA9	В	Ē	Α	9	Turn on System In Use	MPLF
B66R	В	6	6	R	I/O clocks low byte	MPS	BEA8	В	Ε	А	8	Reset main storage	MPLF					4	light	
BOAR	B	0	A	R	Load PCR (from high byte	MPLF						processor								
					of register only)		B20X	В	2	0	X	Reset main storage	IOL							
B18R	В	1	8	R	Load port register	IOCL						processor level 5 interrupt								
BAAF	В	Α	А	F	No-op	MPLF														
BA0F	В	A-F	0	F	No-op	IOL														
BCAF	В	С	А	F	No-op	MPLF														
BDAF	В	D	А	F	No-op	MPLF														
BEAC	В	Е	А	С	No-op	MPLF														
BEAD	В	Е	А	D	No-op	MPLF														

BEAE

В

Е

А

Ε

No-op

I/O Load or I/O Control Load (IOL, IOCL)

10	11	Мос	lifier	Fun	ction	Н2	Reg	2
0	3	4	7	8	11	12	13	15

This part of the I/O immediate instruction moves 1 byte of data or control information from a local storage register to the I/O attachment.

Modifier (Bits 4-7): The modifier bits are specified for the device and are sent to the I/O attachment with the command. These bits specify what is to be done with the data byte.

Function (Bits 8-11): The function bits are sent to the channel where they are decoded as either the load or control load command. This command is then sent to the I/O attachment on the 'command bus out' lines.

Bits 8-11 = 0000 for IOL

Bits 8-11 = 1000 for IOCL

H2 (Bit 12): Selects the low- or high-order byte of the selected local storage register of the current interrupt level:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register contains the byte of data or control information that is to be sent to the I/O attachment.

Note: A more complete description of the I/O load and I/O control load commands may be found under *Commands* in the *Channel* section of this manual.

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array}$

2-94

Timing of CP/Channel Functions

	FSL Page	
I/O Instruction	PC138	
Stg Gate Hi/Lo from SDR (instr)	PC230	 ļ
Strobe SDR Lo Data (function to SBO)	PC502	
CBO Decode from SBO	PC542	 -
Stg Gate Lo from Stg Gate Hi	PC230	
Load Data Buffer (modifier bits)	PC526	
Select LSR (WR0 address)	PC230	
Stg Gate Hi/Lo from LSR	PC230	 <u> </u>
Strobe LSR Data	PC526	 -
Data Buffer from SBO (address)	PC502	 ļ
Control Out Pwrd (from channel)	PC510	 Basi
Service In (from I/O)	PC558	 I-Fe
Service Out Pwrd (from channel)	PC510	
CBO Bits Active	PC542	 <u> </u>
Modifier Bits to Data Buffer	PC502	 <u> </u>
Address Bits to Data Buffer	PC502	 _
Modifier Bits to MPXPO Bus Out	PC506	
Address Bits to MPXPO Bus Out	PC506	 ļ
Mod. and Address Bits Sent to I/O		
Advance Time from Channel	PC518	 -
Strobe Pwrd	PC510	 <u> </u>
Data Gated to Data Buffer		
Data Gated to MPXPO Bus Out		

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

The first 'strobe pwrd' pulse after the rise of the 'control out pwrd' line signals the I/O attachment that the device address and the command information on the 'command bus out' and 'MPXPO bus out' lines are valid. The rise of the 'service in' line signals the port that the I/O attachment has taken the information from the 'command bus out' and 'MPXPO bus out' lines and is ready to receive data.

The first 'strobe pwrd' pulse after the rise of the 'service out pwrd' line signals the I/O attachment that the data byte on the 'data bus out' lines is valid. The fall of the 'service in' line signals the port that the I/O attachment has taken the data byte from the 'MPXPO bus out' lines.

I/O Sense or I/O Control Sense (IOS, IOCS)

1011	Modifier	Function	H2	Reg 2	
 0 3	4 7	8 11	12	13 1!	

This part of the I/O immediate instruction moves 1 byte of data or status type information from the I/O attachment to a local storage register.

Modifier (Bits 4-7): The modifier bits are specified by the device and are sent to the I/O attachment with the command. These bits specify which data byte is to be sent.

Function (Bits 8-11): The function bits are sent to the port where they are decoded as either the sense or control sense command. This command is then sent to the I/O attachment on the 'command bus out' lines.

Bits 8-11 = 0100 for IOS

Bits 8-11 = 1100 for IOCS

H2 (Bit 12): This bit is used to select the low- or high-order byte of the selected local storage register:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The byte of data being sent from the I/O attachment is placed in this local storage register.

Note: A more complete description of the I/O sense and I/O control sense commands may be found under *Commands* in the *Channel* section of this manual.

Timing of CP/Channel Functions

		200 ns																			
	FSL Page	то	T1	Т2	тз	ТЗА	тзв	T3E C07	COF	COE	C06	C12	Т4	Т5	Т6	C13	C17	C1F	C1E	C16	C02
I/O Instruction	PC138																				
Stg Gate Hi/Lo from SDR (instr)	PC230			•																	
Strobe SDR Lo Data (function to SBO)	PC502																				
CBO Decode from SBO	PC542																				
Stg Gate Lo from Stg Gate Hi	PC230																				
Load Data Buffer (modifier bits)	PC526																				
Select LSR (WR0 address)	PC230																				
Stg Gate Hi/Lo from LSR	PC230																				
Strobe LSR Data	PC526																				
Data Buffer from SBO (address)	PC502																				
Control Out Pwrd (from channel)	PC510		Basic																		
Service In (from I/O)	PC558		I-Fetch																		
Service Out Pwrd (from channel)	PC510																				
CBO Bits Active	PC542																				
Modifier Bits to Data Buffer	PC502						•														
Address Bits to Data Buffer	PC502																				
Modifier Bits to MPXPO Bus Out	PC506																				
Address Bits to MPXPO Bus Out	PC506																				1
Mod. and Address Bits Sent to I/O																					
Advance Time from Channel	PC518																				
Strobe Pwrd	PC510																				
Data Gated to Data Buffer																					
Data Gated to MPXPO Bus Out																		×			

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

The first 'strobe pwrd' pulse after the rise of the 'control out pwrd' line signals the I/O attachment that the device address and the command information on the 'command bus out' and 'MPXPO bus out' lines are valid.

The rise of the 'service in' line signals the port that the I/O attachment has taken the information from the 'command bus out' and 'MPXPO bus out' lines. The rise of the 'service in' line also signals the port that the data byte on the 'MPXPO data in' lines is valid. The rise of the 'service out pwrd' line signals the I/O attachment that the channel has taken the byte from the 'MPXPO data in' lines.

Sense Interrupt Level Status Byte (SILSB)

10	11	Mod	lifier	Fur	iction	Н2	Reg	2
0	3	4	7	8	11	12	13	15

This function of the I/O immediate instruction moves 1 byte of status information from the I/O attachment to the selected local storage register. This status byte determines which devices are requesting service on a given interrupt level.

Modifier (Bits 4-7): The modifier bits are specified for each device and are sent to the I/O attachment with the command. These bits specify what is to be done with the data byte.

Function (Bits 8-11): The function bits are sent to the channel where they are decoded along with the operation code as a sense interrupt level status byte command. This command is then sent to the I/O attachment on the 'command bus out' lines.

Bits 8-11 = 0101

H2 (Bit 12): Selects the low- or high-order byte of the selected LSR of the current interrupt level:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register stores the byte of status (information containing the device causing the interrupt level) received from the I/Oattachment.

WR0 Low (Bits 8-11): Contains the interrupt level hexadecimal value used by the I/O attachment to select the status byte of information to be stored in the selected local storage register.

	Bit 4		Bit 5	Bit 6		Bit 7	
				Disk Data	2	Disk Data	1
ĺ				Disk Seek	2	Disk Seek	1
to	Chann	el ,					

C C

Control Processor Load Function (MPLF)

1 0	11	Mo	difier	Fu	nction	H2	Reg	2
0	3	4	7	8	11	12	13	15

This function of the I/O immediate instruction does not go to the channel but remains in the control processor. It performs functions (such as loading registers), sets/resets conditions, and enables/disables conditions.

Modifier (Bits 4-7): Specifies the type of load function to be performed by the command.

Function (Bits 8-11): Decoded by the control processor as an internal load function when bits 10 and 11 are equal to binary 10.

Modifier 2 (Bits 12-15): Combines with bits 4-7 to specify the type of load function to be performed by the command.

Control Processor Sense (MPS)

10	11	Мо	difier	Fu	nction	H2	Reg	2
0	3	4	7	8	11	12	13	15

This function of the I/O immediate instruction does not go to the channel but remains in the control processor. A byte of data is moved to a local storage register to be used by the program. The byte contains one of the following:

Console status

Address/Data switches 1-4

Processor condition register

Interrupt status

Modifier (Bits 4-7): Selects the byte of data or status to be moved to the selected local storage register.

Function (Bits 8-11): Decoded by the control processor as an internal sense function when bits 10 and 11 are equal to binary 10.

H2 (Bit 12): Selects the low- or high-order byte of the selected local storage register for the current interrupt level:

H2 = 0: Low-order byte

H2 = 1: High-order byte

Register 2 (Bits 13-15): Selects one of the eight work registers in the local storage register stack for the current interrupt level. The selected register stores the byte of data to be used by the program.

Control Processor Sense (MPS)

	4567	Bit 0	Bit 1	Bit 2	Bit 3	Bit 4	Bit 5
The contents of these bytes or switches are	0 0 1 1 Interrupt status	Invalid logout					Interr code
LSR. This data can then be used by the program.	0 1 0 0 Console status byte	Stop key	Main storage address compare	Overlap off	MSIPL device select switch	I/O request	Sys step mode
	0 1 0 1 Address/ Data switches 3 and 4	Switch 3 8	Switch 3 4	Switch 3 2	Switch 3 1	Switch 4 8	Switch 4
	0 1 1 0 I/O clocks Iow byte	8.19 ms	16.38 ms	32.77 ms	65.54 ms	131.1 ms	262.1
	0 1 1 1 I/O clocks high byte	32 μs	64 μs	128 µs	256 μs	512 μs	1.02 m
	1 0 0 1 Address/ Data switches 1 and 2	Switch 1 8	Switch 1 4	Switch 1 2	Switch 1 1	Switch 2 8	Switch 4
	1 0 1 0 CPU error byte	SDR P check	MOR P check	Storage gate P check	ALU gate P check	Control storage invalid addr/ SAR check	Microl time-o SAR check
	1 0 1 1 PCR	Flag	Plus	Minus	Zero	Carry log	High I

Bit 5	Bit 6	Bit 7
Interrupt code	Interrupt code	Interrupt code
Sys step mode	Go flag	Micro- interrupt check
Switch 4 4	Switch 4 2	Switch 4 1
262.1 ms	524.3 ms	1s
1.02 ms	2.05 ms	4.10 ms
Switch 2 4	Switch 2 2	Switch 2 1
Microloop time-out/ SAR check	Main' storage invalid addr/ MSAR check	Main storage excep- tion/ MSAR check
High log	Low log	Equal log

I/O Storage (WTCL, WTCH, RDCL, RDCH, WTM, RDM)

WTCL (I/O load from control storage low) WTCH (I/O load from control storage high) RDCL (I/O store to control storage low) RDCH (I/O store to control storage high) WTM (I/O load from main storage) RDM (I/O store to main storage)

0	1	0	0		Modifier		0	w	ç	D	v	Reç	g 2	
0			3	4		7	8	9	10	11	12	13	15	;

This instruction moves 1 byte of data between either main storage or control storage and the I/O attachment.

Modifier (Bits 4-7): Specifies the control field for the I/O attachment. The field is moved to the attachment through the port. Bit 4 of this field is used in the control processor to select the high- or low-order byte of control storage. When main storage is being addressed, bit 4 is not used by the control processor.

Bit 8: Changes the operation code (bits 0-3). Bit 8 is always a 0.

W (*Bit* 9): Identifies the direction the data is to be moved.

W = 0: Read data from storage and move it to the I/O attachment

W = 1: Write data to storage from the I/O attachment

C (Bit 10): Selects main storage or control storage.

C = 0: Main storage

C = 1: Control storage

D (*Bit 11*): Indicates if the address in the local storage register (specified by bits 13-15) is to be increased or decreased.

- D = 0: Increase the selected local storage register by the value of field V
- D = 1: Decrease the selected local storage register by the value of field V

Note: Bits 8-11 are sent to the port where they are decoded as either the load command or the sense command. The command is then sent to the I/O attachment on the 'command bus out' lines.

V (Bit 12): Indicates the amount the address in the local storage register (specified by bits 13-15) should be increased or decreased. If V = 0, the address in the selected local storage register is not changed. If V = 1, the address in the selected local storage register is decreased or increased by 1, as specified by the bit setting of field D.

Register 2 (Bits 13-15): Selects one of the eight local storage registers assigned to the current interrupt level that contains the storage address needed to move the data. The address in the specified local storage register may be updated as specified by bit 11 (field D) and bit 12 (field V).

Condition Code

No change

Note: A more complete description of the I/O storage commands may be found under *Commands* in the *Channel* section of this manual.

Instruction List

_.

Bits	5					
48 00	9 1 1	10 1 1	11 0 0	12 1 1	Mnemonic RDCL RDCH	Description I/O store to control storage, increase register 2 by 1
0 0 1 0	1 1	1 1	1 1	1 1	RDCL RDCH	I/O store to control storage, decrease register 2 by 1
0 0 1 0	1 1	1 1	0 0	0 0	RDCL RDCH	I/O store to control storage, no change to register 2
0 0 1 0	0 0	1 1	0 0	1 1	WTCL WTCH	I/O load from control storage, increase register 2 by 1
0 0 1 0	0 0	1 1	1 1	1 1	WTCL WTCH	I/O load from control storage, decrease register 2 by 1
0 0 1 0	0 0	1 1	0 0	0 0	WTCL WTCH	I/O load from control storage, no change to register 2
X O	1	0	0	1	RDM	I/O store to main storage, increase register 2 by 1
хo	1	0	1	1	RDM	I/O store to main storage, decrease register 2 by 1
хo	1	0	0	0	RDM	I/O store to main storage, no change to register 2
X 0	0	0	0	1	WTM	I/O load from main storage, increase register 2 by 1
X 0	0	0	1	1	WTM	I/O load from main storage, decrease register 2 by 1
хo	0	0	0	0	WTM	I/O load from main storage, no change to register 2

Legend for Bit 4: X: Not used

Sequence and Timing

D			
rage	т0	T1	Т2
PC240			
PC230			
PC230			
PC210	I-Fo	etch	
PC518			
PC240			
PC230			
PC210			
PC260			
PC250			
PC012			
PC220			
PC230			
PC230			
PC134			
PC134			
PC250			
PC160			
PC518			
	PC230 PC230 PC230 PC210 PC210 PC518 PC240 PC240 PC230 PC210 PC250 PC250 PC012 PC250 PC012 PC230 PC230 PC230 PC230 PC230 PC230 PC230 PC230 PC230 PC230	rage 10 PC240 I PC230 I PC230 I PC210 I PC134 I PC160 I PC518 I	rage IO II PC240 II II PC230 II III PC230 III III PC210 II-Fetch PC210 IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

200 ns

Т3

Timing of CP/Channel Functions

	FSL Page	Assemble Address and Command in Channel			Select I/O Attachment; Send Command and Modifier ¹ to Attachment on CBO and MPXPO Bus Out						Send Data Byte to Attachment											
CPU Clock	PC110	T3 200 ns	тза	тзв	T3E				Ş					Т4	T5	Т6	T6E					ς
I/O Instruction	PC138	<							}													<u> </u>
Port Clock	PC526	C00	C09	C03	C07	COF	COE	C06 {	ς C07	COF	COE	C06	C12	C10	C18	C19	C13	C17	C1F	C1E	C16 5	∫ C1
SDR Low to Channel	PC220			-												-						
SDR High to Channel	PC220																		-			
WR0 Low to Channel	PC230																					
Device Address and Modifier to MPXPO Bus Out	PC506			<u>-</u> -	<u> </u>				·								1					
Command to CBO	PC542			<u></u>					<u> </u>													
Control Out Pwrd	PC510								<u> </u>													
Strobe Pwrd	PC510							<u> </u>	, <u>}</u>												<u></u>	
Service In	PC558															-						<u> </u>
Select LSR	PC240																					
Storage Cycle	PC230							-														
Gate SDR to Channel	PC220																					
Data to MPXPO Bus Out	PC024																,				,	<u> </u>
Service Out Pwrd	PC510																					;
Advance Time	PC518																					

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

Control Processor 2-103

Jump on I/O Condition (JIO)

~

	0	0	1	1	Mod	ifier	Page Address						
1	0			3	4	7	8	15					

This instruction tests I/O conditions. If the condition tested is active, this instruction causes a jump to the address specified by the page address (bits 8-15). If the condition tested is not active, the next sequential instruction is executed.

The operation code (bits 0-3) is sent to the port where the bits are decoded as a jump-on-I/O-condition command. This command is then sent to the I/O attachment through the port.

Modifier (Bits 4-7): Specifies the control field for the I/O devices. The I/O device being used determines how this field is used. The modifier field is moved to the I/O attachment through the port.

Some of the modifier combinations make a common code for those conditions that are used by most I/O attachments. The modifier usage is specified as follows:

Modifier	
Sotting	
Jetting	Description
4507	Description
0000	Adapter check
0001	Adapter not ready
0010	Busy condition 1
0011	Busy condition 2
0100	Interrupt enabled
0101	Diagnostic real
0110	Diagnostic not real
0111	Available for
through	I/O attachment
1111	needs

Page Address (Bits 8-15): Permits a jump inside a page boundary (256-word limits hex 00 through hex FF) in control storage only. The page address must be located on the same page boundary as the jump on I/O condition. This field replaces the 8 low-order bits in the microaddress register if the I/O device indicates that the jump condition is met. The 'CBI bit 4' port line determines if the I/O condition is met.

Condition Code

No change

Note: A more complete description of the jump-on-I/O-condition command may be found under Commands in the Channel section of this manual.

Sequence and Timing

	501	200 ns											
Timing of CP Functions	FSL Page	то	T1	T2	Т3	T3E	Τ4	Т5	т6	T6E			
Select LSR (WR0)	PC240												
Select Storage Gate Low (from storage gate high,													
from SDR low,													
from LSR low)	PC230									1			
Select Storage Gate High (from SDR high)	PC230				•					1			
Clock X Low, X High, SAR	PC210	I-Fe	etch							1			
Clock Storage Gate Check	PC230					î							
Advance Time	PC518												
Select Storage Gate Low (from SDR low: jump on I/O condition met; from LSR low: jump on I/O condition not met	PC230												
Select LSR (MAR)	PC240												
Select ALU Gate Low (from storage gate low)	PC250												
Write LSR Low (jump on I/O condition met)	PC160												
Clock ALU Gate Check	PC160							-					

2

channel/device and control processor communication

Control Processor 2-105

This page intentionally left blank.

2-106
Timing of CP/Channel Functions

	FSL Page	Assem Addre Comm Chann	ble ss and hand in hel		Select to Att	I/O Atta achment	chment; on CBO	Send Co and MPX	mmand a (PO Bus	nd Modif Out	ier ¹						S	end Data	Byte to	Attachme	nt
CPU Clock	PC110	T3	тза	тзв	T3E			5	Ş					T4	Т5	Т6	T6E				
I/O Instruction	PC138	200 113							<u>ب</u>												
Port Clock	PC526	C00	C09	С03	C07	COF	COE	C06 \	ς C07	C0F	COE	C06	C12	C10	C18	C19	C13	C17	C1F	C1E	C16 \ \ C17
SDR Low to Channel	PC220																				
SDR High to Channel	PC220																				
WR0 Low to Channel	PC230																				
Device Address and Modifier to MPXPO Bus Out	PC506								<u> </u>												
Command to CBO	PC542								5												
Control Out Pwrd	PC510								<u> </u>												
Strobe Pwrd	PC510								}				i.								
Service In	PC558																				
Select LSR	PC240																				
CBI Valid (bit 4)	PC510							_ <u></u>									 				
Write LSR (BOC met)	PC160																				\
CBI 4 Valid to CPU	PC510																				
Select SDR (BOC met) or LSR (BOC not met)	PC230 PC240																				
Service Out Pwrd	PC510																				(;
Advance Time	PC518																				

¹ See *Channel Exerciser Loop Program* in the *Channel* section of this manual for a program that can be used with this command.

тo Т1 C1E C1F C16 C02

FUNCTIONAL UNITS

Control Storage

Control storage contains 16K addresses; each address is 2 bytes wide. Control storage is loaded from the disk during normal operations, or from the diskette when diagnostic programs are being run. When control storage is loaded, it contains the control storage programs that are used to support system programs.

Storage Address Register

The storage address register (SAR) is a 16-bit register used to address control storage. This register holds all storage addresses that are moved from the local storage register or generated from local storage register, X high register, or storage data register data. The data moved into the storage address register does not change during the storage cycle.

Storage Address Register

Micro-Operation Register G

The micro-operation register (MOR) is a 16-bit register that holds each control storage instruction as it is taken from control storage. The instruction is decoded to control the data flow (for example, gate selection, arithmetic and logic unit operations, local storage register selection, and setting the processor condition register).

SAR Decoding Control Storage

0 = 0-16K Card Select

2

X-Registers and Y-Registers D and Ø

These four registers are the buffer input to the two control processor arithmetic and logic units (ALU). The X-high and Y-high registers are input to ALU high and the X-low and Y-low registers are input to ALU low.

The X-registers are buffers for base constants into the ALU.

The Y-registers are buffers for changing constants into the ALU.

Arithmetic and Logic Units

There are two arithmetic and logic units (ALUs) in the control processor. ALU high uses bits 0-7 when 2-byte data fields are used. ALU low uses bits 8-15 when either 1-byte or 2-byte data fields are used. The ALUs always send 2 bytes of data to the local storage register (LSR) input bus. When 2 bytes are used in the ALU operation, both bytes (high and low) are placed on the LSR input bus and are, at the same time, written into bits 0-7 and bits 8-15 of the LSR. When the ALU output is only 1 byte, the byte is sent to both the high and low LSR input bus lines. In these cases, the instruction selects only 1 byte to be written into an LSR. The ALU performs the following functions:

Function	Function Bits				Carry In	
	F0	F1	F2	F3		
Y→X(ZAR)	0	0	0	0	*	
X XR Y	0	0	0	1	*	
X OR Y	0	0	1	1	*	
X AND (not) Y	0	1	0	1	*	
X AND Y	0	1	1	0	*	
X OR (not) Y	0	1	1	1	*	
X minus one	1	0	0	0	0	
X plus Y plus-						
carry	1	0	0	1	С	
X minus Y						
(16/8)	1	0	1	0	1	
X plus Y						
(16 or 8)	1	0	1	1	0	
X minus Y minus						
(16 or 8)	1	1	0	0	1	
X plus Y (16/8)	1	1	0	1	0	
X minus Y	1	1	1	0	С	
X plus one						
(carry in)	1	1	1	1	1	

Leaend for Function:

16/8–First field 16 bits, second field 8 bits

16 or 8–Both fields 16 bits or both fields 8 bits

Legend for Carry In:

- C = Carry used (carry trigger from an earlier operation)
- 1 = Force carry to 1 (by hardware, T-times, and instruction)
- 0 = Force carry to 0
- * = Not used

Any data sent to the ALU is first loaded into the X-high and Y-high registers for the low bytes. The X-registers supply the data for one operand, and the Y-registers supply the data for the other operand that is used in the current ALU operation. The instruction and its function determine if 1 or 2 bytes are affected by the ALU.

The ALU does arithmetic operations with two 16-bit words, one 16-bit word plus or minus one 8-bit byte, or one 8-bit byte plus or minus one 8-bit byte. The instruction, logical/arithmetic 1, is used for 8-bit by 8-bit arithmetic operations. The logical/arithmetic 2 instruction is used for 16-bit by 16-bit arithmetic and 16-bit by 8-bit arithmetic operations. In 16-bit by 8-bit arithmetic, the 'reset Y high reg' line (generated on the data flow card) resets the 8 bits of the Y-register that are not used.

Instructions that cause an increase or decrease of the X-register contents are executed by resetting the Y-high and Y-low registers and then forcing a carry in to the ALU. This causes only the X-register to be affected by the instruction.

The output of the ALU always sends 2 bytes of data to the LSR stack input bus. If 2 bytes are needed by the ALU operation, both bytes are placed directly on the LSR input bus and are, at the same time, written into the LSR stack. If only 1 byte was operated on by the ALU, the result (1 byte) is sent to both the high and low input buses. Only the byte selected by the instruction is written into the LSR stack.

Carry In

Arithmetic and Logic Unit Gates G

ALU gate high and ALU gate low control the path of the ALU data. The lines that select the data path are generated by a decode of the micro-operation register bits and the T-times.

ALU Gates

Arithmetic and Logic Unit Parity Predict

Parity Predict Circuits

ALU Function 0	
ALU Function 1	
ALU Function 2] -
ALU Function 3	
X Reg High	
Y Reg High	······································

X Reg Low		
	AND STREET STREET STREET	
Y Reg Low		
	in the second second	
Carry In		

Parity predict circuits predict the parity of the result of the ALU operation. This predicted parity is compared against the parity generated. If there is a difference, a parity check results.

Storage Data Register

The storage data register (SDR) is a 16-bit register that is an intermediate buffer for all instructions and data bytes taken from control storage and main storage (under control of the control processor or I/O operations). Each instruction is 2 bytes wide and, therefore, uses all 16 bit positions.

The storage data register high-order bits (0-7) are gated through the storage gate high register to the high-order X-register and Y-register and then to the arithmetic and logic unit (ALU). The storage data register low-order bits (8-15) are gated to the low-order X-register and Y-register and then to the ALU.

Local Storage Registers **O**

The control processor uses the local storage registers (LSRs) as:

- Data buffers and address registers for control storage
- Operand registers for internal calculations
- I/O control registers that can be loaded from the I/O attachments or from which data can be sent to the I/O attachments

The local storage register stack contains 64 two-byte registers. Bits 0-7 of each register are the high local storage register and bits 8-15 of each register are the low local storage register.

The 64 local storage registers are divided into seven interrupt level groups. The current interrupt level determines which group is used.

The interrupt levels associated with the local storage registers are:

	Microaddress	Microaddress Backup	Work Register			
Interrupt Level	Register (Hex)	Register (Hex)	Physical (Hex)	Logical (Hex)		
0	0A	0B	00–07	W0–W7		
1	0C	0D	10—17	W0–W7		
2	0E	0F	18—1F	W0–W7		
3	28	29	20–27	W0–W7		
4	2C	2D	30–37	W0W _. 7		
5	2E	2F	38–3F	W0–W7		
MPL	08	09	0007	W0W7		

Note: Interrupt levels are shown in priority order.

		LSK Salaat		
		Select		
	7			
	ſ	-		
			LSR	
			Hex	LSR
	01	2345	Address	Name
	10	0000	20	WR0
	10	0001	21	WR1
	10	0010	22	WR2
Interrupt 3	10	0011	23	WR3
	10	0100	24	WR4/CS0
	10	0101	25	WR5/CS1
	10	0110	26	WR6/CS2
6	10	0111	27	WR7/CS3
	$\frac{10}{10}$	1000	28	MAR-3
	10	1001	29	IVIAD-3
MAR/MAR	10	1010	2R 2R	Spare
Stack 2	10	1100	20	MAR-4
	10	1101	2D	MAB-4
	10	1110	2E	MAR-5
	10	1111	2F	MAB-5
	11	0000	30	WR0
	11	0001	31	WR1
	11	0010	32	WR2
Interrupt 4	11	0011	33	WR3
	11	0100	34	WR4/CS0
	11	0101	35	WR5/CS1
	11	0110	36	WR6/CS2
	11	0111	37	WR7/CS3
		1000	38	WRU
		1001	39	
Interrupt 5	$\left \frac{1}{11} \right $	1010	38	
interrupt o		1100	30	WR4/CS0
		1101	3D	WB5/CS1
	$\frac{1}{11}$	1110	3E	WR6/CS2
	11	1111	3F	WR7/CS3
	1	1		

Processor Condition Register

The processor condition register (PCR) contains the processor conditions that are tested by the jump-on-condition instruction. The processor condition register is changed by system reset, program loading, or instructions that change register bits. These conditions are changed by the instructions that perform the add, subtract, test mask, compare immediate, subtract immediate, and R1-linked-with-R2 functions.

The processor condition register clocks gate the data into the processor condition register.

(PC 312) Status Function 1 (not) Status Card 2 (not) Status Function 0

MOR Bits 4 AND 5 AND 6 AND 7

T5 and I/O Control AND Phase A Phase A Status Function 0 T4-T6 (not) Status Card 2 Status Function 1

MOR Bits 4 AND 5 AND 6 AND 7

Equal Log Tgr

S

FF

FF

PC302

Equal Log PCR Bit 7

Processor Condition Register

PCR		Flag Bit 0	Positive Bit 1	Negative Bit 2	Zero Bit 3	Carry Bit 4	High Bit 5	Low Bit 6	Equal Bit 7
L/A1 or L/A2 Logical	Set		R1 or $\overline{R2}$ = all ones and result \neq all zeros	Result \neq all zeros and R1 or R2 \neq all ones	Results = all zeros				
	Reset		Result = all zeros or R1 or $\overline{R2} \neq all$ ones	Result = all zeros or R1 or $\overline{R2}$ = all ones	Result≠all zeros				
L/A1 or L/A2 Arithmetic	Set		Result has a carry and result ≠ zero	Result has no carry and result \neq zero	Result = zero	Result had a carry (add) A borrow (sub)	Result has a carry and result ≠ zero	Result has no carry and result ≠ zero	
	Reset		Result = no carry or result = zero	Result has a carry or result = zero	Result≠zero	No carry (add) result had a borrow (sub)	Result has no carry or result = zero	Result has carry or result = zero	Result ≠ zero
Test Mask	Set		Tested bits = all ones	Tested bits ≠ all ones and tested bits ≠ all zeros	All tested bits = zero (or no bits tested)				
	Reset		Tested bits ≠ all ones or tested bits = all zeros	Tested bits = all ones or tested bits = all zeros	Tested bits ≠ zero or tested bits = all ones				
Compare or Subtract Immediate	Set		Register data is greater than immediate data	Register data is less than immediate data	Register data is equal to immediate data				
	Reset		Register data is not greater than immediate data	Register data is not less than immediate data	Register data is not equal to immediate data				
I/O Immediate	Set								Equal set on
Reset Carry – Set Equal	Reset					Carry set off	Decoded from carry and equal and set off	Decoded from carry and equal and set off	
I/O Immediate Load	Set	Loaded bit 0 is on	Loaded bit 1 is on	Loaded bit 2 is on	Loaded bit 3 is on	Loaded bit 4 is on	Loaded bit 4 is on and bit 7 off	Loaded bit 4 off and bit 7 off	Loaded bit 7 is on
	Reset	Loaded bit 0 is off	Loaded bit 1 is off	Loaded bit 2 is off	Loaded bit 3 is off	Loaded bit 4 is off	Loaded bit 4 off or loaded bit 7 on	Loaded bit 4 on or loaded bit 7 on	Loaded bit 7 is off
POR/Reset	Set								Equal set on
Key/Reset MCI	Reset	Set off	Set off	Set off	Set off	Carry set off	Decoded from bits 4 and 7 and set off	Decoded from bits 4 and 7 and set off	
I/O Immediate	Set								
⊢lag Latch	Reset	Set off							

Control Processor 2-115

Storage Gate High/Low

The storage gates select data coming from the SDR, LSR, system bus in, and X-register available to system bus out and to the X- and Y-registers.

The selected bits are generated in the control processor control card by the MOR bits and T-times.

CP Data Flow Card (A-A1H2 (A-A1E2 on Level 2 Board)

PC230

Storage Ga

Sei	
01	Lin
00	LSF
01	SDF
10	SBI
11	X-B

Storage Gate Low

Sel	
01	Lin
00	LSI
01	SD
10	SBI
11	Stg

	G05	Stg Gate Hi Gen P Bit
		-
	LD12	System Bus Out High 0-7, P
ц	D07	
	B12	
	B06	
	B07	
	B05	
	B11	
	D05	
	B10	
:	D02	Stg Gate P Check
	1	Oto Cata Law Can D Bit
	1011	Stg Gate Low Gen P Bit
	1002	System Bus Out Low 8-15,P
	U04	
	S02	
	S04	
	009	
	U10	
	S08	
	S10	
	B04	
ate Hi	gh	

es Gated Through

R High R Bits 0-7 Bits 8-15 1 1 X-Reg High Bits 0-3 and SDR Bits 4-7

nes Gated Through

R Low R Bits 8-15 Bits 8-15 Gate High Bits 0-7

Status 1 Gate 🛛

The status 1 card gates the system bus out high 0-7 bits, address switches 1 and 2, CP checks error byte, and the processor condition register to the storage gates high/low. Also, the event indicators, display high byte bits 0-7 and P, branch on condition, and control storage address compare high logic are controlled by this card.

Status 1 Gate Parity Generation CP Status 1 Card A-A1J2 (A-A1F2 on Level 2 Board)

HM13 Status Gate High Bit P

U09	Status 1	Bit O	
I S08	Status 1	Bit 1	
U07	Status 1	Bit 2	
 \$05	Status 1	Bit 3	Custom Due la
I S04	Status 1	Bit 4	Bits 8–15 P
I SO6	Status 1	Bit 5	
I S03	Status 1	Bit 6	
U05	Status 1	Bit 7	
U02	Status 1	Bit P	

0	Sel Gate 1	Lines Gated Through
	0	SBO High 0-7
	1	Addr Switches 1 and 2
	0	CP Error Byte
	1	PCR

Status 2 Gate 🔊

The status 2 card gates the address switches 3 and 4, console status byte, and I/O clocks, high/low byte. Also, the display low byte bits 12-15 and P, address compare low logic and sync, and start-stop-run logic are controlled by this card.

Status 2 Gate Parity Generation CP Status 2 Card A-A1K2 (A-A1G2 on Level 2 Board)

- S05 Status 2 Bit P (System Bus In Bit P)

ERROR CONDITIONS

The control processor program determines the cause of an I/O hardware error other than a control processor error. When an I/O error is found, the control processor attempts the operation again by executing the instruction, program, or task. However, some system errors stop the system. In some cases, a recovery is possible only by loading the system main storage programs again.

Control Processor Checks

When a hardware error is found in the control processor (CP), a bit is set in the CP check register latches to indicate an error. This register can be sensed by an I/O immediate instruction (control processor sense-MPS). This instruction loads the contents of the CP check register into the specified LSR work register so the control processor check conditions can be sensed. These checks can also be displayed in the byte 0 lights on the CE panel by setting the Mode Selector switch to the Insn Step/Dply Chks position.

Any CP or port errors cause a CP machine check interrupt, processor check condition, and stops the MSP clocks.

MSP hardware checks cause an interrupt level 5 request to the CP and stop the MSP clock. Three MSP conditions cause the 'MSP hardware checks' line to become active. MSP status byte 2 must be sensed by a register control instruction (RMPR). Then, a CE panel display of the selected LSR work register can determine which of the three conditions caused the error. The conditions are as follows:

- Control gate check (status byte 2 bit 1) 1.
- 2. LSR gate check (status byte 2 bit 2)
- 3. Main storage gate check (status byte 2 bit 3)

Processor Error Byte (Display Byte 0)

Bit	Error	Cause
0	Storage data register parity check	Parity in the storage data register is not correct.
1	Micro-operation	Parity in the micro-operation

- Micro-operation Parity in the micro-operation register parity register is not correct. check
- 2 Storage gate Parity at the output of the parity check storage gate is not correct.
- 3 ALU gate parity The parity expected does not match the parity generated at check the ALU gate.
 - Control storage was addressed Illegal control storage outside its limits. Bits 4 and 5 address/ both on indicates that parity in storage the storage address register is address not correct. register
 - The control storage program Control storage remained in a loop for more program check/storage than 7 seconds. Bits 4 and 5 both on indicates that parity in address register the storage address register is not correct.
 - The real or translated main Illegal main storage address used by the storage address/main control storage program is greater than the main storage storage size of the system. Bits 6 and address 7 both on indicates that parity register in the main storage address register is not correct. Storage The control storage program

exception/ addressed a not valid address main storage translation register; that is, an address address translation register conregister taining hexadecimal FF. Bits 6 and 7 both on indicates that parity in the main storage address register is not correct.

Decode of Bits 6 and 7

4

5

6

7

Bits 6 7	CMR Bit 7	PMR Bit 7	Cause
10	0	*	Invalid main storage address (real)
10	1	*	Invalid main storage address (translate)
0.1	1	*	Storage protect
01	*	1	MSP tried to alter PMR while PMR bit 7 = 1
11	*	*	MSAR parity check
11	1	*	ATR parity check

Legend: * = don't care

Processor Errors

As a result of a control processor hardware error, the system programs must be loaded again. When the Load switch is pressed. special initial program load routines determine if the processor was in a processor check halt state before the Load switch was pressed. A routine then records the error information in the control processor error recording area and on the disk.

For each error, the following data is recorded:

- · The processing level on which the error occurred
- · The contents of the control processor microaddress register of the level on which the error occurred
- · The contents of the microaddress backup register of the level on which the error occurred
- · The contents of the work registers of the level on which the error occurred
- · The contents of the processor condition reaister
- · The processing unit checks byte
- The port checks byte
- · The time and date of the logout

The recorded data does not change as a result of pressing the Load switch to load and run these special diagnostic routines after an error. Therefore, the recorded information indicates the state of the control processor when the error occurred, except for time and date.

Examples of the error history tables for the control processor and the main storage processor can be found under Error Indications earlier in this section.

Errors associated with the main storage processor and the control processor are shown on the following pages. The control processor checks (second level) are also shown individually and are key-coded and referenced to the second-level diagram.

Error Conditions (Second Level)

Machine Check Interrupt and Processor **Check Generation**

CP Status 2 Card A-A1K2 (A-A1G2 on Level 2 Board)

- B02 Processor Check

MSP Hardware Checks

MSP Control Card A-A1N2 (A-A1J2 on Level 2 Board)

MS Gt Parity Bad

Check Reset

PM740

PM740

MSAR Hi Bad P MSAR Lo Bad P

Bit 4	Bit 5	Check Indicated
0	0	No check
0	1	7-second time-out check
1	0	CS address check
1	1	CS SAR P check

 \square

SDR Parity Check Generation

CP Data Flow Card A-A1H2 (A-A1E2 on Level 2 Board)

PC220

Control Processor 2-123

MOR Parity Check

CP Control Card A-A1G2 (A-A1D2 on Level 2 Board)

PC100

Storage Gate High/Low Parity Check and Generation

CP Data Flow Card A-A1H2 (A-A1E2 on Level 2 Board)

PC230

Storage Gale High		
Sel O 1	Lines Gated Through	
00	LSR High	
01	SDR Bits 0-7	
10	SBI Bits 8-15	
11	X-Reg High Bits 0-3 and SDR Bits 4-7	

Storage Gate Low

Sel O 1	Lines Gated Through
00	LSR Low
01	SDR Bits 8-15
10	SBI Bits 8-15
11	Stg Gate High Bits 0-7

ALU Gate High Parity Check and Generation

CP Data Flow Card A-A1H2 (A-A1E2 on Level 2 Board)

ALU Gate High

Se F	Select Bits		
0	1	2	Lines Gated Through
0	0	0	ALU High Bits 0-7, Parity Predict
0	0	1	SBO 0-7, P
0	1	0	ALU High Bits 0-6, ALU Hi P Gen
0	1	1	ר - יישר איז
1	0	0	ALU Gate Low
1	1	0	Bits 0-7, P
1	1	1	J

2-126

4

ALU Gate Low Parity Check and Generation

CP Data Flow Card A-A1H2 (A-A1E2 on Level 2 Board)

2

Control Processor 2-127

 \mathbf{C}

Control Storage SAR Parity Check

CP Storage Control Card A-A1F2 (A-A1C2 on Level 2 Board)

MSP Check Bits 1 and 2

MS Control Card A-A1Q2 (A-A1L2 on Level 2 Board)

This page intentionally left blank.

J