CONTENTS

05-100	Introduction
$05-200$	Power Locations
$05-210$	Connector Pin Locations
$05-220$	Right Side View
$05-230$	Left Side View
$05-240$	J-Connector Locations
$05-250$	Back Side View
$05-260$	Feature Power Supply G C-B1 Connector
	Locations
$05-300$	Functional Units
$05-310$	AC Box
$05-315$	AC Box (Second Level)
$05-320$	Control Supply
$05-325$	Control Supply (Second Level)
$05-330$	Base Power Supply and Base Distribution
	Assembly
$05-333$	Multilevel Filter Assembly
$05-335$	Base +5V Filter Assembly
$05-360$	DC Distribution Assemblies
$05-370$	Power Logic Board C-A1
$05-400$	Power Fault Indications
$05-401$	System Power-Off Conditions
$05-410$	Power Fault Registers
$05-420$	Dply Pwr Chk Switch
$05-430$	Pwr Fault Dply Switches
$05-500$	Immediate Power Off (IPO)
$05-550$	Manual Bring-up Procedure
$05-600$	Power Supplies for Optional Features
$05-610$	Feature Power Supply A
$05-615$	Feature Regulator Card
$05-620$	Feature Power Supply B
$05-630$	Feature Power Supply C
$05-640$	Feature Power Supply D
$05-670$	Feature AC Box
$05-680$	Feature Power Supply G
$05-690$	Feature Power Supply G (Second Level)
$05-700$	System Voltage Distribution
$05-710$	Power Supply Voltage Tolerance Chart
0	

05-100 INTRODUCTION

DANGER

Set the circuit breaker (CB1) to Off if you want all voltages off. With the IPO switch turned off and CB1 on, $A C$ line voltage is still present at the control supply and DC output voltages from the control supply are present at the A-A1 board, the operator panel, and the CE panel. Because of the charge on the capacitors in the arc-suppression networks across $K 1, K 2$, and $K 4$, a voltage is still present on all circuits supplied by the contactor points when K1 and K2 are de-activated (see paragraph 05-315).
\qquad
\longrightarrow
\qquad
工
\qquad
—.
-

Input line voltage is supplied through the line filters, CB1, F302, and ACTB2 in the AC box to the control supply.

Plus and minus 5 Vdc , plus and minus 24 Vdc , and 48 Vac are supplied to the power logic board (C-A1) by the control supply. The control supply also supplies +24 Vdc to pick K1 and K2 in the AC box. When K1 picks, input line voltage is distributed to the following places:

- Base ferroresonant transformer and capacitor by way of F301
- Feature power supplies (if installed) by way of fuses F201, F202, F203, F204, and F207
- Feature AC box
- Diskette drive motor
- Gate and power fans

When K2 (and K4 for systems with 3 or 4 62PC disk drives) picks, input line voltage is sent to the disk drive motors.

Secondary $A C$ outputs from the base ferroresonant transformer go to the +5 V filter assembly, and to the multilevel filter assembly.

The DC outputs from the +5 V and multilevel filter assemblies go to the DC distribution assembly.

The $D C$ voltages from the $D C$ distribution assembly go to the A-gate and the B-gate (if installed). The point-to-point wiring can be found on FSL pages YA4xx and YA5xx.

Connectors J2, J7, and J8:
4-Position
Board Connector
Pin Side
P/N 1473910

Connectors J4, J9, and C-B1J2
6-Position
Board Connector
Pin Side
P/N 1295112

Connector J1
12-Position
Cable Connector
Pin Side
P/N 1847535

Connectors J13 and J14
12-Position

Board Connector (Pin configuration same as connector J1, above)

CAUTION

The board connectors might not be installed as shown in these drawings.
\qquad

Connectors J2, J7, and J8:
4-Position
Cable Connector
Pin Side
P/N 1847528

Connectors J4, J9, and C-B1 J2
6-Position
Cable Connector
Pin Side
P/N 1847530

Connectors J1, J13, and J14
12-Position
Cable Connector
Pin Side P/N 1847534

2-Position
Board Connector
Pin Side 8 8 E P/N 2731398

2-Position Cable Connector Pin Side P/N 2731397

Connector J5
4-Position
Board Connector
Pin Side

P/N 2731815

Connector J5 4-Position Cable Connector Pin Side P/N 2731850

Connector J12
8-Position
Board Connector
Pin Side
P/N 2731816

Connector J12 8-Position Cable Connector Pin Side P/N 2731836

Connector J24

12-Position
Board Connector
Pin Side
P/N 2731818

Connector J21
16-Position
Board Connector
Pin Side
P/N 2731820

$\begin{array}{llllllllllllllll}16 & 15 & 14 & 13 & 12 & 11 & 10 & 9 & 8 & 7 & 6 & 5 & 4 & 3 & 1\end{array}$

Connector J21 16-Position Cable Connector Pin Side P/N 2731839

Connector J23
6-Position
Board Connector
Pin Side
P/N 2777213

Connector J23 6-Position Cable Connector

Connector C-B1J7
16-Position Dual Line
Board Connector
Pin Side
P/N 2731816 and
P/N 2637708

Connector C-B1J7 16-Position
Cable Connector
Pin Side
P/N 2731844

Connector J11,
C-B1J3, C-B1J4, and C-B1J5
24-Position
Right Angle
Board Connector
Pin Side
P/N 818554

24-Position Board Connector Pin Side P/N 818869

Connectors J6, J11, C-B1J3, C-B1J4, and C-B1J5 24-Position
Cable Connector
Pin Side
P/N 817329

Connector J11, C-B1J3, C-B1J4, and C-B1J5 24-Position Cable Connector Probe Side P/N 5800634

Connector C-B1J6
48-Position
Dual Line
Board Connector
Pin Side P/N 813329

Feature Power Supply G C-B1 Connector

200,208, or $230 \mathrm{Vac} \pm 10 \% 60 \mathrm{~Hz}$
See FSL page YA000.

200,220 , or $235 \mathrm{Vac} \pm 10 \% 50 \mathrm{~Hz}$
*DANGER
When K1 and K2 are de-activated, a voltage is still present in the circuits that are supplied by the points of the contactors. The voltage is still present because of the charge on the capacitors in the arc-suppression networks across the points of the contactors.

Fuse Chart

Fuse Chart		
Fuse	Size	P/N
CB-1	$20 A$	5565214
F301	$4.5 A$	2495471
F302	$0.3 A$	254628
F201	$1.25 A$	252592
F202	$1.25 A$	252592
F203	$2.0 A$	92734
F204	$1.25 A$	252592
F401	$7 A$	2495463

[^0]

05-330
Base Power Supply and Base Distribution Assembly

The base ferroresonant transformer receives input AC line voltage through CB1, contactor K1 points, fuse 301 and ACTB1 on the AC box. See FSL page YA040.

The transformer has five secondary outputs:

- 5 Vac to the +5 V filter assembly
- 8.5 Vac to the multilevel filter assembly for +8.5 Vdc
- 8.5 Vac to the multilevel filter assembly for -8.5 Vdc
- 24 Vac to the multilevel filter assembly for +24 Vdc
- 24 Vac to the multilevel filter assembly for -24 Vdc

The multilevel filter assembly supplies $+6 \mathrm{Vdc},+8.5 \mathrm{Vdc}$,
$+24 \mathrm{Vdc},-24 \mathrm{Vdc},-4 \mathrm{Vdc}$, and -5 Vdc to the base distribution assembly. See FSL page YA040.

The power logic board contains the following cards:

- Protect card C-A1B2 contains circuits for turning power on and off, registers for storing the causes of power failures, and circuits for turning on the Power Check light, Thermal Check light, and displaying the power fault registers in CE byte 0 .
- Base sense card C-A1C2 contains circuits for sensing undervoltage, overvoltage, and overcurrent conditions for the base power system. Attached to this card is an LED (light-emitting diode) known as the Control Supply Status indicator. When the Lamp Test switch is pressed, the LED comes on only if none of the control supply fuses (F101 through F104) has failed.

Additional Cards for Optional Features

The 62PC Disk Drive feature or the 2400 BPS Integrated Modem feature adds feature power supply A to the System $/ 34$. Sensing the output of the added supply is done by a sense card that goes into C-A1C4 on the power logic board.

Note: If a first or second communications adapter uses the 1200 BPS Integrated Modem feature or the EIA/CCITT feature and the system does not include feature power supply A, a feature regulator card (C-A1C4) must be installed.

The MLCA feature adds feature power supply C to the System/34.

The 1255 MICR Reader/Sorter attachment feature adds feature power supply B to the System/34 if the System/34 also contains either a 62PC disk drive or a 72MD magazine drive. Sensing the output of the added supply is done by a sense card in C-A1C5 on the power logic board.

05-401

System Power-Off Conditions

The system powers off (or fails to power on) if any of the following conditions is present:

1. The temperature rises high enough to open the thermal switch in either the A-gate $\left(117^{\circ}-127^{\circ} \mathrm{F}\right)$ or the power compartment ($129^{\circ}-139^{\circ} \mathrm{F}$).
2. The output voltage of any of the supplies is too high (overvoltage).
3. The load on any of the power supplies conducts more current from the power supply than is safe for the load (overcurrent).
4. The output voltage of any of the supplies is too low (undervoltage).
5. An $A C$ input power failure occurs.
6. The IPO switch is turned off.
7. The cards at $\mathrm{C}-\mathrm{A} 1 \mathrm{C} 4$ or $\mathrm{C}-\mathrm{A} 1 \mathrm{C} 5$ (if installed) are either not seated correctly or are missing.
8. The cables to feature power supply C, D, or G (if installed) are either not seated correctly or are missing.
9. The Power switch on the operator panel is turned off.

A system power off caused by condition 1 lights the Thermal Check light on the operator panel. A system power off caused by conditions 2 through 7 lights the Power Check light on the operator panel.

05-410

When a Power Check occurs on the System/34, power fault codes that indicate the cause of the fault are stored so that you can display the codes and isolate the cause of the power check.

Power fault codes are divided into two groups: priority fault codes and additional fault codes.

Priority fault codes indicate that some power supply was overvoltage, undervoltage, overcurrent, or that a feature sense card is missing. Priority fault codes all have bit 0 active.

Additional fault codes generally further specify the cause of the priority fault by either indicating which power supply has the wrong voltage, or by indicating that all power supplies have the wrong voltage.

The protect card (C-A1B2) has three registers that store power fault codes when a power check occurs.

[^1]Three CE panel switches are used to display this information in byte 0 of the CE panel display. The switches are:

- The Dply Pwr Chk switch
- The Pwr Fault Dply (two switches: Prev and Search)

CAUTION

Information concerning power supply failures that is stored in the power failure latches is lost if all system power is removed by turning off the circuit breaker (CB1).
\qquad
\qquad
\qquad
\qquad

05-420 Dply Pwr Chk Switch

CAUTION

Do not operate the Search switch until you have displayed and recorded the previous power fault register. Operating the Search switch moves the present power fault register data to the previous power fault register.
\qquad
\qquad
\qquad
\qquad
\qquad

05-431 Prev Switch

Pressing Dply Pwr Chk when the Prev switch is in the normal (down) position displays the cause of the latest power failure in CE byte 0 . Bits in CE byte 0 have the meanings shown in the following chart.

Pressing Dply Pwr Chk while holding the Prev switch in the Prev position (up) displays the cause of the preceding power failure in CE byte 0 .

05-432 Search Switch

Hold Dply Pwr Chk while operating the Search switch to the Search position (up) to display other power supply failures that occurred during the 320 microsecond period after the power check. A different failing condition is displayed for each time the Search switch is operated. When the search is complete, CE byte 0 contains 0111 1111 (hexadecimal 7F).

Note: The search function will not work unless the system power is off because of a power fault.

When you have determined which power supply is causing the power check, use the manual bring-up procedure (see paragraph 05-550) to force power on long enough to measure the output of the failing power supply.

Miscellaneous Power Fault Codes

$00000000 \quad$ No faults since the last time $A C$ power was restored (hex 00) $\begin{array}{lllllllll}0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & \text { Search Complete (hex 7F) }\end{array}$

Thermal Check Codes (Thermal Check LED on)

| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad Thermal Check when power was off (hex E1)

$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$ Thermal Check when power was on (hex FF)

Operating the IPO switch causes an undervoltage condition that turns on the Power Check light on the operator panel.

When the IPO switch is turned off, contactors K1, K2, and $K 3$ (50 Hz only) de-activate. When the contactor points open, $A C$ line voltage is removed from the following places:

- The gate and power fans
- The diskette motor
- The base ferroresonant transformer and capacitor
- Any optional feature power supplies that are installed
- The feature AC box and K4 (if installed)
- The disk motors

DANGER

Set the circuit breaker (CB1) to Off if you want all voltages off. With the IPO switch turned off and CB1 on, AC line voltage is still present at the control supply and DC output voltages from the control supply are present at the A-A1 board, the operator panel, and the CE panel. Because of the charge on the capacitors in the arc-suppression networks across $K 1$, K2, and K4, voltage is still present on all circuits supplied by the contactor points when K1, K2, and K4 are de-activated (see paragraphs 05-315 and 05-670).
\qquad

MANUAL BRING-UP PROCEDURE

Use the following procedure to measure the output voltage of power supplies that are causing power checks.

1. Set the IPO switch to O.
2. Attach the CE multimeter to the output of the failing power supply.
3. Attach a jumper from $\mathrm{C}-\mathrm{A} 1 \mathrm{~B} 2 \mathrm{G} 13$ to $\mathrm{C}-\mathrm{A} 1 \mathrm{~B} 2 \mathrm{~J} 08$ on the power logic board.
4. Set the IPO switch to I only long enough to read the scale on the multimeter, and then set the IPO switch back to O .
5. Remove the jumper and set the IPO switch to I.

POWER SUPPLIES FOR OPTIONAL FEATURES

Some optional features that are added to the System/34 need additional power supplies or voltages that are not supplied by the base power supply. The following chart indicates which features need the extra power:

Optional Feature	Power Changes
2400 BPS Integrated Modem or 62PC Disk Drives, A or B	Add feature power supply A
1200 BPS Integrated Modem or Electronic Industries Association (EIA) (not MLCA)	Add feature regulator card if feature power supply A is not installed
1255 MICR Reader/Sorter and either the 72MD or $62 P C$	Add feature power supply B
MLCA A-B3 Board	Add feature power supply C
Expanded Memory 256K bytes	Add feature power supply D
62PC Disk Drives, C or D	Add feature power supply G

The feature regulator card is added to $\mathrm{C}-\mathrm{A1C4}$ and generates a -12 Vdc by using the -24 Vdc from the base power supply. When the first or second
communications adapter is installed, the -12 Vdc is used by the card added to the System/34 by the 1200-bps or EIA modems.

Only one of the following features (the 2400 BPS Integrated Modem feature, the 1200 BPS Integrated Modem feature or the EIA feature) can be installed.

Power Logic Board C-A1 Locations (card side)

Feature power supply B is a +5 Vdc power supply. Its output is used in the A-A3 board when the 1255 MICR Reader/Sorter attachment is added to the System/34. Its output is also used by either the 72MD diskette magazine drive or the 62PC disk drive. The addition of feature power supply B also adds a sense card to C-A1C5. See FSL page YA120.

Feature Power Supply B (second level)

Feature power supply C is a $+5 \mathrm{Vdc},+8.5 \mathrm{Vdc},+12 \mathrm{Vdc}$, -5 Vdc , and -12 Vdc power supply. Its output is used at the A-B3 board when added to the System/34. The addition of feature power supply C also needs the feature distribution assembly if not already installed.
See FSL page YA130.

Feature power supply D is a +5 Vdc power supply. Its output is used on the A-A1 board when memory is expanded to be greater than 128 K bytes. Feature power supply D also requires adding the feature distribution assembly if it is not already installed. See FSL page YA140. The circuit board of feature power supply D contains circuits for sensing undervoltage, overvoltage, and overcurrent conditions.

05-680

Feature power supply G produces $+5 \mathrm{Vdc},+12 \mathrm{Vdc}$,
$+24 \mathrm{Vdc},-4 \mathrm{Vdc}$, and -12 Vdc from the filter assembly.
These voltages are used by the third and fourth 62PC disk drives when installed. See FSL YA180. Feature power supply G requires a sense card in J6. See FSL YA182 and YA184.

Note: For connector pin locations, see 05-210.

*Return line (B05, D05) for +24 Vdc is connected to other return line (B12, D12) within J4 connector.

System voltage distribution is shown on FSL pages AFxxx.

05-710
 Power Supply Voltage Tolerance Chart

Power Supply Voltage Tolerance Chart ${ }^{1}$

	Voltage Tolerance Ranges						
Voltage	Base	Reg	Feature A	Feature B	Feature C	Feature D	Feature G
$-4 \mathrm{Vdc}$	$\begin{array}{\|} -3.92 \\ -4.16 \end{array}$						$\begin{array}{\|l} -3.74 \\ -4.42 \end{array}$
+5 Vdc	$\begin{aligned} & 4.69 \\ & 5.52 \end{aligned}$			$\begin{aligned} & 4.65 \\ & 5.52 \end{aligned}$	$\begin{aligned} & 4.65 \\ & 5.50 \end{aligned}$	$\begin{aligned} & 4.70 \\ & 5.52 \end{aligned}$	$\begin{aligned} & 4.68 \\ & 5.52 \end{aligned}$
$-5 \mathrm{Vdc}$	$\left\lvert\, \begin{aligned} & -4.70 \\ & -5.50 \end{aligned}\right.$				$\begin{aligned} & -4.625 \\ & -5.50 \end{aligned}$		
$+6 \mathrm{Vdc}$	$\begin{aligned} & 5.64 \\ & 6.60 \\ & \hline \end{aligned}$						
+8.5 Vdc	$\begin{array}{\|l} 7.86 \\ 9.35 \\ \hline \end{array}$				$\begin{aligned} & 7.86 \\ & 9.35 \\ & \hline \end{aligned}$		
+12 Vdc			$\begin{aligned} & 11.10 \\ & 13.20 \end{aligned}$		$\begin{aligned} & 11.10 \\ & 13.20 \end{aligned}$		$\begin{array}{\|l\|} \hline 11.04 \\ 13.20 \end{array}$
$-12 \mathrm{Vdc}$		$\begin{array}{\|} -11.04 \\ -13.20 \\ \hline \end{array}$	$\begin{array}{\|l} -11.04 \\ -13.20 \\ \hline \end{array}$		$\begin{array}{r} -11.04 \\ -13.20 \\ \hline \end{array}$		$\left\lvert\, \begin{aligned} & -11.04 \\ & -13.20 \\ & \hline \end{aligned}\right.$
+24 Vdc	$\begin{array}{\|l} 22.08 \\ 26.40 \\ \hline \end{array}$						$\begin{aligned} & 22.56 \\ & 26.40 \\ & \hline \end{aligned}$
-24 Vdc	$\begin{array}{\|l} -22.08 \\ -26.40 \end{array}$						
Ground							

Note: Over voltage is that voltage farthest from 0 V ; under voltage is that voltage nearest to 0 V .
${ }^{1}$ Measure at the DC distribution assemblies (base or feature)

[^0]: ** Available only in some 50 Hz countries

[^1]: * Bit 0 On

