89-000 Data Communications

CONTENTS

89-010	Introduction
89-010	I/O Counter Table for BSC
89-000	Error History Table for BSC
89-100	Command Code
89-110	Command Modifier
89-130	Sense Byte
89-140	Retry Count
89-150	Completion Codes
89-160	Terminal Address
89-162	Error Counter Table for BSC
89-164	Negative Acknowledgments (NAK)
	Received
89-166	Data Checks
89-168	Forward Aborts
89-170	Aborts Received
89- 172	Adapter Checks During Transmission
89-174	Adapter Checks While Receiving
89-176	Invalid Responses Received
89-178	Enquires Received as Affirmative
	Acknowledgment (ACK)
89-180	Lost Data Errors
89-182	Disconnect Time-outs
89-184	Receive Time-outs
89-186	Transmission Time-outs
89-190	I/O Counter Table for SDLC
89-200	Error History Table for SDLC
89-210	Command Code
8 9 -220	Sense Byte 0
89-230	Sense Byte 1
89-240	Control Field
89-250	Station Address
89-260	Line Q Header

89-300	Error Counter Table for SDLC
89-310	CRC Errors
89-320	Invalid Frames Received
89-330	Lost Data Set Ready
89-340	Nonproductive Receive Time-outs
89-350	Adapter Checks (Overrun)
89-360	Idle Detect Time-outs
89-370	Frame Sequence Errors
89-380	Receive Buffer Overrun
89-390	Data Set Not Ready
89-400	MLCA Controller
89-405	How to Use MLCA Controller Error
	Information
89-410	Error History Table Sample
89-420	Sense Bytes-General Information
89-430	Processor Condition Register (PCR)
89-440	ILBB (Interrupt Level Backup Byte)
89-450	Controller Check Byte (Byte 0)
89-460	Channel Check Byte (Byte 1)
89-470	Work Registers 0 through 7
89-480	Microinstruction Address Register (MAR)
89-490	Microinstruction Address Backup Register
	(MAB)
89-495	Date and Time
89-500	Autocall Unit
89-505	How to Use the Autocall Error Information
89-510	Error History Table Sample
89-520	Status Byte
89-530	Protocol Byte
89-540	I/O Counter Table Sample
89-550	Error Counter Table Sample
89-600	X.21 Line Adapter
89-605	How to Use X.21 Error Information
89-610	Error History Table Sample
89-620	Status Byte 0
89-630	Call Progress Signal
89-640	Line Number
89-650	Device Code
89-660	Phone Number
89-670	I/O Counter Table Sample
89-680	Error Counter Table Sample

89-010 INTRODUCTION

If your customer is using the MRJE (MULTI-LEAVING remote job entry) program, it will add one to the data communications I/O counter each time MRJE uses an I/O operation. If an MRJE error occurs, a value of one is added to the suitable data communications error counter. However, MRJE errors do not add to the data communications error history table.

89-050 **I/O COUNTER TABLE FOR BSC**

I/O COUNTER TABLE FOR BSC LINE	1 (2, 3,	OR 4)
DATE LAST RESET		78/02/12
	CURRENT	HISTORY
TEXT BLOCKS TRANSMITTED	0	0
TEXT BLOCKS RECEIVED	0	0

ERROR HISTORY TABLE FOR BSC 89-100

ERROR HIS	STORY TABLE	FOR BS	LINE 1 (2	2, 3, OR 4)				
COMMAND	COMMAND	SENSE	RETRY	COMPLETION	TERMINAL			
CODE	MDR	BYTE	COUNT	CODE	ADDRESS	DATE	TIME	
		• • • • • • •	HEX			YY/MM/DD	HH MM SS	
84	.00	00	0E	56	0000	77/08/22	13:41:18	
	\smile	\smile	\smile					
89-110	89-120	89-130	89-140	89-150	89-160			

89-110 **Command Code**

Bits	Meaning
0-3	Attachment address (8)
4567	
0000	Control command (see 89-120)
0010	Receive initial delayed command
0011	Receive initial command
0100	Transmit-receive overlay command (1)
0101	Transmit-receive initial
	command (see 89-120)
0110	Transmit-receive command (2) or
	transmit only command (see 89-120
	if MLCA installed)
1000	Enable auto monitor (MLCA only)

Notes:

- 1. The received record will write over the transmit buffer.
- 2. The receive part in the buffer must follow (be next to) the transmit part of the buffer.

89-120 **Command Modifier**

If the command code is hex 80 (control command), the command modifier is:

Hex 04 = start 2-second time-out Hex 80 = disable command Hex CO = enable command

If the command code is hex 85 (transmit-receive initial), the command modifier is:

Hex 00 = monitor mode Hex 01 = control mode

If the command code is hex 86 (MLCA only), the command modifier is:

Hex 00 = transmit-receive command Hex 02 = transmit only command

89-130 Sense Byte

Bit Meaning

- 0 Receive time-out
- 1 Block check
- 2 Transmit adapter check
- 3 Receive adapter check
- 4 Invalid ASCII character
- 5 Abortive disconnect
- 6 Data set not ready
- 7 Receive time-out data mode

89-140 Retry Count

This number is the number of times that this error was attempted before it was written in the log as a permanent error.

89-150 Completion Codes

Code	Meaning	Code	Meaning
21	Operation unsuccessful	36	Data set not ready/ connection lost
22	Invalid switched line ID received	4B	Invalid ASCII
23	Data lost-buffer exceeded	4D	Invalid request
24	Abort received	4E	Delay count exceeded
25	Abort disconnect received	4F	Permanent error
26	Delay count exceeded	50	No response
27	Command rejected due to abort request	51	Data check
28	Operation canceled	52	Lost data
31	Unexpected response from remote system	53	Lost connection
32	Data check	54	Invalid response
33	Invalid response received	55	Adapter check
34	Adapter check	56	Forward abort
35	Receive time-out error	57	EOT check

89-160 Terminal Address

This 2-byte field contains the Poll/Address character in hexadecimal.

89-162 ERROR COUNTER TABLE FOR BSC

ERROR COUNTER TABLE FOR BSC LINE 1 (2,3, OR 4)

	CURRENT	HISTORY	DESCRIPTION
NEGATIVE ACKNOWLEDGMENTS RECEIVED	0	0	89-164
DATA CHECKS	0	0	89-166
FORWARD ABORTS	0	0	89-168
ABORTS RECEIVED	0	0	89-170
ADAPTER CHECKS DURING TRANSMISSION	0	0	89-172
ADAPTER CHECKS WHILE RECEIVING	0	0	89-174
INVALID RESPONSES RECEIVED	0	0	89-176
*ENQUIRIES RECEIVED AS AFFIRMATIVE ACK	0	0	89-178
LOST DATA ERRORS	0	0	89-180
DISCONNECT TIME-OUTS	0	0	89-182
RECEIVE TIME-OUTS	0	0	89-184
*TRANSMISSION TIME-OUTS	0	0	89-186

*MRJE does not update these counters

89-164 Negative Acknowledgments (NAK) Received

NAK (negative acknowledgment) received is a control character that indicates the remote station sensed a transmission control block error.

89-166 Data Checks

The block check character that the local station generated for a message did not match the block check character that was generated and sent by the remote station.

89-168 Forward Aborts

Your station sent an EOT (end of transmission) in response to an NAK (negative acknowledgment) from the remote station.

89-170 Aborts Received

End of transmission (EOT) was sent by the remote station in response to receiving a message test.

89-172 Adapter Checks During Transmission

The adapter did not move a character from main storage to the adapter quick enough for the line speed.

89-174 Adapter Checks While Receiving

The adapter did not move a character from the adapter to main storage quick enough for the line speed.

89-176 Invalid Responses Received

DATE LAST RESET 31/01/77

A response from the remote station was not the type of response expected by the local station.

89-178 Enquires Received as Affirmative Acknowledgment (ACK)

This is the number of enquires except those received because of WACKS (wait before transmitting positive acknowledgment).

89-180 Lost Data Errors

The length of a received message is larger than the length of the receive data buffer.

89-182 Disconnect Time-outs

The switched network line was disconnected because no valid transmissions were received in 3.25 seconds or less.

89-184 Receive Time-outs

Another block of data was expected from the remote station. The data was not received in 3.25 seconds or less.

89-186 Transmission Time-outs

No acknowledgment was received from the remote station after a message was sent to it.

I/O COUNTER TABLE FOR DATE LAST RESET	SDLC LINE 1 00/00/00	(2,3,0R 4)
	CURRENT	HISTORY
I-FRAMES TRANSMITTED		0
I-FRAMES RETRANSMITTED		0
I-FRAMES RECEIVED	• 0	0
TOTAL FRAMES TRANSMITTED	• 0	0
TOTAL FRAMES RECEIVED	• 0	0

89-200 ERROR HISTORY TABLE FOR SDLC

ERROR HISTORY TABLE FOR SDLC LINE 1 (2,3, OR 4) COMMAND SENSE INFORMATION CONTROL STATION LINE Q CODE BYTE O BYTE 1 FIELD ADDRESS HEADER DATE TIME YY/MM/DD HH:MM:SS 77/06/30 23:11:57 82 08 00 04 5C 11 77/06/15 12:05:00 85 20 00 08 14 5C \smile \smile $\overline{}$ \smile $\overline{}$ \frown 89-210 89-220 89-230 89-240 89-250 89-260

89-210	Command Code	89-220	Sense Byte 0
Bits	Meaning	Bit	Meaning
0-3 4 5 6 7	Attachment address (8)	0	Time-out a. If primary station, 16-second
0000	Control command		nonproductive time-out
	Command modifier		b. If secondary station, 32-second
	Hex 80 = disable		inactivity time-out
	Hex CO = enable	1	Frame check (see 89-310)
0010	Transmit command (poll/final bit on)	2	Adapter check (overrun/underrun)
0011	Receive initial command only		(see 89-350)
0100	Transmit final command	3	Buffer overrun (receive) (see 89-380)
0101	Transmit only command	4	Invalid frame (see 89-320)
0110	Transmit initial command only	5	Lost data set ready (see 89-330)
0111	Receive delayed command	6	Data set not ready (see 89-390)
	MLCA only	7	Primary station idle time-out (see 89-360)
1000	Start poll receive ready (primary)		
1001	Start poll receive not ready (primary)		
1111	Stop poll (primary)		
1111	Stop auto response (secondary)		

89-230 Sense Byte 1

Sense byte 1 is not used.

89-240 Control Field

	Control F Configura	tion		
Format	012	3	4567	Command/Response Description
1	Nr	P/F	Ns O	Sequenced Information Frame
s	Nr	P/F	0001	Receive Ready
	Nr	P/F	0101	Receive Not Ready
	0 1 0	 P	0011	Disconnect
	0 1 0	F	0011	Request Disconnect
	011	F	0011	Unnumbered Acknowledge
	100	 P 	0011	Set Normal Response Mode
NS	1 1 1	P/F	 0 0 1 1	Test
	100	F	0111	Frame Reject
1	101	P/F	1 1 1 1	Exchange Identification
	000	F	1 1 1 1	Disconnected Mode

Notes:

- 1. I = information, S = supervisory, and NS = nonsequenced.
- 2. Nr is the sequence number of the next expected frame. Ns is the sequence number of the last frame that was sent.
- 3. P/F is either the poll bit from the primary station or the final bit from the secondary station.
- 4. If errors occur on receive operations, the control field byte may not be valid.

89-250 Station Address

If your System/34 is the primary station, the address in this field is the address of the secondary station.

If your System/34 is the secondary station, the address in this field is the address of your station.

89-260 Line Q Header

5C	=	High priority line using device address 80
5E	=	Low priority line using device address 20
60	=	Low priority line using device address 10
62	=	Low priority line using device address 40

89-300 ERROR COUNTER TABLE FOR SDLC

ERROR COUNTER TABLE FOR SDLC LINE 1 (2,3, OR 4)		LAST RESET HISTORY	
CRC ERRORS	0	0	89-310
INVALID FRAMES RECEIVED	0	0	89-320
LOST DATA SET READY	0	0	89-330
NONPRODUCTIVE RECEIVE TIME-OUTS	0	0	89-340
ADAPTER CHECKS	0	0	89-350
IDLE DETECT TIME-OUTS	0	0	89-360
FRAME SEQUENCE ERRORS	0	0	89-370

89-310 CRC Errors

The frame check character that the local station calculated did not match the frame check character that was generated and sent by the remote station.

89-320 Invalid Frames Received

After a start flag is sensed, an invalid frame error is written in the log if:

- A second flag is received in less than 32 bits.
- A flag is received that is not on a byte boundary.
- An abort sequence (11111111) is received.
- An idle sequence (11111111 1111111) is received between starting and ending flags.
- A frame was received that was longer than the length specified in the bind.

89-330 Lost Data Set Ready

On a switched network, the modem was ready and went not ready. Because of this, the 'data set ready' line goes not active and communication is terminated.

89-340 Nonproductive Receive Time-outs

Another frame was expected from the remote station. The frame was not received.

89-350 Adapter Checks (Overrun)

Transmit = no character was loaded into the buffer before it was time to send that character. Receive = A character was received before the preceding character was moved from the buffer.

89-360 Idle Detect Time-outs

The inactivity timer is used by the adapter to prevent long periods (32 seconds) of no activity on switched lines. The timer runs for both switched and nonswitched lines, but the operation terminates on a switched line only at the end of the inactivity time-out period.

89-370 Frame Sequence Errors

The Nr-Ns count received was not as expected.

89-380 Receive Buffer Overrun

A message is longer than the receive buffer length.

89-390 Data Set Not Ready

The modem or adapter is not ready to transmit or receive.

The data set not ready condition is also set on if specific timers have timed out. For example: A modem or cable failure (the transmit clock failed to function when in transmit mode).

The data set not ready condition can also be set on as a result of the last data set ready condition being set.

89-400 MLCA CONTROLLER

89-405 How to Use MLCA Controller Error Information

The controller error information aids in determining the cause of failures of the control processor. These failures may be intermittent failures or solid failures that the MAPs do not find.

Run the error recording analysis procedure for the MLCA controller and look at the error information that has been recorded. If a specific controller check byte and a specific channel check byte have been recorded frequently in the latest entries of the table, suspect an intermittent failure. Go to MAP 8901 to determine the failing field-replaceable unit (FRU).

If there is no frequent pattern associated with the error history information, go to paragraph 89-410 of this maintenance manual for a general description of what the recorded information means. If more detail is desired, a section number is given.

89-410 Error History Table Sample

An example of the controller error history information that is recorded is shown in the following sample printout.

PRESS ENTER TO VIEW NEXT DISPL ERROR HISTORY TABLE FOR MLCA CONTR		JRN TO MAIN MENU
BYT BYT PCR IL 0 1 WR0 WR1 WR2 WR3 22 07 08 00 0000 0000 FFFF 392 22 07 08 00 7FF0 0000 FFFF 392 22 07 08 00 62F0 0000 FFFF 392 22 07 08 00 62F0 0000 FFFF 392 22 07 08 00 7AF0 0000 FFFF 392 22 07 08 00 7AF0 0000 FFFF 008 22 07 08 00 79F0 0000 FFFF 000 22 07 08 00 62F0 0000 FFFF 000 22 07 08 00 62F0 0000 FFFF 000 22 07 08 00 62F0 0000	0 1004 C122 3E51 0000 2 1004 0000 3E61 0000 2 1004 A318 3E65 0000 2 1004 336A 3E65 0000 2 1004 30EF 3E71 0000 2 1004 30EF 3E79 0000 0 1004 C122 3E69 0000 0 1004 C122 3E69 0000 0 1004 30ED 3E79 0000 0 1004 30E5 3E79 0000 0 1004 C122 3E69 0000 0 1004 C122 3E69 0000 0 1004 C122 3E71 0000 0 1004 C122 3E71 0000 0 1004 C122 3E71 0000 0 1004 C122 3E71 0000 0 1004 30E1 3E67 0000 0 1004 30E1 3E69 0000 0 1004 0000 3E61 0000	MAR MAB DATE TIME 013C 34BC 800516 123420 013C 3922 800516 123420 013C 3922 800516 132514 013C 3582 800516 132618 013C 356E 800516 123414 013C 350E 800516 123414 013C 350E 800516 123416 013C 350E 800516 123721 013C 350E 800516 123721 013C 350E 800516 123714 013C 350E 800516 123914 013C 350E 800516 123914 013C 350E 800515 132514 013C 34BC 800515 132512 013C 34BC 800515 132512 013C 34BC 800515 132526 013C 3697 800515 132526 013C 3697
89-440 600 K K K K K K K K K K K K K K K K K K	29-470 Contents of work registers 0 through 7 of the interrupt level indicated by the interrupt level backup byte	89-490 89-480 Microinstruction Address Backup Register Microinstruction Address Register

89-400

89-420 Sense Bytes–General Information

The information recorded is that which was present when the error occurred.

89-430 Processor Condition Register (PCR)

The processor condition register contains information about the status of the last operation (of the type that affect the PCR) performed in the controller. The bits in the register mean the following:

Bit	Condition	
0	Flag	
1	Positive	
2	Negative	
3	Zero	
4	Carry	
5	High	
6	Low	
7	Equal	

Byte

89-440 ILBB (Interrupt Level Backup Byte)

Hardware Interrupt Level

The interrupt level backup byte indicates on which hardware interrupt level the controller was executing when the error occurred that caused the log out. The bits of the backup byte have the following meanings:

Буте	Haruware interrupt Lever
00	5
01	4
02	Cycle steal (level 1 registers
	are written in the log)
03	3
04	2
05	1
07	Main program level

Note: If channel error byte bits 1 and 6 (invalid device address and cycle steal check) are on, the information contained in the ILBB is not valid. If channel error byte bits 0 and 6 (DBO parity check and cycle steal check) are on, the information contained in the ILBB is not valid. An invalid ILBB causes the values of the registers to be not valid.

89-450 Controller Check Byte (Byte 0)

The controller check byte contains information about the controller checks that were present when the error occurred that caused the log out. The bits of the controller check byte are specified as follows:

Bit	Condition	
0	Storage data register parity check	
1	Micro-operation register parity check	
2	Register parity check-checks parity on the storage gates during move operations and ALU-associated operations.	
3	Register parity check-checks parity on the storage gates during some data move operations and ALU-associated operations	
4, 5	MLCA controller storage address status as follows:	S
	0, 0 No problems have occurred with	the

- storage address. 0, 1 A time-out check has occurred.
- 1, 0 The control storage address is not valid.
- 1, 1 An MLCA control store SAR parity check has occurred.
- 6, 7 Not used.

89-460 Channel Check Byte (Byte 1)

The channel check byte contains information about any channel checks that were present when the error occurred that caused the log out. The bits of the channel check byte are described as follows:

Bit Condition

0	Data bus out parity check
1	Device address not valid
2	Data bus in parity check
3	Input/output time-out check
4	Not used
5	System bus out parity check
6	Cycle steal operation
7	Not used

89-470 Work Registers 0 through 7

These values represent the contents of work registers 0 through 7 of the interrupt level indicated by the interrupt level backup byte.

89-480 Microinstruction Address Register (MAR)

The MAR of the interrupt level indicated by the interrupt level backup byte is recorded. The value in the MAR represents the address +1 of the microinstruction that was being executed when the error occurred that caused the log out.

89-490 Microinstruction Address Backup Register (MAB)

This is the address that the MAB (of the interrupt level indicated by the interrupt level backup byte) contained at the time of the check. The address is of the next microinstruction to be executed after the next return microinstruction executed on the interrupt level. Usually, the MAP contains the address of the next microinstruction after the last branch and link microinstruction executed on the interrupt level.

89-495 Date and Time

The date and time recorded in the error history table are the date and time that the check information was recorded. This time is the data and time that the check occurred.

89-500 AUTOCALL UNIT

89-505 How to Use the Autocall Error Information

Autocall error information aids in determining the cause of failures of the autocall unit. These failures may be intermittent failures or solid failures that the MAPs do not find.

Run the error recording analysis procedure for the autocall unit and look at the error information that has been recorded. If there is no frequent pattern associated with the error history information, go to paragraph 89-510 of this maintenance manual for a general description of what the recorded information means. If more detail is desired, a section number is given.

89-510 Error History Table Sample

An example of the controller error history table that is recorded for autocall is shown in the following sample printout.

TABLE FOR AUTOCALL UNIT PORT LINE/ACU HISTORY RROR 3 PHONE ATUS RÉTRY BYTE NUMBER PROTOCOL NUMBER HEX SS 0 3 80 60828 24 40 0**9:**52:16 ******

89-520 Status Byte

The status byte indicates the status of the autocall unit at the time the error occurred. The following hexadecimal codes may appear in the status byte to indicate autocall status:

Code Status Condition

- Cx The autocall unit has received a command that is not valid. The variable x indicates the 4 low-order bits of the command.
- EB The autocall unit has received a telephone number with a length of zero.
- EC Data Terminal Ready (DTR) is off for the communications line.
- xy The general format for the autocall status byte. The variable x can have the following meanings:
 - '1' DLO error
 - '2' ACR error
 - '3' PND error
 - '4' DSC error
 - '5' PWI error

The variable y can have the following meanings:

- '0' Indicated signal was off before the first digit was received.
- '1' Indicated signal was off between digits.
- '2' Indicated signal was off after last digit.
- 'C' Indicated signal was on before first digit.
- 'D' Indicated signal was on between digits.
- 'E' Indicated signal was on after last digit.

89-530 Protocol Byte

Code

The protocol byte specifies the transmission protocol being used at the time the error occurred. Six hexadecimal codes are valid. These codes and their meanings are:

'80'	Batch BSC
' 81'	SNA33/SDLC Tributary
'82'	MRJE
′ 83 ′	Primary SDLC
'84'	SNA44/SDLC Tributary
'85 '	Interactive BSC

Protocol

89-540 I/O Counter Table Sample

89-550 Error Counter Table Sample

The autocall error counter table keeps track of the number of errors that occur in each of several groups during operation of the autocall unit. The format of this table is shown by the following example:

ERROR COUNTER TABLE FOR AUTOCALL UNIT PORT 3	DATE LAST RESET 80/05/13
DATA LINE OCCUPIED ERRORS ABANDON LINE AND RETRY ERRORS PRESENT NEXT DIGIT ERRORS	0 0
DISTANT STATION CONNECTED ERRORS POWER INDICATE ERRORS	3 0
**************************************	*****

89-530

89-600 X.21 LINE ADAPTER

89-605 How to Use the X.21 Error Information

The X.21 error information aids in determining the cause of failures of the X.21 line adapter and the X.21 network. These failures may be intermittent failures or solid failures that the MAPs do not find.

Run the error recording analysis procedure for the X.21 line adapter and look at the error information that has been recorded.

89-610 Error History Table Sample

An example of the X.21 error history table is shown in the following sample printout.

For solid failures that are attempted more than once, only the first and last failures are recorded in the error history table.

ERROR H	ISTORY TABLE F	OR X.21	LINE 1	1 (2,3,OR 4)		
STATUS	CALL PROGRESS	LINE	DEVICE	PHONE		
BYTE 0	SIGNAL	NUMBER	CODE	NUMBER	DATE	TIME
					YY/MM/DD	HH:MM:SS
××	××	XX	XX	xxxxxxxxxxxxxxx	XX/XX/XX	xx:xx:xx
\sim	\checkmark	\checkmark	\checkmark			
89-620	89-630	89-640	89-650	89-660		

89-620 Status Byte 0

Status byte 0 indicates the status of the X.21 line adapter at the time the error occurred. The following hexadecimal codes may appear in status byte 0:

Code	Status Condition
01	An adapter check (overrun) occurred during call establishment.
02	The DCE was not ready or did not become ready after a clear.
04	A DCE clear was done during call establishment.
08	The DCE responded to the selection sequence with a 2x through 7x call progress signal. (See paragraph 89-630.)

Code Status Condition

10	A parity error was sensed during call
	establishment.
20	T3A time-out-The DCE did not respond
	after responding with a call progress signal.
28	T3B time-out-The DCE did not respond after
	responding with a 01, 02, or 03 call progress
	signal. (See paragraph 89-630.)
40	T2 time-out-The DCE did not respond to the
	selection sequence.
80	T1 time-out-The DCE did not respond to a
	call request.

89-630 Call Progress Signal

The call progress signal byte contains the call progress signal received from the DCE when status byte 0 is hexadecimal 08 or 28. (See paragraph 89-620.)

Code Call Progress Signal

08 2x through 7x 28 01, 02, or 03

See paragraph 99-074 or 99-075 for a description of the call progress signal.

89-640 Line Number

The line number byte indicates the line being used when the error occurred. Valid codes are 01, 02, 03, and 04.

89-650 Device Code

The device code byte specifies the transmission protocc being using at the time the error occurred. The following codes are valid:

Code	Protocol
80	Batch BSC
81	SNA33/SDLC secondary
82	MRJE
83	SDLC primary
84	SNA44/SDLC secondary
85	Interactive BSC
86	3270 BSC emulation

89-660 Phone Number

The phone number field contains the number (up to 14 characters) used in the selection sequence.

89-670 I/O Counter Table Sample

I/O COUNTER TABLE FOR X.21 LINE 1 (2,3, OR 4)

DATE LAST RESET XX/XX/XX

SUCCESSFUL CALLS

89-680 Error Counter Table Sample

ERROR COUNTER TABLE FOR X.21 LINE 1 (2,3,OR 4) DATE LAST RESET XX/XX/XX

DCE CLEAR DCE NOT READY PARITY ERRORS ADAPTER CHECKS T1 TIME OUTS T2 TIME OUTS T3A TIME OUTS T3B TIME OUTS CPS 01-TERMINAL CALLED CPS 02-REDIRECTED CALLS CPS 03-CONNECT WHEN FREE CPS 20-NO CONNECTION CPS 21-NUMBER BUSY CPS 22-SELECTION SIGNAL PROC ERRORS CPS 41-ACCESS BARRED CPS 42-CHANGED NUMBER CPS 43-NOT ABTAINABLE CPS 43-NOT ABTAINABLE CPS 45-CONTROLLED NOT READY CPS 45-CONTROLLED NOT READY CPS 45-CONTROLLED NOT READY CPS 48-NOT VALID FACILITY REQUESTS CPS 49-NETWORK FAULT IN LOCAL LOOP CPS 51-CALL INFORMATION SERVICE CPS 61-NETWORK CONGESTION CPS 51-CALL TEPM NETWORK CONGESTION	
CPS 71-LONG TERM NETWORK CONGESTION	
CPS 72-RPOA OUT OF ORDER	