

When You Are:

Planning to
Install Your
Computer

Getting Your
Computer
Ready to Use

Operating
Your
Computer

Operating and
Using the
Utilities

Programming

Your
Computer

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

You Can Find Information In:

What to Do Before Your Computer Arrives
or
Converting from System/34 to System/36

Setting Up Your Computer
Performing the First System Configuration For Your System
System Security Guide

Learning About Your Computer
Operating Your Computer

Source Entry Utility Guide
Data File Utility Guide
Creating Displays

Work Station Utility Guide
Utilities Messages

Concepts and Programmer’s Guide
System Reference

Sort Guide

Work Station Utility Guide
Programming with COBOL

COBOL Summary

COBOL Messages

Getting Started with the Interactive Definition Utility Guide
Distributed Data Management Guide
(communication manuals)
(communication message manuals)

System Messages
(message manuals)
System Problem Determination

Chapter 10. Data Division

Data Division Concepts

External Data

The Data Division of a COBOL source program describes all the data to be
processed by the object program. Two types of data can be processed:

e [External data

e Internal data.

External data is contained in files. A file is a collection of data records existing
on an input/output device, such as a disk. A file can be a group of physical
records or a group of logical records. The Data Division source statements
describe the relationship between physical and logical records.

A physical record is a unit of data that is treated as a single object when it is
moved into or out of auxiliary storage. The size of a physical record is
determined by the particular input/output device on which you store it. The size
does not necessarily have a direct relationship to the size or content of the logical
information contained in the file.

A logical record is a unit of data with subdivisions that are logically related. A
logical record can be a physical record (that is, contained completely in one
physical unit of data), several logical records can be contained within one physical
record, or one logical record can extend across several physical records.

Record description entries, which you place after the FD (file description) entry
for a specific file, describe the logical records in the file. These entries also
describe the category and the format of data within each field of the logical
record and different values the data might be assigned.

The FD entry gives the physical aspects of the data such as the:

e Size relationship between physical and logical records

e Size and name(s) of the logical record(s)

o Labeling information.

Chapter 10.Data Division 10-1

Internal Data

Data Relationships

Once the relationship between physical and logical records has been established,
only logical records are made available to the COBOL program. Thus, in this
manual, a reference to records means logical records unless the term physical
records is used.

Program logic might develop additional data within storage. Such data is called
internal data.

The concept of logical records applies to internal data as well as to external data.
Internal data can thus be grouped into logical records that you can define with a
series of record description entries. You can define items that need not be so
grouped in independent data description entries.

In the Data Division, you define the relationships of all data you want to use in a
program through a system of level indicators and level numbers.

® A level indicator, together with its descriptive entry, identifies each file
description in a program. Level indicators are the highest level of any data
hierarchy with which they are associated.

® A level number, together with its descriptive entry, indicates the properties of
specific data. You can use level numbers to describe a data hierarchy. These
level numbers can:

— Indicate that this data has a special purpose

— Be associated with, and be subordinate to, level indicators

— Be used independently to describe internal data or data common to two
or more programs.

Data Division Organization

10-2

The Data Division is divided into three sections:

e The File Section

e The Working-Storage Section

o The Linkage Section.

Each section has a specific logical function within a COBOL source program.

You can leave out a section from the source program when you do not need its
logical function.

Format

DATA DIVISION.

[FILE SECTION.

[file-description-entry or sort-merge-file-description-entry] e .

{record-description-entry}. .]

[NORKING-STORAGE SECTION.

[data-item-description—entry] e e
[record-description-entry] .

[LINKAGE SECTION.

[data-item-description—entry] e e

[record-description-entry] P

In the source program, you must place the Data Division sections in the order
shown.

Chapter 10.Data Division 10-3

File Section J

The File Section contains a description of all externally stored data (FD entries)
and a description of each sort-merge file (SD entries) used in the program.

You must begin the File Section with the header FILE SECTION followed by a
period and a space. The File Section contains file description entries and
sort-merge file description entries. Each entry is followed by its associated record
description entry (or entries).

In a COBOL program, the file description entries (beginning with the level
indicators FD and SD) represent the highest level of organization in the File
Section. The file description entry provides information about the physical
structure and identification of a file, and gives the record name(s) associated with
that file. For a further description of the format and the clauses required in a file
description entry, see File Description Entry later in this chapter. For a complete
discussion of the sort-merge file description entry, see Data Division Sort/Merge in
Chapter 13.

The record description entry consists of a set of data description entries that
describe the records contained within a particular file. You can use more than
one record description entry; each is an alternative description of the same storage
area. For the format and the clauses required within the record description entry,
see Data Description later in this chapter.

Data areas that you describe in the File Section are not available for processing ‘
unless you open the file containing the data area. ’

Working-Storage Section

In the Working-Storage Section, you can include description records that are not
part of data files, but are developed and processed internally. These records are
used for report description, counters, and other functions necessary in processing
data.

You must begin the Working-Storage Section with the section header
WORKING-STORAGE SECTION followed by a period and a space. The
Working-Storage Section contains record description entries and data description
entries for noncontiguous data items.

You must group data elements in the Working-Storage Section that bear a
definite hierarchical relationship to one another into records structured by level
number.

You need not group noncontiguous items in this section that bear no hierarchical
relationship to one another into records if they do not need to be subdivided
further. Instead, they are classified and defined as noncontiguous elementary
items. Define each in a separate data description entry that begins with the
special level number 77. The format of the data description entry is the same as
the format for the record description entry.

10-4

Linkage Section

C

The Linkage Section describes data made available from another program.

Record description entries and data description entries in the Linkage Section
provide names and descriptions, but storage within the program is not reserved
because the data area exists elsewhere. You can use any data description clause
to describe items in the Linkage Section, with one exception: You cannot use the
VALUE clause for any items other than level-88 items. For additional
information, see Data Division Subprogram Linkage in Chapter 13,

File Description Entry

In a COBOL program, the FD (file description) entry or the SD (sort-merge file
description) entry is the highest level of organization in the File Section.

Chapter 10.Data Division 10-5

Format 1-Sequential, Indexed, Relative Files

[FILE SECTION.

[EQ file-name

-

a]

BLOCK CONTAINS [integer-l

—
o

RECORD CONTAINS [integer~3 JI0

L

LABEL JRECORD IS
RECORDS AR

F—
I VALUE OF implementor-name-1 IS

» implementor-name-2 IS {dat
lit

DATA [RECORD IS
RECORDS ARE

U - e S E—— — — —

integer-2 {

STANDARD
OMITTED

data-name-1
literal-1

a-name-2
eral-2

}_data-name-S [, data—name-Q]

RECORDS
CHARACTERS

] integer-4¢ CHARACTERS

I
I
I
I
I
I
I
I
I
I
I
o

)

integer-5

integer-6

e

, LINES AT IOP {

data-name—7} » LINES AT BOTTOM {

integer-7

r.
I[CODE—SET Is alphabet-name] |
L_—_—_____—_

{record-descriptior\-entrv}. .] .

LINAGE IS {data-name-S} LINES |, WITH FOOTING AT {data-name—6}

data-name-8
integer-38

)

10-6

http:record-de.cr

Format 2-TRANSACTION File

. ED file-name

RECORD CONTAINS [integer-S J0] integer-4 CHARACTERS

LABEL [RECORDS ARE)] [STANDARD

RECORD IS OMITTED
r———_—_—_————_——_————_—
|

I DATA JRECORD IS data-name-3 [, data—name-4]
RECORDS ARE

L e e

.
L e G Ao
S

escripti

on-en

A

Coding Examples

The following coding example shows the clauses you will probably use most for a
format 1 file description entry.

UENCE |5 T

G
o[1/0] ;D|AITIA [D[TV[T]ST[oIN].
0/2/0[FIT[LE) [SEEICIT[T[ON]
o3/o[[FID| [FIX[LJE[-INIA
ol4lo] | REEICIO{RID] L]
o[l | L L ICo[Rlpl AT
030{ ; l_e 0 D IS\/‘ S
0710 (01 | \DESICIRT[PIVZIONI v~
R] { {
olef | X
10| | !
1)1/0] } (1 N6[-|SITIORIAIGIE] [S[ElCIT(T/O)
11210 1717] | INIAME[-[DESICIRIT [P fﬁ‘
1130/ 1011] | RIE D[-DESICRIIPTIT]OIN

Chapter 10.Data Division 10-7

The following example shows the Data Division in a program:

DATA DIVISION.
FILE SECTION.
FD INPUT-DATA
BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORDS ARE GEN-INFO SALES-DATA.
01 GEN-INFO.
03 EMPLOYEE-NAME.

05 FIRST-NAME PIC X(12).
05 LAST-NAME PIC X(12).
03 SOC-SEC-NUMBER PIC 9(9).
03 CHECK-SSN REDEFINES SOC-SEC-NUMBER PIC X(9).
03 AGE PIC 99.
03 BIRTH-DATE.
05 B-MONTH PIC 99.
05 B-DAY PIC 99.
05 B-YEAR PIC 99.
03 ANNUAL-SALARY PIC 9(5)Vv99.
03 CHECK-SALARY REDEFINES ANNUAL-SALARY PIC X(7).
* THIS REDEFINES WILL BE USED TO SEE IF THE FIELD IS BLANK.
03 RECORD-ID PIC X.
03 FILLER PIC X(31).
01 SALES-DATA.
03 SALES-SSN PIC 9(9).
03 SALES-LOCATION PIC XX.

88 MICHIGAN VALUE IS 'MI'.
88 EASTERN-REGION VALUES ARE 'PA' 'NY'.
88 HEADQUARTERS VALUES ARE 'BA' THRU 'BZ'.

03 TOTAL-COMMISSION PIC 9(5)Vv99.
03 RECORD-CODE PIC X.
03 FILLER PIC X(61).

FD REPORT-OUT
LABEL RECORDS ARE OMITTED
RECORD CONTAINS 132 CHARACTERS
LINAGE IS 60 LINES
WITH FOOTING 59
LINES AT TOP 3
LINES AT BOTTOM 3
DATA RECORD IS PRINT-OUT.

01 PRINT-OUT PIC X(132).
WORKING-STORAGE SECTION.
77 RECORDS-IN PIC 9(6) VALUE ZEROS.
77 DECLARATIVE-ERRORS PIC 9(4) VALUE ZEROS.
77 EOF-SW PIC X VALUE ZERO.
77 BAD-DATA-COUNTER PIC 9(3) VALUE ZERO.
77 CHECK-IT PIC XX.
01 PRINT-FIELDS-EDITED.
03 FILLER PIC X(14) VALUE SPACES.
03 TOTAL-SALARY PIC $$$,$5$5.39BB.
03 COMMISSION-COSTS PIC $** **x% *%x%* QOB,
03 FILLER PIC X(65) VALUE ALL '-'.
03 FILLER PIC X(12)
VALUE '...END...JOB'.
01 SALARY-COUNTER PIC 9(6)V99 VALUE ZEROS.
01 COMMISSION-COUNTER PIC 9(6)V99 VALUE ZEROS.

You must begin the file description entry with the level indicator FD followed by
a space.

10-8

The clauses that follow the file name are optional in many cases and can be in
any order; however, you must follow the FD entry with at least one record
description entry. When you use more than one record description entry, each
entry implies a redefinition of the same storage area. You must immediately
follow the last clause in the FD entry with a period and a space.

I IBM Extension |

Format 2-TRANSACTION File Considerations

A file description entry consists of a:

o Level indicator (FD)

o File name

e Series of independent clauses.

For a TRANSACTION file, the independent clauses you can use are the:

o RECORD CONTAINS clause

o LABEL RECORDS clause

o DATA RECORDS clause.

Only the LABEL RECORDS clause is required.

The LABEL RECORDS clause specifies whether or not labels are present. This
clause is treated as comments in a TRANSACTION file. You must include the
LABEL RECORDS clause in every file description entry.

The RECORD CONTAINS clause and the DATA RECORDS clause are
described under RECORD CONTAINS Clause and DATA RECORDS Clause
later in this chapter. You must have a record definition large enough to hold the
largest record defined by the display formats or SSP-ICF records processed by the

program.

| End of IBM Extension

File Name

You must place the file name after the level indicator, and you must use the same
file name as the one you used in the SELECT clause of the associated file control
entry. (See FILE-CONTROL Paragraph in Chapter 3.)

The file name must follow the rules of formation for a user-defined word; you

must include at least one alphabetic character. You must make the file name
unique within this program.

Chapter 10.Data Division 10-9

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause gives the size of a physical record. The BLOCK
CONTAINS clause is used by the compiler to determine the blocking factor for a
disk file. The BLOCK CONTAINS clause has no effect on the physical
formatting of the file as it resides on disk.

When the BLOCK CONTAINS clause is omitted, the compiler assumes that
records are not blocked; thus, this clause can be omitted when each physical

record contains only one complete logical record.

Format

CONTAINS [integer-l T_Q] integer-2 {RECORDS }

CHARACTERS

10-10

You must make integer-1 and integer-2 unsigned, nonzero integers.

When you use neither the RECORDS phrase nor the CHARACTERS phrase, the
CHARACTERS phrase is assumed.

RECORDS Phrase: When you use the RECORDS phrase, the physical record
size is expressed as the number of logical records contained in each physical
record.

The compiler assumes that the block size must provide for integer-2 records of
maximum size, and provides any additional space needed for control bytes.

Note: Maximum record size is 4096; maximum block size is 9999.

CHARACTERS Phrase: When the CHARACTERS phrase is specified or
implied, the physical record size is given as the number of character positions
required to store the physical record no matter what USAGE the characters
within the data record have.

If you use only integer-2, the compiler converts the value to a number of records
that are to be blocked together. When you use both integer-1 and integer-2, they
represent, respectively, the minimum and maximum character size of the physical
record, rounded up to the nearest whole record.

The compiler assumes that the block size must provide for integer-2 characters,
converted into a number of records, even when you use integer-1.

9

RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of a file’s data records.

Format

RECORD CONTAINS [integer-3 J0] integer-¢4¢ CHARACTERS_

The RECORD CONTAINS clause is never required, because you completely
define the size of each record in the record description entries. When you use this
clause, the following rules apply:

You must make integer-3 and integer-4 unsigned, nonzero integers.

When you use both integer-3 and integer-4, integer-3 gives the size of the
smallest data record, and integer-4 gives the size of the largest data record.

You must not use integer-4 alone unless all the records are the same size. If
all records are the same size, integer-4 gives the exact number of characters in
the record.

You must give the record size as the number of character positions needed to
store the record internally; that is, size is given in terms of the bytes occupied
internally by the record’s characters, regardless of the number of characters
used to represent the item within the record. The size of a record is
determined according to the rules for obtaining the size of a group item. For
a further description of record size, see the USAGE Clause later in this
chapter.

Note: When you leave out the RECORD CONTAINS clause, the record
lengths are determined by the compiler from the record descriptions. When
you have an entry within a record description that contains an OCCURS
DEPENDING ON clause, the compiler uses the maximum value of the
variable-length item to calculate the record length.

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present or left out.
The LABEL RECORDS clause is required in every FD entry.

Format

ABEL {gm

IS STANDARD
RECORDS ARE OMITTED

Chapter 10.Data Division 10-11

STANDARD Phrase: The STANDARD phrase specifies that this file has labels
conforming to system specifications. You must use this phrase for disk files.

OMITTED Phrase: The OMITTED phrase specifies that no labels exist for this
file. You must use this phrase for files assigned to unit record devices.

VALUE OF Clause

The VALUE OF clause serves only as documentation. It specifies the description
of an item in the label records associated with this file.

Format

VALUE OF implementor-name-1 IS {data-name—l}

— —— —— — — —

, implementor-name-2 IS {data-name-Z}

r
I
l
l
I
I
I
I
I
|
I
l
I
I
I
I
I
I
I
I
I

———_—_—————————————_ﬁ

literal-1

literal-2

| E———————

DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names of
data records associated with this file. The DATA RECORDS clause is never
required.

Format

[~~~ ===

RECORDS ARE

RECORD IS }data-name—s [. data-name—‘r] T

bl BB R e ——— |

10-12

More than one data name indicates that this file contains more than one type of
data record. Two or more record descriptions for this file occupy the same
storage area. These records need not have the same description or length. The
order in which you list the data names is not important.

C

LINAGE Clause

The LINAGE clause may be used only for printer files. It gives the depth of a
logical page in terms of the number of lines. This clause also optionally gives the
line number at which the footing area begins, as well as the top and bottom
margins of the logical page. There is not necessarily a relationship between the
logical page size and the physical page size.

Format

L

LINAGE IS {data-name-S} LINES |, WITH FOOTING AT_{data-name—ﬁ}

» LINES AT JOP {data-name-?} » LINES AT 5QTTOM_{data-name-8}

integer-5 integer-6

integer-7 integer-8

In the LINAGE clause, you must describe all data names and integers as
unsigned, integer data items.

LINAGE Integer-5/Data-Name-5: Integer-5 or the value in data-name-5 gives the
number of lines that can be written or spaced or both on this logical page. The
area of the page that these lines represent is called the page body. You must use
a value that is greater than 0.

Chapter 10.Data Division 10-13

This page is intentionally left blank.

10-14

WITH FOOTING Phrase: Integer-6 or the value in data-name-6 gives the first
line number of the footing area within the page body. You must have a footing
line number that is greater than 0, but it must not be greater than the number for
the last line of the page body. The footing area extends between those two lines.
If you do not use this phrase, the assumed value is equal to that of the page body
(integer-5 or data-name-5).

LINES AT TOP Phrase: Integer-7 or the value in data-name-7 gives the number
of lines in the top margin of the logical page. If you do not use this phrase, 0 is
assumed.

LINES AT BOTTOM Phrase: Integer-8 or the value in data-name-8 gives the
number of lines in the bottom margin of the logical page. If you do not use this
phrase, 0 is assumed.

Figure 10-1 shows you how to use each phrase of the LINAGE clause.

LINAGE Clause Considerations: The logical page size that you give in the
LINAGE clause is the sum of all values you gave in each phrase except the
FOOTING phrase. If the LINES AT TOP and the LINES AT BOTTOM
phrases are 0, each logical page immediately follows the preceding logical page
with no additional spacing provided.

At the time an OPEN OUTPUT statement is performed, the values of integer-5,
integer-6, integer-7, and integer-8 are used to determine the page body, first
footing line, top margin, and bottom margin of the logical page for this file.
These values are then used for all logical pages printed for this file during a given
run of the program.

Data-name-5, data-name-6, data-name-7, and data-name-8 have the following
effects on the logical page:

e Their values at the time an OPEN OUTPUT statement is performed
determine the following for the first logical page only:

— Page body

— First footing line
— Top margin

— Bottom margin.

e Their values at the time a WRITE ADVANCING statement causes page
ejection determine the following for the succeeding logical page only:

— Page body

— First footing line
— Top margin

— Bottom margin.

Chapter 10.Data Division 10-15

CODE-SET Clause

LINAGE-COUNTER Special Register: For each FD entry in which you use a
LINAGE clause, a separate LINAGE-COUNTER special register is generated.
LINAGE-COUNTER s initialized to 1 when an OPEN statement for this file is
performed. LINAGE-COUNTER is automatically modified by any WRITE
statement you use for this file.

When you refer to more than one LINAGE-COUNTER special register in the
PROCEDURE DIVISION, you must qualify each LINAGE-COUNTER with its
related file name. For example, LINAGE-COUNTER OF FILE-A.

The value in LINAGE-COUNTER at any given time is the line number at which
the device is positioned within the current page. You can refer to
LINAGE-COUNTER in Procedure Division statements; however, you must not
change LINAGE-COUNTER with these statements.

)
) (top
LINES AT TOP integer-7 margin)
t
Logical
Page Page
Body Depth
WITH FOOTING integer-6
Footing
Area
LINAGE integer-5 | 3
LINES AT BOTTOM integer8 \PotO™
mar'gm)

Figure 10-1. LINAGE Clause and Logical Page Depth

The CODE-SET clause is not required or used by the System/36 COBOL
compiler. If you include it in the source program, the compiler treats this clause
as a comment.

Format

|[CODE-SET 1S alphabet-name] N

e ————

10-16

L' DATA DESCRIPTION

All data you use in a COBOL program is described using a uniform system of
representation. The basic concepts of data description are discussed in this
chapter, as well as the actual COBOL clauses you use to describe data.

Data Description Concepts

You need to present most of the data processed by a COBOL program in
hierarchically arranged records. This is necessary because you must subdivide
most data for processing. To subdivide such records, COBOL uses a hierarchical
concept of levels.

For example, in a department store’s customer file, one complete record could
contain all data about one customer. Subdivisions within that record could be
customer name, customer address, account number, department number of sale,
unit amount of sale, dollar amount of sale, previous balance, and other
information.

Chapter 10.Data Division 10-17

This page left intentionally blank

10-18

C

Level Concepts

Level Numbers

Because you must divide records into logical subdivisions, the concept of levels is
part of the structure of a record. Once you have subdivided a record, you can
further subdivide it to provide more detailed data references.

The basic subdivisions of a record (that is, those fields that you do not subdivide
further) are called elementary items. A record can be made up of a series of
elementary items or it may itself be an elementary item.

Because you might need to refer to a set of elementary items, you can combine
elementary items into group items. You can also combine groups into a more
inclusive group that contains two or more subgroups. Thus, within one hierarchy
of data items, an elementary item can belong to more than one group item.

You use a system of level numbers to organize elementary and group items into
records. You also use special level numbers to identify data items you want to
use for special purposes.

You need a separate entry for each group and elementary item in a record, and
you must assign each a level number. Use the following level numbers to
structure records:

01 This level number specifies the record itself and is the most-inclusive
level number you can use. You can make a level-01 entry either a group
item or an elementary item.

02-49 These level numbers specify group and elementary items within a record.
Assign less-inclusive data items higher (not necessarily consecutive) level
numbers.

A group item includes all group and elementary items following it until a level
number less than or equal to the level number of this group is encountered.

You must give all elementary or group items immediately subordinate to one
group item identical level numbers that are higher than the level number of this
group item.

Figure 10-2 illustrates the concept of level numbers. Note that all groups
immediately subordinate to the level-01 entry have the same level number. Note
also that elementary items from different subgroups do not necessarily have the
same level number and that elementary items can be used at any level within the
hierarchy. Figure 10-2 shows the COBOL record description entry in the left
portion of the figure: it shows the subdivision of the entry in the right portion of
the figure.

Note: You can also write level numbers 01 through 09 as 1 through 9.

Chapter 10.Data Division 10-19

The COBOL record description entry is written as follows :

01 RECORD-ENTRY.

05

05

05

The storage arrangement is illustrated below:

GROUP-1.

10 SUBGROUP-1.

15 ELEM-1 PIC

15 ELEM-2 PIC

10 SUBGROUP-2.

15 ELEM-3 PIC

15 ELEM4 PIC

GROUP-2.

15 SUBGROUP-3.

25 ELEM-5 PIC

25 ELEM6 PIC

15 SUBGROUP4 PIC

GROUP-3 PIC

RECORD-ENTRY

The items included in the

hierarchy of each level are

indicated below:
<«——This entry includes —

<——This entry includes —

This entry includes —

<+——This entry includes —

<~——This entry includes —

<+——This entry includes

This entry includes itself

This entry includes itself

GROUP-1 GROUP-2 —————
le——SUBGROUP-1 ~—SUBGROUP-2 ~——SUBGROUP-3
ELEM-1 ELEM-2 ELEM-3 ELEM4 ELEM-5 ELEM-6 SUBGROUP-4 | GROUP-3

Figure 10-2. How the Record Description Entry Is Stored

10-20

Note: A PICTURE clause is required for every elementary item except an
indexed data item. This clause is discussed under PICTURE Clause later in this

chapter.

J

Special Level Numbers

Indentation

Classes of Data

Use special level numbers to identify items that do not structure a record. The
following are special level numbers:

66 Use this level number to identify elementary or group items that you
described with a RENAMES clause. Such items regroup previously defined
data items.

77 Use this level number to identify independent data description entries in the
Working-Storage or Linkage Section. These items are not subdivisions of
other items and are not themselves subdivided.

88 Use this level number to identify any condition-name entry that is
associated with a particular value of a conditional variable. An example is
given under VALUE Clause later in this chapter.

Note: You must give unique data names to level-77 and level-01 entries in the
Working-Storage Section and Linkage Section because you cannot qualify either
entry. If you can qualify subordinate data names, you need not make them
unique.

You can begin successive data description entries in the same column as preceding
entries, or you can indent them according to level number. Indentation is useful
for documentation, but it does not affect the action of the compiler.

You can divide all data used in a COBOL program into four classes and six
categories. Every elementary item in a program belongs to one of the classes as
well as to one of the categories. Every group item belongs to the alphanumeric
class even if the subordinate elementary items belong to another class and
category. Figure 10-3 shows the relationship of data classes and categories.

Level of
Item Class Category
Elementary | Alphabetic Alphabetic

Numeric Numeric

Alphanumeric | Numeric edited
Alphanumeric edited
Alphanumeric

Boolean Boolean

Figure 10-3 (Part 1 of 2). Classes and Categories of Data

Chapter 10.Data Division 10-21

Level of

Item Class Category
Group Alphanumeric | Alphabetic
Numeric

Numeric edited
Alphanumeric edited
Alphanumeric
Boolean

Figure 10-3 (Part 2 of 2). Classes and Categories of Data

| IBM Extension

Boolean Data Facilities

Boolean data provides a means of modifying and passing the values of the
indicators associated with the display formats. A Boolean value of 0 is the
indicator’s OFF status; a Boolean value of 1 is the indicator’s ON status.

A Boolean literal contains a single 0 or 1 and is enclosed in quotes and
immediately preceded by an identifying B. The Boolean literal is defined as either
B’0’ or B’l’. A Boolean character occupies 1 byte. You can use the figurative
constant ZERO as a Boolean literal, and the reserved word ALL with a Boolean
literal.

| End of IBM Extension

Standard Alignment Rules

The standard alignment rules for positioning data in an elementary item depend
on the data category of the receiving item (that is, the item into which you place
the data).

Numeric Items: When a numeric item is the receiving item, the following rules
apply:

® The data is aligned on the assumed decimal point and, if necessary, truncated
or padded with 0’s. (An assumed decimal point is one that has logical
meaning but does not exist as a character in the data.)

e If a decimal point is not explicitly specified, the receiving item is treated as
though an assumed decimal point is specified immediately to the right of the
field. The data is then treated as in the preceding rule.

Numeric Edited Items: The data is aligned on the decimal point and, if necessary,

truncated or padded with 0’s at either end, except when editing causes
replacement of leading 0’s.

10-22

o

Standard Data Format

Alphanumeric, Alphanumeric Edited, Alphabetic: For these data categories, the
following rules apply:

e The data is aligned at the leftmost character position and, if necessary,
truncated or padded with spaces at the right.

e If you use the JUSTIFIED clause for alphanumeric or alphabetic receiving
items, the above rule is modified as described in the JUSTIFIED clause. (See
JUSTIFIED Clause later in this chapter.)

Note: The JUSTIFIED clause must not be specified for any item for which
editing is specified.

COBOL makes data description as machine independent as possible. For this
reason, you describe the properties of the data in a standard data format rather
than a machine-oriented format.

The standard data format uses the decimal system to represent numbers no matter
what base is used by the system. You can include any characters in the
nonnumeric data that are in the native character set. That is, nonnumeric data is
not limited to just the COBOL character set or the nonnumeric COBOL
characters.

Character String and Item Size

Signed Data

In COBOL, the size of an elementary item is determined through the number of
character positions you used in its PICTURE character string. In storage,
however, the size is determined by the actual number of bytes the item occupies as
determined by the combination of its PICTURE character string and its USAGE
clause.

Normally, when an arithmetic item is moved from a longer field to a shorter one,
the compiler truncates the data to the number of characters represented in the
shorter item’s PICTURE character string.

For example, if you move a sending field with PICTURE S99999 and the value

+12345 to a COMPUTATIONAL receiving field with PICTURE S99, the data is
truncated to +45. (See PICTURE Clause later in this chapter.)

There are two categories of algebraic signs used in COBOL.:
® Operational signs

e Editing signs.

Chapter 10.Data Division 10-23

Operational Signs

Editing Signs

10-24

Operational signs (+ -) are associated with signed numeric items and indicate
their algebraic properties. The internal representation of an algebraic sign
depends on the item’s USAGE clause and optionally upon its SIGN clause. Zero
is considered a unique value regardless of the operational sign. An unsigned field
is always assumed to be positive or 0.

Editing signs are associated with numeric edited items. Editing signs are
PICTURE symbols (+ - CR DB) that identify the sign of the item in edited
output.

9

‘- DATA DESCRIPTION ENTRY

A record description entry or a data description entry gives the characteristics of a
particular data item. The maximum length for any item that is not otherwise
restricted is 32,767 bytes. The four general formats are:

Format 1

level-number }J data-name | clause
FILLER

REDEFINES clause]

[USAGE clause]

[

SIGN clause]

OCCURS clause]

“ Im———————7

I[SYNCHRONIZED clause]l
|

JUSTIFIED clause]

-

BLANK WHEN ZERO clause]

L

VALUE clause]

(PICTURE clause] .

Format 2-RENAMES Clause

66 data-name-1 RENAMES data-name-2 {THROUGH}'data-name-3 .
THRU

Chapter 10.Data Division 10-25

Format 3

88 condition—-name) VALUE IS literal-1 THROUGH | 1literal-2
VALUES ARE THRU

literal-3 {IHROUG }1iteral-4
THRU

Format 4-Boolean Data

level-number)data-namelclause
FILLER

[REDEFINES clausel

[PICTURE clausel

[USAGE clausel

[OCCURS clausel

[SYNCHRONIZED clause]

[JUSTIFIED Clausel

[VALUE clausel

[INDICATOR clausel.

Format 1

Use this format for record description entries (except for Boolean data) in all
sections and for level-77 entries in the Working-Storage and Linkage Sections.
The following rules apply:

® You can make the level number any number from 01 through 49, or 77.
® You can write the clauses in any order, with two exceptions:
— You must immediately follow the level number with the
data-name/FILLER clause.
— When you use the REDEFINES clause, you must place it immediately
after the data-name/FILLER clause.

o You must use the PICTURE clause for every elementary item except index
data items.

® You can use the BLANK WHEN ZERO, JUSTIFIED, PICTURE, and
SYNCHRONIZED clauses only for elementary items.

® You must separate clauses either with a space or with a comma or a
semicolon followed by a space.

e You must end each record description entry with a period followed by a
space.

10-26

3

C

Format 2-RENAMES Clause

The RENAMES clause gives alternative, possibly overlapping, groupings of
elementary data items. This clause lets a single data name rename a group of
data items within a record.

You can write one or more RENAMES entries for a logical record. You must
place all RENAMES entries associated with one logical record immediately after
that record’s last data description entry. You cannot use a level-66 entry to
rename a level-01, a level-77, a level-88, or another level-66 entry, or another data
name that contains an INDICATOR clause.

Note: You can use the RENAMES clause to rename an INDICATOR data item;
however, the new data name does not have an INDICATOR value associated
with it, and you cannot use it as an indicator.

Data-name-1 identifies an alternative grouping of data items. You cannot use
data-name-1 as a qualifier. You can qualify data-name-1 only with the names of

level indicator entries or level-01 entries.

Note: Level number 66 and data-name-1 are not part of the RENAMES clause
itself and are included in the format only for clarity.

Chapter 10.Data Division 10-27

10-28

This page is intentionally left blank.

Data-name-2 or data-name-3 identifies the original grouping of elementary data
items; that is, you must have them name elementary or group items within the
associated level-01 entry, and you must not give them the same data name. You
can qualify both data names.

You must not use the OCCURS clause in the data entries for data-name-2 and
data-name-3, or for any group entry to which these data entries are subordinate.
In addition, you must not use the OCCURS DEPENDING ON clause for any
item occupying storage between data-name-2 and data-name-3.

Data-Name-2 Phrase: When you do not use data-name-3, you can make
data-name-2 either a group item or an elementary item. When you make
data-name-2 a group item, data-name-1 is treated as a group item. When you
make data-name-2 an elementary item, data-name-1 is treated as an elementary
item.

Data-Name-2 THRU Data-Name-3 Phrase: When you use data-name-3,
data-name-1 is a group item that includes all elementary items:

e Starting with data-name-2 (if it is an elementary item) or the first elementary
item within data-name-2 (if it is a group item)

e Ending with data-name-3 (if it is an elementary item) or the last elementary
item within data-name-3 (if it is a group item).

The key words THRU and THROUGH are equivalent.

You must not have the leftmost character in data-name-3 precede that in
data-name-2; you must have the rightmost character in data-name-3 follow that in
data-name-2. This means that you make data-name-3 subordinate to
data-name-2.

Valid and invalid uses of the RENAMES clause are given in Figure 10-4.
Note: The THRU option may not be used if the elementary items being renamed
include an item that has a packed decimal representation (USAGE IS COMP-3).

The RENAMES clause and the THRU option are accepted by the compiler, but
unexpected results may occur.

Chapter 10.Data Division 10-29

COBOL Specifications
Example 1 (Valid)

01 RECORD-I.
05 DN-1...
05 DN-2. ..
05 DN-3...
05 DN4. ..

66 DN-6 RENAMES DN-1 THROUGH DN-3.

Example 2 (Valid)

01 RECORD-II.

05 DN-1.
10 DN-2...
10 DN-2A. ..

05 DN-1A REDEFINES DN-1.
10 DN-3A. ..
10 DN-3...
10 DN-3B...

05 DN-b5...

66 DN-6 RENAMES DN-2 THROUGH DN-3.

Example 3 (Invalid)

01 RECORD-III.
05 DN-2.
10 DN-3...
10 DN-4. ..
05 DN-5...

66 DN-6 RENAMES DN-2 THROUGH DN-3.

Example 4 (Invalid)

01 RECORD-IV.
05 DN-1.
10 DN-2A. ..
10 DN-2B. ..
10 DN-2C REDEFINES DN-2B.
15 DN-2...
15 DN-2D. ..
05 Dn-3. ..

66 DN-4 RENAMES DN-1 THROUGH DN-2.

Storage Layouts

RECORD-I
DN-1 DN-2 DN-3 DN4
DN-6
e————RECORD-{|———————
DN-1
DN-2 DN-2A DN-5

DN-1A———+

DN-3A DN-3 DN-38

DN-6

[¢———————RECORD-|l| ——————

DN-2 |

DN-3 DN4 DN-b

DN-6 is indeterminate

e————RECORD-|V——————+

DN-1

DN-2A DN-2B DN-3

je=—DN-2C —=

oNzD]

DN-4 is indeterminate

Figure 104. Valid and Invalid Uses of the RENAMES Clause

10-30

C

Format 3

This format describes condition names. A condition name is a name you give
that associates a value(s) or a range(s) of values (or both) with a conditional
variable.

A conditional variable is a data item that you can, in turn, associate with a
condition name. The following rules for condition-name entries apply:

e Any entry beginning with level number 88 is a condition-name entry.

® You must place the condition-name entries associated with a particular
conditional variable immediately after the conditional-variable entry. You
can make the conditional variable any elementary data description entry
except another condition name, an index data item, or a level-66 entry.

® You can associate a condition name with a group item data description entry.
The following rules apply:

— You must make the condition-name value a nonnumeric literal or
figurative constant.

— You must not use a condition-name value that is larger in size than the
sum of the sizes of all the elementary items within the group.

— You cannot include a JUSTIFIED or SYNCHRONIZED clause in any
element within the group.

— You can use no USAGE other than USAGE IS DISPLAY within the
group.

® You can use condition names both at the group level and at subordinate
levels within the group.

e The relation test implied by the definition of a condition name at the group
level is performed according to the rules for comparing nonnumeric operands

regardless of the nature of elementary items within the group.

® You must separate successive operands either with a space or with a comma
or a semicolon followed by a space.

® You must end each entry with a period followed by a space.

® You must not qualify the condition name when you use it in a REDEFINES
clause.

Examples of both elementary and group condition-name entries are given under
VALUE Clause later in this chapter.

Chapter 10.Data Division 10-31

| IBM Extension |

Format 4-Boolean Data
Use this format for Boolean data items in all sections. The following rules apply:
® You must implicitly or explicitly define USAGE as DISPLAY.

e In the OCCURS clause, you cannot use the ASCENDING/DESCENDING
KEY phrase for Boolean data items.

® You must use the INDICATOR clause at an elementary level only.
® You can compare a Boolean data item only with another Boolean data item.

® You can use only EQUAL or NOT EQUAL comparisons for Boolean data
items.

| End of IBM Extension

Level Numbers

The level number gives the hierarchy of data within a record and also identifies
special-purpose data entries.

Format

level-number
The following rules for level numbers apply:
e A level number begins a:

— Data description entry

— Regrouped item

— Condition-name entry.

® You must begin level numbers 01 and 77 in area A.

® You can begin level numbers 02 through 49, 66, and 88 in either area A or
area B, and you must follow them with a space.

® You can substitute single-digit level numbers 1 through 9 for level numbers 01
through 09.

10-32

C

Data Name or FILLER Clause

A data name explicitly identifies the data being described; the key word FILLER
identifies an item that is never explicitly referenced in the program.

Format

data-name
FILLER

REDEFINES Clause

In a data description entry, you must make the first word after the level number
either the data name or the key word FILLER. The data name identifies a data
item by referring to the field, not to a particular value. This data item can
assume a number of different values during the course of a program.

You can begin a data name anywhere in area B. You must place a period at the
end of a data name, and you must include at least one alphabetic character.

You cannot qualify entries at level numbers 01 and 77 in the Working-Storage
and Linkage sections, so you must use unique data names. You do not need
unique data names for subordinate data names that can be qualified.

The key word FILLER specifies an elementary item to which you never explicitly
refer to in a record. You can write the word FILLER anywhere in area B. You
must place a period at the end of the entry.

FILLER items are ignored in the following statements:

e MOVE CORRESPONDING

e ADD CORRESPONDING

e SUBTRACT CORRESPONDING.
| IBM Extension]

You can use a FILLER item as a group item definition. You can then use the
appropriate data name to reference subordinate data items.

| End of IBM Extension |

The REDEFINES clause indicates that the same storage area can contain
different data items. Redefinition can save storage by letting you use the same
area for different purposes.

Format

level-number data-name-1 REDEFINES data-name-2

Chapter 10.Data Division 10-33

10-34

The level number and data-name-1 are not part of the REDEFINES clause itself
and are included in the format only for clarity.

If you use the REDEFINES clause, it must be the first entry following
data-name-1.

You must make the level numbers of data-name-1 and data-name-2 identical and
you must not make them level-66 or level-88 entries.

Data-name-2 is the redefined item.

Data-name-1 is the redefining item and is an alternative description for the
data-name-2 area.

Implicit redefinition is assumed when you make more than one level-01 entry
subordinate to an FD entry. In such level-01 entries, you must not use the
REDEFINES clause.

Redefinition begins at data-name-1 and ends when a level number less than or
equal to that of data-name-2 is encountered. You cannot have an entry with a
level number numerically lower than those of data-name-1 and data-name-2
between these entries.

In the following example, A is the redefined item, and B is the redefining item.
Redefinition begins with B and includes the two subordinate items B-1 and B-2.
Redefinition ends when the level-05 item C is encountered.

05 A PICTURE X(6).
05 B REDEFINES A.
10 B-1 PICTURE X(2).
10 B-2 PICTURE 9(4).
05 C PICTURE 99V99.

You cannot have a REDEFINES clause or an OCCURS clause in the data
description entry for data-name-2, the redefined item. You can make the
redefined item subordinate to an item that contains either clause. If you make the
redefined item subordinate to an item that contains an OCCURS clause, you must
not subscript or index data-name-2 in the REDEFINES clause (the redefined
item).

You cannot have an OCCURS DEPENDING ON clause in the redefined item,
the redefining item, or any items subordinate to them.

When you use data-name-1, the redefining item, with a level number other than
01, it must give a storage area of the same size as the redefined item data-name-2.

You can have more than one redefinition of the same storage area. You must
place the entries giving the new descriptions of the storage area immediately after
the description of the redefined area without having intervening entries that define
new character positions. Multiple redefinitions must all use the data name of the
original entry that defined this storage area. For example:

05 A PICTURE 9999.
05 B REDEFINES A PICTURE 9V999.
05 C REDEFINES A PICTURE 99V99.

9

You must not have any VALUE clauses in the redefining entry (identified by
data-name-1) and any subordinate entries. This rule does not apply to condition
names.

You can redefine data items within an area without their lengths being changed.
For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.

05 NAME-1 REDEFINES NAME-2.
10 WAGE PICTURE XXX.
10 EMP-NO PICTURE X(9).
10 YEAR PICTURE XX.

You can also rearrange data items within an area. For example:

05 NAME-2.
10 SALARY PICTURE XXX.
10 SO-SEC-NO PICTURE X(9).
10 MONTH PICTURE XX.
05 NAME-1 REDEFINES NAME-2.
10 EMP-NO PICTURE X(6).
10 WAGE PICTURE 999V999.
10 YEAR PICTURE XX.

When you redefine an area, all descriptions of the area are always in effect; that
is, redefinition does not cause any data to be erased and does not supersede the
previous description. Thus, if you have used B REDEFINES A, either of the two
procedural statements MOVE X TO B and MOVE Y TO A could be performed
at any point in the program.

In the first case, the area described as B would assume the value of X. In the
second case, the same physical area (described now as A) would assume the value
of Y. If the second statement is performed immediately after the first, the value
of Y replaces the value of X in the one storage area.

You need not make the USAGE of a redefining data item the same as that of a
redefined item. This does not, however, cause any change in existing data. For
example:

05 B PICTURE 99 USAGE DISPLAY VALUE 8.

05 C REDEFINES B PICTURE S99 USAGE
COMPUTATIONAL-4.

05 A PICTURE S99 USAGE COMPUTATIONAL-4.

The bit configuration of the DISPLAY value 8 is 1111 0000 1111 1000.
Redefining B does not change the bit configuration of the data in the storage
area; therefore, the two statements, ADD B TO A and ADD C TO A give
different results. In the first case, the value 8 is added to A (because B has
USAGE DISPLAY specified). In the second statement, the value -48 is added to
A (because C has specified USAGE COMPUTATIONAL-4 specified), and the bit
configuration (truncated to 2 decimal digits) in the storage area has the binary
value -48.

Unexpected results might occur if you move a redefining item to a redefined item
(that is, if B REDEFINES C and the statement MOVE B TO C is performed).

Chapter 10.Data Division 10-35

Unexpected results might also occur if you move a redefined item to a redefining

item (from the previous example, unexpected results occur if the statement MOVE '
C TO B is performed).

You can use the REDEFINES clause for an item within any area being redefined
(that is, an item subordinate to a redefined item). For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY PICTURE 9999V99.
10 WEEKLY-PAY REDEFINES
SEMI-MONTHLY-PAY PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES
REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).
10 HOURLY-PAY PICTURE 99V99.

The REDEFINES clause may also be specified for an item subordinate to a
redefining item. For example:

05 REGULAR-EMPLOYEE.
10 LOCATION PICTURE A(8).
10 GRADE PICTURE X(4).
10 SEMI-MONTHLY-PAY
PICTURE 999V999.

05 TEMPORARY-EMPLOYEE REDEFINES

REGULAR-EMPLOYEE. b
10 LOCATION PICTURE A(8).
10 FILLER PICTURE X(6).

10 HOURLY-PAY PICTURE 99V99.
10 CODE-H REDEFINES HOURLY-PAY
PICTURE 9999.

10-36

USAGE Clause

L« The USAGE clause specifies the format of a data item in storage. The USAGE
clause can be specified for an entry at any level; if it is specified at the group
level, it applies to each elementary item in the group. The usage of an elementary
item cannot contradict the usage of a group to which the elementary item belongs.

The format of the data specified by the USAGE clause may be restricted if certain
Procedure Division statements are used.

Format

COMPUTATIONAL-3 B)
coMP-3

§ COMPUTATIONAL-4
E COMP-4

COMPUTATIOHNAL
comp

DISPLAY
INDEX

When you do not use the USAGE clause at either the group or elementary level,
\ USAGE IS DISPLAY is assumed.

INDEX Phrase: The USAGE IS INDEX clause specifies that the data item
named has an indexed format and, therefore, is an index data item. The index
data item is an elementary item that you can use to save index-name values for
future reference.

The USAGE IS INDEX clause is described in detail under Using the Table
Handling Facilities in Chapter 13.

DISPLAY Phrase: The DISPLAY option can be explicit or implicit. It specifies
that the data item is stored in character form, 1 character per byte. This
corresponds to the form in which information is represented for keyboard input
or for printed output. You can use USAGE IS DISPLAY for the following types
of items:

Alphabetic
Alphanumeric
Alphanumeric edited
Numeric edited

Zoned decimal (numeric)
Boolean.

Alphabetic, alphanumeric, alphanumeric edited, Boolean, and numeric edited
items are discussed in the description of the PICTURE clause later in this chapter.

Chapter 10.Data Division 10-37

Zoned Decimal Items: These items are sometimes referred to as external decimal

items. Each digit of a number is represented by a single byte. The 4 high-order

bits of each byte are zone bits; the 4 high-order bits of the low-order byte J
represent the sign of the item. If the number is positive, these 4 bits contain hex

F. If the number is negative, these 4 bits contain hex D. The 4 low-order bits of

each byte contain the value of the digit. When you use zoned decimal items for

computations, the compiler performs the necessary conversions. The maximum

length of a zoned decimal item is 18 digits.

The only characters you can place in the PICTURE character string of a zoned
item are:

9 (one or more numeric character positions)
S (one operational sign)

V (one implied decimal point)

P (one or more decimal scaling positions).

Examples of zoned decimal items are shown in Figure 10-5.

Computational Phrases: The term computational refers to the following phrases
of the USAGE clause:

COMPUTATIONAL or COMP (zoned decimal).
| IBM Extension |

COMPUTATIONAL-3 or COMP-3 (packed decimal)
COMPUTATIONAL-4 or COMP-4 (binary). J

l End of IBM Extension 4|

A computational item represents a value to be used in arithmetic operations and
you must make it numeric. If you describe the USAGE of a group item with any
of these options, it is the elementary items within the group that have this usage.
The group itself is considered nonnumeric and you cannot use it in numeric
operations except with the CORRESPONDING phrase. The maximum length of
a computational item is 18 decimal digits.

The only characters you can place in the PICTURE character string of a
computational item are:

9 (one or more numeric character positions)
S (one operational sign)

V (one implied decimal point)

P (one or more decimal scaling positions).

10-38

This page is intentionally left blank.

Chapter 10.Data Division 10-39

The COMPUTATIONAL phrase is in zoned decimal format. Each digit of the .
number is represented by a single byte. The 4 leftmost bits of each byte are zone J
bits; the 4 leftmost bits of the rightmost byte represent the sign of the item. The 4

rightmost bits of each byte contain the value of the digit. You can place any of

the digits 0 through 9, plus a sign, in a zoned decimal item.

I IBM Extension |

Use the COMPUTATIONAL-3 phrase for packed decimal items. Such an item
appears in storage as 2 digits per byte, with the sign contained in the 4 rightmost
bits of the rightmost byte. If the number is positive, these 4 bits contain
hexadecimal F. If the number is negative, these 4 bits contain hexadecimal D.

You can place any of the digits 0 through 9, plus a sign, in a packed decimal
item. If you do not place an S in the PICTURE character string of a packed
decimal item, the sign position is occupied by a bit configuration that is
interpreted as positive, but does not represent an overpunch.

Use the COMPUTATIONAL-4 option for binary data items. Such items have
decimal equivalents consisting of the decimal digits 0 through 9, plus a sign.

The amount of storage occupied by a binary data item depends on the number of
decimal digits you define in its PICTURE clause:

Digits in Storage
PICTURE Clauses Occupied
1 through 4 2 bytes
5 through 9 4 bytes
10 through 18 8 bytes

The leftmost bit of the storage area is the operational sign.
Examples of packed decimal and binary items are shown in Figure 10-5.

L End of IBM Extension

10-40

‘ Item Description Value Internal Representation*

Zoned PIC S9999 DISPLAY +1234 F1 F2 F3 F4
Decimal -1234 F1 F2 F3 D4
1234 F1 F2 F3 F4
PIC 9999 DISPLAY +1234 F1 F2 F3 F4
-1234 F1 F2 F3 F4
1234 F1 F2 F3 F4
PIC S9999 DISPLAY SIGN LEADING +1234 F1 F2 F3 F4
-1234 D1 F2 F3 F4
1234 F1 F2 F3 F4
PIC S9999 DISPLAY SIGN TRAILING SEPARATE +1234 F1 F2 F3 F4 4E
-1234 F1 F2 F3 F4 60
1234 F1 F2 F3 F4 4E

PIC S9999 DISPLAY SIGN LEADING SEPARATE +1234 4E F1 F2 F3 F4
-1234 60 F1 F2 F3 F4

(COMP applies to all zoned decimal data formats) 1234 4E F1 F2 F3 F4
Packed PIC S9999 COMP-3 +1234 01 23 4F
Decimal -1234 01 23 4D
PIC 9999 COMP-3 +1234 01 23 4F
) -1234 01 23 4F
Binary PIC S9999 COMP4 +1234 04 D2
-1234 FB 2E
\ PIC 9999 COMP4 +1234 04 D2

-1234 04 D2

*The internal representation of each byte is shown as two hex digits. The bit configuration for each digit is as follows:

Hex Digit Bit Configuration Hex Digit Bit Configuration
0 0000 8 1000

1 0001 9 1001

2 0010 A 1010

3 V011 B 1011

4 0100 o 1100

5 0101 D 1101

6 0110 E 1110

7 o111 F 1M1

Notes:

1. The leftmost bit of a binary number represents the sign: Q is positive, 1 is negative.

2. Negative binary numbers are represented in twos complement form.

3. Hexadecimal 4E represents the EBCDIC character +. Hexadecimal 60 represents the EBCDIC character-.

4. Specification of SIGN TRAILING (without the SEPARATE CHARACTER option) is the equivalent of the
standard action of the compiler.

b. Hexadecimal 1C, which is the DUP KEY, requires definition using a specific method. This method is found
in Appendix A.

‘ Figure 10-5. Internal Representation of Numeric Items

Chapter 10.Data Division 10-41

SIGN Clause

The SIGN clause gives the position and mode of representation of the operational
sign for a numeric entry.

Format

[SIGN

.

{

LEADING [SEPARATE CHARACTER]
JRATILING

10-42

You can use the SIGN clause only for a signed numeric data description entry
(that is, one with a PICTURE character string that contains an S), or for a group
item that contains at least one such elementary entry. USAGE IS DISPLAY
must be specified either explicitly or implicitly.

You can have only one SIGN clause for each data description entry. The SIGN
clause is required only when an explicit description of the properties or position of
the operational sign is necessary.

The SIGN clause defines the position and mode of representation of the
operational sign for the numeric data description entry to which it applies, or for
each signed numeric data description entry subordinate to the group to which it
applies.

If you do not use the SEPARATE CHARACTER phrase, then:

e The operational sign is presumed to be associated with the LEADING or
TRAILING digit position (whichever you used) of the elementary numeric
data item.

o The character S in the PICTURE character string is not counted in
determining the size of the item (in terms of standard data format characters).

If you use the SEPARATE CHARACTER phrase, then:
o The operational sign is presumed to be the LEADING or TRAILING
character position (whichever you used) of the elementary numeric data item.

This character position is not a digit position.

® The character S in the PICTURE character string is counted in determining
the size of the data item (in terms of standard data format characters).

e Use the + character for the positive operational sign.
e Use the - character for the negative operational sign.

e Ifyoudonotusea + ora -in the data at object time, an error occurs and
the program ends abnormally.

<

Every numeric data description entry with a PICTURE character string that
contains the symbol S is a signed numeric data description entry. If you also use
the SIGN clause for such an entry and conversion is necessary for computations
or comparisons, the conversion takes place automatically.

If you do not use a SIGN clause for a signed numeric data description entry, the

position and method of representation for the operational sign is determined as
explained in the USAGE clause description.

OCCURS C(Clause

The OCCURS clause specifies tables with elements that you can refer to by
indexing or subscripting. The OCCURS clause is described under Data Division
Table Handling in Chapter 13.

| IBM Extension |

OCCURS Clause with Boolean Data Items

If you use both the OCCURS clause and the INDICATOR clause at an
elementary level, a table of Boolean data items is defined with each element in the
table corresponding to an external indicator.

INDICATOR Clause

The INDICATOR clause associates a $SFGR or IDDU indicator number with a
Boolean data item. The format is:

INDICATOR

INDICATOR)integer
S
INDIC

You must make the integer greater than or equal to 1 and less than or equal to
99.

You must use the INDICATOR clause only at an elementary level.

Since you can only have a value of 0 or 1 in an indicator, you can associate the
indicator only with a Boolean data item.

OCCURS Clause with the INDICATOR Clause

If you use both the OCCURS clause and the INDICATOR clause at an
elementary level, a table of Boolean data items is defined with each element in the
table corresponding to an external indicator. The first element in the table
corresponds to the indicator number you used in the INDICATOR clause, the
second element corresponds to the indicator that sequentially follows the indicator
you used in the INDICATOR clause.

Chapter 10.Data Division 10-43

For example, if you coded the following:

7 SWITCHES PIC 1 OCCURS 10 TIMES
INDICATOR 16.

then:
SWITCHES (1) corresponds to $SFGR or IDDU indicator 16,
SWITCHES (2) corresponds to $SFGR or IDDU indicator 17, . . .
SWITCHES (10) corresponds to $SFGR or IDDU indicator 25.

I End of IBM Extension

SYNCHRONIZED Clause

The SYNCHRONIZED clause gives the alignment of an elementary item on a
proper boundary in storage.

Format

[

I SYNCHRONIZED LEFT I
: SYNC RIGHT I

R ——

The SYNCHRONIZED clause is treated as documentation only. The
SYNCHRONIZED clause is never required. You can use it only at the
elementary level. SYNC is an abbreviation for SYNCHRONIZED and has the
same meaning.

10-44

C

JUSTIFIED Clause

The JUSTIFIED clause overrides standard positioning rules for
of the alphabetic or alphanumeric categories.

Format

a receiving item

JUST

[Jusxmgn} RIGHT

You can use the JUSTIFIED clause only at the elementary level
abbreviation for JUSTIFIED and has the same meaning.

You must not use the JUSTIFIED clause:
o For a numeric item

e For any item for which you use editing
o With level-66 (RENAMES) entries

e With level-88 (condition-name) entries.

. JUST is an

When you use the JUSTIFIED clause for a receiving item, the data is aligned at

the rightmost character position in the receiving item. Also:

e If the sending item is larger than the receiving item, the leftmost characters

are truncated.

e If the sending item is smaller than the receiving item, the unused character

positions at the left are filled with spaces.

e If the sending and receiving items are the same size, the JUSTIFIED clause

does not affect the result.

When you leave out the JUSTIFIED clause, the rules for standard alignment are

followed.

The following shows the difference between standard and justified alignment:

Alignment Sending Field Value Receiving Field Value
Standard THE THEbBbD
Right justified THE bbTHE
Standard THEb®BD THEb®b
Right justified THEbb THEbb

Chapter 10.Data Division 10-45

BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause specifies that an item is to be filled entirely J
with spaces when its value is 0.

Format

[BLANK WHEN _Z,ERO]

You can use the BLANK WHEN ZERO clause only for elementary numeric or
numeric edited items. When you use it for a numeric item, the item is considered
to be a numeric edited item.

If you use the BLANK WHEN ZERO clause, the item contains nothing but
spaces when its value is 0.

You must not use the BLANK WHEN ZERO clause for level-66 or level-88
items.

| IBM Extension |

When you use both the BLANK WHEN ZERO clause and the asterisk (*) as a J
suppression symbol for the same data description entry, zero suppression editing
overrides the function of the BLANK WHEN ZERO clause.

| End of IBM Extension |

VALUE Clause
The VALUE clause gives the initial contents of a data item, or the value(s)
associated with a condition name. The two formats for the VALUE clause are as

follows:

Format 1

[VALUE IS litaral]

10-46

C

Format 2

THRU

88 condition—name {VALUE IS }1iteral—1 THROUGH 1literal-2

literal-3 {THRUUGH} literal-¢||... .

VALUES ARE THRU

General Considerations

Level number 88 and the condition name are not part of the format 2 VALUE
clause itself and are included in the format only for clarity. The use of the
VALUE clause differs with the Data Division section in which it is used.

File and Linkage Sections: You only use the VALUE clause in condition-name
entries.

Working-Storage Section: You use the VALUE clause in condition-name entries
and also to give the initial value of any data item; the data item assumes the given
value when the program begins to run. If the initial value is not explicitly
specified, it is unpredictable.

The key words THRU and THROUGH are equivalent.
You must not use the VALUE clause for any item with variable length.

For group entries, you must not use the VALUE clause if the entry or an entry
subordinate to it contains any of the following clauses:

e JUSTIFIED
e SYNCHRONIZED
o USAGE (other than USAGE DISPLAY).

You must not use a VALUE clause that conflicts with other clauses in the data
description entry or in the data description of this entry’s hierarchy. The
following rules apply:

® Wherever you use a literal, you can substitute a figurative constant.

e If the item is numeric, you must make all VALUE clause literals numeric. If
the literal defines the value of a Working-Storage item, the literal is aligned
according to the rules for numeric moves with one additional restriction: you
must not give the literal a value that requires truncation of nonzero digits. If
the literal is signed, you must place a sign symbol (S) in the associated
PICTURE character string.

Chapter 10.Data Division 10-47

® You must give all numeric literals in a VALUE clause of an item a value that
is within the range of values indicated by the PICTURE clause for that item. J
For example, for PICTURE 99PPP, the literal must be within the range 1000 '
through 99,000 or be 0. For PICTURE PPP99, the literal must be within the
range .00000 through .00099.

e If the item is an elementary or group alphabetic, alphanumeric, alphanumeric
edited, or numeric edited item, you must make all VALUE clause literals
nonnumeric. The number of characters in the literal must not be larger than
the size of the item.

o The functions of the editing characters or attributes in a PICTURE clause are
ignored in determining the initial appearance of the item described. Editing
characters are included in determining the size of the item, however, so you
must include any editing character in the literal. For example, if you define
the item as PICTURE +999.99 and the value is +12.34, then you should
write the VALUE clause as VALUE ’+012.34".

® You can initialize no more than 32,767 bytes with a single VALUE clause.
Format 1 Considerations

This format gives the initial value of a data item in storage. Initialization is
independent of any BLANK WHEN ZERO or JUSTIFIED clause you used.

You must not use a format 1 VALUE clause for an entry that contains or is
subordinate to an entry in which you used a REDEFINES or OCCURS clause.)

If you use the VALUE clause at the group level, you must make the literal
nonnumeric or a figurative constant. The group area is initialized without
consideration for the subordinate entries within this group. In addition, you must
not use the VALUE clause for subordinate entries within this group.

I IBM Extension |

Boolean Considerations: The values you can use for a Boolean literal are B’0’,
B’l’, and ZERO(S).

I End of IBM Extension I

Format 2 Considerations

This format associates a value, values, or range(s) of values with a condition
name. You need a separate level-88 entry for each such condition name.

You must use the VALUE clause in a condition-name entry and you must make
it the only clause in the entry. Each condition-name entry is associated with a
preceding conditional variable. Thus, you must always precede every level-88
entry with either the entry for the conditional variable or with another level-88
entry when several condition names apply to one conditional variable. Such
level-88 entries implicitly have the PICTURE characteristics of the conditional

variable. .)

10-48

You can qualify every condition name with the name of its associated conditional
variable and with the qualifier(s) of the conditional variable. If the associated
conditional variable requires subscripts or indexes, you must subscript or index
each procedural reference to the condition name as required for the conditional
variable.

When you use only literal-1, the condition name is associated with a single value.

When you use literal-1, literal-3, and so on, the condition name is associated with
several single values.

When you use literal-1 THRU literal-2, the condition name is associated with one
range of values.

When you use literal-1 THRU literal-2, literal-3 THRU literal-4, and so on, the
condition name is associated with more than one range of values. You must
make literal-1 less than literal-2, literal-3 less than literal-4, and so on.

You can use one or more single values and one or more ranges of values in a
single Format 2 VALUE clause.

You must make the type of literal in a condition-name entry consistent with the
data type of the conditional variable. In the following example,
CITY-COUNTY-INFO, COUNTY-NO, and CITY are conditional variables; the
associated condition names immediately follow the level-number 88. The
PICTURE clause associated with COUNTY-NO limits the condition-name value
to a 2-digit numeric literal. The PICTURE clause associated with CITY limits
the condition-name value to a 3-character nonnumeric literal. Any values for the
condition names associated with CITY-COUNTY-INFO cannot exceed 5
characters, and the literal (because this is a group item) must be nonnumeric:

05 CITY-COUNTY-INFO.

88 BRONX VALUE 'O3NYC'.
88 BROOKLYN VALUE '24NYC'.
88 MANHATTAN VALUE '31NYC'.
88 QUEENS VALUE '41NYC'.

88 STATEN-ISLAND VALUE '43NYC'.
10 COUNTY-NO PICTURE 99.

88 DUTCHESS VALUE 14.
88 KINGS VALUE 24.
88 NEW YORK VALUE 31.
88 RICHMOND VALUE 43.
10 CITY PICTURE X(3).
88 BUFFALO VALUE 'BUF'.

88 NEW-YORK-CITY VALUE 'NYC'.
88 POUGHKEEPSIE VALUE 'POK'.
05 POPULATION.

The following example shows how to use the THRU option. In this example, the
number of miles a person drives to work each day is categorized.

05 MILEAGE PIC 9(2)V9.
88 LOW VALUE O THRU 09.9.
88 MED VALUE 10.0 THRU 19.9.
88 HIGH VALUE 20.0 THRU 99.9.

Condition names are used procedurally in condition-name conditions, and are
described under Conditional Expressions in Chapter 11.

Chapter 10.Data Division 10-49

PICTURE Clause J

The PICTURE clause gives the general characteristics and editing requirements of
an elementary item.

Format

{PLCTURE } IS character-string
PIC

You must use the PICTURE clause for every elementary item except an indexed
data item. You can use the PICTURE clause only at the elementary level. PIC is
an abbreviation for PICTURE and has the same meaning.

The character string is made up of certain COBOL characters used as symbols.
The allowable combinations determine the category of the data item. You can
include no more than 30 characters in the character string.

Symbols Used in the PICTURE Clause
The functions of each PICTURE clause symbol are defined in the following list.)

Any punctuation character you include in the PICTURE character string is not
considered a punctuation character, but rather a PICTURE character string

symbol.

A Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B in the character string represents a character position into
which the space character will be inserted.

P The P indicates an assumed decimal scaling position and gives the

location of an assumed decimal point when the point is not within
the number that appears in the data item. The scaling position
character P is not counted in the size of the data item. Scaling
position characters are counted in determining the maximum
number of digit positions (18) in numeric edited items or in items
that appear as arithmetic operands. In any operation converting
data from one form of internal representation to another, if you
describe the item being converted with the PICTURE symbol P,
each digit position you describe with a P is considered to contain
the value 0, and the size of the item is considered to include these 0
digit positions.

For example, PICTURE PPP99 DISPLAY defines a 2-character

item with a value that is 0 or that ranges from .00001 through

.00099. PICTURE 99PPP DISPLAY defines a 2-character item J
with a value that is 0 or that ranges from 1000 through 99,000.

10-50

You can place the scaling position character P only to the left or
right of the other characters in the string as a continuous string of
Ps within a PICTURE description. The sign character S and the
assumed decimal point V are the only characters that you can
place to the left of a leftmost string of Ps. Because the scaling
position character P implies an assumed decimal point (to the left
of the Ps if the Ps are leftmost PICTURE characters; to the right
of the Ps if the Ps are rightmost PICTURE characters), the
assumed decimal point symbol V is redundant as either the
leftmost or rightmost character within such a PICTURE
description.

The symbol S is used in a PICTURE character string to indicate
the presence (but not the representation or, necessarily, the
position) of an operational sign. You must write the sign as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol S is not counted in determining
the size of the elementary item, unless you use the SEPARATE
CHARACTER option in an associated SIGN clause.

The V is used in a character string to indicate the location of the
assumed decimal point. You can use the V only once in a
character string. The V does not represent a character position
and, therefore, is not counted in the size of the elementary item.
When the assumed decimal point is to the right of the rightmost
symbol in the string, the V is redundant.

Each X in the character string represents a character position that
can contain any allowed character from the EBCDIC set.

Each Z in the character string represents a leading numeric
character position. When that position contains a 0, the 0 is
replaced by a space character. Each Z is counted in the size of the
item.

Chapter 10.Data Division 10-51

10-52

IBM Extension |

A single 1 indicates a Boolean data item. If you place a 1 in the PICTURE

character string, it must be the only character.

End of IBM Extension

+(CR) -(DB)

Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

Each 0 in the character string represents a character position into
which the numeral 0 will be inserted. Each 0 is counted in the size
of the item.

Each slash in the character string represents a character position
into which the slash character will be inserted. Each slash is
counted in the size of the item.

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. You cannot make the comma insertion
character the last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.
In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the item.
You cannot make the period insertion character the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and
comma are exchanged if you use the clause DECIMAL-POINT IS
COMMA in the SPECIAL-NAMES paragraph. In this exchange,
the rules for the period apply to the comma, and the rules for the
comma apply to the period wherever they appear in a PICTURE
clause.

These symbols are editing sign control symbols. Each symbol
represents the character position into which the editing sign control
symbol will be placed. The symbols are mutually exclusive in one
character string. Each character used in the symbol is counted in
determining the size of the data item.

Each asterisk (check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a 0. Each
asterisk is counted in the size of the item.

| IBM Extension |

Within a given data description entry, the use of the check protect symbol
overrides the BLANK WHEN ZERO clause.

| End of IBM Extension |

‘CS’ The currency symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol §$ or by the single character you used in the CURRENCY
SIGN clause in the SPECIAL-NAMES paragraph of the
Environment Division. The currency symbol is counted in the size
of the item.

Note: Because you can replace the currency symbol in the
CURRENCY SIGN clause, the term "CS’ is used throughout this
book rather than the actual currency symbol ($).

Figure 10-6 gives the order in which you must use PICTURE clause symbols.

Chapter 10.Data Division 10-53

Figure 10-6. PICTURE Clause Symbol Order

10-54

Second Symbol
First Nonfloating Floating
Symbol Insertion Symbols Insertion Symbols Other Symbols
| 1cR | Y O 2 A 1|pt |43
B|oO|/ .{++{$z}{2}+{+$’$9 s|v (P[P |1
: HHidosl ® kz A | X
B Ix |x|x|x |x|x x I x [x [x|x]|x|x fx |[x x| | x
O Ix [x[x|x |x|x X x| x| x| x| x| x §x |x x| | x
I Ix [x| x|[x[x]|x x B x| x| x| x| x| x §x|x bs X
. s X I x x| x [x| Xx X x| x| x| x| x| x §x X X
Nonfloating
Insertion DI x | x| x| x X x [x X X X
Symbols
!)
{+}xxxxx x| x| x x| x §x X | x| x
CR
X | x X X X [x| x
DB X X | x X | X | x
$ X
¥4
HIXx [x| x| x b ¢ xf x
{2}
4
SJIX | x| x| x| x| x x| x| x X X
. {2}
Floating
Insertion {*} x | x| x| x X X
Symbols
{+} x| x| x| x|x x x| x X X
$ x| x| x| x X X
PIx | x| x| x|x]|x x| x X X
O Ix | x| x| x|x]x x [x X X x| x| x| x X
A X [x| x X | x
Other X
lSymbols S
V Ix | x| x| x X x| x X X X X X
POIx | x| x]|x X x| x X X X X X
P X x x| x b
1 Nonfloating insertion symbols + and -, floating insertion symbols Z, *, +, -, and $, and other symbol P appear twice in the above
table. The leftmost column and uppermost row for each symbol represents its use to the left of the decimal point position. The
2sec:ond appearance of the symbol in the table represents its use to the right of the decimal point position.
$ is the default value for the currency symbol. This value may be replaced by a character specified in the currency SIGN clause. At
least one of the symbols A, X, Z, 9, or *, or at least two of the symbols +, -, or $ must be present in a PICTURE -character string.
3The character 1 must appear alone in the character string..
An X at an intersection indicates that the symbol(s) at the top of the column may, in a given character string, appear anywhere to
the left of the symbol(s) at the left of the row.
Braces ({ }) indicate items that are mutually exclusive.
-

Character String Representation: You can use the following symbols more than
once in one PICTURE character string:

ABPXZ90/, + -*"'CS.

Each time you use one of these symbols in the character string, it represents an
occurrence of that character or set of allowable characters in the data item.

An integer enclosed in parentheses immediately following any of these symbols
gives the number of times that symbol occurs consecutively. You cannot have
more than 32,767 consecutive occurrences.

For example, the following two uses of the PICTURE clause are equivalent:
PICTURE IS $99999.99CR
PICTURE IS $9(5).99CR.

You can use the following five symbols only once in one PICTURE character
string:

S v . CR DB

Data Categories and PICTURE Considerations: The combinations of PICTURE
symbols that you can use determine the data category of the item. Rules for each
category follow.

e Alphabetic items:

— You can use only the symbols A and B in the PICTURE character string.

— You must use only the 26 letters of the alphabet and the space character
as the contents of the item in standard data format.

— You must either specify or imply USAGE DISPLAY.

— You must use a nonnumeric literal in any associated VALUE clause.

e Numeric items:

— You can use only the symbols 9, P, S, and V in the PICTURE character
string.

— You must have from 1 through 18 digit positions.

— You must make the contents of a numeric item a combination of the
digits 0 through 9. You can use an operational sign in the numeric item.
If you place an S in the PICTURE, the contents of the item are treated as
a positive or negative value, depending on the operational sign present in
the data. If you do not place an S in the PICTURE, the contents of the
item are treated as an absolute value.

— If you use a VALUE clause for an elementary numeric item, you must
make the literal numeric. If you use a VALUE clause for a group item
consisting of elementary numeric items, the group is considered
alphanumeric, and you must therefore make the literal nonnumeric.

— You can make the USAGE of the item DISPLAY or
COMPUTATIONAL.

Chapter 10.Data Division 10-55

10-56

-

IBM Extension

You can make the USAGE be COMPUTATIONAL-3 or
COMPUTATIONAL-4.

End of IBM Extension

Examples of numeric items are shown in Figure 10-7.

PICTURE Valid Range of Values

9999 0 through 9999

S99 -99 through +99

S999v9 -999.9 through +999.9

PPP999 0 through .000999

S999PPP -1000 through -999000 and +1000
through +999000 or zero

Figure 10-7. Examples of Numeric Items

e Alphanumeric items:

— You must use either of the following for the PICTURE character string:

a. An entire string of the symbol X.

b. Combinations of the symbols A, X, and 9. The item is treated as
if the character string contained only the symbol X. A PICTURE
character string containing all A’s or all 9s does not define an
alphanumeric item.

— You can make the contents of the item in standard data format any
allowable characters from the EBCDIC character set.

— You must either specify or imply USAGE DISPLAY.

— You must use a nonnumeric literal in any associated VALUE clause.

e Alphanumeric edited items:

— You can use the following symbols in the PICTURE character string:

AX9BO/

— You must include at least one of the following combinations in the string:

a. At least one B and at least one X
b. At least one 0 and at least one X
c. At least one X and at least one /
d. At least one A and at least one 0
e. At least one A and at least one /

— You can use any allowed character from the EBCDIC character set as the
contents of the item in standard data format.

— You must either specify or imply USAGE DISPLAY.

— You must use a nonnumeric literal in any associated VALUE clause. The
literal is treated exactly as given; no editing is performed.

— Alphanumeric edited items are subject to simple-insertion editing only,
using the symbols 0, B, and /.

o Numeric edited items:
— You can use the following symbols in the PICTURE character string:
BPVZ90/,. + -CRDB*'CS'.

The combinations of symbols you can use are determined from the
PICTURE clause symbol order allowed (Figure 10-6), and the editing
rules (see the following section). The following additional rules also
apply:
a. You must include at least one of the following symbols in the
string:

B/ZO,.* + - CR DB.

b. You must represent the number of digit positions represented in
the character string in the range of 1 through 18 inclusive.
¢. You must not have more than 30 total character positions in the
string (including editing characters).
— You must use the digits 0 through 9 as the contents of those character
positions representing digits in standard data format.
— You must either specify or imply USAGE DISPLAY.
— You must use a nonnumeric literal in any associated VALUE clause. The
literal is treated exactly as specified; no editing is performed.

[IBM Extension

Boolean items: You must have a single character 1 for the PICTURE character
string.

| End of IBM Extension

PICTURE Clause Editing
There are two general methods of performing editing in a PICTURE clause:
e Insertion
e Suppression and replacement.

There are four types of insertion editing:

e Simple insertion
® Special insertion
e Fixed insertion

e Floating insertion.

Chapter 10.Data Division 10-57

10-58

There are two types of suppression and replacement editing:

® Zero suppression and replacement with asterisks

® Zero suppression and replacement with spaces.

The type of editing you can use for an item depends on its data category. The

type of editing and the insertion symbols that you can use for each category are
shown in Figure 10-8.

Category Type of Editing Valid Insertion Symbols
Alphabetic Simple insertion B

Numeric None None

Alphanumeric | None None

Alphanumeric | Simple insertion BO/

edited

Numeric All Bo/,

edited

Boolean None None

Figure 10-8. Valid Editing for Each Data Category

Simple Insertion Editing: You can use this type of editing for alphabetic,
alphanumeric edited, and numeric edited items. The insertion symbols you can
use for each category are shown in Figure 10-8.

Each insertion symbol is counted in the size of the item and represents the
position within the item where the equivalent characters will be inserted.

Examples of simple insertion editing are shown in Figure 10-9.

PICTURE Character

String Value of Data Edited Result
X(10)/XX Alphanumer01 | Alphanumer/01
X(5)BX(7) Alphanumeric Alpha numeric
A(5)BA(S) Alphabetic Alpha betic
99,8999,B000 1234 01, 234, 000
99,999 12345 12,345

Figure 10-9. Examples of Simple Insertion Editing

Special Insertion Editing: You can use this type of editing only for numeric
edited items.

The period is the special insertion symbol; it also represents the actual decimal
point for alignment purposes.

The period insertion symbol is counted in the size of the item, and represents the
position within the item where the actual decimal point will be inserted.

You must not use both the actual decimal point and the assumed decimal point
(the symbol V) in one PICTURE character string.

9

Fixed Insertion Editing: You can use this type of editing only for numeric edited
items. Use the following insertion symbols:

‘CS’ (currency symbol)
+ - CR DB (editing sign control symbols)

e In fixed insertion editing, you can use only one currency symbol and one
editing sign control symbol in one PICTURE character string.

® Unless it is preceded by a + or - symbol, you cannot make the currency
symbol the leftmost character position in the character string.

e When you use either + or - as a symbol, it must represent either the leftmost
or rightmost character position in the character string.

® When you use CR or DB as a symbol, it must represent the rightmost two
character positions in the character string.

e Editing sign control symbols produce results depending on the value of the
data item, as shown in Figure 10-10.

Examples of fixed insertion editing are shown in Figure 10-11.

Editing Symbol in Resulting Data

PICTURE Character | Item Positive Resulting Data Item
String or Zero Negative

+ + -

- space -

CR 2 spaces CR

DB 2 spaces DB

Figure 10-10. Editing Sign Control Results

PICTURE

Character String Value of Data Edited Result
999.99 + +6555.556 555.55+
+9999.99 -6555.555 -6555.55
9999.99 +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
$9999.99CR +123.45 $0123.45
$9999.99DB -123.45 $0123.45DB

Figure 10-11. Examples of Fixed Insertion Editing

Chapter 10.Data Division 10-59

10-60

Floating Insertion Editing: You can use this type of editing only for numeric
edited items. The following symbols are used:

‘CS + -.

Within one PICTURE character string, these symbols are mutually exclusive as
floating insertion characters.

Specify floating insertion editing with a character string of at least two of the
allowable floating insertion symbols to represent leftmost character positions in
which these characters can be inserted.

The leftmost floating insertion symbol in the character string represents the
leftmost limit at which this character can appear in the data item. The rightmost
floating insertion symbol represents the rightmost limit at which this character can
appear.

The second leftmost floating insertion symbol in the character string represents
the leftmost limit at which numeric data can appear within the data item.
Nonzero numeric data can replace all characters at or to the right of this limit.

Any simple insertion symbols (B 0 /,) within or to the immediate right of the
string of floating insertion symbols are considered part of the floating character
string. If the period special insertion symbol is included within the floating string,
it is considered to be part of the character string.

In a PICTURE character string, there are two methods by which you can
represent floating insertion editing and perform editing:

e Any or all leading numeric character positions to the left of the decimal point
are represented by the floating insertion symbol. When editing is performed,
a single floating insertion character is placed to the immediate left of the first
nonzero digit in the data or of the decimal point, whichever is the leftmost.
The character positions to the left of the inserted character are filled with
spaces.

e All the numeric character positions are represented by the floating insertion
symbol. When editing is performed:

— "If the value of the data is 0, the entire data item will contain spaces.
— If the value of the data is not 0, the result is the same as in method 1.

To avoid truncation, you must have a PICTURE character string at least the sum
of:

e The total number of character positions in the sending item
e The total number of nonfloating insertion symbols in the receiving item

® One character for the floating insertion symbol.

Examples of floating insertion editing are shown in Figure 10-12.

PICTURE Character

String Value of Data Edited Result
5%.99 123 $.12

$$%9.99 12 $0.12
$3,$$35,999.99 -1234.56 $1,234.56

+ +,+ + +,999.99 -123456.789 -123,456.78
$5,558,$88.99CR -1234567 $1,234,567.00CR
++,+++, +++, +++ 0000.00

Figure 10-12. Examples of Floating Insertion Editing

Zero Suppression and Replacement Editing: You can use this type of editing only
for numeric edited items.

Use the symbols Z and * for zero suppression. These symbols are mutually
exclusive in the PICTURE clause.

The following symbols are mutually exclusive as floating replacement symbols in
one PICTURE character string:

Z* +-'CY.

Specify zero suppression editing with a string of one or more of the allowable
symbols to represent leftmost character positions in which zero suppression and
replacement editing can be performed.

Any simple insertion symbols (B 0 /,) within or to the immediate right of the
string of floating editing symbols are considered part of the string. If the period
special insertion symbol is included within the floating editing string, it is
considered to be part of the character string.

In a PICTURE character string, there are two methods by which you can
represent zero suppression and perform editing:

® Any or all of the leading numeric character positions to the left of the decimal
point are represented by suppression symbols. When editing is performed,
any leading 0 in the data that appears in the same character position as a -
suppression symbol is replaced by the replacement character. Suppression
stops at the leftmost character that:

— Does not correspond to a suppression symbol
— Contains nonzero data
— Is the decimal point.

e All the numeric character positions in the PICTURE character string are
represented by the suppression symbols. When editing is performed and the
value of the data is nonzero, the result is the same as in the preceding rule.
The following rules apply if the value of the data is 0:

— If you used Z, the entire data item contains spaces.

Chapter 10.Data Division 10-61

10-62

— If you used *, the entire data item, except the actual decimal point,

contains asterisks.

You can use the asterisk (*) as a suppression symbol and the BLANK
WHEN ZERO clause for the same entry. The asterisk overrides the

IBM Extension

BLANK WHEN ZERO clause if you specify both.

Examples of zero suppression and replacement editing are shown in Figure 10-13.

End of IBM Extension

PICTURE Value of Data Edited Result
#***'*# 000000 ##*#‘##
72777.7Z 0000.00
7777.99 0000.00 .00

**¥% 99 0000.00 **¥% 00
Z2799.99 0000.00 00.00
2,777.77 + +123.456 123.45+

b -123.45 **123.45

R AR KNk k4 +12345678.9 12,345,678.90 +
$2,7277,777.7Z7ZCR | +12345.67 $ 12,345.67
§B* ***x x¥* **BBDB | -12345.67 $ ***12,345.67 DB

Figure 10-13. Examples of Zero Suppression and Replacement Editing

J

http:12,345.67
http:12345.67
http:12,345.67
http:12345.67
http:12,345,678.90
http:Z,ZZZ.ZZ

Procedure Division

Procedure Division Concepts 11-1
Declaratives 11-1
Procedures 11-2
Procedure Division Organization 11-3
Example of Statement Sequence in Procedure Division
Sample Procedure Division Statements 11-4
Categories of Sentences 11-5
Categories of Statements 11-5
Categories of Expressions 11-5
Sample Procedure Division Statements 11-6
Arithmetic Expressions 11-9
Arithmetic Operators 11-9
Arithmetic Statements 11-12
Arithmetic Statement Operands 11-12
Size of Operands 11-12
Overlapping Operands 11-13
Multiple Results 11-13
Intermediate Result Fields 11-14
Compiler Calculation of Intermediate Results 11-15
Data Manipulation Statements 11-17
Procedure Branching Statements 11-17
Compiler-Directing Statements 11-17
Conditional Expressions 11-18
Simple Conditions 11-18
Class Condition 11-18
Condition-Name Condition 11-19
Relation Condition 11-21
Comparison of Numeric Operands 11-23
Comparison of Nonnumeric Operands 11-23
Comparison of Numeric and Nonnumeric Operands
Operands of Equal Size 11-23
Operands of Unequal Size 11-23
Sign Condition 11-24
Switch-Status Condition 11-24
Complex Conditions 11-24

11-4

11-23

Procedure Division

Negated Simple Conditions 11-25
Combined Conditions 11-26
Evaluating Conditional Expressions 11-27
Abbreviated Combined Relation Conditions 11-29
Declaratives 11-31
Procedure Division Statements (Except Input/Output Statements) 11-33
ADD Statement 11-34
ROUNDED Phrase 11-35
SIZE ERROR Phrase 11-36
GIVING Phrase 11-36
CORRESPONDING Phrase 11-37
ALTER Statement 11-38
Segmentation Information 11-39
COMPUTE Statement 11-40
ROUNDED Phrase 11-40
SIZE ERROR Phrase 11-41
DIVIDE Statement 11-42
ROUNDED Phrase 11-43
SIZE ERROR Phrase 11-44
GIVING Phrase 11-44
ENTER Statement 11-45
EXIT Statement 11-46
GO TO Statement 11-47
Format 1-Unconditional GO TO 11-47
Format 2-Conditional GO TO 11-48
IF Statement 11-49
Nested IF Statements 11-51
INSPECT Statement 11-54
INSPECT Statement Example 11-58
TALLYING Phrase 11-59
REPLACING Phrase 11-59
BEFORE and AFTER Phrases 11-60
INSPECT Statement Examples 11-61
Typical Uses 11-62
MOVE Statement 11-63
CORRESPONDING Phrase 11-64
Elementary Moves 11-65
Group Moves 11-67
MULTIPLY Statement 11-68
ROUNDED Phrase 11-68
SIZE ERROR Phrase 11-69
GIVING Phrase 11-69
PERFORM Statement 11-70
Format1 11-70
Format2 11-70
Format3 11-70
Format 4 11-71
Varying One Identifier 11-75
Varying Two Identifiers 11-78
Varying Three Identifiers 11-82
Segmentation Information 11-85
STOP Statement 11-86
STRING Statement 11-87
Running the STRING Statement 11-88

STRING Statement Example 11-90
SUBTRACT Statement 11-92
ROUNDED Phrase 11-93
SIZE ERROR Phrase 11-94
GIVING Phrase 11-94
CORRESPONDING Phrase 11-95
UNSTRING Statement 11-96
Sending Field 11-96
DELIMITED BY Phrase 11-96
Data Receiving Fields 11-97
DELIMITER IN Phrase 11-97
COUNT IN Phrase 11-97
POINTER Phrase 11-97
TALLYING Phrase 11-97
Running the UNSTRING Statement 11-98
UNSTRING Statement Example 11-101
USE AFTER EXCEPTION/ERROR Statement (EXCEPTION/ERROR
Declarative) 11-104
File-Name Phrase 11-104
INPUT Phrase 11-104
OUTPUT Phrase 11-104
I-O Phrase 11-104
EXTEND Phrase 11-104
General Considerations 11-105
USE FOR DEBUGGING Statement 11-106

Procedure Division

Chapter 11. Procedure Division

This chapter contains a discussion of the Procedure Division concepts and
organization.

Also, this chapter discusses in alphabetic order the Procedure Division statements,
except for the input/output statements. The input/output statements are discussed
in alphabetic order in Chapter 12.

Procedure Division Concepts

Declaratives

You must include a Procedure Division in every COBOL source program. The
Procedure Division consists of optional Declaratives and procedures that contain
the sections or paragraphs, sentences, and statements that solve a data processing
problem.

The program begins running with the first statements in the Procedure Division,
not including Declarative sections. Unless the logic flow gives some other order,
statements are performed in the order in which they are given for compilation.
The end of the Procedure Division and the physical end of the program is that

physical position in a source program after which you place no more Procedure
Division statements.

A Declarative section provides a way to begin procedures that are performed
when an exceptional condition occurs that you want to test.

When you use Declarative sections, you must:

o Group them at the beginning of the Procedure Division

e Place the key word DECLARATIVES before the Declarative sections

e Place the key words END DECLARATIVES after the Declarative sections

e Divide the entire Procedure Division into sections.

Chapter 11.Procedure Division 11-1

Procedures

11-2

A procedure is a paragraph, a group of paragraphs, a section, or a group of
sections within the Procedure Division. A procedure name is a user-defined name
with which you identify a paragraph or a section.

A section consists of a section header and zero, one, or more than one successive
paragraphs. A section header is a section name followed by the key word
SECTION, an optional priority number, and a period and a space. Priority
numbers are explained under Procedure Division Segmentation in Chapter 13. A
section name is a user-defined word with which you identify a section. Because
you cannot qualify a section name, you must make it unique. A section ends at
one of the following:

e Immediately before the next section header

e At the end of the Procedure Division

o At the key words END DECLARATIVES in the Declaratives portion.
A paragraph consists of a paragraph name and zero, one, or more than one
successive sentences. A paragraph name is a user-defined word followed by a
period and a space and identifies a paragraph. Because you can qualify a
paragraph name, it need not be unique. A paragraph ends at one of the
following:

e Immediately before the next paragraph name or section header

e At the end of the Procedure Division

o At the key words END DECLARATIVES in the Declaratives portion.

If you place one paragraph within a section in a program, you must place all
paragraphs in sections.

A sentence consists of one or more statements and is ended by a period and a
space.

A statement is a syntactically valid combination of words (identifiers, figurative
constants, and so on) and symbols (literals, relational operators, and so on)
beginning with a COBOL verb.

An identifier consists of the word or words with which you can make a unique
reference to a data item through:

® Qualification

e Subscripting

e Indexing.

In any Procedure Division reference except the class test (see Class Condition later

in this chapter), if you do not make the contents of an identifier compatible with
the class you used in its PICTURE clause, results are unpredictable.

D

<

Note: You cannot use a level-88 (condition-name) entry as an identifier because
it is not a data item. You can use the associated conditional variable as an
identifier.

Procedure Division Organization

The structure of the Procedure Division is shown in the following formats:

Format 1

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] . .] .
[DECLARATIVES .
{section-name SECTION [segment-numberl] . declarative-sentence

[paragraph—name. [sentencel . .] . . } .

END DECLARATIVES]

{sect ion—-name SECTION [segment-number]

[paragraph-name. [sentencel] . . .] . . } e e .

Chapter 11.Procedure Division 11-3

Format 2

PROCEDURE DIVISION [USING data-name-1[, data-name-21 . .] .
{paragraph-name. [sentence] - } o« o .

Example of Statement Sequence in Procedure Division

SEQUENCE |§ A B
PAGE: seriaLi| O
0 TIE T

U 3 [3

poylo1o[P oz vlz|s|xloi.

020 T|

) Jo3o T -)

040 AGRAIPH|-

>

050 TA

06 kbl

k4

070

(2]

080 T -

> M [[N
—9
1o
L2

090 rla pll-

et~

100| | wrinia] [siTAlTEMEN

Sample Procedure Division Statements

PROCEDURE DIVISION.
DECLARATIVES.
ERROR-IT SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON INPUT-DATA.

ERROR-ROUTINE.

IF CHECK-IT = '30' ADD 1 TO DECLARATIVE-ERRORS.

END DECLARATIVES.
BEGIN-NON-DECLARATIVES SECTION.
100-BEGIN-IT.

OPEN INPUT INPUT-DATA OUTPUT REPORT-OUT.

110-READ-IT.

READ INPUT-DATA RECORD AT END MOVE 'Y'

ADD 1 TO RECORDS-IN.
200-MAIN-ROUTINE.

TO EOF-SW.

PERFORM PROCESS-DATA UNTIL EOF-SW
PERFORM FINAL-REPORT THRU FINAL-REPORT-EXIT.

DISPLAY 'TOTAL RECORDS IN = '
DISPLAY 'DECLARATIVE ERRORS =

STOP RUN.
PROCESS-DATA.
IF RECORD-ID = 'G'
PERFORM PROCESS-GEN-INFO
ELSE
IF RECORD-CODE = 'C'

RECORDS-IN.
DECLARATIVE-ERRORS.

PERFORM PROCESS-SALES-DATA

ELSE

PERFORM UNKNOWN-RECORD-TYPE.

11-4

C

Categories of Sentences

There are three categories of sentences: conditional sentences, imperative
sentences, and compiler-directing sentences.

A conditional sentence is a conditional statement, optionally preceded by an
imperative statement, ended by a period and a space.

An imperative sentence is an imperative statement, which may consist of a series of
imperative statements, ended by a period and a space.

A compiler-directing sentence is a single compiler-directing statement, ended by a
period and a space.

Categories of Statements

Three categories of statements are used in COBOL: conditional statements,
imperative statements, and compiler-directing statements.

A conditional statement specifies that the truth value of a condition is to be
determined, and that the subsequent action of the object program is dependent on
this truth value. Figure 11-1 lists COBOL conditional statements.

An imperative statement specifies that an unconditional action is to be taken by
the object program. An imperative statement may also consist of a series of
imperative statements. Figure 11-2 lists COBOL imperative statements.

A compiler-directing statement causes the compiler to take a specific action during
compilation. Figure 11-3 lists the COBOL compiler-directing statements.

Categories of Expressions

Two categories of expressions are used in COBOL: arithmetic expressions and
conditional expressions.

Chapter 11.Procedure Division 11-5

Sample Procedure Division Statements

11-6

Decision IF

Input/Output DELETE....INVALID KEY
READ....AT END
READ...INVALID KEY
REWRITE...INVALID KEY
START...INVALID KEY
WRITE...AT END-OF-PAGE
WRITE...INVALID KEY

Arithmetic ADD...ON SIZE ERROR
COMPUTE...ON SIZE ERROR
DIVIDE...ON SIZE ERROR
MULTIPLY...ON SIZE ERROR
SUBTRACT...ON SIZE ERROR

Procedure PERFORM. . .UNTIL

Branching

Data Movement

STRING...ON OVERFLOW
UNSTRING...ON OVERFLOW

Table Handling

SEARCH

Ordering

RETURN. ..AT END

Debug

EXHIBIT...CHANGED

Figure 11-1. Conditional Statements and Their Categories

Arithmetic ADD!

COMPUTEL!

DIVIDE!
INSPECT(TALLYING)
MULTIPLY!
SUBTRACT!

Data Movement ACCEPT (DATE, DAY, TIME)
INSPECT (REPLACING)

MOVE

STRING3

UNSTRING3

Ending EXIT PROGRAM
STOP RUN

Input/Output ACCEPT (mnemonic)
ACQUIRE
CLOSE
DELETE2
DISPLAY

DROP

OPEN

READ4
REWRITE2
SETS

START?

STOP literal
WRITES

Ordering MERGE
RELEASE
RETURN
SORT

Procedure ALTER
Branching CALL
EXIT

GO
PERFORM

Table Handling SET

Figure 11-2 (Part 1 of 2). Categories of Imperative Statements

1 Without the SIZE ERROR option

2 Without the INVALID KEY option

3 Without the ON OVERFLOW option

4 Without the AT END or INVALID KEY options

5 Without the INVALID KEY or END-OF-PAGE options

6 When used to modify external switch values

Chapter 11.Procedure Division 11-7

11-8

Subprogram CALL
Linkage
Debug EXHIBIT

READY TRACE
RESET TRACE

Figure 11-2 (Part 2 of 2). Categories of Imperative Statements

Library
Declarative

])ocumentation

COPY
USE

ENTER

Figure 11-3. Categories of Compiler-Directing Statements

C

C

Arithmetic Expressions

Arithmetic Operators

Arithmetic expressions are used as operands of certain conditional and arithmetic
statements. An arithmetic expression can consist of any of the following:

1. An identifier described as a numeric elementary item

2. A numeric literal

3. Identifiers and literals (as defined in items 1 and 2) separated by arithmetic
operators

4. Two arithmetic expressions (as defined in item 1, 2, or 3) separated by an
arithmetic operator

5. An arithmetic expression (as defined in item 1, 2, 3, or 4) enclosed in
parentheses.

You can precede any arithmetic expression by a unary operator.

Identifiers and literals appearing in an arithmetic expression must represent either
numeric elementary items or numeric literals on which arithmetic can be

performed.

You can use the five binary arithmetic operators and two unary arithmetic
operators shown in Figure 11-4 in arithmetic expressions. The arithmetic

operators are represented by specific characters that must be preceded and
followed by a space.

Binary

Operator | Meaning

+ Addition

- Subtraction

* Multiplication

/ Division

** Exponentiation’

7 Fractional exponents are not allowed

Chapter 11.Procedure Division 11-9

11-10

Unary
Operator | Meaning

+ Multiplication by +1;
retains original sign

- Multiplication by -1;
changes sign

Figure 11-4. Binary and Unary Operators

You can use parentheses in arithmetic expressions to specify the order in which
elements are to be evaluated. Expressions within parentheses are evaluated first.
When expressions are contained within a nest of parentheses, evaluation proceeds
from the least-inclusive to the most-inclusive set.

When you do not use parentheses, or when parenthesized expressions are at the
same level of inclusiveness, the following hierarchical order is implied:

1. Unary operator

2. Exponentiation

w

Multiplication and division
4. Addition and subtraction.

When exponentiation is used as an arithmetic operator, the exponential identifier
or literal must be a positive integer value.

Parentheses either eliminate ambiguities in logic in which consecutive operations
appear at the same hierarchical level or modify the normal hierarchical sequence
of performance when the sequence needs to be modified. When the order of
consecutive operations at the same hierarchical level is not completely specified by
parentheses, the order is from left to right.

Figure 11-5 shows allowed arithmetic symbol pairs. An arithmetic symbol pair is
the appearance of two such symbols in sequence.

An arithmetic expression can begin only with a left parenthesis, a unary operator,
or a variable (that is, an identifier or a literal). An arithmetic expression can end
only with a right parenthesis or a variable. An arithmetic expression must contain
at least one reference to an identifier or a literal. There must be a one-to-one
correspondence between left and right parentheses in an arithmetic expression.

Second Symbol .
- .
/
Variable *k
(identifier + unary +
First Symbol | or literal) - unary - ()
Variable - p - - P
(identifier or
literal)
L AL B P - p p -
unary + or p - - p -
unary -
(p - P P -
) - p - - p

Figure 11-5. Valid Arithmetic Symbol Pairs

Note: p indicates a permissible pairing

- indicates that the pairing is not permitted

Chapter 11.Procedure Division

11-11

Arithmetic Statements

Arithmetic statements are used for computations. You specify individual
operations by using the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements. You can use the COMPUTE statement to symbolically combine these
operations in a formula.

Arithmetic Statement Operands

Size of Operands

11-12

The data description of operands in an arithmetic statement need not be the same.
Throughout the calculation, the compiler supplies any necessary data conversion
and decimal point alignment.

The maximum size of each operand is 18 decimal digits. The composite of
operands (a hypothetical data item resulting from the superposition of the
operands aligned by decimal point) must not contain more than 18 decimal digits.

For the ADD and SUBTRACT statements, the composite of operands is
determined by superimposing all operands in a given statement except those
following the word GIVING.

For example, the items A, B, and C are defined in the Data Division as
follows:

01 A PICTURE S9(7)V9(5).

01 B PICTURE S9(11)V99.

01 C PICTURE S9(12)V9(3).
If the statement ADD A, B TO C is run, the composite of operands for this
statement consists of 17 decimal-digits. It has the following implicit
description:

Composite-of-Operands PICTURE S9(12)V9(5).

For the MULTIPLY statement, the composite of operands is determined by
superimposing all receiving data items.

For the DIVIDE statement, the composite of operands is determined by
superimposing all receiving data items except the REMAINDER data item.

For the COMPUTE statement, the restriction on composite of operands does
not apply.

J

Overlapping Operands

L When operands in an arithmetic statement share part of their storage (that is,
when the operands overlap), the result when the statement is run is unpredictable.

Multiple Results

When an arithmetic statement has multiple results, the sequence of events is as
follows:

1. The statement performs all arithmetic operations to find the result to be
placed in the receiving items and stores that result in a temporary location.

2. A sequence of statements transfers or combines the value of this temporary
result with each single receiving field. The statements are considered to be
written in the same left-to-right order that the multiple results are listed.

For example, running the following statement:

ADD A, B, CTO C, D(C), E.

is the same as running the following series of statements:
ADD A, B, C GIVING TEMP
ADD TEMP TO C

b ADD TEMP TO D(C)

ADD TEMP TO E.

TEMP is a compiler-supplied temporary result field. When the addition
operation for D(C) is performed, the subscript C contains the new value of C.

Note: 1t is your responsibility, in all arithmetic statements, to define data with
enough digits and decimal places to ensure accuracy in the final result.

Chapter 11.Procedure Division 11-13

Intermediate Result Fields

11-14

This section discusses the conceptual compiler algorithms for determining the
number of integer and decimal places reserved for intermediate results (ir) of
arithmetic statements. The following abbreviations are used:

Number of integer places carried for an intermediate result

Number of decimal places carried for an intermediate result

dmax | In a particular statement, the larger of either:

e The number of decimal places needed for the final result
field

o The maximum number of decimal places defined for any
operand except exponents and divisors.

opl First operand in a generated arithmetic statement

op2 Second operand in a generated arithmetic statement

d1,d2 | Number of decimal places defined for opl or op2, respectively

ir

Intermediate result field obtained from running a generated
arithmetic statement or operation. Irl, ir2, and so on
represent successive intermediate results. These intermediate
results are generated either in registers or in storage locations.
Successive intermediate results may have the same location.

When an arithmetic statement contains only a single pair of operands, no
intermediate results are generated. Intermediate results are possible in the
following cases:

In an ADD or a SUBTRACT statement containing multiple operands
immediately following the verb

In a COMPUTE statement specifying a series of arithmetic operations
In arithmetic expressions contained in an IF or a PERFORM statement

In the GIVING phrase with multiple result fields for ADD, SUBTRACT,
MULTIPLY, DIVIDE

In a COMPUTE statement specifying multiple result fields.

<9

In such cases, the compiler treats the statement as a succession of operations. For
example, the following statement:

COMPUTEY =A+B*C-D/E+ F**G

is replaced by

F**G yielding irl
MULTIPLY B BY C yielding ir2
DIVIDE E INTO D yielding ir3
ADD A TO ir2 yielding ir4
SUBTRACT ir3 FROM ir4 yielding ir$
ADD ir5 TO irl yielding Y

Compiler Calculation of Intermediate Results
The number of integer places in an ir is calculated as follows:

o The compiler first determines the maximum value that the ir can contain by
performing the statement in which the ir occurs.

— If an operand in this statement is a data name, the value used for the
data name is equal to the numeric value of the PICTURE character string
for the data name (for example, PICTURE 9V99 has the value 9.99).
— If an operand is a literal, the actual value of the literal is used.
— If an operand is an intermediate result, the value determined for the
intermediate result in a previous arithmetic operation is used.
— If the operation is division:
— a) If op2is a data name, the value used for op2 is the minimum
nonzero value of the digit in the PICTURE character string for the
data name (for example, PICTURE 9V99 has the value 0.01).
— b) If op2 is an intermediate result, the intermediate result is treated
as though it had a PICTURE character string, and the minimum
nonzero value of the digits in this PICTURE character string is used.

® When the maximum value of the ir is determined by the above procedures, i
is set equal to the number of integers in the maximum value.

Chapter 11.Procedure Division 11-15

11-16

® The number of decimal places contained in an ir is calculated as:

Operation Decimal Places

+ or - dl or d2, whichever is greater

* dl + d2

/ dl - d2 or dmax, whichever is greater®

** dmax if op2 is a data name; d1 * op2 if op2
is an integral literal

Note: You must define the operands of any arithmetic statement with enough
decimal places to give the desired accuracy in the final result.

The following chart indicates the action of the compiler when handling

intermediate results:

Value of | Value | Value of
i+d of d i + dmax Action Taken
<19 = Any Any value i integer and d decimal
19 value places are carried for
ir
>19 <dmax| Any value 19 - d integer and d
decimal places are
carried for ir
=dmax
>dmax| <19 i integer and 19 - i
decimal places are
carried for ir
=19
>19 19 - dmax integer and

dmax decimal places
are carried for ir

8 After a division operation in a COMPUTE statement with a ROUNDED option,
the number of decimal places carried in the intermediate result field is increased by

1.

9

Data Manipulation Statements

C

Movement and inspection of data are the functions of the following COBOL
statements: INSPECT, MOVE, STRING, and UNSTRING.

When the sending and receiving fields of a data manipulation statement share a
part of their storage (that is, when the operands overlap), the results when the
statement is run are unpredictable.

Procedure Branching Statements

Statements, sentences, and paragraphs in the Procedure Division are usually run
sequentially. The procedure branching statements allow alterations in the
sequence. The procedure branching statements are ALTER, EXIT, GO TO,
PERFORM, and STOP.

Compiler-Directing Statements

Compiler-directing statements provide instructions to the COBOL compiler. The
compiler-directing statements are COPY, ENTER, and USE.

Only the ENTER statement and the USE AFTER EXCEPTION/ERROR
statement are discussed in this chapter. The COPY statement is discussed under

" Using the Library Copy Facility in Chapter 4. The USE FOR DEBUGGING
statement is discussed under Debugging Features in Chapter 6.

Chapter 11.Procedure Division 11-17

Conditional Expressions J

A conditional expression causes the object program to select alternative paths of
control, depending on the truth value of a test. Conditional expressions can be
specified in IF, PERFORM, and SEARCH statements. The IF and PERFORM
statements are discussed in this chapter. The SEARCH statement is discussed in
Chapter 13.

A conditional expression can be specified in simple conditions and in complex
conditions. You can enclose both simple and complex conditions within any

number of paired parentheses; parentheses do not change the category of the
condition.

Simple Conditions
There are five simple conditions:
e (lass condition
e Condition-name condition
e Relation condition
e Sign condition
e Switch-status condition. J

A simple condition has a truth value of true or false. When a simple condition is
enclosed in paired parentheses, its truth value is not changed.

Class Condition
The class condition determines whether a data item is numeric or alphabetic.

Format

identifier IS [NOT] NUMERIC
ALPHABETIC

The identifier you are testing must be described implicitly or explicitly as USAGE
DISPLAY. The identifier is determined to be numeric only if the contents
consist of any combination of the digits O through 9, with or without an
operational sign.

If the PICTURE character string of the identifier you are testing does not contain

an operational sign, the identifier is determined to be numeric only if the contents
are numeric and an operational sign is not present.

11-18

Condition-Name Condition

If the PICTURE character string of the identifier you are testing does contain an
operational sign, the identifier is determined to be numeric only if the item is an
elementary item, the contents are numeric, and a valid operational sign is present.

In the EBCDIC collating sequence, valid embedded operational signs are
hexadecimal F and hexadecimal D. For items described with the SIGN IS
SEPARATE clause, valid operational signs are + (hexadecimal 4E) and -
(hexadecimal 60).

You cannot use the NUMERIC test with an identifier described either as
alphabetic or as a group item that contains one or more signed elementary items.
The identifier being tested is determined to be alphabetic only if the contents
consist of any combination of the alphabetic characters A through Z and the
space.

You cannot use the ALPHABETIC test with an identifier described as numeric.

Figure 11-6 shows valid forms of the class test.

Type of Identifier Valid Forms of the Class Test

Alphabetic ALPHABETIC
NOT ALPHABETIC

Alphanumeric ALPHABETIC

NOT ALPHABETIC
NUMERIC

NOT NUMERIC

Zoned Decimal NUMERIC
NOT NUMERIC

Figure 11-6. Valid Forms of the Class Test

A condition-name condition causes a conditional variable to be tested to
determine whether its value is equal to any of the values associated with the
condition name (level-88 item).

Format

condition—-name

In conditions, you can use a condition name as an abbreviation for the relation
condition, because the specified condition name is equal to only one of the values
or ranges of values assigned to the specified conditional variable. The result of
the test is true if one of the values corresponding to the condition name equals the
current value of the associated conditional variable.

If you associate the condition name with a range of values or with several ranges

of values, the conditional variable is tested to determine whether or not its value
falls within the range(s), including the end values. The result of the test is true if

Chapter 11.Procedure Division 11-19

one of the values corresponding to the condition name equals the value of its
associated conditional variable.)

The following example shows the usage of condition names and conditional
variables:

01 GRADE-ID PIC 99.
88 PRIMARY-OTHER VALUE 1 THRU 3, 5, 6.

88 PRIMARY-FOUR VALUE 4.
88 JUNIOR-HI VALUE 7 THROUGH 9.
88 SENIOR-HI VALUE 10 THROUGH 12.

GRADE-ID is the conditional variable, PRIMARY-OTHER,
PRIMARY-FOUR, JUNIOR-HI, and SENIOR-HI are condition names. For
individual records in the file, only one of the values specified in the condition
name entries can be present. To determine the grade level of a specific record,
you can code any of the following:

IF PRIMARY-OTHER...

(which tests for values 1, 2, 3, 5, 6)

IF PRIMARY-FOUR...

(which tests for value 4)

IF JUNIOR-HI...

(which tests for values 7, 8, 9)

IF SENIOR-HI...

(which tests for values 10, 11, 12)

Depending on the evaluation of the condition-name condition, alternative paths
are taken by the object program.

11-20

C

Relation Condition

A relation condition causes a comparison between two operands, either of which
may be an identifier, a literal, or an arithmetic expression.

Format
(GREATER THAN)
LESS THAN
operand-1 IS[NUT]‘ EQUAL TO >operand—2
>
<

Operand-1 is the subject of the relation condition; operand-2 is the object of the
relation condition. Operand-1 and operand-2 may each be an identifier, a literal,
or an arithmetic expression. The relation condition must contain at least one
reference to an identifier. Except when two numeric operands are compared,
operand-1 and operand-2 must have the same USAGE clause specified.

The relational operator specifies the type of comparison to be made. Figure 11-7
shows relational operators and their meanings. Each relational operator must be
preceded and followed by a space.

Relational Operator Meaning

IS [NOT] GREATER Greater than or not greater than
THAN

IS [NOT] >

IS [NOT] LESS THAN | Less than or not less than

IS [NOT] <

IS [NOT] EQUAL TO | Equal to or not equal to

IS [NOT] =

Figure 11-7. Relational Operators and Their Meanings

I IBM Extension |

Boolean Considerations: The valid types of relation conditions that can be used
with Boolean data items are EQUAL TO and NOT EQUAL TO.

l End of IBM Extension '

Chapter 11.Procedure Division 11-21

Rules for numeric and nonnumeric comparisons are given in the paragraph

following Figure 11-8. If either of the operands is a group item, nonnumeric
comparison rules apply. Figure 11-8 summarizes the permissible comparisons.

Second Operand

FC' ZR
First Operand GR (AL (AN |ANE (NE |NNL |[NL (ZD |BI |PD |AE |BO |IN [IDI
Group (GR) NN [NN |NN |NN NN [NN NN |NN
Alphabetic (AL) NN |[NN |[NN (NN NN |[NN NN |NN
Alphanumeric (AN) NN (NN |[NN |NN NN |NN NN |NN
Alphanumeric edited (ANE) NN (NN |[NN |NN NN |NN NN |NN
Numeric edited (NE) NN (NN |[NN [NN NN |NN NN |NN
Figurative constant (FC)' and [NN {NN |[NN |NN |NN NN
nonnumeric literal (NNL)
Figurative constant ZERO NN [NN |[NN (NN |NN NU |[NU |NU |NU 102
(ZR) and numeric literal (NL)
Zoned decimal (ZD) NN |NN |NN |NN NN (NN NU [NU [NU |NU |NU 102
Binary (BI) NU [NU [NU [NU (NU 102
Packed decimal (PD) NU [NU [NU |NU |NU 102
Arithmetic expression (AE) NU |[NU [NU |NU [NU
Boolean data item (BO) or BO
Boolean literal
Index name (IN) 102 {102 [10%2 (102 10 |IV
Index data item (IDI) v |IV
BO = Comparison as described for Boolean operands.
NN = Comparison as described for nonnumeric operands.
NU = Comparison as described for numeric operands.
I0 = Comparison as described for two index names or index data items.
IV = Comparison as described for index data items.
'FC includes all figurative constants except ZERO.
2Valid only if the numeric item is an integer.

l'Tigure 11-8. Permissible Comparisons of Operands

11-22

Comparison of Numeric Operands: For numeric class operands, algebraic values
are compared. The length (number of digits) of the operands is not significant.
Zero is considered a unique value, regardless of the sign; unsigned numeric
operands are considered positive. Regardless of what you specified in their
USAGE clause, comparison of numeric operands is permitted.

Comparison of Nonnumeric Operands: A comparison of two nonnumeric
operands or of one numeric and one nonnumeric operand is made with respect to
the binary collating sequence of the character set in use.

Comparison of Numeric and Nonnumeric Operands: When you compare a
nonnumeric and a numeric operand, the following rules apply:

e If the nonnumeric operand is a literal or an elementary data item, the numeric
operand is treated as though it were moved to an alphanumeric elementary
data item of the same size. The contents of this alphanumeric data item is
then compared with the nonnumeric operand.

e If the nonnumeric operand is a group item, the numeric operand is treated as
though it were moved to a group item of the same size. The contents of this
group item is then compared with the nonnumeric operand. For further
discussion of the rules for alphanumeric and group move operations, see the
MOVE Statement later in this chapter.

Numeric and nonnumeric operands can be compared only when their USAGE,
explicitly or implicitly, is the same. In such comparisons, you should describe the
numeric operand as an integer literal or data item; noninteger literals and data
items should not be compared with nonnumeric operands.

The size of each operand is the total number of characters in that operand; the
size affects the result of the comparison. There are two kinds of operands to
consider: operands of equal size and operands of unequal size.

Operands of Equal Size: Characters in corresponding positions of the two
operands are compared, beginning with the leftmost character and continuing
through the rightmost character.

If all pairs of characters through the last pair test as equal, the operands are
considered equal. If a pair of unequal characters is encountered, the characters
are tested to determine their relative positions in the collating sequence. The
operand containing the character higher in the sequence is considered the greater
operand.

Operands of Unequal Size: 1f the operands are of unequal size, the comparison is
made as though the shorter operand were extended to the right with enough

spaces to make the operands equal in size.

Note: Valid comparisons for index names and index data items are discussed
under Using Table Handling Facilities in Chapter 13.

Chapter 11.Procedure Division 11-23

Sign Condition

The sign condition determines whether or not the algebraic value of a numeric
operand is greater than, less than, or equal to 0.

Format

operand IS [NOT]

POSITIVE
NEGATIVE
ZERO

Switch-Status Condition

You must define the operand being tested as a numeric identifier or as an
arithmetic expression that contains at least one reference to an identifier.

The operand is POSITIVE if its value is greater than 0, NEGATIVE if its value is
less than 0, and ZERO if its value is equal to 0. An unsigned operand is
POSITIVE or ZERO.

When you specify NOT, one algebraic test is run for the truth value of the sign

condition. For example, NOT ZERO is regarded as true when the operand tested
is positive or negative in value.

The switch-status condition determines the on or off status of an UPSI switch.

Format

condition-name

Complex Conditions

11-24

The condition name must be defined to be associated with the ON or OFF value
of a switch in the SPECIAL-NAMES paragraph.

The switch-status condition tests the value associated with the condition name.

The result of the test is true if the UPSI switch is set to the position
corresponding to the condition name.

A complex condition is a condition in which one or more logical operators act
upon one or more conditions. Complex conditions include:

e Negated simple conditions
e Combined conditions

e Negated combined conditions.

9

<

Each logical operator must be preceded and followed by a space. The logical

‘ operators and their meanings are shown in Figure 11-9.
Logical Meaning
Operator
AND Logical conjunction-the truth value is true when both

conditions are true.

OR Logical inclusive OR-the truth value is true when either

or both conditions are true.

NOT Logical negation-reversal of truth value (the truth value

is true if the condition is false).

Figure 11-9. Logical Operators and Their Meanings

Negated Simple Conditions

A simple condition is negated through the use of the logical operator NOT.

Format

NOT simple-condition

The simple condition you are negating can be a:

- .

Class condition
Condition-name condition
Relation condition

Sign condition

Switch-status condition.

The simple condition cannot be negated if the condition itself contains a NOT.

The negated simple condition gives the opposite truth value as the simple
condition. For example, if the truth value of the simple condition is true, then the
truth value of that same negated simple condition is false.

Placing a negated simple condition within parentheses does not change its truth
value. For example, the following two statements are equivalent:

NOT A IS EQUAL TO B.

NOT (A IS EQUAL TO B).

Chapter 11.Procedure Division 11-25

Combined Conditions
Two or more conditions can be logically connected to form a combined condition. J

Format

condition{{AND}condition} e e .

The condition you are combining can be a:

(=]
-0

e Simple condition
e Negated simple condition
e Combined condition

e Negated combined condition (the NOT logical operator followed by a
combined condition enclosed in parentheses).

Combinations of these conditions are specified according to the rules given in
Figure 11-10.

You never need parentheses when either AND or OR (but not both) are used)
exclusively in one combined condition; however, parentheses may be needed to J
find a final truth value when you use a combination of AND, OR, and NOT.

There must be a one-to-one correspondence between left and right parentheses

with each left parenthesis to the left of its corresponding right parenthesis.

Figure 11-10 summarizes the way in which conditions and logical operators can
be combined and put in parentheses. Figure 11-11 illustrates the relationships
between logical operators and conditions C1 and C2 in which C1 and C2 are any
of the preceding conditions.

11-26

Permissible Position in Conditional Expressions
When Not Leftmost, When Not Rightmost,
May Be Immediately May Be Immediately
Condition Element |Leftmost Preceded By: Followed By: Rightmost
Simple condition Yes OR OR Yes
NOT AND
AND)
(
OR No Simple condition Simple-condition No
AND) NOT
(
NOT Yes OR Simple-condition No
AND (
(
(Yes OR Simple~-condition No
NOT NOT
AND (
(
) No Simple-condition OR Yes
) AND
)

Figure 11-10. Valid Combinations of Conditions, Logical Operators, and Parenthesis in a Conditional Expression

Value Value NOT NOT NOT NOT

forC1 forC2 |C1ANDC2 C10RC2 (C1ANDC2) C1 AND C2 (C1O0R C2) C1 OR C2

True True True True False False False True

False True False True True True False True

True False False True True False False False

False False False False True False True True
Figure 11-11. How Logical Operators Affect the Evaluation of Conditions

The truth value of a complex condition depends on the truth values of the simple
conditions and negated simple conditions that make up the complex condition.

The logical operators tell the compiler how to combine these individual truth
values.

Evaluating Conditional Expressions: If you use parentheses, logical evaluation of
combined conditions proceed in the following order:

1. Conditions within parentheses are evaluated first.

2. Within nested parentheses, evaluation proceeds from the least-inclusive
condition to the most-inclusive condition.

11-27

Chapter 11.Procedure Division

11-28

If you do not use parentheses or they are not at the same level of inclusiveness,
the combined condition is evaluated in the following order:

1. Arithmetic expressions.
2. Simple conditions, in the following order:

Relation

Class

Condition name
Switch status
Sign

opo o

3. Negated simple conditions in the same order as item 2.
4. Combined conditions, in the following order:

a. AND
b. OR

5. Negated combined conditions, in the following order:

a. AND
b. OR

6. Consecutive operands at the same evaluation-order level. These are evaluated

from left to right.

For example, the expression
A IS NOT GREATER THAN B
OR A + B IS EQUAL TO C AND
D IS POSITIVE

is evaluated as if it were enclosed in parentheses as follows:

(A IS NOT GREATER THAN B) OR (((A+B) IS EQUAL TO C) AND (D

IS POSITIVE)).
The order of evaluation is as follows:

1. (A IS NOT GREATER THAN B) is evaluated, giving some intermediate
truth value; for example, tl.

2. (A + B)is evaluated, giving some intermediate result; for example, x.

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth value; for

example, t2.

4. (D IS POSITIVE) is evaluated, giving some intermediate truth value; for
example, t3.

S. (t2 AND t3) is evaluated, giving some intermediate truth value; for example,

t4.

<

<

2

6. (t1 OR t4) is evaluated, giving the final truth value, which is the result of the
expression.

Note: Every condition in the expression is always evaluated before a final truth
value is determined. You must ensure that any subscripted or indexed data items
stay within the boundaries described in the table.

Abbreviated Combined Relation Conditions
When you write relation conditions consecutively, and no parentheses are used

within the consecutive sequence, any relation condition after the first can be
abbreviated by either:

e Omitting the subject

e Omitting the subject and the relational operator.

Format
f I l]
GREATER THAN
LESS THAN
relation-condition‘ AND [NOT] EQUAL TO object {
OR >
<
\ L - P

The resulting combined condition must comply with the rules for element
sequence in combined conditions, as shown in Figure 11-10.

In any consecutive sequence of relation conditions, you can specify both forms of
abbreviation. The abbreviated condition is evaluated as if:

e The last stated subject is the missing subject.

® The last stated relational operator is the missing relational operator.

e The word NOT is part of the relational operator in the forms NOT
GREATER THAN, NOT >, NOT LESS THAN, NOT <, NOT EQUAL
TO, and NOT =.

e NOT in any other position is a logical operator and, thus, results in a negated
relation condition.

Figure 11-12 shows examples of abbreviated combined relation conditions and
their nonabbreviated equivalent meanings.

Chapter 11.Procedure Division 11-29

11-30

Abbreviated
Combined
Relation — Condition

Nonabbreviated Equivalent Meaning

A = B AND NOT
LESS THAN COR D

((A = B) AND (A NOT LESS THAN C)) OR (A
NOT LESS THAN D)

A NOT GREATER
THANBORC

(A NOT GREATER THAN B) OR (A NOT
GREATER THAN C)

NOTA =BORC

(NOT (A = B)OR (A = ())

NOT (A = BOR
LESS THAN C)

NOT ((A = B) OR (A LESS THAN C))

NOT (A NOT = B
AND C AND NOT
D)

NOT (((A NOT = B) AND (A NOT = C)) AND
(NOT (A NOT = D))

Figure 11-12. Abbreviated Combined Relation-Condition and Equivalent Meanings

L Declaratives

The Declaratives section provides a method of invoking procedures that are run
when an exceptional condition occurs that you cannot normally test. Declarative
procedures are provided for processing exceptional input/output conditions and
for debugging procedures.

Format

PROCEDURE DIVISION[US_ING data-name-1 [, data-name-2] . . .] .

DECLARATIVES .

{section-name SECTION [segment-number] . declarative-sentence

[paragraph-name. [sentencel . .] . . .} e e

END DECLARATIVES]

You write declarative procedures at the beginning of the Procedure Division in a
series of Declarative sections. You precede each such section by a USE sentence
that identifies the function of this section. The series of procedures that follow
specify what actions are to be taken when the exceptional condition occurs. Each
Declarative section ends with either another section name followed by a USE
sentence or with the key words END DECLARATIVES.

You precede the entire group of Declarative procedures by the key word
DECLARATIVES, written on the line after the Procedure Division header; the
group is followed by the key words, END DECLARATIVES. The key words
DECLARATIVES and END DECLARATIVES must each begin in area A and
be followed by a period. You cannot have any other text on the same line.

In the Declaratives portion of the Procedure Division, you must follow each
section header (with an optional segment number) with a period and a space; this
is followed by a USE sentence with a period and a space. No other text can
appear on the same line. There are two forms of the USE sentence:

e USE AFTER EXCEPTION/ERROR

‘ e USE FOR DEBUGGING.

Chapter 11.Procedure Division 11-31

The USE sentence itself is never run; instead, the USE sentence defines the

conditions that cause the immediately following procedural paragraphs to be run. J
These paragraphs specify the actions to be taken. After the procedure is run,

control is returned to the routine that activated it.

Within a Declarative procedure, you must not reference any nondeclarative
procedure, except for the USE statement.

Within a Declarative procedure, no statement can be run that would cause the
running of a USE procedure that has been previously invoked and has not yet
returned control to the invoking routine.

A Declarative procedure ends when the last statement in the procedure has run.
In this chapter, only the USE AFTER EXCEPTION/ERROR procedure is

described. The USE FOR DEBUGGING procedure is described under
Debugging Features in Chapter 13.

11-32

L Procedure Division Statements (Except Input/Output Statements)

The remainder of this chapter discusses the various statements used in the
Procedure Division. The input and output statements are discussed in Chapter
12.

Chapter 11.Procedure Division 11-33

ADD Statement

The ADD statement causes two or more numeric operands to be added and the
result to be stored. The formats of the ADD statement are as follows:

Format 1

ADD) identifier-1||, identifier-2| . . . I0 identifior-m[ROUNDED]
literal-1 » literal-2

’ identifier-n[ROUNDED] . . .[ON SIZE ERROR imperative-statement]

Format 2

AD identifer-1{, identifier-? » identifier-3| . . .
literal-1 literal-2 » literal-3

GIVING identifier-m [ROUNDED] » identifier-n [ROUNDED] .« o .

[ON SIZE ERROR imperative-statement]

Format 3

ADD {CORRESPONDING}identifier-l J0 identifier-Z[RQUNDED]
CORR

[ON SIZE ERROR imperative-statement]

11-34

ROUNDED Phrase

In formats | and 2, each identifier, except those following the key word GIVING,
must name an elementary numeric item. In format 2, each identifier following the
key word GIVING must name an elementary numeric or numeric edited item. In
format 3, each identifier must name a group item. In all formats, each literal
must be a numeric literal.

In format 1, all identifiers or literals preceding the key word TO are added
together, and this sum is added to and stored immediately in identifier-m. If you
specify as such, the sum is then added to and stored immediately in identifier-n,
and so on.

In format 2, at least two operands must precede the key word GIVING. The
values of these operands are added together, and the sum is stored as the new
value of identifier-m and, if specified, identifier-n, and so on.

In format 3, elementary data items within identifier-1 are added to and stored in
the corresponding elementary items within identifier-2.

If the composite of the operands is 18 digits or less, the compiler ensures that
enough places are carried so that no significant digits are lost while the statement
is run.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to §.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

Chapter 11.Procedure Division 11-35

SIZE ERROR Phrase

GIVING Phrase

11-36

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. In the ADD
statement, the size error condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase, and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If an individual arithmetic operation causes a size error condition for an ADD
CORRESPONDING statement, the SIZE ERROR imperative statement is not
run until all individual additions or subtractions have been completed.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

J

CORRESPONDING Phrase

L The CORRESPONDING phrase lets operations be performed on elementary
items of the same name. You simply specify the group items to which the
elementary items belong. The results are the same as if each pair of
CORRESPONDING identifiers had been referred to in a separate MOVE
statement.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as d1 and d2.

A pair of subordinate data items, one from d1 and one from d2, correspond if the
following conditions are true:

® At least one of the subordinate items is elementary.

® The two subordinate items have the same name and the same qualifiers up to
but not including d1 and d2.

e The subordinate items are not identified by the key word FILLER.

® The subordinate items do not include a REDEFINES, a RENAMES, an
OCCURS, or a USAGE IS INDEX clause in their descriptions; if such a
subordinate item is a group, the items subordinate to it are also ignored.
However, d1 and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

\ For example, two data hierarchies are defined as follows:

05 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C REDEFINES ITEM-B ...
05 ITEM-2

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C ..

If you specify ADD CORR ITEM-2 TO ITEM-1(X), ITEM-A and
ITEM-A(X) and ITEM-B and ITEM-B(X) are considered to be
corresponding. Thus, ITEM-A and ITEM-B of ITEM-2 are moved to
ITEM-1(X). ITEM-C and ITEM-C(X) are not included, because ITEM-C(X)
includes a REDEFINES clause in its data description.ITEM-1 is valid as
either d1 or d2.

o Neither dl nor d2 is described as a level-66, -77, or -88 item or as a FILLER
or USAGE IS INDEX item.

Chapter 11.Procedure Division 11-37

ALTER Statement

The ALTER statement changes the transfer point specified in a GO TO
statement.

Format

ALTER procedure-name-1 J0 [PROCEED m] procedure—-name-2

, procedure-name-3 10 [PROCEED m]procedure—name-ﬁ . ..

11-38

procedure-name-1, procedure-name-3, and so on, must each name a Procedure
Division paragraph that contains only one sentence. That sentence must be a GO
TO statement without the DEPENDING ON phrase.

procedure-name-2, procedure-name-4, and so on, must each name a Procedure
Division section or paragraph.

When the ALTER statement is run, it modifies the GO TO statement in the
paragraph named by procedure-name-1, procedure-name-3, and so on.
Subsequent runs of the modified GO TO statement(s) cause control to be
transferred to procedure-name-2 and, if specified, procedure-name-4, and so on.
For example:

PARAGRAPH-1.
GO TO BYPASS-PARAGRAPH.
PARAGRAPH-1A.

BYPASS-PARAGRAPH.

ALTER PARAGRAPH-1 TO PROCEED TO
PARAGRAPH-2.

PARAGRAPH-2.

Before the ALTER statement is run, when control reaches PARAGRAPH-1, the
GO TO statement transfers control to BYPASS-PARAGRAPH. After the
ALTER statement is performed, however, the next time control reaches
PARAGRAPH-1, the GO TO statement transfers control to PARAGRAPH-2.

Note: The ALTER statement acts as a program switch, allowing, for example,
one run sequence during initialization and another sequence during the bulk of
file processing. Because altered GO TO statements are difficult to debug, it is
preferable to test a switch and, based on the value of the switch, run a particular
code sequence.

J

9

http:To]procedure-n.me

C

Segmentation Information

A GO TO statement in a section whose priority is greater than or equal to 50
must not be referred to by an ALTER statement in a section with a different
priority. All other uses of the ALTER statement are valid and are performed.

Modified GO TO statements in independent segments may sometimes be returned
to their initial states. For further discussion, see Procedure Division Segmentation
in Chapter 13.

Chapter 11.Procedure Division 11-39

COMPUTE Statement

The COMPUTE statement assigns the value of an arithmetic expression to one or
more data items.

Format

COMPUTE identifier-l[ROUNDED] ’ identifier—Z[ROUNDED]

= arithmetic-expression [ON SIZE ERROR imperative-statementl

ROUNDED Phrase

11-40

The COMPUTE statement allows the user to combine arithmetic operations
without the restrictions on receiving data items imposed by the rules for the
ADD, SUBTRACT, MULTIPLY, and DIVIDE statements.

The identifiers that appear to the left of the equal sign must name either
elementary numeric items or elementary numeric edited items.

When the COMPUTE statement is run, the value of the arithmetic expression is
calculated; this value is then stored as the new value of identifier-1, identifier-2,
and so on, in turn.

The arithmetic expression can be any logical combination of identifiers, numeric
literals, and arithmetic operators.

An arithmetic expression consisting of a single identifier or literal that lets you set
identifier-1, and so on, equal to the value of that identifier or literal.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

J

C

SIZE ERROR Phrase

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. Division by
0, as well as 0 raised to the zero power, always causes a size error condition. In
the COMPUTE statement, the size error condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If an individual arithmetic operation causes a size error condition for ADD
CORRESPONDING and SUBTRACT CORRESPONDING statements, the
SIZE ERROR imperative statement is not run until all of the individual additions
or subtractions have been completed.

Note: When arithmetic operations must be combined, the COMPUTE statement
is more efficient than a series of separate arithmetic statements.

Chapter 11.Procedure Division 11-41

DIVIDE Statement

The DIVIDE statement divides one numeric data item into others and sets the

values of data items equal to the quotient and remainder. The formats of the
DIVIDE statement are:

Format 1

DIVIDE) identifier-1| INTO identifier-Z[ROUND D]
literal-1l

» identifier-3 [ROUNDED] e e .

[ON SIZE ERROR imperative-statement]

Format 2

DIVIDE Jidentifier-1| JINTO| }Jidentifier-2 GIVING identifier-3 [ROUNDED]
literal-1 BY literal-2

, identifier-4 [ROUNDED] . . . [ON SIZE ERROR imperative-statement]

Format 3

literal-1 BY literal-2

DIVIDE {identifier-l} INTO}{identifier-z} GIVING identifier-3 [ROUNDED]

REMAINDER identifier-4 [ON SIZE ERROR imperative-statement]

Each identifier except those following the key words GIVING and
REMAINDER must name an elementary numeric item. Each identifier following
the key words GIVING and REMAINDER must name an elementary numeric or
numeric edited item. Each literal must be a numeric literal.

11-42

ROUNDED Phrase

In format 1, the value of literal-1 or identifier-1 is divided into the value of
identifier-2; the quotient is then placed in identifier-2. If you specify identifier-3,
the value of literal-1 or identifier-1 is divided into identifier-3; the quotient is then
placed in identifier-3, and so on.

In format 2, the value of identifier-1 or literal-1 is divided into or by the value of
identifier-2 or literal-2. The value of the quotient is stored in identifier-3 and, if
specified, identifier-4, and so on.

In format 3, the value of identifier-1 or literal-1 is divided into or by identifier-2
or literal-2. The value of the quotient is stored in identifier-3, and the value of
the remainder is stored in identifier-4.

The remainder is defined as the result of subtracting the product of the quotient
and the divisor from the dividend. If identifier-3 (the quotient) is a numeric
edited field, the quotient used to calculate the remainder is an intermediate field
that contains the unedited quotient.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

When you specify the ROUNDED phrase in format 3, the quotient used to

calculate the remainder is an intermediate field that contains the quotient
truncated rather than rounded.

Chapter 11.Procedure Division 11-43

SIZE ERROR Phrase

GIVING Phrase

11-44

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. Division by
0 always causes a size error condition. In the DIVIDE statement, the size error
condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

When the SIZE ERROR phrase is used in format 3, the following considerations
apply:

® When the size error conditions occur on the quotient, no remainder
calculation is meaningful. The contents of the quotient field (identifier-3) and
the remainder field (identifier-4) are unchanged.

® When the size error occurs on the remainder, the contents of the remainder
field (identifier-4) are unchanged.

Note: In these two cases, you must analyze the results to determine which
situation has actually occurred.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

J

J

ENTER Statement
Because the System/36 COBOL compiler does not allow another source language
to be used in COBOL source programs, the ENTER statement is not required or
used by the System/36 COBOL compiler.

Format

oo ———=—————=

o |
TER language-name [routine-name]_.l

If the ENTER statement is inserted in the source program, it is treated as a
comment. Statements in the language named in the ENTER statement must not

be included in the source program.

Chapter 11.Procedure Division 11-45

EXIT Statement

The EXIT statement provides a common end point for a series of procedures.

Format

EXIT [BQ_M]-

11-46

The EXIT statement lets you assign a procedure name at a given point in a
program. It has no other effect on the compilation or running of the program.

You must place the EXIT statement in a sentence by itself, and this sentence must
be the only sentence in the paragraph.

The EXIT PROGRAM statement is discussed under Subprogram Linkage in
Chapter 13.

Note: The EXIT statement is useful for documenting the end point in a series of
procedures. If an exit paragraph is written as the last paragraph in a Declarative
procedure or a series of performed procedures, it identifies the point at which
control is to be transferred. When control reaches such an exit paragraph and the
associated Declarative or PERFORM statement is active, control is transferred to
the appropriate part of the Procedure Division. When control reaches such an
exit paragraph and no associated PERFORM statement or Declarative procedure
is active, control passes through the EXIT statement to the first statement of the
next paragraph.

<

<

GO TO Statement

The GO TO statement transfers control from one part of the Procedure Division
to another. The formats of the GO TO statement are as follows:

Format 1

G0 T0 [procedure-name-1]

Format 2

GO0 TO procedure-name-1 [, procedure-name-2] . . ., procedure-name-n
DEPENDING ON identifier

Each procedure name specified must name a paragraph or section in the
Procedure Division. The identifier must name an elementary integer item.

Format 1-Unconditional GO TO

The unconditional GO TO statement causes control to be transferred to the first
statement in the paragraph or section named in procedure-name-1 unless the GO
TO statement has been modified by an ALTER statement.

When an unconditional GO TO statement appears in a sequence of imperative
statements, it must be the last statement in the sequence.

When a paragraph is referred to by an ALTER statement, the paragraph can
consist only of a paragraph name followed by an unconditional GO TO
statement.

If procedure-name-1 is not specified in an unconditional GO TO statement, an
ALTER statement must have been run before the GO TO statement. The GO
TO statement must immediately follow a paragraph name and must be the only
statement in the paragraph.

Chapter 11.Procedure Division 11-47

Format 2-Conditional GO TO

11-48

Control is transferred to one of a series of procedures, depending on the value of
identifier. When the identifier has a value of 1, control is transferred to the first
statement in the procedure named by procedure-name-1; if it has a value of 2,
control is transferred to the first statement in the procedure named by
procedure-name-2, and so on.

If the value of the identifier is anything other than a value within the range 1
through n (in which n is the number of procedure names specified in this GO TO
statement), the conditional GO TO statement is ignored. Instead, control passes
to the next statement.

The maximum number of procedure names permitted for a conditional GO TO
statement is 99. The identifier field can be defined as containing up to 4 bytes.

<

IF Statement

L The IF statement causes a condition to be evaluated, and provides for alternative
actions in the object program, depending on that value.

Format
IF condition THEN statement-1 ELSE statement-2
NEXT SENTENCE ELSE NEXT SENTENCE

Statement-1 or statement-2 can be any one of the following:

® An imperative statement
e A conditional statement
® An imperative statement followed by a conditional statement.

If the condition tested is true, one of the following actions takes place:

e Statement-1, if specified, is run. If statement-1 contains a procedure
branching statement, control is transferred according to the rules for that
statement. If statement-1 does not contain a procedure-branching statement,
the ELSE phrase, if specified, is ignored, and control passes to the next
sentence that can be run.

\ e NEXT SENTENCE, if specified, is run; that is, the ELSE phrase, if specified,
is ignored, and control passes to the next sentence that can be run.

If the condition tested is false, one of the following actions take place:

e ELSE statement-2, if specified, is run. If statement-2 contains a
procedure-branching statement, control is transferred according to the rules
for that statement. If statement-2 does not contain a procedure-branching
statement, control is passed to the next sentence that can be run.

e ELSE NEXT SENTENCE, if specified, is run: statement-1, if specified, is
ignored, and control passes to the next sentence that can be run.

e If ELSE clause is omitted, control passes to the next sentence that can be run.

e The ELSE NEXT SENTENCE phrase can be omitted if it immediately
precedes the period that ends the conditional sentence.

Note: When the ELSE clause is omitted, all statements following the condition

and preceding the period for the sentence are considered to be part of
statement-1.

Chapter 11.Procedure Division 11-49

I IBM Extension

THEN is accepted, but ignored, if present.

| End of IBM Extension

11-50

C

Nested IF Statements

The presence of one or more IF statements within an initial IF statement
constitutes a nested IF statement.

statement-1 and statement-2 in IF statements can consist of one or more
imperative statements or a conditional statement or both. When an IF statement
appears as statement-1 or as part of statement-1, it is considered nested statement.
Nesting statements is much like specifying subordinate arithmetic expressions
enclosed in parentheses and combined in larger arithmetic expressions.

IF statements contained within IF statements must be considered as paired IF and
ELSE combinations, proceeding from left to right. Thus, any ELSE encountered

must be considered to apply to the immediately preceding IF that has not already
paired with an ELSE.

Figure 11-13 shows the possible true or false combinations for the following
nested IF statement:

IF condition-1
statement-1-1
IF condition-2
IF condition-3
statement-3-1
ELSE
statement-3-2

ELSE
statement-2-2
IF condition-4
IF condition-5
statement-5-1
ELSE
statement-5-2.

Chapter 11.Procedure Division 11-51

11-52

True

IF | condition-1 statement-1-1
False
True
IF | condition-2
False
True
IF | condition-3 statement-3-1 ———————=
False

‘—. ELSE statemlem-3-2

False

———— = ELSE statement-2-2

True

IF | condition4

False

l True
Y

IF| condition-5 statement-5-1 ————

ELSE statement-5-2

——————= Next sentence in COBOL source program

Figure 11-13. Nested IF Statement-True or False Combinations

Note: Because the logic is often difficult to follow, nested IF statements should,
wherever possible, be avoided in a COBOL program. Often a series of simple IF
statements can be used in place of the nested IF statement.

For example, the following series of simple IF statements give results equivalent
to those achieved using the preceding nested IF statement example:

IF condition-1 NEXT SENTENCE
ELSE GO TO PARA-2.
statement-1-1.
IF condition-2 NEXT SENTENCE
ELSE GO TO PARA-1.
IF condition-3 statement-3-1 GO TO PARA-2

ELSE statement-3-2 GO TO PARA-2.

PARA-1.
statement-2-2.
IF condition-4 NEXT SENTENCE
ELSE GO TO PARA-2.
IF condition-5 statement-5-1

ELSE statement-5-2.

PARA-2.

next-executable-statement.

Figure 11-13 illustrates the logic flow for the preceding series of simple IF
statements, also.

Chapter 11.Procedure Division 11-53

INSPECT Statement

The INSPECT statement specifies that characters in a data item are to be counted -;
or replaced or both. The formats of the INSPECT statement are:

Format 1

INSPECT identifier-1 TALLYING

ALL identifier-3
, 1dentifier-2 FOR §, LEADING) |literal-1

CHARACTERS

BEFORE])INITIAL[identifier-4
AFTER literal-2

Format 2

INSPECT identifier—-1 REPLACING

’

CHARACTERS BY Jidentifier-6 BEFORE|INITIAL]identifier-7
literal-4 AFTER literal-5

v

ALL ' identifier-5 identifier-6
1% LEADING¢<» |literal-3 BY]literal-4
FIRST

o

BEFORE|INITIAL Jidentifier-7 A
AFTER literal-5 :

11-54

Format 3

INSPECT identifier-1 TALLYING

ALL identifier-3
» identifier-2 FOR {, LEADING) lliteral-1
CHARACTERS

BEFORE|I
AFTER

REPLACING

-

,

!

-

BEFORE
AFTER

CHARACTER

) ALL identifier-5 identifier-6
11 { LEADING}], lliteral-3 BY |literal-4 !
FIRST

NITIAL[identifier—-4 .
literal-2

identifier—-6
literal-4

SB_Y_{

BEFORE |INITIAL Jidentifier-7
AFTER literal-5

INITIAL

identifier—?
literal-5 -

You must specify either the TALLYING or the REPLACING phrase. Also, you
can specify both the TALLYING and REPLACING phrases. If both
TALLYING and REPLACING phrases are specified (format 3), all tallying is
performed before any replacement is made.

identifier-1 is the inspected item. identifier-1 must be an elementary or group
item with a USAGE 15 DISPLAY.

All other identifiers except identifier-2 (the count field) must be elementary
alphabetic, alphanumeric, or zoned decimal items. Each is treated according to
its data category. Each data category is treated as follows:

e Alphabetic or alphanumeric items are treated as a character string.

11-55

Chapter 11.Procedure Division

11-56

Alphanumeric edited, numeric edited, or unsigned numeric (zoned decimal)
items are treated as though redefined as alphanumeric and the INSPECT
statement refers to the alphanumeric item.

Signed numeric (zoned decimal) items are treated as though moved to an
unsigned zoned decimal item of the same length, and then treated as though
redefined as alphanumeric. The INSPECT statement refers to the
alphanumeric item.

Each literal must be nonnumeric and may be any figurative constant except ALL.

The comparison operands of the TALLYING phrase (literal-1 or identifier-3, and
so on) and the REPLACING phrase (literal-3 or identifier-5, and so on) are
compared in the left-to-right order specified in the INSPECT statement. You can
specify a maximum of 15 comparison operands for each REPLACING and each
TALLYING phrase.

When the TALLYING and REPLACING operands are the compared operands,
the following comparison rules apply:

1.

When both the TALLYING and REPLACING phrases are specified, the
INSPECT statement is run as if an INSPECT TALLYING statement were

specified and immediately followed by an INSPECT REPLACING statement.

The first operand is compared with an equal number of leftmost contiguous
characters in the inspected item. The operand matches the inspected
characters only if both are equal, character for character.

If no match occurs for the first operand, the comparison is repeated for each
successive operand until either a match is found or all operands have been
acted upon.

If a match is found, tallying or replacing takes place as described in
TALLYING or REPLACING phrase descriptions. In the inspected item, the
first character following the rightmost matching character is now considered
the leftmost character position. The process described in comparison rules 2
and 3 is then repeated.

If no match is found, the first character in the inspected item following the
leftmost inspected character is now considered the leftmost character position.
The process described in comparison rules 2 and 3 is then repeated.

The actions taken in comparison rules 1 through 5, which are defined as the
comparison cycle, are repeated until the rightmost character in the inspected
item has either been matched or has been considered as the leftmost character
position. Inspection then ends.

Note: When either the BEFORE or the AFTER phrase is specified, the
preceding rules are modified as described in BEFORE and AFTER Phrases later
in this chapter.

Figure 11-14 illustrates INSPECT statement comparisons.

J

C

INSPECT iD-1 TALLYING ID-2 FOR ALL "#»"

REPLACING ALL “=+"" BY ZEROS.

ID-1 before
INSPECT

TALLYING option:

st
comparison

2nd
comparison

3rd
comparison

4th
comparison

REPLACING option:

5th
comparison

6th
comparison

7th
comparison

8th
comparison

At the end of inspection:

ID-1
contains:
Figure 11-14.

ID-2 before 0

0

0

»

0

0

0

INSPECT Statement Results

INSPECT
(initialized by
TALLYING programmer)
comparison operand: 1D-2
) contains:
* | = (True) 1
L (False) 1
Rl (False) 1
* = (True) 2
REPLACING
comparison operand:
Ll (True) iD-1 changed to
L (False) ID-1 unchanged
i (False) ID-1 unchanged
N (True) ID-1 changed to A'
ID-2
contains: 2

Chapter 11.Procedure Division

11-57

INSPECT Statement Example

The following example shows an INSPECT statement:

DATA DIVISION.

WORKING-STORAGE SECTION.

01 1ID-1 PIC X(10) VALUE 'ACADEMIANS'.
01 CONTR-1 PIC 99 VALUE 00.

01 CONTR-2 PIC 99 VALUE ZEROS.

PROCEDURE DIVISION.

* THIS ILLUSTRATES AN INSPECT STATEMENT WITH 2 VARIABLES.
100-BEGIN-PROCESSING.
DISPLAY CONTR-1 ' ' CONTR-2.

101-MAINLINE-PROCESSING.
PERFORM COUNT-IT THRU COUNT-EXIT.
STOP RUN.
COUNT-IT.
INSPECT ID-1
TALLYING CONTR-1 FOR CHARACTERS
BEFORE INITIAL 'AD' CONTR-2 FOR ALL 'MIANS'.
DISPLAY-COUNTS.
DISPLAY 'CONTR-1
DISPLAY 'CONTR-2

' CONTR-1.
' CONTR-2.

DISPLAY '*kkkkkkkhkhkhkkhkhkkkkFQTJhhkhhkkhkhhhhkkkhhhdhkh !
COUNT-EXIT. EXIT.
* RESULTANT OUTPUT

*00 00

*CONTR-1 = 02

*CONTR-2 = 01

KAk kR RKKKRAR AR AR RKEOTH R AR AR AR AR AKX Rk R A kK

11-58

C

C

TALLYING Phrase

REPLACING Phrase

identifier-2 is the tallying field and must be an elementary integer item defined
without the symbol P in its PICTURE character string. It is your responsibility
to initialize identifier-2 before the INSPECT statement is run.

identifier-3 or literal-1 is the comparison operand. If the comparison operand is a
figurative constant, it is considered to be a 1-character nonnumeric literal.

When you do not specify either the BEFORE or the AFTER phrase, the
following actions take place when the INSPECT TALLYING statement is run:

o If you specified the ALL phrase, the tallying field is increased by 1 for each
nonoverlapping occurrence in the inspected item of the comparison operand.
This process begins at the leftmost character position and continues to the
rightmost.

o If you specify the LEADING phrase, the tallying field is increased by 1 for
each contiguous nonoverlapping occurrence of the comparison operand in the
inspected item. This only happens if the leftmost such occurrence is at the
point where comparison began in the first comparison cycle for which the
comparison operand is eligible to participate.

e If you specify the CHARACTERS phrase, the tallying field is increased by 1
for each character (including the space character) in the inspected item. Thus,
running the INSPECT TALLYING statement increases the value in the
tallying field by the number of characters in the inspected item.

Identifier-5 or literal-3 is the comparison operand. Identifier-6 or literal-4 is the
replacement field.

The comparison operand and the replacement field must be the same length. The
following replacement rules apply:

e If the comparison operand is a figurative constant, it is considered to be a
1-character nonnumeric literal. Each character in the inspected item
equivalent to the figurative constant is replaced by the single-character
replacement field, which must be 1-character in length.

e If the replacement field is a figurative constant, it is considered to be the same
length as the comparison operand. Each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced by the replacement field.

o When the comparison operand and replacement fields are character strings,
each nonoverlapping occurrence of the comparison operand in the inspected
item is replaced by the character string specified in the replacement field.

® Once replacement has occurred in a given character position in the inspected

item, no further replacement for that character position is made in this run of
the INSPECT statement.

Chapter 11.Procedure Division 11-59

When you do not specify either the BEFORE or the AFTER phrase, the
following actions take place when the INSPECT REPLACING statement is run:

o If you specified the CHARACTERS phrase, the replacement field must be 1
character in length. Each character in the inspected field is replaced by the
replacement field. This process begins at the leftmost character and continues
to the rightmost.

e If you specified the ALL phrase, each nonoverlapping occurrence of the
comparison operand in the inspected item is replaced by the replacement field,
beginning at the leftmost character and continuing to the rightmost.

e If you specified the LEADING phrase, each contiguous nonoverlapping
occurrence of the comparison operand in the inspected item is replaced by the
replacement field, provided that the leftmost such occurrence is at the point
where comparison began in the first comparison cycle for which this
replacement field is eligible to participate.

o If you specified the FIRST phrase, the leftmost occurrence of the comparison
operand in the inspected item is replaced by the replacement field.

BEFORE and AFTER Phrases

11-60

When you specify either of these phrases, the preceding rules for counting and
replacing are modified.

identifier-4, identifier-7, literal-2, and literal-5 are delimiters. Counting and
replacement of the inspected item are bounded by their presence; however, the
delimiters themselves are neither counted nor replaced.

In the TALLYING phrase, if the delimiter (literal-2) is a figurative constant, it is
considered to be 1 character long.

In the REPLACING phrase, if you specify the CHARACTERS phrase, the
delimiter (literal-5 or identifier-7) must be 1 character long.

When you specify the BEFORE phrase, tallying and replacement of the inspected
item begins at the leftmost character and continues until the first occurrence of
the delimiter is encountered. If no delimiter is present in the inspected item,
counting and replacement continues to the rightmost character.

When you specify the AFTER phrase, counting and replacement of the inspected
item begins with the first character to the right of the delimiter and continues to
the rightmost character in the inspected item. If no delimiter is present in the
inspected item, neither counting nor replacement takes place.

C

INSPECT Statement Examples

The following examples illustrate some uses of the INSPECT statement. In all
instances, the COUNTR field is set to 0 before the INSPECT statement is run.

INSPECT ID-1 REPLACING CHARACTERS BY ZERO.

ID-1 Before | COUNTR After | ID-1 After
1234567 0 0000000
HIJKLMN 0 0000000

INSPECT ID-1 TALLYING COUNTR FOR CHARACTERS
REPLACING CHARACTERS BY SPACES.

ID-1 Before | COUNTR After | ID-1 After
1234567 7
HIJKLMN 7

INSPECT ID-1 REPLACING CHARACTERS BY ZEROS
BEFORE INITIAL QUOTE.

ID-1 Before | COUNTR After | ID-1 After
456 'ABEL 0 000 'ABEL
ANDES'12 0 00000'12
'TWAS BR 0 'TWAS BR

Chapter 11.Procedure Division

11-61

INSPECT ID-1 TALLYING COUNTR FOR CHARACTERS
'S' REPLACING ALL 'A'

AFTER INITIAL

BY 'O'.

ID-1 Before | COUNTR After | ID-1 After
ANSELM 3 ONSELM
SACKET 5 SOCKET
PASSED 3 POSSED

INSPECT ID-1 TALLYING COUNTR FOR LEADING 'O’

REPLACING FIRST 'A' BY '2' AFTER INITIAL 'C'.
ID-1 Before | COUNTR After | ID-1 After
OOACADEMYOQ0O | 2 OOAC2DEMYO0O0
OOOOALABAMA | 4 OOOOALABAMA
CHATHAMOOO0O | O CH2THAMOOO0O

Typical Uses

The INSPECT statement is useful for filling portions for all of a data item with
spaces or 0’s. It is also useful for counting the number of times a specific
character (for example, 0, space, asterisk) occurs in a data item. In addition, it
can be used to translate characters from one collating sequence to another.

11-62

J

C

MOYVE Statement

The MOVE statement transfers data from one area of storage to one or more
other areas. The formats of the MOVE statement are as follows:

Format 1

MOVE {

literal

identifier-l} J0 identifier-2 [, identifier-31 . . .

Format 2

MOVE {

CORR

CORRESPONDING}i dentifier-1 I0 identifier-2

identifier-1 and literal-1 are the sending areas. identifier-2, identifier-3, and so on
are the receiving areas.

When you specify format 1, the identifiers can be either group or elementary
items. The data in the sending area is moved into the first receiving area
(identifier-2); it is then moved into the second receiving area (identifier-3), and so
on.

You cannot specify an index data item in a MOVE statement. Any subscripting
or indexing associated with the sending item is evaluated only once, immediately
before the data is moved to the first receiving field. Any subscripting or indexing
associated with the receiving items is evaluated immediately before the data is
moved into the receiving field.

For example, the result of the statement:

MOVE A (B) TO B, C (B).

is equivalent to

MOVE A (B) TO TEMP.
MOVE TEMP TO B.
MOVE TEMP TO C (B).

in which TEMP has been defined as an intermediate result item. The subscript B
changed in value between the time the first move, and the final move to C (B),
took place.

After a MOVE statement is run, the sending field(s) contains the same data as
before the statement was run.

Note: When using elementary data items that have been combined through the

RENAMES clause in both the sending and receiving fields, the sending field will
contain unpredictable data after the MOVE statement has been completed.

Chapter 11.Procedure Division 11-63

CORRESPONDING Phrase

11-64

The CORRESPONDING phrase lets operations be performed on elementary
items of the same name. You simply specify the group items to which the
elementary items belong. The results are the same as if each pair of
CORRESPONDING identifiers had been referred to in a separate MOVE
statement; however, the individual MOVE statements reduce compile time.

The abbreviation CORR can be used in place of the key word
CORRESPONDING.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as d1 and d2.

A pair of subordinate data items, one from d1 and one from d2, correspond if the
following conditions are true:

At least one of the subordinate items is elementary.

The two subordinate items have the same name and the same qualifiers up to
but not including d1 and d2.

The subordinate items are not identified by the key word FILLER.

The subordinate items do not include a REDEFINES, a RENAMES, an
OCCURS, or a USAGE IS INDEX clause in their descriptions; if such a
subordinate item is a group, the items subordinate to it are also ignored.
However, d1 and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

For example, two data hierarchies are defined as follows:

05 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C REDEFINES ITEM-B ...
05 ITEM-2

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C ...

If you specify MOVE CORR ITEM-2 TO ITEM-1(X), ITEM-A and
ITEM-A(X) and ITEM-B and ITEM-B(X) are considered to be
corresponding. Thus, ITEM-A and ITEM-B of ITEM-2 are moved to
ITEM-1(X). ITEM-C and ITEM-C(X) are not included, because ITEM-C(X)
includes a REDEFINES clause in its data description. ITEM-1 is valid as
either d1 or d2.

Neither d1 nor d2 is described as a level-66, -77, or -88 item, or as a FILLER
or USAGE IS INDEX item.

9

C

Elementary Moves

An elementary move is one in which both the sending and receiving items are
elementary items. Each elementary item belongs to one of the following
categories:

o Numeric--Includes numeric data items and numeric literals

e Alphabetic--Includes alphabetic data items and the figurative constant
SPACE/SPACES

e Alphanumeric--Includes alphanumeric data items, nonnumeric literals, and all
figurative constants except ZERO and SPACE

e Alphanumeric edited--Includes alphanumeric edited data items
® Numeric edited--Includes numeric edited data items

e Figurative constant ZERO/ZEROS/ZEROES.
l IBM Extension

Boolean--Includes Boolean data items, Boolean literals, and the figurative
constant ZERO/ZEROS/ZEROES when the receiving item is Boolean.

l End of IBM Extension I

Valid elementary moves take place according to the following rules:

e Any necessary conversion of data from one form of internal representation to
another along with any specified editing in the receiving item takes place
during the move.

e For an alphabetic receiving item:

— Justification and any necessary space filling take place as described in the
JUSTIFIED clause. Unused character positions are filled with spaces.

— If the size of the sending item is greater than the size of the receiving
item, excess characters at the right are truncated after the receiving item is
filled.

| IBM Extension

If the sending item is Boolean, and the receiving item is alphanumeric or
alphanumeric edited, no data conversion takes place.

| End of IBM Extension

e For an alphanumeric or alphanumeric edited receiving item:

— Justification and any necessary space filling take place as described in the
JUSTIFIED clause. Unused character positions are filled with spaces.

Chapter 11.Procedure Division 11-65

11-66

— If the size of the sending item is greater than the size of the receiving
item, excess characters at the right are truncated after the receiving item is
filled.

— If the sending item has an operational sign, the absolute value is used. If
the operational sign occupies a separate character, that character is not
moved, and the size of the sending item is considered to be 1 less than its
actual size.

| IBM Extension |

If the sending item is Boolean, and the receiving item is alphanumeric or
alphanumeric edited, no data conversion takes place.

| End of IBM Extension

e For a numeric or numeric edited receiving item:

— Alignment by decimal point and any necessary zero filling take place as
described under Standard Alignment Rules in Chapter 10, except where 0’s
are replaced because of editing requirements.

— The absolute value of the sending item is used if the receiving item has no
operational sign.

— If the sending item has more digits to the left or right of the decimal
point than the receiving item can contain, excess digits are truncated.

— The results at object time may be unpredictable if the sending item
contains any nonnumeric characters.

[IBM Extension |

For a Boolean receiving item:

® There is no data conversion.

® The source field must be either alphanumeric or Boolean.

e Running the MOVE statement does not affect the association of an indicator
number to the data name.

| End of IBM Extension |

Note: If the receiving field is alphanumeric or numeric edited, and the sending
field is a scaled integer (that is, it has a P as the rightmost character in its
PICTURE character string), the scaling positions are treated as trailing 0’s when
the MOVE statement is run.

Figure 11-15 shows valid and invalid elementary moves for each category.

J

Receiving Item Category

L Sending Item Alphanumeric |Numeric |Numeric Numeric
Category Alphabetic |Alphanumeric |Edited Integer |Noninteger |Edited Boolean
Alphabetic and YES YES YES NO NO NO NO
SPACE
Alphanumeric and | YES YES YES YES YES YES YES
Figurative
constant’
Alphanumeric YES YES YES NO NO NO NO
Edited
Numeric Integer? |NO YES YES YES YES YES NO
Numeric NO NO NO YES YES YES NO
Noninteger?
Numeric Edited NO YES YES NO NO NO NO
Boolean?® NO YES YES NO NO NO YES
ZERO/ZEROS/ |NO YES YES YES YES YES YES
ZEROES
YES = move is valid
NO = move is invalid
'Includes nonnumeric literals and all figurative constants but SPACE and ZERO
2Includes numeric literals
3Includes Boolean literals

‘ Figure 11-15. Valid and Invalid Elementary Moves

Group Moves

A group move is one in which one or both of the sending and receiving fields are
a group item. A group move is treated exactly as though it were an alphanumeric
elementary move except that data is not converted from one form of internal
representation to another. In a group move, the receiving area is filled without
consideration for the individual elementary items contained within either the
sending area or the receiving area.

Chapter 11.Procedure Division 11-67

MULTIPLY Statement

The MULTIPLY statement causes numeric items to be multiplied and sets the
values of data items equal to the results. The formats of the MULTIPLY
statement are:

Format 1

MULTIPLY Jidentifier-1| BY identifier-2 [ROUNDED]
literal-l

, identifier-3 [ROUNDED] . . .[ON SIZE ERROR imperative-statement]

Format 2

MULTIPLY [identifier-1) BY |[identifier-2 | GIVING identifier-S[ROUNDED]
literal-1

literal-2

, identifier-4 [ROUNDED] . . .[ON SIZE ERROR imperative-statement]

ROUNDED Phrase

11-68

Each identifier except those following the key word GIVING must name an
elementary numeric item. Each identifier following the key word GIVING must
name an elementary numeric or numeric edited item. Each literal must be a
numeric literal.

In format 1, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2; the product is then placed in identifier-2. If you specify identifier-3,
the value of identifier-1 or literal-1 is multiplied by the value of identifier-3; the
product is then placed in identifier-3, and so on.

In format 2, the value of identifier-1 or literal-1 is multiplied by the value of
identifier-2 or literal-2; the product is then stored in identifier-3, and, if specified,
identifier-4, and so on.

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the

SIZE ERROR Phrase

GIVING Phrase

ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing .
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to

the rightmost integer position for which storage is allocated.

A size error condition exists if, after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. In the
MULTIPLY statement, the size error condition applies both to final results and
to intermediate results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If you specify the GIVING phrase, the value of the identifier that follows the

word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric

edited item.

Chapter 11.Procedure Division 11-69

PERFORM Statement

The PERFORM statement transfers control explicitly to one or more procedures J
and implicitly returns control to the next statement that can be run after the
specified procedure(s) has run. The formats of the PERFORM statement are as
follows:

Format 1

THRU

PERFORM procedure-name-1 {THROUGﬁ}procedure-name-z

Format 2

PERFORM procedure-name-1|JTHROUGH|procedure-name-2{Jidentifier-1| TIMES
THRU integer-1

Format 3

THRU

PERFORM procedure-name-1 {THROUGH}procedure-name-z UNTIL condition-1

11-70

Format 4

PERFORM procedure-name-1 {THROUGH}procedure-name—Z
THRU

VARYING |identifier-1 identifier-2
index-name-1] FROM { index-name-2
literal-2
BY Jidentifier-3| UNTIL condition-1
literal-3

index-name=-6§ index-name-5
literal-5

AFTER Jidentifier-¢ identifier-5
FROM

BY Jidentifier-6| UNTIL condition-2
literal-6
AFTER |identifier-7 identifier-8
index-name-7 | FROM { index-name-8
literal-8

BY Jidentifier-9) UNTIL condition-3
literal-9

Each procedure name must name a section or a paragraph in the Procedure
Division.

When you specify both procedure-name-1 and procedure-name-2, if either is a
procedure name in a Declarative procedure, then both must be procedure names
in the same Declarative procedure.

Each identifier must name a numeric elementary item.

Each literal must be a numeric literal.

Whenever a PERFORM statement is run, control transfers to the first statement
of the procedure named procedure-name-1. Control always returns to the
statement following the PERFORM statement. The point from which this
control returns is determined as follows:

e If procedure-name-1 is a paragraph name and you do not specify

procedure-name-2, the return is made after the last statement of
procedure-name-1 is run.

Chapter 11.Procedure Division 11-71

11-72

e If procedure-name-1 is a section name and you do not specify
procedure-name-2, the return is made after the last sentence of the last
paragraph in that section is run.

e If you specify procedure-name-2 and it is a paragraph name, the return is
made after the last statement of that paragraph is run.

e If you specify procedure-name-2 and it is a section name, the return is made
after the last sentence of the last paragraph in the section is run.

The only necessary relationship between procedure-name-1 and procedure-name-2
is that a consecutive sequence of operations is run beginning at the procedure
named by procedure-name-1 and ending with the running of the procedure named
by procedure-name-2.

When you specify both procedure-name-1 and procedure-name-2, GO TO and
PERFORM statements can appear within the sequence of statements contained in
these paragraphs or sections. When you specify only procedure-name-1,
PERFORM statements can appear within the procedure. A GO TO statement
can also appear, but should not refer to a procedure name outside the range of
procedure-name-1. If this is done, results are unpredictable and are not
diagnosed.

When the performed procedures include another PERFORM statement, the
sequence of procedures associated with the embedded PERFORM statement must
be totally included in or totally excluded from the performed procedures of the
first PERFORM statement: An active PERFORM statement that begins within
the range of performed procedures of another active PERFORM statement must
not allow control to pass through the exit point of the other active PERFORM
statement. Also, two or more such active PERFORM statements must not have a
common exit.

When control passes to the sequence of procedures by means other than a
PERFORM statement, control passes through the exit point to the next statement

that can be run, as if no PERFORM statement referred to these procedures.

Figure 11-16 illustrates valid sequences for PERFORM statements.

X PERFORM a THRU m X PERFORM a THRU m

a a
d PERFORM f THRU j d PERFORM f THRU j
f h
] m
m f

X PERFORMa THRU m

m

i
d PERFORMfTHRU]j

Figure 11-16. Valid PERFORM Statement Sequences

The preceding rules refer to all four formats of the PERFORM statement. The
following sections give rules applying to each individual format.

Chapter 11.Procedure Division 11-73

Format 1

Format 1 is the basic PERFORM statement. The procedure(s) referred to is run J
once, and then control passes to the next runnable statement following the
PERFORM statement.

Format 2

Format 2 uses the TIMES phrase. identifier-1 must name an integer item. The
procedure(s) referred to is run the number of times specified by the value in
identifier-1 or integer-1. Control then passes to the next runnable statement
following the PERFORM statement. The following rules apply:

e If integer-1 or identifier-1 is 0 or a negative number at the time the
PERFORM statement is initiated, control passes to the statement following
the PERFORM statement.

e After the PERFORM statement has been initiated, any reference to
identifier-1 or change in the value of identifier-1 has no effect in varying the
number of times the procedures are run.

Format 3

Format 3 uses the UNTIL phrase. The procedure(s) referred to is performed until
the condition specified by the UNTIL phrase is true. Control is then passed to
the next runnable statement following the PERFORM statement.

If condition-1 is true at the time the PERFORM statement is encountered, the J
specified procedure(s) is not run.

Format 4

Format 4 uses the VARYING phrase. This phrase increments or decrements one
or more identifiers or index names according to the following rules. Once the
condition(s) specified in the UNTIL phrase is satisfied, control is passed to the
next runnable statement following the PERFORM statement.

No matter how many variables are specified, the following rules apply:
e In the VARYING and AFTER phrases, when an index name is specified:

— The index name is initialized and incremented or decremented according
to the rules for the SET statement. For a description of the SET
statement see Procedure Division Table Handling in Chapter 13.

— In the associated FROM phrase, an identifier must be described as an
integer and have a positive value; a literal must be a positive integer.

— In the associated BY phrase, an identifier must be described as an integer;
a literal must be a nonzero integer.

e In the FROM phrase, when an index name is specified:
— In the associated VARYING or AFTER phrase, an identifier must be

described as an integer. It is initialized as described in the SET)
statement.

11-74

— In the associated BY phrase, an identifier must be described as an integer
and have a nonzero value; a literal must be a nonzero integer.

In the BY phrase, identifiers and literals must have a nonzero value.
Changing the values of identifiers or index names or both in the VARYING,

FROM, and BY phrases when the procedures are running changes the
number of times the procedures are run.

The way in which operands are incremented or decremented depends on the
number of variables specified. In the following discussion, every reference to
identifier-n refers equally to index-name-n except when identifier-n is the object of
the BY phrase.

Varying One Hdentifier: The following actions take place:

1.

2.

5.

identifier-1 is set equal to its starting value, identifier-2 or literal-2.
condition-1 is evaluated:
a. Ifit is false, steps 3 through 5 are run.
b. If it is true, control passes directly to the statement following the
PERFORM statement.

procedure-1 through procedure-2 (if specified) are run once.

identifier-1 is increased by identifier-3 (or literal-3), and condition-1 is
evaluated again. .

Steps 2 through 4 are repeated until condition-1 is true.

Figure 11-17 is a flowchart illustrating the logic of the PERFORM statement
when one identifier is varied.

Chapter 11.Procedure Division 11-75

PERFORM
Statement
Begins

Set Identifier-1
Equal to Its
FROM Value

Test
Condition-1

Run
Procedure-1
THRU
Procedure-2

Augment
Identifier-1
with Its
Current BY
Value

Figure 11-17. Format 4 PERFORM Statement Logic-Varying One Identifier

11-76

The following example shows a PERFORM statement varying one identifier.
This PERFORM logic is run 100 times.

WORKING-STORAGE SECTION.
77 SUB1 PIC 999.
77 TOTAL-HOLD PIC 99 VALUE 57.
77 HOLD-2 PIC 99 VALUE 10.
77 HOLD-THE-SUM PIC 99 VALUE ZERO.
01 TABLE-ELEMENT.
03 ELEMENTS-OF-TABLE OCCURS 100 TIMES PIC 9.
PROCEDURE DIVISION.
100-START-PROCESSING.

* THIS PERFORM LOGIC IS EXECUTED 100 TIMES.

PERFORM SAMPLE-PERFORM THRU PERFORM-EXIT VARYING SUB1
FROM 1 BY 1 UNTIL SUB1 > 100.

* THIS ADD STATEMENT IS EXECUTED AFTER PERFORM IS DONE.
ADD TOTAL-HOLD HOLD-2 GIVING HOLD-THE-SUM.

DISPLAY 'TOTAL OF TWO VARIABLES = ' HOLD-THE-SUM.

PERFORM ANOTHER-WAY-TO-INITIALIZE THRU AWTI-EXIT.
Khkkkkkkkkkhhkhkhkhhkhkkkkkk

THE TABLE WILL BE ALL ZEROS AND SHOULD PRINT AS SUCH.

* ¥ X ¥ ¥

khkkkkkkkkhhkhkhkkkkhhkkhkk

DISPLAY '---—-=——=———————— THE------- TABLE---------- .
DISPLAY TABLE-ELEMENT.
STOP RUN.
SAMPLE-PERFORM.
MOVE ZEROS TO ELEMENTS-OF-TABLE (SUBL1).

PERFORM-EXIT. EXIT.
ANOTHER-WAY-TO-INITIALIZE.
MOVE ZEROS TO TABLE-ELEMENT.

AWTI-EXIT. EXIT.
* Kkkkkkkkkkkkkk*x*x**END OF PROGRAM***kkkhkkkhkkkkkkhhkhkkkhkkkkk

Chapter 11.Procedure Division 11-77

Varying Two Identifiers: The following actions take place:

1.

6.

7.

identifier-1 and identifier-4 are set to their initial values, identifier-2 (or
literal-2) and identifier-5 (or literal-5), respectively.

condition-1 is evaluated:

a. Ifitis false, steps 3 through 7 are run.

b. Ifitis true, control passes directly to the statement following the
PERFORM statement.

condition-2 is evaluated:

a. Ifitis false, steps 4 through 6 are run.

b. Ifitis true, identifier-4 is set to the current value of identifier-5, and
identifier-1 is augmented by identifier-3 (or literal-3), and step 2 is
repeated.

procedure-1 through procedure-2 (if specified) are performed once.

identifier-4 is increased by identifier-6 (or literal-6).

Steps 3 through 5 are repeated until condition-2 is true.

Steps 2 through 6 are repeated until condition-1 is true.

Upon completion of the PERFORM statement, identifier-4 contains the current
value of identifier-5. identifier-1 has a value that exceeds the last-used setting by
the increment or the decrement value (unless condition-1 was true at the
beginning of the PERFORM statement run, in which case identifier-1 contains the
current value of identifier-2).

11-78

Figure 11-18 is a flowchart illustrating the logic of the PERFORM statement
when two identifiers are varied.

PERFORM

Statement Begins

Identifier-1
Identifier4
Set to Initial
FROM Value

Test
Condition-1

Test
Condition-2

Run Set Identifier4
Procedure-1 to Its Current
THRU FROM Value
Procedure-2

‘Augment Augment
Identifier-4 Identifier-1
with Its with Its
Current Current

BY Value BY Value

Figure 11-18. Format 4 PERFORM Statement Logic-Varying Two Identifiers

Chapter 11.Procedure Division 11-79

The following example shows a PERFORM statement varying two identifiers. ,
This PERFORM logic is run 126 times. This program searches a table and gives ’
a total of female employees.

DATA DIVISION.
FILE SECTION.
FD PRINTED-REPORT
RECORDS CONTAINS 132 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS REPORT-LINE.
01 REPORT-LINE PIC X(132).
FD EMPLOYEE-DATA
BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 80 CHARACTERS
LABEL RECORDS STANDARD
DATA RECORD IS EMPLOYEE-RECORD.
01 EMPLOYEE-RECORD PIC X(80).
WORKING-STORAGE SECTION.
77 RECORDS-IN PIC 9(5) VALUE ZEROS.
77 EOF-SW PIC X VALUE 'N'.
01 HOLD-INPUT-RECORD.
03 EMPLOYEE-SEX PIC 9.
88 MALE VALUE IS 1.
88 FEMALE VALUE IS 2.
03 EMPLOYEE-RACE PIC 9.
88 RACE-CODES VALUES ARE 1 THRU 7.
03 EMPLOYEE-JOB-CLASS PIC 99.
88 JOB-CLASS VALUES ARE 01 THRU 18.
03 FILLER PIC X(76) VALUE SPACES.
01 EMPLOYEE-TABLE.
03 E-SEX OCCURS 2 TIMES.
05 E-RACE OCCURS 7 TIMES. ’
07 E-JOB OCCURS 18 TIMES PIC 99.
77 SUB1 PIC 99.
77 SUB2 PIC 99.
77 SUB3 PIC 99.
77 TOTAL-WOMEN PIC 9(5) VALUE ZEROS.

11-80

PROCEDURE DIVISION.

100-START-IT.
OPEN INPUT EMPLOYEE-DATA OUTPUT PRINTED-REPORT.
MOVE ZEROS TO EMPLOYEE-TABLE.

200-READ-IT.
READ EMPLOYEE-DATA RECORD INTO HOLD-INPUT-RECORD
AT END MOVE 'Y' TO EOF-SW.
ADD 1 TO RECORDS-IN.

300-MAIN-LOGIC.
kkkkkkkhkhkhkkkhhhkhhhhhkkhkhhkkkkhhkkkkhkk

* THE PERFORM STATEMENT USING TWO
* VARIABLES WILL BE DONE 126
* TIMES BY THE COMPUTER.

khkkkkkkkkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkhkkkkkx

PERFORM LOAD-TABLE UNTIL EOF-SW = 'Y'.
PERFORM FIND-NUMBER-OF-WOMEN VARYING SUB2 FROM 1 BY 1
UNTIL SUB2 > 7
AFTER SUB3 FROM 1 BY 1 UNTIL SUB3 > 18.
PERFORM WRITE-REPORT THRU WR-EXIT.
DISPLAY 'TOTAL RECORDS IN ' RECORDS-IN.
STOP RUN.
LOAD-TABLE.
MOVE EMPLOYEE-SEX TO SUBL1.
MOVE EMPLOYEE-RACE TO SUB2.
MOVE EMPLOYEE-JOB-CLASS TO SUB3.
ADD 1 TO E-JOB (SUB1,SUB2,SUB).
PERFORM 200-READ-IT.
FIND-NUMBER-OF-WOMEN.
ADD E-JOB (2,SUB2,SUB3) TO TOTAL-WOMEN.
WRITE-REPORT.
MOVE TOTAL-WOMEN TO PRINT-OUT.
WRITE PRINT-OUT.
WR-EXIT. EXIT.

Chapter 11.Procedure Division 11-81

11-82

Varying Three Identifiers: The actions are the same as for varying two identifiers
except that identifier-7 goes through the complete cycle each time that identifier-4
is increased by identifier-6 or literal-6, which in turn goes through a complete
cycle each time identifier-1 is varied.

Upon completion of the PERFORM statement, identifier-4 and identifier-7
contain the current values of identifier-5 and identifier-8, respectively. identifier-1
has a value exceeding its last-used setting by one increment or decrement value
(unless condition-1 was true at the beginning of the PERFORM statement run, in
which case identifier-1 contains the current value of identifier-2).

Figure 11-19 is a flowchart illustrating the logic of the PERFORM statement
when three identifiers are varied.

PERFORM

Statement Begins

Identifier-1
Identifier4
Identifier-7
Set to Initial
FROM Values

Test
Condition-1

Test
Condition-2

True

Test
Condition-3

Run Set Identifier-7 Set Identifier4
Procedure-1 to Its Current to Its Current
THRU FROM Value FROM Value
Procedure-2

Augment Augment Augment
Identifier-7 Identifier4 Identifier-1
with Its with Its with Its
Current Current Current

BY Value BY Value BY Value

Figure 11-19. Format 4 PERFORM Statement Logic-Varying Three Identifiers

Chapter 11.Procedure Division 11-83

11-84

The following example shows a PERFORM statement varying three identifiers.
This PERFORM logic is run 250 times.

DATA DIVISION.

WORKING-STORAGE SECTION.

77 SUB1 PIC 99.

77 SUB2 PIC 99.

77 SUB3 PIC 99.

77 TEST-IT PIC 99 VALUE 00.

77 TOTAL-RECS PIC 99 VALUE ZEROS.
01 COMPANY-TABLE.

05 DIVISION-IN OCCURS 10 TIMES.
10 DIVISION-NAME PIC X(10).
10 DIVISION-NUMBER PIC 9(4).

10 SECTION-IN OCCURS 5 TIMES.

15 UNIT-IN OCCURS 5 TIMES.
20 UNIT-NAME PIC X(5).
20 UNIT-NUMBER PIC 9(4).
PROCEDURE DIVISION.
100-START-PROCESSING.

* dkkkkhkkkkhhhhkdkkkkhhhkkkkhhhkkkkkkhhkkkkhhhhkkkkkhhkkkkhkhhkkkdkkk
* THIS PERFORM LOGIC IS EXECUTED 250 TIMES BY THE COMPUTER.
* dkkhkhkkkkkkhkkkkkkkhhkkkkkhkkkkhkhhhkkkkhkkkkkkhkkkkkkkhhkkkkkkkk

PERFORM ZERO-OUT-BIG-TABLE VARYING SUB1 FROM 1 BY 1
UNTIL SUBl1 > 10

* SUB1 IS VARIED LAST BY THE COMPUTER.
AFTER SUB2 FROM 1 BY 1 UNTIL SUB2 > 5

* SUB2 IS VARIED *****x*xND***x*** BY THE COMPUTER.
AFTER SUB3 FROM 1 BY 1 UNTIL SUB3> 5.

* ******SUB3 IS VARIED FIRST BY THE COMPUTER****xx*
PERFORM ADDRESS~-THE-VARIABLES THRU ATV-EXIT.
DISPLAY 'VARIABLE TEST-IT = ' TEST-IT.

STOP RUN.

ZERO-OUT-BIG-TABLE.
MOVE ZEROS TO UNIT-IN (SUB1, SUB2, SUB3).
ADDRESS-THE-VARIABLES.
IF UNIT-NUMBER OF UNIT-IN OF SECTION-IN OF DIVISION-IN
OF COMPANY-TABLE (3, 4, 5) = 0 ADD 1 TO TEST-IT.

ATV-EXIT. EXIT.

Note: The procedures run by a PERFORM statement are in effect a closed
subroutine that can be entered from other points in the program.

The Format 4 PERFORM statement is especially useful in table handling. One
Format 4 PERFORM statement can serially search an entire 3-dimensional table.

L

Segmentation Information

A PERFORM statement appearing in a permanent segment can have in its range
only one of the following:

e Sections, each of which has a segment number less than 50
® Sections or paragraphs wholly contained in a single independent segment.

A PERFORM statement that appears in an independent segment can have in its
range only one of the following:

® Sections, each of which has a segment number less than 50

® Sections or paragraphs wholly contained within the same independent
segment as the PERFORM statement.

Control is passed to the performed procedures only once each time the
PERFORM statement is run.

Chapter 11.Procedure Division 11-85

STOP Statement

The STOP statement halts the object program either temporarily or permanently.

Format

literal

STOP {RUN

)

11-86

The literal can be numeric or nonnumeric and any figurative constant except the
ALL literal. If the literal is numeric, it must be an unsigned integer.

When you specify the STOP statement with a literal, the literal is displayed at the
user program display station if the program has an attached display station, or at
the system console if there is no attached display station and the running of the
object program is suspended. The program resumes running only after you
intervene.

Your action determines whether the job continues at the next statement that can
be run in the sequence, the job step is canceled, or the entire job is canceled.

When STOP RUN is specified, the program currently running ends, and control
returns to the system. If a STOP RUN statement is in a sequence of imperative
statements, it must be the last or the only statement in the sequence. You should
close all files before a STOP RUN statement.

An implicit return to the calling program is always generated after the last
statement in the source program. In a main program, this is equivalent to a
STOP RUN. In a subprogram, this is equivalent to an EXIT PROGRAM.

For restrictions on the STOP RUN statement in calling and called programs, see
System Dependent Considerations in Chapter 2.

Note: The STOP literal statement is useful for special situations when you need
to intervene when the program is running.

<

STRING Statement

The STRING statement lets you join the partial or complete contents of two or
more data items into a single data item.

Format
STRING Jidentifier-1 » identifier-2|. . . identifier-3
literal-1 » literal-2 DELIMITED BY<{literal-3
SIZE
» Jidentifier-4||, identifier-5| . . . identifier-6
literal-¢4 » literal-5 DELIMITED BY{literal-6
SIZE
INTO identifier-7[WITH POINTER identifier-8J]
[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each may be any figurative constant
without the optional word ALL. When you specify a figurative constant, it is
considered a 1-character nonnumeric literal.

All identifiers except identifier-8 (the POINTER item) must have a USAGE of
DISPLAY, explicitly or implicitly.

The sending fields are identifier-1, identifier-2, identifier-4, identifier-5, or their
corresponding literals.

The receiving field is identifier-7, which must be an elementary alphanumeric item
without editing symbols and without the JUSTIFIED clause in its description.

The delimiters are identifier-3, identifier-6, or their corresponding literals, or the
key word SIZE. The delimiters specify the character(s) delimiting the data to be
transferred; when SIZE is specified, the complete sending area is transferred.

When the sending field or any of the delimiters are elementary numeric items, you
must describe them as integers, and their PICTURE character strings must not
contain the symbol P.

The pointer field is identifier-8, which must be an elementary integer data item

large enough to contain a value equal to the length of the receiving area plus 1.
The pointer field must not contain the symbol P in its PICTURE character string.

Chapter 11.Procedure Division 11-87

Running the STRING Statement

11-88

When the STRING statement is run, data is transferred from the sending fields to
the receiving field. Sending fields are processed in the order in which they are
specified. The following rules apply:

Characters from the sending fields are transferred to the receiving field
according to the rules for alphanumeric to alphanumeric elementary moves
except that no space filling is provided.

When you specify the DELIMITED BY identifier/literal, the contents of each
sending item are transferred character by character beginning with the
leftmost and continuing until either a delimiter for this sending field is
reached (the delimiter itself is not transferred) or the rightmost character of
this sending field has been transferred.

When you specify DELIMITED BY SIZE, each sending field is transferred in
its entirety to the receiving field.

When the receiving field is filled or when all the sending fields have been
processed, the operation is ended.

When you specify the POINTER phrase, an explicit pointer field is available
to the COBOL user to control placement of data in the receiving field. You
must set the explicit pointer’s initial value to any value from 1 through the
character count value of the receiving field. The pointer field must be defined
as large enough to contain a value equal to the length of the receiving field
plus 1; this precludes arithmetic overflow when the system updates the pointer
at the end of the transfer.

When you do not specify the POINTER phrase, a pointer is not available to
you; an implicit pointer with an initial value of 1 is used by the system.

When the STRING statement is run, the initial pointer value (explicit or
implicit) points to the first character position within the receiving field into
which data is to be transferred. Beginning at that position, data is then
positioned character by character from left to right. After each character is
positioned, the explicit or implicit pointer is incremented by 1. The value in
the pointer field is changed only in this manner. At the end of processing, the
pointer value always indicates one character beyond the last character
transferred into the receiving field.

If, at any time during or after a STRING statement has begun running, the
pointer value (explicit or implicit) is less than 1 or exceeds a value equal to
the length of the receiving field, no more data is transferred into the receiving
field, and if specified, the ON OVERFLOW imperative statement is run. The
ON OVERFLOW statement is not run unless there was an attempt to move
in one or more characters beyond the end of identifier-7.

If you do not specify the ON OVERFLOW phrase, control passes to the next
runnable statement when the preceding conditions occur.

3

9

After the STRING statement is run, only that part of the receiving field into
which data was transferred is changed. The rest of the receiving field contains the
data that was present before the STRING statement was run.

Figure 11-20 illustrates the rules for the STRING statement.

STRING Statemgnt to be Run:

STRING ID-1 ID-2 DELIMITED BY ID-3
ID4 ID-5 DELIMITED BY SIZE
INTO ID-7 WITH POINTER ID-8.

Results:
ID-4 at Run Time ID-1 at Run Time ID-2 at Run Time ID-5 at Run Time
6{7|8|9(*|0 11213[*|4 1|5 Al*|B|C D|E([*|F|G
L T | L T LT_ r
Third Group of First Group of Second Group of Fourth Group of
Characters Moved Characters Moved Characters Moved Characters Moved
|

ID-3
(delimeter)
at Run Time

B 112|3|A|6(7|8|9(*|0|D|E|*|F(G|Z|Z]|Z|Z|Z]|Z

ID-7 After Being Run (initialized to ALL Z before being run)

ID-8
(pointer)
After Being Run

116

(initialized to 01 before being run)

Figure 11-20. STRING Statement Results

Chapter 11.Procedure Division 11-89

STRING Statement Example

11-90

The following example illustrates some of the considerations that apply to the

STRING statement.

In the Data Division, you have defined the following fields:

01 RPT-LINE PICTURE X(120).

01 LINE-POS PICTURE 99.

01 LINE-NO PICTURE 9(5) VALUE 1.
01 DEC-POINT PICTURE X VALUE '.'.

In the File Section, you have defined the following input record:

01 RCD-01.

05 CUST-~INFO.
10 CUST-NAME
10 CUST-ADDR

05 BILL-INFO.
10 INV-NO
10 INV-AMT
10 AMT-PAID
10 DATE-PAID
10 BAL-DUE
10 DATE-DUE

PICTURE
PICTURE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

X(15).
X(34).

X(6).
$$,$885.99.
$$,$885.99.
X(8).
$$,$885.99.
X(8).

Suppose you want to construct an output line consisting of portions of the
information from RCD-01. The line is to consist of a line number, a customer
name and address, an invoice number, a date due, and a balance due, truncated

to the dollar figure shown.

The record as read in contains the following information:

J.B. SMITHbbbbD

4445SPRINGbHST.,bCHICAGObBILL.bbbbd

A14275
$4,736.85
$2,400.00
09/22/76
$2,336.85
10/22/76

In the Procedure Division, you initialize RPT-LINE to SPACES and set
LINE-POS (which is to be used as the POINTER field) to 4. Then you issue this

STRING statement:

STRING LINE-NO SPACE CUST-INFO

SPACE INV-NO SPACE DATE-DUE
SPACE DELIMITED BY SIZE
BAL-DUE DELIMITED BY DEC-POINT

INTO RPT-LINE WITH POINTER LINE-POS.

http:2,336.85
http:2,400.00
http:4,736.85

When the statement is run, the following actions take place:

1. The field LINE-NO is moved into positions 4 through 8 of RPT-LINE.

2. A space is moved into position 9.

3. The group item CUST-INFO is moved into positions 10 through 58.

4. A space is moved into position 59.
5. INV-NO is moved into positions 60 through 65.

6. A space is moved into position 66.

7. DATE-DUE is moved into positions 67 through 74.

8. A space is moved into position 75.

9. The portion of BAL-DUE that precedes the decimal point is moved into

positions 76 through 81.

After the STRING statement has been run, RPT-LINE appears as shown in

Figure 11-21.

Note: You can write one STRING statement instead of a series of MOVE

statements.

Column

4 10 25

| |

00001 J.B. SMITH 444 SPRING ST., CHICAGO, ILL.

60 67 76

o

Al4725 10/22/76 $2,336

Figure 11-21. STRING Statement Example Output Data

Chapter 11.Procedure Division

11-91

SUBTRACT Statement

9

The SUBTRACT statement causes either one numeric item or the sum of two or
more numeric items to be subtracted from one or more numeric items and the
result to be stored. The formats of the SUBTRACT statement are:

Format 1

SUBTRACT)J)identifier-1]|, identifier-2{(... FROM identifier—3[ROUNDED]
literal-1 s literal-2

’ identifier-Q[ROUNDED] ...[ON SIZE ERROR imperative-statement]

Format 2

SUBTRACT Jidentifier-1||, identifier-2| ... FROM Jidentifier-3
literal—-1 , literal-2 literal-3

GIVING identifier-‘b[ROUNDED] ’ identifier‘-S[ROUNDED]

[ON SIZE ERROR imperative-statement]

Format 3

SUBTRACT J CORRESPONDINGlidentifier-1 FROM identifier—Z[ROUNDED]
CORR
[ON SIZE ERROR imperative-statement]

In formats 1 and 2, each identifier except those following the key word GIVING

must name an elementary numeric item. In format 2, each identifier following the

key word GIVING must name a numeric elementary or numeric edited

elementary item. In format 3, each identifier must name a group item. In all

formats, each literal must be a numeric literal. J

11-92

In format 1, all identifiers or literals preceding the key word FROM are added
together, and this sum is subtracted from and stored immediately in identifier-3,
and then, if specified, subtracted from and stored immediately in identifier-4, and
$O on.

In format 2, all identifiers or literals preceding the key word FROM are added
together and this sum is subtracted from identifier-3 or literal-3. The result of the
subtraction is stored as the new value of identifier-4, and, if specified, identifier-5,
and so on.

In format 3, elementary data items within identifier-1 are subtracted from and
stored in the corresponding elementary data items within identifier-2.

If the total length of the operands is 18 digits or less, the compiler ensures that
enough places are carried so that no significant digits are lost.

Note: For all three formats of the subtract statement, if identifier-3 and
identifier-4 are the same data item, and identifier-1 and identifier-3 are both
negative, truncation can occur.

ROUNDED Phrase

After decimal point alignment, the number of places in the fraction of the result
of an arithmetic operation is compared with the number of places provided for
the fraction of the resultant identifier.

If the size of the fractional result exceeds the number of places provided for its
storage, truncation occurs unless the ROUNDED phrase is specified. When the
ROUNDED phrase is specified, the least-significant digit of the resultant
identifier has its value increased by 1 whenever the most-significant digit of the
excess is greater than or equal to 5.

When the resultant identifier is described by a PICTURE clause containing
rightmost Ps, and when the number of places in the calculated result exceeds the
number of integer positions specified, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

Chapter 11.Procedure Division 11-93

SIZE ERROR Phrase

GIVING Phrase

11-94

A size error condition exists if after decimal point alignment, the value of a result
exceeds the largest value that can be contained in the resultant field. In the
SUBTRACT statement, the size error condition applies only to final results.

If you specify the ROUNDED phrase, rounding takes place before size error
checking.

When a size error occurs, the subsequent action of the program depends on
whether or not the SIZE ERROR phrase is specified.

If you do not specify the SIZE ERROR phrase and a size error condition occurs,
the value of the affected resultant identifier is unpredictable. When you specify
multiple receivers, those that do not have a size error are not affected by receivers
that do have the error.

If you specify the SIZE ERROR phrase and a size error condition occurs, the
error results are not placed in the receiving identifier. When the arithmetic
operation is completed, the imperative statement in the SIZE ERROR phrase is
run.

If you specify the GIVING phrase, the value of the identifier that follows the
word GIVING is set equal to the calculated result of the arithmetic operation.
Because this identifier is not involved in the computation, it can be a numeric
edited item.

9

9

C

CORRESPONDING Phrase

The CORRESPONDING phrase lets operations be performed on elementary
items of the same name. You simply specify the group items to which the
elementary items belong.

The abbreviation CORR is equivalent to the key word CORRESPONDING.

Both identifiers following the key word CORRESPONDING must name group
items. In this discussion, these identifiers are referred to as d1 and d2.

A pair of subordinate data items, one from d1 and one from d2, correspond if the
following conditions are true:

Both of the subordinate items are elementary numeric data items.

The two subordinate items have the same name and the same qualifiers up to
but not including d1 and d2.

The subordinate items are not identified by the key word FILLER.

The subordinate items do not include a REDEFINES, RENAMES,
OCCURS, or USAGE IS INDEX clause in their descriptions; if such a
subordinate item is a group, the items subordinate to it are also ignored.
However, d1 and d2 themselves can contain or be subordinate to items
containing a REDEFINES or OCCURS clause in their descriptions.

For example, two data hierarchies are defined as follows:

05 ITEM-1 OCCURS 6 INDEXED BY X.

10 ITEM-A ...

10 ITEM-B ...

10 ITEM-C REDEFINES ITEM-B .
05 ITEM-2

10 ITEM-A .

10 ITEM-B ...

10 ITEM-C ...

If you specify SUBTRACT CORR ITEM-2 FROM ITEM-1(X), ITEM-A
and ITEM-A(X) and ITEM-B and ITEM-B(X) are considered to be
corresponding. Thus, ITEM-A and ITEM-B of ITEM-2 are subtracted from
ITEM-A and ITEM-B of ITEM-1(X). ITEM-C and ITEM-C(X) are not
included because ITEM-C(X) includes a REDEFINES clause in its data
description. ITEM-1 is valid as either d1 or d2.

Neither d1 nor d2 is described as a level-66, -77 or -88 item, or as a FILLER
or USAGE IS INDEX item.

Chapter 11.Procedure Division 11-95

UNSTRING Statement

The UNSTRING statement causes consecutive data in a sending field to be J
separated and placed into multiple receiving fields.

Format

UNSTRING identifier-1
DELIMITED BY[ALL] identifier-2||, OR [ALL] identifier-3
literal-1 literal-2

INTO identifier-4[, DELIMITER IN identifier-5][, COUNT IN identifier-61]

[. identifier-7[, DELIMITER IN identifier-8][, COUNT IN identifier-9]]...

[WITH POINTER identifier-lO][TALLYING IN identifier-ll]

[ON OVERFLOW imperative-statement]

Each literal must be a nonnumeric literal; each can be any figurative constant
except the ALL literal. When you specify a figurative constant, it is considered to '
be a 1-character nonnumeric literal.)

Sending Field

identifier-1 is the sending field. It must be an alphanumeric data item. Data is
transferred from this field to the receiving fields.

DELIMITED BY Phrase: This phrase specifies delimiters within identifier-1 that
control the data transfer.

The delimiters are identifier-2, identifier-3, or their corresponding literals. Each
identifier or literal you specify represents one delimiter. You can specify no more
than 15 delimiters, and each must be an alphanumeric data item.

If a delimiter contains 2 or more characters, it is recognized in the sending field
only if the delimiter characters are consecutive and, in the sequence specified,in
the delimiter item.

When you specify two or more delimiters, an OR condition exists, and each
nonoverlapping occurrence of any one of the delimiters is recognized in the
sending field in the sequence specified. For example, if you specify DELIMITED
BY AB OR BC, either AB or BC in the sending field is considered a delimiter. An
occurrence of ABC is considered an occurrence of AB, and the search for another
delimiter resumes with C.

11-96

Data Receiving Fields

When you do not specify the DELIMITED BY ALL phrase and two or more
consecutive delimiters are encountered, the current data receiving field is filled
with spaces or 0’s according to the description of the data receiving field.

When you specify the DELIMITED BY ALL phrase, one or more consecutive
occurrences of any delimiter are treated as if they were only one occurrence, and
this one occurrence is moved to the delimiter receiving field, if specified. The
delimiting characters in the sending field are treated as an elementary
alphanumeric item and are moved into the current delimiter receiving field
according to the rules of the MOVE statement.

You can specify the DELIMITER IN and COUNT IN phrases only if you have
specified the DELIMITED BY phrase.

identifier-4, identifier-7, and so on, are the data receiving fields and must have a
USAGE of DISPLAY. These fields can be defined as:

® Alphabetic (without the symbol B in the PICTURE string)
® Alphanumeric
® Numeric (without the symbol P in the PICTURE string).

You must not define these fields as alphanumeric edited or numeric edited items.
Data is transferred to these fields from the sending field.

DELIMITER IN Phrase: The delimiter receiving fields are identifier-5,
identifier-8, and so on. These identifiers must be alphanumeric.

COUNT IN Phrase: The data-count fields for each data transfer are identifier-6,
identifier-9, and so on. Each field holds the count of delimited characters in the
sending field to be transferred to this receiving field; the delimiters are not
included in this count.

POINTER Phrase: The pointer field is identifer-10: it contains a value that
indicates the relative starting position in the sending field. When you specify this
phrase, you must initialize this field to a value of at least 1 and not greater than
the count of the sending field, before the UNSTRING statement is run.

TALLYING Phrase: The field count is identifier-11; it is incremented by the
number of data receiving fields acted upon when the UNSTRING statement is
run. When you specify this phrase, you must initialize it before the UNSTRING
statement is run.

The data-count fields, the pointer field, and the field-count field must each be
integer items without the symbol P in the PICTURE character strings.

Chapter 11.Procedure Division 11-97

Running the UNSTRING Statement

11-98

When you initiate the UNSTRING statement, the current data receiving field is
identifier-4. Data is transferred from the sending field to the current data
receiving field according to the following rules:

If you do not specify the POINTER phrase, the sending field character string
is examined, beginning with the leftmost character. If you specify the
POINTER phrase, the field is examined beginning at the relative character
position specified by the value in the pointer field.

If you specify the DELIMITED BY phrase, the examination proceeds left to
right character by character until a delimiter is encountered. If the end of the
sending field is reached before a delimiter is found, the examination ends with
the last character in the sending field.

If you do not specify the DELIMITED BY phrase, the number of characters
examined is equal to the size of the current data receiving field, depending
upon its data category:

— If the receiving field is alphanumeric or alphabetic, the number of
characters examined is equal to the number of characters in the current
receiving field.

— If the receiving field is numeric, the number of characters examined is
equal to the number of characters in the integer portion of the current
receiving field.

— If the receiving field is described with the SIGN IS SEPARATE clause,
the characters examined are one fewer than the size of the current
receiving field.

— If the receiving field is described as a variable-length data item, the
number of characters examined is determined by the current size of the
current receiving field.

The examined characters, excluding any delimiter characters, are treated as an
alphanumeric elementary item, and are moved into the current data receiving
field according to the rules for the MOVE statement.

If you specify the DELIMITER IN phrase, the delimiting characters in the
sending field are treated as an elementary alphanumeric item and are moved
to the current delimiter receiving field according to the rules for the MOVE
statement. If the delimiting condition is the end of the sending field, the
current delimiter receiving field is filled with spaces.

If you specify the COUNT IN phrase, a value equal to the number of
examined characters, excluding any delimiters, is moved into the data count
field, according to the rules for an elementary move.

If you specify the DELIMITED BY phrase, the sending field is further
examined, beginning with the first character to the right of the delimiter.

If you do not specify the DELIMITED BY phrase, the sending field is further
examined, beginning with the first character to the right of the last character
examined.

<

9

After data is transferred to the first data receiving field (identifier-4), the
current data receiving field becomes identifier-7. For each succeeding current
data receiving field, the preceding procedure is repeated, either until all of the
characters in the sending field have been transferred or until there are no
more unfilled data receiving fields.

When you specify the POINTER phrase, the contents of the pointer field is
incremented by 1 for each examined character in the sending field. When the
UNSTRING statement is completed, the pointer field contains a value equal

to its initial value plus the number of characters examined in the sending
field.

When you specify the TALLYING phrase, and the UNSTRING statement is
completed, the tallying identifier contains a value equal to the initial value
plus the number of data receiving areas acted upon; this count includes any
null fields.

When an overflow condition exists, the UNSTRING statement stops running.
If you have specified the ON OVERFLOW phrase, that imperative statement
is run. If you have not specified the ON OVERFLOW phrase, control passes
to the next statement that can be run. An overflow condition exists when:

— An UNSTRING statement is initiated and the value in the pointer field is
less than 1 or greater than the length of the sending field.

— Or, all data receiving fields have been acted upon by the UNSTRING
statement, and the sending field still contains unexamined characters.

If you subscript or index any of the UNSTRING statement identifiers, the
subscripts and indexes are evaluated as follows:

Any subscripting or indexing associated with the sending field, the pointer
field, or the field-count field is evaluated only once, immediately before any
data is transferred.

Any subscripting or indexing associated with the delimiters, the data and
delimiter receiving fields, or the data-count fields, is evaluated immediately
before the transfer of data into the affected data item.

Figure 11-22 illustrates the rules for the UNSTRING statement.

Chapter 11.Procedure Division 11-99

The following UNSTRING statement has the results shown:

UNSTRING ID-SEND DELIMITED BY DEL-ID OR ALL “*’

INTO ID-R1 DELIMITER IN ID-D1 COUNT IN ID-C1
ID-R2 DELIMITER IN ID-D2
ID-R3 DELIMITER IN ID-D3 COUNT IN ID-C3
ID-R4 COUNT IN ID-C4

WITH POINTER ID-P

TALLYING IN ID-T

ON OVERFLOW GO TO OFLOW-EXIT.

ID-SEND at Run Time

(All the data
receiving fields
are defined as
alphanumeric)

DEL-ID
at Run Time

(after being run) (after being (after being run)
run)
The run sequence is:
@ Three characters are placed in ID-R1.

@ Because ALL * is specified, one * is placed
in ID-D1.

@ Five characters are placed in ID-R2.

(@) A?isplaced in ID-D2. The current
receiving field is now ID-R3.

®

®

@

r 1 r — 1
1/2|3|b|b|b 415(6|7|8|b b|b|b 9|0]A|B|C
ID-R1 After ID-R2 After ID-R3 After ID-R4 After
Being Run Being Run Being Run Being Run
1D-D1 1D-C1 1D-D2 1D-D3 ID-C3 ID-C4 ID-P ID-T
(pointer) (tallying field)
O B O O [B G b

(after being run —
both initialized to
01 before run time)

A ? is placed in ID-D3; ID-R3 is filled
with spaces; no characters are
transferred, so O is placed in ID-C3.

No delimiter is encountered before 5
characters fill ID-R4;5 is placed in
ID-C4.

ID-P is updated to 18; ID-T is updated
to 05. There are still untransferred
characters in ID-SEND, so

the ON OVERFLOW exit is taken.

Figure 11-22. UNSTRING Statement Results

11-100

UNSTRING Statement Example

The following example illustrates some of the considerations that apply to the
UNSTRING statement.

In the Data Division, you have defined the following input record to be acted
upon by the UNSTRING statement:

01 INV-RCD.
05 CONTROL-CHARS PIC XX.

05 ITEM-INDENT PIC X(20).
05 FILLER PIC X.

05 INV-CODE PIC X(10).
05 FILLER PIC X.

05 NO-UNITS PIC 9(6).

05 FILLER PIC X.

05 PRICE-PER-M PIC 99999.
05 FILLER PIC X.

05 RTL-AMT PIC 9(6).99.

You have defined the next two records as receiving fields for the UNSTRING
statement. DISPLAY-REC is to be used for printed output. WORK-REC is to
be used for further internal processing.

01 DISPLAY-REC.

05 INV-NO PIC X(6).
05 FILLER PIC X VALUE SPACE.
05 ITEM-NAME PIC X(20).
05 FILLER PIC X VALUE SPACE.
05 DISPLAY-DOLS PIC 9(6).
01 WORK-REC.
05 M-UNITS PIC 9(6).
05 FIELD-A PIC 9(6).
05 WK-PRICE
REDEFINES
FIELD-A PIC 9999Vv99.
05 INV-CLASS PIC X(3).

You have also defined the following fields for use as control fields in the
UNSTRING statement.

77 DBY-1 PIC X, VALUE IS '.'.
77 CTR-1 PIC 99, VALUE IS ZERO.
77 CTR-2 PIC 99, VALUE IS ZERO.
77 CTR-3 PIC 99, VALUE IS ZERO.
77 CTR-4 PIC 99, VALUE IS ZERO.
77 DLTR-1 PIC X.

77 DLTR-2 PIC X.

77 CHAR-CT PIC 99, VALUE IS 3.

77 FLDS-FILLED PIC 99, VALUE IS ZERO.

Chapter 11.Procedure Division 11-101

In the Procedure Division, you have written the following UNSTRING statement
to move subfields of INV-RCD to the subfields of DISPLAY-REC and
WORK-REC:

UNSTRING INV-RCD DELIMITED BY

ALL SPACES OR '/' OR DBY-1

INTO ITEM-NAME COUNT IN CTR-1
INV-NO DELIMITER IN DLTR-1 COUNT IN CTR-2
INV-CLASS

M-UNITS COUNT IN CTR-3

FIELD-A

DISPLAY-DOLS DELIMITER IN

DLTR-2 COUNT IN CTR-4

WITH POINTER CHAR-CT

TALLYING IN FLDS-FILLED

ON OVERFLOW GO TO UNSTRING-COMPLETE.

Before the UNSTRING statement is issued, you place the value 3 in the
CHAR-CT (the POINTER item), so as not to work with the 2 control characters
at the beginning of INV-RCD. In DBY-1, you place a period as a delimiter, and
in FLDS-FILLED (the TALLYING item) you place the value 0. The following
data is then read into INV-RCD as shown in Figure 11-23.

Column
1 10 20 30 40 50 60
ZYFOUR-PENNY-NAILS 707890/BBA 475120 00122 000379.50

Figure 11-23. UNSTRING Statement Example—Input Data

11-102

http:000379.50

When the UNSTRING statement is run, the following actions take place:

L.

Positions 3 through 18 (FOUR-PENNY-NAILS) of INV-RCD are placed in
ITEM-NAME, left-justified within the area, and the unused character
positions are padded with spaces. The value 16 is placed in CTR-1.

Because you specified ALL SPACES as a delimiter, the 5 consecutive SPACE
characters are considered to be one occurrence of the delimiter.

Positions 24 through 29 (707890) are placed in INV-NO. The delimiter
character / is placed in DLTR-1, and the value 6 is placed in CTR-2.

Positions 31 through 33 are placed in INV-CLASS. The delimiter is a
SPACE, but because no field has been defined as a receiving area for
delimiters, the SPACE is merely bypassed.

Positions 35 through 40 (475120) are examined and are placed in M-UNITS.
The delimiter is a SPACE, but because you have not defined a receiving field
as a receiving area for delimiters, the SPACE is bypassed. The value 6 is
placed in CTR-3.

Positions 42 through 46 (00122) are placed in FIELD-A and right-justified
within the area. The high-order digit position is filled with a 0. The delimiter
is a SPACE, but because you have not defined a field as a receiving area for
delimiters, the SPACE is bypassed.

Positions 48 through 53 (000379) are placed in DISPLAY-DOLS. The period
(.) delimiter character is placed in DLTR-2, and the value 6 is placed in
CTR-4.

Because all receiving fields have been acted upon and 2 characters of data in
INV-RCD have not been examined, the ON OVERFLOW exit is taken, and
the UNSTRING statement is completed.

When the UNSTRING statement has run, DISPLAY-REC contains the following
data:

707890 FOUR-PENNY-NAILS 000379

WORK-REC contains the following data:

475120000122BBA

CHAR-CT (the POINTER field) contains the value S5, and FLD-FILLED (the
TALLYING field) contains the value 6.

Note: One UNSTRING statement can be written instead of a series of MOVE
statements.

Chapter 11.Procedure Division 11-103

USE AFTER EXCEPTION/ERROR Statement (EXCEPTION/ERROR Declarative)

The EXCEPTION/ERROR Declarative specifies procedures for input and output
exception or error handling that are to be run in addition to the standard system

procedures.
Format
file-name-1[, file-name-21]
INPUT
SE AFTER STANDARDJEXCEPTION| PROCEDURE ON{OQUTPUT
ERROR I-0
EXTEND

The words EXCEPTION and ERROR are synonymous and can be used
interchangeably.

File-Name Phrase

This phrase is valid for sequential, indexed, relative, and TRANSACTION files.
When you specify this phrase, the procedure is run only for the file(s) named. No
file name can refer to a sort-merge file. For any given file, you can only specify
one EXCEPTION/ERROR procedure. For example, if an input file is specifically
named in one EXCEPTION/ERROR procedure, there must not also be an
EXCEPTION/ERROR procedure for all INPUT files.

INPUT Phrase

This phrase is valid for sequential, indexed, and relative files. When you specify
this phrase, the procedure is applicable to all files opened in INPUT mode.

OUTPUT Phrase

This phrase is valid for sequential, indexed, and relative files. When you specify
this phrase, the procedure is applicable to all files opened in OUTPUT mode.

I-O Phrase

This phrase is valid for sequential, indexed, relative, and TRANSACTION files.
When you specify this phrase, the procedure is applicable to all files opened in
I-O mode.

EXTEND Phrase

This phrase is valid for sequential files only. When you specify this phrase, the
procedure applies to all files opened in EXTEND mode.

11-104

C

General Considerations

The EXCEPTION/ERROR procedure is run when one of the following
conditions exists:

o After completing the standard system input/output error routine

o Upon recognition of an INVALID KEY or AT END condition when you
have not specified an INVALID KEY or AT END phrase in the input/output
statement

® When status key 1 is not equal to 0 following an I/O operation.

After the EXCEPTION/ERROR procedure has run, control returns to the
statement immediately following the input/output statement that caused the error.

The EXCEPTION/ERROR procedure is performed when an input/output error
occurs during a READ, WRITE, REWRITE, START, DELETE, OPEN,
CLOSE, ACQUIRE, or DROP statement. For example, the procedure is
activated when an input/output statement fails on a file that is in the open status.

The EXCEPTION/ERROR procedure is not performed when a CLOSE statement
fails because the file is already closed.

Within a Declarative procedure, there must be no reference to any nondeclarative
procedure. In the nondeclarative portion of the program, there must be no
reference to procedure names that appear in an EXCEPTION/ERROR
Declarative procedure, except that PERFORM statements may refer to an
EXCEPTION/ERROR procedure or to procedures associated with it.

All input/output statements for a file must have an error handling routine. If you
do not specify an AT END or INVALID KEY phrase, then you must specify an
EXCEPTION/ERROR procedure.

Within an EXCEPTION/ERROR Declarative procedure, no statement can be run
that causes the running of a USE procedure that has been previously invoked and
has not yet returned control to the invoking routine.

| IBM Extension |

TRANSACTION File Considerations
In an EXCEPTION/ERROR Declarative for the TRANSACTION file, only the
file-name or I-O phrases are allowed. All other phrases and all rules are the same

as those for any EXCEPTION/ERROR Declarative for any file.

| End of IBM Extension |

Note: EXCEPTION/ERROR procedures can be used to check the status key
values whenever an input/output error occurs.

Care should be used when you specify EXCEPTION/ERROR procedures for any
file. Prior to successful completion of an initial OPEN for any file, the current

Chapter 11.Procedure Division 11-105

Declarative has not yet been established by the program; if any other I/O
statement is run for a file that has never been opened, no Declarative can receive
control. If this file has been previously opened, the last previously established
Declarative procedure receives control.

For example, an OPEN OUTPUT statement establishes a Declarative procedure
for a file and it is then closed without error. During later processing, if a logic
error occurs, control will go to the Declarative procedure established when the file
was opened for OUTPUT.

USE FOR DEBUGGING Statement

11-106

This statement is discussed under Debugging Features in Chapter 6.

Input and Output Statements of the Procedure Division

ACCEPT Statement 12-2
Format 1 Considerations 12-3
Format 2 Considerations 12-5
Format 3 Considerations 12-6
ACQUIRE Statement 12-7
CLOSE Statement 12-8
DELETE Statement 12-10
Status Key--General Considerations 12-10
INVALID KEY Condition 12-10
DELETE Statement with Sequential Access Mode 12-11
DELETE Statement with Random or Dynamic Access Mode 12-11
Indexed Files 12-11
Relative Files 12-11
DELETE Statement Considerations 12-12
DISPLAY Statement 12-13
Format 1 Considerations 12-13
Format 2 Considerations 12-14
DROP Statement 12-15
OPEN Statement 12-16
Current Record Pointer 12-18
Format 1--Sequential Files 12-18
Format 2--Indexed and Relative Files 12-19
Format 3-TRANSACTION Files 12-20
READ Statement 12-21
Current Record Pointer 12-24
INTO Identifier Phrase 12-24
Format 1 and Format 2--Sequential Access 12-25
NEXT RECORD Phrase 12-25
AT END Condition 12-26
Format 3 and Format 4--Random Access 12-26
INVALID KEY Condition 12-26
Files with Relative Organization 12-27
Files with Indexed Organization 12-27
READ Statement with Dynamic Access Mode 12-27
Format 5 - Indexed File Extensions (Dynamic Access Only) 12-28

Input and Output Statements of the Procedure Division

Format 6 - TRANSACTION Files 12-28
TERMINAL Phrase 12-29
NO DATA Phrase 12-29
AT END Condition 12-29
REWRITE Statement 12-30
FROM Identifier Phrase 12-31
INVALID KEY Condition 12-31
REWRITE Statement for Sequential Files 12-31
REWRITE Statement for Indexed Files 12-32
REWRITE Statement for Relative Files 12-33
START Statement 12-34
KEY Phrase 12-34
INVALID KEY Condition 12-35
START Statement for Indexed Files 12-36
START Statement for Relative Files 12-36
WRITE Statement 12-37
FROM Identifier Phrase 12-40
Format 1 Considerations 12-40
ADVANCING Phrase 12-40
END-OF-PAGE Phrase 12-41
Format 2 Considerations 12-42
INVALID KEY Condition 12-42
Indexed Files 12-42
Relative Files 12-43
Format 3 Considerations 12-44
FORMAT Phrase 12-44
TERMINAL Phrase 12-45
STARTING Phrase 12-45
ROLLING Phrase 12-45
INDICATOR Phrase 12-46

Chapter 12. Input and Output Statements of the Procedure Division

COBOL input and output statements transfer data to and from files. In COBOL,
the unit of data made available to the program is a record. Provision is made for
operations such as the movement of data into buffers and internal storage,
validity checking, error correction (when feasible), and unblocking and blocking
of records.

The description of the file in the Environment Division and the Data Division
governs which input and output statements are allowed in the Procedure Division.

There is special processing for deleted records (deleted records are valid only for
relative and index files), and there are certain restrictions when using deleted
records. For a full explanation of the limitations associated with deleted record
processing, see Initial Considerations in Chapter 2.

In this chapter, the Procedure Division input and output statements are presented
alphabetically. Each statement format is followed by a discussion of its options.

Chapter 12.Input and Output Statements of the Procedure Division 12-1

ACCEPT Statement

The function of the ACCEPT statement is to obtain low-volume data from the
device assigned as the system input device (SYSIN) or from a display station
(SYSLOG) or an SSP-ICF session. The ACCEPT statement causes the transfer
of data into the specified identifier. There is no editing or error checking of the
incoming data. The formats of the ACCEPT statement are:

Format 1

ACCEPT identifier [FROM mnemoni c-name]

Format 2
DATE
ACCEPT identifier FROM { DAY
TIME

Format 3

identifier [FROM mnemoni c-name] .

8| FOR Jidentifier-2
. literal

12-2

Format 1 Considerations

You can use Format 1 to transfer data from an input device to the identifier. The
identifier can be a group item, an elementary alphabetic or alphanumeric item, or
a numeric data item with USAGE DISPLAY or USAGE COMPUTATIONAL.

If you omit the FROM phrase, the system input device (requesting display station
or invoking procedure) is assumed. If the program is invoked by a procedure, a
record is read from the procedure for each ACCEPT statement until a /* is
encountered. If the records in the procedure are exhausted or if the program is
not invoked by a procedure, the requesting display station is used via SYSIN. If
end-of-file is encountered in the procedure, the requesting display station is used
via SYSIN and the program continues running as if no procedure had been
invoked but no notification of the original procedure will be displayed on the
status screens.

If you specify the FROM phrase, the mnemonic name must be associated with an
input or output device that you have specified in the SPECIAL-NAMES
paragraph. The input or output device can be the display station (REQUESTOR)
or the system operator’s console (SYSTEM-CONSOLE). If the mnemonic name
is REQUESTOR and the job is entered by way of the JOBQ Command, the
system operator’s console is used otherwise, SYSLOG is used and the requester
display station is prompted for input.

When the device is the system input device, the following rules apply:
® An input record size of 120 characters is assumed.

e If the identifier is more than 120 characters, characters beyond the length of
the identifier are truncated.

e If the identifier is less than 120 characters, succeeding input records are read
until the storage area of identifier is filled. If the identifier is not an exact
multiple of 120 characters, that part of the last input record that does not fit
into the identifier is truncated.

When the device is the display station keyboard, the same rules apply as when the
device is the system input device except that the size is 60 characters.

Chapter 12.Input and Qutput Statements of the Procedure Division 12-3

12-4

The source of input data is dependent upon the type of program initiation as

follows:

Method of
Program
Initiation

Mnemonic name
Associated with
System-Console

Mnemonic name
Associated with
Requestor

Data Source
when FROM
Option Omitted

JOBQ

System Console

System Console

‘Data from

next record in
the procedure.
If there is no
data in the
procedure, the
input comes
from the
system
console.

SRT System Console | Display Station | Display
Station

MRT System Console | System Console | Can produce
undesirable
results.
Specify the
FROM
option.

Input from the device can be stopped by entering a record beginning with /*. The
J* is moved into the ACCEPT identifier with blank padding or truncation on the
right. Any subsequent attempt to ACCEPT from the device is in error and no
further processing occurs. If the identifier is longer than the device size and the /*
is entered for a succeeding input record, the identifier is padded to the right with
blanks, and the /* is treated as input to the next ACCEPT from the device.

C

Format 2 Considerations

You can use Format 2 to transfer the system information (program date and
system time) to the identifier, using the rules for the MOVE statement without the
CORRESPONDING phrase. The identifier can be a group item, or an
elementary alphanumeric, alphanumeric edited, zoned decimal, packed decimal,
binary, or numeric edited item. The following discussion concerns the DATE,
DAY, and TIME phrases:

o DATE has the implicit PICTURE 9(6) USAGE DISPLAY. The sequence of
data elements from left to right is: 2 digits for year of century, 2 digits for
month of year, 2 digits for day of month. Thus, July 4, 1982, is expressed as
820704.

The date is the last date specified in OCL for this job stream, or the current
program date if no date has been specified in OCL since sign-on. An MRT
program uses the system date at job initialization unless you explicitly specify
a date in the OCL for this job stream.

® DAY has the implicit PICTURE 9(5) USAGE DISPLAY. The sequence of
data elements from left to right is: 2 digits for year of century, 3 digits for
day of year. Thus, July 4, 1982, is expressed as 82186, because July 4 is the
186th day of the year 1982.

o TIME has the implicit PICTURE 9(8) USAGE DISPLAY. The sequence of
data elements from left to right is: 2 digits for hour of day, 2 digits for
minute of hour, 2 digits for second of minute, 2 digits for hundredths of
second. Thus, 2:41 p.m. is expressed as 14410000. The time returned is the
time when the ACCEPT statement is run.

The time is always rounded up to the nearest second; therefore, hundredths of
a second are always expressed as 00.

Chapter 12.Input and Output Statements of the Procedure Division 12-5

Format 3 Considerations

12-6

I IBM Extension

Format 3 transfers data from the local data area or from the attribute record to
identifier-1.

If the mnemonic name is associated with LOCAL-DATA, the 512-byte local data
area associated with the requester display station is moved into identifier-1.

If the mnemonic name is associated with ATTRIBUTE-DATA, identifier-1 must
describe an attribute data record. The attributes of the specified symbolic ID are
moved into identifier-1. The TRANSACTION file must be open for this request.

The move into identifier-1 for both LOCAL-DATA and ATTRIBUTE-DATA
takes place according to the rules for the MOVE statement for an-alphanumeric
group move without the CORRESPONDING phrase.

The FOR phrase is allowed only when you associate the mnemonic name with
either ATTRIBUTE-DATA or LOCAL-DATA. The literal or identifier-2 is the
symbolic ID of the display station or SSP-ICF session for which data is retrieved.
A symbolic ID of blanks (or none specified) retrieves the attributes or local data
from the requester for which an input or output operation was most recently
performed. In a program that has no TRANSACTION file, the local data is
retrieved from the requester for SRT batch jobs. The symbolic ID must be a
2-character, alphanumeric data item or literal associated with the requester.

Note: If the program is an MRT program, there is a local data area for each
requester and an additional local data area for the program. Prior to the
successful completion of the first requester’s first input or output operation, this
MRT local data area can be accessed. A symbolic ID of blanks will return the
MRT’s local data area.

If the mnemonic name is associated with either SYSTEM-CONSOLE or
REQUESTOR, the FOR phrase is not valid.)

I End of IBM Extension

C

ACQUIRE Statement

The ACQUIRE statement attaches a display station or an SSP-ICF session to the
TRANSACTION file.

Format

‘ AC.Q UIRE {llteral

identi iler

) £o8 fiie-nene |

The value of the literal or identifier specifies the symbolic identification of a
display station or an SSP-ICF session that is to be associated with the file name.
To be acquired, a display station must be in stand-by mode. To acquire an
SSP-ICF session, the session identifier must be specified by the SYMID parameter
of the OCL SESSION statement for the job step.

If you specify a literal, it must be a 2-character, alphanumeric literal. If you
specify an identifier, it must refer to a 2-character, alphanumeric data item.

For display stations, the first character must be alphabetic (A through Z). For
SSP-ICF sessions, the first character must be numeric (0 through 9) and the
second character must be alphabetic (A through Z) or a special character ($, #, or

@).
The file name must refer to a file whose organization is TRANSACTION. For

additional information on TRANSACTION files and interactive processing, refer
to Chapter 7.

Chapter 12.Input and Output Statements of the Procedure Division 12-7

CLOSE Statement

The CLOSE statement stops file processing, with an optional lock.

Format

» file-name-2

CLOSE file-name-1[m o —_—

r

r

reeL) |wrTh no rRewrnp |l
UNIT (|FOR REMOVAL |

e

wiTHYno rewinp |l
focK
L

b e el |

lfReeL ||WITH NO BEHINDI
UNIT [|FOR REMOVAL

WITHYNO REWIND ll'
LOCK

T S S S w— — — —

o

12-8

Each file name specifies a file with which the CLOSE statement is used. The files
need not have the same organization or access method. The files must not be sort
or merge files.

A CLOSE statement can be run only for a file in an open mode. After a CLOSE
statement is successfully run, the record area associated with the file name is no
longer available. An unsuccessful CLOSE statement makes the record data area
undefined.

After a CLOSE statement is successfully run for the file, an OPEN statement for
the file must be run before any other input or output statement (except a
SORT/MERGE statement with the USING or GIVING phrase) can refer
explicitly or implicitly to the file. If you specify the FILE STATUS clause in the
file control entry, the associated status key is updated when the CLOSE statement
is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

http:H~1:!.o2

| IBM Extension |

TRANSACTION File Extended File Status Key: the extended file status key for
a TRANSACTION file is four characters long. Characters 1 and 2 contain the
ICF major return code; characters 3 and 4 contain the ICF minor return code.
ICF return codes are described in the manual Interactive Communications Feature:
Reference, SC21-7910. See Appendix D in this COBOL manual for a list of status
keys and their meanings.

| End of IBM Extension |

If the file is open and a CLOSE statement is unsuccessfully run, the
EXCEPTION/ERROR procedure (if specified) for this file is run. If a CLOSE
statement is not run for an open file before a STOP RUN statement for this
program is run, results are unpredictable.

When you specify the LOCK option, you ensure that the file cannot be opened
again in the program.

The REEL/UNIT option, the FOR REMOVAL option, and the NO REWIND
option are treated as comments.

For special considerations concerning spooled printer files, see Some itial
Considerations in Chapter 2.

Chapter 12.Input and Output Statements of the Procedure Division 12-9

DELETE Statement

The DELETE statement logically removes a record from an indexed or a relative
file.

Format

DELETE file-name

RECORD [INVALID KEY imperative-statement]

When the DELETE statement is run, the associated file must be opened in I-O
mode. The file also must be created as a delete-capable file. This is done by
specifying DFILE-YES on the FILE OCL statement or the BLDFILE procedure
when the file is created. For more information on creating delete-capable files,
see the manual System Reference. You must define the file name in an FD entry
in the Data Division, and it must be the name of an indexed or a relative file.
After a successful DELETE statement, the record is logically removed from the
file and can no longer be accessed. For indexed files, the space that the record
occupied cannot be used until the file is copied or reorganized. The DELETE
statement does not affect the contents of the record area associated with the file
name.

A record may be deleted by using a random access DELETE with no WITH
DUPLICATES clause. This record is determined by the contents of the data
names defined in the RECORD KEY clause.

Status Key--General Considerations

If you specify the FILE STATUS clause in the file control entry, a value is placed
in the specified status key (the 2-character data item named in the FILE STATUS
clause) during the running of any request on that file; the value indicates the
status of that request. The value is placed in the status key before any
EXCEPTION/ERROR Declarative or INVALID KEY/AT END option
associated with the request is run.

The first character of the status key is known as status key 1; the second character
is known as status key 2. Combinations of possible values and their meanings are
shown in Appendix D.

INVALID KEY Condition

12-10

The INVALID KEY condition can occur when a DELETE statement is run.
When the INVALID KEY condition is recognized, the actions are taken in the
following order:

1. If you specify the FILE-STATUS clause in the file control entry, a value is
placed into the status key (status key 1 = 2) to indicate an INVALID KEY
condition (see Appendix D).

<9

2. If you specify the INVALID KEY option in the statement causing the
L condition, control is transferred to the INVALID KEY imperative statement.
Any EXCEPTION/ERROR declarative procedure specified for this file is not
performed.

3. If you do not specify the INVALID KEY option, but you do specify an
EXCEPTION/ERROR declarative procedure for the file, the
EXCEPTION/ERROR procedure is performed.

When an INVALID KEY condition occurs, the input or output statement that
caused the condition is unsuccessful. If you do not specify the INVALID KEY
option for a file, you must specify an EXCEPTION/ERROR procedure. If an
error other than an INVALID KEY condition occurs, the EXCEPTION/ERROR
procedure is run.

DELETE Statement with Sequential Access Mode

For a file in sequential access mode, the last I/O statement must be a successful
READ statement. When the DELETE statement is run, the system logically
removes the record retrieved by that READ statement. The current record
pointer is not affected by the DELETE statement.

You must not specify the INVALID KEY option for a file in sequential access
mode. You should, however, specify an EXCEPTION/ERROR procedure.

DELETE Statement with Random or Dynamic Access Mode
In random or dynamic access mode, DELETE statement results depend on
whether the file organization is indexed or relative.

Indexed Files: When the DELETE statement is run in random or dynamic access
mode and WITH DUPLICATES is not specified in the RECORD KEY clause,
the system logically removes the record identified by the contents of the
RECORD KEY data item. If the file does not contain such a record, an
INVALID KEY condition exists.

When the DELETE statement is run in random or dynamic access mode and
WITH DUPLICATES is specified in the RECORD KEY clause for the file, the
last input or output statement for the file must have been a successful READ
statement. The record read by that statement is the one that is deleted. The
READ statement is required to ensure that the proper record is deleted when
there are duplicate records. The INVALID KEY clause must not be specified.

Relative Files: When the DELETE statement is run in random or dynamic access
mode, the system logically removes the record identified by the contents of the
RELATIVE KEY data item. If the file does not contain such a record, an
INVALID KEY condition exists.

Chapter 12.Input and Qutput Statements of the Procedure Division 12-11

DELETE Statement Considerations<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>