

When You Are:

Planning to
Install Your
Computer

Getting Your
Computer
Ready to Use

Operating
Your
Computer

Operating and
Using the
Utilities

Programming
Your
Computer

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

You Can Find Information In:

What to Do Before Your Computer Arrives
or

Converting from System/34 to System/36

Setting Up Your Computer
Performing the First System Configuration For Your System
System Security Guide

Learning About Your Computer
Operating Your Computer

Source Entry Utility Guide
Data File Utility Guide
Creating Displays
Work Station Utility Guide
Utilities Messages

Concepts and Programmer's Guide
System Reference
Sort Guide
Work Station Utility Guide
Programming with Assembler
Assembler Messages

(communication manuals)
(communication message manuals)

System Messages
(message manuals)
System Problem Determination

IBM System/36:
Programming with Assembler SC21-7908-3

What Is Your Opinion of This Manual?

Your comments can help us produce better manuals. Please take a few minutes to evaluate this manual as soon as you become
familiar with it. Circle V (Ves) or N (No) for each question that applies. IBM may use or distribute whatever information you supply in
any way it believes appropriate without incurring any obligation to you.

FINDING INFORMATION USING INFORMATION
V N Is the table of contents helpful? V N Does the information apply to your situation?

What would make it more helpful? WhicH topics do not apply?

V N Is the index complete? V . N Is the information accurate?
List specific terms that are missing. What information is inaccurate?

V N Are the chapter titles and other headings meaningful? V N Is the information complete?
What would make them more meaningful? What information is missing?

V N Is information organized appropriately? V N Is only necessary information included?
What would improve the organization? What information is unnecessary?

V N Does the manual refer you to the appropriate places V N Are the examples useful models?
for more information? What would make them more useful?

Li~t ~P!3cific references that are wrong or
missing.

V N Is the format of the manual (shape, size, color)
effective?

What would make the format more effective?
UNDERSTANDING INFORMATION

V N Is the purpose of this manual clear?
What would make it clearer?

OTHER COMMENTS

V N Is the information explained clearly? Use the space below for any other opinions about this manual
Which topics are unclear? or about the entire set of manuals for this system.

V N Are the examples clear?
Which examples are unclear?

YOUR BACKGROUND

V N Are examples provided where they are needed? What is your job title?
Where should examples be added or deleted?

What is your primary job responsibility?

V N Are terms defined clearly? How many years have you used computers?
Which terms are unclear?

Which programming languages do you use?

V N Are terms used consistently? How many times per month do you use this manual?
Which terms are inconsistent?

Your name
V N Are too many abbreviations and acronyms used? Company name

Which ones are not understandable? Street address,
City, State, ZIP

V N Are the illustrations clear? No postage necessary if mailed in the U.S.A.
Which ones are unclear?

SC21-7908-3

Fold and tape

Fold and tape

--- ------ -------------- ------------_.-

Please do not staple

I " III
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 40 ARMONK, N. Y.

POSTAGE WILL BE PAID BY ADDRESSEE:

IBM CORPORATION
I nformation Development
Department 532
Rochester, Minnesota, U.S.A. 55901

Please do not staple

Fold and tape

NO POSTAGE
NECESSARY IF
MAl LED IN THE
UNITED STATES

Fold and tape

--------- - ------= '::::5~5: System/36

Programming with Assembler

Program Number 5727-AS1

Program Number 5727-AS6

File Number
S36-21

Order Number
SC21-7908-3

Fourth Edition (January 1986)

This major revision obsoletes SC21-7908-2.

Changes are periodically made to the information herein; any such changes will be
reported in subsequent revisions. Changes or additions to the text and illustrations are
indicated by a vertical line to the left of the change or addition. See About this Manual
for a summary of major changes to this edition.

This edition applies to Release 4, Modification Level 0, of the IBM System/36 Assembler
Program Product (Program 5727-ASl and Program 5727-AS6), and to all subsequent
releases and modifications until otherwise indicated in new editions.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program
may be used instead.

This publication contains examples of data and reports used in daily business operations.
To illustrate them as completely as possible, the examples include the names of
individuals, companies, brands, and products. All of these names are fictitious and any
similarity to the names and addresses used by an actual business enterprise is entirely
coincidental.

Publications are not stocked at the address given below. Requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for reader's comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Canada Ltd. Information
Development, Department 849, 895 Don Mills Road, Don Mills, Ontario, Canada, M3C
lW3. IBM may use or distribute whatever information you supply in any way it believes
appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1983, 1984, 1985, 1986

Contents

AboutTh~Manual•....... vil
Who should use this manual Vll

How this manual is arranged. VIll

What you should know ix
If you need more information x
Summary of changes Xl

Chapter 1. Introduction to the IBM
System/36 Assembler Language 1-1

System/36 Assembler Language 1-2
The Source Program 1-3
System Procedures and Considerations 1-4

ASM Procedure 1-4
ASM Procedure Command 1-4
OLINK Procedure 1-7
Files Used by the Assembler Program 1-7

Assembler Listing 1-9
Prologue 1-9
Control Statements 1-9
External Symbol List (ESL) 1-9
Object Code and Source Program

Listing 1-10
Page Heading 1-12
Diagnostics 1-12
Cross-Reference List 1-13

Statements in the Assembler Source
Program 1-14

Assembler Coding Form 1-15
Valid Characters 1-15

Coding Form Parts 1-15
Records in the Assembler Object Program 1-18
Communications Programs 1-20

Data Communications Programming
with SSP-ICF 1-20

Data Communications Programming
with BSC 1-20

Other Systems with BSC 1-21
Magnetic Character Reader 1-23

Chapter 2. Using IBM System/36
Assembler Programming Language . 2-1

Before You Write an Assembler Language
Program :.......... 2-1

Assembler Control Statements 2-1

HEADERS Statement 2·2
OPTIONS Statement 2-3

Assembler Program Conventions 2-5
Terms 2-5
Expressions 2-10
Location Counter Reference 2-13
Addressing 2-14
Program Linking References 2-16

Machine Instructions 2-18
A (Add to Register) 2-19
ALC (Add Logical Characters) 2-20
ALI (Add Logical Immediate) 2-21
AZ (Add Zoned Decimal) 2-22
BC (Branch on Condition) 2-23
BD (Branch Direct) 2-25
CLC (Compare Logical Characters) 2-26
CLI (Compare Logical Immediate) 2-27
ED (Edit) 2-28
ITC (Insert and Test Characters) 2-29
JC (Jump on Co""ndition) 2-30
L (Load Register) 2-32
LA (Load Address) 2-33
MVC (Move Characters) 2-34
MVI (Move Logical Immediate) 2-35
MVX (Move Hexadecimal Character) . 2-36

S (Subtract from Register)- -~--.:~ ... ': ._. 2-37
SBF (Set Bits Off Masked) 2-38
SBN (Set Bits On Masked) 2-39
SLC (Subtract Logical Characters) .. ~ 2-40
SLI (Subtract Logical Immediate) 2-41
SRC (Shift Right Character) 2-42
ST (Store Register) 2-43
SZ (Subtract Zoned Decimal) 2-44
TBF (Test Bits Off Masked) 2-45
TBN (Test Bits On Masked) ~ 2·46
XFER (Transfer) 2-47
ZAZ (Zero and Add Zoned) 2-48

Supervisor Call Instructions 2-49

Chapter 3. Using Assembler
Instructions 3-1

Assembler Instruction Statements 3-1
DC (DEFINE CONSTANT) 3-2

Contents 111

DS (Define Storage) 3-7
DROP (Drop Index Register as Base

Register) , 3-8
EJECT (Start New Page) 3-9
END (End Assembly) 3-10
ENTRY (Identify Entry-Point Symbol) 3-11
EQU (Equate Symbol) 3-12
EXTRN (Identify External Symbols) .. 3-13
ICTL (Input Format Control) 3-15
ISEQ (Input'Sequence Checking) 3-16
ORG (Set Location Counter) 3-17
PRINT (Control Program Listing) 3 .. 19
SPACE (Line Feed) 3-20
START (Start Assembly) 3-21
TITLE (IDENTIFY LISTING) 3~22
USING (Use Index Register for Base

Displacement Addressing) 3-23

Chapter 4. Creating Macroinstructions 4-1
Macroinstruction Definition 4-2
Macroinstruction Coding Conventions ... 4-3

Sequence Symbol 4-3
Character String 4;.3
Character Expression 4-3
Substring 4-4
Alphameric Value 4-5
Variable Symbol ,. 4-5

Positional Parameters Keyword Parameters
Count Function 4-8
Arithmetic Expression 4-8
Continuation 4-9
Concatenation 4-9
Creating Macroinstruction Definitions 4-10
Definition Control Statement Format. 4-10
Macroinstruction Format 4-11

Macroinstruction Definition Control
Statements 4-13

Header 4-13
Prototype 4-14
Global 4-15
Local 4-17
Tables 4-19
TABDF (Table-Definition) 4-20
TEXT 4-22
Comment 4-23
AIF (Conditional Branch) 4-24
AGO (Unconditional Branch Record) . 4-27
SETA (Set Arithmetic) 4-27
SETB (Set Binary) 4-28
SETC (Set Character) 4-29
ANOP (Assembly No Operation) 4-30
MNOTE (Message) 4-31
MEXIT (Logical End) 4-33
MEND (Physical End) 4-34

IV

Definition Restrictions 4-34
Example of A User Macroinstruction

Definition 4-35
Using Macroinstructions 4-37

Chapter 5. Macroinstructions Supplied
by IBM '. 5-1

$ALOC (Allocate File or Device) 5-4
$CLOS (Prepare a Device or File for

Termination) '. 5-6
$DTFB (Define the File for BSC) 5-7
$DTFD (Define the File for Disk) 5-13
$DTFO (Generate DTF Offsets) 5-19
$DTFP (Define the File for a Printer) 5-20
$DTFW (Define the File for Display

Station) 5-23
$EOJ (End of Job) 5-30
$FIND (Find a Directory Entry) 5-31
$FNDP (Generate Parameter List and

Displacements for $FIND) 5-32
$GETB·(Issue a Get Request) 5-34
$GETD (Construct a Disk Get Interface) 5-35
$INFO (Information Retrieval) 5-39
$INV (Inverse Data Move) 5-43
$LMSG (Generate a Parameter List for

a Displayed Message 5-44
$LOAD (Load or Fetch a Module) 5-48
$LOG (Generate the Linkage to the

System Log) 5-49
$LOGD (Generate Displacements for

System Log) ',' 5-51
$OPEN (Prepare a Device or File for

Access) 5-52
$PUTB (Issue a Put Request) 5-53
$PUTD (Construct a Disk Put Interface) 5-54
$PUTP (Construct a Printer Put

Interface) 5-57
$RIT (Return Interval Time) 5-59
$SIT (Set Interval Timer) 5-61
$SNAP (Snap Dump of Main Storage) 5-63
$SORT (Construct a Loadable Sort

Interface) 5-65
$SRT (Generate a Loadable Sort

Parameter List) 5-66
$TOD (Return Time and Date) 5-70
$TRAN (Generate an Interface to the

Translate Routine) 5-71
$TRB (Generate Timer Request Block) 5-72
$TRL (Generate a Translation

Parameter List) 5-73
$TRTB (Generate a Translation Table) 5-74
$WIND (Generate Override Indicators

for Display Station) 5-76

$WSEQ (Generate Labels for Display
Station) 5-76

$WSIO (Construct a Display Station
Input/Output Interface) 5-77

Programming Considerations 5-88
Coding Restrictions 5-88

Binary Synchronous Communications .. 5-89
Macroinstructions 5-89
Preparing BSC DTFs For Data Transfer 5-90
Initiating and Terminating the Transfer

of Data 5-91
Using Move Mode 5-92
Blank Truncation 5-93
Blank Compression/Expansion 5-94
Data Formats 5-95
Changing the BSC Environment 5-96
Errors 5-96

Automatic Call Support 5-97

Chapter 6. Assembler Problem
Determination 6-1

How to Use this Procedure 6-1
Identifying Assembler Problems 6-1
Contacting Your Service Representative 6-7

Appendix A. Programming Examples A-I
BSC Programming Example A-2

Transmit A-2
Receive Program A-3
Transmit and Receive Program A-5
System Date/Time Program A-8
Workstation and Print Program A-II
Alternative Index and Noncontiguous

Keys Program A-17

Appendix B. Character Sets B-1
EBCDIC B-2
ASCII B-3

Appendix C. Assembler Coding Forms C-l
Assembler Coding Form GX21-9279-2 C-l

Appendix D. Assembler Machine
Instruction Formats D-l

Assembler Instruction Formats D-l

Appendix E. Disk Data Management
Considerations E-l

Access Methods E-l
Data Management Control Blocks and

Interface Areas E-8
Allocating and Opening the File E-I0
Accessing Records in a File E-ll
Completion Conditions E-23
Closing the File E-30

Appendix F. Display Station Data
Management Considerations F-l

GET and ACI Return Codes F-l
ACQ Return Codes F-2
STI Return Codes F-2
Return Codes for All Operations Except

GET, ACI, ACQ, and STI F-3

Glossary G-l

Index X-2

Contents V

VI

About This Manual

Who should use this manual . . .

This System/36 Programming With Assembler manual is intended for the
experienced programmer who will be using the System/36 Assembler and Macro
Processor licensed program. This manual contains the following:

• The relationship of the assembler language (source code) to the machine
language (object code)

• How to code, assemble, follow, and debug assembler programs

• How to create, store, and call macroinstructions.

About This Manual Vll

How this manual is arranged . . .

VI11

This manual is arranged as follows:

• Chapter 1 'explains the assembler language and the relationship between an
assembler language and machine language, Some of the characteristics of the
System/36 assembler language are presented.

• Chapter 2 presents the assembler language components, coding conventions
and programming conventions.

• Chapter 3 describes the assembler instruction statements.

• Chapter 4 describes the macroprocessor and the coding of macroinstruction
definitions. Some macroinstruction examples are given.

• Chapter 5 describes macroinstruction statements and IBM-supplied
macroinstructions.

• Chapter 6 describes procedures for identifying and correcting assembler
problems.

• Appendix A gives programming examples.

• Appendix B contains the EBCDIC and ASCII character sets and a list of the
valid display screen symbols.

• Appendix C shows the assembler coding form, GX21-9279.

• Appendix D shows the assembler machine instruction formats and operation
codes.

• Appendix E provides detailed information on disk file access methods.

• Appendix F describes the various return codes that are used with display
station operations.

Note: Some terms will appear earlier in the manual than any discussion
explaining them. If you do not understand a term, please refer to the index or to
the glossary.

What you should know . . .

An understanding of the IBM System/36 architecture can be gained through the
following manuals:

• IBM System/36 Functions Reference Manual, SA21-9436

• IBM System/36 System Reference (SSP), SC21-9020

• IBM System/36 Concepts and Programmer's Guide, SC21-9019

• IBM System/36 Learning About your Computer, SC21-90l8.

Users of the assembler and macro processor should have the following manuals
available while coding programs, entering data, or clearing errors (debugging a
program):

• IBM System/36 Guide to Publications, SC21-9015

• IBM System/36 Assembler Messages, SC21-7942

• IBM System/36 Utilities Messages, SC21-7939

Other manuals you might expect to use are listed under If You Need More
Information in this section.

About This Manual IX

If you need more information . . .

x

You will find further information in these related publications

• IBM System/36 Overlay Linkage Editor Guide, SC21-9041

• IBM System/36 Interactive Communications Feature Guide and Examples,
SC21-7911

• IBM System/36 Interactive Communications Feature Reference, SC21-7910

• IBM System/34 IBM System/32 Scientific Macroinstruction Functions
Reference Manual, SA21-9275

• IBM System/36 System Data Areas, LY21-0592

• IBM System/36 Source Entry Utility Guide, SC21-7901

• IBM System/36 System Problem Determination, SC21-7919

• IBM System/36 System Problem Determination, SC21-9063

• IBM System/36 Operating Your Computer - 5364, SC21-90S5

• IBM System/36 Operating Your Computer - 5360, 5362, SC21-9026

• IBM System/36 Distributed Data Management Guide, SC21-S0U

• IBM System/36 Getting Started with Interactive Data Definition Utility,
GC21-S003

• Using System/36 Communications, SC21-90S2.

Information about linking assembler subroutines to programs written in
higher-level languages is contained in the following publications:

• IBM System/36 Programming with RPG II, SC21-9006

• IBM System/36 Programming with COBOL, SC21-9007

• IBM System/36 Programming with FORTRAN IV, SC21-9005.

Assembler Coding Material

• IBM System/34 System/36 Assembler Coding Form, GX21-9279.

1

Summary of changes . . .

The following changes have been made for release 4, modification 0:

• A Problem Determination chapter has been added to assist in assembly-time,
linkage-time, and execution-time problems. Details are provided in Chapter
6.

• Various technical and editorial changes have been made to improve the
quality and usability of this manual.

About This Manual xi

Notes:

xu

Chapter 1. Introduction to the IBM System/36 Assembler Language

This chapter introduces the assembler language, and explains the relationship
between machine language and assembler language.

An assembler language is a set of labels that are used to represent the various
machine language instructions available in a system. Most labels in the assembler
language are simple and easy to remember. Each instruction will have values,
addresses, and other parameters, which the assembler program uses to create all
of the machine language code necessary to perform the desired task.

\

A machine language is the set of binary instructions that the system hardware can
interpret and use to manipulate data. For instance, the following series of binary
data is an instruction and its parameters:

0011 This

1100 instruction moves

1010 this byte
1111 of data

0010 in
1111 to
1100 this
1011 address

The preceding instruction is easier to write, and much easier to understand, when
it is written using IBM System/36 assembler language as:

Operation (Move Immediate)

MVI X'2FCB' ,X'AF'

Address Data

This instruction moves specified data to a selected location.

Chapter l.Introduction to the IBM System/36 Assembler Language 1-1

System/36 Assembler Language

1-2

The IBM Systemf36 assembler language gives you a convenient method to
represent the machine instructions and related data needed to create a program.
Before you run it, your assembler language source program is assembled into
Systemf36 machine language (an object program) by the assembler program.

When using the assembler language you can refer to instructions, data areas, and
other program elements by symbolic names you assign or by machine addresses.
You have the EBCDIC bit pattern, and binary arithmetic capabilities available,
and you have access to SSP control blocks such as the DTFs and the lOBs.
Because programming with assembler is done at the most elementary level, it is
possible for an assembler language programmer to write programs that will run
more efficiently than some routine procedures (with their inherent compromises)
generated by COBOL, RPG, or other high-level languages.

You do not have to write routines to handle lOBs and DTFs. You can use the
IBM -supplied macroinstructions to perform system services and to support
inputfoutputdevices. Macroinstructions usually represent a sequence of
instructions. The macroinstruction processor scans for any macroinstructions you
have used before an assembler language program is assembled. When a
macroinstruction is encountered, the associated complete set of instructions (a
definition) is combined with any parameters you used with the macroinstruction
statement. This combination creates a series of assembler language statements
that are inserted into the source program in place of your macroinstruction
statement. The macroinstruction statement is changed into a comment and is
printed in the listing of the program.

The Source Program

The statements that make up an assembler source program are entered through
the source entry utility (SEU). The SED assembler display resembles the
assembler coding form with the primary fields defined.

After you have signed onto the system, sign on to SED by entering:

SEU

After you enter the name of the member that contains the assembler program, the
member type (S for source), and the appropriate library, SEU presents the
Z-display. You can enter assembler source statements on the Z-display, but you
will find it is easier to use the assembler display because the entry fields are
defined for you. You will need to select the assembler display from the Select
display. Press command key 3 to see the Select display.

When you have the Select display, select the ASSEM display. When the ASSEM
display appears, you can enter the following types of assembler program
statements:

• Assembler language statements

• Assembler instruction statements

• Macroinstruction statements

• Macroinstruction definition statements including prototype statements and
definition control statements.

The requirements and formats of the various kinds of statements recognized by
the assembler and the macro processor are described in later chapters of this
manual.

For the additional information you need about SED, see the Source Entry Utility
Guide.

Chapter l.Introduction to the IBM System/36 Assembler Language 1-3

System Procedures and Considerations

System/36 procedures are used to load and run the assembler and macro
processor. These procedures, and the procedure commands that request them, are
described here .. (For a complete description of System/36 procedures and
procedure commands, see the manual System Support Reference.)

ASM Procedure

The ASM procedure calls the assembler program and can call the macro
processor.

ASM Procedure Command

ASM

1-4

The ASM procedure command requests the ASM procedure, which in turn calls
the assembler and, optionally, the macro processor. If you enter ASM, or HELP
ASM, or you type ASM and press the Help key; a display prompts you for
parameters.

source member name, [1 nput 1 i brary], [output 1 i brary] , [MAC],
current library input library NOMAC

[;:urce file Size],[::cro merge source file Size],

[7~sembler work file Size],[;:sembler work2 file size],

[~~b queue], [lIST]'.[XREF]'[OBJ]'[MACRO LIBRARY]
YES NOlIST NOXREF NOOBJ

source member name: Specifies the source program name.

input library: Specifies the name of the library in which the source program is
located. The current library is the default.

output library: Specifies the name. of the library in which the object module will be
placed. If omitted, the source library specified in the second parameter is
assumed. If the second parameter is also omitted, the current library is the
default.

MAC, NOMAC: Specifies the use or bypass of the macro processor.

MAC: Calls the macro processor.

NOMAC: Bypasses the macro processor.

The default is MAC.

source file size: Specifies $SOURCE file size, a 3-digit decimal number indicating
the number of blocks required by $SOURCE. The default is 030.

$SOURCE provides source input to the macro processor. If the macro
processor is not called, $SOURCE provides source input to the assembler.
See Files Used by the Assembler.

macro merge source file size: Specifies $ASMINPT file size, a 3-digit decimal
number indicating the number of blocks required by $ASMINPT. The
default is 045.

$ASMINPT provides source input to the assembler if the macro processor is
called. $ASMINPT contains the merged source program and macro
processor-generated code. If the macro is not called, this file is not
allocated and $SOURCE provides source input. See Files Used by the
Assembler.

assembler work file size: Specifies $WORK file size, a 3-digit decimal number
indicating the number of blocks required by $WORK. The default is 010.

$WORK contains the object code produced by the assembler. See File Used
by the Assembler.

assembler workl file size: Specifies $WORK2 file size, a 3-digit decimal number
indicating the number of blocks required by $WORK2. The default is 036.

$WORK2 is used as a work file by the assembler. See Files Used by the
Assembler.

job queue: Specifies placement of the job on the job queue.

NO: Does not place job on the job queue.

YES: Places the job on the job queue.

The default is NO.

Chapter l.Introduction to the IBM System/36 Assembler Language 1-5

1-6

LIST, NOLIST: Specifies the listing option to be used. If not specified, the LIST
option specified on the assembler OPTIONS statement is used.

LIST: Specifies that the assembler is to produce a complete compiler listing
including control statements, statements in error and associated
diagnostics, and error summary. statements.

NOLIST: Specifies that the assembler is not to produce the compiler listing.
Only the prologue, the control statements, statements in error and
associated diagnostics, and the error summary statements are printed.

XREF, NOXREF: Specifies the ,cross-reference option to be used. If not specified,
the XREF option specified on the assembler OPTIONS statement is used.

XREF: Specifies that the assembler is to produce a cross-reference listing of
the program.

NOXREF: Specifies that . the assembler is not to produce a cross-reference
listing.

OBJ, NOOBJ: Specifies whether the assembler should place the compiled
program in the specified library. If not specified, the OBJ option specified
on the assembler OPTIONS statement is used.

OBJ: Specifies that the assembler is to place the object (compiled) program
in the library a,s a subroutine member.

NOOBJ: Specifies that the assembler is not to place the object (compiled)
program in the library.

MACRO LffiRARY: Specifies the name of the library in which user macros are
located. The order of library search will vary as follows:

• If MACLIB is blank, search #ASMLIB then #LIBRARY

• IfMACLIB is #ASMLIB, search #ASMLIB then #LIBRARY

• If MACLIB is #LIBRARY, search #LIBRARY then #ASMLIB

• Otherwise, search USER-LIBRARY, then #ASMLIB, then #LIBRARY.

Note: If you specify a library that is not found, error message is issued.

OLINK Procedure

The OLINK procedure calls the Overlay Linkage Editor to create a load module.
The OLINK procedure is described in the Overlay Linkage Editor Guide.

Files Used by the Assembler Program

The assembler program uses the following disk files:

• Source program records ($SOURCE and $ASMINPT files). $SOURCE
contains source program records for the macro processor or the assembler. If
the macro processor is not called, $SOURCE contains source program
records for the assembler. If the macro processor is called, $ASMINPT
contains source program records for the assembler.

• Intermediate text ($WORK2 file).

• Cross-reference file ($WORK2 file).

• Overflow symbol table(s) ($WORK2 file).

• Object program records ($WORK file).

If source records are 80 (rather than 96) positions long, they are padded on the
right with 16 blanks before they are placed in the input file. In this case, you
should provide an ICTL statement to prevent the assembler from processing the
sequence field of the 80-column record.

$SOURCE, $ASMINPT, $WORK2, and $WORK are automatically allocated but
their default sizes can be overridden by parameters in the ASM procedure
command. These files are specified as extendable files; if the specified or default
file sizes are not large enough, these files are made larger by an extent value when
they become filled. The extent values in blocks are:

Work Extend
File Value

$SOURCE 20
$ASMINPT 30
$WORK 10
$WORK2 25

Chapter l.Introduction to the IBM System/36 Assembler Language 1-7

1-8

You can save extension overhead by specifying adequate file sizes. The number
of blocks required for the $SOURCE and $ASMINPT files are:

Source Program Size
(number of statements)

100
200
300
400
500
600
700
800
900
1000

Number of Required Blocks
(one block = 2560 bytes)

4
8
12
15
19
23
27
30
34
38

Note: The number of generated statements should be included in the program
size when calculating the size of $ASMINPT.

$WORK2 requires approximately 4 blocks (40 sectors) per 100 source statements:

Source Program Size
(number of statements)

100
200
300
400
500
600
700
800
900
1000

Number of Required Blocks
(one block = 2560 bytes)

4
8
12
16
20
24
28
32
36
40

$WORK contains the object records. One sector contains four 64-byte object
records. The default is 10 blocks.

Assembler Listing

Prologue

Control Statements

Printed output from the assembler includes the prologue, control statements,
external symbol list, object code and source program, page heading, error
messages (diagnostics), and cross-reference list.

Note: A printer is required to print the assembler prologue and error messages.

The prologue contains procedure parameters, modification information, and a list
of options in effect during an assembly.

Any OPTIONS or HEADERS control statements you specify are printed and any
specification errors are noted.

External Symbol List (ESL)

The ESL contains the object program name, EXTRNs and ENTRYs, which are
printed in the following fo~at:

Symbol

Object program name
EXTRN symbol
ENTRY symbol

Type

MODULE
EXTRN
ENTRY

Chapter I.Introduction to the IBM System/36 Assembler Language 1-9

Object Code and Source Program Listing

1-10

The following items are printed for each entry in the source and object programs:

(ERR) Error Field: Which contains an E, I, W, or M for those statements in
error. (Severity codes are described under MNOTE in Chapter 4.)

E Assembler and macro processor errors

W MNOTE warnings with a severity of 8

I Informational messages from the macro processor

M MNOTE errors with severity greater than 8

(LOC) Location Counter: Which is a 4-digit hexadecimal number representing
the leftmost byte of any object code printed on this line.

Object Code: Which is translated code. All code in this field is left-justified. The
parts of the object code are:

• Instructions: Maximum of 6 bytes (12 hexadecimal characters). The
operation, Q-code, operand 1, and operand 2 fields are separated by one
blank.

• Data Constants: Maximum of 8 bytes (16 hexadecimal characters) per line.
No blanks are inserted between the data constants.

• (ADDR) Address Field: Blank except for the following:

For the DC and DS instructions: The address of the reference byte, that
is, the rightmost byte of the field.
For the END instruction: The address to which control is passed to start
the program.
For the USING instruction: The address referenced in the first operand
field.
For the DROP instruction: The register dropped (0001 or 0002).
For the EQU instruction: The value of operand 1.
For the ENTRY instruction: The entry point address.

(STMT) Statement Number Field: Which contains the sequential source
statement number. All source statements, including comments, are numbered.
Valid SPACE, EJECT, and TITLE statements are always assigned statement
numbers but are not printed. The statement number field is a 4-character field;
therefore, the program listing is accurate for only 9999 statements.

Source Statement: Which is a reproduction of the source record. All source
records, except for the listing control statements (SPACE, EJECT, and TITLE)
are printed as follows:

Column

1
5 through 8
10 through 25
27 through 30
32 through 35
36

37 through 132

Item

Error flag
location counter
Object code
Address
Statement number
A plus sign (+) indicating that a
source statement generated by
the macro processor follows.
Source statement

Chapter I.Introduction to the IBM SystemJ36 Assembler Language 1-11

Page Heading

Diagnostics

1-12

The following information is printed for each page in the listing:

• A header stating that the object code listing was produced by the IBM
System/36 Assembler and Macro Processor Program Product, with an
identifier of the release level.

• The content of the current TITLE statement.

• A short description of the contents of the various fields of the source program
and object code listing, the current date and time, and the page number.

The printed list of the source program and object code includes error codes for
improperly 90ded statements. These codes are documented at the end of the
source program and object code listing under the heading Diagnostics: The
diagnostic list provides the following information:

• Statement: A decimal number assigned by the assembler to the statement in
error.

• Error code: A 4-digit code. See Assembler Messages, SC21-7942, for a
complete list of these codes and the corresponding messages.

• Message: A description of the error and the type of error.

• The number of sequence errors in the assembled program if a sequence check
was requested.

The number of statements in error in the assembly does not include a missing
module name and missing end statement errors.

Cross-Reference List

If XREF is specified for an assembly, a list of all symbol names referred to in the
source program is generated. This list contains the following information:

• SYMBOL: The symbol name.

• LEN: The decimal length of the symbol.

• VAL VE: The hexadecimal value of the symbol.

• DEFN: The decimal number of the statement that defines the symbol.

• REFERENCES: The decimal numbers of the statements that reference the
symbol. Each reference by symbol to a data area or machine register that can
be altered by a machine instruction is flagged with an asterisk.

At the end of the cross-reference listing, the error summary statements are printed
again.

Chapter I.Introduction to the IBM System/36 Assembler Language 1-13

Statements in the Assembler Source Program

1-14

An assembler language source program is a set of assembler language statements
that perform some task for you. Each statement has an identification-sequence
number associated with it. When you use the coding sheet, the assembler
language statement is entered in positions 1 through 87, position 88 is always left
blank, and the identification-sequence number is entered in positions 89 through
96. You can change these position numbers with an ICTL statement.

There are three types of assembler language statements:

• Machine instruction statements that represent machine language instructions
on a one-for-one basis.

• Assembler instruction statements that cause the assembler to perform various
operations while your source program is being assembled. These instruction
statements are not translated into machine language.

• Macroinstruction statements that represent a sequence of machine instruction
statements, assembler instruction statements, or both.

Assembler Coding Form

Valid Characters

The assembler coding form is shown in Appendix C. The following material
describes the use of the coding form.

Assembler statements can be written using these characters:

Alphabetic characters
Digits
Special characters

A through Z, and $ # @
o through 9
+ - , . *) (, blank

In addition to these characters, any valid character that you can cnter with your
input device, with the exception of the ampersand (&) in a macroinstruction
definition, can be placed between single quotes, or in the remarks and comments.
Note that not all printers are able to print all characters, even though the
assembler accepts them as input. There might be some display stations at which
you can enter characters that other stations cannot display.

Coding Form Parts

I~rl~

PROGRAM

PROGRAMMER

Lo'" Opel.tion OpW.nd

The coding form has four fields: LABEL, OPERATION, OPERAND, and
IDENTIFICATION SEQUENCE. The REMARKS heading is provided only as
a reminder.

A blank is used to separate the parts of the assembler statement. The following
illustrates the parts of a statement on a coding form.

IBM System/34. System/36 Assembler Coding Form p
TYPING lGRAPHIC 1 A I I I PAGE

DATE I INSTRUCTIONS J CHARACTER I / I I I OF

QX21·9279-1

Printed in U.S.A.

STATEMENT / ldentlficetlon

A_ -.....
1:<> J 4 56789 011121314 1516171819202122 23 24 25 26 27 28 29 30 3132333435 36 37 383940 41424344 45 46 41 48 49 50 515253 S4 55 56 57 58 S9 606162636465 66 61 68 69 7011 72 7J 7415 16 71 78 79 eo 81828384858687 88990919293949596

j

:t h'~ IS RI!: All tl s:IT bo. Rn" J~ll= 11~w A.~[J cq·~ Tit 1"11'4 tT~E HI 1'11"'(ER

~rr ().RiT ~' IZOJ ~CZ'

~14 "Lt- T~- Il II AJ irsK

!tt)p N rr~- ~II: ~N ~I~I~

ill It:
~Ir. [i::tir; IT - ~1t1 11:;- "'I.:: -IE ~ !Err I-IJi 110 IrIT ir:;lw
~1J.l Urr In:::- E: lw:iIl II: - 1- -11 Is. I, ~rr -I't If:l rr trlr

1

1 J 4 911112131415161"81 920 21 22 23:1 252627282930 31 32333435 36 37 383940 414243'" G 46.148 4850 51 52 53 54 5& 56 57 58 5910 6162636465666768697071 7.2 13 74 7S 7671 78 7910 al 8283 U 85 86 8788 89 90 91 9293949';) 96

-.--"-.... _ ... __ 1 ..., "'---.. --fa G G)

Chapter l.Introduction to the IBM Systemj36 Assembler Language 1-15

1-16

OLabe/

A label is any symbol that a programmer uses to identify either an assembler
language statement, a storage area, or a value used by the program. A label is
allowed in most instructions.

The first character of a label must be alphabetic. Enter it in the first position
(position 1 on a coding form) of the language statement. If the first position is
blank, the assembler program does not treat the rest of the entry as a label. The
remaining characters can be letters or numbers, but not special characters.
Follow the label by at least one blank.

GOperation

An operation is the mnemonic term used to identify a particular machirie
instruction, assembler instruction, or macroinstruction. You must enter an
operation for each assembler language statement. This entry can start in any
position except position 1 and must be followed by at least one blank.

eOperand

An operand identifies and describes the data to be acted upon by the operation.
The operand indicates storage locations,registers, masks, number of bytes of
storage affected, or types of data. Operands are required in all machine
instructions. An operand is defined as a term, or an arithmetic combination of
terms.

Separate the operand entries with commas, with no blanks between operands.
The last operand of a language statement must be followed by at least one blank.

Gldentijication Sequence

You can use positions 89 through 96 to enter program identification or statement
identification sequence numbers. These numbers are used to ensure that the
statements are in order. During assembly, you can have the assembler verify the
sequence of the source statements by using the input sequence instruction (ISEQ).

ORemarks

You can provide descriptive information about the program in a remark. Use
any valid character available on your input device, except the ampersand within a
macroinstruction definition. Separate the remark from the operand with at least
one blank, and do not extend a remark past position 87. If there is no operand,
separate the operation from the remark with a comma (,). Remember that every
character you can enter might not be available on your printer.

Comment Statements

The entire statement field, to position 87, can be used as a comment if you place
an asterisk (*) in the first position (position 1) of a statement. You can make a
comment several lines long by placing an asterisk at the beginning of each line ..
Your comments can be placed anywhere in the source program except before .
HDR OPTIONS and ICTL. They do affect the storage requirements of the
source program, and the assembly time. However, they do not affect the running

or storage requirements of the assembled program. The comments are printed in
the assembler listing and can be an aid in following the listing.

Chapter I.Introduction to the IBM System/36 Assembler Language 1-17

Records in the Assembler Object Program

1-18

The assembler program converts the source program into control information,
machine language instructions, and data, all of which make up the object
program. There is one object program produced per assembly.

An object program contains three types of records:

• ESL (external symbol list) record

• TEXT-RLD (text-relocation directory) records

• END record.

Each object record is produced as a 64-byte field.

ESL Record: Contains the object program name, module name and all EXTRN
and ENTRY symbols. The ESL record format is:

• Byte 1: Record type identifier S

• Byte 2: Length minus 1 of the ESL record

• Bytes 3 through 62: ESL record

• Bytes 63 and 64: 0' s.

TEXT-RLD Records: Combination of text records and RLD pointers. The text
portion of each record contains the object code for the program; the RLD
pointers indicate where the address constants and relocatable operands of the text
are located. The format for the TEXT-RLD record is:

• Byte 1: Record type identifier T.

• Byte 2: Length minus 1 (of text only).

• Bytes 3 and 4: Assembled address of the low-order (rightmost) text byte in
the record.

• Bytes 5 through 64: Text starts at byte 5 and goes right. RLD starts at byte
64 and goes left. The leftmost end of the RLD section is marked by the hex
0' s that fill the space between the text and RLD sections. The end of text is
always followed by at least 1 byte of hex O's.

END Record: Contains the entry address of the object program. If there is not
an operand in the source program END statement, the object program END
record generated by the assembler contains the hexadecimal address FFFF. The
format for the END record is:

• Byte 1: Record type identifierE

• Bytes 2 and 3: Entry address of the object program

• Bytes 4 through 64: Reserved.

Chapter I.Introduction to the IBM System/36 Assembler Language 1-19

Communications Programs

Data Communications Programming with SSP-ICF

You can use assembler to program applications for SSP-ICP. Refer to the
SSP-/CF Guide and Examples and to the SSP-ICF reference manuals for detailed
information. If you are programming for binary synchronous communications for
the IBM 3270, refer to the 3270 Device Emulation Guide, SC21-7912.

Data Communications Programming with BSC

1-20

The IBM System/36 assembler provides binary synchronous communications
(BSC) macroinstructions for batch BSCsupport. BSC macroinstructions let you
write programs that send and receive data over communications lines. The BSC
support performs all functions necessary to connect exchange identification
sequences, send and receive data, and use the correct termination or disconnect
procedures.

System/36 BSC support runs as a separate task from the assembler program,
allowing the assembler program to be swapped into and out of main storage. The
BSC task requires 4K bytes of main storage that will not. be swapped and up to
8K per line for mapping to your buffers.

The BSC data management program that runs under control of your task is
required. This program can be swapped, and requires 10K of user area.

Other Systems with BSC

You can have binary synchronous data transfers between System/36 and the
following:

• Another System/36 with assembler, RPG II, or BSCEL subsystem

• System/34 with basic assembler, RPG II, or BSCEL subsystem

• System/32 with either basic assembler or RPG II

• System/3 with RPG II, MLMP, or CCP

• System/7 with MSP/7

• Operating System or Disk Operating System Basic Telecommunications
Access Method (OS, OS/VS, DOSjVS, or DOS BTAM)

• System/360 Model 20 Input/Output Control System for the Binary
Synchronous Communications Adapter

• Customer Information Control System (CICS/DOS/VS or CICS/VS)

• Information Management System (IMS/VS)

• IBM 3741 Model 2 Data Station or Model 4 Programmable Work Station

• IBM 3747 Data Converter

• IBM 5231 Data Collection Controller Model 2 (as a 3741 in transmit mode
only)

• IBM 3750 Switching System (World Trade only)

• IBM 5110 (in 3741 mode)

• IBM 5120 (in 3741 mode)

• IBM Series/l (in System/3 mode)

• IBM 5260 Point of Sale Terminal (in 3740 mode)

• IBM 5280 Distributed Data System (in 3740 mode)

• IBM 6640 Document Printer

• IBM Office System/6 Information Processor

• IBM Magnetic Card II Typewriter - Communicating

• IBM 6670 Information Distributor

• IBM 6240 Magnetic Card Typewriter - Communicating

Chapter l.Introduction to the IBM System/36 Assembler Language 1-21

1-22

• IBM Displaywriter System

• IBM System/38 with RPG III.

Note: System/36 data communications operation procedures are explained in the
System/36 Operator's Guide.

Magnetic Character Reader

There are two subroutines that provide you with a methods for processing
document information read by the 1255 Magnetic Character Reader. This two
subroutines are part of the System Support Program (SSP) and are described as
follows:

1. SUBR08

System and stacker specifications describe the job to be done by the 1255.
These system and stacker specifications are specified by the programmer as
compile-time arrays for RPGII and COBOL. They are hard coded in the
Assembler Source Program.

2. SUBR25

A device control language (DCL) program describes the job to be done by the
1255. The SUBR25 parameter list is the data management interface between
SUBR25 and the DCL program. The parameter list replaces the system and
stacker specifications in the RPGII, COBOL or Assembler program. The
DCL program is a separate program that runs in the attachment I/O
controller for the 1255. The DCL source program consists of assembler-like
statements that are actually MACROS that need to be expanded by the
System/36 Assembler Macro processor.

Refer to the Using and Programming the 1255 Magnetic Character Reader manual
for a detailed explanation of how to use the 1255 MCR. The manual contains
in-depth explanations of the following:

• SUBR08 and SUBR25

• System and Stacker Specifications

• SURBR25 Parameter List and Device Control Language program

• Input record format.

Chapter l.Introduction to the IBM System/36 Assembler Language 1-23

Notes:

1-24

Chapter 2. Using IBM Systeml36 Assembler Programming
Language

Before You Write an Assembler Language Program

Before you write an assembler program, you must be familiar with the meanings
of certain terms, coding conventions, and other features of the assembler
language. It is also necessary to understand the rules and conventions of the
language.

Assembler Control Statements

You can use two types of control statements: HEADERS and OPTIONS. A
total of 45 control statements can be used, in any order. Each statement is
limited to six operands. All control statements must be placed ahead of assembler
source statements.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-1

HEADERS Statement

PROGRAM

PROGRAMMER

\

The HEADERS control statement specifies control information, other than
output control, to the assembler. You can specify a category level for the object
module through the CATG operand, or the length of the control section for any
subtype 40r 5 EXTRNs in the assembly through the COML4 and COML5
operands. For an explanation of category levels and subtype 4 and 5 EXTRNs,
see the SystemJ36 Overlay Linkage Editor Reference Manual.

The format of the HEADERS statement with the CATG operand is:

STATEMENT

LebII Operalio," Operand R_.... *

PROGRAM

PROGRAMMER

011 121314151617 181920 2122232425 26 27 28 29 30 31323334 36 36 3738 39 AU 41424344 A6 46 47 48 49 50 51525354 66 56 57 58 59 60 61626364 65 6~ .67.68 69707172737

nnnnn is a 1- to 5-character decimal string of a value less than 256. If more than
one CATG operand appears in the assembler control statements, the value of the
last valid operand is used to designate the module category level. The module
category level is placed in the module external symbol list (ESL) record. The
HEADERS keyword can start in any column (except column 1), and must be
preceded by a blank. One or more blanks are required between the keyword and .
the selected options. Blanks are not allowed between options.

The format of the HEADERS statement with the COML4 and COML5 operands
IS:

STATEMENT

ubi! ap..'ion ()per.nd R_.... *

2-2

o 11 12 13 1415 16 17 18 1920 21 22232425 26 27 28 2930 31 323334 36 36 3738 39 AU 41 424344 A6 46 47 48 49 60 51 525354 66 56 57 58 59 60 61 62636466 66 67 68697071 72 73 ;

nnnnn is a 1- to 5-character decimal string whose value must be less than 65536.
If more than one COML4 or COML5 operand is present in the assembler control
statements, the length in the last valid operand is used for the appropriate subtype
control section length. The lengths specified are placed in the ESL records for the
subtype 4 or 5 EXTRNs. The HEADERS keyword can start in any column
(except column 1), and must be preceded by a blank. One or more blanks are
required between the keywords and the selected options. Blanks are not allowed
between options.

OPTIONS Statement

PROGRAM

PROGRAMMER

An OPTIONS statement supplies assembler control options. All OPTIONS
statements must be placed before the source statement with the HEADERS
statement(s). You can specify the following assembler options on OPTIONS
statements: LIST, NOLIST, XREF, NOXREF, OBJ, NOOBJ. Several options
can be placed on one statement in any order, separated by commas. If you
prefer, separate statements can be used for each option. The OPTIONS keyword
can start in any column (except column 1), and must be preceded by a blank.
One or more blanks are required between the keyword and the selected options.
Blanks are not allowed between the selected options.

The following example shows options placed in one statement:

STATEMENT

Operotion Opwend

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 4344 46 46 47 48 49 50 51 52 53 54 !iii 5& 57 58 59 80 61 6263 64 6& 66 67 68 69 70 71 72 73 7

Chapter 2.Using IBM System/36 Assembler Programming Language 2-3

2-4

The following list briefly describes the options available:

Option

LIST

NOLIST

XREF

NOXREF

OBJ

NOOBJ

Explanation

The following sections of the assembler listing are printed:

• Options information

• External symbol list

• Source and object program listing

• Diagnostic listing

• Error summary statements.

Only the following listings are printed:

• Prologue and control statements

• Any statements in error and the associated diagnostics

• Error summary statements.

The NOLIST option overrides all assembler PRINT statements.

A cross-reference listing is printed.

A cross-reference listing is not printed.

The object program is placed in the library as a subroutine
'member.

The object program is not placed in the library.

If OBJ is entered on the OPTIONS statement and there are errors
in the assembly, a halt is issued giving you the choice of either
ending the assembly or placing the object program in the library as
a subroutine member.

The defaults are:

LIST

XREF

OBJ

You can override (replace) the OPTION statement for an assembly by specifying
the options in the ASM procedure (see the ASM Procedure Command in
Chapter 1).

i Assembler Program Conventions

Terms

You must follow certain conventions and rules for using terms and expressions,
for addressing, and for linking references.

Programs are assembled to begin at address 0000, unless you use the START
statement to specify a different address. If you do not specify a 2K boundary
when you specify the beginning address, the program will begin at the next higher
2K boundary.

When a data constant is used in the operand of an instruction, the constant's
address is assembled into the instruction.

You should understand the meanings of expression and term to follow the rest of
this chapter. A term is a single symbol, a self-defining value, or a location
counter reference in the operand of an assembler language statement. The three
types of terms are described under Terms in this section. An expression consists
of one or more terms and makes up the operand field of an assembler language
instruction.

Terms and expressions are classed as either absolute or relocatable. (see table on
page 1-14)A term or expression is absolute if its value is not changed when the
assembled program in which it is used is loaded into main storage and is
relocatable if its value depends on addresses within the program.

Every term represents a value, a constant. This value can be assigned by the
assembler program (for symbols and for location counter references) or can be
part of the term itself (self-defining).

An absolute term is a nonrelocatable symbol, or any of the self-defining terms.
Arithmetic operations are permitted between absolute terms.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-5

2-6

Symbols (Symbolic Terms)

A symbol is a character or combination of characters used to represent a storage
location, a register, or a value.

Symbols can be used as label entries and operand entries. This is an easy way to
name and refer tq a field or an instruction. Symbols used as label entries·in a
source statement are assigned values and a length attribute by the assembler.

The value assigned to a symbol in the label entry of a machine-instruction
statement is the address of the leftmost byte of the storage location containing the
statement. The values assigned to symbols naming storage areas and constants
are the addresses of the rightmost bytes of the storage fields containing these
items. The symbols naming storage areas and constants are considered
relocatable terms because the address of an area or constant might change.

A symbol that is a label entry in an equate symbol assembler instruction
statement (EQU) is assigned the length and the value designated in the operand of
the statement. You can have the operand represent a relocatable value or an
absolute value. The length attribute of the symbol on an EQU instruction is the
length of the operand entry (or operand 2, if specified).

The value of a symbol cannot be a negative number and cannot exceed 65535.
The length attribute, if specified, must be from I to 256.

EQU statements require that a symbol in the operand be previously defined. A
symbol is defined when it appears as the label of a source statement or the
operand of an EXTRN instruction.

A symbol used as a label in a statement or operand of an EXTRN instruction can
be defined only once in an assembly.

PROGRAM

PROGRAMMER

Constants (Self-Defining Terms)

A constant is a term whose value is shown by the term. When a self-defining
term is used in a machine-instruction statement, its value is assembled into the
instruction. It is not assigned a value by the assembler. For example, the decimal
term 15 represents a value of 15.

Constants have the following characteristics:

• The length attribute of a constant term is always 1.

• Constants specify machine values or bit configurations without equating the
values to symbols and then using the symbols.

• Constants are always right-justified. Truncation and padding with O's occurs
from the left.

The four types of constants are: decimal, hexadecimal, binary, and character.
Each term is a representation of a corresponding machine-language bit
configuration. Constant terms are used to specify program elements such as
immediate data, masks, registers, displacements, lengths, addresses, and address
increments. The use of decimal, hexadecimal, binary, or character constants
depends on what you are specifying.

Decimal Constants: Consist of decimal numbers written as a set of decimal digits.
High-order O's can be used (for example, 007). A decimal constant is assembled
as its binary equivalent. A decimal constant cannot consist of more than 5 digits
or exceed 65535. A decimal constant that represents an address should not exceed
the size of storage. Some examples of decimal constants are: 8, 147, 4092, and
00,021.

In the following example, a decimal constant is used in a move immediate (MVI)
machine instruction. The I-byte area referred to by the symbol, COST, will
contain the decimal value 25 (binary 0001 1001) after the instruction in an
assembled program is performed.

STATEMENT

....... Openolion Operand R rks *
011 121314151817 181920 2122232425 26 27 282930 3132333435 36 37 38 39 40 4142434445 4647484950 51525354 56 56 57585980 6162636466 6667686970717273 ;

Chapter 2.Using IBM System/36 Assembler Programming Language 2-7

PROGRAM

PROGRAMMER

Hexadecimal Constants: Consist of the letter X (coding character for
hexadecimal), followed by one to four hexadecimal digits (0 through 9,
A through F) enclosed in apostrophes. An example is X' 4A9'. Each
hexadecimal digit is assembled as its 4-bit binary equivalent, in this case, as
0100 1010 1001. The largest hexadecimal constant is hex FFFF.

The hexadecimal digits and their bit patterns are as follows:

Digit Bit Pattern Digit Bit Pattern

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

The following is an example of a hexadecimal constant term. The I-byte area
referred to by the symbol SWITCH would contain the hexadecimal value FO
(binary 1111 0000) after the instruction is performed.

STATEMENT

&..bel Operation a-and R_rIII •

011 121314151617 181920 2122232425 26 27282930 31 323334 35 36 37383940 41424344 46 46 47 4B 49 50 51525354 &Ii 56 57 58 5950 61626364 &Ii 66 67 68 69707172 ;

2-8

Binary Constants: Consist of the letter B(coding character for binary), followed
by an unsigned sequence of l's and O's enclosed in apostrophes, as follows:
B'lOI01101'. This term would occupy 1 byte of storage. A binary constant can
have up to 16 bits. Binary terms are used in logical operations or to designate bit
patterns of masks.

The following example illustrates a binary term used as immediate information in
a move immediate (MVI) machine instruction. The byte of information replaces
the byte of information referred to by the symbol BETA.

Character Constants: Consist of the letter C, followed by characters enclosed in
apostrophes. Letters, decimal digits, and special characters can be used in a
character constant. In addition, any character available on an input device can be
entered. The following are examples of character constants:

e'I' e'AB' e'13'

Each character in a sequence is assembled as its EBCDIC equivalent. Because
apostrophes are used as characters in the syntax of the assembler language, two
apostrophes must be written as input for each apostrophe desired in a character
constant as output. For example, you would write the character value A' as
C' A". In the following example, a dollar sign ($) would be moved into the I-byte
field at REPORT.

Chapter 2.Using IBM System/36 Assembler Programming Language 2-9

Expressions

2-10

An expression is an arithmetic combination of terms. The arithmetic operators
used to combine terms into expressions are:

+ Addition

Subtraction

* Multiplication

The following are examples of valid expressions:

AREA+X'2D' N-25 5*X'Cl' *+15

AREA value plus a N value Decimal 5 times Current value of
hexadecimal 2D minus a the hexadecimal the location

decimal 25 CI (result is counter plus
decimal 965) decimal 15

The rules for coding an expression are:

• Blanks are not allowed in an expression.

• Parentheses cannot be used in an expression.

• In a multiplication operation, only absolute terms can be used.

• Two terms or two operators must not be used consecutively in an expression.

• When an expression contains an external symbol, the symbol must have the
form A or A ± e~ where A is the symbol used as the operand of an EXTRN
statement and e is an absolute expression. Any symbol equated to an
expression like this cannot be used in an expression that has more than one
term.

If the expression has more than one term, the terms are reduced to a single value
as follows:

• Each term is evaluated separately.

• Arithmetic operations are performed in a left-to-right sequence, with
multiplication operations performed before addition or subtraction
operations. For example: A + B*C would be evaluated as A + (B*C), not
(A+B)*C.

The intermediate result of an expression evaluation is a 3-byte or 24-bit value.
Intermediate results must be in the range of _224 through 224-1. Negative values are
carried in the twos complement form.

The final result of an expression is a 2-byte value, the tru~cated, rightmost 16 bits
of the result. In an address constant, the amount of truncation and the length of
the result depend on the length of the constant. The value of the expression
before truncation must be in the range of -65536 through + 65535 (_216 through

216_1). The result will not be a negative number. A negative result is considered
to be a 2-byte positive value.

Absolute Expressions: Contain relocatable terms or a combination of relocatable
and absolute terms under the following conditions:

• The expression must contain an even number of relocatable terms.

• The relocatable terms must be paired, and each pair must consist of terms
with opposite signs. Paired terms need not be next to each other.

• Relocatable terms cannot be used in a multiplication operation.

Because both terms would be relocated by the same value, pairing relocatable
terms with opposite signs cancels the effect of the relocation. The value
represented by the paired terms remains constant regardless of the program
relocation. For example, in the absolute expression A - Y + X, A is an absolute
term and X and Yare relocatable terms. If A equals 50, Y equals 25, and X
equals 10, the value of the expression would be 35. If X and Yare relocated by a
factor of 100, their values would become 110 and 125, respyctive1y. However, the
expression would still evaluate as 35 (50-125+ 110=35).

Relocatable Expressions: Contain a combination of relocatable and absolute
terms under the following conditions:

• There must be an odd number of relocatable terms.

• All re10catable terms, except one, must be paired, and each pair must consist
of terms with opposite signs. The paired terms need not be next to each
other.

• The unpaired term must not immediately follow a minus sign.

• Relocatable terms cannot be used in a multiplication operation.

• Every relocatable expression must reduce to a positive value.

All of the terms in a relocatable expression are combined and reduced to a single
value. This is the adjusted value of the unpaired relocatable term after it is
displaced by the values of the other terms in that expression. For example, in the
expression W - X + Y where W, X, and Yare relocatable terms, and W = 10, X
= 3, Y = 1 before relocation, the result is the relocatable value of 8.

If this program is relocated by 100 bytes, the resulting value of the expression
would be increased by the amount of relocation (l00), giving the expression a
value of 108.

In the following expression, a combination of absolute and relocatable terms are
used: A + F*G - D + B. A, D, and Bare relocatable terms; F and G are
absolute terms. Given the values A = 3, B = 2, D = 5, F = 1, and G = 4.
The multiplication occurs first, resulting in 4; then the addition and subtraction of
the other terms, including the result of the multiplication, is performed in a
left-to-right direction. The result of the arithmetic operations is a relocatable
value of 4.

Chapter 2.Using IBM Systemj36 Assembler Programming Language 2-11

The value of this expression after relocation can be: d~tenpinpd }~~:~9P'ing ... ~p.~.
amount of relocation to the relocatable result. .

2-12

Location Counter Reference'

A location counter is used to assign storage addresses. It is the assembler's
equivalent of the instruction counter in the computer. As each assembler
language statement or data area is assembled; the location counter is increased by
the number of bytes required for the assembled item. The counter always points
to the next available location. Iran instruction statement is labeled by a symbol,
the label is assigned the value of the location counter before addition of the
assembled length. If a statement defines storage or a constant, the symbol is
assigned ,a value one less than the value of the. location counter after the addition
of the assembled length.

The location counter setting can be controlled by using the START and ORG
assembler control statements. The maximum value for the location counter is
65535.

You can refer to the current value of the location counter by using an asterisk (*)
as a term in an operand. The asterisk represents the location of the first byte of
currently available storage. For example:

Location counter ==' 1300

Relocatable

Absolute
(nonrelocatable)

Source

LAB2 DC AL2(*)
LAB3 DC AL2(LAB2)

LAB2 DC AL2(X'1300')

Generated

1300
1301

1300

Chapter 2. Using IBM System/36 Assembler Programming Language 2-13

Addressing

2-14

The two methods . of addressing any part of storage are direct addressing and base
displacement (relative) addressing.

Direct Addressing

Direct addressing,allows you to represent a 16-bit instruction address by using an
expression as an operand. The assembler places the value of the expression in the
machine instruction as 2 bytes. A direct address never refers to a register in the
operand. See the following figure for' an example of direct addressing.

ERR LOC 09.JECT PODE

0000

ADM STMT SOURCE STATEMENT

1 EXAMP
2

START 0
PRINT NODATA,NOGEN

4 ***
:5 * *
6 * AN EXAMPLE OF DIRECT ADDRESSING. *
7 * *
8 ***

0000 OC ID 0068 0033 10 riVC NAME2(30),NAMEl MOVE "NAME" OF AREAl TO "NAME" OF ~

0006 OC 07 0070 0039 11 MVC PHON2(08),PHONl MOVE "F'HON" OF AREAl TO "PHON" OF ~
oooC OC OE oo7F oo4A 12 HVC CITY2(15),CITYl MOVE "CITY" OF AREAl TO "CITY" OF ~

13 * $EOJ END OF JOB

0016 19 AREAl EQU * 0016 D1D6C8D540D14B40 0033 20 NAMEl DC CL30'JOHN J. SMITH' "NAME" OF AREAl
0034 F2F8F860F5F3F9F2 0038 21 PHONl DC CL08'2BB-5392' "PHON" OF AREAl
003C D9D6C3C8C5E2E3C5 004A 22 CITYl DC CL1~'jt ROCHESTER' "CITY" OF AREAl

0048 24 AREA2 EQU * 004B 0068 2:5 NAME2 DS CL30 "NAME" OF AREA2
0069 0070 26 F'HON2 DS CL08 "PHON" OF AREA2
0071 oo7F 27 CITY2 DS CLlS "CITY" OF AREA2

0000 2B END EXAMP

Base Displacement Addressing

Base displacement addressing involves the programmer having assembler placing a
base address in a register. Other addresses can then be calculated from this base
address. This base displacement is one byte in the machine instruction. Any
value in an index register allows access to 256 storage positions.

The USING statement makes the contents of an index register the basis for base
displacement addressing. The DROP statement ends base displacement
addressing. For information about the USING and DROP statements, see their
descriptions in Chapter 3. The following figure shows examples of base
displacement addressing:

ERR LOC OBJECT CO[JE ADI'R STMT SOURCE STATEMENT

0000

0000 C2 01 0018
0018

000" C2 02 OO"D
0018

0008 9C lD lD lD
OOOC 9C 07 25 2S
0010 9C DE 34 34

0018
0018 D1D6CSD540D14B40 0035
0036 F2F8FS60F5F3F9F2 0031'
003E D9D6C3CSC5E2E3CS 004C

004Ir
oo6B
0073

ERR LOC OBJECT COIrE

0000

0000 C2 01 001S

000'1 C2 02 004D

0008 9C lD lD lI'
OOOC 9C 07 25 25
0010 9C DE 34 34

004Ir
006A
00'72
0081

0001
0002
0000

1 EXAMP1 START 0
PRINT NODATA,NOGEN

4 **·M-******·_**********************************·X·***********«.**************
~ * *
6 * AN EXAMPLE OF BASE-DISPLACEMENT ADDRESSING WITH THE
7 * "USING" INSTRUCTION.

8 *
9 ****_-***·1t******K·*******

11
12

14
15
16 *
18
19
20
21 *

27 AREAl
28 NAME
29 F'HON
30 CITY

32 AREA2
33
34
3:5

37 Rl
3S R2
39

l.A AREA1,Rl
USING AREA1,R1

LA AREA2,R2
USING AREA1,R2

MVC NAME(30,R2) ,NAME(,R1)
MVC PHON(08,R2) ,PHON(,R1)
MVC CITY(15,R2),CITY(,Rl)
$EOJ

EQU
DC
DC

[lC

EQU
lIS
IIS

DS

EQU
EQU
END

*
CL30'JOHN J. SMITH'
CL.08' 288-S392'
CL.1S' ROCHESTER ,

* CL30
CL08
eLlS

2
EXAMP1

SOURCE STATEMENT

1 EXAMP2 START 0
F'RINT NODATA,NOGEN

POINT TO THE MOVING "FROM" FIELD
SET TO USE LA8ELS AS DISPLACEMENTS FROM AREAl

POINT TO THE MOVING "TO" FIELD
SET TO USE LABELS OF AREAl AS DISPLACEMENTS
INTO AREA2.

MOVE "NAME" OF AREAl TO "NAME" OF AREA2
MOVE "PHON" OF AREAl TO "PHON" OF AREA2
MOVE "CITY" OF AREAl TO "CITY" OF AREA2
END OF JOB

"NAME" OF AREAl
"PHON" OF AREAl
"CITY" OF AREAl

"NAME" ~F AREA2
"PHON" OF AREA2
"CITY" OF AREA2

EQUATE FOR REGISTER 1
EQUATE FOR REGISTER 2

4 ********************************** *************************0)(.*********
5 * *
6 * AN EXAM~'Le: OF BASE DISPL.ACEME.NT ADIrRESSING *
7 * USING "EQUATES"

8 *
9 ***.****************.IC·*********

11 LA AREA1,Rl POINT TO THE MOVING "FROM" FIELD

13 LA AREA2.R2 POINT TO THE MOVING "TO" FIELD

15 MVC NAME(30,R2) ,NAME(,Rl) MOVE "NAME" OF AREAl TO "NAME" OF AREA2
16 MVC PHON(08,R2) ,PHON(.Rl) MOVE "PHON" OF AREAl TO "PHON" OF AREA2
17 MVC CITY<15,R2') ,CITY(.Rl) MOVE "CITY" OF AREAl TO "CITY" OF AREA2

18 " $EOJ END OF JOB

0018 24 AREAl EQU "
0018 D1I16CSD540D14B40 0035 25
0036 F2F8F86OF5F3F9F2 0031' 26
003£ D9Ir6C3C8C5E2E3C5 004C 27

00411 29 AREA2
oo4D 006A 30
006£1 0072 31
0073 OOSl 32

DOlI' 34 NAME
0025 35 PHON
0034 36 CITY

0001 38 Rl
0002 39 R2
0000 40

DC CL,30' JOHN J. SMITH'
DC CLOS'2SS-5392,
DC CL15 'ROCHESTER ,

EQU * OS CL30
DS CL08
ItS CL1S

EQU 29,30
EQU NAME+a, a
EQU PHON+15.15

EQU
EQU 2
ENIr EXAMP2

"NAME" OF AREAl
"PHON" OF AREAl
"CITY" OF AREAl

"NAMe:" OF ARE:A2
"PHON" OF AREA2
"CITY" OF AREA2

"NAME" ItISPL.ACEMENT INTO AREAS 1 & 2
"PHON" DISPLACEMENT INTO AREAS 1 ~ 2
"CITY" DISPL.ACEMENT INTO AREAS 1 & 2

EQUATE FOR REGISTER 1
EQUATE FOR REGISTER 2

Chapter 2.Using IBM System/36 Assembler Programming Language 2-15

PROGRAM

PROGRAMMER

UbI! Operation

12345678 9 011 12 13 14

~~~ 2~Z 
~~ 

e~ G~ ~NI 

13 

Relative Addressing 

Relative addressing addresses instructions and data areas by giving their location 
(in bytes) in relation to the location counter or to some symbolic location. This. 
type of addressing is only entered in bytes. Thus the expression * + 4 specifies an 
address that is 4 bytes greater than the current value of the location counter. In 
the sequence of instructions shown in the following example, the instruction with 
the operation code ZAZ has a length of 6 bytes, the instruction AZ has a length 
of 5 bytes, and the instruction with MVI has a length of 4 bytes. 

I TYPING GRAPHIC 

DATE I INSTRUCTIONS CHARACTER I I 
STATEMENT 

Operand R_ .... 

-

15 16 17 181920 21 22232425 26 27 28 29 30 31 323334 35 36 3738 39 40 41424344 46 464748 49 50 51 525354 65 56 57 58 5980 61 626364 65 ~ 67 68 69 1071 72 73 7 

~ 

C3( 
1"'1 

~~ 

If-
"-' 
.UZ 11) X, F=F' 

~+~ 

When you use relative addressing, the location of the AZ machine instruction can 
be expressed in two ways: AAA + 6 or BACK-5. 

Instruction Addressing 

A symbol used as a label entry in a machine-instruction statement addresses the 
leftmost (low-address) byte of storage occupied by that instruction. 

Data Addressing 

A symbol used as a label entry in a data definition instruction (see DC-Define 
Constant and DS-Define Storage in Chapter 3) addresses the rightmost 
(high-address) byte of storage occupied by or reserved for that data. 

Program Linking References 

You can link independently assembled programs by defining symbols in one 
program and referring to them in another. The assembler must provide 
information about the linkage symbols to the overlay linkage editor. Using the 
linkage symbols provided by the ENTRY and EXTRN instructions, the assembler 
places the necessary information in the external symbol lists. 

You will use the ENTRY assembler instruction to identify the linkage symbol in 
program A. Once the symbol is identified as naming an entry point, you can use 
that symbol in another program (B), in a branch operation, or as a data reference-. 
With an EXTRN assembler instruction in program B, you must also identify the 
symbol used in program A. You can also use the label of a START statement 
for program linking. The formats of the EXTRN and ENTRY assembler control 
instructions are included in Chapter 3. 



Machine Instructions 

Machine instructions are the most elementary instructions you can use with 
SystemJ36. A summary chart of all instructions is in Appendix D. 

General Programming Notes 

These programming notes app~y to all machine instructions. Notes that apply to 
specific instructions are explained with those instructions. 

• Operand 2 is not changed unless the fields overlap. However, overlapping 
operands can destroy part of operand 2 before it is used in the operation. 

• A length value is not required. If you omit the length, implied lengths are 
used. 

• Operations other than AZ, SZ, ZAZ, and SRC, where you can specify length, 
allow a maximum length of 256 bytes. 

• For zoned operations, AZ, SZ, and ZAZ, the maximum value of lengthl is 31 
bytes and the maximum value of length2 is 16 bytes. Also, length 1 must be 
greater than or equal to length2 and length I minus length2 must be 16 or less. 

• For Shift Right Characters (SRC), the maximum length is 16 bytes. 

• Save areas for registers occupy 2 bytes. 

• Labels on all data in examples point to the rightmost byte shown. 

• Information about the setting of the Program Status Register after each 
instruction is given in the SystemJ 36 Functions Reference manual. 

Chapter 2. Using IBM System/36 Assembler Programming Language 2-17 



A (Add to Register) 

2-18 

The A instruction adds the binary number in the location indicated by the 
operand to the contents of the 2-byte register indicated by the hexadecimal values 
assigned as follows: 

Register 

Index Register 1 
Index Register 2 
Program Status Register 
Address Recall Register 
Instruction Address Register 
Work Register 4 
Work Register 5 
Work Register 6 
Work Register 7 

For example: 

A BIGE,08 

Hex Value 

01 or 03 
02 
04 
08 
10 or 20 
44 
45 
46 
47 

Label Before (hex) 
BIGE 01 32 

After (hex) 
01 32 

ARR 095E OA 90 

This instruction adds the contents of BIGE-l and BIGE to the contents of the 
address recall register (ARR). 

This instruction can be used in the following formats: 

Operation Operand Hex Value (XX) 

A address ,XX 
A displacement(,reg 1) ,XX 
A displacement(,reg2) ,XX 

Programming Notes 

• This instruction changes the contents of only one register. 

• Constants must be at least 2 bytes long. 

• The operand value is not changed. 

• Adding to the Program Status Register causes an unpredictable result. Hex 
04 is forced into the high-address byte of the program status register. 

• Adding to the IAR causes an unconditional branch without changing the 
ARR. 



ALC (Add Logical Characters) 

The ALe instruction adds the binary number at the 10catio1).s indicated by 
operand 2 to the binary number at the locations indicated by operand 1. For 
example: 

ALe FIL1(4) ,FIL2 

Label Before (hex) 
FILl FE ED FF FF 
FIL2 00 21 00 01 

After (hex) 
FF OF 00 00 
0021 0001 

This instruction adds the 4-byte hexadecimal number at FIL2 to the 4-byte 
hexadecimal number at FILL 

Operation OperandI Operand2 

ALe address 1 (lengthl) ,address2 
ALe address 1 (lengthl) ,displacement2(,regl) 
ALe address 1 (lengthl) ,displacement2(,reg2) 
ALe displacement 1 (length 1 ,reg 1 ) ,address2 
ALe displacementl(lengthl,regl),displacement2(,regi) 
ALe displacement 1 (lengthl,reg 1),displacement2(,reg2) 
ALe displacement! (length 1 ,reg2),address2 
ALe displacement! (length 1 ,reg2),displacement2(,regl) 
ALe displacement 1 (lengthl ,reg2) ,displacement2(,reg2) 

Programming Notes 

• A length can be given in either operand, but not in both. 

• Both operands must be the same length, up to a maximum of 256 bytes. 

• If you do not specify a length, the implied length of operand 1 is used. 

• The system sets the binary overflow bit to 0 if a carry does not occur and to 1 
if a carry does occur. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-19 



ALI (Add Logical Immediate) 

2-20 

The ALI instruction adds the binary number in the supplied byte to the binary 
number in the location specified by the operand. For example: 

ALI DEPT,X'2E' 

This instruction adds the value 2E (8 bits) to the contents of the location 
indicated by DEPT. 

Label Before (hex) 
Dept 15 

Operation Operand 

After (hex) 
43 

Hex Value (XX) 

ALI address ,XX 
ALI displacement! (,regl) ,XX 
ALI displacement! (,reg2) ,XX 

Programming Notes 

• This instruction affects only a single !ocation. 
\ 

• The ALI instruction uses the SLI operation code and changes the value to 
twos complement when assembled. 

• The program status register is set according to the twos complement value of 
the operand's Q-code. 



AZ (Add Zoned Decimal) 

The AZ instruction adds the decimal value of the numeric portion of the locations 
indicated by operand 2 to the decimal value of the numeric portion of the 
locations indicated by operand 1. For example: 

Label Before (hex) 
FILl F3 F6 F9 
FIL2 F2 F5 

After (hex) 
F3 F9 F4 
F2 F5 

This instruction adds the two numeric portions of FIL2 to the three numeric 
portions of FIL 1. 

Operation OperandI Operand2 

AZ address I (lengthl) ,address2(length2) 
AZ address I (length I) ,displacement2(1ength2),regl) 
AZ address I (lengthl) ,displacement2(1ength2,reg2) 
AZ displacementl (length I ,reg I) ,address2(length2) 
AZ displacementl(1engthl,regl),displacement2(length2,regl) 
AZ displacement I (length I ,reg I ) ,displacement2(1ength2,reg2) 
AZ displacement2(lengthl,reg2),address2(length2) 
AZ displacementl(lengthl,reg2),displacement2(length2,regl) 
AZ displacementl(lengthl,reg2),displacement2(1ength2,reg2) 

Programming Notes 

• The address of operand I remains in the address recall register until another 
AZ, BC, lTC, SZ, or ZAZ instruction is performed, or until the register is the 
target of an A, L, LA, or S instruction. 

• The system does not check for valid decimal digits in either operand. 

• The zone bits of all but the rightmost byte in operand I are always set to hex 
F. The zone bits of the rightmost byte are set to hex F if the result of the 
operation is positive, or to hex D if the result is negative. 

• If the zone bits of the rightmost byte are hex D or B, the operand is negative. 
If the zone bits are anything else, the operand is positive. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-21 



BC (Branch on Condition) 

2-22 

The branch instructions cause a transfer of control to the specified instruction if 
bits 2 through 7 of the high-address byte of the program status register meet the 
conditions represented by the data byte. 

These are the conditions tested for, and the data byte bits: 

Condition Data Byte Bit 

Equal 7 
Low 6 
High 5 
Decimal overflow 4 
Test false 3 
Binary overflow 2 

If bit 0 of the data byte is I, match of I bits between the program status register 
and the data byte causes a branch. If bit 0 is 0, all of the tested bits of the 
program status register must be 0 for a branch to occur. If no conditions are met, 
the system performs the next instruction. To perform a branch, the system places 
the address of the next sequential machine instruction in the address recall 
register, then branches to the supplied address. You can test for a combination of 
conditions with the Be instruction. For example: 

Be BURT,X'A8' 

This instruction branches to the location labeled BURT if the value in the 
program status register indicates either a decimal overflow or a binary overflow 
condition. 

The instruction has the following format: 

Operation Operand Hex Value (XX) 

Be address ,XX 
Be displacement(,regl),XX 
Be displacement(,reg2) ,XX 
Be displacement(,reg8) ,XX 



Branch Mnemonics 

Use the branch mnemonics from the following list to branch on a specific 
condition. Use one of these mnemonics in place of BC and specify only 
operand 1. 

Instruction 

Branch (unconditional) 
Branch high 
Branch low 
Branch equal 
Branch not high 
Branch not low 
Branch not equal 
Branch overflow zoned 
Branch overflow logical 
Branch no overflow zoned 
Branch no overflow logical 
Branch true 
Branch false 
Branch plus 
Branch minus 
Branch zero 
Branch not plus 
Branch not minus 
Branch not zero 

Programming Notes 

Generated Data 
Mnemonic Byte (hex) 

B 87 
BH 84 
BL 82 
BE 81 
BNH 04 
BNL 02 
BNE 01 
BOZ 88 
BOL AO 
BNOZ 08 
BNOL 20 
BT 10 
BF 90 
BP 84 
BM 82 
BZ 81 
BNP 04 
BNM 02 
BNZ 01 

• An address remains in the address recall register until another AZ, BC, lTC, 
SZ, or ZAZ instruction is performed, or until the register is the target of an 
A, L, LA, or S instruction. 

• If the ARR is used in the operand, the address being branched to is 
determined before the ARR is changed to the next sequential instruction. 

• Test data of hex 80, 07,17,27,37,47,57,67,77, OF, IF, 2F, 3F, 4F, 5F, 6F, 
or 7F is a no operation (no-op) condition; that is, no branch occurs. 

• Test data of hex 00, 87, 97, A7, B7, C7, D7, E7, F7, 8F, 9F, AF, BF, CF, 
DF, EF, or FF causes an unconditional branch. 

• When the branch instruction is performed, only bit 4 (decimal overflow) and 
bit 3 (test false) of the program status byte are set off as they are tested. 

• The program status byte is never hex 00, and only one of 5, 6, or 7 is always 
on. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-23 



BD (Branch Direct) 

2-24 

The BD instruction causes an unconditional branch to the address represented by 
the operand, and does not change the ARR, For example: 

BD BURT 

This instruction branches to the location labeled BURT, and does not change the 
address recall register. 

Operation 

BD 
BD 
BD 

Operand 

address 
displacement! (,reg I ) 
displacement2(,reg2 ) 

Programming Notes 

This instruction assembles into the same object pode as LA of the IAR. 



CLC (Compare Logical Characters) 

The CLC instruction compares the contents of the location indicated by operand 
I with the contents of operand 2. The setting of the program status register is 
determined by the results of the comparison. The program status register settings 
are given in the following table: 

Set on Condition 

Operand 1 value larger 
Operand 1 value smaller 
Compare equal 

For example: 

CLC BARB(2) ,MIKE 

Register Bit 

5 
6 
7 

Name 

High 
Low 
Equal 

This instruction compares the 2-byte contents of BARB (16 bits) with the contents 
of MIKE (16 bits). 

Operation OperandI Operand2 

CLC address 1 (length1) ,address2 
CLC address 1 (length1) ,displacement2(,reg1) 
CLC addressl(lengthl) ,displacement2(,reg2) 
CLC displacement2(,reg1) ,address2 
CLC displacementl(length1,regl),displacement2(,regl) 
CLC displacementl(length1,reg1),displacement2(,reg2) 
CLC displacementl (lengthl ,reg2),address2 
CLC displacementl (lengthl ,reg2) ,displacement2(,reg l) 
CLC displacementl (lengthl ,reg2),displacementl (,reg2) 

Programming Notes 

• The length (number of locations), up to a maximum of 256, can be given in 
either operand of the instruction, but not in both. If you do not specify a 
length, the implied length of operand 1 is used. 

• The contents of neither operand location is changed by this instruction. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-25 



CLI (Compare Logical Immediate) 

2-26 

The CLI instruction compares all the bits of the supplied byte with the bits in the 
location specified by the operand. The setting of the program status register is 
determined by the results of the comparison. The program status register settings 
are given in the following table: 

Set on Condition 

Supplied value smaller 
Operand value smaller 
Compare equal 

F or example: 

eLI DENN,X'3F' 

Register Bit 

5 
6 
7 

Name 

High 
Low 
Equal 

This instruction compares the value hex 3F (8 bits) with the contents of the 
location indicated by DENN. 

Operation 
CLI 
CLI 
CLI 

Operand Value 
address ,XX 
displacement I (,reg I ) ,XX 
displacement! (,reg2) ,XX 

Programming Notes 

Neither the supplied value nor the contents of the storage location is changed by 
this instruction. 



ED (Edit) 

The ED instruction replaces bytes containing hexadecimal 20 in the locations 
indicated by operand 1 with bytes from the locations indicated by operand 2, 
starting at the rightmost position of both operands. The zone bits of the copied 
bytes are set to hexadecimal F as they are written. For example: 

ED BERT(6),ERNI 

Label 
BERT 
ERNI 

Before (hex) 
20 20 20 4 B 20 20 
F5 F 1 F9 F9 D 5 DO 

After (hex) 
F 1 F9 F9 4B F5 FO 
F5 F 1 F9 F9 D 5 DO 

This instruction copies the data from each of the locations indicated by ERNI 
(changing the zone bits to hex F) into each of the six locations indicated by 
BERT that contain hex 20. If only the first location at BERT had contained a 
hex 20, then only the data in the rightmost location at ERNI would have been 
used. 

Operation OperandI Operand2 

ED address 1 (length 1 ) ,address2 
ED address 1 (lengthl) ,displacement2(,reg1) 
ED address 1 (length1) ,displacement2(,reg2) 
ED displacementl (length 1 ,reg1 ),address2 
ED disp1acementl(length1,reg1),displacement2(,reg1) 
ED displacementl (length 1 ,reg 1 ) ,displacement2(,reg2) 
ED displacement 1 (length 1 ,reg2) ,address2 
ED displacemen tl (length 1 ,reg2) ,displacement2(,reg 1 ) 
ED displacementl (length 1 ,reg2) ,displacement2(,reg2) 

Programming Notes 

• Operand 2 must contain at least as many bytes as there are hex 20s in 
operand 1. 

• The length (number of locations) can be supplied by either operand, but not 
both. 

• The first location addressed in either operand is the highest addressed 
(rightmost) location, with the next lower address being used in each successive 
cycle. 

• Resultant data in operand 1 is unsigned numeric. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-27 



ITC (Insert and Test Characters) 

2-28 

The ITC instruction replaces characters in the locations indicated by operand 1 
with the character in the location indicated by operand 2. All characters to the 
left of the first significant digit (decimal 1 through 9) are replaced with the 
character from the operand 2 location. This replacement continues for the 
specified number of locations, or until a location indicated by operand 1 is found 
to contain a number (hex FI through F9). For example: 

ITC BOB1(6),RAY2 

Label 
BOBI 
RAY2 

Before (hex) 
FO FO 6B F8 F5 FO 
5C 

After (hex) 
5C 5C 5C F8 F5 FO 
5C 

The character found at RAY2 is copied into the locations indicated by BOBl, 
beginning with location BOBl-5 and continuing until a number (hex FI through 
F9) is found. 

Operation OperandI Operand2 

ITC address 1 (length I ) ,address2 
ITC address I (lengthI) ,displacement2(,regI) 
ITC address I (lengthI) ,displacement2(,reg2) 
ITC displacementl (length I ,reg I ),address2 
ITC displacementl(lengthl,regl),displacement2(,regl) 
ITC displacementl (length I ,reg I ),displacement2(,reg2) 
ITC displacementl (length I ,reg2) ,address2 
ITC displacementl (length I ,reg2),displacement2(,regl) 
ITC displacementl (length I ,reg2) ,displacement2(,reg2) 

Programming Notes 

• At the end of this operation, the ARR contains either the address of the first 
significant digit or, if none, the address + I of the first operand. 

• An address remains in the address recall register until another AZ, BC, lTC, 
SZ, or ZAZ instruction is performed, or until the register is the target of an 
A, L, LA, or S instruction. 

• The length (number of locations) can be supplied by either operand, but not 
both. 

• This operation occurs from low address (leftmost) to high address (rightmost). 

• The second operand is a I-byte field. 



JC (Jump on Condition) 

The jump instructions cause the program to jump either forward or backward to a 
new instruction address when bits 2 through 7 in the high-address byte of the 
program status register satisfy the conditions tested by the supplied data byte. 

The conditions represented and the bits tested for are given in the following table: 

Condition Bit On (1) 

Equal 7 
Low 6 
High 5 
Decimal overflow 4 
Test false 3 
Binary overflow 2 

If bit 0 of the supplied data is 1, any matching 1 bits between the program status 
register and the data byte cause a jump. If bit 0 is 0, all of the tested bits of the 
register must be 0 for a jump to occur. If none of the conditions are met, the 
system performs the next sequential instruction. 

To perform a jump, the program determines a displacement from the operand of 
the jump instruction. This displacement is added to or subtracted from the 
address in the instruction address register after the IAR has been increased 
beyond the jump instruction. The program jumps to that new address at the end 
of the jump on condition operation. For example: 

JC MORT,X'8l' 

This instruction causes a jump, using the address (or displacement) found in the 
location indicated by MORT, if the value in the program status register is odd 
(condition equal). 

This instruction has the following format: 

Operation Operand Value 

JC address ,XX 
JC displacement,XX 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-29 



2-30 

Jump Mnemonics 

Use the jump mnemDnics frDm the fDllDwinglist to. jump Dn a specific cDnditiDn. 
Use Dne of these mneIllonicsinplace Df JC a1,1d specify Dnly Dperand 1. 

Instruction 

Jump uncDnditiDnal 
Jump high 
Jump IDW 
Jump equal 
Jump nDt high 
Jump nDt IDW 
Jump nDt equal 
Jump DverflDW zDned 
Jump DverflDw IDgical 
Jump no. DverflDw zDned 
Jump no. DverflDw IDgical 
Jump true 
Jump false 
Jump plus 
Jump minus 
Jump zero. 
Jump nDt plus 
Jump nDt minus 
Jump nDt zero. 

Programming Notes 

Generated Data 
Mnemonic Byte (hex) 

J 87 
JH 84 
.JL 82 
JE 81 
JNH 04 
JNL 02 
JNE 01 
JOZ 88 
JOL AO 
JNOZ 08 
JNOL 20 
JT 10· 
JF 90 
JP 84 
JM 82 
JZ 81 
JNP 04 
JNM 02 
JNZ 01 

• The Dperand must be an address within2S5 bytes (hex FF) Df the next 
sequential instructiDn. . 

• The prDgram status byte is never hex 00, and Dnly Dne Df bits 5, 6, Dr 7 is 
. always Dn., 

• T1i~ ARR is n~t changed by this instructiDn. 

• Test data Df hex 80, 07, 17, 27, 37, 47, 57, 67, 77, OF, IF, 2F, 3F, 4F, 5F, 6F, 
Dr 7F causes a no. DperatiDn (nD-Dp) cDnditiDn, which means no. jump DCCurS. 

• Test data Df hex 00, 87, 97, A7, B7, C7, D7, E7, F7, 8F, 9F, AF, BF, CF, 
DF, EF, Dr FF causes an uncDnditiDnal jump. 

• Bit 4 (decimal DverflDw) and bit 3 (test false) Df the prDgram status byte are 
set Dff as they are tested. The Dther bits are nDt affected. 

• An absDlute value Df 0 thrDugh 255 can be used as the Dperand. 



L (Load Register) 

The L instruction copies data from the 2-byte field specified by operand 1 into the 
specified register, shown in the following table: 

Register 

Index Register 1 
Index Register 2 
Program Status Register 
Address Recall Register 
Instruction Address Register 
Work Register 4 
Work Register 5 
Work Register 6 
Work Register 7 

F or example: 

L FOX1,X'08' 

Hex Value (XX) 

01 or 03 
02 
04 
08 
10 or 20 
44 
45 
46 
47 

This instruction copies the 2-byte contents of the location indicated by FOXl into 
the address recall register: 

Operation OperandI Hex Value (XX) 

L address ,XX 
L displacementl(,regl) ,XX 
L displacementl (,reg2) ,XX 

Programming Notes 

• This instruction copies data into only one register. 

• The system performs an unconditional branch to any address placed in the 
instruction address register without changing the ARR. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-31 



LA (Load Address) 

2 .. 32 

The LA instruction places the 2-byte address represented by operand I' into the 
specified register shown in the following table: 

Register 

-Index Register 1 
Index Register 2-
Program Status Register 
Address Recall Register 
Instruction Address Register 
Work Register 4 
Work Register 5 
Work Register 6 
Work Register 7 

For example: 

LA PAT3,X'02' 

Hex Value (XX) 

01 or 03 
00or02 
04 
08 
10 or 20 
44 
45 
46 
47 

This instruction places the -address of PAT3 into index register 2. 

Operation OperandI Hex Value (XX) 

LA address ,XX 
LA displacement(,regl),XX 
LA displacement(,reg2) ,XX 

Programming Notes 

• This instruction copies data into only one register. 

• This instruction causes an unconditional branch to any.address placed in the 
IAR without changing the ARR. 



MVC (Move Characters) 

TheMVC instruction copies the data at the location (starting with the rightmost 
byte) indicated by operand 2 into. the location indicated by operand 1. For 
example: 

MVC., D,ED1(6) ,DED2 

Label 
DEDI 
DED2 

Before (hex) 
D9 96 83 88 85 A2 
E3 96 99 96 95 E3 

After- (hex) 
E3 9699 96 95 E3 
E3 96 99 96 95 E3 

This instruction copies the 6 bytes at DED2 into six locations beginning at 
DEDl. 

Operation OperandI Operand2 

MVC addressl(lengthl) ,address2 
MVC addressl(1engthl) ,displacement2(,regl) 
MVC addressl(1engthl) ,displacement2(,reg2) 
MVC displacement1(lengthl,regl),address2 
MVC displacement1(lengthl,regl),displacement2(,regl) 
MVC displacementl(1engthl,regl),displacement2(,reg2) 
MVC displacementl (lengthl ,reg2),address2 
MVC displacement1(lengthl,reg2),displacement2(,regl) 
MVC displacementl (lengthl ,reg2),displacement2(,reg2) 

Programming Notes 

• A length, up to a maximum of 256, can be given in either operand, but not in 
both. If you do not specify a length, th~iInplied length of operand 1 is used . 

• ', You can propagate a character through a field by setting the operand 2 
address one byte higher (to the right) than the operand 1 address. 

• The contents of the locations of operand 2 are not changed unless the fields 
overlap. 

Chapter 2. Using IBM System/36 Assembler Programming Language 2-3 3 



MVI (Move Logical Immediate) 

2-34 

The MVI instruction copies a I-byte value into the location indicated by 
operandI. For example: 

MVI FERD,X'OO' 

This instruction sets the contents of location FERD to o. 

Operation OperandI Hex Value (XX) 

MVI address ,XX 
MVI displacementl(,regl),XX 
MVI displacementl (,reg2) ,XX 

Programming Notes 

The first operand is a l~byte storage location. 



MVX (Move Hexadecimal Character) 

The MVX instruction copies either the numeric or the zone portion of the 
location indicated by operand 2 to either the numeric or the zone portion of the 
location indicated by operand 1, as shown in the following table: 

Operation 

Copy to zone from zone 
Copy to zone from numeric 
Copy to numeric from zone 
Copy to numeric from numeric 

For example: 

MVX ADD1(Ol),ADD2 

Mnemonic 

MZZ 
MZN 
MNZ 
MNN 

Label Before (hex) 
ADD 1 12 

After (hex) 
52 

ADD2 F5 F5 

Hex 

00 
01 
02 
03 

This instruction copies the numeric portion of ADD2 into the zone portion of 
ADDl. The instruction could also be written as NZ ADDl,ADD2. 

Operation OperandI Operand2 

MVX address 1 (lengthl) ,address2 
MVX address 1 (lengthl) , displacement2(, reg 1) 
MVX address 1 (lengthl) ,displacement2(,reg2) 
MVX displacementl (hex,reg 1) ,address2 
MVX displacementl (hex,reg 1) ,displacement2(,regj.) 
MVX displacement1(hex,regl) ,displacement2(,reg2) 
MVX displacementl(hex,reg2) ,address2 
MVX displacement1(hex,reg2) ,displacement2(,regl) 
MVX displacement1(hex,reg2) ,displacement2(,reg2) 

Programming Notes 

• Both operands specify I-byte storage locations. 

• The second operand is changed if both operands specify the same byte. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-35 



S (Subtract from Register) 

2-36 

The S instruction subtracts the binary number in the 2-byte location indicated by 
the operand from the contents of the 2 .. byte register indicated by the hexadecimal 
values assigned as follows: 

Register 

Index Register I 
Index Register 2 
Program Status Register 
Address Recall Register 
Instruction Address Register 
Work Register 4 
Work Register 5 
Work Register 6 
Work Register 7 

For example: 

S FIL1,08 

Hex Value· (XX) 

01 or 03 
02 
04 
08 
10 or 20 
44 
45 
46 
47 

This instruction subtracts the contents of FILl -1 and FILl from the contents of 
the address recall register (ARR). 

Operation OperandI Hex Value (XX) 

S address ,XX 
S displacementl(,regl),XX 
S displacementl (,reg2) ,XX 

Programming Notes 

• This instruction changes the contents of only one register. 

• The operand value is not changed. 

• Subtraction from the program status register causes unpredictable results. 

• Subtraction from the instruction address register causes an unconditional 
branch without changing the ARR. 



SBF (Set Bits Off Masked) 

The SBF instruction changes a bit of the data at the location specified by operand 
I to binary 0 ira corresponding bit of the I-byte value is binary 1. If a bit of the 
value is binary 0, no changes are made to the corresponding bit in operand 1. 
For example: 

SBF NODR,X'OF' 

This instruction sets all bits of the numeric portion of the data in NODR to 
binary O's, but will not alter the zone portion .. 

Operation OperandI Hex Value (XX) 

SBF address ,XX 
SBF displacement1(,regl),XX 
SBF displacement1(,reg2),XX 

Programming Notes 

The length of operand I is I byte. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-37 



SBN (Set Bits On Masked) 

2-38 

The SBN instruction changes a bit of the data at the location specified by 
operand 1 to binary 1 if a corresponding bit of the I-byte value is binary 1. If a 
bit of the value is binary 0, no changes are made to the corresponding bit in 
operand 1. For example: 

SBN FERN,X'FO' 

This instruction sets all bits of the zone portion of FERN to binary I's, but does 
not alter the numeric portion. 

Operation OperandI Hex Value (XX) 

SBN address ,XX 
SBN displacementl(,regI) ,:(0{ 
SBN displacementl (,reg2) ,XX 

Programming Notes 

The length of operand 1 is 1 byte. 



SLC (Subtract Logical Characters) 

The SI,.C instruction subtracts the binary number.in the location indicated by 
operand 2 from the binary number in the location indicated by operand 1. For 
example: 

SLC ONE2(2) ,FEW2 

Label Before (hex) 
ONE2 DD DD 
FEW2 1234 

After (hex) 
CBA9 
1234 

This instruction subtracts the 2-byte binary number at FEW2, operand 2, from 
the 2-byte binary number at ONE2, operand 1, leaving the result of the operation 
in the operand 1 loc~ tions. 

Operation OperandI ·Operand2 

SLC address 1 (length 1) ,address2 
SLC address 1 (length1) , displacement2(, reg 1) 
SLC address 1 (length 1 ) ,displacement2(,reg2) 
SLC displacementl(length1,reg1),address2 . 
SLC displacementl (length 1 ,reg 1) ,displacement2(,reg 1 ) 
SLC displacementl(length1,reg1),displacement2(,reg2) 
SLC displacement 1 (length 1 ,reg2) ,address2 
SLC displacement1(length1,reg2),displacement2(,reg1) 
SLC displacement 1 (length 1 ,reg2),displacement2(,reg2) 

Programming Notes 

• A length, up to a maximum of 256, can be given ilJ. either operand, but not in 
both. If you do not specify a length, the implied length of operand 1 is used. 

• If the value of operand 2 is greater than operand 1, an additional high-order 
bit is implied for operand 1. Therefore, the resulting difference will never be 
a negative number. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2~39 



SLI (Subtract Logical Immediate) 

2-40 

The SLI instruction subtracts the binary number in the supplied byte from the 
binary number in the location specified by the operand. For example: 

SLI FIL1,X'3F' 

Label Before (hex) After (hex) 
FIL 1 (hex) EE AF 

This instruction subtracts the value hex 3F (8 bits) from the contents of FILL 

Operation . OperandI Hex Value (XX) 

SLI address ,XX 
SLI displacement! (,reg 1) ,XX 
SLI displacement! (,reg2) ,XX 

Programming Notes 

• This instruction affects only a single storage location. 

• If the value of operand 2 is greater than operand 1, an additional high-order 
bit is implied for operand 1. 



SRC (Shift Right Character) 

The SRC instruction causes the specified storage locations to shift the specified 
number of bits to the right. The leftmost bits are set to zero and the rightmost 
bits that were shifted out are lost. The shifted field can be up to 16 bytes long 
and up to 16 bits can be shifted. For example: 

SRC NITA(2),4 

Label 
NITA-l 
NITA 

Before (hex) 
X'F4' 
X'F5' 

After (hex) 
X'OF' 
X'4F' 

This instruction shifts the 16 bits (2 bytes) at the locations NITA and NITA-I 
4 bits to the right. The leftmost 4 bits of NITA-I are set to O. 

The format of this instruction is as follows: 

Operation OperandI Hex Value (XX) 

SRC address ,XX 
SRC displacementl(,regI),XX 
SRC displacementl(,reg2),XX 

The resulting program status register settings are: 

Condition Bit Name 

Only zeros remain in the string 
String even, not zero . 

7 Equal 
6 Low 

String odd 5 High 
Any 1 s shifted out 2 Binary overflow 

The binary overflow bit is set to 0 if no I-bits are shifted out of the rightmost 
byte during this operation. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-41 



ST (Store Register) 

The ST instruction places the· contents of the specified register into the 2-byte field 
specified by operand I, as shown in the following table: 

Register 

Index Register I 
Index Register 2 
Program Status Register 
Address Recall Register 
Instruction Address Register 
Work Register 4 
Work Register 5 
Work Register 6 
Work Register 7 

F or example: 

ST DOG1,X'08' 

Hex Value (XX) 

01 or 03 
02 
04 
08 
10 or 20 
44 
45 
46 
47 

This instruction copies the contents of the address recall register into the 2-byte 
location indicated by DOG 1. 

Operation OperandI Hex Value (XX) 

ST address ,XX 
ST displacementl (,reg 1 ) ,XX 
ST displacementl (,reg2) ,XX 

Programming Notes 

This instruction copies only one register. 



SZ (Subtract Zoned Decimal) 

The SZ instruction subtracts the decimal value of the numeric part of the 
locations indicated by operand 2 from the decimal value of the numeric part of 
the locations indicated by operand 1. For example: 

SZ FIL1(3),FIL2(2) 

Label Before (hex) 
FILl F5 FO F4 
FIL2 F2 F2 

After (hex) 
F4 F8 F2 
F2 F2 

This instruction subtracts the contents of FIL2 from the contents of FILl and 
leaves the result at FILL 

Operation Operandl Operand2 

SZ addressl(lengthl) ,address2 
SZ address I (lengthl) ,displacement2(,regl) 
SZ address I (length I ) ,displacement2(,reg2) 
SZ displacementl (length I ,reg I ) ,address2 
SZ displacementl (length I ,reg I ),displacement2(,regl) 
SZ displacementl (length I ,regl ),displacement2(,reg2) 
SZ displacementl (length I ,reg2) ,address2 
SZ displacementl(lengthl,reg2),displacement2(,regl) 
SZ displacementl (length I ,reg2),displacement2(,reg2) 

Programming Notes 

• The address of operand I remains in the address recall register until another 
AZ, BC, lTC, SZ, or ZAZ instruction is performed, or until the register is the 
target of an A, L, LA, or S instruction. 

• The system does not check for valid decimal digits in either operand. 

• The zone part of all bytes except the rightmost byte of operand I is set to hex 
F. The zone part of the rightmost byte is set to hex F if the result of the 
operation is positive; it is set to hex 0 if the results are negative. 

• If the zone bits of the rightmost byte are hex 0 or B, the operand is negative. 
If the zone bits are anything else, the operand is positive. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-43 



TBF (Test Bits Off Masked) 

The TBF instruction tests specified bits of the data in the location specified by the 
operand. Each bit that is on in the supplied data causes the same bit in the 
operand location to be tested. If any of the tested bits are on, bit 3 (test false) of 
the program status register is set on. For example: 

TBF MEL2,X'Ol' 

This instruction tests the contents indicated by MEL2 for an even condition. If 
the value is not even, bit 3 (test false) of the program status register is set on. 

Operation OperandI Hex Value (XX) 

TBF address ,XX 
TBF displacement! (,reg!) ,XX 
TBF displacementl (,reg2) ,XX 

Programming Notes 

• The supplied value and the contents of the storage location are not changed 
by this instruction. 

• Bit 3 (test false) of the program status register is set off by system reset, when 
you use the bit as a condition for a branch or jump on condition, or by 
loading a binary 0 into the program status register bit 3. Bit 3 is never set off 
by TBF or TBN (only set on). 



TBN (Test Bits On Masked) 

The TBNinstruction tests specified bits of the data in the location specified by 
the operand. Each bit thatis on in the supplied data causes the same bit in the 
operand location to be tested. If any of the tested bits are off, bit 3 (test false) of 
the program status registeris set on. For example: 

TBN BENT,X'Ol' 

This instruction tests the contents indicated by BENT for an odd condition. If 
the value in BENT is even, bit 3 of the program status register is set on. 

Operation Operandi Hex Value (XX) 

TBN address ,XX 
TBN displacement1(,regl),XX 
TBN displacement1(,reg2),XX 

Programming Notes 

• The supplied value and the contents of the storage location are not changed 
by this instruction. 

• Bit 3 (test false) of the program status register is set off by system reset, when 
you use the bit as a condition for a branch or jump on condition, or by 
loading a binary 0 into the program status register bit 3. Bit 3 is never set off 
by TBF or TBN (only set on). 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-45 



XFER (Transfer) 

2-46 

The XFER instruction gives the extended control storage supervisor the control to 
perform the selected function as shown in the following table: 

Function 

Begin main program 

Begin subroutine 

Reenter program after call 

Subroutine return to calling module 

Perform next scientific instruction 

Perform next scientific instruction after invoke 

Place scientific interpreter in double mode 

Place scientific interpreter in real mode 

Do fixed to floating-point conversion 

Do real*8 floating-point to fixed conversion 

Do real*4 floating-point to fixed conversion 

F or example: 

XFER Ol,X'OS' 

Value 

01 

02 

03 

04 

05 

07 

OA 

OB 

OC 

OD 

OE 

This instruction causes the next scientific instruction encountered to be performed 
after control is given to the extended control storage supervisor. 

Operation Hex Value (XX) 

XFER Ol,XX 
I 
Fixed Value 



ZAZ (Zero and Add Zoned) 

The ZAZ instruction sets all bytes of operand 1 to zero (hex FO) then adds the 
numeric part of the locations indicated by operand 2 to the numeric part of the 
locations indicated by operand 1. The instruction copies the numeric data from 
the locations indicated by operand 2 into the locations indicated by operand 1 
after setting the zone portions of operand 1 to hex F (binary 1111). The zone 
part of the rightmost byte of the result contains hex F (positive result) or hex D 
(negative result). For example: 

ZAZ FIL1(5),FIL2(2) 

Label Before (hex) 
FILl 65 84 23 92 Al 
FIL2 F8 F2 

After (hex) 
FO FO FO F8 F2 

F8 F2 

This instruction copies 2 bytes of data from FIL2 into FILl and sets 3 bytes of 
FILl to EBCDIC O. 

Operation OperandI Operand2 

ZAZ address 1 (lengthl) ,address2 
ZAZ addressl(lengthl) ,displacement2(,regl) 
ZAZ addressl(lengthl) , displacement2(,reg2) 
ZAZ disp1acementl (length 1 ,regl ),address2 
ZAZ displacementl(lengthl,regl),displacement2(,regl) 
ZAZ displacementl (lengthl ,reg l) ,displacement2(,reg2) 
ZAZ displacementl (lengthl ,reg2) ,address2 
ZAZ displacement 1 (length I ,reg2) ,displacement2(,reg l) 
ZAZ displacementl (length 1 ,reg2),displacement2(,reg2) 

Programming Notes 

• An address remains in the address recall register until another AZ, BC, lTC, 
SZ, or ZAZ instruction is performed, or until the register is the target of an 
A, L, LA, or S instruction. 

• The zone bits of all bytes except the rightmost byte in operand 1 are set to 
hex F. The zone bits of the rightmost byte are set to hex F (binary 1111) if 
the value of operand 2 is positive, or are set to hex D (binary 1101) if the 
value is negative. 

• If the zone bits of the rightmost byte are D or B, the operand is negative. If 
the zone bits are anything else, the operand is positive. 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-47 



Supervisor Call Instructions 

2-48 

Supervisor call instructions stop the main storage processor and generate an 
interrupt to the control storage processor. The control storage processor sayes the 
current status of the main storage processor and uses an operand (a call identifier) 
to determine which supervisor call instruction to perform. Other operands define 
the details of the instruction. Most supervisor call instructions are privileged, and 
cannot be used by the assembler programmer. All supervisor call instructions 
must be used with caution because of the sensitivity of the system to changes in 
location of reference data. The supervisor call instructions are usually generated 
through macroinstruction expansions and are individually documented in the 
Functions Reference Manual. 



Notes: 

Chapter 2.Using IBM System/36 Assembler Programming Language 2-49 





Chapter 3. Using Assembler Instructions 

This chapter explains each assembler instruction. Assembler instructions cause 
the assembler program to perform certain operations during assembly. Assembler 
instruction statements, unlike machine instruction statements, are not translated 
into machine language. Some statements, such as DS and DC, cause the 
assembler to set aside storage areas for constants and other data. Other 
statements, such as EQU and SPACE, are effective only during assembly; they 
generate nothing in the object program and have no effect on the location 
counter. 

You use assembler instruction statements to define symbols and data, to control 
listings, and to control the assembler processor. 

Assembler Instruction Statements 

The operations that can be performed by each assembler instruction are shown in 
the following table: 

Operation 
Code Operation 

DC Define constant 

DS Define storage 

DROP Drop index register for base-displacement addressing 

EJECT Start new page 

END End assembly 

ENTRY Identify entry-point symbol 

EQU Equate symbol 

EXTRN Identify external symbol 

ICTL Input format control 

ISEQ Input sequence checking 

ORG Set location counter 

PRINT Print program listing 

SPACE Space listing 

START Start assembly 

TITLE Identify assembly output 

USING Use index register for base-displacement addressing 

Chapter 3.Using Assembler Instructions 3-1 



DC (DEFINE CONSTANT) 

3-2 

The DC instruction is used to reserve areas of storage, assign names to the 
reserveci areas, and to initialize the reserved areas with one of seven types of 
constants. The seven types ()f constants are shown in the following table: 

Type ID Example Explanation 

Address A AL2(BETA) BET A could be an external 
reference. If a constant is not 
the specified length, padding 
with binary O's or truncation 
occurs on the left. The 
maximum length is 3 bytes. 

Binary B BLl'lOIlO' If a constant is not the specified 
length, padding with binary O's 
or truncation occurs on the left. 
Each digit occupies 1 bit of 

storage; 8 digits occupy 1 byte 
of storage. The maximum 
length is 256 bytes. l 

Character C CL14'CHARACTERS' If a constant is not the specified 
length, padding with blanks or 
truncation occurs on the right. 
Each character, including 
blanks, occupies 1 byte of 
storage. The maximum length is 
256 bytes. 1 not the specified 
length, padding with binary 0' s 
or truncation occurs on the left. 
The maximum length is 3 
bytes. l 

Decimal D DL5'125.66' This constant is stored in zoned 
decimal format. The decimal 
point is used only for 
documentation; it is ignored by 
the assembler. If the constant 
is not the specified length, 
padding with decimal 0' s or 
truncation occurs on the left. 
Each decimal digit occupies 1 
byte of storage. The maximum 
length is 31. 

The system permits a maximum of 256 bytes. The actuallength of the constant 
(before padding) will be restricted by the positions remaining on the statement line. 



Type ID Example Explanation 

Floating F FL4'52' (single Floating-point numbers have two 
Point precision) components: a mantissa and an 

FL8 '923 7.7734 E-69' exponent. The mantissa is a signed or 
(double precision) unsigned number. Its decimal point can 

be at the beginning, at the end, or within 
the decimal number. The exponent 
consists of the letter E, followed by a 
signed or unsigned decimal integer. The 
only valid lengths are either 4 or 8. If a 
constant is not the specified length, 
passing with binary O's or truncation 
occurs on the right. 

Note: There are no assembler 
floating-point instructions. Floating 
point is supported only for specific 
macroinstructions. 

Hexa- X XL3'ABC55' If the constant is not the specified length, 
decimal padding with binary O's or truncation 

occurs on the left. Each two digits 
occupy 1 byte of storage. The maximum 
length is 256 bytes. 2 

Integer I IL2'15' Negative numbers are inserted into 
storage in twos complement notation. 
The constant is padded or truncated on 
the left if it is not the specified length. 
Positive constants are padded with o's, 
and negative constants with hex Is.The 
value must be within the range of 
_(232) + 1 to 232_1 (-4294967295 to 
4294967295). The maximum length of the 
constant is 256 bytes. The rightmost 4 
bytes will contain the value. 

2 The system permits a maximum of 256 bytes. The actual length of the constant 
(before padding) will be· restricted by the positions remaining on the statement line. 

Chapter 3.Using Assembler Instructions 3-3 



The format of the DC ''assembler instruction is as follows: 

PROGRAM 

PROGRAMMER 

STATEMENT 

Lebel Op.ation ~.nd "-ka • 

3-4 

011 121314151617 18 1920 2122232425 26 27 28 29 30 31323334 36 36 37 38 39 40 41424344 46 46 47 48 49 50 51525354&15 56 57 58 5910 616263648& 66 87686970717273 ; 

Label 

The label is optional. The symbol in the label field of the DC statement is the 
name of the constant. The value of the symbol naming the DC statement is the 
address of the rightmost byte of the constant. 

Operand 

The operand is the constant and its description. The parts of the operand are 
written in the following sequence. 

The first three parts of the operand describe the constant in the fourth. No 
blanks are permitted within the operand unless provided as characters in a 
character constant. Part I of the operand is optional. Parts 2, 3, and 4 must be 
present in the operand field. 

I Duplication factor 
2 Type 
3 Length 
4 Constant 

Duplication Factor: Optional. If specified, the constant is generated the number 
of times indicated by the factor. The factor must be specified by an unsigned 
decimal value of I through 65535. The duplication factor is applied after the 
constant is assembled into its proper format. 

Type: Defines the type of constant being specified. From the type specification, 
the assembler determines how to interpret the constant and translate it into the 
appropriate machine format. The type is specified by a letter code as follows: 

A Address 
B Binary 
C Character 
D Decimal 
F Floating Point 
I Integer 
X Hexadecimal 

Length: The number of bytes of storage occupied by the constant. The length 
can be written in two ways. 

• Ln, where n is an unsigned, decimal value. The value of n is as follows: 

n = 1 through 256 for I, B, C; X constants 



n = 1 through 31 for D constants 

n = 1 through 3 for A constants 

n = 4 or 8 for F constants 

• L (absolute expression), where an absolute expression is enclosed in 
parentheses. The value limits for the absolute expression are the same as 
those for n as an unsigned, decimal value. A location counter reference is not 
allowed in this expression. Refer to Assembler Program Conventions in 
Chapter 2 for information about expressions. 

Chapter 3.Using Assembler Instructions 3-5 



ERR 

3-6 

Constant: Described by the subfields that come before it. A data constant (any 
type except A) must be enclosed in apostrophes. An address constant (type A) 
must be enclosed in parentheses: 

The constant types, their identification letters, and an example of each are shown 
in the table under DC (Define Constant) in this chapter. 

Exatp.plesof the DC instructions for each of the constant types are given in the 
following table. The object code generated for these constants is also shown. 

S726AS1AS ROOMOO, YYMM[III IBM SYSTEM/36 ASSEMBLER-MACRO PROCESSOR 

LOC OBJECT CODe: ADDF"~ STMT SOURCe: STATEMENT 10/14/82 TIME 14#59 

0000 3E26 0001 3 INTl DC IL2'15910' INTEGER-NORMAL 
0002 26 0002 4 INT2 DC IL1.'15910' INTEGER-TRUNCATED 

PAGE 

0003 OOOOOF OOOS S INT3 DC IL3'+15' INTEGER-SIGN SF'ECIFIED & PADDED 
0006 FFFFFl 0008 6 INT4 IIC IL3'-15' INTEGER-NEGATIVE & PADDED 
0009 F1F2F5 OOOB 7 DECl DC DL3'l.2S' I~CIMAL-NORMAL WITH DECIMAL POINT 
OOOC FS OOOC 8 DEC2 IIC DL1'12S' DECIMAL-TRUNCATED 
OOOD FOFOF1F2F5 0011 9 DEC3 IIC DLS'125' IIECIMAL-PADDED 
0012 FOFOF1 F2I15 0016 10 DEC4 DC DL5'-12S' IIECIMAL-NEGATIVE & PADDEII 
OOH 89 0017 11 BINl I'C BL1'10001001' BINARY-NORMAL 
0018 000089 001A 12 BIN2 DC BL3'10001001' BINARY-PADDED 
001B lC 001B 13 BIN3 pC BL1'111100011100' BINARY-TRUNCATED 
001C C4C1E3C140404040 0023 14 CHRl DC CL8'DATA' CHARACTER-PADDED 
0024 C4Cl 0025 15 CHR2 DC CL2'IIATA' CHARACTER-TRUNCATED 
0026 3F 0026 16 HEXl DC XL1'3F' HEXADECIMAL-NORMAL 
0027 000F12 0029 1"7 HEX2 DC XL3'F12' HEXA[IECIMAL-PADDED 
002A 23 002A 18 HEX3 DC XL1'F123' HEXADECIMAL-TRUNCATE[I 

4 

0()2B 431.00000 002E 19 FLTl IIC FL4'256' FLOATING POINT-SINGLE PRECISION, NORMAL 
0()2F 4B2:':i40BE 0032 20 FLT2 DC FL4'256E+l0' FLOATING POINT-SINGLE PRECISION, TRUNCATED 
O()~B :~B44B82F 0036 21 FLT3 [IC FL4'25.6E-S' FLOATING F'OINT-SINGLE PRECISION,NEG EXPONENT 
00;37 C310000000000000 003E 22 FLT4 DC FL8'-256' FLOATING POINT-SINGLE PRECISION, NEGATIVE 
OO;,F 431.0000000000000 0046 23 FLT5 DC FLS'256.0' FLOATING F'OINT-SINGLE PRECISION, DECIMAL POINT 
0047 4B2540BE40000000 004E 24 FLT6 DC FL8'256E10' FL,OATING F'OINT-SINGLE PRECISION, EXPONENT 
004F 04D2 OO::iO 25 AIIDl IIC AL2(1234) ADDRESS-[IECIMAL 
0051 34 0051 26 ADD2 DC AL1(X'1234') ADDRESS-HEXA['EC I MAL , TRUNCATED 
00::';2 OOOOF1. 0054 27 AD[!3 [IC AL3(X'Fl' ) ADDRESS-HEXADECIMAL, PADDE[I 
0055 1"·1'12£ 0056 28 ADD4 DC AL2(-1234) ADDRESS-DECIMAL, NEGATIVE 
005-1 FOFO 00S8 29 ADDS DC AL2(X'FFFF'-X'OFOF') ADDRESS-RESOLVED 



DS (Define Storage) 

'ROGRAM 

The DS instruction is used to reserve areas of storage and to assign labels (names) 
to those areas. The format of the DS instruction is as follows: 

One Operand 

STATEMENT 

Label 

The label is optional. The symbol in the label of the DS instruction is the name 
of the constant. The value attribute of the symbol naming the instruction is the 
address of the high-order address (rightmost) byte of the constant. 

Operand 

. The operand is the constant and its description. The duplication factor is 
optional; type and length are required. 

Duplication Factor: Used toreserve storage areas larger than 256 bytes. If a 
duplication factor is included in the operand, the total amount of storage assigned 
to the constant field is the duplication factor times the length. The total value is 
limited to 65535. 

Type: Requires one of the seven letter codes I, X, D, A, B, F, or C. The use of 
the type during execution is not tested, but length restrictions are different for 
each type. 

Length: The value up to 256, depending on constant type for the number of 
bytes of storage to be reserved. The duplication factor is used to reserve larger 
areas. The length can be written two ways: 

• Ln, where n is an unsigned, decimal value. The value of n is as follows: 

n = 1 through 256 for I, B, C, X constants 
n = 1 through 31 for D constants 
n = 1 through 3 for A constants 
n = 4 or 8 for F constants 

• L (absolute expression), where an absolute expression is enclosed in 
parentheses. The value limits for the absolute expression are the same as 
those for n as an unsigned, decimal value. A location counter reference is not 
allowed in this expression. Refer to Assembler Program Conventions in 
Chapter 2 for information about expressions. 

Chapter 3.Using Assembler Instructions 3-7 



DROP (Drop Index Register as Base Register) 

PROGRAM 

3-8 

The DROP instruction specifies that an index register can nQ longer be used as a 
base register. It ends a USING instruction. ' 

The format of the DROP instruction is as follows: 

Value of 1 or 2 
(indicating index register 1 or 2) 

It is not necessary to use a DROP instruction when the base address is changed 
by a USING instruction, nor are DROP statements needed at the end of the 
source program. 

Operand 

The operand is an absolute expression with a value of 1 or 2 that indicates which 
index register, previously specified in a USING statement, is no . longer available 
for base register use. 



EJECT (Start New Page) 

PROGRAM 

The EJECT instruction causes the next line of the listing to start a new page. 
This instruction gives you a convenient way to separate routines in the assembler 
listing. The format of the EJECT statement is as follows: 

Blank 

STATEMENT 

Operation * 
011 121314151617 181920 2122 23 24 25 26 27 28 29 303132333435 36 37 383940 41424344 46 46 47 48 49 50 51525354 66 56 57 58 59 60 6162636466 66 67 68 69 70717273 ; 

The EJECT statement is not printed in the source listing, but does increase the 
statement counter by 1. 

Label and Operand 

The label and operand fields of an EJECT instruction must be blank. 

Chapter 3.Using Assembler Instructions 3-9 



END (End Assembly) 

PROGRAM 

PROGRAM 

The END instruction must always be the last statement in the source program. It 
causes the assembly of a program to end. The format of the END instruction 
statement is as follows: 

Blank or Relocatable Expression 

STATEMENT 

Operand 

The operand of this instruction can be blank or contain an expression (usually a 
label) that specifies the address to which control is transferred after the program is 
loaded. This is usually the name given on the START instruction. If the operand 
is blank, control is transferred to the address identified by the START instruction. 

The assembler checks the first 87 bytes of the source statement unless you use 
ICTL to change the source record format. 

Note: If you have no operand on the END instruction, sequence numbers or 
comments appearing before byte 87 sometimes cause assembly errors. If the 
operand is blank and you want to put a comment on the instruction, code a 
comma as the operand. For example: 

-STATEMENT 

o ~t~:n 14 15 16 ~~~9 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 3839 40 41 42 43 444546 47 48 49 50 51 52 53 54 66 56 57 58 596061 62636466-66 67 68 69 7071 72 73 ; 

3-10 



ENTRY (Identify Entry-Point Symbol) 

PROGRAM 

PROGRAM 

PROGRAMMER 

LllbI! Operation 

1 2 3 4 5 6 7 8 9 ~O II 12 13 14 

t.IN IJ'lCl 

~IN I fliT 

The ENTRY instruction identifies linkage symbols that are defined in the 
program containing the ENTRY instructiortand can be referred to from other 
programs. 

The format of the ENTRY instruction is as follows: 

Relocatable Symbol in Program 

STATEMENT 

Operand 

The symbol in an ENTRY instruction operand field can be referred to by another 
program by using an EXTRN instruction provided that the program uses the 
same symbol in the operand of the EXTRN instruction. The symbol used in the 
operand field, for both EXTRN and ENTRY instructions, has a limit of 
6 characters. See EXTRN-Identify External Symbols later in this chapter. 

The following example identifies the statements named SINE and TAN as entry 
points to the program. 

I TYPING 
GRAPHIC 

I DATE I INSTRUCTIONS CHARACTER I I 
STATEMENT 

RMMritI 
Operand • 

IS 16 17 18 1920 21 22232425 26 27 28 29 30 31 323334 35 36 3738 39 40 41 424344 46 46 47 48 49 60 51 525354 66 56 57 58 596061 62636466 66 67 68697071 72 73 

SI Nt: 
ItIAN 

Chapter 3.Using Assembler Instructions 3-11 



EQU (Equate Symbol) 

PROGRAM 

PROGRAM 

PROGRAMMER 

lIIbeI Oper.tion 

123456189 011 121314 

wi' IAII'IIi • 

511 E~11 E ~~lJ 
TE 61 r-,,,, 

IJ 

~AX . ~'" 
r<E Ga ~ ~I~ 

Il5F I- ~Il. 

3-12 

You use the EQU assembler instruction statement to define a label (a symbol) by 
assigning it to an expression in the operand field. The format is: 

Expression 

STATEMENT 

The expressions in an operand field can be absolute or relocatable, but you must 
have defined any symbols you use in the expression. Label and operand field 
entries are required. 

The assembler gives the symbol in the label field the same value and relocatability 
attributes as the first expression in the operand field. The length of the symbol is 
the value of the second expression, if present, or the length of the leftmost (or 
only) term of the expression when the second operand is omitted. When an 
asterisk (*) or a self-defining term is used as an operand, the default length 
attribute is 1. 

The following example illustrates how this instruction can be used to equate a 
symbol with the contents of the operand: 

I TYPING GRAPHIC I 
DATE 1 INSTRUCTIONS CHARACTER I I 

STATEMENT 

0,*_ Rema,ks 

I 

15 16 11 18 1920 21 22232425 26 21 28 29 30 31 323334 36 36 31 38 39 40 41424344 46 46 41 48 49 50 51 525354 55 56 57 58 59 60 61 62636455 66 67 68 69 7071 72 73 • 

X' l~ (2' 
H 
LX LI~ '5 I~t ' 
TE 1511 +X '13 fie' 
~ 
13. :3 

The symbol STEST has the value of the first (leftmost) byte of the data area 
reserved by the DC instruction. Because the symbol on the DC (TEST) has the 
value of the last (rightmost) byte, EQU is useful for addressing the leftmost byte. 
Using the symbol REG2 in any statement has the same effect as using the number 
2. DISP has a length of 3 assigned. If DISP is used as the displacement from a 
register in an instruction, and no length is specified in that instruction, the length 
value would default to 3. 

EQU can be used to equate symbols to register numbers, immediate data, and 
other arbitrary values. To reduce programming time and improve documentation, 
you can equate symbols to frequently used expressions, then use the symbols as 
operands in place of those expressions. 



EXTRN (Identify External Symbols) 

PROGRAM 

The EXTRN instruction identifies symbols used in the current program that are 
defined in another program. Each symbol in the operand of an EXTRN 
instruction must be identified by an ENTRY instruction or by the module name 
in some other program. The symbol used in the operand field, for both EXTRN 
and ENTRY instructions, has a limit of six characters. The format of the 
EXTRN instruction is as follows: 

See Text 

STATEMENT 

Opwotion a-.nd RMNorka • 

011 121314151617 181920 2122232425 26272829303132333435 36 37383940 41424344 45 46 47 48 49 50 51 525354 55 56 57 585960 6162636455 6667686970717273 . 

Lahel 

The external symbol cannot be used in a label field in the same program that 
describes that symbol as an EXTRN. The label field entry of the EXTRN 
statement must be blank. 

Operand 

An EXTRN subtype can be specified for the EXTRN symbol by following the 
symbol with an absolute expression enclosed in parentheses. The value of the 
absolute expression cannot be less than 0 nor more than 255. Any symbol in the 
expression must be previously defined. For an explanation of the subtype values 
and their meanings, see the Overlay Linkage Editor Reference Manual. 

An example of Using EXTRN and ENTR Y: The example in the following figure 
shows how these instructions can be used to make two or more programs act as 
one program by sharing data and control. The main program defines symbols A, 
B, and C and identifies them as entry points. These same symbols are identified 
as external symbols in the subroutine. This allows the subroutine to use these 
symbols just as it would if the symbols had been defined in the subroutine. 
SUBROl, on the other hand, is defined and identified as an entry point by the 
subroutine and as an external symbol by the main routine. The four symbols (A, 
B, C, and SUBRO 1) can now be used interchangeably by both the main routine 
and the subroutine. 

Chapter 3.Using Assembler Instructions 3-13 



PROGRAM 

PROGRAMMER 

UbeI Opeqtion 

12345678 9 0 11 121314 

MA I!N :31~ ~I 

II' I rn 
I 1 

'. 1 

• " ~~ J·~l "U 
~ 
~ 

R 
< 

~ nc 
I=! 1"'\'-

IJ'-' 

~ DS 
If 
Il 

EN[J 

3-14 

151 

The main routine has control first. It executes instructions, then branches to 
SUBROl, which is defined as an entry point in the subroutine. Instructions in the 
subroutine are executed. Notice that the subroutine uses symbols A, B, and C, 
which were defined in the main routine. Control is then passed back to the main 
routine. 

Note: The resolution of symbols between programs is performed by the overlay 
linkage editor and not by the assembler. 

I PROGRAM 

Oper ..... UbeI Operltion Oper ..... 

& 17 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 36 12345678 9 0 11 12 1 31415 18 17 18 19 20 21 22 23 24 2S 26 27 28 29 30 31 32 33 34 36 

"!'-~ 1IIIi, a 
N. ~l AR r2l1 
~ A :ox e 

~l :F! w:; ~l .. Definition ~l'\ C 
M -~ ~p fiJ!l !T ~""T - . - 8 .I11111i 1''' ~. 

-.-~ 
6{anc" -~ vc ~ ~I :l5 )1. ASK 
~ ...... "" ~Z !"\ 4 ~(4 

CiL r:!JC ...... ~ 'l. 4 .8 4 
E:~ E: I (5) 
Mile r c:; E: "'I '"" Rt T'-l RN ~ * -~ ~ , 12 :~4 ' ~A 51< ~~ )(l &: ' 

, 

'''~ \ 15 '7 I"!' "" Clif D5 "" ... i: 

~ILI' ~ D~ '\ .. !4 
EN:: 

t.N II"tl 



ICTL (Input Format Control) 

PROGRAM 

The ICTL instruction allows the programmer to alter the normal format of the 
source program statements. If ICTL is used, it must be the first instruction in the 
source program, including comment statements. An improperly used ICTL 
instruction ends the assembly. The format of the ICTL instruction is as follows: 

Beginning Column, Ending Column 

STATEMENT 

Opention • 

o tl 12131415 l' 17 .81920 21 22232425 26 27 282930 31 323334 35 36 37 383940 41424344 46 46 47 48 49 50 51 525354511 56 57 58 5910 61626364511 86 67 68 69 70717273 . 

Note: When HEADERS or OPTIONS assembler control statements are used, 
they must be placed before the ICTL instruction, which itself must be placed 
before all other source statements. The HEADERS and OPTIONS statements 
are described in Chapter 2. 

Operand 

The first operand, which can be a number from 1 to 48, specifies the beginning 
column of the source statement. The second operand, which can be a number 
from 49 to 96, specifies the ending column of the source statement. The column 
after the second operand must be blank. 

If no ICTL instruction is used in the source program, the assembler assumes that 
the beginning column is 1 and the ending column is 87. 

Chapter 3. Using Assembler Instructions 3-15 



ISEQ (Input Sequence Checking) 

PROGRAM 

3-16 

The ISEQ instruction checks the sequence of source records. The assembler does 
not check the sequence of record numbers unless requested to do so by the ISEQ 
instruction. Sequence checking begins with the first record after the ISEQ 
instruction. The sequence number of each following record is compared to the 
sequence number of the previous record. The ISEQ instruction does the 
following: 

1. Checks the sequence entries on source statement records for ascending order. 

2. Flags statements that are out of order and statements without sequence 
entries in the assembler listing. 

3. Indicates the total number of flagged statements at the end of the listing. 

For example, with sequence values of 13, 27, 31, 6, 8, 45, 47, blank, and 48, the 
record numbered 6 and the record without a sequence value (blank) are flagged in 
the error field of the listing, and a statement at the end of the listing shows that 
two records were out of sequence. The record numbered 8 would not be flagged, 
because it is sequential with the record just before it. 

Note: Statements generated by the macroprocessor are not tested for sequence. 

The following is the ISEQ instruction format: 

Left Position, Right Position or Blank 

STATEMENT 

The label field must be blank. 

Operand 

The operand identifies the positions of the statements to be read for the sequence 
number. To check for sequence, specify the leftmost position (no lower than 
position 73) and the rightmost position (no higher than position 96), separated by 
a comma. The operand field specified to be checked can be from 1 to 8 positions 
long. 

An ISEQ instruction with no operand ends the checking operation. Checking can 
be resumed by using another ISEQ instruction. 



ORG (Set Location Counter) 

PROGRAM 

The ORG instruction alters the setting of the location counter and lets you specify 
storage boundaries. For example, you can use the ORG instruction to set the 
location counter so that an input buffer is aligned on an 8-byte boundary. 

Operand 

The operand determines the function of the ORG instruction and can have two 
formats. 

Blank Operand: Restores the location counter to the previous maximum assigned 
address, plus 1. Do this if the previous ORG statement reduced the location 
counter to redefine the current program. The format for the blank operand is as 
follows: 

Blank 

STATEMENT 

R ......... Operation O\>erlnd * 
011 121314151617 18192021 22232425 26 27 28 29 303132333435 36 37 38 39 40 41424344 46 4647484950 51525354 55 56 57 58 5960 6162636465 66 67 68 6970717273 

Expression A as Operand: Optionally followed by the t}Vo absolute expressions B 
and C is used in the following way: 

Chapter 3.Using Assembler Instructions 3-17 



3-18 

The location counter is set to the smallest value that is equal to or greater than A, 
and is also C more than a multiple of B if Band C are specified. The expression 
A may be either absolute or relocatable; Band C must be decimal values. The 
default values for Band Care 1 and 0, respectively. For example: 

Current New 
Location Location 
Counter A B C Counter 

275 * 100 50 350 
340 * 100 50 350 
350 * 100 50 350 
504 * 256 0 512 
750 1000 1000 

Any symbols used in the expression must be previously defined. An ORG 
operation can reduce the location counter for the purpose of redefining the 
current program, but must not specify a location below the initial location 
counter value. If an ORG statement reduced the location counter to redefine the 
current program, an ORG statement with a blank operand can be used to restore 
the location counter to a value one greater than the previous maximum assigned 
address. 

Location 
Counter Address Name Operation Operand 

0064 0069 SYMBOL DC lCL6'ABCDEF' 
006A 0325 FILLIN DS 7CLI00 
OOCE ORG FILLIN -599 
OOCE 01F9 DATA DC 150CL2'AZ' 
0326 ORG 

END 



PRINT (Control Program Listing) 

PROGRAM 

You can control the printing of an assembler listing with the PRINT instruction. 
A program can have any number of PRINT instructions with each one in control 
until the next PRINT instruction is encountered. The format of the PRINT 
instruction is as follows: 

Optional, Has Default Entries 

STATEMENT 

()pention Operend R_.... . 
011 121314151617 181920 21 22232425 26 21 28 29 30 31 32333435 36 31383940 41424344 46 46 41 484950 51 525354 56 56 51585950 6162636466 66 61 68 69 70117213 ; 

Label 

The label field must be blank. 

Operand 

The operand describes what will be printed. The operand has three parts, all 
optional. They have the following descriptions: 

ON or OFF: ON, the assembler listing is printed. OFF, no listing is printed. 
The default is ON. 

DATA or NODATA: DATA prints complete constants in the assembler listing. 
NODATA prints only the first (leftmost) 8 bytes of each constant. The default is 
DATA. 

GEN or NOGEN: GEN prints the statements generated by the macroprocessor 
unless overridden by other print controls, such as PRINT OFF. NOGEN 
suppresses the printing of statements generated by the macroprocessor. The 
default is GEN. 

Operand entries must be separated by commas. If no operands are entered, the 
assembler assumes either the previous print instruction or, if this is the first 
PRINT statement, the default for the previous entry. 

Chapter 3. Using Assembler Instructions 3-19 



SPACE (Line Feed) 

PR~RAM 

3-20 

The SPACE instruction is used to insert one or more blank lines in the listing. 
The format of the SPACE is as follows: 

Decimal Value or Blank 

STATEMENT 

Oper.tion Oper.ncI • 

011 121314151617 181920 21 22232425 26 27 28 29 3031 32333435 36 37 383940 4142434446 4647484960 51 525354 66 5657585960 6162636486 66 67 686970717273 

The SPACE statement is not printed in the assembler listing but does increase the 
statement counter by one. 

Label 

The label field must be blank. 

Operand 

The operand is an unsigned decimal value that specifies the number of blank lines 
to be inserted in the listing. If the operand is a blank, a 0, or aI, one blank line 
is inserted. If the value of the operand exceeds the number of lines remaining on 
the current page, the SPACE instruction has the same effect on the listing as an 
EJECT instruction and will start a new page. 

Note: The assembler checks the first 87 bytes of the source statement unless you 
use ICTL to change the source record format. If you have no operand in the 
SPACE instruction, sequence numbers or remarks appearing before the 87th byte 
cause assembly errors. 



START (Start Assembly) 

PROGRAM 

PROGRAM 

PROGRAMMER 

ubel Operation 

123456189 011 1213 14 

MA liN $1 AIR1 
;::'1 AI"" I 

The START instruction specifies an initial location counter value for the 
program. If no START instruction appears in the program, the initial location 
counter value is set to O. The format of the START instruction is as follows: 

Self-Defining Term or Blank 

STATEMENT 

Note: The ST ART instruction must not be preceded by any type of assembler 
language statement that can either affect or depend upon the v"alue in the location 
counter. 

Label 

The label is optional and is limited to six characters. 

Operand 

The operand is a self-defining term that the assembler uses as the initial location 
counter value for the program. If the operand is omitted, the assembler sets the 
initial location counter value of the program at O. 

If a symbol names the START instruction, the symbol is established as the name 
of the object program. If a symbol name is not specified, the object program is 
assigned the default name ASMOBJ and a diagnostic message is issued. 

For example, either of the following START instructions indicate an initial 
assembly location of 2040. In addition, the first statement establishes MAIN as 
the object module name. 

I TYPING GRAPHIC I I 
DATE I INSTRUCTIONS CHARACTER I I 

STATEMENT 

O.,....ncI R ..... rks 

I 
I 

151611 18192021 2223242526212829303132333435 36 31 38 39 40 41424344 45 46 47 48 49 50 51 525354 65 56 57 58 59 60 6162636465 66 61 68 69 707172731 

2rzJ 4'(Z 
~' 7F A' V 

Chapter 3.Using Assembler Instructions 3-21 



TITLE (IDENTIFY LISTING) 

PROGRAM 

3-22 

The TITLE instruction prints the operand field on each page of an assembler 
listing. The format of the TITLE instruction is as follows: 

Character Sequence Enclosed in Apostrophes 

STATEMENT 

Lahel 

The label field is not required, but can contain up to six alphabetic or numeric 
characters in any combination. The label of the first TITLE instruction is used 
on the title header line of each listing. The labels of all other TITLE instructions 
are ignored. 

Operand 

The contents of the operand field are printed beneath the IBM ASSEMBLER 
heading on each page of the assembler listing. The operand field contains a 
sequence of characters enclosed in apostrophes. Each single apostrophe desired as 
a character in the operand must be represented by a pair of apostrophes. 

You can use more than one TITLE instruction in a program. Each TITLE 
instruction creates the heading for the pages of the assembler listing that follow it, 
until another TITLE is encountered. Each TITLE instruction advances the listing 
(skips) to a new page before the heading is printed. The TITLE statement is not 
printed in the source listing, but does increase the statement counter by 1. 



USING (Use Index Register for Base Displacement Addressing) 

PROGRAM 

The USING instruction specifies the index register to be used for base 
displacement addressing on labeled instructions and specifies the relocatable value 
to be used to compute base displacements during assembly. 

Notes: 

• A USING instruction does not load the index register because it is executed 
only during assembly and no code is generated. 

• It is the programmer's responsibility to see that the base address value is 
placed in the index register during program execution. See the text describing 
the operand. 

• The USING statement is not required if you code only absolute 
displacements. 

An example of how to use the USING instruction in base displacement addressing 
is given in Chapter 2 under Addressing. 

The format of the USING instruction is as follows: 

Value, Register 

STATEMENT 

Operand 

The operand, Value, is a relocatable expression whose value must be in the range 
o to 65535. The operand, Register, is an absolute expression specifying the index 
register to contain the base address (represented by value) during program 
execution. Register must have a value of either I or 2. 

You can use two USING instructions to specify an index register as a base 
register for two different portions of main storage. You must change the value in 
the index register currently used as a base register. The assembler computes 
displacement from the specified new value (by means of the second USING 
statement) until another USING or DROP statement is encountered. 

Chapter 3.Using Assembler Instructions 3-23 



3-24 



Chapter 4. Creating Macroinstructions 

A macroinstruction represents a sequence of machine and/or assembler 
instructions, including other macroinstructions. However, before you can code a 
macroinstruction, a macroinstruction definition must be previously coded and 
named, either by a user, or by IBM. That name can be used in an assembler 
source program to represent the predefined series of instructions. The 
macroinstruction definition must also reside in the assembler library (#ASMLIB), 
the system library (#LIBRARY), or the library specified as the MACRO library 
on the ASM procedure or the ASM help screen. 

The IBM-supplied macroinstructions are discussed in Chapter 5 in this manual. 

Chapter 4.Creating Macroinstructions 4-1 



Macroinstruction Definition 

4-2 

A macroinstruction definition resembles a small program. It consists of a 
prototype or skeleton containing symbols, parameters, and statements that specify 
values for those parameters. The definition and its parameters are used by the 
macroprocessor to create the set of instructions in the source program during 
assembly. 

The prototype statement is used to assign a name to the macroinstruction and to 
define the parameters of the corresponding macroinstruction statement. You 
would use the name of the prototype statement to code the macroinstruction into 
an assembler source program. 

The control statements that follow the prototype statement are similar to, 
assembler language instructions. They usually contain an operation mnemonic, 
operand, and remarks. Labels can also be assigned to control statements. 
Control statements must be coded in a specific sequence within the 
macroinstruction definition. The following illustration shows the relationship 
between the various parts of.a macroinstruction definition. 

Prototype statement.. 
Control statement. .. . 
Control statement .. .. 

(label) name 
(label) operation 
(label) operation 

operands 
operands 
operands 

You can use standard assembler coding forms or the SEU assembler format to 
code the components of a macroinstruction definition. The format of a 
macroinstruction is described in this chapter under Macroinstruction Format. The 
rules, or coding conventions, for coding macroinstructions follow. The rules for 
coding macroinstruction statements are at the end of this chapter. 



Macroinstruction Coding Conventions 

Sequence Symbol 

Character String 

Character Expression 

The following are the detailed rules or conventions that must be understood and 
followed to code workable, effective macroinstructions. 

Sequence symbols provide labels that can be branched to and, therefore, 
determine the sequence in which macroinstruction definition statements are 
processed. 

A sequence symbol is written as a period, followed by an alphabetic character, $, 
#, @, or _, followed by as many as five alphabetic or numeric characters. 

A character string is any combination of alphameric, special characters, and 
blanks and is enclosed in single apostrophes. For every apostrophe that is 
required as a data character in a character string, two apostrophes must be coded 
in succession. A character string can be from 1 to 50 bytes long. 

Note: Special characters refer to the characters other than alphabetic and numeric 
that are available in the System/36 character set. 

A character expression is a term, null term, or combination of terms enclosed in 
single apostrophes that can be reduced to a character string from 0 to 50 bytes 
long. Terms are either literal strings of any of the 256 hexadecimal combinations 
possible for each byte, except an ampersand or variable symbols. A null term is 
specified by two consecutive apostrophes. If an apostrophe is required as a data 
character, it must be entered as two consecutive apostrophes inside the delimiting 
apostrophes. In expressions with multiple terms, such as: 

IDEPARTMENT-&DEPT,BUILDING all 

if &DEPT is a variable symbol containing 47A, then the expression will expand 
to: 

IDEPARTMENT-47A,BUILDING all. 

All the rules of concatenation apply (see Concatenation in this chapter). 

Chapter 4.Creating Macroinstructions 4-3 



Substring 

4-4 

Substring selects specific sequential characters from a character string defined in a 
character expression. A substring is specified as a character string or its label 
(m,n) where m and n are each a valid arithmetic expression. The starting 
character of the substring is m; the length of the substring is n. The following 
rules apply when you are specifying substrings: 

• The value of m must be greater than O. 

• The value of n must be 1 or greater. 

• If the value of n is 0 or if the value of m is greater than the length of the 
character string, the substring has no value. 

• If the value of n were greater than the remaining length of the character 
string, the substring is all the remaining characters of the character string. 

Note: There can be no blanks between the closing single apostrophe of the 
character string and the left parenthesis of the substring. 

The following is an example of creating a substring: 

The original character string &CHAR is ABCDEFGHIJKL. 

The desired substring contains DEFGH (five characters from position 4). 

The substring is coded as 'ABCDEFGHIJKL'(4,5) or &CHAR (4,5). 



Alphameric Value 

Variable Symbol 

An alphameric value is a continuous string of alphameric characters not enclosed 
by apostrophes. When an alphameric value is processed, commas, blanks, dashes, 
and equal signs become delimiters. A decoded alphameric value can be up to 50 
bytes. 

A variable symbol is written as an ampersand (&) followed by an alphabetic 
character, $, #, @, or_, and followed by as many as five characters. The 
characters can be any combination of alphabetic, numeric, or $, #, @, _ (no other 
character or blanks can be used). 

Note: The ampersand is a restricted character and cannot be used anywhere else 
or it will cause an error, ASM-5402. 

Attribute 

The kind of value assigned to a variable symbol in the variable symbol table is 
called an attribute. The attributes are: 

• Numeric value 

• Character string value 

• Null value 

• Binary value. 

There are two types of variable symbols: symbolic parameters and set symbols. 

Chapter 4.Creating Macroinstructions 4-5 



4-6 

Symbolic Parameter 

Positional or keyword symbolic parameters are parameters that are assigned 
values by the macroinstruction statements, prototype statements, and table 
records. The values assigned to symbolic parameters cannot be changed by the 
macroprocessor. 

Positional Parameters: Positional parameters are represented by variable symbol 
names. Positional parameters appear before the keyword parameters in the 
prototype record. Each positional parameter is written as an & (ampersand) 
followed by an alphabetic character, $, #, @, or _, followed by as many as five 
alphabetic or numeric characters, followed by a comma. Positional parameters 
appear in your macroinstructions as parameter values positioned before keywords 
and in the same sequence that they had in the prototype. 

Keyword Parameters: Keyword parameters are variable symbol names followed 
by a dash, and immediately following the dash, a parameter value, a comma, or, 
if the keyword parameter is the last parameter in a macroinstruction, a blank. If 
a parameter value is included, that value is used. If a parameter value is not 
included, no default value is used. Keyword parameters follow positional 
parameters in the prototype statement. Each keyword parameter is written as an 
& (ampersand) followed by an alphabetic character, $, #, @, or _, followed by 
five alphabetic or numeric characters. 

Keyword parameters on user macroinstruction statements have a label similar to 
the prototype definition statement; however, the lead ampersand (&) is deleted, 
&KYWORD becomes KYWRD-, followed by a dash, followed by the parameter 
value. 

The difference between keyword parameters and positional parameters is that the 
keyword in a keyword parameter must always be followed by a dash (-). An 
example of a macroinstruction that contains only keyword parameters follows: 

EXPI &PLIST-2,&NOTE-

An example of a macroinstruction that contains only positional parameters 
follows: 

EXP2 &A,&B 

An example of a macroinstruction that contains both positional and keyword 
parameters follows:· 

EXP3 &C,&D,&PLIST-3 

Note: &SYSNDX cannot be used as a keyword or positional parameter. 



Set Symbol 

A set symbol is a storage area defined by global or local statements. The values 
assigned to these symbols can be changed by the macroprocessor by use of set 
statements. 

Three different kinds of set symbols can be used: 

• Arithmetic set symbols are defined by GBLA (arithmetic global) and LCLA 
(arithmetic local) statements and are assigned values by SETA (set 
arithmetic). 

• Binary set symbols are defined by GBLB (binary global) and LCLB (binary 
local) statements and are assigned values by SETB (set binary) statements. 

• Character set symbols, which are defined by GBLC (character global) and 
LCLC (character local) statements and are assigned values by SETC (set 
character) statements. 

Global: A global set symbol is defined bya global statement. This symbol has a 
storage area assigned to it only once for each program assembled. The same set 
symbol can be defined in other macroinstruction definitions in the program, but 
the storage area remains as that of the original. Global set symbols are a primary 
means of passing information to macroinstruction definitions called later in the 
program. 

Note Be careful when using global set symbols because they retain values and 
spaces in the symbol table even when they are not being used. Do not use global 
set symbols when they are not needed; they can cause the symbol table to 
overflow. 

Local: A local set symbol (storage area) retains its value only during the 
expansion of a single macroinstruction definition. Each time a local set symbol 
statement appears, it is treated as though it is the· first definition of that symbol in 
the program. These symbols retain values that can be used later in the same 
macroinstruction definition. 

&SYSNDX 

&SYSNDX is a system variable that might be concatenated with other characters 
to create unique names for macroinstruction definition statements and generated 
assembler source instructions. &SYSNDX must not be used as a variable symbol 
or symbolic parameter. SYSNDX cannot be used as a keyword or positional 
parameter. The 3-digit number 001 is the value assigned to &SYSNDX when the 
first macroinstruction definition is processed. The value is increased by 1 for each 
subsequent macroinstruction definition processed in the program. 

&SYSNDX has a maximum value of 999. Therefore, the number of 
macroinstructions in one job must not exceed 999 when &SYSNDX is used. 

Note: No diagnostic messages exist for the incorrect use of &SYSNDX. 

Chapter 4.Creating Macroinstructions 4-7 



Count Function 

Arithmetic Expression 

4-8 

The count function determines the length, in bytes, of the value assigne.d to a 
symbolic parameter. This length is obtained by prefixing K' to the label of a 
symbolic parameter. For example, if &LIST equals ABCDEFG, the K'&LIST 
equals 7. 

You can refer to the count function only in the operand ofa macroprocessor 
control statement (for example, AIF or SET A). 

An arithmetic expression is a term or series of terms separated by operators. The 
valid terms of an arithmetic expression are variable symbols, self-defining terms, 
or count functions. The valid operators in an arithmetic expression are addition 
(+ ), subtraction (-), multiplication (*), and division (/). Parenthesized expressions 
are supported for up to three nested levels. 

The following rules apply to arithmetic expressions: 

• Terms must be separated by operators. 

• Operators must be separated by terms. 

• No more than three nested levels of parentheses are allowed. 

• Parentheses must be balanced; that is, for each left parenthesis there must be 
a right parenthesis. 

• Unless a left parenthesis is the first element in the expression, there must be 
an operator or another left parenthesis immediately before it. 

• A left parenthesis must be immediately followed by a term or another left 
parenthesis. 

• A right parenthesis must be immediately preceded by a term or another right 
parenthesis. 

• A right parenthesis must be immediately followed by an operator or another 
right parenthesis unless it is the end of the expression. 

Arithmetic expressions are evaluated using 24-bit signed arithmetic (a 3-byte field 
ranging from -8388608 to 8388607). An expression is reduced to a single value as 
follows: 

• Parenthesized expressions are evaluated from the innermost set of parentheses 
outward. 

• Multiplication and division are performed before addition and subtraction. 
All operations are performed from left to right. 



Continuation 

Concatenation 

Only prototype statements can be continued. Any character in position 72 
following a comma after the last operand indicates that a continuation line of the 
prototype statement follows. Columns 1 through 15 must be blank. At least one 
operand, beginning in position 16, must appear on every continuation line of a 
prototype statement. Only nine continuation lines can be used, giving a 
maximum statement of ten lines for each prototype record. 

Separate values physically combined so that they appear as one value are said to 
be concatenated. Concatenation occurs under any of the following conditions: 

• A symbolic parameter or set symbol is immediately before or after another 
symbolic parameter or set symbol with no delimiter between them. 

• Characters are immediately before a symbolic parameter or set symbol with 
no delimiter between them. 

• Characters are joined to the symbolic parameter immediately before them or 
to a set symbol by a period between them. 

You can concatenate symbolic parameters, set symbols, and character strings of 
AIF statements. However, model records and assembler instructions can 
concatenate only symbolic parameters or set symbols and alphameric values. 

Chapter 4.Creating Macroinstructions 4-9 



Creating Macroinstruction Definitions 

You must use definition control statements to create macroinstruction definitiot:ls. 
The values established in the definition control statements are used by the 
macroprocessor to generate assembler and/or machine instruction statements. 
The following list shows the definition control statements in the order that they 
must appear in a macroinstruction definition: 

MACRO (required) 
Prototype (required) 
Global declares 
Local declares 
Table 
Table definitions 
TEXT (required) 
MEXIT 
MEND (required) 

Definition Control Statement Format 

4-10 

A definition control statement can contain up to four entries: name, operation, 
operands, and remarks. Name, operation, and operands are position-dependent 
and must begin in positions 1, 10, and 16, respectively. The remarks entry can 
occur in any position following the operands if at least one blank separates it 
from the operands. 



Macroinstruction Format 

Symbol or Blank 

The format of a macroinstruction follows: 

Blank Before Remark (optional) 

Label 

If the label field on the macroinstruction contains a symbol, and if a symbolic 
parameter is used in the label field of the associated prototype statement, the 
symbolic parameter is assigned the value of the symbol in the macroinstruction. 
(See Prototype in this chapter.) 

If the label field on the macroinstruction contains a symbol, and if the label field 
of the associated prototype statement does not contain a symbolic parameter, the 
symbol is ignored. 

If the label field on the macroinstruction is not used, and if a symbolic parameter 
is used in the label field of the associated prototype statement, the symbolic 
parameter is assigned a null value. The length of the label field is up to 8 bytes 
with blanks padded on the right. 

Operation 

The mnemonic operation code must be identical to the mnemonic operation code 
of the associated prototype statement. 

Operand 

The operand can contain either keyword or positional parameters, or both. The 
value assigned a keyword or positional parameter in a macroinstruction is 
assigned to the corresponding symbolic parameter defined in the associated 
prototype statement. 

A symbolic parameter defined without a value in a prototype statement is 
assigned a null value with an undefined attribute, unless an operand referring to 
the corresponding keyword or positional parameter is used in the associated 
macroinstruction. 

A keyword parameter defined with a value in a prototype statement retains the 
assigned value, unless an operand containing the corresponding keyword appears 
in the associated macroinstruction. 

The keyword parameters can be written in any order; however, positional 
parameters must be in the sequence specified on the prototype statement and must 
occur before any keyword parameters. 

Chapter 4.Creating Macroinstructions 4-11 



PROGRAM 

PROGRAMMER 

Lebel Operation 

123456789 011 1213 14 

~II ARr'" irE SIT 

TE 151T 

. 

Keyword Parameter 'Operands: Each keyword operand.must consist of a keyword 
immediately followed by a dash, immediately followed by the value assigned to 
the keyword. 

Each keyword in the operand must correspond to one of the symbolic parameters 
in the operand of the associated prototype statement. However, each symboiic 
parameter in the associated prototype record does not require a corresponding 
keyword in the macroinstruction. A keyword corresponds to a symbolic 
parameter when the characters in the keyword are identical to the characters 
following the ampersand in the symbolic parameter. 

Positional Parameter Operands: A positional parameter operand corresponds to a 
keyword value; that is, just the value is given, not the keyword. Conimas in 
succession indicate the omission of positional parameters and the assignment of 
null value. An example of a macroinstruction statement and its relationship to 
the prototype definition control statement follows: 

I TYPING GRAPHIC I I 
DATE J INSTRUCTIONS CHARACTER I 1 

STATEMENT 

Ol*.nd R-u 

151617 181920 21 22232425 26272829303132333435 36 3738 39 40 41424344 45 46 47 48 49 50 51 525354 &6 66 57 58 59 60 6162636485 66 67 68 69 70717273 . 

~O rA'l.L IC.~ ~ I !4::: • i~t 
,-- ... '0 All ~-,.., I .:;lI- Cit 

y£~ I~ IAIT 4- lla 1\ 

1\ 1\ , 
\ 

Macroinstruction Statement Prototype 

4-12 

&DATlis assigned YES by the macroinstruction. 
&DAT2 is assigned null value by omission. 
&DAT3 is assigned 8 by prototype default. 
&DAT 4 is assigned 12 by the macroinstruction. 



Macroinstruction Definition Control Statements 

Header 

You use macroinstruction definition control statements when you are creating 
macroinstructions to define and describe the specific macroinstruction that you 
are creating. 

The header statement is required and marks the beginning of a macroinstruction 
definition. It must be the first control statement in the definition. No more than 
one comment (an asterisk in position 1) can be before the header. A comment 
appearing before a header is not generated as source output. The format of the 
header statement follows: 

Chapter 4.Creating Macroinstructions 4-13 



Prototype 

PROGRAM 

PROGRAMMER 

UIIoI 
123456789 

I," 

II 
I 

Symbol or 
Not Used 

4-14 

O ...... ,io" 
011 121314 

~A ~NI'" 

-~r-

\ 

\ 

The prototype statement is required and defines both the mnemonic operation 
code that must be used and any parameters (operands) that can be usedon the 
corresponding macroinstruction statements. The mnemonic operation code in ·the 
definition prototype statement is the same one used to code a macroinstruction 
statement in the assembler source program. By varying the values assigned to 
parameters, the user can change the assembler source instructions generated for 
each user macroinstruction. The prototype must be the second control statement 
in a macroinstruction definition. The format of the prototype statement follows: 

I TYPING GRAPHIC I 1 
DATE I INSTRUCTIONS CHARACTER I I 

STATEMENT 

R_rb 

1 
I 

Oper.nd 
• * 

15 16 17 18 1920 21 22232425 2627282930 31 32333435 36 37 38 39 40.1 424344 46 46 47 48 49 50 51 525354 66 5& 57 58 5960 61 62636486 66 67 68697071 72 73 ; 

~I' AR ~1 e AIC! 1"'1 I~ If"IA 'I!! 
~-IN f:1"'I AII"'lI IA _ e.1I r'l, .. E t"1'Ii IVII 1\.011 11"'1:,. C '.'11"" J~ ,. .... 

t ... ... 1:1 I~- 2~~ 
,.,. 

I\:T liN i~A TI ~~ :M~ ~ ) 1- ~ ... 
I 

I It V IJ 
I . '/ I 

Mnemonic Positional Parameters Blanks Indicate the Remarks after 
the Blanks 

Continuation 
Indicator 
(can be any 
character) 

Label 

Followed by Keyword End of Operand 
Parameters 

The name of the prototype statement is optional. If the keyword prototype 
statement is continued, the label and operation entries must not be repeated on 
the continuation lines. 

Operation 

The symbol in the operation entry is the mnemonic operation code that must 
appear in all user macroinstruction statements that refer to this macroinstruction 
definition. The operation mnemonic must not be more than 5 characters long. If 
the keyword prototype statement is continued, the operation entry must not be 
repeated on the continuation line. 

Operand 

The operand consists of either positional or keyword symbolic parameters or 
both, separated by commas. A blank indicates the end of the operands. 

A comment may be entered following the operands as long as at least one blank is 
placed between it and the operands. 

If the prototype statement is continued, at least one operand beginning in position 
16 must appear on every continuation line. A prototype statement can have up to 
nine continuation lines. The preceding example shows a continued prototype 
statement. 



Global 

PROGRAM 

PROGRAM 

Three types of global statements can be used in macroinstruction definitions to 
generate global set symbols: arithmetic, binary, and character. A global set 
symbol value is available to all macroinstructions in an assembler source program. 
If used, a global statement must be the first definition control statement following 
the prototype statement. Global statements can be specified in any order and 
more than one of each type can be used. 

A global set symbol is established when the first specification of a symbol name is 
given in a global statement. Subsequent global statements can specify the same 
symbol name, but the global set symbol value is not reestablished. When you 
ag~in declare (use) the symbol, you must specify it as the same type, arithmetic, 
binary, or character. 

GBLA (Arithmetic Global) 

The GBLA global mnemonic specifies an arithmetic set symbol. Arithmetic set 
symbols are initialized to 3 bytes of hex O's. The 3-byte field remains through all 
value assignments. The format of the arithmetic global record follows: 

One or More, Separated by Commas 

STATEMENT 

o 11 12 13 1415 6 11 181920 21 22232425 26 27 282930 31 32333435 36 37 38 39 40 41 424344 46 46 47 48 49 50 51 525354 56 5& 57 58 59 60 61 62636465 66 67 68 69 7071 72 73 ; 

GBLB (Binary Global) 

The GBLB global mnemonic specifies a binary set symbol. When a binary set 
symbol is defined, the defined variable is initialized to O. The variable can later 
be set to either 0 or 1 by SETB statements. The format of the binary global 
statement follows: 

One or More, Separated by Commas 

~==~fi==========~ft==============================~==~~=======~ 

Chapter 4.Creating Macroinstructions 4-15 



4-16 

GBLC (Character Global) 

The GBLe global mnemonic specifies a character set symbol. When a character 
set symbol is defined,it is given a length of O. A 0- to 8-byte character field can 
be assigned by the SETC statement. The assigned characters can be any of the 
256 hexadecimal combinations possible for each byte. The format of the 
character global statement follows: 



Local 

Three types of local statements can be used in macroinstruction definitions to 
generate local set symbols: arithmetic, binary, and character. If used, they must 
be the first control statements following the global set symbol statements, if global 
set symbols are used, or be the first control records following the prototype 
statement, if global set symbols are not used. Local statements can be specified in 
any order and more than one of each type can be used. 

Local set symbols are established and initialized in each macroinstruction 
definition in which they appear. 

LeLA (Arithmetic Local) 

The LeLA local mnemonic specifies an arithmetic set symbol. Each arithmetic 
set symbol specified is initialized to 3 bytes of hex O's and remains as a 3-byte 
field. The format of the arithmetic local statement follows: 

One or More, Separated by Commas 

STATEMENT 

Chapter 4.Creating Macroinstructions 4-17 



PROGRAM 

4-18 

LCLB (Binary Local) 

The LCLB local mnemonic specifies a binary set symbol. Each binary set symbol 
is initialized toO. The format of the binary local statement follows: 

LCLC (Character Local) 

The LCLC local mnemonic specifies a character set symbol. Each character set 
symbol is initialized to a null value and a length of O. It can then be changed to a 
character value of from 0 to 8 by SETC. The format of the character local 
statement follows: 

One or More, Separated by Commas 

STATEMENT 

0"",.';0" O ...... nd R_rlls * 
011 121314151617 1819202122232425 26 27 28 293031323334 35 36 37 38 39 40 4142434445 46 47 48 49 50 51 525354 66 56 57 58 5960 6162636466 66676869707172737 



Tables 

PROGRAM 

The TABLE and T ABDF (table-definition) statements are used together to define 
and assign values to tables. These tables are used in and by the assembler 
program. 

TABLE (Table) 

The table statement is used to assign a value to a positional or keyword symbolic 
parameter. A table statement must be followed by at least one table-definition 
statement. The format of the table record follows: 

Symbolic Parameter 

STATEMENT 

Operation Operand • 

011 121314151617 181920 2122232425 26 27 28 29 30 31323334 36 36373839 40 41424344 46 464748 49 50 51 525354 56 56 57 58 59506162636 .. 66 6667686970717273 

Chapter 4.Creating Macroinstructions 4-19 



TABDF (Table-Definition) 

4-20 

The TABDF statement assigns values to symbolic parameters specified in table 
statements. The operand value in a table-definition statement is assigned to the 
symbolic parameter in the previous table statement, if one of the following 
conditions is satisfied: 

• The label field (argument) of the table-definition statement matches the value 
previously assigned to the symbolic parameter by the macroinstruction or 
prototype statement. 

• Positions 1 and 2 of the label field (argument) of the table-definition 
statement are apostrophes, and no value (null) was previously assigned to a 
symbolic parameter by the macroinstruction or prototype statement. 

• The label field (argument) of the table-definition statement is blank. A blank 
argument assigns the specified value of the operand to a parameter if the 
parameter does:not match an argument specified in an earlier TABDF 
statement. 

At least one table-definition statement must follow each table record. The format 
of the table-definition statement follows: 



PROGRAM 

PROGRAMMER 

..... Oper.tion 
123456189 011 121314 

It IAI8£ [~l~ 
[r A ~ E 

~EIS IT~ 
~(: TA~ to 
• I I .. I .... I .. , ~ If'" 

Label 

The label is a string of characters with no embedded blanks. The string can be 
taken from the prototype record or a user macroinstruction. 

Operand 

The operand is a character string or an alphameric constant. Following is an 
example of lines from a macroinstruction definition instruction that define a table 
or table statement: 

I TYPING GRAPHIC I I 
DATE I INSTRUCTIONS CHARACTER I I 

STATEMENT 

Oper.nd RltnI'ks 

I 

151611 181920 21 22232425 26 21 28 29 30 3132333435 36 31 38 39 40 41424344 45 46 41484950 51 525354 56 56 57 58 5960 6162636456 66 67 68 69 70117273 ; 

~[: 
~t 
1 
k2 
q 

iAll J. I+~ ~,~ t~ ~Il I:: -Ia ~ .... foil' ~-
All! 

In this example, if the user enters a yes for the first positional parameter 
(&DATI), then &DATI is assigned a value of 1. If you make no data entry for 
the first positional parameter, &DATI is assigned a value of 9. 

Chapter 4. Creating Macroinstructions 4-21 



TEXT 

4-22 

The TEXT statement must be present in every macroinstruction definition. The 
TEXT statement marks the beginning of conditional processing instructions. The 
definition control statements that can appear before the text statement in the 
input or output stream are: header, prototype, global, local, table, and 
table-definition records. Any of these records following the text statement are 
invalid, and errors result. The format of the text statement follows: 

Not Used 

R_rkI 

o ~:t~:n 14 15 16 ~~9 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 36 36 37 38 39 40 41 42 43 44 46 46 47 48 49 60 51 52 53 5466 56 57 58 59 eo 61 62636466 66 67 686970 71 72 73 ; 



Comment 

PROGRAM 

PROGRAMMER 

PROGRAM 

PROGRAMMER 

Source output comments can be placed after the TEXT statement and before the 
first trailer record (MEND). These comments are written as part of the 
macroinstruction expansion. The format of a source output comment follows: 

STATEMENT 

Operation Retn8rkl * 
011 12 13 1415 16 17 18 19 20 21 22232425262728293031 32333435 36 37 38 39 40 41 424344 46 46 47 48 49 50 51 525354 5& 56 57 58 5960 61 6263646566676869 7071 72 73 ; 

One comment with this format can appear before the header record, but is not 
generated as source output. 

Comments that are internal to the macroinstruction definition can be placed after 
the header record and before the first trailer record (MEND). These comments 
are not included in the macroinstruction expansion. The format of an internal 
macroinstruction comment follows: 

STATEMENT 

Lebel Operotion Oper.nd Remarks • 

o 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 3031 32 33 34 35 36 37 38 39 40 41 42 43 44 46 46 47 48 49 50 51 52 53 54 5& 56 57 58 5960 61 6263 64 65 66 67 68 69 7071 72 73 

Chapter 4.Creating Macroinstructions 4-23 



AIF (Conditional Branch) 

PROGRAM 

4-24 

The A1Fstatement conditionally alters (forward or backward) the sequence in 
which macroinstruction definition statements are processed. The AIF statement 
can be used anyplace after the TEXT statement. The format of the AIF 
statement follows: 

Sequence Symbol or Blank Logical Expression as Described 

STATEMENT 

Operand 

The logical expression in the operand is evaluated to determine whether it is true 
or false. If the expression is true, the statement named by the sequence symbol in 
the operand is the next statement processed by the macroprocessor. If the logical 
expression is false, the next sequential instruction of the macroinstruction 
definition is processed. 

Whenever AIF operands of unequal length are compared (after assigned values 
have been substituted for symbolic parameters), the lengths5 not the content, of 
the operands are compared. Otherwise, three kinds of comparisons of content are 
possible: 

• Type attribute checking 

• Binary condition checking 

• Val ue· checking. 



Type Attribute (T) Checking: Permits the user to check the attribute type only 
in the operand of the AIF record. Attribute checking cannot be performed with 
set symbols. The following list gives the conditions and meanings: 

Condition 

AIF {T' &name {~~} 'N') .sequence symbol 

. sequence symbol 

. sequence symbol 

. sequence symbol 

AIF {T'&name{~~} T&name I).sequence symbol 

Meaning 

Test &name for a 
numeric value . 

Test &name for a 
character string 
value . 

Test &name for a 
null value (no value 
assigned). This null 
test is 
recommended . 

Test &name for a 
null value (no value 
assigned). This null 
test is not 
recommended. 

This test determines 
whether &name and 
&name 1 have the 
same attribute. 

Note: No concatenation of symbols in an AIF operand is supported in T' 
processing. If concatenation is specified, an error results. 

Binary Condition Checking: Has a format for binary condition checking as 
follows: 

AIF (&symbol) . sequence symbol 

This format is valid only if &symbol is a binary set symbol. See SETB (Set 
Binary Record) in this chapter. If &symbol has a value of 1, the AIF condition is 
assumed to be true, and a branch forward or backward to the sequence symbol is 
taken. Otherwise, processing continues with the next sequential instruction. 

Chapter 4.Creating Macroinstructions 4-25 



Value Checking: Has the following format: 

[{

count: funct ion } 
symbol 
'ch~ractQr expression' 

GT 
·GE 
EQ 
HE 
LT 
lE 

{:~~~!lfunction }j.sequence symbol 
'character expression' 

4-26 

Notes: 

1. Symbol = any symbolic parameter or set symbol. 

.2. 'char. expression' = any character expression. 

GT greater than 
GE greater than or equal 
EQ equal 
NE not equal 
LT less than 
LE less than or equal 

Concatenation of symbolic parameters, set symbols, and character strings is 
supported for an AlP record. 



AGO (Unconditional Branch Record) 

PROGRAM 

The AGO statement unconditionally alters (forward or backward) the sequence in 
which macroinstruction definition statements are processed. AGO causes a 
branch forward or backward to the statement whose name matches the sequence 
symbol given in the operand of the AGO statement. 

The AGO statement can be used anyplace after the TEXT statement and before 
the MEND statement. The format of the AGO statement follows: 

Sequence Symbol or Blank Sequence Symbol 

STATEMENT 

R ..... ' ... 
011 121314151617 18 1920 2122232425 26 27 28 29 303132333435 36 37 38 39 40 41424344 46 46 47 484950 51525354 66 56 57585960 6162636466 66 67 68 6970717273 

SETA (Set Arithmetic) 

PROGRAM 

The SET A statement assigns a value to the arithmetic set symbol referred to in 
the label field. The 3-byte hexadecimal value assigned is derived from an 
evaluation of the operand field. The SET A statement can be used anyplace after 
the TEXT statement. The format of the SETA statement follows: 

Arithmetic Set Symbol Arithmetic Expression 

STATEMENT 

011 121314151617 18 1920 21 222324252627282930 3132333435 3637383940 41424344 46 4647484950 51 525354 66 56 57585960 6162636466 66 67 68 6970717273 

The operand is an arithmetic expression that can contain arithmetic, character, 
and/or binary set symbols. Any character set symbols used must have a value of 
from 1- to 8-decimal digits. Binary set symbols are either 0 or 1, and &SYSNDX 
is given a hexadecimal representation of its current value. The values assigned by 
the SET A records must be in the range of -8388608 to 8388607. If you use the 
count function as an operand, it must appear alone. 

Chapter 4.Creating Macroinstructions 4-27 



SETB (Set Binary) 

The SETB statement assigns a value of 0 or 1 to the binary set symbol referred to 
in the label field. The SETB statement can be used anyplace after the TEXT 
statement. The format of the SETB statement follows: 

Binary Set Symbol o or 1 

PROGRAM 

STATEMENT 

4-28 



SETC (Set Character) 

The SETC statement assigns an 0- through 8-character expression to the character 
set symbol referred to in the label field. The character value assigned is derived 
frQm an evaluation of the operand field. If the derived value contains more than 
eight characters, only the first eight characters are used. 

The SETC statement can be used anyplace after the TEXT statement and before 
the MEND statement. The assigned characters can be any of the 256 
hexadecimal combinations possible for 1 byte. The format of the SETC statement ' 
follows: 

Character Set Symbol Character Expression 

PROGRAM 

STATEMENT 

The character expression in the operand, can contain character, arithmetic, or 
binary set symbols, and can include substring notation. You can assign null 
values in the character expression by specifying two consecutive single 
apostrophes or by specifying only variable symbols that are already specified null 
values. 

Arithmetic set symbols you use in the character expression are converted to only 
their significant decimal digits in the string. All leading 0'$ are dropped, and, if 
the value of the arithmetic set symbol is 0, a single decimal 0 is used. Binary set 
symbols appear as either 0 or 1, and &SYSNDX is given its current value in 
3-decimal digits. 

Chapter 4.Creating Macroinstructions 4-29 



ANOP (Assembly No Operation) 

PROGRAM 

4-30 

The ANOP statement does not generate any executable machine-language code. 
The ANOP statement can be used to provide a label (sequence symbol) to which 
AlF and AGO statements can . brflnch. ANOP can be used anyplace after the 
TEXT statement and before the MEND statement. The format of the ANOP 
statement follows: 

Not Used 

STATEMENT 



MNOTE (Message) 

PROGRAM 

The MNOTE statement can be used to generate a message to indicate error 
severity, if any, associated with the message. The MNOTE statement can be used 
anyplace after the TEXT statement. The format of the MNOTE statement 
follows: 

See Following Text 

STATEMENT 

a-otion Operand R......... * 
011 121314151617 1819202122232425 26 27 28 29 30 31323334 36 36 37 38 39 40 41424344 46 46 47484950 51 525364 6& 66 57 58 59606162636466 66 67 68 69 1071 72 1 

The operand consists of a 2-digit severity code, and any information that follows 
it. The severity code can be optionally followed by either a message or a message 
identification code (MIC) number and a message ID. 

SC = Severity code made up of 2 digits from 00 through 99. 

Severity codes are divided into the following classifications: 

SC < 08 

SC = 08 

SC > 08 

The macroprocessor generates the message as an assembler 
comment (* in position 1), and no error condition occurs. 

The macroprocessor generates a special assembler statement 
that causes the message to be printed on the assembler source 
listing with a warning (W-error). 

The macroprocessor generates the message without an * in 
column 1, which causes the assembler to flag that statement as 
a hard nonrecoverable error (M-error). 

Message: 1 to 50 characters enclosed in apostrophes with no embedded 
apostrophes. This message appears, as coded, on the assembler source listing. 

MIC Message identifier code, a 4-digit code that identifies the message 
within the message member. 

Message ID This is the 3- or 4-character identifier before the MIC, separated 
by a dash. For example, if the assembler message ID is ASM and 
the MIC is 2600, then the printed message would be presented as 
ASM-2600 followed by the message text. 

Chapter 4.Creating Macroinstructions 4-31 



PROGRAM 

PROGRAMMER 

The following shows an MNOTE statement that causes a warning (W -error) and 
a comment on the source listing: 

STATEMENT 

Loobel Operation O_and Remarks * 
1 2 3 4 5 6 7 8 9 011 121314151617 181920 212223242526272829303132333435 36 37 383940 41424344 45 4647484950 51525354 56 5657585960 6162636485 66 67 68 69 70717273 : 

PROGRAM 

PROGRAMMER 

Loobel 

PROGRAM 

PROGRAMMER 

Loobel 

4-32 

, , 

The following shows an MNOTE statement that causes a hard (M-error) and 
generates message ASM-2601 as obtained from the assembler message member: 

STATEMENT 

O_ation O_and Remarks * 
011 121314151617 18192021 2223242526272829303132333435 36 37 38 39 40 41424344 45 46 47 484960 51 525354 56 5657585960 6162636456 66 67 68 6970717273 

The following shows an MNOTE statement that causes a hard (M-error) but no 
message: 

STATEMENT 

O_ation O_and Remarks * 
011 121314151617 18192021 22232425 26 27 28 29 303132333435 3637383940 41424344 45 46 47 48 49 50 51525354 56 56 57 58 59 60 6162636465 66 6768697071 72 73 ., 



MEXIT (Logical End) 

PROGRAM 

The MEXIT statement ends the macroinstruction definition processing. MEXIT 
statements can be located anywhere in a macroinstruction definition. The format 
of the MEXIT statement follows: 

Not Used 

STATEMENT 

Opwation Opwand R__ • 

o II 12 13 141516 17 18 1920 21 22232425 26 27 28 29 30 31 323334 36 36 37 38 39 40 4, 424344 46 46 47 48 49 60 51 525354 66 66 57 58 59 60 61626364 66 66 67 6869707172 73 

Chapter 4.Creating Macroinstructions 4-33 



MEND (Physical End) 

PROGRAM 

The MEND statement marks the physical end of the macroinstruction definition. 
The MEND statement is required and must be the last definition control 
statement in the macroinstruction definition. Processing of the macroinstruction 
definition ends when this statement is encountered. 

The format of the MEND statement follows: 

Not Used 

STATEMENT 

O_olion Oporond R ..... rIca • 
011 121314151611 181920212223242526212829303132333435 36 31 38 39 40 41424344 45 46 41 48 4950 51 52535456 5657585960 6162636465 66 &1 68 69 70717213 ; 

Definition Restrictions 

4-34 

The macroprocessor assumes that any ampersand (&) starts a variable symbol. An 
ampersand used anywhere else, even in a comment, causes error ASM-5402. 



Example of A User Macroinstruction Definition 

The figure on the next page shows the definition of a user-defined 
macroinstruction that generates instructions to move more than 256 bytes of data. 
The following page shows an assembled program in which the user-defined 
macroinstruction is issued. The macroinstruction is issued several times in the 
program to demonstrate how parameters specified in the macroinstruction 
determine which lines of code are generated from the macroinstruction definition. 

IBM-supplied macroinstruction definitions are also shown in Chapter 5. 

MACRO 
9MOVL ~ TO, MOVE ' TO' LABEL (LEFT EYTE) C 

~FROM, MOVE 'FROM' LABEL (LEFT BYTE) C 
~LENGTH, LENGTH OF FROM ANI) TO FIELDS C 
~ADlIR- AD[IRESS TO BE IN REGISTER ONE 

LCLA ~WRKLNG LENGTH--REMAINING BYTES TO MOVE 
LCLA ~WRKLMl LENGTH MINUS ONE 
LCLB ~SW EDIT SWITCH, IF ON GEN NO CODE 
LCLC ~WRKAD SUBSTRING OF ADDR- PARM 
TEXT 
SPACE 

~SW SETB 0 SET EDIT SWITCH OFF 
.* .. IF THERE IS AN EllIT ERROR 
.* .. IT IS SET TO ONE AND NO 
.* .. INSTRUCTIONS WILL BE GENERATEll 
.***************************.jf**********.jf**********.jf******************** 

· * CHECK PARAMETER ONE, ' TO' ADDRESS LABEL. * 
.* * 
.********************************************************************** 

AIF (T'~TO NE ·O').MV~OOl IF FIRST PARM IS ENTERED, 
• * •• GO CHECK SECOND PARM, ELSE 
.* .• WRITE OUT AN ERROR MESSAGE 
.* .. AND SET ON THE EDIT SWITCH SO 
.* •• THAT NO CODE IS GENERATED. 

MNOTE OS, 'F'ARM 1 (TO ADDR) MAY NOT BE OMITTED.' 
&SW SETB 1 SET EDIT ERROR SWITCH ON 
.* 
.********************************************************************** 
.* 
.* CHECK PARAMETER TWO, 'FROM' ADDRESS LABEL * 
.* * 
.********************************************************************** 
• MV+OOl ANOP 

AIF (T'~FROM NE 'O').MV~002 IF SECOND PARM IS ENTERED, 
• .GO CHECK THRI[I F'ARM, ELSE 
•• WRITE OUT AN ERROR MESSAGE 
• .AND SET ON THE E[IIT SWITCH SO 
•• THAT NO CODE IS GENERATED. 

MNOTE OS,'PARM 2 (FROM ADDR) MAY NOT BE OMITTED.' 
&SW SET8 1 SET EDIT ERROR SWITCH ON 
.* 
.********************************************************************** 

CHECK PARAMETER THREE, LENGTH OF MOVE. * 
* .* * 

.********************************************************************** 

.MV.002 ANOP 

&SW 

• HV.OO3 

.* 

.It 

.It 
• It 
.It 

AIF (T'~LENGTH NE 'O').MV+003 IF LENGTH PARM ENTERED, 

HNOTE OS,'PARM 3 (LENGTH) MAY 
SETEt 1 
AGO • MV+004 
ANOP 

•• GO SEE IF IT IS NUMERIC, ELSE 
•• WRITE OUT AN ERROR MESSAGE 
• .AND SET ON THE E[IIT SWITCH SO 
•• THAT NO CODE IS GENERATED. 
NOT BE OMITTED.' 
SET EDIT ERROR SWITCH ON 
GO SEE IF ALL EDITS PASSED 

AIF (T'''-LENG1'H EQ 'N') • MV';'004 IF THE LENGTH F'ARM IS NUMERIC, 
•• GO CHECK ERROR SWITCH, ELSE 
•• WRITE OUT AN ERROR MESSAGE 
•• AND SET ON THE EDIT SWITCH SO 
•• THAT NO CODE IS GENERATED • 

MNOTE Oa,'PARM 3 (LENGTH) MUST BE NUMERIC.' 
a.SW SETEt 1 
.It 
• **********·****·It**********II·***·lt****tI·*******************11·*************** 
.* 
• * CHECK THE EnIT !,WITCH • 

* 
* 

.* * 
• *******·**********11·********11'*11'*************1('**********************tI·**** 
• MV.004 ANOP 

AIF 
.~ 

• * 

(&SW).MV.EXIT IF THE EDIT SWITCH IS ON, EXIT 
.. THE MACRO ANn DO NOT GENERATE 
• .ANY CO[IE • 

Chapter 4.Creating Macroinstructions 4-35 



.********************************************************************** 

GENERATE THE NECESSARY MOVE INSTRUCTIONS. * 
* .* ~ 

• *********************'If***********'lf************************************ 
&WRKLNG SETA &LENGTH SET TO TOTAL NUMBER OF BYTES 
&WRKl.M1 SETA &L.ENGTH-1 SET TO NUMBER TO MOVE MINUS ONE 
.MV+LOOP ANOF' 

&WRKLNG 
&WRKLM1 

• MV+ENII 

AIF 

MVC 
SETA 
SETA 
AGO 
ANOf' 
MVC 

(&WRKLNG LT ·257·).MV#END IF THERE ARE l.ESS THAN 257 
• .BYTES REMA.INING TO BE MOVED. 
• • THEY CAN BE MOVE[I IN ONE 
•• INSTRUCTION, OTHERWISE 
•• MOVE ONl.Y 256 BYTES AND 
• • [IECREASE THE NUMBER REMAININ!3 
• .BY 256. 

& TO+&WRKL.M1 (256) • &FROM;t-&WRKLM1. 
&WRKLNG-256 
&WRKL.NG-·1 
• MV+LOOf' 

&TO+&WRKLM1(&WRKLNG).&FROM+&WRKLM1 

.********************************************************************** 

.* * 

.* CHECK PARAMETER FOUR. ADDRESS TO BE LOAIIEII IN REGISTER ONE * 

.* * 
• ***********~.*******.)(.~.*********i(.********************************i(.****** 

.* 

.* 

.* 

.* 
• * 
.* 

AIF 

AIF 

&WRKAD SETC 
L 
AGO 

.MV+LDAD ANOP 
LA 

.MV';'EXIT ANOP 
MEXIT 
MEND 

(P&ADDR Ell ·O·).MV#EXIT IF f'ARM 4 WAS OMITTED. THIS IS 
• .OK AS IT IS AN OF'TIONAL F'ARM. 

(t&ADIIR·(l.l) NE '@')'MV#LDAD IF THE FIRST CHARACTER 
•• OF f'ARM 4 IS NOT AN '@'. GO 
•• GENERATE A LOAD ADDRESS 

·&A[I[lR·(2.7) 
&WRKA[I.l 
• MV+EXIT 

&A[I[IR,l 

•• INSTRUCTION. OTHERWISE 
• • GENERATE A LOA[I INSTRUCTION 
•• USING CHARACTERS 2 THROUGH 7 • 

SET STRING TO IGNORE THE '@' 

MACRO IS [lONE, EXIT MACRO 

ERR LOC OBJECT CODE ADDR STMT SOURCE STATEMENT 

0000 1 MAC SAM START X'OOOO' 
2 * .. MOVL HERE,THERE,512 

0000 OC FF 022E1 042E1 4+ MVC HERE+511(256),THERE+511 
0006 oe FF 0128 032B 5+ MVC HERE+255(256).THERE+255 

6 * IJMOVL HERE, THERE, 224,ADDR-HERE 

OOOC OC [IF 0108 0308 8+ MVC HERE+223(224),THERE+223 
0012 C2 01 002C 9+ LA HERE. 1 

10 * IlMOVL HERE,THERE,400,ADDR-IIHEREADR 

0016 oe FF 01B8 0388 12+ MVC HERE+399(256),THERE+399 
001C oc SF 00B8 02B8 13+ MVC HERE+143(144),THERE+143 
0022 35 01 002B 14+ L HEREADR,l 

15 * IlMOVL HERE,,375 

W 17 *08 PARM 2 (FROM ADDR) MAY NOT BE OMITTED. 
18 * .. MOVL HERE. THERE, HERE 

W 20 *08 PARM 3 (LENGTH) MUST BE NUMERIC. 
21 * $EOJ EN[I OF 
22+* LINKAGE TO END OF JOB ROUTINES 

0026 F4 01 04 23+ sve X'04',X'01' EOJ SVC 
0029 04 0029 24+ DC XL1'04' EOJ RIEl 

25+* END OF EXF'ANSION 
002A 002C 002B 26 HEREADR DC AL2(HERE) 

002C 27 HERE EQU * 
002C 022B 28 DS 2CL256 

022C 29 THERE EQU * 
022C 0421' 30 DS 2CL256 

0000 31 END MACSAM 

TOTAL STATEMENTS IN ERROR IN THIS ASSEMBLY-- 0 

4-36 

JOB 



Using Macroinstructions 

A macroinstruction is written as a source statement. The macroinstruction 
statement generates a predetermined set of assembler statements when the 
program is assembled. If a macro library was specified on the ASM procedure or 
on the second ASM help screen, a comment appears after the commented 
invocation of the macro call. This comment gives the name of the library where 
the macro was actually found. 

You write macroinstructions as follows: 

Label Operation Operands Continuation 

Symbol Macro- From none to Any character in 
or instruction many - if more than position 72 if 
blank mnemonic one, separate with continuation is 

commas wanted 

The label field can contain any valid assembler language symbolic label beginning 
in position 1. The label is assigned to the first byte of generated code. Because 
the label is optional, it is shown below in brackets. 

The desired operation mnemonic must appear as specified in that 
macroinstruction description. The operation code must start in position 10. 

$ABC 

Chapter 4.Creating Macroinstructions 4-37 



PROGRAM 

PROGRAMMER 

UboI ()penotion 

123456789 011 121314 

NIA MF"l ~ ... 

.\1 .. UI"~ IIJI.) II .... 

Le .... Operltion 

12345678 9 ~O 11 12 13 14 

"IN I l • .1 It- U 

~ I'~ S ll. I .. ,I 

The operands specify the options and services that you want to use. Operands 
must start in column 16. No operands can be entered beyond column 71. If 
continuation is required,column 72 must contain a character and the last operand 
before a continuation character must be followed by a comma and at least one 
blank. If the comma is in column 71, the blank is not required. An operand 
cannot be divided and continued on the next line. The operands of the continued 
field must begin in column 16. To see the use of continuation coding, see the 
following example: 

I TYPING GRAPHIC I 
DATE I INSTRUCTIONS CHARACTER I I 

STATEMENT 

ep.1"" R_ .... 

15 16 17 18 192021 22 23 24 25 26 27 2B 29 30 31 32 33 34 35 36;37 3B 39 40 41 424344 45 46 47 4B 49 50 51 52 53 54 55 56 57 5B 59 60 61 62636.55 66 67 6B 69 10"71 72 73 ; 

11 
UU 

I~C 
IF~ 
IJ:lR 
~II( 

tJ~ 

I 1'/1 .Ie E~ -18 ~. tJ~ M,[ ,", .. .... ~,. rll-l All ~- & ...... ., ,., •• 
II( ~I..o r-5 F'L 

IAlD -~ I=L 
GE ·'2 5. H'J ". 't1 
lt~ r- 'I, 
rtl=l ~-21. =r IU r::P"l ·21, 
MI:: .~.l II"! 7 

A comment must be separated from the operand or comma by at least one blank 
space. A comment cannot be inserted between operands on a I-line 
macroinstruction. The following figure shows examples of comments used with 
macroinstructIOns. On the assembler listing, all comments on the generated code 
are aligned by the macroprocessor to begin in column 40. Any comments too 
long to be contained in columns 40 through 71 are truncated from the right. 

STATEMENT 

Operl"" 
R_ .... 

151617 lB 1920 21 22232425 2627 2B 29 30 31323334 35 36 37 3B 39 40 41.24344 45 46 47 4B 49 60 51 525354 55 56 57 5B 59606162636486 66 67 68 69 ~71 72 73 

D~ S.K -IY fH! S IINI 'srr iRe ~AS OIN E 11.1 ... I.,a Mil 

PE gT IJ,} N;!; rra 1 E ~iI' 1 !"Ilk' I I ClI~ ~ .. WIt- "'F ~~ tJ '1N ....... r.rm.~ Ie .. rrlL II ,I ~N T[ 1=., illoiE 
.. 

ul~ rill n l~ I,N low ~ II- '''~ 
.... 11'-1 I 

)I '1 EIR\I S~ ~ \It II n len It ~~ HIE t-1~1 u 1 ~ 

INID rn-l II~ ~ :CD M~ l2 ~L H ~~ IF~ RM ~T -~ .1-1 AL T -N, TH IS IN ::J I Jell.! 
" I 

IUN 
Hll Ie· I,,,) '::IIA lol,. N J/J .. i1 ... PI I .. N I ~ICI~ I[ L IN I II Nil 11=1., 

•. 

4-38 



Chapter 5. Macroinstructions Supplied by IBM 

The IBM System/36 Assembler and Macro Processor Program Product provides 
macroinstructions that perform system services and device support. By using 
IBM~supplied macroinstructions, you can perform these operations with less 
coding. Scientific macroinstructions are described in the Scientific 
Macroinstruction Reference manual. 

The following conventions apply to the IBM -supplied macroinstructions: 

• Only keyword operands are used. 

• Each operand consists of a keyword followed by a dash and a parameter. 

[

(A) ] 
KEYWORD-(B) 

(C) 

This list indicates that options A, B, and C are the only valid options for the 
keyword parameter. When the options YIN are given in a macroinstruction, 
Y indicates a yes response, and N indicates a no response. 

• Commas separate the operands; no blanks are allowed between operands. 

• Keyword operands can be written in any order. 

Optional operands are indicated in this chapter by brackets 
[KEYWORD-parameter]. If an operand is not specified, the default is used. A 
default is selected for any optional keyword that is omitted. The default is 
indicated by a line 'under the default option. For example, [KEYWORD-AlBIC] 
indicates that option A is the default. -

Chapter 5.Macroinstructions Supplied by IBM 5-1 



5-2 

The macroinstructions and functions of the IBM System/36 Assembler and Macro 
Processor Program Product are shown in the following table. This table is 
arranged according to device. The macroinstructions that follow each device are 
in alphabetic order. 

Device Type 
Supported 

System log 

General SSP 

General I/O 

Printer 

Disk 

Disk Sort 

Macroinstruction 
Name 

$LMSG 

$LOGD 
$LOG 

$FNDP 
$FIND 
$LOAD 
$ SNAP 
$INFO 
$INV 
$EO] 

$ALOC 
$OPEN 
$CLOS 
$DTFO 

$DTFP 
$PUTP 

$DTFD 
$GETD 
$PUTD 

$SRT 
$SORT 

Function 

Generate parameter list for message 
displayed by system log. 
Offsets in log parameter list 
Creates linkage to system log 

Generates find parameter list 
Finds a directory entry 
Loads or fetches a module 
Performs snap dump of main storage 
Retrieves system information 
Moves inverse data 
Creates linkage to end job 

Allocates file or device 
Prepares a device or file for access 
Prepares a device or file for termination 
Generates DTF offsets for all devices 

Defines the file for a printer 
Constructs a printer PUT interface 

Defines the file for a disk 
Constructs a disk GET interface 
Constructs a disk PUT interface 

Generates a loadable sort parameter list 
Constructs sort interface 



Device Type 
Supported 

Timer 

Display 
Station 

BSC 

Macroinstruction 
Name 

$TRB 
$SIT 
$RIT 
$TOD 

$DTFW 

$WSIO 
$WIND 

$WSEQ 

$DTFB 
$GETB 

$PUTB 

$TRAN 

$TRL 

$TRTB 

Function 

Generates timer request block 
Sets timer interval 
Returns/cancels timer interval 
Returns time and date 

Defines the file for display station 

Passes I/O requests to display station 
Generates indicators for PUT and PUT 
overrides 
Generates labels and values for display 
station device-dependent values 

Defines the files for BSC 
Creates GET requests to receive data 
(move data from BSC I/O buffer to logical 
buffer) 
Create PUT requests to transmit data 
(move data from logical buffer to I/O 
buffer) 
Generates an interface to the translate 
routine 
Genera tes a parameter list used by the 
translate routine 
Genera tes EBCDIC to ASCII or ASCII to 
EBCDIC translate table 

Chapter 5.Macroinstructions Supplied by IBM 5-3 



$ALOC (Allocate File or Device) 

5-4 

The routines called by the $ALOC macroinstruction allocate all input/output 
devices and files. These routines check that: 

• The DTF is not open. 

• The system supports the requested device. 

• The device requested is either not being used or is capable of multiple 
allocation. 

• Space is available for a new file. 

• A PILE statement is given for each disk file. 

These routines also: 

• Match the DTP with the COMM, PILE, and PRINTER statements given. 

• Load the data management task for data communications DTPs. 

When the allocate request is for a disk file, a FILE OCL statement is also 
required. More than one DTF can be allocated at one time by chaining the 
DTFs. To chain DTPs, you must enter the address of the next DTF in the DTP 
you are building. The last DTF in a chain must have X'PFPF' entered in place 
of the chain address. For a description of the disk, printer, and display station 
DTFs, see $DTFD, $DTFP, and $DTPW. 

Note: If you will need the data in register 2 later, you should save the contents of 
that register before issuing $ALOC. 

The normal execution sequence for the general I/O support macroinstructions is: 

1. $ALOC to allocate the file or device to your program. 

2. $OPEN to prepare the file or device for use. 

3. I/O operations and any processing required. 

4. $CLOS to prepare the file or device for job termination. 



The following output is returned to your program: 

The DTF is prepared as required by $OPEN. 

The format of the $ALOC macroinstruction follows: 

[label] $AlOC [DTF-addres~ 

Note: A DTF that was opened cannot be supplied to an allocate request until it 
is closed. That is, $ALOC must occur before $OPEN. 

DTF: Specifies the address of the leftmost byte of the first DTF being allocated. 
If this operand is entered, an LA instruction is generated to load the specified 
address,into register 2. If this operand is not entered, the address of the DTF is 
assumed to be in register 2. 

Chapter 5.Macroinstructions Supplied by IBM 5-5 



$CLOS (Prepare a Device or File for Termination) 

5-6 

The $CLOS macroinstruction prepares a device or file for job termination. 

Input to $CLOS consists of the opened DTF. 

Output from $CLOS is returned to your program when control is returned. The. 
DTF is returned to the state it was in before $ALOC and $OPEN were used. For 
example: 

• Bit 7 of the second attribute byte of the DTF is set off to indicate the file is 
closed. 

• Bit 5 of the third attribute byte in the DTF is set off to indicate the file is not 
allocated. 

The devices and files that correspond to the open DTFs are prepared either for 
the job to end or to be allocated and opened again. 

Notes: 

1. If a device or file is to be reused after it is closed, both allocate and open 
must be issued before I/O operations can be processed. 

2. More than one DTF can be closed at one time by chaining the DTFs. To 
chain DTFs, each DTF to be closed must contain the address of the next 
DTF in the chain. See $DTFD, $DTFP, and $DTFW later in this chapter. 

3. If the DTF is to be reopened, the program must reset the $WSFIA field to be 
the library FI address or the program should initialize the field to zero. The 
$WSFIA field is dually defined with the $WSTU field which is changed by 
work station data management. 

The format of the $CLOS macroinstruction follows: 

DTF: Specifies the address of the leftmost byte of the first DTF to be closed. If 
this address is entered, an LA instruction is generated to load the specified 
address into register 2. If this operand is not entered, the address is assumed to 
be in register 2. 



$DTFB (Define the File for BSC) 

The DTF provides information needed to allocate, open, close, and access a BSC 
file. This macroinstruction generates the code that builds the BSC DTF. The 
format of the $DTFB macroinstruction follows: 

[label] $DTFB RECl-deed;g.RCAD-address.BlKl-deedig.FTYP-{~~~} [.NAME-file name] 

[. BUFNO-{~}] [. ERRCT-deedi g] [. RECSEP-number] 

pp 

AA 
,TYPE- MA 

Me 
MP 

[. CODE-{!}] [. UPSI-maSk] [. CHAIN-address] [. ITB-G}] 

[. TRANSP-G}] [. RVIADR-address] [. RVIMSK-eOde] 

[. Dl YCT-deedi g] [. RCVID-address] [. SNDID-add~ess] 

[. RCVCT-deed; g] [. SNDCT-deedi g] [. TERMAD-address] [. RECFMT-{~}] [.OPD-W}] 

Chapter 5.Macroinstructions Supplied by IBM 5-7 



5-8 

RECL: Specifies in decimal the maximum record length for this file, excluding 
the transmission control character. The maximum allowable record length is 4075 
bytes. However, if data is being blocked (with ITBs or record separators), the 
record length cannot be so large as to force the physical I/O buffer to be longer 
than 4096 bytes. 

The following algorithm may help you determine a value to use as RECL. 

Buffer size = (record length * number of records per block) + number of 
bytes needed for ITBs or record separators + 21 (rounded up to a multiple of 
eight). 

Number of bytes needed for ITBs = number of records per block minus 1 
(nontransparent), or number of records per block minus 1 times 3 
(transparent). 

Number of bytes needed for record separator = number of records per block. 

Note: For get-a-block operations (OPC-BLK), the record length in the DTF 
($BSRCL) is modified by BSC to reflect the length of the block (including 
transmission control characters) received. See also theRECFMT description in 
this section. 

RCAD: Specifies the symbolic address that identifies the leftmost byte of your 
logical buffer. The logical buffer must be large enough to contain one record for 
this file. Records are moved from the logical buffer to the BSC I/O buffers on 
put requests ($PUTB macroinstruction), and are moved from the BSC I/O buffers 
to the logical buffer on get requests ($GETB macroinstruction). 

BLKL: Specifies in decimal the maximum block length for this file, excluding line 
control characters. Block length must be equal to or greater than the record 
length (RECL operand). For maximum block length, see RECL. 

FTYP: Specifies whether put requests (TSM) or get requests (RCV) are to be 
performed on this file. 

NAME: Specifies the name of the BSC file to be accessed. If this operand is 
omitted, no file name is used. The file name is used in certain SSP error 
messages. 

BUFNO: Specifies the number (1 or 2) of physical I/O buffers and lOBs 
(input/output block) to be contained in the I/O area for this file. If this operand is 
omitted, 1 is assumed. This operand has no effect on the REeL or BLKL 
parameters, or the logical buffer length. 

ERRCT: Specifies the number of times an unsuccessful BSC operation is retried 
before an error condition is posted. Valid entries for this parameter are 1 through 
255. If this operand is omitted, a value of 7 is assumed. Specifying a retry count 
of 255 will be treated as an infinite retry count. This will allow BSC to wait 
forever on a $GETB operation. 

RECSEP: Specifies a I-byte, 2-character hexadecimal value. For put files, BSC 
inserts the specified byte between blocked records. For get files, this parameter 



indicates that the data being received has an intermediate record separator to be 
removed. Any valid ASCII or EBCDIC character can be used. 

The following is a list of invalid characters: 

ASCII EBCDIC 
(hex) (hex) 

00 00 
01 01 
02 02 
03 03 
04 10 
05 IF 
11 26 
15 2D 
16 32 
17 37 
IF 3D 

TYPE: Specifies the type of line connection to be established for this file. 

Type Specification 

PP Point - to - point nonswitched line. PP is assumed if no line type is 
specified. 

AA Switched line with automatic answer. 

MA Switched line with manual answer. 

MC Switched line with manual call. 

MP Multipoint line; tributary station. MP requires TERMAD parameter. 

Note: If you are using an auto call line, the switch type specified has no effect. 
However, if no phone list is specified in the COMM OCL statement or if the 
autocall task is not active, the switch type specified here is established unless the 
AL TERCOM procedure overrides it. 

CODE: Sp,ecifies whether the character code used on your communications link 
is EBCDIC (E) or ASCII (A). If this operand is omitted, E is assumed. 

UPSI: Specifies the settings of the external (SWITCH statement) indicators used 
for conditionally opening files. The code must be specified as 8 binary bits. For 
example, to test bits 0, 3, 5, and 7, you would enter UPSI-I0010I01. If this 
operand is omitted, zeros are assumed. 

CHAIN: Specifies the symbolic address of the next DTF in the chain. Chained 
DTFs are allocated, opened, or closed with the first DTF in the chain. To 
decrease the execution time of your program, all BSC DTFs should be chained 
together. 

ITB: Specifies whether intermediate block checking is requested: Y if yes, N if 
no. ITB is not valid with transparent transmit files. If this operand is omitted, N 
is assumed. 

Chapter 5.Macroinstructions Supplied by IBM 5-9 



5-10 

TRANSP: Specifies whether data for this file will be transmitted or received in 
transparent mode: Y if yes, N if no. If this operand is omitted, N is assumed. 

RVIADR: Specifies the symbolic address of a I-byte field you provide. The field 
is used with the mask specified in the RVIMSK operand (following paragraph) to 
indicate when a reverse interrupt request (RVI) is received. RVIADR-address 
requires the RVIMSK operand. 

~VIMSK: Specifies 2 hexadecimal digits to represent the reverse interrupt (RVI) 
mask. The bits represented by the mask are set on by BSC in the RVIADR field 
(preceding paragraph) if reverse interrupt request is received. 

DLYCT: Specifies a decimal delay count. The delay count is the number of 
seconds after receiving or transmitting a block of data that BSC will wait to 
receive or transmit another block of data for the same file with no error message. 
The number must be within the range of 1 through 999. If you do not specify a 
number, a I80-second delay count is allowed for such things as device errors, 
halts, and readying I/O devices. The delay count should allow for such things as 
printing and operator response time. When the delay count is exhausted, EOT is 
transmitted to the remote station, an error message is displayed for the user, and 
an error completion code ($BSDLYEX) is returned to your program. 

Note: See the BSC Completion Code Table on page 5-12 for an explanation of 
completion codes. 

RCVID: Specifies the symbolic address of the leftmost byte of the identification 
sequence required from the remote station. RCVID requires the RCVCT 
operand. Using RCVID and RCVCT may improve security on switched lines; 
these operands are valid for switched lines only. If the IDs do not match, 
initialization stops, an error message is displayed, and an error return code is 
generated. 

SNDID: Specifies the symbolic address of the leftmost byte of the identification 
sequence required by the remote station. SNDID requires the SNDCT operand. 
Using the SNDID and SNDCT operands may improve security on switched lines; 
these operands are valid for switched lines only. 

RCVCT: Specifies in decimal the length of the identification sequence required 
from the remote station. The length can be from 1 to 15. If 1 is specified, BSC 
expects to receive two characters - two duplicates of the character addressed by 
the RCVID operand (previous paragraph). If no length is specified, 0 is assumed. 
RCVCT requires the RCVID operand be specified also. 

SNDCT: Specifies in decimal the length of the identification sequence required by 
the remote station. Length can be from 1 to 15. If 1 is specified, BSC transmits 
two characters - duplicates of the character specified by the SNDID operand 
(previous paragraph). SNDCT requires the SNDID operand. 

TERMAD: Specifies the hexadecimal representation of the 2-character polling or 
addressing sequence used by this file. If this is a transmit file (FTYP-TSM), 
TERMAD specifies polling characters; if this is a receive file (FTYP-RCV) , 
TERMAD specifies addressing characters. Each tributary station on a multipoint 
line must have unique polling and addressing characters. The TERMAD operand 
is used only when TYPE-MP is specified. 



RECFMT: Specifies whether the BSC program will receive records of fixed (F) or 
variable (V) record length. Fixed (F) is assumed if this parameter is omitted. 
Transparency, ITB mode, and blank compression or truncation are invalid with 
variable (V) length records. BSC returns the length of the record received in field 
$BSRCL of the DTF if RECFMT -Vis specified. This parameter has no effect on 
PUT files. If you specify RECFMT-V, the RECL field must contain the 
maximum record length you expect to receive. 

Note: Relative record numbers (RRN) are specified in an 8-byte field in the DTF. 
The first RRN is specified in binary, starting with 0 (zero), and in decimal starting 
with I (one). The following labels expanded by the $DTFO macroinstruction 
define the RRN field in the DTF: 

$FIARG 

$FIRRNB 

$FIRRND 

This is a displacement to the rightmost byte of the 8-byte RRN 
field in the DTF. 

This is a displacement to the rightmost byte of the 3-byte binary 
RRN field of the DTF. This displacement points to the left 3 
bytes of $FIARG. If you are processing with binary relative 
record numbers you must specify a right-justified, 3-byte binary 
number in this field. 

This is a displacement to the rightmost byte of the 8-byte decimal 
RRN field of the DTF. This displacement points to the same field 
as the $FIARG field described above. If you are processing a 
decimal RRN, you must specify a right-justified, 8-byte decimal 
number in the field. 

OPD: Specifies whether the BSC program will do normal end of file processing 
by sending EOT (N), or by using EXT as the file separator (Y). The Office 
Product Device support protocol is found in the Program Service Information 
manual. This mode is only supported for assembler users and only on 
transmitting. The last record transmitted in a block must be done with a $PUTB 
OPC-EOB. 

Chapter 5.Macroinstttuctions Supplied by IBM 5-11 



BSC Completion Code Table 

5-12 

$BSCMP is a byte in the workstation DTF that contains the completion code. It 
is referenced by loading an index register with the start add1:"ess of the DTF and 
using $BSCMP as an offset. For example: 

TBN $BSCMP(,XR2),$BSNRMC TEST FOR SUCCESSFUL COMPLETION 

$BSCMP EQU $BSWKB+1,1 COMPLETION CODE 

* COMPLETION CODES 
$BSRQAC EQU X'OO' BSC TASK NOT ACTIVE 
$BSNRMC EQU X'40' NORMAL COMPLETION 
$BSUSER EQU X'41' USER ERROR 
$BSEOF EQU X'4_2' END OF FILE 
$BSINVID EQU X'43' INVALID ID ON SWITCHED LINE 
$BSREOIG EQU X'4A' REQUEST IGNORED 
$BSINVAS EQU X'4B' INVALID ASCII CHARACTER 
$BSNOCON EOU X'4C' NO CONNECTION 
$BSINVRO EQU X'4D' INVALID REQUEST 
$BSDLYEX EQU X'4E' DELAY COUNT EXCEEDED 
$BSPERM EQU X'4F' PERMANENT ERROR 
$BSNORSP EQU X'50' NO RESPONSE 
$8SDTCK EQU X'51' DATA CHECK 
$BSLSTDT EQU X'52' LOST DATA 
$BSLSTCN EQU X'53' LOST CONNECTION 
$BSINVRS EQU X'54' INVALID RESPONSE 
$BSADCK EQU X'55' ADAPTER CHECK 
$BSFWDAB EQU X'56' FORWARD ABORT RECEIVED 
$BSABRT EOU X'57' EOT ABORT 
$BSMLCAT EOU X'58' MLCA TEMP ERROR 
$BSMLCAP EQU X'59' MLCA PERM ERROR 



$DTFD (Define the File for Disk) 

The $DTFD macroinstruction generates the code that builds the preopen DTF 
disk for GET jPUT operations. The disk DTF provides information needed to 
allocate, open, and access a file on the disk. 

Further information access methods for disk files is in Appendix E. 

The format of the $DTFD macroinstruction follows: 

[label] $DTFD ACCESS-code • NAME-file name [. RECL-number] [.IHREc-address] 

***************** 

* The following 
* seven parameters * 
* are only associ- * 
* ated with keyed * 

[.OUTREc-address] [. DBLOCK-number ] [CHAIN-address] [. IOMSG-G}] 

~KEYL-nUmber] ~KDISP-number] ~KEY-Offset] [. IBLOCK-number] 

* files. * [ ] [ ] [ ] •••••••••••••••• : .ORDLD-{~} • LIMIT-G} .HIGH-offset 

:~~;~;'~~:::': [, GSEQ-{~}] [, GRAN-{~}] [. UPDATE-{~}] [, DEL ETE-{~}] [. AEOD-{~}] 
* are only associ- * 
* ated with GAM. * 

***************** 

Note: The above parameters have been grouped according to their function; 
however, they may be arranged in any order. 

Chapter 5.Macroinstructions Supplied by IBM 5-13 



5-14 

ACCESS: Specifies the access method used for the fiJe. This operand is required. 
The access methods and corresponding codes are: 

Access Method Code 

Consecutive add CA 

Consecutive input CG 

'Consecutive output co 

Consecutive update CU 

Direct input (decimal RRN) DG 

Direct output (decimal RRN) DO 

Direct update (decimal RRN) DU 

Direct input addrout (binary RRN) DGA 

Direct output addrout (binary RRN) DOA 

Direct update addrout (binary RRN) DUA 

Generalized access method GAM 

Indexed random add IA 

Indexed output 10 

Indexed sequential input IS 

Indexed sequential add with input capable ISA 

Indexed sequential update ISU 

Indexed sequential update and add· ISUA 

Indexed random input IR 

Indexed random add with input capable IRA 

Indexed random update IRU 

Indexed random update and add IRUA 

Record/key length, key displacement in DTF PSEUDO 

Note: Refer to APPENDIX E for additional information on Access Methods. 



NAME: Specifies the name of the file. The name cannot exceed eight characters, 
and must be the same as that specified on the FILE OCL statement. This 
operand must be specified. 

RECL: Specifies the decimal length of the record. The maximum length is 4096. 
This operand is required for all access types except PSEUDO, which returns the 
record length of the file. The default record length is 32 bytes. 

INREC-address: Specifies the initial address of the leftmost byte of an area that 
will contain the record from the input operation. The area reserved must be equal 
to the record length. 

OUTREC: Specifies the address of the leftmost byte of the area that will contain 
the record for any update or add operation. This area must be equal to the 
record length. 

DBLOCK: Specifies the number of records to be moved between main storage 
and disk with each disk I/O operation. Buffer space is reserved based upon this 
number and the record length. Data management might change this number 
based on current file status. The number must be between I and 65535. If not 
specified, 1 is assumed. The DTF value for this field can be overridden by the 
value specified on the FILE OCL statement. 

CHAIN: Specifies the address of the next DTF in the chain of DTFs. If there is 
no DTF chain or if this is the last DTF in the chain, this operand should be 
omitted (hex FFFF is then assumed). 

IOMSG: Specifies that an error message should be issued by the System Support 
Program (SSP) for a permanent disk error. When N is s]3ecified, control is 
returned with the completion code set. If this operand is omitted, N (no) is 
assumed. 

RETURN: Is used only if IOMSG-Y (yes) is also specified to present the options 
allowed to the operator when a permanent disk error occurs. If RETURN-Y 
(yes) is specified, the operator is allowed to take option 2 and receive the 
permanent disk error message. If option 2 is taken, control is returned to the user 
program with the completion code set. If RETURN-N (no) is specified, the 
operator is allowed option 3 only. If this operand is omitted, N is assumed. 

LABEL: Specifies the first byte of the label area from the end of the DTF. the 
DTF must be 8-bytes long. A file label is returned if: 

• When a duplicate key error occurs on the currently used index, the $PUTD 
macro branches to the routine specified on the DUPREC parameter. When a 
duplicate key error occurs on an index other than the currently used index, 
the $PUTD macro branches to the routine specified on the DUPRCO 
parameter. 

• For update key error conditions, the label area contains the label of the file in 
which the key update is being attempted. When an update key error occurs, 
the $PUTD macros branches to the routine specified on the KEYERR 
parameter. 

Chapter 5.Macroinstructions Supplied by IBM 5-15 



5-16 

• For a permanent I/O error, the label of the file where the error occurred is 
returned here. When a permanent I/O error occurs, the $PUTD macro 
branches to the routine specified on the IOERR parameter. 

Note: If alternate indexes are defined on the file that you were processing, this 
label may be different than the file that you were accessing. 

The label field must follow the DTF. The last byte of this field must be within 
2048 bytes of the first byte of the DTF. 

LOCKCK: Requests a check by data management to see if the requested input 
record is already owned by this task. If Y (yes) is specified, a completion code is 
returned if the record is already owned. If N (no) is specified, or the operand is 
omitted, no check is made. 

UPSI: Specifies the settings of the external indicators used for conditionally 
opening files. The code must be specified as 8 digits. For example, to test bits 0, 
3, 5, and 7, you would enter UPSI-10010101. When all corresponding indicators 
are on, the file is opened. If the file is not opened and operations are issued for 
this DTF, the operations are not performed, and you receive a return code of hex 
99. If this operand is omitted, zeros are assumed. 

KEYL: Must be specified for all keyed access methods except PSEUDO to 
supply the length of the key field. The maximum length is 29, and if this operand 
is omitted, a length of 1 is assumed. An open with ACCESS-PSEUDO specified 
returns the key length for an indexed file. If the file has noncontiguous keys, the 
sum of the lengths of the individual key fields must be specified. 

KDISP: Must be specified for all keyed access methods except PSEUDO to 
indicate the displacement into the record of the rightmost byte of the key field. 
The displacement of the first byte in the record is 0, the second byte is 1, and so 
on. The maximum displacement is 4095 and if this operand is omitted, a 
displacement of 0 is assumed. A pseudo open returns the key displacement for an 
indexed file. If the file has noncontiguous keys, KDISP must contain decimal 
65535 (hexadecimal'FFFF'). 

KEY: Specifies the first byte of the key area as the displacement from the end of 
the DTF. This reserved area must be equal to the key length. This operand is 
required for KEY, KEY A, and KEYEA operations. The key area must following 
the DTF. The last byte of the key area must be within 2048 bytes of the first byte 
of the DTF. If the file has noncontiguous keys, the sum of the lengths of the 
individual key fields must be specified. 

IBLOCK: Specifies the number of index entries moved between main storage and 
disk with each disk I/O operation. Buffer space is reserved based upon this 
number and the record length. Data management might change this number 
based on the access and the current system status. The nuniber must be between 
1 and 65535. If not specified, 1 is assumed. The DTF value for this field can be 
overridden by the value specified on the FILE OCL statement. 

ORDLD: Specifies that data management will check that record keys placed in 
the file are in ascending order. ORDLD can be specified for the following 
indexed add-capable or output-capable access method (lA, IRA, IRUA, 10, and 
GAM with AEOD-Y and/or ARRN-Y). If Y (yes) is specified, and the record 



keys are not being loaded in ascending order, data management will return a 
nonsuccessful completion code. If N (no) is specified, data management does not 
check for ascending order. Duplicate keys are allowed as specified in the FILE 
OCL statement when the file was created. If ISA or ISUA is specified, the user is 
forced into ORDLD-Y mode regardless of whether the ORDLD parameter is 
specified or not. If the operand is omitted for the other indexed-ADD or output 
methods, N (no) is assumed. 

LIMIT: Specifies whether this access is within limits. LIMIT can only be 
specified for indexed sequential access methods (IS, ISA, lSD, ISUA, and GAM 
with GSEQ-Y). This allows you to get records in consecutive order from a keyed 
file by specifying the lowest and highest record key. If while processing within the 
specified limits, a nonsequential get is issued, the current limits are cancelled. See 
the HIGH parameter of $DTFD and the $GETD macroinstruction for more 
information on limits. If this operand is omitted, N (no) is assumed. 

HIGH: Specifies the first byte of the limits keys area as the displacement from 
the end of the DTF, which is lengths long: the low key is in the left half and the 
high key is in the right half. This field must be after the DTF. The last byte of 
this field must be within 2048 bytes of the first byte of the DTF. If this operand 
is omitted, hex FFFF is assumed. 

GSEQ: Used only with GAM to specify whether sequential get operations will be 
issued with this file access. The consecutive get operations that can be specified 
with the $GETD macroinstruction OP parameter, are NEXT, PREY, PLUS, and 
MINUS. If this operand is omitted and ACCESS-GAM is specified, Y (yes) is 
assumed. 

GRAN: Used only with GAM to specify whether random get operations will be 
issued with this file access. Random get operations specified with the $GETD 
macroinstruction OP parameter are KEY, KEYEA, KEYA, RRN, FIRST, and 
LAST. If this operand is omitted and ACCESS-GAM is specified, Y (yes) is 
assumed. 

UPDATE: Used only with GAM to specify whether UPDATE operations will be 
used with this file access. If this operand is omitted and ACCESS-GAM is 
specified, Y (yes) is assumed. 

DELETE: Used only with GAM to specify whether DELETE operations will be 
issued with the file access. If this operand is omitted and ACCESS-GAM is 
specified, Y (yes) is assumed. 

Note: If a DELETE operation is issued against a file that is nondelete capable, an 
invalid operation completion code is set. 

AEOD: Used only with GAM to specify whether add-at-end-of-data operations 
are issued with this file access. If they are issued, this would cause the added 
record to be placed in the file at the end of the current records. If this operand is 
omitted and ACCESS-GAM is specified, Y (yes) is assumed. 

ARRN: Used only with GAM to specify whether add-by-RRN operations are 
issued with this file access. If they are issued the added record is placed in the 
specified AREA location in the file. If this operand is omitted and 
ACCESS-GAM is specified, Y (yes) is assumed. 

Chapter 5.Macroinstructions Supplied by IBM 5-17 



5-18 

ARG: Used only with GAM or for direct input or update access to specify 
whether the argument (the RRN or the plus/minus value) for this access is binary 
(BIN) or decimal (DEC). If this operand is omitted, binary (BIN) is assumed. 

CREATE: Used only with GAM to specify which file type should be created 
when the output is put to a new file or to a load-to-old file. 

I creates an indexed file 

S creates a sequential file 

D creates a direct file 

There is no default for the CREATE parameter. 

ORDER: Required parameter that must be used with GAM to specify whether 
the data is to be accessed by key or by record (not by key). There is no default 
for the ORDER parameter. 



$DTFO (Generate DTF Offsets) 

This macroinstruction defines the DTF labels, offsets, field contents, and field 
lengths for all devices and access methods supported by Systemj36. To avoid 
duplicate labels, this macroinstruction should be used only once in each program. 
For a list of the fields that $DTFO defines, see the DTFs in the Data Areas 
Handbook. 

The format of the $DTFO macroinstruction is: 

DISK: Specifies whether labels are to be generated for the disk devices. If this 
operand is omitted, N (no) is assumed. 

PRT: Specifies whether labels are to be generated for the printer. If this operand 
is omitted, N (no) is assumed. 

BSC: Specifies whether labels are to be generated for BSC. If this operand is 
omitted, N (no) is assumed. 

WS: Specifies whether labels are to be generated for work station and SSP-IeF 
devices. If this operand is omitted, N (no) is assumed. 

ICRTC: Specifies whether labels are to be generated for SSP-ICF(interactive 
communications feature) return codes. If this operand is omitted, N (no) is 
assumed. 

ALL: Specifies whether labels are to be generated for all devices supported. If 
this operand is omitted, N (no) is assumed. 

FIELD: Specifies whether labels are to be generated to define the contents of the 
DTF fields. If this operand is omitted, N (no) is assumed. 

COMMON: Specifies whether labels are to be generated to define the field 
content on the common portion of the DTF (from the start of the DTF, and 
ending with the name field). If this operand is omitted, Y (yes) is assumed. 

Chapter 5.Macroinstructions Supplied by IBM 5-19 



$DTFP (Define the File for a Printer) 

$DTFP builds a DTF for a printer and assigns its offsets. The DTF provides 
information needed to allocate, open, and access a printer. This macroinstruction 
generates the code that builds the printer DTF. 

The format of the $DTFP macroinstruction follows: 

[label] $DTFP [RCAD-address] [.IOAREA-address] [. NAME-file name] 

[.OVFl-number] [.PAGE-nUmber] [. UPSI-mask] 

['SPACEB-{n] [.SKIPA-number] ['SPACEA-{1}j 

5-20 



RCAD: A required operand that specifies the address of the leftmost byte of the 
logical record. 

IOAREA: This parameter is not required and is provided for System/34 
compatibility only. 

NAME: Specifies the name of the print file. This name must be the same as the 
name specified on the PRINTER OCL statement. This operand defaults to FILE 
NAME. 

OVFL: Specifies the print line after which the overflow completion code will be 
returned. If this operand is omitted, the value defaults to six lines less than the 
number specified for the PAGE operand. 

PAGE: Specifies the number of printed lines to print per page. If this operand is 
omitted, it defaults to the system value for the number of lines per page or to the 
LINES parameter of the PRINTER OCL statement. 

UPSI: Specifies the settings of the external (j / SWITCH statement) indicators 
used for conditionally opening files. The code must be specified as 8 bits. For 
example, to set on bits 0, 3, 5, and 7, you would enter UPSI-IOOI0I01. When the 
mask bits that are set to 1 are also set in the switch, the file is opened. If the 
DTF is not opened and operations are issued for this DTF, the operations are not 
performed and you receive a return code of hex 99. If this operand is omitted, O's 
are assumed. 

HUC: Specifies whether to halt if an unprintable character is detected. If N (no) 
is specified or if this operand is omitted, no halt occurs, and unprintable 
characters appear as blanks. 

CHAIN: Indicates the address of the next DTF. If there is no DTF chain or if 
this is the last DTF in a chain, this operand should be omitted (hex FFFF is then 
assumed). 

PRINT: Specifies with Y (yes) to perform both a print and the specified skip or 
space, or with N (no) only a skip or space. The default is Y, meaning that a print 
is performed as well as the other operation. 

PRINT-TRANS (transparent mode): Requires the before forms feed commands at 
the beginning of the record. The after forms feed command of the printer DTF 
must be 0 or 1. 

SKIPB: Specifies the line to skip to before the print operation. If this operand is 
omitted the existing value is used. If the operand is an invalid number (too large) 
the parameter is ignored and no skip is performed, until a valid value is used. 

SPACEB: Specifies the number of lines to space before the print operation. If 
this operand is omitted the existing value is used. If the operand is an invalid 
number (too large) the parameter is ignored and no space is performed, until a 
valid value is used. 

Chapter 5.Macroinstructions Supplied by IBM 5-21 



5-22 

SKIP A: Specifies the line to, Qe skipped: to after a pri~t pp~~ation. . The maximum 
allowed is 255. If this operand is omitted the existing value is used~ If the· 
operand is an ip.valid number (too large) the parameter is ignored and no skip is 

. performed, until a valid value is use'd. 

Note: If the SKIP or SPACE values exceed the value of PAGE (lines per page), 
no.operation is performed. 

SPACEA: Specifies the number of lines to space,after the print operation. If this 
operand is omitted the existing valpe is used. If the operand is an invalid number 
(too large) the parameter is ignored and no space is performed, until a valid value 
is used. 

Note: If the SKIP or SPACE values exceed the value of PAGE (lines per page), 
no operation is performed. 

RECL: Specifies the length of the line to be printed, from 1 through 198 
positions. If this operand is omitted, the default is 132 positions. When a value 
greater than 132 positions is specified, the output must be printed at 15 characters 
per inch. 

ALIGN Specifies whether alignment is requested on the first page. If Y (yes) is 
specified, a halt is issued to the operator after the first data line is printed, 
allowing the operator to check alignment. If this operand is omitted, N is 
assumed. 

Note: This parameter may be overridden by the ALIGN parameter on the 
PRINTER OCL statement. 

ERROR: Specifies whether an error message should be issued for a permanent 
error. If N (no) is specified, control is returned to the user program with the 
completion code set. If this operand is omitted, Y is assumed. 

Note: NOT READY conditions on the printer, such as a forms jam or an 
out-of-forms condition, are not considered permanent errors. 

RETURN: Specifies the options available to the operator after a permanent I/O 
error message is issued. If Y (yes) is specified, permanent-error console messages 
are printed on the system printer and the operator is allowed to select option 2 or 
option 3. If option 2 is selected, control is returned to the user program with the 
completion code set. If N (no) is specified, the user is allowed only option 3. If 
this operand is omitted, N is assumed. 



$DTFW (Define the File for Display Station) 

The $DTFW macroinstruction generates the code that builds the display station 
DTF. The display station DTF provides information needed to allocate, open, 
and access a display station file. 

All communication with the display stations or system console is done via work 
station management. Work station management consists of two parts: a 
generator routine and a data management routine. The screen format generator 
routine (SFG R) builds the library load member required when a display station is 
used as a formatted input/output device. For further information about the 
screen format generator routine (SFGR), see the Creating Displays: Screen 
Design Aid and System Support Program manual. 

Work station data management provides the interface between the system and the 
display stations. This section describes the macroinstructions that support display 
station devices. You build your DTF using the $DTFW macroinstruction. You 
then use the $WSIO macroinstruction to modify the DTF fields for each 
operation. 

Note: For a description of how to code $DTFW for the interactive 
communications feature, see the Interactive Communications Feature: Reference 
manual. 

Chapter 5.Macroinstructions Supplied by IBM 5-23 



The format of the $DTFW macroinstruction follows: 

[label] $DTFW [DEli-code] [, UPSi,;.mask] [. CHAIN-address] [. DUll EN~number] 

5-24 

. [. RESET-{~}] [. RCAD-address] [. INL EN-number] 

[, RD LI NE-number] [.5 T R lL N -n umber] [ • ENDL N-numbe r ] 

[. V AR LI N-n umbe r] [, IN DA -a ddress] [ • MEMB ER-name] 

[, TERMID-name] [,PRNT-G}] ['ROLL-{~}] 

[. CLEAR-G}] [.RECBKS-{;}] [.HELP-G}] [. FKDATA-G}] 

[. T I DT A B-addre ss] [, ENT L EN-number] [. T NUM-number ] 

[ • RPGEXT -address] [, HA L T 5-{~}] [,CMDK EY -ma SkJ 

~ EXTEND-{~}] 

[IDDUCM-iddu-communicationS-file-definition-name] 

[DICTCM-iddu-communicationS-data-dictiona~-name] 



DEV specifies the file type for which this. DTF is to be used. If this operand is 
omitted, WSTN is assumed. The codes and their meanings are as follows: 

Code File Type 

CONS RPG console 

KBD RPG keyboard 

CRT RPG display screen 

WSTN Display station 

UPSI: Specifies the setting of the external (j / SWITCH statement) indicators used 
for conditionally opening files. The code must be specified as 8 bits. For 
example, to test bits 0, 3, 5, and 7, you would enter UPSI-lOOIOIOl. When the 
corresponding bits are on in the switch, the file is opened. If the file is not 
opened and operations are issued for this DTF, the operations are not performed, 
and you receive a return code of hex 99. If this operand is omitted, O's are 
assumed, and the file is unconditionally opened. 

CHAIN: Specifies the address of the next DTF in the chain of DTFs. If there is 
no DTF chain or if this is the last DTF in the chain, this operand should be 
omitted (hex FFFF is then assumed). 

OUTLEN: Only required for OPMODs of ERROR and UNF; or OPCs of PUT, 
PTG, PNW, and PTI of the $WSIO macroinstruction. If the operation is 
ERROR, the OUT LEN value must be between 1 and 78, and the value 
represents the amount of data written from the logical record area to the error 
line at the display station. If the operation is UNF, the OUTLEN value must be 
between 2 and 4096, and the value represents the exact length of the data stream. 
If the operation is a PUT, PTG, PNW, or PTI, OUTLEN represents the 
maximum amount of data that can be written from the logical record areaito the 
output fields in the display screen format. The OUT LEN value must be at least 
as large as the sum of the lengths of all execution-time output fields. 

An execution-time output field is a field that was declared as output of $SFGR 
field definition specifications (columns 23 and 24) and does not have data 
specified on the $SFGR field definition specifications in columns 57 through 79. 
The data for this field is specified at execution time by the user program. If this 
operand is omitted, an OUTLEN value of hex 0000 is assumed. After a 
successful input operation, the actual length of data returned is in this field; 
therefore, OUT LEN should be specified again after every input operation. 

Note: For each $SFGR D-specification that requires MIC data from the user's 
logical record area, 6 bytes must be added to the total OUTLEN value. These 
bytes contain the 4~character message identification code followed by a 
2-character message member identifier. 

RESET: Specifies whether to reset the active format index address. If Y is 
specified, a new format index is built, and the old index is lost. If N is specified 
and there is an active format index, the new index is added to the old. Formats 
can be added to the index during open, and duplicate entries result in a halt. If N 
is specified and there is no active format index, a format index is built. If this . 
parameter is omitted, N is assumed. 

Chapter 5.Macroinstructions Supplied by IBM 5-25 



5-26 

ReAD: Specifies the symbolic address of the leftmost byte of the logical record 
area. 

Note: If the operation being performed involves GET,ACI, or UNF, the record 
area must be on an 8-byte boundary. 

INLEN: Specifies in decimal the size of the user's input buffer; that is, the 
maximum amount of input data that the application program is prepared to 
receive. This number must not be greater than 65535. If this operand is omitted, 
zero is assumed, and no data is transferred. 

Note: If the operation being performed is an unformatted PUT, this value must 
equal the total length of all input fields defined on the display. 

ROLINE: Specifies in decimal the number of lines to roll the displayed data on a 
roll operation. The maximum number is 24. If this operand is omitted, 01 is 
assumed. 

STRTLN-number: Specifies in decimal the first line of the roll area on a roll 
operation. The maximum number is 23. If this operand is omitted, 01 is 
assumed. 

ENDLN: Specifies in decimal the number of the last line of the roll area on a roll 
operation. The minimum number is 02; the maximum number is 24. If this 
operand is omitted, 24 is assumed. 

V ARLIN: Specifies in decimal the actual start line number if a variable start line 
number was specified in SFGR for the format associated with this request. The 
maximum number is 24. If this operand is omitted, 01 is assumed. 

INDA: Specifies the symbolic address of the leftmost byte of the override 
indicator area if override indicators were specified at SFGR time for this format. 
The indicator area must not start at address hex 0000 because WSDM assumes no 
indicator area exists at address hex 0000, and the indicators are assumed to be off. 
If this operand is omitted, address hex 0000 is assumed. 

MEMBER: Specifies the name of the SFGR load member containing all the 
formats to be opened. If this operand is omitted, blanks are assumed and no 
formats are opened. 

TERMID: Specifies the symbolic name of the display station. This is the 
2-character ID, which the user assigned via system configuration or the SYMID 
parameter on the / / WORKSTN statement that represents the display station to 
which the request is directed. If this operand is omitted, blanks are assumed. For 
an SRT program, blank means the requesting display station is assumed. For 
MRT programs, a halt is issued unless the operation does not need TERMID 
stich as ACI (accept), SIQ (status inquiry) INQ, (status inquiry), GTA (get 
attributes) operation, or EGTA (extended get attributes) operation. 

The following parameters, PRNT, ROLL, CLEAR, RECBKS, CMDKEY, 
CKMASK, FKMASK, and HELP are the function-control-key mask 
specifications. 



PRNT: Specifies whether your program will process the Print key. If Y (yes) is 
specified, the print key indicator is placed in the attention identification (AID) 
byte field of your program DTF when the operator presses the Print key. If N 
(no) is specified, the system attempts to print the. current display with the optional 
heading and border on the display station's associated printer. If this operand is 
omi tted, N (no) is assumed. 

ROLL-YIN: Specifies whether your program will process the Roll i (Roll Up) 
and Roll J (Roll Down) keys. If Y (yes) is specified, the roll key indicator is 
placed in the AID byte of your program DTF when the operator presses a Roll 
key, and data is returned as if the EnterjRec Adv key was pressed. If N (no) is 
specified, an error message is displayed to the operator when the operator presses 
the Roll key. If this operand is omitted, N (no) is assumed. 

CLEAR specifies whether your program is able to process the Clear key. If Y 
(yes) is specified, the clear key indicator is placed in the AID byte field of your 
program DTF when the operator presses the Clear key. If N (no) is specified, an 
error message is displayed when the operator presses the Clear key. If this 
operand is omitted, N (no) is assumed. 

RECBKS: Specifies whether your program can process record backspace (that is, 
the Home key when the cursor is only in the home position). If Y (yes) is 
specified, the record backspace key indicator is placed in the AID byte field of 
your program DTF when the operator presses the Home key. IfN (no) is 
specified, an error message is displayed to the operator when the operator presses 
the Home key. If this operand is omitted, N (no) is assumed. 

HELP: Specifies whether your program can process the Help key. If Y (yes) is 
specified, the help indicator is placed in the AID byte field of your program DTF 
when the operator presses the Help key and your program must support the key. 
If yes is specified, application help is not available. If N (no) is specified and the 
operator presses the Help key, either your application help or an error message is 
displayed. If this operand is omitted, N (no) is assumed. 

FKDATA: Specifies whether input data is to be returned along with a function 
key indicator for all enabled function keys. If Y (yes) is specified, the appropriate 
function key indicator is placed in the AID byte field of your program DTF when 
the operator presses an enabled function key, and input data is returned regardless 
of whether the operator has modified any of the fields. This does not apply to 
remote work stations (see Note 2). If N (no) is specified, the appropriate 
function control key indicator is placed in the AID byte field of your program 
DTF when the operator presses an enabled function control key, but no input 
data is returned. If this operand is omitted, N (no) is assumed. (See Note 1.) 

Notes: 

1. The FKDATA parameter has no effect on the operation of the Roll Up and 
Roll Down function control keys. These keys always operate as specified by 
the ROLL parameter. 

2. You must use the FKDAT A parameter with caution when you are 
programming for a remote work station. Your job could permanently halt if 
there are no modified input fields on the display of the remote work station 
when a function key is pressed while the FKDATA parameter is active. 

Chapter 5.Macroinstructions Supplied by IBM 5-27 



5-28 

TIDTAB: Specifies the address of a work station IDtable. Programs that 
support multiple display stations typically maintain a table of display station IDs 
and associated status indicators. By specifying the TIDT AB, ENTLEN, and 
TNUM parameters, you reserve an area for the ID table. OPEN places the ID of 
the display station that requests the program in the first 2 bytes of the first entry 
of the table, and sets the fitst bit in the third byte on. OPEN also places the 
SYMID value from each WORKSTN statement into other entries in the table. 
The IDs are placed in the first 2 bytes of the entries. If REQD-YES is specified 
in a WORKSTN statement, OPEN sets on the first bit of the third byte in the 
corresponding table entry. The ID table must be large enough to contain an ID 
for each display station acquired by the program plus additional entries up to the 
program's MRTMAX value. MRTMAX is specified in a COMPILE statement 
and can be overridden by an ATTR statement. The entire table must be 
initialized to hex 00 before OPEN is called. After open is complete, the user 
program must maintain the table. If this operand is omitted, address hex 0000 is 
assumed, and no table is built. (For a description of ATTR, COMPILE, and 
WORKSTN statements, see the System Reference manual.) 

ENTLEN: Specifies in decimal the length of each entry in the display station ID 
table TIDTAB. The maximum allowed is 255. If TIDTAB was specified, the 
minimum ENTLEN is 3: 2 bytes for an ID and a third byte for status indicators. 

TNUM: Specifies in decimal the total number of TIDTAB table entries. The 
total space allocated for the table is assumed to be the product of ENTLEN and 
TNUM. The maximum TNUM allowed is 255. If this operand is omitted, 01 is 
assumed. 

HALTS: Valid only if this DTF is used with the interactive communications 
feature, which is described in the manual, Interactive Communications Feature: 
Reference. This parameter specifies whether interactive communications data 
management should halt for permanent communications errors; Y if yes, N if no. 
If this operand is omitted, N (no) is assumed. 

CMDKEY: Specifies the command key mask to be placed into DTF. The mask 
is made up of 24 binary bits (bit 0 = CMDI, bit 23 = CMD24) entered as 6 
hexadecimal digits. If this operand is omitted, hex FFFFFF is assumed. 

CKMASK: Specifies whether WSDM should use the command key mask from 
the display format or from the DTF. If this operand is omitted, FORMAT is 
assumed. 

FKMASK-FORMAT/DTF: Specifies whether WSDM should use the function 
key mask from the display format and from the DTF (FORMAT) or just from 
the DTF (DTF). If this operand is omitted, FORMAT is assumed. If FORMAT 
is specified, the function key must be masked ON in both the format and the 
DTF for the function key to be enabled. 

EXTEND: Specifies whether the extended DTF is generated for Communications 
Data Dictionary purposes. If Y or YES is specified, the workstations DTF is 
extended allowing the IDDUCM and DICTCM parameters to be used. If N or 
NO is specified or if the EXTEND parameter is not specified, the workstation 
DTF will not be extended. Refer to Getting Started with the Interactive Data 
Definition Utility (IDDU) or IDDU Online Information for information on using 
IDDU. 



mDUCM: Specifies the name of the Interactive Data Definition Utility (IDDU) 
file to be used for communications. Refer to Getting Started with the Interactive 
Data Definition Utility (IDDU) or IDDU Online Information for information on 
using IDDU. 

Note: If the DTF is extended and the IDDUCM parameter is not specified at 
compile time, it is expected the parameter will be entered as data at the time the 
program is run. 

DICTCM: Specifies the name of the data dictionary to be used for IDDU 
communications. Refer to Getting Started with the Interactive Data Definition 
Utility (IDDU) or IDDU Online Information for information on using IDDU. 

Note: If the DTF is extended and the DICTCM parameter is not specified at 
compile time, it is expected the parameter will be entered as data at the time the 
program is run. 

Chapter 5.Macroinstructions Supplied by IBM 5-29 



$EOJ (End of Job) 

5-30 

The $EOJ macroinstruction generates the linkage required to perform the 
end-of-job routine. 

The format of the $EOJ macroinstruction follows: 

no ,operands 



$FIND (Find a Directory Entry) 

You can use the $FIND macroinstruction to locate library members for your 
program. 

The $FIND macroinstruction searches the library directory for the requested 
module name; if $FIND locates the module name it returns the directory entry 
data in the parameter list. 

The format of the $FIND macroinstruction follows: 

I [label] $FIND [PUST-address] 

PLIST: Specifies the address of the leftmost byte of the 17- or 54-byte parameter 
list built by $FNDP. After execution, the parameter list contains the directory 
entry of the module. If this operand is not specified, the address of the parameter 
list is assumed to be in index register 2. 

$FIND uses the parameter list generated by the $FNDP macroinstruction. 

You can include more than one $FIND macroinstruction in a program. 
However, after you issue the first $FIND, you must continue to restore relevant 
fields in the parameter list generated by $FNDP before you issue successive 
$FINDs. You can restore fields in the parameter list by poving new values to the 
fields. 

A successful $FIND can be determined by checking the field $FNDDTOT. 
($FNDDTOT is an equate generated by the $FNDP macro that is the offset from 
the start of the $FNDP parameter list.) 

The following instructions could be used: 

CLC $FNDDTOT (2,XR2) ,ZEROES 
JE ERROR 

(where ZEROES is defined as ZEROES DC XL2'OOOO') 

If the total length of the found module is zero, then the module is not found. 

Note: When a module is not found by $FIND: 

• If LOADER-Y is specified in the $FNDP macroinstruction, a cancel-only halt 
is issued and control is not returned to your program. 

• If LOADER-N is specified in the $FNDP macroinstruction, control is 
returned to your program for determination of appropriate action. 

If you will need the data in register 2 later, you should save the contents of that 
register before issuing $FIND. 

Chapter 5.Macroinstructions Supplied by IBM 5-31 



$FNDP (Generate. Parameter List and Displacements for $FIND) 

The $FNDP macroinstruction generates a load parameter list and the labels for 
the displacements into the parameter list. This parameter list is used as input to 
the supervisor by $FIND. 

The format of the $FNDP macroinstruction follows: 

[. LOADER-{~}] [. LOAD-address] [USERLB-DESGNT /other] 

NAME: The name of the module to be found by the $FIND macroinstruction. 
If this operand is omitted, blanks are assumed. 

V: Specifies whether the parameter list, labels, or both are to be generated. If 
this operand is omitted, EQU is assumed. 

DC: Generates a 17- or 54-byte parameter list used by the $FIND 
macroinstruction. 

EQU: Generates the displacement labels for the $FIND parameter list. If 
V-EQU is specified or supplied as the default, all other operands are ignored. 

ALL: Generates both the parameter list and the corresponding displacement 
labels. 

TYPE: Specifies the library member type. If this parameter is omitted, 0 is the 
default. The codes have the following meaning: 

o Load member 

P Procedure member 

R Subroutine member 

S Source member 



SKIP: Specifies the type of library search to perform by specifying which library 
to skip. The codes have the following meaning: 

NO Search the designated user library, then the system library. 

USER Skip the user library and search only the system library. 

SYSTEM Skip the system library and search only the designated user 
library. 

If this operand is omitted, NO is assumed, and both libraries are searched. 

LOADER: Specifies whether the parameter list is used by $LOAD. If Y (yes) is 
specified, a 17-byte parameter list is generated for use by $LOAD. If N (no) is 
specified, a parameter list containing 17 bytes of loader information, 33 bytes of 
directory, and 4 bytes of find information overlays the input. If this operand is 
omitted, N (no) is assumed. LOADER-Y can only be specified with TYPE-O. 

Note: When the module is not found: 

• If LOADER-Y is specified in the $FNDP macroinstruction, a cancel-only halt 
is issued and control is not returned to your program. 

• If LOADER-N is specified in the $FNDP macroinstruction, control is 
returned to your program for determination of appropriate action. 

LOAD: Specifies the main storage address where the module is to be loaded. 
This address must be on an 8-byte boundary, due to the I/O buffer boundary 
restrictions. This operand is processed only if LOADER-Y is specified. 

USERLB: Specifies the library to be searched. 

DESGNT: Specifies a search of the current (designated) user library. 

Other: Specifies a search of the library specified in $FNDDFIA. 

Chapter 5.Macroinstructions Supplied by IBM 5-33 



$GETB (Issue a Get Request) 

5-34 

The $GETB macroinstruction generates code to move data from a BSC I/O buffer 
to your logical buffer. To use this macroinstruction, construct a BSC D~F for 
the file (using the $DTFB macroinstruction) and use the $DTFO macroinstruction 
to generate the labels and establish the offsets for the DTF. 

The format of the $GETB macroinstruction follows: 

DTF: Specifies the address of the DTF for which the get was issued. If this 
operand is omitted, the address of the DTF is assumed to be in register 2. 

REJECT: Specifies the routine to receive control if this get request is rejected 
by BSC. If this operand is omitted, control is returned to the user program at 
the next sequential instruction after the $GETB. 

OPC: Specifies how BSC handles the record received for this program. 
N indicates normal deblocking by BSC before the record is passed to the 
receiving program. That is, BSC removes transmission control characters and 
moves the data to the logical buffer (RCAD in $DTFB) one record at a time. 
BLK indicates the entire block (including control characters) is passed tothe 
receiving program. BSC places the length of the block in $BSRCL in the 
DTF if OPC = BLK or when receiving variable length records. If this 
operand is omitted, N is assumed. 

Note: If you specify OPC-BLK, be sure your logical buffer (RCAD in 
$DTFB) is large enough to hold an entire block of data plus transmission 
control characters (maximum 4096). 

EOF: Specifies your end-of-file routine. If this operand is omitted, control is 
returned to the user program at the next sequential instruction after the 
$GETB. 

If EOF or REJECT addresses are not specified, your program should check the 
return code in the DTF ($BSOPC) to determine the outcome of the operation. 



$GETD (Construct a Disk Get Interface) 

The $GETD macroinstruction generates the interface needed to communicate 
with data management when a record is being read from a disk file. Before using 
$GETD you must provide a DTF for the file (see $DTFD). If you need the data 
in register 2 later, save the contents of that register before issuing $GETD. 

Data management operates in move mode for input operations. In move mode, 
disk data management moves a record into the logical buffer (INREC) identified 
in the disk DTF from the physical buffer. 

The code generated by this macroinstruction gives control to the data 
management routine; the routine completes execution and returns control to the 
generated code. The generated code performs any requested tests on the 
completion codes returned by data management. 

The format of the $GETD macroinstruction follows: 

[. EOF-address] [. NRF-address] [. IRN-address] 

[INVOP-address] [. ERROR-address] 

Chapter 5.Macroinstructions Supplied by IBM 5-35 



5-36 

DTF: Specifies the address of the leftmost byte of the DTF for thIs file. If this 
operand is omitted, the address is assumed to be in register 2. 

LIMIT: Specifies whether new limits are to be set for this file. If Y (yes) is 
specified, the low and high limit keys must be in the area specified by the HIGH 
parameter of $DTFD. If N (no) is specified, the DTF is unchanged. If this 
operand is omitted, N is assumed. 

Note: If a GET PREY is going to be used, only the low limit key needs to be 
specified; the high limit key is ignored. 

OP: Must be specified as in the following list. 

For consecutive access: 

Code 

NEXT 

PREY 

PLUS 

MINUS 

Meaning 

Get next 

Get previous 

Get forward by argument value 

Note: The argument value is placed in the DTF at label 
$FIARG. 

Get backward by argument value 

Note: The argument value is placed in the DTF at label 
$FIARG. 

For direct access: 

Code Meaning 

RRN Get random record by RRN 

FIRST 

LAST 

Note: The RRN value is placed in the DTF at the label 
$FIRRNB (in binary format) or $FIRRND (in decimal format). 

Get first· in file 

Get last in file 

For indexed random access: 

Code Meaning 

KEY Get random by key 

KEYEA Get key equal or above 

KEYA Get key above 



FIRST Get first by key 

LAST Get last by key 

For indexed sequential access: 

Code 

NEXT 

PREY 

READE 

Meaning 

Get next by key 

Get previous by key 

Get key equal. (Do a NEXT and return record if its key is equal 
to the key in the field specified by the key parameter in the 
$DFTD.) 

For GAM (record order): 

Code Meaning 

RRN Get random record by RRN 

FIRST 

LAST 

NEXT 

PREY 

PLUS 

MINUS 

Note: The RRN value is placed in the DTF at the label 
$FIRRNB (in binary format) or $FIRRND(in decimal format). 

Get first in file 

Get last in file 

Get next 

Get previous 

Get forward by argument value 

Note: The argument value is placed in the DTF at label 
$FIARG. 

Get backward by argument value 

Note: The argument value is placed in the DTF at label 
$FIARG. 

For GAM (key order): 

Code Meaning 

KEY Get random by key 

FIRST Get first by key 

LAST Get last by key 

NEXT Get next by key 

Chapter 5.Macroinstructions Supplied by IBM 5-37 



5-38 

PREY 

READE 

KEYEA 

KEYA 

Get previous by key 

Get key equal. (Do a NEXT and return record if its key is equal 
to the key.in the field specified by the 1.cey parameter in the 
$DFTD.) 

Get key equal or above 

Get key above 

For any access (key or record order): 

Code Meaning 

NULL No-op is moved into the DTF (see note) 

Note: Null can be used if the operation code is changed by the program. The 
programmer is responsible to assure that some operation code is moved into the 
DTF before $GETD is run. 

IOERR: Specifies the address that receives control if the controlled cancel option 
is taken in response to a permanent disk error. If this operand is omitted, there is 
no check for a permanent disk error completion code. 

EOF: Specifies the address in your program that receives control when the end of 
file is detected. If this operand· is not supplied, no code is generated to check for 
the end-of-file condition. Do not use this operand with random or direct access 
methods. 

NRF: Specifies the address in your program that receives control if a 
no-record-found condition occurs. Do not use NRF with consecutive or indexed 
sequential access methods. 

IRN: Specifies your program address receiving control if an 
invalid-record-number condition occurs on a PLUS or MINUS or RRN 
operation. 

INVOP: The address in your program that receives control if an invalid 
operation condition occurs. 

ERROR: Supplies the address in your program that receives control if an 
unsuccessful completion code is detected. The successful completion code is hex 
40. Any other hex value is an unsuccessful completion code. 

Note: If an IOERR, EOF, NRF, IRN, or INVOP occurs but is not specified, and 
you do not specify ERROR, you should check the return code in your program to 
determine the outcome of the operation. 



$INFO (Information Retrieval) 

$INFO 

The $INFO macroinstruction allows access to system information that cannot be 
accessed directly in the system communications area or work station local data 
area. The macroinstruction performs three functions: 

• Generates labels and displacement values for the parameter list. 

• Generates an SVC to retrieve or change specific system information based on 
the values supplied in the $INFO parameters. 

• Generates a parameter list for the function based on the parameter values 
supplied for $INFO parameters. 

The $INFO macroinstruction must be expanded at least three times to retrieve 
system information. The first expansion generates the labels supplied in the 
macroinstruction. This expansion should be placed in the area of your code 
where you are defining other labels. 

Follow this format to generate the labels (DEFINITION PASS): 

The second expansion of the macroinstruction generates the SVC to retrieve or 
change specific system information. This expansion is placed within your 
executable code where you want to perform the request. 

FollowtJris format to generate the SVC (EXECUTION PASS): 

PLIST: Specifies the address of the left-most byte of the parameter list generated 
by the third expansion of this macro. (This would be the LABEL on the LIST 
pass expansion of $INFO.) A 2 indicates that this address is available in XR2. 

This second expansion of the $INFO macro could be considered the 
EXECUTION pass of the macro. (This is the pass which generates the executable 
SVC call. If the PLIST parameter is omitted, labels would be generated again as 
in the DEFINITION pass (first expansion) of the $INFO macro.) 

The third expansion of the $INFO macro is the LIST pass which generates the 
parameter list to be executed by the SVC generated in pass 2, and defines the 
function desired. 

Chapter 5.Macroinstructions Supplied by IBM 5-39 



Follow this format to generate the parameter list (LIST PASS): 

Note: This invocation creates a parameter list. It should not be placed withjn 
executable code or an execution-time error may occur. 

[label] $INFO [;~~=~~::] [. BUFFER-address] [. ID-name] 

5-40 

[.LEN-number] [.OFFSET-number] [.CIB] [.co] 

GET: Specifies the value to be retrieved from the system and placed in the buffer 
you supply. If this operand is omitted, UPSI is assumed. A description of each 
GET function follows. The number of bytes returned in the buffer and the 
contents of those bytes is also given. 

DATEFRMT: Returns the I-byte program date format. The character D 
indicates day-month-year format; M indicates month-day-year format; Y 
indicates year-month-day format. 

JULIAN: Returns the Julian date in the format YYDDD, which is based on 
the program date. 

PROGDATE: Returns 3 bytes containing the program date field. This is a 
6-digit date in YYMMDD format. 

SDATE: Returns 3 bytes containing the session date field. This is a 6-digit 
date in YYMMDD format. 

UPSI: Returns the I-byte UPSI switch value. 

INQUIRY: Returns the I-byte inquiry switch value. The character Y 
indicates an inquiry request is pending; N indicates an inquiry request is not 
pending. If a Y is returned, the inquiry request indicator is reset. A pending 
inquiry request indicates that the requesting operator has pressed the inquiry 
key and then selected option 4 from the inquiry menu. If your program is an 
MRT, option 4 is not available to the operator. 

LOCSYS: Returns up to 512 bytes of the system local data area as specified 
by the LEN and OFFSET operands. 

Note: LOCSYS and LOCUSER are mutually exclusive. 

LOCUSER: Returns up to 512 bytes of the user local data area as specified 
by the LEN and OFFSET parameters. 

NEP: Returns the I-byte program attribute. The character Y indicates the 
program is a never-ending program (NEP); N indicates the program is not a 
never-ending program. 



MRTMAX: Returns the I-byte hexadecimal value for the maximum number 
of requesters allowed. 

LINES: Returns the I-byte hexadecimal value for the number of lines per 
page. 

DATEUNPK: Returns 6 bytes containing the unpacked program date field in 
the format defined in the date format field. 

SLIST: Returns 3 characters showing the status of the current system list 
device. 

OFF: System list device is off. 

CRT: System device is the display station. 

ID: The system list device identification is returned as the printer ID. 

SYS: The system list device is the system printer. 

SPID: When the $INFO GET-SPID, BUFFER-address is issued, the buffer 
should contain the printer filename. If the file is found, the 6-character spool 
ID is returned in the format SPXXXX, where XXXX is a four- digit number. 
If the printer file is not found, a return code is issued. See the label 
$INFRET in the first expansion of $INFO for the possible returned codes, 
returned at offset $INFRNT from the start of the parameter list. 

CIB: Returns the 33-byte block of complier information. This would only be 
used by a compiler module. 

CD: Returns a 2-byte compilation code to the user buffer. 

PUT-code: Specifies that the value in the specified buffer is the data used for 
updating. A description of each PUT function follows. The number of bytes 
updated and the contents of those bytes is also included. 

UPSI: Updates the I-byte UPSI switch with the value in the user's buffer. 

PROG1: Updates the 3-byte, program-l message member disk address of the 
job control block (JCB) with values from the $FIND parameter list, which is 
the 3-byte sector address and the 3-byte FI address of the library. 

PROG2: Updates the 3-byte, program-2 message member disk address of the 
JCB with values from the $FIND parameter list, which is the 3-byte sector 
address and the 3-byte FI address of the library. 

USER1: Updates the 3-byte, user-I message member disk address with values 
from the $FIND parameter list, which is the 3-byte sector address and the 
3-byte FI address of the library. 

LOCSYS: Updates up to 512 bytes of the system local data area as specified 
by the LEN and OFFSET operands. 

Note: LOCSYS and LOCUSER are mutually exclusive. 

Chapter 5.Macroinstructions Supplied by IBM 5-41 



5-42 

CIB: Puts a 33-byte block of compiler information into the compiler 
information block. This would only be used by a compiler module. 

CD: Puts a 2-byte compilation code in the JCBDTRCD field of the job 
control block. 

LOCUSER: Updates up to 512 bytes of the user local data area as specified 
by the LEN and OFFSET parameters. 

BUFFER:/ Specifies the address of the leftmost byte of the buffer in which the 
data is placed for a GET operation or acquired for a PUT operation. If this 
operand is omitted, address hex FFFF is assumed. 

ID: Specifies the 2-byte logical ID of the terminal used in selecting the job 
control block. If this operand is omitted, the job control block for the active task 
is used. 

LEN: Specifies a decimal value from 1 to 512, which is used as the length of this 
local request. Data is counted starting from the offset value specified. If this 
operand is omitted, 1 is assumed. 

Note: The sum of the values of LEN and OFFSET cannot exceed 513. 

OFFSET: Specifies a value from 1 to 512, which is used as the offset for this 
local request. If this operand is omitted, 1 is assumed. 



$INV (Inverse Data Move) 

The $INV macroinstruction generates the code that allows you to do an inverse 
move on desired data. That is, the bytes of data at the TO address are in the 
opposite order they were in when at the FROM address. 

The format of the $INV macroinstruction is: 

[
label] $INV [FROM-address ] [, TO-address ] [, LEN-number] 

displacement(reg) displacementCreg) 

FROM: Specifies the rightmost byte of the field where the data is located. This 
operand can be either a symbolic address, or a register displacement address 
indicated by displacement(reg). 

TO: Specifies the leftmost byte of the field where the data is to be moved. This 
operand can be either a symbolic address, or a register displacement address 
indicated by displacement(reg). 

Note: If the FROM and TO fields overlap, data will be lost. 

LEN: Specifies the decimal length (in bytes) of the field to be moved. 

Chapter 5.Macroinstructions Supplied by IBM 5-43 



$LMSG (Generate a Parameter List for a Displayed Message 

5-44 

The $LMSG macroinstruction generates a system log parameter list for a message 
to the operator. This parameter list is referenced by a $LOG macroinstruction 
when $LOG is used to issue a message. 

F or a description of how to use system log, refer to $LOG. 

The format of the $LMSG macroinstruction follows: 

[.MSGlH-{number)] [.MSGAD-{address}] [.WRSTE-{j] 

[.DRlEH-{number}] [.DRADD-{address}] 



$LMSG Parameter Use Chart 

Parameter 1 

COMID R if 
FORMAT-Y 

SUBID R if 
FORMAT-Y 

FORMAT R 2673 

HALT R 2674 

MIC R 2657 

OPTNO R if HALT-Y 
2650 

OPTN1 R if HALT-Y 
2650 

OPTN2 R if HALT-Y 
2650 

OPTN3 R if HALT-Y 
2650 

SKIP 

SPACE 

MSGLN R if 
VARIN-Y 

MSGAD R if 
VARIN-Y 

WRSTE R 2672 

DRLEN 

DRADD 

HIST S 

CRT S 

VARIN S 

Message Type 

1R 2 2R 3 4 Default Values 

S S R if blanks 
FORMAT-Y 

S S R if blanks 
FORMAT-Y 

E 2646 E 2646 E 2646 E 2646 R 2673 No 

E 2647 E 2647 E 2647 R 2674 R 2674 No 

R 2657 R 2657 R 2657 0001 

R if HALT-Y R if HALT-Y No 
2650 2650 

R if HALT-Y R if HALT-Y No 
If HALT - Y is specified, Y must be 2650 2650 
specified for at least one OPTN 

R if HALT-Y R if HALT-Y No parameter. 
2650 2650 

R if HALT~Y R if HALT-Y No 
2650 2650 

S S No 

R 2675 R 2675 1 

R 2654 R 2654 R 2654 TYPE-1 and 
VARIN-Y,8; 
else, 75 

R 2649 R 2649 R 2649 FFFF 

R 2672 R 2672 R 2672 R 2672 R 2672 Yes 

R 2653 R 2653 8 

R 2648 R 2648 FFFF 

S S S S S Yes 

S S S S S Yes 

No 

Key to chart: 

No entry = Parameter not used with corresponding message type. 

R = Parameter is used with corresponding message type under noted 
circumstance or diagnostic MIC number issued if not entered. 

E = Parameter invalid with corresponding message type and diagnostic MIC 
number issued if entered. 

Chapter 5.Macroinstructions Supplied by IBM 5-45 



5-46 

S= Parameter used.with corresponding message type and default assumed if not 
entered. 

TYPE: Specifies the type of system log parameter list. If this operand is omitted, 
TYPE-l is assumed. The valid codes and their meanings follow: 

Code Meaning 

Output from a message member, without data response 

R Output from a message member, with data response 

2 Output from a user program, without data response 

2R Output from a user program, with data response 

3 Output from a user program, with a format line. The format line 
. contains the program ID, the MIC number, options if options are 
available, and the program name. 

4 Type-l with 8 bytes of user-supplied information added to the front of 
the message 

COMID: Specifies a 2-byte field used to identify the module issuing the message. 
If this operand is omitted, blank is assumed. This field is not displayed, but is 
logged in the history file if HIST -Y is specified. 

SUBID: Specifies a 2-byte field used to further identify the module issuing the 
message. If this operand is omitted, blank is assumed. This field is not displayed, 
but is logged in the history file if HIST -Y is specified. 

FORMAT: Specifies whether to include the format line if the output is from a 
message member. If this operand is omitted and TYPE-3 is not specified, N (no) 
is assumed. If TYPE-3·is specified, do not specify FORMAT: FORMAT-Y (yes) 
is always assumed if TYPE-3 is specified. 

HALT: Specifies whether the operator is supposed to enter an option number). 
If this operand is omitted, N (no) is assumed. 

MIC: Specifies a decimal number, within 0001 through 9999, used to identify a 
specific message within the message member. If this operand is omitted, 0001 is 
assumed. 

OPTNO: Specifies whether option 0 is allowed. If Y (yes) is entered, option 0 is 
allowed; if N (no) is entered or if the operand is omitted, option 0 is not allowed. 

OPTNl: Specifies whether option 1 is allowed. If Y (yes) is entered, option 1 is 
allowed; if N (no) is entered or the operand is omitted, option 1 is not allowed. 

OPTN2: Specifies whether option 2 is allowed. If Y (yes) is entered, option 2 is 
allowed; if N (no) is entered or the operand is omitted, option 2 is not allowed. 

OPTN3: Specifies whether option 3 is allowed. If Y (yes) is specified, option 3 is 
allowed; if N (no) is specified or the operand is omitted, option 3 is not allowed. 



If option 3 is allowed and selected by the user, control will not be returned to 
your program. 

MSGLN: Specifies the text length. The number must be a decimal entry (from 1 
to 132). Anything over 75 bytes is truncated if the message is routed to a display 
station or the system console. This parameter specifies the insert data length if 
VARIN -Y is specified. 

MSGAD: Specifies the leftmost byte of the message buffer. This parameter 
specifies the insert data address if VARIN-Y is specified. 

Note: The message buffer should contain only printable characters. For example, 
the buffer should not contain values less than hex 40. 

WRSTE: Specifies whether the message is routed to the display station or the 
system console. If this operand is omitted, Y (yes) is assumed and the message is 
routed to the display station. If WRSTE-N is specified, messages are routed to 
the system console. If the system console is being used as a display station and 
the job is an SRT, messages are routed to that display station. 

Note: The message is displayed only if CRT-Y is specified, regardless of routing. 

DRLEN: Length of the reply area in decimal. This area must be either 1, 8, 60, 
or 120 bytes long. 

DRADD: Specifies the address of the leftmost byte of the reply area. 

HIST: Specifies whether the message is to be recorded on the history file. If this 
operand is omitted, Y (yes) is assumed. 

CRT: Specifies whether the message is to be displayed on the display screen. If 
this operand is omitted, Y (yes) is assumed. 

VARIN: Specifies a variable length data insert (1 through 32) for type-l 
messages. The system log function allows you to insert variable length data 
anywhere in the text of a message that is retrieved from a message member. 
Substitution occurs wherever the symbol # appears in the message text. If this 
operand is omitted, N (no) is assumed. 

Note: The inserted data should contain only printable characters. For example, 
the data string should not contain values less than hex 40. 

For a description of how to use system log, refer to $LOG. 

Chapter 5.Macroinstructions Supplied by IBM 5-47 



$LOAD (Load or Fetch a Module) 

The $LOAD· macroinstruction generates the linkage to load a module into main 
storage at the address you specify. The address is specified in the $FNDP or 
$LOAD macroiristruction using the LOAD keyword. LOADER-Y should be 
specified in the $FNDP macroinstruction so that the parameter list output from 
$FNDP will be a $LOAD parameter list. You can have control returned after the 
module is loaded,. or you can pass control to the module. If you will need the 
data in register 2 later, save the contents of register 2 before issuing $LOAD. 

The format of the $LOAD macroinstruction follows: 

PLIST- -;ddress· . mcH , LOAD- address 
[label] $LOAD [ {2 }] [, TYPE-{lOAD}] [ {2 }] 

5-48 

PLIST: This address identifies the directory entry of the module in main storage 
and specifies the address of the leftmost byte of the parameter list built by 
$FNDP. Register 2 can be specified; however, if this operand is omitted, the 
address is assumed to be register 2. 

TYPE: Specifies the type of load to perform. If this operand is omitted, LOAD 
is assumed. 

LOAD: Loads the module at the specified LOAD address and returns 
control. 

FETCH: Loads the module at the specified LOAD address and passes 
control to. the module. 

LOAD: Specifies either the address at which the module is to be loaded in main 
storage, or the address in register 2. The address must be on an 8-byte boundary. 
Use this parameter only if the load address is to be filled or changed. There is no 
default for LOAD. If an address is specified for LOAD, then PLIST must be 
specified and cannot be the value 2. 



SLOG (Generate the Linkage to the System Log) 

The $LOG macroinstruction generates the linkage required to use the system log 
function, and checks the response returned. 

Use the $LOG macroinstruction to notify the operator of error conditions, error 
recovery procedures, and the validity of previous operator responses to halts. If 
the operator selects an invalid option in response to a halt, the response is not 
accepted by system log. Instead, the halt is displayed again with another message 
indicating that the response is invalid. 

Formatted and unformatted output are available through system log. Both types 
are displayed on the system log device. 

• A formatted message has two lines. The first line is the format line, which 
contains the message ID and available options. The second line contains the 
message text. 

• An unformatted message has one line. It indicates errors or issues 
instructions to the operator. 

To use system log, you must do the following: 

1. Build the log parameter list using the $LMSG macroinstruction. 

2. Use the $LOGD macroinstruction to establish labels for the log parameter 
list. You can then use the labels to modify the parameter list during program 
execution. 

3. Issue the $LOG macroinstruction. 

4. Process, in your program, any replies returned by the operator. 

If you will need the data in register 2 later, you should save the contents of that 
register before issuing $LOG. 

The format of the $LOG macroinstruction is: 

[label] $lOG [LIST-address] [.OPTHo-address]. [. OPTHI-address] 

[.OPTH2-address] 

LIST: Specifies the address of the leftmost byte of the system log parameter list 
generated by the $LMSG macroinstruction. If this operand is not specified, the 
address of the parameter list is assumed to be in register 2. 

OPTNO: Specifies the address of the routine that should receive control if option 
o is taken. If this operand is not specified, no check is made for a response of O. 

Chapter 5.Macroinstructions Supplied by IBM 5-49 



You would use this operand only if OPTNO-Y was specified for the associated . 
system log parameter list. 

OPTNl: Specifies the address of the routine that should receive control if option 
1 is taken. 'If this operand is not specified, no check is made for a response of l. 
You would use this operand only if OPTNI-Y was specified for the associated 
system log parameter list. 

OPTN2: Specifies the address of the routine that should receive control if option 
2 is taken., If this operand is not specified, no check is made for a response of 2. 
You would use this operand only if OPTN2-Y was specified for the associated 
system log parameter list. 



$LOGD (Generate Displacements for System Log) 

The $LOGD macroinstruction generates the field labels and offsets for the system 
log parameter lists. To avoid duplicate labels, you should use this 
macroinstruction only once in a program. 

For a description of how to use system log, refer to $LOG. 

The format of the $LOGD macroinstruction follows: 

Chapter 5.Macroinstructions Supplied by IBM 5-51 



$OPEN (Prepare a Device or File for Access) 

This macroinstruction prepares a device or file for data transfer. Use the $ALOC 
macroinstruction before preparing (opening) the file. One or more of the 
following functions are performed for each file opened: 

• The DTF is formatted. 

• Data (I/O) buffers and data management control blocks have space allocated. 

• Bit 7 in the second attribute byte of the DTF is set on to indicate that the 
DTF is open. 

• Data management control blocks are initialized. 

• Diagnostic tests are performed to ensure that the access method and the file 
organization are compatible and that other information in the DTF is correct. 

Note: When a DTF is opened ($OPEN) it cannot be moved or overlaid until it is 
closed ($CLOS). More than one DTF can be opened at one time by chaining the 
DTFs. See $DTFB, $DTFD, $DTFP, and $DTFW. 

Input: The preopen DTF is input to the open routine. Before issuing $OPEN, 
you must be sure to allocate the device or file by issuing the $ALOC 
macroinstruction. 

Output: The open routine returns control to your program after the requested file 
is opened. All register contents are restored. The devices and files corresponding 
to open DTFs are prepared for use. 

The format of the $OPEN macroinstruction follows: 

I [label] $OPEN [DTF-address] 

5-52 

DTF: Specifies the address of the leftmost byte of the first DTF to be opened. If 
this operand is entered, an LA instruction is generated to load the specified 
address into register 2. If this operand is not entered, the address is assumed to 
be in register 2. 



$PUTB (Issue a Put Request) 

The $PUTB macroinstruction generates code to move data from your logical 
buffer to a BSC I/O buffer. To use this macroinstruction, construct a BSC DTF 
for the file (using the $DTFB macroinstruction) and use the $DTFO 
macroinstruction to generate the labels and establish the offsets for the DTF. 

The format of the $PUTB macroinstruction follows: 

[label] $PUTB [OTF-address] [, REJ ECT-address] [, opc-n~:} 1 

DTF: Specifies the address of the DTF for which the put was issued. If this 
operand is omitted, the address is assumed to be in register 2. 

REJECT: Specifies the routine to receive control if the put request is rejected 
by BSC. If this operand is omitted, control is returned to the user program at 
the next sequential instruction after the $PUTB. You should check the return 
code to determine the outcome of the operation. 

Note: To prevent issuing BSC requests after a BSC error has occurred, the 
REJECT parameter should always be coded. 

OPC: Specifies how BSC should send this record. 

N: Specifies normal record blocking before the record is sent. If this 
operand is omitted, N (no) is assumed. 

EOB: Specifies that the block is ended with this record and should be 
sent as it is. 

EOF: Specifies end of file. The put file is closed by transmitting the last 
block of data with end of text (ETX), then transmitting end of 
transmission (EOT). If operation is in 3740 multiple file mode, the last 
block of data is transmitted with end-of-text block (ETB), and System/36 
waits for the next user operation. 

Note: No new data is sent when the EOF operation code is issued. The ETX 
or ETB is placed at the end of the previous block of data. 

Chapter 5.Macroinstructions Supplied by IBM 5-53 



$PUTD (Construct a Disk Put Interface) 

The $PUTD macroinstruction generates the interface needed to communicate with 
data management when putting a record on disk or updating or deleting a 
previously retrieved record. Before using $PUTD you must provide a DTF for 
the file (see $DTFD). If you need the data in register 2 later, you should save the 
contents of that register before issuing $PUTD. 

l',Jote: Disk data management operates in move mode for output operations. In 
move mode, disk data management moves a record from the logical buffer 
(OUTREC) identified in the disk DTF to a physical buffer. 

The code generated by this macroinstruction gives control to the data 
management routine. The routine ,completes execution and returns control to the 
generated code. Completion codes are tested if requested and control is returned 
to your program. 

The format of the $PUTD macroinstruction follows: 

[ 1 abel] $PU T D OP-code [ • DT F-addres s] [. D UP RCO-a ddress] [. 10 ERR-addre 5S] 

5-54 

[ • EOX -address] [ • DUPR EC-address] [ • SEQ ERR-addres s] 

[. K EYERR-address] [ • I NVDRP-address] [ • DI RN DR-a ddres s] [. I NVOP-add ressJ 

[. I RN -a ddress] [. ERROR-a dd re ss] 

OP: Must be specified as follows: 

Code 

AEOD 

ARRN 

UPDATE 

DELETE 

Meaning 

Adds a record at the end of data (consecutive, indexed, and 
GAM with AEOD capable). 

Adds a record at the RRN location (direct and GAM with 
ARRN capable). 

Updates the record at the current record pointer location. 

Deletes the record at the current record pointer location. 



RELEASE Releases the record at the current record pointer location. 

NULL Does not move any operation code into the DTF (see note). 

Note: Null can be used if the operation code is changed by the program. The 
programmer is responsible to assure that some operation code is moved into the 
DTF before $PUTD is run. 

DTF: Specifies the address of the leftmost byte of the DTF associated with this 
file. If this operand is omitted, the address is assumed to be in register 2. 

DUPRCO: Specifies the address that receives control when you attempt to add a 
duplicate key to an alternative index of this file, and that other index does not 
allow duplicates. 

IOERR: Specifies the address that receives control if the controlled cancel option 
is taken in response to a permanent disk error. If this operand is omitted, there is 
no check for a permanent disk error completion code. 

EOX: Supplies the address in your program that receives control when an 
end-of-extent is reached during the operation. 

DUPREC: Provides the address in your program that receives control when you 
attempt to add a duplicate key to this file and duplicates are not allowed. 

SEQERR: Address in your program that receives control in the event of a 
sequence error during an ordered load of an indexed sequential file. 

KEYERR: Specifies the address in your program that r:~ceives control when an 
attempt is made to update a record in an indexed file and the attempt would 
destroy the record key. 

INVDRP: Specifies the address in your program that receives control if an 
invalid put to a delete-capable file is detected. This condition can occur with all 
access methods. An invalid put is signaled if the record to be added to or 
updated in the file contains hex FF in the first byte. 

DIRNDR: Used only for the direct access method and GAM. It specifies the 
address in your program that receives control if you are doing direct output to a 
delete-capable file and the current record in the file is not a deleted record (the 
record does not contain hex FF in the first byte). 

IRN: Specifies your program address that receives control when an 
invalid-record-number condition occurs. For example, issuing $PUTD 
OP-ARRN for a record not in the file. 

INVOP: The address in your program that receives control if an invalid 
operation condition occurs. 

ERROR: Supplies the address in your program that receives control if any 
unsuccessful completion code is detected. The successful completion code is hex 
40. 

Note: If DUPRCO, IOERR, EOX, DUPREe, SEQERR, KEYERR, INVDRP, 
DIRNDR, IRN, or INVOP occurs but is not specified, and ERROR is not 

Chapter 5.Macroinstructions Supplied by IBM 5-55 



5-56 

specified, you should check the return code in your program to determine the 
outcome of the requested ,Operation. 



$PUTP (Construct a Printer Put Interface) 

This macroinstruction generates the interface needed to communicate with printer 
data management. When using $PUTP, you must provide a DTF for the file (see 
$DTFP). 

The code generated by this macroinstruction gives control to the data 
management routine. The routine completes execution and returns control to the 
generated code. If the ERR operand is specified, the generated code checks the 
completion code for errors and branches to your error routine if errors occurred. 

If the OVFL operand is specified, the generated code checks for page overflow 
and branches to your overflow routine if overflow occurred. 

The format of the $PUTP macroinstruction is: 

[label] $PUTP [DTF-address] [, PRIHT-GRAHJ] [, SKIPB-number] [, SPACEB-{~}] 

[, SKIPA-number] [, SPACEA-{~}] [, ERR-address] [,OVFL-address] 

Chapter 5.Macroinstructions Supplied by IBM 5-57 



DTF: Specifies the address of the leftmost byte of the DTF for this file. If this 
operand is omitted, the address is assumed to be in register 2. 

PRINT: Specifies with Y (yes) to perform both a print and the specified skip or 
space, or with N (no) only a skip or space. If this operand is omitted, the DTF is 
unchanged. 

PRINT-TRANS (transparent mode): Requires the before forms feed commands at 
the beginning of the record. The after forms feed command of the printer DFT 
must be 0 or 1. 

SKIPD: Specifies the line to skip to before the print operation. The maximum 
must be less than the number of lines per page as specified in $DTFP. If this 
operand is omitted, the DTF is unchanged. 

SPACED: Specifies the number of lines to space before the print operation. The 
maximum must be less than the number of lines per page as specified in $DTFP. 
If this operand is omitted, the DTF is unchanged. 

SKIPA: Specifies the line to be skipped to after the print operation. The 
maximum must be less than the number of lines per page as specified in $DTFP. 
If this operand is omitted, the DTF is unchanged. 

SP ACEA: Specifies the number of lines to space after the print operation. The 
maximum must be less than the number of lines per page as specified in $DTFP. 
If this operand is omitted, the DTF is unchanged. 

Note: If SKIP or SPACE values exceed the value specified for PAGE, no 
operation is performed. 

ERR: Supplies the address in your program that receives control if the controlled 
cancel option is taken in response to a permanent I/O error. If this operand is 
omitted, no code is generated to check for the controlled-cancel completion code, 
and you should check the return code in your program to determine the outcome 
of the operation. 

OVFL: Specifies the address in your program that should receive control if page 
overflow occurs. 

> Note: If a PRINT, SKIPB, SP ACEB, SKIP A, or SP ACEA operand is specified, 
the DTF is changed. The DTF is not reset after the operation is complete; the 
program must reset the DTF if this is required. 



$RIT (Return Interval Time) 

The $RIT macroinstruction returns the remaining amount of a time interval or 
cancels an unexpired time interval. The remaining time is returned in the time 
field, displacement $TRBTIME, of the TRB established by the $TRB 
macroinstruction. The time interval is set by $SIT and is returned in the format 
specified by the TYPE parameter in the $RIT macroinstruction. 

The format of the $RIT macroinstruction follows: 

[, IO-t; marIO 1 [, IOAOOR-addrass 1 

TRB: Specifies the address of the leftmost byte of the timer request block. If 
this operand is omitted, the address of the timer request block is assumed to be in 
register 2. 

CANCEL: Specifies whether the remaining time in the interval is to be canceled. 
If this operand is omitted, N is assumed. 

WAIT: Specifies whether or not the task issuing the $R.IT macroinstruction is to 
be put in a wait state until the time interval expires. If this operand is omitted, N 
is assumed. This operand is ignored if CANCEL-Y is specified. 

TYPE: Th~ method of stating the format of the time returned. 

DEC 

BIN 

TV 

A 6-byte decimal number specifying the time in hours, minutes, 
and seconds (HHMMSS) until the timer expires. The time is 
based on a 24 hour clock. 

A 32-bit binary number specifying the time in seconds until the 
timer expires. The binary value is right-adjusted in bytes 4 
through 7 of the timer request block time field. The time is based 
on a 24 hour clock. 

A 32-bit binary number specifying the time in timer units until 
the timer expires. One timer unit is 8.192 milliseconds. The 
binary value is right-adjusted in bytes 4 through 7 of the timer 
request block time field. The time is based on a 24 hour clock. 

The default is DEC. 

ID: A I-byte self-defining expression, whose value is from 1 through 255, used to 
identify task timer intervals. This parameter is not needed if the time intervals are 
synchronous. This parameter is ignored if IDADDR is also specified. The 
default value is 1. 

Chapter 5.Macroinstructions Supplied by IBM 5-59 



5-60 

IDADDR: The address of the location containing a self-defining expression of the 
value 1 through 255 that is used to identify task timer intervals. 



$SIT (Set Interval Timer) 

The $SIT macroinstruction sets the interval timer, which causes an interrupt after 
the specified amount of time. Before issuing $SIT you must place the desired 
interval in the time field of the timer request block. 

The format of the $SIT macroinstruction follows: 

[label] $SIT [TRB-address] [. TYPE-{~~:}l [. ITYPE-{~!~i}] [. ID-timerID ] 

[.IDADDR-address] 

TRB: Specifies the address of the leftmost byte of the timer request block. If this 
operand is omitted, the address of the timer request block is assumed to be in 
register 2. 

TYPE: Specifies the format of the time interval in the timer request block. You 
must place the time interval in the time field of the timer request block before 
issuing $SIT. The time field is at displacement $TRBTIME in the timer request 
block generated by $TRB. If this operand is omitted, DEC is assumed. The valid 
time interval formats are: 

DEC 

BIN 

TU 

TOD 

A 6-byte decimal number specifying the hours, minutes, and 
seconds (HHMMSS) on a 24-hour clock that can pass before the 
timer interrupt. 

A 32-bit binary number specifying the number of seconds that 
can pass before the timer interrupt. The binary value must be 
right-adjusted in bytes 4 through 7 of the timer request block 
time field. 

A 32-bit binary number specifying the number of timer units that 
can pass before the timer interrupt. One timer unit is 8.192 
milliseconds. The binary value must be right-adjusted in bytes 4 
through 7 of the timer request block time field. 

The actual time of day when the timer interrupt is to occur. The 
time is a 6-byte decimal number specifying the hour, minute, and 
second (HHMMSS). The time is with respect to a 24 hour clock. 

ITYPE: Specifies the type of interval to be timed. If this operand is omitted, 
REAL is assumed. The types of time intervals are: 

REAL The timer decreases the time interval continuously for all types of 
processing. 

Chapter 5.Macroinstructions Supplied by IBM 5-61 



5-62 

WAIT The program issuing· the $SIT macroinstruction is placed in a 
wait state for the specified time interval. When the time expires, 
control.retums to the instruction following the $SIT 
macroinstruction. 

ID: A I-byte self-defining expression, whose value is from 1 through 255, used to 
identify task timer intervals. This parameter is not needed if the time intervals are 
synchronous. This parameter is ignored if IDADDR is also specified. The 
defa ult val tie is 1. 

IDADDR: The address of the location containing a self-defining expression of the 
value 1 through 255 that is used to identify task timer intervals. 



SSNAP (Snap Dump of Main Storage) 

The $SNAP macroinstruction provides a system storage dump. You must specify 
the region or the limits of the area to be dumped. The program continues 
unaffected at the end of the dump. The contents of the specified main storage 
area are printed on the SYSLIST device. Output from the dump routine consists 
of: 

• The specified dump identifier 

• The contents of register 1 (XRl), register 2 (XR2), the instruction address 
register (IAR), and the address recall register (ARR) 

• The contents of work registers W4, W5, W6, and W7 

• The contents of the specified main storage area. 

Control is returned to the next sequential instruction in your program. 

The format of the $SNAP macroinstruction follows: 

[label] $SHAP [REGIOH-{~:s}] [. Low-address] [. HIGH-address] 

Chapter 5.Macroinstructions Supplied by IBM 5-63 



5-64 

REGION: Specifies whether the entire region should be dumped and whether the 
HIGH and LOW parameters should be ignored. If Y (yes) is specified, the entire 
region is dumped; If N (no) is specified, the area specified by the HIGH and 
LOW parameters is dumped. If this operand is omitted, N is assumed. 

LOW: Specifies the address of the low limit of the storage area to be dumped. 
The low limit must be lower than the high limit and within the allocated storage 
area. If this operand is omitted, address X'FFFF' is assumed. 

HIGH: Specifies the address of the high limit of the storage area to be dumped. 
If the high limit is not within the allocated storage area, only that storage that is 
within allocated storage is dumped, and an error message is displayed. If this 
operand is omitted, address X'OOOO' is assumed. 

If you allow REGION, LOW, and HIGH to default, you will not get a dump (the 
low address is higher than the high address). 

ID: Specifies the four characters used as a dump identifier. If this operand is 
omitted, blanks are assumed. 

PLIST: Specifies the address of the $SNAP parameter list. If this operand is 
omitted, 2 is assumed. The parameters have the following meanings: 

2 The address is in register 2. 

address Specifies the address of the leftmost byte of the parameter list. 

INLINE Specifies inline generation of the parameter list. 

The PLIST and V keywords are mutually exclusive. Normally, unless 
PLIST-INLINE is specified, you use one $SNAP macroinstruction to generate a 
parameter list (V-DC), and one or more additional $SNAP macroinstructions to 
dump portions of your program (PLIST-2 or PLIST address). 

v -DC/EQU / ALL: Specifies whether the parameter list labels, DCs, or both, are 
generated. If this operand is omitted, neither is generated. Do not specify V if 
you specified PLIST-INLINE. The parameters have the following meanings: 

DC $SNAP initializes the storage area for the parameter list. 

EQU $SNAP generates labels; all other $SNAP operands are ignored. 

ALL $SNAP initializes the storage area for the parameter list and generates 
labels. 



$SORT (Construct a Loadable Sort Interface) 

The $SORT macroinstruction generates an interface to the sort utility. The sort 
utility is part of the SSP. The sort utility is described in the Sort Reference 
Manual. Before you issue $SORT, you must generate a sort parameter list by 
issuing the $SRT macroinstruction. $SRT is described in the following pages. 

If you will need the data in register 2 later, you should save the contents of 
register 2 before you issue $SORT. 

The code generated by $SORT gives control to the sort utility. After completing 
the sort, the utility returns control to the instruction that follows the code 
generated by $SORT. You should check the sort completion indicator to 
determine whether the sort was successful. The indicator ($SRTCOMP) is at 
displacement $SRTINDB in the sort parameter list. If $SRTCOMP is off, the 
sort was successful; if $SRTCOMP is on, the sort was unsuccessful. 

$SORT can be issued more than once to perform multiple sorts in a single 
program. Before you issue $SORT, all files named in $SRT must be defined by 
FILE statements, and the files must be closed. 

The format of the $SORT macroinstruction is: 

I [label] $SORT [PL 1ST -address] 

PLIST: Specifies the address of the leftmost byte of the sort parameter list that is 
generated by the $SR T macroinstruction. If this operand is omitted, the address 
of the sort parameter list is assumed to be in register 2. 

Chapter 5.Macroinstructions Supplied by IBM 5-65 



$SRT (Generate a Loadable Sort Parameter List) 

The $SRT macroinstruction generates the parameter list used by the sort utility 
when it is called by the $SORT macroinstruction. 

The sort utility is part of the SSP. The sort utility and the parameter list are 
described in the Sort Guide manual. 

The maximum size of the parameter list is 2048 bytes, including 125 bytes 
reserved as a work area for the sort utility. 

The format of the $SRT macroinstruction follows: 

[label] $SRT [v-n~dl [, OUTPUT-file name] [, SOURCE-source member name] 

[, USERLB-li brary name] [, INPUTl-fi Ie name] [, INPUT2-file name] 

[, INPUT3-fi Ie namel [, INPUT4-file name] [, INPUT5-fi Ie name] 
j 

[, INPUT6-fi Ie name] [, INPUT7-fi Ie name] [,INPUTS-file name] 

['AL TSEQ- G}] [ ,KANJI- G} ] 

5-66 



V-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are 
generated. If this operand is omitted, EQU is assumed. 

DC Generates the sort parameter list used by the sort utility when it is 
called by the $SORT macroinstruction. 

EQU Generates the displacement labels for the loadable sort parameter list. 
If V-EQU is specified or assumed, all other operands for $SRT are 
ignored. 

ALL Generates both the loadable sort parameter list and the corresponding 
displacement labels. 

OUTPUT: Specifies the name of the file that is to contain the sorted data. If this 
operand is omitted, blanks are assumed. See Notes 1 and 2. 

SOURCE: Specifies the name of the source member that contains the sort 
specifications. If this operand is omitted, no entry is created for it in the 
generated parameter list, and the 34-byte sort specifications must be placed 
immediately after the generated portion of the sort parameter list. 

Omit this operand if you want to supply the sort specifications.in the sort 
parameter list. See Note 1. 

USERLB: Specifies the name of the user library that contains the source member 
specified in the SOURCE parameter, if any. If this operand is omitted, no entry 
is created for it in the generated parameter list. #LIBRARY is assumed if a 
source name is specified and USERLIB is omitted. Omit this operand if you 
want to supply the sort specifications in the sort parameter list. See Note 1. 

INPUT1: Specifies the name of the first, or only, input file to sort. If this 
operand is omitted, blanks are assumed. See Notes I and 2. 

INPUT2: Specifies the name of the second input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. See Note 2. 

INPUT3: Specifies the name of the third input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. Before 
INPUT3 can be specified, INPUT2 must be specified. See Note 2. 

INPUT4: Specifies the name of the fourth input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. Before 
INPUT4 can be specified, INPUT2 and INPUT3 must be specified. See Note 2. 

INPUT5: Specifies the name of the fifth input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. Before 
INPUT5 can be specified, INPUT2 through INPUT4 must be specified. See Note 
2. 

INPUT6: Specifies the name of the sixth input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. Before 
INPUT6 can be specified, INPUT2 through INPUT5 must be specified. See Note 
2. 

Chapter 5.Macroinstructions Supplied by IBM 5-67 



5-68 

INPUT7: Specifies the name of the seventh input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. Before 
INPUT7 can be specified, INPUT2 through INPUT6 must be specified. See Note 
2. 

INPUTS: Specifies the name of the eighth input file to sort. If this operand is 
omitted, no entry is created for it in the generated parameter list. Before 
INPUT8 can be specified, INPUT2 through INPUT7 must be specified. See Note 
2. 

ALTSEQ: Specifies whether an alternative collating sequence table is contained 
in bytes 1793 through 2048 (the last 256 bytes) of the loadable sort parameter list: 
Y if yes, N if no. If this operand is omitted, N is assumed. If Y is specified, you 
must place the alternate collating sequence table in bytes 1793 through 2048 of 
the loadable sort parameter list. 

KANJI: Specifies whether to invoke the extended sort utility, for sorting 
ideographic data: Y if yes, N if no. If this operand is omitted, N is assumed. 
Omit this parameter if non-ideographic data is to be sorted. 

Notes: 

1. Space is always reserved in the generated parameter list for an OUTPUT file 
name and an INPUTI file name. If you want to reserve space in the 
parameter list for other operands, specify names in $SRT for the operands 
(actual names can then be inserted in the parameter list by your program). 

2. All files named in $SRT must be defined by FILE statements before the 
$SORT macroinstruction is used. Files named must correspond to the 
NAME parameter on the FILE OeL statements for the respective files. The 
files must be closed before $SORT is used. 



PROGRAM 

PROGRAMMER 

Labat 

123456789 

~~ 11'<11 "'" 

PROGRAM 

PROGRAMMER 

Operation 

011 121314 

51RIT 
... r 

-.... 
~ 
~ 

p.,~ .... ~ ,. 
RIG 
r 
""' ,. 

IJ~ ,. 
IJ 
.... 
1.1 

""' ,.. 
10..-

Ir 
~ 
",", 

1'-0 
r 

r 
r 
'" 

Constructing a SORT Parameter List 

The following example shows how to use $SR T to build a parameter list to be 
passed to the loadable sort transient. In this example: 

• The input file is named IN and has 100-byte records. 

• The output file is named OUT and contains input file records sorted on 
columns 1 through 10. 

• The sort sequence specifications are included in the parameter list, not in a 
source member. 

• The specified alternative collating sequence sorts all characters except blanks, 
uppercase alphabetic characters, and numeric characters to the end of the file. 

J TYPING GRAPHIC I I DATE I INSTRUCTIONS CHARACTER I 
STATEMENT 

Operand 
R_rks 

151617 18192021 2223242526272829303132333435 36 37383940 41424344 45 4647484950 51 52535455 56 57 58 59606' 6263646566676869707'72737 

~-lA L. IN IAUl J.- liN ~:LJ IT IF lJT -I"' lIT I~ A lrr ~E ~-.y ..... 
:Li~ ~H ~~l~ ~~ l~A ~rz lr2J rzl' 5 ~Il ~~ ~~ t.r< 61=' ~: 
'"ILI3 'IF NC ~ lt2 rtl ~ , 5 I~ rr tc ll~ 1 111H RIU l~ rlLlj 't- v.J. ul 121 Kl~ , CA ~ IS ~''''~ l:" 11ie .. tc .... 

1'00
13 '~ I 1-1\ , 

~ Ie ~ ~rr SP ,.. 
I~~" It"~ ~II! +)( 'kJ 17ft ~ , .... ~., t. AIL T5 ~:; ~i~ [A 
~~ X ... L ' I- IF' I"'~ tit. .. ~ ~,. Fill ~NII< 
If" l' 

, 
I=1Llt' il< ~ 

1 ~Ie LL 'I=' to I 

1'00' ~I~I:: rrlr- 1~IL ~ r q , AIH tot- l:11- I ' ~ rrl-~ I 
']X IL L" FI=' ' ~ 

I ~o TH IRIL 11 .... 
q ''J II<L M~ ~II-' ~~ , j Tr-R ~ ex L \ FF' r " I I~r.: rTlf-l 1~1\oo 15 I- 10..-r 8 '~ rr,,-, IV~ x lZ' 5 TI- ~ , .... 

~x 1\ 1= IF' I '! 
.... 1 I"i~ lTJ.!" a i.. 

""' If" ... 1 '(l Lt:: 1- " 178 q' ~ I R,\,j ~ l1l:;;I 

~)( 1 ' I=F' 1K:1t- ~ NI I~ (: C liE II'<I!::I ~ 

The following operation calls the loadable sort: 

STATEMENT 

~rks 
Oper.tion O_ond 60 63 6 66 66 67 68 69 707' ;2 73 7 

0" '2'314'51617 '8'9202' 2223242526272829303' 32333435 36 37383940 4'424344 45 4647484950 51 52535455 56 57 58 59 6' 62 4 

Chapter 5.Macroinstructions Supplied by IBM 5.;..69 



$TOD (Return Time and Date) 

5-70 

The ,$TOD macroinstruction returns the time of day and the system date to the 
program. The time of day is returned in the time field of the timer request block; 
the system date is returned in the date field. The time and date fields are at 
displacements $TRBTIME and $TRBDATE, respectively, in the timer request 
block generated by $TRB. The date is returned in the format specified during 
system configuration. 

The. format of the $TOD macroinstruction follows: 

TRB: Specifies the address. of the.Ieftmost byte of the timer request block. If this 
operand is omitted, the address of the timer request block is assumed to be in 
register 2. 

TYPE: Specifies how the time is to be returned in the timer request block. The 
time is with respect to a 24 hour clock. The valid formats are: 

DEC 

BIN 

TV 

A 6-byte decimal number indicating the time in hours, minutes 
and seconds (HHMMSS). 

A 32-bit binary number indicating the time in seconds. The 
number is right-adjusted in bytes 4 through 7 of the time field of 
the timer request block. 

A 32-bit binary number indicating the time in timer units. One 
timer unit is 8.192 milliseconds. The number is right-adjusted in 
bytes 4 through 7 of the time field of the timer request block. 

If this operand is omitted, DEC is assumed. 



$TRAN (Generate an Interface to the Translate Routine) 

The $TRAN macroinstruction generates an interface to the translate routine for 
EBCDIC-ASCII translation. See $TRTB and $TRL macros. 

I [label] $TRAN [TRl-address] 

TRL: Specifies the symbolic address of the translate parameter list. If this 
operand is omitted, the address is assumed to be in register 1. If the $TRL 
macroinstruction is used to generate the parameter list, this address should be the 
label assigned to the $TRL macroinstruction. The parameter list is described as 
follows: 

Field Length 

2 

2 

2 

2 

1 

Field Description 

Address of the translate table (Your program must define the 
translate table.) 

FROM field address, for translation 

TO field address, for translation 

Number of bytes to translate 

Completion code: Hex 00 indicates translation complete, no 
errors; hex FF indicates invalid character encountered 

Chapter 5.Macroinstructions Supplied by IBM 5-71 



$TRB (Generate Timer Request Block) 

5-72 

The $TRB macroinstruction generates a timer request block (TRB). You must 
use $TRB if you use $SIT, $RIT, or $TOD in your program. 

The format of the $TRB macroinstruction follows: 

V-DC/EQU/ALL: Specifies whether the parameter list labels, DCs, or both, are 
generated for the $RIT, $SIT, and $TOD macroinstructions. If this operand is 
omitted, DC is assumed. The following is the parameters and their meanings: 

DC Generates the DC's for the timer request block parameter list. 

EQU Generates the displacement labels for the timer request block. 

ALL Generates the timer request block and the corresponding displacement 
labels. 



$TRL (Generate a Translation Parameter List) 

The $TRL macroinstruction generates a parameter list used by the translation 
routine for EBCDIC-ASCII translation. See $TRAN and $TRTB macros. $TRL 
does not generate executable code. 

The format of the $TRL macroinstruction follows: 

[label] $TRL [To-address] [ , FROM-address] [, LEN-deed; g] [, TRT-address] 

TO: Specifies the symbolic address of the leftmost byte of the field to which 
the translated data will be moved. 

FROM: Specifies the symbolic address of the leftmost byte of the data field 
to be translated. This address may be the same as the address specified in the 
TO operand. 

LEN: Specifies in decimal the number of characters to be translated. 

TRT: Specifies the symbolic address of the leftmost byte of the translate 
table. If the $TRTB macroinstruction is used to generate the translate table, 
this address should be the label assigned to the $TRTB. 

Chapter 5.Macroinstructions Supplied by IBM 5-73 



$TRTB (Generate a Translation Table) 

5-74 

This macroinstruction generates an EBCDIC to ASCII or ASCII to EBCDIC 
translation table. The table is generated in the format required by the $TRL 
macroinstruction, and the table can be addressed by $TRL when you translate 
data. 

The format of the $TRTB macroinstruction follows: 

CODE: Specifies whether the data is to be translated from EBCDIC to 
ASCII (E) or from ASCII to EBCDIC (A). If this operand is omitted, E is 
assumed. If CODE-E is specified, $TRTB generates a 258-byte translation 
table; if CODE-A is specified, $TRTB generates a l30-byte translation table. 

HEX: Specifies the hexadecimal digits with which to replace any invalid 
characters found during translation. If the HEX operand is not specified, the 
replacement character is hex 3F for ASCII to EBCDIC or hex lA for 
EBCDIC to ASCII. 

Translation tables generated by the $TRTB macroinstruction are generated in 
the following format: 

Byte Field Description 

o Identifies a character that is not to be translated. 

Substituted for characters that are not to be translated. 

2 through 257 256-byte EBCDIC to ASCII translation table. 

2 through 129 l28-byte ASCII to EBCDIC translation table. 

Construct the translation table so that the displacement from the beginning of the 
table equals the hexadecimal representation of the untranslated character. The 
contents of the location indicated by the displacement is the character to be 
translated to. (For example, if you want to translate hex Cl to hex 41, you 
should construct a translation table in which the value at displacement hex Cl in 
the table is hex 41.) 



The translate routine processes a field, specified by the $TRL macroinstruction, 
1 byte at a time. The byte at a given displacement is compared with the first byte 
in the translate table (byte 0). If they are equal, the character is considered to be 
invalid, and the following actions are performed: 

• The completion code in the parameter list is set to indicate that an invalid 
character was detected. 

• The second byte of the translate area (byte 1) is substituted for the original 
character. 

• Translation continues with the next character. After the translate routine is 
finished, control is returned to your program with a completion code in the 
translate routine parameter list. 

Chapter 5.Macroinstructions Supplied by IBM 5-75 



$WIND (Generate Override Indicators for Display Station) 

The $WIND macroinstruction generates a table of override indicators and offsets 
for PUT and PUT overrides used by work station data management. 

The format of the $WIND macroinstruction follows: 

I [label] 8WIND [MAXI No-number] 

MAXIND: Specifies in decimal the highest number used by SPGR as an override 
indicator for your program. If this operand is omitted, 99 is assumed. 

$WSEQ (Generate Labels for Display Station) 

5-76 

This macroinstruction generates labels and offsets to reference certain work 
station device-dependent values, such as identification (AID) bytes and bit 
representations for the display screen attribute bytes and write control characters. 

The format of the$WSEQ macroinstruction follows: 



$WSIO (Construct a Display Station. Input/Output Interface) 

The $WSIO macroinstruction builds the executable code to modify a display 
stationDTF using only the specified parameters, then issues a call to work station 
data management to perform the specified operation. Before using $WSIO you 
must provide a DTF for the file (see $DTFW) and establish the offsets for the 
DTF (see $DTFO). If you will need the data in registers 1 and 2 later, save the 
contents of those registers before issuing $WSIO. For a description of how to 
code $WSIO for the interactive communications feature, see the manual, 
Interactive Communications Feature: Reference Manual. 

After each $WSIO macroinstruction, you should check the return code. The 
return codes are defined in the $DTFO macroinstruction with WS-Y and 
FIELD-Y. Return codes from $WSIO are d~scribed in Appendix F. 

Chapter 5.Macroinstructions Supplied by IBM 5-77 



The format of the $WSIO macroinstruction follows: 

[ 1 abel] $WS I 0 [DT F-address] [, OPMO D-COde] [, OP C-COde] [ , OU Tl EN-numbe r] 

5-78 

[, INl EN-number] [, RCAD-address] [, ROlDIR-{~}] [, RLCL ER-{~}] 

[, ROL INE-nUmber] [, STRTlH-nUmber] [, ENDLH-number] 

[, VARLIN-number] [,IHDA-address] [ , FORMAT-name] 

[, TERMID-name] [, PRNT-G}] [, ROLL-G}] [, CLEAR-G}] 

[, RECBKS-{~}] [,HElP-G}] [, FKDATA-G}] [, PID- ; d ] 

[, PL.l-address] [, CMDKEY-maSk] [, CKMASK-{~~:MAT}] 

['FKMASK-{~~:MAT}] 



DTF: Specifies the address of the leftmost byte of the display station DTF to be 
modified. If this operand is omitted, the address is assumed to be in register 2. 

OPMOD: Specifies the operation code modifier to be generated. The codes and 
their meanings are as follows: 

ERROR: PUT for displaying information on the error line. 

OVR: PUT for displaying only override fields and attributes. (If an override 
indicator was specified on the SFGR S specification,this value is not 
required.) 

ROLL: Rolls the display with the specified operation. 

UNF: The FORMAT parameter need not be specified. The stream of data 
and control commands in the user's program logical record area, beginning at 
the RCAD specified address, is sent to the work station. The OUTLEN 
parameter specifies the number of bytes to be sent. If an unformatted PUT is 
specified and there are input fields defined in the data stream, the INLEN 
value must be specified on the $WSIO macroinstruction. 

Note: See the Functions Reference Manual for more information on display 
station data streams. 

PRINT: Prints the displayed data on the printer specified in the PID 
parameter. 

PRUF: PUT for read under format. 

FMH: Use only with the interactive communications feature, which is 
described in the Interactive Communications Feature: Reference Manual, 
SC21-7910. This code indicates that a function management header precedes 
the data associated with an evoke operation. The code is valid only for evoke 
operations for the SNUF (SNA upline facility) subsystem. 

CONFIRM: Use only with the interactive communications feature, which is 
described in the Interactive Communications Feature: Reference Manual, 
SC21-7910. This code indicates that a confirm indication is to be sent with 
the data associated with the EVOKE, PUT, GET (in the send state only), and 
INVITE (in the send state only) operations. This code is valid only for the 
APPC subsystem. 

ZERO: Clear any previous OPMOD specification. 

Notes: 

1. The OPMOD keyword can be coded as OPM. 

2. An OPC of PUT, PTG, PNW, or PTI must also be specified for OPMOD 
values ofOVR, UNF, or PRUF. 

Chapter 5.Macroinstructions Supplied by IBM 5.;.79 



5-80 

ope:' 'Specifies the operation requested of WSDM. The codes and their 
meanings are 'asfoUows(codesunique to the interactive communications feature 
are described in the manual Interactive Communications Feature: Reference): 

ZERO: Sets the operation code field to hex 00. This code is used with 
operation code modifiers for which you do not want a WSDM operation 
code. For example, if you wanted to roll or print displayed data without 
requesting any other work station operation in the call to WSDM, you could 
use the ZERO operation code with the modifier ROLL or PRINT. 

GET: Receives data from the display station specified by the TERMID 
parameter. Control isreturried to your program when the data is available in 
the user record area. This operation ignores the OPMOD value. 

PUT: Sends data to the display station specified by the TERMID parameter. 
Control is returned to your program when data transfer is complete. 

PTG: Sends' a combination of a put-no-wait (PNW) operation to the display 
station specified by the TERMID parameter, followed by a GET request to 
the same display station. 'Control is returned to your program when the data 
resulting from the GET operation is available in the user record area. 

INV: Enables the display station specified by the TERMID parameter to 
send data to the system. The data entered by the display, station operator is 
presented to your program in response to a subsequent accept input (ACI) 
operation or GET operation. Control returns to your program as soon as the 
invite input (INV) is scheduled. 

PNW: Sends data to the display station specified by the TERMID 
parameter. Control is returned to your program when the operation is 
scheduled, and the program's DTF, record area, and indicators are available 
for reuse. If a second put-no-wait (PNW) is issued to the same display 
station, the first PUT must be complete before the second operation is 
scheduled. The main difference between a PUT and PNW is the return code. 
On a PUT, the return code reflects the status of the entire PUT operation, 
while on a PNW, the return code reflects only the scheduling of the 
operation. 

PTI: Sends acotilbination of a put-no;.wait (PNW) and an invite input (INV) 
to the same display station. Control is returned to your program when the 
invite input request is scheduled. 

ACI: Requests data' from any display station that responded to a previous 
invite input operation. For example, suppose your program issues three invite 
input operations to display stations A, B, and C. The program could now 
issue an accept input request, and be presented with data from any display 
station (A,B,or C) that responds with a data transmission. The ID of the 
display station that sent the data is returned at displacement $WSNAME in 
the DTF. This'operatiori ignores the OPMOD value. 

ACQ: Allocates the display station specified by the TERMID parameter for 
this program. This operation ignores the OPMOD value. 



REL: Releases from this program the display station specified by the 
TERMID parameter. This operation ignores the OPMOD value. 

GTA: Gets the attributes of the display station specified by the TERMID 
parameter, and places them in the program's record area. This operation 
ignores the OPMOD value. 

Following, a get attribute operation, the program's record area appears as 
follows: 

Byte 0 Device Type 

C'D' Display type 

C'N' N ondisplay type 

All remaining letters are reserved. 

Byte 1 Display Size 

C'l' 1920-character display 

Byte 2 Attachment Type 

C'L' Local 

C'R' Remote 

The attachment type is C'R' for a display station pass-through or DHCF 
device. 

Byte 3 Online/Offline Status 

C'O' Device is online 

C'F' Device is offline 

Byte 4 Allocation Status of Device 

C'A' Device allocated to requester 

C'E' Device allocated to other user 

C'V' Not allocated but available 

C'N' Not allocated, not available 

C'U' Device unknown to system 

Byte 5 Invite Status of Device 

C'Y' Device is invited 

C'N' Device not invited 

Chapter 5.Macroinstructions Supplied by IBM 5-81 



5-82 

Byte 6 Completion Status of Device Invite-

C'Y' Invite completed 

C'N' Invite not completed 

Byte 7 Inquiry Status 

C'Y' Device in inquiry 

C'N' Device not in inquiry 

EGTA: Gets any other attributes of the display station specified by the 
TERMID parameter, and places them in the program's record area. This 
operation also ignores the OPMOD value. 

Following a get attribute operation, the program's record area appears as 
follows: 

Bytes 0-7 Same as for GTA. 

Note: If the device is offline (Byte 3 = C'F'), the values found in Bytes 8-15 
may not be accurate. 

Byte 8 

C'A' 

C'I' 

Byte 9 

C'A' 

C'I' 

Byte 10 

C'A' 

C'I' 

Byte 11 

C'Y' 

C'N' 

Byte 12 

C'I' 

Display type. 

Alphanumeric/Katakana type. 

Ideographic type. 

Keyboard type. 

Alphanumeric/Katakana type. 

Ideographic type. 

Sign-on type. 

Alphanumeric/Katakana type. 

Ideographic type. 

Application help facility. 

Facility enabled. 

Facility not enabled. 

27x132 status. 

27x132 capable display station is in 24x80 
mode. 



C'2' 

C'N' 

Bytes 13-15 

27x132 capable display station is in 24x132 
mode. 

24x80 capable only. 

Reserved. Hex A is returned. 

GST: Gets the Advanced-Program-to-Program Communication session 
status. See the Interactive Communications Feature: Reference Manual, 
SC21-7910 for more information. 

STI: Cancels a previously issued invite input request to the display station 
specified by the TERMID parameter. If the stop invite fails (the operator 
already pressed the Enter/Rec Adv key, a function key, or command key), 
your program is informed by a return code, and the data remains at the 
display station and is available for a subsequent request. If the program 
issues a get or accept after the stop invite fails, the system handles any 
disabled command or function key. The system waits until the Enter/Rec 
Adv key or an enabled command or function key is pressed before giving data 
or control back to the program. However, if an output .request is issued to 
the display station, the input data is lost. 

Note: A stop invite is not required to override an existing invite input. 
WSDM performs a stop invite when necessary. However, if input is already 
available, the input data is lost. 

RES: Resets the keyboard of the display station specified by the TERMID 
parameter without requesting a format. This allows an application to ignore 
keys that are not supported. 

RTG: Performs a keyboard reset (RES) followed by a GET. 

RTI: Performs a keyboard reset (RES) followed by an invite input (INV). 

ERS: Erases all modified input capable fields that are currently defined on 
the display of the display station specified by the TERMID parameter. This 
operation locks the keyboard and repositions the cursor to the first input 
field. For a detailed explanation of how erase input fields works, see the 
erase input fields entry (columns 31 and 32) under the $SFGR - Screen 
Format Generator Utility Program in the Creating Displays: Screen Design 
Aid and System Support Program. 

ETG: Performs an erase input fields (ERS) followed by a GET. 

ETI: Performs an erase input fields (ERS) followed by an invite input (INV). 

CLR: Clears the entire display of the display station that was specified by the 
TERMID parameter, including attribute bytes. This operation also destroys 
any existing field definitions pertaining to that specific display station. 

INQ: Determines the invite status of the display stations associated with this 
program. This operation returns' a 2-byte return code in index register 2. In 
the high-order byte, hex 00 means no invites outstanding; hex 10 means at 
least one invite outstanding; hex 30 means at least one invite outstanding, and 
at least one completed invite. In the low-order byte, hex 00 means stop 

Chapter 5.Macroinstructions Supplied by IBM 5 .. 83 



5-84 

system is not in effect; hex 02 means stop system is in effect. This operation 
has no associated DTF; register 2 need not contain a DTF address. Register 
I contents are not changed. If this operation code is specified, all other 
specified parameters are ignored. 

SIQ: Determines the invite status of the display stations associated with this 
program. This operation performs a function similar to INQ, except SIQ uses 
the DTF to issue the operation and return the data. Two, I-byte return codes 
are returned in the DTF as a result of this operation. In the DTF at 
displacement $WSRSIQ, hex 00 means no invites outstanding; hex 30 means 
at least one outstanding invite, and at least one completed invite. In the DTF 
at displacement $WSR TC, hex 00 means stop system is not in effect; hex 02 
means stop system is in effect. If this operation code is specified, any 
specified operation code modifier is ignored, and the operation code modifier 
field in the DTF is cleared to hex 00. 

STM: Specifies the time interval to wait before issuing a timer expired return 
code. The first 6 bytes of the user record area specify the interval in the 
format HHMMSS. A timer expired return code is returned on the first accept 
following the expiration of the timer. When this return code is given, a 
TERMID is not returned, and the TERMID field of the DTF is unchanged. 
If a previous set timer has not yet expired, the old time interval is replaced 
with the new. 

OUTLEN: Only required for OPMOD parameters ERROR and UNF, or OPC 
parameters PUT, PTG, PNW, and PTI. If the operation is ERROR, the 
OUT LEN value must be between I and 78. OUT LEN represents the amount of 
data written from the logical record area to the error line at the display station. 
If the operation has an OPMOD of UNF, the OUTLEN value must be between 2 
and 4096. It represents the exact length of the data stream. If the operation is a 
PUT, PTG, PNW, or PTI, OUTLEN represents the maximum amount of data 
that can be written from the logical record area to the output fields in the display 
format. The OUTLEN value must be at least as large as the sum of the lengths 
of all program output fields. If the operand is omitted, the DTF value is 
unchanged. After a successful input operation, the actual length of data returned 
is stored in this field. Therefore, OUTLEN should be respecified after every input 
operation. 

Note: If the execution time output data from the user's logical record area also 
contains MIC data, the user must reserve 6 bytes for each MIC to contain the 
4-character digits and the 2-character message member identifier. This 6-byte 
length must be included in the total OUTLEN value. 

INLEN: Specifies in decimal the size of your input buffer; that is, the maximum 
amount of input data that your program is prepared to receive. This number 
must not be greater than 65535. If this operand is omitted, the DTF is 
unchanged. TheINLEN andPID(printer ID) parameters use the same field in 
the DTF. Therefore, INLEN must be specified after each operation that specified 
aPID. 

Note: If the operation being performed is an unformatted PUT, INLEN must 
equal the total length of all input fields defined onthe display. 



RCAD: Specifies the symbolic address of the leftmost byte of the logical record 
area. If this operand is omitted, the DTF is unchanged. 

Note: If the operation being performed involves GET or ACI or UNF, the record 
area must be on an 8-byte boundary. 

ROLDIR: Specifies the direction to roll the display when requested. This 
operand must be specified in the first $WSIO you issue with a roll operation. If 
this operand is subsequently omitted, the DTF is unchanged. 

RLCLER: Specifies whether the lines vacated by a roll operation should be 
cleared. This operation must be specified in the first $WSIO you issue with a roll 
operation. If this operand is subsequently omitted, the DTF is unchanged. 

ROLINE: Specifies in decimal the number of lines a roll operation should roll 
the data being displayed. The maximum number is 24. If this operand is 
omitted, the ROLINE-number in the DTF is unchanged. 

STRTLN: Specifies in decimal the first line of the roll area on a roll operation. 
The maximum number is 23. If this operand is omitted, the DTF is unchanged. 

ENDLN: Specifies in.decimal the last line of the roll area on a roll operation. 
The minimum number is 02. The maximum number is 24. If this operand is 
omitted, the DTF is unchanged. 

VARLIN: Specifies in decimal the actual start line number if a variable start line 
number was specified to SFGR for the format for this request. The maximum 
number is 24. If this operand is omitted, the DTF is unchanged. 

INDA: Specifies the symbolic address of the leftmost byte of the override 
indicator area if override indicators were specified at SFGR time for this format. 
The indicator area must not start at address hex 0000 because WSDM assumes no 
indicator area exists at address hex 0000, and the indicators are assumed to be off. 
If this operand is omitted, address hex 0000· is assumed. 

FORMAT: Specifies the name of the display format to be used for this operation. 
This operand is required only for formatted PUT operations. If this operand is 
omitted, the DTF is unchanged. 

TERMID: Specifies the symbolic name of the display station. This is the 
2-character ID, which the user assigned either during system configuration or in 
the SYMID parameter on the / / WORKSTN statement that represents the display 
station to which the request is directed. If this operand is omitted, the DTF is 
unchanged. 

PRNT: Specifies whether your program can process the Print key. If Y (yes) is 
specified, the print key indicator is placed in the AID byte field of your program 
DTF when the operator presses the Printkey. If N (no) is specified, the system 
attempts to print the current display with the optional heading and border on the 
printer associated with the display station. If the operand is omitted, N (no) is 
assumed. 

ROLL: Specifies whether your program is able to process the Roll Up and Roll 
Down keys. If Y (yes) is specified, the roll key indicator is placed in the AID 
byte field of your program DTF when the operator presses a roll key. Data is 

Chapter 5.Macroinstructions Supplied by IBM 5-85 



5-86 

returned as if the EnterfRecAdv key was pressed. If N (no) is specified, an error 
message is displayed when the operator presses either roll key (see Note 1). 

CLEAR: Specifies whether your program can process the Clear key. If Y (yes) is 
specified, the clear key indicator is placed in the AID byte field of your program 
DTF when the operator presses the Clear key. If N (no) is specified, an error 
message is displayed when the operator presses the Clear key. 

RECBKS: Specifies whether your program can process the record backspace (that 
is,.the Home key when the cursor is in the home position). If Y (yes) is specified, 
the record backspace indicator is placed in the AID byte field of your program 
DTF when the operator presses the Home key. If N (no) is specified, an error 
message is displayed when the operator presses the Home key. 

HELP: Specifies whether your program can process the Help key. If Y (yes) is 
specified, the help key indicator is placed in the AID byte of your program DTF 
when the operator presses the Help key. If N (no) is specified, an error message is 
displayed when the operator presses the Help key. 

FKDATA: Specifies whether input data is returned along with a function control 
key indicator for all enabled function control keys. If Y (yes) is specified, the 
appropriate function control key indicator is placed in the AID byte field of your 
program DTF when the operator presses an enabled function control key. Input 
data is returned regardless of whether the operator modified any of the fields. 
This function does not apply to remote work stations (see Note 2). 

If N (no) is specified, the appropriate function control key indicator is placed in 
tl1e AID byte field of your program DTF when you press an enabled function 
control key. No input data is returned (see Note 1). 

Notes: 

1. The FKDATA parameter has no effect on the operation of the Roll Up and 
Roll Down keys. These keys always operate as specified by the ROLL 
parameter. 

2. You must use the FKDAT A parameter with caution when you are 
programming for a remote work station. Your job could permanently halt if 
there are no modified input fields on the display of the remote work station 
when a function control key is pressed while the FKDATA parameter is 
active. 

PID: Specifies the ID of the desired printer on a print request. Allowable values 
are: 

Code 

SYSTEM 

WSTN 

xx 

Meaning 

The system printer. 

The printer associated with the display station specified by 
the TERMID parameter nn. 

Where XX is the 2-character ID of the desired printer. 



If this operand is omitted, the DTF is unchanged. The INLEN and PID 
parameters use the same field in the DTF; therefore, PID must be specified after 
each input operation. 

PL@: Used with the interactive communications feature. This parameter 
specifies the address of an associated evoke parameter list, which is generated by 
the $EVOK macroinstruction. $EVOK is described in the manual Interactive 
Communications Feature: Reference. This operand must be specified for the first 
evoke operation and is unchanged if not specified again. 

CMDKEY: Specifies the command key mask to be placed in the DTF. The mask 
is made up of 24 binary bits (bit 0 = CMDl through bit 23 = CMD24) entered 
as 6 hexadecimal digits. If this operand is omitted, hex FFFFFF is assumed. 

CKMASK: Specifies whether WSDM should use the command key mask from 
the display format or from the DTF. If this operand is not specified on any 
$WSIO call, FORMAT is assumed. If it is specified on any $WSIO call, any 
future $WSIO calls will leave the DTF unchanged if.this parameter is omitted. 

FKMASK: Specifies whether WSDM should use the function key mask from the 
display format and the DTF (format is specified in the DTF), or just from the 
DTF (DTF is specified). If this operand is not specified on any $WSIO call, 
FORMAT is assumed. If it is specified on any $WSIO call, any future $WSIO 
calls will leave the DTF unchanged if this parameter is omitted. 

Chapter 5.Macroinstructions Supplied by IBM 5-87 



Programming Considerations 

Coding Restrictions 

5-88 

The generated code for some macroinstructions uses register 1 and/or register 2. 
The contents of the register must be saved before issuing the macroinstruction; 
otherwise, the contents are destroyed. The $WSIO macroinstruction uses registers 
1 and 2. These macroinstructions use register 2: 

$ALOC 
$CLOS 
$FIND 
$GETB 
$GETD 
$INFO 

$LOAD 
$LOG 
$OPEN 
$PUTB 
$PUTD 
$PUTP 

$RIT 
$SIT 
$SNAP 
$SORT 
$TOD 

Disk, printer, and work station data managements use work registers 4, 5, 6, and 
7. Unless the contents of these registers are no longer needed, they must be saved 
before issuing any· of the following macroinstructions: 

$GETD 
$PUTD 
$PUTP 
$WSIO 

The code generated by the macroinstructions is assigned labels; these labels begin 
with the dollar sign ($). To avoid duplicate-label errors, do not use the dollar 
sign as the first character of a label. 



Binary Synchronous Communications 

Macroinstructions 

BSC macroinstructions can cause the IBM Systemf36 to function as any of the 
following station types: 

• Receive only (receive data from a remote terminal) 

• Transmit only (transmit data to a remote terminal) 

• Transmit and receive (no conversational reply) in one of three. modes of 
operation: 

Transmit a file, then receive another file 
Receive a file, then transmit another file 
Transmit records from one file while receiving records from another file. 

Note: Because BSC closes the file in use before another file is to be used, 
there is a delay between each transmit and receive operation. The remote 
station might not be tolerant of this delay. 

Every BSC program you write with the assembler language must do these two 
things: 

• Prepare BSC DTFs for data reception, data transmission, or both. 

• Begin and end the transfer of data (receive data, transmit data, or both). 

Chapter 5.Macroinstructions Supplied by IBM 5-89 



Preparing BSC DTFs For Data Transfer 

5-90 

When writing a program for data transfer, always include the following three 
steps: 

1. Generate field displacements and labels for the BSC DTFs by using the 
$DTFO macroinstruction coded with BSC-Y and FIELD-Y. 

2. Prepare BSC data files. Define each BSC file ($DTFB), allocate it ($ALOC), 
and open it ($OPEN). 

3. If data in your BSC files requires translation~ either before it is transmitted or 
after it is received, you must provide for data translation by constructing 
translate tables ($TRTB macroinstruction for EBCDIC/ASCII tables) and 
generating a translate parameter list ($TRL). When you translate data, 
generate the interface to the translate routine ($TRAN). 

Note: If you want to tninsmit or receive ASCII data, be sure to give the polling 
and addressing characters and station identification sequences in ASCII. 



Initiating and Terminating the Transfer of Data 

To initiate data transfer, you must issue the following requests: 

• Get requests to receive data ($GETB) 

• Put requests to transmit data ($PUTB). 

The first get or put request causes BSC to establish line connection with the 
remote station. How the data transfer is ended depends on whether the 
System/36 is receiving data ($GETB) or transmitting data ($PUTB). If System/36 
is transmitting, then stop sending the data to the current file by one of the 
following means: 

• $PUTB with OPC-EOF. This transmits the last block of data ending with 
ETX. The System/36 then transmits EOT. In 3740 mode, the System/36 
waits for the next user operation and then sends either STX ETX or EOT. 

• $PUTB to another transmit file. This transmits the last block of data from 
the current file ending with ETX. System/36 sends EOT, and line 
initialization for the new file takes place. The block ends with ETB when in 
3740 mode. In 3740 multiple file mode, STX ETX replaces the EOT. 

• $GETB to a receive file. This transmits the same sequences as issuing a 
$PUTB to another transmit file. 

• $CLOS to the current file. This transmits the last block of data ending with 
ETX and EOT (or DISC if switched lines). The last block ends with ETB 
when in 3740 mode. In the case of 3740 multiple'4file mode, use $CLOS to 
transmit EOT. 

If the System/36 is receiving, the remote station initiates the end of data 
transmission. You can detect this by coding EOF on the $GET macroinstruction 
or by checking for hex 42 ($BSEOF) in the $BSCMP field of the BSC DTF after 
each $GETB request. 

Issue successive $GETB requests until you detect EOF or an error. You can 
detect a BSC error by coding REJECT on the $GETB macroinstruction. The 
error code is returned in $BSCMP. 

Chapter 5.Macroinstructions Supplied by IBM 5-91 



Using Move Mode 

5-92 

System/36 performs all BSC get and put requests in move mode. BSC moves data 
from the BSC I/O buffers to the logical buffer on get requests, and from the 
logical buffer to the BSC I/O buffers on put requests. 

A single get or put request does not necessarily result in the actual data 
transmission over the communications line. For a get request, the remote station 
transmits data only when its BSC I/O buffer is filled. 

A put request transmits data to· the remote station only if the record to be moved 
to a BSC I/O buffer cannot be contained in the current I/O buffer. The first put 
request begins line initialization. Data transfer begins after the second put 
request, so your program is always at least one put request ahead of BSC. 



Blank Truncation 

System/36 BSC can transmit and receive data with the trailing blanks removed. 
For put files, BSC moves data from the logical buffer to the BSC I/O buffer with 
all trailing blanks removed. After each record, BSC inserts an IRS character. 

For get files, BSC scans the data in the BSC I/O buffer for an IRS. BSC then 
moves all data up to the IRS character to the logical buffer and blanks the 
remainder of the logical buffer. 

To use blank truncation, run the ALTERCOM procedure with the TRUNCATE 
parameter or the $SETCF utility with a SETR utility control statement with 
BLANK-T parameter specified before running the BSC program. 

Be aware of the following: 

• Blank truncation will not operate in ITB mode. You can specify blank 
truncation with transparent mode; however, the truncation will not be 
performed. 

• When you use blank compression/expansion or blank truncation with blocked 
records, the number of records per block vary depending on the number of 
blanks in each record. 

Chapter 5.Macroinstructions Supplied by IBM 5-93 



Blank Compression/Expansion 

5-94 

In order to use. the line more effectively and decrease communications line costs, 
the System/36 BSC offers assembler users the capability of transmitting and 
receiving data with all contiguous blanks (groups of 2 or more blanks) removed. 
This is done by using the same format used by the IBM' 3780. 

For put files, BSC moves data from the logical buffer to the BSC I/O buffer with 
contiguous blanks removed and compression control characters inserted. After 
each record, BSC inserts an IRS. 

If the record is to be printed from the logical buffer, it should be printed before a 
put because BSC alters the record with IGS characters and count characters while 
com pressing the record. 

For get files, the ,procedure is reversed as follows. The System/36 BSC removes 
compression control characters, inserts blanks removed at the remote station, 
recognizes the intermediate record separator and moves the record from the BSC 
I/O buffer to the logical buffer. 

To use blank compression/expansion, either run an ALTERCOM procedure with 
the COMPRESS parameter before running the BSC program, or run a SETR 
utility control statement with BLANK-C specified. 

When you use blank compression/expansion or blank truncation with blocked 
records, the number of records per block vary depending on the number of blanks 
in each record. 

Note: You cannot use blank compression/expansion with transparent or ITB 
mode. 



Data Formats 

System/36 BSC support uses the following data formats for transmission of data. 
Use these formats when sending data to System/36 from a processing unit. 

• Nontransparent, non-ITB: 

STX-data-ETX(ETB) 

• Nontransparent, non-ITB, blocked: 

STX-rec l/rec 2/ ... /rec n-l/rec n-ETX(ETB) 

• Nontransparent,ITB: 

STX-data-ITB-data-ITB-data-ETX(ETB) 

• Transparent, non-ITB: 

DLE-STX-data-DLE-ETX(ETB) 

• Transparent, non-ITB, blocked: 

DLE-STX-rec l/rec 2/ ... /rec n-l/rec n-DLE-ETX(ETB) 

• Transparent, ITB (receive files only): 

DLE-STX-data-DLE-ITB-DLE-STX-data-DLE
ITB-DLE-STX-data-DLE-ETX(ETB) 

Chapter 5.Macroinstructions Supplied by IBM 5-95 



Changing the BSC Environment 

Errors 

5-96 

BSC configuration information is changed by the System/36 ALTERCOM or 
SETCOMM procedure. When you run BSC programs from the job queue, the 
configuration information from the system console is used for the job. The SSP 
gets this information at the same time the job is run. If you want to change the 
BSC environment when running from the JOBQ, first run ALTERCOM from the 
system console before starting your job. 

The ALTERCOM procedure runs the $SETCF utility. Instead of using this 
procedure to change the BSC configuration, you can use the SETB and SETR 
utility control statements of the$SETCF utility. For information on coding 
System/36 procedure commands and utility control statements, see the System 
Reference manual. 

If an error occurs at either the sending or receiving station, System/36 retries the 
operation the number of times specified by the $DTFB macroinstruction, or the 
number of retries specified by the ALTERCOM procedure command, or the 
SETB utility control statement. (See the System Reference manual for 
information on the SETB utility control statement and the AL TERCOM 
procedure.) 

Note: Refer to the expansion within your program of the $DTFO macro for 
possible error codes (following label $BSCMP). These will appear only when the 
parameter BSC-Y is coded on the $DTFO macro. 



Automatic Call Support 

When System/36 is configured with the MLCA (multiline communications 
adapter) and the Autocall feature or the X.2l feature, remote locations can be 
called without operator intervention. Because there is no reference to the autocall 
or X.2l capabilities in user programs, existing programs can add autocall or X.2l 
without other modification. You specify autocall or X.2l by using the PHONE 
parameter on the COMM OCL statement. The COMM statement is described in 
the System Reference manuaL 

The phone list specified in the COMM statement can contain up to 120 phone 
numbers and is generated by the DEFINEPN or the DEFINX2l procedure 
~escribed in the System Reference manual. When the first request during any 
BSC job step is made to BSC data management, the phone list is searched for a 
number to call. The first time the list is referred to, the search begins with the 
first number. For each succeeding reference, the search begins with the next 
available number. If a number cannot be reached, the value of the number of 
retries is reduced by one and the next number is called. If no numbers in the list 
can be reached, a no-line connection return code is passed to the user program. 
A message is displayed to the system console indicating each number that could 
not be reached. When a number is reached, a message is displayed indicating the 
number reached, and communication proceeds in the same manner as for a 
manual call line. When the job step ends, you can use the OCL statement with 
the LISTDONE parameter to perform the step again and call the next number. 
You can use the same phone list in a later step of the job. 

If a batch BSC job is run on an autocalliine and no phone list is specified in the 
COMM statement (or there is no COMM statement), the call mode defaults to 
the mode specified in the user's DTF or the display station communications 
configuration record. The mode can be manual answer, manual call, or 
automatic answer. If the phone list is specified in the COMM statement but the 
line is not an autocalliine, or the autocall task was not loaded at IPL time, the 
line is considered to be a manual or automatic answer line, depending on the 
switch type defined for the line. 

If a batch BSC job is run on a switched line under X.21 and no phone list is 
specified, switch type automatic answer is assumed. If the X.2l task is not active, 
an error message is displayed and the BSC program is not run. You must IPL 
the system to make the X.21 task active. 

The ability to call multiple locations within a single BSC job step is useful 
primarily when the System/36 is receiving data from multiple locations. Because 
any number may be called during a request, transmission of data to a particular 
location should be performed using a phone list containing a single number. 

If, during the receiving of data, a permanent error occurs, the phone number 
associated with the data link is not reset. Because the number is not reset, it 
cannot be called again on subsequent passes through the list. The recovery 
associated with that particular job step is the responsibility of the user. 

Chapter 5.Macroinstructions Supplied by IBM 5-97 



5-98 



Chapter 6. Assembler Problem Determination 

If a problem occurs while you are using assembler, the cause of the problem 
may not be obvious. An error in your application or in system operation 
could have caused the problem. The problem determination procedure in 
this chapter can help you solve or circumvent the problem. If you need 
more information refer to the System/36 System Problem Determination 
manual, SC21-7919 for the 5360 System Unit, or to the System/36 System 
Problem Determination manual, SC21-9063 for the 5362 System Unit, or to 
chapter 13 in System/36 Operating Your Computer - 5364, SC21-9085 for the 
5364 System Unit, before contacting your service representative. 

How to Use this Procedure 

This procedure is arranged in a sequence of questions that you can answer 
with a Yes or No. Based on your answer, you are directed to another 
question or to a recommendation for action. 

Start at the beginning of the procedure and follow the question-and-answer 
sequence, answering each question to which you are directed based on your 
previous answer. If the problem is a condition that requires more detailed 
procedures, you are referred to those procedures. 

Identifying Assembler Problems 

When a assembler problem occurs, you can use the following series of 
questions to pinpoint its possible cause: 

o Did you receive a message indicating that an operator needs to 
do something to a device such as a printer or a display station? 

No Yes 
Take the actions indicated by the message and save any 
automatic dumps printed as a result of the message. If the 
action requires operator action, call your system operator. 
If the action requires you to call for help, see Contacting 
Your Service Representative on page 6-7. 

When you examine a message for indicated actions, check 
the following: 

Chapter 6. Assembler Problem Determination 6-1 



6-2 

• Second-level message text, which describes the 
message in more detail. To get the second-level 
message text press the Help key. 

• Some messages contain a number of options for 
possible recovery actions. These options are explained 
in Chapter. 1 of the Assembler Messages Manual, 
SC21-7942. 

If you still cannot solve your problem after fully 
examining the message, see Contacting Your Service 
Representative on page 6-7. 

fJ Are other system users having problems communicating with 
the system? 

No 

1 
Yes 

Call your system operator and describe the problem. Have 
your operator use the procedures in the appropriate 
System/36 System Problem Determination manual. 

II Is this the first time you have ever run the job or subroutine? 

Yes 

! 
No 

You may have a systp-m problem. Call your system 
operator, describe your problem, and have the operator use 
the appropriate System/36 System Problem Determination 
manual. 

II Are you having a nonprogramming problem, such as spooled 
output that is not produced or a device that is not working? 

No 

j 
Yes 

You may have a system problem. Call your system 
operator and have the operator use the appropriate 
procedure in the appropriate System/36 System Problem 
Determination manual. 

D Are you using the current release of SSP? 

Yes No 
t Install the current release of SSP. 

II Have all IBM-supplied program changes you have received that 
apply to the current release of SSP been installed? 

Yes 

J 
No 

Install the program changes you have received that have 
not yet been applied. 

fJ Are you using the current release of assembler? The release 
number is printed on the first line of the source listing for any 
assembler program. 



Yes 

l 
No 

Install the current release of assembler and compile or run 
the program again. 

m Have all IBM-supplied program changes you have received that 
apply to the current release of assembler been installed? 
(Check with your system operator) 

Yes 

t 
No 

Install the program changes you have received that have 
not yet been applied and run the program again. 

iii Have any non-IBM changes been made to assembler or to SSP? 

No 

1 

Yes 
If assembler has been changed, install its current release 
and program changes, and run the program again. If SSP 
has been changed, install its current release and program 
changes. 

II!I Have changes been made to the user program since the last 
time it ran successfully? 

No Yes 
Read on, but consider what has been changed. For 
example: have operating procedures changed, has the data 
within the files changed, are new device files being used, 
or have program changes been applied recently? A good 
starting point for problem determination is a changed 
item. 

Assembly Time Problems 

OJ Was unexpected assembler output produced? 

No Yes 
Check if: 

• The NOLIST option was used. NOLIST specifies that 
the assembler is not to produce the assembler listing. 
Specify LIST to produce the complete assembler 
listing. 

• The program has the NOGEN option. NOGEN 
suppresses the printing of statements generated by the 
macroprocessor. Specify GEN to print statements 
generated by the macroprcessor. 

• The program has the PRINT OFF option. This option 
overrides The GEN option. Specify PRINT ON in your 
program. 

m Does the program have poor performance during 
assemble-time? 

Chapter 6. Assembler Problem Determination 6-3 



6-4 

No Yes 
Check if: 

• There is space allocated for the work area. Examine 
the ASM procedure for allocation and enlarge the 
allocated space. 

• The macro processor was called, but no 
macroinstructions were used. Examine the listing and 
specify NOMAC in the ASM procedure. 

• There are required macroinstructions in #ASMLIB. 
Do a LISTLIBR OF #ASMLIB and move user written 
macroinstructions to #ASMLIB. 

• If you cannot solve or circumvent the problem contact 
your service representative. 

Link Time Problems 

III Were errors encountered during linkage? 

No Yes 
Check if: 

• There are any coding errors that occurred during 
assembly. The assembler message should indicate 
what the error is. Correct and re-assemble the 
program until all the errors are corrected. 

• The program has the NOOBJ option. NOOBJ specifies 
that the assembler is not to place the object 
(assembled) program in the library. Specify OBJ in 
your program to place the object (assembled) program 
in the library as a subroutine member. 

• Refer to the IBM System/36 Overlay Linkage Editor 
Guide, SC21-9041 for other considerations. 

Execution Time Problems 

ID Did errors occur when loading the program (via IILOAD OCL)? 

No Yes 
Check if: 

• The load module exists by specifying LISTLIBR of the 
load module. 

• The object module (R module) is linked before 
executing. 



m Was unexpected execution-time output produced? 

No Yes 
Check if: 

• There is incorrect program data. 

• There are assembler coding errors. 

• The program is in an infinite loop. 

m Did a task dump occur? 

No Yes 

1 
• Follow the system prompt to get a listing of the dump. 

Examine the dump to find the cause of the problem. 
Go to the next question about messages. 

m Did you get Message SYS-001S? 

No Yes 

• If the message SYS-{)015 appears, make sure your 
program does not try to execute data. The following 
example of a program demonstrates this. 

DATA 

LABEL 

BH 
DC 

EQU 

LA~EL 

XL2'OOOO' 

* 

If the branch does not take place, X'OOOO' is interpreted 
as an instruction, but 00 is an invalid main storage 
instruction. 

• Make sure a valid instruction was not modified by the 
program. This often happens when the base registers 
XRl and XR2 contain incorrect data. The following 
example of a program, demonstrates this. 

Chapter 6. Assembler Problem Determination 6-5 



6-6 

location 

MOVE MVI a ( , XR 1) , x ' a a r 

02AO J LABEL 

LABEL EQU * 

If location X'02AO' of the program is a JUMP 
instruction, but at the point of execution of the MVI 
instruction at label MOVE, XRl contains X'02AO'. The 
MVI instruction has modified the Jump instruction to 
'00', but 00 is an invalid instruction. 

1m Did you get Message SYS-0013 or Message SYS-0014 ? 

No Yes 

• If the messages SYS-0013 or SYS-0014 appear, the 
program tried to access an address outside the region 
size of the program. Check if the index registers 
contain correct values. The following example of a 
program demonstrates this. 

MVC DATAl(2),O(,XRl) 

DATAl DC XL2'OOOO' 

If the program size is X'0400' bytes, but when 
executing the MVC instruction, XRl contains X'0600', 
SYS-0013 will occur. 

III Did a system message occur? 

No Yes 

The message should provide some information. Carefully, 
check the usage of system macros, DTF's, device file, OCL, 
and return codes. 

If you still cannot solve your problem after fully 
examining the message, your program and procedures, see 
Contacting Your Service Representative on page 6-7. 



1m Does the program have poor performance during 
execution-time? 

No Yes 
Check if: 

• There is over utilization of some system resources, for 
example disk usage. Your system operator can run the 
System Measurement Facility to find the utilization of 
system devices. Refer to the System Measurement 
Facility Guide, SC21-9025 to find the optimal 
configuration for your system. 

If after using this procedure you or your system operator have not solved 
the problem, consult the appropriate System/36 System Problem 
Determination manual for your system unit before calling the service 
representative. 

Contacting Your Service Representative 

If you cannot solve a problem by the problem determination procedures 
listed in this chapter, and the appropriate System/36 System Problem 
Determination manual, you may want to contact your service 
representative. Before contacting your service representative, you will be 
asked to provide the following: 

• For compile time problems: 

A task dump at the time of the failure 

Run the AP AR procedure and include the entire history file 

A diskette copy of the user program source and macro source 

A diskette copy of the user procedure 

An assembled source listing with cross-references 

• For execution time problems, the above and the following: 

A diskette copy of the user files 

A diskette copy of the user display screens 

A diskette copy of the user load module 

A diskette copy of the history file immediately after the problem 
occurs 

The procedures for obtaining the above information are explained in the 
appropriate System/36 System Problem Determination manual. 

Chapter 6. Assembler Problem Determination 6-7 



6-8 



Appendix A. Programming Examples 

This appendix contains assembler programming examples, macroinstruction 
definition examples, and related macroinstruction expansions. 

Appendix A.Programming Examples A-1 



BSC Programming Example 

Transmit 

PROGRAM 

PROGRAMMER 

La ... Operation Oper.nd 

The following programming example illustrates the use of the BSC 
macroinstructions in assembler programs. 

This program reads a file from disk (BSCFIL) and transmits it to another 
System/36. 

Note: The following BSC examples (A2 to A8) are only representative portions of 
larger programs; therefore, they are incomplete and should be used for illustrative 
purposes only. 

IBM Syllem/34. Syllem/36. Assembler Coding Form 

I TYPING GRAPHIC 

DATE 1 INSTRUCTIONS CHARACTER 

STATEMENT 

R.,...,ks 

I I I 
I I I 

PAGE 

OF 

GX21·9279-1 

PnntedinU,S.A 

IdentiflClltton 
Sequence 

1 J ! 4!> b 1890 111]1.314 l!l16 " Itl 1920..', n IJ J4 2516 .11 ... 8 2Y 30.31.);'> 33343536 JI 38 394041 4J 43 44 4546 4) 48 4950~' to:?!>J ~455!>6~'!:IS !>96061 6) 63646566 61 68ti9 70" 7213 14751611 18198081 82 838.8~86 8 8 81 90 91 ~;., '" I ',. 4!;>96 

~!f.j I L l'iIT~I~ll Ia I I 
"'~ Iii if / 

iii I ~ I 
~ IA It 11 Ll~ FF/" II-IJl II" It" IF 'I~ ~ I : 

I~ ~ : 1 
~ *~ lt4~ I~if , I 

~ - i E loll IC I 

~ IF ,foI 1 - t I, 1\ ~ F'~ ! 

~ ~~ ~~ 
, 

! 
I, I 

M '" " I1 T if: FIL iC 

1M I tf I ; I 
, 

Itf~* tEtf" ~I~ f41" I*~ I 

bFI * I,! ! I I -I j 

11: ITF- t ER R- r::"{ ~l-(IL IE) PI-11'\ I:. IX l:l A' 
TA IT - F!1c; [ f 'II( ;] 1 - i i i i' 

1 lP ITr (t\ I r= 

"'~* ~ ~ 
~ ~IIN~ R 1<= !rIc: IF rr IAN Ic:;lN 11-=151 I" ~ 
\'14 ~ 

*Iijltf·~ ~~" 
I 

I I I r r ! I 
~ 

- -
~ i ! I 

V lFl RiR l+ ,'~Iq i 1 Hi R A 1(1,s Ie!e ~-8 nit- die in I +, 11",) 
i 1 I i I 

~ ,t' 1 I i I 1 Ii 
V PlTlfl +I~ 91/ /4 ~I) I~ fL':l i I: I i ! FI'i ~ t~ :~!e!e I~ -i~ ,t" Idle if I dt Iklrl) 

II' r~ : 1 : I! : j 
, I! ·1 1, I \ 

I 
i i I ! 

fT h' - 11'<11 I ... It" i i: • I : : I i I I : i 

Ic ITIF - Ie; iI" F I ! , i I ' , I i I I : i I 
~lJ i I i i! I I I I I I 

; I , , ' 

~ ! , It' ! I, I 

lIE Fr lie: R ~~ Ir 11111 15 ~ ! i I, 
.,1C ~ \ 

i I 

~ ~ I I ! i I: 

~ IT IFf f< -Ip~ LIt< L-~~ IR I,t! -11=1 FR li,iF 11rt' fl- 1~lc ~ 11i'1 E- , ' I 

IP lit' - 1Lllir I" VI 1I-~ I~~ I,. I~tll -4 15~ lit' -11 ~l~ X l~itI 11-i£1 _. 4-
ijij Rl I~ I ! 

If' l~ ~. a~ . I 

t<11 II \5[11 I): ~ I.A -~ ITIEl ~ 1 I.A~ I.,jl - 11 lit" IJ; -4r2 , ! 

..-'H T-I't IHIAI - Ie; I .. I1F -1 IN~" -IF I~ 
K ~1 IT -t: I~!E -~Il.i \t..1Jl1l'v -IPIC; I /lIN~ -

!rIA ~ 
ILJiI 'IF! jc:: J'( II~ 11'1" IIVI 1111 lEIL ' p~ I/Nil IA~ IEIJl 

N 
1 ;;> J 4 ., b I 8 Ii 10 II I,} 13 14150 1611 18 1920;;>1 1'173;;>425161118193031 n:J3 343536 31 3839404' 4]4344CS46414a49SOS1 !)1!>l!>45556!>758596061626364S566616869 70 11 72 13 74 15 16 1118 191081 82838.-85868788119091 919J94q 96 

• A continuation record follows jf the character in this column in non-blank and if a comma follows the last operand preceding this column. • 

A-2 



Receive Program 

The following program receives data and prints that data: 

IBM SYltlm134, SYltlm/36, Assembler Coding Form 

PROGRAM 85ASM 2. I TYPING GR ..... IC I I J 
PROGRAMMER DATE .1 INSTRUCTIONS CHARACTER I I I 

STATEMENT 

..- ()per.tion """ .... R_ 
':2 3" 5 6 7 8 9 011 1213 ,. 151617 18 1920 2122232425 26 27 28 29 30 313233:M 3& 36 3738 39 40 4, 4243 oM 4& 46 47 .. 49 150 51 52 53 ~ 1& !to 57585910 616263 M 16 66 67 68697071 72 13 '" 71 76 7178 79 eo 818283848586' 

IRE leN ~ITA 1 ~ 

~ .. 
fII 14 Ir All ,,~ ~IF N T ,~ i4 
~ ... 

A I1IF - ~ ~ ~I'E fI Ill- IF '15 
F N 11F- E:N 18 TI-I IT F '5 

~If~ 

" ~ 
fj r<t EINE A [l PR I.NT FI ~ 
w ~ 

J. 
F 1 -M~ E F-C IC;~ 1- IG T A 

'T - RT F IRN - ~ FR INIT TIHF' 

1 P NITI ENt FI LI=. 

* ~ 

~ " * If- E~1i: Ir.R ~II Nl * fI " Itfl~* tf 

PAGE 

OF 

GX21-9279-' 
Printld In U.S.A. 

.L 
.3 

ldentlflation --181 1990919293949591 

1 :2 3 .. 5 6 J 8 910 11 121314151611181920212223242526212829303132333436363738394041420&34441464748"8S05152535C.M575851lOa16213MH66.768et7011~73741&7617 78191D8' 8283"8586'788.909192939.9~16 

• A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column. 

IBM System/34, System/36, A .. embler Coding Form 

PROGRAM 65ASM2 f TYPING GRAPHIC I I I 
PROGRAMMER DATE I INSTRUCTIONS CHARACTER I J J 

STATEMENT 

...... Op«.1ion .,...ond 
_ .. 

123" S 6 789 011 121314 15 16 17 18 1920 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 31 38 39 40 041 424344 45 046 41 48 49 50 51 52 53 54 51 56 51 58 59 80 61 62636485 66 IS"! 68 69 70 11 '*2 13 104 75 16 17 18 7980 81 82 S3 84 85 86 8 

~ I 
r-I IT + CIlIa ~I) q ast IER~ ~ 

:T 11F- rc;11 ISf<I B-1 PRlr Nil 

~ ~ 

:,c ,. 
i-"~E 1 's AN N ~ F! ~ 

Ifj ", 
~~ ~** ~'!5 ~ 

~ I['T F- i-"ISF FrlT T '5 
J ~N J ~ 

*ltf~ ~ fI, 

ftf ~ 
I~ trF"ei R FF fC I.4N ~. ~"T r.-~ fM 

li' ~ 
,,~ ,illM ,. ~ 

1E~1f" rrF rrFIA R -Ie I<L -B R A -IF Jill FT "iF -~ r-J 11YF -~~ R VI -R c.v~ 
R N [T- 1\ I - Rf'\ N rt -14 I-~ l~ - ""II I .,., IJ,..I ITFt-' R ~ -t" E! F ~II=. -B RI NT -~ -\1 ~~WI - R~' 

~ 
p~ ~~ lI:.u I}E 

A~,,", 1 ' 
, 

I 1'1011 I~II ~~ lEA 

PAGE 

OF 

GX21-9279-1 

Printed in U.S.A. 

2. 
3 

Idtntifation .......... 
8 89 90 91 92 93 94 9~96 

1 2 3 ., S 6 1 8 9 10 11 12 13 14 15 16 11 18 19 20 21 22 23 24 25 26 21 282930 31 3233 34 35 36 31 38 39 40 4' 42 43 .... 46 46 47 48 4,50 51 52 53 54156 56 57 5& 5.80 61 6263 e.a H 66 67 6B e. 70 11 '.27374 715 76 17 78 7910 81 82838485 Be .7S8 at 90 91 9293 94 9!:! 9& 

• A continuation record follows if the character in this column in non-blank and if a comma follows the last operand preceding this column. 

Appendix A.Programming Examples A-3 



IBM IBM System/34. Systeml36. Assembler Coding Form 

PROGRAM 85A5M2 J TYPING GRAPHIC 
PROGRAMMER GATE I INSTRUCTIONS CHARACTER' 

STATEMENT 

LoW 0.-_ 0-- --
1 1 PAGE 

I I I OF 

GXZ,·II2'1", 
Print.tInU.8.A. 

3 
.3 -......... 

123"!!I 6 , .. 011 121314 15 " 17 18 19202122232425 26 27 28 29 303132 33 34 36 3637 38 39 ... , 4243 "'4146 4' 484950515253 SoC. 56 57 58 HI061 6263~II66e7 8869 707' 72 73 7418 761778 711 8081 82838"'158e8Jl~ .90"92939495" 

~ ~ 

liS t2 ' RICiI\.. E~~ .: ~ IILI[ RF' EI vI ~~ FI , 

" rTR NX I.a ~ 
4' XX rll' 

N ~X " 4' XX 1'212' 
iT i-'~ T- 't 185( -rY IF1E [ -'t Il:l" N e- !F1 rt' IT R N 

f"R I'" IIV ~~ EA 

1 :I 3 .. '5 6 7 8 9 1011 1213 ,. 15 ,. 17 18 1920 2122232425 26 27 28 29 30 3t 3233343136 37 38 3e .to ... , 42434<1 .... ' ... "'IO!U 52535411 H 57 lSI 5110 tU 821364 H 66.7 ea IV 70 7t 72 73 '41176 77787810 118213 .. ae 118788.90 91 9293 , .. 95 II 

• A continuation record follows if the chlrettr in thil column in non-b'ank and If I comma fotlows the lat operand preceding thl. column. • 

A-4 



Transmit and Receive Program 

IB~ 
PROGRAM 65ASM :3 
'ROGR .... ER 

....... Operation ......... 

This program receives two files from a 3741, then transmits two different files in 
return. The data is transmitted from two disk files (BSFILI and BSFIL2). The 
data received is printed .. Before running this program, run the AL TERCOM 
procedure with MUL TFILE specified. 

IBM Systeml34. Syntm/36. A .. embiOf Coding Form 

T TYptNG I GRAPHIC I I I I I I PAGE 

DATE I INSTRUCTIONS I CHAAACTER I I I I I OF 

STATEMENT 

R_ 

GX21·8219-' 
PrlntldIn U.B.A. 

J. 
5 --1:2 3" 5 6 '8. 011 1213 t 415161 '~~~~nn~~u"~~~~~~~~~V~~~~~o~.~UqO~M~~~M~~~~.~~~MEMn"~~"nnNnn"n~.~~nUHU88 89909192939495" 

";:1'1 riC. ~T A~ ~ 

'" 'A ATE N F N C AJN "'F b F ,re; ~ 

" ~ 

w 
$AL F- C;ll ifF 1 " A ~H ~ Ie: 
Sr. ~E - ~r: ITF 1 1= ~ ~ 1"\1 F'~ 

* ~ 

t< IvE F'J cq ILE 
'" ~ ~ 

~ rVl SIGIET -~c; T L E F'-R va -F' RR.L (" T A 
t T -PT~ F - ER ~- AN r:L FlR 1N1 HI:: 
FlI ~l r1P TIl N F I E 

tf 

F'IL 
~ 

~'" " 1'112 I$G IfITIF IF- Ic; T .1 :1; -x M IT.1 It.. -IE IRRIi! IErr IJ! 
1$ ITI~ IF - ITIR F -~ iEiA fi- IJSN Ie' IRI Nil I~E 

IP IV it' "11 ~IL I~[; FI u: 
, 2 J .. 5 6 1 8 9 1011 121314151611 18 1920 21 22232425 26 27 28 29 30 313233343& 36 37383940., 4243'" 41 66 47 48 .950 5152535<155 56 57 sa 5980 6162636. H 66 67 68 6970 71 72 73 74 75 7677 787910 818283 .. 85 86 '7ae" 90 91 9293 94 9~ 96 

• A continuation record follows if the character in this column in non·blank and if a comma follows the last operand preceding this column. • 

GX21·927g.1 

IBM SYlteml34. Systeml36. Assembler Coding Form 

PROGRAM 65ASM 3 I TYPING I GRAPHIC I I I I I I PAGE e 
PROGRAMMER DATE -1 INSTRUCTIONS I CHARACTER I I I OF 0 

STATEMENT IdentificlltiOn ...... OpeI.tion "-.... R ........ --123456 '8. 011 121314 1S 611 18 19 20 21 22 23 24 25 26 27 28 29 30 31 323334 35 36 37383940 414243 ... 46 46 47 48.950 51 52535<155 56 57 58 59 10 6162636465 66 67 68 69 7071 72 73 74757677 787980 8182838485868 8e 89 90 9192 93 94 9596 

1+ 
~ 

~ IT A FI LE 
~ 
~~ 11E1+ i' * I)(~ 1111 1lI 

t= T TF- t< T L I EFC R- IF- XIY IT~ r:,'FT 'A 
F TP 1 -R cr ifF 'EJ 1"- RR~ IT T E 

X~ ITl NTI I=.N iIllF 

* ~I~ 'HI 
~ " ~ ll"'~ I FIll " ~ ff 

'" )eM IT2 E 
!I I;:T T'F- ... I I ER R- - NEl F'T 'A 
9i ITA TIF- I -IE RR~ T T 

MI T~ F NT IL EN F I 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1S 16 11 18 19 20 21 22 232425 26 27 28 29 30 31 32 33 34 35 36 31 3839 40 4' 4243 .... 46 46 47 ... "950 51 52 53 5<15&5& 57 58 5980 61 62636465 66 67 68 69 70 71 7273 14 75 76 71 18 7910 81 82838485868788 It 90 91 929394 9!:> 96 

• A continuation record follows if the character in this column in non·blank and if a comma follows the last operand preceding this column. • 

Appendix A.Programming Examples A-5 



IBM System/34, System/36, Assembler Coding Form 

PROGRAM 85ASM 3 I TYPING GRAPHIC I 
PROGRAMMER DATE l'NSTAUCTIONS CHARACTER J J 

STATEMENT 

...... 0per8tion 0.-."" -
I 1 1 1 

J I I I 

GX2'-927I1-, 

Printed In U.S.A. 

PAGE 3 
OF 6 _Ion -1 .2 3 .. 5 6 1 8 9 011 121314 15 16 17 18 1920 21 2223 2425 26 27 28 29 30 31 3233 34 36 ~ 37 38 39 40 4, 4243'" 46 46 47 48 49 50 51 525354 55 56 57 58 5910 151 62636 .. 16 68 67 68 69 70 71 72 73 74 75 76 77 78 7910 81 8283 84 8585" 8 88 90 91 9293949596 

~ ~ 
~ E tJ A~ ERi~ ~ IN Itc 
~ if4 

ff .. ~* ~~ ~* 
~ ~ ~ 

rv f'rriF Ft I~q If 4 ~Il "1~'1 M N ~ 

PR INrr 0- ~ T F~ II~lT 
E.R IJU 

" rr~ +I~ ,!( 4a ) IEf Fl. H'3q F'!I~ lE:~I~ ~ i~ 'J IFI LIE: 1 
~I IMT ., ~ .. rr RII INll 

t:.R IR~ t.-
'J TP F+ Mit ~fII J 11= A I:' +1~lq fI~ ~~ fC t<IE 'lj ~I ~ 

F'fij INl 
~I~ IRI~ 

~ t-'TA tl':'!9 4(2) PI IFl":l +1'111, Fl~ ER~ ~ b<~ III ILE J. 
PRlIINl J iHIF JU NT 

~1R14 ~ 

V PTR F+ ~'1 1(4 QJ ) fiR felt I~CI FlC;~ E~ IR~~ ~~ IT r E i2 
RI ~,T J Mf Til' f::Fi tINrt 

~ 

V TR t 9fl ~QJI\ fJ<~ CiS t~1;j I~II< ~R R 
FR r~T :.t. 

fi IT if - IIJ'II II -II:: RI I"" 
, 2 3 4 5 6 1 8 9 10 11 12 13 14 1& 16 17 18 1920 21 22 23 24 25 26 2) 282930 31 32333435 36 31 38 39 40 41 424344 46 46 41 48 41St 50 51 52 5354 15 56 51 58 5StIG 61 62636415 66 11 68 89 70 11 72 13 74 11516 11 18 1910 81 8283848586 '788 .9091 9293 9_ 9~ 96 

• A continuation record follows if the character in this column in non-blank and if a comma follOWS the last operand preceding this column. • 

IBM SystemJ34, System/36, Assembler Coding Form 

PROGRAM BSASM 3 I TYPING I GRAPHIC I I I I 
PROGRAMMER I DATE I INSTRUCTIONS I CHARACTER I I I 

STATEMENT 

LoIooI ap.,.tion a.. .... -
I I PAGE 

I I OF 

GX2,·927j1., 

PrintldlnU.S.A. 

4 
5 

Idwrtlficatlon 
_ .... 

1234 , 6 '.9 01112131 4151617 18 1920 21 22 23 24 25 26 27 28 29 30 31 32333435 36373839 40 41 _24344 46 46 47 48 49 50 51525354 6fj 5& 57 58 5960 6162636485 66 57 68 69 7071 72 73 74757617 787980 818283 a4 85 86 8 8 8890919293949596 

~ ~ 

M ,. 
tc ~ 111F '~ ~IN N~ J E .If 
~ tf 
~~ lij-tf 

IAN S I !:: 1t1 F - Ale; rr 1 ~ ~ 'IC 
$'E J r\ 0-

~ ~ 
~ 1 I I~ IC; ~ ~:1 rc: ~ 
~ ~ 
if ff fElf~*-H If! 

1 - L ~ - yp- .T'1 E -~ A - 11 ~r N-
- L Il - - ~ ,Tl' E-r-' A - I< ,.. ~II N- FI.3 

F - IL- - .c TY -fl IA - f< ~I N- ,f-I 
1 -Ir E -4 ~~ - I~FI 1 I jj\ [} - r t1~ Ih· 

F - -4 ~~ - ~FI ~ r ~ ~- I lfl .. -
II '" - Tfl F IFIR r-H-'1 ~ -~d AM -IP NT 

* ~a -=- I~ 
~IZ' 

, 

123456 } 8 9 10111213141516171819202122232_2526272829303132333435363138394041424344ot1.e&4748411505152535455565'5859IOS152636485666'688970117!'3'4751611181910818283''85861788.90919293949~ • 

• A continuation record follows if the character in this column in non·blank and if a comma follows the lISt operand preceding this column. 

A-6 



IB~ IBM System/34. System/36 Assembler Coding Form 

PROGRAM 65A5M 3 .1 'TYPING GRAPHIC 1 1 1 
PROGRAMMER DATE I INST~UCTIONS CHARACTER I I I 

STATEMENT 

Lobo! Opet.'ion OJMf.nd R...,..rks 

1'23456 , 8 9 011121314 15 16 17 18 19 20 21 22 23 24 25 26 27 2829 30 31 32 33 34 35 36 37 393940 41 424:) 44 46 46 47 48 49 50 51 5253 S4 56 56 57 585960 61 6'2 63 64 65 66 61 68 69 7011 72 73 1475 76 77 18 19 eo 81 8283 a. 85 86 8 

prre F ~ 
4iZ ' I 

EIFl Fl ~ IE 
4~\ fiR ~ ~I-.l IE ~ El \11 NG 1-1 RSIT FII LE' 

l;3 F~ * i 

~IrZ \ ~R ~ ~ IlllE ~I:. Iv IN~ FI LIE' 
rr:3 

'" 
tE 

~a\ RR IR ~ 1 II ~'" IV'I TrT 1Nl= FI R~l IL , 
F 4 :.. * ~Hl 'E ~~ R ~Hl IJ 11" lib If' 

~ 
4u 'J fi 't ttll: 1 , 

~INC; ~ 
4~\ Ie:; A~ R Y1i I rilE: rn INl.:l ~ 

, 
I~ 

~ trFfl XC; II< -y A~ -y 1!E; -y AR -r-y 
N 

PAGE 

OF 

GX21-9279-1 

Printed in U.S.A. 

5 
S 

ldentifatk»n -..... 
I~ 8990919293949596 

, '2 J 4 5 6 18 9 10111213141516171819202122232425'2621282930313'23334353637383940414243 .... 4Ii.64748.e50515253~H56S7S8696D61626364H66676869707172737&75761778791D8'8283a4aSB687B8.909'9293949~96 

• A continuation record follows if the character in this column in non·blank and if a comma follows the last operand preceding this column. .. 

Appendix A.Programming Examples A-7 



System Date/Time Program 

DTIM START 0 
***************************************************************************** 
* PROGRAM: DTIM PRINT THE SYSTEM DATE/TIME * 
* DESC THE PROGRAM USES THE MACRO $TOD TO ACCESS THE SYSTEM * 
* DATE AND TIME, IT PRINTS THEM IN THE FORMAT * 
* TIME = HH.MM * 
* DATE = MM/DD/YY * 
* INPUT SYSTEM DATE AND TIME * 
* OUTPUT PRINT DATE AND TIME * 
***************************************************************************** 
***************************************************************************** 
* ALLOCATE THE PRINTER FILE * 
***************************************************************************** 
* 

$ALOC DTF-PRT 
EJECT 

ALLOCATE THE PRINTER FILE 

* 
***************************************************************************** 
* OPEN THE PRINTER FILE * 
***************************************************************************** 
* 

* 

A-8 

$OPEN DTF-PRT 
EJECT 

OPEN THE PRINTER FILE 



***************************************************************************** 
* GET THE TIME/DATE AND PRINT THEM * 
***************************************************************************** 
* 

* 

$TOD 
MVC 
MVC 
MVC 
MVC 
MVC 

MVC 
MVC 
$PUTP 
MVC 
MVC 
$PUTP 
EJECT 

TRB-TIMDAT 
PTIME(2) ,$TRBTIME-2(,XR2) 
PTIME-3(2) ,$TRBTIME-4(,XR2) 
PDATE(2) ,$TRBDATE(,XR2) 
PDATE-3(2) ,$TRBDATE-2(,XR2) 
PDATE-6(2) ,$TRBDATE-4(,XR2) 

PRTBUFL+5(6),DTIME 
PRTBUFR(5),PTIME 
DTF-PRT 
PRTBUFL+5(6),DDATE 
PRTBUFR(S),PDATE 
DTF-PRT 

CALL MACRO 
GET MINUTES 
GET HOURS 
GET YEAR 
GET DAY 
GET MONTH 

MOVE TIME DESC TO PRINTER BUF 
MOVE THE TIME TO PRINTER BUFF 
PRINT THE TIME 
MOVE DATE DESC TO PRINTER BUF 
MOVE THE DATE TO PRINTER BUFF 
PRINT THE DATE 

* 
***************************************************************************** 
* CLOSE THE PRINTER FILE AND GO TO END OF JOB * 
***************************************************************************** 
* 

* 

$CLOS DTF-PRT 
$EOJ 

CLOSE THE PRINTER FILE 

***************************************************************************** 
* DEFINE THE DATA AREAS * 
***************************************************************************** 
* 
PRT $DTFP NAME-PRTFILE,RCAD-PRTBUFL,IOAREA-PRTIO,RECL-20,SPACEB-l 

Appendix A.Programming Examples A-9 



* 
PRTBUFL EQU * PRINTER BUFFER 
PRTBUFR DC XL20'OO' PRINTER BUFFER INITIALIZED 
* 
PRTIO EQU * PRINTER INPUT/OUTPUT 

DC XL20'OO' PRINTER INPUT/OUTPUT INITIALIZED 
* 
DTIME DC CL6'TIME =' TIME DESCRIPTION 
DDATE DC CL6'DATE =' DATE DESCRIPTION 
PTIME DC CL5' TIME FIELD 
PDATE DC CL8' / / DATE FIELD 
* 
XRl EQU 1 INDEX REGISTER 1 
XR2 EQU 2 INDEX REGISTER 2 

EJECT 
* 
TIMDAT $TRB V-ALL MACRO FOR TIME/DATE REQUEST BLOC 

EJECT 
* 

$DTFO PRT-Y GENERATE DTF OFF-SETS 
END 

A-IO 



Workstation and Print Program 

WSASM START 0 
PRINT NOGEN 

SET LOCATION COUNTER VALUE 

******************************************************************** 
* PROGRAM: WSASM - WORK STATION OPERATION * 
* DESC THIS PROGRAM ASSUMES THE EXISTENCE OF A DISPLAY FORMAT * 
* 'FMTNM' IN A FORMAT LOAD MEMBER 'WSFMT'. * 
* THE PROGRAM ISSUES A 'PUT AND GET' OPERATION TO THE * 
* WORK STATION MANAGEMENT WHICH PUTS OUT A DISPLAY SCREEN * 
* AND PASSES THE INPUT DATA FROM THE SCREEN TO THE * 
* PROGRAM. THE PROGRAM WILL THEN PRINT OUT THE SCREEN * 
* INPUT. THE ABOVE PROCESS CONTINUES UNTIL THE WORK * 
* STATION OPERATOR INDICATES SO ON THE DISPLAY SCREEN. * 
* INPUT THERE ARE FOUR INPUT FIELDS FROM THE DISPLAY FORMAT * 
* AN EOJ INDICATOR - 1 BYTE * 
* 
* 
* 
* * OUTPUT 
* * ENTRY 
* EXIT 

'Y' IF END OF JOB IS DESIRED 
NAME FIELD - 3 BYTES 
STREET FIELD - 19 BYTES 
CITY FIELD - 20 BYTES 

THE NAME FIELD, STREET FIELD, AND CITY FIELD FROM THE 
SCREEN INPUT WILL BE PRINTED. 
DISPLAY FORMAT 'FMTNM' HAVE BEEN CREATED AND COMPILED. 
NORMAL 

* 
* 
* 
* 
* 
* 
* 
* 

******************************************************************** 
* CONSTANTS, BUFFER, AND EQUATES * 
******************************************************************** 

Appendix A.Programming Examples A-II 



XR2 

* 
* 
* 

* 
* 
* 
PRTDTF 

* 
* 
* 

PRTBUF 

PRTNM 

PRTST 

A-12 

SPACE I 
EQU 2 
SPACE 2 

SPACE. I 

INDEX REGISTER 2 

*******~*~~*****~*~***~**~*~*~*~~.**. 
* .DTFDISPLAC~ME~TS·. . * 
*******~~*~*~~*~*~~~~~~~~**~**~.*~*** 

$DTFO PRT-YES, 
WS-YES 

DISPLACEMENTS FOR PRINTER 
DISPLACEMENTS FOR WORK STATIONS 

EJECT 
************************************* 
* PRINTER DTF * 
************************************* 

SPACE I 
EQU * 
$DTFP RCAD-PRTBUF, 

IOAREA-PRTAREA~ 
NAME-PRTFILE, 
CHAIN-WSDTF, 
RECL-70 

SPACE 2 

ADDR OF LEFMOST BYTE OF PRT DTF 
ADDRESS OF LOGICAL BUFFER 
ADDRESS· OF PHYSICAL BUFFER 
NAME OF PRINT FILE 
PQINTER TO WORK STATION DTF 
RECORD .. LENGTH 

************************************* 
* LOGICAL PRINT BUFFER * 
************************************* 

SPACE I 

C 

C 
C 
C 
C 

ORG 
EQU 
DS 
DS 
DS 
DS 

*,8 
* 
CLIO 
CL3 
CL7 
CLl9 

SET LOCATION COUNTER TO 8 BYTE BOUNDARY 
POINTER TO LEFT BYTE OF PRT BUFFER 
BUFFER-POSITIoNAL PAbDING 
NAME FIELD 
POSITIONAL'pADDING 
STREET FIELD 



PRTCT 

* 
* 
* 
PRTAREA 

* 
* 
* 
* 
* 
* 
WSDTF 

* 
* 
* 
* 
* 
* 
WSINDX 

DS CL11 POSITIONAL PADDING 
CITY/STATE FIELD DS CL20 

SPACE 2 

SPACE 1 
* 

************************************* 
* PHYSICAL PRINT BUFFER * 
************************************* 

EQU 
DS 
DS 
EJECT 

CL70 
CL19 

LEFT ADDRESS OF PHYSICAL PRINT BUFFER 
PHYSICAL PRINT BUFFER 
+ ROOM FRO lOB 

SPACE 1 
EQU * 

************************************* 
* 
* 
* 
* 

WORK STATION 
DTF 

* 
* 
* 
* 

************************************* 

WORK STATION DTF 
$DTFW MEMBER-WSFMT, 

INLEN-43 
SPACE 2 

FORMAT LOAD MEMBER NAME 
TOTAL LENGTH OF ALL INPUT FIELDS 

SPACE 1 
EQU * 

************************************* 
* * 
* 
* 
* 

WORK STATION INDEX AREA AND 
LOGICAL BUFFERS 

* 
* 
* 

************************************* 

WORK STATION INDEX AREA 
DS CL16 EACH FORMAT REQUIRES 16 BYTES 

C 

Appendix A.Programming Examples A -13 



WSLBUF 
WSIND 
NAME 
STREET 
CITY 

SPACE 2 
ORG 
EQU 

*,8 
* 

DS 
DS 
DS 
DS 
EJECT 

CLI, 
CL3 
CL19 
CL20 

LOCCTR1SE~ TO 8 BYTE BOUND FOR GET OP 
LEFT,ADDR:WORK STATION LOGICAL BUFFER 
WS OPERATOR END OF JOB INDICATOR 

,NAME INFORMATION STORAGE 
ADDRESS INFORMATION STORAGE 
ADDRESS INFORMATION STORAGE 

*********************************************************************** 
* MAINLINE ROUTINE * 
*********************************************************************** 

START 

NXTREC 

SPACE 
$ALOC 
$OPEN 
B 
B 
CLI 

1 
DTF-PRTDTF 
DTF-PRTDTF 
GETWS 
PRINT 
EOJIND,X'Ol' 
NXTREC 
DTF-PRTDTF 

BNE 
$CLOS 
$EOJ 
SPACE 2 

ALLOCATE PRINTER 
OPEN PRINTER 
GET RECORD FROM WORK STATION 
GO MOVE DATA TO PRINT BUFFER 
PROGRAM END OF JOB INDICSATOR ON? 
NO - GO PROCESS NEXT RECORD 
CLOSE PRINTER 
GO TO END OF JOB 

*********************************************************************** 
* ROUTINE 1 - PRINT ROUTINE * 
*********************************************************************** 

PRINT 

A-14 

SPACE 
ST 
USING 
LA 
B 
MVC 
MVC 

1 
RETURN1+3,ARR 
PRTBUF,XR2 
PRTBUF,XR2 

STORE RETURN ADDR 
SYMBOLVALUE TO USE IN DISP CALC 
LOAD @ PRT BUFFER INTO BASE REGISTER 
GO CLEAR PRINT BUFFER CLRBUF 

PRTNM(3,XR2),NAME 
PRTNM(19,XR2),STREET 

MOVE NAME TO NAME FIELD 
MOVE ADDRESS TO STREET FIELD 



MVC PRTCT(20,XR2),CITY MOVE CT/STATE TO CITY FIELD 
DROP XR2 STOP BASE DISP CALCULATION 
$PUTP DTF-PRTDTF, POINT TO PRINTER DTF C 

SKIPB-20, SKIP TO LINE 20 BEFORE PRINTING C 
SPACEA-2 SPACE TWO SPACES AFTER PRINTING 

RETURN 1 B *-* RETURN TO CALLER'S NSI 
SPACE 2 

*********************************************************************** 
* ROUTINE 2 - CLEAR BUFFER * 
*********************************************************************** 

ARR 
CLRBUF 

RETURN2 
BLANK 

* 
* 
* 
* 
* 
* 
GETWS 

RETURN3 
EOJIND 

SPACE 
EQU 
ST 
MVI 
MVC 
B 
EQU 
EJECT 

SPACE 
ST 
$WSIO 

CLI 
BNE 
SBN 
B 
DS 
END 

1 
8 
RETURN2+3,ARR 
PRTCT,BLANK 
PRTCT-l,PRTCT(69) 

ADDRESS RECALL REGISTER VALUE 
SAVE CALLER'S RETURN ADDRESS 

*-* 

PUT BLANK IN RTMOST POS OF BUFFER 
PROPAGATE THRU REST OF BUFFER 
RETURN TO CALLER'S NSI 

X'40' 

***************************************** 
* 
* 
* 
* 

PUT AND GET FROM DISPLAY STATION 
CALL TO WORK STATION MANAGEMENT 

* 
* 
* 
* 

***************************************** 
1 
RETURN3+3,ARR STORE RETURN ADDR 
DTF-WSDTF, ADDRESS OF LEFT BYTE OF WS DTF 
OPC-PTG, PUT UP FORMAT AND GET RECORD 
INLEN-43, MAX AMOUNT OF DATA FROM WS 
RCAD-WSLBUF, LEFTMOST ADDR OF WS BUFFER 
FORMAT-FMTNM FORMAT NAME IN LOAD MEMBER 
WSIND,C'Y' END OF JOB IND BY OPERATOR? 
RETURN3 NO - GO PROCESS THE NEXT RECORD 
EOJIND,B'OOOOOOOl' YES - SET PROG END OF JOB INDICATOR 
*-* RETURN TO CALLER'S NSI 
BLI PROGRAM END OF JOB INDICATOR 
START PROGRAM ENTRY POINT 

C 
C 
C 
C 

Appendix A.Programming Examples A-IS 



WSFMT S 

A-16 

FMT 

SFMTNM 
DFLOOOI 
DFL0002 
DFL0003 
DFL0004 
DFLOOOS 
DFL0006 
DFL0007 
DFL0008 
DFL0009 
DFLOOIO 
DFLOOl1 
DFL0012 

The program uses the following display format: 

r 

SAMPLE DISPLAY FORMAT 

YES - y END OF JOB 

NAME •...•. 

STREET •.•• 

CITy ••.•.• 

NO - ANY CHARACTER 

ENTER - TO INPUT DATA 

This display was created from the following format listing: 
11/09/84 14.38 000003 

21 630Y 
10 916Y 

1 929 Y 
7 949Y 

191049Y 
101216Y 

31229 Y 
101416Y 
191429 Y 
101616Y 
201629 Y 
212018Y 

Y 

CSAMPLE DISPLAY FORMAT 
CEND OF JOB 

CYES - Y 
CNO - ANY CHARACTER 
CNAME ..... . 

CSTREET .... 

CCITY ..... . 

CENTER - TO INPUT DATA 



Alternative Index and Noncontiguous Keys Program 

KEYASM 
* 

START 0 

This is a sample program that illustrates some of the features of disk support. 
This program does a keyed access to retrieve a record by key from a file that has 
a 39 byte noncontiguous key. The program assumes the existence of a file that 
has three noncontiguous keys. This file was created as a sequential file by a 
COBOL program and had an alternative index built using the BLDINDEX 
procedure. For more information on the BLDINDEX procedure, please refer to 
the System Reference Manual, SC21-9020. 

**************************************************************************** 
* PROGRAM: KEYASM - KEYED ACCESS NONCONTIGUOUS AND GREATER THAN 29 BYTES * 
* DESC THIS PROGRAM ASSUMES THE EXISTENCE OF AN INDEXED FILE WITH AN * 
* ALTERNATIVE INDEX WITH NONCONTIGUOUS KEYS. * 
* THIS PROGRAM DOES AN INDEXED GET USING THE GENERALIZED ACCESS * 
* METHOD (GAM) WITH A KEY * 
* 'SMITH' + 'LUMBERJACK ' + 'IC' + '1234567' * 
* (SMITH LUMBERJACK 'IC' AND '1234567' ARE THE 3 * 
* KEYS) * 
* IF THE RECORD IS FOUND, IT IS PRINTED. * 
* INPUT INDEX FILE * 
* ALTERNATIVE INDEX FILE WITH NONCONTIGUOUS KEY * 
* FORMAT: * 

Appendix A.Programming Examples A -17 



* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* * OUTPUT 
* ENTRY 
* EXIT 
* 

INITIALS 
I 

111111112222222222222222222234456666666 
NAME OCCUPATION , I I NUMBER 

BLANKS 

============================ 
KEY 1 

KEY 2 

KEY 3 

PRINT THE RECORD 

LAST NAME (KEY1) 
OCCUPATION (KEY1) 
BLANK 
INITIALS 
BLANK 
NUMBER 

(KEY2) 

(KEY3) 

PROCEDURE THAT CREATES THE INDEX FILE THEN BUILDS THE INDICES 
NORMAL 

ERROR - ,THE KEY IS NOT FOUND 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

**************************************************************************** 
**************************************************************************** 
* ALLOCATE THE DISK AND PRINTER FILES * 
**************************************************************************** 
* 

$ALOC DTF-IND 
$ALOC DTF-PRT 
EJECT 

ALLOCATE THE DISK FILE 
ALLOCATE THE PRINTER FILE 

* 

* 
**************************************************************************** 
* OPEN THE DISK AND PRINTER FILES * 
**************************************************************************** 
* 

* 

A-I8 

$OPEN DTF-IND 
$OPEN DTF-PRT 
EJECT 

OPEN THE DISK FILE 
OPEN THE PRINTER FILE 



**************************************************************************** 
* GET THE RECORD FROM THE INDEXED FILE * 
**************************************************************************** 
* 

MVC 
$PUTP 
$GETD 
MVC 
$PUTP 
MVC 
$PUTP 
EJECT 

PRTBUFR(80),IMSG 
DTF-PRT 
DTF-IND,OP-KEY,NRF-NOFOUND 
PRTBUFR(39),IDSKBUFR 
DTF-PRT 
PRTBUFR(80),SMSG 
DTF-PRT 

INFO MSG: INDEXED FILE 
PRINT THE MSG 
GET THE RECORD 
MOVE THE RECORD TO PRINTER 
PRINT THE RETRIEVED RECORD 
INFO MSG: TEST SUCESSFUL 
PRINT THE MSG 

BUF 

**************************************************************************** 
* CLOSE DISK AND PRINTER FILES AND GO TO END OF JOB * 
**************************************************************************** 
* 
EOJ 

* 

$CLOS DTF-IND 
$CLOS DTF-PRT 
$EOJ 

CLOSE THE DISK FILE 
CLOSE THE PRINTER FILE 

**************************************************************************** 
* IF THE RECORD WAS NOT FOUND, PRINT THE "NOT FOUND" MESSAGE AND END * 
**************************************************************************** 
* 
NOFOUND MVC PRTBUFR(80),NMSG 

$PUTP DTF-PRT 
J EOJ 
EJECT 

* 

INFO MSG: TEST FAILED 
PRINT THE MESSAGE 

Appendix A.Programming Examples A-19 



**************************************************************************** 
* DATA AREAS * 
**************************************************************************** 
* 
* 
* 
* 
* 
* 
* 

DISK DTF - NOTE THAT THE RECORD LENGTH IS 39 BYTES. THE KEY DIS
PLACEMENT (KDISP) IS X'FFFF'. THIS KDISP VALUE IS A 
REQUIREMENT TO TELL THE SYSTEM THAT THIS FILE HAS 
NONCONTIGUOUS KEYS. ALSO, THE KEY FOR THE DESIRED 
RECORD IS PASSED IN DATA AREA INDKEY. NOTE THAT THE 
KEY IS PASSED AS IF IT WAS A CONTIGUOUS FIELD WHEN 
THE FILE CONTAINS BLANKS BEFORE AND AFTER 'IC'. 

* 
* 
* 
* 
* 
* 
* 

**************************************************************************** 
* 
IND $DTFD 

* 
INDKEY DC 

DC 
DC 

NCKEY EQU 
* 
PRT $DTFP 
* 
IDSKBUFL EQU 
IDSKBUFR DC 
* 
PRTBUFL EQU 
PRTBUFR DC 
* 

NAME-KEYNCK,ACCESS-GAM,KEY-O,RECL-39, X 
INREC-IDSKBUFL,IOMSG-Y,KEYL-37,KDISP-NCKEY,ORDER-KEY 

CL8'SMITH' 
CL20'LUMBERJACK 
CL9'IC1234567' 
X'FFFF' 

INITIALIZE KEY - NAME 
, INITIALIZE KEY - JOB 

INITIALIZE KEY - INITIALS, # 
KEY DISPLACEMENT 

NAME-PRTFILE,RCAD-PRTBUFL,IOAREA-PRTIO,RECL-80,SPACEB-l 

* 
XL39'OO' 

* 
XL80'OO' 

RECORD BUFFER 
INITIALIZE RECORD BUFFER 

PRINTER BUFFER 
INITIALIZE PRINTER BUFFER 

PRTIO EQU * PRINTER INPUT/OUTPUT AREA 
DC XL80'OO' INITIALIZE I/O AREA 

**************************************************************************** 
* PRINTED MESSAGES * 
**************************************************************************** 
IMSG 
NMSG 
SMSG 

* 

A-20 

DC 
DC 
DC 
EJECT 

CL80'INDEXED FILE -- NONCONTIGUOUS KEY' 
CL80'TEST FAILED!! RECORD NOT FOUND' 
CLBO'TEST SUCCESSFULll RECORD FOUND' 

$DTFO DISK-Y,PRT-Y 
END 

GENERATE THE DTF OFFSETS 



Appendix B. Character Sets 

The coded character set for EBCDIC (extended binary coded decimal interchange 
code) and ASCII (American National Standard Code for Information 
Interchange) in the following tables. 

Appendix B.Character Sets B-1 



EBCDIC 
.' ,,, ' .. 

Main Storage Main Storage Brf Po~itionsO, 1, 2, 3 
, 

Bit Positions 
4,5,6, 7 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 NUL DLE DS t> & - { } \ 0 

1 SOH DC1 SOS / a j '" A J 1 
" 

2 STX DC2 FS SYN b k s B K S 2 

TM 
3 ETX DC3 l?c; c I t C L T 3 

4 PF RES BYP PN d m u D M U 4 

5 HT NL LF RS e n v E N V 5 

6 LC BS ~ UC f 0 w F 0 W 6 
ETB 

7 DEL IL kt ESC 
EOT 9 P x G P X 7 

8 CAN h q y H 0 Y 8 

9 RLF EM i r z I R Z 9 
.. 

A SMM CC SM e I 
I LVM 
I 

B VT CU1 CU2 CU3 $ , # 

C FF IFS DC4 < * % @ 
. 

D CR IGS ENO NAK ( ) 
, 

-

E SO IRS ACK + ; > 
, . , 

F SI IUS BEL SUB [ ] ? ,:, EO 
'" '. ,,'. 

[3 Duplicate Assignment 

B-2 



ASCII 

Main Storage Main Storage Bit Positions 0, 1, 2, 3 
Bit Positions 
4,5,6, 7 0 1 2 3 4 5 6 7 8 9 A B C 0 E F 

0 NUL OLE SP 0 @ P p 

1 SOH OC1 ! 1 A 0 a q 

2 STX OC2 " 2 B R b r 

3 ETX OC3 # 3 C S c s 

4 EOT OC4 $ 4 0 T d t 

5 ENO NAK % 5 E U e u 

6 ACK SYN & 6 F V f v 

7 BEL ETB 
, 

7 G W 9 w 

8 BS CAN ( 8 H X h x 

9 HT EM ) 9 I Y i y 

A LF SUB * : J Z j z 

B VT ESC + I K [ k { 

C FF FS < L \ I 
I 

, 
I 

0 CR GS - = M ] m } 

E SO RS > N I n ,..., 

F SI US / ? 0 0 DEL -

Appendix B.Character Sets B-3 



B-4 



Appendix C. Assembler Coding Forms 

Assembler Coding Form GX21-9279-2 

IBM IBM System/34. System/36 Assembler Coding Form 
OX2'·m.. 

PrintM m U.S.A. 

I TYPING Oll"""c . I I 
~------------------------------------------------------~--------~I 'MnR~,~~~~~--;-~r--+--;-~r--+-I~---r--~--+---------~ 

PAGE 

STATEMENT --Opention ()per.nd "-rIll • -011 12 13 14151611 18 1920 21 22 23 2. 2S 26 27 28 29 30 31 3233 :M 36 36 37 38 39 40.' 4243 .... 46.a.7 48 4' &0 51 5253 &ot II $6 57 9 5.10 616263 '41166 81 68 69701172731.7& 76 17 787910 a1 82838" 85 86' 8 .90 91 92 93 9495096 

, :2 3 .. 5 6 1 8910,,121314'5016171819202122232.25262728293031 323334353637 383940.,42.3" .. 48., ..... IOS15:'53~1IS&51"5.1O&11213841166., ... 970717273147171717811101' 8213"85861788.9011 51293.495 • 

• A continuation record follows if the c:hIrKter in this column in non·blank and if • comma follows the last operlnd preceding this column. • 

Appendix C.Assembler Coding Forms C-l 



Notes: 

C-2 



Appendix D. Assembler Machine Instruction Formats 

Assembler Instruction Formats 

Op Code 

Two-Address Instructions (Operand 1/0perand 21 One Address 

Direct/ Direct/ Direct/ XR1/ XR1/ XR1/ XR2/ XR2/ XR2/ 
Mnemonic Function Direct XRl XR2 Direct XRl XR2 Direct XRl XR2 Direct XRl XR2 Control 

A Add to register 36 76 B6 

ALC Add logical character OE 1E 2E 4E 5E 6E 8E 9E AE 

AZ Add zoned decimal 06 16 26 46 56 66 86 96 A6 

BC Branch on condition CO DO EO 

BC Branch on ARR FO 

CLC Compare logical character 00 10 20 40 50 60 80 90 AD 

CLI Compare logical immediate 3D 70 BO 

EO Edit OA 1A 2A 4A 5A 6A 8A 9A AA 

ITC Insert and test characters OB 1B 2B 4B 5B 6B 8B 9B AB 

JB Jump backward F1 

JC Jump on condition F2 

L Load register 35 75 B5 

LA Load address C2 02 E2 

LPMR Load program mode register F6 

MVC Move characters OC 1C 2C 4C 5C 6C 8C 9C AC 

MVI Move logical immediate 3C 7C BC 

MVX Move hex character 08 18 28 48 58 68 88 98 A8 

S Subtract from register 37 77 B7 

SBF Set bits off masked 3B 7B BB 

SBN Set bits on masked 3A 7A BA 

SLC Subtract logical character OF 1F 2F 4F 5F 6F 8F 9F AF 

SLI Subtract logical immediate 3F 7F BF 

SRC Shift right character 3E 7E BE 

ST Store register 34 74 B4 

SVC Supervisor ·call F4 

SZ Subtract zoned decimal 07 17 27 47 57 67 87 97 A7 

TBF Test bits off masked 39 79 B9 

TBN Test bits on masked 38 78 B8 

XFER Transfer control F5 

ZAZ Zero and add zoned 04 14 24 44 54 64 84 94 A4 

Appendix D_Assembler Machine Instruction Formats D-1 



Notes: 

D-2 



Appendix E. Disk Data Management Considerations 

Access Methods 

Figure B-1 lists the actions caused by Allocate and Open when the various access 
methods are used to access the three types of files. The following situations are 
covered on the chart: 

• The combination of the file type and the access method is allowed. These 
situations are indicated by a blank entry in the chart. 

• The combination of the file type and the access method is not allowed either 
by allocate or by open. For these situations, the issuer and the message 
number of the message issued are given in the chart. 

• In several situations, a load-to-old will occur to the file. Load-to-old includes 
the following: 

The contents of the old file are destroyed. 
A new file is created using the current file's location and space. 
The new file's type is determined by the access method and other 
parameters specified in the DTF. 

For these situations, load-to-old and the type of file created - sequential, direct, or 
indexed - are given in the chart. 

Note: Please refer to the Distributed Data Management Guide, Se2l-8011 for 
remote file considerations when using Assembler. 

Appendix E.Disk Data Management Considerations E-l 



SEQUENTIAL FILES 

DISP Not 
Specified, DISP Not 

DISP-SHRMM or Existing Specified, 
DISP-OLD DISP-NEW DISP"SHRRR DISP-SHRRM DISP-SHRMR DISP-SHR File New File 

CG Access Sequential Aloe 1356 
File Created 

CU Access Sequential Open 2217 Open 2217 Aloe 1356 
File Created 

CA Access Sequential Open 2217 Open 2217 Sequential 
File Created File Created 

CO Access Load-to-old Sequential Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe J359 Sequential 
Sequential File Created File Created 
File Created 

DG/DGA Access Direct File Aloe 1356 
Created 

DU/DUA Access Direct File Open 2217 Open 2217 Aloe 1356 
Created 

DO/DOA Access Load-to-old Direct File Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Direct File 
Direct File Created Created 
Created 

IR Access Open.2203 Indexed File Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 Aloe 1356 
Created 

IRU Access Open 2203 Indexed File Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 
Created 

IA/IRA/IRUA Access Open 2203 Indexed File Open 2217 Open 2217 Open 2203 Open 2203· Open 2203 Aloe 1356 
Created 

10 Access Load-to-old Indexed File Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Indexed File 
Indexed File Created Created 
Created 

IS Access Open 2203 Indexed File Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 Aloe 1346 
Created 

ISU Access Open 2203 Indexed File Open 2217 Open2217 Open 2203 Open 2203 Open 2203 Aloe 1356 
Created 

Figure E-l. (Part 1 of 6). Access Method and File Type Combinations 

E-2 



SEQUENTIAL FILES 

DISP Not 
Specified, DISP Not 

DISP-SHRMM or Existing Specified, 
DISP-OLD DISP-NEW DISP-SHRRR DISP-SHRRM DISP-SHRMR DISP-SHR File New File 

Indexed File 
ISA/ISUA Access Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

GAM Access Sequential 
ORDER-RECORD File Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD, Direct File 
AEOD-N Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD Sequential 
AEOD-N, ARRN-N File Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD, 
AEOD-N, ARRN-N, Direct File 
GSEQ-N Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD, 
AEOD-N, ARRN-N, Sequential 
GSEQ-N, GRAN-N File Created Open 2217 Open 2217 Aloe.1356 

GAM Access Load-to-old 
ORDER-RECORD, Sequential Sequential Sequential 
CREATE-S File Created File Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 File Created 

GAM Access Load-to-old 
OWNER-RECORD, Direct File Direct File Direct File 
CREATE-D Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access Load-to-old 
ORDER-RECORD, Indexed File Indexed File Indexed File 
CREATE-I Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access Indexed File 
ORDER-KEY Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

Load-to-old 
GAM Access Sequential Sequential Sequential 
ORDER-KEY, Fife Created File Created File Created 
CREATE-S Open 2203 Open 2203 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Open 2203 

Load-to-old 
GAM Access Direct File Direct File Direct File 
ORDER-KEY, Created Created Created 
CREATE-D Open 2203 Open 2203 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Open 2203 

GAM Access Load-to-old 
ORDER-KEY, Indexed File Indexed File Indexed File 
CREATE-I Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Figure E-l. (Part 2 of 6). Access Method and File Type Combinations 

Appendix E.Disk Data Management Considerations E-3 



DIRECT FILES 

DISP Not 
Specified, DISP Not 

DISP-SHRMM or Existing Specified, 
DISP-OLD DISP-NEW DISP-SHRRR DISP-SHRRM DISP-SHRMR DISP-SHR File New File 

Sequential 
CG Access File Created Aloe 1356 

Sequential 
CU Access File Created Open 2217 Open 2217 Aloe 1356 

Sequential . Sequential 
CA Access Open 2202 File Created Open 2217 Open2217 Open 2202 Open 2202 Open 2202 File Created 

Load-to-old 
Sequential Sequential Sequential 

CO Access File Created File Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 File Created 

Direct File 
DG/DGA Access Created Aloe 1356 

Direct File 
DU/DUA Access Created Open 2217 Open 2217 Aloe 1356 

Load-to-old 
Direct File Direct File Direct File 

DO/DOA Access Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Indexed File 
IR Access Open 2203 Created Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 Aloe 1356 

Indexed File 
IRU Access Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

Indexed File 
IA/IRA/IRUA Access Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

Load-to-old 
Indexed File Indexed File Indexed File 

10 Access Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Indexed File 
IS Access Open 2203 Created Open 2203 Open 2203 Open 2203 Open 2203 Open 2203 Aloe 1356 

Indexed File 
ISU Access Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

Indexed File 
ISA/ISUA Access Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

Figure E-l. (Part 3 of 6). Access Method and File Type Combinations 

E-4 



DIRECT FILES 

DISP Not 
Specified, DISP Not 

DISP-SHRMM or Existing Specified, 
DISP-OLD DISP-NEW DISP-SHRRR DISP-SHRRM DISP-SHRMR DISP-SHR File New File 

GAM Access Sequential 
ORDER-RECORD File Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD, Direct File 
AEOD-N Created Open 2217 Open 2217 Aloe 1356 

Gam Access 
ORDER-RECORD, Sequential 
AEOD-N, ARRN-N File Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD, 
AEOD-Ni ARRN-N, Direct File 
GSEQ-N Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD, 
AEOD-N, ARRN-N, Sequential 
GSEQ-N, GRAN-N File Created Open 2217 Open 2217 Aloe 1356 

GAM Access Load-to-old 
ORDER-RECORD, Sequential Sequential Sequential 
CREATE-S File Created File Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 File Created 

GAM Ac~ess Load-to-old 
ORDER-RECORD, Direct File Direct File Direct File 
CREATE-D Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access Load-to-old 
ORDER-RECORD, Indexed File Indexed File Indexed File 
CREATE-I Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access Indexed File 
ORDER-KEY Open 2203 Created Open 2217 Open 2217 Open 2203 Open 2203 Open 2203 Aloe 1356 

Load-to-old 
GAM Access Sequential Sequential Sequential 
ORDER-KEY, File Created File Created File Created 
CREATE-S Open 2203 Open 2203 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Open 2203 

Load-to-old 
GAM Access Direct File Direct File Direct File 
ORDER-KEY, Created Created Created 
CREATE-D Open 2203 Open 2203 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Open 2203 

Load-to-old 
GAM Access Indexed File Indexed File Indexed File 
ORDER-KEY, CREATE-I Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Figure E-l. (Part 4 of 6). Access Method and File Type Combinations 

Appendix E.Disk Data Management Considerations E-5 



INDEX FILES 

DISP Not 
Specified, DISP Not 

DISP-SHRMM or Existing .Specified, 
DISP-OLD DISP-NEW DISP-SHRRR DISP-SHRRM DISP-SHRMR DISP-SHR File New File 

Sequential 
CG Access File Created Aloe 1356 

Sequential 
CU Access File Created Open 2217 Open 2217 Aloe 1356 

Sequential Sequential 
CA Access File Created Open 2217 Open 2217 File Created 

load-to-old 
Sequential Sequential Sequential 

CO Access File Created File Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 File Created 

Direct File 
DG/DGA Access Created Aloe 1356 

Direct File 
DU/DUA Access Created Open 2217 Open 2217 Aloe 1356 

load-to-old 
Direct File Direct File Direct File 

DO/DOA Access Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Indexed File 
IR Access Created Aloe 1356 

Indexed File 
IRU Access Created Open 2217 Open 2217 Aloe 1356 

Indexed File 
IA/IRA/IRUA Access Created Open 2217 Open 2217 Aloe 1356 

load-to-old 
Indexed File Indexed File Indexed File 

10 Access Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Indexed File 
IS Access Created Aloe 1356 

Indexed File 
ISU Access Created Open 2217 Open 2217 Aloe 1356 

Figure E-l •. (Part.S of ~). A~cess M~tbod and File Type Combinations 

E-6 



INDEX FILES 

DISP Not 
Specified. DISP Not 

DISP-SHRMM or Existing Specified; 
DISP-OlD DISP-NEW DISP-SHRRR DISP-SHRRM DISP-SHRMR DISP-SHR File New File 

ISA/ISUA Indexed File 
Access Created Open 2217 Open 2217 Aloe 1356 

GAM Access Sequential 
ORDER-RECORD File Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD. Direct File 
AEOD-N Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD. Sequential 
AEOD-N. ARRN-N File Created Open 2217 Open 2217 Aloe 1356 

GAM Access 
ORDER-RECORD. 
AEOD-N. ARRN-N. Direct File 
GSEQ-N Created Open 2217 Open 2217 Aloe 1356 

GAM.Access 
ORDER-RECORD. 
AEOD-N. ARRN-N. Sequential 
GSEQ-N. GRAN-N File Created Open 2217 Open 2217 Aloe 1356 

GAM Access Load-to-old 
ORDER-RECORD. Sequential Sequential Sequential 
CREATE-S File Created File Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 File Created 

GAM Access load-to-old 
ORDER-RECORD. Direct File Direct File Direct File 
CREATE-D Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access load-to-old 
ORDER-RECORD. Indexed File Indexed File Indexed File 
CREATE-I Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access Indexed File 
ORDER-KEY Created Open 2217 Open 2217 Aloe 1356 

GAM Access load-to-old 
ORDER-KEY. Sequential Sequential Sequential 
CREATE-S File Created File Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 File Created 

GAM Access load-to-old 
ORDER-KEY. Direct File Direct File Direct File 
CREATE-D Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

GAM Access load-to-old 
ORDER-KEY. Indexed File Indexed File Indexed File 
CREATE-I Created Created Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1360 Aloe 1359 Created 

Figure E-l. (Part 6 of 6). Access Method and File Type Combinations 

Appendix E.Disk Data Management Considerations E-7 



Data Management Control Blocks and Interface Areas 

E-8 

To use data management to process disk files, you are required to provide storage 
space for interface information. 

DTF 

The DTF is the major control block for communication between you and data 
management. The DTF provides the information needed to allocate, open, 
access, and close a file on a disk. It also contains pointers to other control blocks 
and areas needed to interface with data management. The DTF must be available 
to the system from the time it is allocated until it is closed, and must not be 
moved or overlaid from the time it is opened until it is closed. The DTF is 
78 bytes long for record (nonkeyed) accesses and 98 bytes long for keyed 
accesses. For more information on generating a disk DTF, see $DTFD (Define 
the File for Disk) in Chapter 5. 

Input Record Area 

When data is being read from disk through any type of get operation, you must 
provide an input record area. This is the location in your program where 
data management will place the record read from disk. This area can be the same 
area as the output record area described below. The location of this area (as 
specified in the DTF) can be changed at any time. This area corresponds to the 
INREC parameter of the $DTFD macroinstruction. 

Output Record Area 

When data is being written to disk through an output, an add, or the output 
portion of an update, you must provide an output record area which is the 
location in your program where data management will get the record to write to 
disk. This area can be the same area as the input record area described above; 
The location of this area (as specified in the DTF) can be changed at any time. 
This area corresponds to the OUTREC parameter of the $DTFD 
macroinstruction. 

Key Area 

While processing under an indexed random input-capable access method, you use 
the key area to provide to data management the key of the record to read from 
disk. These access methods .are IR, IRU, IRA, IRUA, and GAM with GRAN-Y 
and order-key specified or assumed. The length of the key area must equal the 
key length. This area corresponds to the KEY parameter of the $DTFD 
macroinstruction. 

Key Limits Area 

When you request the use of key limits by using the LIMIT -Y parameter of the 
$DTFD macroinstruction, you must provide an area to contain the low and high 
key limits. The length of this area must equal two times the key length. The 
location of this area should not change after the file is opened. The low key is in 
the left half and the high key is in the right half. Limits are established when the 
first get-next operation is issued. This area corresponds to the HIGH parameter 
of the $DTFD macroinstruction. 



Label Return Area 

When processing disk files, data management can return a file label when certain 
conditions occur. If you want this file label returned, you must provide an 8-byte 
label return area. The location of this area should not change after the file is 
opened. A file label is returned in the area under the following conditions: 

• Duplicate key in another index. An add or update operation would cause the 
creation of a duplicate key in another index over the file, or in this index if 
the file is being accessed by a nonkeyed access method. The label of the file 
in which the duplicate would have been created is returned in the label area. 

• Update key error. An update operation would cause a key to be changed in a 
file that does not allow key updates. The label of that file is returned in the 
label area. 

• Permanent I/O error. The label of the file where the error occurred is 
returned in the label area. 

This area corresponds to the LABEL parameter on the $I;>TFD macroinstruction. 

Appendix E.Disk Data Management Considerations E-9 



Allocating and Opening the File , "i 

E-10 

Before processing data from any disk,file, the file must be allocated ($ALOC) and 
opened ~$OPEN). $ALOCand $OPEN perform the following operations: 

•. If the file is new,' space for the file is teservedand ,initialized on the disk. 

, •. Tests . are performed to ensure that the aCcess method and file organization are 
compatible and that all necessary information about the file was provided. 

• Space in main storage (but not in your program) is allocated for buffers and 
data management required control blocks; The control blocks are initialized. 

- The DTF is formatted to apost open state .. 

For more information on the $ALOC and$OPEN macroinstructions, see $ALOC 
(Allocate File or Device) and $OPEN (Prepare a Device or File for Access) in 
Chapter 5. 



Accessing Records in a File 

After the file is allocated and opened, you can begin accessing records in that file. 
The interface between your program and data management is the same DTF that 
was used for allocating and opening your file. Some fields in the DTF 
communicate from your program to data management, some communicate from 
data management to your program, some are bidirectional and communicate both 
ways, and still others are for data management internal use only. 

Figure E-2 describes the DTF fields that make up the data passed back and forth. 
Each field in the DTF has a name as defined in the $DTFO macroinstruction 
expansion. Those field names are used in Figure E-2 to identify specific DTF 
:Oelds. The length of each DTF field is given with the initial field description. 
Several DTF fields are pointers or offsets to main storage areas in your program, 
and are identified as such. All DTF fields not described in this figure are reserved 
for internal data management use and shQuld not be altered or otherwise used by 
any calling program. 

Appendix E.Disk Data Management Considerations E-ll 



AcceSs Can Be Inted 
Methods Key- Altered TofFr 

Field Field AppIic- Macro word After Disk 
Name Description able Used Used Allocate DIM 
$FIDEV Disk DTF device All None None No To 

code, 1 byte. Set by 
the $DTFD 
macroinstruction to 
hex AO to indicate 
this is a disk DTF. 

$FICCQ Completion code All None None Yes From 
qualifier, 2 bytes. In -
certain error 
situations, data 
management issues 
error messages to the 
operator. If control is 
returned to he 
program, the number 
of the message issued 
is returned in this 
field. 

$FIUPS External indicators All $DTFD UPSI No To 
(UPSI), 1 byte. Used 
to condition open files. 
Masked against the 
external switch settings 
set by the / / switch 
OCL statement. 

$FICHB DTF forward chain All $I?TFD CHAIN No To 
field, 2 bytes. 
Contains a pointer to 
the next DTF in a 
chain of DTFs if the 
program chooses to 
allocate, open or close 
multiple DTFs with 
one call. The last 
DTF in the chain 
should not specify the 
CHAIN parameter. 

Figure E-2 (Part 1 of 11). Disk DTF Field Description 

E-12 



Access Can Be Interf 
Methods Key- Altered TolFr 

Field Field Applic- 'Macro word After Disk 
Name Description able 'Used Used Allocate DIM 

$FIOUT Output Record area GAM, $DTFD OUTREC Yes To 
address, 2 bytes. CACO, 
Contains a pointer to CU,DO 
the output record area DOA, 
in your program. Data DU 
management gets the DUA, lA, 
record to write to disk 10 JSA, 
from this area for ISU' 
output, add, and ISUA, 
update operations. IRA IRU, 
This DTF field can be IRUA 
changed at any time. 
The output record 
area address can be 
the same as the record 
area address ($FlINP) 
described below. 

$FICMP Completion code, 1 All None None Yes From 
byte. Set by data .' 

management to 
indicate successful or 
unsuccessful 
completion of the 
operation requested of 
data management. 

$FIOPC Operation code, 1 All $DTFD OPOP Xes To 
byte. Set by the $PUTD 
program to indicate 
what operation data 
management is to 
perform. 

$FIATI Attribute byte 1, 1 All $I)TFD ACCES No To 
byte. Defines in GRAN 
general the type of GSEQ 
access, and the AEOD 
operation codes ARRN 
allowed under the UPDATE 
access method. The "DELETE' 
other attribute bytes 
(2-5) described below 
can further define the 
access and allowable 
operation codes. 

Figure E-2 (Part 2 of 11). Disk DTF Field Description 

Appendix E.Disk Data Management Considerations E-13 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FIAT2 Attribute byte 2, 1 All $DTFD ACCESS v No To 
byte. Further defines ORDER 
the type of access. 
Indicates if the access 
is by record or key. 
Indicates if this is 
ACCESS-PSEUDO. 
Indica tes if the file has 
been opened. 

$FIAT3 Attribute byte 3, 1 
byte. Further defines 
the type of access. 
Indicates what type of 
file to create 
(sequential, direct, or 
indexed) for output 
accesses. Indicates if 
data management 
should ensure keys are 
in ascending order 
when keyed output or 
add is done. Indicates 
whether the relative 
record number or 
argument value for 
ARRN; RRN, PLUS, 
or MINUS operations 
is binary or decimal. 
Default for 
ACCESS-CG is binary 
if$DTFD ARG 
parameter is not 
specified. 
ACCESS-DGA 
/DOA/DUA implies 
binary RRNs/ values, 
ACCESS-DG, 
DO/DU implies 
decimal RRNs/ values. 
Indica tes if the file 
has been allocated. 

Figure E-2 (Part 3 of 11). Disk DTF Field DescriptiOli 

E~14 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FIAT4 Attribute byte 4, 1 All $DTFD IOMSG No To 
byte. Indicates whether RETURN 
or not return LIMIT 
permanent disk errors LOCKCK 
to the program. 
Indicates whether to 
allow option 2 on 
permanent disk error 
messages issued. 
Indicates if key limits 
are used for this keyed 
access. Indicates if 
data management is to 
check if the requested 
record is already 
owned by the task. 

$FIRCL Record length field, 2 All $DTFD RECL No To 
bytes. Defines the 
record length of the 
records in the file 
being accessed through 
this DTF. 

$FINAM File name field. 8 All $DTFD NAME No To 
bytes. Indicates the 
name of the file being 
accessed through this 
DTF. The name 
specified in the DTF 
must be the same as 
the name specified in 
the NAME parameter 
on the / / FILE OCL 
statement for the file. 
The name is 
left-justified in this 
field. 

Figure E-2 (Part 4 of 11). Disk DTF Field Description 

Appendix E.Disk Data Management Considerations E-15 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FIINP Input record area GAM, $DTFD INREC Yes To 
address, 2 bytes. CG,CU, 
Contains a pointer to DG, 
the input record area DGA, 
in your program. Data DU, 
management places the DUA, IS, 
record read from the ISA,ISU, 
disk in the area for all ISUA, 
input operations. This IR, IRA, 
DTF field can be IRU, 
changed at sny time. IRUA 
The input record area 
address can be the 
same as the output 
record area address 
($FIOUT) described 
previously. 

Figure E-2 (Part 5 of 11). Disk DTF Field Description 

E-16 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FIDBF Data blocking factor, All $DTFD DBLOCK No To 
2 bytes. Specifies the 
number of records to 
be moved between 
main storage and disk 
for each disk I/O 
operation. A default 
of 1 is assumed if the 
$DTFD DBLOCK 
parameter is not 
specified. Allowed 
blocking factors are 
from 1 to 65535. 
Buffer space is 
reserved by the open 
function based on this 
factor, the index 
blocking factor 
($FlIBF described 
below), the record 
length, and the type of 
access. The maximum 
size buffer space is 
45056. If the blocking 
factors, record length, 
and access type dictate 
a buffer space larger 
than the maximum 
allowed, the buffer 
space is set to 45056 
bytes, and divided as 
equally as possible 
between data buffers 
and index buffers (if 
any). 

$FIMDl Modifier byte 1, 1 GAM $GETD LIMIT Yes To 
byte. Set by $GETD (GSEQ-Y 
LIMIT parameter to and 
indica te if new key ORDER 
limits should be set by -KEY) IS, 
data management for ISU 
this GET request. 

Figure E-2 (Part 6 of 11). Disk DTF Field Description 

Appendix E.Disk Data Management Considerations £-17 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 
$FIARG Argument field, 8 GAM None None Yes To/Fr 

bytes. Relative record (GRAN-Y 
number (RRN) or and 
argument value. For ORDER 
certain I/O operations, -RECORD) 
the program is DG, 
required to pass an DGA, 
RRN or an argument DU, 
val ue to data DUA, 
management in the DO, 
field. This value can DOA 
be specified in binary 
or in zoned decimal. 
$FIRRNB, described 
below, redefines this 
field for decimal 
values. See 
descriptions following 
for additional 
informa tion. 

$FIRRNB Binary argument field, GAM None None Yes To/Fr 
3 bytes. This field is (GRAN-Y 
defined over the & 
leftmost 3 bytes of the ORDER 
$FIARG field, -RECORD) 
described above. If DGA, 
you are passing a DUA, 
binary argument, place DOA 
it as a 3-byte number 
in this field. See the 
$DTFD ARG '. 

parameter for 
information on how to 
specify that the 
argument is in binary. 

$FIRRND Decimal argument GAM None None Yes To/Fr 
field, 8 bytes. This (GRAN-Y 
field is defined over and 
the entire 8 bytes of ORDER-
the $FIARG field, RECORD), 
described above. If DG,DU, 
you are passing a DA 
decimal argument, 
place it as an 
unsigned, 8-byte 
decimal number in this 
field. See the $DTFD 
ARG parameter for 
information on how to 
specify that the 
argument isin 
decimal. 

Figure E-2 (Part 7 of 11) .. Disk DTF Field Description 

E-18 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FIFBL Feedback label offset All $DTFD LABEL No To 
field, 2 bytes. This 
field is an offset from 
the end of the DTF to 
the leftmost byte of 
the 8-byte feedback 
label area in your 
program. This area 
must be after the 
DTF. The last byte of 
this area must be less 
than 2048 bytes away 
from the first byte of 
the DTF. In some 
situations, data 
management can 
return a file label in 
this area. 

$FIATS Attribute byte 5, 1 None None None No -
byte. This attribute. 
byte is for expansion 
purposes only. 

$FIKEY Key area offset field, 2 GAM $DTFD KEY No To 
bytes. This field is an (GRAN-Y 
offset from the last and 
byte of the DTF to the ORDER 
first byte of the key -KEY) 
area in your program. IR, IRA, 
The area length must IRU, 
be equal to the key IRUA 
length. This area must 
be after the DTF. The 
last byte of this area 
must be less than 2048 
bytes from the first 
byte of the DTF. The 
key area must contain 
the key of the record 
to. be read from disk 
for indexed random 
input-capable access 
methods. 

$FIKL Key length field, 2 GAM $DTFD KEYL No To 
bytes. This field (ORDER 
contains the key length -KEY), 
of the file being 10, IS, 
accessed through this ISA, ISU, 
DTF. ISUA, 

IR, IRA, 
IRU, 
IRUA 

Figure E-2 (Part 8 of 11). Disk DTF Field Description 

Appendix E.Disk Data Management Considerations E-19 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FIKD FCey displacen1ent GAM $DTFD FCDISP No To 
field, 2 bytes. This (ORDER 
field contains the -FCEY) , 
displacen1ent into the 10, IS, 
record of the ISA, lSD, 
rightn10st byte of the ISUA, 
key in the record. The IR, IRA, 
displacen1ent of the IRU, 
first byte in the record IRUA 
is 0, the second is 1, 
and so on. The 
n1axin1un1 
displacen1ent is 4095 
bytes. 

Figure E-2 (Part 9 of 11). Disk DTF Field Description 

E-20 



Access Can Be Interf 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 
$FIIBF Index blocking factor GAM $DTFD IBLOCK No To 

field, 2 bytes. Gives (ORDER 
the number of index -KEY), 
entries (key length 10, ISA, 
+ 3) moved between ISU, 
main storage and disk ISUA, 
for each I/O IR, IRA, 
operation. Default is IRU, 
1 if the $DTFD IRUA, IS 
IBLOCK parameter is 
specified. Allowed 
blocking factors are 
from 1 to 65535. The 
actual blocking factor 
rna y be larger because 
the index buffer is 
always a multiple of 
256 bytes and thus 
may hold more entries 
than requested. (Index 
entries do not cross 
256 byte boundaries in 
the index buffer.) 
Buffer space is 
reserved by $OPEN on 
this factor, the data 
blocking factor 
($FIDBF described 
above), the record 
length, and the type of 
access. Maximum size 
buffer space is 45056 
bytes. If the blocking 
factors, record length, 
and access type dictate 
a buffer space larger 
than the maximum 
allowed, the buffer 
space is set to 45056 
bytes, and divided as 
equally as possible 
between data and 
index buffers. 

Figure E-2 (Part 10 of 11). Disk DTF Field Description 

Appendix E.Disk Data Management Considerations E-21 



Access Can Be· Intert 
Methods Key- Altered To/Fr 

Field Field Applic- Macro word After Disk 
Name Description able Used Used Allocate DIM 

$FILIM Key limits area offset GAM $DTFD HIGH No To 
field, 2 bytes. This (GSEQ 
field is an offset from and 
the end of the DTF to ORDER 
the leftmost byte of -KEY), 
the key limits area in IS,ISU 
your program. The 
key limits area length 
must be equal to two 
times the key length. 
This area must be 
after the DTF. The 
last byte of this area 
must be less than 2048 
bytes away from the 
first byte of the DTF. 
Use this field to pass 
the low and high key 
limi ts to data 
management if this 
access is keyed wi thin 
limits. 

Figure E-2 (Part 11 of 11). Disk DTF Field Description 

E-22 



Completion Conditions 

Figure E-3 describes all currently defined completion conditions, and the access 
methods and I/O operations to which they apply. The completion condition 
indicates whether the I/O operation was successful or not, and is returned to your 
program by disk D/M in the completion code field ($FICMP) in the DTF. The 
labels and hex values generated by the $DTFO macroinstruction for the 
completion conditions are used in Figure E-3. 

Appendix E.Disk Data Management Considerations E-23 



Applicable Applicable 
$DTFO Value Completion Condition Access Operation 
Label (hex) Description Methods Codes 

$F1CCSUC 40 Normal. The operation All All 
completed normally. 

$F1CCPER 41 Permanent I/O Error. An All except All except 
unrecoverable software PSEUDO RELEASE 
or hardware error 
occurred. Refer to the 
$DTFD 10MSG and 
RETURN parameters 
for message options that 
can be requested for this 
error. Also, if the 
$DTFD LABEL 
parameter is specified, 
the file label is returned 
in the label return area. 

$F1CCEOF 42 End of File (EOF). This GAM Get NEXT, 
$GETD OP-NEXT (GSEQ-Y), PREY, 
parameter is attempting CG, CU, IS, READE 
to read past the last ISA,ISU, 
record in the file, or this ISUA 
$GETD OP-PREV 
parameter is attempting 
to read before the first 
record in the file. A 
$GETD OP-NEXT 
issued after a $GETD 
OP-NEXT, which 
received an EOF, also 
received an EOF. A 
$GETD OP-PREV 
issued after a $GETD 
OP-PREV which 
received an EOF, will 
also received an EOF. 
This $GETD 
OP-READE is 
attempting to read a 
record whose key is not 
equal to the key specified 
by the key parameter in 
the $DTFD. 

Figure E-3 (Part 1 of 6). Completion Condition Descriptions 

E-24 



Applicable Applicable 
$DTFO Value Completion Condition Access Operation 
Label (hex) Description Methods Codes 

$FICCIOP 43 Invalid Operation Code. All except All except 
The operation requested PSEUDO RELEASE 
is invalid for the access 
method in the DTF or 
for the type of file being 
accessed. $G ETD, 
OP-KEY /KEYEA/KEY A 
/RRN /FIRST /LAST 
were issued, but the 
access is not 
random-get-capable. 
$GETD, 
OP-NEXT /PREV /PL US/ 
MINUS issued, but the 
access is not 
sequential-get-capable. 
$GETD, LIMIT-Y was 
issued, but LIMIT -Y 
was not specified on 
$DTFD 
macroinstruction. 
$GETD,OP-UPDATE 
wen~ issued, but access is 
not update-capable. 
$GETD, OP-DELETE 
issued, but access or file 
is not delete-capable. 
$PUTD OP-AEOD was 
issued, but the access is 
not 
add-at-end-data-capable. 
$PUT OP-ARRN issued, 
to a sequential file that is 
not delete-capable, to a 
direct file that is not 
delete-capable, to an 
indexed access DTF, or 
to an access that is not 
random-add-capable. 
Issue $PUTD OP-AEOD 
to a direct file. 

Figure E-3 (Part 2 of 6). Completion Condition Descriptions 

Appendix E.Disk Data Management Considerations E-25 



Applicable Applicable 
$DTFO Value Completion Condition Access Operation 
Label (hex) Description Methods Codes 

$FICCNRF 44 Record Not Found. The GAM Get FIRST, 
requested record was not (GRAN-Y) LAST, 
found in the file. DG,DGA, PLUS, 
$GETD OP-FIRST DU,DUA, MINUS, 
/LAST issued, but the IR, IRA, KEY, 
file is empty. $GETD IRU,IRUA KEYA, 
OP-PLUS/MINUS KEYEA, 
/RRN issued, but the RRN 
record at that position in 
the file is deleted. 
$GETD OP-KEY 
/KEYEA/KEY A issued, 
but the requested key 
does not· exist in the file. 

$FICCNPR 45 No Pending Record. For GAM Put 
a nonshared file, the (UPDATE-V), UPDATE, 
program has not read a CU,DU, DELETE 
valid record before DUA,IRU, 
issuing a $GETD IRUA,ISU, 
OP-UPDATE/DELETE. ISUA 
For a shared file, the 
operation immediately 
preceding a $GETD 
OP-UPDATE/DELETE 
was not a valid read of a 
record. 

$FICCIRN 48 Invalid Relative Record GAM Get PLUS, 
Number (RRN). The (GRAN-Y MINUS, 
requested RRN is not and RRN Put 
within the file. $GETD ORDER- ARRN, 
OP-PLUS/MINUS/RRN RECORD), UPDATE 
issued, but no record or (ARRN-Y 
exists with that RRN. and 
$PUTD OP-ARRN ORDER-
issued, but the RRN is RECORD) 
beyond the extents of the DG,DGA, 
file. $PUTD DU,DUA, 
OP-UPDATE issued, DO,DOA 
and the completion code 
from the previous 
$GETD or $PUTD was 
48. 

Figure E-3 (Part 3 of 6). Completion Condition Descriptions 

E-26 



Applicable Applicable 
$DTFO Value Completion Condition Access Operation 
Label (hex) Description Methods Codes 

$FICCIUA 49 Invalid Data Record. GAM (with Put 
The program is any UPDATE, 
attempting to put a combina tion ARRN, 
record with hex FF in of AEOD 
the first byte into a UPDATE-Y, 
delete-capable file. ARRN-Y, 
$PUTD AEOD-Y) 
OP-UPDATEjARRNj CU,DU, 
AEOD issued, the record DUA,DO, 
to be written has hex FF DOA, 10, 
in the first byte, and the IA,IRU, 
file is delete-capable. IRUA, ISU, 

ISUA 

$FICCKER 50 Update Key Error. The GAM Put 
program is attempting to (UPDATE-Y) UPDATE 
change a key in the CU,DU, 
index for a file (parent DUA,IRU, 
index if this is a multiple IRUA,ISU, 
index file). $PUTD ISUA 
OP-UPDATE issued, 
and the key in the record 
to be written is different 
from the key for that 
record in the index for 
that file (parent index, if 
this is a multiple index 
file). 

$FICCNDR 53 No Deleted Record GAM Put ARRN 
Found. $PUT (ARRN-Y), 
OP-ARRN issued to a DU,DUA, 
delete-capable file, but DO,DOA 
the record at the RRN 
location is not a deleted 
record. 

$FICCDUP 60 Duplicate Key. The GAM (with PutAEOD, 
$PUTD any ARRN, 
OP-AEODjARRN combination UPDATE 
jUPDATE being of 
attempted will cause a UPDATE-Y, 
duplicate key in the ARRN-Y, 
index being used to AEOD-Y) 
access the file, and that CU,DU, 
index does not allow DUA, lA, 
duplicate keys. If this is 10,IRU, 
an AEOD and IRUA,ISU, 
BYP ASS-YES was ISA,ISUA 
specified on the j j FILE 

. OCL statement, the add 
will be allowed. 

Figure E-3 (Part 4 of 6). Completion Condition Descriptions 

Appendix E.Disk Data Management Considerations E-27 



COfflpletiOJl. Condition 
,.Applicable Applicable 

$DTFO Value <,Access ,:' Operation 
Label (hex) Description ", ··.··Methods Codes 

$FICCDPO 61 Duplicate Key in i"; GAM (with PutAEOD, 
Another Index. $PUTD :; any :ARRN, 
OP-AEOD/ARRN cQmbination UPDATE 
IUPDATE being of 
attempted which causes a UPDATE-Y, 
duplicate key in an index ARRN~Y, 

J;lot being· used to access 
the file, and that index 

.AEOD-Y) 
CD,OU,-

does not allow duplicate DUA, lA, 
keys. 10,IRU, 

IRUA,ISU, 
ISA, ISUA 

$FICCSEQ 62 Key Out of Sequence. GAM Put AEOD 
The program is adding a (AEOD-Y), 
key less than the lA, 10, ISA, 
previous key that was ISUA 
added, and an ordered 
load ($DTFD 
ORDLD-Y or $DTFD 
ACCESS-ISA/ISU A 
specified) was requested 
for this access. 

$FICCEOX 70 End of Extent. The GAM Put AEOD 
program is issuing a (AEOD-Y), 
$PUTD OP-AEOD to a CA, CO, lA, 
file, the file is full, and 10, IRA, 
either the EXTEND II IRUA, ISA, 
FILE OCL statement ISUA 
parameter was not 
specified for the file, or 
an extend was attempted 
but could not be 
completed. 

$FICCUAT 75 Undefined Access Type. 
Currently never issued. 

$FICCRAL 80 Record Already Locked. GAM (with All Get ./ 

The program is any operations 
attempting to read a combination PutARRN 
record, or to add a of 
record by a $PUTD UPDATE-Y, 
OP-ARRN, through a ARRN-Y, 
DTF that has AEOD-Y), 
LOCKCK-Y specified, CG,CU, 
and that record is DG,DU, 
already owned (read with DUA,IR, 
an update-capable access IRU,IRUA, 
method) by another IS, ISU, ISA, 
DTF in the program. ISUA 

Figure E-3 (Part 5 of 6). Completion Condition Descriptions 

E-2.8 



Applicable Applicable 
$DTFO Value Completion CQndition Access Operation 
Label (hex) Description Methods Codes 

$FICCNOP 99 File Not Opened. The All except All 
program is attempting to PSEUDO 
access a file, and the 
DTF for that file has not 
been opened. 

Figure E-3 (Part 6 of 6). Completion Condition Descriptions 

Appendix E.Disk Data Management Considerations E-29 



Closing the File 

E~30 

When you are finished processing records in a file, you should close ($CLOSE) 
the file. Close performs the following operations: 

• Writes to disk any data buffers that need to be written. 

• Releases the main storage space allocated in open for buffers and data 
management required control blocks. 

• Resets the disk DTF to a preallocate state. 

Once a DTF has been closed, it must be allocated ($ALOC) and opened ($OPEN) 
again before it can be used to access records in a file. For more information on 
the $CLOS macroinstruction, see $CLOS (Prepare a Device or File for 
Termination) in Chapter 5. 



Appendix F. Display Station Data Management Considerations 

Following each DTF operation issued via $WSIO, a 2-byte return code is passed 
back in the DTF at displacements $WSRTC-1 and $WSRTC. The return codes 
possible after the various $WSIO operations are described here, except for 
operations issued to the interactive communications feature. Return codes from 
the interactive communications feature are described in the Interactive 
Communications Feature: Reference manual. All the return codes listed for an 
operation are mutually exclusive. 

Note: For a guide to work station data management concepts and considerations, 
see the Concepts and Programmer's Guide. 

GET and ACI Return Codes 

After a GET or ACI operation, the following return codes are possible at 
$WSRTC: 

Label 

$WSROK 

$WSRACC 

$WSRSTP 

$WSRCTL 

$WSRACR 

$WSRNAV 

$WSRREL 

Value 
(hex) 

00 

01 

02 

03 

11 

24 

28 

Explanation 

Operation was successful. 

New requester. 

Note: If the user program does ACI as the first 
operation in order to accept program data, and 
their input buffer is not large enough to accept all 
of the program data, a return code ofX'01' is 
returned. $WSOUTL will contain X'OOOO'. 

Stop system was requested by system operator. 

No data was returned-control information only. 

ACI was rejected. No invites outstanding. 

Display station was released by display station 
operator. 

GET was rejected. Display station previously 
released by program. 

Appendix F . Display Station Data Management Considerations F-1 



ACQ Return Codes 

STI Return Codes 

F-2 

Label 

$WSRIRJ 

$WSPOST 

$WSPPRE 

Value 
(hex) 

34 

60 

80 

Explanation 

Input was rejected. Input buffer (INLEN 
parameter) is too small. 

Posted with user-defined address: . 

Permanent I/O error occurred at the display 
station. In response to the error, the system 
operator selected option 2. 

After an ACQ operation, the following return codes are possible at $WSRTC: 

Label 

$WSROK 

$WSRQO 

$WSRAFW 

$WSRAFN 

Value 
(hex) 

00 

08 

18 

38 

Explanation 

ACQ was successful. 

ACQ was successful. Display station was already 
allocated to the task. 

ACQ failed. Display station was allocated to a 
non-NEP. 

ACQ failed: 

• Display station is not in standby mode. 
• Display station is in command reject mode. 
• A permanent I/O error occurred at the. display 

station. 
• The dispiay station is allocated to a NEP. 
• The previous release operation for the display 

station is still being processed. 

After an STI operation, the following return codes are possible at $WSRTC: 

Label Value Explanation 
(hex) 

$WSROK 00 STI was successful. 

$WSRNAV 24 Display station was released by display station 
operator. 

$WSRREL 28 STI was ignored. Display station was previously 
released by program. 

$WSRSPF 44 STI failed. Display station operator entered data, 
which should be read by a GET or ACI operation. 



Label 

$WSPRE 

Value 
(hex) 

80 

Explanation 

Permanent I/O error occurred at the display 
station. In response to the error, the system 
operator selected option 2. 

Return Codes for All Operations Except GET, ACI, ACQ, and STI 

After any operation except GET, ACI, ACQ, and STI, the following return codes 
are possible at $WSRTC: 

Label 

$WSROK 

$WSRNAV 

$WSRREL 

$WSRIRJ 

$WSROFL 

$WSPOGE 

$WSRPAL 

$WSRGRF 

$WSRGI 

Value 
(hex) 

00 

24 

28 

34 

40 

45 

48 

50 

51 

Explanation 

Operation was successful. 

Display station was released by display station 
operator. 

Operation was ignored. Display station previously 
released by program. 

Input was rejected. Input buffer (INLEN 
parameter) too small. 

Requested terminal was offline. 

Invalid ideographic data was found on a print 
operation. 

Print operation was issued to the allocated printer. 

On an output operation, a display station 
ideographic character table full of ideographic 
characters was detected. The user selected a· 2 
option. 

On an output operation an invalid ideographic 
character was found. The user selected a 2 option. 

Appendix F .Display Station Data Management Considerations F -3 



Label Value Explanation 
(hex) 

$WSRGU 52 On an output operation, one of the following 
errors was detected: 

• An undefined ideographic character was 
found. 

• The extended file of ideographic characters 
has not been allocated. 

• The extended file of ideographic characters 
has not been restored. 

The user selected a 2 option. 

$WSRPE 80 Permanent I/O error occurred at the display 
station. In response to the error, the system 
operator selected option 2. 

F-4 



Notes: 

Appendix F.Display Station Data Management Considerations F-5 



F-6 



Glossary 

#LIBRARY. The library, provided with the system, 
that contains the System Support Program Product. See 
system library. 

abnormal termination. A system failure or operator 
action that causes a job to end unsuccessfully. 

access method. The way that records in files are 
referred to by the system. The reference can be 
consecutive (records are referred to one after another in 
the order in which they appear in the file), or it can be 
random (the individual records can be referred to in any 
order). 

address. A name, label, or number that identifies a 
location in storage, a device in a network, or any other 
data source. 

address recall register (ARR). A register in the main 
storage processor that is used for temporary storage of 
an address to be used later by the program being run. 

advanced program-to-program communications (APPC). 
Communications support that allows System/36 to 
communicate with other systems having the same 
support. APPC is the way that System/36 puts the IBM 
SNA LU-6.2 protocol into effect. 

alarm. An audible signal at a display station or printer 
that is used to get the operator's attention. 

allocate. To assign a resource, such as a disk file or a 
diskette file, to perform a specific task. 

alphabetic character. Anyone of the letters A through 
Z (uppercase and lowercase). Assembler extends the 
alphabet to include the special characters #, $, and @. 

alphameric. Consisting of letters, numbers, and often 
other symbols, such as punctuation marks and 
mathematical symbols. 

alphanumeric. See alphameric. 

alternative system console. A command display station 
that can be designed as the system console. 

American National Standard Code for Information 
Interchange (ASCII). The code developed for 
information interchange among data processing systems, 
data communications systems, and associated 
equipment. The ASCII character set consists of 7-bit 
control characters and symbolic characters. 

APPC. See advanced program-to-program 
communications ( AP PC ) . 

application. (1) A particular business task, such as 
inventory control or accounts receivable. (2) A group 
of related programs that apply to a particular business 
area, such as the Inventory Control or the Accounts 
Receivable application. 

application program. A program used to perform an 
application or part of an application. 

ASCII. See American National Standard Code for 
Information Interchange (ASCII). 

assembler. A program that converts assembler language 
statements to an object program. 

assembler instruction statement. A statement that 
controls what the assembler does, rather than what the 
user's program does. 

assembler language. A symbolic programming language 
in which the set of instructions includes the instructions 
of the machine and whose data structures correspond 
directly to the storage and registers of the machine. 

attribute. A characteristic. 

auto answer. In data communications, the ability of a 
station to receive a call over a switched line without 
operator action. Contrast with manual answer. 

autocall. In data communications, the ability of a 
station to place a call over a switched line without 
operator action. Contrast with manual call. 

autocall unit. A common carrier device that allows 
System/36 to automatically call a remote location. 

Glossary G-I 



base. displacement addressing. In assembler language, an 
addressing method that involves setting up a base 
address from which other addresses can be calculated. 

base number. The part· of a self-check field from which 
the check digit is calculated. 

BASIC (beginner's all-purpose symbolic instruction 
code). A programming language designed for 
interactive systems and originally developed at 
Dartmouth College to encourage people to use 
computers for simple problem-solving operations. 

batch. Pertaining to activity involving little or no 
operator action. Contrast with interactive. 

batch BSC. The System Support Program Product 
support that provides data communications with BSC 
computers and devices via the RPG T specification or 
the assembler $DTFB macroinstruction. 

binary. (1) Pertaining to a system of numbers to the 
base two; the binary digits are 0 and 1. (2) Involving a 
choice of two conditions, such as on-off or yes-no. 

binary synchronous communications (BSC). A form of 
communications line control that uses transmission 
control characters to control the transfer of data over a 
communications line. Compare with synchronous data 
link control (SDLC). 

bit. Either of the binary digits 0 or 1. See also byte. 

block. (1) A group of records that is recorded or 
processed as a unit. Same as physical record. (2) Ten 
sectors (2560 bytes) of disk storage. 

branch instruction. An instruction that changes the 
sequence in which the instructions in a computer 
program are performed. The sequence of instructions 
continues at the address specified in the branch 
instruction. 

branching. Performing a statement other than the next 
one in sequence. 

BSC. See binary synchronous communications (BSC). 

byte. The amount of storage required to represent one 
character; a byte is 8 bits. 

call. (1) To activate a program or procedure at its 
entry point. Compare with load. (2) In data 
communications, the action necessary in making a 
connection between two stations on a switched line. 

cancel. To end a task before it is completed. 

character. A letter, digit, or other symbol. 

G-2 

character key. A keyboard key that allows the user to 
enter the character shown on the key. Compare with 
command keys and/unction key. 

character string. A sequence of consecutive characters. 

check. (1) An error condition. (2) To look for a 
condition. 

check digit. The rightmost digit of a self-check field 
used to check the accuracy of the field. 

close. :ro end the processing of a file~ 

COBOL (common business-oriented language). A 
high-level programming language, similar to English, 
that is used primarily for commercial data processing. 

code. (1) Instructions for the computer. (2) To write 
instructions for the computer. Same as program. (3) A 
representation of a condition, such as an error code. 

command. A request to perform an operation or a 
procedure. 

command display station. A display station from which 
an operator can start and control jobs. A command 
display station can become an alternative system 
console, can be designated as a subconsole, and can also 
be used as a data display station. See also alternative 
system console, data display station, and subconsole. 

command keys. The 12 keys on the top row of the 
display station keyboard that are used with the Cmd key 
(and optionally the Shift key) to request up to 24 
different actions defined for program products and user 
programs. Compare with character key and/unction 
key. 

command mode. A mode that allows a display station 
operator to request or start jobs. 

command text, command source or load member. The 
command to be processed when an operator selects an 
option on a menu. 

comment. Words or statements in a program or 
procedure that serve as documentation rather than as 
instructions. 

compilation time. The time during which a source 
program is translated from a high-level language to a 
machine language program. 

compile. To translate a program written in a high-level 
programming language into a machine language 
program. 



constant. A data item with a value that does not 
change. Contrast with variable. 

constant field. A field that is defined by a display 
format to contain a value that does not change. 

continuation line. A line of a source statement into 
which characters are entered when the source statement 
cannot be contained on the previous line or lines. 

control command. A command used by an operator to 
control the system or a work station. A control 
command does not run a procedtlre and cannot be used 
in a procedure. 

control station. The primary or controlling computer 
on a multipoint line. The control station controls the 
sending and receiving of data. 

cursor. A movable symbol (such as an underline) on a 
display, usually used to indicate to the operator where 
to type the next character. 

data display station. A display station from which an 
operator can only enter data. A data display station is 
acquired and controlled by a program. Contrast with 
command display station. 

data file utility (DFU). The part of the Utilities 
Program Product that is used to create, maintain, 
display, and print disk files. 

data item. A unit of information to be processed. 

data type. A category that identifies the mathematical 
qualities and internal representation of data. 

decimal. Pertaining to a system of numbers to the base 
ten; decimal digits range from 0 through 9. 

default value. A value stored in the system that is used 
when no other value is specified. 

define-the-file (DTF). A control block containing 
information that is passed between data management 
routines and users of the data management routines. 

delete. To remove. 

DFU. See data file utility (DFU). 

direct file. A disk file in which records are referenced 
by the relative record number. Contrast with indexed 
file and sequential file. 

disk. A storage device made of one or more flat, 
circular plates with magnetic surfaces on which 
information can be stored. 

display. (1) A visual presentation of information on a 
display screen. (2) To show information on the display 
screen. 

display control specification. A record within the 
display format specifications, it provides information 
about the entire display format that, in general, is 
unrelated to the specific fields being defined. Also 
known as the S-specification. 

display format. Data that defines (or describes) a 
display. 

display layout sheet. A form used to plan the location 
of data on the display. 

display screen. The part of the display station on which 
information is displayed. 

display station. A device that includes a keyboard from 
which an operator can send information to the system 
and a display screen on which an operator can see the 
information sent or receive information from the 
system. 

display text source or load member. Describes the 
information displayed on a menu. 

DTF. See define-the-file (DTF). 

edit. (1) To modify the form or format of data; for 
example, to insert or remove characters such as for 
dates or decimal points. (2) To check the accuracy of 
information that has been entered, and to indicate if an 
error is found. 

embedded blanks. Blanks that are surrounded by any 
other characters. 

enter. To type in information on a keyboard and press 
the Enter key in order to send the information to the 
computer. 

extended binary-coded decimal interchange code 
(EBCDIC). A set of 256 eight-bit characters. 

field. One or more characters of related information 
(such as a name or an amount). 

file. A set of related records treated as a unit. 

format. (1) A defined arrangement of such things as 
characters, fields, and lines, usually used for displays, 
printouts, or files. (2) To arrange such things as 
characters, fields, and lines. 

FORTRAN (formula translation). A high-level 
programming language used primarily for scientific, 
engineering, and mathematical applications. 

Glossary G-3 



function key. A keyboard key that requests an action 
but does not display or print a character. The cursor 
movement and Help keys are examples of function keys. 
Compare with command keys and character key. 

GAM. See generalized access method (GAM). 

generalized access method (GAM). A disk file access 
method in assembler allowing random and consecutive 
processing, update, delete, and add. 

hex. See hexadecimal. 

hexadecimal. Pertaining to a system of numbers to the 
base sixteen; hexadecimal'digits range from 0 (zero) 
through 9 (nine) and A (ten) through F (fifteen). 

host system. The primary or controlling computer in 
the communications network. See also control station. 

index. (1) A table containing the key value and location 
of each record in an indexed file. (2) A computer 
storage position or register, the contents of which 
identify a particular element in a set of elements. 

indexed file. A file in which the key and the position of 
each record is recorded in a separate portion of the file 
called an index. Contrast with direct file and sequential 
file. 

index key. The field within a record that identifies that 
record in an indexed file. 

indicator. An internal switch that communicates a 
condition between parts of a program or procedure. 

informational message. A message that provides 
information to the operator, but does not require a 
response. 

input. Data to be processed. 

input/output (I/O). Pertaining to either input or output, 
or both. 

instruction. A statement that specifies an operation to 
be performed by the computer and the locations in 
storage of all data involved in that operation. 

instruction address register (IAR). A register in the 
main storage processor that contains the address of the 
next instruction to be performed. 

instruction fetch. The act of getting an instruction from 
storage and loading it into the correct registers. 

integer. A positive or negative whole number; that is, 
an optional sign followed by a number that does not 
contain a decimal point. 

G-4 

interactive. Pertaining to activity involving requests and 
replies as, for example, between an operator and a 
program or between two programs. Contrast with 
batch. 

Interactive Communications Feature (SSP-ICF). A 
feature of the System Support Program Produc,t that 
allows a program to interactively communicate with 
another program or system. 

interchange record separator (IRS). Same as record 
separator. 

intermediate-text-block (lTD) character. In binary 
synchronous communications, the transmission control 
character used to indicate the end of a section of data to 
be checked. 

IRS (interchange record separator). Same as record 
separator. 

lTD. See intermediate-text-block character. 

K -byte. 1024 bytes. 

key mask. A string of numbers and alphabetic 
characters that identify the function keys and command 
keys that the operator can use to control program 
operations. 

left-adjust. To place or move an entry in a field so that 
the leftmost character of the field is in the leftmost 
position. Contrast with right-adjust. 

library. (1) A named area on disk that can contain 
programs and related information (not files). A library 
consists of different sections, called library members. 
(2) The set of publications for a system. 

library member. A named collection of records or 
statements in a library. The types of library members 
are load member, procedure member, source member, and 
subroutine member. 

link-editing. To combine, by the overlay linkage editor, 
a number of load members and/or subroutine members 
into one program. 

literal. A symbol or a quantity in a source program 
that is itself data, rather than a reference to data. 

load. To move data or programs into storage. 

load member. A library member that contains 
information in a form that the system can use directly, 
such as a display format. Contrast with source member. 



load module. A program in a form that can be loaded 
into main storage and run. The load module is the 
output of the overlay linkage editor. 

local. Pertaining to a device, file, or system that is 
accessed directly from your system, without the use of a 
communications line. Contrast with remote. 

machine instruction. An instruction of the machine 
language that can be performed by the computer. 

machine language. A language that can be used directly 
by a computer without intermediate processing. 

macro. See macro definition, macro instruction. 

macro call. Synonym for macro instruction. 

macro definition:. A set of statements that defines the 
name of, format of, and conditions for generating a 
sequence of assembler language statements from a single 
source statement. 

macroinstruction. A single instruction that represents a 
set of instructions. 

macro library. A library of macro definitions used 
during macro expansion. 

magnetic stripe reader. A device, attached to a display 
station, that reads data from a magnetic stripe on a 
badge before allowing an operator to sign on. 

manual answer. In data communications, a line type 
requiring operator actions to receive a call over a 
switched line. Contrast with autoanswer. 

manual call. In data communications, a line type 
requiring operator actions to place a call over a 
switched line. Contrast with autocall. 

menu. A displayed list of items from which an operator 
can make a selection. 

message. Information sent to an operator or 
programmer from a program. A message can be either 
displayed or printed. 

message identification. A field in the display or printout 
of a message that directs the user to the description of 
the message in a message guide or a reference manual. 
In Assembler, this field consists of the alphabetic 
characters ASM, followed by a dash, followed by the 
message identification code. 

message identification code (MIC). A four-digit number 
that identifies a record in a message member. This 
number can be part of the message identification. 

message identifier. A field in the display or printout of 
a message that directs the user to the description of the 
message in a message guide or reference manual. This 
field consists of up to four alphabetic characters, 
followed by a dash, followed by the message 
identification code. 

message member. A library member that defines the 
text of each message and its associated message 
identification code. 

MIC. See message identification code (MIC). 

modulus to/modulus 11 checking. Formulas used to 
calculate the check digit for a self-check field. 

noncontiguous. Not being in actual contact. 

null character. The character hex 00, used to represent 
the absence of a printed or displayed character. 

numeric. Pertaining to any of the digits 0 through 9. 

object module. A set of instructions in machine 
language. The object module is produced by a compiler 
from a subroutine or source program and can be input 
to the overlay linkage editor. 

object program. In COBOL, a set of instructions in 
machine - runnable form. The object program is 
produced by a compiler from a source program. 

OCL. See operation control language (OCL). 

open. To prepare a file for processing. 

operand. (1) A quantity of data that is operated on, or 
the address in a computer instruction of data to be 
operated on. (2) In COBOL, the object of a verb or an 
operator; that is, an operand is the data or equipment 
governed or directed by a verb or operator. 

operation. A defined action, such as adding or 
comparing, performed on one or more data items. 

operation code. A code used to represent the operations 
of a computer. 

operation control language (OCL). A language used to 
identify a job and its processing requirements to the 
System Support Program Product. 

output. The result of processing data. 

overlay. (1) To write over (and therefore destroy) an 
existing file. (2) A program segment that is loaded into 
main storage and replaces all or part of a previously 
loaded program segment. 

Glossary G-5 



overlay linkage editor. The part of the System Support 
Program Product that combines object programs to 
produce code that can be run and allows the user to 
determine overlays for programs. 

overlay region. A continuous area of main storage in 
which segments can be loaded independently of other 
regions. 

override. (l) A parameter or value that replaces a 
previous parameter or value. (2) To replace a 
parameter or value. 

parameter. A value supplied to a procedure or program 
that either is used as input or controls the actions of the 
procedure or program. 

printout. Information from the computer that is 
produced by a printer. 

procedure. A set of related operation control language 
statements (and, possibly, utility control statements and 
procedure control expressions) that cause a specific 
program or set of programs to be performed. 

procedure member. A library member that contains the 
statements (such as operation control language 
statements) necessary to perform a program or set of 
programs. 

program. (1) A sequence of instructions fora 
computer. See source program and load module. (2) To 
write a sequence of instructions for a computer. Same 
as code. 

program product. A licensed program for which a fee is 
charged. 

prompt. A displayed request for information or 
operator action. 

record. A collection of fields that is treated as a unit. 

record separator. In binary synchronous 
communications, a character used to indicate the end of 
one record and the beginning of another. 

recovery procedure. (1) An action performed by the 
operator when an error message appears on the display 
screen. Usually, this action permits the program to 
continue or permits the operator to run the next job. 
(2) The method of returning the system to the point 
where a major system error occurred and running the 
recent critical jobs again. 

register. A storage area, in a computer, usually 
intended for some special reason, capable of storing a 
specified amount of data such as a bit or an addr~ss. 

G-6 

relative record number. A number that specifies the 
location of a record in relation to the beginning of the 
file. 

remote. Pertaining to a system or device that is 
connected to your system through a communications 
line. Contrast with local. 

restore. Return to an original value or image. For 
example, to restore a library from diskette. 

return code. In data communications, a value generated 
by the system or subsystem that is returned to a 
program to indicate the results of an operation issued by 
that program. 

right-adjust. To place or move an entry in a field so 
that the rightmost character of the field is in the 
rightmost position. Contrast with left-adjust. 

RPG. A programming language specifically designed 
for writing application programs that meet common 
business data processing requirements. 

RRN. See relative record number. 

run. To cause a program, utility, or other machine 
function to be performed. 

screen design aid (SDA). The part of the Utilities 
Program Product that helps the user design, create, and 
maintain displays and menus. Additionally, SDA can 
generate specifications for RPG and WSU work station 
programs. 

SDA. See screen design aid (SDA). 

SDLC. See synchronous data link control (SDLC). 

self-check field. A field, such as an account number, 
consisting of a base number and a check digit. 

sequential access. An access method in which records 
are read from, written to, or removed from a file based 
on the logical order of the records in the file. 

sequential file. A file in which records occur in the 
order in which they were entered. Contrast with direct 
file and indexed file. 

SEU. See source entry utility (SEU). 

significant digit. Any digit of a number that follows the 
leftmost digit which is not a zero and that is within the 
accuracy allowed. 

source entry utility (SEU). The part of the Utilities 
Program Product used by the operator to enter and 
update source and procedure members. 



source member. A library member that contains 
information in the form in which it was entered, such as 
RPG specifications. Contrast with load member. 

source program. A set of instructions that are written 
in a programming language and that must be translated 
to machine language before the program can be run. 

special character. A character other than an alphabetic 
or numeric character. For example; *, +, and % are 
special characters. 

special registers. In COBOL, compiler-generated data 
items used to store information produced by specific 
COBOL features (for example, the DEBUG-ITEM 
special register). 

split key. A key, for an indexed file, defined from more 
than one field within each record. 

SSP. See System Support Program Product (SSP). 

SSP-ICF. See Interactive Communications Feature 
(SSP-ICF). 

statement. An instruction in a program or procedure. 

storage index. A table in main storage that contains the 
address of the lowest key on each track in the file index. 

subconsole. A display station that controls a printer or 
printers. 

subroutine member. A library member that contains 
information that must be combined with one or more 
members before being run by the system. 

synchronous data link control (SDLC). A form of 
communications line control that uses commands to 
control the transfer of data over a communications line. 
Compare with binary synchronous communications 
(ESC). 

system library. The library, provided with the system, 
that contains the System Support Program Product and 
is named #LIBRAR Y. 

System Support Program Product (SSP). A group of 
licensed programs that manage the running of other 
programs and the operation of associated devices, such 
as the display station and printer. The SSP also 
contains utility programs that perform common tasks, 
such as copying information from diskette to disk. 

terminal error. Any error that causes termination of the 
current program. 

transaction. (1) An item of business. The handling of 
customer orders and customer billing are examples of 
transactions. (2) In interactive communications, the 
communication between the application program and a 
specific item (usually another application program) at 
the remote system. 

TRANSACTION file. In COBOL, an input/output file 
used to communicate with display stations and SSP-ICF 
sessions. 

truncate. To shorten a field or statement to a specified 
length. 

turnaround time. The time interval required to reverse 
the direction of transmission over a communication line. 

unique. The only one. 

unprotected field. A displayed field for which operators 
can enter, modify, or delete data. 

Utilities Program Product. A program product that 
contains the data file utility (DFU), the source entry 
utility (SEU), the work station utility (WSU), and the 
screen design aid (SDA). 

utility control statement. A statement that gives a 
utility program information about the way the program 
is to perform or the output it is to produce. 

utility program. A System Support Program Product 
program that allows you to perform a common task, 
such as copying information from diskette to disk. 

variable. A name used to represent a data item whose 
value can change while the program is running. 
Contrast with constant. 

work station. A device that lets people transmit 
information to or receive information from a computer; 
for example, a display station or printer. 

work station data management. The part of the System 
Support Program Product that enables a program to 
present data on a display screen by providing a string of 
data fields and a format name. 

work station utility (WSU). The part of the Utilities 
Program Product that helps you to write programs for 
data entry, editing, and inquiry. 

WSU. See work station utility (WSU). 

Glossary G-7 



G-8 



Index 

I Special Characters I 

&SYSNDX 4-7 
$ALOC - Allocate File or Device 5-4 
$ASMINPT file size parameter 1-5 
$CLOS - Prepare a Device or File for Termination 5-6 
$DTFB - Define the File for BSC 5-7 
$DTFD - Define the File for Disk 5-13 
$DTFO - Generate DTF Offsets 5-19 
$DTFP - Define the File for a Printer 5-20 
$DTFW - Define the File for Display Station 5-23 
$EOJ - End of Job 5-30 
$FIND parameter list and displacement 

generation - $FNDP 5-32 
$FIND - Find a Directory Entry 5-31 
$FNDP - Generate $FIND Parameter List and 

Displacements 5-32 
$GETB - Issue a Get Request 5-34 
$GETD - Construct a Disk Get Interface 5-35 
$INFO - Information Retrieval 5-39 
$INV - Inverse Data Move 5-43 
$LMSG parameter use chart 5-45 
$LMSG - Generate a Parameter List for a Message 

Displayed by 5-44 
$LOAD - Load or Fetch a Module 5-48 
$LOG macroinstruction 5-49 
$LOG - Generate the Linkage to the System Log 5-49 
$LOGD - Generate Displacements for System 

Log 5-51 
$OPEN - Prepare a Device or File for Access 5-52 
$PUTB - Issue a Put Request 5-53 
$PUTD - Construct a Disk Put Interface 5-54 
$PUTP - Construct a Printer Put Interface 5-57 
$RIT - Return Interval Time 5-59 
$SIT - Set Interval Timer 5-61 
$SN AP - Snap Dump of Main Storage 5-63 
$SORT - Construct a Loadable Sort Interface 5-65 
$SOURCE file size parameter 1-5 
$SRT - Generate a Loadable Sort Parameter List 5-66 
$TOD - Return Time and Date 5-70 
$TRAN - Generate an Interface to the Translate 

Routine 5-71 
$TRB - Generate Timer Request Block 5-72 
$TRL - Generate a Translation Parameter List 5-73 
$TRTB - Generate a Translation Table 5-74 
$WIND - Generate Override Indicators for Display 

Station 5-76 
$WORK file size parameter 1-5 
$WORK2 file size parameter 1-5 
$WSEQ - Generate Labels for Display Station 5-76 
$WSIO - Construct a Display Statiol1 Input/Output 

Interface 5-77 

A - Add to Register 2-18 
absolute expression 2-11 
access information - $INFO 5-39 
Add Logical Character - ALC 2-19 
Add Logical Immediate - ALI 2-20 
Add to Register - A 2-18 
Add Zoned Decimal- AZ 2-21 
addressing 2-14, 3-23 

USING 3-23 
AGO - Uncondition Branch Record 4-27 
AIF - Conditional Branch 4-24 
ALC - Add Logical Character ·2-19 
ALI - Add Logical Immediate 2-20 
Allocate File or Device - $ALOC 5-4 
alphabetic characters 1-15 
alphameric value, macroinstruction 4-5 
alter format of source program statements 3-15 
alter location counter 3-17 
ALTERCOM 5-96 
alternative index and noncontiguous keys 

program A-17 
alternative index program A-17 
ANOP - Assembly No Operation 4-30 
appendices' descriptions viii 
architecture ix 
arithmetic expression, mac~oinstruction 4-8 
arithmetic expressions 2-10 
Arithmetic Global- GBLA 4-15 
Arithmetic local- LCLA 4-17 
arrangement of manual viii 
ASCII table B-3 
ASM procedure command 1-4 
assembler coding form 1-15, C-l 
assembler control statements 2-1 
assembler files 1-7 
assembler instruction formats D-l 
assembler instruction statements 2-49 
assembler language 1-1 
assembler listing 1-9 
assembler program control 3-8, 3-10, 3-11, 3-15, 3-21, 

3-23 
Drop Index Register as Base Register- DROP 3-8 
End Assembly - END 3-10 
Identify Entry-Point Symbol- ENTRY 3-11 
Input Format Control- ICTL 3-15 
Start Assembly-START 3-21 
Use Index Register for Base Displacement 3-23 

assembler program control-Identify External 
Symbols- EXTRN 3-13 

assembler program control statements 3-17 
Set Location Counter-ORG 3-17 

assembler program conventions 2-5 
assembler rules 2-5 

Index X-I 



assembler work file size parameter 1-5 
assembler work2 file size parameter 1-5 
Assembly No Operation - ANOP 4-30 
attribute, macroinstruction 4-5 
autocall 5-93 
AZ- Add Zoned Decimal 2-21 

base displacement addressing 2-15, 3-23 
BC - Branch on Condition 2-22 
BD - Branch Direct 2-24 
before programming 2-1 
beginning location 3-21 
binary constants 2-9 
Binary Global- GBLB 4-15 
Binary Local - LCLB 4-18 
blank compression 5-94 

expansion 5-94 
blank truncation 5-93 
Branch Direct - BD 2-24 
Branch on Condition - BC 2-22 
BSC 1-20, 5-96 

environment 5-96 
BSC Completion Code Table 5-12 

change format of source program statements 3-15 
changes xi 
character constants 2-9 
character expression, macroinstruction 4-3 
Character Global- GBLC 4-16 
Character Local - LCLC 4-18 
character string, macroinstruction 4-3 
characters 1-15 
check source sequence 3-16 
CLC - Compare Logical Characters 2-25 
CLI - Compare Logical Immediate 2-26 
coding a program 1-3 
coding form 1-15, C-l 
coding form entries 1-15 
coding restrictions 5-88 
comment 4-23 
comment, coding form 1-16 
communications 1-20 
communications area information - $INFO 5-39 
communications with other systems 1-21 
Compare Logical Characters - CLC 2-25 
Compare Logical Immediate - CLI 2-26 
compression of blanks 5-94 
concatenation, macroinstructions 4-9 
Conditional Branch - AIF 4-24 
constant 2-7 
Construct a Disk Get Interface - $GETD 5-35 

X-2 

Construct a Disk Put Interface - $PUTD 5-54 
Construct a Display Station Input/Output 

Interface - $WSIO 5-77 
Construct a Loadable Sort Interface - $SORT 5-65 
Construct a Printer Put Interface':-' $PUTP 5-57 
continuation, prototype records 4-9 
control assembler processor 3-1 
Control Program Listing- PRINT 3-19 
control statements 1-9, 2-1 
control storage supervisor, extended 2-46 
conventions 2-5 
count function, macroinstruction 4-8 
cross-reference list 1-13 

data addressing 2-16 
data communications support 1-20 
data formats 5-95 
DC- Define Constant 3-2 
debugging information ix 
decimal constants 2-7 
decimal to hexadecimal table (0 to F) 2-8 
Define Constant - DC 3-2 
Define Storage - DS 3-7 
define symbols and data 3-1 
Define the File for a Printer - $DTFP 5-20 
Define the File for BSC - $DTFB 5-7 
Define the File for Disk - $DTFD 5-13 
Define the File for Display Station - $DTFW 5-23 
definition control statement format 4-10 
definition control statement header 4-13 
definition control statements, macroinstructions 4-10 
diagnostics, listing 1-12 
direct addressing 2-14 
disk files used by assembler 1-7 
Drop Index Register as Base Register - DROP 3-8 
DROP - Drop Index Register as Base Register 3-8 
DS-Define Storage 3-7 
dump storage ~ $SNAP 5-63 

EBCDIC table B-1 
ED - Edit 2-27 
Edit-ED 2-27 
EJECT - Start New Page 3-9 
End Assembly - END 3-10 
End of Job - $EOJ 5-30 
end, see MEND 4-34 
end, see MEXIT 4-33 
END - End Assembly 3-10 
entering a program 1-3 
ENTRY example 3-13 



ENTRY - Identify Entry-Point Symbol 3-11 
EQU - Equate Symbol 3-12 
Equate Symbol- EQU 3-12 
error field, listing 1-10 
error message, see MNOTE 4-31 
ESL 1-9 
example 1-1, 4-35, 4-36, 4-38 

comment 4-38 
IBM macroinstruction definition 4-35 
machine language 1-1 
use of sample macroinstruction 4-36 
user macro definition 4-35 

execution information 1-4 
exit, see MEXIT 4-33 
expansion of blanks 5-94 
expression 2-5 
expression rules 2-10 
expressions 2-10 
extended control storage supervisor 2-46 
extended mnemonics 2-23 

Branch on Condition 2-23 
extended mnemonics/Jump on Condition 2-30 
external symbol list (ESL) 1-9 
EXTRN example 3-13 
EXTRN - Identify External Symbols 3-13 

fetch a module - $LOAD 5-48 
files used by the assembler 1-7 
Find a Directory Entry - $FIND 5-31 
format 4-10 

macroinstruction definition control statement 4-10 
formats for instructions D-l 

GBLA - Arithmetic Global 4-15 
GBLB- Binary Global 4-15 
GBLC - Character 'Global 4-16 
general programming notes 2-17 
Generate $FIND Parameter List and 

Displacements - $FNDP 5-32 
Generate a Loadable Sort Parameter List - $SR T 5-66 
Generate a System Log Displayed Message Parameter 

List - $LMSG 5-44 
Generate a Translation Parameter List - $TRL 5-73 
Generate a Translation Table - $TRTB 5-74 
Generate an Interface to the Translate 

Routine - $TRAN 5-71 
Generate Displacements for System 

Log-$LOGD 5-51 
Generate DTF Offsets - $DTFO 5-19 
Generate Labels for Display Station - $WSEQ 5-76 
Generate Linkage to System Log - $LOG 5-49 

Generate Override Indicators for Display 
Station - $WIND 5-76 

Generate Timer Request Block - $TRB 5-72 
global set symbol, macroinstruction 4-7 
global statement 4-15, 4-16 

Arithmetic Global- GBLA 4-15 
Binary Global- GBLB 4-15 
Character Global- GBLC 4-16 

global statements 4-15 

header 4-13 
macroinstruction definition 4-13 

HEADERS 2-2 
HEADERS statement 2-2 
hexadecimal constants 2-8 
hexadecimal to decimal table (0 to F) 2-8 
how to 4-37 

use macroinstructions 4-37 

IBM macroinstruction conventions 5-1 
ICTL- Input Format Control 3-15 
ID sequence 1-16 
identification sequence, coding form 1-16 
Identify Entry-Point Symbol- ENTRY 3-11 
Identify External Symbols- EXTRN 3-13 
identify linkage symbols 3-11 
identify other program symbols 3-13 
indirect addressing 2-15, 2-16 
information x 
Information Retrieval - INFO 5-39 
initial location counter value 3-21 
initialize storage areas to constant type 3-2 
initiating and terminating the transfer of data 5-91 
initiating the transfer of data 5-91 
Input Format Control- ICTL 3-15 
input library parameter 1-5 
Input Sequence Checking - ISEQ 3-16 
Insert and Test Characters - ITC 2-28 
instruction addressing 2-16 
instruction formats D-l 
Instruction set 2-18, 2-19, 2-20, 2-21, 2-22, 2-24, 2-25, 

2-26,2-27, 2-28, 2-29, 2-31, 2-32, 2-33, 2-34, 2-35, 
2-36, 2-37, 2-38, 2-39, 2-40, 2-41, 2-42, 2-43, 2-44, 
2-45, 2-46, 2-47, 2-48 

Add Logical Character - ALC 2-19 
Add Logical Immediate - ALI 2-20 
Add to Register - A 2-18 
Add Zoned Decimal - AZ 2-21 
Branch Direct - BD 2-24 
Co;mpare Logical Immediate - CLI 2-26 
Edit - ED 2-27 

Index X-3 



Insert and Test Characters - ITC 2-28 
Jump on Condition - JC 2-29 
Load Address-LA 2-32 
Load Register - L 2-31 
Move Characters - MVC 2-33 
Move Hexadecimal Character-MVX 2-35 
Move Logical Immediate - MVI 2-34 
Set Bits Off Masked - SBF 2-37 
Set Bits On Masked-SBN 2-38 
Shift Right Character - SRC 2-41 
Store Register - ST 2-42 
Subtract from Register-S' 2-36 
Subtract Logical Characters - SLC 2-39 
Subtract Logical Immediate - SLI 2-40 
Subtract Zoned Decimal - SZ 2-43 
supervisor call 2-48 
Test Bits Off Masked 2-44 
Test Bits On Masked-TBN 2-45 
Transfer - XFER 2-46 
Zero and Add Zoned-ZAZ 2-47 

Instruction statement 3-2, 3-7, 3-12 
Define Constant - DC 3-2 
Define Storage - DS 3-7 
Equate Symbol- EQU 3-12 

instruction statements 2-49 
introduction 1-1 
Inverse Data Move - $INV 5-43 
ISEQ - Input Sequence Checking 3-16 
Issue a Get Request - $GETB 5-34 
Issue a Put Request - $PUTB 5-53 
ITC - Insert and Test Characters 2-28 

JC - Jump on Condition 2-29 
Jump on Condition - JC 2-29 

keying a program 1-3 
keyword parameter 5-1 

L - Load Register 2-31 
LA-Load Address 2-32 
label 4-11, 4-14 

macroinstruction 4-11 
prototype statement 4-14 

label (name) storage 3-7 
label, coding form 1-16 
language, machine vs assembler 1-1 

X-4 

LCLA - Arithmetic local 4-17 
LCLB - Binary Local 4-18 
LCLC - Character Local 4-18 
Line Feed - SPACE 3-20 
linkage symbols, identification 3-11 
linking 2-16 
LIST,NOLIST parameter 1-6 
listing control statements 3-9, 3-19, 3-20 

Control Program Listing- PRINT 3-19 
Line Feed - SPACE 3-20 
Start New Page - EJECT 3-9 

listing, assembler 1-9 
load a module - $LOAD 5-48 
Load Address-LA 2-32 
Load or Fetch a Module - $LOAD 5-48 
Load Register - L 2-31 
local set symbol, macroinstruction 4-7 
local statements 4-17, 4-18 

Arithmetic local - LCLA 4-17 
Binary Local - LCLB 4-18 
Character Local - LCLC 4-18 

locate library members - $FIND 5-31 
location counter 2-13 
location counter, listing 1-10 
Logical End - MEXIT 4-33 

MACjNOMAC parameter 1-5 
machine instruction formats D-l 
machine instructions 2-17 
machine language 1-1 
MACRO 4-10 
macro library 1-4, 1-6, 4-1 
macro merge source file size parameter 1-5 
macroinstruction 4-3, 4-11, 4-13, 5-31, 5-32, 5-39, 5-48, 

5-49, 5-51, 5-63 
$FIND 5-31 
$FNDP 5-32 
$INFO 5-39 
$LOAD 5-48 
$LOG 5-49 
$LOGD 5-51 
$SNAP 5-63 
coding conventions 4-3 
definition control statement 4-13 
label 4-11 
operand 4-11 

macroinstruction definition 4-1, 4-13, 4-14, 4-15 
global statement 4-15 
header 4-13 
prototype 4-14 

macroinstruction format 4-11 
macroinstruction introduction 1-2 
macroinstruction - $LMSG 5-44 
magnetic character reader 1-23 
'manual arrangement viii 



MEND - Physical End 4-34 
message, see MNOTE 4-31 
Message - MNOTE 4-31 
messages ix 
MEXIT - Logical End 4-33 
MNOTE - Message 4-31 
more information x 
Move Characters - MVC 2-33 
Move Hexadecimal Character 2-35 
Move Logical Immediate - MVI 2-34 
move mode 5-92 
MVC - Move Characters 2-33 
MVI - Move Logical Immediate 2-34 
MVX-Move Hexadecimal Character 2-35 

name (label) storage 3-7 
new line 3 -20 
new page 3-9 
NO OP see ANOP 4-30 
NOLIST,LIST parameter 1-6 
noncontiguous keys program A-17 
NOOBJ,OBJ parameter 1-6 
notes on programming 2-17 
NOXREF,XREF parameter 1-6 

OBJ,NOOBJ parameter 1-6 
object code listing 1-10 
object code, listing 1-10 
OLINK procedure 1-7 
operand 4-11, 4-14 

macroinstruction 4-11 
prototype statement 4-14 

operand, coding form 1-16 
operation 4-14 

prototype statement 4-14 
operation, coding form 1-16 
OPTIONS 2-3 
OPTIONS statement 2-3 
ORG- Set Location Counter 3-17 
other manuals ix 
other systems with BSC 1-21 
output library name parameter 1-5 

page heading, listing 1-12 
page, new 3-9 
parameters, ASM 1-4 
phone list 5-97 
Physical End - MEND 4-34 
Prepare a Device or File for Access - $OPEN 5-52 
Prepare a Device or File for Termination - $CLOS 5-6 
preparing BSC DTFs for data transfer 5-90 
prerequisite knowledge ix 
print assembler listing 3-19 
PRINT - Control Program Listing 3-19 
problem determination 6-1-6-6 
procedures 1-4 
Program Control Statements 3-16 

Input Sequence Checking- ISEQ 3-16 
program linking 2-16 
program listing 3-19 
programming notes 2-17 
programming rules 2-5 
programming with BSC 1-20 
prologue 1-9 
prototype 4-14 

macroinstruction definition 4-14 

read file/transmit program A-2 
receive program A-3 
record formats 1-18 
relative addressing 2-16 
relocatable expressions 2-11 
remarks, coding form 1-16 
reserve storage 3-7 
retrieve information - $INFO 5-39 
return information - $INFO 5-39 
Return Interval Time - $RIT 5-59 
Return Time and Date - $TOD 5-70 
rules 2-5, 4-3 

macroinstruction coding 4-3 
run information 1-4 

S-Subtract from Register 2-36 
SBF - Set Bits Off Masked 2-37 
SBN-Set Bits On Masked 2-38 
select display 1-3 
self-defining terms 2-7 
sequence symbol, macroinstruction 4-3 
Set Aritmetic - SETA 4-27 
Set Binary - SETB 4-28 

Index X-5 



Set Bits Off Masked - SBF 2-37 
Set Bits On Masked-SBN 2-38 
Set Character - SETC 4-29 
Set Interval Timer - $SIT 5-61 
Set Location Counter-ORG 3-17 
set storage boundaries 3-17 
set symbol, macroinstruction 4-7 
SET A - Set Arithmetic 4-27 
SETB - Set Binary 4-28 
SETC - Set Character 4-29 
SEU 1-3 
severity code, error 4-31 
Shift Right Character - SRC 2-41 
SLC - Subtract Logical Characters 2-39 
SLI - Subtract Logical Immediate 2-40 
Snap Dump of Main Storage - $SNAP 5-63 
snap dump - $SNAP 5-63 
source file size parameter 1-5 
source member name parameter 1-5 
source output comment 4-23 
source program assembler statements 1-14 
source program library 1-5 
source program listing 1-10 
source statement, listing 1-11 
SPACE- Line Feed 3-20 
special characters 1-15 
specify storage boundaries 3-17 
SRC - Shift Right Character 2-41 
ST - Store Register 2 .. 42 
Start Assembly - START 3-21 
start new line 3-20 
Start New Page - EJECT 3-9 
START-Start Assembly 3-21 
starting address 2-5 
statement number, listing 1-11 
statements in the assembler source program 1-14 
stop assembly (END) 3-10 
storage supervisor, extended control 2-46 
Store Register - ST 2-42 
substring) macroinstruction 4-4 
Subtract from Register-S 2-36 
Subtract Logical Characters - SLC 2-39 
Subtract Logical Immediate - SLI 2-40 
Subtract Zoned Decimal - SZ 2-43 
summary of changes xi 
supervisor call instructions 2-48 
supervisor, extended control storage 2-46 
symbolic parameter, macroinstruction 4-6 
symbols 2-6 
symbols in another program, identification 3-13 
system date/time program A-8 
system log support 5-49 
SZ - Subtract Zoned Decimal 2-43 

X-6 

TABDF - table definition 4-20 
table definition - TABDF 4-20 
table of IBM macroinstructions 5-2 
TABLE-table 4-19 
TBF-Test Bits Off Masked 2-44 
TBN-Test Bits On Masked 2-45 
term 2-5 
terminate assembly (END) 3-10 
terminate USING 3-8 
terminating the transfer of data 5-91 
terms 2-5, 2-6 

symbolic 2-6 
terms, self-defining 2-7 
Test Bits Off Masked-TBF 2-44 
Test Bits On Masked-TBN 2-45 
TEXT - text 4-22 
Transfer - XFER 2-46 
transmit program A-2 
transmit/receive program A-5 
truncation of blanks 5-93 

Unconditional Branch Record - AGO 4-27 
understand this first ix 
Use Index Register for Base Displacement 

Addressing 3-23 
user macro definition example 4-35 
using EXTRN and ENTRY 3-13 
using macroinstructions 4-37 
using SEU 1-3 
USING- Use Index Register for Base Displacement 

Addressing 3-23 

valid characters 1-15 
value checking 4-26 
variable symbol, macroinstruction 4-5 

work station local data area information - $INFO 5-39 
workstation and print program A-II 



XFER - Transfer 2-46 
XREF ,NOXREF parameter 1-6 

Z-display 1-3 
ZAZ-Zero and Add Zoned 2-47 
Zero and Add Zoned-ZAZ 2-47 

Index X-7 



X-8 



IBM System/36: 
Programming with Assembler SC21-7908-3 

READER'S COMMENT FORM 

Please use this form only to identify publication errors or to request changes in publications. Direct any 
requests for additional publications, technical questions about IBM systems, changes in IBM programming support, and 
so on, to your IBM representative or to your nearest IBM branch office. You may use this form to communicate your 
comments about this publication, its organization, or subject matter, with the understanding that IBM may use or 
distribute whatever information you supply in any way it believes appropriate without incurring any obligation to you. 

D If your comment does not need a reply (for example, pointing out a typing error) check this box and do not 
include your name and address below. If your comment is applicable, we will include it in the next revision 
of the manual. 

D If you would like a reply, check this box. Be sure to print your name and address below. 

Page number(s): Comment(s) : 

No postage necessary if mailed in the U.S.A. 

Please contact your nearest IBM branch office to request 
additional publications. 

Name 

Company or 
Organization 

Address 

City State Zip Code 



SC21-7908-3 

Fold and tape 

Fold and tape 

Please do not staple 

IIIIII 
BUSINESS REPLY MAIL 

FIRST CLASS PERMIT NO. 40 ARMONK, N. Y. 

POSTAGE WILL BE PAID BY ADDRESSEE: 

IBM CORPORATION 
Information Development 
Department 532 
Rochester, Minnesota, U.S.A. 55901 

Please do not staple 

Fold and tape· 

NO POSTAGE 
NECESSARY IF 
MAILED IN THE 
UNITED STATES 

Fold and tape 

C') 
c .. 



. .. . 

. .. . 

• 

SC21-7908 - 03 


	0001
	0002
	0003
	0004
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	5-49
	5-50
	5-51
	5-52
	5-53
	5-54
	5-55
	5-56
	5-57
	5-58
	5-59
	5-60
	5-61
	5-62
	5-63
	5-64
	5-65
	5-66
	5-67
	5-68
	5-69
	5-70
	5-71
	5-72
	5-73
	5-74
	5-75
	5-76
	5-77
	5-78
	5-79
	5-80
	5-81
	5-82
	5-83
	5-84
	5-85
	5-86
	5-87
	5-88
	5-89
	5-90
	5-91
	5-92
	5-93
	5-94
	5-95
	5-96
	5-97
	5-98
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	A-15
	A-16
	A-17
	A-18
	A-19
	A-20
	B-01
	B-02
	B-03
	B-04
	C-01
	C-02
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	X-01
	X-02
	X-03
	X-04
	X-05
	X-06
	X-07
	X-08
	replyA
	replyB
	xBack

