

When You Are:

Planning to
Install Your
Computer

Getting Your
Computer
Ready to Use

Operating
Your
Systems

Operating and
Using the

Utilities

Programming
Your

Computer

Communicating
with Another
Computer or
Remote Device

Determining
the Cause
of a Problem

You Can Find Information In:

What to Do Before Your Computer Arrives
or
Converting from System/34 to System/36

Setting Up Your Computer
Performing the First System Configuration For Your System
System Security Guide

Learning About Your Computer
Operating Your Systems

Development Support Utility Guide
Source Entry Utility Guide

Data File Utility Guide

Creating Displays

Work Station Utility Guide

Utilities Messages

Concepts and Programmer’s Guide
System Reference

Sort Guide

Work Station Utility Guide
Programming with RPG II

RPG Il Messages

{communication manuals)
(communication message manuals)

System Messages
(message manuals)
System Problem Determination manual for your System Unit

System/36

Programming with RPG Il

Program Number 5727-RG1

Program Number 5727-RG6

File Number
S36-28

Order Number
SC21-9006-4

Fifth Edition (October 1986)
This major revision obsoletes SC21-9006-3.

Changes are periodically made to the information herein; any
such changes will be reported in subsequent revisions. Changes
or additions to the text and illustrations are indicated by a
vertical line to the left of the change or addition.

See About This Manual for a summary of major changes to this
edition.

This edition applies to Release 5, Modification Level 0, of IBM
System/36 RPG II Program Product (Program 5727-RG1 and
Program 5727-RG6), and to all subsequent releases and
modifications until otherwise indicated in new editions.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM’s program product may be used. Any
functionally equivalent program may be used instead.

This publication contains examples of data and reports used in
daily business operations. To illustrate them as completely as
possible, the examples include the names of individuals,
companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by
an actual business enterprise is entirely coincidental.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM
representative or to your IBM-approved remarketer.

A form for the reader’s comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Canada Ltd. Information Development,
Department 849, 895 Don Mills Road, North York, Ontario,
Canada, M3C 1W3. IBM may use or distribute whatever
information you supply in any way it believes appropriate
without incurring any obligation to you.

© Copyright International Business Machines Corporation
1983,1984,1985,1986.

Contents

About This Manual XV
Who should use thismanual XV
How this manual is arranged xvi
Partl. Guide xvi
Part 2. Reference xviii
What youshould know xviii
Naming conventions XX
Coding conventions xxi
If you need more information xxi
RPG coding and debugging material ... xxi
System coding sheets xxii
Summary of Changes xxiii

Part 1. Guide

e o o ¢ o 0 0 0 0 0 s 0 0 0

Chapter 1. Designing an RPG Program 1-1

Stepsin Using RPG 11
Stepl.Design 1-3
Step2.Code 1-3
Step3.Enter 1-3
Step4.Compile 1-3
Step5.Testcvvvivininnn... 1-3
Step 6. Put into Production 1-3

Designing Your Program 1-4
Designing the Output 1-5
Designing the Processing 1-6
Designing theInput 1-6

Chapter 2. Coding an RPG Program .. 2-1

Control Specification 2-3

File Description Specifications 2-3

Extension Specifications 2-3

Line Counter Specifications 2-4

Telecommunications Specifications 2-4

Input Specifications 2-4

Calculation Specifications 2-5

Output Specifications 2-5

Chapter 3. Entering and Compiling an

RPGProgramc00000.0. 3-1

Using the RPG Procedures 31

RPGP Programming Menu 3-2

RPG Interactive Program-Development

Procedure (RPGONL Procedure) 34
Using the First RPGONL Display 34
Using the Second RPGONL Display ... 36

Using the Third RPGONL Display ... 3-11
Creating or Changing an RPG or Auto
Report Program (RPGSEU Procedure) . 3-13
Compiling an RPG Program (RPGC

Procedure) 3-15
Using the First RPGC Display 3-15
Using the Second RPGC Display 3-18

Printing an RPG Cross-Reference Listing

(RPGX Procedure) 3-22

Cross-Reference Listing 3-23
Listing Format 3-23

Sample Cross-Reference Listing ... 3-25
Compiling an Auto Report Program
(AUTOC Procedure) 3-26
Using the First AUTOC Display 3-26
Using the Second AUTOC Display ... 3-28
Creating or Changing Display Formats

(RPGSDA Procedure) 3-32
Solving Problems That Occur At
Compilation Time 3-33
No Compiler Listing Is Produced 3-33
No Load Module Is Produced 3-35

A Load Module Is Produced but Cannot

BeFound 3-36
No Subroutine Module Is Produced .. 3-38
A Subroutine Module Is Produced but

Cannot Be Found 3-39
No Diagnosed Source Member Is
Produced 3-41

Chapter 4. Testing an RPG Program . 4-1
Running an RPG Load Module 4-1
Example of Control Language Statements

To Run a Program 4-2
RPG Halt Messages 4-2
Debugging an RPG Load Module 4-2
Using the DEBUG Operation 4-3
Records Written by the DEBUG
Operationc.c0vuunn.. 4-4

Contents 111

Debugging a Program That Uses a

WORKSTN File 44
Chapter 5. Usinga DISKFile 5-1
SEQUENTIAL FILES 5-2
Creating a Sequential File 5-3

Example of Creating a Sequential File . 5-4
Reading a Sequential File 5-6
Reading Consecutively 5-6
Reading Randomly by Relative Record
Number 5-8
Reading Randomly by Relative Record
Number and/or Consecutively 59
Reading Randomly by Address Qutput

(Addrout) File 5-10

Updating A Sequential File 5-13

Deleting Records from a Sequential File 5-14

Updating Consecutively 5-15
Example of Updating and Deleting
Records 5-15
Updating Randomly by Relative Record
Number 5-18
Updating Randomly by Relative Record
Number and/or Consecutively 5-19
Updating Randomly by Address Output
(Addrout) File 5-20
Adding Records to a Sequential File 5-21
Adding Records at the End of a File .. 5-21
Example of Adding Records at the
EndofaFile 5-22
Adding Records between Records in a
Filecoiiiiiiiii .. 5-24
Example of Adding Records between
RecordsinaFile 5-26
DIRECTFILES 5-28

Creating a Direct File That Does Not

Allow Deletions 5-29
Example of Creating a Direct File That
Does Not Allow Deletions 5-30
Creating a Direct File That Allows
Deletions 5-32
Example of Creating a Direct File That
Allows Deletions 5-34
Reading a Direct File 5-35
Reading Consecutively 5-35

Example of Reading Consecutively . 5-36
Reading Randomly by Relative Record

Number 5-39
Example of Reading Randomly by
Relative Record Number 5-40
Reading Randomly by Relative Record
Number and/or Consecutively 5-43
Reading Randomly by Address Output
(Addrout) File 5-44

v

Updating a Direct File 5-48
Deleting Records from a Direct File .. 5-49
Updating Consecutively 5-50
Updating Randomly by Relative Record

Number 5-51
Example of Updating Randomly by
Relative Record Number 5-52
Updating Randomly by Relative Record
Number and/or Consecutively 5-55
Updating Randomly by Address Output
(Addrout) File 5-56

Adding Records to a Direct File 5-57

INDEXED FILES 5-60

Creating an Indexed File 5-62
Creating an Indexed File by Writing

Records in an Ordered Sequence ... 5-62
Creating an Indexed File by Writing
Records in an Unordered Sequence . 5-63

Example of Creating an Indexed File 5-63
Creating an Alternative Index File for

an Indexed File 5-65
Example of Creating an Alternative
Index File 5-67

Example of Using an Alternative
Index File with Only One Field as

itsKey 5-68
Using an Alternative Index File with
Noncontiguous Fields as its Key ... 5-69
Reading an Indexed File 5-70
Reading Sequentially by Key Field ... 5-70
Reading Sequentially within Key-Field
Limitscciiiinnonn 5-72
Using a Limits Record 5-74
Using the SETLL Operation 5-76
Reading Randomly by Key Field 5-79
Reading Randomly and/or Sequentially
by KeyField 5-80
Example of Reading an Indexed File
Randomly and Sequentially by Key
Field 5-81
Reading Randomly by Address Output
(Addrout) File 5-84
Updating an Indexed File 5-88

Deleting Records from an Indexed File 5-88
Updating Sequentially by Key Field .. 5-90
Updating Sequentially within Key-Field

Limits i, 5-90
Updating Randomly by Key Field 591
Example of Updating an Indexed File
Randomly by Key Field 5-91
Updating Randomly and/or Sequentially
by Key Field 5-94
Updating Randomly by Address Output
(Addrout) File 5-94

Adding Records to an Indexed File 5-95
Adding Records Randomly by Key Field 5-95
Example of Adding Records

Randomly by Key Field 5-97
Adding Records Sequentially by Key
Field 5-99
Example of Adding Records
Sequentially by Key Field 5-101

Chapter 6. Using a WORKSTN File ... 6-1
EXAMPLE OF USING A WORKSTN FILE 6-2

Creating the Displays 6-3
Coding the RPG Specifications 6-4
File Description Specifications 6-4
Input Specifications 6-5
Calculation Specifications 6-6
Output Specifications 6-7
Reaching Endof File 6-8
STEPS IN USING A WORKSTN FILE ... 69
Creating the Display Formats 6-9
Coding the RPG Specifications 6-10
File Description Specifications 6-10
Continuation-Line Options 6-11
NUM ... i 6-12
SAVDS 6-12
IND 6-12
SLN ... 6-13
FMTS i 6-13
ID ... 6-13
INFSR, 6-14
INFDS 6-14
CFILEciiiiinnn... 6-14
Input Specifications 6-15
Output Specifications 6-19
COMMON PROCESSING VARIATIONS 6-22
Using Command Keys 6-22
Handling Exceptions and Errors 6-24
Coding the INFDS Data Structure ... 6-27
File Description Specifications 6-27
Input Specifications 6-28
Coding the INFSR Subroutine 6-34
File Description Specifications 6-34
Calculation Specifications 6-34
Reading Data From a Display Shown by a
Previous Program 6-36
USING ONE OR MORE DISPLAY
STATIONS, 6-37
Using a SRT Program 637
Using a MRT Program 6-37
File Description Specifications 6-38
Calculation Specifications 6-38
NEXT Operation 638
REL Operation 6-39
Output Specifications 6-39

Acquiring One or More Display Stations

by the Program 640
ACQOperation 6-40
Requesting the Program by One or More
Display Stations 6-41
Setting and Restoring External
Indicators (SUBR20) 6-41

Reading and Writing the Local Data
Area for a Display Station (SUBR21) 6-42
Compiling and Running a MRT Program 6-43

Compiling the Program 6-43
Running the Program 6-43
Updating Disk Files in a MRT Program . 6-44
Possible Errors 6-44
Avoiding These Errors 6-45
Reaching End of File for a MRT Program 6-46
Primary File 6-46
Demand File 6-46
ADVANCED TOPICS 6-47
Processing the Duplicate Character Value 6-47
Using Message Identification Codes 6-49
Overriding Fields in a Display Format .. 6-49
Using the POST Operation 6-51

How WORKSTN Files Are Processed ... 6-52
Interactive Data Definition Utility IDDU) 6-58
Example of Using the Interactive Data

Definition Utility ADDU) 6-60
SAMPLE PROGRAMS 6-63
AR230R (Inquiring into an Accounts

Receivable File) 6-63
AR330R (Maintaining a Customer Master

File) 6-68
AR935R (Requesting a Printout of

Accounts Receivable) 6-81

OE140R (Entering Orders from Customers) 6-87

Chapter 7. Using a PRINTER File 7-1

File Description Specifications 7-1
Line Counter Specifications 7-3
Output Specifications 7-4
File- and Record-Identification Entries . 7-4
Field-Description Entries 7-7
ANDandORLines 7-7
Handling Overflow 7-10
Automatic Overflow 7-10
Overflow Indicators 7-11
Coding Overflow Indicators 7-12
Fetch Overflow Routine 7-15
Spacing and Skipping e 7-16
Sample Program 717

Chapter 8. Using a SPECIAL File 8-1
File Description Specifications 81
Continuation Line

Contents V

Restrictions for SPECIAL Files 8-3
Using a Subroutine for Input and Output . 8-3
Using IBM’s Subroutine, SUBR0O1 84

Using Your Own Subroutine 8-5
Points to Remember When You Write an
Assembler-Language Subroutine 8-8
Reading and Updating a Work Station
Utility Transaction File (SUBR22) 89
File Description Specifications 8-9
Continuation Line 8-10
Contents of the Array 8-10
Example of SUBR22 8-14
Chapter 9. Using a CONSOLE,
KEYBORD,or CRT File 9-1
Using a CONSOLE File 9-2
File Description Specifications 9-2
Input Specifications 94
File and Record Specifications 9.5
Field Specifications 9-6
Creating Display Formats for CONSOLE
Files 9-8
Using Displays 9-11
Display Formats 9-11
Prompt Format 9-14
Changing the Display Format 9-14
Erasing the CONSOLE File Buffer ... 9-14
Using a CONSOLE File with
KEYBORD and CRT Files 9-15
Using A KEYBORD File 9-16
File Description Specifications 9-16
Calculation Specifications for a KEY
Operation 9-17
Using a KEY Operation 9-20
Bypassing a KEY Operation 9-20
Using a Message Member 9-21
Calculation Specifications for a SET
Operation 9-23

Allowing Command Keys To Be Pressed 9-27
Using the SET and KEY Operations

Together 9-28
UsingaCRT File 9-30
File Description Specifications 9-30
Output Specifications 9-31
File- and Record-Identification
Entries 9-31
Field-Description Entries 9-32
DisplayingData 9-32
Chapter 10. Using a BSCA File 10-1
Defininga BSCAFile 10-1
File Description Specifications 10-2
Telecommunications Specifications 10-4
Programming Considerations 10-6

vi

First RPG Program Cycle
Autocall and X.21 Support
Removing Strings of Embedded Blanks
Removing Trailing Blanks
Control Breaks
Data Formats
Errors
RPG Diagnostics
Configuring Your System for BSC
Descriptions of BSC Functions
Receive-Only Function
Send-Only Function
Send-and-Receive Function
Send a File, Then Receive a File
Receive a File, Then Send a File
Send Records Interspersed with
Receive Records
Systems That Use BSC
Device-Dependent Considerations
IBM 3740 Data Entry System
Restrictions
Single-File Support
Multiple-File Support
Blocked Records
RPG Specifications
File Description Specifications
Telecommunications Specifications
Output Specifications
IBM 3750 (World Trade Only)
Sample Programs
Send Only
System/36 to 3740
Send Interspersed with Receive

..........

.........
..................

..................

........
............

..............

..............

.............

...........

.............

...........
.......
......................
................

.....

Chapter 11. Using Primary and
Secondary Files
No Match Fields
Match Fields
Coding Matching Records
File Description Specifications
Input Specifications
Rules for Coding Match Fields
Processing Matching Records

...................

......................

......
..............
......

Chapter 12. Using Indicators
INDICATORS DEFINED ON RPG
SPECIFICATIONS
Overflow Indicators
Record-Identifying Indicators
AND Relationship
OR Relationship
Example of Using Record-Identifying
Indicators
Control-Level Indicators

oooooo

................

.........

.................

.....................

.............

10-16

Assigning Control-Level Indicators .. 12-15

Split Control Fields 12-20
Field Indicators 12-21
Resulting Indicators 12-24
Indicators Not Defined on the RPG

Specifications 12-27
External Indicators 12-27
Internal Indicators 12-29

First-Page Indicator 12-29

Last-Record Indicator 12-32

Matching-Record Indicator 12-35
CONDITIONING INDICATORS 12-38
File-Conditioning Indicators 12-38
Field-Record-Relation Indicators 12-39

Assigning Field-Record-Relation

Indicators 12-40
Level-Zero Indicator 12-43
Command-Key Indicators 12-46
Halt Indicators 12-48
Indicators Conditioning Calculations ... 12-51

Using Indicators in AN/OR Lines on

the Calculation Specifications 12-52

Using Indicators in an AND

Relationship on the Calculation

Specifications 12-53
Indicators Conditioning Output 12-54

Using Indicators in an AND/OR

Relationship on the Output

Specifications 12-54
Chapter 13. Using Arrays and Tables 13-1
Similarities between Arrays and Tables . 13-1
Differences between Arrays and Tables . 13-1

When Arrays and Tables Can Be Loaded 13-1
How Arrays and Tables Can Be
Processed 13-1

Kinds of Arrays and Tables 13-2
Creating Input Records for Arrays or
Tables 13-5
Defining Arrays and Tables 13-6
Loading Arrays and Tables 13-8
Loading Compile-Time Arrays and
Tables 13-8
Loading Preexecution-Time Arrays and
Tables 13-9
Loading Execution-Time Arrays 13-10
Array Information in One Record .. 13-11
Array Information in More than One
Record 13-13
Using an Array Name and Index 13-14
Searching Arrays and Tables 13-16
Searching an Array 13-17
Searching One Table 13-19
Searching Related Tables 13-19

Specifying Arrays 13-21
Changing the Contents of Arrays and
Tables0 .. 13-22

Changing the Contents Temporarily .. 13-22
Changing the Contents Permanently . 13-24
Adding Entries to Arrays and Tables ... 13-25

Writing Arrays and Tables 13-26
Editing Arrays 13-27
Examples of Using Arrays 13-28
Example of Using Tables 13-37
File Description Specifications 13-37
Extension Specifications 13-38
Input Specifications 13-39

Calculation Specifications

Chapter 14. Using Data Structures .. 14-1

Coding a Data Structure 14-1
Data Structure Statement 14-2
Subfields 14-2
Rules for Coding Data Structures 14-3

Examples of Data Structures 14-4

Example 1. Defining One Area of

Storage More than One Way 14-4
Example 2. Defining Subfields within a
Field i, 14-6
Example 3. Reorganizing Fields in an
Input Record 14-8
Special Data Structures 149
SAVDS Data Structure 149
Local Data Area for a Display Station 14-10
File Information Data Structure 14-10
Chapter 15. Using Auto Report 15-1
Input for AutoReport 15-3
Specifications Created by Auto Report .. 15-5
Format of Created Specifications 155
Order of Created Specifications 15-6
Calculation Specifications 15-6
Output Specifications 15-7
Comment Statements 15-7
Restriction 15-8
Option Specifications 159
Column 6 (Form Type) 159
Column 7 (Source) 15-10
Columns 8-24 (Source Member
Reference) 15-10
Columns 25-26 15-10
Column 27 (Date Suppress) 15-11
Column 28 (*Suppress) 15-11
Column29 15-11
Column 30 (List Options) 15-12
Columns31-74 15-12
/COPY Statement Specifications 15-18
Changing Copied Specifications 15-15

Contents Vil

*AUTO Specifications

Changing File Description
Specifications
Changing Input Field Specifications

...............

*AUTO Page-Heading Specifications
Record-Description Specifications .

Field-Description Specifications

*AUTO Output Specifications

Columns 7-14 (Filename)
Column 15 (Type)
Column 16
Columns 17-22 (Spacing and

Skipping)
Columns 23-31 (Output Indicators)
Columns 32-37 (*AUTO)
Columns 38-70

.........
..............

....................
...................

.........
.................

.....

Columns 7-31
Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39 (Blank After)
Columns 40-44
Columns 45-70 (Constant or Edit
Word)

..................

......

.........

.................

.........

Record-Description Specifications . .

Columns 7-14 (Filename)
Column 15 (Type)
Column 16 (Fetch Overflow)
Columns 17-22 (Spacing and

Skipping)
Columns 23-31 (Output Indicators)
Columns 32-37 (*AUTO)
Columns 38-70

.........

..............

......

...................

.........

.................

Field Description (Blank or B in

Column 39)
Columns 7-22oo.... ‘

....................

Columns 23-31 (Output Indicators)
Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39 (Blank After)
Columns 40-43 (End Position in
Output Record)
Columnd44
Columns 45-70 (Constant)

......

........

Field Description (A in Column 39)

viii

Created Total Fields
Considerations
Columns 7-22co....
Columns 23-31 (Output Indicators)
Columns 32-37 (Field Name)
Column 38 (Edit Codes)
Column 39
Columns 40-43 (End Position in
Output Record)
Column 44

............

................

..........

....................

...............

....................

Columns 45-70 (Constant) 15-39
Field Description (C in Column 39) ... 15-39
Columns 7-38 15-40
Columnd9 15-40
Columns 40-44 15-40
Columns 45-70 (Constant) 15-40
Field Description (1-9 or R in Column
B0) e s 15-41
Columns 7-31 15-43
Columns 32-37 (Field Name) 15-43
Column 38 (Edit Code) 15-43
Column3d9 15-43
Columns 40-43 (End Position in
Output Record) 15-43
Columnd44 15-43
Columns 45-70 (Constant or Edit
Word)ccvvinvnnn. 15-44
Group Printing 15-44
Specifications 15-44
Examples 15-45
Report Format 1549
Spacing and Skipping 15-49
Placement of Headings and Fields 15-51
Page Headings 15-51
Reformatting *AUTO Page Headings 15-51
Body of the Report 15-52
Overflow of the D/T-*AUTO Print
Linesciiiiiininnn, 15-52
Created Specifications 15-54
Created Calculation Specifications ... 15-57
Created Output Specifications 15-59
Programming Aids 15-61
Examples of Using Auto Report 15-66
Examplel 15-67
Example2 15-71
Example3 15-73
Example4 15-75
Example5 15-77
Example6 15-80
Example7civvv... 15-83
Control Specification 15-87
/COPY Statements 15-89
Calculation Specifications 15-89
*AUTO Specifications 15-93
Chapter 16. Editing Numeric Fields 16-1
EditCodesc0cun... 16-2
Examples of Using the Currency Symbol
withan EditCode 16-5
Example of Using Asterisks with an
EditCode 16-7
EditWords 16-10
Editing Considerations 16-11
b@Blank)cciiii... 16-11

Constants 16-11

0 (Zero Suppress) 16-12
*(Asterisk Fill) 16-12
CRand- 16-13
Currency Symbols 16-13
& (Ampersand) 16-13
Examples of Edit Words. 16-14
Creating Edit Words 16-19
Chapter 17. Changing the Hexadecimal
Value of Characters 17-1
Changing the Collating Sequence 17-3
Coding the Changes 17-3
Coding the Control Specification .. 17-3
Coding the Translation Table and
Alternate Collating Sequence
Coding Sheet 17-4
Coding the Records That Change the
Collating Sequence 177
Example of a Record That Changes
the Collating Sequence 17-8
Translatinga File 17-9
Coding the Translation 17-9
Coding the Control Specification .. 17-9
Coding the Translation Table and
Alternate Collating Sequence
Coding Sheet 179
Coding the Records That Translate a
O 17-10
Example of File Translation 17-11
Chapter 18. Techniques for Efficient
Coding 18-1
Sequential Operation 18-1
Conditional Branching 18-2
Repeating an Operation 18-4
Do While Structure 18-4
Do Until Structure 18-6
Do Structure 18-7
Structured Programming 18-10
Using Subroutines 18-10
Structured Programming Operation
Codes0. ... 18-11
Overlaying Storage 18-13
Memory Resident Overlays (MRO) . 18-14
Areas of Main Storage 18-14
Creating the Overlays 18-15
Reducing the Program Size 18-16
Specific Coding Techniques 18-20
Load Module Size Considerations 18-20
Storage-Saving Techniques 18-20
Performance-Improvement Techniques 18-22
Storage Requirements 18-23
Operation Codes 18-23

Part 2. Reference

Chapter 19. RPG Program Cycle 19-1

Overview of RPG Program Cycle 19-1
Detailed RPG Program Cycle 19-6
Chapter 20. Control Specification ... 20-1
Columns 1-2 (Page) 20-3
Columns 3-5 (Line) 20-3
Column 6 (Form Type) 20-3
Column 7 (Comments) 20-3
Columns 7-9 (Size to Compile) 20-4
Columns 7-12 (JEJECT) 20-4
Columns 7-12 (JTITLE) 20-4
Columns 7-14 (/SPACE) 20-5
Column 10 (Object Output) 20-5
Column 11 (Listing Options) 20-5
Columns 12-14 (Size to Execute) 20-6

Column 12 20-6

Columns 13and 14 20-6
Column 15 (Debug) 20-7
Columns 16-17vunnnn... 20-7
Column 18 (Currency Symbol) 20-7
Columns 19-20 (Date Option) 20-8

Column 19 (Date Format) 20-8

Column 20 (Date Edit) 20-8
Column 21 (Inverted Print) 20-9
Columns 22-25 20-9
Column 26 (Alternate Collating Sequence) 20-9
Columns 27-36ccu.... 20-10
Column 37 (Inquiry) 20-10

File Sharing 20-10

Inline Inquiry Subroutine (SUBR95) .. 20-11
Columns 38-40 20-11
Column 41 (1P Forms Position) 20-11
Columnd2c.c...... 20-12
Column 43 (File Translation) 20-12
Columnd44 20-12
Column 45 (Nonprint Characters) 20-12
Columns 46-56 20-13
Column 57 (Transparent Literal) 20-13
Columns 58-74 20-14

Columns 75-80 (Program Identification) . 20-14

Chapter 21. File Description

Specifications 21-1
File Description Charts 21-2
How to Use the Charts 21-2
Columns 1-2 Page) 21-11
Columns 3-5 (line) 21-11
Column 6 (Form Type) 21-11

Contents 1X

Column 7 (Comments) 21-11

Columns 7-12 (/EJECT) 21-12
Columns 7-12 (/TITLE) 21-12
Columns 7-14 (/SPACE) 21-12
Columns 7-14 (Filename) 21-13
Column 15 (File Type)vvvvvnnn 21-13
InputFiles, 21-14
Output Filescceveuunn.. 21-14
Update Filescocovvvnnnn.. 21-14
Combined Files 21-14
Column 16 (File Designation) 21-15
Primary Files 21-16
Secondary Files PR 21-17
Full-Procedural Files 21-17
Chained Files 21-17
Record Address Files 21-17
Array or Table Files 21-18
Demand Files 21-18
Column 17 (End Of File) 21-18
Column 18 (Sequence) 21-19
Column 19 (File Format) 21-20
Columns 20-23 (Block Length) 21-20
Columns 24-27 (Record Length) 21-21
Column 28 (Mode Of Processing) 21-23
Columns 29-30 (Length Of Key Field Or
Record Address Field) 21-25
Column 31 (Record Address Type) 21-26
Column 32 (File Organization Or
Additional Input/Output Area) 21-28

Columns 33-34 (Overflow Indicator) 21-28
Columns 35-38 (Key Field Starting

Location) 21-28
Column 39 (Extension Code) 21-29
Columns 40-46 (Device) 21-30

Device Typescovvuvuuunn. 21-33
DISKciv i, 21-33
WORKSTNccvvvvvnnn.. 21-33
PRINTER 21-34
SPECIALcoov... 21-34
CONSOLE 21-34
KEYBORD 21-34
CRT., ...t 21-34
BSCA 21-35

Columns 4752 21-35
Column 53 (Continuation Lines-K) 21-35
Columns 54-59 21-36
Name of Label Exit 21-36
Continuation-Line Option for DISK
File ..., 21-36
Continuation-Line Options for
WORKSTN File 21-37
Continuation-Line Option for
SPECIAL Device 21-39
Columns 60-65 (Storage Index) 21-40

Column 66 (File Addition) 21-40
Columns 67-70ccvvuun.. 21-40
Columns 71-72 (File Condition) 21-40
Columns 7374 ..., 21-41

Columns 75-80 (Program Identification) . 21-41

Chapter 22. Extension Specifications 22-1

Columns 1-2(Page)cvvvvn... 22-4
Columns 3-5 (Line)c.vvvunn 22-4
Column 6 (Form Type) 22-4
Column 7 (Comments) 22-4
Columns 7-10ccivunn.. 22-5
Columns 7-12 (/EJECT) 22-5
Columns 7-12 (/TITLE) 22-5
Columns 7-14 (/SPACE) 22-5
Columns 11-18 (From filename) 22-6
Columns 19-26 (To Filename) 22-7
Columns 27-32 (Array or Table Name) .. 22-8
Array Name 22-8
Table Name 22-8
Columns 33-35 (Number of Entries per
Record), 22-11
Columns 36-39 (Number of Entries per
Table or Array)covvv.. 22-12
Columns 40-42 (Length of Entry) 22-14
Column 43 (Packed or Binary Field) 22-16
Column 44 (Decimal Positions) 22-16
Column 45 (Sequence) 22-17
Columns 46-57ccuvun... 22-18
Columns 58-74 (Comments) 22-18

Columns 75-80 (Program Identification) . 22-18

Chapter 23. Line Counter

Specifications e. 23-1
Columns 1-2(Page) 23-3
Columns 3-5 (Line) 23-3
Column 6 (Form Type) 23-3
Column 7 (Comments) 23-3
Column 7-12 (/EJECT) 23-4
Columns 7-12 (/TITLE) 23-4
Columns 7-14 (/SPACE) 23-4
Columns 7-14 (Filename) 23-5
Columns 15-17 (Line Number--Number of

LinesperPage) 23-5
Columns 18-19 (Form Length) 23-5
Columns 20-22 (Line Number--Overflow

Line) ...t e 23-5
Columns 23-24 (Overflow Line) 23-6
Columns 25-74 23-6

Columns 75-80 (Program Identification) . 23-6

Chapter 24. Telecommunications
Specifications0 000000 24-1
Columns 1.2 (Page)oovenvnn 24-3

Columns 3-5 (Line)
Column 6 (Form Type)

Column 7 (Comments)
Columns 7-12 (JEJECT)

Columns 7-12 (/TITLE)

Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Column 15 (Configuration)
Column 16 (Type of Station)
Column 17 (Type of Control)
Column 18 (Typeof Code)

Column 19 (Transparency)

Column 20 (Switched)
Columns 21-31
Column 32 (Location of Identification--This

Station)

Columns 33-39 (Identification--This

Station) i,

Column 40 (Location of

Identification--Remote Station)

Columns 41-47 (Identification--Remote

Station)
Columns 4851covvuun..
Column52(ITB)

Columns 53-54 (Permanent-Error

Indicator)
Columns 55-57 (Wait Time)

Columns 58-59 (Record-Available

Indicator)
Column 60 (Last File)

Columns 61-62 (Polling Characters)
Columns 63-64 (Addressing Characters)

Columns 65-74ccvvvu...

Columns 75-80 (Program Identification)

Ch.apter 25. Input Specifications

File and Record-Type Identification
Entries

Columns 3-5 (Line)
Column 6 (Form Type)

Columns 7-12 (/TITLE)

Columns 7-14 (/SPACE)
Columns 7-14 (Filename)
Columns 14-16
Columns 15-16 (Sequence)

Assigning Sequence Numbers
Column 17 (Number)
Column 18 Option)

Columns 19-20 (Record-Identifying
Indicator, **, DS)

................

.............

.............

..........

Columns 1-2 (Page)c.....

Column 7 (Comments)
Columns 7-12 (JEJECT)

.............

Look-Ahead

Columns 21-41 (Record Identification

Codes) ...oivv it 25-23
Position (Columns 21-24, 28-31, and
35-38) e 25-23
Not (N) (Columns 25, 32, and 39) 25-23
C/Z/D (Columns 26, 33, and 40) 25-24
Character (Columns 27, 34, and 41) ... 25-26
Character Grouping by Zone or
Digit o vvoeeee e 25-26
AND Relationship 25-27
OR Relationship 25-27
Columnd42ciuvv... 25-27
Field Description Entries 25-28
Column 43 (Packed-Decimal or Binary
Field) 25-28
Zoned-Decimal Format (Blank) 25-29
Packed-Decimal Format (P) 25-30
Binary Format(B) 25-32
Columns 44-51 (Field Location) 25-34
Column 52 (Decimal Positions) 25-34
Columns 53-58 (Field Name) 25-35
Field Names 25-35
Field Names in OR Relationship ... 25-36

Special Words (PAGE, PAGE1-PAGE7) 25-36

Columns 59-60 (Control Level) 25-38
Columns 61-62 (Matching Fields) 25-38

Match Fields 25-38

Sequence Checking 25-39
Columns 63-64 (Field Record Relation) .. 25-40
Columns 65-70 (Field Indicators) 25-42
Columns 71-74 i, 25-42
Columns 75-80 (Program Identification) . 25-43

Chapter 26. Calculation Specifications 26-1

Columns 1-2(Page)coouv... 26-3
Columns 3-5 (Liines) 26-3
Column 6 (Form Type) 26-3
Column 7 (Comments) 26-3
Columns 7-8 (Control Level) 26-4
Subroutine Lines (SR) 26-5
AN/OR Lines 26-5
Columns 7-12 ((EJECT) 26-5
Columns 7-12 (/TITLE) 26-5
Columns 7-14 (/SPACE) 26-6
Columns 9-17 (Indicators) 26-6
Relationship between Columns 7-8 and
Columns 9-17 26-7
Columns 18-27 (Factor 1) 26-8
Literals 26-14
Alphameric Literals 26-14
Numeric Literals 26-14
Figurative Constants 26-16
Columns 28-32 (Operation) 26-17
Columns 31-82covvivvereunnn. 26-17

Contents Xi

Columns 33-42 (Factor 2) 26-18
Columns 43-48 (Result Field) 26-19
Erase 26-19
Field Name, Table Name, Array Name,
Array Element, or Data Structure .. 26-20

Columns 49-51 (Field Length) 26-21
Column 52 (Decimal Positions) 26-23
Column 53 (Half-Adjust) 26-23
Columns 54-59 (Resulting Indicators) ... 26-25
TestResults 26-25
Allowing Command Keys To Be
Pressed SET) 26-26
Columns 60-74 (Comments) 26-26

Columns 75-80 (Program Identification) . 26-26

Chapter 27. Output Specifications .. 27-1

Columns 1-2 (Page)o... 27-3
Columns 3-5 (line) 27-3
Column 6 (Form Type) 27-3
Column 7 (Comments) 27-3
Columns 7-12 (/EJECT) 27-4
Columns 7-12 (/TITLE) 27-4
Columns 7-14 (/SPACE) 27-4
Columns 7-14 (Filename) 27-5
Columns 14-16 (AND/OR) 27-7
Column 15 (Type) 27-7
Heading Records (H) 27-7
Detail Records D) 27-7
Total Records (T) 27-8
Exception Records (E) 27-8
Columns 16-18 (ADD/DEL) 27-8
ADD ... 27-8
DEL 27-8
Column 16 (Fetch Overflow or Release) . 279
Fetch Overflow 27-9
Release 27-10
Columns 17-22 (Spacing and Skipping) .. 27-10
Column 17 (Space Before) 27-10
Column 18 (Space After) 27-10
Columns 19-20 (Skip Before) 27-10
Columns 21-22 (Skip After) 27-11
Columns 23-31 (Output Indicators) 27-12
Columns 32-37 (Field Name) 27-13
Field Names 27-13
Rules for Field Names 27-13
Special Words 27-14
Page Numbering (PAGE,
PAGE1-PAGET) 27-14

Repeating Output Fields (*PLACE) 27-15
Date Fields (UDATE, UMONTH,

UDAY, UYEAR) 27-19
EXCPT Names 27-19
Column 38 (Edit Codes) 27-20
Column 39 (Blank After) 27-20

xii

Columns 40-43 (End Position in Qutput

Record) J N S 27-21
Column 44 (Packed-Decimal or Binary

Field)
Columns 45-70 (Constant or Edit Word) . 27-23

Constantscoovvvinn. 27-23
Format Name 27-24
EditWords 27-24
Columns 71-74 i iiin 27-25

Columns 75-80 (Program Identification) . 27-25

Chapter 28. Operation Codes 28-1
Arithmetic Operations 28-4
Move Operationsccuvunn 28-5
Move Zone Operations 28-6
Compare and Testing Operations 28-6

Structured Programming Operations ... 287

Bit Operations 28-9
SETON and SETOF Operations 28-9
Branching within RPG 28-10
Subroutine Operations 28-10
Linking to External Subroutines 28-11
WORKSTN Operations 28-11
Programmed Control of Input and Output 28-11
OPERATION CODES 28-12
ACQ (Acquire)iiinnn. 28-12
ADD(Add), 28-12
BEGSR (Begin Subroutine) 28-13
BITOF (SetBit Off) 28-14
BITON (SetBitOn) 28-16
CASxx(Case)cc.iuun.n. 28-18
CHAIN (Chain)c..... 28-20

Random Processing 28-21
COMP (Compare)cuvuu... 28-24
DEBUG (Debug) 28-27

Records Written for DEBUG 28-28
*LIKE DEFN (Field Definition) 28-29
DIV (Divide)cciiinnnnn. 28-31
DOMO) «iiiiee i 28-32
DOUxx Do Until) 28-35
DOWxx (DoWhile) 28-38
ELSE (Else Do) 28-41
ENDEnd), 28-42
ENDSR (End Subroutine) ST 28-43
EXCPT (Exception Output) 28-44
EXIT (Exit to an External Subroutine) .. 28-50
EXSR (Execute Subroutine) 28-52

Coding Subroutines 28-52
FORCE (Force)cuvu.... 28-54
GOTO (BranchTo) 28-56
IFxx If/Then), 28-59
KEY (Key) . ..oiiiiiiiiiiinnnnnn 28-61
LOKUP (Lookup)ccvoinven.. 28-62

Array LOKUP 28-62

Table LOKUP 28-62
MHHZO (Move High to High Zone) 28-64
MHLZO (Move High to Low Zone) 28-64
MLHZO (Move Low to High Zone) 28-65
MLLZO (Move Low to Low Zone) 28-65
MOVE(Move)covviiivunnn.. 28-67
MOVEA (Move Array) 28-69
MOVEL (Move Left) 28-87
MULT (Multiply) 28-90
MVR (Move Remainder) 28-90
NEXT (Next)cocvuvenennnn... 28-91
POST (Post)ciiinn... 28-92
READ(Read) 28-93
READE (Read Equal Key) 28-95
READP (Read Prior Record) 28-96
REL (Release) 28-97
RLABL (RPG Label) 28-98

Referring to an Indicator 28-100

ReferringtoaField 28-100

Referring to a Data Structure 28-100

Referring to an Array or Table 28-101

Considerations for the
Assembler-Language Programmer 28-104
Message-Retrieving Subroutine

(SUBR23)covvvvnnn. 28-105
SET (Set)ccvvviiiiinnn... 28-106
SETLL (Set Lower Limits Operation) .. 28-107
SETOF SetOff) 28-108
SETON (SetOn)c.... 28-108
SHTDN (Shutdown) 28-109
SORTA (Sort an Array) 28-110
SQRT (Square Root) 28-112
SUB (Subtract) 28-112
TAG(Tag)cciiinnnn. 28-113
TESTB (TestBit) 28-113

Columns 54-55: 28-114
Columns 56-57: 28-114
Columns 58-59: 28-114
TESTZ (Test Zone) 28-116

TIME (Time of Day)
XFOOT (Summing the Elements of an
Array) ...
7Z-ADD (Zero and Add)
Z-SUB (Zero and Subtract)

.............

..........

Chapter 29. Storage Dump of an RPG
Programcc0cuu..
Chapter 30. Differences between RPG
on System/36 and RPG on System/34
Updating Past the End of the File
System/36
System/34
Creating a Direct File That Does Not
Allow Deletions
System/36
System/34

......................

......................

..................
......................

......................

Chapter 31. Using Ideographic Data .
Specifying Ideographic Data
Ideographic Literals and Constants
Ideographic Fields, Tables, and Arrays
Ideographic Comments
Processing Considerations
Moving Ideographic Data and Deleting
Control Characters (SUBR40)
Moving Ideographic Data and Adding
Control Characters (SUBR41)
Ideographic Device Support
Messagesccciiiiiiian,

oooooooooooo

...........

Chapter 32. Problem Determination .
How to Use this Procedure
Identifying and solving RPG Problems .
Contacting Your Service Representative

...........

Contents

28-118
28-118
28-118

xiii

Xiv

About This Manual

Who should use thismanual, XV
How this manual isarranged xvi
Part 1. Guidettt xvi
Part 2. Reference i e e xviii
What youshouldknow xviii
Naming Conventionsouoeeeetuunnneeeeeenneeeennns XX
Coding conventionsiiiiiii e e xxi
If you need more informationty xxi
RPG coding and debugging material xxi
System coding sheets i, xxii

Who should use this manual. ..

This manual is a guide and reference for the RPG II programming language
on System/36. It is intended for people who have a basic understanding of
data processing concepts and of the RPG programming language. For
convenience, RPG 1II is referred to as RPG.

Using this manual, you can:

e Design RPG programs

e Code RPG programs

e Enter and compile RPG programs

e Test and debug RPG programs

o Follow coded RPG examples and sample programs

About This Manual XV

How this manual is arranged . . .

Part 1. Guide

Part 1 (Chapters 1 through 18) is a programmer’s guide. It is organized in
the sequence of tasks that a programmer must perform to use an RPG
program: design, code, enter, compile, test, and put into production.
Chapters 1 through 4 discuss designing, coding, entering, compiling, and
testing:

e Chapter 1 discusses designing an RPG program.

e Chapter 2 discusses coding an RPG program.

e Chapter 3 discusses entering and compiling an RPG program.
o Chapter 4 discusses testing an RPG program.

Chapters 5 through 11 discuss using various kinds of files. Each file that
your program uses must be assigned to an input/output device. You code
that device name in columns 40 through 46 of the file description
specifications. For example, if a file uses a disk as an input/output device,
DISK is coded as the device name. The coded device name is a convenient
way to refer to each kind of file. Thus, a file assigned to a disk is called a
DISK file, a file assigned to a display station is called a WORKSTN file,
and so on.

e Chapter 5 discusses DISK files.

Chapter 6 discusses WORKSTN files.

e Chapter 7 discusses PRINTER files.

e Chapter 8 discusses SPECIAL files.

o Chapter 9 discusses CONSOLE, KEYBORD, and CRT files.

e Chapter 10 discusses BSCA files.

o Chapter 11 discusses primary and secondary files. Primary and
secondary are not device names. Instead, they indicate how the files
are processed by the RPG program cycle.

Some files (CONSOLE and KEYBORD) can be used only for input, some
(CRT and PRINTER) can be used only for output, and some (DISK,
WORKSTN, SPECIAL, and BSCA) can be used for both input and
output. Therefore, when you use an RPG program, you must know how

you can use each file.

Typical RPG programs, and the kinds of files you might use for input
and for output, are listed below:

xvi

What the RPG Files You Can Use| Files You Can Use for
Program Does for Input Output
Inquire into a file DISK PRINTER
WORKSTN WORKSTN
SPECIAL SPECIAL
Process a file DISK DISK
WORKSTN WORKSTN
CONSOLE CRT
KEYBORD PRINTER
SPECIAL SPECIAL
Enter data DISK DISK
WORKSTN WORKSTN
CONSOLE CRT
KEYBORD PRINTER
SPECIAL SPECIAL
BSCA BSCA
Print a report DISK PRINTER
WORKSTN
CONSOLE
KEYBORD
SPECIAL
BSCA

If you wanted to create a program to display accounts receivable
information about your customers, you would probably use a DISK file for
input, a WORKSTN file for both input and output, and possibly a PRINTER
file for output as well. The DISK input file would be a customer master file
containing all the accounts receivable records for your customers. As an
input file, the WORKSTN file would select the desired records from the
DISK file. As an output file, the WORKSTN file would display the selected
records from the DISK file. The program might do no processing other than
reading records from the DISK file and writing records to the WORKSTN
file. Sample program AR230R in Chapter 6 shows this example. If you used
a PRINTER file also, you could write the output records to the printer.

When you are ready to code your program, read the chapters that explain
how to code a program that uses the kinds of files your program uses. For
example, for information about coding a program that uses a DISK file, a
WORKSTN file, and a PRINTER file, you should read Chapters 5, 6, and 7.

Chapters 12 through 17 discuss various things that your RPG program can
do:

e Chapter 12 discusses using indicators.

e Chapter 13 discusses using arrays and tables.

About This Manual XVi11

Part 2. Reference

Chapter 14 discusses using data structures.
Chapter 15 discusses using auto report.
Chapter 16 discusses editing numeric output fields.

Chapter 17 discusses changing the hexadecimal value of characters.

Chapter 18 presents some tips for coding efficient programs.

Part 2 (Chapters 19 through 32) is a reference.

Chapter 19 presents both a general and a detailed explanation of the
RPG program cycle.

Chapters 20 through 27 explain all possible entries (column by column)
for each RPG specification sheet. ‘

Chapter 28 explains each RPG operation code in alphabetical order.
Chapter 29 shows a storage dump of an RPG program.

Chapter 30 explains the differences between the way RPG programs
work on System/36 and the way they work on System/34.

Chapter 31 discusses using ideographic data.

Chapter 32 discusses problem determination.

What you should know . . .

xviii

Before you use this manual, you should be familiar with certain
information:

You should know how to use the controls and indicators on your
display screen and how to use the keys on your keyboard, such as:

— Cursor movement keys
— Command keys

— Field exit keys

— Insert and delete keys
— Error Reset key

This information is contained in:

~ IBM 5291 Display Station Operator’s Guide, GA21-9409

— IBM 5292 Color Display Station Operator’s Guide, GA21-9416

— IBM 5251 Models 1 and 11 Display Station, IBM 5252 Dual Display
Station Operator’s Guide, GA21-9248

— IBM 5251 Models 2 and 12 Display Station Operator’s Guide,
GA21-9323

You should know how to operate your display station to use the
System/36 System Support Program (SSP) to do such things as:

— Signing on and signing off the display station

— Interacting with displays

— Using help

— Entering control commands and procedure commands
— Responding to messages

This information is contained in the manual Operating Your System
5360, 5362, SC21-9452 if you use a System/36 System Unit 5360 or a
System/36 System Unit 5362, and in the manual Operating Your System
5364, SC21-9353 if you use a System/36 System Unit 5364. Refer also to
the manual Using Your Display Station, SC21-9455.

You should know how to design and code displays.by using:

— Screen design aid (SDA) utility
—~ BLDMENU and FORMAT procedures

This information is contained in the manual Creating Displays: Screen
Design Aid and System Support Program, SC21-7902.

You should know how to communicate with the SSP by using:

— Operation control language (OCL) statements
— Utility programs and utility control statements
— Procedures

— Commands

This information is contained in the System Reference manual,
SC21-9020.

You should know how to design and code efficient programs. This
information is contained in the Concepts and Programmer’s Guide,
SC21-9019.

You should know how the RPG program cycle works, how indicators
affect the program cycle, and how to code entries on the RPG
specification sheets. This information is contained in the IBM
Introduction to RPG II and RPG III: Batch Processing with Program
Described Files, GC21-7514. It is also available from an IBM RPG II
coding class.

You should know how to use the development support utility (DSU) or
the source entry utility (SEU). This information is contained in the
Development Support Utility Guide, SC09-1085, which explains how to
enter and update your source and procedure members using a full
screen editor, and the Source Entry Utility (SEU) Guide, SC21-7901.

You should know how to interpret displayed and printed messages.
This information is contained in the System Messages manual,

About This Manual XiXx

SC21-7938, in the RPG II Messages manual, SC21-7940, and in the
Utilities Messages manual, SC21-7939.

e If you communicate with an IBM 3741 Data Entry Work Station you
should know that 3741 Status messages are treated as data to be
handled by the user. Information on possible status messages and data

format are contained in the IBM 3741 Data Station Reference Manual,
GA-9183.

Naming conventions

In this manual, the following conventions are used for program, display,
and menu names:

e Program names use the format aannnR, where:
— aa identifies the type of application:
AR means accounts receivable
IM means inventory management
OE means order entry
— nnn is a number that identifies the type of program:
100-199 for data entry
200-299 for inquiry
300-349 for file maintenance
350-399 for sort
400-499 for file update
900-949 for printing reports and program listings
— R identifies the programming language as RPG
o Display names are formed by adding a D to the end of the name of the
program that uses the display. For example, AR230RD is the name of a
display used by an RPG accounts receivable inquiry program. If the
program uses more than one display, a sequence number is added to the
display name. For example, if program AR230R uses two displays, the
displays are named AR230RD1 and AR230RD2.
e Menu names use the format aannnM, where:
— aa identifies the type of application

— nnn is a number assigned to the menu
— M identifies the name as a menu name

XX

Coding conventions
Where specification sheets show which columns to code, shading indicates
that no entry is allowed in the column, no coding in an unshaded column
indicates that more than one entry is allowed in the column, and a

character in an unshaded column indicates that that character is the only
entry allowed in the column.

If you need more information . ..

For an index of major topics discussed in all System/36 manuals, see the
Guide to Publications, GC21-9015.

For information about converting your programs from IBM System/34 to
System/36, see the manual Converting from System/34 to System/36,
SC21-9053.

For information about data communications, see the Interactive
Communications Feature: Reference, SC21-7910, and the Interactive
Communications Feature: Guide and Examples, SC21-7911.

For information about designing structured programs, see the Structured
Programming Textbook, SR20-7149, and the Structured Programming
Workbook, SR20-7150.

For information about protecting the security of your system, see the
System Security Guide, SC21-9042.

For information about determining whether a problem is in an IBM product
or in your own program, see the System Problem Determination - 5360
manual, SC21-7919 if you use a System/36 System Unit 5360, the System
Problem Determination - §362 manual, SC21-9063 if you use a System/36

System Unit 5362, and the System Problem Determination - 5364 manual,
SC21-9375 if you use a System/36 System Unit 5364.

RPG coding and debugging material
e RPG Control and File Description Specifications, GX09-1035
e RPG Calculation Specifications, GX09-1035
e RPG Extension and Line Counter Specifications, GX09-1033
e RPG Input Specifications, GX09-1033
® RPG Telecommunications Specifications, GX09-1034
e RPG Output Specifications, GX09-1034
o RPG Auto Report Specifications, GX09-1032

e RPG Indicator Summary, GX09-1032

About This Manual XxXx1

e RPG Debugging Template, GX21-9129

System coding sheets
e Display Format Specifications, GX21-9800

e IBM 5250 Display Station Keyboard Template Assignment Sheet and
Display Screen Layout Sheet, GX21-9271

e IBM Printer/Display Layout Sheet, GX21-9174

e Translation Table and Alternate Collating Sequence Coding Sheet,
GX21-9096

XX11

Summary of Changes

The main enhancement made to System/36 RPG for release 5 is adding the
DO structured programming operation code.

The DO operation allows an operation or a series of operations to be
performed a fixed number of times. Programmer indicates how many times
the operation(s) will be performed when coding the DO statement and the
associated END statement. See detailed descriptions of the DO operation in
Chapter 18 and Chapter 28.

Note: This manual may refer to products that are announced, but are not yet

available. Such information is for planning purposes only and is
subject to change before general availability.

‘Summary of Changes XXiil

XX1V

Part 1. GUIDE

Part 1. GUIDE

Chapter 1. Designing an RPG Program

Steps iIn Using RPG it 1-1
Step 1. Designt e e e 1-3
Step 2. Code ... 1-3
Step 8. Enter e 1-3
Step 4. Compile ... ittt e e e 1-3
SteD 5. T8t .o v it e e e e e 1-3
Step 6. Put into Production 1-3

Designing Your Programc.iiiiiiiiinnnreennnenas 14
Designing the Qutput i iiinnnnnn 1-5
Designing the Processingc.iiiiiiiinnnnnn.. 1-6
Designing theInput 0 i 1-6

Chapter 1. Designing an RPG Program

Chapter 1. Designing an RPG Program

This chapter begins with an overview of the six steps in creating and using
an RPG program. These steps are related to the sequence of chapters in
Part 1 of this manual, the programmer’s guide.

After that overview, this chapter discusses step 1, designing an RPG
program. The design step includes designing the output, designing the
processing, and designing the input.

Steps in Using RPG

There are six steps in creating and using an RPG program (see Figure 1-1):

1.

2.

Design
Code
Enter
Compile
Test

Put into production

Chapter 1. Designing an RPG Program 1-1

(o) Output Specifications

[1

C Calculation Specifications

-

‘Input Specifications

H Control Specification

F File Description
Specifications

OO0

Step 2. Code the Prcgram
Step 1. Design the Program

CI
L Main
Storage
Step 3. Enter the Program Step 4. Compile the Program

©

X~

Test Data . Actual Data \
Main Main
. * Storage * Storage
Results Results
Step 5. Test the Program Step 6. Put the Program into Production

Figure 1-1. Steps in Using an RPG Program

1-2

Step 1. Design

Step 2. Code

Step 3. Enter

Step 4. Compile

Step 5. Test

Designing means planning what you want the program to do. Designing is
probably the most important step in programming, so it is worth the time to
design your programs carefully before you start to code them. A
well-designed program is the best way to ensure good performance (fast
processing and efficient use of resources) from your computer. Later
sections of this chapter discuss the design step in more detail. For a
complete explanation of the principles of program design, see the Concepts
and Programmer’s Guide.

Coding a program means writing the instructions that tell the computer
what data to use, how to process it, and what to do with the results. You
write these instructions on RPG specification sheets. Chapter 2 discusses
coding in general terms.

Entering a program means getting your written instructions (your coding)
into the computer. You use the RPGONL procedure, the RPGSEU
procedure, or the source entry utility to enter your instructions. Chapter 3
explains how to enter your program.

Compiling a program means translating your entered instructions (called a
source program into a form that the computer can use (called a load
module). You use the RPGONL or RPGC procedure to compile your source
program. Both of these procedures allow you to display your compiled
program at your display station. The RPGONL procedure also allows you
to correct errors in your source program and recompile the program at your
display station. Chapter 3 explains how to compile your program.

Testing a program means running a load module with some sample data to
be sure that it produces the proper results. Testing helps you debug your
load module before you run it with your actual data. Chapter 4 discusses
testing your program.

Step 6. Put into Production

Putting a program into production means using it to process your actual
data. Chapters 5 through 18 discuss using your load module to process
data.

Chapter 1. Designing an RPG Program 1-3

Designing Your Program

A program usually begins with an idea or a request to produce a certain
kind of result. Therefore, you know what the program should do before you
begin to code it. The planning you do to decide how to code a source
program that will produce that result is called designing the program.

For example, suppose you want to create a program that allows people in
your company to display information about your customers. An example of
such a program is sample program AR230R in Chapter 6. That program
displays accounts receivable information about a company’s customers. To
design that program, the programmer had to consider such questions as:

e What information will the people in the company need to know about
the customers? Name? Address? Phone number? Balance due? Credit
limit?

e How many people will need this information? Will more than one
person need it at the same time?

e How will a person request information about a customer? By entering
the customer’s number? The customer’s name?

e What file or files contain the information to be displayed? How are
those files organized?

e Can a person change the displayed information or only look at it?

e Will a person want a printed copy of the displayed information?

The answers to questions like these determine how to code the program.
Designing a program includes:

o Deciding what output you need from your program

e Deciding what processing will produce the output you need

® Deciding what input is required by and available to your program
This sequence may seem backwards because it starts at the results (the
output) and ends at the beginning (the input). The reason for designing the
output first is to make sure that you start with a clear understanding of
what your program will do. If you know what output you need, you can
decide what calculations are necessary to produce that output. Designing

the output first is like knowing where you are going before you set out on a
trip: it helps you decide the best way to get there.

Designing the Output

Your program will produce output records. You must decide what you will
do with those records. In general, you have three choices (or any
-combination of the three choices):

® You can display them.
e You can print them.
¢ You can store them.

If you want to display the output records at your display station, you have
to decide what information you want displayed and how you want it laid
out. To define how you want your displays laid out, you use the display
layout sheet. Then you use the screen design aid (SDA) utility to create
your display screens. For more information about SDA, see the manual
Creating Displays. ‘

If you want to print the output records, you also have to decide what
information you want printed (which fields from which records) and how
you want it laid out on the printed report. To indicate how you want the
printed report laid out, use the printer layout sheet.

If you want to keep the output records in storage, you still have to decide
what information you want to keep and how you want to organize the fields
in the output records.

After you design all your output records, you describe those records on the
RPG file description specifications and output specifications.

Chapter 1. Designing an RPG Program 1-5

Designing the Processing

Designing the processing means planning the calculations that will produce
the necessary output. When you design the processing, you must be aware
of how the RPG program cycle works. The RPG program cycle controls
certain operations performed on each record, so the program cycle partly
determines how you can process your data.

The phrase program cycle refers to the series of operations that an RPG
program automatically performs on each record that it reads. Each RPG
program goes through the same general cycle of operations.

The program cycle has three basic logic steps:

e Reading information (input)

e Doing calculations (processing)

o Writing results (output)

These basic logic steps can be divided into several substeps in which you
can assign indicators to control when calculation and output operations
occur. These substeps and indicators are then coded on the RPG
calculation specifications.

For a detailed explanation of the RPG program cycle, see Chapter 19. For

more information about how indicators affect the RPG program cycle, see
Chapter 12.

Designing the Input

After you decide what output you need and what calculations will produce
that output, the next step is to find out where the input data for your
program will come from. It might come from one or more files already on
the computer, from one or more display stations on your computer, from
one or more other computers, or from a combination of these sources. You
have to know the names used for input files, the location of fields in the
input records, the sequence of record types, the formats of numeric data,
and the indicators used. When you know this information, you can
describe your input records on the RPG input specifications.

Chapter 2. Coding an RPG Program

Control Specification, e 2-3
File Description Specifications 2-3
Extension Specificationsc.iiiiii it 2-3
Line Counter Specificationsottt 2-4
Telecommunications Specifications 2-4
Input Specificationst e 2-4
Calculation Specificationsttt iinennn.. 2-5
Output Specificationsc.ciiiititinnreeerunnneseens 2-5

Chapter 2. Coding an RPG Program

Chapter 2. Coding an RPG Program

After you have designed your program, you must write the individual
statements that make up your source program. These statements should be
coded on RPG specification sheets. Each line coded on a specification sheet
represents a statement in the source program. Each specification sheet
contains 80 columns. Column headings indicate the kind of information to
code in particular columns.

There are eight kinds of specifications:

e Control specification

e File description specifications

e Extension specifications

e Line counter specifications

o Telecommunications specifications

o Input specifications

e Calculation specifications

o Qutput specifications

Each of these specifications is described briefly in this chapter.

Most RPG programs do not use all eight kinds of specifications. In fact,
none of them is required in every program, and a typical program probably
uses only file description, input, calculation, and output specifications.
When the computer compiles your source program, the specifications you
use must be in the order shown in Figure 2-1. The specifications can be

coded in any order, but normally you code them in the same order in which
you design the program: first output, then calculations, then input.

Chapter 2. Coding an RPG Program 2-1

Compile-Time Table
or Array Data

**ﬁ

Alternate Collating
Sequence Specifications

**“

File Translation
Specifications

**“

(o) Output Specifications
]

C Calculation Specifications

I Input Specifications

-

T Telecommunications

l Specifications

L Line Counter
'] Specifications

E Extension Specifications

F File Description
] | Specifications

H Control Specification

¥ = blank

Figure 2-1. Required Order of Specifications for an RPG Source Program

2-2

Control Specification

The control specification provides the RPG compiler with information such
as the following about your program and your computer:

e Name of the program

e Storage size needed for the program to run

o Date format for the program

o Whether an alternative collating sequence or file translation is used

For a detailed description of the control specification, see Chapter 20.

File Description Specifications

File description specifications describe all the files that your program uses.
The information for each file includes:

Name of the file

o How the file is used

e Size of records in the file

e Input or output device used for the file

o Whether the file is conditioned by an external indicator

For a detailed description of the file description specifications, see Chapter
21.

Extension Specifications

Extension specifications describe all record address files, table files, and
array files used in the program. The information includes:

e Name of the file, array, or table

e Number of entries in a table or array input record
e Number of entries in a table or array

e Length of the table or array entry

For a detailed description of the extension specifications, see Chapter 22.

Chapter 2. Coding an RPG Program 2-3

Line Counter Specifications

Line counter specifications describe the page or form on which output is
printed. The information includes:

Number of lines per page

Line of the page at which overflow occurs

For a detailed description of the line counter specifications, see Chapter 23.

Telecommunications Specifications

Telecommunications specifications describe each BSCA file in the program.
The information includes:

Name of the file

Description of the communication network used
Type of station

Type of control

Type of code used

Station identification

For a detailed description of the telecommunications specifications, see
Chapter 24.

Input Specifications

2-4

Input specifications describe the records and fields in the input files used by
the program. The information for each record includes:

Name of the file
Sequence of record types

Whether record-identifying indicators, control-level indicators,
field-record-relation indicators, or field indicators are used

Whether data structures, look-ahead fields, record identification codes,
or match fields are used

Type of each field (alphameric or numeric; packed-decimal,
zoned-decimal, or binary format)

Location of each field in the record

e Name of each field in the record

For a detailed description of the input specifications, see Chapter 25.

Calculation Specifications

Calculation specifications describe the calculations to be performed on the
data and the order in which the calculations are to be performed.
Calculation specifications can also be used to control certain input and
output operations. The information includes:

e Control-level and conditioning indicators for the operation specified

e Fields or constants to be used in the operation

o The operation to be performed

o Whether resulting indicators are set after the operation is performed

For a detailed descript@on of the calculation specifications, see Chapter 26.

Output Specifications

Output specifications describe the records and fields in the output files and
the conditions under which output operations are performed. The
information includes:

e Name of the file

e Type of record to be written

e Spacing and skipping instructions for PRINTER and CRT files

o Output indicators that condition when the record is to be written
& Name of each field in the output record

o Location of each field in the output record

o Edit codes and edit words

o Constants to be written

e Format name for a WORKSTN file

For a detailed description of the output specifications, see Chapter 27.

Chapter 2. Coding an RPG Program 2-5

2-6

Chapter 3. Entering and Compiling an RPG Program

Using the RPG Proceduresc.iiiiiiiniiinnnnnn. 3-1
RPGP Programming Menutitiiinnvnnineennnnn 3-2
RPG Interactive Program-Development Procedure (RPGONL Procedure) 3-4
Using the First RPGONL Display 34
Using the Second RPGONL Displayciviiinvvn... 3-6
Using the Third RPGONL Displayccviuuen... 3-11
Creating or Changing an RPG or Auto Report Program (RPGSEU
Procedure) e 3-13
Compiling an RPG Program (RPGC Procedure) 3-15
Using the First RPGC Display 0iiiinn... 3-15
Using the Second RPGC Display v, 3-18
Printing an RPG Cross-Reference Listing (RPGX Procedure) 3-22
Cross-Reference Listing0 iiiiiunnnin. 3-23
Listing Format 3-23
Sample Cross-Reference Listing 3-25
Compiling an Auto Report Program (AUTOC Procedure) 3-26
Using the First AUTOC Displayo, 3-26
Using the Second AUTOC Displayc.viviiiinnnnnnnn. 3-28
Creating or Changing Display Formats (RPGSDA Procedure) 3-32
Solving Problems That Occur At Compilation Time 3-33
No Compiler Listing Is Producedc0viviiiviinnn, 3-33
No Load Module Is Produced 0. 3-36
A Load Module Is Produced but Cannot Be Found 3-36
No Subroutine Module Is Produced 3-38
A Subroutine Module Is Produced but Cannot Be Found 3-39
No Diagnosed Source Member Is Produced 341

Chapter 3. Entering and Compiling an RPG Program

Chapter 3. Entering and Compiling an RPG Program

Using the RPG Procedures

To enter and compile an RPG program, use one or more of the following
RPG procedures:

RPGONL, which lets you create a source program and then alternately
compile and correct errors in your source program online (at your
display station)

RPGSEU, which lets you create or change a procedure or an RPG or
auto report source member

RPGC, which lets you compile an RPG source program

RPGX, which lets you print a cross-reference listing for an RPG
program

AUTOC, which lets you compile an RPG source program that contains
auto report specifications

RPGSDA, which lets you create or change a display format

Each of these procedures is explained in this chapter.

To begin one of these procedures, use any one of the following methods:

Choose an option from the RPGP programming menu.

Include any of the RPG procedures in one of your own procedures and
run your own procedure.

Call the procedure directly. To call one of the procedures directly, use
one of the following methods:

— Type HELP, a space, and the procedure name (with or without
parameters) on the command line, and press the Enter key.

— Type the procedure name on the command line of the display screen,
and press the Enter key.

— Type the procedure name (with or without parameters) on the
command line, and press the Help key.

Chapter 3. Entering and Compiling an RPG Program 3-1

— Type the procedure name, a space, and the source member name on
the command line, and press the Enter key. (If you use this method,
prompts are displayed only for the RPGONL procedure.)

RPGP Programming Menu

3-2

There are three ways to display the RPGP programming menu:

e Type HELP RPGP on the command line of the display screen, and press
the Enter key.

o Type RPGP on the command line, and press the Help key.
e Use the Help menus.

The programming menu lists six options from which you can choose to
perform tasks related to RPG programming:

e TN

RPGP w4
RPG II programming procedures

Select one of the following:

Develop an RPG II program

Create or change an RPG II or auto report program
Compfle an RPG II program

Print an RPG II cross reference

Compfle an auto report program

Create or change display formats

oI wWwN -

Cmd3-Previous menu Cmd7-End Cmd5-Main help menu Home-Sign on menu

Ready for optfon number or command

© 1983 IBM Corp.

__ .

To choose one of the six procedures, enter a number from 1 through 6:

e Enter 1 to use the RPGONL procedure.

Enter 2 to use the RPGSEU procedure.
e Enter 3 to use the RPGC procedure.

e Enter 4 to use the RPGX procedure.

e Enter 5 to use the AUTOC procedure.

o [Enter 6 to use the RPGSDA procedure.

When chosen from the RPG programming menu, all six of these procedures
remember the parameters you specify when you use a procedure. Then, the
next time you choose any of the six procedures from the programming
menu, the parameters you specified previously are automatically entered for
you in response to the new prompts. For example, if you select the RPGC
procedure on the programming menu, all 18 of the parameters you specified
for the RPGC procedure are stored. When the RPGC procedure is complete,
the programming menu is displayed again. Then, if you select the RPGSEU
procedure on the programming menu, the display for the RPGSEU
procedure shows the source member name and the library name that you
entered for the RPGC procedure. If you sign off, the parameters are reset to
the default values.

You can use the following keys from the RPGP programming menu:
e (Command key 3 to return to the previous help menu

o Command key 7 to end help

o Command key 12 for information about how to use help

o The Home key to return to the sign-on menu

e The Help key for additional information about the procedures

e Command key 24 to make the RPGP Help menu your default help menu

Chapter 3. Entering and Compiling an RPG Program 3-3

RPG Interactive Program-Development Procedure
(RPGONL Procedure)

The RPGONL procedure allows you to enter and compile your source
program. The procedure identifies any errors in your source program by
displaying your source program online (that is, at your display station) with
error messages inserted immediately before the specification containing the
error. You can correct these errors online and recompile your program as
many times as necessary until it compiles successfully. The RPGONL
procedure has three displays.

Using the First RPGONL Display

The first display for the RPGONL procedure looks like this:

— —

RPGONL PROCEDURE Optfonal-*

RPG II interactive program-development procedure

Name of source program to be compiled TEST

Name of 1ibrary containing program to be compiled YOURLIB

Name of 1ibrary to contain compiled program *
Name of data dictionary tobeused *
Create or change source before first compflation? Y,N . . Y

Cmd3-Pravious menu Cmd7-End Cmdi4-Compiler options © 1985 IBM Corp.

_ .

Respond to each prompt by entering the appropriate information.

Name of source program to be compiled: Enter the name of the your source
program,

Name of library containing program to be compiled: Enter the name of the
library that contains the source member to be compiled. If no library name
is specified, the library name is determined in one of the following ways:

e If RPGONL is the first procedure to be run during this session, the
current library name is used.

e If the last procedure run during this session was RPGONL, RPGC,
RPGX, RPGSEU, or AUTOC, the library name used in that last
procedure becomes the default used for RPGONL. For RPGC, RPGX,
RPGSEU, and AUTOC, this applies only when these procedures are not
run from the job queue or are not evoked. If these procedures are run
from the job queue, or are evoked, or if RPGR or RPGSDA is run, the

library name for RPGONL is not changed from the current library
name.

If the last procedure run during this session was another language
procedure (any COBOL, FORTRAN, or ASSEMBLER procedure), the
current library name is used.

Name of library to contain compiled program: Enter the name of the library
that is to contain the compiled program. If no library name is specified, the
library name is determined in one of the following ways:

If RPGONL is the first procedure to be run during this session, the
current library name is used.

If the last procedure run during this session was RPGONL, RPGC,
RPGX, RPGSEU, or AUTOC, the library name used in that last
procedure becomes the default used for RPGONL. For RPGC, RPGX,
RPGSEU, and AUTOC, this applies only when these procedures are not
run from the job queue or are not evoked. If these procedures are run
from the job queue, or are evoked, or if RPGR or RPGSDA is run, the
library name for RPGONL is not changed from the current library
name.

If the last procedure run during this session was another language
procedure (any COBOL, FORTRAN, or ASSEMBLER procedure), the
current library name is used.

Name of data dictionary to be used: Enter the name of the current data
dictionary to be used during the compilation, if you are using
communication formats defined through the interactive data definition
utility (IDDU). There is no default value for the data dictionary. The
dictionary must exist.

Create or change source before first compilation?: Enter Y or N.

Y (yes) means that you want the procedure to call the development
support utility (DSU), if you have it installed, or the source entry utility
(SEU), to allow you to create or change your source program before the
first compilation.

N (no) means that you do not want to create or change your source
program before the first compilation.

If no option is chosen, Y is assumed.

You can use the following keys from the first RPGONL display:

Command key 3 to return to the previous Help menu
Command key 7 to end the RPGONL procedure
The Help key for additional explanation of the parameters

Command key 14 to see the second RPGONL display, which allows you
to specify more parameters.

Chapter 3. Entering and Compiling an RPG Program 3-b

Using the Second RPGONL Display

The second RPGONL display looks like this:

~ ~

RPGONL TEST,YOURLISB,,,Y

Create cross-reference 1ist

Create program that must be
Tink-edfted

Never-endfng program . . .
Maximum number of

Create program with
memory resident overlays

Cmd2-Page back Cmd7-End

RPG II compller options

Override print option in source . . SOURCE,NOSOURCE,PSOURCE
Override debug option Itnsource DEBUG,NODEBUG *
override sfze-to-execute option in source 2-64

Create program that canberun LINK,NOLINK LINK
Name of subroutine input library *

requesting display stattons. 0-99 0
Generate CONSOLE f1le display formats GEN,NOGEN GEN
S1ze of work files fnblocks 1-9989 40

RPGONL PROCEDURE Optfonal-+

*

*

ing NOXREF ,XREF NOXREF

......... NOOBJECT,0BJECT NOOBJECT
............ NONEP ,NEP NONEP

............ NOMRO,MRO NOMRO

(c) 1985 IBM Corp.

By

Respond to each prompt

by entering the appropriate information.

Override print option in source: Enter SOURCE, PSOURCE, or
NOSOURCE. Use this option to override an entry in column 11 of the
control specification of your RPG program.

SOURCE means that you want the RPG compiler to print a full
compiler listing. A full compiler listing includes the source program,
information about tables and arrays, the relative location of fields and
their attributes, field names that are not referred to, diagnostics, and a

map of main storage
the starting address,

. The map of main storage lists the identification,

and the size of each separately identifiable

segment of code in the program, tells how much main storage is
required to run the program, and lists the number of library sectors
required for the program.

NOSOURCE means that you do not want the RPG compiler to print a
compiler listing. If you use this option, a prolog is printed along with

the following inform

ation from the overlay linkage editor: the amount

of main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program.
Use this option when you already have a listing of the program.

PSOURCE means that you want the RPG compiler to print a partial
compiler listing. A partial listing includes the source program,
information about indicators used in the program, diagnostics, and the
following information from the overlay linkage editor: the amount of
main storage required to run the program, the starting address of the

3-6

program, and the number of library sectors required for the program. It
does not include information about tables and arrays, information about
fields, or a map of main storage.

If no option is specified, the encry coded in column 11 of the control
gpecification is used.

Override debug option in source: Fntei DEBUG or NODEBUG. Use this
option to override the entry in column 15 of the control specification.

DEBUG means that the DEBUG operation is to be used in the
calculation specifications.

NODEBUG means that the DEBUG operation is not to be used.

If no option is specified, the entry coded in column 15 of the control
specification of your RPG program is used.

Override size-to-execute option in source: Enter the program size in K bytes
(one K byte equals 1024 bytes). The program size must be an even number
from 2 through 64. Use this option to override the entry coded in columns
12 through 14 of the control specification of your RPG program. If no size
is specified, the entry coded in columns 12 through 14 of the control
specification is used.

Create cross-reference listing: Enter NOXREF or XREF.

NOXREF means that you do not want the RPG compiler to create a
cross-reference listing for the program.

XREF means that you do want a cross-reference listing. The
cross-reference listing is created only if the program contains no
terminal errors. A prompt on the third display for this procedure allows
you to choose whether to display or print the listing.

If no option is specified, NOXREF is assumed.

Create program that can be run: Enter LINK or NOLINK.

LINK means that you want to create a load module, that ig, a program
that you can run without first having to use the overlay linkage editor
procedure OLINK to link-edit the program.

NOLINK means that you do not want to create a load module.

If no option is entered, LINK is assumed.

Create program that must be link-edited: Enter NOOBJECT or OBJECT.
NOOBJECT means that you do not want to create an object module.
OBJECT means that you want to create an object module, that is, a
compiled subroutine (not a load module). You must use the OLINK

procedure to link-edit this module (by itself or with one or more other
assembler programs or subroutines) before you can run the module.

Chapter 8. Entering and Compiling an RPG Program 3-7

If no option is specified, NOOBJECT is assumed.
Create memory-resident overlays: Enter NOMRO or MRO.
NOMRO means that you do not want overlays to remain in memory.

MRO means that you want to retain overlays in memory. This enables
you to keep more than one overlay in memory.

The default is NOMRO.

Name of subroutine input library: Enter the name of the library that
contains one or more assembler subroutines to be combined with the
program being compiled. If no library name is specified, the name of the
source input library is assumed. ‘

Never-ending program: Enter NONEP or NEP.
NONEP means that the program is not a never-ending program.

NEP means that the program is a never-ending program. A
never-ending program is one that uses system resources (such as disk
storage, display stations, or printers) that are not shared with other
programs. Use this option if your program will be requested frequently.

If no option is specified, NONEP is assumed.

Maximum number of requesting display stations: Enter the number (0
through 99) of display stations that can use a single copy of the program at
the same time. If no number is entered, a value of 0 is assumed (the
program is not a MRT program).

Generate CONSOLE file display formats: Enter GEN or NOGEN.

GEN means that you want the procedure to create and compile source
specifications for 24-line, 1920-character display formats for a
CONSOLE file. Specifications are created and compiled only if the
program contains no terminal errors.

NOGEN means that you do not want the piocedure to create or compile
the source specifications for the display formats for a CONSOLE file.

If no option is chosen, GEN is assumed. However, the procedure
. ignores this option if your program does not use a CONSOLE file.

Size of work files in blocks: Enter the number (1 through 9999) of blocks for
the compiler work files. If no size is specified, 40 blocks is assumed.
However, if the work files become full, they are automatically extended by
the compiler.

You can use the following keys from the second RPGONL Procedure
display:

e Command key 2 to return to the first display for the RPGONL
procedure

e Command key 7 to end the RPGONL procedure
o The Help key for additional explanation of the parameters

What happens next depends on how you responded to the last prompt on
the first display for this procedure. That prompt is Create or change source
before first compilation?

If you responded Y to that prompt and now press the Enter key, the
RPGONL procedure calls DSU or, if DSU is not installed on the system,
SEU, and allows you to create or change your program before the first
compilation. After you finish using DSU or SEU, your program is
compiled.

If you responded N to that option and now press the Enter key, neither
DSU nor SEU is called and you cannot create or change your source
program before the first compilation.

During the compilation, a diagnosed source member is created. A
diagnosed source member is a source member in which informational,
warning, and terminal error messages diagnosed by the RPG compiler are
inserted immediately before the specifications containing errors. The
inserted messages have the following format:

e Columns 1 and 2 contain question marks.

o Column 3 contains I, W, or T to indicate that the message is an
informational, warning, or terminal error message.

e Columns 4 and 5 are blank.

e Column 6 contains H, F, E, L, T, I, C, or O to indicate the specification
type.

e Column 7 contains an asterisk to indicate that this line is a comment.
o Columns 8 through 80 contain the message.

When the compilation is complete, the editor (DSU or SEU) displays the
diagnosed source member on your display screen. You can see the results
of the compilation and can correct any errors diagnosed by the compiler.
When you finish correcting these errors, press command key 7 to end

editing. If you chose to replace the source program, you will next see the
DSU end-of-job display.

Chapter 3. Entering and Compiling an RPG Program 3-9

3-10

EXIT OPTIONS FOR SOURCE MEMBER

Type choices, press Enter.

ITEM CHOICE POSSIBLE CHOICES

Save member 1 1=Yes 2=No

Member name EXAMPLE1

Library name. . . . DSULIB

Reference number. . 000001 1-999999

Serfalize member. . 2 1=Yes 2=No

Beginning column. . 001 1-93

Remove diagnostics..2 1=Yes 2=No

Subtype. RPG UNS, ARP,ARS,ASM,BAP,BAS,BGC,BGD,BGF,
CoB,DFU,DTA,FMT,FOR,MNU,MSG,PHL ,RPG,
SRT,WSU

Print member2 1=Yes 2=No

Cmd3=Return to editing Cmd4=Display member 1ist

Cmd6=Return to editing with processing CMD7=Exit DSU

If DSU is not installed on your system, you will see the SEU end-of-job
display:

- ™
‘ END OF JOB
Member mame L ... e« o . TEST
Library name 0 0L . 0 e e e e YOURLIB
Reference number o000 000006
Library member subtypeo 35

2 DTA 13 BAP 16 MNU 19 SRT 33 COB 36 WSU
11 ARS 14 DFU 17 MSG 31 ASM 34 FOR 40 UNS
12 ARP 15 FMT 18 PHL 32 BAS 35 RPG

Remove diagnostics from dfagnosed source member? Y,N Y

N | _J

On both DSU and SEU end-of-job displays you can choose to have all of the
RPG error messages removed from the source program before it is placed
back into the source program library. You should consider the number of
error messages, the size of the source program, and the amount of free
space in the source program library before you replace the source program
without removing the error messages. To remove the error messages, select
the Y option for the Remove diagnostics prompt on the DSU end-of-job
display, or for the Remove diagnostics from diagnosed source member?
prompt on the SEU end-of-job display.

When you finish using the diagnosed source member, the third display for
the RPGONL procedure is shown.

Using the Third RPGONL Display

The third RPGONL display looks like this:

RPGONL PROCEDURE

Continuation options

Would you 1ike to view the compfler 11sting? . . . Y,N N
Would you 1ike to recompile the source program? . . Y,N Y
Source program TEST

Input 1tbrary YOURLIB

Output 1tbrary YOURLIB

Data dictionary

Cmdil-Work with different member Cmd7-End
Cmd1i4-Comp1ler options © 1985 IBM Corp.

N _/

Respond to each prompt by entering the appropriate information.
Would you like to view the compiler listing?. Enter Y or N.

Y (yes) means that you want the compiler listing to be displayed at your
display station.

N (no) means that you do not want the compiler listing to be displayed
at your display station.

If no option is specified, N is assumed.

Would you like to recompile the source program?: Enter Y or N.
Y (yes) means that you want to recompile your program.
N (no) means that you do not want to recompile your program.
If no option is specified, Y is assumed.
Command keys 1 and 14 override this option. If you press command key
1, the program is not recompiled, even if you entered Y in response to
this prompt. Instead, the first RPGONL display for the current program
appears, SO you can enter a new program name and use the procedure
with the new program. If you press command key 14, the second
RPGONL display for the current program appears, so you can change
any compiler options for the current program and recompile the

program, even if you entered N in response to this prompt.

Press command key 7 to end the RPGONL procedure.

Chapter 3. Entering and Compiling an RPG Program 3-11

3-12

Press the Help key for additional information about the third RPGONL
display.

If you respond Y to Would you like to view the compiler listing?, the display
for the COPYPRT procedure appears. The COPYPRT procedure allows you
to display and optionally print the compiler listing. The display for the
COPYPRT procedure looks like this:

o~ —
*%COMPLETE %%
NO. 1/D PROC JOBNAME USER PRINTER ID FORM PAGES RECS
001 SP0061 RPGONL W3145108 MSM $PRINTDM P2 0001 4 44
SELECTED HEADER - 1 PRINT Y/N - N COPIES - 01
FROM PAGE TO PAGE ENTER/HELP KEY CMD 7 - END
- _/

To display the compiler listing, type the listed job number in response to
the Selected header prompt at the bottom of the display and press the Enter
key. To print the compiler listing, type the listed job number in response to
the Selected header prompt, change the default N to Y on the Print prompt,
and press the Enter key. For more information about the COPYPRT
procedure, see the System Reference manual.

Press command key 7 to end the COPYPRT procedure.

You can continue using the RPGONL procedure until you press command
key 7 while any of the three displays is shown or until you type N and press
the Enter key in response to the second prompt on the third display, Would
you like to recompile the source program? Each time you recompile your
program, the parameters you specified the previous time you used the
procedure are automatically entered for you in response to the new
prompts.

Creating or Changing an RPG or Auto Report Program
(RPGSEU Procedure)

The RPGSEU procedure allows you to use the source entry utility (SEU) to
create or change an RPG program. For a complete explanation of SEU, see
the Source Entry Utility (SEU) Guide.

The display for the RPGSEU procedure looks like this:

— R

RPGSEU PROCEDURE Optional-*

Creates or updates an RPG II or auto report
procedure or source menber with SEU.

Name of member to be created or updated. TEST

Type of member. 0 0w e . R,A,P R

Name of member containing SEU formats. #SE@XTRA
Length of statement. o o 40~120 *
Name of 1ibrary containing member. YOURLIB

CMD3-Previous meru
COPR IBM Corp. 1983

_),

Respond to each prompt by entering the appropriate information.

Name of member to be created or updated: Enter the name of the library
member to be created or changed.

Type of member: Enter R, A, or P.
R means an RPG source member.
A means an RPG source member containing auto report specifications.
P means a procedure member.
If no option is specified, R is assumed.
Name of member containing SEU formats: Enter the name of the load

member that contains SEU formats. If no option is specified, the default for
SEU is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-13

Length of statement: Enter the maximum length allowed for each source or
procedure statement. If the member exists, the statement length of the member is
assumed. If the member is being created and if no statement length is specified,
the values that are allowed and assumed are as follows:

Allowed Statement Assumed Statement
Member Type Length Length
R 80 through 96 96
A 80 through 96 96
P 40 through 120 120

Name of library containing member: Enter the name of the library that contains
or is to contain the member being created or changed. If no library name is
specified, the name of the current library is assumed.

You can use the following keys from the RPGSEU procedure display:

e Command key 3 to return to the previous Help menu

® Command key 7 to end the RPGSEU procedure

o The Help key for additional information about the parameters

3-14

Compiling an RPG Program (RPGC Procedure)

The RPGC procedure compiles an RPG source program. The RPGC
procedure has two displays.

Using the First RPGC Display

The first display for the RPGC procedure looks like this:

- N
RPGC PROCEDURE Optiongl-+*
Compfles an RPG II source program.
Name of source program to be compiled. TEST
Name of 1ibrary containing source program. « . . YOURL.IB
Create diagnosed source member. NODSM,DSM NODSM
Output optfon for compiier 11stings. . . .PRINT,NOPRINT,CRT PRINT
Create cross-referenca 1isting. NOXREF ,XREF NOXREF
Maximum number of requesting display statfons. 0-99 00
Never-ending program. NONEP,NEP NONEP
Name of 1ibrary to contaln compiled program. *
Cmd3-Previous menu Cmd4-Put on job queue Cmdl4-More options
COPR IBM Corp. 1986

—

_/

Respond to each prompt by entering the appropriate information.

Name of source program to be compiled: Enter the name of your source

program.

Name of library containing source program: Enter the name of the library
that contains the source member to be compiled. If no library name is
specified, the current library is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-15

3-16

Create diagnosed source member: Enter NODSM or DSM.

NODSM means that you do not want the RPG compiler to create a
diagnosed source member.

DSM means that you do want a diagnosed source member. A diagnosed
source member is a source member in which informational, warning,
and terminal error messages diagnosed by the RPG compiler are
inserted immediately before the specifications containing errors. The
inserted messages have the following format:

Columns 1 and 2 contain question marks.

Column 3 contains I, W, or T to indicate that the message is an
informational, warning, or terminal error message.

Columns 4 and 5 are blank.

Column 6 contains H, F, E, L, T, I, C, or O to indicate the
specification type.

Column 7 contains an asterisk to indicate that this line is a
comment. '

Columns 8 through 80 contain the message.
When the RPGC procedure is complete, you can use SEU to correct the
specifications containing errors or to remove the error messages from

the source member.

If no option is specified, NODSM is assumed.

Output option for compiler listings: Enter PRINT, NOPRINT, or CRT.

PRINT means that you want the compiler listing created by the RPGC
procedure to be printed.

NOPRINT means that you do not want the compiler listing to be
printed or displayed.

CRT means that you want the compiler listing to be displayed at the
display station that requested the RPGC procedure.

If no option is specified, PRINT is assumed.

Create cross-reference listing: Enter NOXREF or XREF.

NOXREF means that you do not want the RPGC procedure to create a
cross-reference listing for the program.

XREF means that you do want a cross-reference listing to be created.
The cross-reference listing is created only if the program contains no
terminal errors. The cross-reference listing is part of the compiler
listing, so whether the cross-reference listing is displayed or printed
depends on your response to the preceding prompt.

If no option is specified, NOXREF is assumed.

Maximum number of requesting display stations: Enter the number (0
through 99) of display stations that can use a single copy of the program at
the same time. If no number is entered, a value of 0 is assumed (the
program is not a MRT program). ’

Never-ending program: Enter NONEP or NEP.

NONEP means that the program is not to be a never-ending program.

NEP means that the program is to be a never-ending program. A
never-ending program is one that uses system resources (such as disk
storage, display stations, or printers) that are not shared with other
programs. Use this option if your program will be requested frequently.

If no option is specified, NONEP is assumed.

Name of library to contain compiled program: Enter the name of the library
that is to contain the compiled program. If this option is not specified, the
source input library is assumed.

You can use the following keys from the first RPGC Procedure display:

Command key 3 to return to the previous Help menu
Command ke& 4 to place the program on the input job queue
Command key 7 to end the RPGC procedure

The Help key for additional information about the parameters

Command key 14 to see the second display for the RPGC procedure

Chapter 3. Entering and Compiling an RPG Program 3-17

Using the Second RPGC Display

3-18

The second RPGC display looks like this:

\ RPGC PROCEDURE Optional—*

o

— —

RPGC TEST,YOURLIB,NODSM,PRINT,NOXREF,0,NONEP,,

override print optfon in source . . SOURCE,PSOURCE ,NOSOURCE *
Override debug option in source DEBUG,NODEBUG *
override size-to-execute optfon in source 2- *
Halt on serious program error . . . « « « « « o NOHALT,HALT NOHALT
Replace duplicate members REPLACE ,NOREPLAC REPLACE
Create program that canberun LINK,NOLINK LINK
Create program that must be

Tink-edited o000 NOOBJECT,0BJECT NOOBJECT
Name of subroutine fnput 1ibrary « « . .
Generate CONSOLE f1le display formats GEN,NOGEN GEN
Size of work files fnblocks 1-9999 40
Name of data dictfonary tobeused « « o+ + « & *
Create program with

memory resfdent overlays NOMRO,MRO NOMRO

Cmd2-Page back Cmd4-Put on Jjob queue
COPR IBM Corp. 1986

NG _

Respond to each prompt by entering the appropriate information.

Override print option in source: Enter SOURCE, PSOURCE, or
NOSOURCE. Use this option to override an entry in column 11 of the
control specification of your RPG program.

SOURCE means that you want the RPG compiler to print a full
compiler listing. A full compiler listing includes the source program,

information about tables and arrays, the relative location of fields and
their attributes, field names that are not referred to, diagnostics, and a
map of main storage. The map of main storage lists the identification,
the starting address, and the size of each separately identifiable
segment of code in the program, tells how much main storage is
required to run the program, and lists the number of library sectors
required for the program.

PSOURCE means that you want the RPG compiler to print a partial
compiler listing. A partial listing includes the source program,
information about indicators used in the program, diagnostics, and the
following information from the overlay linkage editor: the amount of
main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program. It
does not include information about tables and arrays, information about
fields, or a map of main storage.

NOSOURCE means that you do not want the RPG compiler to print a
compiler listing. If you use this option, a prolog is printed along with
the following information from the overlay linkage editor: the amount
of main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program.
Use this option when you already have a listing of the program.

If no option is specified, the entry coded in column 11 of the control
specification of your RPG program is used.

Override debug option in source: Enter DEBUG or NODEBUG. Use this
option to override the entry in column 15 of the control specification of
your RPG program.

DEBUG means that the DEBUG operation is to be used in the
calculation specifications.

NODEBUG means that the DEBUG operation is not to be used.

If no option is specified, the entry coded in column 15 of the control
specification of your RPG program is used.

Override size-to-execute option in source: Enter the program size in K bytes
(one K byte equals 1024 bytes). The program size must be an even number
from 2 through 64. Use this option to override the entry coded in columns
12 through 14 of the control specification. If no size is specified, the entry
coded in columns 12 through 14 of the control specification is used.

Halt on serious program error. Enter NOHALT or HALT.

NOHALT means that you do not want the compiler to stop and display
an error message if a warning or terminal error is found in the program.

HALT means that you want the compiler to stop and display an error
message if a warning or terminal error is found in the program.

If no option is specified, NOHALT is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-19

3-20

Replace duplicate members: Enter REPLACE or NOREPLAC.

REPLACE means that, if a load or subroutine member is being created
and if a load or subroutine member with the same name already exists
in the output library, you want the newly compiled program to replace
the existing load or subroutine member.

NOREPLAC means that, if a load or subroutine member is being
created and if a load or subroutine member with the same name already

exists in the output library, you want an error message to be displayed.

If no option is specified, REPLACE is assumed.

Create program that can be run: Enter LINK or NOLINK.

LINK means that you want to create a load module, that is, a program
that you can run without first having to use the Overlay Linkage
Editor procedure OLINK to link-edit the program.

NOLINK means that you do not want to create a load module.

If no option is entered, LINK is assumed.

Create program that must be link-edited: Enter NOOBJECT or OBJECT.

NOOBJECT means that you do not want to create an object module.

OBJECT means that you want to create an object module, that is, a
compiled subroutine (not a lcad module). You must use the OLINK
procedure to link-edit this module (by itself or with one or more other
assembler programs or subroutines) before you can run the module.

If no option is specified, NOOBJECT is assumed.

Create memory-resident overlays: Enter NOMRO or MRO.

NOMRO means that you do not want overlays to remain in memory.

MRO means that you want to retain overlays in memory. This enables
you to keep more than one overlay in memory.

The default is NOMRO.

Name of subroutine input library: Enter the name of the library that
contains one or more assembler subroutines to be combined with the
program being compiled. If no library name is specified, the name of the
source member library is assumed.

Generate CONSOLE file display formats: Enter GEN or NOGEN.

GEN means that you want the procedure to create and compile source
specifications for 24-line, 1920-character display formats for a
CONSOLE file. The specifications are created and compiled only if the
program contains no terminal errors.

NOGEN means that you do not want the procedure to create or compile
the source specifications for the display formats for a CONSOLE file.

If no option is specified, GEN is assumed. However, the procedure
ignores this option if your program does not use a CONSOLE file.

Size of work files in blocks: Enter the number (1 through 9999) of blocks for
the compiler work files. If no size is specified, 40 blocks is assumed.
However, if the work files become full, they are extended automatically by
the compiler.

You can use the following keys from the second RPGC Procedure display:

Command key 2 to return to the first display for the RPGC procedure
Command key 4 to place the program on the input job queue
Command key 7 to end the RPGC procedure

The Help key for additional information about the parameters

Name of the data dictionary to be used: Enter the name of the current data
dictionary to be used during the compilation, if you are using
communication formats defined through the interactive data definition
utility IDDU). There is no default value for the data dictionary.

Chapter 3. Entering and Compiling an RPG Program 3-21

Printing an RPG Cross-Reference Listing (RPGX

Procedure)

3-22

The RPGX procedure prints a cross-reference listing for an RPG program.
No diagnostic checking is provided with the RPGX procedure. Therefore,
you should use this command only for RPG source programs that have been
successfully compiled and for which object programs have been produced.
Unpredictable or confusing results may occur if auto report source
statements or RPG source statements containing errors are used as input to
the RPGX procedure. The display for the RPGX procedure looks like this:

RPGX PROCEDURE

Requests cross-reference for RPG II source program.

Name of source Program « ¢« v v v e e v e e e e e . TEST
Size of $SOURCE file inblocks 1-9899 40
Name of 1ibrary containing source brogram YOURLIB

Cmd3-Previous menu Cmd4-Put on job queue
COPR IBM Corp. 1983

R

Respond to the prompts by entering the appropriate information.

Name of source program: Enter the name of your source program.

Size of $SOURCE file in blocks: Enter the number (1 through 9999) of
blocks for the work files. If no number is entered, 40 blocks is assumed.
However, if the work files become full, they are extended automatically by
the compiler.

Name of library containing source program: Enter the name of the library
that contains the source program to be listed. If no library name is
specified, the name of the current library is assumed.

You can use the following keys from the RPGX Procedure display:

e Command key 3 to return to the previous Help menu

e Command key 4 to place the program on the input job queue

e Command key 7 to end the RPGX procedure

e The Help key for additional information about the parameters

Cross-Reference Listing

Listing Format

The RPGX procedure or the XREF option in the RPGC and AUTOC
procedures provide a cross-reference listing of the symbols defined and
referenced in the respective RPG and autoreport source programs. The
cross-reference listing can be very helpful when you are modifying or
expanding your program. The execution of the cross-reference listing step
in the RPGC or AUTOC procedure depends upon the following:

o The listing is provided only when XREF is specified for the RPGC or
AUTOC procedure. The default is no cross-reference listing (NOXREF).

e The listing is not provided if terminal errors occur in the RPG or auto
report compilation.

o The Sort utility is required to sort the symbol entries and provide a
cross-reference listing.

The symbols used in an RPG or auto report program are sorted and placed
in the following categories in the cross-reference listing:

e Filenames

o Indicators

e Tables and arrays

e Fields and data structures

o Labels

The format of the cross-reference listing is as follows:

SYMBOL LNG TYPE DEC DEFN REFERENCES
b R D L X XXXX XX===—=X pid XXXX XXXX XXXX xxxx*
where:

SYMBOL is from 1 to 8 characters in length and defines the filenames,
indicators, tables/arrays, data structures, fields, and labels used in the
RPG or auto report program. Alphameric and numeric literals are not
processed by the cross-reference listing option. When you are using a
continuation line option on a file description specification, anything
that is not a field name will not show up in the SYMBOL column.
However the keyword of the continuation line option will appear
(FMTS, for example).

LNG is four positions long and defines the length of the field or data
structure, the length of an element in a table or array, or the record
length for the file named. LNG is not used for indicators or labels.
LNG is also not used when a field has been defined by the *LIKE
DEFN operation code. In this case, the length of the field shows as

Chapter 3. Entering and Compiling an RPG Program 3-23

3-24

**%%* For a data structure, the length of the data structure shows as
DS.

TYPE is 2 to 7 positions in length and defines the type of file named (by
using columns 15 and 16 from the file description specifications) or the
type of label being defined and referenced. TYPE is used only for
filenames or labels.

DEC is one position long and defines the number of decimal positions in a
numeric field. DEC is not used for filenames, alphameric fields,
indicators, data structures, or labels.

DEFN is four positions long and defines the statement number in which the
symbol is defined. If the symbol is defined multiple times in the
program, the first definition is assumed. The use of a field in a data
structure is considered to be the definition of that field; all other uses
of that field are considered to be references. The definition of an array
is considered to be in the extension specification specifying the array
even if the array is also specified in a data structure.

REFERENCES are four positions in length and define the statement
number in which the symbol is referenced. The number of entries
under REFERENCES depends on the number of times the symbol is
used in the program. If the symbol is unreferenced, there are no
entries. If the symbol is referenced multiple times, multiple lines of
references could be printed for the related symbol. An asterisk (*)
printed beside a reference indicates that the contents of the symbol are,
or could be, altered in this statement. An asterisk indicates that a field
is used as a calculation result field and the operation code is not
DEFN, or that an indicator is specified in positions 59 through 70 of
the input specifications or in positions 54 through 59 of the calculation
specifications.

Sample Cross-Reference Listing

The information that is printed in the cross-reference listing for each symbol type
looks like this:

*% FILENAME LEGEND *x*

SYMBOL LNG TYPE DEFN REFERENCES
CONTROL 0030 UC 0001 0005 0021 0045
WORKSTN 0030 CP 0002 0009 0043

** INDICATOR LEGEND #*

SYMBOL DEFN REFERENCES
01 0005

02 0009

03 0011 0020

20 0032 0035% 0045
21 0038 0041% 0047
99 0021 0028 0029

% TABLE AND ARRAY LEGEND *%
SYMBOL LNG DEC DEFN REFERENCES
AO8 0005 0 0003 0023% 0023 0024 0027* 0027 0027
ARY 0015 0004 0024% 0026%

% FIELD AND DATA STRUCTURE LEGEND *#
SYMBOL LNG DEC DEFN REFERENCES
CENTS 0002 0 0015
cosT 0007 2 0018 0007 0039% 0039
DESC 0018 0019 0008 0033
DOLLAR 0005 0 0014
INVDTA *DS* 0012 0010 0046 0048
IX 0001 0 0022 0023 0023 0024 0024 0025* 0025 0026 0027
NAME 0008 0016
PARTNO 0005 0 0013 0006 0021
STOCK 0010 0017

** LABEL LEGEND *%

SYMBOL TYPE DEFN REFERENCES
ADDRCD BEGSR 0031 0028
FND TAG 0030 0020
UPDRCD BEGSR 0037 0029

Chapter 3. Entering and Compiling an RPG Program 3-25

Compiling an Auto Report Program (AUTOC Procedure)

The AUTOC procedure compiles an RPG program that contains auto report
specifications. The AUTOC procedure has two displays.

Using the First AUTOC Display

The first AUTOC display looks like this:

T TN

AUTOC PROCEDURE Optional-*

Compiies an RPG II program that contains auto report specifications.

Name of source program to be compiled TEST

Name of library containing source program YOURLIB
Call RPG II compiler COMP ,NOCOMP COMP
Output option for compiler listings PRINT,NOPRINT,CRT PRINT
Create cross-reference 1isting NOXREF ,XREF NOXREF
Maximum number of requesting display stations 0-99 00
Never-ending program« + .« « .« o« . NONEP,NEP NONEP

Name of 1ibrary to contain compiled program *

Cmd3-Previous menu Cmd4-Put on jJob queue Cmdl4-More options
COPR IBM Corp. 1986

_

Respond to each prompt by entering the appropriate information.

Name of source program to be compiled: Enter the name of your source
program.

Name of library containing source program: Enter the name of the library
that contains the source member to be compiled. If no library name is
specified, the name of the current library is assumed.

Call RPG II compiler: Enter COMP or NOCOMP.

COMP means that you want the RPG compiler to be run as part of the
auto report function.

NOCOMP means that you do not want the RPG compiler to be run as
part of the auto report function.

If no option is specified, COMP is assumed.
Output option for compiler listings: Enter PRINT, NOPRINT, or CRT.

PRINT means that you want the listings created by the AUTOC
procedure to be printed.

3-26

NOPRINT means that you do not want the listings to be printed or
displayed.

CRT means that you want the listings created by the AUTOC procedure
to be displayed at the display station that requested the AUTOC
procedure.
If no option is specified, PRINT is assumed.

Create cross-reference listing: Enter NOXREF or XREF.

NOXREF means that you do not want the AUTOC procedure to create a
cross-reference listing for the RPG program.

XREF means that you do want a cross-reference listing. The
cross-reference listing is created only if the program contains no
terminal errors. The cross-reference listing is part of the compiler
listing, so whether the cross-reference listing is displayed or printed
depends on your response to the previous prompt.
If no option is entered, NOXREF is assumed.

Maximum number of requesting display stations: Enter the number (0

through 99) of display stations that can use a single copy of the program at

the same time. If no number is specified, a value of 0 is assumed (the

program is not a MRT program).

Never-ending program: Enter NONEP or NEP.
NONEP means that the program is not to be a never-ending program.
NEP means that the program is to be a never-ending program. A
never-ending program is one that uses system resources (such as disk
storage, display stations, or printers) that are not shared with other
programs. Use this option if your program will be requested frequently.
If no option is entered, NONEP is assumed.

Name of library to contain compiled program: Enter the name of the library

that is to contain the compiled program. If no library name is specified, the

name of the source input library is assumed.

You can use the following keys from the first AUTOC Procedure display:

e Command key 3 to return to the previous Help menu

e Command key 4 to place the program on the input job queue

e Command key 7 to end the AUTOC procedure

e The Help key for additional information about the parameters

o Command key 14 to see the second display for the AUTOC procedure

Chapter 3. Entering and Compiling an RPG Program 3-27

Using the Second AUTOC Display

3-28

The second AUTOC display looks like this:

(/"

N _

—
AUTOC PROCEDURE Optional-+*

P o
AUTOC TEST,YOURLIB,COMP,PRINT,NOXREF,0,NONEP, ,
Override print option in source . . SOURCE,PSOURCE,NOSOURCE *
Override debug optfon in source DEBUG ,NODEBUG *
Override size-to-execute optfon in source 2-64 *
Halt on serious program error NOHALT ,HALT NOHALT
Replace duplicate members REPLACE ,NOREPLAC REPLACE
Create program that can berun LINK,NOLINK LINK
Create program that must be

Tink-edited NOOBJECT,0BJECT NOOBJECT
Name of subroutine input iibrary *
Generate CONSOLE fiie display formats GEN,NOGEN GEN
S1ze of work files inblocks 1-9992 40
Name of data dictionary tobe used *
Create program with

memory resident overlays NOMRO,MRO NOMRO
Cmd2-Page back Cmd4-Put on Job queue

COPR IBM Corp. 1986

Respond to each prompt by entering the appropriate information.

Override print option in source: Enter SOURCE, PSOURCE, or

NO

SOURCE. Use this option to override an entry in column 11 of the

control specification of your RPG program.

SOURCE means that you want the RPG compiler to print a full
compiler listing. A full compiler listing includes the source program,
information about tables and arrays, the relative location of fields and
their attributes, field names that are not referred to, diagnostics, and a
map of main storage. The map of main storage lists the identification,
the starting address, and the size of each separately identifiable
segment of code in the program, tells how much main storage is
required to run the program, and lists the number of library sectors
required for the program.

PSOURCE means that you want the RPG compiler to print a partial
compiler listing. A partial listing includes the source program,
information about indicators used in the program, diagnostics, and the
following information from the overlay linkage editor: the amount of
main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program. It
does not include information about tables and arrays, information about
fields, or a map of main storage.

NOSOURCE means that you do not want the RPG compiler to print a
compiler listing. If you use this option, a prolog is printed along with
the following information from the overlay linkage editor: the amount
of main storage required to run the program, the starting address of the
program, and the number of library sectors required for the program.
Use this option when you already have a listing of the program.

If no option is specified, the entry coded in column 11 of the control
specification of your RPG program is used.

Override debug option in source: Enter DEBUG or NODEBUG. Use this
option to override the entry in column 15 of the control specification of
your RPG program.

DEBUG means that the DEBUG operation is to be used in the
calculation specifications.

NODEBUG means that the DEBUG operation is not to be used.

If no option is specified, the entry coded in column 15 of the control
specification of your RPG program is used.

QOverride size-to-execute option in source: Enter the program size in K bytes
(one K byte equals 1024 bytes). The program size must be an even number
from 2 through 64. Use this option to override the entry coded in columns
12 through 14 of the control specification of your RPG program. If no size
is specified, the entry coded in columns 12 through 14 of the control
specification of your RPG program is used.

Halt on serious programming error: Enter NOHALT or HALT.

NOHALT means that you do not want the compiler to stop and display
an error message if a warning or terminal error is found in the program.

HALT means that you want the compiler to stop and display an error
message if a warning or terminal error is found in the program.

If no option is specified, NOHALT is assumed.

Replace duplicate members: Enter REPLACE or NOREPLAC.
REPLACE means that, if a load or subroutine member is being created
and if a load or subroutine member with the same name already exists
in the output library, you want the newly compiled program to replace
the existing load or subroutine member.
NOREPLAC means that, if a load or subroutine member is being
created and if a load or subroutine member with the same name already

exists in the output library, you want an error message to be displayed.

If no option is specified, REPLACE is assumed.

Chapter 3. Entering and Compiling an RPG Program 3-29

Create program that can be run: Enter LINK or NOLINK.
LINK means that you want to create a load module, that is, a program
that you can run without first having to use the Overlay Linkage
Editor procedure OLINK to link-edit the program.
NOLINK means that you do not want to create a load module.
If no option is entered, LINK is assumed.

Create program that must be link-edited: Enter NOOBJECT or OBJECT.

NOOBJECT means that you do not want to create an object module.

OBJECT means that you want to create an object module, that is, a
compiled subroutine (not a load module). You must use the OLINK
procedure to link-edit this module (by itself or with one or more other
assembler programs or subroutines) before you can run the module.

If no option is specified, NOOBJECT is assumed.
Create memory-resident overlays: Enter NOMRO or MRO.
NOMRO means that you do not want overlays to remain in memory.

MRO means that you want to retain overlays in memory. This enables
you to keep more than one overlay in storage.

The default is NOMRO.

Name of subroutine input library: Enter the name of the library that
contains one or more subroutines to be combined with the program being
compiled. If no library name is specified, the name of the source input
library is assumed.

Generate CONSOLE file display formais: Enter GEN or NOGEN.

GEN means that you want the procedure to create and compile source
specifications for 24-line, 1920-character display formats for CONSOLE
files. The specifications are created and compiled only if the program

contains no terminal errors.

NOGEN means that you do not want the procedure to create or compile
the source specifications for the display formats.

If no option is specified, GEN is assumed. However, the procedure
ignores this option if your program does not use a CONSOLE file.

3-30

Size of work files in blocks: Enter the number (1 through 9999) of blocks for
the compiler work files. If no size is specified, 40 blocks is assumed.

You can use the following keys from the second AUTOC Procedure display:
e Command key 2 to return to the first display for the AUTOC procedure
e Command key 4 to place the program on the input job queue

e Command key 7 to end the AUTOC procedure

e The Help key for additional information about the parameters

Name of the data dictionary to be used: Enter the name of the current data
dictionary to be used during the compilation, if you are using

communication formats defined through the interactive data definition
utility (IDDU). There is no default value for the data dictionary.

Chapter 3. Entering and Compiling an RPG Program 3-31

Creating or Changing Display Formats (RPGSDA
Procedure)
The RPGSDA procedure allows you to create or change display formats.

There are no displays for the RPGSDA procedure. Instead, the procedure
calls the screen design aid (SDA) utility, and the SDA menu is displayed:

~ ™

SDA MAIN OPTIONS W4

Select one of the following:

MENUS 1. Design menus
DISPLAYS 2. Design display formats
3. Design display formats for WSU
PROGRAMS 4. Build RPG II WORKSTN f1le specificattions
5. Butld WSU programs
SERVICES 6. EDIT Source and procedure members
7. VIEW Display formats 1n $SFGR load members
8. PRINT Display formats in source members
9. COMPILE Source format members with $SFGR
option

HELP-Cursor selected help CMD3-Previous menu CMD7-End SDA session

_ | _

For a complete explanation of SDA, see the manual Creating Displays.

3-32

Solving Problems That Occur At Compilation Time

The following charts describe some problems that may occur when you
compile your program and some possible ways to solve these problems.

No Compiler Listing Is Produced

Items to Check

How to Check
the Item

Recommended
Recovery Action

You coded B in
column 11 of
the control (H)
specification.

Use DSU/SEU or
RPGSEU procedure
to look at the source
program
specifications.

Either use DSU/SEU
to change the B to
blank, or use the
RPGONL, RPGC, or
AUTOC procedure to
recompile your
program, and choose
SOURCE or
PSOURCE as the
Override print option
in source parameter.

You chose
NOSOURCE as
the Override
print option in
source
parameter on
the RPGONL,
RPGC, or
AUTOC
procedure.

Look at the prolog
on the compiler
listing to see which
option you chose.

Use the RPGONL,
RPGC, or AUTOC
procedure to
recompile your
program, and change
NOSOURCE to
PSOURCE,
SOURCE, or blank
as the Override print
option in source
parameter.

You chose N in
response to the
prompt Would
you like to view
the compiler
listing? on the
RPGONL
procedure.

This item cannot be
checked.

Change N to Y as
the response to the
prompt Would you
like to view the
compiler listing? on
the RPGONL
procedure.

Chapter 3. Entering and Compiling an RPG Program 3-33

No Compiler Listing Is Produced (continued)

3-34

Items to Check

How to Check
the Item

Recommended
Recovery Action

You chose
NOPRINT as
the Output
options for
compiler listing
parameter on
the RPGC or
AUTOC
procedure.

This item cannot be
checked.

Use the RPGC or
AUTOC procedure to
recompile your
program, and change .
NOPRINT to PRINT
or CRT as the

Output option for
compiler listings
parameter.

Your display
station is
configured to
the wrong
printer.

b

Use the SSP
STATUS command
(D W) to see how the
system is configured.

Reconfigure the
display station to the
correct printer.

The spool
writer is
stopped.

Use the SSP
STATUS command
(D P) at the system
console to see the
status of the spool
file.

Use the SSP START
command

(S P,printer-id) at
the system console.

No Load Module Is Produced

Items to Check

How to Check
the Item

Recommended
Recovery Action

You chose
NOLINK as the
Create program
that can be run
parameter on
the RPGONL,
RPGC, or
AUTOC
procedure.

Look at the prolog
on the compiler
listing to see what
option you chose.

Use the RPGONL,
RPGC, or AUTOC
procedure to
recompile your
program, and change
NOLINK to LINK as
the Create program
that can be run
parameter.

You used the
wrong name as
the subroutine
input library
name on the
RPGONL,
RPGC, or
AUTOC
procedure.

Look at the prolog
on the compiler
listing to see what
subroutine input
library name you
used.

Use the RPGONL,
RPGC, or AUTOC
procedure to
recompile your
program, and change
the name of the
subroutine input
library.

Chapter 3. Entering and Compiling an RPG Program 3-35

A Load Module Is Produced but Cannot Be Found

3-36

Items to Check

How to Check
the Item

Recommended
Recovery Action

You did not
code a program
identification
name in
columns 75
through 80 of
the control (H)
specification.

Look at the compiler
listing.

Do one of the
following:

1.

Use DSU/SEU to
code a program
identification
name in columns
75 through 80 of
the control
specification, and
then use the
RPGONL, RPGC,
or AUTOC
procedure to
recompile your
program.

Use the SSP
LIBRLIBR
procedure to
change the
default name of
the load module
(RPGOBJ) to the

required name.

Items to Check

How to Check
the Item

Recommended
Recovery Action

The name of
the library in
which you are
looking is not
the same as the
name you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure.

Look at the prolog
on the compiler
listing to see what
name you used as
the output library
name.

Do any one of the
following:

1.

Look in the
library you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure.

Use the
RPGONL, RPGC,
or AUTOC
procedure to
recompile your
program, and
change the name
of the output
library.

Use the SSP
LIBRLIBR
procedure to
copy the load
module from the
library you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure to the
required library.

Chapter 3. Entering and Compiling an RPG Program 3-37

No Subroutine Module Is Produced

3-38

How to Check Recommended
Items to Check | the Item Recovery Action
You chose Look at the prolog Use the RPGONL,
NOOBJECT as on the compiler RPGC, or AUTOC
the Create listing to see what procedure to
program that option you chose. recompile your
must be program, and change
link-edited NOOBJECT to
parameter on OBJECT as the
the RPGONL, Create program that
RPGC, or must be link-edited
AUTOC parameter.
procedure.
You used the Look at the prolog Use the RPGONL,

wrong name as
the subroutine
input library
name on the
RPGONL,

| RPGC, or

AUTOC
procedure.

on the compiler
listing to see what
subroutine input
library name you
used.

RPGC, or AUTOC
procedure to
recompile your
program, and change
the name of the
subroutine input
library.

A Subroutine Module Is Produced but Cannot Be Found

Items to Check

How to Check
the Item

Recommended
Recovery Action

You did not
code a program
identification
name in
columns 75
through 80 of
the control (H)
specification.

Look at the compiler
listing.

Do one of the
following:

1.

Use SEU to code
a program
identification
name in columns
75 through 80 of
the control
specification, and
then use the
RPGONL, RPGC,
or AUTOC
procedure to
recompile your
program.

Use the SSP
LIBRLIBR
procedure to
change the
default name of
the subroutine
module
(RPGOBJ) to the

required name.

Chapter 3. Entering and Compiling an RPG Program 3-39

A Subroutine Module Is Produced but Cannot Be Found (continued)

3-40

Items to Check

How to Check
the Item

Recommended
Recovery Action

The name of
the library in
which you are
looking is not
the same as the
name you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure.

Look at the prolog
on the compiler
listing to see what
name you used as
the output library
name.

Do any one of the
following:

1.

Look in the
library you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure.

Use the
RPGONL, RPGC,
or AUTOC
procedure to
recompile your
program, and
change the name
of the output
library.

Use the SSP
LIBRLIBR .
procedure to
copy the load
module from the
library you used
as the output
library name on
the RPGONL,
RPGC, or
AUTOC
procedure.

No Diagnosed Source Member Is Produced

How to Check Recommended
Items to Check | the Item Recovery Action
You chose Look at the prolog Use the RPGC
NODSM as the on the compiler procedure to
Create listing to see what recompile your
diagnosed option you chose. program, and change
source member NODSM to DSM as
parameter on the Create diagnosed
the RPG source member
procedure. parameter.

If your problem is still not solved, please refer to Chapter 32 (Problem
Determination) in this manual.

Chapter 3. Entering and Compiling an RPG Program 3-41

3-42

Chapter 4. Testing an RPG Program

Running an RPG Load Module 41
Example of Control Language Statements To Run a Program 4-2
RPG Halt Messagest tite ettt it et eeieeenn 4-2

Debugging an RPG Load Module 4-2
Using the DEBUG Operationiuiiieeineenn.. 4-3
Records Written by the DEBUG Operation 4-4

Debugging a Program That Uses a WORKSTN File

Chapter 4. Testing an RPG Program

£

Chapter 4. Testing an RPG Program

Testing is the final step in creating an RPG program. Testing means
running your load module with sample data, not actual data. You should
test all possible combinations of variables in your program to be sure that
the program processes the data correctly in every case. Testing usually
reveals some program errors that must be corrected before you can use the
load module to process your actual data. Finally, after this debugging
(finding and correcting all errors), the program is ready to be put into
production by running it with actual data.

This chapter explains how to run a load module and briefly suggests how to
debug a load module.

Running an RPG Load Module

There are three ways to run an RPG load module:

e Enter control language LOAD and RUN statements from the display
station keyboard. If the program uses DISK files, you must also include
a control language FILE statement for each DISK file. You can use a
control language SWITCH statement to set any external indicators (Ul
through U8) used by the program. To attach a display station to a
program that uses a WORKSTN file, you can use a control language
WORKSTN statement.

o Enter the name of a procedure that contains the required control
language statements.

e Select a menu option.

For a complete explanation of the control language statements and of how
to write a procedure, see the System Reference manual.

For information on how to place the program on the input job queue, see
the manual Operating Your Computer.

Chapter 4. Testing an RPG Program 4-1

Example of Control Language Statements To Run a Program

The following control language statements load and run an RPG load
module named PROG1 that uses an input DISK file named INPUT and an
output DISK file named OUTPUT:

// LOAD PROG1

// FILE NAME-INPUT

// FILE NAME-OUTPUT,BLOCKS-10
// RUN

RPG Halt Messages

Errors in an RPG program can cause the program to halt while it is being
compiled or run. When the program halts, a halt message is displayed. If
the program is run from the input job queue, the halt messages are
displayed at the system console. If the program is run from a display
station (and not placed on the input job queue), the halt messages are
displayed at the display station. If the program is a multiple requester
terminal (MRT) program, the messages go to the system console.

When a halt message is displayed, the person at the system console or at
the display station must respond by entering one of the following options:

o (-Continue: Control is returned to the program, and processing
continues.

e I-Bypass: The remainder of the program cycle is bypassed, and the next
record is read. For some messages, option 1 means that you should try
the operation again. This information is in the second-level text for
these messages.

e 2.Controlled Cancel: End-of-job operations specified by the program are
done, tables are dumped, and file labels are cataloged.

¢ 3-Immediate Cancel: The job is canceled; but control is not returned to
the RPG program. New data entered for this job is not preserved.

For a complete explanation of the halt messages and of the necessary
responses, see the RPG II Messages manual.

Debugging an RPG Load Module

You can use the DEBUG operaticn to debug any RPG program. In
addition, you can use other techniques to debug a program that uses a
WORKSTN file.

Using the DEBUG Operation

The DEBUG operation is an RPG function that helps you find errors in a
program. This operation causes one or, optionally, two records to be
written to an output file. The first record contains a list of all indicators
that are on at the time the DEBUG operation occurs in the calculation
specifications. If you code the name of a field or array in the result field of
the DEBUG operation, a second record is also written to the output file.
The second record shows the contents of the field or array specified in the
result field.

The DEBUG operation can be coded at any point or at several points in the
calculation specifications. The output records are written whenever the
DEBUG operation occurs.

Factor 1 of the DEBUG operation can contain a literal or the name of a
field. The literal or the contents of the specified field are written in the
first record. If factor 1 is left blank, the statement number of the DEBUG
operation is written in the first record.

Factor 2 must contain the name of the output file to which the records are
written. The file cannot be a WORKSTN file. The same filename must be
used as factor 2 for all DEBUG statements in a program.

The result field can contain the name of a field or array whose contents are
written in the second output record. If the result field is left blank, only
one record is written when that DEBUG operation occurs.

To use the DEBUG operation, you must also code a 1 in column 15 of the
control specification. If you leave that column blank, the DEBUG
operation is treated as a comment. You can override the entry in column
15 by specifying DEBUG or NODEBUG in the RPGONL, RPGC, or AUTOC
procedure (see Chapter 3, Entering and Compiling an RPG Program).

Chapter 4. Testing an RPG Program 4-3

Records Written by the DEBUG Operation

The DEBUG operation always causes at least one record to be written.

That record has the following format:

Output Positions

Information

1-8

DEBUG-

9-16 Literal or contents of field coded in factor
1 (optional), or the statement number of
the DEBUG operation code in the
program,

17 Blank

18-32 INDICATORS ON-

33-any position
(depending on
length of output
record)

The names of all indicators that are on,
each separated by a blank. More than
one record may be needed.

The second record is written only when an entry is coded in the result field.

The second record has the following format:

Output Positions

Information

1-14

FIELD VALUE-

15-any position
(depending on
length of ﬁeld)

The contents of the result field (up to 256
characters). If the result field is an array,
more than one output record may be

needed to contain the array.

Debugging a Program That Uses a WORKSTN File

Because the logic for WORKSTN file processing is supplied by both the
RPG program and the display format specifications, it may be more difficult
to find coding errors for the WORKSTN file than for other files. The
following techniques may help you debug a WORKSTN program:

Always compare the $SFGR listing to the RPG input and output
specifications. The From, To, and End positions used on the RPG
specifications should normally match the From, To, and End positions
listed for the $SFGR input and output buffers.

If the wrong format is displayed, check the status of the indicators to be
certain the status is as you expected. If the status of the indicators is
incorrect, the wrong format may be displayed or a correct format may
be followed by an additional format that overlays and thereby hides the
correct format. The specification of erase input (columns 31 and 32 of
the S specifications) or override fields (columns 33 and 34 of the S
specifications) may also cause a partial format to be displayed that
overlays the correct format.

Always include a record type for blank records. Blank records can
occur in one of two ways:

—~ If the record is the first input record for a display station (in most
programs the first input record for a display station is blank)

— If N (no) is specified in column 22 (return input) of the display
format S specification and no data keys were pressed

If the program goes to end of job prematurely, check whether all display
stations have been released or whether Y (yes) was specified in column
35 (suppress input) of the S specification. Either situation can result in
no display stations being allowed to enter input, which causes end of
file on the WORKSTN file. If either of the preceding conditions is true
for a NEP program and if the person at the display station enters a
STOP SYSTEM command, the WORKSTN file goes to end of file.

If the command display unexpectedly follows a program display, the
program may have gone to end of job before any data was entered for
the display (see the RESTORE parameter of the control language
WORKSTN statement in the System Reference manual). If
RESTORE-NO is specified, a display from the program may be on the
screen after the program has gone to end of job, so it appears as if the
program is still running. If RESTORE-YES is specified, the command
display appears on the screen immediately when the program goes to
end of job.

Avoid using multiple formats on the same section of the screen until the
program logic is debugged.

During the debugging operations, display a constant on the screen for
every format. This should help you analyze the screen contents.

Use the DEBUG operation code in selected locations to trace the
program flow. Suggested locations and the resulting debug information
are as follows: :

Location Debug Information

As first calculation Shows the contents of the specified

input record and the indicator status
for a primary file

After any READ
operation

Shows the contents of the specified
input record and the indicator status
for a demand file

Before every EXCPT
operation

Shows the status of the indicators
that control which records (formats)
are to be produced as output

Chapter 4. Testing an RPG Program 4-5

4-6

Location

Debug Information

As last detail

Shows the indicator status before

calculation heading and detail output

After an ACQ Shows the work station ID and the

operation indicator off if the operation was
successful

After a REL Shows the display stations that are

operation released from the program

After every TAG Shows the program flow

operation

As first statement in
each subroutine

Shows the program flow

Conditioned by LR

Shows when the program ends

After each WORKSTN output record, define a record with the same
conditioning indicators and write that record to the DEBUG file (see
Figure 4-1). The record should contain:

— The format name

— The work station ID, if used in the program

— The release status, if the display station is released in the output
specifications

— SLN (starting line number), if used in the program

— Data fields as needed

If the following types of error messages occur, check the probable causes
listed:

Error messages involving program checks to the WORKSTN device are
probably caused by:

— Invalid use of erase input fields (columns 31 and 32 of the S
specification)
— Clearing all or a portion of the screen containing the input fields.

Error messages involving invalid WORKSTN identifiers are probably
caused by an earlier release of the display station in either calculation
or output operations.

=
0 g g Space| Skip Output Indicators Fiold Name Commas z"; l:'i:':“‘ No Sign | CR X‘;:’:g‘if;
g s or Yes v 1 A oY Do ?J’:-
. -] es . -
g Flle;\rame Eég E A AL EXCPT Name End Yes No 2 P Z=;:I: Edit | 1 fined
> 3 .
Line ; Record Name g Wl IS o] . p g Position ":g x:’ 3 ([:) :‘n Suppress
3 DJE|L 8 k3 £l in «
- Aloo] & | < 35| outeut |5
olR] 5] *AUTO £ | Record |@ Constant or Edit Word
Alnip = z z Pl a1+ 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24 *
3 4 5|67 8 9 1011 12131415016]17]18]19 20]21 22|23|24|25}26 |27 |28 32 33 34 35 36 37|38]39]|40 41 42 434445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 58 69 70|71 72 73 7
ol1] lo|]
o|2| |of f
o[3| |of ol Hj_al * O TIXX|*
of4| |O . C
o|s| |o I \ .
ols| |of . Format Name
°|’|_[o[TEIST] LA
ojs| o™ \
\
ojs| O [\ ' TX !
o] o N _|\I 1
' o N\ 2d ["RELE !
2| |o 11> \
3] |9})4 N\
Use the same file that Indicator 02 shows Use the same conditioning indicators for both files.
is used for DEBUG release status of
operations. display station.

Figure 4-1. Writing the WORKSTN Output Record to the DEBUG File

Chapter 4. Testing an RPG Program 4-7

4-8

Chapter 5. Using a DISK File

SEQUENTIAL FILES e 5-2
Creating a Sequential File 5-3
Example of Creating a Sequential File 5-4
Reading a Sequential Filet innnnnnn. 5-6
Reading Consecutively i, 5-6
Reading Randomly by Relative Record Number 5-8
Reading Randomly by Relative Record Number and/or Consecutively 5-9
Reading Randomly by Address Output (Addrout) File 5-10
Updating A Sequential File 5-13
Deleting Records from a Sequential File 5-14
Updating Consecutively, 5-15
Example of Updating and Deleting Records 5-15
Updating Randomly by Relative Record Number 5-18
Updating Randomly by Relative Record Number and/or
Consecutivelyc.ciiiiiiiii e 5-19
Updating Randomly by Address Output (Addrout) File 5-20
Adding Records to a Sequential File 5-21
Adding Records at the EndofaFile 5-21
Example of Adding Records at the End ofa File 5-22
Adding Records between RecordsinaFile 5-24
Example of Adding Records between Records in a File 5-26
DIRECT FILES i e e e e e 5-28
Creating a Direct File That Does Not Allow Deletions 5-29
Example of Creating a Direct File That Does Not Allow Deletions 5-30
Creating a Direct File That Allows Deletions 5-32
Example of Creating a Direct File That Allows Deletions 5-34
Readinga Direct File00 e 5-35
Reading Consecutivelyc.iiiiiiinriinrnnnnnan 5-35
Example of Reading Consecutively 5-36
Reading Randomly by Relative Record Number 5-39
Example of Reading Randomly by Relative Record Number 5-40
Reading Randomly by Relative Record Number and/or
Consecutively ittt 5-43
Reading Randomly by Address Output (Addrout) File 5-44
Updatinga Direct File i, 5-48

Chapter 5. Using a DISK File

Deleting Records from a Direct File 5-49
Updating Consecutivelycoiutirinnnnnnnnas 5-50
Updating Randomly by Relative Record Number 5-51

Example of Updating Randomly by Relative Record Number ... 5-52
Updating Randomly by Relative Record Number and/or

Consecutivelyciviiiiiiiiiiii i, 5-55
Updating Randomly by Address Output (Addrout) File 5-56
Adding Recordstoa Direct Fileoy 5-57
INDEXED FILESttt tttiriiiinnnninnnnannnns 5-60
Creating an Indexed File 5-62
Creating an Indexed File by Writing Records in an Ordered
D OGUBIICE . vt vt e e e e 5-62
Creating an Indexed File by Writing Records in an Unordered
S L= L 1= o - T 5-63
Example of Creating an Indexed File 5-63
Creating an Alternative Index File for an Indexed File 5-65
Example of Creating an Alternative Index File 5-67
Example of Using an Alternative Index File with Only One Field
asits Key e 5-68
Using an Alternative Index File with Noncontiguous Fields as its
Key o e 5-69
Reading an Indexed File, 5-70
Reading Sequentially by Key Field 5-70
Reading Sequentially within Key-Field Limits 5-72
Using a Limits Record 5-74
Using the SETLL Operation0u.... 5-76
Reading Randomly by Key Field 5-79
Reading Randomly and/or Sequentially by Key Field 5-80
Example of Reading an Indexed File Randomly and Sequentially
by Key Field 5-81
Reading Randomly by Address Output (Addrout) File 5-84
Updating anIndexed File 5-88
Deleting Records from an Indexed File 5-88
Updating Sequentially by Key Field 5-90
Updating Sequentially within Key-Field Limits 5-90
Updating Randomly by Key Field 5-91
Example of Updating an Indexed File Randomly by Key Field .. 591
Updating Randomly and/or Sequentially by Key Field 5-94
Updating Randomly by Address Output (Addrout) File 5-94
Adding Records to an Indexed File 5-95
Adding Records Randomly by Key Field 5-95
Example of Adding Records Randomly by Key Field 5-97
Adding Records Sequentially by Key Field 5-99

Example of Adding Records Sequentially by Key Field 5-101

Chapter 5. Using a DISK File

A DISK file is a file that contains data read from a disk or written to a
disk. A DISK file can be organized in one of three ways:

e Sequential
e Direct
e Indexed

This chapter explains how to code RPG specifications so that you can
create, read, update, and add records to each of these kinds of DISK files.

Chapter 5. Using a DISK File 5-1

SEQUENTIAL FILES

In a sequential file, the position of a record depends on the order in which
records are placed in the file. The first record placed in the file occupies
the first record position in the file, the second record placed in the file
occupies the second record position, and so on. Figure 5-1 shows how a
sequential file is organized.

Records are stored on disk in the same order
in which they are read. No index is kept, and
no spaces are left between disk records.

1st
record

2nd 3rd 4th 5th 6th

Figure 5-1.

Organization of a Sequential File

Creating a Sequential File

To create a sequential file, you define the DISK file as an output file and
write records to the file. The control language statements for the program
must include a FILE statement. That FILE statement must use either the
RECORDS parameter or the BLOCKS parameter to specify the size of the
file, and it must use the DFILE-YES parameter if you want to allow records
to be deleted from the file. For information about the FILE statement, see
the System Reference manual.

Define the file by using the unshaded portions of the file description
specifications shown below:

File Type Mode of Processing File Addition/Unorder:
F File Designation Length of Key Field or s Extent Exit Number of Tracks
of Record Address Field N for DAM for Cylinder Overfl
€nd of File 2
Record Address Type | S Name of Number of Exte
i Sequence o i Symbolic 181 el Exit
Filename Type of File r Device Device H
File Format N Organization or] .
w 5 Additional Area |S - Storage Index -
Line ul | |8 = § 4
o S| Block Record « |E[Overflow Indicator| 2 Condit
g Qs a Length =5 Key Field | % oLus,
> gl S| tenen e NN rting (&5 Continuation Lines 2
3lo s 3 <X : £
E Sla ol|% = Location | | 3
[Sla|w|< External Record Name K Option Entry «
3 a slefl7 8 9:1011 12131415 9 20 21 22 23 24 25 26 27 40 41 42 43 44 45 46
of2f |F S| §
o3} |F

Columns 7 through 14 must contain the name of the file.
Column 15 must contain O to indicate that the file is an output file.

Column 19 must contain F or blank to indicate that all records in the file
must be the same length.

Columns 20 through 23 must contain blanks or the block length. The block
length must equal the record length or be a multiple of the record length.
The maximum block length is 9999. If you leave these columns blank, the
block length equals the record length.

Columns 24 through 27 must contain the length of the record you are
creating. The record length can be any number from 1 to 4096.

Column 32 can contain a number from 1 through 9 to indicate that the
program uses two input/output areas for the file, or a blank to indicate that
the program uses only one input/output area.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through U8, to
condition the use of this file.

Chapter 5. Using a DISK File 5-3

Example of Creating

a Sequential File

Suppose you want to create a customer file on disk. Customer numbers are
sequential; that is, you assign each new customer the next higher number.
Figure 5-2 shows how to code the file description, input, and output
specifications to create this sequential file.

F File Type Mode of Processing File Addition/Unordered
e Desionati Length of Key Field or Extent Exit Number of Tracks
FnleED:slg'n:l.:on of Record Address Ficld 5 for DAM for Cylinder Overflow
ile =
i Record Address Type | Symbolic gl Nameof Number of Extents
Filename Sequence Type of File H Device Device § Label! Exit Tome
- of Fi 3 '
wF-Ia Format ‘; m:;:rx;; 3 = Storage Index Rewind
Line w 8 = g:id
o s =]Overflow Indicator| 2 ition
= E| Block Record MR oy cator| 2
als = - 8 uU1-us,
é § E S Length Length « < S é&\:(;::ld a5 Continuation Lines M
5 g Stolel= & <= Location | | E) 3
£ 2l |w|< External Record Name K Option Entry < <
3 4 51617 8 9-10 11 12 13 1415 16]17) |8i|9 20 21 22 23 24&26 27 ﬁg\“'ﬂﬂiﬁﬁﬁ'#u 39140 41 42 43 44 45 46 {47 48 49 aiﬂﬁﬁiﬁi&ﬂﬂ‘ﬂ‘ﬂﬁis_&_“ 67269'70#71 72} 73 74
ofz| FTNFIT F 9
5| [*SIFQDI] 128 LISK
o|a| |F L
ols| |F | Records are blocked
ole| |F (128 x 2 = 256)
o|7| |F TN
ofs] |F RERRRRINREREE
o External Field Name .
I H Field Location . ;'e'd
Filename § Record Identification Codes 3 3 ndicators
or) Y Zls | &
g| Record Name i ! 2 3 B From To |g RPG 2 !3 g| &
S 221z, g 8| FiedName [2 |EE[T Zero
Line | MEE | |z | |s I o -1 L P Data Structure p 3 2o § Plus [Minus|or
S - 8ls|e position |Z1Q) 8| Position |22 8 Posiion |E|2| B[E]|2 E s |5 E| o Blank
- Dta ofrl 1e12]8 5|5|2 5(Sf2] I B R g S22 2
St;‘u;rt':re ry NDZSK Z|3jo z|o|o ZIS|O Al [Times Length O o |=20]
3 4 51617 8 9 1011 1213ha1s5]16]17]18[19 20|21 22 23 24 |25]26 |27 |28 29 30 31| 32]33]34| 35 36 37 38|39|40]41]42]43)4a4 45 av 47|48 49 50 51|52|53 54 55 56 57 5859 60|61 62|63 64|65 66|67 68|69 70|71 72 73 74
o'l IT/IINF C |
of2| |1 7
o T 19 | 134
ORE 35 | 54 |ADD!
o5 |x 59 | 74 KIS
el e 74] DIAT
o|7] |1 1 1
ofsl 1 7L lcusTi
11]
ofo[[x - - 8 | 47 DATAS3
1{o] x| [} On lines 01 and 07, columns 15 through 17 contain
| T information used to sequence-check the input record.
HEIN In columns 15 and 16, 01 means that record type 2
3T must be first, followed by record type 3 (identified
e by 02 sequence). The 1 in column 17 means that one
s |r record type 2 and one record type 3 exists.
e I }- I 1 I] 1 I et 4+t 1 4 i il - P FI W .
P e DL L L]

Figure 5-2 (Part 1 of 2).

5-4

Creating a Sequential Customer File

m ;o i i Zero Balances " X = Remove
o NN N Outputindicators Field Name (—_—:\’> | Commas e:mam NoSign | CR | - PluTg:w\ 5.9=
Filename gz 2 EXCP:’fName ves Yes ! AL v=::3ia:‘; Eait | D%
g 3lols)s o o En Yes N 2 8| ki, Defined
5 or Slrlals And And Po:fﬁon No ves 3 cli|? sz:;m,

Line g Record Name olelt] ¢ 5 P f‘_:‘ in . N NS 3 I

" alolo] 2 | < S|g| oueut |5

OIR s 8 8 *AUTO z|q| Record & Constant or Edit Word
AIN]D =z z z wi o Sl 1 2 345 6 7 8 910111213 14 1516 17 18 19 20 21 22 23 24 *
3 4 5167 8 9 101112 13h4f1s5|16{17]18]19 20|21 22|23{24|25]|26 |27 |28]29{30|31] 32 33 34 35 36 37]38|39|40 41 42 43|44]45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
ol O] |)l l -
) .

o|2| |o| I 2| A
o[s|]ol T] 1 C T 8
(4| {0f | Since both input record types are] 7 \
°]5] |9] | needed to write a DISK record, we | [DAT 1115
°1°] 9] | don’t want to write it until input \
°1 19 | record type 3 is processed. Indica- CM is added to the DISK record.
ofs oge . .

O | tor 30 specifies that the DISK re- This code is a record code that can
0|9 (o] . N . . o

5 cord is written after input record be used to identify a customer
110 .
T ol 3 is processed. master record in other programs.

[3

o

Figure 5-2 (Part 2 of 2).

Creating a Sequential Customer File

Chapter 5. Using a DISK File

5-5

Reading a Sequential File

Sequential files can be read in any of the following ways:

e (Consecutively

e Randomly by relative record number

e Randomly by relative record number and/or consecutively

¢ Randomly by address output (addrout) file

Note: An alternative index file can also be created for a sequential file to
provide another method of reading the records in the file. For information

about creating an alternative index file, see Creating an Alternative Index
File for an Indexed File later in this chapter.

Reading Consecutively

Reading consecutively means reading records in the order in which they
occur in the file. If you want to read all the records in the file, code the file
for consecutive processing as shown in the file description specifications

below:
F File Type Mode of Processing File Addition/Unordered
" Extent Exit f
File Designation Length of Key Field or Number of Tracks
g of Record Address Field g for DAM for Cylinder Overflow
End of File E
Record Address Type | b Number of Extents
Sequence Type of File H Device i-
File Format N Organization or g 2
. w & Additional Area - Storage Index
Line w 8 = H
e E Block Record ¥ E Overflow Indicator! §
<
é S E > Length Length g g gt:ztil::'d 5 Continuation Lines
£ 3 S ol= = Location | |
4 =|a jw|< External Record Name
34 sle 112 16[18017] 1810 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 38 37 38[30]40 41 42 43 44 45 a5
AR F J111111 bisk
ols| |F]
+

5-6

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P, S, T, or D:

e If you code P (primary) or S (secondary), the file is read as part of the
RPG program cycle. For an explanation of how primary and secondary
files are read, see Chapter 11.

e If you code T (table), column 39 must contain E. Your program must

also include an extension specification for a preexecution-time table or
array. The file name on that extension specification must be the same
as the file name on this file description specification. For information
about extension specifications, see Chapters 13 and 22.

e If you code D (demand), you must code a READ operation code in the
calculation specifications in order to read the file. For information
about the READ operation, see Chapter 28.

Column 17 can contain E or blank if column 16 contains Por S. E

indicates that the program must process all records from the file before the

program can end. Blank indicates that the program can end before it
processes all records from the file.

Column 18 can contain A, D, or blank if column 16 contains P or S:

e A indicates that the program checks that the records in the file are in
ascending sequence.

e D indicates that the program checks that the records in the file are in
descending sequence.

e Blank indicates that the program does not check the sequence of
records in the file.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.
Columns 24 through 27 must contain the record length.

Column 32 can contain a number from 1 through 9 or a blank. A number
indicates that the program uses two input/output areas. Blank indicates
that the program uses only one input/output area.

Column 39 must contain E if column 16 contains T.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Chapter 5. Using a DISK File 5-7

Reading Randomly by Relative Record Number

Sometimes you want to read only some of the records in the file. Reading
consecutively can be slow in this case, because reading consecutively
means reading every record in a file. It would be faster to read only the
records you specifically identify. Reading only specific records is called
random processing.

One way to identify which records to read is to identify the position of each
record in the file. A number that identifies the position of each record
relative to the beginning of the file is called a relative record number. For
example, the relative record number of the first record in a file is 1, the
relative record number of the second record in the file is 2, and so on.

You can process files randomly by relative record number if the files are
chained files (that is, if there is a C in column 16 of the file description
specifications). Chained files are not read at input time of the RPG
program cycle. Instead, they are read only when the CHAIN operation
occurs during the calculation part of the cycle. For information about the
CHAIN operation code, see Chapter 28. Chained records can be read
during total calculations or during detail calculations.

If you want to read records randomly by relative record number, code the
unshaded columns of the file description specifications shown below:

F File Type Mode of Processing File Addition/Unordered
i Extent Exit Number of Track:
File Designation Length of Key Field or Jumber of Tracks
: A of Record Address Field § for DAM for Cylinder Overflow
End of File >
Record Address Type | ; Name of Number of Extents
. Sequence iy i Symbolic ? Label Exit
Filename Type of File Device Device 3
. o~ izati
 File Format N m::‘:'l";;'. g 3 Storage Index
Line w 8 =]
(<] g Block Record v E Overflow Indicator E
ol B = -
é Q E > Length Length g s g&‘;:,::‘d i Continuation Lines
€ 2 g ol 3 = Location | |
N IS4 - External Record Name
34 slel7 8 9 1011 1213 14hshsl17}isso zo;%_gg__gsﬂgn 28 29 30 31 32 33 34 35 36 19140 41 42 43 44 45 46 14549505|5z
ol Ir L 1S
o[3| |F
~+ —t—+ + —+—+

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain C to indicate that the file is a chained file. You
must code a CHAIN operation in the calculation specifications in order to
read a chained file. :

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Column 28 must contain R to indicate that the file is to be processed
randomly by relative record number.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, U1 through US.

5-8

Reading Randomly by Relative Record Number and/or Consecutively

If you want to read a file both randomly and consecutively, use a
full-procedural file. You can read a full-procedural file randomly like a
chained file and/or consecutively like a demand file. That is, you can chain
to a specific relative record number in the file and then read records
consecutively from that point. To read the file randomly, you use a CHAIN
operation in the calculation specifications; to read it consecutively, you use
a READ or READP operation. You cannot use a READE operation to read
the file consecutively, because the READE operation cannot read by
relative record number. For example, if you code a CHAIN operation to
relative record number 10 and then code a READ operation, the program
chains to relative record number 10 and then reads the following record.

It is not necessary to code both a CHAIN and a READ or READP
operation, but you must code at least one CHAIN, one READ, or one
READP operation in order to read a full-procedural file. For information
about the CHAIN, READ and READP operation codes, see Chapter 28.

Code a full-procedural file as an input file. Code entries in the unshaded
columns of the file description specifications shown below:

File Type Mode of Processing File Addition/Unord(
F File Designation Length of Key Field or = Extent Exit Number of Tracki
of Record Address Field o for DAM for Cylinder Over
y
. 2 me of
) Pa—— Record Address Type 5) Symbolic |& E:bef on" Number of Ex
Filename N (‘I;ype of File Device Device §
File Format rganization or 3 cl
Line " w 5 _Additional Area | = Storage Index
= =3
[S S| sook | Aecora x| [overtiow ndicator| 2
8 IS a h | Length = Key Field | %
5 ol S| tene ot g8 Koy Field | Continuation Lines
3| b 3 < arting
€ Sla| e~ = Location | | -
i Sla External Record Name K Option Entry
3 4 slel7 8 9-1011 1213 141516 19 20 21 22 23 24 26 26 27 28 29 30 31 32 33 34 35 36 37 38/39]40 41 42 43 44 45 46|47 48 49 50 51 52 60 61 62 63 64 6566l
ol2| |F TIF
of3| |[F

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain F to indicate that the file is a full-procedural file.
You must code a CHAIN, READ or READP operation in the calculation
specifications in order to read a full-procedural file.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Chapter 5. Using a DISK File 5-9

Reading Randomly by Address Output (Addrout) File

An address output (addrout) file is a record address file produced by a sort
program. (A record address file is an input file that tells the program which
records to read from a DISK file and the order in which to read them.) An
address output file contains the relative record numbers of the records in a
DISK file. The advantages of an address output file are that:

o The space required for the address output file is much less than the -
space required for a sorted sequential file.

o The sort runs much faster.

® The original file is unchanged.

You can have only one address output file in a program. When an RPG
program uses an address output file, it automatically reads the relative
record numbers consecutively from the address output file. You do not
have to code a READ operation for the address output file. Then, using the
relative record number, the program randomly reads the DISK file to
process the corresponding record. In this way, the program can process a
sequential DISK file in a new sequence without actually sorting the records
and creating a new file. Also, once the file description and extension
specifications are coded for the DISK file and for its associated address
output file, you can code the DISK file as an ordinary sequential file. If the
DISK file is a full-procedural file, you must code a READ operation in the
calculation specifications; you cannot use a READE, READP, or CHAIN
operation to read a full-procedural file randomly by an address output file.

No input specifications are required for the address output file.

If you want to read records randomly by an address output file, code the file
description specifications as shown below:

Filename

7. 8 9-1011 1213 14

1/0/U/C/D
& P/S/C/R/T/D/F

File Type

Mcde of Processing

File Designation

End of File

Sequence

File Format

Block
Length

F/V/S/M/D/E

Record
Length

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
© Organization or
S Additional Area

Device

3
E Overflow Indicator|
S Key Field
X Starting

= Location

A/P/I/K

External R

lecord Name

| Extension Code E/L

20 21 22 23
[

= |&

24 25 26 27

28

| M |» Form Type

31

40 41 42 43 44 45 46

Symbolic
Device

S

Labels S/N/E/M

Name of

Extent Exit
for DAM

Label Exit

Storage Index

Continuation Lines

Option

Entry

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

Number of Extents

5-10

Tt

|||||||||||

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P, S, or F:

e If you code P (primary) or S (secondary), the record is read as part of

the RPG program cycle. For an explanation of how primary and
secondary records are read, see Chapter 11.

o If you code F (full-procedural), you must code a READ operation in the
calculation specifications. CHAIN, READE, and READP operations are
not allowed with the address output files.

Column 18 can contain A, D, or blank if column 16 contains P or S:

® A indicates that the program checks that the records in the file are in
ascending sequence.

o D indicates that the program checks that the records in the file are in
descending sequence.

e Blank indicates that the program does not check the sequence of
records in the file.

Column 19 must contain F or blank.
Columns 20 through 23 must contain the block length or blanks.
Columns 24 through 27 must contain the record length.

Column 28 must contain R if column 16 contains P or S. The R indicates
that the file is processed randomly by an address output file.

Column 31 must contain I if column 16 contains P or S. The I indicates
that relative record numbers from the address output file are used to
process the file.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US8.

For the address output file, code entries in the unshaded columns of the file
description specifications shown below:

File Type Mode of Processing File Addition/Uno
File Designation Length of Key Field or = Extent Exit Number of Tra
- of Record Address Field S for DAM for Cylinder Ov
End of File > N ¢
Record Address Type | . ame o Number of |
f Sequence = . Symbolic b .
Filename 9 Type of File H Device Device f Label Exit
File Format ™ Organization or .
" w 5 Additions! Ares :2 3 Storage Index -
< 13 il
8 $| oo | Recors «|E[overtiow tndicator| 8 Fib
§ SlE g o Length =5 oy Fioid | £ ut
- Q= > gt « NS st;‘ eld | x Continuation Lines uc
=108 Y S <X ing
3 Sla| e~ = Location | |
2 =g jw|< External Record Name
[9:10 11 12 13 14 f1s]16 9 20 21 22 23 24 26 26 27 28 29 30 31 40 41 42 43 44 45 46
101,12 03 38 Hs L6 e a—-
F IIR 1
F 1 l
+ F——t A —t——t

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain R to indicate that the file is a record address file.
Column 17 must contain E or blank. E indicates that all records from the

file must be processed before the program can end. Blank indicates that the
program can end whether or not all records from the file are processed.

Chapter 5. Using a DISK File 5-11

Column 19 must contain F or blank.
Columns 20 through 23 must contain the block length or blanks.

Column 27 must contain 3 because each record in an address output file is a
relative record number, which is always three positions long.

Column 30 must contain 3 because relative record numbers in address
output files are always three positions long.

Column 31 must contain I to indicate that binary relative record numbers
are used in processing.

Column 32 must contain T to indicate that the file is an address output file.

Column 39 must contain E to indicate that the file is further described on
extension specifications.

Columns 40 through 43 must contain DISK.
Columns 71 and 72 can contain an external indicator, Ul through US8. ‘

Two entries are required on the extension specifications:

Record Sequence of the Chaining File

Number
Number of the Chaining Field of Number gl=l T H
able or sla
. ; Length 2le Length 2|2
Line To Filename Table or 'f'"'"‘ ';' - of %[<| ArrayName | o g1< Comments

g Array Name | Per ntes 18| (Awemating | gy alw

= . Record | Per Table | Entry |x|5 v el g

£ From Filename or Array NHEH Format) J|El S

o
8 HHE HHE

6§17 819 10J11 12 13 14 15 16 17 18|19 20 21 22 23 24 25 26|27 28 29 30 31 32]33 34 35|36 37 38 39|40 41 42]43]44] 46‘74849505!5253545556575!159600!626354558667&69707'727374

L Rl Lol

LB B B) 1T LN B B B S B N N B N SO B SN AN SN S B B DU N BN N B S B N N B S B SN SR R S S SN SN BN B BN SR B RS SN BN B e |

Columns 11 through 18 must contain the name of the address output file.
This name must be the same one coded on the file description specifications
for the address output file.

Columns 19 through 26 must contain the name of the sequential file to be

processed by the address output file. The name must be the same one coded
on the file description specifications for the sequential file.

5-12

Updating A Sequential File

Updating records in a sequential file involves reading a record, changing
some data in the record, and writing the record back to its original location
in the file. If you try to update a record that was not the last record read,
error message RPG-9043, TRIED RECORD UPDATE BEFORE INPUT FOR
FILE, is displayed. The fields to be updated must be described on both the
input and the output specifications.

When you update records in a sequential file, the file can be processed in
any of the following ways:

e Consecutively
e Randomly by relative record number
e Randomly by relative record number and/or consecutively

e Randomly by address output (addrout) file

Chapter 5. Using a DISK File 5-13

Deleting Records from a Sequential File

Updating a file can include deleting records from the file. To allow records
to be deleted from the file, the DFILE-YES parameter must be specified on"
the control language FILE statement when the file is created. For
information about the FILE statement, see the System Reference manual. If
you try to delete a record from a file that does not allow deletions, error
message RPG-9067, INVALID OPERATION ATTEMPTED, is displayed.

To delete a record, you first read the record (either randomly or
consecutively) and then, with DEL coded in the output specifications, write
the record back to the same file. Code entries in the unshaded columns of
the output specifications shown below:

fr
o w|s i i Zero Balances X = Remove
W 'S ISpace) Skip Output Indicators " _
E E Field Name Commas to Print No Sign | CR Plus Sign 5.9=
g = T T or Y. v 1 Al Y = Date User
Filename HEHR EXCPT Name es es Field Edit ’
§ or 8 2 And And End :‘es co § 2 f 2-700 Defined
B = o] Position o es Suppress
Line [g] Record Name ole[t] 2| & 5 . No No 4 o|m
- Alolo] & | < S)
ofr ‘zo‘ 8 k3 *AUTO 3 Constant or Edit Word
o 2 Sl- 1 2.3 456 78 91011121314151617 1819 2021 2223 24 °
3 4 s5lel7 8 9 101112 13]1a|15]16]17|18[19 20|21 22]23|24|25]26)27 |28 32 33 34 35 36 37
°'] o o
o]z I
..... t F—t——t—t t T +—

Columns 7 through 14 must contain the name of the file if this is the first
record on the output specifications or if the previous record on the output
specifications is for a different file.

Column 15 must contain D, T, or E to indicate whether the record is to be
written at detail, total, or exception output time of the RPG program cycle.

Columns 16 through 18 must contain DEL to indicate that the record is to
be deleted.

Columns 23 through 31 can contain output indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 contains
E.

Records are not physically removed from a file when they are deleted.

Instead, deleted records are filled with hexadecimal FFs. That is, all the
bits for every character in the deleted record are set on.

5-14

Updating Consecutively

You can update records in a sequential file consecutively. If the file is a
primary or secondary file (P or S in column 16 of the file description
specifications), the program reads a record from the file at input time in the
RPG program cycle, and the program writes a record to update the file
during detail output or exception output time in the program cycle. If the
file is a demand file (D in column 16), the program reads a record when a
READ operation occurs in the calculation specifications, and it writes a
record to update the file at detail output, total output, or exception output
time in the program cycle.

Code the file description specifications as shown below:

F File Type Mode of Processing File Addition/Unordere
i Extent Exit [Number of Tracks
File Designation Length of Key Field or Number of Tracks
e of Record Address Field z for DAM for Cylinder Overflc
End of File s
Record Address Type | : b Name of Number of Exte
i Sequence B i Symbolic 12 | sbel Exit
Filename Type of File Device Device 3 Tape
File Format N Organization or g " Rewind
. w & Additionsl Area - Storage Index
Line & 8 g $
Q S Block Record x [S|Overfiow Indicator |2
ale ¥
lg § E > Length Length « § g §:.¥;F..i;' IB Continuation Lines
3 318! el = Location | |
.f Sielw|< External Record Name Option Entry
. 40 41 42 7-&49505v5253 81 62 63 64 6568
JJ50739mnuuuwun132_30;212%22‘2911 o 43 44 45 46]4 J
ol2| [¢ SK
0j3| |F
1ttt t

Column 15 must contain U to indicate that the file is an update file.

Entries in the other columns are the same as those for reading
consecutively.

Example of Updating and Deleting Records

Sometimes you want to update the records in your customer master file.
The transaction file contains two input record types. One type (those with
D in column 1) identifies records to be deleted from the master file. The
other type (those with 3 in column 1) contains information needed to update
the master file. Figure 5-3 shows how to code the RPG specifications to
update records and delete records from the master file.

Chapter 5. Using a DISK File 5-15

F File Type Mode of Processing . File Addition/Unordered
File Designatiors Length of Key Field or = Extent Exit 'Number of Tracks
End of File of Record Address Field ; for DAM for Cylinder Overflow
Record Address Type | . Name of Nu
y Symbolic |3 . mber of Extents
Filename Seotnes TmeofFis |2 Device Device g| Leoel Exit Tope -
File Format N Organization or g Gl Rewind
Line R w 5 _Additional Area | = Storage Index -
= e
sl a g § Block Record ¥ E Overflow Indicator ‘é Stl)'ndia(ion
S - g U8,
> g|e S| tenh | Leneh g g[8 Koy rield 1% Continuation Lines 2| e —
3 3 S of= S <5 Location 2 3
& =S|a |w|< External Record Name] K Option Entry < r
3 4 slel7 8 9-1011121314]1s w[o_vﬂwwg’y_zzzauﬁzsn 28 29 30 31 32 33 34 35 36 37 30[30140 41 42 43 44 45 4647 48 49 50 51 5253|5455 56 57 58 59 |60 61 62 63 64 65| 66!67)68 69) 7071 72|73 74
of-] I-TRANS] [[Ir/p i]
ofs| |FMAISIT S 128 I
ol4| |[F —I
t + —+ T t
o External Field Name i Fi
I £ Field Location , Mi:;';rs
Filename H Record Identification Codes 5 <
3 g
or =y » ~ |5 k]
g| Record Name i R 1 2 3 || From To |§ RPG 2lssgl 2
] g 2 . s
) > 2 > g, g 8| Field Name §] B Zero
Line § =122 | |8 . A 5|9 Data Structure = 3 2e g Plus |Mi
€ iti Zlol 8 ition |Z]0]8 iti Zlo| &) E|a £ £ £
4 Data olR .é § 'g Position FMEH Position < 5 5 Position : s 3 a’é § Coours S g g s ; Blank
ructu o218 18 2|516 215)8 Z2|G|8|A|S] o rimes | Lenath S |28] &
3 4 5le|7 8 9 1011 12]13)1a|15}1e)17|18]19 20|21 22 23 24|25]26}27 28 29 30 31 35 38 37 38Jas|40f41 45 45 47]48 49 50 51]52|63 54 55 56 67 68]s0 60fe1 62|63 64|65 6867 68[60 70|71 72 73 74
T TRANS 1l ic L] |
o2 |I 7L CUST 1
o] Jz 1] icl |
ofe[Jx 7| [CUSTNOLI1M1
off| |z 1 1712 Hﬁ
ole] Iz 18 AYMT
o|7] |1 24 2 1
ofs] |IMASTE S | @3 | | 1] lcic icM 12
oo |T CIC el icM 128 C
o] | 8 CUST 1M
IERNIN) §
e e 76l ICRLIT
3] |1 8 iC
14 I 1 P Y
o] Jr CREDIIT
el [z 0
171 |1
. -+ —+ i -

Figure 5-3 (Part 1 of 2). Updating and Deleting Records in a Sequential File

5-16

c o Indicators Result Field :?'q:l:.:::c
& - I l Arithmetic
2 § = Plus [Minus] Zero
E g § And And Factor 1 Operation Factor 2 ag'. g Compare Comments
¢ Name Length |2 {2TS2[T<2]1=2
Line E gg{ - - E 3%‘
218 5|2 2 3 E|E[Figh] Low lEqual
3 4 5|67 8|9l10111]12[13|14]15]16]17|18 19 20 21 22 23 24 25 26 27 [28 29 30 31 32§33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48)42 50 51]52]53|54 55|56 57|58 59]60 61 62 63 64 €5 656 67 68 63 70 71 72 7.
of1{ lc 1 | | | 1 . .
of2] Ic| TOTIC N Indicator 01 is on for an
ofs| Jc PAYMT TOTPAY input record which deletes
ofal lc Tl TOT | | 142 adisk record. Indicator
°l5| ¢ TOTY A A 21 is set for use during
°l°l I¢ TOTPAY Y| update of the MASTER
of+] |c| TOTC C TiT file.
os[e TOTQ&F \
ofs] e TOTPAY HEEERRREREREEEE
'1°] 1€ 10l J ..
T el I N2 1H fez'sz indicator for next
12| elL TIOT] TIAT) N\ ycle.
3] et TIPAY Tl Y N
ARE T TC |(AEAREEEEE RN
18] | The values in the MASTER
el Jc \ 1| file are updated by totals
7 e Clear accumulator fields for J1.| accumulated from trans-
8] f© next cycle, 1| action records.
118] |ei " n
2[o] ¢ HIERRRERREREEREN RIREERRREREREAN
O ggsme Skip Output Indicators Field Nome ,—r—_—-——__—:‘-'> Commas Zertt; I::::;u:es NoSign | CR | — x-;.:‘.:g::" N
. g .: or Yes Yes 1 A J Y= E'alle Edi User
2| Filename N gg AL A:I\d EXCPT Name End Yes No 2 B | Kk Z-Z:od G | Defined
> or N . =
Line E Record Name g L2 ® o Position zz ;‘: 3 g ; Suppress
E S '§ g % : gutpu({
oIR A0 8 B 5 8 *AUTO pe 3 Record |3 Constant or Edit Word
AlN|D =z z z EE | 1 2 3 45 6 7 8 9 10111213 14 15 16 17 18 19 20 21 22 23 24 '
3 4 516|7 8 9 10 1112 131a)15116|17|18]19 20)21 22]23{24]25]26 |27 |28] 9(30{31] 32 33 34 35 36 37]38|39|40 41 42 43]44]45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70{71 72 73
o['[o] T a RN l
o|2[|of CHARGE 85
o]s 9|1
o4l [0 C IT 97
ofs| |of
ofe| |O 1
QaNS | i

Figure 5-3 (Part 2 of 2). Updating and Deleting Records in a Sequential File

Chapter 5. Using a DISK File 5-17

Updating Randomly by Relative Record Number

You can update records in a sequential file randomly by relative record
number. The file is defined as a chained file (C in column 16 of the file
description specifications). This means that the program reads a record
from the file when a CHAIN operation occurs in the calculation
specifications, and it writes a record to update the file during detail output,
total output, or exception output time in the RPG program cycle.

Code the file description specifications as shown below:

F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or z Extent Exit Number of Tracks
S of Fife of Record Address Field i for DAM for Cylinder Overflow
Record Address Type | . 2| Nameof Number of E
. i Symbolic |& . ml xtents
Filename Sequence N g o of File W Device Device f Label Exit Toe
File Format ganization or g .
; w 5 _Additional Area 3 Storage Index Rewind
Line “ 8 = § File
Q Block Record x ||Overflow Indicator|’ Condition
g Sls H Length | Length sla Roy Fiold | £ U1-Us,
e SIS 2 < gz Starting |& Continuation Lines o v
I% g HEAE = Location | | g 2
S |a External Record Name K Option Entry <
3.4 slel7 8 9.1011 1213 14his]ve 20 21 22 23 24 26 26 27 9} 40 41 42 43 44 45 46 |47 48 49 50 51 52 |s3] 54 55 56 67 58 59 |60 61 62 63 64 65)es|67]68 88]70l71 72|73 74
2 F ISIK
013 F
1t Tt Tttt Tttt

Column 15 must contain U to indicate that the file is an update file.

Entries in the other columns are the same as those for reading randomly by
relative record number.

5-18

Updating Randomly by Relative Record Number and/or Consecutively

You can update records in a sequential file randomly by relative record
number and/or consecutively. That is, the file is defined as a
full-procedural file (F in column 16 of the file description specifications).
The record to be updated can be read either randomly by relative record
number with a CHAIN operation or consecutively with a READ or READP

operation. The record cannot be read consecutively with a READE

operation, because the READE operation cannot read by relative record
number. The output operation to update the record can occur during detail
output, total output, or exception output time of the RPG program cycle.

Code the file description specifications as shown below:

Device

40 41 42 43 44 45 46

F File Type Mode of Processing
File Designation Length of Key Field or
- of Record Address Field
End of File
- Record Address Type |
i quence - =
Filename Type of File ®
File Format ‘; Organization or §
w -
Line w 3 5 Additional Area <
o g i Block Record ¥ E Overflow Indicator g
3 Sl €} Length Length SIS Key Field | %
(- Slo > 5 <X Starting |W
£ Slal o= = Location | |
L S|a |w|< External Record Name
3 4 slel7 8 9-10 111213 1a15)16[17]18{19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38[39)
1 T 1]
0|2 F
0|3 F
—t— LIRS N M B B He S S S S e S

Symbolic
Device

47 48 49 50 51 52
%

Column 15 must contain U to indicate that the file is an update file.

Labels S/N/E/M

for DAM
Name of

Extent Exit

Label Exit

Storage Index

Continuation Lines

53545556575859

Option

File Addition/Unorc

[Number of Traci
for Cylinder Ove

Number of E

Entries in the other columns are the same as those for reading randomly by
relative record number and/or consecutively.

Chapter 5. Using a DISK File

5-19

Updating Randomly by Address Output (Addrout) File

You can update records in a sequential file processed by an address output
(addrout) file. The sequential file can be a primary, secondary, or
full-procedural file (P, S, or F in column 16 of the file description
specifications). If the file is a primary or secondary file, the program reads
a record at input time of the RPG program cycle, and it writes a record to
update the file at detail output or exception output time of the program
cycle. If the file is a full-procedural file, the program reads a record when
the READ operation occurs in the calculation specifications, and it writes a
record to update the file at detail output, total output, or exception output
time of the program cycle.

Code the file description specifications as shown below:

File Type

Mode of Processing

File Designation

File Format

Block
Length

Record
Length

-3
3

Length of Key Field or
of Record Address Field

Record Address Type

Type of File
™ Organization or
& Additional Area

Overflow Indicator

Key Field
Starting
Location

A/P/\IK
I/X/D/T/R

External R

ecord Name

| Extension Code E/L

24 25 26 27
™1

28

End of File
Filename Sequence
U w
ne uw
5| | 8
& Qe @
> S >
Slo ke
3 2191 |1L]&
5 sla| 1€
2 Sla |w(<
3 4 slel7 8 91011 12 13 14 |isfy
0|2 F
0|3 F
T LI

31

Device

40 41 42 43 44 45 46

SiK|

Symbolic
Device

Labels S/N/E/M

Name of
Label Exit

Extent Exit
for DAM

File Addition/Unordered

Storage Index

Continuation Lines

Option

Entry

60 61 62 63 64 65} 66

Number of Tracks
for Cylinder Overflow

Number of Extents

5-20

Column 15 must contain U to indicate that the file is an update file.

L2 L L UL A SO N N O B |

Entries in the other columns are the same as those for reading randomly by
address output file.

Entries on the file description specifications for the address output file and
on the extension specifications are the same as those for reading randomly
by address output file.

Adding Records to a Sequential File

After a file is created, you can add records to it in either of two ways:

o At the end of records in the file

e Between records in the file

Adding Records at the End of a File

To add records at the end of a sequential file, code the file description and

output specifications as shown below:

File Type

Mode of Processing

File Designation

Length of Key Field or

of Record Address Field

Extent Exit
for DAM

File Addition/Unordered

Number of Tracks
for Cylinder Overflow

2
o
End of File s
Record Address Type | Symbol Z| MNameof Number of Extent:
i Sequence - & YmBOlic D1 Label Exit
Filename Type of File - Device Device H
File Format < Organization or 2]
Line " w 5 Additional Area (2 - Storage Index
= o
N ol8 H Record v E()verﬂow Indicator %
= S E g Length Length 3 g 3 gf,‘;.f,f;'d M Continuation Lines
€ 31| o= S <E ocation | |
i =la < External Record Name K Option
3 4 516]7 8 9-10 11 12 13 1415 1910__2;22324252627 40 41 42 43 44 45 4
0}2 F
0|3 F l
LI T T T 17 T T T LA . | T LI T T T LI | T T T T T T T T T T T T LENE B B T T T
On the file description specifications, all entries except column 66 are the
same as those for creating a sequential file. The A in column 66 indicates
that you will add records to the file described on this line.
0 s
i ﬁ Ski Output Indicators Zero Balances ’ _ X = Remdve
=] Space ® Field Name Commas to Print No Sign | CR Plus Sign 5. 9=
Q= or Y Y 1 Al Y = Date User
" = es ‘es " "
3| Filename % =1sls EXCPT Name E£nd Yes No 2 B | K z_;'e'd Edit | Defined
> or Ha HE And - And ! N Yes 3 c| L] e
. fi o < Position o Suppress
Line g Record Name oTelc g 5 . § n . No No 4 ol wm
< Alo[o] & | < S|gf OCuteut 13
olR k] 5 8 *AUTO = Record |@ Constant or Edit Word
AlnlD =z z z w @l 1 2 3 45 6 7 8 9 1011121314 151617 18 19 20 21 22 23 24 *
3 4 51617 8 9 1011 12 1314]115116]17}18)19 20§21 22]|23)24|25)26 |27 |26]29}30|31| 32 33 34 35 36 37 44145 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 67 68 69 70
o)1 o 2 o
of2 O
LI [S B B B

On the output specifications, columns 7 through 14 must contain the name
of the file if this is the first record on the output specifications or if the
previous record on the output specifications is for a different file.

Column 15 must contain H (heading), D (detail), T (total), or E (exception)

to indicate the type of record to be written.

Columns 16 through 18 must contain ADD to indicate that the fields defined

on the following lines form the record to be added to the file.

Columns 23 through 31 can contain conditioning indicators

Columns 32 through 37 can contain an EXCPT name if column 15 contains

E.

Chapter 5. Using a DISK File

5-21

Example of Adding Records at the End of a File

As you get new customers, you want to add them to the sequential customer
file you created in Figure 5-2, Example of Creating a Sequential File.
Because you assign customer numbers sequentially, you can add each new
customer record at the end of the records already in the file.

Figure 5-4 shows how to code the RPG specifications to add records at the
end of that sequential customer file.

F File Type Mode of Processing File Addition/Unordered
i Extent Exit Number of Track:
File Designation Length of Key Field or o ot Tracks
st o of Record Address Field g for DAM for Cylinder Overflow
End of File 3 §
Record Address Type | Symbolic |& Name o . Number of Extents
Filename Sequence Type of File 3 Device Device 3 Label Exit Toe
File Format ¥ Organization or L] Rewind
. w S Additional Area ‘2 - Storage Index e
Line o o < 2 Conditic
[<] S| Block Record ¥|E Overflow Indicator|’2 o Ugwn
olr S = - e -U8,
2 S|e gl temath | tength |, g8 Key Field | Continuation Lines | ve —
13 g 3 ols - <[z Location | | - S §
2 Sl fw|< External Record Name K Option Entry < 3
3 4 slel7 8 9.10 11 1213 1a]15}16]17 wpslg_’gnzau’gzsnmzsaom32333435:53733394041 42 43 44 45 46 4745495031_52mag‘igig_ﬂsvﬁmigmm%mmln 73 14
of2| FITNFITILE] | [TIP 96 SK
1P -~ I
o3| [FlSEiRDTISK 10 56 12
ofe| |¢ |
T 1 T T T
5 External Field Name _ . Field
= Field Location Indicators
Filename § Record Identification Codes g B
or >0 & Z 8 %
» Record Name wln|S © 1 2 3 . From To |8 RPG = é 8| =
=|12 5 £ . T
> 22|z, 8 &l FieldName | 2 IE 21z Zero
Line ¢ e N = | = |& 2| |3|2|<] oate structure Tu S |22 & | pus [Minusfor
S HEH position |Z[Q| &] Position |Z]2] 8] Position |E|2) E[E1S £ SI5El o Blank
Ce ~ Data olr[¢ g 5 R N s|N| 5 3 N gg Occurs Longth g slzg :
Name alnJolzlo |= Z{ol° Z|010 ofele 0 Times
3 4 56|78 9101 12fizfafis|rie]17[18]19 2021 22 23 24f25|26 27 |28 20 30 31]32]33|34] 35 36 37 38 30]a0]a1aza3|aa a5 a6 a7]48 48 50 5152|553 54 55 56 57 5859 60|61 62|63 64|65 66|67 €869 70[71 72 73 74
o'l ITNFIIILIE 1 [
o2] Jr 7l_lcusTNG
OBNE q ISTAT]
ofa| |1 1
°%) |T 14 CIT
ofe| IT 1
T 35 | 5] |
o8| |x 59 | |74 ICITIST]
ol9| |I 1
1fof |T T T
JONE ; RLT
MEIL wild ST
Tt i
— + +—

Figure 5-4 (Part 1 of 2). Adding Records at the End of a Sequential File

5-22

(o
O G| 6 |space] Skip Output Indicators Zero Balances] X = Remove
Cor : NoSign [CR | — y
§§ Field Name MM | o Print 0 Sign PlusSign | o o
Y = Date
Filename HHR | EXCPTN Yes Yes VoL ALY Fiadedr | o
& ! glalsls And And ame End Yes No 2 B 1 Kz za0 Defined
= or 2[rl&]< | Position No Yes 3 c|t Suppress
Line g Record Name N § 5 g 3| in No No 4 D™
o Alolo] 2 | < 3l5| oweu |3
8 5 8 - =1 | Record |@ Constant or Edit Word
o[r 2 5 3 AUTO £]< @
Aln]o z W o &l 1 23 45 6 7 8 9 101112131415 16 17 18 19 20 21 22 23 24 *
3 4 5]6|7 8 9 1011 12 13[14]15]16]17]18]|19 20|21 22§23|24|25]26 |27 |28]29|30]31] 32 33 34 35 36 37|38]39|40 41 42 43]44]45 46 47 48 49 50 51 52 53 54 56 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 7%
°l'] {0 TISIH
o|2| o el 'ICM”°
7 o T g
4
°l“| |o STATE]
ols| |Of O 1
ole
o CIITY 19
o|7| lO 5
ols| |O| 55|
oy iy
°[°| I0 CITIST 75
JONE CRLI 7lel
1
1 o] ST 115
2] ol 1
I A S 0 A A S L

Figure 5-4 (Part 2 of 2). Adding Records at the End of a Sequential File

Chapter 5. Using a DISK File 5-23

Adding Records between Records in a File

You can also add records between records in a sequential file that is
processed randomly by relative record number. For example, you may have
to add new records between existing records in order to keep the file in a
particular order when the control fields of the new records are not higher
in sequence than the control fields of records already in the file. Such a
file must be one that allows records to be deleted. That is, when the file
was created, the DFILE-YES parameter must have been specified on the
control language FILE statement. For information about the FILE
statement, see the System Reference manual.

To add records between records in a sequential file, code the unshaded
columns of the file description specifications shown below:

F File Type Mode of Processing File Addition/Unordered
i Extent Exit Number of Tracki
File Designation Length of Key Field or s racks
End of Fil of Record Address Field 3 for DAM for Cylinder Overflow
of File
Record Address Type | Symbolic g| Nameof Number of Extents
Sequence T - w Device . =l Label Exit
‘ype of File © Device 3 Tape
File Format < Organization or -l Rewind
j < S _Additional Area 3 = Storage Index
Line w) = s
Q 3| Biock Record x [E[0vertiow Indicator|'2
3 olg) Length = Key Field | %
- Qe > Length ot -3 E S St?;m:; i Continuation Lines
3 HEEEE = <= Location | |
4 S |w|< External Record Name K Option Entry
3 4 5l6f7 8 9-1011 1213 1401501 19 20 21 22 23 24 25 26 27 28 40 41 42 43 44 45 46
55
o|2f |F I SK
03
ol4
+ +——

5-24

In the first line of the file description specifications:

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I or U to identify the file as an input file or an
update file.

Column 16 must contain C or F to identify the file as a chained or
full-procedural file.

Column 19 must contain F or blank to indicate that all records in the
file have the same length.

Columns 20 through 23 must contain the block length or blanks.
Columns 24 through 27 must contain the record length or blanks.
Column 28 must contain R if column 16 contains C.

Columns 40 through 43 must contain DISK.

Column 66 must contain A to indicate that you will add records to the
file.

Columns 71 and 72 can contain an external indicator, U1 through US.

In the second line:

e Column 53 must contain K to indicate that this line is a continuation
line that provides additional information about the file.

e Columns 54 through 58 must contain RECNO, which stands for relative
record number.

e Columns 60 through 65 must contain the name of the field into which
the relative record is placed. The field must be defined on either the
input specifications or the calculation specifications as a 7-position
numeric field with zero decimal positions. That field is called the
RECNO field.

1
o o i i Zero Balances X = Remove
W |8 ISpace] Skip Output Indicators Commas NoSign | CR | -
IS § Field Name to Print o PusSion | o o
Sl= or v Y 1 A | g | YrDate User
. Ils es ‘es
2 Filename HEHN Ald Ald EXCPT Name End Yes No 2 8| K|y ;:': Edit | Defined
b4 L B n -
2 or >[r]3|% T Position No Yes 3 cft
o = ! Positio Suppress
tine |€] Record Name olelc] & 5 2|3 in No No 4 ol m
<] < B~ 3
- Alolo] & | < 8|g| Outeut |5
O[R S 8] *AUTO £ <] Record @ Constant or Edit Word X
N z <z z b Y @l 12 3456 78 91011121314151617 1819 2021 22 23 24 *
3 4 5(6]7 8 9 1011 1213sf1s]16]17}18]19 20|21 22)23]|24)25]26 |27 |28) 2930]31| 32 33 34 35 36 37/38|39]40 41 42 43]a4[45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 63 70|71 72 713 W
o[1| O
ol2| }O
1t LN S S S N N N S S S S S S B S S Bt S e 1 L

On the output specifications for the record or records to be added, columns
7 through 14 must contain the name of the output file.

Column 15 can contain D, T, or E, to indicate whether the record is to be
written at detail, total, or exception output time of the RPG program cycle.

Columns 16 through 18 must contain ADD to indicate that the fields defined
in the following lines form the record or records to be added to the file.

Columns 23 through 31 can contain output indicators.

Columns 32 through 37 can contain an EXCPT name if column 15 of the
output specifications contains E.

The RECNO field identifies the position in the file where the output record
is to be added. (That record is the one described on the output specification
that contains ADD in columns 16 through 18.) You must place into the
RECNO field the relative record number of the record to be added to the
file. It must be the relative record number of a deleted record. One way to
place the relative record number into the RECNO field is to code the
following sequence of operations in the calculation specifications:

1. Code a CHAIN operation with the relative record number in factor 1,
the name of the chained file in factor 2, and a resulting indicator in
columns 54 and 55 that turns on when a record is not found.

2. Code a Z-ADD operation with the same indicator that you used for the
CHAIN operation coded as a conditioning indicator (in columns 10 and
11, 13 and 14, or 16 and 17), the relative record number in factor 2, and
the RECNO field in the result field.

Chapter 5. Using a DISK File 5-25

When a CHAIN operation (for a chained or full-procedural file) or a READ,
READE, or READP operation (for a full-procedural file) reads a nondeleted
record, data management places into the RECNO field the relative record
number of the record read.

When the program tries to add a record to a file, if the relative record
number is not the number of a deleted record, the program stops and error
message RPG-9070, OUTPUT TO A NONDELETED RECORD, is displayed.
If you respond to the message by choosing option 1, the program continues
running but it does not add the record to the file.

You cannot use the RECNO field to add records at the end of a sequential
file. For example, if a file contains relative record numbers 1 through 5 and
7 through 10, you can add a record at relative record number 6 but not at
relative record number 11. If you try to add a record at the end of a
sequential file by using a RECNO field, error message RPG-9068,
RELATIVE RECORD NUMBER BEYOND EXTENT FOR FILE, is
displayed.

Example of Adding Records between Records in a File

5-26

Figure 5-5 shows how to code the RPG specifications to add records
between records in a sequential file.

F File Type Mode of Processing File Addition/Unorderec
File Designation Length of Key Field or = Extent Exit Number of Tracks
" of Record Address Field 5 for DAM for Cylinder Overfio:
End of File 5 N §
: e Record Address Type S . Symbolic | La'v:ef g . Number of Exten
Filename Sequet - 3',. of File g Device Device i al xit Tapo
File Format Inization or ;
. w 5 Atz:i(ional Area 3 Storage Index Rewind
Line w & = s File
a 3 < g -
S| Block Record « |=|Overflow indicator| 2 Conditio
-4 ole @ Length Length = 5 H uLus,
= S 3 « (2 & Continuation Lines 2| ver—
3 HHRRS = <= > 3
2 NEMS External Record Name K Option Entry b4 =
3 4 slel7 8 9 101 1213 1afis|vf17]18[19 20 21 z:z:zarz_s_zszvn:ssoﬁazﬂg_‘_s_ag_;m 40 41 42 43 44 45 46 J47 48 49 50 51 57ﬁ“ﬂ“%%&.ﬂ"ﬂ““““”““r"’i" 72|73
of2| |F]I P IS K
o3| |FMAISIT IF IS
o|s| |F
ols| [F |
T T LRI T
s External Field Name . . Field
k] Field Location Indicators
Filename = Record Identification Codes 5 g
£ 3 8
or o e = s B
® Record Name oS - 1 2 3 . From To |8 RPG = |55 &
E Z2E." % n_'é Field Name $l2E 2 Zero
Line [SN _| |z | |s - 1&l2]« Data Structure = '3' 22| & |Pus|wi
5 clo i Zlol 8] posi Zlol 8] Ppositi A 1=Y k3 K1 € S lsc
S B oTs é HE Position M osition = 5H osition N H S £ £l s Blank
ructy AND§8§ zlo|o z|o|o Z|05|a ||\ Times Length |O o= @
3 4 506]7 8 91011 12h3fafishieli7]18 |19 20§21 22 23 24[25]26 |27 |28 29 30 31]32|33]34] 35 36 37 3839]40)a1 45 a5 47)48 49 50 51]52|53 54 55 66 57 58[59 60[61 62|63 64)65 66[67 68)69 70)71 72 73 74
JERE T cl1]
ol2| IT T
ofs| Jx 94
o4 T S| {2 | | IINCIT
0[5 I s l
oLt |] L]
LI 1T
. Indicators Result Field Resulting
o Indicators
> I I N Arithmetic
=5 And And Sz Plus JMinus] Zero
ol 2 § Factor 1 Operation Factor 2 3% Compare Comments
als al3
m [E
Line [P35 o Name Length 3[3 T>2[1<2]1=2
HEEdm ~ N -2 | |Lookup(Factor 2)is|
£ 55 § é’ 4 8| High | Low |Equal
3 4 s5lef7 sfo|roftr)r2fiafrafisfr6[17]18 19 20 21 22 23 24 25 26 27 |28 20 30 31 32|33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48)49 50 51 55|56 57|58 59|60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
o' e 1 1] | 1
ol I [gl 1 - R 7
of3
c 1] |1 CIPIT E
ofa C]
L L LI T
o
o o g Space] Skip Output Indicators . Commas | 2670 Balances | onlcr | - | X = Remove
1] find Field Name 1o Print Plus Sign
olx _ 5-9=
NN or Yes Yes 1 Al | YR User
Filename =1=1e]. EXCPT N Field Edit N
& REHE and And CPT Name End Yes No 2 8| K| oz Defined
Fl s 3’N >[rl3[% | Position No Yes 3 cltL Suppress
Line § ecord Name olec] §] = 8l3[n . No No a ol m
- alolo] & | < 8l5| outeut {5
OlR 5 £ 3 *AUTO £[<| Record & Constant or Edit Word
z z Gl@ ©l© 123456 7 8 9 1011121314151617 1819 20 21 22 23 24 *
AIN|D
3 4 slef7 8 9 1011 12 13fa|is|i6|17|18|19 20|21 22}23|24]25]|26 |27 |28 32 33 34 35 36 37/38]39]40 41 42 43|a4f45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
T o R T EADD ElC
ol2 0] . .
ol3| |o| R
0)4 O}
- Fo - . S T

Figure 5-5. Adding Records between Records in a Sequential File

Chapter 5. Using a DISK File 5-27

DIRECT FILES

P
Relative Record Number!

A direct file is one in which records are assigned specific record locations
on disk. Figure 5-6 shows how direct files are organized. Each record is
assigned a specific location in the file, regardless of the order in which it is
put in the file. If the file allows records to be deleted (that is, if the control
language FILE statement used the DFILE-YES parameter when the file was
created), unused records in the file contain hexadecimal FFs. If the file
does not allow deletions, unused records contain blanks.

Direct file organization allows your program to find and read any record in
the file directly without first checking other records or searching an index.
Therefore, direct file organization has advantages over sequential
organization.

The location assigned to a record is called the relative record number. The
relative record number is not a disk address; rather, it is a number that
states the position of a record in a file. For example, the fifth record in a
file has relative record number 5.

Records are stored on disk in the order
@) indicated by the relative record numbers.
(8) Spaces are left in the file for missing

records (in this case, records 5 and 7).

(6)
(2)
(4)

(1)

v

—

(1)

(2)

(3) (4) 2 //% (6) /////// (8)

1
The programmer usually derives relative record numbers from information in the records.

Figure 5-6. Organization of a Direct File

5-28

Creating a Direct File That Does Not Allow Deletions

To create a direct file that does not allow records to be deleted, you must
define a DISK file as a chained output file and then write records to the
file. Before any output is written to the file, the disk space required for the
file is automatically filled with blanks. To write a record to the file, you
must first determine what the relative record number of that record will be
in the file to be created. Then use that relative record number as factor 1
in a CHAIN operation; as factor 2, use the name of the file to be created.
When the CHAIN operation occurs, it reads the blank record at the
specified relative record number. When the output operation occurs, the
record is written to the same relative record number. The output operation
can occur during detail output, total output, or exception output time of the
RPG program cycle. If the CHAIN operation tried to read a record that was
past the end of the file but you write a record to the file anyway, the record
overlays the record written during the previous output operation to this
file. If no record is written to the relative record number in the direct file,
the space reserved in the direct file for that record remains blank (see
Figure 5-6).

To create a direct file that does not allow deletions, code entries in the
unshaded columns of the file description specifications shown below:

Filename

7.8 9-1011 12 13 14

File Type Mode of Processing File Addition/Unorder
File Designation Length of Key Field or s Extent Exit Number of Tracks
Endof Fin of Record Address Field it for DAM for Cylinder Overfl
of File u
Record Address Type | Symbolic é Name of Number of Exte
Sequence T — o Device \ N P Label Exit
ype of File @ Device 3 Tape
File Format ¥ Organization or i Rewind
w & Additional Area § = Storage Index -
< Iy = - H ile
(<] S| Block Record M E Overflow Indicator|'2 S(:ngg
e < = - § -
€ g Length Length £3 g ‘:\(g‘;‘ﬁm"’ 3 Continuation Lines 2| vc
S by - <5 Location | | 5 5
a K Option Entry P <

1/0/U/C/D

) |

7 | ™M |® Form Type

40 41 42 43 44 45 46

DISK

LN S S N B B S E B St R B L

Columns 7 through 14 must contain the name of the file.

Column 15 must contain O to indicate that the file is an output file, because
the file is created when it is first written.

Column 16 must contain C to indicate that the file is a chained file. You
must use the CHAIN operation in the calculation specifications to identify
the relative record number of each record to be written to the file.

Column 19 must contain F or blank to indicate that all records in the file
have the same length.

Columns 20 through 23 must contain the block length or blanks. For files
processed randomly, the block length should be the same as the record
length. If you leave columns 20 through 23 blank, the block length is the
same as the record length.

Columns 24 through 27 must contain the length of each record. The
maximum length of a record is 4096.

Chapter 5. Using a DISK File 5-29

Column 28 must contain R to indicate that the file is to be processed
randomly.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through U8, to
condition the use of this file.

Example of Creating a Direct File That Does Not Allow Deletions

5-30

In Figure 5-7, the direct file being created, CUSTFILE, is defined on the file
description specifications as a chained output file (O and C in columns 15
and 16). The CHAIN operation on the calculation specifications reads the
relative record number from the CUSNO field of the input file RECIN, and
writes a record from RECIN to the corresponding relative record number in
the output file CUSTFILE. Indicator 04 turns on if the record is not found.

F File Type Mode of Processing File Addition/Unorde
File Designation Length of Key Field or = Extent Exit Number of Tracks
End of Fil of Record Address Field o for DAM for Cylinder Overf
o e > [r——————
Record Address Type | . § Name of Number of Ext
Fil Sequence - S Devi Symbolic 3 Label Exit ity
ilename N gpa of File evice Device 3 Tape
File Format 'ganization or 3 L]
: w 5 Additional Area - Storage Index Pewind
Line w E = 3
9 % Biock Record » E Overflow Indica(or'g
3 SIE @| Longth | Length sla 12
= Q| > g YN St g] Continuation Lines 2| Uc
2
3 HHREE < Location | _| s 5
& S| |w|< External Record Name K Option Entry < «<
Ja551cn-wnuggg&j_umy_gnng_‘zsnnzan:o:nJzzs:uas:n:nJuas4on|4243u45464_7_¢__4_5_q51szuyﬁgiﬁ’gggﬁ%%e_ﬁ‘uuuuw
ol2| |F[RIFICIT! P | F] 1SIK
ols|_IFlcsSITFITLEIOC] | IF] ISHK
ols| |F |
T T T
5 External Field Name . Field
5 Field Location Indicators
Filename 3 Record Identification Codes & s
2 2
or o » =I5 s
g| Record Name i] 1 2 3 . From To |8 RPG 2lsg| &
8 RN k 8| Field Name § il B Zero
Line |g <le|2"° _| |s 1 |= | |&|9]« Data Structure b 3|22 & |Pus|mi
S - HE position |Z|2| 8| Position ||| %] position |Z|0|8[E|3 £ s |8l = Blank
Da ofr] Jef21g 5(3f2 53[2 s[S|2(38] occur & S|28] &
ructu noncGE 2|5)5 2|06 2[S|5]3|| o Times | Lenath o |=5| &
3 4 s|el7 8 9 1011 12}13f1afis)refr7|18}19 2021 22 23 2425|2627 28 20 30 31| 32|33]34) 35 36 37 38|30]40]41}a2|s3)as 45 45 a7]as a9 50 51|52|53 54 55 56 57 58)59 60|61 62}63 64|65 66|67 €869 70|71 72 73
o [[
IRECIT S 1
of2| |T
ojaf |1 3 Cl ﬁ
ole| |T aq
5| 5 ST
QONE 5 p
o|7| IT ~
ofs| IT
L LA L
c - Indicators Result Field lRuultln?’
- pr—————
S | I B Arithmetic
i“ g And S |z [Plus [Minus] Zero
2|2 ?: Factor 1 Operation Factor 2 8|=[Compare Comments
k] a|3
Line |2 S Name Length 3|3 1>2[1<2]1=2
Elz 2« - o £ | [Cookup(Factor 2)is}
o x|e °] "
218 5|2 5 4 S T | High | Low |Equal
3 4 slel7 sloafi0f11|12|13[14]15[16[17[18 19 20 21 22 23 24 25 26 27 28 29 30 31 3233 34 35 36 37 38 39 40 41 4243 44 45 46 47 48)a9 50 51|52|53|54 5556 57|58 59|60 81 62 63 64 65 65 67 68 €9 70 71 72 73 7
of1 C (| 5 E
of2| ||
T T T T T T T
o s
o g Space| Skip Output Indicators) Commas | 267 Balances |\ conlcr | — | X = Remove
I find Field Name to Print PlusSign | 9=
S or Yes Ye 1 PN I R User
Filename HEHEHR EXCPT Name s Field Edit .
é or HaHH And And End e o 2 R Defined
. —|Rjo}< | Position o es Suppress
Line g Record Name olelL] ¢ E 3 gl o . No o . ol
o Alpfp] & | < 3|5 outeur |5 -
o|R éc' H 3 *AUTO £ 3 Record |& Constant or Edit Word
AlNID z = u|a &l: 1 2 345 6 7 8 91011121314 1516 17 18 19 20 21 22 23 24
3 4 5067 8 9 1011 12 13|1a)15|16]17}18|19 20|21 22|23|24[25]26 {27 |28| 29|30|31| 32 33 34 35 36 37]38|39|40 41 42 434445 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 7
T oICUSTFTLE N
ol2| O 1 M ¢
°p°l o RE|C DBP |
o[+ lo| [
Foted o 4 41—t }

Figure 5-7. Creating a Direct File That Does Not Allow Deletions

Chapter 5. Using a DISK File 5-31

Creating a Direct File That Allows Deletions

5-32

To create a direct file that allows records to be deleted, you must define a
DISK file on the file description specifications as an output file to be
processed randomly, and you must use the RECNO continuation line. Also,
you must specify the DFILE-YES parameter on the control language FILE
statement for the file.

To write records to this output file, place into the RECNO field the relative
record number of the record you want to write, and write data to that
record during detail time, total time, or exception time of the RPG program
cycle. This method of creating a direct file does not use a CHAIN operation
to indicate the relative record number of the record to be written.

Before any output is written to the direct file that allows deletions, the disk
space required for the file is automatically filled with deleted records
(hexadecimal FFs). The relative record number that you place in the
RECNO field indicates where the output record is to be written to the
direct file. The information in the output record is written over the deleted
record, replacing the hexadecimal FFs with data.

If a deleted record is not replaced with data, it remains in the file. A record
can be added later at this relative record number (see Adding Records to a
Direct File later in this chapter). A deleted record cannot be read; if a
CHAIN operation chains to a deleted record, the indicator coded in
columns 54 and 55 of the calculation specifications turns on to indicate that
a record was not found at that relative record number.

If the direct file contains a record with the same relative number as the
record you are writing, error message RPG-9070, OUTPUT TO A
NONDELETED RECORD, is displayed. If the person using the display
station responds to the message with option 1, the program bypasses the
duplicate record and continues processing.

To create a direct file that allows deletions, code entries in the unshaded
columns of the file description specifications shown below:

F File Type Mode of Procesiing ¢ File Addition/Unordered
Extent Exit [Number of Tracks
J ignati Length of Key Fleld or Number of Tracks
s ":: °'":"°" of Record Address Fisld for DAM for Cylindar Ovarfiow
i) Racord Address Type | . Name of Number of Extent
Sequance 3 i Symbolie Label Exit
Filename Type of File Device Device Tape
t N Organization or 3 Rewind
QF"' Forms 5 Ad?ltloml Area Storage Index Fi
Line w g e
Q g Block Record x|g Overfiow Indicator|' anggb
'g g s 2 Lenath Langth § g | SKl.lvrtlr:;' Continuation Lines F uc 2
S 3 g C 3 = Locption |] - 3 H
S| |w External Record Name K Option Entry
3 4 slel7 8 910111213 1al16]168]17]18]19 20 21 22 23 24 25 26 27 28 20 30 31 32 33 34 37 38]39] 40 41 42 43 44 45 48 |47 48 49 50 51 52 |53l 54 66 56 57 68 59 |60 61 62 63 64 66leslar]es eal70l71 72|73
of2| |f / :
& % i B
ofa| |F R b d e o
ofe] [¢] i
NN (NN N B SRR SN B S SN BN NN NN NN AN SR NN A N R BN N BN B L LA R S M S RN S H (R AR B BN B BN S N B BANN H B AL SN A S B S |

On the first line:

e Columns 7 through 14 must contain the name of the file.

e Column 15 must contain O to indicate that the file is an output file.
e Column 19 must contain F or blank.

e Columns 20 through 23 must contain the block length or blanks.

e Columns 24 through 27 must contain the record length.

e Column 28 must contain R to indicate that the file is to be processed
randomly.

® Columns 40 through 43 must contain DISK.
® Columns 71 and 72 can contain an external indicator, Ul through US.
On the second line:

e Column 53 must contain K to indicate that this is a continuation line
that provides additional information about the file being described.

e Columns 54 through 58 must contain RECNO, which stands for relative
record number.

e Columns 60 through 65 must contain the name of the field that contains
the relative record number. The field must be defined on either the
input specifications or the calculation specifications as a 7-position
numeric field with zero decimal positions. That field is called the
RECNO field.

Chapter 5. Using a DISK File 5-33

Example of Creating a Direct File That Allows Deletions

In Figure 5-8, the direct file being created, CUSTFILE, is defined on the file
description specifications as an output file that is processed randomly (O
and R in columns 15 and 28). The file description continuation line
indicates that CUSTNO, which is a field in the input file RECIN, contains
the relative record number of the record to be written to the output file
CUSTFILE. An output record is written for each record read from RECIN.
No calculation specifications are required.

F File Type Mode of Processing Fite Addition/Unordered
File Designation Length of Key Field or = Extent Exit Number of Tracks
e of File of Record Address Field 3| for DAM for Cylinder Overflow
Record Address Type | . 2| Name of Numbsr of Extents
i] . Symbolic |& .
Filename Sequence N ;yp, of File ui Device Device ﬁ Label Exit T
File Format ‘ganization or g C] Rewind
Line w s : Additional Area | - Storage Index F||:
13
" o g % Block Record ¥ E Overflow Indicator é S«:nsglon
[s - U8,
& g g 2 Length Length g gﬁ K"kf,.';"’ 13 Continuation Lines z uc
€ sSlal lel= = cation
2 QU8 |wl< External Record Name B K Option Entry g 2
3 4 slel? 8 910111213 14l15]16)17]18[10 20 21 22 23 24 25 26 27 28 26 30 31 32 33 34 36 36 37 38[30]40 41 42 43 44 45 46 47Aaassosvsz|s:|s~sﬁss57uu 60 61 62 63 64 65|66]67]e8 68]10|71 72|73 74}
13 20 428, 32332 39 34,36 36 37 A1 A8 & 'ﬂ‘“"_T——T'—"'\'ﬂ—"P_‘_J_‘ +
of2i IF CIT [] 1
ofs| IFICUSITIFITILIE IS
ol4]| |F
ofs| |F |
T Ll T
3 External Field Name :
I 5 Field Location In :'el‘d
Fi H Record Identification Codes 5 5 \cators
or 58 " Zls | 5
M Record Name f w5 % 1 2 3 . From To 3 RPG =218 2
M H i g | Fieldname | B[22 F Zero
Line g b =1 B | |s | |s z & % « Data Structure = s 122l & | ewusmi
S T R HE 3 Position % s .E. Position % s § Position |12 g = g P~ £ EI8E = Blank
§§g 2|56 215|6 3(SI3]E18] oo | Lo |& §28] 2
Name AIN[D{= O | = ={° Olofafal o Times eng! @
3 4 56|78 9 1011 12)13hafisfiefi7|rsfrie 20[21 22 23 24252627 |8 29 30 31 35 36 37 38]39]40]a1 45 46 47]48 49 50 51]52]53 54 55 56 57 58|59 60]61 62|63 64]65 €8]67 68|69 70|71 72 73 74
o T i 1) icl1
=y
0f2 I I ST
of3| |1
ol4 I
JaNE 55 CTYST
olsf (1 1
0|7 I c
ofs| |1 N
T LI B B B T 1
0 s
@ |G fspace] skip Output Indicators Zero Balances " X = Remove
I E Field Name Commas o Print NoSign | CR | ~ Plus Sign
Fi Hi T T or Yes Yes 1 Al oY Dme ‘EJ;:]
ilename HEIHE EXCPT Name Field Edit Y
é or § i i g And And End xes co ; B | K| z=zero Defined
i Record N o 1= | Position o ‘es c|tL
Line § ecord Name AR E g |3] in . No No M ol wm Suppress
- Alolo] 8 | < 3 S| outeur S|
OIR] 8 s auto |£]|Q] Record |3 Constant or Edit Word
“Inle z fi] Sl: 1 2 3 456 78 91011121314151617 1819 2021 2223 24 *
3 4 slel7 8 9 1011 1213hafishie|17]18]19 20|21 22]23]24|25]26 {27 |28 1132 33 34 35 36 3738)39]40 41 42 43|44[45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70]71 72 73 74
°l'l IoICUSITIFITI
ol2| |0 1 \ ’
o|3| |of C
olaf lof I
-4 - bt +—

Figure 5-8. Creating a Direct File That Allows Deletions

5-34

Reading a Direct File

After the direct file is created, you can read records from it when you want
to display the information, create or update other files, or print a report.
You can read records from a direct file in the following ways:

e Consecutively

e Randomly by relative record number

e Randomly by relative record number and/or consecutively

e Randomly by address output (addrout) file

Note: An alternative index file can also be created for a direct file to

provide another method of reading the records in the file. For information
about creating an alternative index file see Creating an Alternative Index
File for an Indexed File later in this chapter.

Reading Consecutively

Reading a direct file consecutively means reading the records in the order
in which they occur in the file. That is, the first record in the file is read
first, the second record is read second, and so on. If the file allows records
to be deleted, the program does not read deleted records; it skips them and
reads the next record present. You read a direct file consecutively if you
want to look at most or all of the records in the file. In this case, reading
consecutively is much more efficient than reading randomly.

To read a direct file consecutively, code entries in the unshaded columns of
the file description specification shown below:

Filename

7.8 9-10 13 12 13 14

File Type

Mode of Processing

&

P/S/C/R/T/D/F

File Designation

Length of Key Field or

End of File

of Record Address Field

Sequence

Record Address Type

Type of File

File Format

' Organization or
O Additional Area

Block
Length

F/V/S/M/D/

I’3

Record ‘E Overflow Indicator|
-

Length o Key Field
X Starting
= Location

R
A/P/IK

[Extension Code E/L

A/D

External Record Name

&
3
N
t4
e
N
N
t

}— |z vo/uicio

23 24 25 26 27 28 29 30 31 32 33 34 35 38 37 38|39

Device

40 41 42 43 44 45 a6

Symbolic
Device

47 a8 49 50 51 52

n [[Form Type

™

Labets S/N/E/M

Extent Exit
for DAM

Name of

Label Exit

Storage Index

Continuation Lines

File Addition/Unordere.

Number of Tracks
for Cylinder Qverflo

Number of Exter

Tape
Rewind

LIS B S Bt S BN S BN B N S B |

T

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P, S, or D:

e Ifyou code P (primary) or S (secondary), the program reads a record at

input time of the RPG program cycle. For an explanation of how

primary and secondary files are read, see Chapter 11.

Chapter 5. Using a DISK File

5-35

e If you code D (demand), the program reads a record when a READ
operation occurs in the calculation specifications. For information
about the READ operation, see Chapter 28.

Column 17 must contain E or blank if column 16 contains Por S. E

indicates that all records from the file must be processed before the

program can end. Blank indicates that the program can end before it
processes all records from the file.

Column 18 must contain A, D, or blank if column 16 contains P or S:

® A indicates that the program checks that the records in the file are in
ascending sequence.

o D indicates that the program checks that the records are in descending
sequence.

o Blank means that the program does not check the record sequence.
Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.
Columns 24 through 27 must contain the record length.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Example of Reading Consecutively

5-36

Suppose you want to process a direct customer file, named CUSTFILE, to
produce a monthly report. This report lists all customers that have placed
no orders during the month. Sales personnel can use this report to plan
follow-up calls. The file is in sequence by customer number, and the
program checks every record. Therefore, the file is processed consecutively.

Figure 5-9 shows how to code the specifications to read records
consecutively from CUSTFILE to produce REPORT1, a list of recently
inactive customers. The OR line on the input specifications causes the
program to skip blank record locations, because record-identifying indicator
03 on the OR line is not used elsewhere in the program.

File Type Mode of Processing File Addition/Unorder
F File Designation Length of Key Field or s Extent Exit Number of Tracks
End of Fil of Record Address Field o for DAM for Cylinder Overfl
nd of ile > [re——
Record Address Type | Zl Name of Number of Exte
Filename Sequence » o Devi Symbolic & Label Exit ~——
Type of File P’ evice Device 3 Tove
File Format ' Organization or s Rewind
w 5 _Additional Area 8 - Storage Index ——
Line w Py & 1 File
] S = H Condi
8 d Overfiow Indicator| it
& HE 3 lB.Ie:cgl:h ff:ﬁ.'h 28 Ry Fild | £ ut-us
= SIS > < sz Starting |& Continuation Lines o ver
€ g S ol - = Location L 5
2 =la jwl< External Record Name K Option Entry < 3
3 4 slels 8 91011 12 13 1al1s]ve12]1819 20 21 22 23 24 25 26 27 26 70 30 31 32 33 34 36 36 37 38)39] 40 41 42 43 44 45 4647 48 49 50 51 52 s3] 54 65 56 57 58 39 160 61 62 63 64 65]66|67|68 69lr0f71 727
I] 1728] | T I 2
ol2| [FICIUSTIFIILIET 1 ISK{
os| [FIREPORT(1 OF | INT
ofe [¢f |
-+ +—
- External Field Name .
. N Fiel
I 2 Field Location Ind'le(d
Filename 3 Record Identification Codes 5 < icators
£ - 2
or Y7 2 o s
M Record Name wln | €9 1 2 3 From To ,§ RPG 2 lsg| &
B 5] 8 = s |2
> 22z, | 8 8| Field Name] IS Zero
Lne |2 <la|s? | 1s REE | [E]2]e| owastructure 3 slegl & |pws|m
5 . z g L z z 5 S |z €
4 Dats ols é é 2 Position g g ;"; Position g S g Position «g s g g s - % £ ‘gé = Blank
P ANDESE z|o|6 Ed 31 15 Z|o|5|a)] | Times Length |O o l=g5| &
3 4 s5|el7 8 o 1011 12|13fafis|ref17[18 |19 20|21 22 23 2a[2s]26 |27 [28 29 30 31[32]33}34| 35 36 37 38[30]40]41[42]43[44 45 a5 47|48 49 50 51{52(53 54 85 56 57 5859 EOf61 62|63 64|65 66|67 €8 60 0[71 72 73
o TCUSTIFITIL C
ol2| |1
of3| |1
olal IT 5 ﬂ
ofs| | . .
An OR line with arecord- 1
ol6| |T . - T
5 identifying indicator not 7] q TSI
71 |1 T
H |
AORE used elsewhere in the pro- S 1
ol Tt gram causes unwanted
T records to be bypassed, c|
L LS[T]
T T including blank records. 1 T
o] |x | 1
e r 1 11
1(4
I 114 1 v
Tt |
+—— +——+

Figure 5-9 (Part 1 of 2). Reading Records Consecutively from a Direct Customer File

Chapter 5. Using a DISK File 5-37

" . Resulti
C Indicators Resuit Field esulting
o Indicators
g _ l l - Arithmetic
E 5 And And S| P [Minus| Zero
2 22 ’ Factor 1 Operation Factor 2 M Compare Comments
N Sl < Name Length | % |2 T>o1<2]i-2
Line |15 o g <
HERA M " " & | == [Lookup{Factor 2)is
i 8 % 2 z° g 3|F High | Low |Equal;
3 4 sfe|7 sf9jofifi2fiafiafis)ief17]18 19 20 21 22 23 24 25 26 27|28 20 30 31 32|33 3¢ 35 36 37 38 39 40 41 4243 44 45 46 47 48]49 50 51 3|54 5556 57|58 59|60 61 62 63 64 €5 66 67 68 63 70 71 72 73 74
T
o' fe CIURPE. 0 [[]] | 4
o|2] ¢ - T TOT] 7
of3| lc
|24
o4l |G 4 TOTIA
0l5
c 2 244 oV I
ols| le l
T T T T T T T
o
- . \ =
o 5| G |space] skip Output Indicators f‘*——"——‘$ Commas | 28 Ba'ar‘ces Nosign [CR | — X Remorae
I~ i Field Name to Print PlusSign | o o _
(=) B Y = Date
= or)
. Tl Yes Yes 1 Al) i User
g| Filename HEHR o , EXCPT Name £ Yor No) B | K| go oot E | Defined
= or E (RS 5 i A ~1ec| Position No Yes 3 clt Suppress
Line g Record Name olel] £ = $ 3| in . No No 4 ol m
= 5| < 3|5 outpur |5
Alojpl & | < olo P 3 .
olR)] 8 B *AUTO £|g| Record |@ Constant or Edit Word
NlD z z z wl e o 12 3 4 5 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23 24 *
3 4 5067 8 9 1011 1213)a)i5]i6|17[18]19 20[21 22]23]|2425|26 [27 |28] 29|30|31] 32 33 34 35 36 37]38|39]40 41 42 43]as[a5 a6 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74

hif] o6

R

-~

~ 0 r:mﬁ
Binirr
=
1ol &
S
<
™ ~

e

QN KD

(=]
O/0/0I0/0/0|0/0C/O0/0|0|O/O|O|O/0[O0[O[O][0]~

Figure 5-9 (Part 2 of 2). Reading Records Consecutively from a Direct Customer File

5-38

Reading Randomly by Relative Record Number

Reading a direct file randomly by relative record number means reading
only those records that you specifically identify by their position relative to
the beginning of the file. To read those records, you must use a CHAIN
operation in the calculation specifications. Factor 1 of the CHAIN
operation must contain the relative record number itself or the name of the
field, table, or indexed array that contains the relative record number. For
more information about the CHAIN operation, see Chapter 28.

To read a direct file randomly by relative record number, code entries in
the unshaded columns of the file description specifications shown below:

F File Type Mode of Processing File Addition/Unordere
7 Extent Exit Number of Track:
File Designation Length of Key Field or ——'——'—-——o worm
ane of Record Address Field E for DAM for Cylinder Overfic
End of File 3 §
Record Address Type | . b Name o Number of Exte
" Sequence iy i Symbolic Label Exit
Filename Type of File ® Device Device 3 Tape
N o~ izati .
_ File Format N 2:1?:&:;:-:?:;:: ;§ s Storage Index Rewind
Line w 3 = s
- g g Block Record ¥ E Overflow Indicator g
é Q E > Length Length « g S sKt‘.!‘:::“ w; Continuation Lines
€ 213 lol= & = Location | |
£)
N =la External Record Name K Option
3 4 5]16]7 8 9-10 11 1213 14115 ﬁ,_!_&_?ﬁ?"n 41 42 43 44 45 46
of2| |F :
0|3 F I
T t t T T +—t+—+——+—+—++ +——+

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.
Column 16 must contain C to indicate that the file is a chained file. To
read this file, you must code a CHAIN operation in the calculation
specifications.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.
Columns 24 through 27 must contain the record length.

Column 28 must contain R to indicate that the file is processed randomly.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, U1 through US.

Chapter 5. Using a DISK File 5-39

Example of Reading Randomly by Relative Record Number

In the Example of Reading Consecutively, we showed how to process the
direct customer file CUSTFILE consecutively. Now suppose that you want
to read records from that file randomly. You want to make inquiries each
day about customer accounts whose records have record identification code
Iin position 1, followed by the customer account number (CSTMER).

The program reads an input record (the customer account number) from the
primary input file, INFILE. The program uses the customer account
number as the relative record number to chain to CUSTFILE. If the
program finds a record in CUSTFILE that has the same customer account
number as the record in INFILE, the computer prints sales and accounts
receivable information for that customer. If the program does not find a
record in CUSTFILE that matches the customer account number, the
message RECORD NOT FOUND-INVALID RECORD NUMBER is printed

at run time.

Figure 5-10 shows the printer output for this example. Figure 5-11 shows
how to code the specifications for this example.

[vo]
T
as
T

X
=T

O
O
[=X=

I T
®
©
oc
X

So
)
©o
=
o
%]

1[2|3(4(s6

oS
™
o<
=

X2
©
E=X:
T
[oc
=
o
X

,,_
o=
©

on
I
)
oW
©

a0
o

ow

X
©ow
X
o3
w
>
(s
[ox
N
[
©
=)
N
[we
ry
o
-3

o o |s jw v {=
=
—
—
——
Y
=1
—
-
A
P |
=
PR
e
—
-
1
1

CUSTOMER ACTIVITY SALESMAN CREDIT LAST ORDER LAST PAY SLS THIS PER SLS LAST PER TOTAL A/R

3119 A 105 01l 4/17/83 4/01/83 360.00 239.50 360.00
6678 RECORD NOT FOUND--INVALID RECORD NUMBER
1703 I 35 03 11/19/82 12/01/82 .00 .00 .00

—

\

Figure 5-10. Printer Output from Random Inquiries into a Direct Customer File

5.40

F Flle Type Mode of Processing File Addition/Unorderec
File Designation Length of Key Field or z Extent Exit | [Number of Tracks
End of File of Record Address Field g for DAM for Cylinder Ovarfioy
Record Address Type | . 5 Name of Number of Exten
. ., Symbolic .
Filename s'“::‘: N g:n 9:. :‘::‘ . 3 Device Device F Label Exit Tore
ile Format i N
Line w W 5 _Additional Area 2 3 Storage Index Rewind
N o ?_ % Block Record o g Overtiow Indicator| 2
¥ el
F é « E Length Length “:'- 5 s é:." Field i Continuation Lines
€ g S of« = I Location
£ ML External Record Name K Option Entry
3 4 5]617 8 ﬁ»!OLi’lg" 15 |eg_ta|mr2_o';!_2223u£‘unnn_a%_g’;gragﬂry_ggrs_e_;;uss 40 41 42 43 44 45 46147 48 49 50 51 52|53)54 55 56 57 58 59 |60 61 62 63 64 65 72|73
of2| |ITNFITILIE] F! 9] I . o) !
ofs| TrlculalT T F T The direct file is defined as a chained
olal |F 10 N input file to be retrieved randomly.
ols| |F
ole F
5 External Field Name .
I 2 Field Location \ F'eld
Fil 3 Record Identification Codes 5 < ndicators
o 2 . 3|3
g| Record Name (2153 ! 2 3 A1 From To |8 RPG 2legl 2
o018 - . 2 i 3]
. 2215 R i _ § 8| FieldName [2 |E 2| T 2Zero
Line g o 54] B § SRE SEL S Data Structure bt s |22 & | Pus [Minuso
. Z|a . 2lo . Z) slS 3 |E £
L Dt SR .g $ E Position S S £] Position S ; Position z g g Ag § Secors § g 'ég .'E Blank
N ANDZga: zoé 4 3] [5] ZIO|S|BIE | Times Length =5 i
lame
3 4 5]617 8 9 10 11 12131415116)17]18 19 20}21 22 23 24 25|26 |27 |28 29 30 31 35 36 37 38{39]|40|41]42]43]4a4 45 46 47|48 49 60 51)52(53 54 55 56 57 58|59 60|61 62|63 64|66 68|67 8|69 70|71 72 73 |
T T/ INFIT 7 ClT HERRERN
of2| |1 | 2
[} I [
ofs| |T (
ols| x| | JANL 3
ole| |1 A chained file must 1
o] |z contain an alphabetic 9 1T
ols] [x sequence entry. 7L
ofs| |T d lﬁ P
1o} T
il |x
2] It)] Tl
s T 1 127
1laf |1 11 6
AL 11% 11 o
1s| |1 | l

Figure 5-11 (Part 1 of 2). Reading a Direct Customer File Randomly by Relative Record Number

Chapter 5. Using a DISK File 5-41

c o Indicators Result Field ::::‘cl::?s
g I " Arithmetic
2 g I S|z Plus [Minus] Zero
° § 2 And Factor 1 Operation Factor 2 2|5 Compare Comments
e [Ef2 2 L (Y o
glg @f. - - E 1 [Cookup(Factor 20}
id ol B 2 2 &lE[Fign T Low [eaual
3 4 5§67 8|9(10[11]12[13[14[15[16[17]18 19 20 21 22 23 24 25 26 27 [28 29 30 31 32|33 34 35 36 37 38 39 40 41 42|43 44 45 46 47 48|49 50 51 55|56 57|58 59|60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
°1c lli I ‘ |l||lll|l|lllll|
of2| fcl 7] E! 1IFIL The customer number I
03] | 1 - 1 7] from the input record is || |
04l 9 1 TOI used as the relative record |||
N 7IN1 TOr number to chain to the ||
06 . . .
c { 1 a V] direct file. Indicator 13 |
of7| |c| . . .]
will turn on if arecord is |1
°/8] i | Indicator 13 is used to : . oy .
not found in the direct -
°1°1 16 | condition subsequent | file |
'[°L I | operations. L
11 c
el e LI
O g § Space] Skip Output Indicators Field Name Commas Zer:: l'i’:li:v:cns NoSign | CR | — X= ::r:;:;ﬂ .
O | or Y = Date
. £ %Y Yes Yes 1 Al y i | User
g Fnle::me gig B LA EXCPT Name End Yes No 2 8| K z=;:I: Edit | Defined
. (= ~|Rlx]< «| Position No Yes 3 el Suppress
Line |g| Record Name olele] & | s gl3| in No No a ol m
B ’ Alolo] & | & 8I5| outeur |5
IR 5 3 8 *AUTO || Record (& Constant or Edit Word
ANl = z z wlm Sl+ 1 2 3 456 7 8 9 10111213141516 17 1819 20 21 22 23 24 *
3 4 5|6}7 8 9 1011 12131a}15]16{17]18]19 20|21 22|23|24)|25|26 |27 [28}29|30|31] 32 33 34 35 36 37|38|39)40 41 42 43|4a4|45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
T 1P
of2f |0}
o|3] |ol . T ’
.
04| o 18 | ACTIIVIITIY
ols A} E [
06| |0) . .
E Other headings (see Figure 5-10).
o8
ols| lo] 3y o @
1]o] Jo N13 means that this line will be |
11| o] rinted if a record is found in the I .
printec | % Other fields (see Figure 5-10).
12| o direct file. !
2] 9] — | [TIOT] 97]
14| |o|]
115| O] ——L - (|
Tl o When a record is not found in the < T ir
T o direct file, this line is printed. < E = ri
o 1 T
JONE CSTMER : ‘
2|0 |o| q 'N-P 1 F 1h e’
0

Figure 5-11 (Part 2 of 2). Reading a Direct Customer File Randomly by Relative Record Number

5-42

Reading Randomly by Relative Record Number and/or Consecutively

If you want to read a file both randomly and consecutively, use a
full-procedural file. You can read a full-procedural file randomly like a

chained file and/or consecutively like a

demand file. That is, you can chain

to a specific relative record number in the file and then read records

consecutively from that point. To read

the file randomly, you use a CHAIN

operation in the calculation specifications; to read it consecutively, you use
a READ or READP operation. You cannot use a READE operation to read
the file consecutively, because the READE operation cannot read by
relative record number. For example, if you code a CHAIN operation to
relative record number 10 and then code a READ operation, the program
chains to relative record number 10 and then reads the following record.

It is not necessary to code both a CHAIN and a READ or a READP
operation, but you must code at least one CHAIN, one READ, or one

READP operation in order to read a ful

l-procedural file. For information

about the CHAIN READ, and READP operation codes, see Chapter 28.

Code a full-procedural file as an input file. Code entries in the unshaded
columns of the file description specifications shown below:

Filename

File Type Mode of Processing

File Designation Length of Key Field or
of Record Address Field

Record Address Type

End of File

Sequence Type of File Device
File Format ™ Organization or

5 Additional Area

Overflow Indicator
Key Field

Starting
Location

| Extension Code E/L

A/P/I/K
i/X/D/T/R,

3

External Record Name

40 41 42 43 44 45 46

File Addition/Unorder

Extent Exit Number of Tracks
for DAM for Cylinder Overfl

Number of Ext

Name of
Label Exit

Symbolic
Device

Labels S/N/E/M

Storage Index

Continuation Lines

Option

w
Line w 3
Q 2| Block Record
. ol >
> ole D] Length Length
f Qe >
E 218 o
S oL
(e = |
3 4 5lel? 8 9-1011 1213 14[15]16 19 20 21 22 23 24 26 26 27
i iy Y
0 F T
0l3 F

Tt LN R B S R N NN S N A A B ¥

LI B B B

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain F to indicate that the file is a full-procedural file.
You must code a CHAIN, READ, or a READP operation in the calculation
specifications in order to read a full-procedural file.

Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Columns 24 through 27 must contain the record length.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US.

Chapter 5. Using a DISK File 5-43

Reading Randomly by Address Output (Addrout) File

5-44

An address output (addrout) file is a record address file produced by a sort
program. (A record address file is an input file that tells the program which
records to read from a DISK file and the order in which to read them.) An
address output file contains the relative record numbers of the records in a
DISK file. The advantages of an address output file are that:

e The space required for the address output file is much less than the
space required for a sorted sequential file.

e The sort runs much faster.
o The original file is unchanged.

You can have only one address output file in a program. When an RPG
program uses an address output file, it automatically reads the relative
record numbers consecutively from the address output file. You do not
have to code a READ operation for the address output file. Then, using the
relative record number, the program randomly reads the DISK file to
process the corresponding record. In this way, the program can process a
direct DISK file in a new sequence without actually sorting the records and
creating a new file. Also, once the file description and extension
specifications are coded for the DISK file and for its associated address
output file, you can code the DISK file as though you were reading the
direct file sequentially. If the DISK file is a full-procedural file, you must
code a READ operation in the calculation specifications; you cannot use a
CHAIN, READE or READP operation to read a full-procedural file
randomly by an address output file. No input specifications are required
for the address output file.

If you want to read records randomly by an address output file, code the file
description specifications as shown below:

Filename

7 8 9-10 11 12 13 14

File Type Mode of Processing . File Addition/Unorde:
File Designation Length of Key Field or s Extent Exit Number of Tracks
End of Fi of Record Address Field o for DAM for Cylinder Overf
of ile =
Record Address Type | . Z| Name of Number of Ext
Sequence - o Devi Symbolic B\ el Exit
Type of File © evice Device 3
File Format N Crganization or s
. w - |5 _Additional Area é - Storage Index
= [} o< 8
ol 3| Block Record x| [Overtiow tndicator| 2
ol S| e | Leneth o =l Kov Field | Continuation Lines
S|o z 3 <X rarting]
sla| |e = cation
Sla |wi< External Record Name

16116117118

5
]
&

23 24 25 26 27 28 28 30 31 32 33 34 35 36 37 38]39/40 41 42 43 44 45 46
2 I s

T[> Form Type

LI I J O BN B BN B B B T

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain P, S, or F:

e If you code P (primary) or S (secondary), the record is read as part of
the RPG program cycle. For an explanation of how primary and

secondary records are read, see Chapter 11.

e If you code F (full-procedural), you must code a READ operation in the
calculation specifications.

Column 18 can contain A, D, or blank if column 16 contains P or S:

e A indicates that the program checks that the records in the file are in
ascending sequence.

e D indicates that the program checks that the records in the file are in
descending sequence.

e Blank indicates that the program does not check the sequence of
records in the file.

Column 19 must contain F or blank.
‘Columns 20 through 23 must contain the block length or blanks.
Columns 24 through 27 must contain the record length.

Column 28 must contain R if column 16 contains P or S. The R indicates
that the file is processed randomly by an address output file.

Column 31 must contain I if column 16 contains P or S. The I indicates
that relative record numbers from the address output file are used to
process the file.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, U1l through US8.

Chapter 5. Using a DISK File 5-45

For the address output file, code entries in the unshaded columns of the file
description specifications shown below:

File Type Mode of Processing File Addition/Unordered
F File Designation Length of Key Field or s Extent Exit Number of Tracks
v of Fi of Record Address Field o for DAM for Cylinder Overflow
of File Y
Record Address Type | Symbolic g Nameof Number of Extents
Filename Sequence N ;vu of File w Device Device i Label Exit
File Format rganization or g |
i w 8 _Additional Area - Storage Index
Line w 8 = H
g S| Block Record x |E|overfiow Indicator| 2
& Sls @| Length | Length s|a ey Frid | -
= 54 13 E -3 [Starting |& Continuation Lines
€ g S o - <Js Location | |
S| jw|< External Record Name Option
3 4 sle|l? 8 9-1011 1213141516 n&nﬁg‘_z_a_zg_gg‘z’l.n 29,30 31,32 33 34 35 36 37 3813940 41 42 43 44 45 46
o2 |¢ F IS
ofa| |r |
T L LI B L

Columns 7 through 14 must contain the name of the file.

Column 15 must contain I to indicate that the file is an input file.

Column 16 must contain R to indicate that the file is a record address file.

Column 17 must contain E or blank. E indicates that all records from the

file must be processed before the program can end. A blank indicates that
the program can end whether or not all records from the file are processed.
Column 19 must contain F or blank.

Columns 20 through 23 must contain the block length or blanks.

Column 27 must contain 3 because each record in an address output file is a
relative record number, which is always three positions long.

Column 30 must contain 3 because relative record numbers in address
output files are always three positions long.

Column 31 must contain I to indicate that the file is an address output file.
Column 32 must contain T to indicate that the file is an address output file.

Column 39 must contain E to indicate that the file is further described on
extension specifications.

Columns 40 through 43 must contain DISK.

Columns 71 and 72 can contain an external indicator, Ul through US8.

5-46

Two entries are required on the extension specifications:

Record Sequence of the Chaining File

Number of the Chaining Field

Table or Length
Array IName | o
(Alternating
Format)

Table or
Array Name

To Filename Comments

From Filename

Decimal Positions

790'01112'314‘5'!1718|9202‘22_2£242528 08707'72

ofofw

I B B B | LU SN B NS N B O I I S AN B N B SR B S AN NN N HONR N AR SO AN SO BN NN N SO SN ERD H SR B A SN A SO SR SR N N S

Columns 11 through 18 must contain the name of the address output file.
This name must be the same one coded on the file description specifications
for the address output file.

Columns 19 through 26 must contain the name of the direct file to be

processed by the address output file. This name must be the same one
coded on the file description specifications for the direct file.

Chapter 5. Using a DISK File 5-47

Updating a Direct File

5-48

Updating records in a direct file involves reading a record, changing some
data in the record, and writing the record back to its original location in
the file. If you try to update a record that was not the last record read,
error message RPG-9043, FILE TRIED RECORD UPDATE BEFORE
INPUT, is displayed. The fields to be updated must be described on both
the input and the output specifications.

When you update records in a direct file, the file can be processed in any of
the following ways:

e Consecutively
® Randomly by relative record number
e Randomly by relative record number and/or consecutively

e Randomly by address output (addrout) file

Deleting Records from a Direct File

Updating a file can include deleting records from the file. To allow records
to be deleted from the file, the control language FILE statement coded
when the file was created must use the DFILE-YES parameter. For
information about the FILE statement, see the System Reference manual. If
you try to delete a record from a file that does not allow deletions, error
message RPG-9067, INVALID OPERATION ATTEMPTED, is displayed.

To delete a record, you first read the record (either randomly or
consecutively) and then, with DEL coded in the output specification, write
the record back to the same file. Code entries in the unshaded columns of
the output specifications shown below:

fry
=l "
o l; S‘Sﬂms Skip Output Indicators Zero Balances " _ | X = Remove
N Field Name Commas to Print No Sign | CR Plus Sign _
EIEY Y =D 5-9=
z|s I T o Yes Yes 1 Al g User
Filename =|x1e Field Edit y
& or 3#"- K And And EXCPT Name End Yes No 2 8| K|z-z000 Defined
> S ”
S x| Position No Yes 3 c|L Suppress
tine |g| ~Record Name NG 3| in . No No s |o|m s
- alo S| outour |5
0 é § *AUTO £ 2| Record |3 Constant or Edit Word
aln[o Wi, @1+ 1 2 3 456 7 8 9 10111213 14 15 16 17 1<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>