

--------- - ------
.:...:..:::§";"§: System/36

Interactive Communications Feature:
Programming for Subsystems and
Intra Subsystem Reference

File Number
S36-30

Order Number
SC21-9533-0

First Edition (October 1986)

This is a new manual that replaces, in part, SC21-791O. Changes
are periodically made to the information herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

This edition applies to Release 5, Modification Level 0, of IBM
System/36 System Support Program Products (Program 5727-SS1
for the 5360 and 5362 System Units, and Program 5727-SS6 for the
5364 System Unit), and to all subsequent releases and
modifications until otherwise indicated.

References in this publication to mM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM's licensed program may be used. Any
functionally equivalent program may be used instead.

The numbers at the bottom right of illustrations are publishing
control numbers and are not part of the technical content of this
manual.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM
representative or to your IBM-approved remarketer.

This publication could contain technical inaccuracies or
typographical errors. A form for readers' comments is provided
at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information
Development, Department 245, Rochester, Minnesota, U.S.A.
55901. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you. •

"

© Copyright International Business Machines Corporation 1986

Contents

About This Manual vii
What you should know. . . Vlll

If you need information about other SSP-ICF subsystems. .. lX

If you need more information. .. lX

Chapter 1. Introd.uction to the Interactive Communications
Feature 1-1

Elements Used in SSP-ICF Sessions 1-3
Acquired Sessions 1-4
Remotely Started Sessions 1-6

SSP-ICF Subsystems 1-8
Types of System/36 Subsystems 1-9
Combinations of Subsystems 1-10

System/36 Communications Line Support 1-10
Communications Features Supported by Subsystems 1-11
Sharing a Communications Line 1-12

System/36 Storage and Session Considerations 1-14
Storage Requirements 1-14
Active Session Limits 1-14

Enabling and Disabling Subsystems 1-15
Enabling a Subsystem 1-15
Disabling a Subsystem 1-19

Chapter 2. Programming SSP-ICF with Assembler 2-1
Assembler Macroinstructions 2-3

$DTFW Macro 2-4
$DTFO Macro 2-8
$ALOC, $OPEN, and $CLOS Macros 2-10
$WSIO Macro 2-12
$EVOK Macro 2-18

Assembler Operations Summary Chart 2-21
Return Codes 2-23
Interactive Communications Assembler Subroutines 2-23
Assembler Coding Examples 2-24

Chapter 3. Programming SSP-ICF with BASIC 3-1
BASIC Statements Used for Communications 3-3
OPEN Statement (Acquiring Sessions) 3-4

OPEN Statement Examples 3-6
READ Statement (Receiving Data) 3-8

READ Statement Examples 3-9
W AITIO Statement (Waiting for Input) 3-11

W AITIO Statement Example 3-11
WRITE Statement (Performing Operations within a Session) 3-12

Contents 111

WRITE Statement Operations 3-13
Starting Remote Programs (Evoke Operations) 3-14
Sending Data (Put Operations) 3-18
Ending Communications Transactions (End of Transaction

Operations) 3-19
Ending Sessions (End of Session Operation) 3-20
Additional WRITE Statement Operations 3-20

CLOSE Statement (Closing Files for Sessions) 3-24
ATTRIBUTE$ Intrinsic Function (Getting Session Attributes) 3-25
BASIC Operations Summary Chart 3-27
Checking Return Codes in BASIC 3-28

ERR Code Values 3-29
RETCODE$ Values 3-30

Notes About Writing BASIC Programs for SSP-ICF 3-31
BASIC Coding Examples 3-31

Chapter 4. Programming SSP-ICF with COBOL 4-1
COBOL Statements Used for Communications 4-3
SELECT Statement (Defining the Transaction File) 4-4
ACQUIRE Statement (Acquiring Sessions) 4-6
ACCEPT Statement (Checking Session Status) 4-7

Session Status Information 4-8
READ Statement (Receiving Data) 4-10
WRITE Statement (Performing Operations within a Session) 4-12

WRITE Statement Operations 4-13
Starting Remote Programs (Evoke Operations) 4-14
Sending Data (Put Operations) 4-15
Ending Communications Transactions (End of Transaction

Operations) 4-16
Ending Sessions (End of Session Operation) 4-17
Additional WRITE Statement Operations 4-17

DROP Statement (Releasing a Session) 4-21
COBOL Operations Summary Chart 4-22
Return Code Processing in COBOL 4-23
COBOL Coding Examples 4-23

Chapter 5. Programming SSP-ICF with RPG II 5-1
File Description Specifications 5-2
RPG II Communications Operations 5-3

Starting Remote Programs (Evoke Operations) 5-3
Sending Data (Put Operations) 5-5
Request to Change Direction Operation 5-6
Set Timer Operation 5-7
Negative Response Operations 5-8
Cancel Operations 5-9
Fail Operation 5-9
End of Session Operation 5-9

WORKSTN Operations 5-10
ACQ (Acquire) Operation 5-10
REL (Release) Operation 5-11
NEXT Operation 5-12
READ Operation 5-13
RPG Cycle Input 5-14

RPG II Operations Summary Chart 5-14

IV SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Code Processing in RPG II 5-15
INFSR Subroutine Coding Considerations 5-18

RPG II Status Values 5-19
RPG II Programming Considerations 5-20

Using Continuation Options on the File Description Specifications 5-20
SRT and MRT Program Considerations 5-22
End-of-File Considerations 5-23
Release Considerations 5-23
Restrictions for WORKSTN Files 5-24
Input and Output Considerations 5-24

RPG II Coding Examples 5-25

Chapter 6. The Intra Subsystem 6-1
Overview of the Intra Subsystem 6-3
Setting Up an Intra Subsystem 6-5

CNFIGICF Procedure 6-5
Subsystem Member Definition 6-7

Modifying a Subsystem Configuration 6-10
Enabling and Disabling the Intra Subsystem 6-10
Starting Communications Sessions That Use the Intra Subsystem 6-11

SESSION Statement 6-12
Procedure Start Requests 6-13

Communications Operations for the Intra Subsystem 6-14
Accept Input Operation 6-17
Acquire Operation 6-18
Cancel Operations 6-20
End of Session Operation 6-22
Evoke Operations 6-23
Fail Operation 6-33
Get Operations 6-35
Invite Operation 6-37
Negative Response Operations 6-38
Put Operations 6-39
Release Operation 6-41
Request to Change Direction Operations 6-42
Set Timer Operation 6-44

Intra Subsystem Return Codes 6-45

Glossary G-1

Index X-I

Contents V

VI SSP-IeF Programming for Subsystems and Intra Subsystem Reference

About This Manual

The information in this manual supersedes and replaces its respective part
of the System/36 Interactive Communications Feature: Reference manual,
SC21-7910. This manual and the other associated manuals made from the
SSP-ICF Reference resulted from the SSP Release 5.0 repackaging of the
SSP-ICF 6001 and 6002. This manual supports the base communications
feature Program Number 6001-SS1.

This reference manual is intended primarily for application programmers
who write communications programs that use the SSP-ICF. It contains
programming information for both System/36 programmers and remote
system programmers. This manual contains two major units of information:

• A description (in Chapters 2 through 5) of each macroinstruction or
language statement used to perform communications operations. Each
macroinstruction used in assembler language for communications is
described in Chapter 2. Each language statement used in BASIC,
COBOL, or RPG II is described in Chapters 3 through 5, respectively.

• A description (in Chapter 6) of the Intra subsystem, which includes:

A description of the configuration displays used to configure the
subsystem member definitions.
A description of the remote system generation or configuration
requirements and the startup requirements needed for remote
programs to communicate with System/36.
A description of the SESSION OCL statement used by a System/36
program to start a communications session.
A description of all the subsystem input and output operations used
to communicate in a session. Included are summary charts of all
the operation codes (by language), examples of each operation in
each language, and language-dependent information.
A description of the programming considerations for System/36 and
for the remote system.
A complete description of every return code that a subsystem can
send to a program.

About This Manual Vll

This manual contains appendixes describing subsystem operation codes,
return codes, conversion considerations, and character sets. It also
contains a glossary that defines the terms introduced and used in this
manual.

Notes:

1. Throughout this manual, the term remote system refers to the system or
device with which System/36 is communicating. For the Intra subsystem,
the term refers to the same System/36 because Intra supports
communications only between programs on the same system.

2. This manual follows the convention that he means he or she.

What you should know ...

Before you use this manual, you should know or have the following
information:

• You should be familiar with System/36 programming terminology,
particularly work station programming, and you should be able to
program in whatever language you intend to use. In some instances,
you must also be familiar with the terminology of the remote system.

• You should know the concepts of data communications as described in
the Data Communications Concepts manual, GC21-5169.

• You should understand the information and examples presented in
Chapters 1 through 5 and in the appropriate subsystem chapter in the
System/36 Interactive Communications Feature: Guide and Examples
manual, SC21-7911. The SSP-ICF Guide and Examples manual (the
shortened title used in this reference manual) introduces SSP-ICF
concepts, and it provides coding examples of programs written in
assembler, BASIC, COBOL, and RPG II-programs that use one of the
SSP-ICF subsystems to communicate with programs on remote systems.

• You should have the Planning for Data Communications workbook,
SA21-9441, which is part of the packet What to Do Before Your
Computer Arrives, SBOF-4773.

Note: This manual may refer to products that are announced, but are not yet
available. Such information is for planning purposes only and is
subject to change before general availability.

Vlll SSP-ICF Programming for Subsystems and Intra Subsystem Reference

If you need information about other SSP-ICF subsystems
. . .

The following SSP-ICF manuals contain detailed information about other
communications subsystems:

• Interactive Communications Feature: Base Subsystems Reference,
SC21-9530, contains information about the APPC, BSCEL, CCP, and
Peer communications subsystems. The shortened title used in this
manual is "SSP-ICF Base Subsystems Reference."

• Interactive Communications Feature: Upline Subsystems Reference,
SC21-9532, contains information about the CICS, IMS, and SNUF
communications subsystems. The shortened title used in this manual is
"SSP-ICF Upline Subsystems Reference."

• Interactive Communications Feature: Finance Subsystem Reference,
SC21-9531, contains information about the Finance communications
subsystem. The shortened title used in this manual is "SSP-ICF
Finance Subsystem Reference."

If you need more information ...

The following System/36 manuals contain additional information you may
need when you use the Interactive Communications Feature:

• Guide to Publications, GC21-9015 lists the manuals in the System/36
library, lists the tasks that are described in the System/36 manuals, and
provides a master glossary of System/36 terms.

• Changing Your System Configuration, SC21-9052 contains instructions
for installing Interactive Communications Feature support.

• System Security Guide, SC21-9042 describes how to implement various
levels of security on System/36.

• Using System/36 Communications, SC21-9082 describes in detail using
System/36 for communications.

• System Problem Determination, SC21-7919 for the 5360 System Unit,
SC21-9063 for the 5362 System Unit, or SC21-9375 for the 5364 System
Unit provides procedures to help you find the cause of communications
problems.

• System Messages, SC21-7938 describes the system messages that are
displayed when you operate the Interactive Communications Feature.

• System Reference, SC21-9020 describes the OCL statements, system
utilities, and system procedures you need when you use System/36 and
the Interactive Communications Feature.

About This Manual IX

• Performing the First System Configuration for Your System, SC21-9067
contains instructions for performing the first system configuration for
your system.

• Getting Started with Interactive Data Definition Utility, SC21-8003
introduces the interactive data definition utility (IDDU) and describes
how to create data definitions for use with the Intra and APPC
subsystems.

• Advanced Peer-to-Peer Networking (APPN) Guide, SC21-9471, describes
how to use APPN to configure, use, and maintain the extended
networking capabilities for the System/36 family.

You may need to refer to one or more of the following System/36 language
reference manuals while using this manual.

• Programming with Assembler, SC21-7908

• Programming with BASIC, SC21-9003

• Programming with COBOL, SC21-9007

• Programming with RPG II, SC21-9006

Depending upon the type of SSP-ICF subsystem that you use for
communications, you may need to use non-System/36 manuals that describe
the remote system or operating system with which your System/36 will be
communicating. These manuals are listed in the remote programming
considerations section of each applicable subsystem chapter.

A few references are made in this manual to System/36 communications
subsystems that are not included in the Interactive Communications
Feature. Information about those subsystems is contained in the following
System/36 manuals that describe those features:

• Using the Asynchronous Communications Support, SC21-9143 describes
the asynchronous communications support, which is part of the base
Communications feature. This support includes the Asynchronous
subsystem, the file transfer subroutines, and the Interactive Terminal
Facility.

• 3270 Device Emulation Guide, SC21-7912 describes the BSC 3270 and
SNA 3270 subsystems, which are part of the 3270 Device Emulation
feature. SNA 3270 can share a communications line with the SNUF
subsystem, SNA MSRJE, and the APPC subsystem.

• Multiple Session Remote Job Entry Guide, SC21-7909 describes the
Multiple Session Remote Job Entry feature. SNA MSRJE can share a
communications line with the SNUF subsystem, SNA 3270, and the
APPC subsystem.

x SSP-ICF Programming for Subsystems and Intra Subsystem Reference

• Distributed Disk File Facility Reference Manual, SC21-7869 contains
information about installing, setting up, and operating the Distributed
Disk File Facility. The Peer subsystem must be used with this facility.

• Communications and Systems Management Guide, SC21-8010 contains
information about the Communications and Systems Management
feature. This feature includes change management (DSNX) support and
problem management (alert) support. The SNUF and APPC subsystems
are used with this feature.

• Distributed Data Management Guide, SC21-8011 contains information
about the Distributed Data Management feature. The APPC subsystem
is used with this feature.

About This Manual Xl

Xll SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 1. Introduction to the Interactive
Communications Feature

Elements Used in SSP-ICF Sessions 1-3
Acquired Sessions 1-4
Remotely Started Sessions 1-6

SSP-ICF Subsystems 1-8
Types of System/36 Subsystems 1-9
Combinations of Subsystems 1-10

System/36 Communications Line Support 1-10
Communications Features Supported by Subsystems 1-11
Sharing a Communications Line 1-12

System/36 Storage and Session Considerations 1-14
Storage Requirements 1-14
Active Session Limits 1-14

Enabling and Disabling Subsystems 1-15
Enabling a Subsystem 1-15

Enabling Multiple Remote Locations (SNA Subsystems Only) 1-16
ENABLE Procedure Command 1-18

Disabling a Subsystem 1-19
Disabling Multiple Remote Locations (SNA Subsystems Only) 1-20
DISABLE Procedure Command 1-20

Chapter 1. Introduction to the Interactive Communications Feature 1-1

The System/36 Interactive Communications Feature (SSP-ICF) allows
program-to-program communications between System/36 and other systems.
SSP-ICF is provided as a feature of the System/36 System Support Program
Product (SSP). The information needed to use SSP-ICF is contained in the
manual Using System/36 Communications and in this reference manual.

SSP-ICF includes support for program-to~program communications between
systems using BSC or SNA as well as communications between programs
within the same system. SSP-ICF also allows programs on other systems to
initiate System/36 procedures, and it allows System/36 programs to initiate
programs or procedures on other systems without remote system operator
intervention.

This chapter contains information that applies to all SSP-ICF subsystems.
This chapter:

• Summarizes briefly the main elements used in an SSP-ICF session

• Introduces all the subsystem types

• Identifies the communications line features that are used by the
subsystems

• Describes the ENABLE and DISABLE procedure commands

SSP-ICF provides problem determination and link verification by means of
the SSP-ICF debug program. The program allows you to save information
on disk about each SSP-ICF operation while your program(s) is running.
You can then display or print the information to help you find the cause of
an SSP-ICF problem. The procedure for running the debug program is
ICFDEBUG. This procedure is described in the manual Using System/36
Communications.

1-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Elements Used in SSP-ICF Sessions

The following two sections summarize the main communications elements
that exist while System/36 programs are using SSp-reF to communicate
with other programs. A detailed description of these elements (subsystems,
programs, sessions, transactions, and data) is presented in the SSP-ICF
Guide and Examples manual.

A session can be started either by a program on System/36 or by a program
on a remote system. When a program on System/36 starts the session with
an acquire operation, the session is called an acquired session. When a
remote program starts the session by sending a procedure start request to
System/36, the session is called a remotely started session.

Chapter 1. Introduction to the Interactive Communications Feature 1-3

Acquired Sessions

D

B
II

II

0

II

D

D

The following figure shows the order in which events occur and the
elements involved when a System/36 application program (your program)
starts a session with the remote system:

System/36 Remote System

,

SSP-leF Subsystem Communications

ENABLE (Start
Line

the subsystem.) ~

Application Program

Acquire Start a session.

Remote Program
Evoke Start the remote program

(transaction) .

Send/Receive
Send and/or receive data.

Send/Receive

End the transaction.
End End

(Either program can end
the transaction.)

The remote program
Release End the session with can end or continue

the remote system. local processing.

This program can end,
start another session,
and/or continue local
processing.

DISABLE (End
the subsystem.)

87910002-0

1-4 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

o A subsystem must be enabled (started) before programs can use it
to communicate with a remote system. The ENABLE procedure
command is used to start the subsystem.

o The System/36 application program that will communicate with the
program at the remote system must be started, usually via a
user-written procedure.

ID The System/36 program must start a session with the remote system
before communications can begin. Your program starts a session
when it issues an acquire operation.

When your program starts (acquires) the session, a SESSION OCL
statement (associated with your program) is used to specify the
session ID and the location name (used to identify the remote system)
to be associated with the session. For some subsystems, the
SESSION statement also defines some of the subsystem-dependent
parameters for the session. These parameters remain in effect until
the program terminates.

o Within each session, transactions can be started (evoked) to allow
your program to communicate with remote programs. A transaction
is started when your program issues an evoke operation to start a
specified remote program.

D Within each transaction, data can be sent and received between your
program and the program on the remote system.

D When all data has been sent and/or received, either your program or
the remote program can end the transaction. Your program ends the
transaction using one of the end of transaction operations (evoke end
of transaction or put end of transaction). When the remote system
ends the transaction, the subsystem indicates this by the return code
it sends to your program.

D When all transactions have ended, your program should release the
session. Your program can do this by using either the release
operation or the end of session operation.

m When the subsystem is no longer needed, it can be disabled using the
DISABLE procedure command to free System/36 resources used by
the subsystem.

Chapter 1. Introduction to the Interactive Communications Feature 1-5

Remotely Started Sessions

D

D

B

D

I':J

ENABLE (Start
the subsystem.)

Procedure

The following figure shows the order in which events occur and the
elements involved when the remote system starts the session by sending a
remote procedure start request:

System/36 Remote System

SSP-ICF Subsystem Communications Remote Program
Line

Start a procedure.
Remote Procedure

Start Request

(Session and transaction
are started when the
remote procedure request

Application Program is received.)

Send/Receive
Send and/or receive data.

Send/Receive

End the transaction.
End End

(Either program can end
the transaction. When the

The remote program transaction ends, the
session also ends for the can end or continue

System/36 application local processing.

program.)

This program can
end or continue
local processing.

DISABLE (End
the subsystem.)

S7910001-1

1-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

o A subsystem must be enabled (started) before a remote system can
use it to communicate with a System/36 program. The ENABLE
procedure command is used on System/36 to start the subsystem.

o A System/36 procedure (the procedure that starts your program) is
started by the subsystem when it receives a procedure start request
from the remote system. The procedure then starts the application
program that will communicate with the program on the remote
system. The session and the transaction are also started when the
procedure start request is received.

Because the remote system started the session and the transaction,
no acquire or evoke operation is issued by the application program.
Your program can, however, acquire other sessions with the remote
system once your program is running (depending upon the type of
subsystem you are using).

ID Either one of two types of information can be sent with the procedure
start request: parameters for the procedure or data for your
program. If data is sent, your program must use an input operation
to receive this data. If no data is expected with the procedure start
request, your program can issue either an input or output operation
depending upon the procedures previously set up with the remote
system.

II When all data has been sent or received, either program can end the
transaction. When the transaction ends, the session for your
program also ends.

Note: If an APPC subsystem is being used, all session groups that
were started should be stopped. Before the APPC subsystem is
disabled, the STOPGRP procedure command is used to stop a
session group(s).

D When the subsystem is no longer needed, it can be disabled using the
DISABLE procedure command to free System/36 resources used by
the subsystem.

For both acquired sessions and remotely started sessions, each level of
events associated with an element can occur repeatedly within the next
higher level. For example, multiple sessions can be acquired and released
within the same program, and multiple programs can be run without
disabling and enabling the subsystem configuration. For more information,
see the SSP-ICF Guide and Examples manual.

Chapter 1. Introduction to the Interactive Communications Feature 1-7

The connection between the levels is maintained by the following
parameters:

• subsystem configuration name: Specifies the particular subsystem to
be enabled, using the ENABLE procedure command.

• location name: Specified during subsystem configuration. The
location name is included on the SESSION statement to identify the
remote location being referenced.

• session ID: Specified on the SESSION statement and used in your
program when it acquires the session.

Because the SESSION statement associates the remote location with a
session identifier, the remote location can be changed in the subsystem
configuration without requiring a change in your program.

• session group name: Specified during subsystem configuration only
for the APPC subsystem. The session group name is included on the
SESSION statement to identify the session group name associated with
the session.

SSP-ICF Subsystems

Interactive communications between application programs are accomplished
using SSP-ICF and a subsystem. Several subsystem types are provided so
that System/36 can communicate with various remote systems that have
different communications methods (such as BSC or SNA). A subsystem,
designed for a specific remote system, makes it unnecessary to handle most
system-dependent considerations when coding System/36 application
programs.

A System/36 program issues communications operations to communicate
with a remote system via one of the SSP-ICF subsystems. The subsystem
informs the program of the success or failure of each operation by sending
the proper return code to the program. Several of the communications
operations and return codes can be used with any of the SSP-ICF subsystem
types; some operations and return codes are used with only one or two
subsystem types. A program written to be used with one type of subsystem
may, with little or no change, be used to communicate with a different type
of subsystem. How much change is needed in the program depends on
which two subsystems are involved, which communications operations are
used, and which return codes are being checked for.

1-8 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Types of System/36 Subsystems

When two programs on the same System/36 are to communicate with each
other, the Intra subsystem is used. When two programs are on different
System/36s, the BSCEL, Peer, or APPC subsystem is used. (The BSCEL
subsystem is used for BSC. The Peer or APPC subsystem is used for SNA.)
When two programs are on a System/36 and another type of remote system,
the APPC subsystem or other subsystems may be used.

All of the SSP-ICF subsystems are shown in the following table. The order
in which they are shown is the order in which they are described in this
manual and in the SSP-ICF Guide and Examples manual. (System/36 can
also have other communications subsystems that are not part of SSP-ICF.)

System/36 SSP-ICF Subsystem Communicates With

Intra Other programs in the same System/36

BSC Equivalence Link (BSCEL) System/36, System/34, Series/1, and
others

BSC CCP System/3 Model 15 CCP

BSC CICS CICS/VS (BTAM)

BSC IMS/IRSS IMS/VS via IRSS (BT AM)

Finance 3601 and 4701 Finance Controllers, and
3694 Document Processor

SNA Peer System/36 and System/34

SNA Upline Facility (SNUF) CICS/VS and/or IMS/VS with
ACF/VTAM

Advanced Program-to-Program System/38, System/36, and CICS/VS
Communications (APPC)

Other subsystems that can be used for communications include the
following: BSC 3270, SNA 3270, BSC MSRJE, and SNA MSRJE. These
communications subsystems are not part of SSP-ICF and are documented in
other manuals. Those manuals are identified at the end of the list of
manuals given under "If you need more information ... " at the beginning of
this manual.

Chapter 1. Introduction to the Interactive Communications Feature 1-9

Combinations of Subsystems

Several subsystem configuration members can be stored in System/36, and
several subsystems can be enabled at the same time. All the subsystems
that are enabled (using the configuration members to define the attributes
of the enabled subsystems) do not have to be of the same type. The number
of subsystems that can be enabled is determined by the number of
communications lines available and whether any lines are being shared by
SNA-type subsystems.

Only one BSC 3270 subsystem can be active on System/36 at any time; it can
be active with all other combinations of subsystems, but it must be on a line
by itself.

Depending on the number and types of subsystems that are active at one
time, it is possible that the response time on System/36 may increase. If a
particular combination of subsystems produces undesirable system
performance, you should try changing a subsystem's attributes (such as the
length of its data records being sent). For other information about
subsystem performance considerations, refer to the individual subsystem
reference manual.

System/36 Communications Line Support

System/36 can have up to eight telecommunications lines. Each
telecommunication line can be one of the following types (all the lines do
not have to be the same type):

• Point-to-point switched (manual answer, automatic answer, manual call,
or automatic call)

• Point-to-point nonswitched

• Multipoint tributary

In addition, if your system has the LAN Attachment feature, you can have
up to two Token-Ring Network lines (lines 9 and 10).

Each SSP-ICF subsystem (except Intra) requires at least one
communications line to communicate with a remote system. An Intra
subsystem can be enabled regardless of the number of line-dependent
subsystems enabled on the System/36.

The maximum number of lines available is controlled by the
communications features installed on your system. Refer to the manual
Using System/36 Communications for information about communications
features.

1-10 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Communications Features Supported by Subsystems

Subsystem

SSP-ICF
Subsystems:
Intra1

BSCEL
CCP
CICS
IMS
Finance
Peer
SNUF
APPC

Other
Subsystems:4

Asynchronous
BSC 3270
SNA 3270
BSC MSRJE
SNA MSRJE
PC Support/36

The following chart shows all the subsystems supported on System/36, and
it shows the communications line features that each subsystem can use.
The chart shows the SSP-ICF subsystems, and it includes, for your
information, the other System/36 communications subsystems that are not
part of SSP-ICF.

Line Types Supported Features Supported

Point Token- LAN
-to- Multi- Ring Auto- Attach
Point point Network call X.25 X.21 Feature

- - - - - - -

Yes Yes No Yes No Yes No
Yes Yes No Yes No Yes No
Yes Yes No Yes No Yes No
No Yes No No No Yes2 No
Yes Yes No No Yes5 Yes3 No
Yes Yes No Yes Yes Yes No
Yes Yes Yes Yes Yes Yes Yes
Yes Yes Yes Yes Yes Yes Yes

Yes No No No Yes No No
No Yes No No No Yes No
Yes Yes Yes Yes Yes Yes Yes
Yes Yes No Yes No Yes No
Yes Yes Yes Yes Yes Yes Yes
No No Yes No No No Yes

lThe Intra subsystem does not use any communications lines; it handles communications only between two programs
in the same System/36.

2The IMS subsystem supports X.21 on nonswitched lines only.
3The Finance subsystem supports X.21 on nonswitched lines and on switched lines in autoanswer mode only.
4These communications subsystems are not part of SSP·ICF; they are included in other communications features.
5The Finance subsystem supports X.25 on nonswitched lines and on only permanent virtual circuits over that
connection.

Chapter l. Introduction to the Interactive Communications Feature 1-11

Sharing a Communications Line

BSC subsystems (BSCEL, CCP, CICS, IMSjIRSS, BSC 3270, and BSC
MSRJE) cannot share a communications line with another subsystem.

If you are using SNA, subsystems can share the same line, with the
following restrictions:

• For an SNAjSDLC line:

The Peer primary, APPC primary, and Finance subsystems can
share a line if they are configured for a nonswitched line. The
APPC subsystem, however, cannot share the same line member with
the Finance subsystem. A line member that the APPC and Peer
subsystems are sharing can run concurrently with a line member
used by the Finance subsystem. In addition, remote work station
support (RWS) can share this same line.
A Peer secondary subsystem cannot share a line with any other
subsystem.
The SNA 3270, SNA MSRJE, APPC secondary, and SNUF
subsystems can share a line provided all the subsystems use the
same line member. In addition, a SNUF subsystem used for
Communications and Systems Management change management and
an APPC subsystem used for Communications and Systems
Management alert support can also share the line, provided they
use the same line member. SNA 3270 is described in the 3270 Device
Emulation Guide, MSRJE is described in the. Multiple Session
Remote Job Entry Guide, and change management and alert support
are described in the Communications and Systems Management
Guide.

• For an SNAjX.25 line:

All SNA subsystems specifying primary for the line member data
link protocol, along with RWS, can share a line, but only one
configuration of each may be enabled at one time for the line.
Therefore, you cannot enable Peer primary and Peer secondary, or
APPC primary and APPC secondary, on the same line.
The SNA 3270, SNA MSRJE, APPC secondary, and SNUF
subsystems, specifying secondary for the line member data link
protocol, can share a line, provided all the subsystems use the same
line member. In addition, a SNUF subsystem used for
Communications and Systems Management change management and
an APPC subsystem used for Communications and Systems
Management alert support can also share the line, provided they
use the same line member. SNA 3270 is described in the 3270 Device
Emulation Guide, MSRJE is described in the Multiple Session
Remote Job Entry Guide, and change management and alert support
are described in the Communications and Systems Management
Guide.

1-12 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

The SNA 3270, SNA MSRJE, APPC, and SNUF subsystems
specifying negotiable for the line member data link protocol, may
run simultaneously on the same line. The System/36 may
communicate with multiple remote systems at the same time and on
the same line. At the remote end of the line, the remote systems can
be configured as primary, secondary, or negotiable. At the local end
of the line, the line member must be configured as negotiable.

• For an SNA/LAN communications line:

The SNA 3270, SNA MSRJE, APPC, and SNUF can run
simultaneously on the same line. The System/36 can communicate
with multiple remote systems at the same time and on the same line.
The RWS, PC Support/36, and APPC, 3270, SNUF, and MSRJE
subsystems can all share a line, but only one configuration of each
may be enabled at one time on the line. APPC, 3270, SNUF, and
MSRJE can share a line only if they use the same line member. On
Token-Ring Network, all the these subsystems use negotiable line
member protocol.

Chapter 1. Introduction to the Interactive Communications Feature 1-13

System/36 Storage and Session Considerations

Storage Requirements

If multiple subsystems of different types are enabled at the same time, the
response time on System/36 may increase, especially on a system that has
the minimum size for main storage. You may need to increase the size of
main storage, reduce the number of jobs running in the system, or have
fewer subsystems enabled at the same time.

Active Session Limits

A maximum of 360 sessions can be active concurrently for all the
subsystems enabled on System/36. This maximum includes two groups of
sessions that also have limits:

• A maximum of 260 user-acquired sessions (acquired by user programs
with SESSION statements) can be concurrently active.

• A maximum of 100 other sessions (remotely started and/or specially
acquired) can be concurrently active.

Remotely started sessions are started by procedure start requests
sent by remote programs (or by 3741-type devices).
Specially acquired sessions are started by BASIC programs
without using a SESSION statement. Sessions can be specially
acquired if the program is written in BASIC and if the session is to
be an interactive session.

1-14 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Enabling and Disabling Subsystems

Enabling a Subsystem

To run a System/36 program that uses SSP-ICF for communications, you
must enable (start) the particular subsystem configuration that you want to
use. (The subsystem configuration must have already been defined by using
the CNFIGICF procedure to specify the attributes of the subsystem, the
remote system, and the communications line to be used.) The name of the
subsystem configuration which consists of a line member and a subsystem
member, must be specified on the ENABLE procedure command, along with
the line number of the communications line to be used by the subsystem.
(An Intra subsystem does not use a communications line.)

You can enable a subsystem by having the ENABLE procedure command
automatically run after IPL (initial program load). See the System
Reference manual for a description of how to specify a procedure (named
#STRTUP2) to be run automatically after IPL.

When the ENABLE procedure command is used to start a subsystem, it
performs the following functions:

• Ensures compatibility between the subsystem configuration and the
communications hardware.

• Determines whether the requested communications line is available.

• Loads the subsystem support for that type of subsystem (such as BSCEL
or Peer) if it is not already active.

• Loads any other required tasks (BSC or SNA) if they are not already
active.

• Loads the subsystem configuration that contains the attributes of the
subsystem that is being enabled.

• Determines, for SNA subsystems, the remote locations with which
communications are to be established.

• Assigns storage for required data areas and buffers.

Chapter 1. Introduction to the Interactive Communications Feature 1-15

The ENABLE procedure command only prepares the local end of the line to
communicate with the remote location; the remote location must also be
prepared for communication. When both ends are prepared and a physical
connection is established, communication can begin. However, for an
APPC subsystem, a session group must be started before a session can be
established. This session may be started by the operator command
STRTGRP, or STRTGRP will run automatically provided a STOPGRP was
not previously issued.

A program that uses SSp-rCF for communications can be loaded before the
subsystem is enabled, but no sessions for that subsystem can be started
until it is enabled. After the subsystem has established communications,
programs can begin acquiring sessions using that subsystem. The
subsystem waits for an acquire operation to be issued by a System/36
program or for a procedure start request to be issued by a remote program.

If the line type set by the configuration record does not correspond to the
line type (identified by line number on the ENABLE procedure command)
to be used by the subsystem, a message is issued and the ENABLE
procedure command is terminated unless message option 0 is provided,
which allows you to continue and automatically use the line type specified
in the configuration record. You can use the SETCOMM or ALTERCOM
procedure to change the line type. These two procedures are described in
the manual Using System/36 Communications.

For Finance, Peer, SNUF, and APPC subsystems, when the ENABLE
procedure command is used to activate communications with a particular
location and the subsystem configuration is already active, the procedure
ensures that the subsystem configuration is on the specified line before
enabling the location. If the first ENABLE procedure command specifies a
location name, the functions required to enable the subsystem are
performed before communications is established with that remote location.

1-16 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Enabling Multiple Remote Locations (SNA Subsystems Only)

For Finance, Peer, SNUF, and APPC subsystems only, if a location name is
specified on the ENABLE procedure command, communication can be
established with that remote location. If there are multiple remote
locations defined in the configuration record for a subsystem, these remote
locations can be automatically enabled when the fmbsystem is enabled,
without having to specify the names of the remote locations.

If multiple remote locations were defined during configuration, the
ENABLE procedure, when it enables the subsystem, also establishes
communications with one, several, or all the remote locations specified in
the subsystem's configuration. The number of remote locations with which
communications is activated when the subsystem is enabled depends on how
each remote location was defined during configuration, and whether a
remote location name was specified on the ENABLE procedure command.

• If only the subsystem configuration member name is specified on the
ENABLE command, the subsystem becomes active, and communications
with all the locations that were so indicated during configuration also
become active. That is, communications is activated with each location
for which a value of Y (yes) was specified on prompt 1 (active location
at enable) of display 30.0 during the CNFIGICF procedure.

• If a remote location name is also specified on the ENABLE command
that enables the subsystem, communication with only that remote
location is activated when the subsystem is enabled.

After the subsystem and some locations are active, other locations can be
activated individually each time that the ENABLE command is used to
specify a different remote location name. In this case, communications with
the specified remote location is all that is activated; the locations that are
already active are not affected.

The ENABLE procedure command also ensures that all remote location
names associated with a subsystem configuration are unique in the system.
If a subsystem is active and one of the location names matches a remote
location name in the configuration of the subsystem being enabled, a
message is issued indicating that the location you specified is already
active. The operator is given the option of continuing the ENABLE
procedure command and skipping that location or of canceling the entire
ENABLE procedure command.

After the subsystem is enabled, it is ready to handle sessions that are
started by System/36 programs or by procedure start requests that are
received from remote systems. It does not, however, accept procedure start
requests if prompt 3 (switch type at enable) on display 12.0 was specified as
inactive during the CNFIGICF procedure.

Chapter 1. Introduction to the Interactive Communications Feature 1-17

ENABLE Procedure Command

ENABLE

The syntax of the ENABLE procedure command is:

subsystem configuration name,[library name], [line nUmber],
current library

57910044·0

subsystem configuration name: Specifies the subsystem member name of
the subsystem configuration to be enabled. This is the name that was
specified when the CNFIGICF procedure was used to configure the
subsystem. (For all subsystems except Intra, the subsystem configuration
consists of two members, a line member and a subsystem member. The
subsystem member contains the name of the line member to be used when
the subsystem configuration is enabled.) This parameter is required.

library name: Specifies the name of the library that contains the specified
sUQsystem configuration. (The line member, if any, and subsystem member
must be in the same library.) If no library name is specified, the current
library is assumed, and only that library is searched.

line number: Specifies the number of the communications line for which
this subsystem is to be enabled. Depending on the number of lines
available on your system, you can specify 1 through 10. Omit this
parameter when enabling an Intra subsystem. This parameter is required
for all other subsystem types.

SHOW or NOSH OW : Specifies whether subsystem configuration
parameters are to be displayed before the subsystem is enabled. If SHOW is
specified, the subsystem configuration parameters are displayed (not the
line member parameters); however, no changes can be made to the values
displayed while the ENABLE procedure command is being performed. If no
parameter is specified, NOSH OW is assumed.

location name: Specifies the name of the remote location with which the
enabled subsystem is to communicate. The location name is optional, and
can be specified only if the subsystem being enabled is a Finance, Peer,
SNUF, or APPC subsystem. This name must have been specified as a
remote location name during subsystem configuration. If the location name
is omitted when a Finance, Peer, SNUF, or APPC subsystem is enabled, a Y
(yes) must have been specified for prompt 1 on display 30.0 to activate
communications.

line member name: Specifies the name of the line member to be enabled.
This parameter is valid only for APPN.

1-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Disabling a Subsystem

To disable a subsystem, the DISABLE procedure command must be run.
When a subsystem is disabled, it no longer exists; only the definition of the
subsystem configuration still exists on the system. Finance, Peer, SNUF,
and APPC subsystems also allow communications with a specific remote
location to be terminated without the subsystem itself being disabled.

When the DISABLE procedure command is used to disable a subsystem, it
performs the following functions:

• If no sessions are active for the subsystem being disabled, the subsystem
is disabled, and the main storage being used is freed. Also, if no other
subsystem of this type (such as BSCEL or Peer) is active, the subsystem
support for this type of subsystem is terminated.

• If no sessions are active between the subsystem and the remote location
that is being disabled, communications with that remote location only IS

terminated.

• If sessions are active for the subsystem or location specified on the
DISABLE procedure command, a message is issued to the operator who
issued the DISABLE procedure command. The operator can respond
with one of the following options:

o Hold (pend) the disable request. New sessions cannot be started
for this subsystem or location and, when all sessions have been
completed, a normal disable occurs (see note).

1 Retry the disable request. Check again for any active sessions for
this subsystem or location.

2 Cancel active sessions and disable the subsystem or location.
Active sessions for this subsystem or location are immediately
terminated, and the DISABLE procedure command is performed.

3 Ignore the disable request. The DISABLE procedure command is
canceled and must be run again when the subsystem or location is
to be disabled.

• If a disable request is pending (waiting to be performed) or is in
progress, a message is issued to the operator. The message indicates
that the operator can specify either that the subsystem or location be
immediately disabled (option 2) or that this DISABLE procedure
command be canceled and the pending disable request be allowed to
complete normally (option 3).

Note: When a disable request is pending, each program performing a
successful input operation to the location(s) affected by the DISABLE
procedure command receives a major return code indicating that a
disable operation is pending.

For an APPC subsystem only, all session groups should be stopped before
disabling the subsystem. The STOPGRP procedure command is used to stop
a session group(s). See "STOPGRP Procedure" in Chapter 1 of the
SSP-ICF Base Subsystems Reference manual for more information.

Chapter 1. Introduction to the Interactive Communications Feature 1-19

Disabling Multiple Remote Locations (SNA Subsystems Only)

If an SNA subsystem is communicating with multiple locations, the
DISABLE procedure command can terminate communications.with one
location or all the locations defined in the subsystem. When multiple
locations are active, the number of remote locations that are disabled
depends on whether a remote location name is specified on the DISABLE
command.

• If only the subsystem configuration member name is specified on the
DISABLE command, communications between the subsystem and all its
locations are terminated, and the subsystem is disabled. (However, the
communications line remains active if it is also being used by SNA
MSRJE or SNA 3270 device emulation.)

• If a location name is specified with the subsystem configuration member
name, communications between the subsystem and that location only is
terminated; all other locations that are active for that subsystem remain
active.

• For APPN only, if a line number is specified with the subsystem
configuration member name, communication between the subsystem and
all locations active on the line is terminated.

DISABLE Procedure Command

The syntax of the DISABLE procedure command is:

DISABLE subsystem configuration name, [location name], [line nUmber]

57910045-0

subsystem configuration name: Specifies the subsystem member name of
the subsystem configuration to be disabled.

location name: Specifies the name of the remote location to be disabled.
Location name is optional, and it can be specified only if the subsystem
being disabled is a Finance, Peer, SNUF, or APPC subsystem. This name
must have been specified as a remote location name during subsystem
configuration. If the location name is omitted, all the remote locations that
have communications activated are disabled.

line number: Specifies the number of the line to be disabled. This
parameter is valid only for APPN.

1-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 2. Programming SSP-ICF with Assembler

Assembler Macroinstructions 2-3
$DTFW Macro 2-4

$DTFW Example 2-7
$DTFO Macro 2-8

$DTFO Example 2-10
$ALOC, $OPEN, and $CLOS Macros 2-10

$ALOC Macro 2-10
$OPEN Macro 2-11
$CLOS Macro 2-11

$WSIO Macro 2-12
$WSIO Examples 2-16
$WSIO M.acro Parameters Summary Chart 2-16

$EVOK Macro 2-18
$EVOK Examples 2-20
$ending Data with an Evoke Operation 2-20

Assembler Operations Summary Chart 2-21
Return Codes 2-23
Interactive Communications Assembler Subroutines 2-23
Assembler Cqding Examples 2-24

Chapter 2. Assembler·Programming 2-1

The communications portion of an assembler program consists of preparing
data for transmission, using macroinstructions to define control blocks and
to perform operations, processing data that was received, and checking and
handling the return codes. This chapter briefly describes:

• The macroinstructions needed in assembler to execute the various
communications operations allowed in each subsystem. Only the
parameters needed for communications are described in this chapter.

• All the assembler communications operations and the subsystems for
which each operation is valid (shown in a summary chart).

• Return code considerations for assembler.

• Communications subroutine considerations for assembler.

The parameters you need to specify for the $DTFO, $ALOC, $OPEN, and
$CLOS macros are introduced in this chapter. Complete descriptions are
provided in the manual Programming with Assembler.

A complete description of all the parameters on the $EVOK macro and a
description of only the parameters that are used for interactive
communications on the $DTFW and $WSIO macros are also given in this
chapter. (Other parameters that are used for display station input and
output are described in the Programming with Assembler manual.) The
$DTFW and $WSIO macros define and modify fields in work station DTFs.
The complete format of the DTF, including field labels, is in the Program
Problem Diagnosis and Diagnostic Aids manual, SY21-0593.

If you are using the Intra or APPC subsystem, externally. described field,
format, and file definitions (also called data definitions) can be used to send
data records. Data definitions, which describe data records and
communications functions, are defined separately from the application
program. The interactive data definition utility (IDDU) is used to create
data definitions. Refer to the manual Getting Started with Interactive Data
Definition Utility for more information.

The details about using IDDU with the Intra or APPC subsystem are
described in the appropriate subsystem reference manual.

2-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Assembler Macroinstructions

To perform communications operations in assembler language, use the
following macroinstructions:

Macro

$DTFW

$DTFO

$ALOC, $OPEN, and $CLOS

$WSIO

$EVOK

Function

Defines an interactive communications
DTF (define the file)

Defines the address offsets in a DTF

Allocate, open, and close the file used
by the program

Performs a communications operation

Defines a parameter list to be used
during an evoke operation to start a
remote program or procedure

All these macros except $EVOK can be used in both the communications
and noncommunications portions of assembler programs. The $EVOK
macro can only be used in programs that use an SSp-rCF or BSC 3270
subsystem to perform communications.

Chapter 2. Assembler Programming 2-3

$DTFW Macro

$DTFW

The $DTFW macro is used to generate an interactive communications DTF.
It defines the fields in the DTF. The syntax of the $DTFW macro is:

[
UPSI-{OOOOOOOO }1

8-bit UPSI [
,CHAIN-{X1FFFF I }]

DTF address

[
,RCAD-{X10000 1}]

address [
,INLEN-{QQQQ }l

input length J

[
,OUTLEN-{OOOO }]

output length [,TERMID-{bb . 1· d}] sess10n

[
,TIDTAB-{OOOO }]

session id table address

['ENTLEN-{~~ngth}] [.TNUM-{;Umber of entries}]

[.HALTS-{¥}] [.IDDUCM-file name]

[.DICTCM-dictionary name] [.EXTEND-{¥}!

57910012-1

2-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

UPSI Parameter: Specifies a string of eight binary digits used to
condition the opening of this DTF. When the corresponding bits are on in
the switch (as specified in the SWITCH OCL statement), the DTF is opened.
For example, to test bits 0, 3, 5, and 7, you would code UPSI-lOOlOIOl. If
this parameter is omitted, zeros are assumed, and the file is opened
unconditionally.

CHAIN Parameter: Specifies the address of the next DTF in the chain. If
this parameter is omitted, hex FFFF is assumed, and the chain is ended.

RCAD Parameter: Specifies the address of the leftmost byte of the logical
record buffer in the user program. If the buffer is also to be used for
display station input, the specified address must be on an 8-byte boundary.
The default is hex 0000.

INLEN Parameter: Specifies, in decimal, the maximum amount of input
data that the user program is prepared to receive. For communications
operations, the maximum is 4075 bytes for all subsystems except Intra, IMS,
and APPC, for which the maximum is 4096 bytes. If the INLEN parameter
is omitted, zeros are assumed, and no data can be received unless this field
is modified by the $WSIO macro.

OUTLEN Parameter: Specifies, in decimal, the length of the data in the
buffer pointed to by the RCAD parameter. For communications operations,
the maximum is 4075 bytes for all subsystems except Intra, IMS, and APPC,
for which the maximum is 4096 bytes. This parameter is used only for
output operations; however, the DTF field it modifies is also used for input
operations. This parameter should be specified for all output operations,
especially when combined input/output operations are being performed. If
this parameter is omitted, zeros are assumed, and no data can be sent unless
this field is modified by the $WSIO macro.

TERMID Parameter: Specifies the identifier of the session in which this
program is to communicate.

• If the session is to be started by your program with the acquire
operation, the value specified in the TERMID parameter must be the
same as the value specified in the SYMID parameter of the SESSION
OCL statement.

• If the session is to be started by the remote system with a procedure
start request, the TERMID parameter can be omitted. If it is omitted,
blanks are assumed unless the identifier is specified in the $WSIO
macro. If this field ($WSNAME) is blank when a remote program starts
the session and evokes this program, the system automatically assigns a
session identifier and puts it in this field.

Chapter 2. Assembler Programming 2-5

TIDTAB Parameter: Specifies the address of the session and work station
ID table. Programs that communicate with multiple display stations and
sessions should maintain a list of identifiers and associated status
indicators. By specifying the TIDTAB, TNUM, and ENTLEN parameters,
an ~rea is reserved for this list. During an open operation, the identifier of
the session or display station that requested the program is placed in the
first 2 bytes of the first entry in the list. In addition, the first 2 bits of the
third byte are set.

For each WORKSTN and SESSION OCL statement, an entry is created that
has the SYMID parameter value in the first 2 bytes. The first bit of the
third byte is set on ifREQD-YES was specified on the WORKSTN
statement; the second bit is set off. The table must be large enough to
contain each of these identifier entries and any additional entries up to the
MRTMAX parameter value specified on the ATTR OCL statement. After
the open operation has been completed, the user program must maintain the
list.

If an end of session operation is issued or if a return code of 80xx or 81xx is
received, zeros are placed in the first 2 bytes and the first 2 bits of the third
byte in the appropriate entry. The first 2 byles and the first 2 bits of the
third byte must be set to zeros before the DTF is opened. If the TIDT AB
parameter is omitted, zeros are assumed, and no table is built.

ENTLEN Parameter: Specifies, in bytes, the decimal length (maximum of
255 bytes) of each entry in the session and work station ID table. If the
TIDTAB parameter was specified, the ENTLEN parameter must be specified
and should be 3 or greater (2 bytes for the session identifier and 1 byte for
status indicators).

TNUM Parameter: Specifies the number of entries (maximum of 255) in
the session and work station ID table. The TNUM parameter value should
be greater than or equal to the maximum number of concurrent active
sessions and attached display stations. If the n.iii' AB parameter was
specified, the TNUM parameter must also be specified. If the TNUM
parameter is omitted, 01 is assumed.

HALTS Parameter: Specifies whether a halt should be issued for
communications errors that result in return codes greater than 3401. If Y
(yes) is specified, a system message is issued that allows the operator the
option of ending the job or of returning control to the user program with an
error return code. If N (no) is specified, an informational message is
displayed at the system console, and the user program receives control with
the error return code. If the HALTS parameter is omitted, N is assumed.

IDDUCM Parameter: Specifies the IDDU file definition name. For more
information about file definitions, refer to the manual Getting Started with
Interactive Data Definition Utility.

2-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

$DTFW Example

DICTCM Parameter: Specifies the IDDU data dictionary name that
contains the IDDU file definition name specified above. For more
information about data dictionaries, refer to the manual Getting Started
with Interactive Data Definition Utility.

EXTEND Parameter: Extends the DTF.

See the manual Programming with Assembler for a description of the other
$DTFW macro parameters.

This example shows a DTF named ICDTFI that is to be used for receiving
input.

ICDTFl $DTFW CHAIN-PRTDTF,INLEN-256,HALTS-Y,RCAD-BUFl

This DTF is part of a DTF chain; the next DTF is a printer DTF (PRTDTF).
Any communications errors result in a system message that requires
operator intervention. The program's logical record buffer is located at the
address labeled BUFl. This DTF can be used in multiple sessions; the
TERMID parameter, which defaults to blanks in this example, can be
specified with different session identifiers in the $WSIO macro expansions
used to issue operations in different sessions.

The examples shown later in this chapter under "$WSIO Macro" use this
DTF.

Chapter 2. Assembler Programming 2-7

$DTFO Macro

The $DTFO macro is used to generate the DTFaddress offsets. It defines
the DTF labels, offsets, field contents, and field lengths for all devices and
access methods supported by System/36. Labels are generated only for the
items for which Y (yes) is specified in the $DTFO parameters.

To avoid duplicate labels, the $DTFO macro should be used only once in
each program. For a list of the fields that the $DTFO macro defines, see
the DTFs in the Program Problem Diagnosis and Diagnostic Aids manual,
SY21-0593.

Notes:

1. For communications operations, the WS qnd FIELD parameters must be
specified with Y (yes).

2. To generate the labels for the SSP-ICF return codes, ICRTC-Y must also
be specified.

3. The default value for all of the following parameters, except COMMON,
is N (no).

2·8sSP-ICF Programming for Sqbsystems and Intra Subsystem Reference

The syntax of the $DTFO macro is:

$DTFO [DISK-{t}] [,PRT-{t}] [,WS-{t}]

[,ALL-{t}] [,BSC-{t}] [, ICRTC-{¥} 1

[,FIELD-{¥}] [,COMMON-wI

57910013-0

DISK Parameter: Specifies whether labels are to be generated for the
disk devices_

PRT Parameter: Specifies whether labels are to be generated for the
printer.

WS Parameter: Specifies whether labels are to be generated for work
station devices and for SSP·ICF.

ALL Parameter: Specifies whether labels are to be generated for all
devices supported on System/36 and for SSp·ICF.

BSC Parameter: Specifies whether labels are to be generated for batch
BSC. Note that this parameter does not apply to SSP-ICF BSC subsystems.

ICRTC Parameter: Specifies whether labels are to be generated for
SSP-ICF return codes.

FIELD Parameter: Specifies whether to generate the labels that define
the contents of the DTF fields.

COMMON Parameter: Specifies whether to generate the labels defining
the field contents of the common portion of the DTF (that is, from the
beginning of the DTF to the end of the name field). If this parameter is
omitted, Y (yes) is assumed.

$DTFO Example

DTFOl $DTFO WS-Y,ICRTC-Y,FIELD-Y

This example defines the DTF labels for work station devices and SSP-ICF
communications, SSP-ICF return codes, and the DTF fields.

Chapter 2. Assembler Programming 2-9

$ALOC, $OPEN, and $CLOS Macros

$ALOC Macro

The $ALOC, $OPEN, and $CLOS macros are needed to identify and control
a file that is to be used by a communications program. These three macros,
which perform the same functions as they do when used with
noncommunications programs, are described only briefly here. For a
complete description of each one, see the manual Programming with
Assembler. The DTF parameter is used on each of the macros and has the
following meaning:

DTF Parameter: Specifies the address of the leftmost byte of the first
DTF being allocated, opened, or closed. (When chaining is used, multiple
DTFs can be allocated, opened, or closed at the same time.) If no address is
specified, the DTF address is assumed to be in index register 2.

The $ALOC macro allocates the communications file (identified in the DTF)
to be used with the program. The $ALOC macro is supported for
compatibility only; it is not required for SSP-ICF communications. The
syntax of the $ALOC macro is:

$ALOC [DTF-address]

87910014-0

2-10 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

$OPEN Macro

The $OPEN macro opens the communications file to be used for data input
and output. It formats the DTF for the file and prepares the program data
buffers to be used for data transfer. The syntax of the $OPEN macro is:

[["abel $OPEN [OTF-address]

$CLOS Macro

87910015-0

The $CLOS macro closes the communications file and updates the file's
status after the program has completed communications. The syntax of the
$CLOS macro is:

$CLOS [OTF-address]

87910016-0

Chapter 2. Assembler Programming 2-11

$WSIO Macro

The $WSIO macro is used to perform communications operations. The
macro specifies which operation is to be performed and, for certain
operations, it can pass data between the communicating programs. It can
also be used to modify certain fields in the DTF (specified by the $DTFW
macro) that are used when the specified operation is performed. The syntax
of the $WSIO macro is:

[label] $WSIO [DTF-address] [,INLEN-length] [,OUTLEN-length]

[,RCAD-address] [,TERMID-session id] [,OPc-code]

[,OPMa-modifier] ['PL@-address]

a Either OPM or OPMOD is valid as the keyword for this parameter.

S791 0017-0

DTF Parameter: Specifies the address of the leftmost byte of the DTF.
This address is used as the label on a $DTFW macro. If this parameter is
omitted, the address of the DTF is assumed to be in index register 2.

INLEN Parameter: Specifies, in decimal, the maximum amount of input
data that the user program is prepared to receive. For programs using
SSP-IeF, the maximum is 4075 bytes for all subsystems except Intra, IMS,
and APpe, for which the maximum is 4096 bytes. If the INLEN parameter
is omitted, the DTF remains unchanged.

OUTLEN Parameter: Specifies, in decimal, the length of the data in the
buffer pointed to by the ReAD parameter. For programs using SSP-IeF,
the maximum is 4075 bytes for all subsystems except Intra, IMS, and APpe,
for which the maximum is 4096 bytes. If the OUTLEN parameter is omitted,
the field in the DTF remains unchanged. This parameter is used only for
output operations; however, the DTF field it modifies is also used for input
operations. This parameter should be specified for all output operations,
especially when combined input/output operations are being performed.
After a successful input operation, the actual length of the data returned is
put in this field.

2-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ReAD Parameter: Specifies the address of the leftmost byte of the logical
record buffer in the user program; the buffer can be used for input, output,
or both input and output operations. If this parameter is omitted, the DTF
remains unchanged. If the buffer is also to be used for display station
input, the specified address must be on an 8-byte boundary. If this
parameter was not specified on the $DTFW macro, it should be specified in
the first $WSIO macro issued in the program to establish the record
address.

TERMID Parameter: Specifies the 2-character identifier of the session for
which this operation is intended. For an acquired session, this ID should
be the same as the SYMID parameter value on the corresponding SESSION
OeL statement. For a remotely started session, you should not specify the
TERMID parameter because you do not know the ID of the remotely started
session at the time you code this parameter.

The ID should be specified in a program that has multiple sessions and/or
display stations to assure that the operation is issued to the correct
location. If this parameter is omitted, the DTF remains unchanged.
Following each accept operation, SSP-ICF returns the identifier of the
session from which data was received in this field ($WSNAME).

ope Parameter: Specifies the code of the communications input/output
operation desired. If this parameter is omitted, the DTF remains
unchanged. Refer to either the "Assembler Operations Summary Chart" or
the "$WSIO Macro Parameters Summary Chart" later in this chapter for a
complete list of the operation codes that can be specified in this parameter.

Chapter 2. Assembler Programming 2-13

When the get attributes (GTA) operation is specified for the OPC
parameter, it returns status information about a specific session. If the
session is active or a SESSION OCL statement exists for the identifier
(TERMID parameter) specified, the first 10 bytes of the record area (RCAD
parameter) are as follows:

Position Value Meaning

1 A Session not yet acquired by the program.
C Session is an acquired session.
R Session is a remotely started session.

2 N Input not invited for this session.
I Input invited for this session, but no input is

available.
0 Invited input is available for this session.

3 through 10 Name Location name (specified during configuration
and on the SESSION OCL statement).

Note: If the identifier for the operation is not that of a session, the format of
the attribute information is different. See the manual Programming
with Assembler for the format of attribute data for display stations.

For the Intra and APPC subsystems only, when the get status (GST)
operation is specified for the OPC parameter, additional status information
is returned. The fields are as follows (starting with byte 11):

Position Value Meaning

11 I Intra subsystem is being used.
A APPC subsystem is being used.

12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.

13 M Mapped conversation.
B Basic conversation.

14 through 16 Blanks Reserved.

17 through 33 Name Own fully qualified LU name.

34 through 41 Name Partner LU name.

42 through 58 Name Partner fully qualified LU name.

59 through 66 Name Session group name.

67 through 74 Name User ID.

75 through 128 Blanks Reserved.

2-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

When the set timer (STM) operation is specified for the OPC parameter, it
specifies an interval of time to wait before issuing a timer-expired return code.
The first 6 bytes of the user record area specify the time interval in the format
hhmmss, where hh is hours, mm is minutes, and ss is seconds. A timer-expired
return code is returned on the first accept input operation following expiration of
the timer. The value in the TERMID parameter returned with the timer-expired
return code has no meaning. If the timer was set by a previous set timer
operation and it has not yet expired when another set timer operation is issued,
the old value is discarded and the new interval is set.

OPM Parameter: Specifies the operation modifier to be associated with this
operation. If this parameter is omitted, the DTF remains unchanged. The
following list shows the valid modifiers for sessions and their descriptions:

Modifier

CONFIRM

FMH

ZERO

Description

Indicates that a confirm indication is to be sent with the data
associated with the evoke, put, get (in send state only), and
invite (in send state only) operations. This modifier is valid
only for the Intra and APPC subsystems.

Indicates that a function management header is sent with the
data associated with the evoke operation. This modifier is
valid only for the SNUF, Finance, or Intra subsystems.

Resets the operation modifier to zeros.

PL@ Parameter: Specifies, only when an evoke operation is specified by the OPC
parameter, the address of an associated evoke parameter list. The value for this
parameter is used as the label on the $EVOK macro. This parameter must be
specified on the first evoke operation, and remains unchanged if not specified
thereafter.

Chapter 2. Assembler Programming 2-15

$WSIO Examples

BEGIN

EVOK

OTPT

The following are three typical examples- of the $WSIO macro. All three
examples use the DTF named ICDTFI as it was defined in the $DTFW example
shown previously.

$WSIO DTF-ICDTF1,TERMID-1S,OPC-ACQ,OPM-ZERO·

This example issues an acquire operation to acquire the session IS.

$WSIO DTF-ICDTF1,RCAD-INBUFF,OPC-EVG,PL@-EVKLST

This example evokes a transaction in the acquired session and then waits for
input. The evoke parameter list begins at label EVKLST associated with the
$EVOK macro used in the program. The INLEN parameter is not specified
because it was specified on the $DTFW macro.

$WSIO DTF-ICDTF1,OUTLEN-256,RCAD-OTBUFF,OPC-PUT

This example shows a put operation being issued in the session and transaction
that have been started. The length of the data is 256 bytes, and it is stored at the
label OTBUFF.

$WSIO Macro Parameters Summary Chart

The following chart shows ali the assembler communications operation codes and
all the parameters on the $WSIO macro. This chart also shows, for each
operation, whether the parameters are required, optional, or ignored. The
meanings of the letters as used in the parameter columns are:

R Parameter is required. (However, a required parameter does not have to
be specified if it was previously specified in the DTF and the value does
nothave to be changed.)

o Parameter is optional.

I Parameter is ignored.

X ZERO must be specified in the OPM parameter.

2-16 SSP-ICF Programming for Subsystems and Intra SUbsystem Reference

Operation $WSIO Macro Parameters

Code DTF OUTLEN INLEN RCAD TERMID OPM OPC PL@

ACI 0 I R R I I R I
ACQ 0 I I I R I R I
CAN 0 I I I R7 X R I
CANG 0 I R R R7 X R I
CANI 0 I I I R7 X R I
CNI 0 I I I R7 X R I
EOS 0 I I I R7 X R I
EVE 0 Rl I R2 R 03,8 R R
EVG 0 R R R R 03,8 R R
EVI 0 Rl I R2 R 03,8 R R
EVK 0 Rl I R2 R 03,8 R R
FAIL 0 0 I 0 R7 X R I
GET 0 I R R R7 08 R I
GST 0 I I R9 R7 I R I
GTA 0 I I R4 R7 I R I
INV 0 I I I R7 08 R I
NRP 0 05 I 05 R7 X R I
NRPG 0 05 R R R7 X R I
NRPI 0 05 I 05 R7 X R I
PEC 0 Rl I R2 R7 X R I
PEF 0 Rl I R2 R7 X R I
PEX 0 Rl I R2 R7 08 R I
PEM 0 R I R R7 X R I
PFMG 0 R R R R7 X R I
PFMI 0 R I R R7 X R I
PTG 0 R R R R7 08 R I
PTI 0 Rl I R2 R7 08 R I
PUT 0 Rl I R2 R7 08 R I
PCDG 0 I R R R7 X R I
Rcm 0 I I I R7 X R I
REL 0 I I I R7 X R I
STM 0 I I R6 I I R I

lIf zero, no data accompanies the request, and the RCAD parameter value is ignored.
2Required only if the OUTLEN parameter value is not zero.
3For the Intra and SNUF subsystems only, OPM-FMH can be specified on all evoke operations.
FMH indicates that a function management header is in the record area pointed to by the RCAD
parameter. If OPM is not FMH, it must be ZERO.

4The record area must be at least 10 bytes long.
5Up to 8 bytes of negative response information can be sent. Therefore, the OUTLEN parameter
gives the length and, if it is not zero, the RCAD parameter gives the address of the leftmost byte
of the information to be sent.

6The RCAD parameter points to a 6-byte zoned decimal field that specifies the timer value being
set in the format hhmmss.

7Jf this operation is issued in a remotely started session, the session identifier must be in the field
$WSNAME before the $WSIO macro is executed. The TERMID parameter should not be specified
because you do not know the identifier of a remotely started session when you code your program.

8For the Intra and APPC subsystems only, CONFIRM can be specified on evoke, put, get (in send
state only), and invite (in send state only) operations.

9The record area must be at least 128 bytes long.

Chapter 2. Assembler Programming 2-17

$EVOK Macro

$EVOK

The $EVOK macro builds a parameter list to be associated with an evoke
operation. The label on this macro should be the label specified on the PL@
parameter of the $WSIO macro that evokes a program or procedure. The syntax
of the $EVOK macro is:

V-{~iL} [,PNAME-address] [,PWORo-address]

EQU

[,Ulo-address] [,LNAME-address]

[,SYNCL-{NONE }] [,CONVT-{MAPPEO}j
CONFIRM BASIC

S7910018-0

V Parameter: Specifies the type of expansion for the parameter list. If EQU
(equate) is specified, only the displacement labels are generated, and all other
parameters are ignored. If DC (define constant) is specified, only the parameter
list is generated. If ALL is specified, both the labels and the parameter list are
generated. If this parameter is omitted, DC is assumed. Within a program, only
one $EVOK macro can be used that includes equates; that is, only one V
parameter can specify ALL or EQU.

PNAME Parameter: Specifies the address of the first character of the name of
the remote program or procedure to be evoked. The name must be followed by
blanks up to the 8-character length of the field (that is, the PNAME value must
be left-adjusted). For the APPC subsystem only, the name can be up to 64
characters. (The first byte contains, in hexadecimal, the-length of the name minus
one. The name immediately follows, beginning in the second byte.) If the
PNAME parameter is omitted, an address of hex FFFE is assumed, and no
program or procedure name is passed on the evoke operation.

2-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

PWORD Parameter: Specifies the address of the first character of the password.
The password must be followed by blanks up to the 8-character length of the
field. If this parameter is omitted, an address of hex FFFE is assumed, and no
password is passed on the evoke operation.

UID Parameter: Specifies the address of the first character of the user identifier.
The identifier must be followed by blanks up to the 8-character length of the field.
If this parameter is omitted, an address of hex FFFE is assumed, and no user
identifier is passed on the evoke operation.

LNAME Parameter: Specifies the address of the first character of the library
name associated with the program or procedure. The library name must be
followed by blanks up to the 8-character length of the field. If this parameter is
omitted, an address of hex FFFE is assumed, and no library name is passed on
the evoke operation.

SYNCL Parameter: Specifies, for the Intra and APPC subsystems only, the
synchronization level. If NONE is specified, a confirm is not allowed. If
CONFIRM is specified, a confirm is allowed. If this parameter is omitted, a
synchronization level of NONE is assumed.

CONVT Parameter: Specifies, for the APPC subsystem only, the conversation
type. The conversation type can be mapped or basic. If this parameter is
omitted, the system assumes that conversations are mapped.

Chapter 2. Assembler Programming 2-19

$EVOK Examples

EVKLST

ICPROC

ICLIB

USERID

PASS

EVKL2

R3PROC

ICLIB

$EVOK V-ALL ,PNAME-ICPROC , LNAME-ICLIB ,
UID-USERID,PWORD-PASS

•
•

EQU
DC
EQU
DC
EQU
DC
EQU
DC

$EVOK

•
•

EQU
DC
EQU
DC

*
CL8'ICFPROC ,

*
CL8'COMMLIB ,

*
CL8'JJOHNSON'

*
CL4'J4AG'

This example shows an evoke parameter list that could be used by a $WSIO
macro that specifies the EVKLST label (PL@-EVKLST), such as the second
example shown earlier under "$WSIO Examples." The name of the procedure to
be evoked (ICFPROC) is at the address labeled ICPROC, and the library name
(COMMLIB) is at the address labeled Ie LIB. The user identifier (JJOHNSON)
is at the address labeled USERID, and the user's password (J4AG) is at the
address labeled PASS.

V-DC ,PNAME-R3PROC , LNAME-ICLIB

*
CL8'COMMPROC'

*
CL8'COMMLIBR'

This $EVOK example shows an evoke parameter list that is labeled EVKL2 and
is used by a $WSIO macro that specifies PL@-EVKL2. The procedure name
(COMMPROC) is at the address labeled R3PROC, and the library name
(COMMLIBR) is at the address labeled ICLIB. Because the remote system does
not require security, the UID and PWORD parameters were not specified.

Sending Data with an Evoke Operation

Data sent with an evoke operation can be parameters to be used by the evoked
procedure, or it can be data to be used by the evoked program. When you are
creating a procedure that is to have parameters sent to it by an evoke operation,
answer no to the prompt PROGRAM DATA IN THE INCLUDE
STATEMENTS on the end of job menu (second display) of the SEU procedure,
or specify PDATA-NO on the COPY control statement for $MAINT. If you
want data to be sent to a program, answer yes to the SEU prompt for program
data, or specify PDATA-YES on the COPY control statement. Refer to Chapters
2 and 3 of the SSP-ICF Guide and Examples manual for more information.

2-20 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Assembler Operations Summary Chart

The following chart shows the valid assembler communications operations for
each subsystem. An x in a subsystem column indicates that the subsystem
supports the operation. A - indicates that the subsystem does not support the
operation.

Coding information (including any assembler-related dependencies) about each of
these operations is described in each of the subsystem reference manual for which
the operation is valid. For several of these operations, the coding information
varies by subsystem because of the different characteristics of each subsystem.
For a general description of how each operation is performed, see the SSP-/CF
Guide and Examples manual.

Chapter 2. Assembler Programming 2-21

Assembler SSP-ICF Assembler Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input ACI x x x x x x x x x x
Aquire ACQ x x x x x x x x x x
Cancel CAN x - - - - - - - x -
Cancel invite CNI x x - - - - - - - -
Cancel then get CANG x - - - - - - - x -
Cancel then invite CANI x - - - - - - - x -
End of session EOS x x x x x x x x x x
Evoke EVK x x x x X x2 - X X x
Evoke end of EVE x x - x x - - x x x
transaction

Evoke then get EVG x x x x X x2 - X X x
Evoke then invite EVI x x x x x x2 - x x x
Fail FAIL x - - - - - - x - x
Get GET x x x x x x x x x x
Get attributes GTA x x x x x x x x x x
Get status3 GST x - - - - - - - - x
Invite INV x x x x x x x x x x
Negative response NRP x - - - - - - - x -

Negative response NRPG x - - - - - - - x -
then get

Negative response NRPI x - - - - - - - x -
then invite

Put PUT x x x x x - x x x x
Put end of file/chain PEF/PEC x x x x - x x x x -
Put end of PEX x x - x x - - x x x
transaction

Put then get PTG x x x x x x x x x x
Put then invite PTI x x x x x x x x x x
Put FMH PFM x - - - - - x - x -
Put FMH then get PFMG x - - - - - x - x -
Put FMH then PFMI x - - - - - x - x -
invite

Release REL x x x x x x x x x x
Request to change RCDG x x x - - - - x x x
direction then get

Request to change RCm x x x - - - - x x x
direction then invite

Set timer STM x x x x x x x x x x

lAlthough the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.

2Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

3The record area must be at least 128 bytes long.

2-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Codes

Whenever an interactive communications operation is issued (using the $WSIO
macro), the next instruction should check the return code. The return code
indicates the result of the operation and/or the status of the session or transaction.

All the return codes that apply to a subsystem are described in detail in each
subsystem reference manual to which the codes apply. A brief description of all
return codes for all subsystems is contained in Appendix B. (General information
about handling return codes is contained in the SSP-[CF Guide and Examples
manual.)

Each return code contains two parts (1 byte each): a major code and a minor
code. The major code is located at offset $WSRTC in the DTF, and the minor
code is at offset $WSMINOR in the DTF. Usually, the communications program
can determine what action to take by checking only the major code. (The major
code identifies the overall condition of the session.) The program might check a
few minor codes for specific conditions that require special recovery action.

Interactive Communications Assembler Subroutines

Because of the additional capability and flexibility available in the assembler
interactive communications support, you might want to write assembler
subroutines for high-level language programs. The considerations and restrictions
for writing interactive communications subroutines must be carefully observed to
make this approach feasible. The recommended approach is to write a complete
program in assembler, and then use the Intra subsystem to communicate with the
high-level language program. If, however, you use an assembler subroutine, keep
the following considerations in mind:

• All input operations should be done in the same place, that is, either in the
subroutine or in the main program. If there is a work station file in the main
program, input should be done in the main program. Any input that is done
in the subroutine should include thorough error recovery; the subroutine must
also handle the effects of errors and exceptions on the main program.

• The subroutine cannot issue a release or end of session operation, unless the
DTF is in the subroutine instead of in the main program (meaning that the
main program has no work station file).

• The DTF must reside in a portion of the program that is not overlaid while
the program is running.

• If the subroutine and the main program both have a work station file, the
format member name ($WSFMBR) in the subroutine DTF must be set to
blanks before the DTF is opened.

Chapter 2. Assembler Programming 2-23

Assembler Coding Examples

For a complete example of an assembler communications program, see "Writing
an Assembler Program to Use Intra" in Chapter 6 of the SSP-!CF Guide and
Examples manual. The assembler example described in the Intra chapter can also
be used by the BSCEL, Peer, and APPC subsystems.

2-24 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 3. Programming SSP-ICF with BASIC

BASIC Statements Used for Communications 3-3
OPEN Statement (Acquiring Sessions) 3-4

OPEN Statement Examples 3-6
Example of an Acquired Session 3-6
Example of a Remotely Started Session 3-6
Example of Acquired Sessions with No SESSION Statements 3-6

READ Statement (Receiving Data) 3-8
READ Statement Examples 3-9

Notes about Receiving Data 3-10
W AITIO Statement (Waiting for Input) 3-11

WAITIO Statement Example 3-11
WRITE Statement (Performing Operations· within a Session) 3-12

WRITE Statement Operations 3-13
Starting Remote Programs (Evoke Operations) 3-14

IDDU Evoke Operation Considerations 3-14
Sending Program Data with an Evoke Operation 3-16
Procedure for Sending Data with an Evoke Operation 3-16

Sending Data (Put Operations) 3-18
Ending Communications Transactions (End of Transaction

Operations) 3-19
Ending Sessions (End of Session Operation) 3-20
Additional WRITE Statement Operations 3-20

Request to Change Direction Operation 3-20
SSP-ICF and Work Station Timer Operations 3-21

$$TIMER Operation 3-21
$$TIMER Operation Example 3-21
TIMER Intrinsic Function 3-21
TIMER Intrinsic Function Example 3-21

Negative Response Operations 3-22
Cancel Operations 3-23
Fail Operation 3-23

CLOSE Statement (Closing Files for Sessions) 3-24
ATTRIBUTE$ Intrinsic Function (Getting Session Attributes) 3-25
BASIC Operations Summary Chart 3-27
Checking Return Codes in BASIC 3-28

ERR Code Values 3-29
RETCODE$ Values 3-30

Notes About Writing BASIC Programs for SSP-ICF 3-31
BASIC Coding Examples 3-31

Chapter 3 .. BASIC Programming 3·1

This chapter briefly describes the BASIC language statements and operations that
you use when you write BASIC programs that are to communicate with remote
programs via the Interactive Communications Feature (SSP-ICF). To use a
BASIC program to communicate with SSP-ICF, do the following:

• Configure and enable the subsystem. (These procedures are described in the
appropriate subsystem reference manual.)

• Begin a communications session by opening an SSP-ICF file.

• Begin a program or procedure at the remote system and start a
communications transaction. (If you are using the Intra subsystem, the
program or procedure being started is in the same System/36.)

• Send or receive data.

• Check return codes.

• End the communications transaction.

• End the communications session.

• Disable the subsystem.

The BASIC operations you need for interactive communications are introduced in
this chapter. The details about each operation - its function, syntax,
programming considerations, and coding example (for some operations) - are
described in each subsystem reference manual for which the operation is valid.

General (conceptual) information about these operations and diagrams showing
how these operations work are given in Chapter 3 of the SSP-ICF Guide and
Examples manual.

The operations you use in the communications portion of your program are
similar to work station operations. In the noncommunications portion of your
program, you can use all of the noncommunications operations (such as LET,
USE, and PRINT) that you normally use to process the data that is sent or
received between your program and the remote program. Therefore, the
noncommunications operations are not described in this manual.

If you are using the Intra or APPC subsystem, externally described fields, format,
and file definitions (also called data definitions) can be used to send data records.
Data definitions, which describe data records and communications functions, are
defined separately from the application program. The interactive data definition
utility (IDDU) is used to create data definitions. Refer to the manual Getting
Started with Interactive Data Definition Utility for more information.

The details about using IDDU with the Intra or APPC subsystem are described in
the appropriate subsystem chapter.

3-2 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

BASIC Statements Used for Communications

In BASIC, the communications operations are performed primarily by the
statements shown in the following list. Only these statements are described in this
chapter, and only the communications-related information about each one is
given. The manual Programming with BASIC contains additional information
about these statements and about all the other statements that can be used in a
communications program.

Statement

OPEN

READ

WAITIO

WRITE

CLOSE

Function

Acquires (starts) a session and opens a communications file.

Receives data from a remote program (a get operation is
performed).

Waits for data from a remote program (an accept input operation is
performed). This statement is used with the READ statement.

Performs many of the SSP-ICF communications operations within a
session.

Closes the file used in the session and releases the session if it is still
active.

Also included in this chapter is a description of the ATTRIBUTE$ intrinsic
function, which returns status information about the session.

Chapter 3. BASIC Programming 3-3

OPEN Statement (Acquiring Sessions)

To start (acquire) a session, use the OPEN statement to open the SSP-ICF file
you are using for this session. Each OPEN statement starts one session between
your program and the remote system. If your program is evoked by a (remote)
procedure start request, no session identifier or location name is needed on the
OPEN statement.

The syntax of the OPEN statement is:

OPEN #f ile-ref: " {WSESSSION} ,ID=session ID
,ID=current WSID$
,LOC=location name

,RECL=record length [,GROup=session group name]

[,DESCR=IDDU format file name] "

[,INTERNAL] [,SEQUENTIAL]
[
EXIT line reference 1
IOERR line reference

57910019·1

SESSION or WS Parameter: SESSION specifies that this OPEN statement
should be used for an SSP-ICF session only. WS specifies that this OPEN
statement can be used for either a work station or an SSP-ICF session.

• If your program is to acquire the session, you must specify either the ID
parameter (for work station or SSP-ICF sessions) or the LOC parameter (for
SSP-ICF sessions only). These parameters determine whether the file being
opened is for a work station session or an SSP-ICF session.

• If the session is to be started remotely, do not specify the ID or LOC
parameter; the identifier of a remotely started session is returned in the
WSID$ intrinsic function when the open operation has been completed.

3-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ID Parameter: If your program is to acquire the session and you need to use a
SESSION OCL statement, enter the 2-character identifier for the session. The
first character must be numeric (0 through 9), and the second must be alphabetic
(A through Z, $, #, or @). The identifier specified in the ID parameter must be
the same as the identifier specified in the SYMID parameter of the SESSION
statement.

Note: You need to specify a SESSION statement for a BASIC program only
when: (1) for some subsystems, you want to specify any parameters on
the SESSION statement other than the LOCATION or SYMID
parameters, or (2) for the Finance subsystem, you want to acquire a
session with a 3601 or 4701 controller.

LOC Parameter: If your program is to acquire the session and you do not need
to specify a SESSION statement, enter the name of the remote location that is to
communicate with your program. The name must be the same as the location
name that was specified during configuration of the subsystem being used for this
session.

RECL Parameter: Enter the length of the longest record (or system message) you
expect to send or receive. A system message for the Intra subsystem, for example,
is 75 bytes long.

GROUP Parameter: Specifies, for the APPC subsystem only, the session group
name. This parameter is valid only if the LOC parameter is also specified. Enter
the name of a session group. If a blank session group name is desired, enter
* BLANK. If the group parameter is not specified and the LOC parameter is
specified, the default session group name specified in the session group
configuration is used.

DESCR Parameter: Specifies, if you are using externally described data
definitions, the name of the file definition (also called data definition), which
describes data records and communications functions. File definitions must be
deflned in the current data dictionary.

See the manual Programming with BASIC for a description of the other OPEN
statement parameters.

Note: If the OPEN statement is being used for an SSP-ICF session and you
enter the NAME, LIBR, or KEYS parameters, they are ignored.

Chapter 3. BASIC Programming 3-5

OPEN Statement Examples

Example of an Acquired Session

020 OPEN #1: "SESSION,ID=lS,RECL=255" IOERR ICFERR

An example SESSION statement for this OPEN statement is:

II SESSION LOCATION-INTRA,SYMID-1S,BATCH-YES

Example of a Remotely Started Session

For a remotely started session, no SESSION statement is required because the
session is started by a procedure start request. Once a System/36 program has
been evoked in the remotely started session, however, it can start other sessions
using the acquire operation. In this case, a SESSION statement may be required
for each additional session that the evoked program starts.

020 OPEN #1: "SESSION,RECL=255" IOERR ICFERR

Example of Acquired Sessions with No SESSION Statements

In this example, two OPEN statements are used to acquire two sessions with the
remote location named INTRA. No SESSION statement is required.

OPEN #1: "SESSION,LOC=INTRA,RECL=255" IOERR ICFERR

OPEN #2: "SESSION,LOC=INTRA,RECL=255" IOERR ICFERR

3-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

This page is intentionally left blank.

Chapter 3. BASIC Programming 3-7

READ Statement (Receiving Data)

READ #file-ref

To receive a data record, use the READ statement to get the data record from an
SSP-IeF session. The type of operation performed depends on whether a
W AITIO statement is also used. If a WAITIO stateme~cedes the READ
statement, an accept input operation is performed; the program waits until data is
available from any work station or SSP-IeF session. (If your program is
communicating with only one session, you do not need to use the W AITIO
statement.) If no WAITIO statement precedes the READ statement, a get
operation is performed; the program waits until data is available from a specific
work station or SSP-IeF session-the one that has the same file reference number
entered in the OPEN statement. The W AITIO statement also sets the intrinsic
function FILENUM to the file reference number of the communications session
from which data is to be read.

The syntax of the READ statement is:

{line reference }j:
character-expression

{MAT array name}
variable [

, {MAT.array name}
varl.able

... j

EXIT line reference

or

[CONV line reference] [,EOF line reference]

[,IOERR line reference] [,SOFLOW line reference]

57910020-1

3-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

READ Statement Examples

The following READ and W AITIO statements, for example, read one data record
into the variable DATA$.

030 WAITIO IOERR ICFERR
040 READ #FILENUM, USING 50: DATA$ IOERR ICFERR
050 FORM V 255

o
~

• The WAITIO statement at line 30 causes the program to wait for data to be
received from any work station or SSP-ICF session. When data is received,
the W AITIO statement sets the intrinsic function FILENUM to the file
reference number of the file from which the data was received. The READ
statement then gets the data received by the WAITIO statement. Without the
W AITIO statement at line 30, the READ statement would cause the program
to wait until data was available from the work station or SSP-ICF session
assigned to the file reference number (#FILENUM) specified in the READ
statement, then the program would read the data into DAT A$.

• The intrinsic function FILENUM contains the file reference number of the
file (for this session) from which the data is to be read and the V parameter is
used on the FORM statement if you do not know the length of the data
record received. Up to 255 characters are read into the variable DATA$.

The following statements read a system message, which can be up to 80
characters, into the variable MESSAGE$:

040 IF ERR=70 THEN&
&READ #1, USING ,"FORM. V 80",: MESSAGE$ IOERR ICFERR

o
87910058-0

IJ If a system message is received (ERR = 70), the message is read into
MESSAGE$.

III Up to 80 characters of the system message are read.

Chapter 3. BASIC Programming 3-9

Notes about Receiving Data

1. For SSP-ICF input operations, the maximum amount of data that can be
received by a program is 4075 bytes for all subsystems except Intra, IMS, and
APPC, for which the maximum is 4096 bytes.

2. You should use the EOF clause with the READ statement to determine when
an end of transaction indication is received from the remote system.
However, if data is also received with the end of transaction indication,
BASIC does not branch to the EOF reference until the next operation for tha:
file is performed.

If the next operation is to be an evoke operation, BASIC must branch to the
evoke operation using the EOF clause. For example:

100 READ #3, USING "FORM C 255": DATA$ IOERR ICFERR, &
&EOF EVOKE

•
•

200 GOTO 100
210 EVOKE: ...

When statement 100 causes the last record to be read, the data is placed in
DATA$ and the program continues. When the program returns to statement
100 and performs another read operation, it detects the end of file condition
and branches to statement 210, which performs the evoke operation.

(In the situation just described, note that although BASIC, on the first read
operation, sets the RETCODE$ intrinsic function to indicate the end of the
transaction, the ERR intrinsic function value is not changed until the second
read operation is performed.)

3. You can use the STOP$ intrinsic function to test for a major return code of
02 (stop system or disable subsystem request pending). If STOP$ equals Y, a
02 major return code has been returned to your program indicating that a
system shutdown has been requested; if not, STOP$ equals N.

4. The REREAD statement can be used to get more data from the last record
read from the file. An error occurs for a REREAD statement (and the
program ends) if the last input/output operation to the file (that is, the
session) was not a successful READ or REREAD operation.

5. The data passed with the evoke end of transaction operation can be read by
the first read operation in the evoked BASIC program. The record length
entered in the OPEN statement must be at least 1 larger than the length of
the procedure parameters plus the largest size of of the data sent or received.
Using a W AITIO statement before a READ or WRITE statement is
acceptable but not necessary.

3-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

W AITIO Statement (Waiting for Input)

WAITIO

If your program is to interact with multiple sessions concurrently, the W AITIO
statement should be used. This statement causes your program to wait until one
of the sessions sends input to your program or until it receives an error indication.
When the WAITIO statement has completed its operation, the intrinsic function
FILENUM is set to the reference number of the file that completed the wait
operation. Your program can then use a READ statement to read from that file
and get a data record.

The WAITIO statement can also be used to wait for a timer operation to be
completed and to determine the action to be taken next. For examples of how
the WAITIO statement can be used with either the $$TIMER operation or the
TIMER intrinsic function, see "SSP-IeF and Work Station Timer Operations"
later in this chapter.

The syntax of the W AITIO statement is:

EXIT line reference
IOERR line reference

S7910021·0

W AITIO Statement Example

The following is an example of a W AITIO statement:

060 WAITIO IOERR ICFERR

Note: If an error condition occurs, the intrinsic function FILENUM is set to
the reference number of the file that caused the error, and the program
branches to the statement labeled ICFERR (not shown). The
RETCODE$, STOPS, WSID$, ERR, and FILENUM intrinsic
function values can be set by the W AITIO statement.

Chapter 3. BASIC Programming 3-11

WRITE Statement (Performing Operations within a
Session)

Use the WRITE statement to perform many of the communications operations
between two programs once a session has been started. The type of operation is
determined by the value specified for the FORMAT parameter (which is described
below).

WRITE #file-ref

The syntax of the WRITE statement is:

[,FORMAT

[,INDIC

{ line reference}:
character-expr

{character-expr}l
$$SENDNI J

character-expr

{ MAT arr~y name}
express~on

.[, {MAT arr~y name}
express~on

EXIT line reference

or

[CONV line reference] [,EOF line reference]

[,IOERR line reference] [,SOFLOW line reference]

3-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

... J

57910022-1

FORMAT Parameter: Identifies the SSP-ICF operation that is to be performed.
See "BASIC Operations Summary Chart" later in this chapter for a complete list
of the operations you can specify in the FORMAT parameter. Any of the
SSP-ICF operations beginning with $$ can be used. If the FORMAT parameter
is not specified, a put with no invite operation is performed by the WRITE
statement.

If you are using IDDU, this parameter identifies the IDDU format definition that
externally describes the SSP-ICF operation that is to be performed. For more
information about using IDDU with BASIC, refer to the manual Programming
with BASIC.

INDIC Parameter: If you are using IDDU, selects the SSP-ICF operation that is
to be performed. For more information about using IDDU with BASIC, refer to
the manual Programming with BASIC.

See the manual Programming with BASIC for a description of other WRITE
statement parameters.

WRITE Statement Operations

The following are the primary communications operations that you can specify on
the WRITE statement.

• Evoke operations: To start a remote program

• Put operations: To send data to the remote program

• End of transaction operations: To end a communications transaction

• End of session operation: To end the session in which the remote program
was started

These operations are described in the following pages; other types of operations
that can also be specified by the WRITE statement are described under
"Additional WRITE Statement Operations." An example of each type of
operation that can be specified in the FORMAT parameter is also provided.

Chapter 3. BASIC Programming 3-13

Starting Remote Programs (Evoke Operations)

To start a remote program or procedure and to start a communications
transaction, specify an evoke operation in the FORMAT parameter of the
WRITE statement ($$EVOK, $$EVOKNI, or $$EVOKET). See "WRITE
Statement (performing Operations within a Session)" earlier in this chapter for the
syntax of the WRITE statement.

With an evoke operation, you must send an evoke parameter list. If you specify
the evoke operation in the FORMAT parameter of the WRITE statement, the
parameters (fields) in that list must be specified in the following order:

Positions Field Description

1 through 8 The name of the program or procedure to be evoked
(left-adjusted).

9 through 16 The password you use to sign on the remote system
(left-adjusted).

17 through 24 The user identifier you use to sign on the remote
system (left-adjusted).

25 through 32 The name of the remote system library that contains
the program or procedure to be evoked (left-adjusted).

33 through xxxx User data, positional parameters, or keyword parameters.
(Leading blanks are ignored.)

If a field is not used, enter the correct number of blanks for the unused field.

IDDU Evoke Operation Considerations:

If you are using IDDU, you can select one of the following IDDU functions to
perform an evoke operation: evoke process (EVOKE keyword), evoke process
and send detach (EVOKE and DETACH keywords), or evoke process and invite
(EVOKE and INVITE keywords).

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

3-14 SSP-ICF Progra:tnming for Subsystems and Intra Subsystem Reference

The following example starts a procedure at. a remote system.

a EI EI
r A. ,j ,. , f,...-----... "~--------,\

030 WRITE #l,USING 40,FORMAT "$$EVOK": "BASICR",PASS$,USERID$,&
,&"#LIBRARY'~,~'ICFPROG,USERLIB~' ,IOERR ICFERR}

yo v .,

EI II II
040 FORM 4*C 8,C 15

'---.,--J '-.,.-J

II III
57910046-0

o Write data to interactive communications file #1 using the FORM
statement at line 40.

D Use an evoke operation ($$EVOK) to start the procedure, which is
identified in the evoke parameter list. In this example, the evoke
parameter list to be sent to the remote system contains:

II Four positional procedure parameters to be used by the remote
system to start a procedure.

BASICR: The name of the procedure to be evoked (sent in
positions 1 through 8)

PASS$: The name of the variable containing the password
(positions 9 through 16)

USERID$: The intrinsic function containing the user identifier
(positions 17 through 24)

#LIBRARY: The name of the library on the remote system in
which the BASICR procedure is located (positions 25
through 32)

II Two positional parameters to be passed to the BASICR
procedure (sent in positions 33 through 47). The BASICR
procedure is to call the program ICFPROG, which is in the user
library USERLIB.

II Send four fields of 8 characters each (the evoke parameters in positions 1
through 32).

o Send 15 bytes of positional parameters (those in positions 33
through 47).

IJ If an error occurs during the WRITE operation, the program goes to the
statement labeled ICFERR (not shown).

Chapter 3. BASIC Programming 3-15

Sending Program Data with an Evoke Operation

Data sent with an evoke operation can be parameters to be used by the evoked
procedure, as shown in the previous example, or it can be data to be used by the
evoked program. When you are creating a procedure that is to have parameters
sent to it by an evoke operation, answer no to the prompt PROGRAM-HATA IN
THE INCLUDE STATEMENTS on the end of job menu (second display) of the
SEU procedure, or specify PDATA-NO on the COPY control statement for
$MAINT. If you want data to be sent to a program, answer yes to the SEU
prompt for program data, or specify PDATA-YES on the COPY control
statement. Refer to Chapters 2 and 3 of the ssp-reF Guide and Examples
manual for more information.

Note: You cannot use the BASlCR or BASlCP procedure as is if you send
program data with the evoke operation, because the BASlCR or
BASlCP procedure expects procedural parameters. The following is a
procedure that you can use (with the BASlCR or BASlCP procedure)
to send program data with an evoke operation.

Procedure for Sending Data with an Evoke Operation

II
II
II
II
II
II
II
II
II
II
II
II
II

The following procedure uses the BASICR procedure to send data to a program.

MEMBER PROGRAMl-#BL#Ml,PROGRAM2-#BL#M2,LIBRARY-#BLLIB

LIBRARY NAME-user library-------11

REGION SIZE-BASIC region size--------EI

LOCAL AREA-SYSTEM,OFFSET-l,BLANK-40

LOCAL AREA-SYSTEM,OFFSET-l,DATA-'BASICR'

LOCAL AREA-SYSTEM,OFFSET-9,DATA-'member name'--------EJ

LOCAL AREA-SYSTEM,OFFSET-17, 'user library name' II
LOCAL AREA-SYSTEM, OFFSET-25, DATA-' status' II
AREA-SYSTEM,OFFSET-26,DATA-'data dictionary name' ------~EJ

LOCAL-AREA-USER

LOAD #BLSIC,#BLLIB

INCLUDE procedure name------~II

RUN
S791 0038·1

3-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

You must supply the following information:

D Enter the name of the current user library.

D Enter the BASIC region size (28K to 64K bytes).

II Enter the name of your BASIC program.

D Enter the name of the library that contains your BASIC program.

DEnter Y (yes) if you want status information printed. Enter N (no) if you
do not want status information printed.

D If you are using IDDU, enter the name of your IDDU data dictionary.

D Enter the procedure name to be included. If there is no procedure name
to be included, omit this statement.

This procedure example can also be used to send data to a procedure written in
BASIC instead of to a program. Make the following changes to the example so
that it uses the BASICP procedure:

• In the second LOCAL statement, change BASICR to BASICP.

• In the third LOCAL statement, specify a procedure member name instead of
a program member name.

• In the LOAD statement, change #BLSIC to #BLPIC.

Chapter 3. BASIC Programming 3-17

Sending Data (Put Operations)

To send a data record to a remote system or program, specify a put operation in
the FORMAT parameter of the WRITE statement ($$SENDNI, $$SENDE,
$$SENDET, $$SENDNF, or $$SENDFM). If you are using IDDU functions,
specify a put operation in a user-defined field, select the send detach, or specify a
put operation in a user-defined field and select the invite. See "WRITE Statement
(performing Operations within a Session)" earlier in this chapter for the syntax of
the WRITE statement.

A maximum of 4075 bytes can be sent by a put operation for all subsystems
except Intra, IMS, and APPC, for which the maximum is 4096 bytes.

The following example sends one data record:

030 WRITE #1, USING 40, FORMAT "$$SEND": DATA$ IOERR ICFERR
040 FORM C 255

3-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Ending Communications Transactions (End of Transaction Operations)

You can end the transaction by specifying the put end of transaction operation or
the evoke end of transaction operation in the FORMAT parameter of the WRITE
statement ($$SENDET for the put end of transaction or $$EVOKET for the
evoke end of transaction). If you are using IDDU functions, select the send
detach for the put end of transaction or the evoke process and send detach for the
evoke end of transaction.

• If your program has finished sending data, a put end of transaction in the
FORMAT parameter tells the remote system that you have no more data to
send and that you do not expect to receive any data.

• If your program is receiving data, check for an end of transaction return code
received from the subsystem to determine when the remote system has
finished sending. (See "READ Statement (Receiving Data)" earlier in this
chapter.)

• If you want to start a program or procedure at the remote system and
immediately end the transaction, an evoke put end of transaction in the
FORMAT parameter indicates that your program does not expect to receive
any data. For example, you can send data to a remote program and then
start a different program on the remote system to use that data:

Your program starts program A at the remote system and sends data to
program A.
Program A stores the data on disk.
When your program has finished sending data to program A, your
program uses the put end of transaction operation to end program A.
Your program then uses the evoke end of transaction operation to start
program B at the remote system.
Program B processes the data that program A stored on disk previously.

Once the transaction has ended, you can end the session or start another
transaction with this or another session.

The following statement sends a put end of transaction operation and, therefore,
tells the remote system that this is the end of this communications transaction:

030 WRITE #1, FORMAT "$$SENDET": IOERR ICFERR

Chapter 3. BASIC Programming 3-19

Ending Sessions (End of Session Operation)

To end a session with a remote system, either use the CLOSE statement, or use
the WRITE statement (to specify the $$EOS operation) followed by the CLOSE
statement. (The CLOSE statement is described later in this chapter.) If you use
the WRITE statement, specify $$EOS in the FORMAT parameter. For example:

090 WRITE #1, FORMAT "$$EOS": IOERR ICFERR

Additional WRITE Statement Operations

The following are additional interactive communications operations you can
specify on the WRITE statement:

• Request to change direction operation

• Set timer operation

• Negative response operations (used only with the Intra and SNUF
subsystems)

• Cancel operations, for canceling a group (chain) of data records (used only
with the Intra and SNUF subsystems), or for canceling any valid invite
operation for which no input has yet been received (used only with the Intra
and BSCEL subsystems)

• Fail operation (used only with the Intra, Peer, and APPC subsystems)

Request to Change Direction Operation

To request a change in the direction of transmission, specify a request to change
direction operation in the FORMAT parameter of the WRITE statement
($$RCD). If you are using IDDU functions, select the send request to write and
invite. After you issue the $$RCD operation, your program must continue to
receive data until it receives a return code indicating that the remote program is
ready to begin receiving data. No additional parameters or data is associated
with the $$RCD operation.

The following WRITE statement sh9wS how to request that the remote system
stop sending so that your program can send data:

030 WRITE #l,FORMAT "$$RCD": IOERR ICFERR

3-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

SSP-ICF and Work Station Timer Operations

hhmmss

030 A$="013000"

To use the SSP-ICF and work station timer, use either the $$TIMER operation
on the WRITE statement or the TIMER intrinsic function to set the timer. With
either type of operation, use the W AITIO statement to determine when the time
has ended and to determine the action to take next based on the return code
received.

The FORMAT parameter in the WRITE statement is used to specify the
$$TIMER operation. Return code 0310 (RETCODE$) or BASIC error code 73
(ERR) is returned when the time has ended.

Note: If you use the $$TIMER operation, a work station or session must be
attached to your program before you can set the time. If you use the
TIMER intrinsic function, no work station or session need be
attached.

$$TIMER Operation: To set the timer, use the $$TIMER operation, in the
format:

where hh is hours, mm is minutes, and ss is seconds.

$$TIMER Operation Example:

040 WRITE #l,USING 50,FORMAT "$$TIMER": A$ IOERR ICFERR
050 FORM C 6
060 WAITIO IOERR TIME

•
•
•

910 TIME: IF ERR<>73 THEN GOTO ICFERR

TIMER Intrinsic Function: To set the timer, use the TIMER intrinsic
function in the format:

TIMER(time$)

where time$ is the time in the format bhmmss; hh is hours, mm is minutes, and ss
is seconds. If the timer function is successful, TIMER returns a 0; if the timer
function is not successful, TIMER returns a 1.

TIMER Intrinsic Function Example:

030 TIME=TIMER("013000")
040 IF TIME=l THEN PRINT "TIMER CANNOT BE SET"&

&ELSE WAITIO IOERR TIME1

•
•
•

910 TIME1: IF ERR<>73 THEN GOTO ICFERR

Chapter 3. BASIC Programming 3-21

Negative Response Operations

To tell the remote system or program that your program found something wrong
with the data it received (that is, to send a negative response), use the FORMAT
parameter in the WRITE statement to specify one of the negative response
operations ($$NRSP or $$NRSPNI). These operations can only be used with the
Intra and SNUF subsystems.

Sense data can also be sent with the negative response. The following is the
format of the sense data:

Positions Description

1 through 8 The sense data sent with the negative response. The sense
data must begin with lOxx, 08xx, or 0000. For a description
of the first 4 characters, see the Systems Network
Architecture Reference Summary. The last four positions
are user-defined.

For example, the following statements send a negative response operation that
includes the sense data 08008000:

020 SENSE$="08008000"
030 WRITE #l,USING 40,FORMAT "$$NRSPNI": SENSE$ IOERR ICFERR
040 FORM C 8

3-22 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Cancel Operations

There are two types of cancel operations: those that cancel a group of records
that has just been sent (used by the SNUF and Intra subsystems only), and the
cancel invite operation, which cancels an invite operation for which no input has
yet been received (used by the BSCEL and Intra subsystems only).

• For the SNUF and Intra subsystems only, to cancel a group of records that
has just been sent, use the FORMAT parameter in the WRITE statement to
specify one of the cancel operations ($$CANL or $$CANLNI). The cancel
operations have no additional parameters or data associated with them.

For example, the following WRITE statement cancels the current chain of
records:

030 WRITE #l,FORMAT "$$CANL": IOERR ICFERR

• For the BSCEL and Intra subsystems only, to cancel any valid invite
operation for which no input has yet been received from any invited session,
use the FORMAT parameter in the WRITE statement to specify the cancel
invite operation ($$CNLINV). The cancel invite operation has no additional
parameters or data associated with it. For restrictions on the use of this
operation by the BSCEL subsystem, see "Cancel Invite Operation" in Chapter
2 of the SSP-[CF Base Subsystems Reference manual.

For example, the following WRITE statement cancels an invite operation that
no session has yet responded to:

030 WRITE #l,FORMAT "$$CNLINV": IOERR ICFERR

Fail Operation

To tell the remote system that your program detected an abnormal condition (for
example, it received incorrect data), specify a fail operation in the FORMAT
parameter of the WRITE statement ($$FAIL). If you are using IDDU functions,
select the send fail. The fail operation has no additional parameters associated
with it, and no data can be sent with the fail operation. The fail operation can be
used only with the Intra, Peer, and APPC subsystems.

For example, the following WRITE statement sends a fail operation:

030 WRITE #1,FORMAT "$$FAIL": IOERR ICFERR

Chapter 3. BASIC Programming 3-23

CLOSE Statement (Closing Files for Sessions)

The CLOSE statement closes the communications file used in the session. Also. if
the $$EOS operation was not specified in your program and the session is still
active, the CLOSE statement ends the session before it closes the file. All
transactions with the remote program must be completed before you end the
seSSIOn.

The syntax of the CLOSE statement is:

CLOSE #f ile-ref erence: [{EXIT line reference } _~'
IOERR line reference

'-----_L ____ ._

S7910023·0

For example, this CLOSE statement closes (releases) the SSP-ICF session for
file #1:

099 CLOSE #1: IOERR ICFERR

If an error occurs while executing this CLOSE statement, the program goes to the
statement labeled ICFERR. BASIC then automatically issues a $$EOS operation
to end the session so that the next time you attempt to close the file, no error will
occur.

3-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ATTRIBUTE$ Intrinsic Function (Getting Session
Attributes)

ATTRIBUTE$

The ATTRIBUTE$ intrinsic function returns status information about a specified
session. The status is returned for the session identified by the 2-character
identifier specified as the value for the intrinsic function. If no identifier is
specified, the status of the session identified by the current value of the WSID$
intrinsic function is returned.

The syntax of the ATTRIBUTE$ intrinsic function is:

{
('session ID') }
(character-expression)
(WSID$)

57910024-0

For example, this statement gets the attributes of the SSP-ICF session identified
as 2S.

050 A$=ATTRIBUTE$('2S')

This statement gets the attributes of the session identified by a variable named
ICFSSN$.

050 A$=ATTRIBUTE$(ICFSSN$)

Chapter 3. BASIC Programming 3-25

For SSP-ICF sessions, a lO-character constant is returned. The first character
indicates the type ofthe session, the second character indicates the invite status of
the session, and the last eight characters give the location name associated with the
session. The positions, the values, and the meaning of the values are as follows:

Positions Value Meaning

1 A Session not yet acquired.
C Session is an acquired session.
R Session is a remotely started session.

2 N Input not invited for this session.
I Input invited for this session, but no input is

available.
0 Invited input is available for this session.

3 through 10 Name Location.name (specified during subsystem
configuration and on the SESSION OCL
statement).

For the values used for work station sessions, see the manual Programming with
BASIC.

For the Intra and APPC subsystems only, additional status information is
returned. The fields are as follows (starting with byte 11):

Positions Value Meaning

11 I Intra subsystem is being used.
A APPC subsystem is being used.

12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.

13 M Mapped conversation.
B Basic conversation.

14 through 16 Blanks Reserved.

17 through 33 Name Own fully qualified LU name.

34 through 41 Name Partner LU name.

42 through 58 Name Partner fully qualified LU name.

59 through 66 Name Session group name.

67 through 74 Name User ID.

75 through 128 Blanks Reserved.

If a field is not used, enter the correct number of blanks for the unused field.

3-26 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASIC Operations Summary Chart

The following chart shows the valid BASIC operations for each subsystem. An x
in a subsystem column indicates that the subsystem supports the operation. A -
indicates that the subsystem does not support the operation.

BASIC SSP-ICF BASIC Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input WAITI02 x x X x x x x x x x
Aquire OPEN x x x x x x x x x x
Cancel $$CANLNI x - - - - - - - x -
Cancel invite $$CNLINV x x - - - - - - - -
Cancel then invite $$CANL x - - - - - - - x -
End of session $$EOS x x x x x x x x x x
Evoke $$EVOKNI x x x x x x3 - x x x
Evoke end of $$EVOKET x x - x x - - x x x
transaction

Evoke then invite $$EVOK x x x x x x3 - x x x
Fail $$FAIL x - - - - - - x - x
Get READ x x x x x x x x x x
Get attributes ATTRIBUTE x x x x x x x x x x
Get status6 ATTRIBUTE x - - - - - - - - x
Invite4 $$SEND x x x x x x x x x x
Negative response $$NRSPNI x - - - - - - - x -
Negative response $$NRSP x - - - - - - - x -
then invite

Put $$SENDNI x x x x x - x x x x
Put end of $$SENDE x x x x - x x x x -
file/chain

Put end of $$SENDET x x - x x - - x x x
transaction

Put FMH $$SENDNF x - - - - - x - x -
Put FMH then $$SENDFM x - - - - - x - x -
invite

Put then invite $$SEND x x x x x x x x x x
Release CLOSE x x x x x x x x x x
Request to change $$RCD x x x - - - - x x x
direction then
invite

Set timer $$TIMER5 x x x x x x x x x x

1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.

2Valid only when it is followed by a READ operation or when it follows a timer operation.
3Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

4Valid only when a $$SEND operation is issued with a record length of zero.
5The timer can also be set by the TIMER intrinsic function.
6The record area must be at least 128 bytes long.

Chapter 3. BASIC Programming 3-27

Checking Return Codes in BASIC

You should use the IOERR parameter on all READ, REREAD, WRITE, OPEN,
CLOSE, and W AITIO statements to check the status of the input or output
operation. All of these statements set the value of the return code to indicate the
results of that operation. You can also use the RETCODE$, ERR, or FILE
intrinsic functions to check the status of the last operation performed. The
intrinsic functions contain the following:

• ERR (error code) contains the meaning of the error code for the last
unsuccessful BASIC operation.

• RETCODE$ (return code) contains the status of the last SSP-ICF operation
or work station operation. The status tells whether the operation was
successful or unsuccessful and gives you additional information about the
results of the operation. If your program contains both SSP-ICF and work
station operations, you may want to save the SSP-ICF return codes in a
character variable.

• FILE(x) (file status) indicates only that the last operation was either successful
or unsuccessful. If FILE is 0, the operation was successful; if FILE is not 0,
the operation was unsuccessful. If FILE is 11, an end of transaction
indication was received on an input operation; if FILE is 20, an error
occurred on an input operation; and if FILE is 21, an error occurred on an
output operation.

3-28 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ERR Code Values

The ERR intrinsic function returns the error code of the last error that occurred.
The value is not reset for a successful input or output operation. It stays the
same until the next error occurs.

The following chart lists and briefly describes the SSP-ICF error codes that can be
returned in an SSP-ICF session. Note, however, that more complete information
about any error can be obtained by reading the description of the actual return
code associated with the ERR value. The return codes that can be returned by
your subsystem are described in that subsystem reference manual.

ERR
Values Error Code Meaning

0 No error; operation completed normally
54 End-of-file error or end of transaction indication
55 Permanent input/output error
64 No invite outstanding on SSP-ICF session
66 Cannot get session group
68 New requester for this program
69 Request to change direction was received
70 Message waiting
71 Operation failed, but session is still active
72 Error occurred in an operation that can be retried
73 Timer expired
74 Buffer too small

Chapter 3. BASIC Programming 3·29

RETCODE$ Values

SSP-ICF BASIC
RETCODE$ ERR
Value Value

0000 0

0010 69

0012 0

0020 70

0024 0

0100 68

0200 0

0210 69

0212 0

0220 70

0300 0

0302 71

0303 54

0310 73

0402 71

0411 70

0412 71

0800 0

1100 64

2800 55

3431 74

The value in the RETCODE$ intrinsic function is the 4-digit (major and minor)
SSP-ICF return code. These return codes are described in each subsystem
reference manual. A summary listing in Appendix B shows all the return codes
and shows which return codes are valid for each subsystem. For general
information about return codes, read "Checking Return Codes" in Chapter 3 of
the SSP-[CF Guide and Examples manual.

The value in the ERR intrinsic function depends upon the SSP-ICF return code in
the RETCODE$ intrinsic function as shown in the following chart. Use this chart
to determine the SSP-ICF return code that corresponds to the ERR value. Then
see the description of the SSP-ICF return code in the appropriate subsystem
reference manual.

For an example of how to check return codes, see "Checking Return Codes with
BASIC" in Chapter 6 of the SSP-[CF Guide and Examples manual.

SSP-ICF BASIC SSP-ICF BASIC SSP-ICF BASIC
RETCODE$ ERR RETCODE$ ERR RETCODE$ ERR
Value Value Value Value Value Value

8081 55 81BC 70 832D 71

8082 55 81C2 70 8330 72

8083 55 8IC4 66 83C7 55

8084 55 81C5 70 83C8 55

80BD 55 8IC6 70 83C9 55

80CO 55 8213 72 83CA 55

80C1 55 821E 55 83CB 55

80DO 55 8285 72 83CC 55

8136 55 8289 55 83CD 55

8137 55 82A7 72 83CE 55

8183 55 82A9 55 83CF 55

8184 55 82AA 55 83DO 55

8185 72 82AE 55 83D1 55

8187 55 82B1 72 83D2 55

8192 55 82BB 55 83D3 55

8193 70 82C3 66 83D4 55

81A3 70 82C4 66 83EO 55

81B6 70 8319 70 83E1 55

81B8 70 831B 72

81B9 70 831C 70

81BA 70 831D 71

3-30 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Notes About Writing BASIC Programs for SSP-ICF

1. You can use the WSID$ intrinsic function to determine the identifier of the
most recently accessed session. In this example,

040 WAITIO IOERR ICFERR
050 A$=WSID$

the value of A$ is the identifier of the last session accessed by the WAITIO
statement.

2. You can use the FILENUM intrinsic function to determine the file reference
of the most recently accessed session.

3. You should use the EXIT clause with the IOERR parameter specified, or use
the IOERR parameter alone, on all SSP-ICF I/O statements.

4. You can use the ATTRIBUTE$ intrinsic function to determine the status of a
session.

5. Do not use PAUSE, BREAK, PRINT, INPUT, LINPUT, or TRACE in an
evoked program (started by a remote procedure start request) to cause
information to be displayed at a display station.

6. Do not evoke the BASIC procedure. (You can evoke the BASICR or
BASICP procedure.)

BASIC Coding Examples

For a complete example of a BASIC communications program, see "Writing a
BASIC Program That Uses the Intra Subsystem" in Chapter 6 of the SSP-/CF
Guide and Examples manual. The same programming example described in the
Intra chapter is also applicable to the other subsystem chapters, but only the
changed areas needed to allow communications with that type of remote system
are shown.

Chapter 3. BASIC Programming 3-31

3-32 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 4. Programming SSP-ICF with COBOL

COBOL Statements Used for Communications 4-3
SELECT Statement (Defining the Transaction File) 4-4
ACQUIRE Statement (Acquiring Sessions) 4-6

Example of an Acquired Session 4-6
ACCEPT Statement (Checking Session Status) 4-7

Session Status Information 4-8
Example of an ACCEPT Statement 4-9

READ Statement (Receiving Data) 4-10
Example of a READ Statement 4-11

WRITE Statement (Performing Operations within a Session) 4-12
WRITE Statement Operations 4-13
Starting Remote Programs (Evoke Operations) 4-14

IDDU Evoke Operation Considerations 4-14
Sending Program Data with an Evoke Operation 4-15

Sending Data (Put Operations) 4-15
Ending Communications Transactions (End of Transaction
,Operations) 4-16

Ending Sessions (End of Session Operation) 4-17
Additional WRITE Statement Operations 4-17

Request to Change Direction Operation 4-17
SSP-ICF and Work Station Timer Operations 4-18
$$TIMER Operation Example 4-18
Negative Response Operations 4·19
Cancel Operations 4-20
Fail Operation 4-20

DROP Statement (Releasing a Session) 4-21
COBOL Operations Summary Chart 4-22
Return Code Processing in COBOL 4-23
COBOL Coding Examples 4-23

Chapter 4. COBOL Programming 4-1

This chapter briefly describes the COBOL statements and operations that you use
to write COBOL communications programs. The syntax of the COBOL
statements is shown, and the communications operations are introduced.

To use the COBOL language with the Interactive CommunicatiOlls Feature
(SSP-ICF), do the following:

• Configure and enable the subsystem. (These procedures are described in the
appropriate subsystem reference manual.)

• Begin a communications session by issuing an ACQUIRE statement.

• Begin a program or procedure at the remote system and start a
communications transaction. (If you are using the Intra subsystem, the
program or procedure being started is in the same System/36.)

• Send or receive data.

• Check return codes.

• End the communications transaction.

• End the communications session.

• Disable the subsystem.

The COBOL operations you need for interactive communications are introduced
in this chapter. The details about each operation-its function, syntax,
programming considerations, and coding example (for some operations)-are
described in each subsystem reference manual for which the operation is valid.

General (conceptual) information about these operations and diagrams showing
how these operations work are given in Chapter 3 of the SSP-ICF Guide and
Examples manual.

The operations you use in the communications portion of your program are
similar to work station operations. In the noncommunications portion of your
program, you can use all of the noncommunications operations that you normally
use to process the data that is sent or received between your program and the
remote program. Therefore, the noncommunications operations are not described
in this manual.

If you are using the Intra or APPC subsystem, externally described field, format,
and file definitions (also called data definitions) can be used to send data records.
Data definitions, which describe data records and communications functions, are
defined separately from the application program. The interactive data definition
utility (IDDU) is used to create data definitions. Refer to the manual Getting
Started with Interactive Data Definition Utility for more information.

The details about using IDDU with the Intra or APPC subsystem are described in
the appropriate subsystem reference manual.

4-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

COBOL Statements Used for Communications

In COBOL, the communications operations are performed primarily by the
statements shown in the following list. Only these statements are described in this
chapter, and only the communications-related information about each one is
given. The manual Programming with COBOL contains additional information
about these statements and about all the other statements that can be used in a
communications program.

Statement

SELECT

ACQUIRE

ACCEPT

READ

WRITE

DROP

Functions

Defines the TRANSACTION file used for SSP-ICF operations

Acquires (starts) a session

Gets the attributes of a session

Receives data from the remote system

Performs many of the SSP-ICF communications operations
within a session

Releases the session

Chapter 4. COBOL Programming 4-3

SELECT Statement (Defining the Transaction File)

SELECT file-name

Use the TRANSACTION file for SSP-ICF operations. Programming
considerations for TRANSACTION files are described in the manual
Programming with COBOL.

Use the SELECT statement in the FILE-CONTROL paragraph to define the
TRANSACTION file. You must also open the file in the Procedure Oivision,
and open it as J-O.

The syntax of the SELECT statement for a TRANSACTION file using interactive
communications is:

ASSIGN TO WORKSTATION [-namel [-type]] [, name2 [-type]]

ORGANIZATION IS TRANSACTION

[FILE STATUS IS data-name-l [,data-name-4]]

[ACCESS MODE IS SEQUENTIAL]

[CONTROL-AREA IS data-name-s].

57910025·0

SELECT Clause: Specifies the name of the TRANSACTION file your program
will use to send data to and receive data from a remote program.

ASSIGN Clause: Must be WORKSTATION for SSP-ICF. The name-l field
specifies the 1- to 8-character name of the $SFGR-generated load member that
contains the display format. If you are using IOOU, the name-l and name-2
fields specify the display format and the IOOU file definition that contains the
format definitions used to describe communications functions. The name field is
not required if the file is to be used with SSP-ICF sessions only; however, the
name field is required when using IOOU. The type field is used to specify
whether the name is a $SFGR-generated load member or an IOOU file definition.
Specify an S (or blank) for a $SFGR-generated load member or a C for an IOOU
file definition.

4-4 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

ORGANIZATION Clause: Specifies the logical structure of a file. Must be
TRANSACTION for SSP-ICF. TRANSACTION file organization allows you to
control input and output operations.

FILE STATUS Clause: Allows you to check the status of input and output
operations from or to the TRANSACTION file. The FILE STATUS area
consists of a 2-byte COBOL return code (data-name-I) and a 4-byte IBM file
status code (data-name-4) that contains the interactive communications return
code. The interactive communications return code consists of two 2-byte return
codes (a major and a minor return code). You must define data-name-4 in the
Data Division as a 4-character alphanumeric data item.

ACCESS MODE Clause: Must always be SEQUENTIAL for TRANSACTION
files.

CONTROL-AREA Clause: Specifies the 12-byte data item that receives feedback
information after each TRANSACTION file input operation. The third and
fourth characters of this area contain the symbolic identifier of the session or
display station from which input was obtained. The symbolic identifier must be
defined as a 2-byte alphanumeric data item. The remainder of the characters
contain information concerning display stations only, and are described in the
manual Programming with COBOL.

For an example of how to code the SELECT statement, see the sample programs
in the SSP-!CF Guide and Examples manual.

Chapter 4. COBOL Programming 4-5

ACQUIRE Statement (Acquiring Sessions)

To start (acquire) a session, use the ACQUIRE statement to specify the session
you are acquiring for a specified TRANSACTION file. Each ACQUIRE
statement starts one session between your program and the remote system. If
your program is started by a procedure start request (remotely started program),
no ACQUIRE statement is needed. However, once a remotely started program is
running, it can issue acquire operations and start other sessions (depending on the
type of subsystem you are using).

ACQUIRE {literal } FQR file-name.
identifier

57910026-0

ACQUIRE Clause: Specifies a 2-character identifier for the session to be
acquired. The first character of the session identifier must be numeric (0 through
9), and the second character must be alphabetic (A through Z, $, #, or @). Use
the literal parameter to specify the actual identifier value, or use the identifier
parameter to specify a 2-character data item that contains the session identifier.
The session identifier must be the same as the SYMID parameter specified in the
SESSION statement.

FOR Clause: Specifies, in the file-name parameter, the name of the
TRANSACTION file.

Example of an Acquired Session

ACQUIRE 'lS' FOR TRANSACTION-FILE.

OR

ACQUIRE SSP-ICF-SESSION FOR TRANSACTION-FILE.

An example of a SESSION statement for this ACQUIRE statement is:

II SESSION LOCATION-CHICAGO,SYMID-1S,BATCH-YES

4-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ACCEPT Statement (Checking Session Status)

The ACCEPT statement is used to get the attributes of a session; it is the
equivalent of the SSP-ICF get attributes operation.

The syntax of the ACCEPT statement is:

ACCEPT identifier-l FROM mnemonic-name

[FOR {i<?-entifier-2} 1
lJ.teral .

S791 0027-0

ACCEPT Clause: The identifier-l parameter must specify an area to be used for
an attribute data record. The session attributes are moved into the attribute data
record area when the accept operation is performed. The TRANSACTION file
must be opened before the accept operation can get the attributes of the session.

FROM Option: Specifies the symbolic name associated with
ATTRIBUTE-DATA in the SPECIAL-NAMES clause (coded in the
Environment Division).

FOR Option: If the FOR option is specified, a get attributes operation is
performed for the session specified by the identifier-2 or literal parameter. If the
FOR option is not specified and only one session or display station is attached to
the TRANSACTION file, a get attributes operation is performed for that session
or display station. If the FOR option is not specified, and multiple sessions and
display stations are attached, a get attributes operation is performed for the last
session or display station for which an input or output operation was performed.

For Intra and APPC subsystems only, a get status operation may be performed
instead of a get attributes operation. The get status operation returns additional
information about a specific session.

Chapter 4. COBOL Programming 4-7

Session Status Information

When the get attributes (ACCEPT) operation is specified, the first 10 bytes of the
record area are as follows:

Position Value Meaning

1 A Session not yet acquired.
C Session is an acquired session.
R Session is a remotely started session.

2 N Input not invited for this session.
I Input invited for this session, but no input is

available.
0 Invited input is available for this session.

3 through 10 Name Location name (specified during configuration
and on the SESSION OCL statement).

If the get status (ACCEPT) operation is specified, the additional fields are as
follows (starting with byte 11):

Position Value Meaning

11 I Intra subsystem is being used.
A APPC subsystem is being used.

12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.

13 M Mapped conversation.

14 through 16 Blanks Reserved.

If a field is not used, enter the correct number of blanks for the unused field.

4-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Example of an ACCEPT Statement

SPECIAL NAMES.

ATTRIBUTE-DATA IS ATTRIBUTES.

•
•
•

DATA DIVISION.

77 SSP-ICF-SESSION PIC XX VALUE 'lS'.

•
•
•

01 SESSION-ATTRIBUTES.
03 SESSION-STATUS
03 INVITE-STATUS
03 SESSION-NAME

PROCEDURE DIVISION.

•
•
•

PIC X.
PIC X.
PIC X(8).

ACCEPT SESSION-ATTRIBUTES FROM ATTRIBUTES.

OR

ACCEPT SESSION-ATTRIBU'rES FROM ATTRIBUTES FOR 'lS'.

OR

ACCEPT SESSION-ATTRIBUTES FROM ATTRIBUTES FOR SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4·9

READ Statement (Receiving Data)

The READ statement is used to receive data from a remote program. The
statement performs either a get or accept input operation depending on whether
the TERMINAL option is specified.

For SSP-ICF input operations, the maximum amount of data that can be receive~
by a program is 4075 bytes for all subsystems except Intra, !MS, and APPC, for
which the maximum is 4096 bytes.

The syntax of the READ statement is:

READ file-name RECORD

[INTO identifier-l]
[
TERMINAL IS {identifier-2}]

literal-l

[NO DATA imperative-statement-l]

[AT END imp erative-statement-2].

S791 0028-

TERMINAL Option: If the TERMINAL option is specified, a get operation is
performed for the session specified. If the TERMINAL option is not specified,
an accept input operation is performed.

NO DATA Option: If specified, this option allows the statement specified in the
imperative-statement-l parameter to be processed if data is not available for this
READ statement.

AT END Option: If specified, this option allows the statement specified in the
imperative-statement-2 parameter to be executed if the READ statement is issued
and an invite operation is not currently outstanding.

For more information about the READ statement, see the manual Programming
with COBOL.

4-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Example of a READ Statement

READ TRANSACTION-FILE.

OR

READ TRANSACTION-FILE,
TERMINAL IS SSP-ICF-SESSION.

The first READ statement performs an accept input operation. The second
READ statement performs a get operation.

Chapter 4. COBOL Programming 4-11

WRITE Statement (Performing Operations within a
Session)

Use the WRITE statement to perform many of the communications operations
between two programs once a session has been started. The type of operation is
determined by the value specified for the FORMAT parameter (which is described
below).

The syntax of the WRITE statement is:

WRITE record-name [FROM identifier-I]

[FORMAT IS { identifier-2}]
literal-I

[TERMINAL IS {identifier-3}]
literal-2

{
INDICATOR [IS] } INDICATORS ARE identifier-4.
INDIC

57910029-0

record-name: Specifies the output area that contains any of the information
required with the operation.

FORMAT Option: Identifies the SSP-ICF operation that is to be performed. See
"COBOL Operations Summary Chart" later in this chapter for a complete list of
the operations you can specify in the FORMAT parameter. Any of the SSP-ICF
operations beginning with $$ can be used.

If you are using IOOU, identifies the format definition that externally describes
the SSP-ICF operation that is to be performed. For more information about
using IOOU with COBOL; refer to the manual Programming with COBOL.

TERMINAL Option: Specifies the identifier of the session during which the
operation is to be performed. If the TERMINAL option is not used, the
operation is performed for the session associated with the last REAO or WRITE
statement.

See the manual Programming with COBOL for a description of other WRITE
statement parameters.

4-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

WRITE Statement Operations

The following are the primary communications operations you can perform using
the WRITE statement.

• Evoke operations: To start a remote program

• Put operations: To send data to the remote program

• End of transaction operations: To end a communications transaction

• End of session operation: To end the session in which the remote program
was started

These operations are described in the following pages; other types of operations
that can also be specified by the WRITE statement are described under
"Additional WRITE Statement Operations" later in this chapter. An example of
each type of operation that can be specified in the FORMAT option is also
provided.

Chapter 4. COBOL Programming 4-13

Starting Remote Programs (Evoke Operations)

To start a remote program or procedure and to start a communications
transaction, specify an evoke operation in the FORMAT parameter of the
WRITE statement ($$EVOK, $$EVOKNI, or $$EVOKET). See "WRITE
Statement (Performing Operations within a Session)" earlier in this chapter for the
syntax of the WRITE statement.

With an evoke operation, you must send an evoke parameter list. If you specify
the evoke operation in the FORMAT parameter of the WRITE statement, the
parameters (fields) in that list must be specified in the following order:

Positions Field Description

1 through 8 The name of the program or procedure to be evoked
(left·adjusted).

9 through 16 The password you use to sign on the remote system
(left·adjusted).

17 through 24 The user identifier you use to sign on the remote
system (left-adjusted).

25 through 32 The name of the remote system library that contains
the program or procedure to be evoked (left-adjusted).

32 through 51 Reserved.

52 through 55 The length of data, positional parameters, or keyword
parameters.

56 through xxxx User data, positional procedure parameters, or keyword
parameters. (Leading blanks are ignored.)

If a field is not used, enter the correct number of blanks for the unused field.

IDDU Evoke Operation Considerations:

If you are using IDDU, you can select one of the following IDDU functions to
perform an evoke operation: evoke process (EVOKE keyword), evoke process
and send detach (EVOKE and DETACH keywords), or evoke process and invite
(EVOKE and INVITE keywords).

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

4-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Sending Program Data with an Evoke Operation

Data sent with an evoke operation can be parameters to be used by the evoked
procedure, or it can be data to be used by the evoked program. When you are
creating a procedure that is to have parameters sent to it by an evoke operation,
answer no to the prompt PROGRAM DATA IN THE INCLUDE
STATEMENTS on the end of job menu in the SEU procedure, or specify
PDATA-NO on the COPY control statement for $MAINT. If you want data to
be sent to a program, answer yes to the SEU prompt for program data, or specify
PDATA-YES on the COPY control statement.

Sending Data (Put Operations)

01 DATA-RECORD.

To send a data record to a remote system or program, specify a put operation in
the FORMAT parameter of the WRITE statement ($$SENDNI, $$SENDE,
$$SENDET, $$SENDNF, or $$SENDFM). If you are using IDDU functions,
specify a put operation in a user-defined field, select the send detach, or specify a
put operation in a user-defined field and select the invite. See "WRITE Statement
(performing Operations within a Session)" earlier in this chapter for the syntax of
the WRITE statement.

Each type of put operation requires the following fields in the output area:

length field: A 4-byte field that contains, in decimal, the length of the user
data. An output length of zero for a $$SEND operation performs an invite
operation. An output length of zero can also be used for $$SENDE,
$$SENDET, and $$SENDNI operations.

A maximum of 4075 bytes can be sent by a put operation for all subsystems
except Intra, IMS, and APPC, for which the maximum is 4096 bytes.

data field: The field containing the user data to be sent.

For example, the following WRITE statement sends one data record:

03 RECORD-LENGTH
03 THE-RECORD

PIC 9(4).

PIC X(256).

•
•
•

WRITE TRANSACTION-RECORD FROM DATA-RECORD,
FORMAT IS '$$SENDNI', TERMINAL IS SSP-ICF-SESSION.

Chapter 4. COBOL Programming .4-15

Ending Communications Transactions (End of Transaction Operations)

You can end the transaction by specifying the put end of transaction operation or
the evoke end of transaction operation in the FORMAT parameter of the WRITE
statement ($$SENDET for the put end of transaction or $$EVOKET for the
evoke end of transaction). If you are using IDDU functions, select the send
detach for the put end of transaction or the evoke process and send detach for the
evoke end of transaction.

• If your program has finished sending data, a put end of transaction operation
in the FORMAT parameter tells the remote system that you have no more
data to send and that you do not expect to receive any data.

• If your program is receiving data, check for an end of transaction return code
received from the subsystem to determine when the remote system has
finished sending. \

• If you want to start a program or procedure at the remote system and
immediately end the transaction, an evoke end of transaction operation in the
FORMAT parameter indicates that your program does not expect to receive
any data. For example, you can send data to a remote program and then
start a different program on the remote system to use that data:

Your program starts program A at the remote system and sends data to
program A.
Program A stores the data on disk.
When your program has finished sending data to program A, your
program uses the put end of transaction operation. to end program A.
Your program then uses the $$EVOKET operation to start program B at
the remote system.
Program B processes the data that program A stored on disk previously.

Once the transaction has ended, you can end the session or start another
transaction with this or another session.

The following statement sends a put end of transaction operation and, therefore,
tells the remote system that this is the end of this communications transaction:

WRITE TRANSACTION-RECORD FROM DATA-RECORD,
FORMAT IS '$$SENDET', TERMINAL IS SSP-ICF-SESSION.

4-16 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

Ending Sessions (End of Session Operation)

To end a session with a remote system, use the DROP statement, or specify the
$$EOS operation in a WRITE statement. (The DROP statement is described
later in this chapter.)

To end a session using the WRITE statement, specify $$EOS in the FORMAT
parameter. For example:

WRITE TRANSACTION-RECORD,
FORMAT IS '$$EOS', TERMINAL IS SSP-ICF-SESSION.

Additional WRITE Statement Operations

The following are additional interactive communications operations you can
specify on the WRITE statement:

• Request to change direction operation

• Set timer operation

• Negative response operations (used only with the Intra and SNUF
subsystems)

• Cancel operations, for canceling a group (chain) of data records (used only
with the Intra and SNUF subsystems), or for canceling any valid invite
operation for which no input has yet been received (used only with the Intra
and BSCEL subsystems)

• Fail operation (used only with the Intra, Peer, and APPC subsystems)

Request to Change Direction Operation

To request a change in the direction of transmission, specify a request to change
direction operation in the FORMAT parameter of the WRITE statement
($$RCD). If you are using IDDU functions, select the send request to write and
invite. After you issue the $$RCD operation, your program must continue to
receive data until it receives a return code indicating that the remote system is
ready to begin receiving data. No additional parameters or data is associated
with the $$RCD operation.

The following WRITE statement shows how to request that the remote system
stop sending so that your program can send data:

WRITE TRANSACTION-RECORD,
FORMA'l' IS '$$RCD', TERMINAL IS SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4-17

SSP-ICF and Work Station Timer Operations

hhmmss

To use the SSP-ICF and work station timer, use the $$TIMER operation in the
WRITE statement in the format:

where hh is hours, mm is minutes, and ss is seconds.

A return code is returned to your program when the time has ended. Use an
accept operation to determine when the time has ended and to determine the
action to take next based on the return code received.

$$TIMER Operation Example

01 TIMER

•
PIC X(6) VALUE '000030'.

•
•

WRITE TRANSACTION-RECORD FROM TIMER,

•
•
•

FORMAT IS '$$TIMER', TERMINAL IS SSP-ICF-SESSION.

READ TRANSACTION-FILE,
IF RETURN-CODE EQUAL '0310',

THEN
GO TO TIMER-EXPIRED.

This example sets the timer to 30 seconds, then issues an accept input operation
and checks for a return code.

4-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Negative Response Operations

01 NEG-RESP-REC.
03 REC-LEN
03 RESP-DATA

•
•
•

To tell the remote system or program that your program found something wrong
with the data it received (that is, to send a negative response), use the FORMAT
parameter in the WRITE statement to specify one of the negative response
operations ($$NRSP or $$NRSPNI). These operations can only be used with the
Intra and SNUF subsystems.

Sense data can also be sent with the negative response. The following is the
format of the sense data:

Positions Description

1 Indicates whether sense data is being sent: o or blank
indicates that no sense data is being sent; 8 indicates that
sense data is being sent.

2 through 9 The sense data sent with the negative response. The
sense data must begin with lOxx, 08xx, or 0000.
The last four positions are user-defined.

For example, the following statements send a negative response operation that
includes the sense data 08008000:

PIC X(4) VALUE '0008'.
PIC X(08) VALUE '08008000'.

WRITE TRANSACTION-RECORD FROM NEG-RESP-REC,
FORMAT IS '$$NRSP', TERMINAL IS SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4-19

Cancel Operations

There are two types of cancel operations: those that cancel a group of records
that has just been sent (used by the SNUF and Intra subsystems only), and the
cancel invite operation, which cancels an invite operation for which no input has
yet been received (used by the BSCEL and Intra subsystems only).

• For the SNUF and Intra subsystems only, to cancel a group of records that
has just been sent, use the FORMAT parameter in the WRITE statement to
specify one of the cancel operations ($$CANL or $$CANLNI). The cancel
operations have no additional parameters or data associated with them.

For example, the following WRITE statement cancels the current chain of
records:

WRITE TRANSACTION-RECORD FROM SSP-ICF-RECORD,
FORMAT IS '$$CANL', TERMINAL IS SSP-ICF-SESSION-1S.

• For the BSCEL and Intra subsystems only, to cancel any valid invite
operation for which no input has yet been received from any invited session,
use the FORMAT parameter in the WRITE statement to specify the cancel
invite operation ($$CNLINV). The cancel invite operation has no additional
parameters or data associated with it. For restrictions on the use of this
operation by the BSCEL subsystem, see "Cancel Invite Operation" in Chapter
2 of the SSP-[CF Base Subsystems Reference manual.

For example, the following WRITE statement cancels an invite operation that
no session has yet responded to:

WRITE TRANSACTION-RECORD FROM SSP-ICF-RECORD,
FORMAT IS '$$CNLINV', TERMINAL IS SSP-ICF-SESSION-1S.

Fail Operation

To tell the remote system that your program detected an abnormal condition (for
example, it received incorrect data), specify a fail operation in the FORMAT
parameter of the WRITE statement ($$FAIL). If you are using IDDU functions,
select the send fail. The fail operation has no additional parameters associated
with it, and no data can be sent with the fail operation. The fail operation can be
used only with the Intra, Peer, and APPC subsystems.

For example, the following WRITE statement sends a fail indication:

WRITE TRANSACTION-RECORD,
FORMAT IS '$$FAIL', TERMINAL IS SSP-ICF-SESSION.

4-20 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

DROP Statement (Releasing a Session)

To release a session, use the DROP statement, which issues a release operation for
a particular session. You must specify the name of the TRANSACTION file
associated with this session. You can specify a literal for the session identifier or
an identifier that refers to a 2-character alphanumeric data item that contains the
session identifier. The session identifier must correspond to the SYMID
parameter specified on the corresponding SESSION statement.

The syntax of the DROP statement is:

DROP {literal } FROM file-name.
identifier

S791 0030·0

All acquired sessions are automatically released when the application program
ends.

Chapter 4. COBOL Programming 4-21

COBOL Operations Summary Chart

The following chart shows the valid COBOL operations for each subsystem. An
x in a subsystem column indicates that the subsystem supports the operation. A
- in a column indicates that the subsystem does not support the operation.

COBOL SSP-ICF COBOL Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input2 READ x x x x x x x x x x
Aquire ACQUIRE x x x x x x x x x x
Cancel $$CANLNI x - - - - - - - x -
Cancel invite $$CNLINV x x - - - - - - - -
Cancel then invite $$CANL x - - - - - - - x -
End of session $$EOS x x x x x x x x x x
Evoke $$EVOKNI x x x x x x3 - x x x
Evoke end of $$EVOKET x x - x x - - x x x
transaction

Evoke then invite $$EVOK x x x x x x3 - x x x
Fail $$FAIL x - - - - - - x - x
Get2 READ x x x x x x x x x x
Get attributes4 ACCEPT x x x x x x x x x x
Get status6 ACCEPT x - - - - - - - - x
Invite5 $$SEND x x x x x x x x x x
Negative response $$NRSPNI x - - - - - - - x -
Negative response $$NRSP x - - - - - - - x -
then invite

Put $$SENDNI x x x x x - x x x x
Put end of $$SENDE x x x x - x x x x -
file/chain

Put end of $$SENDET x x - x x - - x x x
transaction

PutFMH $$SENDNF x - - - - - x - x -
Put FMH then $$SENDFM x - - - - - x - x -
invite

Put then invite $$SEND x x x x x x x x x x
Release DROP x x x x x x x x x x
Request to change $$RCD x x x - - - - x x x
direction then
invite

Set timer $$TIMER x x X· x x x x x x x

1Although the BSC 3270 subsystem is not part of SSP·ICF, its operations are listed here to show its similarities to other
subsystems.

2The READ statement performs either a get or an accept input operation, depending on whether the TERMINAL option is
specified.

3Valid only when the DATAID and FLDLTH parameters are specified on the SESSION DCL statement, and when the
HDSTNAME parameter 011 the SESSION statement is CICS or IMS.

4Valid only when the ATTRIBUTE-DATA keyword is used in the SPECIAL·NAMES paragraph and the SPECIAL·NAMES
name is specified in the ACCEPT statement.

5Valid only when a $$SEND operation is issued with a record length of zero.
6The record area must be at least 128 bytes long.

4-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Code Processing in COBOL

Following each operation, a return code consisting of a major code and a minor
code is given to your program in the IBM-extended FILE STATUS area. In
addition, a COBOL return code is given in the FILE STATUS field identifying
the status of the operation. The following list shows the COBOL return code as
returned in the appropriate FILE STATUS data field and the corresponding
SSP-ICF return code(s).

Use this list to determine the SSP-ICF return code that corresponds to the
COBOL return code. Then see the description of the SSP-ICF return code in the
appropriate subsystem reference manual. (For example, the 02xx group below is
described in each subsystem reference manual in the Major Code 02 box
description, which applies to all the return codes beginning with 02.) All of the
return codes that are valid for that subsystem are described in that manual. A
summary listing of all the codes for all the subsystems is in Appendix B.

SSP-ICF Return Code COBOL Return Code

00xx,03xx,0800 00

01xx 01

02xx 9A

04xx 91

1100 10

2800 9E

3401 9G

80xx 30

81xx 92

82xx 9C

83xx 9N or 9K

COBOL Coding Examples

For a complete example of a COBOL communications program, see "Writing a
COBOL Program That Uses the Intra Subsystem" in Chapter 6 of the SSP-[CF
Guide and Examples manual. The same programming example described in the
Intra chapter is also used in the other subsystem chapters, but only the changed
areas needed to allow communications with that type of remote system are shown.

Chapter 4. COBOL Programming 4-23

4-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 5. Programming SSP-ICF with RPG II

File Description Specifications 5-2
RPG II Communications Operations 5-3

Starting Remote Programs (Evoke Operations) 5-3
IDDU Evoke Operation Considerations 5-3

Sending Data (Put Operations) 5-5
Request to Change Direction Operation 5-6
Set Timer Operation 5-7
Negative Response Operations 5-8
Cancel Operations 5-9
Fail Operation 5-9
End of Session Operation 5-9

WORKSTN Operations 5-10
ACQ (Acquire) Operation 5·10
REL (Release) Operation 5-11
NEXT Operation 5-12
READ Operation 5-13
RPG Cycle Input 5-14

RPG II Operations Summary Chart 5-14
Return Code Processing in RPG II 5-15

INFSR Subroutine Coding Considerations 5-18
RPG II Status Values 5-19
RPG II Programming Considerations 5-20

Using Continuation Options on the File Description Specifications 5-20
NUM Continuation Option 5-20
SA VDS Continuation Option 5-21
IND Continuation Option 5-21
SLN Continuation Option 5-21
ID Continuation Option 5-21
INFSR Continuation Option 5-21
INFDS Continuation Option 5-22
FMTS Continuation Option 5-22
CFILE Continuation Option 5-22

SRT and MRT Program Considerations 5-22
End-of-File Considerations 5-23
Release Considerations 5-23
Restrictions for WORKSTN Files 5-24
Input and Output Considerations 5-24

RPG II Coding Examples 5-25

Chapter 5. RPG II Programming 5-1

The interactive communications portion of an RPG .II program consists of
preparing ,data for transmission, processing data that was received, using existing
work station operations and additional SSP-ICF operations to perform
communications operations, and properly handling return codes.
Noncommunications data processing varies depending on the application; these
noncommunications functions are not described in this manual.

The operations you use in interactive communications are similar to work station
operations. The file used is a WORKSTN file, the same input operations are
used, and the output operations are performed via special SSP-ICF formats.

If you are using the Intra or APPC subsystem, externally described fields, format,
and file definitions (also called data definitions) can be used to send data records.
Data definitions, which describe data records and communications functions, are
defined separately from the application program. The interactive data definition
utility (IDDU) is used to create data definitions. Refer to the manual Getting
Started with Interactive Data Definition Utility for more information about IDDU.

The details about using IDDU with the Intra or APPC subsystem are described in
the appropriate subsystem reference manual.

File Description Specifications

F
t---

Filename

line

When you use RPG II for interactive communications, you must complete the file
description specifications. These specifications should contain the same
information that you would code for a WORKSTN file. File description
specifications for a WORKSTN file are described in the manual Programming
with RPG II.

File Description Specifications

File TVpe Mode of Processing

File Designation Length of Key Field or

of Record Address Field
End of File

Sequence
Record Address Type ~

Type of File
File Format N Organization or ~ a ~ ~ Additional Area 5

~ ~ Block Record ~ t averll. ~ow Indicator .~

U ~ Length length a: ~ ~ ~~tr~:ld ~
~we«~~~ __ ~ ____ ~~~~<~~~-L~~S~~ion~
....... External Record Name

Device

For the lIaUd entries for II system refer to the RPG reference manual for that systal

File Addition/Unordered

Extent Exit Number of Tracks

~ for DAM for Cylinder OverfloYlo
Z Name of Number of Extent Symbolic in

Device :3
Label Exit

Ta ..
j Storage Index ~ File

Conditior
U1-UB.

Continuation lines
i!:

uc r-
::> ~

K Option Entry < 0:

3 4 5 6 7 8 9 10" 12 13 14 15 1617 1819 2021 22232425 26 27 28 29 30 31 323334 35 36 37 38 394041 4243444546 4748495051 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 n 12 73 j

o 2 FII CF I L E elM le~t Mi IA Klsl1 N
o 3 F NulN I~ -
o 4 F I~ It:lD Is EC D _.-
o 5 F 1:1 ... Frs R lril.,l

- +-- .-
~lll< ItrJ l .. NIE o 6 F

+--- - _. -
o 7 F III '=:1,1"
o B F 1M Ft L~ Iu I;

-1-- .. - 1---- ..
o 9 F

(Only if-you are using IDDU.)

5-2 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

RPG II Communications Operations

To assist in coding interactive communications operations in RPG II, predefined
operations are provided.

Note: Some of the operations have data fields associated with them. Space
for these fields, in the locations described, must be reserved even if the
field is not coded. All values in these fields must be character values.

The following sections describe the communications operations.

Starting Remote Programs (Evoke Operations)

To start a remote program or procedure and to start a communications
transaction, specify an evoke operation ($$EVOK, $$EVOKNI, or $$EVOKET).

With an evoke operation,you must send an evoke parameter list. You define
these parameters as fields on the output specifications.

Positions Field Description

1 through 8 The name of the program or procedure to be evoked
(left-adjusted).

9 through 16 The password you use to sign on the remote system
(left-adjusted).

17 through 24 The user identifier you use to sign on the remote system
(left-adjusted).

25 through 32 The name of the remote system library that contains
the program or procedure to be evoked (left-adjusted).

33 through 52 Reserved.

53 through 56 The length (in decimal) of user data, if any
(right-adjusted).

57 through xxxx User data or positional parameters.

If a field is not used, enter the correct number of blanks for the unused field.

IDDU Evoke Operation Considerations:

If you are using IDDU, you can select one of the following IDDU functions to
perform an evoke operation: evoke process (EVOKE keyword), evoke process
and send detach (EVOKE and DETACH keywords), or evoke process and invite
(EVOKE and INVITE keywords).

Chapter 5. RPG II Programming 5-3

H:['M
~-= '1lntl!fnal'onal 8u'oneSi Mach,nes Corporat,on

Program

Programmer Date

0
[i:

2~ Space -
.e~

Filename ~-B
~ ~ 1l 1l ~

?: or ?: A " <: Record Name Line E o E L & ADD

o R

AND

Because IDDU does not reserve positions for unused parameters or,duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

The following figure shows one way to enter the evoke parameters on the output
specifications:

RPG OUTPUT SPECIFICATIONS

Sk.ip Output Indicators Commas
Field Name

or

A~ A!d
y" EXePT Name ff y"

a:: Position No

~ ~ '" '"
No

~ 85 '" ~ Output ::J
0 ~ ~ -AUTO ~ ~ Record "' z Q:

1 , J 4 5

1 ,

page[]JOf _

GX21·9090
Printed in U.S.A.

75 76 77 78 79 80

~~~;~f:ation WlllJ 

Zero Balances 
No Sign CR 

X - Remove -
to Print P!usSign 

5 -9 '" 
Y = Date 

User y" 1 A J Field Edit 
Defined No , B K 2'" Zero 

y" 3 C L Suppress 
No 4 0 M 

Constant or Edit Word 
6 7 6 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 

J 4 5 6 7 6 9 10 11 12 13 14 15 16 17 18 19 20 2122 23 24 25 26 ",. 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 •• ~~~.R~AUM~~"~WM~~~~.~m~~ro 71 n. 73 74 

0 , oI IFII LE Ev KE -
0 , K \ :Jl!~ V 1(,.1 

0 3 0 fl 'J,. J.' 
0 4 0 lu 'X ~K I 

0 5 ~14 
\ I 

0 6 0 1~lr 'I FL lIB" 
0 7 0 Ir;~ '1 ('l' 
0 B In ~~ 'IN 1l!1~ oH / 
0 9 0 
1 0 0 

5-4 SSP-IeF Programming for Subsystems and Intra Subsystem Reference 



Sending Data (Put Operations) 

IB~ 1"III'Nlt'OMI BUI'''''_ MKh,nlll CorporlllOn 

Program 

Programmer Date 

0 
... 

@¥ ~ICI - 1:: ... 
e~ 

Filename 
:z: • 

L~ !l. iti 
!'e or 

Record Name !'e" m" Line ! o E L 

A 0 

0" 
AND 

To send a data record to a remote system or program, specify a put operation 
($$SENDNI, $$SENDE, $$SENDET, $$SENDNF, or $$SENDFM). If you are 
using IDDU functions, specify a put operation in a user-defined field, select the 
send detach, or specify a put operation in a user-defined field and select the invite. 

For each put operation, you specify two fields on the output specifications as 
follows: 

Positions Field Description 

1 through 4 Length, in decimal, of the user data (right adjusted). An 
output record length of zero for $$SEND operation 
performs an invite operation. An output length of zero 
is also allowed for $$SENDE, ##SENDET, and 
$$SENDNI operations. 

A maximum of 4075 bytes can be sent by a put 
operation for all subsystems except Intra, IMS, and 
APPC, for which the maximum is 4096 bytes. 

5 through xxxx User data to be sent. 

The following figure shows how you can enter a $$SENDET operation on the 
output specifications: 

RPG OUTPUT SPECIFICATIONS 

Skip Output Indicators Commas 
Field Name 

or 

A~. A!. 
v" EXCPT Name v" ff a: Position No 

j ! j~ ;n No 
a: 

Output ::; 
~ • ~ '"AUTO ~~ Record iii 

z Q: , 2 3 . 5 

, 2 

pageDJOf _ 

GX21-9090 
Printed in U.S.A. 

75 76 77 78 79 80 

~;~;~,,;on I I I I I I I 

Zero Balances 
No Sign CR 

X'" Remove -
to Print Plus Sign 

y = Date 5·9 = 

User v" , A J Field Edit 
No 2 B K Defined 

Z = Zero 
V" 3 C L Suppress 
No 4 D M 

Constant or Edit Word 

• 7 , 9 10" 1213 14 15 16 11 18 19 2021 22 23 24 

j • • • 7 , 9 1011 1213 1415 1617 1819 20 2' 22 "24 2526 2728 29 30 3 1 32 33 34 35 J6 37 3839 4041 4243 ME~O~~~~~~~~~~~~~~~~M~~~~~ro 71 72 73 14 

0 , Oil Itl~ 
o. 2 Ie K~ \ tl!i E 11::11' I 

0 3 0 Itt 'OJ ~Ia 'a' 
o 4 SrTlR B~ 
0 5 

o 6 0 

Chapter 5. RPG II Programming 5-5 



Request to Change Direction Operation 

To request a change in the direction of transmission, specify a request to change 
direction operation ($$RCD). This operation has no fields associated with it; 
therefore, you need only to code $$RCD on the output specifications. If you are 
using IDDU functions, select the send request to write and invite. 

After you issue the request to change direction operation, your program must 
continue to receive data until the remote system sends a change direction 
indication. This is indicated in the return code following the input operation. 

5-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference 



Set Timer Operation 

To specify a time interval in your program, use the set timer operation 
($$TIMER). Enter the following field on the output specifications: 

Positions Field Description 

1 through 6 Interval time to be set. The time should be specified in 
hours, minutes, and seconds (hhmmss). 

Note: To use the $$TIMER operation, the ID field in the file must identify a 
display station or session that is attached to the program. 

To check that the time has ended, use a READ operation not preceded by a 
NEXT operation. The NEXT operation causes input to come from a specified 
session (not the timer) during the READ operation (see "NEXT Operation" and 
"READ Operation" later in this chapter for more information about these 
operations). 

The following figure shows how you can enter the value on the output 
specifications to set the timer for 2 minutes: 

RPG OUTPUT SPECIFICATIONS GX21-9090 
Prmted if' USA 

~P.:.::<o:::;. ... :::m ________ r-_____ --li KOVing I G"phi, I I I I I I I J Ca'" EI""o Numbe< I 
p"' ...... ,., I 0... I In"'"'tion I Ke, I I I I I I I I 

1 2 

P.[OOI _ 75 16 17 78 79 80 

~;'C:;:.tiorl[rrTm 

0 
~ 

~~~ Skip Output Indicators 
I--- Field Name e, or

Filename z ~ •
A!d ,!d

EXCPT Name !l. i:~! ~ or
linlt ~ Record Name I- .. ""

o E L ~ ~ ~ ADO ~ "" OR ;; 0 0 -AUTO z z z
AND

ff Commas Zero a.~.nctJS No 5i CR - X" Remo~e
to Print 91'1 Plus Sign 5.9 =

Yes Yes 1 A J Y ... ~:~ Edit User
End Yes No 2 B K z .. Zero Defined

0:: Position No Yes 3 C l Suppress
i Cp in a:: No No 4 0 M

85 Output g
~ ~ Record 0:- 1 2 3 4 5 6 7 8 C~n~~a~~ ~: ~=i~;V,~r~6 17 18 19 20 21 2'1 23 ~

3 .. 5 6 1 8 9 10 11 12 13 14 15 18 17 18 19 20 21 22 23 24 25 26 27 :.!8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 ~1 52 53 54 55 5& 57 58 59 60 61 62 63 64 6566 67 68 69 70 71 72 13 74

il<! I \ I~ :111111 1'11:11< I

Chapter 5. RPG II Programming 5-7

Response Operations

To tell the remote system or program that your program found something wrong
with the data it received (that is, to send a negative response), use a negative
response operation ($$NRSP or $$NRSPNI). These operations are for the Intra
and SNUF subsystems only.

Enter the operation on the output specifications. You can also enter the
following two optional fields on the output specifications:

Positions Field Description
~------------+--

1

2 through 9

Indicates whHther sense data is being sent: 0 or blank
indicates that no sense data is being sent; 8 indicates
that sense data is being sent.

The sense data to be sent with the negative response.
The sense data is user-defined, but the first 4
characters must be lOxx, 08xx, or 0000. For a
description of the sense data, see the Systems Network:
Architecture Reference Summary.

,----------'---,----------------------------,--

The following figure shows how you can enter the negative response values on the
output specifications:

RPG OUTPUT SPECIFICATIONS

8SP-lCF' Programming for Subsystems and Intra Subsystem Reference

1 ,

page[]J of _.~

GX21·9090
Printed in USA

Cancel Operations

Fail Operation

There are two types of cancel operations: those that cancel a RYOUP of records
that has just been sent (used by the SNUF and Intra subsystems only), and th.e
cancel invite operation, which cancels an invite operation for which no input has
yet been received (used by the BSCEL and Intra subsystems only).

• For the SNUF and Intra subsystems only, to cancel a group of records that
has just been sent, specify a cancel operation ($$CANL or $$CANLNI). rb:~

cancel operations have no fields associated with them; therefore, you need
only enter the operation on the output specifications.

• For the BSCEL and Intra subsystems only, to cancel any valid invite
operation for which no input has yet been received from any invited session,
use the FORMAT parameter in the WRITE statement to specify the cancel
invite operation ($$CNLINV). The cancel invite operation has no additional
parameters or data associated with it. For restrictions on the use of this
operation by the BSCEL subsystem, see "Cancel Invite Operation" in Chaptt"f
2 of the SSP-ICF Base Subsystems Reference manual.

To tell the remote system that your program detected an abnormal condition (for
example, it received incorrect data), specify a fail operation ($$FAIL). If you are
using IDDU functions, select the send fail. The fail operation has no fields
associated with it, and no data can be sent by the operation. Therefore, you need
only enter the operation on the output specifications. The fail operation can be
used only with the Intra, Peer, and APPC subsystems.

End of Session Operation

To end a session with a remote system, use the end of session operation ($$EOS).
The end of session operation has no fields associated with it; therefore, :you nceo
only to enter the operation on the output specifications.

Note: If an RPG II program is started with an operation that includes n,n
end of transaction indication (by an * EXEX procedure stnrt request!,
the program should issue an end of session or a release operation to
free the session ID entry in the internal table of identifiers for the
WORKS TN file.

Chapter 5. RPG II Programming 5-9

WORKSTN Operations

The following WORKSTN operations and RPG cycle input are used with
interactive communications:

• ACQ (acquire) operation

• REL (release) operation

• NEXT operation

• READ operation

ACQ (Acquire) Operation

IBM Inlern",,:)nel Blnl"1I1I Machinel CDI'potation .
fProgram

I Programmer Date

C Indicators
§ - ~ AL 1 .]

line
11;
.... 0

E " .f~ i i • Z

The ACQ operation acquires the session specified by the 2-character session
identifier (literal or variable) in factor 1 of the calculation specifications. The first
character of the identifier must be numeric (1 through 9), and the second
character must be alphabetic (A through Z, $, #, or @). Factor 2 specifies the
name of the WORKSTN file from the file description specifications.

If an error occurs when the program attempts to acquire the session, the indicator
in positions 56 and 57 is set on, and the next calculation step is executed. If no
indicator is specified, the program halts unless the INFSR subroutine is specified
in the program. If the INFSR subroutine is specified, the subroutine receives
control. See "Return Code Processing in RPG II" later in this chapter for more
details on error handling.

The following figure shows how you can specify an ACQ operation on the
calculation specifications:

RPG CALCULATION SPECIFICATIONS GX21-9093
PTinted in U ,S . .e

1 2
Graphic I I J Card Electro Number

page[DOf
75 76 77 78

Keying Program rnI
Instruction Key I I I 1 Identification

Result Field R-..ltlng
Indicators

Arithmetic

:; ~us Minusl Zero
Factor 1 Operation Factor 2 ~ Com Comments

Name Length ~1>21<21-2
_ LookupfFactor 2lis

~ High Low Equal
, 4 5 • 7 9 I. 1112 1314 1616 17 18 19 20 21 22 23 24 25 28 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 ~5456 .. " 58 .9 80 61 62 63 B4 B5 86 87 88 B8 70 71 1:

o 1 c rtlQl1 ' 1 g, 11 FI] LIE ':HI1
o 2 C OR-
O 3 C NQJI c: II r 'J It'"'j .,(2)
o 4 It;
o 5 C

5-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

REL (Release) Operation

/-

The REL operation issues a release for the session specified in factor I (literal or
variable) of the calculation specifications. Factor 2 specifies the name of the
WORKSTN file from the file description specifications.

If an error occurs when the program attempts to release the session, the indicator
in positions 56 and 57 is set on, and the next calculation step is executed. If no
indicator is specified, the program halts unless the INFSR subroutine is specified
in the program. If the INFSR subroutine is specified, the subroutine receives
control. See "Return Code Processing in RPG II" later in this chapter for more
details on error handling.

For more specific information about the release operation, see the appropriate
subsystem reference manual.

The following figure shows how you can specify the REL operation on the
calculation specifications:

RPG CALCULATION SPECIFICATIONS GX21·9093
Printed in U.S.A.

II-_~.m _______ .--____ --II Koylng

I Programmer I Date I Instruction
I-G="="=-~+-I+-1+-1+-+-11+-11+--11111 Co ••• , 0 Numb .. 1

K.y 1 1 1

1 2

pageDJOf 75 76 77 78 79 80

~;~;~atlon I I I I I I I

C S Indicators Result Field Resulting
...I Indicators

r-- 9 I J Arithmetic
=~ A~ Ad J ~ Pius MinUS Z.ro

~ ! ~ Factor 1 Operation Flctor 2 l!i Compo," Comments
Line ~ jt£ Name Length .. f 1>21<2 '-2

~ ~ ~ ~ ~ .& 'Ii LooIcup(Focto.21I,
:l....I::! i z I::i%HIIttLowEqUI'

3 .. !5 8 '1 8 9 10 11 12 13 '4 1& 18' 17 18 19 20 21 22 23 2<t 215 28 27 i:za 29 30 31 3233 34 3& 31 37 38 38 40 .'4243 '" 45 46 47 48 49 SO 51 &2 &a 54 6& 58 57 68 119 80 81 15283 S4 811i 86 87 ISB ea 7tI 71 7'2 73 14

Ole OJ \ 1 I II< FtJ: L E ~
o 2 C -OR
o 3 C !912l Nil L 1F="ll L
o 4 C
o 5 C

Chapter 5. RPG II Programming 5·11

NEXT Operation

IB~ 1"1."'II1'~"" Bu"nII .. MKI' .. nel Corpor.,iGn

I ""' m

I Progr.mmer I Date

C ~
Indicators

I-- ~ AL Jd

~!
Line >-g

~~ ~ ~ ~
3 .. Ii 6 7 9 10 11 12 13 14 16 '8 17

o 1

o 2 C

The NEXT operation forces the next input to the program to come from the
session specified in factor 1 (literal or variable) of the calculation specifications.
Factor 2 contains the name of the WORKSTN file for which the operation is
requested.

If more than one NEXT operation is specified between input (READ or primary
file input) operations, only the last operation has any effect.

If an error occurs during the NEXT operation, the indicator in positions 56 and
57 is set on, and the next calculation step is executed. If no indicator is specified,
the program halts unless the INFSR subroutine is specified in the program. If the
INFSR subroutine is specified, the subroutine receives control.

See "Return Code Processing in RPG II" later in this chapter for more details on
error handling.

The following figure shows how you can specify the NEXT operation on the
calculation specifications:

APG CALCULATION SPECIFICATIONS GX21·9OII:
Printed in I

I K..,ing I Graphic I I I I I : C..d Elec .. o Num....1
1 2 7576 7

I Instruction I Key I I I I I PII{IJof =ficIt,onCII
Result F i.'d

RllUldng
IndlQton

h
Arithmetic:

Plus MlnUd z.ro
Factor 1 Operation Factor 2 Ii Com Comments

Name Langill 1>21<21-2
l~ LookupIF 211

H Hi .. Low EQull
18 19 20 21 22 23 ~ 2& 26 27 28 29 30 31 32 33 34 35 31 37 38 39 40 41 42 ~44464147'" 41 60 61 62 &a &415&51&11818 10111213 718.70'

, 12 lS')(T IIr FIL og(lj
j;c

o 3 C ~ 1"111 Xl I 1 ~OJ
o • C
o 5

5-12 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

READ Operation

IB~ tntlf<'"-UOnll' ,,,.. Mlll:hlft's Corparl._

I Program

I Progrtmmer I Oat.

C Indicators
§

t--- ~ AL 1
~!

Line I-'a
~ ~ i ~ ~ ~.§

The READ operation requests input from any display station or session (accept
input operation) or, when used with the NEXT operation, from a specific display
station or session (get operation). If a NEXT operation has been executed since
the last READ operation, the READ operation does a get operation for the
session specified by the NEXT operation. If no NEXT operation has been
executed since the last READ operation, the READ operation does an accept
input operation. Factor 2 contains the name of the WORKSTN file from which a
record should be read.

If an error occurs during the READ operation, the indicator in positions 56 and
57 is set on. If no indicator is specified, the program halts unless the INFSR
subroutine is specified in the program. If the INFSR subroutine is specified, the
subroutine receives control.

See "Return Code Processing in RPG II" later in this chapter for more details on
error handling.

Positions 58 and 59 can contain an indicator to be set on when the end-of-file
condition occurs. The end-of-file condition occurs for a session when an accept
input operation is issued with no outstanding invite operations. (See "End-of-File
Considerations" later in this chapter for more information.) The end-of-file
indicator is not set on when an end of transaction occurs. The information data
structure (INFDS) must be checked to determine the end of a transaction.

For SSP-ICF input operations, the maximum amount of data that can be received
by a program is 4075 bytes for all subsystems except Intra, IMS, and APPC, for
which the maximum is 4096 bytes.

The following figure shows how you can specify the REAl? operation on the
calculation specifications:

RPG CALCULATION SPECIFICATIONS GX21-9093
Printed in U.S.A.

I Keying I I I I I : Ca,d EI .. "o Numbo, I 1 2
75 76 77 78 79 80 Graphic

page[IJof I Instruction K.y I I I I I ~~~;~f~ltion I I I I I I
Result Field R.Lllting

Indicatora

&
Arithmetic

'~
Plus Minus Zero

Factor 1 Operation Factor 2 i! Com_ Comments
Name Length ~ 1>21<21-2

j Lookup(FlCtor 2lis

High Low Equel
3 • 5 6 7 . ,. 1112 13 1~ IS 18' 11 18 19 20 21 22 23 24 26 26 27 tza 29 30 31 32 33 34 35 3fJ 37 38 39 40 41 42 43 44 46 46 47 48 495051 52 54 " 60 81 82 83 &4 85 8& 67 88 • 70 71 72 73 74

0 \ I~ J,(l I IFIl II: ICiIQ
o 2 C
o 3 C

Chapter 5. RPG II Programming 5-13

I

RPG Cycle Input

The RPG program cycle includes a step to read a record from the primary file. If
the primary file is a WORKSTN file, the input operation performed may be an
accept input or a get operation. If a NEXT operation has been executed since the
last RPG input cycle, the RPG input cycle performs an accept input operation.
For information about how the RPG program cycle affects WORKSTN files, see
"How WORKSTN Files Are Processed" in the manual Programming with
RPG II.

RPG II Operations Summary Chart

The following chart shows the valid RPG II operations for each subsystem. An x
in a subsystem column indicates that the subsystem supports the operation. A -
in a column indicates that the subsystem does not support the operation.

RPG II SSP-ICF RPG II Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUFAPPC

Accept input2 READ x x x x x x x x x x
Aquire ACQ x x x x x x x x x x
Cancel $$CANLNI x - - - - - - - x -
Cancel invite $$CNLINV x x - - - - - - - -
Cancel then invite $$CANL x - - - - - - - x -
End of session $$EOS x x x x x x x x x x
Evoke $$EVOKNI x x x x X x4 - X X x
Evoke end of $$EVOKET x x - x x - - x x x
transaction

Evoke then invite $$EVOK x x x x X x4 - X X x
Fail $$FAIL x - - - - - - x x
Get2 READ x x x x x x x x x x
Invite3 $$SEND x x x x x x x x x x
Negative response $$NRSPNI x - - - - - - - x -
Negative response $$NRSP x - - - - - - - x -
then invite

Put $$SENDNI x x x x x - x x x x
Put end of $$SENDE x x x x - x x x x -
file/chain

Put end of $$SENDET x x - x x - - x x x
transaction

Put FMH $$SENDNF x - - - - - x - x -
Put FMH then $$SENDFM x - - - - - x - x -
invite

Put then invite $$SEND x x x x x x x x x x
Release REL x x x x x x x x x x
Request to change $$RCD x x x - - - - x x x
direction then
invite

Set timer $$TIMER x x x x x x x x x x

1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.

2If a NEXT operation is executed before the READ operation, the READ operation is a get operation; otherwise, the
operation is an accept input operation.

3Valid only when a $$SEND operation is issued with a record length of zero.
4Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

5-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Code Processing in RPG II

F
f--

Line

3 4 5

~~::.=

Filename

Following each operation, a return code that indicates the results of the operation
is issued.

The exception/error processing subroutine (INFSR) and error indicators for the
WORKSTN operation codes (REL, ACQ, NEXT, and READ) allow you to
control the program logic if errors occur during WORKSTN file processing. The
WORKSTN file information data structure (INFDS) contains status information
that your program can check to determine what type of exception or error
occurred. The INFDS, which is updated after each operation, also contains
status information for normal conditions. Using the information in the INFDS,
your program can determine which conditions to handle in the INFSR
subroutine.

The following figure shows how to code the INFSR and INFDS on the file
description specifications and the input specifications:

File Description Specifications
For the valid entries for a system refer to the RPG reierence manual for that svstem

File Type

File Designation

End of File

Sequence

Mode of Proce"mg

Length of Key FIeld or

of Record Addre" Field

Rccord Address Type ...J

Type of File
w

w ,-F'_" F--'-'_'m_"-.-_---1 N Organization or 8
~o~ .e ~ Additional Area :5

~ BI ck Record ~ t. OVf!rflow Indicator 'g
~ iQ le~gth Length ~ e ~.Ield t:

~ 9~ :J 4:~ IE~~i~~ UJ

a: I..U <C P------'----:E:-"-"n-':":' RO-eo-'-,,""d Nc-,-mL'---'---'------'--"""'=--'--

Device
SymboliC
Device

Name of
Label EXit

Extent Exit
for DAM

Storage Index

ContmuatiOn Lines

Option Entry

File Addition/Unordered

Number of Tracks

for Cylinder O~erf!ow

Number of Exlent~

Tape

~
Fde
Condition
U1.U8.

Z UC r--
~

1 8 9 - 10 11 12 13 14 15 16 11 1819 2021 22232425' 26 21 28 29 30 31 323334 35 36 31 3839 4041 424344 45 46 474849 50 51 52 53 54 5556 57 58 59 6061 626364 65 66 67 68 69 70 7! 72 73 14

~~,'f""'"1: Intt""dl,o"al Bu •• ness Mach,nes Corpora{.on
RPG INPUT SPECIFICATIONS GX21·9094

Printed In USA

I P"g"m I K,ying I G"phIC 1--t--I-+-I-+--r-I+---t----1JI C"d E'""" Nomb" I
f-p-,,'::"'g,,-m-m,-, ------'1-0,-,,------4) Instruction r;:;---r I J I I

1 2

page[]]Of ~

I
f--

Q

~
Line E

Filename
or

Record Name

, External Field Name
Field Location

] Record t dentification Codes

~~
cO

~o~--,_r~~---r,_r+----_r~~~ From To

Data StruC\lJre

Field
Indicators

~ 0
~

, RPG ;; " ~ ~ ~
0

" " " ~ £ Field Name u: " Zero

~] t1
,J! Plus Minus " C
~ Blank

6
j:. _ ~ - ~ - e~~

Position ~ ~ 1 PositIon ~ ~ 1 POSition ~ ~ ~ ~ gt-O-,,-"".....,-----l ,f~---,~-~±,.....jn
Str~~~~ re 0 R 5

o 1

o 2

o 3

o 4

o 5

o 6

~ " " " Z u U Z U u it u 6 3; Ii: n Times Length
Name ANDZ

5 6 7 8 9 1011 1213141516 ,., 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 ~O 51 52 53 54 55 56 57 58 5960 61 62 63 64 65 66 67 68 69 70 71 72 73 74

III NF 5
I

I

I

I

I

Is
IlIIISrrll! !TUIs ~/1 l!ll 1115

.~ ~A MI~ Ie I[
2 1£ 1.11]

If neither the INFSR subroutine nor the error indicators are specified, an error is
handled by the RPG II error handling routine, which causes your program to
halt. The operator must then choose the appropriate option.

Chapter 5. RPG II Programming 5-15

The following chart and description show the steps for processing return codes.

Update 'STATUS
and return code
in INFDS

No

No

RPG II error handling
{program halts}. If
INFSR called by
EXSR, returns to next
sequential instruction.

II

Yes

Yes

Yes

Continue

Set on
indicator

II 1....-_---,. __ ---'

Continue

Execute
INFSR
subroutine

I!I 1....-_---,. __ ---'

Yes

Go to point in
RPG II cycle
specified by
factor 2 entry
on ENDSR

*GETIN (Beginning of next cycle)

*DETC (Detail calculations)

'CANCEL (Cancel program)

S791 0057-0

5-16 SSP-ICF Programming for SUbsys'tems and Intra Subsystem Reference

o When an operation is completed, the status information (*ST ATUS and
the return code, in most cases) is updated in the INFDS.

o If the condition is normal, the next instruction in your program is
processed.

II If the condition is an exception or error (*ST ATUS equal to or greater
than 99), a check is made to see whether an indicator was specified in
positions 56 and 57 of the calculation specifications for a READ, ACQ,
REL, or NEXT operation.

D If an indicator was specified, that indicator is set on, and the next
instruction in the program is processed. If the INFSR subroutine is to be
run, you can issue an EXSR operation.

o If an indicator was not specified, a check is made to see whether an INFSR
was specified. If not or if factor 2 of the ENDSR is blank, RPG displays a
message on the system console.

m If INFSR was specified and factor 2 of the ENDSR operation contains an
entry, control is passed to the point specified by factor 2 on the ENDSR
operation. Factor 2 can be *GETIN to go to the beginning of the next
input cycle, *DETC to perform detail calculations, *CANCL to cancel the
program, or a variable that contains one of these values.

Chapter 5. RPG II Programming 5-17

INFSR Subroutine Coding Considerations

IE~ Internat,on,1 BUSiness MKnlne5 Co'po,",on

I Program

I Programmer I Date

C Indicators

f-- ii' 1 1 Q

~
z

'" Line ... g
j ex:,' '0 ~ ~ ~ z

If you use an INFSR subroutine, you should check return codes 80xx and 81xx.
If any of these codes occur, the INFSR subroutine should issue an $$EOS
operation to release the session. This clears the RPG internal table entry for that
session and allows that entry to be used by a subsequent session.

The return code indicating that the timer has expired (code 0310) causes the
INFSR subroutine to be run. If you use the set timer operation, be sure to check
for this return code.

When the INFSR subroutine is specified for the WORKSTN file and positions 56
and 57 of the calculation specifications are blank, any exception or error
encountered for that file causes the INFSR subroutine to be run. Therefore, if
operations that can cause exceptions or errors are issued from the subroutine to
the WORKSTN file, be careful to code the subroutine to prevent loops. The
following figure shows one way of doing this.

RPG CALCULATION SPECIFICATIONS GX21-9093
Printed in U,S)

----1 K.yio, 1 G"phk 1 1 1 1 1 1 1 C"d "oe"o Numb" I I 2
75 76 77 7S

page[] of Program [IIT
Instruction Key -T I Identification

Result Field Resulting
Indicators
Arithmetic

Plus Minus Zero
Factor 1 Operation Factor 2 Compare Comments

Name Length 1>21<21-2
Lookup{Factor 2lis
High Low Equal

3 4 5 6 8 9 10 I 1 12 13 141516 17 18 19 20 21 22 23 24 25 26 21 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 54 55 5657585 9 60 61 tl2 63 64 65 66 61 68 69 70 71 7,

0 I C I<
o 2 C .,
o 3 c j;Jirl

o 4 C
o 5 C
o 6 C
0 7 C
o 8 C
o 9 c
1 0 c
I I C
I , c
I 3 C

I~II< UIR
V \ I I
T Ie; , N "Ill

M \ II
I 1\ ITIL

~
i sl~ II'! l" l'li" If! I"' In 1.1. i 1<

I~
1\

.l\
Ie Ell I'lWl

flit-

Indicator 50 is set on when the INFSR subroutine (ERRSUB) is entered for the
first time. If any errors occur in the subroutine ERRSUB that would cause the
subroutine to be reentered, the subroutine exits to the RPG error handler (factor
2 is blank). The error handler displays the appropriate error message. If the
operations issued in the subroutine ERRSUB do not cause exceptions or errors,
the subroutine exits to the start of the RPG cycle.

5-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

RPG II Status Values

The following shows the *STATUS values as returned in the RPG II INFDS for
each major and minor return code. Use this list to determine the SSP-ICF return
code or group of codes that corresponds to the *ST ATUS value. Then see the
description of the major and minor return codes in the appropriate subsystem
reference manual. All return codes that are valid for that subsystem are described
in that reference manual. A summary chart in Appendix B shows which codes are
valid for each subsystem.

Major Code Minor Code ·STATUS Value

00,01,02 All (except 10) 00000

00,02 10 01321

03 00 01311

03 01,02,03 01299

03 08 01275

(\3 10 01331

03 14 01311

03 15 01299

03 lC 01275

04 02, 11, 12 01299

08 00 01285

11 00 00011

28 00 00000

34 01 01201

34 31 01201

80,81,83 All 01251

82 All 01281

Note: RPG II performs additional error checking before passing a request to
data management. If an error is found, the status value is updated,
and the return code field remains unchanged.

Chapter 5. RPG II Programming 5-19

RPG II Programming Considerations

The following topics describe items you should consider when you write an
RPG II program for interactive communications. Information on these and othet
considerations for WORKSTN file programming is in the manual Programming
with RPG II.

Using Continuation Options on the File Description Specifications

The following continuation options can be coded on the file description
specifications for WORKSTN files:

• NUM

• SAVDS

• IND

• SLN

• ID

• INFSR

• INFDS

• FMTS

• CFILE (for use with IDDU only)

NUM Contip.uation Option

The NUM continuation option specifies the maximum number of display stations
and sessions that can be attached to the file at one time. This number should
include the number of requesters as specified by the MRTMAX parameter plus
the number of display stations and sessions that the program acquires at a time.
The display stations and sessions specified by the MRTMAX parameter are
reserved for requesters, and the remaining display stations and sessions can be
acquired. For example, if the MRTMAX parameter value is 4 and the NUM
value is 5, only one session can be acquired at a time. The number specified must
be right-adjusted in positions 60 through 65. If no number is specified, 1 is
assumed.

Note: Even if the program is an SRT program, a NUM value of 2 (or more)
must be specified if the program also acquires display stations and
sessions.

5-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

SA VDS Continuation Option

The SA VDS continuation option specifies the name of a data structure that can
be saved and restored for each display station and each session in this file. This
data structure cannot be a display station local data area, and it cannot contain a
compile-time array or a pre-execution-time array.

Note: Only one copy of the data structure is available at a time. For
example, if a program receives input from a session, only the data
structure for the session is available; the data structure for the display
station is not available. The only data structure available is that of
the display station or session from which the last input came.
Therefore, you should not use this data structure to save the identifier
of a display station for which an interactive communications request
has been made.

IND Continuation Option

The IND continuation option specifies the indicators associated with each display
station and session that are to be saved and restored. The indicators numbered 01
through the nU)l1ber specified by the IND value are saved. The entry must be
right-adjusted in positions 60 through 65.

Note: Only one copy of the indicators is available at a time. For example, if
a program receives input from a session, only the indicators for the
session are available; the indicators for the display station are not
available. The only indicator available is that of the display station
or session from which the last input came.

SLN Continuation Option

The SLN continuation option specifies the starting line number for display,
formats. The SLN option does not apply to sessions.

ID Continuation Option

The ID continuation option specifies the name of a 2-character field to contain
the identifier of the current display station or session. Following input
operations, the field contains the identifier of the display station or session from
which the input was received. Any output operations are directed to the display
station or session whose identifier is in the field. Thus, by changing the contents
of the field, the output can be directed to any session or display station. A
session identifier must be numeric-alphabetic (for example, IS); a display station
identifier must be alphabetic-alphameric (for example, WI).

INFSR Continuation Option

The INFSR continuation option specifies the name of a subroutine to be used for
exception/error handling. "Return Code Processing in RPG II," earlier in this
chapter, describes INFSR in more detail.

Chapter 5. RPG II Programming 5-21

INFDS Continuation Option

The INFDS continuation option specifies the name of a data structure to contain
information concerning exceptions and errors. "Return Code Processing in
RPG II," earlier in this chapter, describes INFDS in more detail.

FMTS Continuation Option

The FMTS continuation option specifies the name of the display screen format
load member containing the operations for this program. The name entered in
this option overrides the name normally assumed by the RPG II compiler (the
program name followed by FM). If the only operations used in the program are
the interactive communications operations, *NONE must be specified for this
option.

CFILE Continuation Option

The CFILE continuation option specifies the name of an IDDU file definition.
This file definition contains the IDDU formats that may be used with an Intra or
an APPC communications session.

SRT and MRT Program Considerations

An SRT (single requester terminal) program can have only one requesting display
station or only one requesting session. SRT programs can acquire multiple
sessions or display stations, using the ACQ operation. If an SRT program
acquires any display stations or sessions, the NUM value on the file description
specifications must renect the maximum number of concurrently attached sessions
and display stations (all those that are acquired plus one requester).

An MRT (multiple requester terminal) program can have multiple requesting
display stations and/or sessions. The first requester of an MRT program causes
the program to be loaded and initiated. Each succeeding requester attaches to the
program at the beginning of an input cycle or when a READ operation is
performed. The program is notified of the new requester via a return code on the
input operation. MRT programs can also acquire additional display stations and
sessions. The NUM value on the file description specifications must include the
maximum number of requesters plus the number of sessions and display stations
that are acquired and that are active concurrently.

5-22 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

End-of-File Considerations

The effects of end of file on the program depend on whether the file is a demand
file or a primary file.

End of file for a demand or primary file occurs only on an input operation (not
preceded by a NEXT operation) and only when no display stations or sessions
have been requested for input; that is, there are no outstanding invite operations.
(This second condition could occur because no invite operations were issued or
because all display stations and sessions have been released.) If the program is a
never-ending program (NEP), both end-of-file conditions must exist and the
system operator must have entered the STOP SYSTEM command for the
end-of-file condition to occur.

For a primary WORKSTN file, an end-of-file condition sets on the LR indicator,
and the program goes to end of job. For a demand WORKSTN file, an
end-of-file condition sets on the indicator in positions 58 and 59 of the READ
operation that detected the end of file. This indicator can be the LR indicator, or
the program can set on the LR indicator later. If no indicator is specified, RPG
issues an error message indicating that the end of the file has been reached.

Release Considerations

You can specify a release operation by using the REL operation (described earlier
in this chapter) or by coding an R in position 16 of the output specifications. If a
format name is specified in the same output specification that contains an R in
position 16, the format is displayed or the interactive communications operation is
performed before the display station or session is released. When a program ends,
display stations and sessions are automatically released.

If a session was acquired, the release operation terminates that session. If a
display station was acquired, the release places the display station in standby
mode.

If the session was started by a remote procedure start request or if a display
station requests the program, the release operation passes the session or display
station on to the next step in the procedure. If the program is an MRT program,
the session or display station is released immediately. If the program is an SRT
program, the session or display is released when the program terminates. If the
program is the last step in the job, the display station returns to the command
display, or the session is terminated when the program ends.

Chapter 5. RPG II Programming 5-23

Restrictions for WORKSTN Files

The following restrictions apply to using a WORKSTN file in an RPG II
interactive communications program:

• The WORKSTN file must be specified as a combined file (capable of both
input and output).

• If the WORKSTN file is specified as a primary file, no secondary files are
allowed in the program.

• Only one WORKSTN file is allowed in a program.

• A program cannot contain a KEYBORD, CRT, or CONSOLE file ifit
contains a WORKSTN file.

• Control level indicators, match field values, and look-ahead fields are not
allowed.

• The first page indicator (IP) is not allowed.

Input and Output Considerations

Considerations for when output can be sent and what input operations are
required depend on whether the communication is with a display station or
session that is acquired or is a requester.

When a requester (either a display station or a session) attaches to a program, the
first operation is an input operation. The input operation fills in the ID field,
which is used to direct subsequent operations to the appropriate session or display
station. If data accompanied the request, the data is passed to the program on
this first input operation; if no data accompanied the request, a blank record is
passed to the program. If the program is an SR T program, output to the
requester may precede input; however, if output precedes input, data sent with the
request is lost. Output can precede input if the requester's ID or blanks are
specified in the ID field and output is performed as the first operation to the file.

When a session or display station is acquired, the next input operation retrieves a
blank record. If an output operation (any put or evoke with data) is performed in
the same cycle as the acquire operation, the next input operation retrieves a data
record. .

5·24 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

RPG II Coding Examples

For a complete example of an RPG II communications program, see "Writing an
RPG II Program That Uses the Intra Subsystem" in Chapter 6 of the SSP-/CF
Guide and Examples manual. The same programming example described in the
Intra chapter is also used in for the other subsystems, but only the changed areas
needed to allow communications with that type of remote system are shown.

Chapter 5. RPG II Programming 5-25

5~26 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 6. The Intra Subsystem

Overview of the Intra Subsystem 6-3
Setting Up an Intra Subsystem 6-5

CNFIGICF Procedure 6-5
Explanation of Displays 6-6

Subsystem Member Definition 6-7
Display 1.0 SSP-ICF Configuration Member Definition 6-7
Display 2.0 SSP-ICF Configuration Member Type 6-8
Display 22.0 Subsystem Member Definition 6-9

Modifying a Subsystem Configuration 6-10
Enabling and Disabling the Intra Subsystem 6-10
Starting Communications Sessions That Use the Intra Subsystem 6-11

SESSION Statement 6-12
Procedure Start Requests 6-13

Communications Operations for the Intra Subsystem 6-14
Accept Input Operation 6-17
Acquire Operation 6-18

Acquire Operation Examples 6-18
Assembler 6-18
BASIC (Normal Acquire) 6-18
BASIC (Special Acquire) 6-19
COBOL 6-19
RPG II 6-19

Cancel Operations 6-20
SNUF-Related Cancel Operations 6-20
BSCEL-Related Cancel Invite Operation 6-21

End of Session Operation 6-22
Ending Sessions Started by an Evoke Operation from Another

Program 6-22
Evoke Operations 6-23

Assembler Evoke Operation (Macroinstructions) 6-25
$WSIO Macro 6-25
Example of $WSIO Macro 6-25
$EVOK Macro 6-26
Example of $EVOK Macro 6-26

BASIC Evoke Operation Parameters 6-27
IDDU Format Considerations 6-27
BASIC Example (Evoke Operation) 6-28

COBOL Evoke Operation Parameters 6-29
IDDU Format Considerations 6-29
COBOL Example (Evoke Operation) 6-30

RPG II Evoke Operation Parameters 6-31
IDDU Format Considerations 6-31
RPG II Example (Evoke Operation) 6-32

Fail Operation 6-33

Chapter 6. The Intra Subsystem 6-1

Get Operations 6-35
Invite Operation 6-37
Negative Response Operations 6-38
Put Operations 6-39
Release Operation 6-41
Request to Change Direction Operations 6-42
Set Timer Operation 6-44

Intra Subsystem Return Codes 6-45

6-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Overview of the Intra Subsystem

The Intra subsystem allows interactive communications between two application
programs in the same SystemJ36. Multiple pairs of application programs can
communicate concurrently in the same subsystem.

System/36

PGMA PGMB PGMC PGMD

Acquire 1 S Send Receive Send Receive
Evoke PROGB

SSP-ICF
Data
Management

• I f _______________________ Intra , , ______________ 1

Subsystem
t _______________________________ ~

Support

Location Name = SYS36 Configuration Record = INTRA1

S791 0003·0

Chapter 6. The Intra Subsystem 6-3

The Intra subsystem can also be used in the following ways:

• It can be used in a limited way to test new communications programs that are
to be run with any of the other subsystem types, such as BSCEL or Peer.
You can test a program in the Intra subsystem to help debug the program
before you attempt to use it to communicate with its intended remote system
over a communications line.

During testing, you can check only the return codes returned by the Intra
subsystem. After testing, if you want to check other return codes not
supported by the Intra subsystem, you can add the necessary coding changes
before actually running the program with the intended subsystem.

• It can be used to help train programmers in writing SSP-ICF programs.
Complete communications programs (written in assembler, BASIC, COBOL,
and RPG II) that use the Intra subsystem are shown and described in the
SSP-ICF Guide and Examples manual.

• It can be used with one program to control access to a critical file. All
programs attempting to access the file would have to communicate with that
program via the Intra subsystem before the file could be accessed. Security
can be in effect on System/36, and journaling could be done by the program
performing the actual input or output operations to the file.

• It can be used with externally described field, format, and file definitions (also
called data definitions) to send data records. Data definitions, which describe
data records and communications functions, are defined separately from the
application program. The interactive data definition utility (IDDU) is used to
create data definitions.

For more information about using IDDU, refer to the manual Getting Started
with Interactive Data Definition Utility. For more information about IDDU
and communications files, refer to the online information for IDDU.

6-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Setting Up an Intra Subsystem

Before an Intra subsystem can be used for communications, the SSP-ICF support,
the Intra subsystem support, and configuration members must be put on
System/36. This is accomplished with the following procedures:

1. The CNFIGSSP (SSP configuration) procedure must be used to copy (install)
the SSP-ICF support and Intra subsystem support from diskette to the
system. (See the manual Changing Your System Configuration for the
description of the CNFIGSSP procedure.)

2. The CNFIGICF (SSP-ICF configuration) procedure must be used to create a
particular Intra subsystem configuration member. The name of the created
subsystem configuration member is then used when that subsystem is started
by the ENABLE procedure command.

Multiple Intra configuration members can be created and stored in the system,
and more than one Intra subsystem can be active and in use at the same time.
(The name of each member must be unique within a library.) Subsystems of other
types can also be active.

CNFIGICF Procedure

This section describes the displays and parameters (shown in prompt form) needed
to define and create an Intra subsystem configuration. To help you define the
attributes of a particular Intra subsystem member, use the prompting facilities in
the CNFIGICF procedure to specify the parameter values that define the
subsystem attributes and create the subsystem member.

A general description of the configuration process is contained in the SSP-[CF
Guide and Examples manual.

Chapter 6. The Intra Subsystem 6-5

Explanation of Displays

On the following displays for an Intra configuration member:

• All the prompts that can be displayed for the Intra subsystem are shown on
the displays and are described in the text. The prompts are shown for all the
parameters that are needed either to create a new Intra configuration member
or to change (edit), delete, or review an existing member.

Note: The prompt lines that are actually displayed on succeeding
displays depend on the task specified on display 1.0 and on the
options that you select on other displays. Prompt lines not shown
do not apply to the task or options previously selected.

• For this set of example displays only, the values to the right of the prompts
are shown with:

Default values, supplied by the system. If the system provides a default
value, that value is shown here. (You can enter a different value if you
wish.)
Sample values, as typical examples. If fewer characters are shown than
the field allows, the remaining positions in the field are underscored.
Note that once a value has been entered in a field, it becomes the default
value for any related fields on the succeeding displays.
Underscored fields represent fields in which a value can be specified or a
default value (if any) is assumed when a value is not specified. The
length of the underscore represents the length of the field.
Fields filled with asterisks (*) indicate that the field contains a value that
the CNFIGICF procedure duplicates from a value that was entered on a
previous display.
Fields with values in them indicate that the value shown is the only value
that can be specified for this subsystem.

6-6 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Subsystem Member Definition

Display 1.0 SSP-ICF Configuration Member Definition

1.0

On display 1.0, specify the name of the subsystem configuration member you are
creating or using in some way, and specify what is to be done with the member.

SSP-ICF CONFIGURATION MEMBER DEFINITION

1. Configuration member name INTRA_

#LIBRARY 2. Library name

3. Select one of the following:
1. Create new member
2. Edit existing member
3. Create new member from existing member
4. Remove a member
5. Review a member

Option

4. Existing member name ..

5. Existing member library name

Cmd7-End Cmd19-Cancel

1-5

#LIBRARY

1. Configuration member name: Enter the name that identifies this configuration
of the subsystem. This name is used to store the subsystem configuration
member in a library, and it is also used in the ENABLE and DISABLE
procedure commands to start and stop the subsystem.

2. Library name: Enter the name of the user library in which the configuration
member is to be stored. The default is the library that you are currently
using.

3. Select one of the following: Select one of the five options. For example, if
you want to modify an existing member then store the modified member as a
new member (without changing the existing member), select option 3.

4. Existing member name: This prompt is displayed only if you select option 3
for prompt 3. Enter the name of the existing subsystem configuration
member that is to be used to create the new member. (The existing member
is not changed.)

5. Existing member library name: This prompt is displayed only if you selected
option 3 for prompt 3. Enter the name of the library that contains the
existing member. The default is the library name specified for prompt 2.

Chapter 6. The Intra Subsystem 6-7

Display 2.0 SSP-ICF Configuration Member Type

On display 2.0, specify the type of member you want to define or redefine.

2. a SSP-ICF CONFIGURATION MEMBER TYPE

Select one of the following options:
1. INTRA
2. BSC
3. SNA
4. Async
5. PC Support/36

Option: 1

Cmd3-Previous display
Cmd7-End

Cmd5-Restart CNFIGICF
Cmd19-Cancel

INTRA

COPR IBM Corp. 1986

Select one of the following options: Because the Intra subsystem member is being
defined, enter a 1. The Intra subsystem does not require a line member to be
defined.

6-8 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Display 22.0 Subsystem Member Definition

22.0

On display 22.0, specify the remote location name with which your program is to
communicate. For the Intra subsystem, the location is within your System/36;
therefore, you can use the other program name as the location name.

SUBSYSTEM MEMBER DEFINITION INTRA

1. Remote location name INTRA

Cmd5-Restart CNFIGICF
Cmd19-Cancel

Cmd7-End
COPR IBM Corp. 1986

1. Remote location name: Specifies the name of the remote location with which
your program will be communicating. Enter a name of no more than 8
characters. This name is used to match a SESSION statement with a
subsystem configuration; therefore, to use this configuration, you must also
enter this name in the LOCATION parameter of a SESSION statement. See
"SESSION Statement" later in this chapter for a description of the SESSION
statement. If you do not enter a location name, the subsystem configuration
member name is also used as the location name.

This location name also appears in system messages to help operators identify
the particular subsystem configuration.

Chapter 6. The Intra Subsystem 6-9

Modifying a Subsystem Configuration

To change one or more of the attributes defined in a subsystem member of an
existing Intra subsystem configuration, you can use the CNFIGICF procedure to
change (edit) the member. (For the changed attributes to take effect, the
subsystem using the configuration must be disabled and enabled again.) After the
CNFIGICF procedure is completed, the updated member definition is used each
time any subsystem associated with the changed member is enabled.

Enabling and Disabling the Intra Subsystem

The ENABLE and DISABLE procedure commands are used to start and end the
Intra subsystem on System/36. The ENABLE procedure command associates the
subsystem support with a particular subsystem configuration member.

The DISABLE procedure command ends (disables) a specified subsystem. When
the DISABLE procedure command is performed, the disabled subsystem cannot
handle program communications requests because it no longer exists in main
storage.

See the section "Enabling and Disabling Subsystems" in Chapter 1 for a
description of the ENABLE and DISABLE procedures;

6-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Starting Communications Sessions That Use the Intra
Subsystem

System/36 communications sessions using the Intra subsystem can be started in
one of the following ways:

• Your program can issue an acquire operation to start (acquire) the session.
The acquire operation identifies the session to be started and must match the
session identifier specified in an associated SESSION statement, when one is
used.

• Another program in System/36 can start your program indirectly with a
procedure start request (actually, an evoke operation). The request in the
Intra subsystem is made when the program issues an evoke operation that
identifies a procedure which then starts your program. (The evoke operation
does in the Intra subsystem what a procedure start request does in other types
of subsystems when the request is sent by a remote system to System/36.)

The following sections describe the SESSION statement and procedure start
requests for the Intra subsystem.

Chapter 6. The Intra Subsystem 6-11

SESSION Statement

Each program (except BASIC programs) that is to acquire a session must have at
least one SESSION statement included in the procedure that loads the program.
The SESSION statement must be placed between the LOAD and RUN OCL
statements used for the program. The SESSION statement specifies three things:

• It identifies, on the SYMID parameter, the session to be acquired later in the
program.

• It identifies, on the LOCATION parameter, the location with which the
program is to communicate (in this case, another program in System/36).
Before the SESSION statement is executed, the Intra subsystem associated
with the specified location must have already been started. (The location
name was specified in the subsystem configuration member.)

• It specifies, on the BATCH parameter, whether the session is to be used for
batch processing. If BATCH-NO is specified or assumed, several of the
communications operations (for example, the cancel, negative response, and
request to change direction operations) are not valid for an Intra-supported
(interactive) session. If BATCH-YES is specified, CONFIRM is ignored on
an end of transaction operation.

The SESSION statement, then, identifies the session and location with which your
program is to communicate, and indirectly identifies the subsystem that has the
necessary attributes needed to communicate in the session.

Note: A BASIC program requires a SESSION statement if interactive
session operations are performed.

The syntax of the SESSION statement for the Intra subsystem is:

II SESSION LOCATION-name,SYMID-session id ['BATCH-{~~s}l

89020325-0

LOCATION Parameter: Specifies the location name to be associated with this
session. The location name, specified on display 22.0 during subsystem
configuration, refers to the location with which your program is to communicate.
(If the location name parameter was not specified during subsystem configuration,
the location name was assumed to be the same as the subsystem configuration
member name. The subsystem configuration member name is the name that was
specified on the ENABLE procedure command to enable the subsystem now
being used for this session and location.) This parameter has no default.

6-12 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

SYMID Parameter: Specifies the symbolic identifier of the session with which this
SESSION statement is associated. Your program uses this identifier when it
acquires the session and whenever it issues any operation in the session. The
identifier must be 2 characters: the first character must be numeric (0 through 9),
and the second character must be alphabetic (A through Z, $, #, or @). This
parameter has no default.

BATCH Parameter: Specifies whether batch-oriented operations (request to
change direction, negative response, cancel, and function management header
operations) can be issued for this session. YES indicates that they can be issued;
NO indicates that they cannot and is the default.

Procedure Start Requests

To initiate another procedure on System/36, your program must issue an evoke
operation. The subsystem starts (evokes) the specified System/36 procedure,
which then starts a program with which your program can communicate. For a
description of the four types of evoke operations that can be used to start another
program, see "Evoke Operations" later in this chapter.

Chapter 6. The Intra Subsystem 6-13

Communications Operations for the Intra Subsystem

This section describes all the input and output operations that can be coded in a
program that is to communicate, using the Intra subsystem, with another program
in System/36.

For complete details about how many of these operations work and how to use
them, see the SSP-!CF Guide and Examples manual. Also, for complete coding
examples of two Intra communications programs in assembler, BASIC, COBOL,
and RPG II, refer to the examples given in the Intra subsystem chapter in the
SSP-!CF Guide and Examples manual.

The following summary chart presents all the Intra subsystem operations and
their operation codes in all four languages. Then, in the topics that follow, each
operation or group of related operations is deClcribed. Each operation is
described, .its operation codes in all four languages are shown in a smaller chart,
and coding examples (if appropriate) are given.

Note: In the operation charts in this section, the codes that are valid for
each operation are listed to the right of the operation in their
respective language columns. If an operation is not valid in one or
more languages, dashes (---) are shown in the columns instead.

6-14 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Intra Subsystem Language Operation

Operations Assembler BASIC COBOL RPGII

Accept input ACI WAITIO and READ2 READ3
READI

Acquire ACQ OPEN ACQUIRE ACQ
Cancel4 CAN $$CANLNI $$CANLNI $$CANLNI
Cancel invite CNI $$CNLINV $$CNLINV $$CNLINV
Cancel then get4 CANG - - -
Cancel then invite4 CANI $$CANL $$CANL $$CANL
End of session EOS $$EOS $$EOS $$EOS
Evoke lO EVK5 $$EVOKNI $$EVOKNI $$EVOKNI
Evoke end of transactionlO EVE5 $$EVOKET $$EVOKET $$EVOKET
Evoke then getlO EVG5 - - -

Evoke then invitelO EVI5 $$EVOK $$EVOK $$EVOK
Fail FAIL $$FAIL $$FAIL $$FAIL
GetlO GET READ READ6 NEXT and

READ7
Get attributes GTA ATTRIBUTE$ ACCEPT -

Get status9 GST ATTRIBUTE$ ACCEPT -

InvitelO INV $$SEND8 $$SEND8 $$SEND8
Negative response4 NRP $$NRSPNI $$NRSPNI $$NRSPNI
Negative response then get4 NRPG - - -

Negative response then invite4 NRPI $$NRSP $$NRSP $$NRSP
PutlO PUT $$SENDNI $$SENDNI $$SENDNI
Put end of chain PEC $$SENDE $$SENDE $$SENDE
Put end of transactionlO PEX $$SENDET $$SENDET $$SENDET
Put then getlO PTG - - -

Put then invitelO PTI $$SEND8 $$SEND8 $$SEND8
Put FMH PFM $$SENDNF $$SENDNF $$SENDNF
Put FMH then get PFMG - - --
Put FMH then invite PFMI $$SENDFM $$SENDFM $$SENDFM
Release REL CLOSE DROP REL
Request to change direction then get4 RCDG - - -

Request to change direction then invite4 RCm $$RCD $$RCD $$RCD
Set timer STM $$TIMER $$TIMER $$TIMER

lIn BASIC, an accept input operation is performed only if the W AITIO operation is followed by a READ operation.
21n COBOL, an accept input operation is performed only if the TERMINAL option of the READ statement is not specified
or is specified with blanks.

31n RPG II, an accept input operation is performed only if the READ operation is not preceded by a NEXT operation.
4This operation is valid only in batch sessions, when BATCH-YES is specified on the SESSION statement.
51n assembler, a function management header can be sent with this operation by specifying OPM-FMH on the $WSIO
macro.

61n COBOL, a get operation is performed only if the TERMINAL option of the READ statement is specified with
nonblanks.

71n RPG II, a get operation is performed only if a NEXT operation is executed before the READ operation.
81n BASIC, COBOL, or RPG II, only an invite operation is performed if $$SEND is issued with a record length of 0 bytes.
Otherwise, $$SEND performs a put then invite operation.

9The record area must be at least 128 bytes long.
lOIn assembler, a confirm indicator can be sent with this operation by specifying OPM-CONFIRM on the $WSIO macro. If
OPM is not CONFIRM it must be ZERO. In other languages, a confirm indicator is specified in an IDDU format
definition.

Chapter 6. The Intra Subsystem 6-15

The following chart presents the Intra subsystem operations and their related
functions in IDDU.

Intra Subsystem
Operations IDDU Keywords1 IDDU Functions

Evoke EVOKE Evoke process
Evoke end of transaction EVOKE and DETACH Evoke process and send

detach
Evoke then invite EVOKE and INVITE Evoke process and invite
Fail FAIL Send fail
Invite INVITE Invite
Put Field2 Put
Put end of transaction DETACH3 Send detach
Put then invite Field and INVITE2 Put and invite
Request to change RQSWRT and INVITE Send request to write and
direction then invite invite

lA confinn indicator can be specified in addition to each function (except RQSWRT and
INVITE, and FAIL). A confinn indicator is specified in an IDDU fonnat definition.

2Data for these operations is specified in a separate user-defined field.
3Inaddition, a user-defined field can be specified with this operation.

In the topics that follow, each operation or group of related operations is
described; its operation codes in all four languages are shown, corresponding
IDDU keywords (if appropriate) are shown, and coding examples (if appropriate)
are given.

For a description of how IDDU processes functions, refer to Appendix A,
"Processing IDDU Functions," in the SSP-ICF Base Subsystems Reference
manual.

6-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Accept Input Operation

Your program can use the accept input operation to perform three different
functions. You can use it to:

• Obtain data from any program or any display station that has responded to
an invite operation that was previously issued in your program. If data
becomes available to your program from more than one program or display
station before the accept input operation is issued, your program receives the
data that was first made available, whether it was from another program (via
the Intra subsystem) or from a display station.

• Check whether the timer that was set by the set timer operation has expired.
(For a description of the set timer operation, see "Set Timer Operation" later
in this chapter.)

• Wait for a new requester.

If your program was evoked, it should issue an accept input operation as
its first operation to determine the identifier of the new requester. (Your
program is notified of the new requester by the resulting Olxx return code
at the end of the accept input operation.)
If your program is an MRT NEP program and no previous invite
operation or set timer operation is in effect, it should issue an accept
input operation so it can wait for a new requester.

Except for the first accept input operation in evoked programs or in MRT NEP
programs, all accept input operations in all programs should be issued to receive
data only after an invite operation is issued by itself or in combination with
another operation, or after a set timer operation is issued.

Operation Assembler BASIC COBOL RPGII

Acc~pt input ACI WAITIO and READ2 READ3
READl

lIn BASIC, an accept input operation is performed only if the W AITIO operation is followed
by a READ operation.

2In COBOL, an accept input operation is performed only if the TERMINAL option of the
READ statement is not specified or is specified with blanks.

3In RPG II, an accept input operation is performed only if the READ operation is not preceded
by a NEXT operation.

Chapter 6. The Intra Subsystem 6-17

Acquire Operation

Your program uses the acquire operation to establish a session between your
program and the Intra subsystem in System/36. The session being established is
identified in the acquire operation statement, and its identifier must match the
session identifier given in the SYMID parameter of your program's SESSION
statement for this session.

The session started by the acquire operation is initialized with the parameters
specified in the SESSION statement. (For the Intra subsystem, there are no
parameters on the SESSION statement that override any parameters defined
during subsystem configuration.)

Note: In BASIC, a SESSION statement is not needed if a special acquire
operation is performed. In this case, the location name is specified in
the LOC parameter of the OPEN state17l,ent to indicate which location
is to communicate with this session.

Operation Assembler BASIC COBOL RPGII

Acquire ACQ OPEN ACQUIRE ACQ

Acquire Operation Examples

Assembler:

$WSIO DTF-ICDTF2,TERMID-2S,OPC-ACQ

This $WSIO macro is used to acquire the session identified as 2S. The DTF to be
used for sending or receiving data is identified as ICDTF2. (For a complete
description of the $WSIO macro's communications parameters, see "$WSIO
Macro" in Chapter 2.) A SESSION statement that specifies SYMID-2S is
required.

BASIC (Normal Acquire):

OPEN #1: "SESSION,ID=lS,RECL=255" IOERR ICFERR

This OPEN statement opens interactive communications file #1 and acquires the
session identified as 1 S. The maximum record length that can be sent or received
is 255 bytes. If the acquire operation is not successful, the program branches to
the statement labeled ICFERR. A SESSION statement that specifies SYMID-IS
is required.

6-18 . SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASIC (Special Acquire):

OPEN #1: "SESSION,LOC=CHICAGO,RECL=255" IOERR ICFERR

This OPEN statement opens interactive communications file #1 and acquires a
session with the remote location identified as CHICAGO. No SESSION
statement is used. For this acquire operation to be successfully performed, a
subsystem configuration specifying the location name CHICAGO must already be
enabled.

COBOL:

ACQUIRE COMM-SESSION FOR COMMUNICATIONS-FILE.

This ACQUIRE statement acquires the session that has the same session identifier
as the value in the COMM-SESSION field. The COMM-SESSION field must be
defined as a 2-character field with a valid session identifier (such as PIC XX
VALUE, 'IS'). The session is acquired for the TRANSACTION file named
COMMUNICATIONS-FILE, which has been opened as I~O. A SESSION
statement is required.

RPGll:

Field:
Positions:

Value:

Factor 1
18 - 27

'IS'

Operation
28 - 32

ACQ

Factor 2
33 - 42

ICFILE

Indicator
56 - 57

90

This ACQ operation acquires the session specified by the identifier' 1 Sf in factor 1
of the calculation specifications. Factor 2 specifies the name of the WORKSTN
file from the file description specifications. A SESSION statement that specifies
SYMID-lS is required.

Chapter 6. The Intra Subsystem 6-19

Cancel Operations

There are two types of cancel operations: those that cancel a group of records
that has just been sent (used by the Intra subsystem, particularly when simulating
a SNUF subsystem environment), and the cancel invite operation, which cancels
an invite operation for which no input has yet been received (used by the Intra
subsystem, particularly when simulating a BSCEL subsystem environment).

SNUF-Related Cancel Operations

Your program can use a SNUF subsystem-related cancel operation to cancel the
current chain of data (group of records) that it is sending to the other program.
The cancel operation causes a return code to be returned to the other program,
which is in receive state. The return code indicates to the receiving program that
the sending of the current chain is being terminated abnormally (possibly because
your program detected an error in the data). The receiving program should
disregard all the records in the current chain that have been sent (that is, all
records sent since the previous end of chain indication).

The SNUF-related cancel operation is valid only when three conditions exist: the
operation must be issued only in a batch session, within a chain of records, and
while your program is in send state. The operation does not end the session.

The following are the three types of SNUF-related cancel operations.

• Cancel: Cancels the current chain of data.

• Cancel then get (assembler only): Cancels the current chain of data being
sent, and then waits for the other program to send its own data.

• Cancel then invite: Cancels the current chain of data being sent, invites the
other program to send its own data, and then regains control without having
to wait for the invited input to be received. (An accept input or get operation
must be issued later to receive the invited input,)

The cancel and negative response operations can be considered as a pair. Cancel
is the appropriate response when a negative response indication is received.
However, if the sending program detects an error, cancel can be sent without
waiting to receive a negative response indication.

Operation Assembler BASIC COBOL RPGII

Cancel1 CAN $$CANLNI $$CANLNI $$CANLNI
Cancel then get1 CANG - - -
Cancel then invite1 CANI $$CANL $$CANL $$CANL

lThis operation is valid only in batch sessions, when BATCH·YES is specified on the SESSIO:l\
statement.

6-20 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

BSCEL-Related Cancel Invite Operation

Your program can use a BSCEL subsystem-related cancel invite operation to
cancel any valid invite operation for which no input has yet been received from
any invited session. (The cancel invite operation is the only valid cancel operation
for the BSCEL subsystem.)

When used by the Intra subsystem, the BSCEL-related cancel invite operation is
valid only when it is issued after any valid invite operation. Normally, no data
will be in the subsystem's input buffer when the cancel invite operation is issued.
If data is in the input buffer, the operation fails and return code 0412 is received
by the program. Your program must issue an input operation to receive the data.

Operation Assembler BASIC COBOL RPG II

Cancel invite CNI $$CNLINV $$CNLINV $$CNLINV

Note: When this operation is used w{th a BSCEL subsystem, there are some
restrictions about which operations this operation can follow and there
are some switched line restrictions. Refer to "Cancel Invite
Operation" in Chapter 2 of the SSP-ICF Base Subsystems Reference
manual for that information.

Chapter 6. The Intra Subsystem 6-21

End of Session Operation

Your program uses the end of session operation to terminate a session. Unlike the
release operation, the end of session operation always terminates the session (if it
still exists), and it always gives a normal completion return code. However, if the
operation is issued during an active transaction, both the transaction and the
session are terminated abnormally by the Intra subsystem, and the other program
may also be terminated abnormally. For example, your program could issue the
end of session operation after an error has occurred on one of its previous
operations; it may be an error from which your program cannot easily recover.

Ending Sessions Started by an Evoke Operation from Another Program

The end of session operation can be issued in a session that was started by an
evoke operation issued by another program in System/36. In this case, your
program should issue the end of session operation after it receives an end of
transaction indication. The end of session operation frees that session so that it
can be started again by another program.

If your program does not issue an end of session operation, the session exists until
your program (or multiple-program procedure) terminates. To prevent your
program from terminating abnormally because of a communications error, you
may want to code the end of session operation in your program as a general
recovery action for all unexpected errors that you have not handled individually
in your program. The end of session operation could be used to terminate the
session rather than retrying the failing operation in that session or specifying some
special recovery action for each error.

Operation Assembler BASIC COBOL RPGn

End of session EOS $$EOS $$EOS $$EOS

Note: If an RPG II program is started with an evoke end of transaction
operation, the program should issue an end of session or release
operation to free the session ID entry in the internal table of
identifiers for the WORKSTN file.

6-22. SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Evoke Operations

The evoke operation starts a procedure (and a transaction) on System/36. The
procedure then starts a program that will handle the transaction. You can issue
an evoke operation in your program only after a session has been acquired.
Multiple evoke operations can be issued in an Intra session. (However, only one
transaction at a time can be active; the previous transaction must have ended
before the next evoke operation can be issued.)

The evoke operation must include an evoke parameter list, and can optionally
include either procedure parameters for the procedure being started or
user-supplied data for one of the programs started by the procedure. The
parameters specified in the evoke parameter list (including the name of the
procedure being started) are described for each language later in the topic.

The following types of evoke operations can be used in an Intra session to start
another procedure on System/36.

• Evoke: Evokes the spe(;ified procedure, sends data to the subsystem (if
specified by the user), and then waits until that procedure has been started
before control is returned to your program.

• Evoke end of transaction: Evokes the specified procedure, sends any data
specified by the user to one of the programs started by that procedure, and
then ends the transaction without allowing the program to communicate in
return.

• Evoke then get (assembler only): Evokes the specified procedure, sends any
data specified by the user, and then waits for input to be received from one of
the programs started by the procedure.

• Evoke then invite: Evokes the specified procedure, sends any data specified by
the user, invites one of the programs started by that procedure to send data,
and regains control without having to wait for the evoke operation to be
completed or for the invited data to be received. (An accept input or get
operation must be issued later in this transaction to receive the data in your
program's input buffer.)

Operation Assembler BASIC COBOL RPG II

Evoke EVK1,2 $$EVOKNI $$EVOKNI $$EVOKNI
Evoke end of EVEl,2 $$EVOKET $$EVOKET $$EVOKET

transaction
Evoke then get EVG1,2 - - -

Evoke then invite EVl1,2 $$EVOK $$EVOK $$EVOK

lIn assembler. a function management header can be sent with this operation by specifying
OPM-FMH on the $WSIO macro.

2In assembler, a confirm indicator can be sent with this operation by specifying
OPM-CONFIRM on the $WSIO macro. If OPM is not CONFIRM, it must be ZERO.

Chapter 6. The Intra Subsystem 6-23

The evoke parameter list associated with each type of evoke operation contains
the name of the procedure to be started, the name of the library in which the
procedure is located, and the password and user identifier associated with that
procedure. (The password and user identifier are needed only if security is being
used on System/36.) The evoke operation can optionally include either (but not
both) parameters to be sent to the evoked procedure or data to be passed to one
of the program~ started by the procedure.

A function management header can be included with the data sent on an evoke
operation. If function management headers are included in the data passed in a
session, BATCH-YES must be specified on the SESSION statement associated
with that session. (For a description of function management headers, see
"Function Management Headers (CICS and IMS)" in Chapters 1 and 2 of the
SSP-ICF Upline Subsystems Reference manual.)

If you are using assembler, a confirm indicator can also be included with the data
sent on an evoke operation. If the confirm indicator is to be included,
OPM-CONFIRM must be specified. If OPM is not CONFIRM, it must be
ZERO. In other languages, a confirm indicator is specified in an IDDU format
definition.

The total length of the procedure name and data (or procedure parameters)
specified in the program to be sent to the subsystem cannot exceed 508 bytes.
(This does not include the other three evoke list parameters, each of which can be
8 bytes long.)

The evoke, evoke end of transaction, and evoke then invite operations can also be
used with externally described field, format, and .file definitions (also called data
definitions). The interactive data definition utility (IDDU) is used to create data
definitions. The following IDDU keywords are used for each language (in place
of the operation codes):

Operation IDDU Keywords

Evoke EVOKEl
Evoke end of transaction EVOKE and DETACHl
Evoke then invite EVOKE and INVITEl

lA confirm indicator can be specified in addition to each function. A confirm indicator is
specified in an IDDU format definition.

Refer to the manual Getting Started with Interactive Data Definition Utility for
more information about IDDU and creating data definitions.

6-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Notes:

1. If you are using IDDU, information associated with the EVOKE can be
passed in a user-defined field or separately, in the following order:
procedure name, name of the library in which the procedure is located,
user ID and password associated with the procedure, and user data (if
any). When user data is passed, the result is an evoke operation followed
by a put operation and any additional keywords (for example,
CONFIRM, DETACH, or INVITE).

2. If you are using IDDU to send an evoke parameter list that contains
procedure parameters of which some may not be specified, you should
define an IDDU format that specifies only one parameter. The length of
the parameter should be defined as the total length of all the passed
parameter values (including the commas that are used to separate the
values or to indicate any unspecified parameters).

3. If you are using IDDU to create a for-mat definition, you should also use
IDDU to print it. Use the resulting format definition listing to determine
the order and starting positions of the parameters in the evoke parameter
list and. optionally, the starting position of the user-supplied data or
procedure parameters that follow.

Assembler Evoke Operation (Macroinstructions)

$WSIO Macro: To perform an evoke operation in assembler, use the $WSIO
macro. You specify the desired evoke operation code (EVK, EVE, EVG, or EVI)
in the OPC parameter of the macro (for example, OPC-EVK). You must use
another macro, $EVOK, to specify the evoke parameters needed to perform the
evoke operation specified on the $WSIO macro. The function management
header modifier (specified as OPM-FMH in the $WSIO macro) is valid only if
BATCH· YES was specified on the SESSION statement of the program that
acquired the session. (For a complete description of the communications
parame.ters for the $WSIO macro, see "$WSIO Macro" in Chapter 2.) The
confirm indicator is valid only if OPM-CONFIRM was specified in the $WSIO
macro. If OPM is not CONFIRM, it must be zero.

User data or procedure parameters (in either positional or keyword form) to be
passed to the other program or procedure are specified in the RCAD and
OUTLEN parameters on the $WSIO macro. The RCAD parameter can be used
for both input and output when the evoke then get operation is used.

Chapter 6. The Intra Subsystem 6-25

EVOK

EVKLST

ICPROC

ICLIB

USERID

PASS

Example of $WSIO Macro:

$WSIO DTF-ICDTF1,INLEN-256,RCAD-IOBUFF,OPC-EVG,
OPM-CONFIRM,PL@-EVKLST,OUTLEN-ll1

•
•

This $WSIO macro (in your program) evokes a procedure on System/36, starts a
transaction in the acquired session, and then waits for input because the operation
is an evoke then get operation. The parameters to be used in the operation are
those identified by the label EVKLST (shown in the following $EVOK example).
There are 111 bytes of output data or procedure parameters in your program
buffer named IOBUFF that are to be sent to the other program or procedure.
Note that, because 111 bytes are specified for the output buffer, the procedure
name can have no more than 8 characters (the two cannot exceed the specified
maximum of 119 bytes). Then, when input is received from the program, the data
is placed in your program's buffer (IOBUFF), which is 256 bytes long.

$EVOK Macro: The $EVOK macro builds a parameter list to be associated
with an evoke operation. The label on this macro should be the label specified on
the PL@ parameter of the $WSIO macro performing the evoke operation. (For a
complete description of the $EVOK macro and its parameters, see "$EVOK
Macro" in Chapter 2.)

Example of $EVOK Macro:

$EVOK V-ALL,PNAME-ICPROC,LNAME-ICLIB,

•
•

EQU
DC
EQU
DC
EQU
DC
EQU
DC

UID-USERID,PWORD-PASS,SYNCL-l

*
CL8'ICFPROC ,

*
CL8'COMMLIB I

*
CL8'JJOHNSON'

*
CL4'J4AG'

This $EVOK example shows an evoke parameter list, used by a $WSIO macro
(such as the previous $WSIO macro example), that causes the procedure named
ICFPROC in the library named COMMLIB to be evoked. The user identifier
JJOHNSON is located at the address labeled USERID, and the user's password
J4AG is at the address PASS.

6-26 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASIC Evoke Operation Parameters

The following parameters are associated with BASIC evoke operations; System/36
uses the first four parameters to form the evoke parameter list. If you don't use a
parameter (defined as a field in the BASIC evoke operations), enter the correct
number of blanks for the unused field.

Positions Field Description

1 through 8 The name of the procedure in System/36 to be evoked
(left-adjusted).

9 through 16 Your password (left-adjusted), to be checked by
System/36 (if security is being used) to ensure that your
program is allowed to start the specified procedure.

17 through 24 Your user identifier (left-adjusted), to be checked by
System/36 (if security is being used).

25 through 32 The name of the library that contains the procedure to be
started (left-adjusted).

33 through xxxx User data or procedure parameters (leading blanks are
ignored).

Note: To see how the positions described here correspond to the values
shown in the following example, see" Starting Remote Programs
(Evoke Operations)" in Chapter 3.

IDDU Format Considerations:

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

Chapter 6. The Intra Subsystem 6-27

BASIC Example (Evoke Operation):

030 WRITE #l,USING 40,FORMAT "$$EVOK": "BASICR",PASS$,USERID$,&
&"#LIBRARY","ICFPROG,USERLIB" IOERR ICFERR

040 FORM 4*C 8,C 15

The WRITE statement at line 30 writes data to communications file #1 using the
FORM statement at line 40. The WRITE statement issues a $$EVOK (evoke
then invite) operation to evoke the BASICR procedure, which is in #LIBRARY
in System/36. The variable PASS$ and the intrinsic function USERID$ contain
the password and user identifier needed to sign on to the system. The BASICR
procedure calls the program ICFPROG that is in the user library USERLIB. The
FORM statement at line 40 indicates that the $$EVOK operation is to send four
fields (evoke parameters) of 8 characters (4*C 8) each and 15 bytes of positional
parameters (C 15). If an error occurs, the program branches to the statement
labeled ICFERR.

6-28 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

COBOL Evoke Operation Parameters

The following parameters are associated with COBOL evoke operations;
System/36 uses the first four parameters to form the evoke parameter list. All the
parameters must be defined by your program in the output area for COBOL
evoke operations. All values in these fields must be character values. If a field is
not used, space must still be reserved for it in the output area.

Bytes Field Description

8 The name of the procedure in System/36 to be evoked.

8 The password you use to sign on the system if security is
being used.

8 The user identifier you use to sign on the system if security is
being used.

8 The name of the library containing the procedure to be started.

20 Reserved.

4 Length (in decimal) of user data or procedure parameters, if any.

xxxx User data or procedure parameters.

IDDU Format Considerations:

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

Chapter 6. The Intra Subsystem 6-29

57
58
59
60
61
62

63

COBOL Example (Evoke Operation):

**
* EVOKE PARAMETER LIST *
**

01 EVOKE-RECORD.
03 PROCEDURE-NAME PIC X(8) VALUE 'ICFREM
03 PASSWORD PIC X(8) VALUE 'T123
03 USERID PIC X(8) VALUE 'OURSYSTM' .
03 LIBRARY PIC XiS) VALUE 'THEIRLIB'.
03 FILLER PIC X(20) VALUE SPACES.
03 EVOKE-DATA-LENGTH PIC 9(4) VALUE o.

95 WRITE SCREEN-SSP-ICF-RECORD FROM EVOKE-RECORD,
FORMAT IS '$$EVOK', TERMINAL IS ICF-SESSION.

The WRITE statement at line 95 issues the $$EVOK (evoke then invite) operation
to evoke a procedure (ICFREM) in the session identified by ICF-SESSION.
Lines 57 through 63 give the values of the parameters used in the evoke operation
performed by the WRITE statement.

6-30 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

RPG II Evoke Operation Parameters

The following parameters are associated with RPG II evoke operations; System/36
uses the first four parameters to form the evoke parameter list. These parameters
are defined as fields for the RPG II evoke operations. For any parameters that
are not used, enter the correct number of blanks in the fields.

Positions Field Description

1 through 8 The name of the procedur", in System/36 to be evoked
(left-adjusted).

9 through 16 The password (left-adjusted) you use to sign on the system
if security is being used.

17 through 24 The user identifier (left-adjusted) you use to sign on the
system if sectll'ity is being used.

25 through 32 The name of the library in the system containing the
procedure to be started (left-adjusted).

33 through 52 Reserved.

53 through 56 Length (in decimal) of user data or procedure parameters,
if any (right-adjusted).

57 through xxxx User data or procedure parameters.

IDDU Format Considerations:

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

Chapter 6. The Intra Subsystem 6-31

IBM Int~rr'ili,onal 8"1 15 Mach'n ... ' CorporatIon

Program

Programmer Date

0 ~

~~ 50",. Skip

t--
~~
:I: -Filename i;;; ~l !l

~ 0' ~ R '" « Line j Record Name

j ji DEL

ADD «
o R

AND

RPG II Example (Evoke Operation):

RPG OUTPUT SPECIFICATIONS
1 2

page[]]Qf _

GX21·9090
Printed in U.S.A

75 76 77 78 79 80

~;~::f:.ti~ I I I I I I I

Output Indicators

ff
Commas

Zero Balanc~
No Sign CR

X = Remove -
Field Name to Print Plus Sign

0' Y"'Oa1e
5·9 '"

A~d A~d
Yo. y" I A J User

EXCPT Name Field Edit
Yo. No , B K Z = Zero

Defined

II: POSition No y" 3 C L
~ ~ No No 4 0 M

Suppress

'" 85 OutPut
~ -~-
~

'0 0 0 -AUTO ~~ Record " Constant or t::dit Word z z z 0: 1 2 :; 4 5 6 7 8 9 1011 12 13 14 I!> 16 17 18 19 20 21 22 23 24

3 4 5 6 1 8 9 10 11 12 13 14 15 16 17 Hl 1920 :2122 23 24 25 26 27 :l8 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 5960 61 62 63 64 65 66 67 68 69 70 71 7'L 73 74

o I

o 2

o 3

o 4

o 5

o 6

o 7

o 8

o 9

1 0

oW 5iI ,\.oF

0

-

0

0

0

0

~i" I I 111111111
KIt, ~$!$I:; '1 III K' I I I I I I I I I I I I I

~ \ V I (procedure name)
t-

11'- \1-'[7 ,. (password)
t-

t-
214 '1 'f~W , (user identifier)
12,~ 'I Ll B' (library name)

t-

t-
~ \ B ' (length of user data)

~14 ' 1 7 lf; I (user data)
t-

t-

- I I I I I I I I I I I I

1 1 1 1 I I II I I 1

This example shows a $$EVOK (evoke then invite) operation being used to evoke
an MRT procedure named MRTINV that is located in the library ICFLIB. The
user identifier is TRW, and the password is P7H3. Eight bytes of user data are to
be passed to one of the programs that is started by the MRTINV procedure.

6-32 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Fail Operation

Your program uses the fail operation to indicate that it has detected an abnormal
condition while it was sending or receiving data. The fail operation causes a
return code to be sent to the other program, indicating that the fail operation was
issued.

If a program that is in the send state issues a fail operation, it may indicate that
the data just sent was in error or that some other condition occurred. (The last
record before the fail operation was issued is still sent to the other program.)

If a program that is in the receive state issues a fail operation, it indicates that the
data received was in error. The program issuing the fail operation should
immediately do at least one output operation so it can indicate why it sent the fail
operation. (No data can be sent with a fail operation.) The record sent by the
output operation should identify what the error is and where the other program
should restart.

In either case, the program that issued the fail operation should send, and the
program that receives the fail return code must receive. Otherwise, the program
that was sending cannot determine which record failed or with which record it
should begin sending again.

If both programs issue a fail operation at the same time, the program that was
receiving will be successful and should send. The program that was sending will
receive the fail return code indicating that its next operation must be an input
operation.

Operation Assembler BASIC COBOL RPGII

Fail FAIL $$FAIL $$FAIL $$FAIL

Note: When a program that is in the receive state issues a fail operation, any
other records following the record that failed are ignored by the
receiving subsystem.

Chapter 6. The Intra Subsystem 6-33

The fail operation can also be used with externally described field, format, and
file definitions (also called data definitions). The interactive data definition utility
(IDDU) is used to create data definitions. The following IDDU keyword is used
for each language (in place of the operation code):

1000raHon IDDU Keyword

Fail FAIL

Refer to the manual Getting Started with Interactive Data Definition Utility for
more information about IDDU and creating data definitions.

Note: If you are using IDDU, the IDDU keywords DETACH and INVITE
may also be specified with FAIL. When FAIL and DETACH are
specified, the result is a fail operation followed by an end of
transaction. When keywords FAIL and INVITE are specified, the
result is a fail operation followed by an invite operation.

6-34 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Get Operations

Your program uses the get operation to obtain data from either a specific
program or a specific display station. In an SSP-ICF session, the get operation
causes the subsystem to get data from the program with which your program is
communicating (and which has already been evoked). The get operation also
causes your program to wait for the data if it is not immediately available. Your
program receives control when the data is available. (Note that the get operation
obtains data from a specific program or display station, and the accept input
operation allows the data to come from any previously invited program or
display station.)

In the Intra subsystem, the get operation can be issued by itself or, in assembler
only, it can be issued in combination with another operation (such as cancel then
get or put then get).

The get attributes operation (assembler, BASIC, and COBOL only) can be issued
at any time during a session to determine the status of that session. (In BASIC,
the ATTRIBUTE$ intrinsic function is used.) The operation gets the current
status information about the session in which your program is communicating.

The status information received by the get attributes operation contains (in 10
bytes) the following fields:

Position Value Meaning

1 A Session not yet acquired by the program.
C Session is an acquired session.
R Session is a remotely started session.

2 N Input not invited for this session.
I Input invited for this session, but no input is

available.
0 Invited input is available for this session.

3 through 10 Name Location name (specified during configuration
and on the SESSION OCL statement).

Chapter 6. The Intra Subsystem 6-35

The get status operation (assembler, BASIC, and COBOL only) can also be issued
at any time during a session to determine the status of a session (a 128-byte buffer
is required). The get status operation receives the same status information as the
get attributes operation along with the following additional status information:

Position Value Meaning

11 I Intra subsystem is being used.
A APPC subsystem is being used.

12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.

13 M Mapped conversation.
B Basic conversation.

14 through 16 Blanks Reserved.

17 through 33 Name Own fully qualified LU name.

34 through 41 Name Partner LU name.

42 through 58 Name Partner fully qualified LU name.

59 through 66 Name Session group name.

67 through 74 Name User ID.

75 through 128 Blanks Reserved.

Operation Assembler BASIC COBOL RPGII

Get GET READ READl NEXT and
READ2

Get attributes GTA ATTRIBUTE$ ACCEPT ~

Get status GST ATTRIBUTE$ ACCEPT ~

lIn COBOL, a get operation is performed only if the TERMINAL option of the READ
statement is specified with nonblanks.

2In RPG II, a get operation is performed only if a NEXT operation is executed before the
READ operation.

6-36 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Invite Operation

Your program uses the invite operation to request input data from another
program (via the associated session), but it receives control without waiting for
the input. To obtain the data, your program must issue an accept input or a get
operation later in this transaction.

The invite operation can be issued by itself or in combination with another
operation (such as evoke then invite or put then invite).

Operation Assembler BASIC COBOL RPG II

Invite INV2 $$SENDI $$SENDI $$SENDI

lIn BASIC, COBOL, or RPG II, only an invite operation is performed if $$SEND is issued with
a record length of 0 bytes. Otherwise, $$SEND performs a put then invite operation.

2In assembler, a confirm indicator can be sent with this operation by specifying
OPM·CONFIRM on the $WSIO macro. If OPM is not CONFIRM, it must be ZERO.

The invite operation can also be used with externally described field, format, and
and file definitions (also called data definitions). The interactive data definition
utility (IDDU) is used to create data definitions. The following IDDU keyword is
used for each language (in place of the operation code):

Operation IDDU Keyword

Invite INVITEl

lA confirm indicator can be specified in addition to this function. A confirm indicator is
specified in an IDDU format definition.

Refer to the manual Getting Started with Interactive Data Definition Utility for
more infornlation about IDDU and creating data definitions.

Chapter 6. The Intra Subsystem 6-37

Negative Response Operations

Your program uses the negative response operation to indicate that it detected
something wrong with the data it received. Eight bytes of user data (sense
information), indicating the reason for the negative response, are passed with the
negative response indication to the program that sent the data.

The following are the three types of negative response operations.

" Negative response: Sends a negative response indication with sense data to
the other program, and then returns control to your program without waiting
for a response from the other program. This operation must be followed by
an input operation to determine the action taken by the other program.

" Negative response then get (assembler only): Sends a negative response
indication with sense data to the other program, and then waits for input to
be received from the other program.

" Negative response then invite: Sends a negative response indication with sense
data to the other program, and regains control without having to wait for the
other program to respond. (An accept input or a get operation must be
issued later to receive the invited input.)

Operation Assembler BASIC COBOL RPGII

Negative response l NRP $$NRSPNI $$NRSPNI $$NRSPNI
Negative response NRPG - - -

then get l

Negative response NRPI $$NRSP $$NRSP $$NRSP
then invite1

-
IThis operation is valid only in batch sessions, when BATCH·YES is specified on the
SESSION statement.

The negative response operation can be issued only when: (1) the program is in
the receive state; (2) the data received is within a chain, or the operation is the
first operation after the end of a chain; and (3) this session is a batch session
(BATCH-YES was specified on the SESSION statement associated with this
program).

The 8 characters of user data should contain user-defined sense codes to indicate
the reason for the negative response. To be sent to the other program, the sense
codes must be put into your program's output buffer. The system sense code
must be the first 4 characters in the buffer, and the next 4 characters make up the
user sense code. The Intra subsystem checks to ensure that the system sense code
is lOxx, 08xx, or 0000. If the system sense code is not one of these, the operation
is rejected. If no sense code is supplied by the program, the default system sense
code of 0811 (break) is used.

6-38 ssp-reF Programming for Subsystems and Intra Subsystem .Reference

Put Operations

The program that receives the negative response gets a return code indicating the
condition. That program must then do an input operation to receive the sense
data. The program that received the negative response indication should issue a
cancel operation.

The put operation passes data records from the issuing program to the other
program in this transaction. Each put operation sends only one record to the
subsystem. You can issue put operations only during a transaction. You can
issue any of the following put operations without sending any data by specifying
an output record length of zero.

o Put: Issues a put operation to the subsystem to send a data record to the
other program, and returns control to your program without waiting for the
operation to complete.

• Put end of chain: Issues a put operation that indicates to the other program
that this is the last record in the chain. This operation also indicates to the
subsystem that your program is not requesting any input. Control is returned
to your program after the subsystem determines that the other program has
received the end of chain indication.

• Put end of transaction: Issues a put operation to send a record to the other
program, and then indicates to that program that this transaction has ended.
(The session is still active, but communications between the two programs has
ended.) Control is returned to your program after the subsystem
acknowledges that the other program has received the end of transaction
indication.

With the successful completion of this operation, communications between the
two programs is ended. However, the session is still active between System/36
and the program that started the session. If your program started the session,
it can start another transaction by evoking another program. If the other
program started the session, it can start another transaction by evoking a
different procedure on System/36.

• Put then get (assembler only): Issues a put operation to send a record to the
other program, and then waits for the other program to send data to your
program. Control is not returned to your program until the data is received.
(See "Get Operations" earlier in this chapter.)

• Put then invite: Issues a put operation to send a record to the other program,
followed by an invite operation so it can receive data from that program.
(See "Invite Operation" earlier in this chapter.) Control is returned to your
program without waiting for the other program to send the data. An accept
input or get operation must be issued later in this transaction to receive the
invited input.

Chapter 6. The Intra Subsystem 6-39

There are three different put function management header (FMH) operations that
issue a put operation with a function management header in the data. (For a
description of function management headers, see "Function Management Headers
(CICS and IMS)" in Chapters 1 and 2 of the SSP-ICF Upline Subsystems
Reference manual.) One of the following operations must be used to indicate to
the other program that the data includes a function management header:

• Put FMH: Sends a record that includes an FMH.

• Put FMH then get (assembler only): Sends a record that includes an FMH
and then waits for the other program to send data.

• Put FMH then invite: Sends a record that includes an FMH and then invites
(without waiting for) the other program to send data.

The put FMH operations are valid only if BATCH-YES was specified on the
SESSION statement for the program that acquired the session. Any put FMH
operation causes the receiving program to get a return code indicating that a
function management header is included with the record.

The Intra subsystem does not check the format or contents of function
management headers. (Function management headers have no particular use in
the Intra subsystem; they are supported for compatibility with the SNUF
subsystem.)

If you are using assembler, a confirm indicator can also be included with the data
sent on a put, put end of transaction, put then get, and put then invite operations.
If confirm indicators are included, OPM-CONFIRM must be specified. If OPM
is not CONFIRM, it must be ZERO. In other languages, a confirm indicator is
specified in an IDDU format definition.

Note: If a put end of transaction operation is specified with a confirm
indicator and BATCH- YES is specified on the SESSION statement,
the confirm indicator is ignored.

Operation Assembler BASIC COBOL RPGII

Put PUT3 $$SENDNI $$SENDNI $$SENDNI
Put end of chain PEC $$SENDE $$SENDE $$SENDE
Put end of PEX3 $$SENDET $$SENDET $$SENDET

transaction
Put then get PTG3 - - -

Put then invite l PT13 $$SEND $$SEND $$SEND
Put FMH2 PFM $$SENDNF $$SENDNF $$SENDNF
Put FMH then get2 PFMG - - -

Put FMH then invite2 PFMI $$SENDFM $$SENDFM $$SENDFM

lIn BASIC, COBOL, or RPG II, if this operation is issued with a record length of 0 bytes, only
the invite operation is performed.

2This operation is valid only in batch sessions, when BATCH-YES is specified on the SESSION
statement.

3In assembler, a confirm indicator can be sent with this operation by specifying
OPM-CONFIRM on the $WSIO macro. If OPM is not CONFIRM, it must be ZERO.

6-40 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Release Operation

The put, put end of transaction, and put then invite operations can also be used
with externally described field, format, and file definitions (also called data
definitions). The interactive data definition utility (IDDU) is used to create data
definitions. The following IDDU keywords are used for each language (in place
of the operation codes):

Operation IDDU Keywords

Put Fieldl,2
Put end of transaction DETACH2,3
Put then invite Field and INVITE1,2

IData for these operations is specified in a separate user-defined field.
2A confirm indicator can be specified in addition to each function. A confirm indicator is
specified in an IDDU format definition.

3In addition, a user-defined field can be specified with this operation.

Refer to the manual Getting Started with Interactive Data Definition Utility for
more information about IDDU and creating data definitions.

Your program uses the release operation to attempt to terminate a session.
Depending on how the session was started, the release operation produces
different results:

• If the session was acquired by your program, the release operation terminates
the session immediately (unless some error condition occurs). The operation
frees the resources that were used during the session. (If the release operation
is not successful, the end of session operation can be issued to terminate the
session.) The same or another session can then be acquired.

If a release operation is issued for an acquired session during an active
transaction, an error return code is received; the release operation can be
performed only after your program successfully issues a put end of
transaction operation or after your program receives an end of transaction
rt:tum code.

• If the session was started when your program was evoked by another
program, and your program is:

An MRT program, the release operation passes the session to the next
step in your procedure. The system then executes any additional OCL
statements in the procedure.
An SRT program, the release operation is delayed until your program
terminates. (If your program issues another communications operation
for that session, error return code 2800 is received.)

Operation Assembler BASIC COBOL RPG II

Release REL CLOSE DROP REL

Chapter 6. The Intra Subsystem 6-41

Request to Change Direction Operations

Your program can use the request to change direction operation to indicate that it
wants to send something to the other program (or it wants to end the session in a
controlled manner) rather than continue receiving data. The other program,
however, must decide whether to stop sending and when to stop.

After issuing a request to change direction operation, your program should
continue to receive data until it receives a return code that indicates the other
program has stopped sending. Your program, in response to the return code, can
then begin sending its data, perform other processing, or terminate.

Your program can issue this operation only when three conditions exist: the
operation must be issued only in a batch session, during a transaction, and while
your program is in the receive state. If your program is neither receiving nor
sending (that is, it is between chains), the operation has no effect.

The following are the two types of request to change direction operations.

• Request to change direction then get (assembler only): Sends a request to
change direction indication to the other program, and waits for the other
program to either send the next data record or end the transaction. Then,
when the record or return code becomes available, your program receives
control from the subsystem, and it receives the results of the get operation.

• Request to change direction then invite: Sends a request to change direction
indication to the other program, performs an invite operation to continue
receiving the data still being sent, and returns control to your program
without having it wait for the invited input to be received. (An accept input
or a get operation must be issued later in the transaction to receive the invited
input.)

If additional request to change direction operations are issued before the direction
has changed, the request to change direction portion of each one is ignored, but
the input portion (get or invite) is performed.

6-42 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

When your program issues the request to change direction operation, the other
program receives the request to change direction indication by means of return
code 0010. It can then allow or ignore the request.

If the other program issues a request to change direction operation, your program
receives (at the end of any type of put operation) a change direction indication by
return code 0010. Your program should stop sending and issue an input
operation as soon as possible.

Operation Assembler BASIC COBOL RPGII

Request to change RCDG - - --
direction then get!

Request to change RCm $$RCD $$RCD $$RCD
direction then invitel

lThis operation is valid only in batch sessions, when BATCH·YES is specified on the SESSION
statement.

The request to change direction operation can also be used with externally
described field, format, and and file definitions (also called data definitions). The
interactive data definition utility (IDDU) is used to create data definitions. The
following IDDU keyword is used for each language (in place of the operation
code):

Operation IDDU Keyword

Request to change RQSWRT and INVITE
direction then invite

Refer to the manual Getting Started with Interactive Data Definition Utility for
more information about IDDU and creating data definitions.

Chapter 6. The Intra Subsystem 6-43

Set.Timer Operation

Your program can use the set timer operation to set a timer before performing
some specified function, such as an accept input operation. The set timer
operation specifies an interval of time (in hours, minutes, and seconds) to wait
before your program receives a timer expired return code. Your program
continues to execute, and all operations are valid during the time interval. Your
program must issue an accept input operation some time after it has issued the set
timer operation, so that it can accept the return code after the timer has expired.

Only one time interval can be maintained for your program. If a previous set
timer operation has been issued and the timer has not yet expired, the old time
interval is replaced by the new interval.

You can use the set timer operation to retry other operations that may not be
successful, possibly because of a temporary lack of resources (for example, during
an acquire operation). To do this, issue the set timer operation and then perform
accept operations until the timer expires. (The accept operations allow the
program to continue receiving input from other invited programs and display
stations while waiting for the timer.)

Note: If your program is a BASIC or RPG II program, a set timer
($$TIMER) operation is not valid unless at least one display station or
session is attached to your program. (This restriction does not apply
to the TIMER intrinsic function in BASIC.)

Operation Assembler BASIC COBOL RPGII

Set timer STM $$TIMER $$TIMER $$TIMER

6-44 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Intra Subsystem Return Codes

This section describes all the return codes that are valid for the Intra subsystem.
These are interactive communications return codes that are sent at the end of each
subsystem operation to indicate the results of that operation. The appropriate
return code is sent by the subsystem to the application program that issued the
operation; the program can then check the results and act accordingly.

The return code isa 4-digit value; the first 2 digits contain the major code, and
the last 2 digits contain the minor code. Assembler programs receive the return
codes in binary form (2 bytes long). BASIC, COBOL, and RPG II programs
receive the return codes in EBCDIC hexadecimal form (4 bytes).

Notes:

1. In the return code descriptions, your program refers to the local
System/36 application program that initiates the operation and receives
the return code from the subsystem. The other program refers to the
other application program in the same System/36 with which this program
is communicating through SSP-ICF.

2. Several references are also made in the descriptions to input and output
operations. The following chart shows all the input, output, and
combined input/output operations that are valid for the Intra subsystem.
Although all the operations shown are valid for Intra, the primary
purpose for a few of them is to allow operations that are valid in other
subsystems to be tested in the Intra subsystem. The validity of these
operations also depends on the logical sequence of communications events
occurring between the two programs in System/36.

3. Appendix B contains brief descriptions of all the return codes for all
subsystems, and it identifies all the subsystems for which each return
code is valid. This appendix can be useful when you want to make
changes to a program so it can be used with a different subsystem.

Chapter 6. The Intra Subsystem 6-45

Input Operations Output Operations Combined Operations
to Your Program from Your Program in Your Program

Accept in~ut

Acquire l

Cancel Cancel then get2
Cancel invite Cancel then invite

End of session

Evoke3,6 Evoke then get2,3,6
Evoke end of transaction3,6 Evoke then invite3,6

Fail

Get
Get attributes4,7
Get status7

Invite6

Negative response Negative response then get2
Negative response then invite

Put6 Put then getz,6
Put end of chain Put then invite6
Put end of transaction6

Put FMH Put FMH then get2
Put FMH then invite

Release

Request to change direction then get2
Request to change direction then invite

Set timer5

INormally, the acquire operation should be followed by an evoke operation in order to establish a transaction.
However, it can also be followed by a set timer or get attributes (ATTRIBUTE$, in BASIC) operation.

2Valid only in assembler language.
3Evoke operations in assembler can have OPM·FMH specified with the $WSIO macro.
4Valid only in assembler, BASIC, and COBOL languages.
5For BASIC and RPG II programs, the set timer ($$TIMER) operation can only be issued in a session that is
currently active, or to an acquired device that is currently attached to the program.

6In assembler, this operation can have OPM·CONFIRM specified with the $WSIO macro. In other languages,
a confirm indicator is specified using an IDDU format definition.

7The record area must be at least 128 bytes long.

6-46 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

In This Session,
If Your Program:

Started the session
(this is an acquired
session)

Was evokedl
(by another
program)

Major Code 00 - Operation completed successfully.

General Description: The input or output operation issued by your program
was completed successfully. The operation sent or received some data.

General Considerations: Check the minor return code for an end of
transaction indication, and continue with the next operation. , _____ ---1

Code Indication! Action

0000 Normal Indication: For input operations performed by your program,
0000 indicates that some data and a change direction indication were
received on a successful input operation. The other program now wants
to receive some data; your program must send it.

For output operations performed by your program, 0000 indicates that
the last output operation was completed successfully and that your
program can continue to send data.

Normal Action: If a change direction indication was received on an input
operation, issue an output operation.

For the actions that can be taken (in this session) after 0000 is returned
for an output operation, refer to the following chart:

And the Last Output
Operation Was: Then (in This Session):

Acquire operation Issue another output (except acquire) operation, or
issue an input operation.

End of transaction Issue an(other) evoke operation, issue a release
(evoke or put) operation, continue local processing, or terminate
operation your program.

Any other output Issue another output (except evoke) operation, or
operation issue an input operation.

Put end of transaction Your session has ended; continue local processing,
operation or terminate your program.

Any other output Issue another output (except evoke) operation, or
operation issue an input operation.

IAn evoked program (started by an evoke operation issued by another System/36 program) cannot issue an evoke operation
in this session; it can issue an evoke only in a different session, that it has first acquired. An evoked program that is part
of a multiple·program procedure can issue a release operation at any time to pass the session on to the next program in
the procedure: (An end of session operation would end the session, not pass it.) If the evoked program is an SRT program
and it issues another communications operation after it issues the release operation, enol' code 2800 is returned to that
program. Subsequent communicating operations in the next program, however, are processed normally.

Chapter 6. The Intra Subsystem 6-47

Code Indication! Action

0001 Normal Indication: Your program has received some data on a successful
input operation. It must continue to receive input until SSP-ICF returns
a change direction indication, which allows your program to send data, or
an end of transaction indication.

Normal Action: Issue another input operation. If your program can
detect something equivalent to a change direction indication, indicating
that the last of the data in the chain was just received, it can issue an
output operation.

0003 Normal Indication: An end of chain (SNA) indication was received with
some data on a successful input operation; the last record in the chain has
been received.

Normal Action: Issue another input operation to receive the next chain.

0004 Normal Indication: A function management header and a change
direction indication were received with some data on a successful input
operation. The other program wants to receive some data.

Normal Action: Your program now has control of the session; process
the function management header and issue an output operation.

0005 Normal Indication: A function management header was received with
some data on a successful input operation. Your program must continue
to receive input until SSP-ICF returns a change direction indication or an
end of transaction indication.

Normal Action: Process the function management header and issue
another input operation.

0008 Normal Indication: An end of transaction indication was received with
the last of the data on a successful input operation. The transaction has
ended, and the session with your program has ended.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a release
operation (to either perform local processing or start another session), or
it can terminate. If a remote procedure start request initiated the
transaction, your program can either issue an end of session operation or
terminate.

6-48 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

OOOC Normal Indication: A function management header was received with an
end of transaction indication and the last of the data on a successful
input operation. The transaction has ended, and the session with your
program has ended.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program), it can issue a release
operation (to either perform local processing or start another session), or
it can terminate. If a remote procedure start request initiated the
transaction, your program can either issue an end of session operation or
terminate.

0010 Normal Indication: A request to change direction was received from the
other program on a successful output operation for your program; the
other program wants to send data as soon as possible. You should allow
the other program to send its data.

Normal Action: Issue an input operation as soon as possible.

0014 Normal Indication: On a successful input operation, a change direction
indication and some data was received. In addition, the other program
requested confirmation.

Normal Action: Process any data received with the request. If no errors
were detected by your program, issue an output operation. If an error
was detected by your program, issue a fail operation, or terminate your
program.

0015 Normal Indication: On a successful input operation, some data was
received. In addition, the other program requested confirmation.

Normal Action: Process any data received with the request. If no errors
were detected by your program, issue another input operation. If an
error was detected by your program, issue a fail operation, or terminate
your program.

001C Normal Indication: On a successful input operation, an end of transaction
indication and some data was received. In addition, the other program
requested confirmation.

Normal Action: If no errors were detected by your program and your
program initiated the transaction, it can issue another evoke operation (to
start another program), it can issue a release operation (to perform local
processing), or it can terminate. If no errors were detected by your
program and a remote procedure start initiated the transaction, your
program can either issue an end of session operation, or terminate. If an
error was detected by your program, issue a fail operation, or terminate
your program.

Chapter 6. The Intra Subsystem 6-49

0028 Normal Indication: An end of transaction indication was received with a
system message on a successful input operation. The message, now in
your program's input buffer, describes the status of the transaction that
has ended. The session with your program has ended.

Normal Action: Handle the message in the input buffer (possibly display
it). Also, if your program initiated the transaction, it can issue another
evoke operation (to start another program), it can issue a release
operation (to either perform local processing or start another session), or
it can terminate. If your program was evoked, either issue an end of
session operation or terminate your program.

0038 Normal Indication: An end of transaction indication was received with a
truncated system message on a successful input· operation. The message,
truncated because it was too long for your program's input buffer,
describes the status of the transaction that has ended. The session with
your program has ended.

Normal Action: Handle the truncated message (possibly display it) in
your program's input buffer. Also, if your program initiated the
transaction, it can issue another evoke operation (to start another
program), it can issue a release operation (to either perform local
processing or start another session), or it can terminate. If your program
was evoked, issue an end of session operation, or terminate your
program.

6-50 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Major Code 01 - Successful operation with a new requester.

A new requester return code indicates to your program that it was
started by another program in System/36. Your program was started by
an evoke operation (EVK or $$EVOKNI) that was sent by the other
program. The request caused your program to be evoked if it is an SRT
program or if it is an MRT program that was not already loaded and
active. The request may have included some data for your program.

Normal Description: Each of the following return codes indicates that either
the input operation issued by your program and responded to by a new
requester completed successfully, or the output operation issued by your
program in response to a new requester completed successfully.

If the operation was an input operation and data was included with the
evoke operation, then that data is in your program's input buffer.

If your program is an SRT program that was evoked and the initial
operation is an output operation, the operation sent some data to the
new requester. However, although the operation did complete
successfully, if the evoke request also included data for your program,
that data is lost. Or, if an end of transaction indication was sent with
the request, the data sent by your output operation is lost and the
requesting program is released from your program.

If your program is an assembler program, the length of the data is
returned in the input length field of the program's DTF. If the input
length in the DTF is zero, no data was sent by the requester; if the input
length is greater than zero, data was sent.

Note: The new requester return codes are returned only to evoked SRT
programs and to active or evoked MRT programs.

General Considerations: Check the minor return code for an end of
transaction indication, and continue with the next operation.

Chapter 6. The Intra Subsystem 6-51

Code Indicationl Action

0100 Normal Indication: On a successful input operation from a new
requester, a procedure start request and a change direction indication
were received, and a data record may have been received with the
request. The other program now wants to receive some data; your
program must send it.

For output operations performed by an evoked SRT program, the
operation completed successfully.

Normal Action: For an input operation, handle any data that may
have been passed with the request. For both input and output
operations, perform any necessary record keeping for the new
requester, and issue an output operation or an input operation.

0101 Normal Indication: On a successful input operation from a new
requester, a procedure start request was received and some data may
have been received. Your program must continue to receive input until
SSP-IeF returns a change direction indication or an end of transaction
indication.

Normal Action: Handle any data passed with the request, perform any
necessary record keeping for the new requester, and issue another input
operation. If your program can detect something equivalent to a
change direction indication, indicating that the last of the data in the
chain was just received, it can issue an output operation.

0104 Normal Indication: On a successful input operation from a new
requester, a procedure start request, a function management header,
and a change direction indication were received with some data. The
other program now wants to receive some data.

Normal Action: Your program now has control of the session: process
the function management header, handle the data passed with the
request, perform any necessary record keeping for the new requester,
and issue an output operation to the other program.

0105 Normal Indication: On a successful input operation from a new
requester, a procedure start request and a function management header
were received with some data. Your program must continue to receive
input until SSP-IeF returns a change direction indication or an end of
transaction indication.

Normal Action: Process the function management header, handle the
data passed with the request, perform any necessary record keeping for
the new requester, and issue an input operation.

6-52 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

0108 Normal Indication: On a successful input operation from a new
requester, a procedure start request and an end of transaction
indication were received, and some data may have been received. (A
complete transaction was started and ended by the other program.)
The session with your program has ended.

If your program is an SRT program (evoked by a new requester) that
issued an output operation as its first operation, no data was sent to
the requester even though the output operation completed successfully.
Because an end of transaction indication was also received with the
procedure start request, the requester is released from your program,
and any data sent by the initial output operation is lost. And, if any
data was sent by the requester, that data is lost also.

Note: Return code 0118 is returned only to the first program in a
multiple-program procedure (and only for the first
operation). Return code 0108 is returned only to each one of
the succeeding programs in that procedure (and only for
the first operation in each program).

Normal Action: Perform any necessary record keeping for the new
requester of the transaction that has ended. Then, either issue an end
of session operation or terminate your program.

010C Normal Indication: On a successful input operation from a new
requester, a procedure start request and a function management header
were received with data and an end of transaction indication. (A
complete transaction was started and ended by the other program.)
The session with your program has ended.

Normal Action: Process the function management header, handle the
data passed with the request, and perform any necessary record
keeping for the new requester. Then, either issue an end of session
operation or terminate your program.

0114 Normal Indication: On a successful input operation from a new
requester, a procedure start request, a change direction indication, and
a confirm indication were received. In addition, the other program
requested confirmation.

Normal Action: Perform any necessary record keeping for the new
requester. Process any data received with the request. If no errors
were detected by your program, issue an output operation. If an error
was detected by your program, issue a fail operation.

Chapter 6. The Intra Subsystem 6-53

0115 Normal Indication: On a successful input operation from a new
requester, a procedure start request and a confirm indication were
received, and some data may have been received. In addition, the
other program requested confirmation.

Normal Action: Perform any necessary record keeping for the new
requester. Process any data received with the request. If no errors
were detected by your program, issue another input operation. If an
error was detected by your program, issue a fail operation.

0118 Normal Indication: On a successful input operation from a new
requester, a procedure start request was received with an end of
transaction indication, and some data may have been received. (A
complete transaction was started and ended by the other program.)
The session has been ended.

If your program is an SRT program (evoked by a new requester) that
issued an output operation as its first operation, no data was sent to
the requester even though the output operation completed successfully.
Because an end of transaction indication was also received with the
procedure start request, the requester is released from your program,
and any data sent by the initial output operation is lost.

Note: Return code 0118 is returned only to the first program in a
multiple-program procedure (and only for the first
operation).

Normal Action: Handle any data passed with the request, and perform
any necessary record keeping for the new requester of the transaction
that has ended. Then, because your program was evoked, either issue
an end of session operation, or terminate your program.

011e Normal Indication: On a successful input operation from a new
requester, a procedure start request and an end of transaction
indication were received, and some data may have been received. In
addition, the other program requested confirmation.

Normal Action: Perform any necessary record keeping for the new
requester. Process any data received with the request. If no errors
were detected by your program, issue an end of session operation, or
terminate your program. If an error was detected by your program,
issue a fail operation or terminate.

6-54 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Major Code 02 - Successful operation, but a stop system request or a disable
subsystem request is pending.

Normal Description: The input operation issued by your program was
completed successfully. Your program received some data. However,
because a stop system request or a disable subsystem request is pending,
no new sessions usi.ng the subsystem can be initiated.

Gilneral Considerations: Your program should complete its communications
processing as soon as reasonably possible so that the pending request to
stop the system or to disable the subsystem can be completed in an
orderly manner. (For example, you can issue a request to change
direction operation to stop receiving input, or you can issue an end of
session operation at the earliest logical stopping point.) Also, check the
minor return code for an end of transaction indication, and continue
with the next operation.

Code Indication/Action

0200 Normal Indication: On a successful input operation, an indication was
received that a stop system request or a disable subsystem request is
pending; no new sessions using the subsystem can be initiated. Also, 0200
indicates that some data a,nd a change direction indication were received.
The other program now wants to receive some data; your program must
send it.

Normal Action: Issue an output operation.

0201 Normal Indication: Your program has received some data on a successful
input operation. Also, a stop system request or a disable subsystem
request is pending; no new sessions using the subsystem can be initiated.
Your program must continue to receive input until SSP-ICF returns a
change direction indication or an end of transaction indication.

Normal Action: Issue another input operation. If your program can
detect something equivalent to a change direction indication, indicating
that the last of the data in the chain was just received, it can issue an
output operation.

0203 Normal Indication: An end of chain (SNA) indication was received with
some data on a successful input operation; the last record in the chain has
been received. Also, a stop system request or a disable subsystem request
is pending; no new sessions using the subsystem can be initiated.

Normal Action: Issue another input operation to receive the next chain.

Chapter 6. The Intra Subsystem 6-55

0204 Normal Indication: A function management header and a change
direction indication were received with some data on a successful input
operation. The other program now wants to receive some data. Also, a
stop system request or a disable subsystem request is pending; no new
sessions using the subsystem can be initiated.

Normal Action: Your program now has control of the session; process
the function management header and issue an output operation.

0205 Normal Indication: A function management header was received with
some data on a successful input operation. Also, a stop system request or
a disable subsystem request is pending; no new sessions using the
subsystem can be initiated. Your program must continue to receive input
until SSP-ICF returns a change direction indication or an end of
transaction indication.

Normal Action: Process the function management header and issue
another input operation.

0208 Normal Indication: An end of transaction indication was received with
the last of the data on a successful input operation. The transaction has
ended, and the session with your program has ended. Also, a stop system
request or a disable subsystem request is pending; no new sessions using
the subsystem can be initiated.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (only if a disable subsystem request condition is
pending) to start another program, it can issue a release operation (to
perform local processing), or it can terminate. If a remote procedure start
request initiated the transaction, your program can either issue an end of
session operation or terminate.

020C Normal Indication: A function management header and an end of
transaction indication were received with the last of the data on a
successful input operation. The transaction has ended, and the session
with your program has ended. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem can be
initiated.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (only if a disable subsystem request condition is
pending) to start another program, it can issue a release operation (to
perform local processing), or it can terminate. If a remote procedure start
request initiated the transaction, your program can either issue an end of
session operation or terminate.

6-56 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

0214 Normal Indication: On a successful input operation, a change direction
indication and some data was received. In addition, the other program
requested confirmation. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem can be
initiated.

Normal Action: Process any data received with the request. If no errors
were detected by your program, issue an output operation. If an error
was detected by your program, issue a fail operation, or terminate your
program.

0215 Normal Indication: On a successful input operation, some data was
received. In addition, the other program requested confirmation. Also, a
stop system request or a disable subsystem request is pending; no new
sessions using the subsystem can be initiated.

Normal Action: Process any data received with the request. If no errors
were detected by your program, issue another input operation. If an
error was detected by your program, .issue a fail operation, or terminate
your program.

021e Normal Indication: An end of transaction indication was received with
the last of the data on a successful input operation. In addition, the other
program requested confirmation. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem can be
initiated.

Normal Action: If no errors were detected by your program and your
program initiated the transaction, it can issue another evoke operation (to
start another program), it can issue a release operation (to perform local
processing), or it can terminate. If no errors were detected by your
program and a remote procedure start initiated the transaction, your
program can either issue an end of session operation, or terminate. If an
error was detected by your program, issue a fail operation (the
transaction remains active).

Chapter 6. The Intra Subsystem 6-57

0228 Normal Indication: An end of transaction indication was received with a
system message on a successful input operation. The message (now in
your program's input buffer) describes the status of the transaction that
has ended. The session with your program has ended. Also, a stop
system request or a disable subsystem request is pending; no new sessions
using the subsystem can be initiated.

Normal Action: Handle the message in the input buffer (display it, for
example). If your program initiated the transaction, it can issue another
evoke operation (only if a disable subsystem request condition is pending)
to start another program, it can issue a release operation (to perform
local processing), or it can terminate. If your program was evoked, issue
an end of session operation, or terminate your program.

0238 Normal Indication: An end of transaction indication was received with a
truncated system message on a successful input operation. The message,
truncated because it was too long for your program's input buffer,
describes the status of the transaction that has ended. The session with
your program has ended. Also, a stop system request or a disable
subsystem request is pending; no new sessions using the subsystem can be
initiated.

Normal Action: Handle the truncated message in your program's input
buffer (display it, for example). If your program initiated the transaction,
it can issue another evoke operation (only if a disable subsystem request
condition is pending) to start another program, it can issue a release
operation (to perform local processing), or it can terminate. If your
program was evoked, issue an end of session operation, or terminate your
program.

6-58 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 03 - Successful operation, but no data received.

Normal Description: The input or set timer (output) operation just performed
was completed successfully, but no data was sent or received.

General Considerations: Check the minor return code for an end of
transaction indication, and continue with the next operation.

Code Indication/Action

0300 Normal Indication: A change direction indication with no data was
received on a successful input operation.

Normal Action: Issue an output operation or continue to issue input
operations.

0301 Normal Indication: On a successful input operation, no data was received.
Your program must continue to receive input until SSP-ICF returns a
change direction indication, which allows your program to send data, or
an end of transaction indication.

Normal Action: Issue another input operation.

0302 Normal Indication: A fail indication was re .. 'ived with no data on a
successful input operation. The other program has issued a fail operation
to indicate, for example, that the previous data that it sent was in error.

Normal Action: Issue another input operation.

0303 Normal Indication: An end of chain indication was received without data
on a successful input operation; the last record in the chain has already
been received.

Normal Action: Consider the data chain complete and issue another input
operation to receive the next chain.

Chapter 6. The Intra Subsystem 6-59

0308 Normal Indication: An end of transaction indication was received without
data on a successful input operation. The transaction has ended, and the
session with your program has ended.

Normal Action: If your program initiated the transaction, it can issue
another evoke operation (to start another program) or it can issue a
release operation (to either perform local processing or start another
session). If a remote procedure start request initiated the transaction,
your program can either issue an end of session operation or terminate.

0310 Normal Indication: The time interval specified by a set timer operation in
your program has expired.

Note: If your program has an exception handling routine, you
should check for the 0310 return code before you make any
checks based on the WSID field.

Normal Action: Issue the operation that is to perform the intended
function (such as displaying a message) after the specified time interval
has expired.

0314 Normal Indication: On a successful input operation, a change direction
indication without data was received. In addition, the other program
requested confirmation.

Normal Action: If no errors were detected by your program, issue an
output operation. If an error was detected by your program, issue a fail
operation, or terminate your program.

0315 Normal Indication: On a successful input operation, no data was received.
In addition, the other program requested confirmation.

Normal Action: If no errors were detected by your program, issue
another input operation. If an error was detected by your program, issue
a fail operation, or terminate your program.

031C Normal Indication: On a successful input operation, an end of transaction
indication without data was received. In addition, the other program
requested confirmation.

Normal Action: If no errors were detected by your program and your
program initiated the transaction, it can issue another evoke operation (to
start another program), it can issue a release operation (to perform local
processing), or it can terminate. If no errors were detected by your
program, and a remote procedure start initiated the transaction, your
program can either issue an end of session operation, or terminate. If an
error was detected by your program, issue a fail operation, or terminate
your program.

6-60 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 04 - Output exception occurred.

Normal (Exception) Description: An output exception occurred because your
program attempted to send output when it should be receiving the
output that has already been sent by the other program. Your output
was not sent and should be sent later.

Note: If your program issues another output operation, an error return
code of 831 C or 8323 will be received.

General Recovery Actions: Issue an input operation to receive data or a
message from the other program, or to allow the other program to send
a change direction indication.

Code Indication! Action

0402 Normal Indication: A fail operation was issued by the other program to
indicate that the data sent by your program was in error and caused an
exception condition in the other program.

Recovery Action: Issue an input operation to begin performing the
recovery actions that were previously agreed to by the programmers of
both this program and the other program.

0411 Normal Indication: The other program has sent a message for your
program, but because your program also attempted an output operation,
the message is still in the subsystem input buffer, waiting to be received.
Your program must receive the message before it can perform an output
operation.

Normal Action: Issue an input operation to receive the message.

0412 Normal Indication: The other program has sent data for your program,
but because your program also attempted an output operation, the data is
still in the subsystem input buffer, waiting to be received. Or, a cancel
invite operation failed either when the other program sent a message or
data for your program, or when a return code was received from the
subsystem. Your program must receive the data, message, or return code
before it can issue an output operation.

Normal Action: Issue an input operation or an accept input operation to
receive the data, message, or return code.

Chapter 6. The Intra Subsystem 6-61

Major Codes 08-34 -:- Miscellaneous program errors.

Error Description: An operation attempted by your program failed. The
error may have occurred because an operation was issued at the wrong
time or because a data record was to() long.

Recovery Action: Refer to the individual return code descriptions for the
appropriate recovery actions.

Code Indication! Action

0800 Error Indication: The acquire operation just performed was not
successful. It tried to acquire a session that has already been acquired by
your program and that is still active.

Recovery Action: If the session requested by the original acquire
operation is the one needed, your program can begin communicating in
the session because it is already available. If a different session is desired,
issue another acquire operation for a different session by specifying a
different session ID. (The identifier must have been specified in the
SYMID parameter of a SESSION statement that preceded the program.)

1100 Error Indication: The accept operation just performed in your program
was not successful for one of the following reasons: (1) Your MRT
program may have just released its last requester, indicating that your
program can begin to terminate normally. (2) Your program may have
attempted to accept input when no invite operations have been issued and
the program is not an MRT or NEP program. (3) Your program is both
an MRT and an NEP program, and a stop system condition is in effect,
which suppresses the implied invites to all potential requesters.

Recovery Action: If you still have a requester or an acquired session,
issue an invite operation (or a combined operation that includes an invite)
followed by an accept input operation. This return code indicates the
logical end of file for WORKSTN files in RPG II programs and
TRANSACTION files in COBOL programs.

6-62 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

2800 Error Indication: Your program (which is an SRT program that has been
evoked by another program) has issued a release operation in the session
in which it was evoked, and is now attempting to communicate with the
evoking program. Because that session was released from your program,
this operation was not performed, and any further attempts to
communicate with that program results in another 2800 return code.
(The session is ended for your program only, if it is part of a
multiple-program procedure.)

Recovery Action: Continue local processing or terminate your program.
Your program may be in error; you should correct it so that the release
operation is issued after all communications with the other program have
been completed.

3401 Error Indication: This input operation was rejected because the record
length of the data sent by the other program exceeds the length of your
program's input buffer.

Recovery Action: Issue a message about the error to the local system and
terminate your program. Then, in your program, change the record
length of the input buffer to be at least as long as the longest data record
to be received. For assembler programs only, the record length of the
rejected data is contained in the DTF, at offset $WSEFFL. For other
program types, the length is not available; only the error indication is
received.

Chapter 6. The Intra Subsystem 6-63

Major Code 80 - Permanent (nonrecoverable) subsystem error.

Error Description: A nonrecoverable error has occurred in the subsystem; the
subsystem has been (or is being) disabled, and your session has been
terminated. The error indication has been sent as a message to the
display station or to the system console; the operator can refer to the
System Messages manual for additional information. The error
indication is also returned to your program as a return code; the minor
code portion indicates the specific cause. (Each return code is described
on the following pages.) The subsystem must be enabled again before
communications can resume.

General Recovery Actions~ The following general actions can be taken for
each 80xx return code. Other specific actions are given in each return
code description.

• Issue, to the system operator or to the display station operator who
started the program, a message requesting that the subsystem be
enabled again.

• Issue an end of session (EOS or $$EOS) operation for the session
that has terminated. Your program can: (1) wait for the subsystem
to be enabled by issuing a set timer ($$TIMER) operation or by
using the TIMER intrinsic function (in BASIC only); (2) continue
local processing; or (3) terminate. Note that if your program is
written in BASIC or RPG II, the $$TIMER operation is not valid
unless at least one display station or session is attached to your
program.

• If the session should be started again after the subsystem is enabled,
it must be reacquired by your program or restarted by the other
program.

Note: If the session is started again, it starts from the
beginning, not at the point where the session error
occurred.

6-64 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

Code Indication/Action

8081 Error Indication: An SSP-ICF error caused a processor check in this
subsystem.

Recovery Action: This subsystem has been disabled; it must be enabled
again before communications can resume. Your program can continue
local processing, wait to reissue the acquire operation, or terminate.

8082 Error Indication: This session is being terminated immediately because
the subsystem controlling the session is currently being disabled; the
subsystem is not waiting for any of its active sessions to be completed
normally.

Recovery Action: Communications with the other program cannot be
resumed until the subsystem has been enabled again. Your program can
continue local processing, wait to reissue the acquire operation, or
terminate.

Chapter 6. The Intra Subsystem 6-65

Major Code 82 - Acquire operation failed.

Error Description: An attempt to acquire a session was not successful; the
session was not started. An error indication was returned to your
program as a return code; the minor portion of the code indicates the
specific cause. (Each return code is described on the following pages.)
The error indication has also been sent as a message to the display
station or to the system console; the operator can refer to the System
Messages manual for additional information.

General Recovery Actions: The following general actions can be taken for
each 82xx return code. Other specific actions are given in each return
code description.

1. Determine why the 82xx error code was returned to your program.
Read the description of that return code to determine what action is
needed.

2. If a parameter value must be changed in the subsystem
configuration record or in the SESSION statement for your
program:

a. To change a parameter value in the subsystem configuration,
disable the subsystem first, make the change in the subsystem's
configuration record, then enable the subsystem again to make
the change effective.

b. To change a parameter value in the SESSION statement
associated with your program, terminate only your program to
change your SESSION statement.

Note: When a parameter can be specified both in the SESSION
statement and in the subsystem configuration, the value
in the SESSION statement overrides the value in the
subsystem configuration record (for your program only).
Therefore, in some cases, you may choose to make a
change in the SESSION statement rather than disabling
the subsystem to make the change in its configuration
record.

3. If no change is needed in your program or in the subsystem, simply
reissue the acquire operation. It could be successful if the error was
temporary (for example, if the maximum number of acquired
sessions had been reached when the acquire operation was first
issued). If the acquire operation is again unsuccessful, it should be
retried only a limited number of times. (The limit for retries should
be specified in your program.)

(continued)

6-66 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 82 - Acquire operation failed.

General Recovery Actions: (continued)

4. Issue a set timer operation in your program so it can wait for a
specified time interval before reissuing the acquire operation.
However, for RPG II and BASIC programs, the set timer
($$TIMER) operation is valid only if at least one display station or
session is attached to your program. (This restriction does not apply
to COBOL and assembler programs or to the TIMER intrinsic
function in BASIC.)

Chapter 6. The Intra Subsystem 6-67

Code Indication! Action

8233 Error Indication: On an unsuccessful acquire operation, an invalid session
identifier was detected. Either no SESSION statement was specified
between the LOAD and RUN statements for this program, or the session
identifier in your program does not match the identifier specified on the
SESSION statement for the session being acquired. The session was not
started.

Recovery Action: If the error is in your program, specify the correct
session identifier in your program. If an incorrect identifier was specified
on the SESSION statement, specify the correct value in the SYMID
parameter.

8281 Error Indication: On an unsuccessful acquire operation, an SSP-ICF error
condition was detected. The error caused a processor check in this
subsystem.

Recovery Action: This subsystem has been disabled; it must be enabled
again before communications can resume. Your program can continue
local processing, wait to reissue the acquire operation, or terminate.

8282 Error Indication: The acquire operation just performed was unsuccessful
because the subsystem controlling the session is currently being disabled;
no sessions can be acquired in the subsystem.

Recovery Action: Communications with the other program cannot be
resumed until the subsystem has been enabled again. Your program can
continue local processing, wait to reissue the acquire operation, or
terminate.

82A8 Error Indication: The acquire operation was not successful because the
maximum number of active sessions allowed in the system has been
reached. No more than 360 sessions can be active in System/36 at one
time. The session was not started.

If this acquire operation is associated with a SESSION statement (normal
acquire), the maximum of 260 normally acquired sessions are already
active at this time. If this acquire operation is not associated with a
SESSION statement (BASIC special acquire), the maximum of 100
specially acquired and/or evoked sessions are already active at this time.

Recovery Action: Your program can wait for another session to end and
then reissue the acquire operation. Otherwise, your program can continue
local processing or terminate.

6-68 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

82AA Error Indication: The acquire operation just performed was not successful
because the specified subsystem has not been enabled or has been
disabled. The subsystem that must be enabled is the one whose
subsystem configuration member contains the same remote location name
as that specified by the location parameter in the SESSION statement or
on the OPEN statement in BASIC. That location name must also be
specified in the subsystem configuration record. The session was not
started.

Recovery Action: Verify that the subsystem name was specified correctly
on the LOCATION parameter of the SESSION statement or on the
OPEN statement in BASIC. If the correct name was specified, enable the
specified subsystem by entering the ENABLE procedure command. Then
reissue the acquire operation. Otherwise, your program can continue
local processing, wait to reissue the acquire operation, or terminate.

82AB Error Indication: The acquire operation just performed was not successful
because the specified subsystem is currently being enabled. The session
was not started.

Recovery Action: Your program can wait until the subsystem has been
enabled, then reissue the acquire operation to start the session.

82BO Error Indication: The acquire operation just performed was not successful
either because the specified subsystem is currently being disabled, or
because it has a disable subsystem request pending. No new sessions can
be started.

Recovery Action: Your program can wait until the subsystem is enabled
again, and then reissue the acquire operation. Otherwise, your program
can continue local processing, or it can terminate.

Chapter 6. The Intra Subsystem 6-69

Major Code 83 - Session error occurred.

Error Description: An error has occurred in the session, but the session is still
active. Recovery might be possible; the error indication was returned to
your program as a return code. The minor portion of the code indicates
the specific cause. (Each return code is described on the following
pages.) The error indication has also been sent as a message to the
display station or to the system console; the operator can refer to the
System Messages manual for additional information.

General Recovery Actions: The following general actions can be taken for
each 83xx retUnl code. Other specific actions are given in each return
code description.

1. Determine why the 83xx error code was returned to your program.
Read the description of that return code to determine what action is
needed.

2. If a parameter value must be changed in the subsystem
configuration record or in the SESSION statement for your
program:

a. To change a parameter value in the subsystem configuration,
disable the subsystem first, make the change in the subsystem's
configuration record, then enable the subsystem again to make
the change effective.

b. To change a parameter value in the SESSION statement
associated with your program, terminate only your program
before correcting your SESSION statement.

Note: When a parameter can be specified both in the SESSION
statement and in the subsystem configuration, the value
in the SESSION statement overrides the value in the
subsystem configuration record (for your program only).
Therefore, in some cases, you may choose to make a
change in the SESSION statement rather than disabling
the subsystem to make the change in its configuration
record.

3. If no change is needed in your program or in the subsystem, (and
depending on what the return code description says):

a. Check the other program to see if a change is required in it to
correct the error received.

b. Retry the operation, if possible; it could be successful. If it is
not successful, it should be retried only a limited number of
times. (The limit for retries should be specified in your
program.)

6-70 ssp·IeF Programming for Subsystems and Intra Subsystem Reference

Code Indication/Action

830B Error Indication: Your program has attempted to execute a
communications input or output operation either before the session was
acquired or after it has ended. Your program may have (1) issued an
input or output operation either before it issued an acquire operation or
after it has released the session (by a release or end of session operation),
or it may have (2) improperly handled a session was not acquired error
return code.

Recovery Action: Check your program to ensure that no input or output
operation is attempted without an active session and to ensure that the
return code is handled properly. If you want your program to recover
from an improperly handled error condition, issue another acquire
operation.

8319 Error Indication: A negative response to the previous output operation
was issued by the other (receiving) program. Sense data was sent with the
negative response and it is in the subsystem input buffer waiting to be
received by your program.

Recovery Action: Issue an input operation to receive the sense data.

831A Error Indication: The evoked program terminated abnormally or an
evoke operation failed to complete successfully. A message describing the
error condition is waiting in the subsystem input buffer. If an evoke
operation failed, it could have been either the operation just performed or
a previous operation (when the evoke operation was combined with
another operation, such as evoke then invite, or when the evoke was
followed by an accept input operation).

Recovery Action: Your program should issue an input operation to
receive the message so you can print or display it. Then it can reissue the
evoke operation to reestablish the transaction, it can issue an end of
session operation, or it can terminate.

831B Error Indication: On the previous negative response operation issued by
your program, invalid sense data was included. The data was not sent.

Recovery Action: Correct your program so that, on a negative response
operation, valid sense data is sent. The sense data can be no longer than
8 bytes, and it must begin with 10xx, 08xx, or 0000.

Chapter 6. The Intra Subsystem 6-71

831C Error Indication: The output operation issued before this output
operation received a return code indicating that the other program sent a
message or data for your program, but that return code was not properly
handled in your program. This output operation was rejected as invalid
at this time because your program must first issue an input operation to
receive the message or data.

Recovery Action: Issue an input operation to receive the message or data.

831E Error Indication: The operation just issued by your program was invalid.
Either the operation code is an unrecognized code, or the operation
specified by the code is not supported by the subsystem. Or, you may
have attempted a batch operation, but BATCH-NO was specified in the
SESSION statement for your program. The session is still active.

Recovery Action: Your program can try a different operation, issue a
release or end of session operation, or terminate. Correct the error in
your program or in the SESSION statement before attempting to
communicate with the other program.

831F Error Indication: On an output operation, an indication was received that
your program tried to send a data record having a length that exceeds the
maximum user record length specified for this session. The session is still
active.

Recovery Action: Change the record length in your program and
recompile it. The maximum user record length must be large enough for
the longest record to be sent or received. Reissue the acquire operation
to restart the session after making these changes.

8322 Error Indication: A put with no invite operation was followed by a
request to change direction then get operation, a request to change
direction then invite operation, or a negative response operation. None of
these operations are valid while your program is in the send state. The
session is still active.

Recovery Action: Your program can issue an output operation to
continue sending, issue an input operation to begin receiving, issue an end
of session operation to continue local processing, or terminate. Correct
the error in your program before attempting to communicate with
another program.

8323 Error Indication: Either a cancel operation was issued while your
program was in receive state (the cancel operation is valid only in send
state); or your program received a fail indication while it was in send
state, and it issued another output operation (an input operation should
follow a received fail operation). The session is still active.

Recovery Action: Before attempting to communicate with another
program, correct the error in your program.

6-72 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

8326 Error Indication: Following an output operation, an invalid cancel
operation was issued by your program. The cancel operation is valid
only within a chain, not preceding a chain or between chains. The session
is still active.

Recovery Action: Either continue local processing by ignoring the error,
or correct the error in your program before attempting to communicate
with another program.

8327 Error Indication: An invalid input or output operation was issued when
no transaction existed; your program may have expected more data when
there is none. Either the other program has already ended the
transaction, your program has ended the transaction, or your program
has not issued an evoke operation to start communicating with the other
program. The session is still active.

Recovery Action: If you want your program to recover from this error,
issue an evoke operation to start a transaction. Otherwise, issue an end
of session operation; then continue local processing or terminate your
program. If a coding error in your program caused the error, correct
your program.

8329 Error Indication: An invalid evoke operation was detected in this session.
Your program was evoked by an evoke operation issued by another
program, and cannot, therefore, issue any evoke operations in this
session.

Recovery Action: If you want your program to recover from this error,
issue a different operation. If you want to issue the evoke in another
session, issue an acquire operation, then issue the evoke operation.
Otherwise, you can issue an end of session operation to terminate this
session; then continue local processing or terminate your program. If a
coding error in your program caused the error, correct your program.

832A Error Indication: An indication that both programs were attempting to
receive input was detected by the subsystem. The program that was in
control of the transaction (in send state) issued an input operation
without indicating a change of direction, or the program that was in
receive state ignored the change direction indication and issued another
input operation. The session is still active.

Recovery Action: Either issue an output operation to send data, or issue
a request to change direction operation so the transaction can be
synchronized. If a coding error in your program caused the error, correct
your program.

Chapter 6. The Intra Subsystem 6-73

832C Error Indication: An invalid release operation, following an invite
operation, was detected in your program. Because your program issued
the invite operation, it cannot issue a release operation to terminate the
invited session.

Recovery Action: Issue an accept or get operation to satisfy the invite
operation. Otherwise, issue an end of session operation to terminate the
session. If a coding error in your program caused the error, correct your
program.

832D Error Indication: An invalid operation following an invite operation was
detected in your program. Once you have issued an invite operation, the
next subsystem operation must be a get or accept operation.

Recovery Action: Issue a get operation or an accept input operation to
receive the input that was invited. Otherwise, issue an end of session
operation to terminate the session. If a coding error in your program
caused the error, correct your program.

832F Error Indication: An invalid evoke or release operation was issued before
a transaction was completed. The operation was not performed. The
session is still active.

Recovery Action: Your program can terminate the transaction by issuing
a put end of transaction operation; then it should issue an evoke
operation to start another transaction or issue a release operation. If a
coding error in your program caused the error, correct your program.

8330 Error Indication: On an input operation performed by this program, a
cancel operation and a change direction indication were received. The
other program canceled the transaction it was sending and now wants to
receive some data; your program must send it. (The session is still
active.)

Recovery Action: Issue an output operation.

8331 Error Indication: On an input operation performed by this program, a
cancel operation was received without a change direction indication. The
other program canceled the transaction it was sending (possibly because it
detected an error in the data), but it wants to send the data again or send
different data. (The session is still active.) Your program must continue
to receive input until SSP-IeF returns a change direction indication or an
end of transaction indication.

Recovery Action: Discard the previously received input (or perform any
other agreed-to activity), then issue another input operation.

6-74 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

8333 Error Indication: On an input or output operation, an invalid session
identifier was detected. The session is still active.

Recovery Action: Reissue the operation with the correct session identifier.
Otherwise, issue an end of session operation, then terminate the program
and correct the programming error that caused the communications error.

83EO Error Indication: Your program attempted to execute an operation using
an IODU format definition that was not found.

Recovery Action: Check the name of format definition in your program
to be sure it is correct. Then check the format definition to see whether it
is defined in the file definition.

83El Error Indication: Your program attempted to execute an operation using
an IODU format definition that could not be retrieved from disk.

Recovery Action: Continue with another operation, or a different format
definition. Then check the data dictionary to see if the format definition
is defined. The format definition could have been deleted using another
method besides IOOU.

83E8 Error Indication: A cancel invite operation either was issued to a session
that was not invited or was issued before the initial accept input
operation in the evoked program was completed. The cancel invite
operation is valid only when it is issued after any valid invite operation.
The session and the transaction, however, are still active.

Recovery Action: Your program can issue an output operation to
continue sending, issue an input operation to begin receiving, issue an end
of session operation to continue local processing, or terminate. Correct
the error in your program before attempting to communicate with
another program on your system.

Chapter 6. The Intra Subsystem 6-75

6-76 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

Appendix A. Subsystem Operation Codes (by Language)

Assembler Operations A-3
BASIC Operations A-4
COBOL Operations A-5
RPG II Operations A-6

Appendix A. Subsystem Operation Codes A-l

The following charts are duplicates of those shown in each language chapter. The
charts show all the communications operations that are valid for each
programming language supported by System/36 (assembler, BASIC, COBOL, and
RPG n). Each chart shows the valid operations for that language, their
operation codes (mnemonics), and the subsystems supporting each operation. An
x in a subsystem column means that the subsystem supports the operation, and a
- means that it does not.

A-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Assembler Operations

Assembler
SSP-ICF

Operation

Accept input
Aquire
Cancel
Cancel invite
Cancel then get
Cancel then invite
End of session
Evoke
Evoke end of
transaction

Evoke then get
Evoke then invite
Fail
Get
Get attributes
Get status3

Invite
Negative response
Negative response
then get

Negative response
then invite

Put
Put end of
file/chain

Put end of
transaction

Put then get
Put then invite
Put FMH
Put FMH then get
Put FMH then
invite

Release
Request to change
direction then get

Request to change
direction then
invite

Set timer

The following communications operations are valid in the assembler language;
each operation, however, is valid only for those subsystems containing an x in the
corresponding subsystem column. (For a description of each operation, refer to
the subsystem operations topic in the reference manual describing your
subsystem.)

Assembler Communications Subsystems

Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

ACI x x x x x x x x x x
ACQ x x x x x x x x x x
CAN x - - - -. - - - x -
CNI x x - - - - - - - -
CANG x - - - - - - - x -
CANI x - - - - - - - x -
EOS x x x x x x x x x x
EVK x x x x x x2 - x X x
EVE x x - x x - - x x x

EVG x x x x x x2 - x x x
EVI x x x x x x2 - x X x
FAIL x - - - - - - x - x
GET x x x x x x x x x x
GTA x x x x x x x x x x
GST x - - - - - - - - x
INV x x x x x x x x x x
NRP x - - - - - - - x -
NRPG x - - - - - - - x -
NRPI x - - - - - - - x -
PUT x x x x x - x x x x
PEF/PEC x x x x - x X X; x -

PEX x x - x x - - x x x

PTG x x x x x x x x x x
PTI x x x x x x x x x x
PFM x - - - - - x - x -
PFMG x - - - - - x - x -
PFMI x - - - - - x - x -
REL x x x x x x x x x x
RCDG x x x - - - - x x x

RCm x x x - - - - x x x

STM x x x x x x x x x x

lAlthough the BSC 3270 subsystem is not part of SSP·ICF, its operations are listed here to show its similarities to other
subsystems.

2Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION .statement is CICS or IMS.

3The record area must be at least 128 bytes long.

Appendix A. Subsystem Operation Codes A-3

BASIC Operations

The following communications operations are valid in the BASIC language; each
operation, however, is valid only for those subsystems containi,lg an x in the
corresponding subsystem column. (For a description of each operation, refer to
the subsystem operations topic in the chapter describing your subsystem.)

BASIC SSP-ICF BASIC Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input WAITI02 x x x x x x x x x x
Aquire OPEN x x x x x x x x x x
Cancel $$CANLNI x - - - - - - - x -
Cancel invite $$CNLINV x x - - - - - - - -
Cancel then $$CANL x - - - - - - - x -
invite

End of session $$EOS x x x x x x x x x x
Evoke $$EVOKNI x x x x x x3 - x x x
Evoke end of $$EVOKET x x - x x - - x x x
transaction

Evoke then $$EVOK x x x x x x3 - x x x
invite

Fail $$FAIL x - - - - - - x - x
Get READ x x x x x x x x x x
Get attributes ATTRIBUTE x x x x x x x x x x
Get status6 ATTRIBUTE x - - - - - - - - x
Invite4 $$SEND x x x x x x x x x x
Negative $$NRSPNI x - - - - - x -
response

Negative $$NRSP x - - - - - - - x -
response then
invite

Put $$SENDNI x x x x x - x x x x
Put end of $$SENDE x x x x - x x x x -
file/chain

Put end of $$SENDET x x x x - - x x x
transaction

Put FMH $$SENDNF x - - - - x - x -
Put FMH then $$SENDFM x - - - - x - x
invite

Put then invite $$SEND x x x x x x x x x x
Release CLOSE x x x x x x x x x x
Request to $$RCD x x x - - - - x x x
change " ..

direction then
invite

Set timer $$TIMER5 x x x x x x x x x x

lAlthough the BSC3270 subsystem is not part of SSp·leF, its operations are listed here to show its similarities to other
subsystems.

2Valid only when it is followed by a READ operation or when it follows a timer operation.
3Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SEssioN statement is eIeS or IMS.

4Valid only when a $$SEND operation is issued with a record length of ZERO.
5The timer can also be setby the TIMER intrinsic function.
6The record area must be at least 128 bytes long.

A-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

COBOL Operations

The following communications operations are valid in the COBOL language; each
operation, however, is valid only for those subsystems containing an x in the
corresponding subsystem column. (For a description of each operation, refer to
the subsystem operations topic in the chapter describing your subsystem.)

COBOL SSP-ICF COBOL Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input2 READ x x x x x x x x x x
Aquire ACQUIRE x x x x x x x x x x
Cancel $$CANLNI x . . . - - - - x -
Cancel invite $$CNLINV x x - - - - - - - -
Cancel then $$CANL x - - - - - - - x -
invite

End of session $$EOS x x x x x x x x x x
Evoke $$EVOKNI x x x x x x3 - x x x
Evoke end of $$EVOKET x x - x x - - x x x
transaction

Evoke then $$EVOK x x x x x x3 - x x x
invite

Fail $$FAIL x - - - - - - x - x
Get2 READ x x x x x x x x x x
Get attributes4 ACCEPT x x x x x x x x x x
Get status6 ACCEPT x - - - - - - - - x
Invite5 $$SEND x x x x x x x x x x
Negative response $$NRSPNI x - - - - - - - x -
Negative response $$NRSP x - - - - - - - x -
then invite

Put $$SENDNI x x x x x - x x x x
Put end of $$SENDE x x x x - x x x x -
file/chain

Put end of $$SENDET x x - x x - - x x x
transaction

Put FMH $$SENDNF x - - - - - x - x -
Put FMH then $$SENDFM x - - - - - x - x -
invite

Put then invite $$SEND x x x x x x x x x x
Release DROP x x x x x x x x x x
Request to change $$RCD x x x - - - - x x x
direction then
invite

Set timer $$TIMER x x x x x x x x x x

lAlthough the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.

2The READ statement performs either a get or an accept input operation, depending on whether the TERMINAL option is
specified.

3Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

4Valid only when the ATTRIBUTE-DATA keyword is used in the SPECIAL-NAMES paragraph and the SPECIAL-NAMES
name is specified in the ACCEPT statement.

5Valid only when a $$SEND operation is issued with a record length of ZERO.
6The record area must be at least 128 bytes long.

Appendix A. Subsystem Operation Codes A-5

RPG II Operations

The following communications operations are valid in the RPG II language; each
operation, however, is valid only for those subsystems containing an x in the
corresponding subsystem column. (For a description of each operation, refer to
the subsystem operations topic in the chapter describing your subsystem.)

RPG II SSP-ICF RPG II Communications Subsystems

Operation Operation Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input2 READ x x x x x x x x x x
Aquire ACQ x x x x x x x x x x
Cancel $$CANLNI x - - - - - - x
Cancel invite $$CNLINV x x - - - - - - - -
Cancel then $$CANL x - - - - - - - x -
invite

End of session $$EOS x x x x x x x x x x
Evoke $$EVOKNI x x x x X x4 - X X x
Evoke end of $$EVOKET x x - x x - - x x x
transaction

Evoke then invite $$EVOK x x x x X x4 - X X x
Fail $$FAIL x - - - - - - x x
Get2 READ x x x x x x x x x x
Invite3 $$SEND x x x x x x x x x x
Negative response $$NRSPNI x - - - - - - - x -
Negative response $$NRSP x - - - - - - - x -
then invite

Put $$SENDNI x x x x x - x x x x
Put end of $$SENDE x x x x - x x x x -
file/chain

Put end of $$SENDET x x - x x - - x x x
transaction

Put FMH $$SENDNF x - - - - - x - x -
Put FMH then $$SENDFM x - - - - - x - x -
invite

Put then invite $$SEND x x x x x x x x x x
Release REL x x x x x x x x x x
Request to $$RCD x x x - - - - x x x
change direction
then invite

Set timer $$TIMER x x x x x x x x x x

1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.

2If a NEXT operation is executed before the READ operation, the READ operation is a get operation; otherwise, the
operation is an accept input operation.

3Valid only when a $$SEND operation is issued with a record length of ZERO.
4Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

A-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Appendix B. Summary Listing of Return Codes

Appendix B. Return Code Summary .B-1

This appendix lists all the return codes that are returned by one or more of the
SSP-ICF subsystems to indicate the results of a communications input or output
operation. The abbreviated information in this appendix can help you to convert
a program that uses one subsystem type so that it can use a different subsystem
type for communications.

Also included in this appendix are the BSC 3270 return codes. (The BSC 3270
subsystem is part of the 3270 Device Emulation feature.) The 3270 codes are
listed here to help you convert a program from an SSP-ICF subsystem to the BSC
3270 subsystem, or vice versa.

For each return code, the following information is given:

• All the subsystems for which the code is valid.

• A brief description of the results of the operation; that is, the normal or error
indication. (No recovery actions are given here.)

The detailed information about each return code is given in each of the subsystem
chapters for which the return code is valid. Each chapter describes the indications
of the code and the normal or error recovery actions that should be taken as a
result of the code. The description of the code may vary from one chapter to
another, because each description is tailored to the characteristics of that
subsystem.

B-2 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

Major Code 00 - Operation completed successfully.

General Description: The input or output operation issued by your program
was completed successfully. The operation may have sent or received
some data, and one of the following conditions was indicated.

Code Subsystems Affected/Primary Indication

0000 All subsystems

Change direction indication was received on successful input operation, or
an output operation was successful.

0001 Intra BSCEL CCP CICS IMS Peer SNUF APPC

Successful input operation. Continue to receive.

0003 Intra Peer SNUF

End of chain indication received on successful input operation.

0004 Intra SNUF

Function management header and a change direction indication received
on successful input operation.

0005 Intra SNUF

Function management header received on successful input operation.

0007 SNUF only

Function management header and an end of chain indication received on
successful input operation.

0008 Intra BSCEL IMS SNUF APPC

End of transaction indication received on successful input operation.

Appendix B. Return Code Summary B·3

OOOC Intra SNUF

Function management header and an end of transaction indication
received on successful input operation.

0010 Intra BSCEL CCP CICS Peer SNUF APPC

Request to change direction received on successful output operation.

0012 3270 only

One or more types of unsupported 3270 orders received on successful
input operation.

0014 Intra APPC

Remote process requested confirmation and allowed the local application
to begin sending data.

0015 Intra APPC

Remote process requested confirmation. The local application program
should continue to receive data.

001C Intra APPC

Remote process requested confirmation and that the transaction be
ended.

0020 BSCEL CCP 3270 SNUF

System message and an end of transmission (or change direction)
indication received on successful input operation.

B-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

0021 BSCEL CICS SNUF

System message received on successful input operation. Continue to
receive.

0024 APPC only

Acquire operation was successful, a remotely controlled session was
allocated to the local application program.

0025 SNUF only

Function management header received with a host system mesSage.

0028 Intra BSCEL IMS Peer SNUF

System message and an end of transaction indication received on
successful input operation.

0030 BSCEL 3270 SNUF

Truncated system message and end of transmission (or change direction)
indication received on successful input operation.

0031 BSCEL CICS

Truncated system message received on successful input operation.
Continue to receive.

0038 Intra BSCEL IMS Peer SNUF

Truncated system message and an end of transaction indication received
on successful input operation.

Appendix B. Return Code Summary B·5

Major Code 01 - Successful operation with a new requester.

General Description: The input or output operation issued by your program
was completed successfully. The operation may have either sent data to
a new requester or received data from a new requester.

Code Subsystems Affected/Primary IDdication

0100 Intra BSCEL CCP IMS Finance Peer SNUF APPC

Change direction indication received on successful input operation with a
new requester, or output operation with a new requester was successful.

0101 Intra BSCEL CCP CICS IMS Peer SNUF APPC

Successful input operation with a new requester. Continue to receive.

0103 Peer SNUF

End of chain indication received on successful input operation with a new
requester.

0104 Intra SNUF

Function management header and a change direction indication received
on successful input operation with a new requester.

0105 Intra SNUF

Function management header received on successful input operation with
a new requester.

0107 SNUF only

Function management header and an end of chain indication received on
successful input operation with a new requester.

B-6 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

0108 Intra BSCEL IMS Peer SNUF APPC

End of transaction indication received on successful input operation with
a new requester.

010e Intra SNUF

Function management header and an end of transaction indication
received on successful input operation with a new requester.

0110 APPC only

Remote process requested that data be sent.

0114 Intra APPC

Remote process requested confirmation and allowed the local application
program to begin sending data.

0115 Intra APPC

Remote process requested confirmation. The local application program
should continue to receive data.

0118 Intra BSCEL IMS Peer SNUF APPC

End of transaction indication received on successful input operation with
a new requester.

011e Intra APPC

Remote process requested that a confirmation indication be sent and that
the transaction be ended.

Appendix B. Return Code Summary B-7

Major Code 02 - Input operation completed successfully, but a stop system
request or a disable subsystem request is pending.

General Description: The input operation issued by your program was
completed successfully. The operation may have received some data or
a remote system message. However, because a stop system request or a
disable subsystem request is pending, no new sessions using the
subsystem can be started.

Code Subsystems Affected/Primary Indication

0200 Intra Finance Peer SNUF APPC

Change direction indication received with a stop system or disable
subsystem indication on successful input operation.

0201 Intra BSCEL CCP CICS IMS Peer SNUF APPC

A stop system or disable subsystem indication received on a successful
input operation. Continue to receive.

0203 Intra Peer SNUF

End of chain indication received with a stop system or disable subsystem
indication on successful input operation.

0204 Intra SNUF

Fllnction management header and a change direction indication received
with a stop system or disable subsystem indication on successful input
operation.

0205 Intra SNUF

Function management header received with a stop system or disable
subsystem indication on successful input operation.

0207 SNUF only

Function management header and an end of chain indication received
with a stop system or disable subsystem indication on successful input
operation.

B-8 SSP-ICF Pro~amming for Subsystems and Intra Subsystem Reference

0208 Intra BSCEL IMS SNUF APPC

End of transaction indication received with a stop system or disable
subsystem indication on successful input operation.

020C Intra SNUF

Function management header and an end of transaction indication
received with a stop system or disable subsystem indication on successful
input operation.

0210 APPC only

Remote process requested that data be sent.

0212 3270 only

One or more types of unsupported 3270 orders received with a stop
system or disable subsystem indication on successful input operation.

0214 Intra APPC

Remote process requested confirmation and allowed the local application
program to being sending data.

0215 Intra APPC

Remote process requested confirmation. The local application program
should continue to receive data.

021C Intra APPC

Remote process requested that a confirmation indication be sent and that
the transaction be ended.

0220 BSCEL CCP 3270 SNUF

System message and an end of transmission (or change direction)
indication received with a stop system or disable subsystem indication on
successful input operation.

Appendix B. Return Code Summary B-9

0221 BSCEL CICS SNUF

System message received with a stop system or disable subsystem
indication on successful input operation. Continue to receive.

0228 Intra BSCEL IMS Peer SNUF

System message and an end of transaction indication received with a stop
system or disable subsystem indication on successful input operation.

0230 BSCEL CCP 3270 SNUF

Truncated system message and end of transmission (or change direction)
indication received with a stop system or disable subsystem indication on
successful input operation.

0231 BSCEL CICS

Truncated system message received with a stop system or disable
subsystem indication on successful input operation. Continue to receive.

0238 Intra BSCEL IMS Peer SNUF

Truncated system message and an end of transaction indication received
with a stop system or disable subsystem indication on successful input
operation.

B-IO SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 03 - Successful operation, but no data received.

General Description: The input operation or set timer output operation just
performed was completed successfully, but no data was sent or received.

Code Subsystems Affected/Primary Indication

0300 Intra BSCEL CCP CICS IMS Peer SNUF APPC

Change direction or end of transmission indication received with no data
on successful input operation.

0301 Intra BSCEL Peer SNUF APPC

No data received on successful input operation. Continue to receive.

0302 Intra Peer

Fail indication with no data was received on successful input operation.

0303 Intra Peer SNUF

End of chain indication received with no data on successful input
operation.

0308 Intra BSCEL CCP CICS IMS Peer SNUF APPC

End of transaction indication received with no data on successful input
operation.

0310 All subsystems

Timer interval (specified by a set timer operation) has expired.

0314 Intra APPC

Remote process requested confirmation and allowed the local application
program to begin sending data.

Appendix B. Return Code Summary B-11

0315 Intra APPC

Remote process requested confirmation. The local application program
should continue to receive data.

031C Intra APPC

Remote process requested that a confirmation indication be sent and that
the transaction be ended.

Major Code 04 - Output exception occurred.

General Description: An output exception occurred because your program
attempted to send output when it should have been receiving the output
already sent by the other (remote) program.

Code Subsystems Affected/Primary Indication

0402 Intra only

Fail operation issued by other program.

0411 Intra BSCEL CCP IMS

Message for your program waiting to be received.

0412 All subsystems

Data for your program waiting to be received.

B·12 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

Major Code -08-34 - Miscellaneous program errors.

Error Description: An operation attempted by your program failed. The
error may have occurred because an operation was issued at the wrong
time or because a data record was too long.

Code Subsystems Affected/Primary Indication

0800 All subsystems

Acquire operation attempted to acquire an active session.

1100 All subsystems

Accept operation was not successfuL

2800 All subsystems

Communications was attempted with a session that has been released.

3401 All subsystems

Input operation rejected because data to be received was too long for
your program's input buffer.

3431 APPC only

An input exception occurred because the program received data that
exceeded its maximum record length. The local application program
should continue to receive data.

Appendix B. Return Code Summary B-13

Major Code 80 - Permanent (nonrecoverable) subsystem error.

Error Description: A nonrecoverable error has occurred in the subsystem; the
subsystem has been (or is being) disabled, and your session has been
terminated.

Code Subsystems Affected/Primary Indication

8081 All subsystems

An SSP-ICF error caused the abnormal termination of the subsystem.

8082 All subsystems

The subsystem controlling the session is being disabled immediately.

8083 CCP IMS 3270 Finance Peer

Communications adapter controller check occurred on an output
operation.

8084 CCP IMS 3270 Finance Peer

Communications adapter controller check occurred on an input
operation.

80RD CCP CICS

A connection was attempted on an inactive X.21 communications line.

80CO APPC only

Session failed.

80C1 APPC only

Evoke operation failed. Mapped conversation not allowed.

BODO APPC only

Remote transaction program not available. No retry allowed.

B-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 81 - Permanent (nonrecoverable) session error.

Error Description: A nonrecoverable error has occurred in the session; the
session has been terminated.

Code Subsystems Affected/Primary Indication

8136 BSCEL only

Invalid remote identifier received in response to your output operation.

8137 BSCEL only

Invalid remote identifier received in response to your input operation.

8183 BSCEL CCP IMS Finance Peer

Communications adapter controller check occurred on an output
operation.

8184 BSCEL CCP IMS Finance Peer

Communications adapter controller check occurred on an input
operation.

8185 BSCEL Peer

Attempt to automatically call a remote location was not successful; all
available numbers were tried.

8186 BSCEL only

Attempt to automatically call a remote location was not successful; all
numbers were already marked as called.

8187 Finance only

Your program was not synchronized with the remote program.

8191 BSCEL CCP SNUF APPC

Permanent line error occurred on an output operation.

Appendix B. Return Code Summary B-15

8192 BSCEL CCP

Pennanent line error occurred on an input operation.

8193 BSCEL CCP CICS

Disconnect indication received on an output operation.

8194 BSCEL CCP CICS

Disconnect indication received on an input operation.

8196 Peer SNUF APPC

SNA unbind command received from remote system.

8197 BSCEL APPC

Remote system abnonnally tenninated the transaction on an output
operation.

8198 BSCEL only

Remote system abnonnally terminated the transaction on an input
operation.

8199 BSCEL CCP

Time between successive data blocks sent on output operations exceeded
~pecified wait time.

819A BSCEL CCP

Time between successive data blocks received on input operations
exceeded specified wait tirr).

B-I6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

819B BSCEL only

In a put-versus-put situation, a block size error in the remote program's
data was detected on an output operation.

819C BSCEL CCP SNUF

A block size error in the remote program's data was detected on an input
operation.

819D BSCEL Peer SNUF APPC

Unexpected data was received from the remote system.

819E CCP only

Abnormal shutdown indication received from the CCP host system.

819F CCP only

Normal shutdown indication received from the CCP host system.

81A3 Finance only

Synchronization was lost between the subsystem and the remote system
communications equipment.

8IB6 SNUF only

The host system has quiesced the session; the session has been terminated.

8IB8 BSCEL only

In a put-versus-put situation, a record that exceeds the maximum user
record length was received from the remote system on an output
operation.

8IB9 BSCEL only

A record that exceeds the maximum user record length was received on
an input operation.

Appendix B. Return Code Summary B-17

8lDA Finance only

A record longer than 512 bytes was received on an input operation.

8lDC BSCEL CICS

Wrong type of list was used to automatically call a remote location.

8lC2 APPC only

Operation failed. Session no longer available.

8lC4 APPC only

Session group not active.

81CS APPC only

Deallocate ABEND(SVC) received.

8lC6 APPC only

Deallocate ABEND(TIMER) received.

B-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 82 - Acquire operation failed.

Error Description: An attempt to acquire a session was not successful; the
session was not started.

Code Subsystems Affected/Primary Indication

820A BSCEL only

Invalid combination of values detected during an acquire operation; both
ASCII and TRANSP-YES were specified.

820D IMS only

Normal shutdown indication received from the IMS host system.

8213 IMS only

For the maximum message amount specified (or defaulted) in the
SESSION statement, not enough buffer space was available during an
acquire operation.

S21E Finance only

No SESSION statement found between LOAD and RUN statements for
this BASIC program.

8233 All subsystems

Session identifier is either missing or invalid.

8236 BSCEL CCP

Invalid remote identifier received from the remote system or device.

8281 All subsystems

An SSP-ICF error caused the abnormal termination of the subsystem.

Appendix B. Return Code Summary B-19

8282 All subsystems

The subsystem in which the acquire operation was attempted is currently
being disabled.

8283 BSCEL CCP

Communications adapter controller check occurred during an acquire
operation.

8285 BSCEL CCP Peer SNUF APPC

Attempt to automatically call a remote location and acquire the session
was not successful; all available numbers were tried.

8286 BSCEL CCP

Attempt to automatically call a remote location and acquire the session
was not successful; all numbers were already marked as called.

8288 Finance only

The specified remote location was not active when the acquire operation
was attempted.

8289 BSCEL only

Invalid combination of values detected during an acquire operation; a
record separator and transparent mode were both specified.

828A BSCEL only

Invalid combination of values detected during an acquire operation; a
record separator and ITB mode were both specified.

828B BSCEL only

Invalid combination of values detected during an acquire operation; the
maximum user record length specified was greater than the block length.

828C BSCEL only

Invalid combination of values detected during an acquire operation; 3740
multiple files and ITB mode were both specified.

B-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

828D BSCEL only

Invalid combination of values detected during an acquire operation; blank
compression and ITB mode were both specified.

828E BSCEL only

Invalid combination of values detected during an acquire operation; blank
truncation and ITB mode were both specified.

828F BSCEL only

Invalid block length specified; for the other parameters specified, block
length must not be zero.

8290 BSCEL only

Invalid combination of values detected during an acquire operation; blank
compression and transparent mode were both specified.

8291 BSCEL CCP

Permanent line error occurred during an acquire operation.

8293 BSCEL CCP

Disconnect indication received from remote system during an acquire
operation.

8296 SNUF only

SNA unbind command received from remote system during an acquire
operation.

8297 BSCEL only

Remote system abnormally terminated the attempted acquire operation.

Appendix B. Return Code Summary B-21

829F CCP only

Normal shutdown indication received from the CCP host system during
an acquire operation.

82AO BSCEL only

Invalid record separator character was specified in the SESSION
statement.

82At SNUF only

Log-on portion of acquire operation failed; either the host system was
inactive, or an invalid remote program name was specified in the
APPUD parameter.

82A2 CCP only

Invalid CCP sign-on password was specified during an acquire operation.

82A5 SNUF only

Invalid combination of values detected during an acquire operation; yes
was specified both for MSGPROT and BATCH parameters.

82A6 Peer SNUF APPC

SN A bind command failed.

82A 7 BSCEL CCP CICS Peer SNUF APPC

The specified communications line was already in use when the acquire
operation was attempted.

82A8 All subsystems

The maximum number of active sessions allowed in Systemj36 were
already active when the acquire operation was attempted.

B-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

82A9 IMS only

IMS host system was not active when the acquire operation was
attempted.

82AA All subsystems

Specified subsystem was not enabled when the acquire operation was
attempted. For SNA subsystems, the subsystem may be enabled, but
communications with the specified remote location has not been
activated.

82AB All subsystems

Specified subsystem was being enabled when the acquire operation was
attempted. For SNA subsystems, the subsystem may have been enabled;
however, communications is being activated with the specified remote
location.

82AC IMS only

Batch session could not be acquired because the line is currently being
used by interactive sessions.

82AD IMS only

Interactive session or another batch session could not be acquired because
the line is currently being used by a batch session.

82AE IMS 3270

Invalid PTERM address detected during an acquire operation; address in
SESSION statement is not specified in subsystem configuration.

82AF IMS only

Incorrect PTERM address detected during an acquire operation; a remote
address reserved for procedure start requests from the IMS host system
was specified.

82BO All subsystems

Specified subsystem was being disabled, or a disable subsystem request
was pending, when the acquire operation was attempted. For SNA
subsystems, if the subsystem is not being disabled, communications with
the specified remote location is being deactivated.

Appendix B. Return Code Summary B-23

82Bl CCP CICS IMS 3270

The session to be acquired was identified as already being in use.

82B2 CCP CICS

All the sessions in the address pool were already in use when the acquire
operation was attempted.

82B3 IMS 3270 Peer SNUF APPC

All the sessions specified in the subsystem configuration were already in
use when the acquire operation was attempted.

82BB Finance SNUF

Logical work station specified by the L WSID parameter was not
available when the acquire operation was attempted.

82BC BSCEL CCP

Wrong type of list was used to automatically call a remote location
during the acquire operation.

82C3 APPC only

Session group name was not found.

82C4 APPC only

Session group name is not active.

B-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Major Code 83 - Session error occurred.

Error Description: An error has occurred in the session, but the session is still
active. Recovery might be possible.

Code Subsystems Affected/Primary Indication

830B All subsystems

An input or output operation was attempted in an unacquired session.

830D IMS SNUF

Normal shutdown indication received from host system.

830E IMS only

Normal shutdown indication received from IMS host system on an input
operation.

8311 SNUF only

Output operation was attempted while a message was waiting to be
received.

8313 IMS only

Insufficient task work space available on an output operation.

8316 Peer APPC

Evoke operation failed because evoked program was not found.

8317 IMS only

Maximum user record length was exceeded on an output operation.

8319 Intra SNUF

Negative response to your program's previous output operation was
issued by the remote program.

Appendix B. Return Code Summary B-25

831A Intra BSCEL CCP IMS Peer

Evoke operation failed to complete successfully, or the evoked program
terminated abnormally.

831B Intra SNUF

Invalid sense data included on a negative response operation issued by
your program.

831C All subsystems

Operation is invalid at this time; a return code for the previous output
operation was improperly handled by your program.

831D IMS only

Output operation invalid in this session because it was started by a
remote procedure start request.

831E All subsystems

Invalid operation code, or operation not supported by the subsystem.

831F All subsystems

Attempted to send a data record whose length exceeds the maximum user
record length specified for this session.

8320 IMS only

On a batch output operation, your program attempted to send a record
longer than 256 bytes to the IMS host system.

8322 Intra BSCEL CCP IMS Finance Peer SNUF APPC

The attempted operation is not valid after a put with no invite operation.

8323 Intra SNUF

Cancel operation invalid while in receive state, or output operation
attempted after receiving a fail indication.

B-26 SSP-ICF Programming for SubsystE1ms and Intra Subsystem Reference

8324 SNUF only

Function management header sent by your program at wrong time; valid
only with the first record in the chain.

8326 Intra SNUF

Invalid cancel operation was issued; valid only within a chain.

8327 Intra BSCEL IMS Peer SNUF APPC

Invalid input or output operation issued when no transaction existed.

8329 Intra BSCEL CCP CICS IMS Finance Peer SNUF APPC

Evoke operation not valid in this session; your program was evoked by a
remote procedure start request.

832A Intra Peer

Both programs attempted to receive input.

832B BSCEL CCP CICS IMS

Record length of 0 detected on first output operation attempted.

832C All subsystems

Release operation invalid after an invite operation.

832D All subsystems

Attempted operation is not valid following an invite operation.

832E CCP only

Program cancel indication received from the CCP host system when no
transaction was active.

Appendix B. Return Code Summary B-27

832F Intra BSCEL CCP 3270 Peer SNUF APPC

Invalid evoke or release operation was issued before a transaction was
completed.

8330 Intra SNUF

Cancel indication and change direction indication received on an input
operation.

8331 Intra SNUF

Cancel indication received without change direction indication on an input
operation.

8332 SNUF only

Cancel indication and end of transaction indication received on an input
operation.

8333 All subsystems

Invalid session identifier detected on input or output operation.

8334 BSCEL IMS 3270 Peer APPC

Procedure name missing on an evoke operation issued by your program.

8336 CICS only

Invalid remote identifier received in response to your output operation.

8338 3270 only

Invalid or unsupported 3270 command received from the remote system.

8339 3270 only

Data rejected by subsystem because it was still processing the last
operation.

B-28 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

~, -

833C BSCEL only

Invalid combination of data modes detected on output operation;
transparency mode and ITB mode were both specified.

8383 CCP CICS 3270

Communications adapter controller check occurred on an output
operation.

8384 CCP CICS 3270

Communications adapter controller check occurred on an input
operation.

8385 CICS only

Attempt to automatically call a remote location was not successful; all
available numbers were tried.

8386 CICS only

Attempt to automatically call a remote location was not successful; all
numbers were already marked as called.

8391 CICS IMS 3270

Permanent line error occurred on an output operation.

8392 CICS IMS 3270

Permanent line error occurred on an input operation.

8397 CICS 3270 Peer

Remote system abnormally terminated the transaction during an output
operation.

8398 CICS 3270

Remote system abnormally terminated the transaction during an input
operation.

8399 CICS 3270

Delay count exceeded at this location on an output operation.

Appendix B. Return Code Summary B-29

839A CICS 3270

Delay count exceeded at this location on an input operation.

839B CICS SNUF

In a put-versus-put situation, a block size error in the remote program's
data was detected on an output operation.

839C CICS 3270

The remote program's data block length exceeded the subsystem input
buffer length on an input operation.

83A 7 CCP only

Attempted operation not performed because specified communications
line was already in use.

83BO Peer APPC

Operation was not successful because subsystem is being disabled.

83C7 APPC only

Fail operation received. No data truncated.

83C8 APPC only

Fail operation received. No data truncated.

83C9 APPC only

Fail operation received. Data being purged.

83CA APPC only

Fail operation received. Data being purged.

83CB APPC only

Fail operation received. Data truncated.

B-30 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

83CC APPC only

Fail operation received. Data truncated.

83CD APPC only

Operation invalid. Confirmation request not allowed.

83CE APPC only

Security invalid. Request rejected by remote system.

83CF APPC only

Conversation types mismatched. Request rejected by remote system.

83DO APPC only

Remote transaction program not available.

83Dl APPC only

Process initialization parameters (PIPs) not allowed. Request rejected by
remote system.

83D2 APPC only

Process initialization parameters (PIPs) not specified correctly. Request
rejected by remote system.

83D3 APPC only

Synchronization level not supported by remote program.

83D4 APPC only

Maximum input length exceeded.

Appendix B. Return Code Summary B-a1

83EO Intra APPC

Externally described format definition not found.

83El Intra APPC

Externally described format definition not retrieved.

83E8 Intra BSCEL

Invalid cancel invite operation.

B-32 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Appendix C. Conversion Considerations

BSCEL to Peer Conversion Considerations
CICS to SNUF Conversion Considerations
IMSjVS to SNUF Conversion Considerations

Uninvited Data C-4
End of Transaction Operations C-5

C-3
C-3

C-4

BATCH Parameter on the SESSION Statement C-6
IMS/IRSS Subsystem C-6
SNUF Subsystem C-6

IMS/IRSS to SNUF Conversion Considerations C-7
Peer to APPC Conversion Considerations C-S
SNUF to APPC Conversion Considerations C-9

Appendix C. Conversion C-l

This appendix describes several considerations for converting a program written
for a BSC subsystem so that it can be used with an SNA subsystem. It also
describes considerations for converting a program written for a Peer or SNUF
subsystem so that it can be used with an APPC subsystem. The following
conversions are described:

• BSCEL to Peer

• CICS to SNUF (CICSjVS on remote system)

• IMSjIRSS to SNUF (IMSjVS on remote system)

• Peer to APPC

• SNUF to APPC

C-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BSCEL to Peer Conversion Considerations

A System/36 program that uses the BSCEL subsystem can be changed so it can
use the Peer subsystem. The following items describe considerations for
converting the program to use the Peer subsystem.

• Configuration parameters and SESSION statement parameters for the Peer
subsystem are different from those for the BSCEL subsystem. See the
BSCEL and Peer chapters in the SSP-[CF Base Subsystems Reference manual
for a description of each set of configuration displays and each SESSION
statement.

• The program using the BSCEL subsystem should be running with a partner
attribute of NORM.

• The cancel invite operation supported by the BSCEL subsystem is not
supported by the Peer subsystem.

• The put end offile operation performed by the BSCEL subsystem is
functionally the same as the put end of chain operation performed by the Peer
subsystem.

• Minor return codes returned by the BSCEL subsystem might be different
from those returned by the Peer subsystem. If the program checks minor
return codes, changes might be required to handle the Peer minor return
codes. If the program checks only major return codes, no changes in return
code checking are required.

• A System/36 program using the BSCEL subsystem must be synchronized with
the program on the remote system. That is, in situations where either
program can perform input or output operations, one program must perform
input and the other must perform output. A program using the Peer
subsystem can achieve synchronization with the remote program by checking
the return codes. This added flexibility causes the Peer subsystem to return
different minor return codes than those returned by the BSCEL subsystem.
Appendix B contains a summary listing that identifies the return codes that
are used by each subsystem.

CICS to SNUF Conversion Considerations

System/36 programs that use the CICS subsystem can be run without change on
the SNUF subsystem if no minor return codes are checked. The minor return
codes issued by the two subsystems differ somewhat, especially in indicating the
end of a transaction. Therefore, coding changes might be required if minor return
codes are checked.

Another difference between the two subsystems is that the CICS subsystem allows
only the *EXEX procedure start request; the SNUF subsystem allows either
*EXEX or *EXEC.

Appendix C. Conversion C-3

IMS/VS to SNUF Conversion Considerations

Uninvited Data

Consider the following items when writing interactive communications programs
that communicate with IMSjVS:

• Uninvited data

• End of transaction operations

• BATCH parameter on the SESSION statement

These items must be considered whether you use the SNUF subsystem or the
IMS/IRSS subsystem; however, the considerations are different. The following
sections compare the two subsystems in these areas. The final section describes
the considerations for writing a program that uses the IMS/IRSS subsystem so
that the program can be run using the SNUF subsystem with as little change as
possible.

Uninvited data is data received in a session that has no program associated with
it. (Data that begins with *EXEC or *EXEX is a procedure start request and is
not considered uninvited data.) A procedure can be specified (during the
configuration of the subsystem) so that it begins running when uninvited data is
received. The subsystem passes the data to a program started by the procedure;
the program can process the data, save it in a file, or discard it.

Uninvited data can be received for any of the following reasons:

• A message switch or broadcast message is received.

• A System/36 program releases a session that has data on the IMSjVS output
queue.

• An IMSjVS status message is sent to a session.

The program that receives the uninvited data cannot perform any output
operations in the session. The System/36 program is treated as a remotely started
program. If the program is using the SNUF subsystem, the program must receive
256-byte records and should be prepared to handle function management headers.

C-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

End of Transaction Operations

End of transaction operations (put end of transaction or evoke end of transaction)
are treated differently by the IMS/IRSS subsystem than they are by the SNUF
subsystem.

When an end of transaction operation is sent to the IMS/IRSS subsystem, the
subsystem indicates to IRSS that the message has ended.

When an end of transaction operation is sent to the SNUF subsystem, the
subsystem sends a change direction indication and expects to receive a null record,
terminating the transaction from IMS/VS. If anything other than a null record is
received, the session is terminated abnormally, and an error return code is sent to
the System/36 program. Something other than a null record can be received in
any of the following cases:

• The IMS/VS remote program has generated output to be sent to this session.

• An output message was placed on the IMS/VS output queue by an IMS/VS
program other than the one evoked by the System/36 program.

• A message switch or broadcast message was placed on the IMS/VS output
queue for this session.

Because of these situations, end of transaction operations are not recommended
for SNUF sessions that communicate with IMS/VS.

Appendix C. Conversion C-5

BATCH Parameter on the SESSION Statement

IMS/IRSS Subsystem

SNUF Subsystem

The BATCH parameter on the SESSION statement determines how the SNUF
and IMS/IRSS subsystems handle input and output operations.

When BATCH-NO is specified on the SESSION statement, the IMS/IRSS
subsystem accumulates records as they are received from the System/36 program.
The records are then sent as one message when the program indicates the message
is complete (by issuing either an end of transaction operation or an input
operation). The total length of all the records submitted within a message cannot
be greater than the specified maximum record length.

When BATCH-YES is specified on the SESSION statement, the IMS/IRSS
subsystem sends each record as it is received from the System/36 program. The
subsystem sends each record as a segment of a message until it receives an end of
transaction operation or an input operation from the program. A session
specified as BATCH-YES cannot be acquired while another session is active
because of the delays in line turnaround that may occur. BATCH-YES should be
specified when large amounts of data must be sent without intervening responses
from the host system.

When BATCH-NO is specified on the SESSION statement, the SNUF subsystem
handles each record from the System/36 program as a complete chain. IMS/VS
requires that when a chain ends, a change direction indication must also be sent.
This means that the System/36 program cannot issue multiple output operations
consecutively. To assure that the change direction indication is sent, each put or
evoke operation must be accompanied by an invite, get, or end of transaction
modifier (that is, the operation must be a combined operation, such as a put then
get operation). Note that an evoke operation without a modifier that is followed
by a get or invite operation is not acceptable because the change direction
indication would not accompany the evoke operation, and IMS/VS would,
therefore, reject it.

When BATCH-YES is specified on the SESSION statement, the SNUF subsystem
sends each record from the System/36 program as an element of a chain. This
allows the program to perform consecutive output operations; however, a change
of direction must still be indicated at the end of each chain. Therefore, a chain
should not be terminated by a put end of chain operation. The last output
operation should include an invite, get, or end of transaction modifier, or the
output operation should be followed by an invite or get operation.

C-6 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

IMSjIRSS to SNUF Conversion Considerations

If the following guidelines are followed, programs that communicate with IMS/VS
through the IMS/IRSS subsystem can be converted to use the SNUF subsystem:

• If more than one output operation is performed consecutively, the
BATCH-YES parameter must be specified on the SESSION statement.

• If a get operation is used (one that is not combined with an evoke or put
operation), the BATCH-YES parameter must be specified on the SESSION
statement.

• An end of transaction operation (put end of transaction or evoke end of
transaction) used with the SNUF subsystem fails when output remains on the
IMS/VS output queue for this session. The operation will not fail when using
the IMS/IRSS subsystem.

• Return codes for permanent errors (80xx or greater, or *STATUS values
greater than 99) returned by the SNUF subsystem are different from those
returned by the IMS/IRSS subsystem.

Appendix C. Conversion C-7

Peer to APPC Conversion Considerations

A System/36 program that uses the Peer subsystem can be changed so it can use
the APPC subsystem. The following paragraphs describe considerations for
converting the program to use the APPC subsystem.

Configuration parameters and SESSION statement parameters for the APPC
subsystem are different from those for the Peer subsystem. See the Peer and
APPC chapters in the SSP-[CF Base Subsystems Reference manual for a
description of each set of configuration displays and each SESSION statement.

A put with end of chain operation is not supported in the APPC subsystem. In
addition, the return code indicating an end of chain was received is not supported.

The application may receive a return code indicating an end of transaction was
received with the data record. An end of transaction indication, when using the
Peer subsystem, does not get returned to the application with the data record.

The notification of an evoke failure may not occur until a subsequent operation.
With the Peer subsystem, an evoke operation does not complete until an
acknowledgement is received from the remote Peer subsystem. With the APPC
subsystem, a confirm indicator can be included with the evoke operation to verify
that the evoke operation completed.

An evoke operation may fail because a remotely controlled session was lost. To
avoid this, specify N on the acquire remotely controlled sessions prompt
(display 44.0) when defining your configuration.

Minor return codes returned by the Peer subsystem may be different from those
returned by the APPC subsystem. If the program checks minor return codes,
changes might be required to handle the APPC minor return codes. Return codes
for fail errors returned by the Peer subsystem are different from those returned by
the APPC subsystem. Appendix B contains a summary listing that identifies the
return codes that are used by each subsystem.

Externally defined field, format, and file definitions (also called data definitions)
can be used instead of SSP-ICF operations. This allows you to use the new
functions of APPC without converting the entire program.

Security considerations are described in the manual Using System/36
Communications.

c-s SSP-ICF Programming for Subsystems and Intra Subsystem Reference

SNUF to APPC Conversion Considerations

A System/36 program that uses the SNUF subsystem can be changed so it can use
the APPC subsystem. The following paragraphs describe considerations for
converting the program to use the APPC subsystem.

Configuration parameters and SESSION statement parameters for the APPC
subsystem are different from those for the SNVF subsystem. See the SNVF and
APPC chapters in the appropriate reference manual for a description of each set
of configuration displays and each SESSION statement.

The APPC subsystem does not communicate with IMS.

The APPC subsystem has a maximum of one LV (logical unit) with one session
when communicating with CICSjVS.

No cancel, negative response, and put FMH operations are supported by the
APPC subsystem.

Minor return codes returned by the SNUF subsystem may be different from those
returned by the APPC subsystem. If the program checks minor return codes,
changes might be required to handle the APPC minor return codes. Return codes
for fail errors (03xx or 04xx) returned by the SNVF subsystem are different from
those returned by the APPC subsystem. Appendix B contains a summary listing
that identifies the return codes that are used by each subsystem.

Externally defined field, format, and file definitions (also called data definitions)
can be used instead of SSP-ICF operations. This allows you to use the new
functions of APPC without converting the entire program.

Appendix C. Conversion C-9

C-IO SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Appendix D. EBCDIC and ASCII Character Sets

EBCDICjDP (Data Processing) Character Set D-2
EBCDICjWP (Word Processing) Character Set D-3
ASCII Character Set D-4

Appendix D. EBCDIC and ASCII Character Sets D-l

The following charts show all the EBCDIC and ASCII character sets. The charts
are provided to show the data link control characters that are used in BSC data
communications. Certain parameters for some BSC subsystems should not specify
values that contain any of the data link control characters shown in these charts.
Those parameters are identified in the individual subsystem chapters.

EBCDIC/DP (Data Processing) Character Set

First Hexadecimal Digit

Second Hexadecimal Digit

~
0 1 2 3

0 NUL SOH STX ETX

1 OLE DC1 DC2 DC3

2 OS SOS FS

3 SYN

4 SP

5 &

6 - /

7

8 a b c

9 j k I

A - s t

B

C { A B C

0 } J K L

E \ S T

F 0 1 2 3

[2J Dupl icate Assignment

ACK 0= 1070
ACK 1 = 1061
TTD = 0220
RVI = 107C
WACK = 106B

4 5

PF HT

RES NL

BYP LF

PN RS

d e

m n

u v

0 E

M N

U V

4 5

6 7 8 9 A B

LC DEL RLF SMM VT

BS IL CAN EM CC
:,QB/

ETB ';!r/ ESC SM

UC EaT

It

! $
I
I

\ : #

f 9 h i

0 p q r

w x y z

F G H I

a P Q R

W x Y Z

6 7 8 9

D-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

C 0 E F

FF CR SO SI

IFS IGS IRS IUS

ENQ ACK BEL

DC4 NAK SUB

< (+ I

...) ; I

% - > ?
" ..

@ =

EBCDIC/WP (Word Processing) Character Set

First Hexadecimal Digit

Second Hexadecimal Digit

~
0 1 2 3

0 NUL SOH STX ETX

1 DLIO DC1 DC2 DC3

2 WUS

3 SYN IRT

4 SP RSP

5 &

6 l"<v /

7

8 a b c

9 j k I

A ~ s t

B

C IYt A B C

0 Yl J K L

E 1/4 NSP S T

F 0 1 2 3

o Duplicate Assignment

ACK 0 = 1070
ACK 1 = 1061
TTD = 022D
RVI = 107C
WACK = 106B

4 5 6

HT RNL

NL BS

LF ETB

NBS

d e f

m n 0

u v w

D E F

M N 0

U V W

4 5 6

7 8 9 A B C 0 E F

DEL SPS RPT VT FF CR

UBS IGS IRS ITB

ESC SW CU2 ENQ BEL

EOT SBS IT RFF NAK SUB

It M (+ ~
+ ! $ *) ; l~

I 0/0 - Y> 7

~ "
: # @ =

9 h i

p q r

x y z

G H I DRy

P Q R

X Y Z

7 8 9

Appendix D. EBCDIC and ASCII Character Sets D-3

ASCII Character Set

First Hexadecimal Digit

j
Second Hexadecimal Digit

~
0 1 2 3 4 5 6 7 8 9 A B C D I E F

0 _NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR i SO SI
-- ------
1 DLE DCl DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS ~ ---

2 SP ! or I " # $ 'X, & () * + /

3 0 1 2 3 4 5 6 7 8 9 < = > ?

4 --@ A B C D E F G H I J ~~ -J'n __ t-N--~ -

5 P Q R S T U V W X Y Z [I \ 1 I\ori
-

6 a b c d e f 9 h i j k I m n 0 ----f-------
7 t { I I ~ DEL p q r s u v w x y Z I

D-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Glossary

#LlBRARY. The library, provided with the system,
that contains the System Support Program Product.
See system library.

abnormal termination. A system failure or
operator action that causes a job to end
unsuccessfully.

access method. The way that records in files are
referred to by the system. The reference can be
consecutive (reoords are referred to one after
another in the order in which they appear in the
file), or it can be random (the individual records can
be referred to in any order).

acknowledgment character (ACK). In binary
synchronous communications, a transmission
control character sent as a positive response to a
data transmission.

ACKO. In binary synchronous communications, the
even-numbered positive acknowledgment character.
See acknowledgment character (ACK).

ACKl. In binary synchronous communications, the
odd-numbered positive acknowledgment character.
See acknowledgment character (ACK).

acquire. To assign a display station or session to a
program.

acquired session. A session that has been started
by a System/36 program using an acquire operation,
or in BASIC, using an OPEN statement.

adapter. See communications adapter.

address pool. In data communications, a
collection of multipoint addresses. Each address
can be associated with an individual SSP-ICF
-session.

addressing. (1) In data communications, the way
that the sending or control station selects the
station to which it is sending data. (2) A means of
identifying storage locations.

Advanced Peer-to-Peer Networking (APPN). A
communications feature that routes data in a
network between two or more APPC systems that
are not directly attached.

advanced program-to-program communications
(APPC). Communications support that allows
System/36 to communicate with other systems
having the same support. APPC is the way that
System/36 puts the IBM SNA LU-6.2 protocol into
effect.

alert. An error message sent to the system services
control point (SSCP) at a host system. On
System/36, the problem management portion of the
Communications and Systems Management feature
is used to generate and send alerts.

allocate. To assign a resource, such as a disk file
or a diskette file, to perform a specific task.

alphabetic character. Anyone of the letters A
through Z (uppercase and lowercase). Some
program products extend the alphabet to include the
special characters #, $, and @.

alphameric. Consisting of letters, numbers, and
often other symbols, such as punctuation marks and
mathematical symbols.

alphanumeric. See alphameric.

American National Standard Code for
Information Interchange (ASCII). The code
developed by ANSI for information interchange
among data processing systems, data
communications systems, and associated equipment.
The ASCII character set consists of 7-bit control
characters and symbolic characters.

AP AR. See authorized program analysis report
(A PAR).

APPC. See advanced program-to-program
communications (APPC).

Glossary G-l

application. (1) A particular business task, such
as inventory control or accounts receivable. (2) A
group of related programs that apply to a particular
business area, such as the Inventory Control or the
Accounts Receivable application.

application program. A program used to perform
an application or part of an application.

APPN. See Advanced Peer-to-Peer Networking.

ASCII. See American National Standard Code for
Information Interchange (ASCII).

assembler. A program that converts assembler
language statements to machine instructions.

assembler instruction statement. A statement
that controls what the assembler does, rather than
what the user program does.

assembler language. A symbolic programming
language in which the set of instructions includes
the instructions of the machine and whose data
structures correspond directly to the storage and
registers of the machine.

asynchronous transmission. In data
communications, a method of transmission in which
the bits included in a character or block of
characters occur during a specific time interval.
However, the start of each character or block of
characters can occur at any time during this
interval. Contrast with synchronous transmission.

attribute. A characteristic. For example, an
attribute for a displayed field could be blinking.

authorized program analysis report (APAR). A
request for correction of a defect in a current
release of an IBM-supplied program.

autoanswer. In data communications, the ability
of a station to receive a call over a switched line
without operator action. Contrast with manual
answer.

autocall. In data communications, the ability of a
station to place a call over a switched line without
operator action. Contrast with manual call.

autocall unit. A common carrier device that
allows System/36 to automatically call a remote
location.

automatic reconnect. An option specified during
system configuration that allows a remote work
station controller to be reconnected automatically
on a switched or nonswitched line.

BASIC (beginner's all-purpose symbolic
instruction code). A programming language
designed for interactive systems and originally
developed at Dartmouth College to encourage
people to use computers for simple problem-solving
operations.

basic data exchange. A file format for
exchanging data on diskettes between systems or
devices.

batch. Pertaining to activity involving little or no
operator action. Contrast with interactive.

batch BSC. The System Support Program Product
support that provides data communications with
BSC computers and devices via the RPG T
specification or the assembler $DTFB
macroinstruction.

batch processing. A processing method in which
a program or programs process records with little or
no operator action. Contrast with interactive
processing.

binary synchronous communications (BSC). A
form of communications line control that uses
transmission control characters to control the
transfer of data over a communications line.
Compare with synchronous data link control (SDLC).

bind command. An SNA command used to define
the protocols for a session. Contrast with unbind
command.

block. (1) A group of records that is recorded or
processed as a unit. Same as physical record. (2)
Ten sectors (2560 bytes) of disk storage. (3) In data
communications, a group of records that is recorded,
processed, or sent as a unit. (4) In DW/36, a
sequential string of text (defined using the cursor
movement keys or line commands) that is treated as
a unit.

BSC. See binary synchronous communications
(ESC). \

BSCEL (binary synchronous communications
equivalence link) subsystem. The SSP-ICF
subsystem that provides BSC communications with
another System/36 and many other BSC computers
and devices.

buffer. (1) A temporary storage unit, especially
one that accepts information at one rate and
delivers it at another rate. (2) An area of storage,
temporarily reserved for performing input or output,
into which data is read or from which data is
written.

G-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

byte. The amount of storage required to represent
one character; a byte is 8 bits.

C & SM. See Communications and Systems
Management (C & SM).

call. (1) To activate a program or procedure at its
entry point. Compare with load. (2) In data
communications, the action necessary in making a
connection between two stations on a switched line.

CCITT. Consultative Committee on International
Telegraphy and Telephone.

CCP. See communications control program (CCP).

CCP subsystem. The SSP-ICF subsystem that
provides data communications with a System/3
Model 15D.

chain. (1) A group of logically linked records. (2)
In SNA, a group of logically linked records that are
transferred over a communications line.

character key. A keyboard key that allows the
user to enter the character shown on the key.
Compare with command key and function key.

check. (1) An error condition. (2) To look for a
condition.

CICS subsystem. The SSP-ICF subsystem that
allows binary synchronous communications with
CICS/VS.

CICS/VS. Customer Information Control System,
which operates on a host system such as a
System/370, or a 30XX or 43XX processor.

close. To end the processing of a file.

closed user group. A group of DTEs that can
access only one another. DTEs outside of the group
can neither access nor be accessed by members of
the group.

COBOL (common business-oriented language).
A high-level programming language, similar to
English, that is used primarily for commercial data
processing.

command. A request to the system to perform an
operation or a procedure.

command key. A keyboard key that is used to
request specific programmed actions. Compare with
character key and function key.

communications. See data communications.

communications adapter. A hardware feature
that enables a computer or device to become a part
of a data communications network.

Communications and Systems Management (C
& SM). A feature of the System Support Program
Product that contains the remote management
support (also referred to as DHCF), the change
management support (referred to as DSNX), and the
problem management support (referred to as alerts).

communications control program (CCP). An
IBM System/3 Model 15 program that allows
communications between System/3 and the SSP-ICF
CCP subsystem.

communications file. A file that describes an
advanced program-to-program communications
(APPC) subsystem session between a System/36
program and a remote device, another program, or
another system.

communications file definition. The format in
the communications file that contains the APPC
subsystem session description.

communications line. The line over which data
communications takes place; for example, a
telephone line.

communications link. See data link.

compress. (1) To move files, libraries, or folders
together on disk to create one continuous area of
unused space. (2) To replace repetitive characters
in a file or folder with control characters so that
the file or folder takes up less space when saved on
diskette.

compression. In data communications, a
technique for removing strings of duplicate
characters and for removing trailing blanks before
transmitting data.

configuration. The group of machines, devices,
and programs that make up a data processing
system. See also system configuration.

configuration member. In data communications,
a member that defines the attributes of a
communications subsystem or line.

configure. (1) To describe (to the system) the
devices, optional features, and program products
installed on a system. (2) To describe to SSP-ICF
both the communications facilities connected to
System/36 and the attributes of the subsystem and
remote system.

Glossary G-3

console. A device used for communication between
an operator and the system.

constant. A data item with a value that does not
change. Contrast with variable.

control station. The primary or controlling
computer on a multipoint line. The control station
controls the sending and receiving of data.

control storage. Storage in the computer that
contains the programs used to control input and
output operations and the use of main storage.
Contrast with main storage.

convention. A general agreement about basic
principles. A rule.

current library. The first library searched for any
required members. The current library can be
specified during sign-on or while running programs
and procedures.

data circuit-terminating equipment (DCE). The
equipment installed at the user's location that
provides all the functions required to establish,
maintain, and terminate a connection, and the
signal conversion and coding between the data
terminal equipment (DTE) and the line.

data communications. The transmission of data
between computers and/or remote devices (usually
over a long distance).

data definition. Information that describes the
contents and characteristics of a field, format
(record), or file. A data definition can include such
things as field names, lengths, and data types. See
also field definition, file definition, and format
definition.

data dictionary. A folder that contains field,
format, and file definitions.

Data Encryption Subroutine. A feature of the
System Support Program Product that codes and
decodes data for security purposes. This subroutine
is only used by the SSP-ICF Finance subsystem.

data link. The equipment and rules (protocols)
used for sending and receiving data.

data link escape (DLE) character. In BSC, a
transmission control character usually used in
transparent text mode to indicate that the next
character is a transmission control character.

data management. See disk data management.

data mode. In data communications, a time during
which BSC is sending or receiving characters on the
communications line.

data stream. All information (data and control
information) transmitted over a data link.

data terminal equipment (DTE). The data
processing unit that uses communications lines.

DCE. See data circuit-terminating equipment
(DCE).

DDM. See Distributed Data Management (DDM).

default value. A value stored in the system that is
used when no other value is specified.

define-the-file (DTF). A control block containing
information that is passed between data
management routines and users of the data
management routines.

delete. To remove. For example, to delete a file.

demodulate. To set a modulated signal to its
original state.

DHCF. See Distributed Host Command Facility
(DHCF).

disable. In interactive communications, to end a
subsystem and free the area of main storage used by
that subsystem. Contrast with enable.

disk data management. The System Support
Program Product support that processes a request to
read or write data.

display format. Data that defines (or describes) a
display.

Distributed Data Management (DDM). A
feature of the System Support Program Product that
allows an application program to work on files that
reside on a remote system.

Distributed Host Command Facility (DHCF).
Another name for the remote management support
offered by the Communications and Systems
Management feature. This support allows HCF host
system users to operate System/36s in an HCF
network.

Distributed Systems Executive (DSX). A
program product available for IBM host systems
(System/370, 43XX, and 30XX) that allows the host
system to get, send, and remove files, programs,
formats, and procedures in a network of computers.

G-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Distributed Systems Node Executive (DSNX).
Another name for the change management support
offered by the Communications and Systems
Management feature. This support processes
changes sent by a DSX host system.

DLE. See data link escape (DLE) character.

DSNX. See Distributed Systems Node Executive
(DSNX).

DSX. See Distributed Systems Executive (DSX).

DTE. See data terminal equipment (DTE).

DTF. See define-the-file (DTF).

duplex. Pertains to communications in which data
can be sent and received at the same time. Same as
full duplex. Contrast with half duplex.

EBCDIC. See extended binary-coded decimal
interchange code (EBCDIC).

EBCDIC character. Anyone of the symbols
included in the g-bit EBCDIC set.

emulation. Imitation; for example, the imitation of
a computer or device.

enable. In interactive communications, to load and
start a subsystem. Contrast with disable.

encryption. The process of scrambling information
according to predefined rules so that it cannot be
read without knowledge of them, as in the
transmission of data over communications lines.

end-of-text (ETX) character. In binary
synchronous communications, the transmission
control character used to end a logical set of
records that began with the start-of· text character.

end-of-transmission (EOT) character. In binary
synchronous communications, the transmission
control character usually used to end
communications.

end-of-transmission-block (ETB) character. In
binary synchronous communications, the
transmission control character used to end a block
of records that began with the start-of-text
character.

ENQ. See enquiry (ENQ) character.

enquiry (ENQ) character. In binary synchronous
communications, the transmission control character
usually used to request a response from the remote
system or device.

enter. To type in information from a keyboard and
press the Enter key in order to send the information
to the computer.

enter/update mode. The mode that is used to
enter new statements into a source or procedure
member, or to change statements that already exist
in a source or procedure member.

EOT. See end-oi-transmission (EOT) character.

ETB. See end-oi-transmission-block (ETB)
character.

ETX. See end-of-text (ETX) character.

evoke. In SSP-ICF and DDM, to start a program or
procedure so that it can communicate with your
program.

expression. A representation of a value. For
example, variables and constants appearing alone or
in combination with operators.

extended binary-coded decimal interchange
code (EBCDIC). A set of 256 eight-bit characters.

feature. A programming or hardware option,
usually available at an extra cost. For example,
Communications is a feature of the System Support
Program Product.

field definition. Information that describes the
characteristics of data in a field. A field definition
is contained in a data dictionary.

file. A set of related records treated as a unit.

file definition. (1) In RPG, file description and
input specifications that describe the records and
fields in a file. (2) In IDDU, information that
describes the contents and characteristics of a file.
A file definition is contained in a data dictionary.

file name. The name used by a program to identify
a file. See also label.

Finance subsystem. The SSP-ICF subsystem that
allows System/36 to communicate with the 3601 and
4701 Finance Controllers and the 3694 Document
Processor.

Glossary G-5

folder. A named area on disk that contains
documents, profiles, mail, or data definitions.
Compare with library.

format. (1) A defined arrangement of such things
as characters, fields, and lines, usually used for
displays, printouts, files, or documents. (2) To
arrange such things as characters, fields, and lines.
(3) In BASIC, a representation of the correct form of
a command or statement. (4) In IDDU, a group of
related fields, such as a record, in a file.

format definition. Information that describes the
contents and characteristics of data within a group
of related fields, such as a record in a file. A format
definition is contained in a data dictionary.

full duplex. Same as duplex.

function key. A keyboard key that requests an
action but does not display or print a character.
The cursor movement and Help keys are examples of
function keys. Compare with command key and
character key.

function management header. In SNA, a special
record or part of a record that contains control
information for the data that follows.

generation. For some remote systems, the
translation of configuration information into
machine language.

half duplex. Pertains to communications in which
data can be sent in only one direction at a time.
Contrast with duplex.

HCF. See Host Command Facility (HCF).

hex. See hexadecimal.

hexadecimal. Pertaining to a system of numbers
to the base sixteen; hexadecimal digits range from 0
(zero) through 9 (nine) and A (ten) through F
(fifteen).

Host Command Facility (HCF). A feature
available for IBM host systems (System/370, 43XX,
and 30XX) that allows host system users to operate
System/36s from their 3270-type display stations as
though they were using remotely attached 5250-type
display stations.

host system. The primary or controlling computer
in a communications network. See also control
station.

IDDU. See interactive data definition utility
(IDDU).

identifier. (1) A sequence of bits or characters
that identifies a program, device, or system to
another program, device, or system. (2) In COBOL,
a data name that is unique or is made unique by the
correct combination of qualifiers, subscripts, or
indexes.

IF expressions. Expressions within a procedure
that are used to test for a condition.

IGS. See interchange group separator (IGS).

imperative statement. A statement that specifies
that an action is always to be taken. An imperative
statement can consist of a sequence of imperative
statements.

indicator. An internal switch that communicates a
condition between parts of a program or procedure.

informational message. A message that provides
information to the operator, but does not require a
response.

initial program load (IPL). The process of
loading the system programs and preparing the
system to run jobs.

initialize. To prepare for use. For example, to
initialize a diskette.

inquiry. (1) A request for information in storage.
(2) A request that puts a display station into inquiry
mode. (3) In data communications, a request for
information from another system.

interactive. Pertaining to activity involving
requests and replies as, for example, between an
operator and a program or between two programs.
Contrast with batch.

Interactive Communications Feature
(SSP-ICF). A feature of the System Support
Program Product that allows a program to
interactively communicate with another program or
system.

interactive data definition utility (IDDU). The
part of the System Support Program Product used to
define the characteristics of data and the contents
of files.

interactive processing. A processing method in
which each operator action causes a response from
the program or the system. Contrast with batch
processing.

G-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

:lterchange group separator (IGS). A character
sed to indicate that blanks have been removed
·om a string of data and are to be reinserted.

ntermediate block check. In binary synchronous
ommunications, an option that permits checking
ach record, instead of checking the contents of the
otal buffer, when large buffers of data are received.

ntermediate-text-block (ITB) character. In
linary synchronous communications, the
ransmission control character used to indicate the
md of a section of data to be checked. See
ntermediate block check.

nterrupt. (1) To temporarily stop a process. (2) In
lata communications, to take an action at a
'eceiving station that causes the sending station to
md a transmission.

[ntra subsystem. An SSP-ICF subsystem that
mables programs to communicate with other
Jrograms on the same system without the use of
~ommunication lines.

intrinsic function. A function supplied by the
program product. Contrast with user-defined
function.

invite. To ask for input data from either a display
station or an SSP-ICF session.

IPL. See initial program load (IPL).

IRS (interchange record separator). Same as
record separator.

ITB. See intermediate-text-block (ITB) character.

job. (1) A unit of work to be done by a system. (2)
One or more related procedures or programs
grouped into a procedure.

job step. A unit of work represented by a single
program or a procedure that contains a single
program. A job consists of one or more job steps.

K-byte. 1024 bytes.

label. (1) The name in the disk or diskette volume
table of contents or on a tape that identifies a file.
See also file name. (2) The name that identifies a
statement. The name that identifies a BASIC
program line.

LAN. See "local area network."

left-adjust. To place or move an entry in a field so
that the leftmost character of the field is in the
leftmost position. Contrast with right-adjust.

library. (1) A named area on disk that can contain
programs and related information (not files). A
library consists of different sections, called library
members. Compare with folder. (2) The set of
publications for a system.

library member. A named collection of records or
statements in a library. The types of library
members are load member, procedure member, source
member, and subroutine member.

licensed application program. A set of licensed
programs used to perform a particular data
processing task, such as a distribution management
application or a construction management
application.

licensed program. An IBM-written program that
performs functions related to processing user data.

link. In data communications, the connection
between two systems.

literal. A symbol or a quantity in a source
program that is itself data, rather than a reference
to data.

load. (1) To move data or programs into storage.
(2) To place a diskette into a diskette drive or a
magazine into a diskette magazine drive. (3) To
insert paper into a printer. (4) To mount a tape or
insert a tape cartridge into a tape drive.

load member. A library member that contains
information in machine language, a form that the
system can use directly. Contrast with source
member.

local. Pertaining to a device, file, or system that is
accessed directly from your system, without the use
of a communications line. Contrast with remote.

local area network (LAN). An information
transport system for information transfer between
devices located on the same premises, such as an
office building, a manufacturing plant, a hospital
area, a university campus, or any other
geographically confined area.

location name. In interactive communications,
the identifying name associated with a particular
system or device.

logical record. The most inclusive data item. The
level number for a logical record is 01.

Glossary G-7

logical unit (LU). The part of a system or device
in an SNA network that allows a user or program to
use the communication network.

lowercase. Pertaining to a letter having as its
typical form a f g rather than A F G.

LU. See logical unit (LU).

macro. See macroinstruction.

macroinstruction. A single instruction that
represents a set of instructions.

main storage. The part of the processing unit
where programs are run. Contrast with control
storage.

manual answer. In data communications, a line
type requiring operator actions to receive a call
over a switched line. Contrast with autoanswer.

manual call. In data communications, a line type
requiring operator actions to place a call over a
switched line. Contrast with autocall.

master configuration record. Information, stored
on disk, that describes system devices,
programming, and characteristics.

member. See library member.

menu. A displayed list of items from which an
operator can make a selection.

message. (1) Information sent to one or more
users or display stations from a program or another
user. A message can be either displayed or printed.
(2) An indication of the condition of the system sent
by the system. (3) For IMSjIRSS, a unit of data sent
over the communications line.

message identification. A field in the display or
printout of a message that directs the user to the
description of the message in a message guide or a
reference manual. This field consists of up to four
alphabetic characters, followed by a dash, followed
by the message identification code.

message identification code (MIC). A four-digit
number that identifies a record in a message
member. This number can be part of the message
identification.

mnemonic. An identifier or symbol, using
characters intended to assist memory, that is
associated with an instruction, statement, or
command.

mode. A method of operation. For an example, se
enter/update mode.

modem. See modulator-demodulator (modem).

modulation. Changing the frequency or size of
one signal by using the frequency or size of another
signal.

modulator-demodulator (modem). A device thai
converts data from the computer to a signal that
can be transmitted on a communications line, and
converts the signal received to data for the
computer.

monitor. Programming or hardware that observes,
supervises, controls, or verifies the operation of a
system.

MRT procedure. See multiple requester terminal
(MRT) procedure.

MRT program. See multiple requester terminal
(MRT) program.

MSRJE. See Multiple Session Remote Job Entry
(MSRJE).

multiple requester terminal (MRT) procedure.
A procedure that calls a multiple requester terminal
program.

multiple requester terminal (MRT) program. A
program that can process requests from more than
one display station or SSP-IeF session at the same
time using a single copy of the program. Contrast
with single requester terminal (SRT) program.

Multiple Session Remote Job Entry (MSRJE).
A feature of the System Support Program Product
that allows one or more remote job entry sessions to
operate on a host system (such as a Systemj370, or a
30XX or 43XX processor) at the same time.

multipoint. In data communications, pertains to a
network that allows two or more stations to
communicate with a single system on one line.

NAK. See negative acknowledgment character
(NAK).

NCP. See network control program (NCP).

negative acknowledgment character (NAK). In
binary synchronous communications, a transmission
control character sent as a negative response to
data received.

G-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

negative response. In data communications, a
reply indicating that data was not received
correctly or that a command was incorrect or
unacceptable.

NEP. See never-ending program (NEP).

network. A collection of data processing products
connected by communication lines for information
exchange between stations.

network control program (NCP). A program,
generated by the user from a library of
IBM-supplied modules, that controls the operation
of a communications controller.

never-ending program (NEP). A long-running
program that does not share system resources,
except for shared files and the spool file.

node. (1) An addressable location in a
communications network that provides host
processing services. (2) A point where packets are
received, stored, and forwarded to another node (or
DTE) according to a routing method the network
has defined.

nons witched line. A connection between
computers or devices that does not have to be
established by dialing. Contrast with switched line.

null. See null character.

null character. The character hex 00, used to
represent the absence of a printed or displayed
character.

null character string. Two consecutive single
quotation marks that specify a character constant of
no characters.

null record. In binary synchronous
communications, a record that contains no data;
only the data link control characters STX ETX.

numeric. Pertaining to any of the digits ° through
9.

OCL. See operation control language (OOL).

offline. Neither controlled directly by, nor
communicating with, the computer, or both.
Contrast with online.

online. Being controlled directly by, or directly
communicating with, the computer, or both.
Contrast with offline.

open. To prepare a file for processing.

operation. A defined action, such as adding or
comparing, performed on one or more data items.

operation code. (1) A code used to represent the
operations of a computer. (2) In SSP-ICF, a code
used by a System/36 application program to request
SSP-ICF data management and/or the subsystem to
perform an action. For example, the operation
$$SEND asks that data be sent.

operation control language (OCL). A language
used to identify a job and its processing
requirements to the System Support Program
Product.

optional network facilities. Facilities a packet
switching data network user may request when
establishing a virtual circuit. See also reverse
charging, closed user group, and throughput class
negotiation.

override. (1) A parameter or value that replaces a
previous parameter or value. (2) To replace a
parameter or value.

packet. A data transmission information unit. It
has a header on the front that indicates the
destination of the packet. Commonly used data field
lengths in packets are 128 or 256 bytes.

packet switching. The act of transferring and
routing packets from source to destination based on
information contained in their headers.

packet switching data network (PSDN). A
communications network that uses packet switching
as a means of transmitting data.

parameter. A value supplied to a procedure or
program that either is used as input or controls the
actions of the procedure or program.

partner. In data communications, the remote
application program or the remote computer.

password security. A System Support Program
Product option that helps prevent the unauthorized
use of a display station, by checking the password
entered by each operator at sign-on.

Peer subsystem. The SSP-ICF subsystem that
allows System/36 to communicate with another
System/36 or System/34 using SNA/SDLC.

pending. Waiting, as in an operation is pending.

Glossary G-9

permanent virtual circuit (PVC). A virtual
circuit that has a logical channel permanently
assigned to it at each DTE: The usual call
establishment protocol is therefore not required.

physical record. (1) A group of records that is
recorded or processed as a unit. Same as block. (2)
A unit of data that is moved into or out of the .
computer.

point-to-point line. A communications line that
connects a single remote station to a computer.

poll. To execute a polling sequence.

polling. A method for determining whether each of
the stations on a communications line has data to
send.

positional parameter. A parameter that must
appear in a specified location, relative to other
positional parameters.

problem determination. The process of
identifying why the system is not working. Often
this process identifies programs, equipment, data
communications facilities, or user errors as the
source of the problem.

procedure. A set of related operation control
language statements (and, possibly, utility control
statements and procedure control expressions) that
cause a specific program or set of programs to be
performed.

procedure command. A command that runs a
procedure.

procedure member. A library member that
contains the statements (such as operation control
language statements) necessary to perform a
program or set of programs.

procedure start request. A message from the
remote system asking an SSP-ICF subsystem to start
a System/36 procedure.

program product. A licensed program for which a
fee is charged.

program temporary f"'lx (PTF). A temporary
solution to or bypass of a defect in a current release
of a licensed program.

programmable. Designating a device whose
operation can be controlled by a program.

prompt. A displayed request for information or
operator action.

protocol. A set of rules governing the
communication and transfer of data between two or
more devices in a communications system.

PSDN. See packet switching data network (PSDN).

PTF. See program temporary fix (PTF).

public data network. A communications common
carrier network that provides data communications
services over switched or nonswitched lines.

queue. A line or list formed by items waiting to be
processed.

Recommendation X.25. A document, CCITT
Recommendation X.25, that outlines standards for
the connection of processing equipment to a packet
switching data network.

record separator. In binary synchronous
communications, a character used to indicate the
end of one record and the beginning of another.

recovery procedure. (1) An action performed by
the operator when an error message appears on the
display screen. Usually, this action permits the
program to continue or permits the operator to run
the next job. (2) The method of returning the
system to the point where a major system error
occurred and running the recent critical jobs again.

remote. Pertaining to a device, file, or system that
is accessed by your system through a
communications line. Contrast with local.

remotely started session. A session started by an
incoming procedure start request from the remote
system. Contrast with acquired session.

request unit. In SNA, the record transmitted to
the other system. This record can contain a
request, data, or both.

requester. A display station or interactive
communications session that requests a program to
be run.

response unit. In SNA, the record sent to respond
to a request. The response can be either positive or
negative and can include control information.

restore. Return to an original value or image. For
example, to restore a library from diskette.

return code. In data communications, a value
generated by the system or subsystem that is
returned to a program to indicate the results of an
operation issued by that program.

G-lD SSP-ICF Programming for Subsystems and Intra Subsystem Reference

reverse charging. A packet switching data
network optional facility. It enables the DTE to
request that the cost of a communications session it
initiates be charged to the DTE that is called. See
also optional network facilities.

reverse-interrupt character (RVI). In binary
synchronous communications, a request by the
receiving station to the sending station to stop
sending and begin receiving a message.

right-adjust. To place or move an entry in a field
so that the rightmost character of the field is in the
rightmost position. Contrast with left-adjust.

routine. A set of statements in a program that
causes the system to perform an operation or a
series of related operations.

RPG. A programming language specifically
designed for writing application programs that meet
common business data processing requirements.

RU. See request unit and response unit.

RVI. See reverse-interrupt character (R VI).

SDLC. See synchronous data link control (SDLC).

security. The protection of data, system
operations, and devices from accidental or
intentional ruin, damage, or exposure. See also
system security.

segment. A part of a program that can be run
without the entire program being in main storage.

sense data. In SNA, the data sent with a negative
response, indicating the reason for the response.

separator character. In data communications, the
character that is used with some autocall units to
separate the digits to be dialed.

session. (1) The logical connection by which a
System/36 program or device can communicate with
a program or device at a remote location. (2) The
length of time that starts when an operator signs on
the system and ends when the operator signs off the
system.

SKU. See source entry utility (SEU).

single requester terminal (SRT) program. A
program that can process requests from only one
display station or SSP-ICF session from each copy of
the program. Contrast with multiple requester
terminal (MRT) program.

SNA. See systems network architecture (SNA).

SNA Upline Facility (SNUF). The SSP-ICF
subsystem that allows System/a6 to communicate
with CICS/VS and IMS/VS application programs on
a host system. Also, using thi" subsystem, DRCF
communicates with RCF and DSNX communicates
with DSX.

SNUF. See SNA Upline Facility (SNUF).

SOH. See start-oi-header (SOH) character.

source entry utility (SEU). The part of the
Utilities Program Product used by the operator to
enter and update source and procedure members.

source member. A library member that contains
information in the form in which it was entered,
such as RPG specifications. Contrast with load
member.,

SRT program. See single requester terminal (SRT)
program.

SSCPID. System services control point identifier.

SSP. See System Support Program Product (SSP).

SSP-ICF. See Interactive Communications Feature
(SSP-ICF).

start-of-header (SOH) character. In binary
synchronous communications, the transmission
control character indicating that the information
that follows is a header.

start-of-text (STX) character. In binary
synchronous communications, a transmission
control character used to begin a logical set of
records that will be ended by the end-of-text
character or end-of-transmission-block character.

statement. An instruction in a program or
procedure.

station. A computer or device that can send or
receive data.

status. A condition. For example, the status of a
printer, a job, or a communications line.

STX character. See start-oi-text (STX) character.

subroutine. A group of instructions that can be
called by another program or subroutine.

Glossary G-ll

subroutine member. A library member that
contains information that must be combined with
one or more members before being run by the
system.

subsystem. The part of communications that
handles the requirements of the remote system,
isolating most system-dependent considerations from
the application program.

switched line. In data communications, a
connection between computers or devices that is
established by dialing. Contrast with nons witched
line.

switched network backup (SNBU). In data
communications, a technique that provides a
switched line connection when a nonswitched line
fails.

switched virtual circuit. A virtual circuit that is
requested from the network through a virtual call.
It is released when the virtual circuit is cleared.

SYN. See synchronization (SYN) character.

synchronization (SYN) character. In binary
synchronous communications, the transmission
control character that provides a signal to the
receiving station for timing.

synchronous. Occurring in a regular or
predictable sequence.

synchronous data link control (SDLC). A form
of communications line control that uses commands
to control the transfer of data over a
communications line. Compare with binary
synchronous communications (ESC),

synchronous transmission. In data
communications, a method of transmission in which
the sending and receiving of characters is
controlled by timing signals. Contrast with
asynchronous transmission.

syntax. The rules for the construction of a
command or statement.

system configuration. A process that specifies
the machines, devices, and programs that form a
particular data processing system.

system library. The library, provided with the
system, that contains the System Support Program
Product and is named #LIBRARY.

system monitor session. In SSP-ICF, a session
started by the Finance subsystem to load the
applications into a finance controller.

system services control point (SSCP). A focal
point within an SNA network for managing the
configuration, coordinating network operator and
problem determination requests, and providing
directory support and other session services for
network users.

System Support Program Product (SSP). A
group of licensed programs that manage the running
of other programs and the operation of associated
devices, such as the display station and printer.
The SSP also contains utility programs that perform
common tasks, such as copying information from
diskette to disk.

systems network architecture (SNA). A set of
rules for controlling the transfer of information in a
data communications network.

task. A unit of work (such as a user program) for
the main storage processor.

temporary-text-delay (TTD) character. A BSC
transmission control character that indicates to the
receiving station that there is a temporary delay in
the transmission of data.

terminal. In data communications, a device,
usually equipped with a keyboard and a display
device, capable of sending and receiving information
over a communications line.

throughput class negotiation. A packet
switching data network optional facility. Allows a
DTE to negotiate the speed at which its packets
travel through the packet switching data network.

Token-Ring Network, IBM. The local area
network designed to run on the IBM Cabling
System.

transaction. (1) An item of business. The
handling of customer orders and customer billing
are examples of transactions. (2) In interactive
communications, the communication between the
application program and a specific item (usually
another application program) at the remote system.

transaction code. For the IMS subsystem, the
first one to eight characters of the first segment of a
message sent to IMS/VS, The transaction code
identifies the application program for which the
message is intended.

0·12 SSP-IeF Programming for Subsystems and Intra Subsystem Reference

TRANSACTION file. An input/output file used to
communicate with display stations and SSP-ICF
sessions.

transmission control characters. In data
I

communications, special characters that are
included in a message to control communication
over a data link. For example, the sending station
and the receiving station use transmission control
characters to exchange information; the receiving
station uses transmission control characters to
indicate errors in data it receives.

transparent data. Data that can contain any
hexadecimal value.

transparent text mode. A mode that allows BSC
to send and receive messages containing any of the
256 character combinations in hexadecimal,
including transmission control characters.

tributary station. In data communications, a
secondary device on a multipoint line.

truncate. To shorten a field or statement to a
specified length.

TTD character. See temporary-text-delay (TTD)
character.

unbind command. An SNA command used to
reset the protocols for a session. Contrast with
bind command.

uppercase. Pertaining to capital letters.

UPSI switch. See user program status indicator
(UPS!) switch.

user program status indicator (UPSI) switch.
One of a set of eight switches that can be set by and
passed between application programs and
procedures.

user-defined function. In BASIC, a function
defined by the user in a function definition (in the
DEF statement). Contrast with intrinsic function.

variable. A name used to represent a data item
whose value can change while the program is
running. Contrast with constant.

virtual telecommunications access method
(VTAM). A set of programs that control
communications between terminals and application
programs running under VSE, OS/VSl, and OS/VS2.

VT AM. See virtual telecommunications access
method (VT AM).

WACK. See
wait·before-transmitting·acknowlediagrament
character (WACK).

wait-before-transmitting-acknowlediagrament
character (WACK). In BSC, the transmission
control character indicating that the station is
temporarily not ready to receive data.

work station. A device that lets people transmit
information to or receive information from a
computer; for example, a display station or printer.

work station ID. A two-character identifier
assigned to each display station and printer on your
system.

World Trade. (1) Pertains to the distinction
between the US and the rest of the world. (2)
Pertains to the combination of:

IBM World Trade Americas/Far East
Corporation
IBM World Trade Europe/Middle
East/ Africa Corporation

X.21. In data communications, a specification of
the CCITT that defines the connection of data
terminal equipment to an X.21 (public data)
network.

X.21 feature. The feature that allows System/36 to
be connected to an X.21 network.

X.25. In data communications, a specification of
the CCITT that defines the interface to an X.25
(packet switching) network.

X.25 feature. The feature that allows System/36 to
connect to an X.25 network.

X.75. A standard that defines ways of
interconnecting two X.25 networks.

3270 BSC Support subsystem. The subsystem
that provides program-to-program communications
with IMS/VS, CICS/VS, TSO, VM, or system
application programs using 3270 BSC protocols, and
provides support for the BSC portion of the 3270
Device Emulation feature.

3270 Device Emulation. A feature of the System
Support Program Product that allows a System/3S
local or remote device to appear as a 3270 device to
another system.

Glossary 0-13

3270 SNA Support subsystem. The subsystem
that provides support for the SNA portion of the
3270 Device Emulation feature.

0-14 SSP·ICF Programming for Subsystems and Intra Subsystem Reference

Index

I Special Characters I
$$TIMER operation

BASIC example 3-21
$ALOC macro (assembler) 2-10
$CLOS macro (assembler) 2-11
$DTFO macro (assembler) 2-8
$DTFW macro (assembler) 2-4
$EVOK macro (assembler) 2-18

coding examples
Intra subsystem 6-26

description
Intra subsystem 6-26 \

$OPEN macro (assembler) 2-11
$WSIO macro (assembler)

coding examples
Intra subsystem 6-26

communications operations
charts of 2-16, 2-21, A-3
getting status of session 2-14
modified by OPM parameter 2-15
specified by OPC parameter 2-14

description
Intra subsystem 6-25

description of 2-12
parameter matrix chart 2-16

* (asterisk)
on configuration displays

Intra 6-6
_ (underscores)

on configuration displays
Intra 6-6

accept input operation
BASIC 3-8
description

Intra 6-17
required for timer operations

Intra 6-44
TERMINAL option (COBOL) 4-10

ACCEPT statement (COBOL)
description 4-7
examples 4-9
FOR option

get attributes operation 4-7

ACQ operation
description

RPG 5-10
example

languages 2-16, 5-10
Intra 6-18

acquire operation
description

Intra 6-18
error return codes

Intra 6-66
example

languages 5-10
Intra 6-18

starts a session 1-5
Intra 6-11

ACQUIRE statement (COBOL)
descrjption 4-6
examples 4-6
identifies TRANSACTION file 4-6

acquired sessions
Intra 6-11
elements used in 1-4

acquiring a session
ACQ operation (RPG) 5-10
ACQUIRE statement (COBOL) 4-6
example

BASIC 3-6
COBOL 4-6

introduction to 1-4
OPEN statement (BASIC) 3-4

addresses, session
See session addresses

APPC subsystem
communications line

specifying line member name 1-18
DISABLE procedure command

syntax diagram 1-20
appendixes

glossary of terms G-l
APPN subsystem

communications line
specifying line member name 1-18

DISABLE procedure command
syntax diagram 1-20

ENABLE procedure command
syntax diagram 1-18

assembler
coding examples 2-24

Intra 6-18,6-26
evoke operations

Intra description 6-25
macros

$ALOC 2-10

Index X-I

assembler (continued)
macros (continued)

$CLOS 2~11
$DTFO 2-8
$DTFW 2-4
$EVOK 2-18
$OPEN 2-11
$WSIO 2-12
$WSIO macro parameter chart 2-16
for controlling communications files 2-10
list of 2-3

operations parameter chart 2-16
operations summary chart 2-21, A-3
return codes

offset locations 2-23
processing 2-23

sending data
evoke operations 2-20

subroutine DTF considerations 2-23
writing subroutines for HLL programs 2-23

asterisks (*)
on configuration displays

Intra 6-6
ATTRIBUTE$ intrinsic function (BASIC) 3-25

examples 3-25

BASIC
canceling sent records 3-23
coding examples

See also WRITE statement (BASIC), coding
exampl.es 3-15

complete program 3-31
Intra 6-28

communications operations
list of, WRITE statement 3-13,3-20
similar to work station operations 3-2

ending a session 3-20
ending a transaction 3-19
ERR codes

chart of 3-29
unsuccessful operations 3-28

evoke operations
general description 3-14
Intra description 6-27
procedure to send data to a procedure 3-17
procedure to send data to a program 3-16

evoke parameter list 3-14
examples

ATTRIBUTE$ intrinsic function 3-25
CLOSE statement 3-24
OPEN statement 3-6
W AITIO statement 3-11

BASIC (continued)
EXIT clause needed 3-31
FILENUM intrinsic function

note 3-31
indicating error conditions

fail operation 3-23
introduction 3-2
IOERR parameter needed 3-28
notes

receiving data 3-10
writing BASIC programs 3-31

OPEN statement
specially acquired sessions 3-6

operations summary chart 3-27, A-4
requesting change of direction 3-20
REREAD statement, note 3-10
RETCODE$

chart of SSP-ICF return codes 3-30
description 3-30
status of last operation 3-28

return codes
checking 3-28
ERR codes, chart 3-29
ERR codes, meaning 3-28
RETCODE$ chart of SSP-ICF return

codes 3-30
RETCODE$ description 3-30
RETCODE$ meaning 3-28

sending
negative response 3-22
sense data 3-22

sending data
evoke operations 3-16
put operations 3-18

SESSION statement not needed
Intra 6-12

session status information 3-26
set timer operations 3-21
specially acquired sessions 1-14

examples 3-6
starting remote programs 3-14
statement descriptions

ATTRIBUTE$ intrinsic function 3-25
CLOSE statement 3-24
introduction to 3-3
OPEN statement 3-4
READ statement 3-8
WAITIO statement 3-11
WRITE statement 3-12

WSID$ intrinsic function
note 3-31
purpose of 3-4

BASICP procedure
changes needed to send program data 3-16
example using 3-17

X-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASICR procedure
changes needed to send program data 3-16
example using 3-16

BSC MSRJE
non-SSP-ICF subsystem 1-9

BSC 3270
limit on subsystem 1-10
non-SSP-ICF subsystem 1-9

BSCEL subsystem
communications line

specifying line number 1-18
DISABLE procedure command

functions performed by 1-19
syntax diagram 1-20

ENABLE procedure command
functions performed by 1-15
line number 1-18
syntax diagram 1-18

return codes
summary descriptions of B-1, B-2

cancel invite operation
description

Intra 6-21
cancel operations

description
languages 3-23, 4-20, 5-9
Intra 6-20

examples
BASIC WRITE statement 3-23
COBOL WRITE statement 4-20

types of
Intra 6-20, 6-21

canceling sent records
BASIC description 3-23
cancel operations

RPG description 5-9
COBOL description 4-20

CCP subsystem
communications line

specifying line number 1-18
DISABLE procedure command

functions performed by 1-19
syntax diagram 1-20

ENABLE procedure command
functions performed by 1-15
line number 1-18
syntax diagram 1-18

return codes
summary descriptions of B-1, B-2

CFILE continuation option (RPG II) 5-22
changing a member

See modifying a configuration member
charts

See also summary charts
communications line features, summary of 1-11
communications operations

assembler 2-21, A-3
BASIC 3-27, A-4
COBOL 4-22, A-5
RPG II 5-14, A-6

parameters, $WSIO macro 2-16
return code processing, RPG II 5-16
SSP-ICF subsystems

types of 1-9
status values

RPG II 5-19
charts, summary

See also sequence diagrams
input/output operations

Intra 6-46
checking for return code 02xx

STOP$ intrinsic function (BASIC) 3-10
CICS subsystem

communications line
specifying line number 1-18

DISABLE procedure command
functions performed by 1-19
syntax diagram 1-20

ENABLE procedure command
functions performed by 1-15
line number 1-18
syntax diagram 1-18

return codes
summary descriptions of B-1, B-2

CLOSE statement (BASIC)
description 3-24
examples 3-24

CNFIGICF procedure
See also configuration displays
default values

Intra 6-6
description

Intra subsystem 6-5
prompting facilities

Intra 6-6
CNFIGSSP procedure

installs subsystem support
Intra 6-5

COBOL
canceling sent records 4-20
coding examples

See also WRITE statement (COBOL), coding
examples 4-15

complete program 4-23
Intra 6-30

communications operations
list of, WRITE statement 4-13, 4-17

Index X-3

COBOL (continued)
communications operations (continued)

not used in display formats 4-4
similar to work station operations 4-2

ending a session 4-17
ending a transaction 4-16
evoke operations

general description 4-14
Intra description 6-29

evoke parameter list 4-14
examples

ACCEPT statement 4-9
ACQUIRE statement 4-6
READ statement 4-11

file status
FILE STATUS clause 4-5
FILE STATUS field 4-23
values 4-23

indicating error conditions
fail operation 4-20

introduction 4-2
operations summary chart 4-22, A-5
requesting change of direction 4-17
return codes

chart of 4-23
processing 4-23

sending
negative response 4-19
sense data 4-19

sending data
evoke operation., 4-15
put operations 4-15

session status information 4-8
set timer operation 4-18
starting remote programs 4-14
statement descriptions

ACCEPT statement 4-7
ACQUIRE statement 4-6
DROP statement 4-21
READ statement 4-10
SELECT statement 4-4
WRITE statement 4-12

TRANSACTION file 4-4, 4-6
COBOL statement descriptions

introduction to 4-3
coding examples, complete program

assembler 2-24
BASIC 3-31
COBOL 4-23
RPG II 5-25

combinations of subsystems 1-10
combined input/output operations

summary charts
Intra 6-46

communications lines
introduction to 1-10
chart of subsystem features 1-11
line number specified on ENABLE

command 1-18
System/36 support 1-10

communications networks
program-to-program communications

Intra example 6-3
communications operations

assembler
indicating function management
header 2-15

modified by OPM parameter 2-15
specified in $WSIO macro (OPC

parameter) 2-13
summary chart of 2-21, A-3

BASIC
CLOSE statement 3-24
OPEN statement 3-4
READ statement 3-8
summary chart of 3-27, A-4
WAITIO statement 3-11
WRITE statement 3-12

COBOL
ACCEPT statement 4-7
ACQUIRE statement 4-6
DROP statement 4-21
READ statement 4-10
summary chart of 4-22, A-5
WRITE statement 4-12

general introduction
all subsystems 1-8

getting status of session
ATTRIBUTE$ function (BASIC) 3-25

introduction
languages 3-3, 4-3, 5-3
Intra 6-14

list of, performed in
BASIC 3-13, 3-20
COBOL 4-13, 4-17
RPG 5-10

not used in display formats 4-4
purpose of return codes 1-8
RPGII

ACQ operation 5-10
NEXT operation 5-12
READ operation 5-13
REL operation 5-11
summary chart of 5-14, A-6

similar to work station operations 3-2, 4-2, 5-2
summary chart

assembler 2-21, A-3
BASIC 3-27, A-4
COBOL 4-22, A-5
RPG II 5-14, A-6
Intra 6-14

X-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

communications, ending
DISABLE procedure command

Intra 6-10
communications, establishing

ENABLE procedure command
Intra 6-10

communications, program-to-program
(Intra) 6-3

configuration
modifying attributes of

Intra 6-10
prompting facilities

Intra 6-6
configuration displays

asterisks (*) on
Intra 6-6

default values
Intra 6-6

explanation of
Intra 6-6

introduction
Intra 6-5

subsystem member displays
Intra 6-7

configuration member
activated by ENABLE procedure command

Intra 6-5
modifying its attributes

Intra 6-10
name must be unique

Intra 6-5
configuration worksheets

See worksheets, configuration display
configurations

examples of
Intra 6·3

continuation options, RPG II
CFILE 5·22
FMTS 5-22
ID 5-21
IND 5-21
INFDS 5-22
INFSR 5-21
list of, for WORKSTN files 5-20
NUM 5-20
SAVDS 5-21
SLN 5-21

COpy control statement, PDATA parameter
assembler evoke operations 2-20
BASIC evoke operations 3-16
COBOL evoke operations 4-15

Data Encryption Feature
See encryption/decryption

debug program
ICFDEBUG procedure 1·2

default values
configuration displays

Intra 6-6
DISABLE procedure command

description
Intra 6-10

functions performed by 1-19
general introduction 1-19
syntax diagram of 1-20

disabling a subsystem 1-19
displays

See configuration displays
DROP statement (COBOL) 4-21
DTF

address offsets for ($DTFO macro) 2-8
considerations in subroutines 2-23
generated by $DTFW macro 2-4
specifying labels for 2-9

DTF parameter
in $WSIO macro 2-12
in communications file macros 2-10

editing a member
Intra 6-10

ENABLE procedure command
description

Intra 6-10
functions performed by 1-15
general introduction 1-15
line number parameter 1-18
location name, remote 1-16
prepares local end for communications 1-16
syntax diagram of 1-18
unmatched line types 1-16

enabling a subsystem 1-15
end of job menu, SEU procedure

assembler evoke operations 2-20
BASIC evoke operations 3-16
COBOL evoke operations 4-15

end of session operation
description

languages 3-20,4-17,5-9
Intra 6-22

examples
BASIC WRITE statement 3-20

Index X-5

end of session operation (continued)
examples (continued)

COBOL WRITE statement 4-17
end of transaction operations

BASIC WRITE statement 3-19
COBOL WRITE statement 4-16
examples

BASIC 3-19
COBOL 4-16

end of transaction return codes
BASIC 3-19
COBOL 4-16

end-of-file conditions
RPG II 5-23

ending a session
BASIC example 3-24
BASIC WRITE statement 3-20
CLOSE statement (BASIC) 3-24
COBOL WRITE statement 4-17
end of session operation

RPG description 5-9
ending a transaction

BASIC WRITE statement 3-19
COBOL WRITE statement 4-16

ending communications
See communications, ending

EOF clause (BASIC)
READ statement

example 3-10
note on 3-10

ERR codes
BASIC return code checking 3-28
chart of 3-29

establishing communications
See communications, establishing

evoke end of transaction operation
description

Intra 6-23
evoke operations

$EVOK macro description
Intra 6-26

$EVOK macro examples
Intra 6-26

$WSIO macro description
Intra 6-25

$WSIO macro examples
Intra 6-26

assembler coding examples
languages 2-16
Intra 6-26

BASIC coding examples
languages 3-15
Intra 6-28

BASIC description
Intra 6-27

chart of
Intra 6-23

evoke operations (continued)
COBOL coding examples

Intra 6-30
COBOL description

Intra 6-29
evoke parameter list

general description 3-14,4-14,5-3
Intra 6-23

general description
languages 5-3
Intra 6-23

IDDU considerations
Intra subsystem 6-25
BASIC 3-14
COBOL 4-14
RPG II 5-3

IDDU keywords
Intra subsystem 6-24

optional data, types of
Intra 6-23

PDATA parameter, COpy control
statement 2-20, 3-16, 4-15

procedure for sending data
to a BASIC procedure 3-17
to a BASIC program 3-16

programming considerations
for Intra 6-23

RPG coding examples
languages 5-4
Intra 6-32

RPG description
languages 5-3
Intra 6-31

RPG examples
Intra 6-32

sending data, types of 2-20, 3-16, 4-15
starting a procedure 5-3
types of

Intra 6-23
WRITE statement (BASIC) examples

Intra 6-28
WRITE statement (COBOL) examples

Intra 6-30
evoke parameter list

assembler
specified in $EVOK macro 2-18

BASIC fields
Intra 6-27

COBOL fields
Intra 6-29

description
Intra 6-23

general description
languages 3-14, 4-14, 5-3

RPG fields
Intra 6-31

X-6 SSP-ICF Programming for Subsystems and Intra: Subsystem Reference

examples
ACCEPT statement

COBOL 4-9
acquire operation

languages 2-16, 5-10
Intra 6-18

ACQUIRE statement
COBOL 4-6

ATTRIBUTE$ intrinsic function
BASIC 3-25

cancel operations
BASIC 3-23
COBOL 4-20

CLOSE statement
BASIC 3-24

end of session operation
BASIC 3-20
COBOL 4-17

evoke operations
languages 2-16,3-15, 5-4
Intra 6-25

fail operation
BASIC 3-23
COBOL 4-20

negative response operation
RPG 5-8

negative response operations
BASIC 3-22
COBOL 4-19

NEXT operation
RPG 5-12

OPEN statement
BASIC 3-6

procedure to send data on evoke operation
BASIC 3-16, 3-17

program-to-program communications, Intra 6-3
put end of transaction operation

BASIC 3-19
COBOL 4-16

put operation
BASIC 3-18
COBOL 4-15
RPG 5-5

READ operation
RPG 5-13

READ statement
COBOL 4-11

release operation
languages 5-11

request to change direction operations
BASIC 3-20
COBOL 4-17

set timer operation
BASIC 3-21
COBOL 4-18
RPG 5-7

W AITIO statement
BASIC 3-11

EXIT clause (BASIC)
used with IOERR parameter 3-31

fail operation
description

languages 3-23
description

languages 4-20, 5-9
Intra 6-33

examples
BASIC WRITE statement 3-23
COBOL WRITE statement 4-20

file definition
COBOL SELECT statement 4-4

file description specifications
RPG II 5-2

file status
FILE STATUS clause (COBOL) 4-5
values (COBOL) 4-23

FILE STATUS clause (COBOL) 4-5
FILE STATUS field

COBOL return codes 4-23
file status values (COBOL)

chart of 4-23
FILENUM intrinsic function (BASIC) 3-11

note 3-31
files

controlling for communications
(assembler) 2-10

Finance subsystem
communications line

specifying line number 1-18
DISABLE procedure command

functions performed by 1-19
syntax diagram 1-20

EN ABLE procedure command
functions performed by 1-15
line number 1-18
syntax diagram 1-18

return codes
summary descriptions of B-1, B-2

FMTS continuation option (RPG II) 5-22
FORMAT option, WRITE statement

(COBOL) 4-12
FORMAT parameter, WRITE statement

(BASIC) 3-12
function management header

specifying, in assembler 2-15
function management headers

put FMH operations
Intra 6-40

Index X-7

get attributes operation
ACCEPT statement, FOR option (COBOL) 4-7
description

Intra 6-35
OPC parameter ($WSIO macro)

session status information 2-14
status information

Intra 6-35
get operation

description
Intra 6-35

READ statement (BASIC) 3-8
TERMINAL option (COBOL) 4-10

get status operation
status information

Intra 6-36
getting session attributes

BASIC ATTRIBUTE$ intrinsic function 3-25
BASIC example 3-25
COBOL ACCEPT statement 4-7

HLL statement descriptions
assembler

See macroinstructions
BASIC 3-3
COBOL 4-3
RPG II 5-2

HLL subroutines
assembler 2-23
INFSR, RPG II 5-15,5-18

ICFDEBUG procedure 1-2
ID continuation option (RPG II) 5-21
IDDU (interactive data definition utility)

in evoke operations
Intra subsystem 6-25

starting remote programs
BASIC evoke operation 3-14
COBOL evoke operation 4-14
RPG II evoke operation 5-3

IDDU keywords
evoke operations

Intra subsystem 6-24

IMS subsystem
communications line

specifying line number 1-18
DISABLE procedure command

functions performed by 1-19
syntax diagram 1-20

ENABLE procedure command
functions performed by 1-15
line number 1-18
syntax diagram 1-18

return codes
summary descriptions of B-1, B-2

IND continuation option (RPG II) 5-21
indicating error conditions

fail operation
BASIC description 3-23
COBOL description 4-20
RPG description 5-9

INFDS continuation option (RPG II) 5-22
INFSR continuation option (RPG II) 5-21
INFSR subroutine (RPG II)

return code considerations 5-18
return code processing 5-15

input operations
maximum record length

languages 3-10,4-10
input/output operations

See also communications operations
programming considerations (RPG II) 5-24
summary charts

Intra 6-46
Interactive Communications Feature

See SSP-ICF
interactive data definition utility

See IDDU (interactive data definition utility)
Intra subsystem

accept input operation
description 6-17

acquire operat.ion
description 6-18
starts a procedure 6-11

cancel operations
description 6-20
types of 6-20, 6-21

CNFIGICF procedure
defining members 6-5
modifying attributes 6-10
prompting facilities 6-6

CNFIGSSP procedure 6-5
coding examples

$EVOK macro 6-26
$WSIO macro 6-26
RPG evoke operations 6-32
WRITE statement (BASIC) 6-28
WRITE statement (COBOL) 6-30

communications operations
accept input 6-17

X-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Intra subsystem (continued)
communications operations (continued)

acquire 6-18
cancel 6-20
end of session 6-22
evoke 6-23
evoke end of transaction 6-23
fail 6-33
get 6-35
get attributes 6-35
introduction 6-14
invite 6-37
negative response 6-38
put 6-39
put end of chain 6-39
put end of transaction 6-39
release 6-41
request to change direction 6-42
set timer 6-44
status information about 6-35
summary chart of 6-14

configuration
CNFIGICF procedure 6-5
modifying attributes of 6-10
prompting facilities 6-6

configuration displays
default values 6-6
explanation of 6-6
subsystem member definition 6-7

configuration members 6-5
description and capabilities 6-3
DISABLE procedure command

description 6-10
functions performed by 1-19
syntax diagram 1-20

displays, descriptions of 6-5
ENABLE procedure command

description 6-10
functions performed by 1-15
syntax diagram 1-18

end of session operation
description 6-22

evoke end of transaction operation
description 6-23

evoke operations
assembler macros 6-25
BASIC 6-27
chart of 6-23
COBOL 6-29
description 6-23
optional data, types of 6-23
programming considerations 6-23
RPG "6-31
types of 6-23
user-supplied data 6-23

evoke parameter list
BASIC 6-27
COBOL 6-29

Intra subsystem (continued)
evoke parameter list (continued)

description 6-23
RPG 6-31

examples
$EVOK macro (assembler) 6-26
$WSIO macro (assembler) 6-26
acquire operation 6-18
program-to-program communications 6-3
RPG evoke operation 6-32
WRITE statement (BASIC evoke

operation) 6-28
WRITE statement (COBOL evoke

operation) 6-30
fail operation

description 6-33
function management headers 6-40
get attributes operation

description 6-35
status information 6-35

get operations
description 6-35

get status operation
status information 6-36

input/output operations
summary chart of 6-46

invite operation
description 6-37

line member 6-8
location name

display 22.0 6-9
LOCATION parameter

on SESSION statement 6-12
modifying a configuration 6-10
multiple configurations 6-5
name of subsystem member

defined on display 1.0 6-7
negative response operations

description 6-38
types of 6-38

OPEN statement example (BASIC) 6-18
procedure start request

starts a procedure 6-11
procedure start requests

description 6-13
program-to-program communications

example of 6-3
put end of chain operation 6-39
put end of transaction operation 6-39
put FMH operations 6-40
put operations

description 6-39
types of 6-39

release operation
description 6-41

request to change direction operations
description 6-42
types of 6-42

Index X-9

Intra subsystem (continued)
return codes

acquire operation error codes (82xx) 6-66
detailed descriptions of 6-45
miscellaneous program error codes

(0800-3401) 6-62
new requester codes (Olxx) 6-51
no data received codes (03xx) 6-59
normal completion codes (OOxx) 6-47
output exception codes (04xx) 6-61
permanent subsystem error codes

(80xx) 6-64
recoverable session error codes (83xx) 6-70
stop or disable pending codes (02xx) 6-55
summary descriptions of B-1, B-2

SESSION statement
description 6-12
syntax diagram 6-12

set timer operation
description 6-44

setting up 6-5
starting sessions 6-11

acquire operation 6-18
subsystem attributes

configuration displays 6-7
subsystem member

configuration displays 6-7
SYMID parameter 6-18

on SESSION statement 6-12
syntax diagrams

SESSION statement 6-12
user-supplied data

evoke operations 6-23
using IDDU with 6-4

intrinsic functions, BASIC
ATTRIBUTE$ 3-25
FILENUM 3-11, 3-31
TIMER 3-21
WSID$ 3-4, 3-31

introductions
acquiring sessions 1-4
program-to-program communications 1-2
remotely started sessions 1-6
SESSION statement 1-5

invite operation
description

Intra 6-37
IOERR parameter

BASIC return code checking 3-28

LAN communications feature
shared lines 1-13

line member name
specified on ENABLE command 1-18

line number
specified on ENABLE command 1-18

line sharing
X.25

summary 1-12, 1-13
link verification

ICFDEBUG procedure 1-2
location

specified on SESSION statement
Intra 6-12

location name
name of local System/36

Intra 6-9
specified on ENABLE procedure command 1·
used with SESSION statement 1-8

LOCATION parameter
on SESSION statement

Intra 6-12
location, remote

See remote location(s)
LU

See logical units (SNUF)

macroinstructions (macros), assembler
$ALOC 2-10
$CLOS 2-11
$DTFO 2-8
$DTFW 2-4
$EVOK 2-18
$OPEN 2-11
$WSI02-12
$WSIO macro parameter chart 2-16
for controlling files 2-10
list of 2-3

manuals
See also remote system manuals
for additional information ix, x

maximum record length
input operations

languages 3-10, 4-10
put operations

languages 3-18,4-15, 5-5

X-IO SSP-ICF Programming for Subsystems and Intra Subsystem Reference

member, line
See line member

member, subsystem
See subsystem member

modifying a configuration member
Intra 6-10

modifying assembler operations 2-15
MRT programs

programming considerations (RPG II) 5-22
MSRJE, BSC

See BSC MSRJE
MSRJE, SNA

See SNA MSRJE

negative response operations
description

languages 3-22, 4-19, 5-8
Intra 6-38

examples
BASIC WRITE statement 3-22
COBOL WRITE statement 4-19
RPG 5-8

sending sense data 3-22, 4-19, 5-8
types of

Intra 6-38
negotiable

Lan communications feature 1-13
X.25 shared lines 1-12

NEXT operation (RPG)
description 5-12
example 5-12

NUM continuation option (RPG II) 5-20

offset locations (assembler)
return codes 2-23

OPEN statement (BASIC)
description 3-4
example

Intra 6-18
examples 3-6
identifies session 3-4
specially acquired sessions

examples 3-6
operation codes

evoke
Intra 6-23

summary charts of
assembler 2-21, A-3

operation codes (continued)
summary charts of (continued)

BASIC 3-27, A-4
COBOL 4-22, A-5
RPG II 5-14, A-6

optional data
sent with evoke operations

Intra 6-23
optional parameters, chart of

in $WSIO macro 2-16

parameter list
sent by $EVOK macro 2-18

parameter matrix chart
$WSIO macro 2-16

password
specifying, in assembler 2-19

PDATA parameter, COPY control statement
for sending program data 2-20, 3-16, 4-15

Peer subsystem
communications line

specifying line number 1-18
DISABLE procedure command

functions performed by 1-19
syntax diagram 1-20

ENABLE procedure command
functions performed by 1-15
line number 1-18
syntax diagram 1-18

return codes
summary descriptions of B-1, B-2

performance considerations
improving response time 1-14

problem determination
ICFDEBUG 1-2

procedure parameters
sent to the started procedure 1-7

procedure start request
description

Intra 6-13
starts a session

Intra 6-11
introduction 1-7

types of information sent with 1-7
program cycle, RPG II 5-14
program data

sent to the started program 1-7
program parameters

sent with evoke operations
Intra 6-23

Index X-ll

program-to-program communications
Intra subsystem 6-3
introduction to 1-2

programming considerations
continuation options, RPG II 5-20
end-of-file conditions, RPG II 5,23
input/output operations (RPG II) 5-24
MRT programs (RPG II) 5-22
release operations (RPG II) 5-23
RPG II 5-20
SRT programs (RPG II) 5-22
WORKSTN file restrictions (RPG II) 5-24

prompting facilities
CNFIGICF procedure

Intra 6-6
presents applicable lines only

Intra 6-6
put end of chain operation

Intra subsystem 6-39
put end of transaction operation

Intra subsystem 6-39
put FMH operations

Intra 6-40
put operations

description
languages 3-18, 4-15, 5-5
Intra 6-39

examples
BASIC WRITE statement 3-18
COBOL WRITE statement 4-15
RPG 5-5

maximum record length
languages 3-18,4-15, 5-5

types of
Intra 6-39

READ operation (RPG)
description 5-13
example 5-13

READ statement (BASIC)
description 3-8
EOF clause

example 3-10
note on 3-10

receiving a message, example 3-9
STOP$ intrinsic function 3-10
with REREAD statement 3-10

READ statement (COBOL)
description 4-10
examples 4-11
TERMINAL options 4-10

receiving data
example, COBOL 4-11
notes on, BASIC 3-10
READ operation

RPG 5-13
READ statement

BASIC 3-8
COBOL 4-10

REL operation (RPG)
description 5-11
example

languages 5-11
programming considerations 5-23

release operation
description

Intra 6-41
DROP statement (COBOL) 4-21

example
languages 5-11

programming considerations (RPG II) 5-23
releasing a session

DROP statement (COBOL) 4-21
REL operation (RPG) 5-11

remote system
See remote system manuals

remotely started sessions
Intra 6-11
elements used in 1-6
example, BASIC 3-6
introduction to 1-6
maximum allowed 1-14

request to change direction operations
description

languages 3-20,4-17,5-6
Intra 6-42

examples
BASIC WRITE statement 3-20
COBOL WRITE statement 4-17

types of
Intra 6-42

requesting change of direction
BASIC WRITE statement 3-20
COBOL WRITE statement 4-17
RPG description 5-6

required parameters, chart of
in $WSIO macro 2-16

REREAD statement (BASIC) 3-10
response time

performance considerations 1-14
RETCODE$ (BASIC)

chart of SSP-ICF return codes 3-30
contains status of last operation 3-28
description of 3-30

retrying unsuccessful operations
set timer operation

Intra 6-44

X-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

return code checking
end of transaction

BASIC 3-19
COBOL 4-16

return code processing
assembler 2-23
BASIC operations 3-28
COBOL 4-23
RPG II 5-15

return codes
acquire operation error codes (82xx)

Intra 6-66
charts of

COBOL 4-23
RPG status values 5-19

checking of
BASIC 3-28

COBOL FILE STATUS clause 4-5
detailed descriptions of

Intra subsystem 6-45
ERR codes, BASIC

chart of 3-29
meaning 3-28

EXIT clause needed (BASIC) 3-31
INFSR subroutine considerations (RPG) 5-18
IOERR parameter needed (BASIC) 3-28
miscellaneous program error codes (0800-3401)

Intra 6-62
new requester codes (Olxx)

Intra 6-51
no data received codes (03xx)

Intra 6-59
normal completion codes (OOxx)

Intra 6-47
offset locations (assembler) 2-23
output exception codes (04xx)

Intra 6-61
permanent subsystem error codes (80xx)

Intra 6-64
processing of

assembler 2-23
COBOL 4-23
RPG II 5-15

purpose of 1-8
recoverable session error codes (83xx)

Intra 6-70
RETCODE$, BASIC

chart of SSP-ICF codes 3-30
contains status of last operation 3-28
description of 3-30

status values for, RPG 5-19
stop or disable pending codes (02xx)

Intra 6-55
summary descriptions of

Intra subsystem B-1, B-2
BSCEL subsystem B-1, B-2
CCP subsystem B-1, B-2
CICS subsystem B-1, B-2

return codes (continued)
summary descriptions of (continued)

Finance subsystem B-1, B-2
IMS subsystem B-1, B-2
Peer subsystem B-1, B-2
SNUF subsystem B-1, B-2

RPG
coding examples

Intra 6-32
evoke operations

Intra description 6-31
RPGII

canceling sent records 5-9
CFILE continuation option 5-22
coding examples

ACQ operation 5-10
complete program 5-25
negative response operation 5-8
NEXT operation 5-12
put operation 5-5
READ operation 5-13
REL operation 5-11
set timer operation 5-7

communications operations
ACQ operation 5-10
cancel 5-9
end of session 5-9
evoke 5-3
fail 5-9
introduction 5-3
list of 5-10
negative response 5-8
NEXT operation 5-12
put 5-5
READ operation 5-13
REL operation 5-11
request to change direction 5-6
set timer 5-7
similar to work station operations 5-2

continuation options
CFILE 5-22
FMTS 5-22
ID 5-21
IND 5-21
INFDS 5-22
INFSR 5-21
list of, for WORKSTN files 5-20
NUM 5-20
SAVDS 5-21
SLN 5-21

end-of-file considerations 5-23
ending a session 5-9
evoke operations 5-3
evoke parameter list 5-3
examples

evoke operation 5-4
file description specifications 5-2

Index X-13

RPG II (continued)
FMTS continuation option 5-22
ID continuation option 5-21
IND continuation option 5-21
indicating error conditions

fail operation 5-9
INFDS continuation option 5-22
INFSR continuation option 5-21
INFSR subroutine

return code considerations 5-18
return code processing 5-15

input/output operation considerations 5-24
introduction 5-2
MRT program considerations 5-22
NUM continuation option 5-20
operation descriptions

ACQ operation 5-10
introduction to 5-2
NEXT operation 5-12
READ operation 5-13
REL operation 5-11

operations summary chart 5-14, A-6
program cycle input 5-14
programming considerations

continuation options 5-20
end-of-file conditions 5-23
input/output operations 5-24
introduction 5-20
MRT programs 5-22
release operations 5-23
SRT programs 5-22
WORKSTN file restrictions 5-24

release operation considerations 5-23
requesting change of direction 5-6
return codes

INFSR subroutine considerations 5-18
processing of 5-15
status values 5-19

SA VDS continuation option 5-21
sending

negative response 5-8
sense data 5-8

sending data
put operations 5-5

SLN continuation option 5-21
specifying a wait time

set timer operation 5-7
SRT program considerations 5-22
starting remote programs 5-3
status values 5-19

chart of 5-19
WORKSTN files considerations 5-24
WORKSTN operations

list of 5-10

SA VDS continuation option (RPG II) 5-21
SELECT statement (COBOL)

defines TRANSACTION files 4-4
description 4-4

sending data
evoke operations

assembler description 2-20
BASIC description 3-16
COBOL description 4-15

put operations
BASIC description 3-18
COBOL description 4-15
RPG description 5-5

WRITE statement
BASIC 3-18
COBOL 4-15

sending negative. response
BASIC description 3-22
COBOL description 4-19
RPG description 5-8

sense data
format of 3-22, 4-19, 5-8
sent on negative response operations 3-22, 4-19,

5-8
sequence diagrams

acquiring sessions 1-4
starting sessions remotely 1-6

session errors, recoverable
error return code descriptions

Intra 6-70
session group name

used with SESSION statement 1-8
session id

used with SESSION statement 1-8
session identifier

in SYMID parameter, SESSION statement
Intra 6-12

on acquire operation
Intra 6-18

SESSION statement
descriptions

Intra subsystem 6-12
in remotely started sessions 3-6
introduction to 1-5
not needed in BASIC

Intra 6-12
syntax diagrams

Intra 6-12
session status

information, description of
BASIC 3-26
COBOL 4-8

X-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

session status (continued)
received by

ATTRIBUTE$ function (BASIC) 3-25
get attributes operation 2-14

sessions
acquiring 1-4

ACQ operation (RPG) 5-10
ACQUIRE statement (COBOL) 4-6
OPEN statement (BASIC) 3-4

elements used in 1-3
maximum active on system 1-14
multiple levels of 1-7
receiving data in

READ operation (RPG) 5-13
releasing

REL operation (RPG) 5-11
remotely starting 1-6
SESSION statement

See also SESSION statement 1-5
introduction to 1-5

status information about· 3-26, 4-8
types of

remotely started 1-14
specially acquired 1-14
user-acquired 1-14

set timer operation
description

languages 3-21, 4-18, 5-7
Intra 6-44

examples
BASIC WRITE statement 3-21
COBOL WRITE statement 4-18
RPG 5-7

setting up a subsystem
Intra 6-5

SEU procedure, end of job menu
assembler evoke operations 2-20
BASIC evoke operations 3-16
COBOL evoke operations 4-15

shared lines
LAN communications feature 1-13
Token-Ring Network 1-13
X.25 1-12

SLN continuation option (RPG II) 5-21
SNAMSRJE

non-SSP-ICF subsystem 1-9
SNA 3270

non-SSP-ICF subsystem 1-9
SNUF subsystem

communications line
specifying line number 1-18

DISABLE procedure command
functions performed by 1-19
syntax diagram 1-20

ENABLE procedure command
functions performed by 1-15
line number 1·18
syntax diagram 1-18

SNUF subsystem (continued)
return codes

summary descriptions of B-1, B-2
specially acquired sessions

description 1-14
examples, in BASIC 3-6
maximum allowed 1-14

SRT programs
programming considerations (RPG II) 5-22

SSP-ICF
introduction to 1-2
acquiring a session, introduction 1-4
combinations of active subsystems 1-10
communicating using BASIC 3-2
communicating using COBOL 4-2
communicating using RPG II 5-2
de bug program

ICFDEBUG 1-2
elements used in sessions 1-3
maximum active sessions 1-14
other subsystem types 1-9
problem determination 1-2
procedure start requests, introduction 1-7
remotely started sessions, introduction 1-6
session information returned

BASIC 3-26
COBOL 4-8

subsystems
chart of types 1-9
communications features, summary
chart 1-11

introduction to 1-8
storage requirements for 1-14

timer operations
BASIC 3-21
COBOL 4-18

starting a procedure
BASIC WRITE statement 3-14
COBOL WRITE statement 4-14
RPG evoke operations 5-3

starting remote programs
BASIC evoke operations 3-14
COBOL evoke operations 4-14
RPG evoke operations 5-3

starting sessions
Intra 6-11

status information, session
assembler 2-14
BASIC 3-25, 3-26
COBOL 4-8

status values
RPG II 5-19

STOPS intrinsic function (BASIC) 3-10
STOPGRP procedure command 1-5, 1-7
storage requirements

for multiple enabled subsystems 1-14

Index X-15

STRTGRP procedure command 1-7,1-16
subroutine considerations

assembler 2-23
RPG II 5-15, 5-18

subsystem
See also subsystems
communications line features, summary of 1-11
configuration examples

Intra 6-3
description and capabilities

Intra 6-3
purpose of 1-8
setting up

Intra 6-5
subsystem configuration name

used with ENABLE command 1-8
subsystem errors, permanent

return code descriptions
Intra 6-64

subsystem member
configuration displays for

Intra 6-7
subsystems

See also subsystem
chart of types 1-9
combinations of 1-10
non-SSP-ICF subsystem types 1-9
storage requirements for 1-14

summary charts
See also charts
communications line features 1-11
communications operations

assembler 2-21, A-3
BASIC 3-27, A-4
COBOL 4-22, A-5
RPG II 5-14, A-6
Intra 6-14

SYMID parameter
on SESSION statement

Intra 6-12
session identifier

Intra 6-18
syntax diagrams

DISABLE procedure command 1-20
ENABLE procedure command 1-18
SESSION statement

Intra 6-12
System/36

communications line features
chart of 1-11

communications lines supported 1-10
main storage requirements 1-14
maximum active sessions 1-14
response time 1-14

[~J
TERMINAL option

COBOL READ statement 4-10
TIMER intrinsic function (BASIC) 3-21
timer operations

accept input operation required
Intra 6-44

BASIC 3-11,3-21
$$TIMER 3-21
TIMER intrinsic function 3-21

Token-Ring Network
shared lines 1-13

TRANSACTION f"ue (COBOL)
defined for SSP-ICF 4-5
limitation 4-4
specifying file name 4-6

underscores U
on configuration displays

Intra 6-6
user-acquired sessions

maximum allowed 1-14
user-supplied data

evoke operations
Intra subsystem 6-23

using IDDU with the Intra subsystem 6-4

verify a program
ICFDEBUG procedure 1-2

waiting for input
BASIC example 3-11
WAITIO statement (BASIC) 3-11

W AITIO statement (BASIC)
description 3-11
examples 3-11
for timer operations 3-11
with READ statement 3-8

X-I6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

work station operations for communications
ACCEPT statement 4-7
ACQ operation 5-10
ACQUIRE statement 4-6
in BASIC 3-2
in COBOL 4-2
in RPG II 5-2
list of, for RPG 5-10
NEXT operation 5-12
OPEN statement 3-4
READ operation 5-13
READ statement 3-8,4-10
REL operation 5-11
WAITIO statement 3-11
WRITE statement 3-12, 3-13, 3-20, 4-12, 4-13,

4-17
work station timer operations

BASIC 3-21
COBOL 4-18

WORKSTN file (RPG II)
RPG cycle input 5-14

WORKSTN files
continuation options for 5-20
restrictions for SSP-ICF programs (RPG II) 5-24
used for communications 5-2

WRITE statement (BASIC)
canceling sent records 3-23
coding examples

languages 3-15
Intra 6-28
cancel operations 3-23
end of session operation 3-20
fail operation 3-23
negative response operations 3-22
put end of transaction operation 3-19
put operation 3-18
request to change direction operations 3-20
set timer operation 3-21
timer intrinsic function 3-21

description of 3-12
ending a session 3-20
ending a transaction 3-19
evoke operations

Intra 6-27
indicating error conditions 3-23
list of operations performed by 3-13, 3-20
requesting change of direction 3-20
sending a negative response 3-22
sending data 3-18
starting a procedure 3-14

WRITE statement (COBOL)
canceling sent records 4-20
coding examples

Intra 6-30
cancel operations 4-20
end of session operation 4-17
fail operation 4-20
negative response operations 4-19

WRITE statement (COBOL) (continued)
coding examples (continued)

put end of transaction operation 4-16
put operation 4-15
request to change direction operations 4-17
set timer operation 4-18

description of 4-12
ending a session 4-17
ending a transaction 4-16
evoke operations

Intra 6-29
indicating error conditions 4-20
list of operations performed by 4-13, 4-17
requesting change of direction 4-17
sending a negative response 4-19
sending data 4-15
starting a procedure 4-14

writing BASIC programs
notes on 3-31

WSID$ intrinsic function (BASIC)
note 3-31
purpose of 3-4

I Numerics I
3270 (BSC) device emulation

See BSC 3270
3270 (SNA) device emulation

See SNA 3270

Index X-17

X-18 BSP-ICF Programming for Subsystems and Intra Subsystem Reference

IBM System/36
Interactive Communications Feature:
Programming for Subsystems and Intra Subsystem Reference SC21·9533·0

READER'S COMMENT FORM

Please use this form only to identify publication errors or to request changes in
publications. Direct any requests for additional publications, technical questions about IBM
systems, changes in IBM programming support, and so on, to your IBM representative or to your
IBM· approved remarketer. You may use this form to communicate your comments about this
publication, its organization, or subject matter, with the understanding that IBM may use or
distribute whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

o If your comment does not need a reply (for example, pointing out a typing error), check
this box and do not include your name and address below. If your comment is applicable,
we will include it in the next revision of the manual.

o If you would like a reply, check this box. Be sure to print your name and address below.

Page number(s): Comment(s):

No postage necessary if mailed in the U.S.A.

Please contact your IBM representative or your IBM-approved
remarketer to request additional publications.

Name

Company or
Organization

Address

Phone No.

City State Zip Code

Area Code

Fold and tape. Please do not staple.

I
BUSINESS REPLY MAIL
FIRST CLASS / PERMIT NO. 40 / ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

International Business Machines Corporation
Information Development
Department 245
Rochester, Minnesota, U.S.A. 55901

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

---~
Fold and tape. Please do not staple.

--------- - ------- - ---- - - ----------_.-

International ..

SC21-9533-00

