

System/36

Interactive Communications Feature
Programming for Subsystems and
Intra Subsystem Reference

File Number
S36-30

Order Number
SC21-9533-0

First Edition (October 1986)

This is a new manual that replaces, in part, SC21-7910. Changes
are periodically made to the information herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

This edition applies to Release 5, Modification Level 0, of IBM
System/36 System Support Program Products (Program 5727-SS1
for the 5360 and 5362 System Units, and Program 5727-SS6 for the
5364 System Unit), and to all subsequent releases and
modifications until otherwise indicated.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available in
all countries in which IBM operates. Any reference to an IBM
licensed program in this publication is not intended to state or
imply that only IBM’s licensed program may be used. Any
functionally equivalent program may be used instead.

The numbers at the bottom right of illustrations are publishing
control numbers and are not part of the technical content of this
manual.

Publications are not stocked at the address given below.
Requests for IBM publications should be made to your IBM
representative or to your IBM-approved remarketer.

This publication could contain technical inaccuracies or
typographical errors. A form for readers’ comments is provided
at the back of this publication. If the form has been removed,
comments may be addressed to IBM Corporation, Information
Development, Department 245, Rochester, Minnesota, U.S.A.
55901. IBM may use or distribute whatever information you
supply in any way it believes appropriate without incurring any
obligation to you. ’

© Copyrik‘gyht International Business Machines Corporation 1986

Contents

About This Manual vii

What you should know ... wviii
If you need information about other SSP-ICF subsystems ... ix
If you need more information ... ix

Chapter 1. Introduction to the Interactive Communications
Feature 1-1
Elements Used in SSP-ICF Sessions 1-3
Acquired Sessions 1-4
Remotely Started Sessions 1-6
SSP-ICF Subsystems 1-8
Types of System/36 Subsystems 1-9
Combinations of Subsystems 1-10
System/36 Communications Line Support 1-10
Communications Features Supported by Subsystems 1-11
Sharing a Communications Line 1-12
System/36 Storage and Session Considerations 1-14
Storage Requirements 1-14
Active Session Limits 1-14
Enabling and Disabling Subsystems 1-15
Enabling a Subsystem 1-15
Disabling a Subsystem 1-19

Chapter 2. Programming SSP-ICF with Assembler 2-1
Assembler Macroinstructions 2-3

$DTFW Macro 24

$DTFO Macro 2-8

$ALOC, $OPEN, and $CLOS Macros 2-10

$WSIO Macro 2-12

$EVOK Macro 2-18
Assembler Operations Summary Chart 2-21
Return Codes 2-23
Interactive Communications Assembler Subroutines 2-23
Assembler Coding Examples 2-24

Chapter 3. Programming SSP-ICF with BASIC 3-1
BASIC Statements Used for Communications 3-3
OPEN Statement (Acquiring Sessions) 3-4
OPEN Statement Examples 3-6
READ Statement (Receiving Data) 3-8
READ Statement Examples 3-9
WAITIO Statement (Waiting for Input) 3-11
WAITIO Statement Example 3-11
WRITE Statement (Performing Operations within a Session) 3-12

Contents

111

WRITE Statement Operations 3-13
Starting Remote Programs (Evoke Operations) 3-14
Sending Data (Put Operations) 3-18
Ending Communications Transactions (End of Transaction
Operations) 3-19
Ending Sessions (End of Session Operation) 3-20
Additional WRITE Statement Operations 3-20
CLOSE Statement (Closing Files for Sessions) 3-24
ATTRIBUTES Intrinsic Function (Getting Session Attributes) 3-25
BASIC Operations Summary Chart 3-27
Checking Return Codes in BASIC 3-28
ERR Code Values 3-29
RETCODES$ Values 3-30
Notes About Writing BASIC Programs for SSP-ICF 3-31
BASIC Coding Examples 3-31

Chapter 4. Programming SSP-ICF with COBOL 4-1
COBOL Statements Used for Communications 4-3
SELECT Statement (Defining the Transaction File) 4-4
ACQUIRE Statement (Acquiring Sessions) 4-6
ACCEPT Statement (Checking Session Status) 4-7
Session Status Information 4-8
READ Statement (Receiving Data) 4-10
WRITE Statement (Performing Operations within a Session) 4-12
WRITE Statement Operations 4-13
Starting Remote Programs (Evoke Operations) 4-14
Sending Data (Put Operations) 4-15
Ending Communications Transactions (End of Transaction
Operations) 4-16
Ending Sessions (End of Session Operation) 4-17
Additional WRITE Statement Operations 4-17
DROP Statement (Releasing a Session) 4-21
COBOL Operations Summary Chart 4-22
Return Code Processing in COBOL 4-23
COBOL Coding Examples 4-23

Chapter 5. Programming SSP-ICF with RPG II 5-1
File Description Specifications 5-2
RPG II Communications Operations 5-3
Starting Remote Programs (Evoke Operations) 5-3
Sending Data (Put Operations) 5-5
Request to Change Direction Operation 5-6
Set Timer Operation 5-7
Negative Response Operations 5-8
Cancel Operations 5-9
Fail Operation 5-9
End of Session Operation 5-9
WORKSTN Operations 5-10
ACQ (Acquire) Operation 5-10
REL (Release) Operation 5-11
NEXT Operation 5-12
READ Operation 5-13
RPG Cycle Input 5-14
RPG II Operations Summary Chart 5-14

1V SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Code Processing in RPG II 5-15

INFSR Subroutine Coding Considerations 5-18
RPG II Status Values 5-19
RPG II Programming Considerations 5-20

Using Continuation Options on the File Description Specifications

SRT and MRT Program Considerations 5-22
End-of-File Considerations 5-23
Release Considerations 5-23
Restrictions for WORKSTN Files 5-24
Input and Output Considerations 5-24

RPG II Coding Examples 5-25

Chapter 6. The Intra Subsystem 6-1
Overview of the Intra Subsystem 6-3
Setting Up an Intra Subsystem 6-5

CNFIGICF Procedure 6-5

Subsystem Member Definition 6-7
Modifying a Subsystem Configuration 6-10
Enabling and Disabling the Intra Subsystem 6-10
Starting Communications Sessions That Use the Intra Subsystem

SESSION Statement 6-12

Procedure Start Requests 6-13
Communications Operations for the Intra Subsystem 6-14

Accept Input Operation 6-17

Acquire Operation 6-18

Cancel Operations 6-20

End of Session Operation 6-22

Evoke Operations 6-23

Fail Operation 6-33

Get Operations 6-35

Invite Operation 6-37

Negative Response Operations 6-38

Put Operations 6-39

Release Operation 6-41

Request to Change Direction Operations 6-42

Set Timer Operation 6-44
Intra Subsystem Return Codes 6-45

Glossary G-1

Index X-1

6-11

5-20

Contents V

vi SSP-ICF Programming for Subsystems and Intra Subsystem Reference

About This Manual

The information in this manual supersedes and replaces its respective part
of the System/36 Interactive Communications Feature: Reference manual,
SC21-7910. This manual and the other associated manuals made from the
SSP-ICF Reference resulted from the SSP Release 5.0 repackaging of the
SSP-ICF 6001 and 6002. This manual supports the base communications
feature Program Number 6001-SS1.

This reference manual is intended primarily for application programmers
who write communications programs that use the SSP-ICF. It contains
programming information for both System/36 programmers and remote
system programmers. This manual contains two major units of information:

e A description (in Chapters 2 through 5) of each macroinstruction or
language statement used to perform communications operations. Each
macroinstruction used in assembler language for communications is
described in Chapter 2. Each language statement used in BASIC,
COBOL, or RPG II is described in Chapters 3 through 5, respectively.

® A description (in Chapter 6) of the Intra subsystem, which includes:

— A description of the configuration displays used to configure the
subsystem member definitions.

— A description of the remote system generation or configuration
requirements and the startup requirements needed for remote
programs to communicate with System/36.

— A description of the SESSION OCL statement used by a System/36
program to start a communications session.

— A description of all the subsystem input and output operations used
to communicate in a session. Included are summary charts of all
the operation codes (by language), examples of each operation in
each language, and language-dependent information.

— A description of the programming considerations for System/36 and
for the remote system.

— A complete description of every return code that a subsystem can
send to a program.

About This Manual Vil

This manual contains appendixes describing subsystem operation codes,
return codes, conversion considerations, and character sets. It also
contains a glossary that defines the terms introduced and used in this
manual.

Notes:

1.

2

Throughout this manual, the term remote system refers to the system or
device with which System/36 is communicating. For the Intra subsystem,
the term refers to the same System|36 because Intra supports
communications only between programs on the same system.

This manual follows the convention that he means he or she.

What you should know . ..

Before you use this manual, you should know or have the following
information:

You should be familiar with System/36 programming terminology,
particularly work station programming, and you should be able to
program in whatever language you intend to use. In some instances,
you must also be familiar with the terminology of the remote system.

You should know the concepts of data communications as described in
the Data Communications Concepts manual, GC21-5169.

You should understand the information and examples presented in
Chapters 1 through 5 and in the appropriate subsystem chapter in the
System/36 Interactive Communications Feature: Guide and Examples
manual, SC21-7911. The SSP-ICF Guide and Examples manual (the
shortened title used in this reference manual) introduces SSP-ICF
concepts, and it provides coding examples of programs written in
assembler, BASIC, COBOL, and RPG II—programs that use one of the
SSP-ICF subsystems to communicate with programs on remote systems.

You should have the Planning for Data Communications workbook,
SA21-9441, which is part of the packet What to Do Before Your
Computer Arrives, SBOF-4773.

Note: This manual may refer to products that are announced, but are not yet

available. Such information is for planning purposes only and is
subject to change before general availability.

vill SSP-ICF Programming for Subsystems and Intra Subsystem Reference

If you need information about other SSP-ICF subsystems

The following SSP-ICF manuals contain detailed information about other
communications subsystems:

Interactive Communications Feature: Base Subsystems Reference,
SC21-9530, contains information about the APPC, BSCEL, CCP, and
Peer communications subsystems. The shortened title used in this
manual is “SSP-ICF Base Subsystems Reference.”

Interactive Communications Feature: Upline Subsystems Reference,
SC21-9532, contains information about the CICS, IMS, and SNUF
communications subsystems. The shortened title used in this manual is
“SSP-ICF Upline Subsystems Reference.”

Interactive Communications Feature: Finance Subsystem Reference,
SC21-9531, contains information about the Finance communications
subsystem. The shortened title used in this manual is “SSP-ICF
Finance Subsystem Reference.”

If you need more information . . .

The following System/36 manuals contain additional information you may
need when you use the Interactive Communications Feature:

Guide to Publications, GC21-9015 lists the manuals in the System/36
library, lists the tasks that are described in the System/36 manuals, and
provides a master glossary of System/36 terms.

Changing Your System Configuration, SC21-9052 contains instructions
for installing Interactive Communications Feature support.

System Security Guide, SC21-9042 describes how to implement various
levels of security on System/36.

Using System/36 Communications, SC21-9082 describes in detail using
System/36 for communications.

System Problem Determination, SC21-7919 for the 5360 System Unit,
SC21-9063 for the 5362 System Unit, or SC21-9375 for the 5364 System
Unit provides procedures to help you find the cause of communications
problems.

System Messages, SC21-7938 describes the system messages that are
displayed when you operate the Interactive Communications Feature.

System Reference, SC21-9020 describes the OCL statements, system

utilities, and system procedures you need when you use System/36 and
the Interactive Communications Feature.

About This Manual 1X

® Performing the First System Configuration for Your System, SC21-9067
contains instructions for performing the first system configuration for
your system.

e Getting Started with Interactive Data Definition Utility, SC21-8003
introduces the interactive data definition utility (IDDU) and describes
how to create data definitions for use with the Intra and APPC
subsystems.

® Advanced Peer-to-Peer Networking (APPN) Guide, SC21-9471, describes
how to use APPN to configure, use, and maintain the extended
networking capabilities for the System/36 family.

You may need to refer to one or more of the following System/36 language
reference manuals while using this manual.

® Programming with Assembler, SC21-7908
® Programming with BASIC, SC21-9003
e Programming with COBOL, SC21-9007
® Programming with RPG II, SC21-9006

Depending upon the type of SSP-ICF subsystem that you use for
communications, you may need to use non-System/36 manuals that describe
the remote system or operating system with which your System/36 will be
communicating. These manuals are listed in the remote programming
considerations section of each applicable subsystem chapter.

A few references are made in this manual to System/36 communications
subsystems that are not included in the Interactive Communications
Feature. Information about those subsystems is contained in the following
System/36 manuals that describe those features:

e Using the Asynchronous Communications Support, SC21-9143 describes
the asynchronous communications support, which is part of the base
Communications feature. This support includes the Asynchronous
subsystem, the file transfer subroutines, and the Interactive Terminal
Facility.

® 3270 Device Emulation Guide, SC21-7912 describes the BSC 3270 and
SNA 3270 subsystems, which are part of the 3270 Device Emulation
feature. SNA 3270 can share a communications line with the SNUF
subsystem, SNA MSRJE, and the APPC subsystem.

e Multiple Session Remote Job Entry Guide, SC21-7909 describes the
Multiple Session Remote Job Entry feature. SNA MSRJE can share a
communications line with the SNUF subsystem, SNA 3270, and the
APPC subsystem.

X SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Distributed Disk File Facility Reference Manual, SC21-7869 contains
information about installing, setting up, and operating the Distributed
Disk File Facility. The Peer subsystem must be used with this facility.

Communications and Systems Management Guide, SC21-8010 contains
information about the Communications and Systems Management
feature. This feature includes change management (DSNX) support and
problem management (alert) support. The SNUF and APPC subsystems
are used with this feature.

Distributed Data Management Guide, SC21-8011 contains information

about the Distributed Data Management feature. The APPC subsystem
is used with this feature.

About This Manual X1

X1l SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 1. Introduction to the Interactive
Communications Feature

Elements Used in SSP-ICF Sessions 1-3
Acquired Sessions 14
Remotely Started Sessions 1-6
SSP-ICF Subsystems 1-8
Types of System/36 Subsystems 1-9
Combinations of Subsystems 1-10
System/36 Communications Line Support 1-10
Communications Features Supported by Subsystems 1-11
Sharing a Communications Line 1-12
System/36 Storage and Session Considerations 1-14
Storage Requirements 1-14
Active Session Limits 1-14
Enabling and Disabling Subsystems 1-15
Enabling a Subsystem 1-15
Enabling Multiple Remote Locations (SNA Subsystems Only)
ENABLE Procedure Command 1-18
Disabling a Subsystem 1-19
Disabling Multiple Remote Locations (SNA Subsystems Only)
DISABLE Procedure Command 1-20

1-16

1-20

Chapter 1. Introduction to the Interactive Communications Feature 1-1

The System/36 Interactive Communications Feature (SSP-ICF) allows
program-to-program communications between System/36 and other systems.
SSP-ICF is provided as a feature of the System/36 System Support Program
Product (SSP). The information needed to use SSP-ICF is contained in the
manual Using System/36 Communications and in this reference manual.

SSP-ICF includes support for program-to-program communications between
systems using BSC or SNA as well as communications between programs
within the same system. SSP-ICF also allows programs on other systems to
initiate System/36 procedures, and it allows System/36 programs to initiate
programs or procedures on other systems without remote system operator
intervention.

This chapter contains information that applies to all SSP-ICF subsystems.
This chapter:

e Summarizes briefly the main elements used in an SSP-ICF session
e Introduces all the subsystem types

o Identifies the communications line features that are used by the
subsystems

o Describes the ENABLE and DISABLE procedure commands

SSP-ICF provides problem determination and link verification by means of
the SSP-ICF debug program. The program allows you to save information
on disk about each SSP-ICF operation while your program(s) is running.
You can then display or print the information to help you find the cause of
an SSP-ICF problem. The procedure for running the debug program is
ICFDEBUG. This procedure is described in the manual Using System/36
Communications.

1-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Elements Used in SSP-ICF Sessions

The following two sections summarize the main communications elements
that exist while System/36 programs are using SSP-ICF to communicate
with other programs. A detailed description of these elements (subsystems,
programs, sessions, transactions, and data) is presented in the SSP-ICF
Guide and Examples manual.

A session can be started either by a program on System/36 or by a program
on a remote system. When a program on System/36 starts the session with
an acquire operation, the session is called an acquired session. When a
remote program starts the session by sending a procedure start request to
System/36, the session is called a remotely started session.

Chapter 1. Introduction to the Interactive Communications Feature 1-3

Acquired Sessions

The following figure shows the order in which events occur and the
elements involved when a System/36 application program (your program)
starts a session with the remote system:

System/36 Remote System

i

SSP-ICF Subsystem Ei?]r:munications
Bl ENABLE (Start ™——>

the subsystem.) -—L—

E Application Program

B Acquire > Start a SESSION. e E—————————E——————-

Remote Program

n Evoke ﬁ Start the remote program m

(transaction).

Send and/or receive data.
Send/Receive *“M Send/Receive

End the transaction.

End M* » End

(Either program can end
the transaction.)

The remote program
Release -—r—‘» End the session with can end or continue

the remote system. local processing.

This program can end,
start another session,
and/or continue local
processing.)

Bl DISABLE (End ")
the subsystem.)

$7910002-0

1-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

A subsystem must be enabled (started) before programs can use it
to communicate with a remote system. The ENABLE procedure
command is used to start the subsystem.

The System/36 application program that will communicate with the
program at the remote system must be started, usually via a
user-written procedure.

The System/36 program must start a session with the remote system
before communications can begin. Your program starts a session
when it issues an acquire operation.

When your program starts (acquires) the session, a SESSION OCL
statement (associated with your program) is used to specify the
session ID and the location name (used to identify the remote system)
to be associated with the session. For some subsystems, the
SESSION statement also defines some of the subsystem-dependent
parameters for the session. These parameters remain in effect until
the program terminates.

Within each session, transactions can be started (evoked) to allow
your program to communicate with remote programs. A transaction
1s started when your program issues an evoke operation to start a
specified remote program.

Within each transaction, data can be sent and received between your
program and the program on the remote system.

When all data has been sent andjor received, either your program or
the remote program can end the transaction. Your program ends the
transaction using one of the end of transaction operations (evoke end
of transaction or put end of transaction). When the remote system
ends the transaction, the subsystem indicates this by the return code
it sends to your program.

When all transactions have ended, your program should release the
session. Your program can do this by using either the release
operation or the end of session operation.

When the subsystem is no longer needed, it can be disabled using the

DISABLE procedure command to free System/36 resources used by
the subsystem.

Chapter 1. Introduction to the Interactive Communications Feature 1-5

Remotely Started Sessions

The following figure shows the order in which events occur and the
elements involved when the remote system starts the session by sending a

remote procedure start request:

System/36

SSP-ICF Subsystem

ENABLE (Start
the subsystem.)

Remote Procedure
4——-*——Start a procedure. M

Procedure

Application Program

Send/Receive

End

This program can
end or continue
local processing.

DISABLE (Eng b,

(Session and transaction
are started when the
remote procedure request
is received.)

Send and/or receive data.

End the transaction.

(Either program can end
the transaction. When the
transaction ends, the
session also ends for the
System/36 application
program.)

the subsystem.)

Communications
Line

Start Request

1-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Remote System

Remote Program

Send/Receive

End

The remote program
can end or continue
local processing.

§7910001-1

EH A subsystem must be enabled (started) before a remote system can
use it to communicate with a System/36 program. The ENABLE
procedure command is used on System/36 to start the subsystem.

H A System/36 procedure (the procedure that starts your program) is
started by the subsystem when it receives a procedure start request
from the remote system. The procedure then starts the application
program that will communicate with the program on the remote
system. The session and the transaction are also started when the
procedure start request is received.

Because the remote system started the session and the transaction,
no acquire or evoke operation is issued by the application program.
Your program can, however, acquire other sessions with the remote
system once your program is running (depending upon the type of
subsystem you are using).

El Either one of two types of information can be sent with the procedure
start request: parameters for the procedure or data for your
program. If data is sent, your program must use an input operation
to receive this data. If no data is expected with the procedure start
request, your program can issue either an input or output operation
depending upon the procedures previously set up with the remote
system.

1 When all data has been sent or received, either program can end the
transaction. When the transaction ends, the session for your
program also ends.

Note: If an APPC subsystem is being used, all session groups that
were started should be stopped. Before the APPC subsystem is
disabled, the STOPGRP procedure command is used to stop a
session group(s).

BB When the subsystem is no longer needed, it can be disabled using the
DISABLE procedure command to free System/36 resources used by
the subsystem.

For both acquired sessions and remotely started sessions, each level of
events associated with an element can occur repeatedly within the next
higher level. For example, multiple sessions can be acquired and released
within the same program, and multiple programs can be run without
disabling and enabling the subsystem configuration. For more information,
see the SSP-ICF Guide and Examples manual.

Chapter 1. Introduction to the Interactive Communications Feature 1-7

The connection between the levels is maintained by the following
parameters:

e subsystem configuration name: Specifies the particular subsystem to
be enabled, using the ENABLE procedure command.

e Jlocation name: Specified during subsystem configuration. The
location name is included on the SESSION statement to identify the
remote location being referenced.

e session ID: Specified on the SESSION statement and used in your
program when it acquires the session.

Because the SESSION statement associates the remote location with a
session identifier, the remote location can be changed in the subsystem
configuration without requiring a change in your program.

® session group name: Specified during subsystem configuration only
for the APPC subsystem. The session group name is included on the
SESSION statement to identify the session group name associated with
the session.

SSP-ICF Subsystems

Interactive communications between application programs are accomplished
using SSP-ICF and a subsystem. Several subsystem types are provided so
that System/36 can communicate with various remote systems that have
different communications methods (such as BSC or SNA). A subsystem,
designed for a specific remote system, makes it unnecessary to handle most
system-dependent considerations when coding System/36 application
programs.

A System/36 program issues communications operations to communicate
with a remote system via one of the SSP-ICF subsystems. The subsystem
informs the program of the success or failure of each operation by sending
the proper return code to the program. Several of the communications
operations and return codes can be used with any of the SSP-ICF subsystem
types; some operations and return codes are used with only one or two
subsystem types. A program written to be used with one type of subsystem
may, with little or no change, be used to communicate with a different type
of subsystem. How much change is needed in the program depends on
which two subsystems are involved, which communications operations are
used, and which return codes are being checked for.

1-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Types of System/36 Subsystems

When two programs on the same System/36 are to communicate with each
other, the Intra subsystem is used. When two programs are on different
System/36s, the BSCEL, Peer, or APPC subsystem is used. (The BSCEL
subsystem is used for BSC. The Peer or APPC subsystem is used for SNA.)
When two programs are on a System/36 and another type of remote system,
the APPC subsystem or other subsystems may be used.

All of the SSP-ICF subsystems are shown in the following table. The order
in which they are shown is the order in which they are described in this
manual and in the SSP-ICF Guide and Examples manual. (System/36 can
also have other communications subsystems that are not part of SSP-ICF.)

System/36 SSP-ICF Subsystem | Communicates With

Intra Other programs in the same System/36

BSC Equivalence Link (BSCEL) System/36, System/34, Series/1, and
others

BSC CCP System/3 Model 15 CCP

BSC CICS CICS/VS (BTAM)

BSC IMS/IRSS IMS/VS via IRSS (BTAM)

Finance 3601 and 4701 Finance Controllers, and

3694 Document Processor

SNA Peer System/36 and System/34
SNA Upline Facility (SNUF) CICS/VS and/or IMS/VS with
ACF/VTAM

Advanced Program-to-Program System/38, System/36, and CICS/VS
Communications (APPC)

Other subsystems that can be used for communications include the
following: BSC 3270, SNA 3270, BSC MSRJE, and SNA MSRJE. These
communications subsystems are not part of SSP-ICF and are documented in
other manuals. Those manuals are identified at the end of the list of
manuals given under “If you need more information...” at the beginning of
this manual.

Chapter 1. Introduction to the Interactive Communications Feature 1-9

Combinations of Subsystems

Several subsystem configuration members can be stored in System/36, and
several subsystems can be enabled at the same time. All the subsystems
that are enabled (using the configuration members to define the attributes
of the enabled subsystems) do not have to be of the same type. The number
of subsystems that can be enabled is determined by the number of
communications lines available and whether any lines are being shared by
SNA-type subsystems.

Only one BSC 3270 subsystem can be active on System/36 at any time; it can
be active with all other combinations of subsystems, but it must be on a line
by itself.

Depending on the number and types of subsystems that are active at one
time, it is possible that the response time on System/36 may increase. If a
particular combination of subsystems produces undesirable system
performance, you should try changing a subsystem’s attributes (such as the
length of its data records being sent). For other information about
subsystem performance considerations, refer to the individual subsystem
reference manual.

System/36 Communications Line Support

System/36 can have up to eight telecommunications lines. Each
telecommunication line can be one of the following types (all the lines do
not have to be the same type):

e Point-to-point switched (manual answer, automatic answer, manual call,
or automatic call)

e Point-to-point nonswitched
o Multipoint tributary

In addition, if your system has the LAN Attachment feature, you can have
up to two Token-Ring Network lines (lines 9 and 10).

Each SSP-ICF subsystem (except Intra) requires at least one
communications line to communicate with a remote system. An Intra
subsystem can be enabled regardless of the number of line-dependent
subsystems enabled on the System/36.

The maximum number of lines available is controlled by the
communications features installed on your system. Refer to the manual
Using System|36 Communications for information about communications
features.

1-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Communications Features Supported by Subsystems

The following chart shows all the subsystems supported on System/36, and
it shows the communications line features that each subsystem can use.
The chart shows the SSP-ICF subsystems, and it includes, for your
information, the other System/36 communications subsystems that are not
part of SSP-ICF.

Line Types Supported Features Supported

Point Token- LAN

-to- Multi- Ring Auto- Attach
Subsystem Point point Network call X.25 X.21 Feature
SSP-ICF
Subsystems:
Intral - — — — — - —
BSCEL Yes Yes No Yes No Yes No
CCP Yes Yes No Yes No Yes No
CICS Yes Yes No Yes No Yes No
IMS No Yes No No No Yes2 No
Finance Yes Yes No No Yes5 Yes3 No
Peer Yes Yes No Yes Yes Yes No
SNUF Yes Yes Yes Yes Yes Yes Yes
APPC Yes Yes Yes Yes Yes Yes Yes
Other
Subsystems:4
Asynchronous Yes No No No Yes No No
BSC 3270 No Yes No No No Yes No
SNA 3270 Yes Yes Yes Yes Yes Yes Yes
BSC MSRJE Yes Yes No Yes No Yes No
SNA MSRJE Yes Yes Yes Yes Yes Yes Yes
PC Support/36 No No Yes No No No Yes

1The Intra subsystem does not use any communications lines; it handles communications only between two programs
in the same System/36.

2The IMS subsystem supports X.21 on nonswitched lines only.

3The Finance subsystem supports X.21 on nonswitched lines and on switched lines in autoanswer mode only.

4These communications subsystems are not part of SSP-ICF; they are included in other communications features.

5The Finance subsystem supports X.25 on nonswitched lines and on only permanent virtual circuits over that
connection.)

Chapter 1. Introduction to the Interactive Communications Feature 1-11

Sharing a Communications Line

BSC subsystems (BSCEL, CCP, CICS, IMS/IRSS, BSC 3270, and BSC
MSRJE) cannot share a communications line with another subsystem.

If you are using SNA, subsystems can share the same line, with the
following restrictions:

e For an SNA/SDLC line:

— The Peer primary, APPC primary, and Finance subsystems can
share a line if they are configured for a nonswitched line. The
APPC subsystem, however, cannot share the same line member with
the Finance subsystem. A line member that the APPC and Peer
subsystems are sharing can run concurrently with a line member
used by the Finance subsystem. In addition, remote work station
support (RWS) can share this same line.

— A Peer secondary subsystem cannot share a line with any other
subsystem.

— The SNA 3270, SNA MSRJE, APPC secondary, and SNUF
subsystems can share a line provided all the subsystems use the
same line member. In addition, a SNUF subsystem used for
Communications and Systems Management change management and
an APPC subsystem used for Communications and Systems
Management alert support can also share the line, provided they
use the same line member. SNA 3270 is described in the 3270 Device
Emulation Guide, MSRJE is described in the Multiple Session
Remote Job Entry Guide, and change management and alert support
are described in the Communications and Systems Management
Guide.

e TFor an SNA/X.25 line:

~ All SNA subsystems specifying primary for the line member data
link protocol, along with RWS, can share a line, but only one
configuration of each may be enabled at one time for the line.
Therefore, you cannot enable Peer primary and Peer secondary, or
APPC primary and APPC secondary, on the same line.

— The SNA 3270, SNA MSRJE, APPC secondary, and SNUF
subsystems, specifying secondary for the line member data link
protocol, can share a line, provided all the subsystems use the same
line member. In addition, a SNUF subsystem used for
Communications and Systems Management change management and
an APPC subsystem used for Communications and Systems
Management alert support can also share the line, provided they
use the same line member. SNA 3270 is described in the 3270 Device
Emulation Guide, MSRJE is described in the Multiple Session
Remote Job Entry Guide, and change management and alert support
are described in the Communications and Systems Management
Guide.

1-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

— The SNA 3270, SNA MSRJE, APPC, and SNUF subsystems
specifying negotiable for the line member data link protocol, may
run simultaneously on the same line. The System/36 may
communicate with multiple remote systems at the same time and on
the same line. At the remote end of the line, the remote systems can
be configured as primary, secondary, or negotiable. At the local end
of the line, the line member must be configured as negotiable.

o For an SNA/LAN communications line:

— The SNA 3270, SNA MSRJE, APPC, and SNUF can run
simultaneously on the same line. The System/36 can communicate
with multiple remote systems at the same time and on the same line.

— The RWS, PC Support/36, and APPC, 3270, SNUF, and MSRJE
subsystems can all share a line, but only one configuration of each
may be enabled at one time on the line. APPC, 3270, SNUF, and
MSRJE can share a line only if they use the same line member. On
Token-Ring Network, all the these subsystems use negotiable line
member protocol.

Chapter 1. Introduction to the Interactive Communications Feature 1-13

System/36 Storage and Session Considerations

Storage Requirements

If multiple subsystems of different types are enabled at the same time, the
response time on System/36 may increase, especially on a system that has
the minimum size for main storage. You may need to increase the size of
main storage, reduce the number of jobs running in the system, or have
fewer subsystems enabled at the same time.

Active Session Limits

A maximum of 360 sessions can be active concurrently for all the

subsystems enabled on System/36. This maximum includes two groups of
sessions that also have limits:

® A maximum of 260 user-acquired sessions (acquired by user programs
with SESSION statements) can be concurrently active.

e A maximum of 100 other sessions (remotely started and/or specially
acquired) can be concurrently active.

— Remotely started sessions are started by procedure start requests
sent by remote programs (or by 3741-type devices).

— Specially acquired sessions are started by BASIC programs
without using a SESSION statement. Sessions can be specially
acquired if the program is written in BASIC and if the session is to
be an interactive session.

1-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Enabling and Disabling Subsystems

Enabling a Subsystem

To run a System/36 program that uses SSP-ICF for communications, you
must enable (start) the particular subsystem configuration that you want to
use. (The subsystem configuration must have already been defined by using
the CNFIGICF procedure to specify the attributes of the subsystem, the
remote system, and the communications line to be used.) The name of the
subsystem configuration which consists of a line member and a subsystem
member, must be specified on the ENABLE procedure command, along with
the line number of the communications line to be used by the subsystem.
(An Intra subsystem does not use a communications line.)

You can enable a subsystem by having the ENABLE procedure command
automatically run after IPL (initial program load). See the System
Reference manual for a description of how to specify a procedure (named
#STRTUP2) to be run automatically after IPL.

When the ENABLE procedure command is used to start a subsystem, it
performs the following functions:

e Ensures compatibility between the subsystem configuration and the
communications hardware.

o Determines whether the requested communications line is available.

e Loads the subsystem support for that type of subsystem (such as BSCEL
or Peer) if it is not already active.

o Loads any other required tasks (BSC or SNA) if they are not already
active.

® Loads the subsystem configuration that contains the attributes of the
subsystem that is being enabled.

o Determines, for SNA subsystems, the remote locations with which
communications are to be established.

® Assigns storage for required data areas and buffers.

Chapter 1. Introduction to the Interactive Communications Feature 1-15

The ENABLE procedure command only prepares the local end of the line to
communicate with the remote location; the remote location must also be
prepared for communication. When both ends are prepared and a physical
connection is established, communication can begin. However, for an
APPC subsystem, a session group must be started before a session can be
established. This session may be started by the operator command
STRTGRP, or STRTGRP will run automatically provided a STOPGRP was
not previously issued.

A program that uses SSP-ICF for communications can be loaded before the
subsystem is enabled, but no sessions for that subsystem can be started
until it is enabled. After the subsystem has established communications,
programs can begin acquiring sessions using that subsystem. The
subsystem waits for an acquire operation to be issued by a System/36
program or for a procedure start request to be issued by a remote program.

If the line type set by the configuration record does not correspond to the
line type (identified by line number on the ENABLE procedure command)
to be used by the subsystem, a message is issued and the ENABLE
procedure command is terminated unless message option 0 is provided,
which allows you to continue and automatically use the line type specified
in the configuration record. You can use the SETCOMM or ALTERCOM
procedure to change the line type. These two procedures are described in
the manual Using System/36 Communications.

For Finance, Peer, SNUF, and APPC subsystems, when the ENABLE
procedure command is used to activate communications with a particular
location and the subsystem configuration is already active, the procedure
ensures that the subsystem configuration is on the specified line before
enabling the location. If the first ENABLE procedure command specifies a
location name, the functions required to enable the subsystem are
performed before communications is established with that remote location.

1-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Enabling Multiple Remote Locations (SNA Subsystems Only)

For Finance, Peer, SNUF, and APPC subsystems only, if a location name is
specified on the ENABLE procedure command, communication can be
established with that remote location. If there are multiple remote
locations defined in the configuration record for a subsystem, these remote
locations can be automatically enabled when the subsystem is enabled,
without having to specify the names of the remote locations.

If multiple remote locations were defined during configuration, the
ENABLE procedure, when it enables the subsystem, also establishes
communications with one, several, or all the remote locations specified in
the subsystem’s configuration. The number of remote locations with which
communications is activated when the subsystem 1is enabled depends on how
each remote location was defined during configuration, and whether a
remote location name was specified on the ENABLE procedure command.

e If only the subsystem configuration member name is specified on the
ENABLE command, the subsystem becomes active, and communications
with all the locations that were so indicated during configuration also
become active. That is, communications is activated with each location
for which a value of Y (yes) was specified on prompt 1 (active location
at enable) of display 30.0 during the CNFIGICF procedure.

e If a remote location name is also specified on the ENABLE command
that enables the subsystem, communication with only that remote
location is activated when the subsystem is enabled.

After the subsystem and some locations are active, other locations can be
activated individually each time that the ENABLE command is used to
specify a different remote location name. In this case, communications with
the specified remote location is all that is activated; the locations that are
already active are not affected.

The ENABLE procedure command also ensures that all remote location
names associated with a subsystem configuration are unique in the system.
If a subsystem is active and one of the location names matches a remote
location name in the configuration of the subsystem being enabled, a
message is issued indicating that the location you specified is already
active. The operator is given the option of continuing the ENABLE
procedure command and skipping that location or of canceling the entire
ENABLE procedure command.

After the subsystem is enabled, it is ready to handle sessions that are
started by System/36 programs or by procedure start requests that are
received from remote systems. It does not, however, accept procedure start
requests if prompt 3 (switch type at enable) on display 12.0 was specified as
inactive during the CNFIGICF procedure.

Chapter 1. Introduction to the Interactive Communications Feature 1-17

ENABLE Procedure Command

The syntax of the ENABLE procedure command is:

ENABLE

subsystem configuration name,|library name ’

NOSHOW

SHOW

r

line number},
current library

location name] ’ {line member name}

$7910044-0

subsystem configuration name: Specifies the subsystem member name of
the subsystem configuration to be enabled. This is the name that was
specified when the CNFIGICF procedure was used to configure the
subsystem. (For all subsystems except Intra, the subsystem configuration
consists of two members, a line member and a subsystem member. The
subsystem member contains the name of the line member to be used when
the subsystem configuration is enabled.) This parameter is required.

library name: Specifies the name of the library that contains the specified
subsystem configuration. (The line member, if any, and subsystem member
must be in the same library.) If no library name is specified, the current
library is assumed, and only that library is searched.

line number: Specifies the number of the communications line for which
this subsystem is to be enabled. Depending on the number of lines
available on your system, you can specify 1 through 10. Omit this
parameter when enabling an Intra subsystem. This parameter is required
for all other subsystem types.

SHOW or NOSHOW: Specifies whether subsystem configuration
parameters are to be displayed before the subsystem is enabled. If SHOW is
specified, the subsystem configuration parameters are displayed (not the
line member parameters); however, no changes can be made to the values
displayed while the ENABLE procedure command is being performed. If no
parameter is specified, NOSHOW is assumed.

location name: Specifies the name of the remote location with which the
enabled subsystem is to communicate. The location name is optional, and
can be specified only if the subsystem being enabled is a Finance, Peer,
SNUF, or APPC subsystem. This name must have been specified as a
remote location name during subsystem configuration. If the location name
is omitted when a Finance, Peer, SNUF, or APPC subsystem is enabled, a Y
(yes) must have been specified for prompt 1 on display 30.0 to activate
communications.

line member name: Specifies the name of the line member to be enabled.
This parameter is valid only for APPN.

1-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Disabling a Subsystem

To disable a subsystem, the DISABLE procedure command must be run.
When a subsystem is disabled, it no longer exists; only the definition of the
subsystem configuration still exists on the system. Finance, Peer, SNUF,
and APPC subsystems also allow communications with a specific remote
location to be terminated without the subsystem itself being disabled.

When the DISABLE procedure command is used to disable a subsystem, it
performs the following functions:

e If no sessions are active for the subsystem being disabled, the subsystem
is disabled, and the main storage being used is freed. Also, if no other
subsystem of this type (such as BSCEL or Peer) is active, the subsystem
support for this type of subsystem is terminated.

e If no sessions are active between the subsystem and the remote location
that is being disabled, communications with that remote location only 1s
terminated.

e If sessions are active for the subsystem or location specified on the
DISABLE procedure command, a message is issued to the operator who
issued the DISABLE procedure command. The operator can respond
with one of the following options:

0 Hold (pend) the disable request. New sessions cannot be started
for this subsystem or location and, when all sessions have been
completed, a normal disable occurs (see note).

1 Retry the disable request. Check again for any active sessions for
this subsystem or location.

2 Cancel active sessions and disable the subsystem or location.
Active sessions for this subsystem or location are immediately
terminated, and the DISABLE procedure command is performed.

3 Ignore the disable request. The DISABLE procedure command is
canceled and must be run again when the subsystem or location is
to be disabled.

e If a disable request is pending (waiting to be performed) or is in
progress, a message is issued to the operator. The message indicates
that the operator can specify either that the subsystem or location be
immediately disabled (option 2) or that this DISABLE procedure
command be canceled and the pending disable request be allowed to
complete normally (option 3).

Note: When a disable request is pending, each program performing a
successful input operation to the location(s) affected by the DISABLE
procedure command receives a major return code indicating that a
disable operation is pending.

For an APPC subsystem only, all session groups should be stopped before
disabling the subsystem. The STOPGRP procedure command is used to stop
a session group(s). See “STOPGRP Procedure” in Chapter 1 of the
SSP-ICF Base Subsystems Reference manual for more information.

Chapter 1. Introduction to the Interactive Communications Feature 1-19

Disabling Multiple Remote Locations (SNA Subsystems Only)

If an SNA subsystem is communicating with multiple locations, the
DISABLE procedure command can terminate communications with one
location or all the locations defined in the subsystem. When multiple
locations are active, the number of remote locations that are disabled
depends on whether a remote location name is specified on the DISABLE
command.

e If only the subsystem configuration member name is specified on the
DISABLE command, communications between the subsystem and all its
locations are terminated, and the subsystem is disabled. (However, the
communications line remains active if it is also being used by SNA
MSRJE or SNA 3270 device emulation.)

e If a location name is specified with the subsystem configuration member
name, communications between the subsystem and that location only is
terminated; all other locations that are active for that subsystem remain
active.

e For APPN only, if a line number is specified with the subsystem

configuration member name, communication between the subsystem and
all locations active on the line is terminated.

DISABLE Procedure Command

The syntax of the DISABLE procedure command is:

DISABLE subsystem configuration name, [location name} ' [line number

$7910045-0

subsystem configuration name: Specifies the subsystem member name of
the subsystem configuration to be disabled.

location name: Specifies the name of the remote location to be disabled.
Location name is optional, and it can be specified only if the subsystem
being disabled is a Finance, Peer, SNUF, or APPC subsystem. This name
must have been specified as a remote location name during subsystem
configuration. If the location name is omitted, all the remote locations that
have communications activated are disabled.

line number: Specifies the number of the line to be disabled. This
parameter is valid only for APPN.

1-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 2. Programming SSP-ICF with Assembler

Assembler Macroinstructions 2-3
$DTFW Macro 24
$DTFW Example 2-7
$DTFO Macro 2-8
$DTFO Example 2-10
$ALOC, $OPEN, and $CLOS Macros 2-10
$ALOC Macro 2-10
$OPEN Macro 2-11
$CLOS Macro 2-11
$WSIO Macro 2-12
$WSIO Examples 2-16
$WSIO Macro Parameters Summary Chart 2-16
$EVOK Macro 2-18
$EVOK Examples 2-20 .
Sending Data with an Evoke Operation 2-20
Assembler Operations Summary Chart 2-21
Return Codes 2-23
Interactive Communications Assembler Subroutines 2-23
Assembler Coding Examples 2-24

Chapter 2. Assembler Programming 2-1

The communications portion of an assembler program consists of preparing
data for transmission, using macroinstructions to define control blocks and
to perform operations, processing data that was received, and checking and
handling the return codes. This chapter briefly describes:

o The macroinstructions needed in assembler to execute the various
communications operations allowed in each subsystem. Only the
parameters needed for communications are described in this chapter.

e All the assembler communications operations and the subsystems for
which each operation is valid (shown in a summary chart).

o Return code considerations for assembler.
o Communications subroutine considerations for assembler.

The parameters you need to specify for the $DTFO, $ALOC, $OPEN, and
$CLOS macros are introduced in this chapter. Complete descriptions are
provided in the manual Programming with Assembler.

A complete description of all the parameters on the $EVOK macro and a
description of only the parameters that are used for interactive
communications on the $DTFW and $WSIO macros are also given in this
chapter. (Other parameters that are used for display station input and
output are described in the Programming with Assembler manual.) The
$DTFW and $WSIO macros define and modify fields in work station DTFs.
The complete format of the DTF, including field labels, is in the Program
Problem Diagnosis and Diagnostic Aids manual, SY21-0593.

If you are using the Intra or APPC subsystem, externally described field,
format, and file definitions (also called data definitions) can be used to send
data records. Data definitions, which describe data records and
communications functions, are defined separately from the application
program. The interactive data definition utility (IDDU) is used to create
data definitions. Refer to the manual Getting Started with Interactive Data
Definition Utility for more information.

The details about using IDDU with the Intra or APPC subsystem are
described in the appropriate subsystem reference manual.

2-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Assembler Macroinstructions

To perform communications operations in assembler language, use the
following macroinstructions:

Macro Function

$DTFW Defines an interactive communications
DTF (define the file)

$DTFO Defines the address offsets in a DTF

$ALOC, $OPEN, and $CLOS Allocate, open, and close the file used
by the program

$WSIO Performs a communications operation

$EVOK Defines a parameter list to be used
during an evoke operation to start a
remote program or procedure

All these macros except $EVOK can be used in both the communications
and noncommunications portions of assembler programs. The $EVOK
macro can only be used in programs that use an SSP-ICF or BSC 3270
subsystem to perform communications.

Chapter 2. Assembler Programming 2-3

$DTFW Macro

The $DTFW macro is used to generate an interactive communications DTF.
It defines the fields in the DTF. The syntax of the $DTFW macro is:

label} SDTFW UPSI-/00000000 ,CHAIN-X'FFFF'
8-bit UPSI DTF address
L

,RCAD-/X'0000" , INLEN- /0000
address input length

,OUTLEN-) 0000 , TERMID-/bb
output length session id

, TIDTAB-[0000
session id table address

,ENTLEN- 00 , TNUM-} 1
length number of entries

,HALTS—{N} l,lDDUCM—file name}
Y

Y

,DICTCM~-dictionary name} ,EXTEND-{N}

§$7910012-1

2-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

UPSI Parameter: Specifies a string of eight binary digits used to
condition the opening of this DTF. When the corresponding bits are on in
the switch (as specified in the SWITCH OCL statement), the DTF is opened.
For example, to test bits 0, 3, 5, and 7, you would code UPSI-10010101. If
this parameter is omitted, zeros are assumed, and the file is opened
unconditionally.

CHAIN Parameter: Specifies the address of the next DTF in the chain. If
this parameter is omitted, hex FFFF is assumed, and the chain is ended.

RCAD Parameter: Specifies the address of the leftmost byte of the logical
record buffer in the user program. If the buffer is also to be used for
display station input, the specified address must be on an 8-byte boundary.
The default is hex 0000.

INLEN Parameter: Specifies, in decimal, the maximum amount of input
data that the user program is prepared to receive. For communications
operations, the maximum is 4075 bytes for all subsystems except Intra, IMS,
and APPC, for which the maximum is 4096 bytes. If the INLEN parameter
is omitted, zeros are assumed, and no data can be received unless this field
1s modified by the $WSIO macro.

OUTLEN Parameter: Specifies, in decimal, the length of the data in the
buffer pointed to by the RCAD parameter. For communications operations,
the maximum is 4075 bytes for all subsystems except Intra, IMS, and APPC,
for which the maximum is 4096 bytes. This parameter is used only for
output operations; however, the DTF field it modifies is also used for input
operations. This parameter should be specified for all output operations,
especially when combined input/output operations are being performed. If
this parameter is omitted, zeros are assumed, and no data can be sent unless
this field is modified by the $WSIO macro.

TERMID Parameter: Specifies the identifier of the session in which this
program is to communicate.

e If the session is to be started by your program with the acquire
operation, the value specified in the TERMID parameter must be the
same as the value specified in the SYMID parameter of the SESSION
OCL statement.

o If the session is to be started by the remote system with a procedure
start request, the TERMID parameter can be omitted. If it is omitted,
blanks are assumed unless the identifier is specified in the $WSIO
macro. If this field $WSNAME) is blank when a remote program starts
the session and evokes this program, the system automatically assigns a
session identifier and puts it in this field.

Chapter 2. Assembler Programming 2-5

TIDTAB Parameter: Specifies the address of the session and work station
ID table. Programs that communicate with multiple display stations and
sessions should maintain a list of identifiers and associated status
indicators. By specifying the TIDTAB, TNUM, and ENTLEN parameters,
an area is reserved for this list. During an open operation, the identifier of
the session or display station that requested the program is placed in the
first 2 bytes of the first entry in the list. In addition, the first 2 bits of the
third byte are set.

For each WORKSTN and SESSION OCL statement, an entry is created that
has the SYMID parameter value in the first 2 bytes. The first bit of the
third byte is set on if REQD-YES was specified on the WORKSTN
statement; the second bit is set off. The table must be large enough to
contain each of these identifier entries and any additional entries up to the
MRTMAX parameter value specified on the ATTR OCL statement. After
the open operation has been completed, the user program must maintain the
list.

If an end of session operation is issued or if a return code of 80xx or 81xx is
received, zeros are placed in the first 2 bytes and the first 2 bits of the third
byte in the appropriate entry. The first 2 bytes and the first 2 bits of the
third byte must be set to zeros before the DTF is opened. If the TIDTAB
parameter is omitted, zeros are assumed, and no table is built.

ENTLEN Parameter: Specifies, in bytes, the decimal length (maximum of
255 bytes) of each entry in the session and work station ID table. If the
TIDTAB parameter was specified, the ENTLEN parameter must be specified
and should be 3 or greater (2 bytes for the session identifier and 1 byte for
status indicators).

TNUM Parameter: Specifies the number of entries (maximum of 255) in
the session and work station ID table. The TNUM parameter value should
be greater than or equal to the maximum number of concurrent active
sessions and attached display stations. If the Tii'TAB parameter was
specified, the TNUM parameter must also be specified. If the TNUM
parameter is omitted, 01 is assumed.

HALTS Parameter: Specifies whether a halt should be issued for
communications errors that result in return codes greater than 3401. If Y
(yves) is specified, a system message is issued that allows the operator the
option of ending the job or of returning control to the user program with an
error return code. If N (no) is specified, an informational message is
displayed at the system console, and the user program receives control with
the error return code. If the HALTS parameter is omitted, N is assumed.

IDDUCM Parameter: Specifies the IDDU file definition name. For more

information about file definitions, refer to the manual Getting Started with
Interactive Data Definition Utility.

2-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

$DTFW Example

DICTCM Parameter: Specifies the IDDU data dictionary name that
contains the IDDU file definition name specified above. For more
information about data dictionaries, refer to the manual Getting Started
with Interactive Data Definition Utility.

EXTEND Parameter: Extends the DTF.

See the manual Programming with Assembler for a description of the other
$DTFW macro parameters.

This example shows a DTF named ICDTF1 that is to be used for receiving
input.

ICDTF1 $DTFW CHAIN-PRTDTF,INLEN-256,HALTS-Y,RCAD-BUF1

This DTF is part of a DTF chain; the next DTF is a printer DTF (PRTDTF).
Any communications errors result in a system message that requires
operator intervention. The program'’s logical record buffer is located at the
address labeled BUF1. This DTF can be used in multiple sessions; the
TERMID parameter, which defaults to blanks in this example, can be
specified with different session identifiers in the $WSIO macro expansions
used to issue operations in different sessions.

The examples shown later in this chapter under “$WSIO Macro” use this
DTF.

Chapter 2. Assembler Programming 2-7

$DTFO Macro

The $DTFO macro is used to generate the DTF address offsets. It defines
the DTF labels, offsets, field contents, and field lengths for all devices and
access methods supported by System/36. Labels are generated only for the
items for which Y (yes) is specified in the $DTFO parameters.

To avoid duplicate labels, the $DTFO macro should be used only once in
each program. For a list of the fields that the $DTFO macro defines, see
the DTFs in the Program Problem Diagnosis and Diagnostic Aids manual,
SY21-0593.

Notes:

1. For communications operations, the WS and FIELD parameters must be
specified with Y (yes).

2. To generate the labels for the SSP-ICF return codes, ICRTC-Y must also
be specified.

3. The default value for all of the following parameters, except COMMON,
is N (no).

2-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

The syntax of the $DTFO macro is:

label $DTFO

DISK- {1\1} ,PRT- {u} , WS- {u}
Y Y Y

,ALL- {u} ,BSC- {N_} , ICRTC- {u}
Y Y Y

-

+FIELD-|N , COMMON=-} Y
Y N

$DTFO Example

$7910013-0

DISK Parameter: Specifies whether labels are to be generated for the
disk devices. '

PRT Parameter: Specifies whether labels are to be generated for the
printer.

WS Parameter: Specifies whether labels are to be generated for work
station devices and for SSP-ICF.

ALL Parameter: Specifies whether labels are to be generated for all
devices supported on System/36 and for SSP-ICF.

BSC Parameter: Specifies whether labels are to be generated for batch
BSC. Note that this parameter does not apply to SSP-ICF BSC subsystems.

ICRTC Parameter: Specifies whether labels are to be generated for
SSP-ICF return codes.

FIELD Parameter: Specifies whether to generate the labels that define
the contents of the DTF fields.

COMMON Parameter: Specifies whether to generate the labels defining
the field contents of the common portion of the DTF (that is, from the
beginning of the DTF to the end of the name field). If this parameter is
omitted, Y (yes) is assumed.

DTFO1 $DTFO WS-Y,ICRTC-Y,FIELD-Y

This example defines the DTF labels for work station devices and SSP-ICF
communications, SSP-ICF return codes, and the DTF fields.

Chapter 2. Assembler Programming 2-9

$ALOC, $OPEN, and $CLOS Macros

$ALOC Macro

The $ALOC, $OPEN, and $CLOS macros are needed to identify and control
a file that is to be used by a communications program. These three macros,
which perform the same functions as they do when used with
noncommunications programs, are described only briefly here. For a
complete description of each one, see the manual Programming with
Assembler. The DTF parameter is used on each of the macros and has the
following meaning:

DTF Parameter: Specifies the address of the leftmost byte of the first
DTF being allocated, opened, or closed. (When chaining is used, multiple
DTFs can be allocated, opened, or closed at the same time.) If no address is
specified, the DTF address is assumed to be in index register 2.

The $ALOC macro allocates the communications file (identified in the DTF)
to be used with the program. The $ALOC macro is supported for
compatibility only; it is not required for SSP-ICF communications. The
syntax of the $ALOC macro is:

{labe l] SALOC

DTF-address }

$7910014-0

2-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

$OPEN Macro

The $OPEN macro opens the communications file to be used for data input
and output. It formats the DTF for the file and prepares the program data
buffers to be used for data transfer. The syntax of the §OPEN macro is:

label

SOPEN [DTF—address

S§7910015-0

$CLOS Macro

The $CLOS macro closes the communications file and updates the file’s
status after the program has completed communications. The syntax of the

$CLOS macro is:

label SCLOS

DTF—address}

$7910016-0

Chapter 2. Assembler Programming 2-11

$WSIO Macro

The $WSIO macro is used to perform communications operations. The
macro specifies which operation is to be performed and, for certain
operations, it can pass data between the communicating programs. It can
also be used to modify certain fields in the DTF (specified by the $DTFW
macro) that are used when the specified operation is performed. The syntax
of the $WSIO macro is:

, INLEN-length ,OUTLEN-length

label} SWSIO DTF-address}

,RCAD-address ,TERMID-session id ,OPC-code

L

,OPMa—modifier} l,PL@-address

L

 Either OPM or OPMOD is valid as the keyword for this parameter.

$7910017-0

DTF Parameter: Specifies the address of the leftmost byte of the DTF.
This address is used as the label on a $DTFW macro. If this parameter is
omitted, the address of the DTF is assumed to be in index register 2.

INLEN Parameter: Specifies, in decimal, the maximum amount of input
data that the user program is prepared to receive. For programs using
SSP-ICF, the maximum is 4075 bytes for all subsystems except Intra, IMS,
and APPC, for which the maximum is 4096 bytes. If the INLEN parameter
is omitted, the DTF remains unchanged.

OUTLEN Parameter: Specifies, in decimal, the length of the data in the
buffer pointed to by the RCAD parameter. For programs using SSP-ICF,
the maximum is 4075 bytes for all subsystems except Intra, IMS, and APPC,
for which the maximum is 4096 bytes. If the OUTLEN parameter is omitted,
the field in the DTF remains unchanged. This parameter is used only for
output operations; however, the DTF field it modifies is also used for input
operations. This parameter should be specified for all output operations,
especially when combined input/output operations are being performed.
After a successful input operation, the actual length of the data returned is
put in this field.

2-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

RCAD Parameter: Specifies the address of the leftmost byte of the logical
record buffer in the user program; the buffer can be used for input, output,
or both input and output operations. If this parameter is omitted, the DTF
remains unchanged. If the buffer is also to be used for display station
input, the specified address must be on an 8-byte boundary. If this
parameter was not specified on the $DTFW macro, it should be specified in
the first §WSIO macro issued in the program to establish the record
address.

TERMID Parameter: Specifies the 2-character identifier of the session for
which this operation is intended. For an acquired session, this ID should
be the same as the SYMID parameter value on the corresponding SESSION
OCL statement. For a remotely started session, you should not specify the
TERMID parameter because you do not know the ID of the remotely started
session at the time you code this parameter.

The ID should be specified in a program that has multiple sessions and/or
display stations to assure that the operation is issued to the correct
location. If this parameter is omitted, the DTF remains unchanged.
Following each accept operation, SSP-ICF returns the identifier of the
session from which data was received in this field (§WSNAME).

OPC Parameter: Specifies the code of the communications input/output
operation desired. If this parameter is omitted, the DTF remains
unchanged. Refer to either the “Assembler Operations Summary Chart” or
the “§WSIO Macro Parameters Summary Chart” later in this chapter for a
complete list of the operation codes that can be specified in this parameter.

Chapter 2. Assembler Programming 2-13

When the get attributes (GTA) operation is specified for the OPC
parameter, it returns status information about a specific session. If the
session is active or a SESSION OCL statement exists for the identifier
(TERMID parameter) specified, the first 10 bytes of the record area (RCAD
parameter) are as follows:

Position Value Meaning
1 A Session not yet acquired by the program.
C Session is an acquired session.
R Session is a remotely started session.
2 N Input not invited for this session.
I Input invited for this session, but no input is
available.
(0} Invited input is available for this session.
3 through 10 Name Location name (specified during configuration
and on the SESSION OCL statement).

Note: If the identifier for the operation is not that of a session, the format of
the attribute information is different. See the manual Programming
with Assembler for the format of attribute data for display stations.

For the Intra and APPC subsystems only, when the get status (GST)
operation is specified for the OPC parameter, additional status information
is returned. The fields are as follows (starting with byte 11):

Position Value Meaning
11 I Intra subsystem is being used.
A APPC subsystem is being used.
12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.
13 M Mapped conversation.
B Basic conversation.

14 through 16 Blanks Reserved.

17 through 33 Name Own fully qualified LU name.

34 through 41 Name Partner LU name.
42 through 58 Name Partner fully qualified LU name.
59 through 66 Name Session group name.

67 through 74 Name User ID.

75 through 128 Blanks Reserved.

2-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

When the set timer (STM) operation is specified for the OPC parameter, it
specifies an interval of time to wait before issuing a timer-expired return code.
The first 6 bytes of the user record area specify the time interval in the format
hhmmss, where hh is hours, mm is minutes, and ss is seconds. A timer-expired
return code is returned on the first accept input operation following expiration of
the timer. The value in the TERMID parameter returned with the timer-expired
return code has no meaning. If the timer was set by a previous set timer
operation and it has not yet expired when another set timer operation is issued,
the old value is discarded and the new interval is set.

OPM Parameter: Specifies the operation modifier to be associated with this
operation. If this parameter is omitted, the DTF remains unchanged. The
following list shows the valid modifiers for sessions and their descriptions:

Modifier Description

CONFIRM Indicates that a confirm indication is to be sent with the data
associated with the evoke, put, get (in send state only), and
invite (in send state only) operations. This modifier is valid
only for the Intra and APPC subsystems.

FMH Indicates that a function management header is sent with the
data associated with the evoke operation. This modifier is
valid only for the SNUF, Finance, or Intra subsystems.

ZERO Resets the operation modifier to zeros.

PL(@ Parameter: Specifies, only when an evoke operation is specified by the OPC
parameter, the address of an associated evoke parameter list. The value for this
parameter is used as the label on the SEVOK macro. This parameter must be
specified on the first evoke operation, and remains unchanged if not specified
thereafter.

Chapter 2. Assembler Programming 2-15

$WSIO Examples

The following are three typical examples of the $WSIO macro. All three
examples use the DTF named ICDTF1 as it was defined in the SDTFW example
shown previously.

BEGIN $WSIO DTF-ICDTF1,TERMID-1S,0PC-ACQ,0PM-ZERO

This example issues an acquire operation to acquire the session 1S.

EVOK SWSIO DTF-ICDTFl,RCADFINBUFF,OPC-EVG,PL@-EVKLST

This example evokes a transaction in the acquired session and then waits for
input. The evoke parameter list begins at label EVKLST associated with the
$EVOK macro used in the program. The INLEN parameter is not specified
because it was specified on the $DTFW macro.

OTPT SWSIO DTF-ICDTF1l,0UTLEN-256,RCAD-OTBUFF,OPC-PUT
This example shows a put operation being issued in the session and transaction
that have been started. The length of the data is 256 bytes, and it is stored at the
label OTBUFF. -

$WSIO Macro Parameters Summary Chart
The following chart shows all the assembler communications operation codes and
all the parameters on the $WSIO macro. This chart also shows, for each
operation, whether the parameters are required, optional, or ignored. The
meanings of the letters as used in the parameter columns are:

R Parameter is required. (However, a required parameter does not have to
be specified if it was previously specified in the DTF and the value does
not have to be changed.)

O Parameter is optional.

I Parameter is ignored.

X ZERO must be specified in the OPM parameter.

2-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Operation
Code

$WSIO Macro Parameters

DTF OUTLEN INLEN RCAD TERMID OPM OPC PL@

ACI
ACQ
CAN
CANG
CANI
CNI
EOS
EVE
EVG
EVI
EVK
FAIL
GET
GST
GTA
INV
NRP
NRPG
NRPI
PEC
PEF
PEX
PEM
PFMG
PFMI
PTG
PTI
PUT
PCDG
RCDI
REL
STM

ejeojojojojejolojoojojohojojojojojojojojojojojojojojojalojoNaoNo)

SRL-L:

I
I

[

= =
N

—

Ré6

I
R
R7
R7
R7
R7
R7
R
R
R
R
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
R7
I

DA DA DA~

03,8
03,8
03,8
038

=cli=cl-- =< B--J---- [}~ - - - - v - =R -c [-- J- el - -l - B - - - eI -e =Sl - e

AR QOO DM MM NN D = —~ Q4

1If zero, no data accompanies the request, and the RCAD parameter value is ignored.

2Required only if the OUTLEN parameter value is not zero.

3For the Intra and SNUF subsystems only, OPM-FMH can be specified on all evoke operations.
FMH indicates that a function management header is in the record area pointed to by the RCAD

parameter. If OPM is not FMH, it must be ZERO.
4The record area must be at least 10 bytes long.

5Up to 8 bytes of negative response information can be sent. Therefore, the OUTLEN parameter
gives the length and, if it is not zero, the RCAD parameter gives the address of the leftmost byte
of the information to be sent.

6The RCAD parameter points to a 6-byte zoned decimal field that specifies the timer value being
set in the format hhmmss.

7If this operation is issued in a remotely started session, the session identifier must be in the field
$WSNAME before the $WSIO macro is executed. The TERMID parameter should not be specified
because you do not know the identifier of a remotely started session when you code your program.

8For the Intra and APPC subsystems only, CONFIRM can be specified on evoke, put, get (in send

state only), and invite (in send state only) operations.
9The record area must be at least 128 bytes long.

Chapter 2. Assembler Programming 2-17

$EVOK Macro

The SEVOK macro builds a parameter list to be associated with an evoke
operation. The label on this macro should be the label specified on the PL@
parameter of the $WSIO macro that evokes a program or procedure. The syntax
of the SEVOK macro is:

$EVOK |v-(DC
ALL
EQU

label

,PNAME—addressJ ,PWORD—address}

,UID—address}

,LNAME—address}

CONFIRM

, SYNCL~-] NONE ,CONVT~-] MAPPED
BASIC

$7910018-0

V Parameter: Specifies the type of expansion for the parameter list. If EQU
(equate) is specified, only the displacement labels are generated, and all other
parameters are ignored. If DC (define constant) is specified, only the parameter
list is generated. If ALL is specified, both the labels and the parameter list are
generated. If this parameter is omitted, DC is assumed. Within a program, only
one $EVOK macro can be used that includes equates; that is, only one V
parameter can specify ALL or EQU.

PNAME Parameter: Specifies the address of the first character of the name of
the remote program or procedure to be evoked. The name must be followed by
blanks up to the 8-character length of the field (that is, the PNAME value must
be left-adjusted). For the APPC subsystem only, the name can be up to 64
characters. (The first byte contains, in hexadecimal, the length of the name minus
one. The name immediately follows, beginning in the second byte.) If the
PNAME parameter is omitted, an address of hex FFFE is assumed, and no
program or procedure name is passed on the evoke operation.

2-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

PWORD Parameter: Specifies the address of the first character of the password.
The password must be followed by blanks up to the 8-character length of the
field. If this parameter is omitted, an address of hex FFFE is assumed, and no
password is passed on the evoke operation.

UID Parameter: Specifies the address of the first character of the user identifier.
The identifier must be followed by blanks up to the 8-character length of the field.
If this parameter is omitted, an address of hex FFFE is assumed, and no user
identifier is passed on the evoke operation.

LNAME Parameter: Specifies the address of the first character of the library
name associated with the program or procedure. The library name must be
followed by blanks up to the 8-character length of the field. If this parameter is
omitted, an address of hex FFFE is assumed, and no library name is passed on
the evoke operation.

SYNCL Parameter: Specifies, for the Intra and APPC subsystems only, the
synchronization level. If NONE is specified, a confirm is not allowed. If
CONFIRM is specified, a confirm is allowed. If this parameter is omitted, a
synchronization level of NONE is assumed.

CONYVT Parameter: Specifies, for the APPC subsystem only, the conversation

type. The conversation type can be mapped or basic. If this parameter is
omitted, the system assumes that conversations are mapped.

Chapter 2. Assembler Programming 2-19

$EVOK Examples

EVKLST

ICPROC

ICLIB

USERID

PASS

EVKL2

R3PROC

ICLIB

$EVOK V-ALL,PNAME-ICPROC,LNAME-ICLIB,
UID-USERID,PWORD-PASS

[]

[]

EQU *
DC CL8'ICFPROC '
EQU *
DC CL8'COMMLIB '
EQU *
DC CL8'JJOHNSON'
EQU *

DC CL4'J4AG'

This example shows an evoke parameter list that could be used by a SWSIO
macro that specifies the EVKLST label (PL@-EVKLST), such as the second
example shown earlier under “$WSIO Examples.” The name of the procedure to
be evoked (ICFPROC) is at the address labeled ICPROC, and the library name
(COMMLIB) is at the address labeled ICLIB. The user identifier (JJOHNSON)
is at the address labeled USERID, and the user’s password (J4AG) is at the
address labeled PASS.

SEVOK V-DC,PNAME-R3PROC,LNAME-ICLIB
[]
[

EQU *
DC CL8' COMMPROC'
EQU *
DC CL8'COMMLIBR'

This SEVOK example shows an evoke parameter list that is labeled EVKL2 and
is used by a $WSIO macro that specifies PL@-EVKL2. The procedure name
(COMMPROOC) is at the address labeled R3PROC, and the library name
(COMMLIBR) is at the address labeled ICLIB. Because the remote system does
not require security, the UID and PWORD parameters were not specified.

Sending Data with an Evoke Operation

Data sent with an evoke operation can be parameters to be used by the evoked
procedure, or it can be data to be used by the evoked program. When you are
creating a procedure that is to have parameters sent to it by an evoke operation,
answer no to the prompt PROGRAM DATA IN THE INCLUDE
STATEMENTS on the end of job menu (second display) of the SEU procedure,
or specify PDATA-NO on the COPY control statement for SMAINT. If you
want data to be sent to a program, answer yes to the SEU prompt for program
data, or specify PDATA-YES on the COPY control statement. Refer to Chapters
2 and 3 of the SSP-ICF Guide and Examples manual for more information.

2-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Assembler Operations Summary Chart

The following chart shows the valid assembler communications operations for
each subsystem. An x in a subsystem column indicates that the subsystem
supports the operation. A — indicates that the subsystem does not support the
operation.

Coding information (including any assembler-related dependencies) about each of
these operations is described in each of the subsystem reference manual for which
the operation is valid. For several of these operations, the coding information
varies by subsystem because of the different characteristics of each subsystem.
For a general description of how each operation is performed, see the SSP-ICF
Guide and Examples manual.

Chapter 2. Assembler Programming 2-21

Assembler SSP-ICF

Operation

Assembler

Communications Subsystems

Operation

Intra BSCEL CCP CICS IMS 3270! Finance Peer SNUF APPC

Accept input
Aquire

Cancel

Cancel invite
Cancel then get
Cancel then invite
End of session
Evoke

Evoke end of
transaction
Evoke then get
Evoke then invite
Fail

Get

Get attributes

Get status3

Invite

Negative response
Negative response
then get
Negative response
then invite

Put

Put end of file/chain
Put end of
transaction

Put then get

Put then invite
Put FMH

Put FMH then get
Put FMH then
invite

Release

Request to change
direction then get
Request to change
direction then invite
Set timer

ACI
ACQ
CAN
CNI
CANG
CANI
EOS
EVK
EVE

EVG
EVI
FAIL
GET
GTA
GST
INV
NRP
NRPG

NRPI

PUT
PEF/PEC
PEX

PTG
PTI
PFM
PFMG
PFMI

REL
RCDG

RCDI

STM

Mo oMM MM MK MM

Mo oMM MM K MM

t] »

[l

MoK oM MM

MM

X

F]

'

MM MM M

»

oMM

"

X

MM MM

>

X

M

X

X

X

oM oM MM

M

X

X

MoK oM MM L] M LT T TR B Mo [T T B B B]

[

X

[T MoM M

subsystems.

1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other

2Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.
3The record area must be at least 128 bytes long.

2-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Codes

Whenever an interactive communications operation is issued (using the $WSIO
macro), the next instruction should check the return code. The return code
indicates the result of the operation and/or the status of the session or transaction.

All the return codes that apply to a subsystem are described in detail in each
subsystem reference manual to which the codes apply. A brief description of all
return codes for all subsystems is contained in Appendix B. (General information
about handling return codes is contained in the SSP-ICF Guide and Examples
manual.)

Each return code contains two parts (1 byte each): a major code and a minor
code. The major code is located at offset SWSRTC in the DTF, and the minor
code is at offset SWSMINOR in the DTF. Usually, the communications program
can determine what action to take by checking only the major code. (The major
code identifies the overall condition of the session.) The program might check a
few minor codes for specific conditions that require special recovery action.

Interactive Communications Assembler Subroutines

Because of the additional capability and flexibility available in the assembler
interactive communications support, you might want to write assembler
subroutines for high-level language programs. The considerations and restrictions
for writing interactive communications subroutines must be carefully observed to
make this approach feasible. The recommended approach is to write a complete
program in assembler, and then use the Intra subsystem to communicate with the
high-level language program. If, however, you use an assembler subroutine, keep
the following considerations in mind:

e All input operations should be done in the same place, that is, either in the
subroutine or in the main program. If there is a work station file in the main
program, input should be done in the main program. Any input that is done
in the subroutine should include thorough error recovery; the subroutine must
also handle the effects of errors and exceptions on the main program.

e The subroutine cannot issue a release or end of session operation, unless the
DTF is in the subroutine instead of in the main program (meaning that the
main program has no work station file).

e The DTF must reside in a portion of the program that is not overlaid while
the program is running.

e If the subroutine and the main program both have a work station file, the

format member name ($WSFMBR) in the subroutine DTF must be set to
blanks before the DTF is opened.

Chapter 2. Assembler Programming 2-23

- 'Assembler Coding Examples

For a complete example of an assembler communications program, see “Writing
an Assembler Program to Use Intra” in Chapter 6 of the SSP-ICF Guide and
Examples manual. The assembler example described in the Intra chapter can also
be used by the BSCEL, Peer, and APPC subsystems.

2-24 SSPICF Programming for Subsystems and Intra Subsystem Reference

Chapter 3. Programming SSP-ICF with BASIC

BASIC Statements Used for Communications 3-3
OPEN Statement (Acquiring Sessions) 3-4
OPEN Statement Examples 3-6
Example of an Acquired Session 3-6
Example of a Remotely Started Session 3-6
Example of Acquired Sessions with No SESSION Statements 3-6
READ Statement (Receiving Data) 3-8
READ Statement Examples 3-9
Notes about Receiving Data 3-10
WAITIO Statement (Waiting for Input) 3-11
WAITIO Statement Example 3-11
WRITE Statement (Performing Operations*within a Session) 3-12
WRITE Statement Operations 3-13
Starting Remote Programs (Evoke Operations) 3-14
IDDU Evoke Operation Considerations 3-14
Sending Program Data with an Evoke Operation 3-16
Procedure for Sending Data with an Evoke Operation 3-16
Sending Data (Put Operations) 3-18
Ending Communications Transactions (End of Transaction
Operations) 3-19
Ending Sessions (End of Session Operation) 3-20
Additional WRITE Statement Operations 3-20
Request to Change Direction Operation 3-20
SSP-ICF and Work Station Timer Operations 3-21
$$TIMER Operation 3-21
$$TIMER Operation Example 3-21
TIMER Intrinsic Function 3-21
TIMER Intrinsic Function Example 3-21
Negative Response Operations 3-22
Cancel Operations 3-23
Fail Operation 3-23
CLOSE Statement (Closing Files for Sessions) 3-24
ATTRIBUTES$ Intrinsic Function (Getting Session Attributes) 3-25
BASIC Operations Summary Chart 3-27
Checking Return Codes in BASIC 3-28
ERR Code Values 3-29
RETCODES$ Values 3-30
Notes About Writing BASIC Programs for SSP-ICF 3-31
BASIC Coding Examples 3-31

Chapter 3. BASIC Programming 3-1

This chapter briefly describes the BASIC language statements and operations that
you use when you write BASIC programs that are to communicate with remote
programs via the Interactive Communications Feature (SSP-ICF). To use a
BASIC program to communicate with SSP-ICF, do the following:

o Configure and enable the subsystem. (These procedures are described in the
appropriate subsystem reference manual.)

e Begin a communications session by opening an SSP-ICF file.

e Begin a program or procedure at the remote system and start a
communications transaction. (If you are using the Intra subsystem, the
program or procedure being started is in the same System/36.)

e Send or receive data.

® Check return codes.

e End the communications transaction.
e End the communications session.

o Disable the subsystem.

The BASIC operations you need for interactive communications are introduced in
this chapter. The details about each operation —its function, syntax,
programming considerations, and coding example (for some operations) —are
described in each subsystem reference manual for which the operation is valid.

General (conceptual) information about these operations and diagrams showing
how these operations work are given in Chapter 3 of the SSP-ICF Guide and
Examples manual.

The operations you use in the communications portion of your program are
similar to work station operations. In the noncommunications portion of your
program, you can use all of the noncommunications operations (such as LET,
USE, and PRINT) that you normally use to process the data that is sent or
received between your program and the remote program. Therefore, the
noncommunications operations are not described in this manual.

If you are using the Intra or APPC subsystem, externally described fields, format,
and file definitions (also called data definitions) can be used to send data records.
Data definitions, which describe data records and communications functions, are
defined separately from the application program. The interactive data definition
utility (IDDU) is used to create data definitions. Refer to the manual Getting
Started with Interactive Data Definition Utility for more information.

The details about using IDDU with the Intra or APPC subsystem are described in
the appropriate subsystem chapter.

3-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASIC Statements Used for Communications

In BASIC, the communications operations are performed primarily by the
statements shown in the following list. Only these statements are described in this
chapter, and only the communications-related information about each one is
given. The manual Programming with BASIC contains additional information
about these statements and about all the other statements that can be used in a
communications program.

Statement Function

OPEN Acquires (starts) a session and opens a communications file.
READ Receives data from a remote program (a get operation is
performed).

WAITIO Waits for data from a remote program (an accept input operation is
performed). This statement is used with the READ statement.

WRITE Performs many of the SSP-ICF communications operations within a
session.

CLOSE Closes the file used in the session and releases the session if it is still
active.

Also included in this chapter is a description of the ATTRIBUTES intrinsic
function, which returns status information about the session.

Chapter 3. BASIC Programming 3-3

OPEN Statement (Acquiring Sessions)

To start (acquire) a session, use the OPEN statement to open the SSP-ICF file
you are using for this session. Each OPEN statement starts one session between
your program and the remote system. If your program is evoked by a (remote)
procedure start request, no session identifier or location name is needed on the
OPEN statement.

The syntax of the OPEN statement is:

OPEN #file-ref: " /SESSION\||,ID=session ID
WS . ID=current WSID$S J

,LOC=location name

,GROUP=session group name}

,RECL=record length
,DESCR=IDDU format file name} "

EXIT line reference
IOERR line reference

OUTIN , INTERNAL , SEQUENTIAL

$§7910018-1

SESSION or WS Parameter: SESSION specifies that this OPEN statement
should be used for an SSP-ICF session only. WS specifies that this OPEN
statement can be used for either a work station or an SSP-ICF session.

e If your program is to acquire the session, you must specify either the ID
parameter (for work station or SSP-ICF sessions) or the LOC parameter (for
SSP-ICF sessions only). These parameters determine whether the file being
opened is for a work station session or an SSP-ICF session.

e If the session is to be started remotely, do not specify the ID or LOC

parameter; the identifier of a remotely started session is returned in the
WSIDS intrinsic function when the open operation has been completed.

3-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ID Parameter: If your program is to acquire the session and you need to use a
SESSION OCL statement, enter the 2-character identifier for the session. The
first character must be numeric (0 through 9), and the second must be alphabetic
(A through Z, $, #, or @). The identifier specified in the ID parameter must be
the same as the identifier specified in the SYMID parameter of the SESSION
statement.

Note: You need to specify a SESSION statement for a BASIC program only
when: (1) for some subsystems, you want to specify any parameters on
the SESSION statement other than the LOCATION or SYMID
parameters, or (2) for the Finance subsystem, you want to acquire a
session with a 3601 or 4701 controller.

LOC Parameter: If your program is to acquire the session and you do not need
to specify a SESSION statement, enter the name of the remote location that is to
communicate with your program. The name must be the same as the location
name that was specified during configuration of the subsystem being used for this
session.

RECL Parameter: Enter the length of the longest record (or system message) you
expect to send or receive. A system message for the Intra subsystem, for example,
is 75 bytes long.

GROUP Parameter: Specifies, for the APPC subsystem only, the session group
name. This parameter is valid only if the LOC parameter is also specified. Enter
the name of a session group. If a blank session group name is desired, enter
*BLANK. If the group parameter is not specified and the LOC parameter is
specified, the default session group name specified in the session group
configuration is used.

DESCR Parameter: Specifies, if you are using externally described data
definitions, the name of the file definition (also called data definition), which
describes data records and communications functions. File definitions must be
defined in the current data dictionary.

See the manual Programming with BASIC for a description of the other OPEN
statement parameters.

Note: If the OPEN statement is being used for an SSP-ICF session and you
enter the NAME, LIBR, or KEYS parameters, they are ignored.

Chapter 3. BASIC Programming 3-

OPEN Statement Examples

Example of an Acquired Session

020 OPEN #1: "SESSION,ID=1S,RECL=255" IOERR ICFERR

An example SESSION statement for this OPEN statement is:

// SESSION LOCATION-INTRA,SYMID-1S,BATCH-YES

Example of a Remotely Started Session

For a remotely started session, no SESSION statement is required because the
session is started by a procedure start request. Once a System/36 program has
been evoked in the remotely started session, however, it can start other sessions
using the acquire operation. In this case, a SESSION statement may be required
for each additional session that the evoked program starts.

020 OPEN #1: "SESSION,RECL=255" IOERR ICFERR

Example of Acquired Sessions with No SESSION Statements

In this example, two OPEN statements are used to acquire two sessions with the
remote location named INTRA. No SESSION statement is required.

OPEN #1: "SESSION,LOC=INTRA,RECL=255" IOERR ICFERR

OPEN #2: "SESSION,LOC=INTRA,RECL=255" IOERR ICFERR

3-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

This page is intentionally left blank.

Chapter 3. BASIC Programming 3-7

READ Statement (Receiving Data)

To receive a data record, use the READ statement to get the data record from an
SSP-ICF session. The type of operation performed depends on whether a

available from any work station or SSP-ICF session. (If your program is
communicating with only one session, you do not need to use the WAITIO
statement.) If no WAITIO statement precedes the READ statement, a get
operation is performed; the program waits until data is available from a specific
work station or SSP-ICF session—the one that has the same file reference number
entered in the OPEN statement. The WAITIO statement also sets the intrinsic
function FILENUM to the file reference number of the communications session
from which data is to be read.

The syntax of the READ statement is:

READ #file-ref ,USING line reference :
character-expression

MAT array name , JMAT array name
variable variable

EXIT line reference

or

CONV line reference

[,EOF line reference]

,IOERR line reference]

,SOFLOW line reference]

$7910020-1

3-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

READ Statement Examples

The following READ and WAITIO statements, for example, read one data record

into the variable DATAS.

030 WAITIO IOERR ICFERR
040 READ #FILENUM, USING 50: DATA$ IOERR ICFERR
050 FORM V 255

e The WAITIO statement at line 30 causes the program to wait for data to be
received from any work station or SSP-ICF session. When data is received,
the WAITIO statement sets the intrinsic function FILENUM to the file
reference number of the file from which the data was received. The READ
statement then gets the data received by the WAITIO statement. Without the
WALITIO statement at line 30, the READ statement would cause the program
to wait until data was available from the work station or SSP-ICF session
assigned to the file reference number (#FILENUM) specified in the READ
statement, then the program would read the data into DATAS.

e The intrinsic function FILENUM contains the file reference number of the
file (for this session) from which the data is to be read and the V parameter is
used on the FORM statement if you do not know the length of the data
record received. Up to 255 characters are read into the variable DATAS.

The following statements read a system message, which can be up to 80
characters, into the variable MESSAGES:

A

—
IF ERR=70 THEN&
&READ #1, USING "FORM V 80": MESSAGES IOERR ICFERR
(it

o

$7910058-0

I} 1f a system message is received (ERR =70), the message is read into
MESSAGES.

B} Up to 80 characters of the system message are read.

Chapter 3. BASIC Programming 3-9

Notes about Receiving Data

1. For SSP-ICF input operations, the maximum amount of data that can be
received by a program is 4075 bytes for all subsystems except Intra, IMS, and
APPC, for which the maximum is 4096 bytes.

2. You should use the EOF clause with the READ statement to determine when
an end of transaction indication is received from the remote system.
However, if data is also received with the end of transaction indication,
BASIC does not branch to the EOF reference until the next operation for tha:
file is performed.

If the next operation is to be an evoke operation, BASIC must branch to the
evoke operation using the EOF clause. For example:

100 READ #3, USING "FORM C 255": DATAS IOERR ICFERR, &
&EOF EVOKE
[

°
200 GOTO 100
210 EVOKE:

When statement 100 causes the last record to be read, the data is placed in
DATAS and the program continues. When the program returns to statement
100 and performs another read operation, it detects the end of file condition
and branches to statement 210, which performs the evoke operation.

(In the situation just described, note that although BASIC, on the first read
operation, sets the RETCODES intrinsic function to indicate the end of the
transaction, the ERR intrinsic function value is not changed until the second
read operation is performed.)

3. You can use the STOPS intrinsic function to test for a major return code of
02 (stop system or disable subsystem request pending). If STOPS$ equals Y, a
02 major return code has been returned to your program indicating that a
system shutdown has been requested; if not, STOP$ equals N.

4. The REREAD statement can be used to get more data from the last record
read from the file. An error occurs for a REREAD statement (and the
program ends) if the last input/output operation to the file (that is, the
session) was not a successful READ or REREAD operation.

5. The data passed with the evoke end of transaction operation can be read by
the first read operation in the evoked BASIC program. The record length
entered in the OPEN statement must be at least 1 larger than the length of
the procedure parameters plus the largest size of of the data sent or received.
Using a WAITIO statement before a READ or WRITE statement is
acceptable but not necessary.

3-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

WAITIO Statement (Waiting for Input)

If your program is to interact with multiple sessions concurrently, the WAITIO
statement should be used. This statement causes your program to wait until one
of the sessions sends input to your program or until it receives an error indication.
When the WAITIO statement has completed its operation, the intrinsic function
FILENUM is set to the reference number of the file that completed the wait
operation. Your program can then use a READ statement to read from that file
and get a data record.

The WAITIO statement can also be used to wait for a timer operation to be
completed and to determine the action to be taken next. For examples of how
the WAITIO statement can be used with either the $$TIMER operation or the
TIMER intrinsic function, see “SSP-ICF and Work Station Timer Operations™
later in this chapter.

The syntax of the WAITIO statement is:

WAITIO

EXIT line reference
IOERR line reference

$7910021-0

WAITIO Statement Example

060 WAITIO

The following is an example of a WAITIO statement:

IOERR ICFERR

Note: If an error condition occurs, the intrinsic function FILENUM is set to
the reference number of the file that caused the error, and the program
branches to the statement labeled ICFERR (not shown). The
RETCODES$, STOP3, WSID$, ERR, and FILENUM intrinsic
function values can be set by the WAITIO statement.

Chapter 3. BASIC Programming 3-11

WRITE Statement (Performing Operations within a
Session)
Use the WRITE statement to perform many of the communications operations

between two programs once a session has been started. The type of operation is
determined by the value specified for the FORMAT parameter (which is described

below).
,///
The syntax of the WRITE statement is: '
WRITE #file-ref ,USING line reference
character-expr
,FORMAT [character-expr
SSSENDNI
,INDIC character-expr
MAT array name , JMAT array name
expression expression
- . -
EXIT line reference
or
CONV line reference} ,EOF line reference}
,IOERR line reference ,SOFLOW line reference}
. /
§7910022-1

3-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

FORMAT Parameter: Identifies the SSP-ICF operation that is to be performed.
See “BASIC Operations Summary Chart” later in this chapter for a complete list
of the operations you can specify in the FORMAT parameter. Any of the
SSP-ICF operations beginning with $$ can be used. If the FORMAT parameter
is not specified, a put with no invite operation is performed by the WRITE
statement.

If you are using IDDU, this parameter identifies the IDDU format definition that
externally describes the SSP-ICF operation that is to be performed. For more
information about using IDDU with BASIC, refer to the manual Programming
with BASIC.

INDIC Parameter: If you are using IDDU, selects the SSP-ICF operation that is
to be performed. For more information about using IDDU with BASIC, refer to
the manual Programming with BASIC.

See the manual Programming with BASIC for a description of other WRITE
statement parameters.

WRITE Statement Operations

The following are the primary communications operations that you can specify on
the WRITE statement.

o Evoke operations: To start a remote program
e Put operations: To send data to the remote program
e FEnd of transaction operations: To end a communications transaction

e End of session operation: To end the session in which the remote program
was started

These operations are described in the following pages; other types of operations
that can also be specified by the WRITE statement are described under
“Additional WRITE Statement Operations.” An example of each type of
operation that can be specified in the FORMAT parameter is also provided.

Chapter 3. BASIC Programming 3-13

Starting Remote Programs (Evoke Operations)

To start a remote program or procedure and to start a communications
transaction, specify an evoke operation in the FORMAT parameter of the
WRITE statement ($$EVOK, $SEVOKNI, or $SEVOKET). See “WRITE
Statement (Performing Operations within a Session)” earlier in this chapter for the
syntax of the WRITE statement.

With an evoke operation, you must send an evoke parameter list. If you specify
the evoke operation in the FORMAT parameter of the WRITE statement, the
parameters (fields) in that list must be specified in the following order:

Positions Field Description

1 through 8 The name of the program or procedure to be evoked
(left-adjusted).

9 through 16 The password you use to sign on the remote system
(left-adjusted).

17 through 24 The user identifier you use to sign on the remote

system (left-adjusted).

25 through 32 The name of the remote system library that contains
the program or procedure to be evoked (left-adjusted).

33 through xxxx User data, positional parameters, or keyword parameters.
(Leading blanks are ignored.)

If a field is not used, enter the correct number of blanks for the unused field.
IDDU Evoke Operation Considerations:

If you are using IDDU, you can select one of the following IDDU functions to
perform an evoke operation: evoke process (EVOKE keyword), evoke process
and send detach (EVOKE and DETACH keywords), or evoke process and invite
(EVOKE and INVITE keywords).

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:
1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

3-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

The following example starts a procedure at a remote system.

AL A A

r AXA R A nY
030 WRITE #1,USING 40,FORMAT "S$$EVOK": "BASICR",PASSS$,USERIDS,&
&"#LIBRARY", " ICFPROG,USERLIB" IOERR ICFERR,

v

a8 (4]

040 FORM 4*C 8,C 15
(NG A N

$7910046-0

1 | Write data to interactive communications file #1 using the FORM
statement at line 40.

2] Use an evoke operation ($$EVOK) to start the procedure, which is
identified in the evoke parameter list. In this example, the evoke
parameter list to be sent to the remote system contains:

B Four positional procedure parameters to be used by the remote
system to start a procedure.

BASICR: The name of the procedure to be evoked (sent in
positions 1 through 8)

PASS$: The name of the variable containing the password
(positions 9 through 16)

USERIDS: The intrinsic function containing the user identifier
(positions 17 through 24)

#LIBRARY: The name of the library on the remote system in
which the BASICR procedure is located (positions 25
through 32)

(4] Two positional parameters to be passed to the BASICR
procedure (sent in positions 33 through 47). The BASICR
procedure is to call the program ICFPROG, which is in the user
library USERLIB.

5] Send four fields of 8 characters each (the evoke parameters in positions 1
through 32).

[6] Send 15 bytes of positional parameters (those in positions 33
through 47).

If an error occurs during the WRITE operation, the program goes to the
statement labeled ICFERR (not shown).

Chapter 3. BASIC Programming 3-15

Sending Program Data with an Evoke Operation

Data sent with an evoke operation can be parameters to be used by the evoked
procedure, as shown in the previous example, or it can be data to be used by the
evoked program. When you are creating a procedure that is to have parameters
sent to it by an evoke operation, answer no to the prompt PROGRAM-DATA IN
THE INCLUDE STATEMENTS on the end of job menu (second display) of the
SEU procedure, or specify PDATA-NO on the COPY control statement for
SMAINT. If you want data to be sent to a program, answer yes to the SEU
prompt for program data, or specify PDATA-YES on the COPY control
statement. Refer to Chapters 2 and 3 of the SSP-ICF Guide and Examples
manual for more information.

Note: You cannot use the BASICR or BASICP procedure as is if you send
program data with the evoke operation, because the BASICR or
BASICP procedure expects procedural parameters. The following is a
procedure that you can use (with the BASICR or BASICP procedure)
to send program data with an evoke operation.

Procedure for Sending Data with an Evoke Operation

//
//
//
//
//
//
//
//
//
//
//
//
//

The following procedure uses the BASICR procedure to send data to a program.

MEMBER PROGRAM1-#BL#M1, PROGRAM2 -#BL#M2, LIBRARY-#BLLIB
LIBRARY NAME-user library [}

REGION SIZE-BASIC region size_—_—_a

LOCAL AREA-SYSTEM,OFFSET-1,BLANK-40

LOCAL AREA-SYSTEM,OFFSET-1,DATA-'BASICR'

LOCAL AREA-SYSTEM,OFFSET-9,DATA-'member name'—)
LOCAL AREA-SYSTEM,OFFSET-17, 'user library name '___n
LOCAL AREA-SYSTEM, OFFSET-25,DATA-'status '_—___E
AREA-SYSTEM, OFFSET-26,DATA~'data dictionary name' [
LOCAL~-AREA~-USER

LOAD #BLSIC, #BLLIB

INCLUDE procedure name— &
RUN

$7910038-1

3-16. SSP-ICF Programming for Subsystems and Intra Subsystem Reference

You must supply the following information:

1] Enter the name of the current user library.

2] Enter the BASIC region size (28K to 64K bytes).

3] Enter the name of your BASIC program.

(4] Enter the name of the library that contains your BASIC program.

B Enter Y (yes) if you want status information printed. Enter N (no) if you

do not want status information printed.

If you are using IDDU, enter the name of your IDDU data dictionary.

=

Enter the procedure name to be included. If there is no procedure name
to be included, omit this statement.

This procedure example can also be used to send data to a procedure written in
BASIC instead of to a program. Make the following changes to the example so
that it uses the BASICP procedure:

® In the second LOCAL statement, change BASICR to BASICP.

® In the third LOCAL statement, specify a procedure member name instead of
a program member name.

e In the LOAD statement, change #BLSIC to #BLPIC.

Chapter 3. BASIC Programming 3-17

Sending Data (Put Operations)

To send a data record to a remote system or program, specify a put operation in
the FORMAT parameter of the WRITE statement ($$SENDNI, $$SENDE,
$SSENDET, $$SENDNF, or $3SENDFM). If you are using IDDU functions,
specify a put operation in a user-defined field, select the send detach, or specify a
put operation in a user-defined field and select the invite. See “WRITE Statement
(Performing Operations within a Session)” earlier in this chapter for the syntax of
the WRITE statement.

A maximum of 4075 bytes can be sent by a put operation for all subsystems
except Intra, IMS, and APPC, for which the maximum is 4096 bytes.

The following example sends one data record:

030 WRITE #1, USING 40, FORMAT "S$$SEND": DATAS$ IOERR ICFERR
040 FORM C 255

3-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Ending Communications Transactions (End of Transaction Operations)

You can end the transaction by specifying the put end of transaction operation or
the evoke end of transaction operation in the FORMAT parameter of the WRITE
statement ($$SENDET for the put end of transaction or $$EVOKET for the
evoke end of transaction). If you are using IDDU functions, select the send
detach for the put end of transaction or the evoke process and send detach for the
evoke end of transaction.

e If your program has finished sending data, a put end of transaction in the
FORMAT parameter tells the remote system that you have no more data to
send and that you do not expect to receive any data.

e If your program is receiving data, check for an end of transaction return code
received from the subsystem to determine when the remote system has
finished sending. (See “READ Statement (Receiving Data)” earlier in this
chapter.)

e If you want to start a program or procedure at the remote system and
immediately end the transaction, an evoke put end of transaction in the
FORMAT parameter indicates that your program does not expect to receive
any data. For example, you can send data to a remote program and then
start a different program on the remote system to use that data:

— Your program starts program A at the remote system and sends data to
program A.

— Program A stores the data on disk.

— When your program has finished sending data to program A, your
program uses the put end of transaction operation to end program A.

— Your program then uses the evoke end of transaction operation to start
program B at the remote system.

— Program B processes the data that program A stored on disk previously.

Once the transaction has ended, you can end the session or start another
transaction with this or another session.

The following statement sends a put end of transaction operation and, therefore,
tells the remote system that this is the end of this communications transaction:

030 WRITE #1, FORMAT "SSSSENDET": IOERR ICFERR

Chapter 3. BASIC Programming 3-19

Ending Sessions (End of Session Operation)

To end a session with a remote system, either use the CLOSE statement, or use
the WRITE statement (to specify the $$EOS operation) followed by the CLOSE
statement. (The CLOSE statement is described later in this chapter.) If you use
the WRITE statement, specify $$EOS in the FORMAT parameter. For example:

090 WRITE #1, FORMAT "S$$EOS": IOERR ICFERR

Additional WRITE Statement Operations

The following are additional interactive communications operations you can
specify on the WRITE statement:

e Request to change direction operation
® Set timer operation

o Negative response operations (used only with the Intra and SNUF
subsystems)

® Cancel operations, for canceling a group (chain) of data records (used only
with the Intra and SNUF subsystems), or for canceling any valid invite
operation for which no input has yet been received (used only with the Intra
and BSCEL subsystems)

e Fail operation (used only with the Intra, Peer, and APPC subsystems)

Request to Change Direction Operation

To request a change in the direction of transmission, specify a request to change
direction operation in the FORMAT parameter of the WRITE statement
($$RCD). If you are using IDDU functions, select the send request to write and
invite. After you issue the S$RCD operation, your program must continue to
receive data until it receives a return code indicating that the remote program is
ready to begin receiving data. No additional parameters or data is associated
with the $$RCD operation.

The following WRITE statement shows how to request that the remote system
/ stop sending so that your program can send data:

030 WRITE #1,FORMAT "$SRCD": IOERR ICFERR

3-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

SSP-ICF and Work Station Timer Operations

hhmmss

030
040
050
060

910

030
040

910

A$="013000"

To use the SSP-ICF and work station timer, use either the $$TIMER operation
on the WRITE statement or the TIMER intrinsic function to set the timer. With
either type of operation, use the WAITIO statement to determine when the time
has ended and to determine the action to take next based on the return code
received.

The FORMAT parameter in the WRITE statement is used to specify the
$$STIMER operation. Return code 0310 (RETCODES) or BASIC error code 73
(ERR) is returned when the time has ended.

Note: If you use the $$TIMER operation, a work station or session must be
attached to your program before you can set the time. If you use the
TIMER intrinsic function, no work station or session need be
attached.

$STIMER Operation: To set the timer, use the $$TIMER operation, in the
format:

where hh is hours, mm is minutes, and ss is seconds.

$STIMER Operation Example:

WRITE #1,USING 50,FORMAT "$$TIMER": A$ IOERR ICFERR

FORM C 6

WAITIO IOERR TIME

TIME: IF ERR<>73 THEN GOTO ICFERR

TIMER Intrinsic Function: To set the timer, use the TIMER intrinsic
function in the format:

TIMER(time$)
where time$ is the time in the format hhmmss; hh is hours, mm is minutes, and ss
is seconds. If the timer function is successful, TIMER returns a 0; if the timer

function is not successful, TIMER returns a 1.

TIMER Intrinsic Function Example:

TIME=TIMER("013000")
IF TIME=1 THEN PRINT "TIMER CANNOT BE SET"&

S&ELSE WAITIO IOERR TIME1

TIMEl: IF ERR<>73 THEN GOTO ICFERR

Chapter 3. BASIC Programming 3-21

Negative Response Operations

To tell the remote system or program that your program found something wrong
with the data it received (that is, to send a negative response), use the FORMAT
parameter in the WRITE statement to specify one of the negative response
operations (S$NRSP or $$NRSPNI). These operations can only be used with the
Intra and SNUF subsystems.

Sense data can also be sent with the negative response. The following is the
format of the sense data:

Positions Description

1 through 8 The sense data sent with the negative response. The sense
data must begin with 10xx, 08xx, or 0000. For a description
of the first 4 characters, see the Systems Network
Architecture Reference Summary. The last four positions
are user-defined.

For example, the following statements send a negative response operation that
includes the sense data 08008000:

020 SENSE$="08008000"

030 WRITE #1,USING 40,FORMAT "SSNRSPNI": SENSES$ IOERR ICFERR
040 FORM C 8

3-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Cancel Operations

There are two types of cancel operations: those that cancel a group of records
that has just been sent (used by the SNUF and Intra subsystems only), and the
cancel invite operation, which cancels an invite operation for which no input has
yet been received (used by the BSCEL and Intra subsystems only).

e For the SNUF and Intra subsystems only, to cancel a group of records that
has just been sent, use the FORMAT parameter in the WRITE statement to
specify one of the cancel operations ($$CANL or $$CANLNI). The cancel
operations have no additional parameters or data associated with them.

For example, the following WRITE statement cancels the current chain of
records:

030 WRITE #1,FORMAT "$$CANL": IOERR ICFERR

e For the BSCEL and Intra subsystems only, to cancel any valid invite
operation for which no input has yet been received from any invited session,
use the FORMAT parameter in the WRITE statement to specify the cancel
invite operation ($$CNLINYV). The cancel invite operation has no additional
parameters or data associated with it. For restrictions on the use of this
operation by the BSCEL subsystem, see “Cancel Invite Operation” in Chapter
2 of the SSP-ICF Base Subsystems Reference manual.

For example, the following WRITE statement cancels an invite operation that
no session has yet responded to:

030 WRITE #1,FORMAT "SCNLINV": IOERR ICFERR

Fail Operation

To tell the remote system that your program detected an abnormal condition (for
example, it received incorrect data), specify a fail operation in the FORMAT
parameter of the WRITE statement ($$FAIL). If you are using IDDU functions,
select the send fail. The fail operation has no additional parameters associated
with it, and no data can be sent with the fail operation. The fail operation can be
used only with the Intra, Peer, and APPC subsystems.

For example, the following WRITE statement sends a fail operation:

030 WRITE #1,FORMAT "SSFAIL": IOERR ICFERR

Chapter 3. BASIC Programming 3-23

CLOSE Statement (Closing Files for Sessions)

The CLOSE statement closes the communications file used in the session. Also, if
the $$EOS operation was not specified in your program and the session is still
active, the CLOSE statement ends the session before it closes the file. All
transactions with the remote program must be completed before you end the
session.

The syntax of the CLOSE statement is:

CLOSE #file-reference: EXIT line reference
IOERR line reference

$7910023-0

For example, this CLOSE statement closes (releases) the SSP-ICF session for
file #1:

099 CLOSE #1: IOERR ICFERR
If an error occurs while executing this CLOSE statement, the program goes to the
statement labeled ICFERR. BASIC then automatically issues a $$EOS operation

to end the session so that the next time you attempt to close the file, no error will
occur.

3-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ATTRIBUTES Intrinsic Function (Getting Session
Attributes)

The ATTRIBUTES intrinsic function returns status information about a specified
session. The status is returned for the session identified by the 2-character
identifier specified as the value for the intrinsic function. If no identifier is
specified, the status of the session identified by the current value of the WSID$
intrinsic function is returned.

The syntax of the ATTRIBUTES intrinsic function is:

ATTRIBUTES ('session ID')
(character-expression)
(WSIDS)

$7910024-0

For example, this statement gets the attributes of the SSP-ICF session identified
as 28S.

050 AS=ATTRIBUTES$('2S")

This statement gets the attributes of the session identified by a variable named
ICFSSNS.

050 A$=ATTRIBUTES (ICFSSNS)

Chapter 3. BASIC Programming 3-25

For SSP-ICF sessions, a 10-character constant is returned. The first character
indicates the type of the session, the second character indicates the invite status of
the session, and the last eight characters give the location name associated with the
session. The positions, the values, and the meaning of the values are as follows:

Positions Value Meaning
1 A Session not yet acquired.
C Session is an acquired session.
R Session is a remotely started session.
2 N Input not invited for this session.
I Input invited for this session, but no input is
available.
0 Invited input is available for this session.
3 through 10 Name Location name (specified during subsystem
configuration and on the SESSION OCL
statement).

For the values used for work station sessions, see the manual Programming with
BASIC.

For the Intra and APPC subsystems only, additional status information is
returned. The fields are as follows (starting with byte 11):

Positions Value Meaning
11 I Intra subsystem is being used.
A APPC subsystem is being used.
12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.
13 M Mapped conversation.
B Basic conversation.
14 through 16 Blanks Reserved.
17 through 33 Name Own fully qualified LU name.
34 through 41 Name Partner LU name.
42 through 58 Name Partner fully qualified LU name.
59 through 66 Name Session group name.
67 through 74 Name User ID.
75 through 128 Blanks Reserved.

If a field is not used, enter the correct number of blanks for the unused field.

3-26 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASIC Operations Summary Chart

The following chart shows the valid BASIC operations for each subsystem. An x
in a subsystem column indicates that the subsystem supports the operation. A —
indicates that the subsystem does not support the operation.

BASIC SSP-ICF |BASIC Communications Subsystems

Operation Operation |Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC
Accept input WAITIO?2 X X X X X X X X X X
Aquire OPEN X X X X X X X X X X
Cancel $$CANLNI X - - - - - - - X -
Cancel invite $$CNLINV X X - - - - - - - -
Cancel then invite |[$$CANL X - - - - - - - X -
End of session $SEOS X X X X X X X X X X
Evoke $$SEVOKNI X X X X X x3 - X X X
Evoke end of $$SEVOKET X X - X X - - X X X
transaction

Evoke then invite [$$EVOK X X X X X x3 - X X X
Fail $$FAIL X - - - - - X - X
Get READ X X X X X X X X X X
Get attributes ATTRIBUTE X X X X X X X X X X
Get status6é ATTRIBUTE | x - - - - - - - - X
Invite4 $$SEND X X X X X X X X X X
Negative response |$$NRSPNI X - - - - - - - X -
Negative response |$$NRSP X - - - - - - - X -
then invite

Put $$SENDNI X X X X X - X X X X
Put end of $$SENDE X X X X - X X X X -
file/chain

Put end of $$SENDET X X - X X - - X X X
transaction

Put FMH $$SSENDNF X - - - - - X - X -
Put FMH then $$SENDFM X - - - - - X - X -
invite

Put then invite $$SEND X X X X X X X X X X
Release CLOSE X X X X X X X X X X
Request to change |$$RCD X X X - - - - x x X
direction then

invite

Set timer $$TIMERS X X be X X X X X X X

1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other

subsystems.

2Valid only when it is followed by a READ operation or when it follows a timer operation.
3Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the

HOSTNAME parameter on the SESSION statement is CICS or IMS.

4Valid only when a $$SEND operation is issued with a record length of zero.

5The timer can also be set by the TIMER intrinsic function.
6The record area must be at least 128 bytes long.

Chapter 3. BASIC Programming 3-27

Checking Return Codes in BASIC

You should use the IOERR parameter on all READ, REREAD, WRITE, OPEN,
CLOSE, and WAITIO statements to check the status of the input or output
operation. All of these statements set the value of the return code to indicate the
results of that operation. You can also use the RETCODES, ERR, or FILE
intrinsic functions to check the status of the last operation performed. The
intrinsic functions contain the following:

ERR (error code) contains the meaning of the error code for the last
unsuccessful BASIC operation.

RETCODES (return code) contains the status of the last SSP-ICF operation
or work station operation. The status tells whether the operation was
successful or unsuccessful and gives you additional information about the
results of the operation. If your program contains both SSP-ICF and work
station operations, you may want to save the SSP-ICF return codes in a
character variable.

FILE(x) (file status) indicates only that the last operation was either successful
or unsuccessful. If FILE is 0, the operation was successful; if FILE is not 0,
the operation was unsuccessful. If FILE is 11, an end of transaction
indication was received on an input operation; if FILE is 20, an error
occurred on an input operation; and if FILE is 21, an error occurred on an
output operation.

3-28 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ERR Code Values

The ERR intrinsic function returns the error code of the last error that occurred.
The value is not reset for a successful input or output operation. It stays the

same until the next error occurs.

The following chart lists and briefly describes the SSP-ICF error codes that can be
returned in an SSP-ICF session. Note, however, that more complete information
about any error can be obtained by reading the description of the actual return
code associated with the ERR value. The return codes that can be returned by

your subsystem are described in that subsystem reference manual.

ERR

Values Error Code Meaning

0 No error; operation completed normally

54 End-of-file error or end of transaction indication
55 Permanent input/output error

64 No invite outstanding on SSP-ICF session

66 Cannot get session group

68 New requester for this program

69 Request to change direction was received

70 Message waiting

71 Operation failed, but session is still active

72 Error occurred in an operation that can be retried
73 Timer expired

74 Buffer too small

Chapter 3. BASIC Programming 3-29

RETCODES Values

The value in the RETCODES intrinsic function is the 4-digit (major and minor)
SSP-ICF return code. These return codes are described in each subsystem
reference manual. A summary listing in Appendix B shows all the return codes
and shows which return codes are valid for each subsystem. For general
information about return codes, read “Checking Return Codes” in Chapter 3 of
the SSP-ICF Guide and Examples manual.

The value in the ERR intrinsic function depends upon the SSP-ICF return code in
the RETCODES intrinsic function as shown in the following chart. Use this chart
to determine the SSP-ICF return code that corresponds to the ERR value. Then
see the description of the SSP-ICF return code in the appropriate subsystem
reference manual.

For an example of how to check return codes, see “Checking Return Codes with
BASIC” in Chapter 6 of the SSP-ICF Guide and Examples manual.

SSP-ICF BASIC | SSP-ICF BASIC | SSP-ICF BASIC | SSP-ICF BASIC
RETCODES$ ERR RETCODES$ | ERR RETCODES$ | ERR RETCODE$ | ERR
Value Value Value Value Value Value Value Value
0000 0 8081 55 81BC 70 832D 71
0010 69 8082 55 81C2 70 8330 72
0012 0 8083 55 81C4 66 83C7 55
0020 70 8084 55 81C5 70 83C8 55
0024 0 80BD 55 81C6 70 83C9 55
0100 68 80C0 55 8213 72 83CA 55
0200 0 80C1 55 821E 55 83CB 55
0210 69 80DO0 55 8285 72 83CC 55
0212 0 8136 55 8289 55 83CD 55
0220 70 8137 55 82A7 72 83CE 55
0300 0 8183 55 82A9 55 83CF 55
0302 71 8184 55 82AA 55 83D0 55
0303 54 8185 72 82AE 55 83D1 55
0310 73 8187 55 82B1 72 83D2 55
0402 71 8192 55 82BB 55 83D3 55
0411 70 8193 70 82C3 66 83D4 55
0412 71 81A3 70 82C4 66 83E0 55
0800 0 81B6 70 8319 70 83E1 55
1100 64 81B8 70 831B 72

2800 55 81B9 70 831C 70

3431 74 81BA 70 831D 71

3-30 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Notes About Writing BASIC Programs for SSP-ICF

1. You can use the WSIDS$ intrinsic function to determine the identifier of the
most recently accessed session. In this example,

040 WAITIO IOERR ICFERR
050 AS$=WSIDS

the value of AS is the identifier of the last session accessed by the WAITIO
statement.

2. You can use the FILENUM intrinsic function to determine the file reference
of the most recently accessed session.

3. You should use the EXIT clause with the IOERR parameter specified, or use
the IOERR parameter alone, on all SSP-ICF I/O statements.

4. You can use the ATTRIBUTES intrinsic function to determine the status of a
session.

5. Do not use PAUSE, BREAK, PRINT, INPUT, LINPUT, or TRACE in an
evoked program (started by a remote procedure start request) to cause
information to be displayed at a display station.

6. Do not evoke the BASIC procedure. (You can evoke the BASICR or
BASICP procedure.)

BASIC Coding Examples

For a complete example of a BASIC communications program, see “Writing a
BASIC Program That Uses the Intra Subsystem” in Chapter 6 of the SSP-ICF
Guide and Examples manual. The same programming example described in the
Intra chapter is also applicable to the other subsystem chapters, but only the
changed areas needed to allow communications with that type of remote system
are shown.

Chapter 3. BASIC Programming 3-31

3-32 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 4. Programming SSP-ICF with COBOL

COBOL Statements Used for Communications 4-3
SELECT Statement (Defining the Transaction File) 4-4
ACQUIRE Statement (Acquiring Sessions) 4-6
Example of an Acquired Session 4-6
ACCEPT Statement (Checking Session Status) 4-7
Session Status Information 4-8
. Example of an ACCEPT Statement 4-9
READ Statement (Receiving Data) 4-10
Example of a READ Statement 4-11
WRITE Statement (Performing Operations within a Session) 4-12
WRITE Statement Operations 4-13
' Starting Remote Programs (Evoke Operations) 4-14
IDDU Evoke Operation Considerations 4-14
Sending Program Data with an Evoke Operation 4-15
Sending Data (Put Operations) 4-15
Ending Communications Transactions (End of Transaction
.Operations) 4-16
Ending Sessions (End of Session Operation) 4-17
Additional WRITE Statement Operations 4-17
" Request to Change Direction Operation 4-17
SSP-ICF and Work Station Timer Operations 4-18
$$TIMER Operation Example 4-18
Negative Response Operations 4-19
Cancel Operations 4-20
Fail Operation = 4-20
DROP Statement (Releasing a Session) 4-21
COBOL Operations Summary Chart - 4-22
Return Code Processing in COBOL 4-23
COBOL Coding Examples 4-23

Chapter 4. COBOL Programming

This chapter briefly describes the COBOL statements and operations that you use
to write COBOL communications programs. The syntax of the COBOL
statements is shown, and the communications operations are introduced.

To use the COBOL language with the Interactive Communications Feature
(SSP-ICF), do the following:

e Configure and enable the subsystem. (These procedures are described in the
appropriate subsystem reference manual.)

e Begina communications session by issuing an ACQUIRE statement.

® Begin a program or procedure at the remote system and start a
communications transaction. (If you are using the Intra subsystem, the
program or procedure being started is in the same System/36.)

e Send or receive data.

® Check return codes.

e End the communications transaction.
° énd the communications session.

e Disable the subsystem.

The COBOL operations you need for interactive communications are introduced
in this chapter. The details about each operation—its function, syntax,
programming considerations, and coding example (for some operations)—are
described in each subsystem reference manual for which the operation is valid.

General (conceptual) information about these operations and diagrams showing
how these operations work are given in Chapter 3 of the SSP-ICF Guide and
Examples manual.

The operations you use in the communications portion of your program are
similar to work station operations. In the noncommunications portion of your
program, you can use all of the noncommunications operations that you normally
use to process the data that is sent or received between your program and the
remote program. Therefore, the noncommunications operations are not described
in this manual.

If you are using the Intra or APPC subsystem, externally described field, format,
and file definitions (also called data definitions) can be used to send data records.
Data definitions, which describe data records and communications functions, are
defined separately from the application program. The interactive data definition
utility (IDDU) is used to create data definitions. Refer to the manual Getting
Started with Interactive Data Definition Utility for more information.

The details about using IDDU with the Intra or APPC subsystem are described in
the appropriate subsystem reference manual.

4-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

COBOL Statements Used for Communications

In COBOL, the communications operations are performed primarily by the
statements shown in the following list. Only these statements are described in this
chapter, and only the communications-related information about each one is
given. The manual Programming with COBOL contains additional information
about these statements and about all the other statements that can be used in a
communications program.

Statement Functions
SELECT Defines the TRANSACTION file used for SSP-ICF operations

ACQUIRE Acquires (starts) a session

ACCEPT Gets the attributes of a session
READ Receives data from the remote system
WRITE Performs many of the SSP-ICF communications operations

within a session

DROP Releases the session

Chapter 4. COBOL Programming 4-3

SELECT Statement (Defining the Transaction File)

Use the TRANSACTION file for SSP-ICF operations. Programming
considerations for TRANSACTION files are described in the manual
Programming with COBOL.

Use the SELECT statement in the FILE-CONTROL paragraph to define the
TRANSACTION file. You must also open the file in the Procedure Division,
and open it as I-O.

The syntax of the SELECT statement for a TRANSACTION file using interactive
communications is:

SELECT file-name

ASSIGN TO WORKSTATION

-namel [-typel

ORGANIZATION IS TRANSACTION

{,namez [-typel

FILE STATUS IS data-name-1

ACCESS MODE IS SEQUENTIAL

,data-name-4 } }

CONTROL-AREA IS data—name—S}.

§$7910025-0

SELECT Clause: Specifies the name of the TRANSACTION file your program
will use to send data to and receive data from a remote program.

ASSIGN Clause: Must be WORKSTATION for SSP-ICF. The name-1 field
specifies the 1- to 8-character name of the $SFGR-generated load member that
contains the display format. If you are using IDDU, the name-1 and name-2
fields specify the display format and the IDDU file definition that contains the
format definitions used to describe communications functions. The name field is
not required if the file is to be used with SSP-ICF sessions only; however, the
name field is required when using IDDU. The type field is used to specify
whether the name is a $SFGR-generated load member or an IDDU file definition.
Specify an S (or blank) for a $SFGR-generated load member or a C for an IDDU
file definition.

4-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ORGANIZATION Clause: Specifies the logical structure of a file. Must be
TRANSACTION for SSP-ICF. TRANSACTION file organization allows you to
control input and output operations.

FILE STATUS Clause: Allows you to check the status of input and output
operations from or to the TRANSACTION file. The FILE STATUS area
consists of a 2-byte COBOL return code (data-name-1) and a 4-byte IBM file
status code (data-name-4) that contains the interactive communications return
code. The interactive communications return code consists of two 2-byte return
codes (a major and a minor return code). You must define data-name-4 in the
Data Division as a 4-character alphanumeric data item.

ACCESS MODE Clause: Must always be SEQUENTIAL for TRANSACTION
files.

CONTROL-AREA Clause: Specifies the 12-byte data item that receives feedback
information after each TRANSACTION file input operation. The third and
fourth characters of this area contain the symbolic identifier of the session or
display station from which input was obtained. The symbolic identifier must be
defined as a 2-byte alphanumeric data item. The remainder of the characters
contain information concerning display stations only, and are described in the
manual Programming with COBOL.

For an example of how to code the SELECT statement, see the sample programs
in the SSP-ICF Guide and Examples manual.

Chapter 4. COBOL Programming 4-5

ACQUIRE Statement (Acquiring Sessions)

To start (acquire) a session, use the ACQUIRE statement to specify the session
you are acquiring for a specified TRANSACTION file. Each ACQUIRE
statement starts one session between your program and the remote system. If
your program is started by a procedure start request (remotely started program),
no ACQUIRE statement is needed. However, once a remotely started program is
running, it can issue acquire operations and start other sessions (depending on the
type of subsystem you are using).

ACQUIRE {

literal

identifier

} FOR file=-name.

§7910026-0

ACQUIRE Clause: Specifies a 2-character identifier for the session to be
acquired. The first character of the session identifier must be numeric (0 through
9), and the second character must be alphabetic (A through Z, §, #, or @). Use
the literal parameter to specify the actual identifier value, or use the identifier
parameter to specify a 2-character data item that contains the session identifier.
The session identifier must be the same as the SYMID parameter specified in the
SESSION statement.

FOR Clause: Specifies, in the file-name parameter, the name of the
TRANSACTION file.

Example of an Acquired Session

ACQUIRE '1S'

OR

FOR TRANSACTION-FILE.

ACQUIRE SSP-ICF-SESSION FOR TRANSACTION-FILE.

An example of a SESSION statement for this ACQUIRE statement is:

// SESSION LOCATION~CHICAGO,SYMID-1S,BATCH-YES

4-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

ACCEPT Statement (Checking Session Status)

The ACCEPT statement is used to get the attributes of a session; it is the
equivalent of the SSP-ICF get attributes operation.

The syntax of the ACCEPT statement is:

FOR {

ACCEPT identifier-1 FROM mnemonic-name

identifier-2
literal

$7910027-0

ACCEPT Clause: The identifier-1 parameter must specify an area to be used for
an attribute data record. The session attributes are moved into the attribute data
record area when the accept operation is performed. The TRANSACTION file
must be opened before the accept operation can get the attributes of the session.

FROM Option: Specifies the symbolic name associated with
ATTRIBUTE-DATA in the SPECIAL-NAMES clause (coded in the
Environment Division).

FOR Option: If the FOR option is specified, a get attributes operation is
performed for the session specified by the identifier-2 or literal parameter. If the
FOR option is not specified and only one session or display station is attached to
the TRANSACTION file, a get attributes operation is performed for that session
or display station. If the FOR option is not specified, and multiple sessions and
display stations are attached, a get attributes operation is performed for the last
session or display station for which an input or output operation was performed.

For Intra and APPC subsystems only, a get status operation may be performed

instead of a get attributes operation. The get status operation returns additional
information about a specific session.

Chapter 4. COBOL Programming 4-7

Session Status Information

When the get attributes (ACCEPT) operation is specified, the first 10 bytes of the
record area are as follows:

Position

Meaning

1

Session not yet acquired.
Session is an acquired session.
Session is a remotely started session.

@)

Input not invited for this session.

Input invited for this session, but no input is
available.

Invited input is available for this session.

3 through 10

Name

Location name (specified during configuration
and on the SESSION OCL statement).

If the get status (ACCEPT) operation is specified, the additional fields are as

follows (starting with byte 11):

Position Value Meaning
11 I Intra subsystem is being used.
A APPC subsystem is being used.
12 0 Synchronization level is NONE.
1 Synchronization level is CONFIRM.
13 M Mapped conversation.
14 through 16 | Blanks Reserved.

If a field is not used, enter the correct number of blanks for the unused field.

4-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Example of an ACCEPT Statement
SPECIAL NAMES.

ATTRIBUTE-DATA IS ATTRIBUTES.
[]
®
®

DATA DIVISION.

77 SSP-ICF-SESSION PIC XX VALUE '1S'.
[
®
[]

01 SESSION-ATTRIBUTES.

03 SESSION-STATUS PIC X.
03 INVITE-STATUS PIC X.
03 SESSION-NAME PIC X(8).

PROCEDURE DIVISION.

ACCEPT SESSION-ATTRIBUTES FROM ATTRIBUTES.

OR

ACCEPT SESSION-ATTRIBUTES FROM ATTRIBUTES FOR '1S'.

OR

ACCEPT SESSION-ATTRIBUTES FROM ATTRIBUTES FOR SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4-9

READ Statement (Receiving Data)

The READ statement is used to receive data from a remote program. The
statement performs either a get or accept input operation depending on whether
the TERMINAL option is specified.

For SSP-ICF input operations, the maximum amount of data that can be receive:
by a program is 4075 bytes for all subsystems except Intra, IMS, and APPC, for
which the maximum is 4096 bytes.

The syntax of the READ statement is:

READ file-name RECORD

INTO identifier-l} TERMINAL IS Jidentifier-2
L literal-1

NO DATA imperative-statement-1

r

AT END imperative—statement—Z}.

$7910028-

TERMINAL Option: If the TERMINAL option is specified, a get operation is
performed for the session specified. If the TERMINAL option is not specified,
an accept input operation is performed.

NO DATA Option: If specified, this option allows the statement specified in the
imperative-statement-1 parameter to be processed if data is not available for this
READ statement.

AT END Option: If specified, this option allows the statement specified in the
imperative-statement-2 parameter to be executed if the READ statement is issued
and an invite operation is not currently outstanding.

For more information about the READ statement, see the manual Programming
with COBOL.

4-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Example of a READ Statement

READ TRANSACTION-FILE.

OR

READ TRANSACTION-FILE,
TERMINAL IS SSP-ICF-SESSION.

The first READ statement performs an accept input operation. The second
READ statement performs a get operation.

Chapter 4. COBOL Programming 4-11

WRITE Statement (Performing Operations within a

Session)

Use the WRITE statement to perform many of the communications operations
between two programs once a session has been started. The type of operation is
determined by the value specified for the FORMAT parameter (which is described
below).

The syntax of the WRITE statement is:

INDICATOR

INDIC

WRITE record-name

FROM identif ier—l}

literal-1

FORMAT IS {identifier-Z}

literal-2

TERMINAL IS {identifier-3}

Is

INDICATORS |ARE identifier-4|.

§7910029-C

record-name: Specifies the output area that contains any of the information
required with the operation.

FORMAT Option: Identifies the SSP-ICF operation that is to be performed. See
“COBOL Operations Summary Chart” later in this chapter for a complete list of

the operations you can specify in the FORMAT parameter. Any of the SSP-ICF

operations beginning with $$ can be used.

If you are using IDDU, identifies the format definition that externally describes
the SSP-ICF operation that is to be performed. For more information about
using IDDU with COBOL, refer to the manual Programming with COBOL.

TERMINAL Option: Specifies the identifier of the session during which the
operation is to be performed. If the TERMINAL option is not used, the
operation is performed for the session associated with the last READ or WRITE
statement.

See the manual Programming with COBOL for a description of other WRITE
statement parameters.

4-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

WRITE Statement Operations

The following are the primary communications operations you can perform using
the WRITE statement.

o Evoke operations: To start a remote program
e Put operations: To send data to the remote program
e End of transaction operations: To end a communications transaction

e End of session operation: To end the session in which the remote program
was started

These operations are described in the following pages; other types of operations
that can also be specified by the WRITE statement are described under
“Additional WRITE Statement Operations” later in this chapter. An example of
each type of operation that can be specified in the FORMAT option is also
provided.

Chapter 4. COBOL Programming 4-13

Starting Remote Programs (Evoke Operations)

To start a remote program or procedure and to start a communications
transaction, specify an evoke operation in the FORMAT parameter of the
WRITE statement ($$EVOK, $SEVOKNI, or $$EVOKET). See “WRITE
Statement (Performing Operations within a Session)” earlier in this chapter for the
syntax of the WRITE statement.

With an evoke operation, you must send an evoke parameter list. If you specify
the evoke operation in the FORMAT parameter of the WRITE statement, the
parameters (fields) in that list must be specified in the following order:

Positions Field Description

1 through 8 The name of the program or procedure to be evoked
(left-adjusted).

9 through 16 The password you use to sign on the remote system
(left-adjusted).

17 through 24 The user identifier you use to sign on the remote
system (left-adjusted).

25 through 32 The name of the remote system library that contains
the program or procedure to be evoked (left-adjusted).

32 through 51 Reserved.

52 through 55 The length of data, positional parameters, or keyword
parameters.

56 through xxxx User data, positional procedure parameters, or keyword

parameters. (Leading blanks are ignored.)

If a field is not used, enter the correct number of blanks for the unused field.
IDDU Evoke Operation Considerations:

If you are using IDDU, you can select one of the following IDDU functions to
perform an evoke operation: evoke process (EVOKE keyword), evoke process
and send detach (EVOKE and DETACH keywords), or evoke process and invite
(EVOKE and INVITE keywords).

Because IDDU does not reserve positions for unused parameters or duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:
1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

4-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Sending Program Data with an Evoke Operation

Data sent with an evoke operation can be parameters to be used by the evoked
procedure, or it can be data to be used by the evoked program. When you are
creating a procedure that is to have parameters sent to it by an evoke operation,
answer no to the prompt PROGRAM DATA IN THE INCLUDE
STATEMENTS on the end of job menu in the SEU procedure, or specify
PDATA-NO on the COPY control statement for SMAINT. If you want data to
be sent to a program, answer yes to the SEU prompt for program data, or specify
PDATA-YES on the COPY control statement.

Sending Data (Put Operations)

01

To send a data record to a remote system or program, specify a put operation in
the FORMAT parameter of the WRITE statement ($$SENDNI, $$SENDE,
$SSENDET, $$SENDNF, or $$SENDFM). If you are using IDDU functions,
specify a put operation in a user-defined field, select the send detach, or specify a
put operation in a user-defined field and select the invite. See “WRITE Statement
(Performing Operations within a Session)” earlier in this chapter for the syntax of
the WRITE statement.

Each type of put operation requires the following fields in the output area:
length field: A 4-byte field that contains, in decimal, the length of the user
data. An output length of zero for a $$SEND operation performs an invite
operation. An output length of zero can also be used for $$SENDE,
$$SENDET, and $$SENDNI operations.

A maximum of 4075 bytes can be sent by a put operation for all subsystems
except Intra, IMS, and APPC, for which the maximum is 4096 bytes.

data field: The field containing the user data to be sent.
For example, the following WRITE statement sends one data record:

DATA-RECORD.

03 RECORD-LENGTH PIC 9(4).
03 THE-RECORD PIC X(256).
[]

[]

[]
WRITE TRANSACTION-RECORD FROM DATA-RECORD,
FORMAT IS '$$SENDNI', TERMINAL IS SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4-15

Ending Communications Transactions (End of Transaction Operations)

You can end the transaction by specifying the put end of transaction operation or
the evoke end of transaction operation in the FORMAT parameter of the WRITE
statement ($$SENDET for the put end of transaction or $$EVOKET for the
evoke end of transaction). If you are using IDDU functions, select the send
detach for the put end of transaction or the evoke process and send detach for the
evoke end of transaction.

o If your program has finished sending data, a put end of transaction operation
in the FORMAT parameter tells the remote system that you have no more
data to send and that you do not expect to receive any data.

e If your program is receiving data, check for an end of transaction return code
received from the subsystem to determine when the remote system has
finished sending. \

o If you want to start a program or procedure at the remote system and
immediately end the transaction, an evoke end of transaction operation in the
FORMAT parameter indicates that your program does not expect to receive
any data. For example, you can send data to a remote program and then
start a different program on the remote system to use that data:

— Your program starts program A at the remote system and sends data to
program A.

— Program A stores the data on disk.

~ When your program has finished sending data to program A, your
program uses the put end of transaction operation to end program A.

- Your program then uses the $$EVOKET operation to start program B at
the remote system.

— Program B processes the data that program A stored on disk previously.

Once the transaction has ended, you can end the session or start another
transaction with this or another session.

The following statement sends a put end of transaction operation and, therefore,
tells the remote system that this is the end of this communications transaction:

WRITE TRANSACTION-RECORD FROM DATA-RECORD,
FORMAT IS 'SSSSENDET', TERMINAL IS SSP-ICF-SESSION.

A

4-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Ending Sessions (End of Session Operation)

To end a session with a remote system, use the DROP statement, or specify the
$SEOS operation in a WRITE statement. (The DROP statement is described
later in this chapter.)

To end a session using the WRITE statement, specify $$EOS in the FORMAT
parameter. For example:

WRITE TRANSACTION-RECORD,
FORMAT IS '$SEOS', TERMINAL IS SSP-ICF-SESSION.

Additional WRITE Statement Operations

The following are additional interactive communications operations you can
specify on the WRITE statement:

® Request to change direction operation
©® Set timer operation

e Negative response operations (used only with the Intra and SNUF
subsystems)

e Cancel operations, for canceling a group (chain) of data records (used only
with the Intra and SNUF subsystems), or for canceling any valid invite
operation for which no input has yet been received (used only with the Intra
and BSCEL subsystems)

e Fail operation (used only with the Intra, Peer, and APPC subsystems)

Request to Change Direction Operation

To request a change in the direction of transmission, specify a request to change
direction operation in the FORMAT parameter of the WRITE statement
($SRCD). 1If you are using IDDU functions, select the send request to write and
invite. After you issue the $$RCD operation, your program must continue to
receive data until it receives a return code indicating that the remote system is
ready to begin receiving data. No additional parameters or data is associated
with the $$RCD operation.

The following WRITE statement shows how to request that the remote system
stop sending so that your program can send data:

WRITE TRANSACTION-RECORD,
FORMAT IS '$SRCD', TERMINAL IS SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4-17

SSP-ICF and Work Station Timer Operations

To use the SSP-ICF and work station timer, use the STIMER operation in the
WRITE statement in the format:

hhmmss

where hh is hours, mm is minutes, and ss is seconds.

A return code is returned to your program when the time has ended. Use an
accept operation to determine when the time has ended and to determine the
action to take next based on the return code received.

$$TIMER Operation Example

01

TIMER PIC X(6) VALUE '000030'.
[]
[]
[]
WRITE TRANSACTION-RECORD FROM TIMER,
FORMAT IS '$STIMER', TERMINAL IS SSP-ICF-SESSION.
[]
[]
[}
READ TRANSACTION-FILE,
IF RETURN-CODE EQUAL '0310',
THEN
GO TO TIMER-EXPIRED.

This example sets the timer to 30 seconds, then issues an accept input operation
and checks for a return code.

4-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Negative Response Operations

To tell the remote system or program that your program found something wrong
with the data it received (that is, to send a negative response), use the FORMAT
parameter in the WRITE statement to specify one of the negative response
operations ($SNRSP or $$NRSPNI). These operations can only be used with the
Intra and SNUF subsystems.

Sense data can also be sent with the negative response. The following is the
format of the sense data:

Positions Description

1 Indicates whether sense data is being sent: 0 or blank
indicates that no sense data is being sent; 8 indicates that
sense data is being sent.

2 through 9 The sense data sent with the negative response. The
sense data must begin with 10xx, 08xx, or 0000.
The last four positions are user-defined.

For example, the following statements send a negative response operation that
includes the sense data 08008000:

01 NEG-RESP-REC.

03 REC-LEN PIC X(4) VALUE '0008'.

03 RESP-DATA PIC X(08) VALUE '08008000'.
[]

[]

o

WRITE TRANSACTION-RECORD FROM NEG-RESP-REC,
FORMAT IS 'S$SNRSP', TERMINAL IS SSP-ICF-SESSION.

Chapter 4. COBOL Programming 4-19

Cancel Operations

There are two types of cancel operations: those that cancel a group of records
that has just been sent (used by the SNUF and Intra subsystems only), and the
cancel invite operation, which cancels an invite operation for which no input has
yet been received (used by the BSCEL and Intra subsystems only).

e For the SNUF and Intra subsystems only, to cancel a group of records that
has just been sent, use the FORMAT parameter in the WRITE statement to
specify one of the cancel operations ($3CANL or $$CANLNI). The cancel
operations have no additional parameters or data associated with them.

For example, the following WRITE statement cancels the current chain of
records:

WRITE TRANSACTION-RECORD FROM SSP-ICF-RECORD,
FORMAT IS 'SSSCANL', TERMINAL IS SSP-ICF-SESSION-1S.

e For the BSCEL and Intra subsystems only, to cancel any valid invite
operation for which no input has yet been received from any invited session,
use the FORMAT parameter in the WRITE statement to specify the cancel
invite operation ($$CNLINV). The cancel invite operation has no additional
parameters or data associated with it. For restrictions on the use of this
operation by the BSCEL subsystem, see “Cancel Invite Operation” in Chapter
2 of the SSP-ICF Base Subsystems Reference manual.

For example, the following WRITE statement cancels an invite operation that
no session has yet responded to:

WRITE TRANSACTION-RECORD FROM SSP-ICF-RECORD,
FORMAT IS 'SSSCNLINV', TERMINAL IS SSP-ICF-SESSION-1S.

Fail Operation

To tell the remote system that your program detected an abnormal condition (for
example, it received incorrect data), specify a fail operation in the FORMAT
parameter of the WRITE statement ($$FAIL). If you are using IDDU functions,
select the send fail. The fail operation has no additional parameters associated
with it, and no data can be sent with the fail operation. The fail operation can be
used only with the Intra, Peer, and APPC subsystems.

For example, the following WRITE statement sends a fail indication:

WRITE TRANSACTION-RECORD,
FORMAT IS '$$FAIL', TERMINAL IS SSP-ICF-SESSION.

4-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

DROP Statement (Releasing a Session)

To release a session, use the DROP statement, which issues a release operation for
a particular session. You must specify the name of the TRANSACTION file
associated with this session. You can specify a literal for the session identifier or
an identifier that refers to a 2-character alphanumeric data item that contains the
session identifier. The session identifier must correspond to the SYMID
parameter specified on the corresponding SESSION statement.

The syntax of the DROP statement is:

DROP | literal FROM file-name.
identifier

$7910030-0

All acquired sessions are automatically released when the application program
ends.

Chapter 4. COBOL Programming 4-21

COBOL Operations Summary Chart

The following chart shows the valid COBOL operations for each subsystem. An
x in a subsystem column indicates that the subsystem supports the operation. A
— in a column indicates that the subsystem does not support the operation.

COBOL SSP-ICF |COBOL Communications Subsystems

Operation Operation |[IntraBSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC

Accept input? READ X X X X X b4 X X X X

Aquire ACQUIRE X X X x x X X X x X

Cancel $$CANLNI X - - - - - - - X -

Cancel invite $$SCNLINV X X - - - - - - - -

Cancel then invite [$$CANL X - - - - - - - x -

End of session $$SEOS X X X X X X X X X x

Evoke $$SEVOKNI X X X X X x3 - x X X

Evoke end of $$EVOKET X X - X X - - X X X
transaction

Evoke then invite |$$EVOK X X X X X x3 - X x

Fail $$SFAIL X - - - - - - b'e - X

Get2 READ X X X X X X X X X X

Get attributes4 ACCEPT X X X x X x X X X x

Get statusé ACCEPT X - - - - - - - - X

Invited $$SEND X X X x x X X X X X

Negative response |$$NRSPNI X - - - - - - - x -

Negative response |$$NRSP X - - - - - - - X -
then invite

Put $$SENDNI X X X X X - X X X X

Put end of $$SSENDE X X X X - X x X X -
file/chain

Put end of $$SENDET X X - X X - - X X X
transaction

Put FMH $$SENDNF X - - - - - X - X -

Put FMH then $$SENDFM X - - - - - X - X -
invite

Put then invite $$SEND X X X X X X X X X X

Release DROP X X X X X X X X X X

Request to change |$$RCD X X x - - - - X x x
direction then

invite

Set timer $$TIMER X X x X X X X X X X
1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.

2The READ statement performs either a get or an accept input operation, depending on whether the TERMINAL option is
specified.

3Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

4Valid only when the ATTRIBUTE-DATA keyword is used in the SPECIAL-NAMES paragraph and the SPECIAL-NAMES
name is specified in the ACCEPT statement.

5Valid only when a $$SEND operation is issued with a record length of zero.

6The record area must be at least 128 bytes long.

4-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Code Processing in COBOL

Following each operation, a return code consisting of a major code and a minor
code is given to your program in the IBM-extended FILE STATUS area. In
addition, a COBOL return code is given in the FILE STATUS field identifying
the status of the operation. The following list shows the COBOL return code as
returned in the appropriate FILE STATUS data field and the corresponding
SSP-ICF return code(s).

Use this list to determine the SSP-ICF return code that corresponds to the
COBOL return code. Then see the description of the SSP-ICF return code in the
appropriate subsystem reference manual. (For example, the 02xx group below is
described in each subsystem reference manual in the Major Code 02 box
description, which applies to all the return codes beginning with 02.) All of the
return codes that are valid for that subsystem are described in that manual. A
summary listing of all the codes for all the subsystems is in Appendix B.

SSP-ICF Return Code COBOL Return Code
00xx, 03xx, 0800 00

01xx 01

02xx 9A

04xx 91

1100 10

2800 9E

3401 9G

80xx 30

81xx 92

82xx 9C

83xx 9N or 9K

COBOL Coding Examples

For a complete example of a COBOL communications program, see “Writing a
COBOL Program That Uses the Intra Subsystem” in Chapter 6 of the SSP-ICF
Guide and Examples manual. The same programming example described in the
Intra chapter is also used in the other subsystem chapters, but only the changed
areas needed to allow communications with that type of remote system are shown.

Chapter 4. COBOL Programming 4-23

4-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 5. Programming SSP-ICF with RPG 11

File Description Specifications 5-2
RPG II Communications Operations 5-3
Starting Remote Programs (Evoke Operations) 5-3
IDDU Evoke Operation Considerations 5-3
Sending Data (Put Operations) 5-5
Request to Change Direction Operation 5-6
Set Timer Operation 5-7
Negative Response Operations 5-8
Cancel Operations 5-9
Fail Operation 5-9
End of Session Operation 5-9
WORKSTN Operations 5-10
ACQ (Acquire) Operation 5-10
REL (Release) Operation 5-11
NEXT Operation 5-12
READ Operation 5-13
RPG Cycle Input 5-14
RPG II Operations Summary Chart 5-14
Return Code Processing in RPG II 5-15
INFSR Subroutine Coding Considerations 5-18
RPG II Status Values 5-19
RPG II Programming Considerations 5-20
Using Continuation Options on the File Description Specifications 5-20
NUM Continuation Option 5-20
SAVDS Continuation Option 5-21
IND Continuation Option 5-21
SLN Continuation Option 5-21
ID Continuation Option 5-21
INFSR Continuation Option 5-21
INFDS Continuation Option 5-22
FMTS Continuation Option 5-22
CFILE Continuation Option 5-22
SRT and MRT Program Considerations 5-22
End-of-File Considerations 5-23
Release Considerations 5-23
Restrictions for WORKSTN Files 5-24
Input and Output Considerations 5-24
RPG II Coding Examples 5-25

Chapter 5. RPG II Programming 5-1

The interactive communications portion of an RPG Il program consists of -
preparing data for transmission, processing data that was received, using existing
work station operations and additional SSP-ICF operations to perform
communications operations, and properly handling return codes.
Noncommunications data processing varies depending on the application; these
noncommunications functions are not described in this manual.

The operations you use in interactive communications are similar to work station
operations. The file used is a WORKSTN file, the same input operations are
used, and the output operations are performed via special SSP-ICF formats.

If you are using the Intra or APPC subsystem, externally described fields, format,
and file definitions (also called data definitions) can be used to send data records.
Data definitions, which describe data records and communications functions, are
defined separately from the application program. The interactive data definition
utility IDDU) is used to create data definitions. Refer to the manual Getting
Started with Interactive Data Definition Utility for more information about IDDU.

The details about using IDDU with the Intra or APPC subsystem are described in
the appropriate subsystem reference manual.

File Description Specifications

When you use RPG II for interactive communications, you must complete the file
description specifications. These specifications should contain the same
information that you would code for a WORKSTN file. File description
specifications for a WORKSTN file are described in the manual Programming
with RPG II.

File Description Specifications

For the valid entries for a system, refer to the RPG reference manual for that syster

F File Type Mode of Processing File Addition/Unordered
File Designation Length of Key Field or = Extent Exit Number of Tracks
Pp— of Record Address Field S for DAM for Cylinder Overflow
Record Address Type |t) £l Name of Number of Extent
) Symbol)
Filename Sequence N Type of File g Device Dye'yic: ¢ % Label Exit Mo
File F Organizati .
, gl Foree o iped ! Storage nde s
Line w 5 3 g File
e | Block Record « |=|overtiow indicator| 2 Conditior
¢ E @| Length | Length | Sla Key Field | £ — ‘ U8,
I~ =15 > x 1% Starting W Continuation Lines 2| UC
€ g Slolel= - <= Location L 5 5
i Slafw|< External Record Name K Option Entry < &
3 4 617 8 9 1011 12 13 1415[16]17 ‘5'19 2_&2 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38{39{40 41 42 43 44 45 46 |47 48 49 50 51 52153154 55 56 57 58 59 160 61 62 63 64 65166167168 69}70471 72}73
e = = -—-——‘——n——v——--——-‘-—r-L—-\
o2 IFILICIF|IILE | [CID 3@ | IWIORKSTN
03| |F &_Nluw
oo I KINFDS| |RECD
ols| [F INFSR RS
ohs| JF FMTS | HNON
of7| e D ID
=
os| |F KCFIILLE| |COMMFIL
ol If | | ||
(Only if you are using IDDU.)
5-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

RPG II Communications Operations

To assist in coding interactive communications operations in RPG II, predefined
operations are provided.

Note: Some of the operations have data fields associated with them. Space
for these fields, in the locations described, must be reserved even if the

field is not coded. All values in these fields must be character values.

The following sections describe the communications operations.

Starting Remote Programs (Evoke Operations)

To start a remote program or procedure and to start a communications
transaction, specify an evoke operation ($$EVOK, $SEVOKNI, or $$EVOKET).

With an evoke operation, you must send an evoke parameter list. You define
these parameters as fields on the output specifications.

Positions Field Description

1 through 8 The name of the program or procedure to be evoked
(left-adjusted).

9 through 16 The password you use to sign on the remote system
(left-adjusted).

17 through 24 The user identifier you use to sign on the remote system
(left-adjusted).

25 through 32 The name of the remote system library that contains
the program or procedure to be evoked (left-adjusted).

33 through 52 Reserved.

53 through 56 The length (in decimal) of user data, if any
(right-adjusted).

57 through xxxx User data or positional parameters.

If a field is not used, enter the correct number of blanks for the unused field.
IDDU Evoke Operation Considerations:

If you are using IDDU, you can select one of the following IDDU functions to
perform an evoke operation: evoke process (EVOKE keyword), evoke process

and send detach (EVOKE and DETACH keywords), or evoke process and invite
(EVOKE and INVITE keywords).

Chapter 5. RPG II Prograﬁlming 5-3

Because IDDU does not reserve positions for unused parameters or.duplicated
parameters, one or more of the parameters in the evoke parameter list may not be
specified or may be specified in a different order. Therefore, after defining an
IDDU format to be used with the evoke operation, you should do the following:

1. Use IDDU to print a format definition listing for the format you defined.

2. Use the listing to determine the order and starting position of each of the
parameters in the evoke parameter list.

The following figure shows one way to enter the evoke parameters on the output

specifications:
IERS GX21-9090
ZBM . oona susves Macnines Corporaton RPG OUTPUT SPECIFICATIONS PresmUSA,
L 12
Program Keying Graphic Card Electro Number Program [o L 18 70 80
Page of i
Programmer Date Instruction Key .
o A
1 .
w8 ISpace] Skip Output Indicators Con Zero Balances 9 _ | X = Remove
NH Field Name mME] 1o Print No Sian | CR PlusSign | ¢ o _
g N I or v Y 1 Al Y = Date User
Filename HEHR I EXCPT Name et s Field Edit y
é or & % < é And And End :es co g g :f 2= 2zer0 Defined
) = {R]s | Position o es s s
Line g Record Name ole[] ¢ : o5 i . No No . o | m uppres
- Alolo] 2 | € 85| oueuw |5
OlR ;5 5 8 *AUTO = E Record | a3 Constant or Edit Word
alnlD z z wi o a 1 2 3 4 5 6 7 8 9 10111213 141516 17 18 19 20 21 22 23 24
3 4 51617 8 9 1011 12 1311415{16{1718{19 20)21 22|23{24|25}26 |27 |28}29|30[31} 32 33 34 35 36 37|38|39|40 41 42 43]44]45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
o] 1ol LICIFIXL E V K E }] [
°[2| [9] Klg |*$$iEVIAK/
o|3| |ol \ Id P I
] o 2| "KL
°l*| |9 4 | USERPRGA”
°lel |o Q "ICFILIB -
of7| lol 5 > ’
D)
ols] lo 64 [FIN 13441/
ole| |O
11| |O|

5-4 SSP:ICF Programming for Subsystems and Intra Subsystem Reference

Sending Data (Put Operations)

To send a data record to a remote system or program, specify a put operation
($$SENDNI, $$SSENDE, $$SSENDET, $$SENDNF, or $$SENDFM). If you are
using IDDU functions, specify a put operation in a user-defined field, select the
send detach, or specify a put operation in a user-defined field and select the invite.

For each put operation, you specify two fields on the output specifications as

follows:
Positions Field Description
1 through 4 Length, in decimal, of the user data (right adjusted). An

output record length of zero for $$SEND operation
performs an invite operation. An output length of zero
is also allowed for $$SENDE, ##SENDET, and
$$SENDNI operations.

A maximum of 4075 bytes can be sent by a put
operation for all subsystems except Intra, IMS, and
APPC, for which the maximum is 4096 bytes.

User data to be sent.

5 through xxxx

The following figure shows how you can enter a $3SENDET operation on the
output specifications:

GX21-9090
Printed in US.A.

RPG OUTPUT SPECIFICATIONS

igs H E' International Business Machines Corporation

12
- 75 76 77 78 79 80
Program Keying Graphic Card Electro Number Pagel]] of Program
Programmer [Date Instruction Key o
0 lefs
mE3 " -
W1'S)Space] Skip Output Indicators Zero Balances) X = Remove
S E Field Name Commas | 4 priny__| N0 Sian | CR PlusSign | o o
g = or v Y 1 Al g Y = Date User
Filename =122, EXCPT Name et es Field Edit '
é or 3 ';’ 2 £ And And End xes eo 3 2 f 2= 200 Defined
o iti e
Line |g] Record Name "It ¢ s ol E :‘°5"'°" e NS : Sl m| suweres
S 2 bl ps 3
- alojo} & | < SIS outeut |5
g 5 B *AUTO z 3 Record |@ Constant or Edit Word
) z z w o a 1.2 3 4 5 6 7 8 9 101112131415 16 17 1819 20 21 22 23 24
3 4 sis|7? 9 10 11 1213 16]17]18]19 20)21 22 24125026 127 (28] 29| 30|31} 32 33 34 35 36 37|38]39|40 41 42 43|44|45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70|71 72 73 74
T ol SENDET]
N /
°/2| 1O K8 | 6 SENDET
ol Jo 4l [N odieg’
ol4
o LSTREGC 84
o[s| |Of
ole| |o|

Chapter 5. RPG II Programming 5-5

Request to Change Direction Operation

To request a change in the direction of transmission, specify a request to change
direction operation ($$RCD). This operation has no fields associated with it;
therefore, you need only to code $$RCD on the output specifications. If you are
using IDDU functions, select the send request to write and invite.

After you issue the request to change direction operation, your program must

continue to receive data until the remote system sends a change direction
indication. This is indicated in the return code following the input operation.

5-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Set Timer Operation

To specify a time interval in your program, use the set timer operation
(SSTIMER). Enter the following field on the output specifications:

Positions Field Description

1 through 6 Interval time to be set. The time should be specified in
hours, minutes, and seconds (hhmmss).

Note: To use the $§TIMER operation, the ID field in the file must identify a
display station or session that is attached to the program.

To check that the time has ended, use a READ operation not preceded by a
NEXT operation. The NEXT operation causes input to come from a specified
session (not the timer) during the READ operation (see “NEXT Operation” and
“READ Operation” later in this chapter for more information about these
operations).

The following figure shows how you can enter the value on the output
specifications to set the timer for 2 minutes:

e GX21-9090
TEES
IEH o s s conpornon RPG OUTPUT SPECIFICATIONS o, e S
75 76 77 78 79 80
Program Keying Graphic Card Electro Number Page o Program
Programmer l Date Instruction Key —
I o
O 56 fsoace] Skip Output Indicators /-—————___—_—’_\> Commas | 22r0 Batances | | sign | CR | - X = Remove
I A Field Name 10 Print Plus Sign
f=] B3 _ 5-9=
= or v, v 1 Al d Y = Date User
A % es es . "
Filename HEHEHM EXCPT Name Field Edit "
& or gLl And And End Yes No 2 B | K|z zma Defined
) f= Record N Z{Rl2]< x| Position No Yes 3 C |t Suppress
Line g ecord Name NEn g 2 gls] in - No No 4 DM
= D ERRS § S| outour |5 -
o|R s |3 1 *AUTO = | Record |@ Constant or Edit Word
alnlo = z = \“B o 1 2 3 4 5 6 7 8 9 1011 3213 1415 16 17 18 19 20 21 22 23 24
3 4 s|e|7 8 9 1011 1213f1a)ishisf17|18|19 20{21 22}23]|24]25|26 |27 |28) 2930 31] 32 33 34 35 36 37]38[39[40 s1 42 43]4a[45 a6 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70}71 72 73 74
o[1] lo|
ol2| lof
o[JolICFTILE] | TIIME
ru
ols| |of 7 \ T [}
Y !
[+ Jo 4 "oz
ol6| 1O
ol7] lol

Chapter 5. RPG II Programming 5-7

Negative Response Operations

To tell the remote system or program that your program found something wrong
with the data it received (that is, to send a negative response), use a negative
response operation ($$NRSP or $$NRSPNI). These operations are for the Intra
and SNUF subsystems only.

Enter the operation on the output specifications. You can also enter the
following two optional fields on the output specifications:

Positions Field Description

1 Indicates whether sense data is being sent: 0 or blank
indicates that no sense data is being sent; 8 indicates
that sense data is being sent.

2 through 9 The sense data to be sent with the negative response.
The sense data is user-defined, but the first 4
characters must be 10xx, 08xx, or 0000. For a
description of the sense data, see the Systems Neiwork
Architecture Reference Summary.

The following figure shows how you can enter the negative response values on the
output specifications:

b 1
: . RPG OUTPUT SPECIFICATIONS GX21-9090
% laicreanonal Business Mechines Corporation 12 Printed in US.A.
’ . 75 76 77 718 79
Keying Graphic Card Electro Number o o Program
| eate y Instruction Key Identification
i
i U Zero Balances X = Remnove
Skip Qutput Indicators o Commas NoSign | CR | —
) Field Name ~~-_—-—~———> to Print o | © PlusSign | o o
oF v v B A F Y = Date User
: . es es ! R
Fiienume N EXCPT Name Ye. N 2 s p Field Edit Defined
fky = 4 And And End M s y" 3 ol L |2=7e
- . - 1 S] Position o es Suppress
@ {r_z Hecord Name pTeTe] & ; F 3| in . No No 4 Dl Mm
JCi) 8 | < 8{5 Qugut {5
5 5 g *AUTO 1 Q] Record ja@ Constant or Edit Word
= z z Wi o 12 3456 7 8 9 10111213 141516 17 18 19 20 21 22 23 24
18119 20§21 2223|274 |25{26 |27 28] 2950 31] 32 33 34 35 36 3738]39}ac 41 42 63]aafus 46 47 48 49 50'51 52 53 54 55 56 57 58 59 60 61 62 62 64 65 66 67 68 69 70}71 712 73 7

NRISIP

5-8 S8P-ICF Programming for Subsystems and Intra Subsystem Reference

Cancel Operations

Fail Operation

There are two types of cancel operations: those that cancel a group of recurds
that has just been sent (used by the SNUF and Intra subsystems only). and the
cancel invite operation, which cancels an invite operation for which no input has
yet been received (used by the BSCEL and Intra subsystems onlv).

o For the SNUF and Intra subsystems only, to cancel a group of records that
has just been sent, specify a cancel operation ($$CANL or $SCANILNI). The
cancel operations have no fields associated with them; therefore, you need
only enter the operation on the output specifications.

® For the BSCEL and Intra subsystems only, to cancel any valid invite
operation for which no tnput has yet been received {rom any invited session,
use the FORMAT parameter in the WRITE statement to specify the cancel
invite operation ($$SCNLINV). The cancel invite operation has no additional
parameters or data associated with it. For restrictions on the use of this
operation by the BSCEL subsystem, see “Cancel Invite Operation” in Chapter
2 of the SSP-ICF Base Subsystems Reference manual.

To tell the remote system that your program detected an abnormal condition (for
example, it received incorrect data), specify a fail operation ($SFAIL). If you are
using IDDU functions, select the send fail. The fail operation has no fields
associated with it, and no data can be sent by the operation. Therefore, you nesd
only enter the operation on the output specifications. The fail operation can be
used only with the Intra, Peer, and APPC subsystems.

End of Session Operation

To end a session with a remote system, use the end of session operation (FSEOS).
The end of session operation has no fields associated with it; therefore, you need
only to enter the operation on the cutput specifications.

Note: If an RPG II program is started with an operation that includes aon
end of transaction indication (by an *EXEX procedure stort reguests,
the program should issue an end of session or a release operaiion o
free the session ID entry in the internal table of idenitfiers for the
WORKSTN file.

Chapter 5. RPG II Programming ©-9

WORKSTN Operations

The following WORKSTN operations and RPG cycle input are used with
interactive communications:

o ACQ (acquire) operation
e REL (release) operation
e NEXT operation

e READ operation

ACQ (Acquire) Operation

The ACQ operation acquires the session specified by the 2-character session
identifier (literal or variable) in factor 1 of the calculation specifications. The first
character of the identifier must be numeric (1 through 9), and the second
character must be alphabetic (A through Z, $, #, or @). Factor 2 specifies the
name of the WORKSTN file from the file description specifications.

If an error occurs when the program attempts to acquire the session, the indicator
in positions 56 and 57 is set on, and the next calculation step is executed. If no
indicator is specified, the program halts unless the INFSR subroutine is specified
in the program. If the INFSR subroutine is specified, the subroutine receives
control. See “Return Code Processing in RPG II” later in this chapter for more
details on error handling.

The following figure shows how you can specify an ACQ operation on the
calculation specifications:

S RPG CALCULATION SPECIFICATIONS . Gx21.9093
Ioes Printed in U.S.2
mAEEET % International Business Machines Corporation)

3 - 1 75 76 771 78
Program Keying Graphic Card Electro Number N . Program
) age o ificati
Programmer l Date Instruction Key identification
. Indicators Result Field Resulting
C 5 Indicators
2 _ | I . “Arithmetic
=8 8|z [[Pius [Minud] zero
i H § d And Factor 1 Operation Factor 2 Bl% Compare Comments
2 e [E -
Line €5 & Name Length H P> < z
ElEQf. - p - |« [Lookup(Factor 2)is]
2l8 5i2 2 2 &2 [Vin] Low [Equa
3 4 sfef7 slaliojnn)i2)13rafis16{17{18 19 20 21 22 23 24 25 26 27 |28 29 30 31 32|33 34 35 36 37 38 39 40 41 4243 44 45 46 47 48[49 50 51|52|s3|54 55|56 57|58 s9}60 61 62 63 64 65 66 67 68 €0 70 71 7:
o] e DL NNEE dQ | [TICFTLIE]
ol2| {c] I —lolr/-]
o2/ fc] | N SISNID TCFTL
ofsl |ci .
os] Ic |

5-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

REL (Release) Operation

The REL operation issues a release for the session specified in factor 1 (literal or
variable) of the calculation specifications. Factor 2 specifies the name of the
WORKSTN file from the file description specifications.

If an error occurs when the program attempts to release the session, the indicator
in positions 56 and 57 is set on, and the next calculation step is executed. If no
indicator is specified, the program halts unless the INFSR subroutine is specified
in the program. If the INFSR subroutine is specified, the subroutine receives
control. See “Return Code Processing in RPG II” later in this chapter for more
details on error handling.

For more specific information about the release operation, see the appropriate
subsystem reference manual.

The following figure shows how you can specify the REL operation on the
calculation specifications:

RPG CALCULATION SPECIFICATIONS 6X21-9003
IBM . Srinted in US.A.
= Internations! Business Machines Corporation
: 12
Frogrem Keying Graphic Card Electro Number I:D pogam (2181278 79 80
) [f am
Programmer I Date Instruction [e age| of
o Indicators Result Field Resulting
& Indicators
3‘ s | I e Arithmetic
el 81| Plus [Minus| Zero
g _§ ? And A Factor 1 Operation Factor 2 3 5[Compure Comments
Line [P3 & Name | Length |5 }8[TS a1 <o]T=2
ElE 2y o 5 £ 12 [Cookup(Fector 21
HEEE] 2 &2 [Win | Low [eaual]
3 a s|e|7 sfs|iw0fi1|r2]iafrafis|16]17]18 19 20 21 22 23 24 25 26 27 }os 20 30 31 3233 36 35 36 37 38 30 40 41 42|43 44 45 46 47 4afe0 50 5152]s5|54 55|5e 57]s8 s9f60 61 €2 63 64 65 65 67 68 60 70 71 72 73 74
T
ol e g EL] | [TIdFILE 95
of2| | | ol |
ol e 1119 SISNID REL | [MCFTILE 9
ofs| |cl
o[s| |c|

Chapter 5. RPG II Programming 5-11

NEXT Operation

The NEXT operation forces the next input to the program to come from the
session specified in factor 1 (literal or variable) of the calculation specifications.
Factor 2 contains the name of the WORKSTN file for which the operation is
requested.

If more than one NEXT operation is specified between input (READ or primary
file input) operations, only the last operation has any effect.

If an error occurs during the NEXT operation, the indicator in positions 56 and
57 is set on, and the next calculation step is executed. If no indicator is specified,
the program halts unless the INFSR subroutine is specified in the program. If the
INFSR subroutine is specified, the subroutine receives control.

See “Return Code Processing in RPG II” later in this chapter for more details on
error handling.

The following figure shows how you can specify the NEXT operation on the
calculation specifications:

IBM RPG CALCULATION SPECIFICATIONS GX21-808¢
"% Internstonal Business Machines Corporation Printed in {
Program - ; 12 75 76 7
ogr Keying Graphic Card Electro Number Program
Programmer I Date Instruction |y, Page of \dentification
s Indicators f Resulting
c § icaf Result Field Indicators
S T | l Arithmetic
S8l A A & | [P o 7ore
3| § H Factor 1 Operation Factor 2 8|5 compure Comments
we |Efe e Name | Longth |5 |gI7>Th <277
ElE ols 5 5 |5 [EookuptFactor 21
HEEE 2 § &2 [T Low [Equn
3 4 sletr sfofro]nfr2)13f1afi5|16[17}18 19 20 21 22 23 24 25 26 2728 29 30 31 32]33 34 35 38 37 38 39 40 41 4243 44 45 46 47 48as 50 51 55/56 67|58 59]60 61 62 63 64 65 68 67 63 89 70
o] lc \IZS t T FIIL
02| IC R~
ool e GSNID X1 I od
0|4 C|
ofs| |c|

5-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

READ Operation

The READ operation requests input from any display station or session (accept
input operation) or, when used with the NEXT operation, from a specific display
station or session (get operation). If a NEXT operation has been executed since
the last READ operation, the READ operation does a get operation for the
session specified by the NEXT operation. If no NEXT operation has been
executed since the last READ operation, the READ operation does an accept
input operation. Factor 2 contains the name of the WORKSTN file from which a
record should be read.

If an error occurs during the READ operation, the indicator in positions 56 and
57 is set on. If no indicator is specified, the program halts unless the INFSR
subroutine is specified in the program. If the INFSR subroutine is specified, the
subroutine receives control.

See “Return Code Processing in RPG II” later in this chapter for more details on
error handling.

Positions 58 and 59 can contain an indicator to be set on when the end-of-file
condition occurs. The end-of-file condition occurs for a session when an accept
input operation is issued with no outstanding invite operations. (See “End-of-File
Considerations” later in this chapter for more information.) The end-of-file
indicator is not set on when an end of transaction occurs. The information data
structure (INFDS) must be checked to determine the end of a transaction.

For SSP-ICF input operations, the maximum amount of data that can be received
by a program is 4075 bytes for all subsystems except Intra, IMS, and APPC, for
which the maximum is 4096 bytes.

The following figure shows how you can specify the READ operation on the
calculation specifications:

IBEM RPG CALCULATION SPECIFICATIONS oxar-08
% |nternational Business Machines Corporation rinted in U.S.A.
) 12
Frogram Keying Graphic Card Electro Number Program 75 76 77 78 73 80
Page of W
Programmer l Date Instruction Key
. Indicators Result Field Ruyltlng
] Indicators
o _ - Arithmetic
=5 slz[Pos Minus{ Zero
] And And . S|E
g § 2 Factor 1 Operation Factor 2 #[5[compure Comments
tine [Fls & Name Length g§'>21<2|-=2
Elg ol 13 s & | &= [Lookup(Factor 2)is}
« =
2 ‘§ - § £ 5 g £ High | Low |Equal
3 4 slef7 slalrofn|rzjrafrafis|r6[17]18 19 20 21 22 23 24 25 26 27 |28 29 30 31 3233 34 35 36 37 38 39 40 41 42|43 44 45 45 47 48|49 50 5152]5u]54 55)s8 57]s8 59[60 61 62 63 64 65 66 67 68 68 70 71 72 73 74
001
C TICFTLE] el
02| lc .
o3| |C

Chapter 5. RPG II Programming 5-13

RPG Cycle Input

The RPG program cycle includes a step to read a record from the primary file. If
the primary file is a WORKSTN file, the input operation performed may be an
accept input or a get operation. If a NEXT operation has been executed since the
last RPG input cycle, the RPG input cycle performs an accept input operation.
For information about how the RPG program cycle affects WORKSTN files, see
“How WORKSTN Files Are Processed” in the manual Programming with

RPG II

RPG II Operations Summary Chart

The following chart shows the valid RPG II operations for each subsystem. An x
in a subsystem column indicates that the subsystem supports the operation. A —
in a column indicates that the subsystem does not support the operation.

RPG II SSP-ICF |RPG II Communications Subsystems
Operation Operation |Intra BSCEL CCP CICS IMS 32701 Finance Peer SNUF APPC
Accept input? READ X X X X X X X X X X
Aquire ACQ X X b4 x X X X X X b4
Cancel $$CANLNI X - - - - - X -
Cancel invite $$CNLINV X X - - -
Cancel then invite |$$CANL X - - - - - - - X -
End of session $$EOS X X X X X X X X X X
Evoke $$SEVOKNI X X X X X x4 - X X X
Evoke end of $$EVOKET X X - X X - - x X X
transaction
Evoke then invite [$$EVOK X X X X X x4 X X X
Fail $SFAIL X - - - - - - X - X
Get2 READ X X X X X X X X X X
Invite3 $$SEND X X X X X X X X X X
Negative response |$$NRSPNI X - - - - - - - X -
Negative response |$$NRSP X - - - X
then invite
Put $$SENDNI X X X X X - X X X X
Put end of $$SENDE X X X X - X X X X -
file/chain
Put end of $$SENDET X X - X X - X X X
transaction
Put FMH $$SENDNF X - - - X - X -
Put FMH then $$SENDFM X - - X - X -
invite
Put then invite $$SEND X X X X X X X X X X
Release REL X X X X X X X X X X
Request to change |$$RCD X X X - - - - X X X
direction then
invite
Set timer $$TIMER X X X X X X X X X X
1Although the BSC 3270 subsystem is not part of SSP-ICF, its operations are listed here to show its similarities to other
subsystems.
2If a NEXT operation is executed before the READ operation, the READ operation is a get operation; otherwise, the
operation is an accept input operation.
3Valid only when a $$SEND operation is issued with a record length of zero.
4Valid only when the DATAID and FLDLTH parameters are specified on the SESSION OCL statement, and when the
HOSTNAME parameter on the SESSION statement is CICS or IMS.

5-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Return Code Processing in RPG 11

Following each operation, a return code that indicates the results of the operation
is issued.

The exception/error processing subroutine (INFSR) and error indicators for the
WORKSTN operation codes (REL, ACQ, NEXT, and READ) allow you to
control the program logic if errors occur during WORKSTN file processing. The
WORKSTN file information data structure (INFDS) contains status information
that your program can check to determine what type of exception or error
occurred. The INFDS, which is updated after each operation, also contains
status information for normal conditions. Using the information in the INFDS,
your program can determine which conditions to handle in the INFSR
subroutine.

The following figure shows how to code the INFSR and INFDS on the file
description specifications and the input specifications:

File Description Specifications

For the valid entries for a system, refer to the RPG reference manual for that svstem.

File Type Mode of Processing File Addition/Unordered
F File Designation Length of Key Field or = Extent Exit Number of Tracks
P of Record Address Field S for DAM for Cylinder Overflow
nd of File u
Record Address Type | Z] Name of Number of Extents
i Sequence o Svmoolic P} el Exit
Filename Type of File - Device Device i Tape
File Format © Organization or |8 = Rewind
w S Additional Area |< -~ Storage Index :
Line w a = 5 File
&) S| Block Record v |=|Overfiow Indicator| 2 Condition
|3 SlE B! Length | Length =la Key Field | 2 u1-us,
> Q :\ E 3 sz Starting o5 Continuation Lines z uc —
3 3lsl leo|= - <= Location 2 =)
L2 Sla jw|< External Record Name K Option Entry < <
4 5lef7 8 91011 12 13 14|15]16]17]18]10 20 21 22 25 24 25 26 27 28 29 30 31 32 33 34 35 36 37 3839|140 41 42 43 44 45 46|47 48 49 50 51 52 |53| 54 65 56 57 58 59 |60 61 62 63 64 65 56675%2170” 72|73 74
| L[] WORKSTN
i
02| [FIOCIFIILE! | ICP 8 L 2 ! KS
T 1
o3| |F | KINFDS [INFOI |
0|4 F
b
o|s| |F | J K|
| | | I]
ole| |F | INFS SU
o|7| |F 1
1 [
Bl '
o8] |F LEL , [L
RPG INPUT SPECIFICATIONS Gx21-9094
ternational Business Machines Corporation 12 Printed in US.A
75 76 77 78 79 80
Program Keying Graphic Card Electro Number Pagem o Program m
Programmer] Date Instruction | gy —
5 External Field Name X Field
s Field Location Indicators
. 3 P
Filename] Record Identification Codes 5 3
2 3 S
or it 5 1
>0 A = |5 =
»| Record Name R 1 2 3 ~ From l To |§ RPG 2154 &
3 S5 (2] z . EN ERCT I
z '3_ 2| R - Rk K Field Name S \;u—_ § Zero
Line € ; oz 5 8 s 8 B & ‘;’E Data Structure ™ 5 | 2] & | Plus [Minusor
2 Data oTRT 121813 Pasition |EfO1E Position (€19 8| Position |EfopE| ST - £ 2lse] = Blank
2 s|N N HNEEE curs 5|2 =
S('(‘t;fxeue AlnlD E g E 2 3|6 21516 2|5 |als n Times Length 8 O |20) «
3 4 51617 8 9 10 11 121311a15116|17]18 (19 20§21 22 23 24]25§26 |27 [28 29 30 31]32|33]|34|35 36 37 38|39{40{41}42)43|44 45 46 47)a8 49 50 51|52|53 54 55 56 57 58|59 60|61 62|63 6465 66{67 68|69 70]71 72 73 74
o'T [/[INFIODS| S |
ol2| |1 STATUS | [STATUS
o3| |T 23 | 24 MAJCOD
of«l 1 25 | 126 MINCOD
ols| |1
oj6| IT

If neither the INFSR subroutine nor the error indicators are specified, an error is
handled by the RPG II error handling routine, which causes your program to
halt. The operator must then choose the appropriate option.

Chapter 5. RPG II Programming 5-15

The following chart and description show the steps for processing return codes.

Update *STATUS
and return code
in INFDS

*STATUS
less than
99

Continue

B Error
indicator Set on
specified in pos indicator
56 & 57 n
No
Continue
Yes Execute
sg:cFi?iZd INFSR
B subroutine
No
Factor 2
Yes blank on
ENDSR
RPG ! error handling Go to point in
(program halts). If RPG Il cycle
INFSR called by specified by
EXSR, returns to next factor 2 entry
sequential instruction. on ENDSR

*GETIN (Beginning of next cycle)
*DETC (Detail calculations)

*CANCEL (Cancel program)

§7910057-0

5-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

When an operation is completed, the status information (*STATUS and
the return code, in most cases) is updated in the INFDS.

If the condition is normal, the next instruction in your program is
processed.

If the condition is an exception or error (*STATUS equal to or greater
than 99), a check is made to see whether an indicator was specified in
positions 56 and 57 of the calculation specifications for a READ, ACQ,
REL, or NEXT operation.

If an indicator was specified, that indicator is set on, and the next
instruction in the program is processed. If the INFSR subroutine is to be
run, you can issue an EXSR operation.

If an indicator was not specified, a check is made to see whether an INFSR
was specified. If not or if factor 2 of the ENDSR is blank, RPG displays a
message on the system console.

If INFSR was specified and factor 2 of the ENDSR operation contains an
entry, control is passed to the point specified by factor 2 on the ENDSR
operation. Factor 2 can be *GETIN to go to the beginning of the next
input cycle, *DETC to perform detail calculations, *CANCL to cancel the
program, or a variable that contains one of these values.

Chapter 5. RPG II Programming 5-17

INFSR Subroutine Coding Considerations

If you use an INFSR subroutine, you should check return codes 80xx and 81xx.
If any of these codes occur, the INFSR subroutine should issue an $$EOS
operation to release the session. This clears the RPG internal table entry for that
session and allows that entry to be used by a subsequent session.

The return code indicating that the timer has expired (code 0310) causes the
INFSR subroutine to be run. If you use the set timer operation, be sure to check
for this return code.

When the INFSR subroutine is specified for the WORKSTN file and positions 56
and 57 of the calculation specifications are blank, any exception or error
encountered for that file causes the INFSR subroutine to be run. Therefore, if
operations that can cause exceptions or errors are issued from the subroutine to
the WORKSTN file, be careful to code the subroutine to prevent loops. The
following figure shows one way of doing this.

=35 RPG CALCULATION SPECIFICATIONS GX21-6093
255 = Business Machines Printed in U S.4
- 12
Frogram Keying Graphic Card Electro Number \ . oogam (BT
Programmer | Date Instruction Key bt Identification
> Indicators Result Field Ros}llting
C % Indicators
S - | l . ‘Arithmetic
4] And And) S|z [[Fros Wimu] zero
g § z Factor 1 Operation Factor 2 8|5 |___Compare Comments
Line [Fls & Name Length | 5 33 TS1<7]1-2
ElE :‘ 8 I3 8 £ |+ {Lookup(Factor 2)is!
£185)2 2 2 |2 [Figh | Low [Eauat
3 4 50617 81911011112[13[14115{16/17]18 19 20 21 22 23 24 25 26 27 |28 29 30 31 32133 34 35 36 37 38 39 40 41 4243 44 45 46 47 48)49 50 51|52)53|54 55|56 57|58 59|60 61 62 63 64 65 66 67 68 69 70 71 7
o] JefSh ERRS HEGSR]
ozl e 1115 NE | 1 IFACT2 | [4
e || 15 GOTA ENDS
of4| |cl 0
7
ol fe E |*%GETIIN'| | [FACT]
ole| |c] 2
0
oL lc i/ Ue lecolvelrly. jojp riatilol
L4
o|s| |c| S
ofs! |c 1
ol e D T
e SETOF 5
] e SRFACTIZ
113} ¢ [

Indicator 50 is set on when the INFSR subroutine (ERRSUB) is entered for the
first time. If any errors occur in the subroutine ERRSUB that would cause the
subroutine to be reentered, the subroutine exits to the RPG error handler (factor
2 is blank). The error handler displays the appropriate error message. If the
operations issued in the subroutine ERRSUB do not cause exceptions or errors,
the subroutine exits to the start of the RPG cycle.

5-18 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

RPG II Status Values

The following shows the *STATUS values as returned in the RPG II INFDS for
each major and minor return code. Use this list to determine the SSP-ICF return
code or group of codes that corresponds to the *STATUS value. Then see the
description of the major and minor return codes in the appropriate subsystem
reference manual. All return codes that are valid for that subsystem are described
in that reference manual. A summary chart in Appendix B shows which codes are
valid for each subsystem.

Major Code Minor Code *STATUS Value
00, 01, 02 All (except 10) 00000
00, 02 10 01321
03 00 01311
03 01, 02, 03 01299
03 08 01275
03 10 01331
03 14 01311
03 15 01299
03 1C 01275
04 02, 11, 12 01299
08 00 01285
11 00 00011
28 00 00000
34 01 01201
34 31 01201
80, 81, 83 All 01251
82 All 01281

Note: RPG II performs additional error checking before passing a request to
data management. If an error is found, the status value is updated,
and the return code field remains unchanged.

Chapter 5. RPG II Programming 5-19

RPG II Programming Considerations

The following topics describe items you should consider when you write an

RPG II program for interactive communications. Information on these and other
considerations for WORKSTN file programming is in the manual Programming
with RPG II.

Using Continuation Options on the File Description Specifications

The following continuation options can be coded on the file description
specifications for WORKSTN files:

s NUM
e SAVDS
e IND

e SLN

e ID

e INFSR
e INFDS
e FMTS

e CFILE (for use with IDDU only)
NUM Continuation Option

The NUM continuation option specifies the maximum number of display stations
and sessions that can be attached to the file at one time. This number should
include the number of requesters as specified by the MRTMAX parameter plus
the number of display stations and sessions that the program acquires at a time.
The display stations and sessions specified by the MRTMAX parameter are
reserved for requesters, and the remaining display stations and sessions can be
acquired. For example, if the MRTMAX parameter value is 4 and the NUM
value is 5, only one session can be acquired at a time. The number specified must
be right-adjusted in positions 60 through 65. If no number is specified, 1 is
assumed.

Note: Even if the program is an SRT program, a NUM value of 2 (or more)

must be specified if the program also acquires display stations and
sessions.

5-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

SAVDS Continuation Option

The SAVDS continuation option specifies the name of a data structure that can
be saved and restored for each display station and each session in this file. This
data structure cannot be a display station local data area, and it cannot contain a
compile-time array or a pre-execution-time array.

Note: Only one copy of the data structure is available at a time. For
example, if a program receives input from a session, only the data
structure for the session is available; the data structure for the display
station is not available. The only data structure available is that of
the display station or session from which the last input came.
Therefore, you should not use this data structure to save the identifier
of a display station for which an interactive communications request
has been made.

IND Continuation Option

The IND continuation option specifies the indicators associated with each display
station and session that are to be saved and restored. The indicators numbered 01
through the number specified by the IND value are saved. The entry must be
right-adjusted in positions 60 through 65.

Note: Only one copy of the indicators is available at a time. For example, if
a program receives input from a session, only the indicators for the
session are avatlable; the indicators for the display station are not
available. The only indicator available is that of the display station
or session from which the last input came.

SLN Continuation Option

The SLN continuation option specifies the starting line number for display .
formats. The SLN option does not apply to sessions.

ID Continuation Option

The ID continuation option specifies the name of a 2-character field to contain
the identifier of the current display station or session. Following input
operations, the field contains the identifier of the display station or session from
which the input was received. Any output operations are directed to the display
station or session whose identifier is in the field. Thus, by changing the contents
of the field, the output can be directed to any session or display station. A
session identifier must be numeric-alphabetic (for example, 1S); a display station
identifier must be alphabetic-alphameric (for example, W1).

INFSR Continuation Option
The INFSR continuation option specifies the name of a subroutine to be used for

exception/error handling. “Return Code Processing in RPG II,” earlier in this
chapter, describes INFSR in more detail.

Chapter 5. RPG II Programming 5-21

INFDS Continuation Option

‘The INFDS continuation option specifies the name of a data structure to contain
information concerning exceptions and errors. “Return Code Processing in
RPG I1,” earlier in this chapter, describes INFDS in more detail.

FMTS Continuation Option

The FMTS continuation option specifies the name of the display screen format
load member containing the operations for this program. The name entered in
this option overrides the name normally assumed by the RPG II compiler (the
program name followed by FM). If the only operations used in the program are
the interactive communications operations, *NONE must be specified for this
option.

CFILE Continuation Option

The CFILE continuation option specifies the name of an IDDU file definition.
This file definition contains the IDDU formats that may be used with an Intra or
an APPC communications session.

SRT and MRT Program Considerations

An SRT (single requester terminal) program can have only one requesting display
station or only one requesting session. SRT programs can acquire multiple
sessions or display stations, using the ACQ operation. If an SRT program
acquires any display stations or sessions, the NUM value on the file description
specifications must reflect the maximum number of concurrently attached sessions
and display stations (all those that are acquired plus one requester).

An MRT (multiple requester terminal) program can have multiple requesting
display stations and/or sessions. The first requester of an MRT program causes
the program to be loaded and initiated. Each succeeding requester attaches to the
program at the beginning of an input cycle or when a READ operation is
performed. The program is notified of the new requester via a return code on the
input operation. MRT programs can also acquire additional display stations and
sessions. The NUM value on the file description specifications must include the
maximum number of requesters plus the number of sessions and display stations
that are acquired and that are active concurrently.

5-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

End-of-File Considerations

The effects of end of file on the program depend on whether the file is a demand
file or a primary file.

End of file for a demand or primary file occurs only on an input operation (not
preceded by a NEXT operation) and only when no display stations or sessions
have been requested for input; that is, there are no outstanding invite operations.
(This second condition could occur because no invite operations were issued or
because all display stations and sessions have been released.) If the program is a
never-ending program (NEP), both end-of-file conditions must exist and the
system operator must have entered the STOP SYSTEM command for the
end-of-file condition to occur.

For a primary WORKSTN file, an end-of-file condition sets on the LR indicator,
and the program goes to end of job. For a demand WORKSTN file, an
end-of-file condition sets on the indicator in positions 58 and 59 of the READ
operation that detected the end of file. This indicator can be the LR indicator, or
the program can set on the LR indicator later. If no indicator is specified, RPG
issues an error message indicating that the end of the file has been reached.

Release Considerations

You can specify a release operation by using the REL operation (described earlier
in this chapter) or by coding an R in position 16 of the output specifications. If a
format name is specified in the same output specification that contains an R in
position 16, the format is displayed or the interactive communications operation is
performed before the display station or session is released. When a program ends,
display stations and sessions are automatically released.

If a session was acquired, the release operation terminates that session. If a
display station was acquired, the release places the display station in standby
mode. A

If the session was started by a remote procedure start request or if a display
station requests the program, the release operation passes the session or display
station on to the next step in the procedure. If the program is an MRT program,
the session or display station is released immediately. If the program is an SRT
program, the session or display is released when the program terminates. If the
program is the last step in the job, the display station returns to the command
display, or the session is terminated when the program ends.

Chapter 5. RPG II Programming 5-23

Restrictions for WORKSTN Files

The following restrictions apply to using a WORKSTN file in an RPG II
interactive communications program:

e The WORKSTN file must be specified as a combined file (capable of both
input and output).

e If the WORKSTN file is specified as a primary file, no secondary files are
allowed in the program.

e Only one WORKSTN file is allowed in a program.

® A program cannot contain a KEYBORD, CRT, or CONSOLE file if it
contains a WORKSTN file.

e Control level indicators, match field values, and look-ahead fields are not
allowed.

o The first page indicator (1P) is not allowed.

Input and Output Considerations

Considerations for when output can be sent and what input operations are
required depend on whether the communication is with a display station or
session that is acquired or is a requester.

When a requester (either a display station or a session) attaches to a program, the
first operation is an input operation. The input operation fills in the ID field,
which is used to direct subsequent operations to the appropriate session or display
station. If data accompanied the request, the data is passed to the program on
this first input operation; if no data accompanied the request, a blank record is
passed to the program. If the program is an SRT program, output to the
requester may precede input; however, if output precedes input, data sent with the
request is lost. Output can precede input if the requester’s ID or blanks are
specified in the ID field and output is performed as the first operation to the file.

When a session or display station is acquired, the next input operation retrieves a
blank record. If an output operation (any put or evoke with data) is performed in
the same cycle as the acquire operation, the next input operation retrieves a data
record.

5-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

RPG 1II Coding Examples

For a complete example of an RPG II communications program, see “Writing an
RPG 1I Program That Uses the Intra Subsystem” in Chapter 6 of the SSP-ICF
Guide and Examples manual. The same programming example described in the
Intra chapter is also used in for the other subsystems, but only the changed areas
needed to allow communications with that type of remote system are shown.

Chapter 5. RPG II Programming 5-25

5-26 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Chapter 6. The Intra Subsystem

Overview of the Intra Subsystem 6-3
Setting Up an Intra Subsystem 6-5
CNFIGICF Procedure 6-5
Explanation of Displays 6-6
Subsystem Member Definition 6-7
Display 1.0 SSP-ICF Configuration Member Definition 6-7
Display 2.0 SSP-ICF Configuration Member Type 6-8
Display 22.0 Subsystem Member Definition 6-9
Modifying a Subsystem Configuration 6-10
Enabling and Disabling the Intra Subsystem 6-10
Starting Communications Sessions That Use the Intra Subsystem 6-11
SESSION Statement 6-12
Procedure Start Requests 6-13
Communications Operations for the Intra Subsystem 6-14
Accept Input Operation 6-17
Acquire Operation 6-18
Acquire Operation Examples 6-18
Assembler 6-18
BASIC (Normal Acquire) 6-18
BASIC (Special Acquire) 6-19
COBOL 6-19
RPGII 6-19
Cancel Operations 6-20
SNUF-Related Cancel Operations 6-20
BSCEL-Related Cancel Invite Operation 6-21
End of Session Operation 6-22
Ending Sessions Started by an Evoke Operation from Another
Program 6-22
Evoke Operations 6-23
Assembler Evoke Operation (Macroinstructions) 6-25
$WSIO Macro 6-25
Example of $WSIO Macro 6-25
$EVOK Macro 6-26
Example of $EVOK Macro 6-26
BASIC Evoke Operation Parameters 6-27
IDDU Format Considerations 6-27
BASIC Example (Evoke Operation) 6-28
COBOL Evoke Operation Parameters 6-29
IDDU Format Considerations 6-29
COBOL Example (Evoke Operation) 6-30
RPG II Evoke Operation Parameters 6-31
IDDU Format Considerations 6-31
RPG II Example (Evoke Operation) 6-32
Fail Operation 6-33

Chapter 6. The Intra Subsystem

6-1

Get Operations 6-35
Invite Operation 6-37
Negative Response Operations 6-38
Put Operations 6-39
Release Operation 6-41
Request to Change Direction Operations 6-42
Set Timer Operation 6-44
Intra Subsystem Return Codes 6-45

6-2 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Overview of the Intra Subsystem

The Intra subsystem allows interactive communications between two application
programs in the same System/36. Multiple pairs of application programs can
communicate concurrently in the same subsystem.

System/36
PGMA PGMB PGMC PGMD
I

Acquire 1S . .

Evoke PROGB Send Receive Send Receive|
SSP-ICF
Data)

4 Management r
USRS | Intra 1 [EOSREP !

Subsystem N e e
Support

Location Name = SYS36 Configuration Record = INTRA1

$7910003-0

Chapter 6. The Intra Subsystem 6-3

The Intra subsystem can also be used in the following ways:

e [t can be used in a limited way to test new communications programs that are
to be run with any of the other subsystem types, such as BSCEL or Peer.
You can test a program in the Intra subsystem to help debug the program
before you attempt to use it to communicate with its intended remote system
over a communications line.

During testing, you can check only the return codes returned by the Intra
subsystem. After testing, if you want to check other return codes not
supported by the Intra subsystem, you can add the necessary coding changes
before actually running the program with the intended subsystem.

e It can be used to help train programmers in writing SSP-ICF programs.
Complete communications programs (written in assembler, BASIC, COBOL,
and RPG II) that use the Intra subsystem are shown and described in the
SSP-ICF Guide and Examples manual.

e It can be used with one program to control access to a critical file. All
programs attempting to access the file would have to communicate with that
program via the Intra subsystem before the file could be accessed. Security
can be in effect on System/36, and journaling could be done by the program
performing the actual input or output operations to the file.

e It can be used with externally described field, format, and file definitions (also
called data definitions) to send data records. Data definitions, which describe
data records and communications functions, are defined separately from the
application program. The interactive data definition utility (IDDU) is used to
create data definitions.

For more information about using IDDU, refer to the manual Getting Started

with Interactive Data Definition Utility. For more information about IDDU
and communications files, refer to the online information for IDDU.

6-4 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Setting Up an Intra Subsystem

Before an Intra subsystem can be used for communications, the SSP-ICF support,
the Intra subsystem support, and configuration members must be put on
System/36. This is accomplished with the following procedures:

1. The CNFIGSSP (SSP configuration) procedure must be used to copy (install)
the SSP-ICF support and Intra subsystem support from diskette to the
system. (See the manual Changing Your System Configuration for the
description of the CNFIGSSP procedure.)

2. The CNFIGICF (SSP-ICF configuration) procedure must be used to create a
particular Intra subsystem configuration member. The name of the created
subsystem configuration member is then used when that subsystem is started
by the ENABLE procedure command.

Multiple Intra configuration members can be created and stored in the system,
and more than one Intra subsystem can be active and in use at the same time.
(The name of each member must be unique within a library.) Subsystems of other
types can also be active.

CNFIGICF Procedure

This section describes the displays and parameters (shown in prompt form) needed
to define and create an Intra subsystem configuration. To help you define the
attributes of a particular Intra subsystem member, use the prompting facilities in
the CNFIGICF procedure to specify the parameter values that define the
subsystem attributes and create the subsystem member.

A general description of the configuration process is contained in the SSP-ICF
Guide and Examples manual.

Chapter 6. The Intra Subsystem 6-5

Explanation of Displays
On the following displays for an Intra configuration member:

e All the prompts that can be displayed for the Intra subsystem are shown on
the displays and are described in the text. The prompts are shown for all the
parameters that are needed either to create a new Intra configuration member
or to change (edit), delete, or review an existing member.

Note: The prompt lines that are actually displayed on succeeding
displays depend on the task specified on display 1.0 and on the
options that you select on other displays. Prompt lines not shown
do not apply to the task or options previously selected.

e For this set of example displays only, the values to the right of the prompts
are shown with:

— Default values, supplied by the system. If the system provides a default
value, that value is shown here. (You can enter a different value if you
wish.)

— Sample values, as typical examples. If fewer characters are shown than
the field allows, the remaining positions in the field are underscored.
Note that once a value has been entered in a field, it becomes the default
value for any related fields on the succeeding displays.

— Underscored fields represent fields in which a value can be specified or a
default value (if any) is assumed when a value is not specified. The
length of the underscore represents the length of the field.

— Fields filled with asterisks (*) indicate that the field contains a value that
the CNFIGICF procedure duplicates from a value that was entered on a
previous display.

— Fields with values in them indicate that the value shown is the only value
that can be specified for this subsystem.

6-6 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Subsystem Member Definition

Display 1.0 SSP-ICF Configuration Member Definition

On display 1.0, specify the name of the subsystem configuration member you are
creating or using in some way, and specify what is to be done with the member.

N

4.
5.

.0

. Configuration member name INTRA
. Library name « +« 4 4 4« « « « « « « . . HLIBRARY

. Select one of the following:
l. Create new member

2.
3.
4.
5.

Existing member name .

Existing member library name HLIBRARY

Cmd7-End

Edit existing member

Create new member from existing member
Remove a member

Review a member

Option . Coe e e .

\

SSP-ICF CONFIGURATION MEMBER DEFINITION

Cmdl9-Cancel

/

Configuration member name: Enter the name that identifies this configuration
of the subsystem. This name is used to store the subsystem configuration
member in a library, and it is also used in the ENABLE and DISABLE
procedure commands to start and stop the subsystem.

Library name: Enter the name of the user library in which the configuration
member is to be stored. The default is the library that you are currently
using.

Select one of the following: Select one of the five options. For example, if
you want to modify an existing member then store the modified member as a
new member (without changing the existing member), select option 3.

Existing member name: This prompt is displayed only if you select option 3
for prompt 3. Enter the name of the existing subsystem configuration
member that is to be used to create the new member. (The existing member
is not changed.)

Existing member library name: This prompt is displayed only if you selected

option 3 for prompt 3. Enter the name of the library that contains the
existing member. The default is the library name specified for prompt 2.

Chapter 6. The Intra Subsystem 6-7

Display 2.0 SSP-ICF Configuration Member Type

On display 2.0, specify the type of member you want to define or redefine.

//"

o

2.

Select one of the following options:

Cmd3-Previous display
Cmd7-End

\

0 SSP-ICF CONFIGURATION MEMBER TYPE INTRA

1. INTRA

2. BSC

3. SNA

4. Async

5. PC Support/36
Option: 1

Cmd5-Restart CNFIGICF

Cmdl9-Cancel COPR IBM Corp. 1986

/

Select one of the following options: Because the Intra subsystem member is being
defined, enter a 1. The Intra subsystem does not require a line member to be
defined.

6-8 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Display 22.0 Subsystem Member Definition

On display 22.0, specify the remote location name with which your program is to
communicate. For the Intra subsystem, the location is within your System/36;
therefore, you can use the other program name as the location name.

22.0 SUBSYSTEM MEMBER DEFINITION INTRA \\\\

1. Remote location mame« INTRA
Cmd5-Restart CNFIGICF Cmd7-End
Cmdl9-Cancel COPR IBM Corp. 1986

o /

1. Remote location name: Specifies the name of the remote location with which
your program will be communicating. Enter a name of no more than 8
characters. This name is used to match a SESSION statement with a
subsystem configuration; therefore, to use this configuration, you must also
enter this name in the LOCATION parameter of a SESSION statement. See
“SESSION Statement” later in this chapter for a description of the SESSION
statement. If you do not enter a location name, the subsystem configuration
member name is also used as the location name.

This location name also appears in system messages to help operators identify
the particular subsystem configuration.

Chapter 6. The Intra Subsystem 6-9

Modifying a Subsystem Configuration

To change one or more of the attributes defined in a subsystem member of an
existing Intra subsystem configuration, you can use the CNFIGICF procedure to
change (edit) the member. (For the changed attributes to take effect, the
subsystem using the configuration must be disabled and enabled again.) After the
CNFIGICF procedure is completed, the updated member definition is used each
time any subsystem associated with the changed member is enabled.

Enabling and Disabling the Intra Subsystem

The ENABLE and DISABLE procedure commands are used to start and end the
Intra subsystem on System/36. The ENABLE procedure command associates the
subsystem support with a particular subsystem configuration member.

The DISABLE procedure command ends (disables) a specified subsystem. When
the DISABLE procedure command is performed, the disabled subsystem cannot
handle program communications requests because it no longer exists in main
storage.

See the section “Enabling and Disabling Subsystems” in Chapter 1 for a
description of the ENABLE and DISABLE procedures.

6-10 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Starting Communications Sessions That Use the Intra
Subsystem

System/36 communications sessions using the Intra subsystem can be started in
one of the following ways:

e Your program can issue an acquire operation to start (acquire) the session.
The acquire operation identifies the session to be started and must match the
session identifier specified in an associated SESSION statement, when one is
used.

e Another program in System/36 can start your program indirectly with a
procedure start request (actually, an evoke operation). The request in the
Intra subsystem is made when the program issues an evoke operation that
identifies a procedure which then starts your program. (The evoke operation
does in the Intra subsystem what a procedure start request does in other types
of subsystems when the request is sent by a remote system to System/36.)

The following sections describe the SESSION statement and procedure start
requests for the Intra subsystem.

Chapter 6. The Intra Subsystem 6-11

SESSION Statement

Each program (except BASIC programs) that is to acquire a session must have at
least one SESSION statement included in the procedure that loads the program.
The SESSION statement must be placed between the LOAD and RUN OCL
statements used for the program. The SESSION statement specifies three things:

e It identifies, on the SYMID parameter, the session to be acquired later in the
program.

e [t identifies, on the LOCATION parameter, the location with which the
program is to communicate (in this case, another program in System/36).
Before the SESSION statement is executed, the Intra subsystem associated
with the specified location must have already been started. (The location
name was specified in the subsystem configuration member.)

e It specifies, on the BATCH parameter, whether the session is to be used for
batch processing. If BATCH-NO is specified or assumed, several of the
communications operations (for example, the cancel, negative response, and
request to change direction operations) are not valid for an Intra-supported
(interactive) session. If BATCH-YES is specified, CONFIRM is ignored on
an end of transaction operation.

The SESSION statement, then, identifies the session and location with which your
program is to communicate, and indirectly identifies the subsystem that has the

necessary attributes needed to communicate in the session.

Note: A BASIC program requires a SESSION statement if interactive
session operations are performed.

The syntax of the SESSION statement for the Intra subsystem is:

// SESSION LOCATION-name,SYMID-session id ,BATCH—{NO }
YES

$9020325-0

LOCATION Parameter: Specifies the location name to be associated with this
session. The location name, specified on display 22.0 during subsystem
configuration, refers to the location with which your program is to communicate.
(If the location name parameter was not specified during subsystem configuration,
the location name was assumed to be the same as the subsystem configuration
member name. The subsystem configuration member name is the name that was
specified on the ENABLE procedure command to enable the subsystem now
being used for this session and location.) This parameter has no default.

6-12 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

SYMID Parameter: Specifies the symbolic identifier of the session with which this
SESSION statement is associated. Your program uses this identifier when it
acquires the session and whenever it issues any operation in the session. The
identifier must be 2 characters: the first character must be numeric (0 through 9),
and the second character must be alphabetic (A through Z, $, #, or @). This
parameter has no default.

BATCH Parameter: Specifies whether batch-oriented operations (request to
change direction, negative response, cancel, and function management header
operations) can be issued for this session. YES indicates that they can be issued,;
NO indicates that they cannot and is the default.

Procedure Start Requests

To initiate another procedure on System/36, your program must issue an evoke
operation. The subsystem starts (evokes) the specified System/36 procedure,
which then starts a program with which your program can communicate. For a
description of the four types of evoke operations that can be used to start another
program, see “Evoke Operations” later in this chapter.

Chapter 6. The Intra Subsystem 6-13

Communications Operations for the Intra Subsystem

This section describes all the input and output operations that can be coded in a
program that is to communicate, using the Intra subsystem, with another program
in System/36.

For complete details about how many of these operations work and how to use
them, see the SSP-ICF Guide and Examples manual. Also, for complete coding
examples of two Intra communications programs in assembler, BASIC, COBOL,
and RPG II, refer to the examples given in the Intra subsystem chapter in the
SSP-ICF Guide and Examples manual.

The following summary chart presents all the Intra subsystem operations and
their operation codes in all four languages. Then, in the topics that follow, each
operation or group of related operations is described. Each operation is
described, its operation codes in all four languages are shown in a smaller chart,
and coding examples (if appropriate) are given.

Note: In the operation charts in this section, the codes that are valid for
each operation are listed to the right of the operation in their
respective language columns. If an operation is not valid in one or
more languages, dashes (—) are shown in the columns instead.

6-14 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Intra Subsystem

Language Operation

Operations Assembler BASIC COBOL RPG I1
Accept input ACI WAITIO and READ?2 READ3
READ!
Acquire ACQ OPEN ACQUIRE ACQ
Cancel4 CAN $$CANLNI $$SCANLNI $$CANLNI
Cancel invite CNI $$CNLINV $$CNLINV $$CNLINV
Cancel then get4 CANG — — —
Cancel then invitet CANI $$CANL $$CANL $$CANL
End of session EOS $$EOS $$SEOS $$EOS
Evokel0 EVK5 $$EVOKNI $$SEVOKNI $$EVOKNI
Evoke end of transactionl0 EVES5 $$EVOKET $$EVOKET $$EVOKET
Evoke then get10 EVGS5 — — —
Evoke then invitel0 EVI5 $$EVOK $$EVOK $$EVOK
Fail FAIL $$SFAIL $SFAIL $SFAIL
Get10 GET READ READS NEXT and
READ7
Get attributes GTA ATTRIBUTES$ ACCEPT —
Get status? GST ATTRIBUTES$ ACCEPT —
Invitel0 INV $$SENDS8 $$SEND8 $$SEND8
Negative responset NRP $$SNRSPNI $$SNRSPNI $$NRSPNI
Negative response then get4 NRPG - — —
Negative response then invitet NRP1 $SNRSP $SNRSP $$NRSP
Put10 PUT $$SENDNI $$SENDNI $$SENDNI
Put end of chain PEC $$SENDE $$SENDE $$SENDE
Put end of transaction10 PEX $$SENDET $$SENDET $$SENDET
Put then get10 PTG - -— -
Put then invitel0 PTI $$SSENDS $$SENDS $$SEND8
Put FMH PFM $$SENDNF $$SENDNF $$SENDNF
Put FMH then get PFMG — — -
Put FMH then invite PFMI $$SENDFM $$SENDFM $$SENDFM
Release REL CLOSE DROP REL
Request to change direction then get4 RCDG — - -
Request to change direction then invite4 RCDI $$RCD $$SRCD $$RCD
Set timer STM $$TIMER $$TIMER $$STIMER

1In BASIC, an accept input operation is performed only if the WAITIO operation is followed by a READ operation.
2In COBOL, an accept input operation is performed only if the TERMINAL option of the READ statement is not specified

or is specified with blanks.

3In RPG 11, an accept input operation is performed only if the READ operation is not preceded by a NEXT operation.

4This operation is valid only in batch sessions, when BATCH-YES is specified on the SESSION statement.

5In assembler, a function management header can be sent with this operation by specifying OPM-FMH on the $WSIO

macro.

6In COBOL, a get operation is performed only if the TERMINAL option of the READ statement is specified with

nonblanks.

7In RPG 11, a get operation is performed only if a NEXT operation is executed before the READ operation.

8In BASIC, COBOL, or RPG II, only an invite operation is performed if $$SEND is issued with a record length of 0 bytes.
Otherwise, $$SEND performs a put then invite operation.

9The record area must be at least 128 bytes long.

10In assembler, a confirm indicator can be sent with this operation by specifying OPM-CONFIRM on the $WSIO macro. If
OPM is not CONFIRM it must be ZERO. In other languages, a confirm indicator is specified in an IDDU format

definition.

Chapter 6. The Intra Subsystem 6-15

The following chart presents the Intra subsystem operations and their related
functions in IDDU.

Intra Subsystem

Operations IDDU Keywords! IDDU Functions

Evcke EVOKE Evoke process

Evoke end of transaction | EVOKE and DETACH Evoke process and send

detach

Evoke then invite EVOKE and INVITE Evoke process and invite
Fail FAIL Send fail

Invite INVITE Invite

Put Field2 Put

Put end of transaction DETACHS Send detach

Put then invite Field and INVITE?2 Put and invite

Request to change RQSWRT and INVITE Send request to write and
direction then invite invite

1A confirm indicator can be specified in addition to each function (except RQSWRT and
INVITE, and FAIL). A confirm indicator is specified in an IDDU format definition.

2Data for these operations is specified in a separate user-defined field.

8In addition, a user-defined field can be specified with this operation.

In the topics that follow, each operation or group of related operations is
described; its operation codes in all four languages are shown, corresponding
IDDU keywords (if appropriate) are shown, and coding examples (if appropriate)
are given.

For a description of how IDDU processes functions, refer to Appendix A,

“Processing IDDU Functions,” in the SSP-ICF Base Subsystems Reference
manual.

6-16 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Accept Input Operation

Your program can use the accept input operation to perform three different
functions. You can use it to:

e Obtain data from any program or any display station that has responded to
an invite operation that was previously issued in your program. If data
becomes available to your program from more than one program or display
station before the accept input operation is issued, your program receives the
data that was first made available, whether it was from another program (via
the Intra subsystem) or from a display station.

® Check whether the timer that was set by the set timer operation has expired.
(For a description of the set timer operation, see “Set Timer Operation” later
in this chapter.)

e Wait for a new requester.

— If your program was evoked, it should issue an accept input operation as
its first operation to determine the identifier of the new requester. (Your
program is notified of the new requester by the resulting 01xx return code
at the end of the accept input operation.)

— If your program is an MRT NEP program and no previous invite
operation or set timer operation is in effect, it should issue an accept
input operation so it can wait for a new requester.

Except for the first accept input operation in evoked programs or in MRT NEP
programs, all accept input operations in all programs should be issued to receive
data only after an invite operation is issued by itself or in combination with
another operation, or after a set timer operation is issued.

Operation Assembler BASIC COBOL RPG1II
Accept input ACI WAITIO and READ2 READ3
READ!

1In BASIC, an accept input operation is performed only if the WAITIO operation is followed
by a READ operation.

2In COBOL, an accept input operation is performed only if the TERMINAL option of the
READ statement is not specified or is specified with blanks.

8In RPG II, an accept input operation is performed only if the READ operation is not preceded
by a NEXT operation.

Chapter 6. The Intra Subsystem 6-17

Acquire Operation

Your program uses the acquire operation to establish a session between your
program and the Intra subsystem in System/36. The session being established is
identified in the acquire operation statement, and its identifier must match the
session identifier given in the SYMID parameter of your program’s SESSION
statement for this session.

The session started by the acquire operation is initialized with the parameters
specified in the SESSION statement. (For the Intra subsystem, there are no
parameters on the SESSION statement that override any parameters defined
during subsystem configuration.)

Note: In BASIC, a SESSION statement is not needed if a special acquire
operation is performed. In this case, the location name is specified in
the LOC parameter of the OPEN statement to indicate which location
is to communicate with this session.

Operation Assembler BASIC COBOL RPGII
Acquire ACQ OPEN ACQUIRE ACQ

Acquire Operation Examples

Assembler:

$WSIO DTF-ICDTF2,TERMID-2S,0PC-ACQ

This $WSIO macro is used to acquire the session identified as 2S. The DTF to be
used for sending or receiving data is identified as ICDTF2. (For a complete
description of the $WSIO macro’s communications parameters, see “$SWSIO
Macro” in Chapter 2.) A SESSION statement that specifies SYMID-2S is
required.

BASIC (Normal Acquire):

OPEN #1: "SESSION,ID=1S,RECL=255" IOERR ICFERR

This OPEN statement opens interactive communications file #1 and acquires the
session identified as /S. The maximum record length that can be sent or received
is 255 bytes. If the acquire operation is not successful, the program branches to
the statement labeled ICFERR. A SESSION statement that specifies SYMID-1S
is required.

6-18 ' SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BASIC (Special Acquire):
OPEN #1: "SESSION,LOC=CHICAGO,RECL=255" IOERR ICFERR

This OPEN statement opens interactive communications file #1 and acquires a
session with the remote location identified as CHICAGO. No SESSION
statement is used. For this acquire operation to be successfully performed, a
subsystem configuration specifying the location name CHICAGO must already be
enabled.

COBOL:

ACQUIRE COMM-SESSION FOR COMMUNICATIONS-FILE.

This ACQUIRE statement acquires the session that has the same session identifier
as the value in the COMM-SESSION field. The COMM-SESSION field must be
defined as a 2-character field with a valid session identifier (such as PIC XX
VALUE, “1S’). The session is acquired for the TRANSACTION file named
COMMUNICATIONS-FILE, which has been opened as I-O. A SESSION
statement is required.

RPG II:
Field: Factor 1 Operation Factor 2 Indicator
Positions: 18 - 27 28 -32 33-42 56 - 57
Value: 18 ACQ ICFILE 90

This ACQ operation acquires the session specified by the identifier "1S” in factor 1
of the calculation specifications. Factor 2 specifies the name of the WORKSTN
file from the file description specifications. A SESSION statement that specifies
SYMID-1S is required.

Chapter 6. The Intra Subsystem 6-19

Cancel Operations

There are two types of cancel operations: those that cancel a group of records
that has just been sent (used by the Intra subsystem, particularly when simulating
a SNUF subsystem environment), and the cancel invite operation, which cancels
an invite operation for which no input has yet been received (used by the Intra
subsystem, particularly when simulating a BSCEL subsystem environment).

SNUF-Related Cancel Operations

Your program can use a SNUF subsystem-related cancel operation to cancel the
current chain of data (group of records) that it is sending to the other program.
The cancel operation causes a return code to be returned to the other program,
which is in receive state. The return code indicates to the receiving program that
the sending of the current chain is being terminated abnormally (possibly because
your program detected an error in the data). The receiving program should
disregard all the records in the current chain that have been sent (that is, all
records sent since the previous end of chain indication).

The SNUF-related cancel operation is valid only when three conditions exist: the
operation must be issued only in a batch session, within a chain of records, and
while your program is in send state. The operation does not end the session.

The following are the three types of SNUF-related cancel operations.
e Cancel: Cancels the current chain of data.

o Cancel then get (assembler only): Cancels the current chain of data being
sent, and then waits for the other program to send its own data.

o Cancel then invite: Cancels the current chain of data being sent, invites the
other program to send its own data, and then regains control without having
to wait for the invited input to be received. (An accept input or get operation
must be issued later to receive the invited input.)

The cancel and negative response operations can be considered as a pair. Cancel
is the appropriate response when a negative response indication is received.
However, if the sending program detects an error, cancel can be sent without
waiting to receive a negative response indication.

Operation Assembler BASIC COBOL RPG 11

Cancell CAN $$CANLNI $$CANLNI $$CANLNI

Cancel then getl CANG — — —

Cancel then invitel | CANI $$CANL $$CANL $$CANL

1This operation is valid only in batch sessions, when BATCH-YES is specified on the SESSION]|
statement.

6-20 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

BSCEL-Related Cancel Invite Operation

Your program can use a BSCEL subsystem-related cancel invite operation to
cancel any valid invite operation for which no input has yet been received from
any invited session. (The cancel invite operation is the only valid cancel operation
for the BSCEL subsystem.)

When used by the Intra subsystem, the BSCEL-related cancel invite operation is
valid only when it is issued after any valid invite operation. Normally, no data
will be in the subsystem’s input buffer when the cancel invite operation is issued.
If data is in the input buffer, the operation fails and return code 0412 is received
by the program. Your program must issue an input operation to receive the data.

Operation Assembler BASIC COBOL RPG II
Cancel invite CNI $$CNLINV $$CNLINV $$CNLINV

Note: When this operation is used with a BSCEL subsystem, there are some
restrictions about which operations this operation can follow and there
are some switched line restrictions. Refer to “Cancel Invite
Operation” in Chapter 2 of the SSP-ICF Base Subsystems Reference
manual for that information.

Chapter 6. The Intra Subsystem 6-21

End of Session Operation

Your program uses the end of session operation to terminate a session. Unlike the
release operation, the end of session operation always terminates the session (if it
still exists), and it always gives a normal completion return code. However, if the
operation is issued during an active transaction, both the transaction and the
session are terminated abnormally by the Intra subsystem, and the other program
may also be terminated abnormally. For example, your program could issue the
end of session operation after an error has occurred on one of its previous
operations; it may be an error from which your program cannot easily recover.

Ending Sessions Started by an Evoke Operation from Another Program

The end of session operation can be issued in a session that was started by an
evoke operation issued by another program in System/36. In this case, your
program should issue the end of session operation after it receives an end of
transaction indication. The end of session operation frees that session so that it
can be started again by another program.

If your program does not issue an end of session operation, the session exists until
your program (or multiple-program procedure) terminates. To prevent your
program from terminating abnormally because of a communications error, you
may want to code the end of session operation in your program as a general
recovery action for all unexpected errors that you have not handled individually
in your program. The end of session operation could be used to terminate the
session rather than retrying the failing operation in that session or specifying some
special recovery action for each error.

Operation Assembler BASIC COBOL RPG I1
End of session EOS $$EOS $$EOS $$EOS

Note: If an RPG II program is started with an evoke end of transaction
operation, the program should issue an end of session or release
operation to free the session ID entry in the internal table of
identifiers for the WORKSTN file.

6-22 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Evoke Operations

The evoke operation starts a procedure (and a transaction) on System/36. The
procedure then starts a program that will handle the transaction. You can issue
an evoke operation in your program only after a session has been acquired.
Multiple evoke operations can be issued in an Intra session. (However, only one
transaction at a time can be active; the previous transaction must have ended
before the next evoke operation can be issued.)

The evoke operation must include an evoke parameter list, and can optionally
include either procedure parameters for the procedure being started or
user-supplied data for one of the programs started by the procedure. The
parameters specified in the evoke parameter list (including the name of the
procedure being started) are described for each language later in the topic.

The following types of evoke operations can be used in an Intra session to start
another procedure on System/36.

e Eveke: Evokes the specified procedure, sends data to the subsystem (if
specified by the user), and then waits until that procedure has been started
before control is returned to your program.

e [Evoke end of transaction: Evokes the specified procedure, sends any data
specified by the user to one of the programs started by that procedure, and
then ends the transaction without allowing the program to communicate in
return.

@ [Evoke then get (assembler only): Evokes the specified procedure, sends any
data specified by the user, and then waits for input to be received from one of
the programs started by the procedure.

o FEvoke then invite: Evokes the specified procedure, sends any data specified by
the user, invites one of the programs started by that procedure to send data,
and regains control without having to wait for the evoke operation to be
completed or for the invited data to be received. (An accept input or get
operation must be issued later in this transaction to receive the data in your
program’s input buffer.)

Operation Assembler BASIC COBOL RPG 11

Evoke EVK1Lz2 $SEVOKNI $SEVOKNI $$EVOKNI

Evoke end of EVEL2 $$EVOKET $$EVOKET $$SEVOKET
transaction

Evoke then get EVG12 — — —

Evoke then invite | EVIL2 $$EVOK $$EVOK $$SEVOK

1In assembler, a function management header can be sent with this operation by specifying
OPM-FMH on the $WSIO macro.

2In assembler, a confirm indicator can be sent with this operation by specifying
OPM-CONFIRM on the $WSIO macro. If OPM is not CONFIRM, it must be ZERO.

Chapter 6. The Intra Subsystem 6-23

The evoke parameter list associated with each type of evoke operation contains
the name of the procedure to be started, the name of the library in which the
procedure is located, and the password and user identifier associated with that
procedure. (The password and user identifier are needed only if security is being
used on System/36.) The evoke operation can optionally include either (but not
both) parameters to be sent to the evoked procedure or data to be passed to one
of the programs started by the procedure.

A function management header can be included with the data sent on an evoke
operation. If function management headers are included in the data passed in a
session, BATCH-YES must be specified on the SESSION statement associated
with that session. (For a description of function management headers, see
“Function Management Headers (CICS and IMS)” in Chapters 1 and 2 of the
SSP-ICF Upline Subsystems Reference manual.)

If you are using assembler, a confirm indicator can also be included with the data
sent on an evoke operation. If the confirm indicator is to be included,
OPM-CONFIRM must be specified. If OPM is not CONFIRM, it must be
ZERO. In other languages, a confirm indicator is specified in an IDDU format
definition.

The total length of the procedure name and data (or procedure parameters)
specified in the program to be sent to the subsystem cannot exceed 508 bytes.
(This does not include the other three evoke list parameters, each of which can be
8 bytes long.)

The evoke, evoke end of transaction, and evoke then invite operations can also be
used with externally described field, format, and file definitions (also called data
definitions). The interactive data definition utility (IDDU) is used to create data
definitions. The following IDDU keywords are used for each language (in place
of the operation codes):

Operation IDDU Keywords
Evoke EVOKE!

Evoke end of transaction EVOKE and DETACH!
Evoke then invite EVOKE and INVITE!1

1A confirm indicator can be specified in addition to each function. A confirm indicator is
specified in an IDDU format definition.

Refer to the manual Getting Started with Interactive Data Definition Utility for
more information about IDDU and creating data definitions.

6-24 SSP-ICF Programming for Subsystems and Intra Subsystem Reference

Notes:

1. If you are using IDDU, information associated with the EVOKE can be
passed in a user-defined field or separately, in the following order:
procedure name, name of the library in which the procedure is located,
user ID and password associated with the procedure, and user data (if
any). When user data is passed, the result is an evoke operation followed

by a put operation and any additional keywords (for example,
CONFIRM, DETACH, or INVITE).

2. If you are using IDDU to send an evoke parameter list that contains
procedure parameters of which some may not be specified, you should
define an IDDU format that specifies only one parameter. The length of
the parameter should be defined as the total length of all the passed
parameter values (including the commas that are used to separate the
values or to indicate any unspecified parameters).

3. If you are using IDDU to create a format definition, you should also use
IDDU to print it. Use the resulting format definition listing to determine
the order and starting positions of the parameters in the evoke parameter
list and, optionally, the starting position of the user-supplied data or
procedure parameters that follow.

Assembler Evoke Operation (Macroinstructions)

SWSIO Macro: To perform an evoke operation in assembler, use the $WSIO
macro. You specify the desired evoke operation code (EVK, EVE, EVG, or EVI)
in the OPC parameter of the macro (for example, OPC-EVK). You must use
another macro, $EVOK, to specify the evoke parameters needed to perform the
evoke operation specified on the $WSIO macro. The function management
header modifier (specified as OPM-FMH in the $WSIO macro) is valid only if
BATCH-YES was specified on the SESSION statement of the program that
acquired the session. (For a complete description of the communications
parameters for the $WSIO macro, see “SWSIO Macro” in Chapter 2.) The
confirm indicator is valid only if OPM-CONFIRM was specified in the SWSIO
macro. If OPM is not CONFIRM, it must be zero.

User data or procedure parameters (in either positional or keyword form) to be
passed to the other program or procedure are specified in the RCAD and
OUTLEN parameters on the $WSIO macro. The RCAD parameter can be used
for both input and output when the evoke then get operation is used.

Chapter 6. The Intra Subsystem 6-25

EVOK

EVKLST

ICPROC

ICLIB

USERID

PASS

Example of $WSIO Macro:

SWSIO DTF-ICDTF1l,INLEN-256,RCAD-IOBUFF,0OPC-EVG,
OPM-CONFIRM,PL@-EVKLST,OUTLEN-111

This $WSIO macro (in your program) evokes a procedure on System/36, starts a
transaction in the acquired session, and then waits for input because the operation
is an evoke then get operation. The parameters to be used in the operation are
those identified by the label EVKLST (shown in the following SEVOK example).
There are 111 bytes of output data or procedure parameters in your program
buffer named IOBUFF that are to be sent to the other program or procedure.
Note that, because 111 bytes are specified for the output buffer, the procedure
name can have no more than 8 characters (the two cannot exceed the specified
maximum of 119 bytes). Then, when input is received from the program, the data
is placed in your program’s buffer (IOBUFF), which is 256 bytes long.

SEVOK Macro: The $EVOK macro builds a parameter <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>